WorldWideScience

Sample records for assess microbial communities

  1. Ecotoxicological assessment of soil microbial community tolerance to glyphosate.

    Science.gov (United States)

    Allegrini, Marco; Zabaloy, María Celina; Gómez, Elena del V

    2015-11-15

    Glyphosate is the most used herbicide worldwide. While contrasting results have been observed related with its impact on soil microbial communities, more studies are necessary to elucidate the potential effects of the herbicide. Differences in tolerance detected by Pollution Induced Community Tolerance (PICT) approach could reflect these effects. The objective of the present study was to assess the tolerance to glyphosate (the active ingredient and a commercial formulation) of contrasting soils with (H) and without (NH) history of exposure. The hypothesis of a higher tolerance in H soils due to a sustained selection pressure on community structure was tested through the PICT approach. Results indicated that tolerance to glyphosate is not consistent with previous history of exposure to the herbicide either for the active ingredient or for a commercial formulation. Soils of H and NH sites were also characterized in order to determine to what extent they differ in their functional diversity and structure of microbial communities. Denaturant Gradient Gel Electrophoresis (DGGE) and Quantitative Real Time PCR (Q-PCR) indicated high similarity of Eubacteria profiles as well as no significant differences in abundance, respectively, between H and NH sites. Community level physiological profiling (CLPP) indicated some differences in respiration of specific sources but functional diversity was very similar as reflected by catabolic evenness (E). These results support PICT assay, which ideally requires soils with differences in their exposure to the contaminant but minor differences in other characteristics. This is, to our knowledge, the first report of PICT approach with glyphosate examining tolerance at soil microbial community level.

  2. Quantitative phylogenetic assessment of microbial communities indiverse environments

    Energy Technology Data Exchange (ETDEWEB)

    von Mering, C.; Hugenholtz, P.; Raes, J.; Tringe, S.G.; Doerks,T.; Jensen, L.J.; Ward, N.; Bork, P.

    2007-01-01

    The taxonomic composition of environmental communities is an important indicator of their ecology and function. Here, we use a set of protein-coding marker genes, extracted from large-scale environmental shotgun sequencing data, to provide a more direct, quantitative and accurate picture of community composition than traditional rRNA-based approaches using polymerase chain reaction (PCR). By mapping marker genes from four diverse environmental data sets onto a reference species phylogeny, we show that certain communities evolve faster than others, determine preferred habitats for entire microbial clades, and provide evidence that such habitat preferences are often remarkably stable over time.

  3. Pyrosequencing-based assessment of microbial community shifts in leachate from animal carcass burial lysimeter.

    Science.gov (United States)

    Kim, Hyun Young; Seo, Jiyoung; Kim, Tae-Hun; Shim, Bomi; Cha, Seok Mun; Yu, Seungho

    2017-02-26

    This study examined the use of microbial community structure as a bio-indicator of decomposition levels. High-throughput pyrosequencing technology was used to assess the shift in microbial community of leachate from animal carcass lysimeter. The leachate samples were collected monthly for one year and a total of 164,639 pyrosequencing reads were obtained and used in the taxonomic classification and operational taxonomy units (OTUs) distribution analysis based on sequence similarity. Our results show considerable changes in the phylum-level bacterial composition, suggesting that the microbial community is a sensitive parameter affected by the burial environment. The phylum classification results showed that Proteobacteria (Pseudomonas) were the most influential taxa in earlier decomposition stage whereas Firmicutes (Clostridium, Sporanaerobacter, and Peptostreptococcus) were dominant in later stage under anaerobic conditions. The result of this study can provide useful information on a time series of leachate profiles of microbial community structures and suggest patterns of microbial diversity in livestock burial sites. In addition, this result can be applicable to predict the decomposition stages under clay loam based soil conditions of animal livestock.

  4. Microbial Community Assessment in Wetlands for Water Pollution Control: Past, Present, and Future Outlook

    Directory of Open Access Journals (Sweden)

    Kela P. Weber

    2016-11-01

    Full Text Available The field of treatment wetlands (TWs is rapidly expanding and, arguably, is tasked with studying and understanding one of the most complex water treatment systems available. Microbial communities are generally considered to be responsible for the majority of wastewater constituent degradation in TWs. However, they are also known to be spatially heterogeneous, temporally dynamic, as well as structurally and functionally diverse. Presented here is a meta-analysis of all peer reviewed TW journal articles which utilized a microbial community assessment methodology over the period of 1988 to July 2016. A total of 1101 papers were reviewed, 512 from 1988 to 2012, 215 of which included a microbial community assessment aspect and were subsequently classified as representing past research, and 589 from 2013 to July 2016, 196 of which were classified as representing current TW microbial community research. In general, TW microbial community research has increased over time, with a marked surge in the past four years. Microbial community structure is currently the most commonly used methodological type followed by activity, enumeration and function, respectively. Areas of research focus included nitrogen transformations (156, organic degradation (33, and emerging contaminants (32, with general characterization studies also accounting for a significant proportion (243. Microbial communities from a range of TW systems have been investigated over the last four years with meso-scale (10–1000 L being the most commonly studied system size followed by large-scale (>100,000 L, micro-scale (<10 L, and pilot-scale (1000–100,000 L. Free water surface flow (SF, horizontal subsurface flow (HF, and vertical flow (VF systems are being studied in approximately equal proportions with the majority of studies focused on gaining fixed media/biofilm samples for analysis (rather than from the rhizosphere or interstitial water. Looking at efforts from a regional perspective

  5. Assessing environmental drivers of microbial communities in estuarine soils of the Aconcagua River in Central Chile.

    Science.gov (United States)

    Fuentes, Sebastián; Ding, Guo-Chun; Cárdenas, Franco; Smalla, Kornelia; Seeger, Michael

    2015-10-01

    Aconcagua River basin (Central Chile) harbors diverse economic activities such as agriculture, mining and a crude oil refinery. The aim of this study was to assess environmental drivers of microbial communities in Aconcagua River estuarine soils, which may be influenced by anthropogenic activities taking place upstream and by natural processes such as tides and flood runoffs. Physicochemical parameters were measured in floodplain soils along the estuary. Bacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Pseudomonas, Bacillus and Fungi were studied by DGGE fingerprinting of 16S rRNA gene and ribosomal ITS-1 amplified from community DNA. Correlations between environment and communities were assessed by distance-based redundancy analysis. Mainly hydrocarbons, pH and the composed variable copper/arsenic/calcium but in less extent nitrogen and organic matter/phosphorous/magnesium correlated with community structures at different taxonomic levels. Aromatic hydrocarbons degradation potential by bacterial community was studied. Polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenases genes were detected only at upstream sites. Naphthalene dioxygenase ndo genes were heterogeneously distributed along estuary, and related to Pseudomonas, Delftia, Comamonas and Ralstonia. IncP-1 plasmids were mainly present at downstream sites, whereas IncP-7 and IncP-9 plasmids showed a heterogeneous distribution. This study strongly suggests that pH, copper, arsenic and hydrocarbons are main drivers of microbial communities in Aconcagua River estuarine soils.

  6. Effects of vegetation type on soil microbial community structure and catabolic diversity assessed by polyphasic methods in North China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Soil microbes play a major role in ecological processes and are closely associated with the aboveground plant community. In order to understand the effects of vegetation type on the characteristics of soil microbial communities, the soil microbial communities were assessed by plate counts, phospholipid fatty acid (PLFA) and Biolog microplate techniques in five plant communities, i.e., soybean field (SF), artificial turf (AT), artificial shrub (AS), natural shrub (NS), and maize field (MF) in Jinan, Shandong Province, North China. The results showed that plant diversity had little discernible effect on microbial biomass but a positive impact on the evennessof utilized substrates in Biolog microplate. Legumes could significantly enhance the number of cultural microorganisms, microbial biomass, and community catabolic diversity. Except for SF dominated by legumes, the biomass of fungi and the catabolic diversity of microbial community were higher in less disturbed soil beneath NS than in frequently disturbed soils beneath the other vegetation types. These results confirmed that high number of plant species, legumes, and natural vegetation types tend to support soil microbial communities with higher function. The present study also found a significant correlation between the number of cultured bacteria and catabolic diversity of the bacterial community. Different research methods led to varied results in this study. The combination of several approaches is recommended for accurately describing the characteristics of microbial communities in many respects.

  7. An assessment of microbial communities associated with surface mining-disturbed overburden.

    Science.gov (United States)

    Poncelet, Dominique M; Cavender, Nicole; Cutright, Teresa J; Senko, John M

    2014-03-01

    To assess the microbiological changes that occur during the maturation of overburden that has been disturbed by surface mining of coal, a surface mining-disturbed overburden unit in southeastern Ohio, USA was characterized. Overburden from the same unit that had been disturbed for 37 and 16 years were compared to undisturbed soil from the same region. Overburden and soil samples were collected as shallow subsurface cores from each subregion of the mined area (i.e., land 16 years and 37 years post-mining, and unmined land). Chemical and mineralogical characteristics of overburden samples were determined, as were microbial respiration rates. The composition of microbial communities associated with overburden and soil were determined using culture-independent, nucleic acid-based approaches. Chemical and mineralogical evaluation of overburden suggested that weathering of disturbed overburden gave rise to a setting with lower pH and more oxidized chemical constituents. Overburden-associated microbial biomass and respiration rates increased with time after overburden disturbance. Evaluation of 16S rRNA gene libraries that were produced by "next-generation" sequencing technology revealed that recently disturbed overburden contained an abundance of phylotypes attributable to sulfur-oxidizing Limnobacter spp., but with increasing time post-disturbance, overburden-associated microbial communities developed a structure similar to that of undisturbed soil, but retained characteristics of more recently disturbed overburden. Our results indicate that over time, the biogeochemical weathering of disturbed overburden leads to the development of geochemical conditions and microbial communities that approximate those of undisturbed soil, but that this transition is incomplete after 37 years of overburden maturation.

  8. Recovery of microbial community structure and functioning after wildfire in semi-arid environments: optimising methods for monitoring and assessment

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Martini, Dylan; Erickson, Todd; Merritt, David; Dixon, Kingsley

    2015-04-01

    Introduction In semi-arid areas such as northern Western Australia, wildfires are a natural part of the environment and many ecosystems in these landscapes have evolved and developed a strong relationship with fire. Soil microbial communities play a crucial role in ecosystem processes by regulating the cycling of nutrients via decomposition, mineralization, and immobilization processes. Thus, the structure (e.g. soil microbial biomass) and functioning (e.g. soil microbial activity) of microbial communities, as well as their changes after ecosystem disturbance, can be useful indicators of soil quality and health recovery. In this research, we assess the impacts of fire on soil microbial communities and their recovery in a biodiverse semi-arid environment of Western Australia (Pilbara region). New methods for determining soil microbial respiration as an indicator of microbial activity and soil health are also tested. Methodology Soil samples were collected from 10 similar ecosystems in the Pilbara with analogous native vegetation, but differing levels of post-fire disturbance (i.e. 3 months, 1 year, 5, 7 and 14 years after wildfire). Soil microbial activity was measured with the Solvita test which determines soil microbial respiration rate based on the measurement of the CO2 burst of a dry soil after it is moistened. Soils were dried and re-wetted and a CO2 probe was inserted before incubation at constant conditions of 25°C during 24 h. Measurements were taken with a digital mini spectrometer. Microbial (bacteria and fungi) biomass and community composition were measured by phospholipid fatty acid analysis (PLFA). Results Immediately after the fire (i.e. 3 months), soil microbial activity and microbial biomass are similar to 14 years 'undisturbed' levels (53.18±3.68 ppm CO2-CO and 14.07±0.65 mg kg-1, respectively). However, after the first year post-fire, with larger plant productivity, microbial biomass and microbial activity increase rapidly, peaking after 5

  9. In-Drift Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    D. Jolley

    2000-11-09

    As directed by written work direction (CRWMS M and O 1999f), Performance Assessment (PA) developed a model for microbial communities in the engineered barrier system (EBS) as documented here. The purpose of this model is to assist Performance Assessment and its Engineered Barrier Performance Section in modeling the geochemical environment within a potential repository drift for TSPA-SR/LA, thus allowing PA to provide a more detailed and complete near-field geochemical model and to answer the key technical issues (KTI) raised in the NRC Issue Resolution Status Report (IRSR) for the Evolution of the Near Field Environment (NFE) Revision 2 (NRC 1999). This model and its predecessor (the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document, CRWMS M and O 1998a) was developed to respond to the applicable KTIs. Additionally, because of the previous development of the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a), the M and O was effectively able to resolve a previous KTI concern regarding the effects of microbial processes on seepage and flow (NRC 1998). This document supercedes the in-drift microbial communities model as documented in Chapter 4 of the TSPA-VA Technical Basis Document (CRWMS M and O 1998a). This document provides the conceptual framework of the revised in-drift microbial communities model to be used in subsequent performance assessment (PA) analyses.

  10. Mathematical modeling as a tool to assess microbial community responses to CO2 injection

    Science.gov (United States)

    Vilcaez, J.

    2014-12-01

    The issue of subsurface microbial community responses to the injection of CO2 has great importance not only from a risk assessment point of view but also from the perspective of CO2 recycling to CH4. In this sense, the objective of this study is to develop mathematical models to make a quantitative description of the responses of subsurface indigenous microbial communities to the injection of CO2. For this end, TOUGHREACTV1.2 reactive transport simulator with its module ECO2N is used as the modeling framework. The targeted microbial community is composed of fermentative bacteria (Organic matter → Acetate & H2), acetotrophic methanogens (Acetate → Methane & CO2), acetotrophic Sulfate Reducing Bacteria (SRB) (Acetate → H2S & CO2), hydrogenotrophic methanogens (H2 & CO2 → CH4), and hydrogenotrophic SRB (H2 → H2S). Due to the multiple hydrogeological, geochemical and microbiological factors intervening in both the response of subsurface microbial communities to the injection of CO2 and the chemical and physical fate of CO2 itself, at this stage simulations have been performed in batch mode. That means numerical simulations aimed to track changes in CO2 saturation levels, pH, and concentrations of mineral and aqueous phase species over time at selected initial conditions. Numerical simulation results indicate that the activity of microbes associated with methanogenic processes in geological storage sites of CO2 is governed by the level of CO2 saturation in the pore space as well as by the presence of pH buffering minerals such as calcite. With calcite in the mineral phase attenuating drops in pH below inhibitory levels, for instance it is shown that acetotrophic and hydrogenotrophic SRB outcompete acetotrophic and hydrogenotrophic methanogens for acetate and H2, respectively. During the initial stages of the reaction when the pH level is lowest, the higher tolerance of hydrogenotrophic methanogens to acidic pH levels is reflected by a preferential formation of

  11. Pyrosequencing assessment of soil microbial communities in organic and conventional potato farms

    Science.gov (United States)

    Organic farming is a growing field of agriculture that is benign on the environment but there are contradictory reports about the impact of these practices on the soil microbial community, i.e. some studies showed higher microbial diversity in organic farms but others showed no differences in divers...

  12. Temporal and spatial assessment of microbial communities in commercial silages from bunker silos.

    Science.gov (United States)

    Kraut-Cohen, J; Tripathi, V; Chen, Y; Gatica, J; Volchinski, V; Sela, S; Weinberg, Z; Cytryn, E

    2016-08-01

    Ensiling is a feed preservation method of moist forage crops that generally depends on naturally developing lactic acid bacteria to convert water-soluble carbohydrates into organic acids. While bacterial community dynamics have been previously assessed in bench-scale and pilot ensiling facilities, almost no studies have assessed the microbiomes of large-scale silage facilities. This study analyzed bacterial community composition in mature silage from bunker silos in three commercial production centers as related to pH, organic matter, volatile fatty acid composition, and spatial distribution within the ensiling bunker. It revealed significant physicochemical differences between "preserved" regions situated in the center and along the walls of the silage bunkers that were characterized by high concentrations of lactic acid and other volatiles and pH values below 5, and "spoiled" regions in the corners (shoulders) of the bunkers that had low lactic acid concentrations and high pH values. Preserved silage was dominated (>90 %) by lactic acid bacteria and characterized by high similarity and low taxonomic diversity, whereas spoiled silage had highly diverse microbiomes with low abundances of lactic acid bacteria (<5 %) that were sometimes characterized by high levels of Enterobacteriaceae. Spatial position had a much stronger impact on the microbial community composition than feedstock type, sampling date, or production center location supporting previous studies demonstrating that ecology and not geography is a major driver of environmental microbiomes.

  13. Kinetic modelling and microbial community assessment of anaerobic biphasic fixed film bioreactor treating distillery spent wash.

    Science.gov (United States)

    Acharya, Bhavik K; Pathak, Hilor; Mohana, Sarayu; Shouche, Yogesh; Singh, Vasdev; Madamwar, Datta

    2011-08-01

    Anaerobic digestion, microbial community structure and kinetics were studied in a biphasic continuously fed, upflow anaerobic fixed film reactor treating high strength distillery wastewater. Treatment efficiency of the bioreactor was investigated at different hydraulic retention times (HRT) and organic loading rates (OLR 5-20 kg COD m⁻³ d⁻¹). Applying the modified Stover-Kincannon model to the reactor, the maximum removal rate constant (U(max)) and saturation value constant (K(B)) were found to be 2 kg m⁻³ d⁻¹ and 1.69 kg m⁻³ d⁻¹ respectively. Bacterial community structures of acidogenic and methanogenic reactors were assessed using culture-independent analyses. Sequencing of 16S rRNA genes exhibited a total of 123 distinct operational taxonomic units (OTUs) comprising 49 from acidogenic reactor and 74 (28 of eubacteria and 46 of archaea) from methanogenic reactor. The findings reveal the role of Lactobacillus sp. (Firmicutes) as dominant acid producing organisms in acidogenic reactor and Methanoculleus sp. (Euryarchaeotes) as foremost methanogens in methanogenic reactor.

  14. Continuous fungal treatment of non-sterile veterinary hospital effluent: pharmaceuticals removal and microbial community assessment.

    Science.gov (United States)

    Badia-Fabregat, Marina; Lucas, Daniel; Pereira, Maria Alcina; Alves, Madalena; Pennanen, Taina; Fritze, Hannu; Rodríguez-Mozaz, Sara; Barceló, Damià; Vicent, Teresa; Caminal, Glòria

    2016-03-01

    Source point treatment of effluents with a high load of pharmaceutical active compounds (PhACs), such as hospital wastewater, is a matter of discussion among the scientific community. Fungal treatments have been reported to be successful in degrading this type of pollutants and, therefore, the white-rot fungus Trametes versicolor was applied for the removal of PhACs from veterinary hospital wastewater. Sixty-six percent removal was achieved in a non-sterile batch bioreactor inoculated with T. versicolor pellets. On the other hand, the study of microbial communities by means of DGGE and phylogenetic analyses led us to identify some microbial interactions and helped us moving to a continuous process. PhAC removal efficiency achieved in the fungal treatment operated in non-sterile continuous mode was 44 % after adjusting the C/N ratio with respect to the previously calculated one for sterile treatments. Fungal and bacterial communities in the continuous bioreactors were monitored as well.

  15. Development of a Model, Metal-reducing Microbial Community for a System Biology Level Assessment of Desulfovibrio vulgaris as part of a Community

    Energy Technology Data Exchange (ETDEWEB)

    Elias, Dwayne; Schadt, Christopher; Miller, Lance; Phelps, Tommy; Brown, S. D.; Arkin, Adam; Hazen, Terry; Drake, Megin; Yang, Z.K.; Podar, Mircea

    2010-05-17

    One of the largest experimental gaps is between the simplicity of pure cultures and the complexity of open environmental systems, particularly in metal-contaminated areas. These microbial communities form ecosystem foundations, drive biogeochemical processes, and are relevant for biotechnology and bioremediation. A model, metal-reducing microbial community was constructed as either syntrophic or competitive to study microbial cell to cell interactions, cell signaling and competition for resources. The microbial community was comprised of the metal-reducing Desulfovibrio vulgaris Hildenborough and Geobacter sulfurreducens PCA. Additionally, Methanococcus maripaludis S2 was added to study complete carbon reduction and maintain a low hydrogen partial pressure for syntrophism to occur. Further, considerable work has been published on D. vulgaris and the D. vulgaris/ Mc. maripaludis co-culture both with and without stress. We are extending this work by conducting the same stress conditions on the model community. Additionally, this comprehensive investigation includes physiological and metabolic analyses as well as specially designed mRNA microarrays with the genes for all three organisms on one slide so as to follow gene expression changes in the various cultivation conditions as well as being comparable to the co- and individual cultures. Further, state-of -the-art comprehensive AMT tag proteomics allows for these comparisons at the protein level for a systems biology assessment of a model, metal-reducing microbial community. Preliminary data revealed that lactate oxidation by D. vulgaris was sufficient to support both G. sulfurreducens and M. maripaludis via the excretion of H2 and acetate. Fumarate was utilized by G. sulfurreducens and reduced to succinate since neither of the other two organisms can reduce fumarate. Methane was quantified, suggesting acetate and H2 concentrations were sufficient for M. maripaludis. Steady state community cultivation will allow for

  16. Quantitative assessment of in situ microbial communities affecting nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C. [Tennessee Univ., Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States)

    1996-05-01

    Microbes in the environments surrounding nuclear waste depositories pose several questions regarding the protection of the surrounding communities. microbes can facilitate microbially influenced corrosion (MIC), mobilize and facilitate the transport of nuclides as well as produce gaseous emissions which can compromise containment. We have developed an analysis of the extant microbiota that is independent of quantitative recovery and subsequent growth, based on signature biomarkers analysis (SBA).

  17. Assessment of the Deepwater Horizon oil spill impact on Gulf coast microbial communities

    Directory of Open Access Journals (Sweden)

    Regina eLamendella

    2014-04-01

    Full Text Available One of the major environmental concerns of the Deepwater Horizon oil spill in the Gulf of Mexico was the ecological impact of the oil that reached shorelines of the Gulf Coast. Here we investigated the impact of the oil on the microbial composition in beach samples collected in June 2010 along a heavily impacted shoreline near Grand Isle, Louisiana. Successional changes in the microbial community structure due to the oil contamination were determined by deep sequencing of 16S rRNA genes. Metatranscriptomics was used to determine expression of functional genes involved in hydrocarbon degradation processes. In addition, potential hydrocarbon-degrading Bacteria were obtained in culture. The 16S data revealed that highly contaminated samples had higher abundances of Alpha- and Gammaproteobacteria sequences. Successional changes in these classes were observed over time, during which the oil was partially degraded. The metatranscriptome data revealed that PAH, n-alkane, and toluene degradation genes were expressed in the contaminated samples, with high homology to genes from Alteromonadales, Rhodobacterales, and Pseudomonales. Notably, Marinobacter (Gammaproteobacteria had the highest representation of expressed genes in the samples. A Marinobacter isolated from this beach was shown to have potential for transformation of hydrocarbons in incubation experiments with oil obtained from the Mississippi Canyon Block 252 (MC252 well; collected during the Deepwater Horizon spill. The combined data revealed a response of the beach microbial community to oil contaminants, including prevalence of Bacteria endowed with the functional capacity to degrade oil.

  18. Performance Assessment of Full-Scale Wastewater Treatment Plants Based on Seasonal Variability of Microbial Communities via High-Throughput Sequencing

    Science.gov (United States)

    Liu, Tang; Liu, Shufeng; Zheng, Maosheng; Chen, Qian; Ni, Jinren

    2016-01-01

    Microbial communities of activated sludge (AS) play a key role in the performance of wastewater treatment processes. However, seasonal variability of microbial population in varying AS-based processes has been poorly correlated with operation of full-scale wastewater treatment systems (WWTSs). In this paper, significant seasonal variability of AS microbial communities in eight WWTSs located in the city of Guangzhou were revealed in terms of 16S rRNA-based Miseq sequencing. Furthermore, variation redundancy analysis (RDA) demonstrated that the microbial community compositions closely correlated with WWTS operation parameters such as temperature, BOD, NH4+-N and TN. Consequently, support vector regression models which reasonably predicted effluent BOD, SS and TN in WWTSs were established based on microbial community compositions. This work provided an alternative tool for rapid assessment on performance of full-scale wastewater treatment plants. PMID:27049964

  19. Comparative Assessment of Mediterranean Gorgonian-Associated Microbial Communities Reveals Conserved Core and Locally Variant Bacteria

    KAUST Repository

    van de Water, Jeroen A J M

    2016-10-10

    Gorgonians are key habitat-forming species of Mediterranean benthic communities, but their populations have suffered from mass mortality events linked to high summer seawater temperatures and microbial disease. However, our knowledge on the diversity, dynamics and function of gorgonian-associated microbial communities is limited. Here, we analysed the spatial variability of the microbiomes of five sympatric gorgonian species (Eunicella singularis, Eunicella cavolini, Eunicella verrucosa, Leptogorgia sarmentosa and Paramuricea clavata), collected from the Mediterranean Sea over a scale of ∼1100 km, using next-generation amplicon sequencing of the 16S rRNA gene. The microbiomes of all gorgonian species were generally dominated by members of the genus Endozoicomonas, which were at very low abundance in the surrounding seawater. Although the composition of the core microbiome (operational taxonomic units consistently present in a species) was found to be unique for each host species, significant overlap was observed. These spatially consistent associations between gorgonians and their core bacteria suggest intricate symbiotic relationships and regulation of the microbiome composition by the host. At the same time, local variations in microbiome composition were observed. Functional predictive profiling indicated that these differences could be attributed to seawater pollution. Taken together, our data indicate that gorgonian-associated microbiomes are composed of spatially conserved bacteria (core microbiome members) and locally variant members, and that local pollution may influence these local associations, potentially impacting gorgonian health.

  20. Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage

    Energy Technology Data Exchange (ETDEWEB)

    Nicomrat, D.; Dick, W.A.; Tuovinen, O.H. [Ohio State University, Columbus, OH (United States)

    2006-01-15

    Constructed wetlands are used to treat acid drainage from surface or underground coal mines. However, little is known about the microbial communities in the receiving wetland cells. The purpose of this work was to characterize the microbial population present in a wetland that was receiving acid coal mine drainage (AMD). Samples were collected from the oxic sediment zone of a constructed wetland cell in southeastern Ohio that was treating acid drainage from an underground coal mine seep. Samples comprised Fe(Ill) precipitates and were pretreated with ammonium oxalate to remove interfering iron, and the DNA was extracted and purified by agarose gel electrophoresis prior to amplification of portions of the 16S rRNA gene. Amplified products were separated by denaturing gradient gel electrophoresis and DNA from seven distinct bands was excised from the gel and sequenced. The sequences were matched to sequences in the GenBank bacterial 16S rDNA database. The DNA in two of the bands yielded matches with Acidithiobacillus ferrooxidans and the DNA in each of the remaining five bands was consistent with one of the following microorganisms: Acidithiobacillus thiooxidans, strain TRA3-20 (a eubacterium), strain BEN-4 (an arsenite-oxidizing bacterium), an Alcaligenes sp., and a Bordetella sp. Low bacterial diversity in these samples reflects the highly inorganic nature of the oxic sediment layer where high abundance of iron- and sulfur-oxidizing bacteria would be expected. The results we obtained by molecular methods supported our findings, obtained using culture methods, that the dominant microbial species in an acid receiving, oxic wetland are A. thiooxidans and A. ferrooxidans.

  1. Systems biology of Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Navid, A; Ghim, C; Fenley, A; Yoon, S; Lee, S; Almaas, E

    2008-04-11

    Microbes exist naturally in a wide range of environments, spanning the extremes of high acidity and high temperature to soil and the ocean, in communities where their interactions are significant. We present a practical discussion of three different approaches for modeling microbial communities: rate equations, individual-based modeling, and population dynamics. We illustrate the approaches with detailed examples. Each approach is best fit to different levels of system representation, and they have different needs for detailed biological input. Thus, this set of approaches is able to address the operation and function of microbial communities on a wide range of organizational levels.

  2. Assessing Impacts of Unconventional Natural Gas Extraction on Microbial Communities in Headwater Stream Ecosystems in Northwestern Pennsylvania

    Directory of Open Access Journals (Sweden)

    Ryan eTrexler

    2014-11-01

    Full Text Available Hydraulic fracturing and horizontal drilling have increased dramatically in Pennsylvania Marcellus shale formations, however the potential for major environmental impacts are still incompletely understood. High-throughput sequencing of the 16S rRNA gene was performed to characterize the microbial community structure of water, sediment, bryophyte, and biofilm samples from 26 headwater stream sites in northwestern Pennsylvania with different histories of fracking activity within Marcellus shale play. Further, we describe the relationship between microbial community structure and environmental parameters measured. Approximately 3.2 million 16S rRNA gene sequences were retrieved from a total of 58 samples. Microbial community analyses showed significant reductions in species richness as well as evenness in sites with Marcellus shale activity (MSA+. Beta diversity analyses revealed distinct microbial community structure between sites with and without Marcellus shale activity (MSA-. For example, OTUs within the Acetobacteracea, Methylocystaceae, Acidobacteriaceae, and Phenylobacterium were greater than three log-fold more abundant in MSA+ sites as compared to MSA- sites. Further, several of these OTUs were strongly negatively correlated with pH and positively correlated with the number of wellpads in a watershed. It should be noted that many of the OTUs enriched in MSA+ sites are putative acidophilic and/or methanotrophic populations. This study revealed apparent shifts in the autochthonous microbial communities and highlighted potential members that could be responding to changing stream conditions as a result of nascent industrial activity in these aquatic ecosystems.

  3. Assessing the microbial community and functional genes in a vertical soil profile with long-term arsenic contamination.

    Directory of Open Access Journals (Sweden)

    Jinbo Xiong

    Full Text Available Arsenic (As contamination in soil and groundwater has become a serious problem to public health. To examine how microbial communities and functional genes respond to long-term arsenic contamination in vertical soil profile, soil samples were collected from the surface to the depth of 4 m (with an interval of 1 m after 16-year arsenic downward infiltration. Integrating BioLog and functional gene microarray (GeoChip 3.0 technologies, we showed that microbial metabolic potential and diversity substantially decreased, and community structure was markedly distinct along the depth. Variations in microbial community functional genes, including genes responsible for As resistance, carbon and nitrogen cycling, phosphorus utilization and cytochrome c oxidases were detected. In particular, changes in community structures and activities were correlated with the biogeochemical features along the vertical soil profile when using the rbcL and nifH genes as biomarkers, evident for a gradual transition from aerobic to anaerobic lifestyles. The C/N showed marginally significant correlations with arsenic resistance (p = 0.069 and carbon cycling genes (p = 0.073, and significant correlation with nitrogen fixation genes (p = 0.024. The combination of C/N, NO(3 (- and P showed the highest correlation (r = 0.779, p = 0.062 with the microbial community structure. Contradict to our hypotheses, a long-term arsenic downward infiltration was not the primary factor, while the spatial isolation and nutrient availability were the key forces in shaping the community structure. This study provides new insights about the heterogeneity of microbial community metabolic potential and future biodiversity preservation for arsenic bioremediation management.

  4. Microbial Risk Assessment

    Science.gov (United States)

    Ott, C. M.; Mena, K. D.; Nickerson, C.A.; Pierson, D. L.

    2009-01-01

    Historically, microbiological spaceflight requirements have been established in a subjective manner based upon expert opinion of both environmental and clinical monitoring results and the incidence of disease. The limited amount of data, especially from long-duration missions, has created very conservative requirements based primarily on the concentration of microorganisms. Periodic reevaluations of new data from later missions have allowed some relaxation of these stringent requirements. However, the requirements remain very conservative and subjective in nature, and the risk of crew illness due to infectious microorganisms is not well defined. The use of modeling techniques for microbial risk has been applied in the food and potable water industries and has exceptional potential for spaceflight applications. From a productivity standpoint, this type of modeling can (1) decrease unnecessary costs and resource usage and (2) prevent inadequate or inappropriate data for health assessment. In addition, a quantitative model has several advantages for risk management and communication. By identifying the variable components of the model and the knowledge associated with each component, this type of modeling can: (1) Systematically identify and close knowledge gaps, (2) Systematically identify acceptable and unacceptable risks, (3) Improve communication with stakeholders as to the reasons for resource use, and (4) Facilitate external scientific approval of the NASA requirements. The modeling of microbial risk involves the evaluation of several key factors including hazard identification, crew exposure assessment, dose-response assessment, and risk characterization. Many of these factors are similar to conditions found on Earth; however, the spaceflight environment is very specialized as the inhabitants live in a small, semi-closed environment that is often dependent on regenerative life support systems. To further complicate modeling efforts, microbial dose

  5. Assessment of microbial community changes and limiting factors during bioremediation of hydrocarbon-polluted soil with new miniaturized physiological methods

    OpenAIRE

    Kaufmann, Karin; Holliger, Hans Christof

    2005-01-01

    Due to human activities, organic pollutants are spilled to the environment where they threaten public health, often as contaminants of soil or groundwater. Living organisms are able to transform or mineralize many organic pollutants, and bioremediation techniques have been developed to remove pollutants from a contaminated site. However, fast and easy methods to document both the efficacy of bioremediation and the changes in soil microbial communities during bioremediation are not well develo...

  6. Comparison of microbial community assays for the assessment of stream biofilm ecology.

    Science.gov (United States)

    Vinten, A J A; Artz, R R E; Thomas, N; Potts, J M; Avery, L; Langan, S J; Watson, H; Cook, Y; Taylor, C; Abel, C; Reid, E; Singh, B K

    2011-06-01

    We investigated a range of microbiological community assays performed on scrapes of biofilms formed on artificial diffusing substrates deployed in 8 streams in eastern Scotland, with a view to using them to characterize ecological response to stream water quality. The assays considered were: Multiplex Terminal Restriction Fragment Length Polymorphism or M-TRFLP (a molecular method), Phospholipid Fatty Acid or PLFA analysis (a biochemical method) and MICRORESP™ (a physiological method) alongside TDI, diatom species, and chlorophyll a content. Four of the streams were classified as of excellent status (3-6μg/L Soluble Reactive Phosphorus (SRP)) with respect to soluble P content under the EU Water Framework Directive and four were of borderline good/moderate or moderate status (43-577μg/L SRP). At each site, 3 replicates of 3 solute diffusion treatments were deployed in a Latin square design. Solute diffusion treatments were: KCl (as a control solute), N and P (to investigate the effect of nutrient enrichment), or the herbicide isoproturon (as a "high impact" control, which aimed to affect biofilm growth in a way detectable by all assays). Biofilms were sampled after 4weeks deployment in a low flow period of early summer 2006. The chlorophyll a content of biofilms after 4weeks was 2.0±0.29mg/m(2) (mean±se). Dry matter content was 16.0±13.1g/m(2). The M-TRFLP was successfully used for generating community profiles of cyanobacteria, algae and bacteria and was much faster than diatom identification. The PFLA and TDI were successful after an increase in the sample size, due to low counts. The MICRORESP(™) assays were often below or near detection limit. We estimated the per-sample times for the successful assays as follows: M-TRFLP: 20min, PLFA 40min, TDI 90min. Using MANOVA on the first 5 principal co-ordinates, all the assays except MICRORESP(™) showed significant differences between sites, but none of the assays showed a significant effect of either initial

  7. Flat laminated microbial mat communities

    Science.gov (United States)

    Franks, Jonathan; Stolz, John F.

    2009-10-01

    Flat laminated microbial mats are complex microbial ecosystems that inhabit a wide range of environments (e.g., caves, iron springs, thermal springs and pools, salt marshes, hypersaline ponds and lagoons, methane and petroleum seeps, sea mounts, deep sea vents, arctic dry valleys). Their community structure is defined by physical (e.g., light quantity and quality, temperature, density and pressure) and chemical (e.g., oxygen, oxidation/reduction potential, salinity, pH, available electron acceptors and donors, chemical species) parameters as well as species interactions. The main primary producers may be photoautotrophs (e.g., cyanobacteria, purple phototrophs, green phototrophs) or chemolithoautophs (e.g., colorless sulfur oxidizing bacteria). Anaerobic phototrophy may predominate in organic rich environments that support high rates of respiration. These communities are dynamic systems exhibiting both spatial and temporal heterogeneity. They are characterized by steep gradients with microenvironments on the submillimeter scale. Diel oscillations in the physical-chemical profile (e.g., oxygen, hydrogen sulfide, pH) and species distribution are typical for phototroph-dominated communities. Flat laminated microbial mats are often sites of robust biogeochemical cycling. In addition to well-established modes of metabolism for phototrophy (oxygenic and non-oxygenic), respiration (both aerobic and anaerobic), and fermentation, novel energetic pathways have been discovered (e.g., nitrate reduction couple to the oxidation of ammonia, sulfur, or arsenite). The application of culture-independent techniques (e.g., 16S rRNA clonal libraries, metagenomics), continue to expand our understanding of species composition and metabolic functions of these complex ecosystems.

  8. Using Terminal Restriction Fragment Length Polymorphism (T-RFLP) Analysis to Assess Microbial Community Structure in Compost Systems

    Science.gov (United States)

    Tiquia, Sonia M.

    Terminal restriction fragment length polymorphism (T-RFLP) analysis of PCR-amplified genes is a widely used fingerprinting technique in composting systems. This analysis is based on the restriction endonuclease digestion of fluorescently end-labeled PCR products. The digested product is mixed with a DNA size standard, itself labeled with a distinct fluorescent dye, and the fragments are then separated by capillary or gel electrophoresis using an automated sequencer. Upon analysis, only the terminal end-labeled restriction fragments are detected. An electropherogram is produced, which shows a profile of compost microbial community as a series of peaks of varying height. This technique has also been effectively used in the exploration of complex microbial environments and in the study of bacterial, archaeal, and eukaryal populations in natural habitats.

  9. Assessment of microbial communities in mung bean (Vigna radiata) rhizosphere upon exposure to phytotoxic levels of Copper.

    Science.gov (United States)

    Sharaff, Murali; Archana, G

    2015-11-01

    Pollution of agricultural soils by Cu is of concern as it could bring about alterations in microbial communities, ultimately eliminating certain plant beneficial bacteria thus disturbing soil fertility and plant growth. To understand the response of rhizobacterial communities upon Cu perturbation, mung bean (Vigna radiata) plants were grown in agricultural soil amended with CuSO4 (0-1000 mg kg(-1) ) under laboratory conditions. Culture-independent and -dependent Denaturing Gradient Gel Electrophoresis (CI-DGGE and CD-DGGE) fingerprinting techniques were employed to monitor rhizobacterial community shifts upon Cu amendment. In group specific PCR-DGGE, a negative impact was seen on α-Proteobacteria followed by β-Proteobacteria resulting in a concomitant decrease in diversity indices with increased Cu concentration. No significant changes were observed in Firmicutes and Actinomycetes populations. In CD-DGGE rhizobacterial community shift was observed above 500 mg kg(-1) (CuSO4 ), however certain bands were predominantly present in all treatments. Plants showed toxic effects by reduction in growth and elevated Cu accumulation, with root system being affected prominently. From this study it is evident that above 250 mg kg(-1) , rhizobacterial communities are adversely affected. α-Proteobacteria was found to be a sensitive bio-indicator for Cu toxicity and is of particular significance since this group includes majority of plant growth promoting rhizobacteria.

  10. Microbial community assessment of mealworm larvae (Tenebrio molitor) and grasshoppers (Locusta migratoria migratorioides) sold for human consumption.

    Science.gov (United States)

    Stoops, J; Crauwels, S; Waud, M; Claes, J; Lievens, B; Van Campenhout, L

    2016-02-01

    In Western countries, the popularity of edible insects as an alternative animal protein source is increasing. Nevertheless, there is a lack of profound insight into the microbial safety and shelf life of living insects sold for human consumption. The purpose of this study was to characterise the microflora of fresh edible mealworm larvae and grasshoppers in a quantitative and qualitative way. Therefore, culture-dependent analyses (the total viable aerobic count, Enterobacteriaceae, lactic acid bacteria, yeasts and moulds, and bacterial endospores) and next-generation sequencing (454amplicon pyrosequencing) were performed. High microbial counts were obtained for both insect species. Different insect batches resulted in quite similar microbial numbers, except for bacterial endospores. However, the bacterial community composition differed between both insect species. The most abundant operational taxonomic unit in mealworm larvae was Propionibacterium. Also members of the genera Haemophilus, Staphylococcus and Clostridium were found. Grasshoppers were mainly dominated by Weissella, Lactococcus and Yersinia/Rahnella. Overall, a variety of potential spoilage bacteria and food pathogens were characterised. The results of this study suggest that a processing step with a microbiocidal effect is required to avoid or minimize risks involved with the consumption of edible insects.

  11. Development and Use of Integrated Microarray-Based Genomic Technologies for Assessing Microbial Community Composition and Dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, J.; Wu, L.; Gentry, T.; Schadt, C.; He, Z.; Li, X.

    2006-04-05

    different microbial communities and processes at the NABIR-FRC in Oak Ridge, TN. One project involves the monitoring of the development and dynamics of the microbial community of a fluidized bed reactor (FBR) used for reducing nitrate and the other project monitors microbial community responses to stimulation of uranium reducing populations via ethanol donor additions in situ and in a model system. Additionally, we are developing novel strategies for increasing microarray hybridization sensitivity. Finally, great improvements to our methods of probe design were made by the development of a new computer program, CommOligo. CommOligo designs unique and group-specific oligo probes for whole-genomes, metagenomes, and groups of environmental sequences and uses a new global alignment algorithm to design single or multiple probes for each gene or group. We are now using this program to design a more comprehensive functional gene array for environmental studies. Overall, our results indicate that the 50mer-based microarray technology has potential as a specific and quantitative tool to reveal the composition of microbial communities and their dynamics important to processes within contaminated environments.

  12. Microbial communities analysis assessed by pyrosequencing--a new approach applied to conservation state studies of mural paintings.

    Science.gov (United States)

    Rosado, T; Mirão, J; Candeias, A; Caldeira, A T

    2014-01-01

    The knowledge about the microbial communities present in mural paintings is of utmost importance to develop effective conservation and mitigation strategies. The present paper describes a methodological approach for the detailed characterisation of microorganisms thriving in mural paintings by combining culture-dependent methods that allow the identification of microorganisms capable of growing in the laboratory conditions and to obtain high cell densities for further studies, and culture independent methods, such as denaturing gradient gel electrophoresis (DGGE) and pyrosequencing. The coupled use of culture-dependent methods and DGGE does not give enough information to investigate the diversity and abundance of microorganisms present in wall paintings. Pyrosequencing, a novel molecular technique, used here for the first time in this area of research, allowed the identification of a large number of microorganisms, confirming some already identified by the cultivation-dependent methods such as fungi of the genera Penicillium and Cladosporium, but also providing a great contribution in the identification of several genera and species, not previously identified in these artworks, giving also a detailed overview of contaminants which was not possible with the other approaches. The results obtained on several mural painting samples show a strong relationship between the most deteriorated areas of the paintings and higher microbial contamination.

  13. Microbial community assembly and metabolic function during mammalian corpse decomposition

    Science.gov (United States)

    Metcalf, Jessica L; Xu, Zhenjiang Zech; Weiss, Sophie; Lax, Simon; Van Treuren, Will; Hyde, Embriette R.; Song, Se Jin; Amir, Amnon; Larsen, Peter; Sangwan, Naseer; Haarmann, Daniel; Humphrey, Greg C; Ackermann, Gail; Thompson, Luke R; Lauber, Christian; Bibat, Alexander; Nicholas, Catherine; Gebert, Matthew J; Petrosino, Joseph F; Reed, Sasha C.; Gilbert, Jack A; Lynne, Aaron M; Bucheli, Sibyl R; Carter, David O; Knight, Rob

    2016-01-01

    Vertebrate corpse decomposition provides an important stage in nutrient cycling in most terrestrial habitats, yet microbially mediated processes are poorly understood. Here we combine deep microbial community characterization, community-level metabolic reconstruction, and soil biogeochemical assessment to understand the principles governing microbial community assembly during decomposition of mouse and human corpses on different soil substrates. We find a suite of bacterial and fungal groups that contribute to nitrogen cycling and a reproducible network of decomposers that emerge on predictable time scales. Our results show that this decomposer community is derived primarily from bulk soil, but key decomposers are ubiquitous in low abundance. Soil type was not a dominant factor driving community development, and the process of decomposition is sufficiently reproducible to offer new opportunities for forensic investigations.

  14. Exocellular electron transfer in anaerobic microbial communities

    NARCIS (Netherlands)

    Stams, A.J.M.; Bok, de F.A.M.; Plugge, C.M.; Eekert, van M.H.A.; Dolfing, J.; Schraa, G.

    2006-01-01

    Exocellular electron transfer plays an important role in anaerobic microbial communities that degrade organic matter. Interspecies hydrogen transfer between microorganisms is the driving force for complete biodegradation in methanogenic environments. Many organic compounds are degraded by obligatory

  15. Preliminary assessment of microbial communities and biodegradation of chlorinated volatile organic compounds in wetlands at Cluster 13, Lauderick Creek area, Aberdeen Proving Ground, Maryland

    Science.gov (United States)

    Lorah, Michelle M.; Voytek, Mary A.; Spencer, Tracey A.

    2003-01-01

    A preliminary assessment of the microbial communities and biodegradation processes for chlorinated volatile organic compounds was con-ducted by the U.S. Geological Survey in wetlands at the Cluster 13, Lauderick Creek area at Aberdeen Proving Ground, Maryland. The U.S. Geological Survey collected wetland sediment samples from 11 sites in the Lauderick Creek area for microbial analyses, and used existing data to evaluate biodegradation processes and rates. The bacterial and methanogen communities in the Lauderick Creek wetland sediments were similar to those observed in a previous U.S. Geological Survey study at the West Branch Canal Creek wet-land area, Aberdeen Proving Ground. Evaluation of the degradation rate of 1,1,2,2-tetrachloroethane and the daughter compounds produced also showed similar results for the two wetlands. How-ever, a vertical profile of contaminant concentra-tions in the wetlands was available at only one site in the Lauderick Creek area, and flow velocities in the wetland sediment are unknown. To better evaluate natural attenuation processes and rates in the wetland sediments at Lauderick Creek, chemi-cal and hydrologic measurements are needed along ground-water flowpaths in the wetland at additional sites and during different seasons. Nat-ural attenuation in the wetlands, enhanced biore-mediation, and constructed wetlands could be feasible remediation methods for the chlorinated volatile organic compounds discharging in the Lauderick Creek area. The similarities in the microbial communities and biodegradation pro-cesses at the Lauderick Creek and West Branch Canal Creek areas indicate that enhanced bioreme-diation techniques currently being developed for the West Branch Canal Creek wetland area would be transferable to this area.

  16. Composition and physiological profiling of sprout-associated microbial communities

    Science.gov (United States)

    Matos, Anabelle; Garland, Jay L.; Fett, William F.

    2002-01-01

    The native microfloras of various types of sprouts (alfalfa, clover, sunflower, mung bean, and broccoli sprouts) were examined to assess the relative effects of sprout type and inoculum factors (i.e., sprout-growing facility, seed lot, and inoculation with sprout-derived inocula) on the microbial community structure of sprouts. Sprouts were sonicated for 7 min or hand shaken with glass beads for 2 min to recover native microfloras from the surface, and the resulting suspensions were diluted and plated. The culturable fraction was characterized by the density (log CFU/g), richness (e.g., number of types of bacteria), and diversity (e.g., microbial richness and evenness) of colonies on tryptic soy agar plates incubated for 48 h at 30 degrees C. The relative similarity between sprout-associated microbial communities was assessed with the use of community-level physiological profiles (CLPPs) based on patterns of utilization of 95 separate carbon sources. Aerobic plate counts of 7.96 +/- 0.91 log CFU/g of sprout tissue (fresh weight) were observed, with no statistically significant differences in microbial cell density, richness, or diversity due to sprout type, sprout-growing facility, or seed lot. CLPP analyses revealed that the microbial communities associated with alfalfa and clover sprouts are more similar than those associated with the other sprout types tested. Variability among sprout types was more extensive than any differences between microbial communities associated with alfalfa and clover sprouts from different sprout-growing facilities and seed lots. These results indicate that the subsequent testing of biocontrol agents should focus on similar organisms for alfalfa and clover, but alternative types may be most suitable for the other sprout types tested. The inoculation of alfalfa sprouts with communities derived from various sprout types had a significant, source-independent effect on microbial community structure, indicating that the process of

  17. Microbial eukaryotic community in response to Microcystis spp. bloom, as assessed by an enclosure experiment in Lake Taihu, China.

    Science.gov (United States)

    Chen, Meijun; Chen, Feizhou; Xing, Peng; Li, Huabing; Wu, Qinglong L

    2010-10-01

    Mesocosm experiments were carried out to examine the potential impacts of Microcystis blooms on microbial eukaryotic community composition (MECC). Four treatment additions of differing Microcystis spp. biomass were performed in enclosures, as indicated by chlorophyll a concentrations from 15 to 3217 μg L(-1) in the water column. Dialysis bags were used in enclosures to measure MECC dynamics without influence from predation and irradiance. Samples were taken on days 0, 1 and 4 for MECC analysis, based on changes in the chemical parameters during simultaneous monitoring. The MECC were determined by terminal restriction fragment length polymorphism (T-RFLP), followed by cloning and sequencing of 18S rRNA genes of selected samples. T-RFLP and clone library analysis revealed that MECC in enclosures and dialysis bags shifted strongly during Microcystis spp. decomposition. Members belonging to fungi became the dominant organisms in enclosures with a high biomass of Microcystis spp. Canonical correspondence analysis indicated that temporal changes in MECC were mostly related to changes in the pH and concentrations of dissolved oxygen and dissolved organic carbon, which were induced by the addition of Microcystis spp. The experiment suggests that accumulation of Microcystis biomass can strongly impact MECC, and there might be a saprophytic association between fungi and the decomposition of Microcystis biomass.

  18. DNA metabarcoding of microbial communities for healthcare

    Directory of Open Access Journals (Sweden)

    Zaets I. Ye.

    2016-02-01

    Full Text Available High-throughput sequencing allows obtaining DNA barcodes of multiple species of microorganisms from single environmental samples. Next Generation Sequencing (NGS-based profiling provides new opportunities to evaluate the human health effect of microbial community members affiliated to probiotics. The DNA metabarcoding may serve to a quality control of microbial communities, comprising complex probiotics and other fermented foods. A detailed inventory of complex communities is a pre-requisite of understanding their functionality as whole entities that makes it possible to design more effective bio-products by precise replacement of one community member by others. The present paper illustrates how the NGS-based DNA metabarcoding aims at the profiling of both wild and hybrid multi-microbial communities with the example of kombucha probiotic beverage fermented by yeast-bacterial partners.

  19. Soil microbial community of abandoned sand fields.

    Science.gov (United States)

    Elhottová, D; Szili-Kovács, T; Tríska, J

    2002-01-01

    Microbiological evaluation of sandy grassland soils from two different stages of secondary succession on abandoned fields (4 and 8 years old fallow) was carried out as a part of research focused on restoration of semi-natural vegetation communities in Kiskunság National Park in Hungary. There was an apparent total N and organic C enrichment, stimulation of microbial growth and microbial community structure change on fields abandoned by agricultural practice (small family farm) in comparison with native undisturbed grassland. A successional trend of the microbial community was found after 4 and 8 years of fallow-lying soil. It consisted in a shift of r-survival strategy to more efficient C economy, in a decrease of specific respiration and metabolic activity, forced accumulation of storage bacterial compounds and increased fungal distribution. The composition of microbial phospholipid fatty acids mixture of soils abandoned at various times was significantly different.

  20. Assessment of microbial communities associated with fermentative-methanogenic biodegradation of aromatic hydrocarbons in groundwater contaminated with a biodiesel blend (B20).

    Science.gov (United States)

    Ramos, Débora Toledo; da Silva, Márcio Luís Busi; Nossa, Carlos Wolfgang; Alvarez, Pedro J J; Corseuil, Henry Xavier

    2014-09-01

    A controlled field experiment was conducted to assess the potential for fermentative-methanogenic biostimulation (by ammonium-acetate injection) to enhance biodegradation of benzene, toluene, ethylbenzene and xylenes (BTEX) as well as polycyclic aromatic hydrocarbons (PAHs) in groundwater contaminated with biodiesel B20 (20:80 v/v soybean biodiesel and diesel). Changes in microbial community structure were assessed by pyrosequencing 16S rRNA analyses. BTEX and PAH removal began 0.7 year following the release, concomitantly with the increase in the relative abundance of Desulfitobacterium and Geobacter spp. (from 5 to 52.7 % and 15.8 to 37.3 % of total Bacteria 16S rRNA, respectively), which are known to anaerobically degrade hydrocarbons. The accumulation of anaerobic metabolites acetate and hydrogen that could hinder the thermodynamic feasibility of BTEX and PAH biotransformations under fermentative/methanogenic conditions was apparently alleviated by the growing predominance of Methanosarcina. This suggests the importance of microbial population shifts that enrich microorganisms capable of interacting syntrophically to enhance the feasibility of fermentative-methanogenic bioremediation of biodiesel blend releases.

  1. Microbial community degradation of widely used quaternary ammonium disinfectants.

    Science.gov (United States)

    Oh, Seungdae; Kurt, Zohre; Tsementzi, Despina; Weigand, Michael R; Kim, Minjae; Hatt, Janet K; Tandukar, Madan; Pavlostathis, Spyros G; Spain, Jim C; Konstantinidis, Konstantinos T

    2014-10-01

    Benzalkonium chlorides (BACs) are disinfectants widely used in a variety of clinical and environmental settings to prevent microbial infections, and they are frequently detected in nontarget environments, such as aquatic and engineered biological systems, even at toxic levels. Therefore, microbial degradation of BACs has important ramifications for alleviating disinfectant toxicity in nontarget environments as well as compromising disinfectant efficacy in target environments. However, how natural microbial communities respond to BAC exposure and what genes underlie BAC biodegradation remain elusive. Our previous metagenomic analysis of a river sediment microbial community revealed that BAC exposure selected for a low-diversity community, dominated by several members of the Pseudomonas genus that quickly degraded BACs. To elucidate the genetic determinants of BAC degradation, we conducted time-series metatranscriptomic analysis of this microbial community during a complete feeding cycle with BACs as the sole carbon and energy source under aerobic conditions. Metatranscriptomic profiles revealed a candidate gene for BAC dealkylation, the first step in BAC biodegradation that results in a product 500 times less toxic. Subsequent biochemical assays and isolate characterization verified that the putative amine oxidase gene product was functionally capable of initiating BAC degradation. Our analysis also revealed cooperative interactions among community members to alleviate BAC toxicity, such as the further degradation of BAC dealkylation by-products by organisms not encoding amine oxidase. Collectively, our results advance the understanding of BAC aerobic biodegradation and provide genetic biomarkers to assess the critical first step of this process in nontarget environments.

  2. Microbial astronauts: assembling microbial communities for advanced life support systems

    Science.gov (United States)

    Roberts, M. S.; Garland, J. L.; Mills, A. L.

    2004-01-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  3. Microbial astronauts: assembling microbial communities for advanced life support systems.

    Science.gov (United States)

    Roberts, M S; Garland, J L; Mills, A L

    2004-02-01

    Extension of human habitation into space requires that humans carry with them many of the microorganisms with which they coexist on Earth. The ubiquity of microorganisms in close association with all living things and biogeochemical processes on Earth predicates that they must also play a critical role in maintaining the viability of human life in space. Even though bacterial populations exist as locally adapted ecotypes, the abundance of individuals in microbial species is so large that dispersal is unlikely to be limited by geographical barriers on Earth (i.e., for most environments "everything is everywhere" given enough time). This will not be true for microbial communities in space where local species richness will be relatively low because of sterilization protocols prior to launch and physical barriers between Earth and spacecraft after launch. Although community diversity will be sufficient to sustain ecosystem function at the onset, richness and evenness may decline over time such that biological systems either lose functional potential (e.g., bioreactors may fail to reduce BOD or nitrogen load) or become susceptible to invasion by human-associated microorganisms (pathogens) over time. Research at the John F. Kennedy Space Center has evaluated fundamental properties of microbial diversity and community assembly in prototype bioregenerative systems for NASA Advanced Life Support. Successional trends related to increased niche specialization, including an apparent increase in the proportion of nonculturable types of organisms, have been consistently observed. In addition, the stability of the microbial communities, as defined by their resistance to invasion by human-associated microorganisms, has been correlated to their diversity. Overall, these results reflect the significant challenges ahead for the assembly of stable, functional communities using gnotobiotic approaches, and the need to better define the basic biological principles that define ecosystem

  4. High-resolution phylogenetic microbial community profiling

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Esther; Coleman-Derr, Devin; Bowman, Brett; Schwientek, Patrick; Clum, Alicia; Copeland, Alex; Ciobanu, Doina; Cheng, Jan-Fang; Gies, Esther; Hallam, Steve; Tringe, Susannah; Woyke, Tanja

    2014-03-17

    The representation of bacterial and archaeal genome sequences is strongly biased towards cultivated organisms, which belong to merely four phylogenetic groups. Functional information and inter-phylum level relationships are still largely underexplored for candidate phyla, which are often referred to as microbial dark matter. Furthermore, a large portion of the 16S rRNA gene records in the GenBank database are labeled as environmental samples and unclassified, which is in part due to low read accuracy, potential chimeric sequences produced during PCR amplifications and the low resolution of short amplicons. In order to improve the phylogenetic classification of novel species and advance our knowledge of the ecosystem function of uncultivated microorganisms, high-throughput full length 16S rRNA gene sequencing methodologies with reduced biases are needed. We evaluated the performance of PacBio single-molecule real-time (SMRT) sequencing in high-resolution phylogenetic microbial community profiling. For this purpose, we compared PacBio and Illumina metagenomic shotgun and 16S rRNA gene sequencing of a mock community as well as of an environmental sample from Sakinaw Lake, British Columbia. Sakinaw Lake is known to contain a large age of microbial species from candidate phyla. Sequencing results show that community structure based on PacBio shotgun and 16S rRNA gene sequences is highly similar in both the mock and the environmental communities. Resolution power and community representation accuracy from SMRT sequencing data appeared to be independent of GC content of microbial genomes and was higher when compared to Illumina-based metagenome shotgun and 16S rRNA gene (iTag) sequences, e.g. full-length sequencing resolved all 23 OTUs in the mock community, while iTags did not resolve closely related species. SMRT sequencing hence offers various potential benefits when characterizing uncharted microbial communities.

  5. Understanding Microbial Communities: Function, Structure and Dynamics

    Science.gov (United States)

    2015-02-11

    microbial communities: Function, structure and dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to...dynamics’, at the Isaac Newton Institute, University of Cambridge, United Kingdom, from August to December 2014. The programme involved over 150...Communities: Function, Structure and Dynamics’, at the Isaac Newton Institute, Cambridge University, UK, from 19th August 2014 – 19th December 2014

  6. Method for analyzing microbial communities

    Science.gov (United States)

    Zhou, Jizhong [Oak Ridge, TN; Wu, Liyou [Oak Ridge, TN

    2010-07-20

    The present invention provides a method for quantitatively analyzing microbial genes, species, or strains in a sample that contains at least two species or strains of microorganisms. The method involves using an isothermal DNA polymerase to randomly and representatively amplify genomic DNA of the microorganisms in the sample, hybridizing the resultant polynucleotide amplification product to a polynucleotide microarray that can differentiate different genes, species, or strains of microorganisms of interest, and measuring hybridization signals on the microarray to quantify the genes, species, or strains of interest.

  7. Can Transgenic Maize Affect Soil Microbial Communities?

    NARCIS (Netherlands)

    Mulder, Christian; Wouterse, Marja; Raubuch, Markus; Roelofs, Willem; Rutgers, Michiel

    2006-01-01

    The aim of the experiment was to determine if temporal variations of belowground activity reflect the influence of the Cry1Ab protein from transgenic maize on soil bacteria and, hence, on a regulatory change of the microbial community (ability to metabolize sources belonging to different chemical gu

  8. Multifactorial diversity sustains microbial community stability

    NARCIS (Netherlands)

    Erkus, O.; Jager, de V.C.L.; Spus, M.; Alen-Boerrigter, van I.J.; Rijswijck, van I.M.H.; Hazelwood, L.; Janssen, P.W.; Hijum, van S.A.F.T.; Kleerebezem, M.; Smid, E.J.

    2013-01-01

    Maintenance of a high degree of biodiversity in homogeneous environments is poorly understood. A complex cheese starter culture with a long history of use was characterized as a model system to study simple microbial communities. Eight distinct genetic lineages were identified, encompassing two spec

  9. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    NARCIS (Netherlands)

    Timmers, R.A.; Rothballer, M.; Strik, D.P.B.T.B.; Engel, M.; Schulz, M.; Hartmann, A.; Hamelers, H.V.M.; Buisman, C.J.N.

    2012-01-01

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into th

  10. Responses of soil microbial community to experimental warming and precipitation manipulation

    Science.gov (United States)

    Li, G.; Kim, S.; Park, M. J.; Han, S. H.; Lee, J.; Son, Y.

    2015-12-01

    An experimental nursery was established with two-year-old Pinus densiflora seedlings at Korea University to study soil microbial community responses to air warming (+3°C) and precipitation manipulation (-30% and +30%). Soil samplings were collected monthly from July to November, 2014. Substrate utilization profile of microbial community was examined using BIOLOG EcoPlate. Microbial community composition was assessed by high-throughput sequencing technology. The results showed that warming significantly affected the substrate utilization profile of microbial community (P0.05). In contrast, compared with unwarmed and precipitation control treatment, the bacterial community richness in the others were increased, but community abundance and diversity in those treatments were decreased (all P>0.05). These changes in microbial community structure resulted in the changes in community functional composition, which microbial metabolic functions were higher in warming plots than unwarmed plots. Since microorganisms differ in their susceptibility to stressors, changes in the soil environment affect the microbial community. Therefore, the results indicated that effects of warming and precipitation manipulation on soil microbial community might be related to warming and precipitation manipulation-induced changes in soil moisture. We suggested that shifts in the microbial community may be important implications for soil carbon and nitrogen dynamics in a warmer world. This study was supported by National Research Foundation of Korea (NRF-2013R1A1A2012242).

  11. Trajectories of Microbial Community Function in Response to Accelerated Remediation of Subsurface Metal Contaminants

    Energy Technology Data Exchange (ETDEWEB)

    Firestone, Mary [Regents of the Univ. of Callifornia, Oakland, CA (United States)

    2015-01-14

    Objectives of proposed research were to; Determine if the trajectories of microbial community composition and function following organic carbon amendment can be related to, and predicted by, key environmental determinants; Assess the relative importance of the characteristics of the indigenous microbial community, sediment, groundwater, and concentration of organic carbon amendment as the major determinants of microbial community functional response and bioremediation capacity; and Provide a fundamental understanding of the microbial community ecology underlying subsurface metal remediation requisite to successful application of accelerated remediation and long-term stewardship of DOE-IFC sites.

  12. Modeling adaptation of carbon use efficiency in microbial communities

    Directory of Open Access Journals (Sweden)

    Steven D Allison

    2014-10-01

    Full Text Available In new microbial-biogeochemical models, microbial carbon use efficiency (CUE is often assumed to decline with increasing temperature. Under this assumption, soil carbon losses under warming are small because microbial biomass declines. Yet there is also empirical evidence that CUE may adapt (i.e. become less sensitive to warming, thereby mitigating negative effects on microbial biomass. To analyze potential mechanisms of CUE adaptation, I used two theoretical models to implement a tradeoff between microbial uptake rate and CUE. This rate-yield tradeoff is based on thermodynamic principles and suggests that microbes with greater investment in resource acquisition should have lower CUE. Microbial communities or individuals could adapt to warming by reducing investment in enzymes and uptake machinery. Consistent with this idea, a simple analytical model predicted that adaptation can offset 50% of the warming-induced decline in CUE. To assess the ecosystem implications of the rate-yield tradeoff, I quantified CUE adaptation in a spatially-structured simulation model with 100 microbial taxa and 12 soil carbon substrates. This model predicted much lower CUE adaptation, likely due to additional physiological and ecological constraints on microbes. In particular, specific resource acquisition traits are needed to maintain stoichiometric balance, and taxa with high CUE and low enzyme investment rely on low-yield, high-enzyme neighbors to catalyze substrate degradation. In contrast to published microbial models, simulations with greater CUE adaptation also showed greater carbon storage under warming. This pattern occurred because microbial communities with stronger CUE adaptation produced fewer degradative enzymes, despite increases in biomass. Thus the rate-yield tradeoff prevents CUE adaptation from driving ecosystem carbon loss under climate warming.

  13. Role of vermicompost chemical composition, microbial functional diversity, and fungal community structure in their microbial respiratory response to three pesticides.

    Science.gov (United States)

    Fernández-Gómez, Manuel J; Nogales, Rogelio; Insam, Heribert; Romero, Esperanza; Goberna, Marta

    2011-10-01

    The relationships between vermicompost chemical features, enzyme activities, community-level physiological profiles (CLPPs), fungal community structures, and its microbial respiratory response to pesticides were investigated. Fungal community structure of vermicomposts produced from damaged tomato fruits (DT), winery wastes (WW), olive-mill waste and biosolids (OB), and cattle manure (CM) were determined by denaturing gradient gel electrophoresis of 18S rDNA. MicroResp™ was used for assessing vermicompost CLPPs and testing the microbial response to metalaxyl, imidacloprid, and diuron. Vermicompost enzyme activities and CLPPs indicated that WW, OB, and DT had higher microbial functional diversity than CM. The microbiota of the former tolerated all three pesticides whereas microbial respiration in CM was negatively affected by metalaxyl and imidacloprid. The response of vermicompost microbiota to the fungicide metalaxyl was correlated to its fungal community structure. The results suggest that vermicomposts with higher microbial functional diversity can be useful for the management of pesticide pollution in agriculture.

  14. Wetland Microbial Community Response to Restoration

    Science.gov (United States)

    Theroux, S.; Hartman, W.; Tringe, S. G.

    2015-12-01

    Wetland restoration has been proposed as a potential long-term carbon storage solution, with a goal of engineering geochemical dynamics to accelerate peat accretion and encourage greenhouse gas (GHG) sequestration. However, wetland microbial community composition and metabolic rates are poorly understood and their predicted response to wetland restoration is a veritable unknown. In an effort to better understand the underlying factors that shape the balance of carbon flux in wetland soils, we targeted the microbial communities along a salinity gradient ranging from freshwater tidal marshes to hypersaline ponds in the San Francisco Bay-Delta region. Using 16S rRNA gene sequencing and shotgun metagenomics, coupled with greenhouse gas measurements, we sampled sixteen sites capturing a range in salinity and restoration status. Seawater delivers sulfate to wetland ecosystems, encouraging sulfate reduction and discouraging methane production. As expected, we observed the highest rates of methane production in the freshwater wetlands. Recently restored wetlands had significantly higher rates of methane production compared to their historic counterparts that could be attributed to variations in trace metal and organic carbon content in younger wetlands. In contrast, our sequencing results revealed an almost immediate return of the indigenous microbial communities following seasonal flooding and full tidal restoration in saline and hypersaline wetlands and managed ponds. Notably, we found elevated methane production rates in hypersaline ponds, the result of methylotrophic methane production confirmed by sequence data and lab incubations. Our study links belowground microbial communities and their aboveground greenhouse gas production and highlights the inherent complexity in predicting wetland microbial response in the face of both natural and unnatural disturbances.

  15. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.

    Science.gov (United States)

    Ling, Alison L; Robertson, Charles E; Harris, J Kirk; Frank, Daniel N; Kotter, Cassandra V; Stevens, Mark J; Pace, Norman R; Hernandez, Mark T

    2015-01-01

    Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas) on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa) in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.

  16. High-resolution microbial community succession of microbially induced concrete corrosion in working sanitary manholes.

    Directory of Open Access Journals (Sweden)

    Alison L Ling

    Full Text Available Microbially-induced concrete corrosion in headspaces threatens wastewater infrastructure worldwide. Models for predicting corrosion rates in sewer pipe networks rely largely on information from culture-based investigations. In this study, the succession of microbes associated with corroding concrete was characterized over a one-year monitoring campaign using rRNA sequence-based phylogenetic methods. New concrete specimens were exposed in two highly corrosive manholes (high concentrations of hydrogen sulfide and carbon dioxide gas on the Colorado Front Range for up to a year. Community succession on corroding surfaces was assessed using Illumina MiSeq sequencing of 16S bacterial rRNA amplicons and Sanger sequencing of 16S universal rRNA clones. Microbial communities associated with corrosion fronts presented distinct succession patterns which converged to markedly low α-diversity levels (< 10 taxa in conjunction with decreasing pH. The microbial community succession pattern observed in this study agreed with culture-based models that implicate acidophilic sulfur-oxidizer Acidithiobacillus spp. in advanced communities, with two notable exceptions. Early communities exposed to alkaline surface pH presented relatively high α-diversity, including heterotrophic, nitrogen-fixing, and sulfur-oxidizing genera, and one community exposed to neutral surface pH presented a diverse transition community comprised of less than 20% sulfur-oxidizers.

  17. Microbial community dynamics in continuous microbial fuel cells fed with synthetic wastewater and pig slurry.

    Science.gov (United States)

    Sotres, Ana; Tey, Laura; Bonmatí, August; Viñas, Marc

    2016-10-01

    Two-chambered microbial fuel cells (MFCs) operating with synthetic wastewater and pig slurry were assessed. Additionally, the use of 2-bromoethanesulfonate (BES-Inh) was studied. The synthetic wastewater-fed MFC (MFCSW) showed a maximum power density (PDmax) of 2138mWm(-3), and the addition of BES-Inh (10mM) did not show any improvement in its performance (PDmax=2078mWm(-3)). When pig slurry was used as feed (MFCPS), PDmax increased up to 5623mWm(-3). The microbial community composition was affected by the type of substrate used. While, Pseudomonadaceae and Clostridiaceae were the most representative families within the acetate-based medium, Flavobacteriaceae, Chitinophagaceae, Comamonadaceae and Nitrosomonadaceae were predominant when pig slurry was used as feed. Otherwise, only the Eubacterial microbial community composition was strongly modified when adding BES-Inh, thus leading to an enrichment of the Bacteroidetes phylum. Oppositely, the Archaeal community was less affected by the addition of BES-Inh, and Methanosarcina sp., arose as the predominant family in both situations. Despite all the differences in microbial communities, 6 operational taxonomic units (OTUs) belonging to Bacteroidetes (Porphyromonadaceae and Marinilabiaceae) and Firmicutes (Clostridiales) were found to be common to both MFCs, also for different contents of COD and N-NH4(+), and therefore could be considered as the bioanode core microbiome.

  18. Patterns in marine microbial community structure

    OpenAIRE

    2012-01-01

    Programa en Oceanografía [EN] Understanding the distribution of the different picoplankton groups represents a central tenet of marine microbial ecology. Centering our study on the three major groups constituting the bulk picoplankton community (size 0.2-3 mm), we sought to analyze the distribution of autotrophic bacteria (Synechococcus and Prochlorococcus), photosynthetic Picoeukaryotes pPeuk, and heterotrophic bacteria. [ES] La comprensión de la distribución de los distint...

  19. Microbial Forensics: A Scientific Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Keim, Paul

    2003-02-17

    these features can only be accomplished if we understand basic principles that control microbial physiology. Finally, the more precise and refined a microbial forensic system becomes, the more proper guidelines for handling and storage will be defined. Thus, improper dissemination or use of the pathogens will be reduced and inadvertent release will be minimized. An additional outcome of establishing these guidelines or rules is that the legitimate investigator will be protected to pursue research without unnecessary intrusion. Colloquium participants identified a variety of needs and directions in the following areas: sample handling and collection, detection, research direction, data access, QA/QC, and education. General recommendations are provided for direction or insight for the scientific community, law enforcement community, legal community, and the public.

  20. Relationship between honeybee nutrition and their microbial communities.

    Science.gov (United States)

    Saraiva, Miriane Acosta; Zemolin, Ana Paula Pegoraro; Franco, Jeferson Luis; Boldo, Juliano Tomazzoni; Stefenon, Valdir Marcos; Triplett, Eric W; de Oliveira Camargo, Flávio Anastácio; Roesch, Luiz Fernando Wurdig

    2015-04-01

    The microbiota and the functional genes actively involved in the process of breakdown and utilization of pollen grains in beebread and bee guts are not yet understood. The aim of this work was to assess the diversity and community structure of bacteria and archaea in Africanized honeybee guts and beebread as well as to predict the genes involved in the microbial bioprocessing of pollen using state of the art 'post-light' based sequencing technology. A total of 11 bacterial phyla were found within bee guts and 10 bacterial phyla were found within beebread. Although the phylum level comparison shows most phyla in common, a deeper phylogenetic analysis showed greater variation of taxonomic composition. The families Enterobacteriaceae, Ricketsiaceae, Spiroplasmataceae and Bacillaceae, were the main groups responsible for the specificity of the bee gut while the main families responsible for the specificity of the beebread were Neisseriaceae, Flavobacteriaceae, Acetobacteraceae and Lactobacillaceae. In terms of microbial community structure, the analysis showed that the communities from the two environments were quite different from each other with only 7 % of species-level taxa shared between bee gut and beebread. The results indicated the presence of a highly specialized and well-adapted microbiota within each bee gut and beebread. The beebread community included a greater relative abundance of genes related to amino acid, carbohydrate, and lipid metabolism, suggesting that pollen biodegradation predominantly occurs in the beebread. These results suggests a complex and important relationship between honeybee nutrition and their microbial communities.

  1. Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites

    Directory of Open Access Journals (Sweden)

    Farai eMaphosa

    2012-10-01

    Full Text Available Organohalide compounds such as chloroethenes, chloroethanes and polychlorinated benzenes are among the most significant pollutants in the world. These compounds are often found in contamination plumes with other pollutants such as solvents, pesticides and petroleum derivatives. Microbial bioremediation of contaminated sites, has become commonplace whereby key processes involved in bioremediation include anaerobic degradation and transformation of these organohalides by organohalide respiring bacteria and also via hydrolytic, oxygenic and reductive mechanisms by aerobic bacteria. Microbial ecogenomics has enabled us to not only study the microbiology involved in these complex processes but also develop tools to better monitor and assess these sites during bioremediation. Microbial ecogenomics have capitalized on recent advances in high-throughput and -output genomics technologies in combination with microbial physiology studies to address these complex bioremediation problems at a system level. Advances in environmental metagenomics, transcriptomics and proteomics have provided insights into key genes and their regulation in the environment. They have also given us clues into microbial community structures, dynamics and functions at contaminated sites. These techniques have not only aided us in understanding the lifestyles of common organohalide respirers, for example Dehalococcoides, Dehalobacter and Desulfitobacterium, but also provided insights into novel and yet uncultured microorganisms found in organohalide respiring consortia. In this paper we look at how ecogenomic studies have aided us to understand the microbial structures and functions in response to environmental stimuli such as the presence of chlorinated pollutants.

  2. Emergent biosynthetic capacity in simple microbial communities.

    Directory of Open Access Journals (Sweden)

    Hsuan-Chao Chiu

    2014-07-01

    Full Text Available Microbes have an astonishing capacity to transform their environments. Yet, the metabolic capacity of a single species is limited and the vast majority of microorganisms form complex communities and join forces to exhibit capabilities far exceeding those achieved by any single species. Such enhanced metabolic capacities represent a promising route to many medical, environmental, and industrial applications and call for the development of a predictive, systems-level understanding of synergistic microbial capacity. Here we present a comprehensive computational framework, integrating high-quality metabolic models of multiple species, temporal dynamics, and flux variability analysis, to study the metabolic capacity and dynamics of simple two-species microbial ecosystems. We specifically focus on detecting emergent biosynthetic capacity--instances in which a community growing on some medium produces and secretes metabolites that are not secreted by any member species when growing in isolation on that same medium. Using this framework to model a large collection of two-species communities on multiple media, we demonstrate that emergent biosynthetic capacity is highly prevalent. We identify commonly observed emergent metabolites and metabolic reprogramming patterns, characterizing typical mechanisms of emergent capacity. We further find that emergent secretion tends to occur in two waves, the first as soon as the two organisms are introduced, and the second when the medium is depleted and nutrients become limited. Finally, aiming to identify global community determinants of emergent capacity, we find a marked association between the level of emergent biosynthetic capacity and the functional/phylogenetic distance between community members. Specifically, we demonstrate a "Goldilocks" principle, where high levels of emergent capacity are observed when the species comprising the community are functionally neither too close, nor too distant. Taken together

  3. Physiological characterization of sugarcane's endophytic microbial community

    Directory of Open Access Journals (Sweden)

    Anar Janet Rodríguez Cheang

    2007-02-01

    Full Text Available Excessive application of chemical nitrogen fertilisers and pesticides has badly affected the environment. This has led to great interest being shown in studying a crop's native microbial community and its benefit for plants. This paper was thus aimed at characterising sugarcane's endophytic microbial community. 5 sugar cane strains and 50 isolates were used. Gas chromatography was used for measuring nitrogenase activity and the influence of carbon and nitrogen sources and pH on cultures. Indol acetic (IAA production was detected by Dot-Immunobinding and Salkowski's method. These results show that 19 strains and isolates had nitrogenase activity, values ranging from 100 to SOOO/zg/mL; 6 of them produced IAA (values ranging from 1,7 to 2,5 //g/mL: Gluconacetobacter diazotrophicus PAl-5, Gluconacetobacter diazotrophicus 1-05, Gluconacetobacter diazotrophicus 4-02,17,30 and 305. It was demonstrated that culture medium nutrient sources and pH affected the nitrogenase activity of the strains representing the endophytic community. Key words: endophytic community, sugarcane, nitrogenase activity, indolacetic acid.

  4. Soil microbial community diversity and driving mechanisms

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    To study the structure of soil microbial communities, DNA was extracted from different environmental soil samples, and 16S rDNA clone libraries were constructed. The diversity of these 16S libraries were analyzed with restriction fragment length polymorphism based on amplification ribosomal DNA restriction analysis (RFLP-ARDRA)method. The results reveal a high diversity of the soil microbial communities, and striking differences in community structure at different depths. In the surface soil environment, there is no dominant gene pattern, but in the subsurface samples some dominant gene patterns are much more common. With the increasing depth the preference dominance becomes more significant. A spatial isolation hypothesis is proposed to explain the different community structures at different soil depths. Microcosms are set to simulate competition between populations at different degrees of spatial isolation. These studies reveal that spatial isolation caused by low moisture affects the competitive interactions of the two populations. In the two-strain microcosm there is one dominant population at high moisture, and no dominance in very dry environments

  5. Perturbation metatranscriptomics for studying complex microbial communities

    DEFF Research Database (Denmark)

    Williams, Rohan B.H.; Kirkegaard, Rasmus Hansen; Arumugam, Krithika;

    Studying the functional state of natural or engineered microbial communities presents substantial challenges due to both the complexities of field sampling, and, in the laboratory context, the inability of culture or reactor systems to maintain community composition ex situ over long periods. Here...... by studying nitrogen transformation in wastewater treatment using freshly sourced anoxic sludge, in combination with systematic oxygen perturbation that switches physiological state of the community from denitrification activity to nitrification activity. Sampling every 10 minutes we collected and analysed 20......ABCDEK genes in the aerobic phenylacetate catabolic pathway). We also sampled in situ from anoxic and aerobic source tanks in the field, and compared expression levels between anoxic and aerobic samples in each study: strongly down-regulated genes were preserved between both settings, and an overall good...

  6. Metagenomic analysis of microbial communities and beyond

    DEFF Research Database (Denmark)

    Schreiber, Lars

    2014-01-01

    From small clone libraries to large next-generation sequencing datasets – the field of community genomics or metagenomics has developed tremendously within the last years. This chapter will summarize some of these developments and will also highlight pitfalls of current metagenomic analyses....... It will illustrate the general workflow of a metagenomic study and introduce the three different metagenomic approaches: (1) the random shotgun approach that focuses on the metagenome as a whole, (2) the targeted approach that focuses on metagenomic amplicon sequences, and (3) the function-driven approach that uses...... heterologous expression of metagenomic DNA fragments to discover novel metabolic functions. Lastly, the chapter will shortly discuss the meta-analysis of gene expression of microbial communities, more precisely metatranscriptomics and metaproteomics....

  7. Metagenomic analysis of the microbial community in kefir grains.

    Science.gov (United States)

    Nalbantoglu, Ufuk; Cakar, Atilla; Dogan, Haluk; Abaci, Neslihan; Ustek, Duran; Sayood, Khalid; Can, Handan

    2014-08-01

    Kefir grains as a probiotic have been subject to microbial community identification using culture-dependent and independent methods that target specific strains in the community, or that are based on limited 16S rRNA analysis. We performed whole genome shotgun pyrosequencing using two Turkish Kefir grains. Sequencing generated 3,682,455 high quality reads for a total of ∼1.6 Gbp of data assembled into 6151 contigs with a total length of ∼24 Mbp. Species identification mapped 88.16% and 93.81% of the reads rendering 4 Mpb of assembly that did not show any homology to known bacterial sequences. Identified communities in the two grains showed high concordance where Lactobacillus was the most abundant genus with a mapped abundance of 99.42% and 99.79%. This genus was dominantly represented by three species Lactobacillus kefiranofaciens, Lactobacillus buchneri and Lactobacillus helveticus with a total mapped abundance of 97.63% and 98.74%. We compared and verified our findings with 16S pyrosequencing and model based 16S data analysis. Our results suggest that microbial community profiling using whole genome shotgun data is feasible, can identify novel species data, and has the potential to generate a more accurate and detailed assessment of the underlying bacterial community, especially for low abundance species.

  8. Changes in microbial community characteristics and soil organic matter with nitrogen additions in two tropical forests.

    Science.gov (United States)

    Cusack, Daniela F; Silver, Whendee L; Torn, Margaret S; Burton, Sarah D; Firestone, Mary K

    2011-03-01

    Microbial communities and their associated enzyme activities affect the amount and chemical quality of carbon (C) in soils. Increasing nitrogen (N) deposition, particularly in N-rich tropical forests, is likely to change the composition and behavior of microbial communities and feed back on ecosystem structure and function. This study presents a novel assessment of mechanistic links between microbial responses to N deposition and shifts in soil organic matter (SOM) quality and quantity. We used phospholipid fatty acid (PLFA) analysis and microbial enzyme assays in soils to assess microbial community responses to long-term N additions in two distinct tropical rain forests. We used soil density fractionation and 13C nuclear magnetic resonance (NMR) spectroscopy to measure related changes in SOM pool sizes and chemical quality. Microbial biomass increased in response to N fertilization in both tropical forests and corresponded to declines in pools of low-density SOM. The chemical quality of this soil C pool reflected ecosystem-specific changes in microbial community composition. In the lower-elevation forest, there was an increase in gram-negative bacteria PLFA biomass, and there were significant losses of labile C chemical groups (O-alkyls). In contrast, the upper-elevation tropical forest had an increase in fungal PLFAs with N additions and declines in C groups associated with increased soil C storage (alkyls). The dynamics of microbial enzymatic activities with N addition provided a functional link between changes in microbial community structure and SOM chemistry. Ecosystem-specific changes in microbial community composition are likely to have far-reaching effects on soil carbon storage and cycling. This study indicates that microbial communities in N-rich tropical forests can be sensitive to added N, but we can expect significant variability in how ecosystem structure and function respond to N deposition among tropical forest types.

  9. Citrate and malonate increase microbial activity and alter microbial community composition in uncontaminated and diesel-contaminated soil microcosms

    Science.gov (United States)

    Martin, Belinda C.; George, Suman J.; Price, Charles A.; Shahsavari, Esmaeil; Ball, Andrew S.; Tibbett, Mark; Ryan, Megan H.

    2016-09-01

    Petroleum hydrocarbons (PHCs) are among the most prevalent sources of environmental contamination. It has been hypothesized that plant root exudation of low molecular weight organic acid anions (carboxylates) may aid degradation of PHCs by stimulating heterotrophic microbial activity. To test their potential implication for bioremediation, we applied two commonly exuded carboxylates (citrate and malonate) to uncontaminated and diesel-contaminated microcosms (10 000 mg kg-1; aged 40 days) and determined their impact on the microbial community and PHC degradation. Every 48 h for 18 days, soil received 5 µmol g-1 of (i) citrate, (ii) malonate, (iii) citrate + malonate or (iv) water. Microbial activity was measured daily as the flux of CO2. After 18 days, changes in the microbial community were assessed by a community-level physiological profile (CLPP) and 16S rRNA bacterial community profiles determined by denaturing gradient gel electrophoresis (DGGE). Saturated PHCs remaining in the soil were assessed by gas chromatography-mass spectrometry (GC-MS). Cumulative soil respiration increased 4- to 6-fold with the addition of carboxylates, while diesel contamination resulted in a small, but similar, increase across all carboxylate treatments. The addition of carboxylates resulted in distinct changes to the microbial community in both contaminated and uncontaminated soils but only a small increase in the biodegradation of saturated PHCs as measured by the n-C17 : pristane biomarker. We conclude that while the addition of citrate and malonate had little direct effect on the biodegradation of saturated hydrocarbons present in diesel, their effect on the microbial community leads us to suggest further studies using a variety of soils and organic acids, and linked to in situ studies of plants, to investigate the role of carboxylates in microbial community dynamics.

  10. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    Science.gov (United States)

    Dhar, Bipro Ranjan; Ryu, Hodon; Santo Domingo, Jorge W.; Lee, Hyung-Sool

    2016-11-01

    Multi-anode microbial electrochemical cells (MxCs) are considered as one of the most promising configurations for scale-up of MxCs, but understanding of anode kinetics in multiple anodes is limited in the MxCs. In this study we assessed microbial community and electrochemical kinetic parameters for biofilms on individual anodes in a multi-anode MxC to better comprehend anode fundamentals. Microbial community analysis targeting 16S rRNA Illumina sequencing showed that Geobacter genus was abundant (87%) only on the biofilm anode closest to a reference electrode (low ohmic energy loss) in which current density was the highest among three anodes. In comparison, Geobacter populations were less than 1% for biofilms on other two anodes distant from the reference electrode (high ohmic energy loss), generating small current density. Half-saturation anode potential (EKA) was the lowest at -0.251 to -0.242 V (vs. standard hydrogen electrode) for the closest biofilm anode to the reference electrode, while EKA was as high as -0.134 V for the farthest anode. Our study proves that electric potential of individual anodes changed by ohmic energy loss shifts biofilm communities on individual anodes and consequently influences electron transfer kinetics on each anode in the multi-anode MxC.

  11. Effects of PAH-Contaminated Soil on Rhizosphere Microbial Communities

    DEFF Research Database (Denmark)

    Pritchina, Olga; Ely, Cairn; Smets, Barth F.

    2011-01-01

    Pearson correlation coefficient. Rhizosphere microbial communities of zucchini and pumpkin grown in the media amended with highest degree of contaminated soil clustered separately, whereas communities of these plants grown in unamended or amended with lower concentrations of contaminated soil, grouped...

  12. Microbial communities in microcosm soils treated with battery waste

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Battery waste is one of the most destructive hazards to our environment, especially to the soil. In order to understand the effects of the battery waste on the microbial communities in soil, microcosm soils were treated with the powder made from the battery waste. Microbial biomass and respiration were measured after 15, 30, 45, and 60 days of the treatment, and catabolic capability and Biolog profile were determined after 60 days. Microbial biomass was declined by all treatments, while microbial respiration and catabolic capability were enhanced. Although microbial biomass recovered after a period of incubation, microbial respiratory quotient, catabolic capability and community structure remained significantly affected. Our results also suggest that microbial respiratory quotient and Biolog parameters are more sensitive than microbial biomass to the battery stress on bioavailability.

  13. Microbial communities in the deep subsurface

    Science.gov (United States)

    Krumholz, Lee R.

    The diversity of microbial populations and microbial communities within the earth's subsurface is summarized in this review. Scientists are currently exploring the subsurface and addressing questions of microbial diversity, the interactions among microorganisms, and mechanisms for maintenance of subsurface microbial communities. Heterotrophic anaerobic microbial communities exist in relatively permeable sandstone or sandy sediments, located adjacent to organic-rich deposits. These microorganisms appear to be maintained by the consumption of organic compounds derived from adjacent deposits. Sources of organic material serving as electron donors include lignite-rich Eocene sediments beneath the Texas coastal plain, organic-rich Cretaceous shales from the southwestern US, as well as Cretaceous clays containing organic materials and fermentative bacteria from the Atlantic Coastal Plain. Additionally, highly diverse microbial communities occur in regions where a source of organic matter is not apparent but where igneous rock is present. Examples include the basalt-rich subsurface of the Columbia River valley and the granitic subsurface regions of Sweden and Canada. These subsurface microbial communities appear to be maintained by the action of lithotrophic bacteria growing on H2 that is chemically generated within the subsurface. Other deep-dwelling microbial communities exist within the deep sediments of oceans. These systems often rely on anaerobic metabolism and sulfate reduction. Microbial colonization extends to the depths below which high temperatures limit the ability of microbes to survive. Energy sources for the organisms living in the oceanic subsurface may originate as oceanic sedimentary deposits. In this review, each of these microbial communities is discussed in detail with specific reference to their energy sources, their observed growth patterns, and their diverse composition. This information is critical to develop further understanding of subsurface

  14. Effect of pesticides on microbial communities in container aquatic habitats

    Science.gov (United States)

    Muturi, Ephantus J.; Donthu, Ravi Kiran; Fields, Christopher J.; Moise, Imelda K.; Kim, Chang-Hyun

    2017-01-01

    Container aquatic habitats support a specialized community of macroinvertebrates (e.g. mosquitoes) that feed on microbial communities associated with decaying organic matter. These aquatic habitats are often embedded within and around agricultural lands and are frequently exposed to pesticides. We used a microcosm approach to examine the single and combined effects of two herbicides (atrazine, glyphosate), and three insecticides (malathion, carbaryl, permethrin) on microbial communities of container aquatic habitats. MiSeq sequencing of the V4 region of both bacterial and archaeal 16S rRNA gene was used to characterize the microbial communities of indoor microcosms that were either exposed to each pesticide alone, a mix of herbicides, a mix of insecticides, or a mix of all five insecticides. Individual insecticides but not herbicides reduced the microbial diversity and richness and two insecticides, carbaryl and permethrin, also altered the microbial community structure. A mixture of herbicides had no effect on microbial diversity or structure but a mixture of insecticides or all five pesticides reduced microbial diversity and altered the community structure. These findings suggest that exposure of aquatic ecosystems to individual pesticides or their mixtures can disrupt aquatic microbial communities and there is need to decipher how these changes affect resident macroinvertebrate communities. PMID:28300212

  15. Effect of pesticides on microbial communities in container aquatic habitats.

    Science.gov (United States)

    Muturi, Ephantus J; Donthu, Ravi Kiran; Fields, Christopher J; Moise, Imelda K; Kim, Chang-Hyun

    2017-03-16

    Container aquatic habitats support a specialized community of macroinvertebrates (e.g. mosquitoes) that feed on microbial communities associated with decaying organic matter. These aquatic habitats are often embedded within and around agricultural lands and are frequently exposed to pesticides. We used a microcosm approach to examine the single and combined effects of two herbicides (atrazine, glyphosate), and three insecticides (malathion, carbaryl, permethrin) on microbial communities of container aquatic habitats. MiSeq sequencing of the V4 region of both bacterial and archaeal 16S rRNA gene was used to characterize the microbial communities of indoor microcosms that were either exposed to each pesticide alone, a mix of herbicides, a mix of insecticides, or a mix of all five insecticides. Individual insecticides but not herbicides reduced the microbial diversity and richness and two insecticides, carbaryl and permethrin, also altered the microbial community structure. A mixture of herbicides had no effect on microbial diversity or structure but a mixture of insecticides or all five pesticides reduced microbial diversity and altered the community structure. These findings suggest that exposure of aquatic ecosystems to individual pesticides or their mixtures can disrupt aquatic microbial communities and there is need to decipher how these changes affect resident macroinvertebrate communities.

  16. Electricity generation and microbial community response to substrate changes in microbial fuel cell

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Min, Booki; Huang, L.;

    2011-01-01

    The effect of substrate changes on the performance and microbial community of two-chamber microbial fuel cells (MFCs) was investigated in this study. The MFCs enriched with a single substrate (e.g., acetate, glucose, or butyrate) had different acclimatization capability to substrate changes....... The MFC enriched with glucose showed rapid and higher power generation, when glucose was switched with acetate or butyrate. However, the MFC enriched with acetate needed a longer adaptation time for utilizing glucose. Microbial community was also changed when the substrate was changed. Clostridium...... of substrate fed to MFC is a very important parameter for reactor performance and microbial community, and significantly affects power generation in MFCs....

  17. Relationships between sediment microbial communities and pollutants in two California salt marshes.

    Science.gov (United States)

    Cao, Y; Cherr, G N; Córdova-Kreylos, A L; Fan, T W-M; Green, P G; Higashi, R M; Lamontagne, M G; Scow, K M; Vines, C A; Yuan, J; Holden, P A

    2006-11-01

    Salt marshes are important ecosystems whose plant and microbial communities can alter terrestrially derived pollutants prior to coastal water discharge. However, knowledge regarding relationships between anthropogenic pollutant levels and salt marsh microbial communities is limited, and salt marshes on the West Coast of the United States are rarely examined. In this study, we investigated the relationships between microbial community composition and 24 pollutants (20 metals and 4 organics) in two California salt marshes. Multivariate ordination techniques were used to assess how bacterial community composition, as determined by terminal restriction fragment length polymorphism and phospholipid fatty acid analyses, was related to pollution. Sea urchin embryo toxicity measurements and plant tissue metabolite profiles were considered two other biometrics of pollution. Spatial effects were strongly manifested across marshes and across channel elevations within marshes. Utilizing partial canonical correspondence analysis, an ordination technique new to microbial ecology, we found that several metals were strongly associated with microbial community composition after accounting for spatial effects. The major patterns in plant metabolite profiles were consistent with patterns across microbial community profiles, but sea urchin embryo assays, which are commonly used to evaluate ecological toxicity, had no identifiable relationships with pollution. Whereas salt marshes are generally dynamic and complex habitats, microbial communities in these marshes appear to be relatively sensitive indicators of toxic pollutants.

  18. Relationship between microbial activity and microbial community structure in six full-scale anaerobic digesters

    NARCIS (Netherlands)

    Regueiro, L.; Veiga, P.; Figueroa, M.; Alonso-Gutierrez, J.; Stams, A.J.M.; Lema, J.M.; Carballa, M.

    2012-01-01

    High activity levels and balanced anaerobic microbial communities are necessary to attain proper anaerobic digestion performance. Therefore, this work was focused on the kinetic performance and the microbial community structure of six full-scale anaerobic digesters and one lab-scale co-digester. Hyd

  19. Microbial community functional change during vertebrate carrion decomposition.

    Science.gov (United States)

    Pechal, Jennifer L; Crippen, Tawni L; Tarone, Aaron M; Lewis, Andrew J; Tomberlin, Jeffery K; Benbow, M Eric

    2013-01-01

    Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects). Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  20. Microbial community functional change during vertebrate carrion decomposition.

    Directory of Open Access Journals (Sweden)

    Jennifer L Pechal

    Full Text Available Microorganisms play a critical role in the decomposition of organic matter, which contributes to energy and nutrient transformation in every ecosystem. Yet, little is known about the functional activity of epinecrotic microbial communities associated with carrion. The objective of this study was to provide a description of the carrion associated microbial community functional activity using differential carbon source use throughout decomposition over seasons, between years and when microbial communities were isolated from eukaryotic colonizers (e.g., necrophagous insects. Additionally, microbial communities were identified at the phyletic level using high throughput sequencing during a single study. We hypothesized that carrion microbial community functional profiles would change over the duration of decomposition, and that this change would depend on season, year and presence of necrophagous insect colonization. Biolog EcoPlates™ were used to measure the variation in epinecrotic microbial community function by the differential use of 29 carbon sources throughout vertebrate carrion decomposition. Pyrosequencing was used to describe the bacterial community composition in one experiment to identify key phyla associated with community functional changes. Overall, microbial functional activity increased throughout decomposition in spring, summer and winter while it decreased in autumn. Additionally, microbial functional activity was higher in 2011 when necrophagous arthropod colonizer effects were tested. There were inconsistent trends in the microbial function of communities isolated from remains colonized by necrophagous insects between 2010 and 2011, suggesting a greater need for a mechanistic understanding of the process. These data indicate that functional analyses can be implemented in carrion studies and will be important in understanding the influence of microbial communities on an essential ecosystem process, carrion decomposition.

  1. Center for Advancing Microbial Risk Assessment

    Data.gov (United States)

    Federal Laboratory Consortium — The Center for Advancing Microbial Risk Assessment (CAMRA), based at Michigan State University and jointly funded by the U.S. Department of Homeland Security and the...

  2. Biotic Interactions in Microbial Communities as Modulators of Biogeochemical Processes: Methanotrophy as a Model System.

    Science.gov (United States)

    Ho, Adrian; Angel, Roey; Veraart, Annelies J; Daebeler, Anne; Jia, Zhongjun; Kim, Sang Yoon; Kerckhof, Frederiek-Maarten; Boon, Nico; Bodelier, Paul L E

    2016-01-01

    Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties. Here, we exemplify the importance of microbial interaction for ecosystem processes by analysis of a reasonably well-understood microbial guild, namely, aerobic methane-oxidizing bacteria (MOB). We reviewed the literature which provided compelling evidence for the relevance of microbial interaction in modulating methane oxidation. Support for microbial associations within methane-fed communities is sought by a re-analysis of literature data derived from stable isotope probing studies of various complex environmental settings. Putative positive interactions between active MOB and other microbes were assessed by a correlation network-based analysis with datasets covering diverse environments where closely interacting members of a consortium can potentially alter the methane oxidation activity. Although, methanotrophy is used as a model system, the fundamentals of our postulations may be applicable to other microbial guilds mediating other biogeochemical processes.

  3. Pyrosequencing-Based Assessment of the Microbial Community Structure of Pastoruri Glacier Area (Huascarán National Park, Perú), a Natural Extreme Acidic Environment.

    Science.gov (United States)

    González-Toril, Elena; Santofimia, Esther; Blanco, Yolanda; López-Pamo, Enrique; Gómez, Manuel J; Bobadilla, Miguel; Cruz, Rolando; Palomino, Edwin Julio; Aguilera, Ángeles

    2015-11-01

    The exposure of fresh sulfide-rich lithologies by the retracement of the Nevado Pastoruri glacier (Central Andes, Perú) is increasing the presence of heavy metals in the water as well as decreasing the pH, producing an acid rock drainage (ARD) process in the area. We describe the microbial communities of an extreme ARD site in Huascarán National Park as well as their correlation with the water physicochemistry. Microbial biodiversity was analyzed by FLX 454 sequencing of the 16S rRNA gene. The suggested geomicrobiological model of the area distinguishes three different zones. The proglacial zone is located in the upper part of the valley, where the ARD process is not evident yet. Most of the OTUs detected in this area were related to sequences associated with cold environments (i.e., psychrotolerant species of Cyanobacteria or Bacteroidetes). After the proglacial area, an ARD-influenced zone appeared, characterized by the presence of phylotypes related to acidophiles (Acidiphilium) as well as other species related to acidic and cold environments (i.e., acidophilic species of Chloroflexi, Clostridium and Verrumicrobia). Sulfur- and iron-oxidizing acidophilic bacteria (Acidithiobacillus) were also identified. The post-ARD area was characterized by the presence of OTUs related to microorganisms detected in soils, permafrost, high mountain environments, and deglaciation areas (Sphingomonadales, Caulobacter or Comamonadaceae).

  4. "LOVE TO HATE" pesticides: felicity or curse for the soil microbial community? An FP7 IAPP Marie Curie project aiming to establish tools for the assessment of the mechanisms controlling the interactions of pesticides with soil microorganisms.

    Science.gov (United States)

    Karpouzas, D G; Tsiamis, G; Trevisan, M; Ferrari, F; Malandain, C; Sibourg, O; Martin-Laurent, F

    2016-09-01

    Pesticides end up in soil where they interact with soil microorganisms in various ways. On the Yin Side of the interaction, pesticides could exert toxicity on soil microorganisms, while on the Yang side of interaction, pesticides could be used as energy source by a fraction of the soil microbial community. The LOVE TO HATE project is an IAPP Marie Curie project which aims to study these complex interactions of pesticides with soil microorganisms and provide novel tools which will be useful both for pesticide regulatory purposes and agricultural use. On the Yin side of the interactions, a new regulatory scheme for assessing the soil microbial toxicity of pesticides will be proposed based on the use of advanced standardized tools and a well-defined experimental tiered scheme. On the Yang side of the interactions, advanced molecular tools like amplicon sequencing and functional metagenomics will be applied to define microbes that are involved in the rapid transformation of pesticides in soils and isolate novel pesticide biocatalysts. In addition, a functional microarray has been designed to estimate the biodegradation genetic potential of the microbial community of agricultural soils for a range of pesticide groups.

  5. Substrate-induced changes in microbial community-level physiological profiles and their application to discriminate soil microbial communities

    Institute of Scientific and Technical Information of China (English)

    CHEN Jian; XIE Huijun; ZHUANG Xuliang; ZHUANG Guoqiang; BAI Zhihui; ZHANG Hongxun

    2008-01-01

    The addition of simple substrates could affect the microbial respiration in soils.This substrate-induced respiration is widely used to estimate the soil microbial biomass,but little attention has been paid to its influence on the changes of community-level physiological profiles.In this study,the process of microbial communities responding to the added substrate using sole-carbon-source utilization (BIOLOG) was investigated.BIOLOG is biased toward fast-growing bacteria;this advantage Was taken to detect the prompt response of the active microbial communities to the added substrate.Four soil samples from agricultural fields adjacent to heavy metal mines were amended with L-arginine,citric acid,or D-glucose.Substrate amendments could,generally,not only increase the metabolic activity of the microbial communities,but also change the metabolic diverse patterns compared with no-substrate contr01.By tracking the process,it was found that the variance between substrate-induced treatment and control fluctuated greatly during the incubation course,and the influences of these three substrates were difierent.In addition,the application of these induced changes to discriminate soil microbial communities was tested.T1le distance among all samples was greatly increased.which further showed the functional variance among microbial communities in soils.This Can be very useful in the discrimination of microbial communities eveB with high similarity.

  6. Microbial community structure of a freshwater system receiving wastewater effluent.

    Science.gov (United States)

    Hladilek, Matthew D; Gaines, Karen F; Novak, James M; Collard, David A; Johnson, Daniel B; Canam, Thomas

    2016-11-01

    Despite our dependency on treatment facilities to condition wastewater for eventual release to the environment, our knowledge regarding the effects of treated water on the local watershed is extremely limited. Responses of lotic systems to the treated wastewater effluent have been traditionally investigated by examining the benthic macroinvertebrate assemblages and community structure; however, these studies do not address the microbial diversity of the water systems. In the present study, planktonic and benthic bacterial community structure were examined at 14 sites (from 60 m upstream to 12,100 m downstream) and at two time points along an aquatic system receiving treated effluent from the Charleston Wastewater Treatment Plant (Charleston, IL). Total bacterial DNA was isolated and 16S rRNA sequences were analyzed using a metagenomics platform. The community structure in planktonic bacterial communities was significantly correlated with dissolved oxygen concentration. Benthic bacterial communities were not correlated with water quality but did have a significant geographic structuring. A local restructuring effect was observed in both planktonic and benthic communities near the treated wastewater effluent, which was characterized by an increase in abundance of sphingobacteria. Sites further downstream from the wastewater facility appeared to be less influenced by the effluent. Overall, the present study demonstrated the utility of targeted high-throughput sequencing as a tool to assess the effects of treated wastewater effluent on a receiving water system, and highlighted the potential for this technology to be used for routine monitoring by wastewater facilities.

  7. Microbial diversity and community structure in an antimony-rich tailings dump.

    Science.gov (United States)

    Xiao, Enzong; Krumins, Valdis; Dong, Yiran; Xiao, Tangfu; Ning, Zengping; Xiao, Qingxiang; Sun, Weimin

    2016-09-01

    To assess the impact of antimony (Sb) on microbial community structure, 12 samples were taken from an Sb tailings pile in Guizhou Province, Southwest China. All 12 samples exhibited elevated Sb concentrations, but the mobile and bioaccessible fractions were small in comparison to total Sb concentrations. Besides the geochemical analyses, microbial communities inhabiting the tailing samples were characterized to investigate the interplay between the microorganisms and environmental factors in mine tailings. In all samples, Proteobacteria and Actinobacteria were the most dominant phyla. At the genus level, Thiobacillus, Limnobacter, Nocardioides, Lysobacter, Phormidium, and Kaistobacter demonstrated relatively high abundances. The two most abundant genera, Thiobacillus and Limnobacter, are characterized as sulfur-oxidizing bacteria and thiosulfate-oxidizing bacteria, respectively, while the genus Lysobacter contains arsenic (As)-resistant bacteria. Canonical correspondence analysis (CCA) indicates that TOC and the sulfate to sulfide ratio strongly shaped the microbial communities, suggesting the influence of the environmental factors in the indigenous microbial communities.

  8. Comparative Metagenomics of Freshwater Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, Chris; Deng, Ye; Tu, Qichao; Fields, Matthew; Gentry, Terry; Wu, Liyou; Tringe, Susannah; Watson, David; He, Zhili; Hazen, Terry; Tiedje, James; Rubin, Eddy; Zhou, Jizhong

    2010-05-17

    Previous analyses of a microbial metagenome from uranium and nitric-acid contaminated groundwater (FW106) showed significant environmental effects resulting from the rapid introduction of multiple contaminants. Effects include a massive loss of species and strain biodiversity, accumulation of toxin resistant genes in the metagenome and lateral transfer of toxin resistance genes between community members. To better understand these results in an ecological context, a second metagenome from a pristine groundwater system located along the same geological strike was sequenced and analyzed (FW301). It is hypothesized that FW301 approximates the ancestral FW106 community based on phylogenetic profiles and common geological parameters; however, even if is not the case, the datasets still permit comparisons between healthy and stressed groundwater ecosystems. Complex carbohydrate metabolism has been almost entirely lost in the stressed ecosystem. In contrast, the pristine system encodes a wide diversity of complex carbohydrate metabolism systems, suggesting that carbon turnover is very rapid and less leaky in the healthy groundwater system. FW301 encodes many (~;;160+) carbon monoxide dehydrogenase genes while FW106 encodes none. This result suggests that the community is frequently exposed to oxygen from aerated rainwater percolating into the subsurface, with a resulting high rate of carbon metabolism and CO production. When oxygen levels fall, the CO then serves as a major carbon source for the community. FW301 appears to be capable of CO2 fixation via the reductive carboxylase (reverse TCA) cycle and possibly acetogenesis, activities; these activities are lacking in the heterotrophic FW106 system which relies exclusively on respiration of nitrate and/or oxygen for energy production. FW301 encodes a complete set of B12 biosynthesis pathway at high abundance suggesting the use of sodium gradients for energy production in the healthy groundwater community. Overall

  9. Microbial keratitis: a community eye health approach

    Directory of Open Access Journals (Sweden)

    Kieran S O’Brien

    2015-06-01

    Full Text Available Microbial keratitis is an infection of the cornea. Corneal opacities, which are frequently due to microbial keratitis, remain among the top five causes of blindness worldwide. Microbial keratitis disproportionately affects low- and middle-income countries. Studies indicate that the incidence of microbial keratitis may be up to 10 times higher in countries like Nepal and India compared to the United States.

  10. Mangrove succession enriches the sediment microbial community in South China

    Science.gov (United States)

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-01-01

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession. PMID:27265262

  11. Integrating Ecological and Engineering Concepts of Resilience in Microbial Communities.

    Science.gov (United States)

    Song, Hyun-Seob; Renslow, Ryan S; Fredrickson, Jim K; Lindemann, Stephen R

    2015-01-01

    Many definitions of resilience have been proffered for natural and engineered ecosystems, but a conceptual consensus on resilience in microbial communities is still lacking. We argue that the disconnect largely results from the wide variance in microbial community complexity, which range from compositionally simple synthetic consortia to complex natural communities, and divergence between the typical practical outcomes emphasized by ecologists and engineers. Viewing microbial communities as elasto-plastic systems that undergo both recoverable and unrecoverable transitions, we argue that this gap between the engineering and ecological definitions of resilience stems from their respective emphases on elastic and plastic deformation, respectively. We propose that the two concepts may be fundamentally united around the resilience of function rather than state in microbial communities and the regularity in the relationship between environmental variation and a community's functional response. Furthermore, we posit that functional resilience is an intrinsic property of microbial communities and suggest that state changes in response to environmental variation may be a key mechanism driving functional resilience in microbial communities.

  12. Mangrove succession enriches the sediment microbial community in South China.

    Science.gov (United States)

    Chen, Quan; Zhao, Qian; Li, Jing; Jian, Shuguang; Ren, Hai

    2016-06-06

    Sediment microorganisms help create and maintain mangrove ecosystems. Although the changes in vegetation during mangrove forest succession have been well studied, the changes in the sediment microbial community during mangrove succession are poorly understood. To investigate the changes in the sediment microbial community during succession of mangroves at Zhanjiang, South China, we used phospholipid fatty acid (PLFA) analysis and the following chronosequence from primary to climax community: unvegetated shoal; Avicennia marina community; Aegiceras corniculatum community; and Bruguiera gymnorrhiza + Rhizophora stylosa community. The PLFA concentrations of all sediment microbial groups (total microorganisms, fungi, gram-positive bacteria, gram-negative bacteria, and actinomycetes) increased significantly with each stage of mangrove succession. Microbial PLFA concentrations in the sediment were significantly lower in the wet season than in the dry season. Regression and ordination analyses indicated that the changes in the microbial community with mangrove succession were mainly associated with properties of the aboveground vegetation (mainly plant height) and the sediment (mainly sediment organic matter and total nitrogen). The changes in the sediment microbial community can probably be explained by increases in nutrients and microhabitat heterogeneity during mangrove succession.

  13. A trait-based approach for examining microbial community assembly

    Science.gov (United States)

    Prest, T. L.; Nemergut, D.

    2015-12-01

    Microorganisms regulate all of Earth's major biogeochemical cycles and an understanding of how microbial communities assemble is a key part in evaluating controls over many types of ecosystem processes. Rapid advances in technology and bioinformatics have led to a better appreciation for the variation in microbial community structure in time and space. Yet, advances in theory are necessary to make sense of these data and allow us to generate unifying hypotheses about the causes and consequences of patterns in microbial biodiversity and what they mean for ecosystem function. Here, I will present a metaanalysis of microbial community assembly from a variety of successional and post-disturbance systems. Our analysis shows various distinct patterns in community assembly, and the potential importance of nutrients and dispersal in shaping microbial community beta diversity in these systems. We also used a trait-based approach to generate hypotheses about the mechanisms driving patterns of microbial community assembly and the implications for function. Our work reveals the importance of rRNA operon copy number as a community aggregated trait in helping to reconcile differences in community dynamics between distinct types of successional and disturbed systems. Specifically, our results demonstrate that decreases in average copy number can be a common feature of communities across various drivers of ecological succession, supporting a transition from an r-selected to a K-selected community. Importantly, our work supports the scaling of the copy number trait over multiple levels of biological organization, from cells to populations and communities, and has implications for both ecology and evolution. Trait-based approaches are an important next step to generate and test hypotheses about the forces structuring microbial communities and the subsequent consequences for ecosystem function.

  14. Microbial community-level toxicity testing of linear alkylbenzene sulfonates in aquatic microcosms.

    Science.gov (United States)

    Brandt, Kristian K; Jørgensen, Niels O G; Nielsen, Tommy H; Winding, Anne

    2004-08-01

    Complex microbial communities may serve as ideal and ecologically relevant toxicity indicators. We here report an assessment of frequently used methods in microbial ecology for their feasibility to detect toxic effects of the environmentally important surfactant linear alkylbenzene sulfonate (LAS) on microbial communities in lake water and treated waste water. The two microbial communities were evaluated for changes in community structure and function over a period of 7 weeks in replicated aquatic microcosms amended with various levels of LAS (0, 0.1, 1, 10 or 100 mg l(-1)) and inorganic nutrients. In general, the two communities behaved similarly when challenged with LAS. Following lag periods of 1-3 weeks, LAS was degraded to non-toxic substances. Denaturing gradient gel electrophoresis of 16S rRNA gene fragments and [3H]leucine incorporation were the most sensitive assays with effect levels of 0-1 and 1-10 mg LAS l(-1), respectively. Community-level physiological profiles and pollution-induced community tolerance determinations using Biolog microplates demonstrated less sensitivity with effect levels of 10-100 mg LAS l(-1). Total cell counts and net uptake of inorganic N and P were unaffected even at 100 mg LAS l(-1). Interestingly, different microbial communities developed in some replicate microcosms, indicating the importance of stochastic events for community succession. We conclude that microbial community-level toxicity testing holds great promise and suggest a polyphasic approach involving a range of independent methods targeting both the structure and function of the tested microbial communities.

  15. Microbial Communities Are Well Adapted to Disturbances in Energy Input.

    Science.gov (United States)

    Fernandez-Gonzalez, Nuria; Huber, Julie A; Vallino, Joseph J

    2016-01-01

    Although microbial systems are well suited for studying concepts in ecological theory, little is known about how microbial communities respond to long-term periodic perturbations beyond diel oscillations. Taking advantage of an ongoing microcosm experiment, we studied how methanotrophic microbial communities adapted to disturbances in energy input over a 20-day cycle period. Sequencing of bacterial 16S rRNA genes together with quantification of microbial abundance and ecosystem function were used to explore the long-term dynamics (510 days) of methanotrophic communities under continuous versus cyclic chemical energy supply. We observed that microbial communities appeared inherently well adapted to disturbances in energy input and that changes in community structure in both treatments were more dependent on internal dynamics than on external forcing. The results also showed that the rare biosphere was critical to seeding the internal community dynamics, perhaps due to cross-feeding or other strategies. We conclude that in our experimental system, internal feedbacks were more important than external drivers in shaping the community dynamics over time, suggesting that ecosystems can maintain their function despite inherently unstable community dynamics. IMPORTANCE Within the broader ecological context, biological communities are often viewed as stable and as only experiencing succession or replacement when subject to external perturbations, such as changes in food availability or the introduction of exotic species. Our findings indicate that microbial communities can exhibit strong internal dynamics that may be more important in shaping community succession than external drivers. Dynamic "unstable" communities may be important for ecosystem functional stability, with rare organisms playing an important role in community restructuring. Understanding the mechanisms responsible for internal community dynamics will certainly be required for understanding and manipulating

  16. Characterization of humus microbial communities in adjacent forest types that differ in nitrogen availability.

    Science.gov (United States)

    Leckie, S E; Prescott, C E; Grayston, S J; Neufeld, J D; Mohn, W W

    2004-07-01

    To address the link between soil microbial community composition and soil processes, we investigated the microbial communities in forest floors of two forest types that differ substantially in nitrogen availability. Cedar-hemlock (CH) and hemlock-amabilis fir (HA) forests are both common on northern Vancouver Island, B.C., occurring adjacently across the landscape. CH forest floors have low nitrogen availability and HA high nitrogen availability. Total microbial biomass was assessed using chloroform fumigation-extraction and community composition was assessed using several cultivation-independent approaches: denaturing gradient gel electrophoresis (DGGE) of the bacterial communities, ribosomal intergenic spacer analysis (RISA) of the bacterial and fungal communities, and phospholipid fatty acid (PLFA) profiles of the whole microbial community. We did not detect differences in the bacterial communities of each forest type using DGGE and RISA, but differences in the fungal communities were detected using RISA. PLFA analysis detected subtle differences in overall composition of the microbial community between the forest types, as well as in particular groups of organisms. Fungal PLFAs were more abundant in the nitrogen-poor CH forests. Bacteria were proportionally more abundant in HA forests than CH in the lower humus layer, and Gram-positive bacteria were proportionally more abundant in HA forests irrespective of layer. Bacterial and fungal communities were distinct in the F, upper humus, and lower humus layers of the forest floor and total biomass decreased in deeper layers. These results indicate that there are distinct patterns in forest floor microbial community composition at the landscape scale, which may be important for understanding nutrient availability to forest vegetation.

  17. Assessment of the performance of SMFCs in the bioremediation of PAHs in contaminated marine sediments under different redox conditions and analysis of the associated microbial communities

    KAUST Repository

    Hamdan, Hamdan Z.

    2016-10-09

    The biodegradation of naphthalene, 2-methylnaphthalene and phenanthrene was evaluated in marine sediment microbial fuel cells (SMFCs) under different biodegradation conditions, including sulfate reduction as a major biodegradation pathway, employment of anode as terminal electron acceptor (TEA) under inhibited sulfate reducing bacteria activity, and combined sulfate and anode usage as electron acceptors. A significant removal of naphthalene and 2-methylnaphthalene was observed at early stages of incubation in all treatments and was attributed to their high volatility. In the case of phenanthrene, a significant removal (93.83 ± 1.68%) was measured in the closed circuit SMFCs with the anode acting as the main TEA and under combined anode and sulfate reduction conditions (88.51 ± 1.3%). A much lower removal (40.37 ± 3.24%) was achieved in the open circuit SMFCs operating with sulfate reduction as a major biodegradation pathway. Analysis of the anodic bacterial community using 16S rRNA gene pyrosequencing revealed the enrichment of genera with potential exoelectrogenic capability, namely Geoalkalibacter and Desulfuromonas, on the anode of the closed circuit SMFCs under inhibited SRB activity, while they were not detected on the anode of open circuit SMFCs. These results demonstrate the role of the anode in enhancing PAHs biodegradation in contaminated marine sediments and suggest a higher system efficiency in the absence of competition between microbial redox processes (under SRB inhibition), namely due to the anode enrichment with exoelectrogenic bacteria, which is a more energetically favorable mechanism for PAHs oxidation than sulfate.

  18. Integration of stable carbon isotope, microbial community, dissolved hydrogen gas, and 2HH2O tracer data to assess bioaugmentation for chlorinated ethene degradation in fractured rocks

    Science.gov (United States)

    Révész, Kinga M.; Lollar, Barbara Sherwood; Kirshtein, Julie D.; Tiedeman, Claire R.; Imbrigiotta, Thomas E.; Goode, Daniel J.; Shapiro, Allen M.; Voytek, Mary A.; Lacombe, Pierre J.; Busenberg, Eurybiades

    2014-01-01

    An in situ bioaugmentation (BA) experiment was conducted to understand processes controlling microbial dechlorination of trichloroethene (TCE) in groundwater at the Naval Air Warfare Center (NAWC), West Trenton, NJ. In the BA experiment, an electron donor (emulsified vegetable oil and sodium lactate) and a chloro-respiring microbial consortium were injected into a well in fractured mudstone of Triassic age. Water enriched in 2H was also injected as a tracer of the BA solution, to monitor advective transport processes. The changes in concentration and the δ13C of TCE, cis-dichloroethene (cis-DCE), and vinyl chloride (VC); the δ2H of water; changes in the abundance of the microbial communities; and the concentration of dissolved H2 gas compared to pre- test conditions, provided multiple lines of evidence that enhanced biodegradation occurred in the injection well and in two downgradient wells. For those wells where the biodegradation was stimulated intensively, the sum of the molar chlorinated ethene (CE) concentrations in post-BA water was higher than that of the sum of the pre-BA background molar CE concentrations. The concentration ratios of TCE/(cis-DCE + VC) indicated that the increase in molar CE concentration may result from additional TCE mobilized from the rock matrix in response to the oil injection or due to desorption/diffusion. The stable carbon isotope mass-balance calculations show that the weighted average 13C isotope of the CEs was enriched for around a year compared to the background value in a two year monitoring period, an effective indication that dechlorination of VC was occurring. Insights gained from this study can be applied to efforts to use BA in other fractured rock systems. The study demonstrates that a BA approach can substantially enhance in situ bioremediation not only in fractures connected to the injection well, but also in the rock matrix around the well due to processes such as diffusion and desorption. Because the effect of the

  19. Microbial communities involved in electricity generation from sulfide oxidation in a microbial fuel cell.

    Science.gov (United States)

    Sun, Min; Tong, Zhong-Hua; Sheng, Guo-Ping; Chen, Yong-Zhen; Zhang, Feng; Mu, Zhe-Xuan; Wang, Hua-Lin; Zeng, Raymond J; Liu, Xian-Wei; Yu, Han-Qing; Wei, Li; Ma, Fang

    2010-10-15

    Simultaneous electricity generation and sulfide removal can be achieved in a microbial fuel cell (MFC). In electricity harvesting from sulfide oxidation in such an MFC, various microbial communities are involved. It is essential to elucidate the microbial communities and their roles in the sulfide conversion and electricity generation. In this work, an MFC was constructed to enrich a microbial consortium, which could harvest electricity from sulfide oxidation. Electrochemical analysis demonstrated that microbial catalysis was involved in electricity output in the sulfide-fed MFC. The anode-attached and planktonic communities could perform catalysis independently, and synergistic interactions occurred when the two communities worked together. A 16S rRNA clone library analysis was employed to characterize the microbial communities in the MFC. The anode-attached and planktonic communities shared similar richness and diversity, while the LIBSHUFF analysis revealed that the two community structures were significantly different. The exoelectrogenic, sulfur-oxidizing and sulfate-reducing bacteria were found in the MFC anodic chamber. The discovery of these bacteria was consistent with the community characteristics for electricity generation from sulfide oxidation. The exoelectrogenic bacteria were found both on the anode and in the solution. The sulfur-oxidizing bacteria were present in greater abundance on the anode than in the solution, while the sulfate-reducing bacteria preferably lived in the solution.

  20. Metagenomics meets time series analysis: unraveling microbial community dynamics

    NARCIS (Netherlands)

    Faust, K.; Lahti, L.M.; Gonze, D.; Vos, de W.M.; Raes, J.

    2015-01-01

    The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic

  1. A conceptual framework for invasion in microbial communities

    DEFF Research Database (Denmark)

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin

    2016-01-01

    and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type...

  2. Which Microbial Communities Are Present? Sequence-Based Metagenomics

    Science.gov (United States)

    Caffrey, Sean M.

    The use of metagenomic methods that directly sequence environmental samples has revealed the extraordinary microbial diversity missed by traditional culture-based methodologies. Therefore, to develop a complete and representative model of an environment's microbial community and activities, metagenomic analysis is an essential tool.

  3. Microbial Forensics: A Scientific Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Keim, Paul

    2003-02-17

    Microorganisms have been used as weapons in criminal acts, most recently highlighted by the terrorist attack using anthrax in the fall of 2001. Although such ''biocrimes'' are few compared with other crimes, these acts raise questions about the ability to provide forensic evidence for criminal prosecution that can be used to identify the source of the microorganisms used as a weapon and, more importantly, the perpetrator of the crime. Microbiologists traditionally investigate the sources of microorganisms in epidemiological investigations, but rarely have been asked to assist in criminal investigations. A colloquium was convened by the American Academy of Microbiology in Burlington, Vermont, on June 7-9, 2002, in which 25 interdisciplinary, expert scientists representing evolutionary microbiology, ecology, genomics, genetics, bioinformatics, forensics, chemistry, and clinical microbiology, deliberated on issues in microbial forensics. The colloquium's purpose was to consider issues relating to microbial forensics, which included a detailed identification of a microorganism used in a bioattack and analysis of such a microorganism and related materials to identify its forensically meaningful source--the perpetrators of the bioattack. The colloquium examined the application of microbial forensics to assist in resolving biocrimes with a focus on what research and education are needed to facilitate the use of microbial forensics in criminal investigations and the subsequent prosecution of biocrimes, including acts of bioterrorism. First responders must consider forensic issues, such as proper collection of samples to allow for optimal laboratory testing, along with maintaining a chain of custody that will support eventual prosecution. Because a biocrime may not be immediately apparent, a linkage must be made between routine diagnosis, epidemiological investigation, and criminal investigation. There is a need for establishing standard operating

  4. A hydrogen-based subsurface microbial community dominated by methanogens.

    Science.gov (United States)

    Chapelle, Francis H; O'Neill, Kathleen; Bradley, Paul M; Methé, Barbara A; Ciufo, Stacy A; Knobel, LeRoy L; Lovley, Derek R

    2002-01-17

    The search for extraterrestrial life may be facilitated if ecosystems can be found on Earth that exist under conditions analogous to those present on other planets or moons. It has been proposed, on the basis of geochemical and thermodynamic considerations, that geologically derived hydrogen might support subsurface microbial communities on Mars and Europa in which methanogens form the base of the ecosystem. Here we describe a unique subsurface microbial community in which hydrogen-consuming, methane-producing Archaea far outnumber the Bacteria. More than 90% of the 16S ribosomal DNA sequences recovered from hydrothermal waters circulating through deeply buried igneous rocks in Idaho are related to hydrogen-using methanogenic microorganisms. Geochemical characterization indicates that geothermal hydrogen, not organic carbon, is the primary energy source for this methanogen-dominated microbial community. These results demonstrate that hydrogen-based methanogenic communities do occur in Earth's subsurface, providing an analogue for possible subsurface microbial ecosystems on other planets.

  5. Microbial Community Analysis of a Single Chamber Microbial Fuel Cell Using Potato Wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Zhen Li; Rishika Haynes; Eugene Sato; Malcolm Shields; Yoshiko Fujita; Chikashi Sato

    2014-04-01

    Microbial fuel cells (MFCs) convert chemical energy to electrical energy via bioelectrochemical reactions mediated by microorganisms. We investigated the diversity of the microbial community in an air cathode single chamber MFC that utilized potato-process wastewater as substrate. Terminal Restriction Fragment Length Polymorphism (T-RFLP) results indicated that the bacterial communities on the anode, cathode, control electrode, and MFC bulk fluid were similar, but differed dramatically from that of the anaerobic domestic sludge and potato wastewater inoculum. The 16S rDNA sequencing results showed that microbial species detected on the anode were predominantly within the phyla of Proteobacteria, Firmicutes, and Bacteroidetes. Fluorescent microscopy results indicated that there was a clear enhancement of biofilm formation on the anode. Results of this study could help improve understanding of the complexity of microbial communities and optimize the microbial composition for generating electricity by MFCs that utilize potato wastewater.

  6. Energy landscapes shape microbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge.

    Science.gov (United States)

    Dahle, Håkon; Økland, Ingeborg; Thorseth, Ingunn H; Pederesen, Rolf B; Steen, Ida H

    2015-07-01

    Methods developed in geochemical modelling combined with recent advances in molecular microbial ecology provide new opportunities to explore how microbial communities are shaped by their chemical surroundings. Here, we present a framework for analyses of how chemical energy availability shape chemotrophic microbial communities in hydrothermal systems through an investigation of two geochemically different basalt-hosted hydrothermal systems on the Arctic Mid-Ocean Ridge: the Soria Moria Vent field (SMVF) and the Loki's Castle Vent Field (LCVF). Chemical energy landscapes were evaluated through modelling of the Gibbs energy from selected redox reactions under different mixing ratios between seawater and hydrothermal fluids. Our models indicate that the sediment-influenced LCVF has a much higher potential for both anaerobic and aerobic methane oxidation, as well as aerobic ammonium and hydrogen oxidation, than the SMVF. The modelled energy landscapes were used to develop microbial community composition models, which were compared with community compositions in environmental samples inside or on the exterior of hydrothermal chimneys, as assessed by pyrosequencing of partial 16S rRNA genes. We show that modelled microbial communities based solely on thermodynamic considerations can have a high predictive power and provide a framework for analyses of the link between energy availability and microbial community composition.

  7. Effects of glyphosate on soil microbial communities and its mineralization in a Mississippi soil.

    Science.gov (United States)

    Weaver, Mark A; Krutz, L Jason; Zablotowicz, Robert M; Reddy, Krishna N

    2007-04-01

    Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.) Merr.] has enabled highly effective and economical weed control. The concomitant increased application of glyphosate could lead to shifts in the soil microbial community. The objective of these experiments was to evaluate the effects of glyphosate on soil microbial community structure, function and activity. Field assessments on soil microbial communities were conducted on a silt loam soil near Stoneville, MS, USA. Surface soil was collected at time of planting, before initial glyphosate application and 14 days after two post-emergence glyphosate applications. Microbial community fatty acid methyl esters (FAMEs) were analyzed from these soil samples and soybean rhizospheres. Principal component analysis of the total FAME profile revealed no differentiation between field treatments, although the relative abundance of several individual fatty acids differed significantly. There was no significant herbicide effect in bulk soil or rhizosphere soils. Collectively, these findings indicate that glyphosate caused no meaningful whole microbial community shifts in this time period, even when applied at greater than label rates. Laboratory experiments, including up to threefold label rates of glyphosate, resulted in up to a 19% reduction in soil hydrolytic activity and small, brief (glyphosate was mineralized when applied at threefold field rates, with about 9% forming bound residues. These results indicate that glyphosate has only small and transient effects on the soil microbial community, even when applied at greater than field rates.

  8. Effects of a ciliate protozoa predator on microbial communities in pitcher plant (Sarracenia purpurea leaves.

    Directory of Open Access Journals (Sweden)

    Taylor K Paisie

    Full Text Available The aquatic communities found within the water filled leaves of the pitcher plant, Sarracenia purpurea, have a simple trophic structure providing an ideal system to study microscale interactions between protozoan predators and their bacterial prey. In this study, replicate communities were maintained with and without the presence of the bactivorous protozoan, Colpoda steinii, to determine the effects of grazing on microbial communities. Changes in microbial (Archaea and Bacteria community structure were assessed using iTag sequencing of 16S rRNA genes. The microbial communities were similar with and without the protozoan predator, with>1000 species. Of these species, Archaea were negligible, with Bacteria comprising 99.99% of the microbial community. The Proteobacteria and Bacteroidetes were the most dominant phyla. The addition of a protozoan predator did not have a significant effect on microbial evenness nor richness. However, the presence of the protozoan did cause a significant shift in the relative abundances of a number of bacterial species. This suggested that bactivorous protozoan may target specific bacterial species and/or that certain bacterial species have innate mechanisms by which they evade predators. These findings help to elucidate the effect that trophic structure perturbations have on predator prey interactions in microbial systems.

  9. Perspective for Aquaponic Systems: "Omic" Technologies for Microbial Community Analysis.

    Science.gov (United States)

    Munguia-Fragozo, Perla; Alatorre-Jacome, Oscar; Rico-Garcia, Enrique; Torres-Pacheco, Irineo; Cruz-Hernandez, Andres; Ocampo-Velazquez, Rosalia V; Garcia-Trejo, Juan F; Guevara-Gonzalez, Ramon G

    2015-01-01

    Aquaponics is the combined production of aquaculture and hydroponics, connected by a water recirculation system. In this productive system, the microbial community is responsible for carrying out the nutrient dynamics between the components. The nutrimental transformations mainly consist in the transformation of chemical species from toxic compounds into available nutrients. In this particular field, the microbial research, the "Omic" technologies will allow a broader scope of studies about a current microbial profile inside aquaponics community, even in those species that currently are unculturable. This approach can also be useful to understand complex interactions of living components in the system. Until now, the analog studies were made to set up the microbial characterization on recirculation aquaculture systems (RAS). However, microbial community composition of aquaponics is still unknown. "Omic" technologies like metagenomic can help to reveal taxonomic diversity. The perspectives are also to begin the first attempts to sketch the functional diversity inside aquaponic systems and its ecological relationships. The knowledge of the emergent properties inside the microbial community, as well as the understanding of the biosynthesis pathways, can derive in future biotechnological applications. Thus, the aim of this review is to show potential applications of current "Omic" tools to characterize the microbial community in aquaponic systems.

  10. Pyrosequencing Based Microbial Community Analysis of Stabilized Mine Soils

    Science.gov (United States)

    Park, J. E.; Lee, B. T.; Son, A.

    2015-12-01

    Heavy metals leached from exhausted mines have been causing severe environmental problems in nearby soils and groundwater. Environmental mitigation was performed based on the heavy metal stabilization using Calcite and steel slag in Korea. Since the soil stabilization only temporarily immobilizes the contaminants to soil matrix, the potential risk of re-leaching heavy metal still exists. Therefore the follow-up management of stabilized soils and the corresponding evaluation methods are required to avoid the consequent contamination from the stabilized soils. In this study, microbial community analysis using pyrosequencing was performed for assessing the potential leaching of the stabilized soils. As a result of rarefaction curve and Chao1 and Shannon indices, the stabilized soil has shown lower richness and diversity as compared to non-contaminated negative control. At the phyla level, as the degree of contamination increases, most of phyla decreased with only exception of increased proteobacteria. Among proteobacteria, gamma-proteobacteria increased against the heavy metal contamination. At the species level, Methylobacter tundripaludum of gamma-proteobacteria showed the highest relative portion of microbial community, indicating that methanotrophs may play an important role in either solubilization or immobilization of heavy metals in stabilized soils.

  11. Shifts in microbial communities in bioaugmented grease interceptors removing fat, oil, and grease (FOG).

    Science.gov (United States)

    He, Xia; So, Mark Jason; de Los Reyes, Francis L

    2016-08-01

    To understand the effect of daily bioaugmentation in full-scale grease interceptors (GIs), we compared the microbial communities occurring in two full-scale GIs during bioaugmented and non-bioaugmented cycles. The changes in microbial communities were determined using terminal restriction fragment length polymorphism (T-RFLP) and 16S rRNA gene clone library construction. Differences in the microbial community structure between control and bioaugmented cycles were observed in all cases, although the dominant terminal restriction fragments in the biological product were not detected. The addition of bioaugmentation products and changes in the GI microbial ecology were related to differences in GI performance. Understanding the shifts due to bioaugmentation will result in more informed assessments of the benefits of bioadditives on FOG removal in GIs as well as the effects on downstream sewer lines.

  12. Microbial Communities and Electrochemical Performance of Titanium-Based Anodic Electrodes in a Microbial Fuel Cell

    NARCIS (Netherlands)

    Michaelidou, U.; Heijne, ter A.; Euverink, G.J.W.; Hamelers, H.V.M.; Stams, A.J.M.; Geelhoed, J.S.

    2011-01-01

    Four types of titanium (Ti)-based electrodes were tested in the same microbial fuel cell (MFC) anodic compartment. Their electrochemical performances and the dominant microbial communities of the electrode biofilms were compared. The electrodes were identical in shape, macroscopic surface area, and

  13. Soil microbial communities following bush removal in a Namibian savanna

    Science.gov (United States)

    Buyer, Jeffrey S.; Schmidt-Küntzel, Anne; Nghikembua, Matti; Maul, Jude E.; Marker, Laurie

    2016-03-01

    Savanna ecosystems are subject to desertification and bush encroachment, which reduce the carrying capacity for wildlife and livestock. Bush thinning is a management approach that can, at least temporarily, restore grasslands and raise the grazing value of the land. In this study we examined the soil microbial communities under bush and grass in Namibia. We analyzed the soil through a chronosequence where bush was thinned at 9, 5, or 3 years before sampling. Soil microbial biomass, the biomass of specific taxonomic groups, and overall microbial community structure was determined by phospholipid fatty acid analysis, while the community structure of Bacteria, Archaea, and fungi was determined by multiplex terminal restriction fragment length polymorphism analysis. Soil under bush had higher pH, C, N, and microbial biomass than under grass, and the microbial community structure was also altered under bush compared to grass. A major disturbance to the ecosystem, bush thinning, resulted in an altered microbial community structure compared to control plots, but the magnitude of this perturbation gradually declined with time. Community structure was primarily driven by pH, C, and N, while vegetation type, bush thinning, and time since bush thinning were of secondary importance.

  14. Human and environmental impacts on river sediment microbial communities.

    Directory of Open Access Journals (Sweden)

    Sean M Gibbons

    Full Text Available Sediment microbial communities are responsible for a majority of the metabolic activity in river and stream ecosystems. Understanding the dynamics in community structure and function across freshwater environments will help us to predict how these ecosystems will change in response to human land-use practices. Here we present a spatiotemporal study of sediments in the Tongue River (Montana, USA, comprising six sites along 134 km of river sampled in both spring and fall for two years. Sequencing of 16S rRNA amplicons and shotgun metagenomes revealed that these sediments are the richest (∼ 65,000 microbial 'species' identified and most novel (93% of OTUs do not match known microbial diversity ecosystems analyzed by the Earth Microbiome Project to date, and display more functional diversity than was detected in a recent review of global soil metagenomes. Community structure and functional potential have been significantly altered by anthropogenic drivers, including increased pathogenicity and antibiotic metabolism markers near towns and metabolic signatures of coal and coalbed methane extraction byproducts. The core (OTUs shared across all samples and the overall microbial community exhibited highly similar structure, and phylogeny was weakly coupled with functional potential. Together, these results suggest that microbial community structure is shaped by environmental drivers and niche filtering, though stochastic assembly processes likely play a role as well. These results indicate that sediment microbial communities are highly complex and sensitive to changes in land use practices.

  15. Characterization of biocarbon-source recovery and microbial community shifts from waste activated sludge by conditioning with cornstover: Assessment of cellulosic compositions

    Science.gov (United States)

    Wen, Kaili; Zhou, Aijuan; Zhang, Jiaguang; Liu, Zhihong; Wang, Guoying; Liu, Wenzong; Wang, Aijie; Yue, Xiuping

    2017-02-01

    Most studies on the production of volatile fatty acids (VFAs) from waste activated sludge (WAS) digestion have focused on operating conditions, pretreatments and characteristic adjustments. Conditioning by extra carbon sources (ECS), normally added in a solid form, has been reported to be an efficient approach. However, this has caused considerable waste of monomeric sugars in the hydrolysate. In this study, the effects of two added forms (pretreated straw (S) and hydrolyzed liquid (L)) of cornstover (CS) on WAS acidification were investigated. To obtain different cellulosic compositions of CS, low-thermal or autoclaved assisted alkaline (TA or AA) pretreatments were conducted. The results showed that AA-L test achieved the highest VFAs value (653 mg COD/g VSS), followed by AA-S (613 mg COD/g VSS). These values were 12% and 28% higher, respectively, than that obtained in the TA-L and TA-S tests. Meanwhile, higher percentages of acetic acid were observed after AA pretreatment (~62% versus ~53% in TA). The added forms of CS played an important role in structuring the innate microbial community in the WAS, as shown by high-throughput sequencing and canonical correspondence analysis. The findings obtained in this work may provide a scientific basis for the potential implementation of co-digesting WAS with ECS simultaneously obtaining energy and high value-added products.

  16. Fecal microbial communities of healthy adult dogs fed raw meat-based diets with or without inulin or yeast cell wall extracts as assessed by 454 pyrosequencing.

    Science.gov (United States)

    Beloshapka, Alison N; Dowd, Scot E; Suchodolski, Jan S; Steiner, Jörg M; Duclos, Laura; Swanson, Kelly S

    2013-06-01

    Our objective was to determine the effects of feeding raw meat-based diets with or without inulin or yeast cell wall extract (YCW) on fecal microbial communities of dogs using 454 pyrosequencing. Six healthy female adult beagles (5.5 ± 0.5 years; 8.5 ± 0.5 kg) were randomly assigned to six test diets using a Latin square design: (1) beef control; (2) beef + 1.4% inulin; (3) beef + 1.4% YCW; (4) chicken control; (5) chicken + 1.4% inulin; and (6) chicken + 1.4% YCW. Following 14 days of adaptation, fresh fecal samples were collected on day 15 or day 16 of each period. Fecal genomic DNA was extracted and used to create 16S rRNA gene amplicons, which were subjected to 454 pyrosequencing and qPCR. Predominant fecal bacterial phyla included Fusobacteria, Firmicutes, Bacteroidetes, and Proteobacteria. Beef-based diets increased (P Inulin decreased (P Inulin increased (P Inulin also decreased (P inulin and control and inulin increased (P inulin or YCW consumption, a strong prebiotic effect was not observed.

  17. Characterization of the microbial community in a lotic environment to assess the effect of pollution on nitrifying and potentially pathogenic bacteria

    Directory of Open Access Journals (Sweden)

    JD Medeiros

    Full Text Available This study aimed to investigate microbes involved in the nitrogen cycle and potentially pathogenic bacteria from urban and rural sites of the São Pedro stream. Water samples were collected from two sites. A seasonal survey of bacterial abundance was conducted. The dissolved nutrient content was analysed. PCR and FISH analysis were performed to identify and quantify microbes involved in the nitrogen cycle and potentially pathogenic bacteria. The seasonal survey revealed that the bacterial abundance was similar along the year on the rural area but varied on the urban site. Higher concentration of dissolved nutrients in the urban area indicated a eutrophic system. Considering the nitrifying microbes, the genus Nitrobacter was found, especially in the urban area, and may act as the principal bacteria in converting nitrite into nitrate at this site. The molecular markers napA, amoA, and nfrA were more accumulated at the urban site, justifying the higher content of nutrients metabolised by these enzymes. Finally, high intensity of amplicons from Enterococcus, Streptococcus, Bacteroides/Prevotella/Porphyromonas, Salmonella, S. aureus, P. aeruginosa and the diarrheagenic lineages of E. coli were observed at the urban site. These results indicate a change in the structure of the microbial community imposed by anthrophic actions. The incidence of pathogenic bacteria in aquatic environments is of particular importance to public health, emphasising the need for sewage treatment to minimise the environmental impacts associated with urbanisation.

  18. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells.

    Science.gov (United States)

    Wang, Zejie; Zheng, Yue; Xiao, Yong; Wu, Song; Wu, Yicheng; Yang, Zhaohui; Zhao, Feng

    2013-09-01

    Microbes play irreplaceable role in oxygen reduction reaction of biocathode in microbial fuel cells (MFCs). In this study, air-diffusion biocathode MFCs were set up for accelerating oxygen reduction and microbial community analysis. Linear sweep voltammetry and Tafel curve confirmed the function of cathode biofilm to catalyze oxygen reduction. Microbial community analysis revealed higher diversity and richness of community in plankton than in biofilm. Proteobacteria was the shared predominant phylum in both biofilm and plankton (39.9% and 49.8%) followed by Planctomycetes (29.9%) and Bacteroidetes (13.3%) in biofilm, while Bacteroidetes (28.2%) in plankton. Minor fraction (534, 16.4%) of the total operational taxonomic units (3252) was overlapped demonstrating the disproportionation of bacterial distribution in biofilm and plankton. Pseudomonadales, Rhizobiales and Sphingobacteriales were exoelectrogenic orders in the present study. The research obtained deep insight of microbial community and provided more comprehensive information on uncultured rare bacteria.

  19. A conceptual framework for invasion in microbial communities

    KAUST Repository

    Kinnunen, Marta

    2016-05-03

    There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process.

  20. A conceptual framework for invasion in microbial communities.

    Science.gov (United States)

    Kinnunen, Marta; Dechesne, Arnaud; Proctor, Caitlin; Hammes, Frederik; Johnson, David; Quintela-Baluja, Marcos; Graham, David; Daffonchio, Daniele; Fodelianakis, Stilianos; Hahn, Nicole; Boon, Nico; Smets, Barth F

    2016-12-01

    There is a growing interest in controlling-promoting or avoiding-the invasion of microbial communities by new community members. Resource availability and community structure have been reported as determinants of invasion success. However, most invasion studies do not adhere to a coherent and consistent terminology nor always include rigorous interpretations of the processes behind invasion. Therefore, we suggest that a consistent set of definitions and a rigorous conceptual framework are needed. We define invasion in a microbial community as the establishment of an alien microbial type in a resident community and argue how simple criteria to define aliens, residents, and alien establishment can be applied for a wide variety of communities. In addition, we suggest an adoption of the community ecology framework advanced by Vellend (2010) to clarify potential determinants of invasion. This framework identifies four fundamental processes that control community dynamics: dispersal, selection, drift and diversification. While selection has received ample attention in microbial community invasion research, the three other processes are often overlooked. Here, we elaborate on the relevance of all four processes and conclude that invasion experiments should be designed to elucidate the role of dispersal, drift and diversification, in order to obtain a complete picture of invasion as a community process.

  1. Segregation of the anodic microbial communities in a microbial fuel cell cascade

    Directory of Open Access Journals (Sweden)

    Douglas eHodgson

    2016-05-01

    Full Text Available Metabolic interactions within microbial communities are essential for the efficient degradation of complex organic compounds, and underpin natural phenomena driven by microorganisms, such as the recycling of carbon-, nitrogen-, and sulphur-containing molecules. These metabolic interactions ultimately determine the function, activity and stability of the community, and therefore their understanding would be essential to steer processes where microbial communities are involved. This is exploited in the design of microbial fuel cells (MFCs, bioelectrochemical devices that convert the chemical energy present in substrates into electrical energy through the metabolic activity of microorganisms, either single species or communities. In this work, we analysed the evolution of the microbial community structure in a cascade of microbial fuel cells (MFCs inoculated with an anaerobic microbial community and continuously fed with a complex medium. The analysis of the composition of the anodic communities revealed the establishment of different communities in the anodes of the hydraulically connected MFCs, with a decrease in the abundance of fermentative taxa and a concurrent increase in respiratory taxa along the cascade. The analysis of the metabolites in the anodic suspension showed a metabolic shift between the first and last MFC, confirming the segregation of the anodic communities. Those results suggest a metabolic interaction mechanism between the predominant fermentative bacteria at the first stages of the cascade and the anaerobic respiratory electrogenic population in the latter stages, which is reflected in the observed increase in power output. We show that our experimental system represents an ideal platform for optimization of processes where the degradation of complex substrates is involved, as well as a potential tool for the study of metabolic interactions in complex microbial communities.

  2. The electric picnic: synergistic requirements for exoelectrogenic microbial communities

    KAUST Repository

    Kiely, Patrick D

    2011-06-01

    Characterization of the various microbial populations present in exoelectrogenic biofilms provides insight into the processes required to convert complex organic matter in wastewater streams into electrical current in bioelectrochemical systems (BESs). Analysis of the community profiles of exoelectrogenic microbial consortia in BESs fed different substrates gives a clearer picture of the different microbial populations present in these exoelectrogenic biofilms. Rapid utilization of fermentation end products by exoelectrogens (typically Geobacter species) relieves feedback inhibition for the fermentative consortia, allowing for rapid metabolism of organics. Identification of specific syntrophic processes and the communities characteristic of these anodic biofilms will be a valuable aid in improving the performance of BESs. © 2011 Elsevier Ltd.

  3. Coupling among Microbial Communities, Biogeochemistry, and Mineralogy across Biogeochemical Facies

    Energy Technology Data Exchange (ETDEWEB)

    Stegen, James C.; Konopka, Allan; McKinely, Jim; Murray, Christopher J.; Lin, Xueju; Miller, Micah D.; Kennedy, David W.; Miller, Erin A.; Resch, Charles T.; Fredrickson, Jim K.

    2016-07-29

    Physical properties of sediments are commonly used to define subsurface lithofacies and these same physical properties influence subsurface microbial communities. This suggests an (unexploited) opportunity to use the spatial distribution of facies to predict spatial variation in biogeochemically relevant microbial attributes. Here, we characterize three biogeochemical facies—oxidized, reduced, and transition—within one lithofacies and elucidate relationships among facies features and microbial community biomass, diversity, and community composition. Consistent with previous observations of biogeochemical hotspots at environmental transition zones, we find elevated biomass within a biogeochemical facies that occurred at the transition between oxidized and reduced biogeochemical facies. Microbial diversity—the number of microbial taxa—was lower within the reduced facies and was well-explained by a combination of pH and mineralogy. Null modeling revealed that microbial community composition was influenced by ecological selection imposed by redox state and mineralogy, possibly due to effects on nutrient availability or transport. As an illustrative case, we predict microbial biomass concentration across a three-dimensional spatial domain by coupling the spatial distribution of subsurface biogeochemical facies with biomass-facies relationships revealed here. We expect that merging such an approach with hydro-biogeochemical models will provide important constraints on simulated dynamics, thereby reducing uncertainty in model predictions.

  4. Metagenomics meets time series analysis: unraveling microbial community dynamics.

    Science.gov (United States)

    Faust, Karoline; Lahti, Leo; Gonze, Didier; de Vos, Willem M; Raes, Jeroen

    2015-06-01

    The recent increase in the number of microbial time series studies offers new insights into the stability and dynamics of microbial communities, from the world's oceans to human microbiota. Dedicated time series analysis tools allow taking full advantage of these data. Such tools can reveal periodic patterns, help to build predictive models or, on the contrary, quantify irregularities that make community behavior unpredictable. Microbial communities can change abruptly in response to small perturbations, linked to changing conditions or the presence of multiple stable states. With sufficient samples or time points, such alternative states can be detected. In addition, temporal variation of microbial interactions can be captured with time-varying networks. Here, we apply these techniques on multiple longitudinal datasets to illustrate their potential for microbiome research.

  5. Microbial communities associated with wet flue gas desulfurization systems

    Directory of Open Access Journals (Sweden)

    Bryan P. Brown

    2012-11-01

    Full Text Available Flue gas desulfurization (FGD systems are employed to remove SOx gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with them have not been evaluated. Microbial communities associated with distinct process points of FGD systems at several coal fired electricity generation facilities were evaluated using culture-dependent and –independent approaches. Due to the high solute concentrations and temperatures in the FGD absorber units, culturable halothermophilic/tolerant bacteria were more abundant in samples collected from within the absorber units than in samples collected from the makeup waters that are used to replenish fluids inside the absorber units. Evaluation of bacterial 16S rRNA genes recovered from scale deposits on the walls of absorber units revealed that the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems.

  6. ADAPTATION OF AQUIFER MICROBIAL COMMUNITIES TO THE BIODEGRADATION OF XENOBIOTIC COMPOUNDS: INFLUENCE OF SUBSTRATE CONCENTRATION AND PREEXPOSURE

    Science.gov (United States)

    Studies were conducted to examine the adaptation response of aquifer microbial communities to xenobiotic compounds and the influence of chemical preexposure in the laboratory and in situ on adaptation. Adaptation and biodegradation were assessed as mineralization and cellular inc...

  7. Biocorrosive Thermophilic Microbial Communities in Alaskan North Slope Oil Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, Kathleen E.; Gieg, Lisa M.; Parisi, Victoria A.; Tanner, Ralph S.; Green Tringe, Susannah; Bristow, Jim; Suflita, Joseph M.

    2009-09-16

    Corrosion of metallic oilfield pipelines by microorganisms is a costly but poorly understood phenomenon, with standard treatment methods targeting mesophilic sulfatereducing bacteria. In assessing biocorrosion potential at an Alaskan North Slope oil field, we identified thermophilic hydrogen-using methanogens, syntrophic bacteria, peptideand amino acid-fermenting bacteria, iron reducers, sulfur/thiosulfate-reducing bacteria and sulfate-reducing archaea. These microbes can stimulate metal corrosion through production of organic acids, CO2, sulfur species, and via hydrogen oxidation and iron reduction, implicating many more types of organisms than are currently targeted. Micromolar quantities of putative anaerobic metabolites of C1-C4 n-alkanes in pipeline fluids were detected, implying that these low molecular weight hydrocarbons, routinely injected into reservoirs for oil recovery purposes, are biodegraded and provide biocorrosive microbial communities with an important source of nutrients.

  8. Dynamic Changes of Microbial Community for Degradation of Lignocellulose

    Institute of Scientific and Technical Information of China (English)

    LI Wenzhe; LIU Shuang; WANG Chunying; ZHENG Guoxiang

    2010-01-01

    Dynamic changes of a microbial community for lignocellulose degradation were explored in details.Community composition and development were investigated by the means of denaturing gradient gel electrophoresis(DGGE),and results showed that the microbial community was constituted of 14 kinds of bacteria and presented the fluctuation in some degrees with fermentation.Furthmore,the result of cluster analysis of DGGE pattern was accordant with growth curve,and the degradation process was divided into three stages: initial stage(0-12 h),intermediate stage(24-144 h)and end stage(144-216 h).

  9. Controls on soil microbial community stability under climate change

    Directory of Open Access Journals (Sweden)

    Franciska T De Vries

    2013-09-01

    Full Text Available Soil microbial communities are intricately linked to ecosystem functioning because they play important roles in carbon and nitrogen cycling. Still, we know little about how soil microbial communities will be affected by disturbances expected with climate change. This is a significant gap in understanding, as the stability of microbial communities, defined as a community's ability to resist and recover from disturbances, likely has consequences for ecosystem function. Here, we propose a framework for predicting a community’s response to climate change, based on specific functional traits present in the community, the relative dominance of r- and K-strategists, and the soil environment. We hypothesize that the relative abundance of r- and K-strategists will inform about a community’s resistance and resilience to climate change associated disturbances. We also propose that other factors specific to soils, such as moisture content and the presence of plants, may enhance a community’s resilience. For example, recent evidence suggests microbial grazers, resource availability, and plant roots each impact on microbial community stability. We explore these hypotheses by offering three vignettes of published data that that we re-analyzed. Our results show that community measures of the relative abundance of r- and K-strategists, as well as environmental properties like resource availability and the abundance and diversity of higher trophic levels, can contribute to explaining the response of microbial community composition to climate change-related disturbances. However, further investigation and experimental validation is necessary to directly test these hypotheses across a wide range of soil ecosystems.

  10. Microbial communities and soil fertility in flood irrigated orchards under different management systems in eastern spain

    Science.gov (United States)

    Morugán-Coronado, Alicia; García-Orenes, Fuensanta; Caravaca, Fuensanta; Roldán, Antonio

    2016-04-01

    Unsuitable land management such as the excessive use of herbicides can lead to a loss of soil fertility and a drastic reduction in the abundance of microbial populations and their functions related to nutrient cycling. Microbial communities are the most sensitive and rapid indicators of perturbations in agroecosystems. A field experiment was performed in an orange-trees orchard (Citrus sinensis) to assess the long-term effect of three different management systems on the soil microbial community biomass, structure and composition (phospholipid fatty acids (PLFAs) total, pattern, and abundance). The three agricultural systems assayed were established 30 years ago: herbicides (Glyphosate (N-(phosphonomethyl)glycine) with inorganic fertilizers (H), intensive ploughing and inorganic fertilizers (NPK 15%) (P) and organic farming (chipped pruned branches and weeds, manure from sheep and goats) (O). Nine soil samples were taken from each system. The results showed that the management practices including herbicides and intensive ploughing had similar results on soil microbial properties, while organic fertilization significantly increased microbial biomass, shifted the structure and composition of the soil microbial community, and stimulated microbial activity, when compared to inorganic fertilization systems; thus, enhancing the sustainability of this agroecosystem under semiarid conditions.

  11. Functional diversity of the microbial community in healthy subjects and periodontitis patients based on sole carbon source utilization.

    Directory of Open Access Journals (Sweden)

    Yifei Zhang

    Full Text Available Chronic periodontitis is one of the most common forms of biofilm-induced diseases. Most of the recent studies were focus on the dental plaque microbial diversity and microbiomes. However, analyzing bacterial diversity at the taxonomic level alone limits deeper comprehension of the ecological relevance of the community. In this study, we compared the metabolic functional diversity of the microbial community in healthy subjects and periodontitis patients in a creative way--to assess the sole carbon source utilization using Biolog assay, which was first applied on oral micro-ecology assessment. Pattern analyses of 95-sole carbon sources catabolism provide a community-level phenotypic profile of the microbial community from different habitats. We found that the microbial community in the periodontitis group had greater metabolic activity compared to the microbial community in the healthy group. Differences in the metabolism of specific carbohydrates (e.g. β-methyl-D-glucoside, stachyose, maltose, D-mannose, β-methyl-D-glucoside and pyruvic acid were observed between the healthy and periodontitis groups. Subjects from the healthy and periodontitis groups could be well distinguished by cluster and principle component analyses according to the utilization of discriminate carbon sources. Our results indicate significant difference in microbial functional diversity between healthy subjects and periodontitis patients. We also found Biolog technology is effective to further our understanding of community structure as a composite of functional abilities, and it enables the identification of ecologically relevant functional differences among oral microbial communities.

  12. Ecofunctional enzymes of microbial communities in ground water.

    Science.gov (United States)

    Fliermans, C B; Franck, M M; Hazen, T C; Gorden, R W

    1997-07-01

    Biolog technology was initially developed as a rapid, broad spectrum method for the biochemical identification of clinical microorganisms. Demand and creative application of this technology has resulted in the development of Biolog plates for Gram-negative and Gram-positive bacteria, for yeast and Lactobacillus sp. Microbial ecologists have extended the use of these plates from the identification of pure culture isolates to a tool for quantifying the metabolic patterns of mixed cultures, consortia and entire microbial communities. Patterns that develop on Biolog microplates are a result of the oxidation of the substrates by microorganisms in the inoculum and the subsequent reduction of the tetrazolium dye to form a color in response to detectable reactions. Depending upon the functional enzymes present in the isolate or community one of a possible 4 x 10(28) patterns can be expressed. The patterns were used to distinguish the physiological ecology of various microbial communities present in remediated groundwater. The data indicate that one can observe differences in the microbial community among treatments of bioventing, 1% and 4% methane injection, and pulse injection of air, methane and nutrients both between and among wells. The investigation indicates that Biolog technology is a useful parameter to measure the physiological response of the microbial community to perturbation and allows one to design enhancement techniques to further the degradation of selected recalcitrant and toxic chemicals. Further it allows one to evaluate the recovery of the microbial subsurface ecosystem after the perturbations have ceased. We propose the term 'ecofunctional enzymes' (EFE) as the most descriptive and useful term for the Biolog plate patterns generated by microbial communities. We offer this designation and provide ecological application in an attempt to standardize the terminology for this relatively new and unique technology.

  13. Stochastic assembly leads to alternative communities with distinct functions in a bioreactor microbial community.

    Science.gov (United States)

    Zhou, Jizhong; Liu, Wenzong; Deng, Ye; Jiang, Yi-Huei; Xue, Kai; He, Zhili; Van Nostrand, Joy D; Wu, Liyou; Yang, Yunfeng; Wang, Aijie

    2013-03-05

    ABSTRACT The processes and mechanisms of community assembly and its relationships to community functioning are central issues in ecology. Both deterministic and stochastic factors play important roles in shaping community composition and structure, but the connection between community assembly and ecosystem functioning remains elusive, especially in microbial communities. Here, we used microbial electrolysis cell reactors as a model system to examine the roles of stochastic assembly in determining microbial community structure and functions. Under identical environmental conditions with the same source community, ecological drift (i.e., initial stochastic colonization) and subsequent biotic interactions created dramatically different communities with little overlap among 14 identical reactors, indicating that stochastic assembly played dominant roles in determining microbial community structure. Neutral community modeling analysis revealed that deterministic factors also played significant roles in shaping microbial community structure in these reactors. Most importantly, the newly formed communities differed substantially in community functions (e.g., H2 production), which showed strong linkages to community structure. This study is the first to demonstrate that stochastic assembly plays a dominant role in determining not only community structure but also ecosystem functions. Elucidating the links among community assembly, biodiversity, and ecosystem functioning is critical to understanding ecosystem functioning, biodiversity preservation, and ecosystem management. IMPORTANCE Microorganisms are the most diverse group of life known on earth. Although it is well documented that microbial natural biodiversity is extremely high, it is not clear why such high diversity is generated and maintained. Numerous studies have established the roles of niche-based deterministic factors (e.g., pH, temperature, and salt) in shaping microbial biodiversity, the importance of

  14. Groundwater Isolation Governs Chemistry and Microbial Community Structure along Hydrologic Flowpaths

    Science.gov (United States)

    Ben Maamar, Sarah; Aquilina, Luc; Quaiser, Achim; Pauwels, Hélène; Michon-Coudouel, Sophie; Vergnaud-Ayraud, Virginie; Labasque, Thierry; Roques, Clément; Abbott, Benjamin W.; Dufresne, Alexis

    2015-01-01

    This study deals with the effects of hydrodynamic functioning of hard-rock aquifers on microbial communities. In hard-rock aquifers, the heterogeneous hydrologic circulation strongly constrains groundwater residence time, hydrochemistry, and nutrient supply. Here, residence time and a wide range of environmental factors were used to test the influence of groundwater circulation on active microbial community composition, assessed by high throughput sequencing of 16S rRNA. Groundwater of different ages was sampled along hydrogeologic paths or loops, in three contrasting hard-rock aquifers in Brittany (France). Microbial community composition was driven by groundwater residence time and hydrogeologic loop position. In recent groundwater, in the upper section of the aquifers or in their recharge zone, surface water inputs caused high nitrate concentration and the predominance of putative denitrifiers. Although denitrification does not seem to fully decrease nitrate concentrations due to low dissolved organic carbon concentrations, nitrate input has a major effect on microbial communities. The occurrence of taxa possibly associated with the application of organic fertilizers was also noticed. In ancient isolated groundwater, an ecosystem based on Fe(II)/Fe(III) and S/SO4 redox cycling was observed down to several 100 of meters below the surface. In this depth section, microbial communities were dominated by iron oxidizing bacteria belonging to Gallionellaceae. The latter were associated to old groundwater with high Fe concentrations mixed to a small but not null percentage of recent groundwater inducing oxygen concentrations below 2.5 mg/L. These two types of microbial community were observed in the three sites, independently of site geology and aquifer geometry, indicating hydrogeologic circulation exercises a major control on microbial communities. PMID:26733990

  15. Microbial communities play important roles in modulating paddy soil fertility.

    Science.gov (United States)

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-02-04

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production.

  16. Microbial communities play important roles in modulating paddy soil fertility

    Science.gov (United States)

    Luo, Xuesong; Fu, Xiaoqian; Yang, Yun; Cai, Peng; Peng, Shaobing; Chen, Wenli; Huang, Qiaoyun

    2016-02-01

    We studied microbial communities in two paddy soils, which did not receive nitrogen fertilization and were distinguished by the soil properties. The two microbial communities differed in the relative abundance of gram-negative bacteria and total microbial biomass. Variability in microbial communities between the two fields was related to the levels of phosphorus and soil moisture. Redundancy analysis for individual soils showed that the bacterial community dynamics in the high-yield soil were significantly correlated with total carbon, moisture, available potassium, and pH, and those in the low-yield cores were shaped by pH, and nitrogen factors. Biolog Eco-plate data showed a more active microbial community in the high yield soil. The variations of enzymatic activities in the two soils were significantly explained by total nitrogen, total potassium, and moisture. The enzymatic variability in the low-yield soil was significantly explained by potassium, available nitrogen, pH, and total carbon, and that in the high-yield soil was partially explained by potassium and moisture. We found the relative abundances of Gram-negative bacteria and Actinomycetes partially explained the spatial and temporal variations of soil enzymatic activities, respectively. The high-yield soil microbes are probably more active to modulate soil fertility for rice production.

  17. Generation of Electricity and Analysis of Microbial Communities in Wheat Straw Biomass-Powered Microbial Fuel Cells

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Min, Booki; Huang, L.;

    2009-01-01

    Electricity generation from wheat straw hydrolysate and the microbial ecology of electricity producing microbial communities developed in two chamber microbial fuel cells (MFCs) were investigated. Power density reached 123 mW/m2 with an initial hydrolysate concentration of 1000 mg-COD/L while...... to improve understanding and optimizing the electricity generation in microbial fuel cells....

  18. Microbial Inoculants and Their Impact on Soil Microbial Communities: A Review

    Directory of Open Access Journals (Sweden)

    Darine Trabelsi

    2013-01-01

    Full Text Available The knowledge of the survival of inoculated fungal and bacterial strains in field and the effects of their release on the indigenous microbial communities has been of great interest since the practical use of selected natural or genetically modified microorganisms has been developed. Soil inoculation or seed bacterization may lead to changes in the structure of the indigenous microbial communities, which is important with regard to the safety of introduction of microbes into the environment. Many reports indicate that application of microbial inoculants can influence, at least temporarily, the resident microbial communities. However, the major concern remains regarding how the impact on taxonomic groups can be related to effects on functional capabilities of the soil microbial communities. These changes could be the result of direct effects resulting from trophic competitions and antagonistic/synergic interactions with the resident microbial populations, or indirect effects mediated by enhanced root growth and exudation. Combination of inoculants will not necessarily produce an additive or synergic effect, but rather a competitive process. The extent of the inoculation impact on the subsequent crops in relation to the buffering capacity of the plant-soil-biota is still not well documented and should be the focus of future research.

  19. Microbial Community and Urban Water Quality

    Institute of Scientific and Technical Information of China (English)

    YANG Jun; ZHANG Yongyu; LIU Lemian; WANG Changfu; YU Xiaoqing

    2012-01-01

    Urbanization of China is substantial and growing, and water resources are crucial for both economic and social sustainable development. Unfortunately, the frequency and intensity of water contamination events are increasing at an unprecedented rate and often accompanied by increased pollutant loading due to human activities such as irreversible industrialization and urbanization. The impacts of human pollution are most evident and of greatest concern at the microbial level. The research of the Aquatic Ecohealth Group, Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, has been focusing mainly on aquatic microorganisms in the urban environment, from drinking water and landscape water to waste water. Its projects fall into three categories: biomonitoring and bioassessment, microbial ecology and diversity, ecotoxicology and environmental microbiology. Its scientific topics include the aquatic ecological safety and microbial food web.

  20. Measurements of Microbial Community Activities in Individual Soil Macroaggregates

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Vanessa L.; Bilskis, Christina L.; Fansler, Sarah J.; McCue, Lee Ann; Smith, Jeff L.; Konopka, Allan

    2012-05-01

    The functional potential of single soil aggregates may provide insights into the localized distribution of microbial activities better than traditional assays conducted on bulk quantities of soil. Thus, we scaled down enzyme assays for {beta}-glucosidase, N-acetyl-{beta}-D-glucosaminidase, lipase, and leucine aminopeptidase to measure of the enzyme potential of individual aggregates (250-1000 {mu}m diameter). Across all enzymes, the smallest aggregates had the greatest activity and the range of enzyme activities observed in all aggregates supports the hypothesis that functional potential in soil may be distributed in a patchy fashion. Paired analyses of ATP as a surrogate for active microbial biomass and {beta}-glucosidase on the same aggregates suggest the presence of both extracellular {beta}-glucosidase functioning in aggregates with no detectable ATP and also of relatively active microbial communities (high ATP) that have low {beta}-glucosidase potentials. Studying function at a scale more consistent with microbial habitat presents greater opportunity to link microbial community structure to microbial community function.

  1. Nitrogen amendments have predictable effects on soil microbial communities and processes

    Science.gov (United States)

    Ramirez, K. S.; Craine, J. M.; Fierer, N.

    2011-12-01

    Ecosystems worldwide are receiving increasing amounts of reactive nitrogen (N) through anthropogenic activities. While there has been much effort devoted to quantifying aboveground impacts of anthropogenic N effects, less work has focused on identifying belowground impacts. Bacteria play critical roles in ecosystem processes and identifying how anthropogenic N impacts bacterial communities may elucidate how critical microbially-mediated ecosystem functions are altered by N additions. In order to connect changes in soil processes to changes in the microbial community, we need to first determine if the changes are consistent across different soil types and ecosystems. We assessed the patterns of N effects across a variety of ecosystems in two ways. First, utilizing long-term experimental N gradients at Cedar Creek LTER, MN and Kellogg Biological Station LTER, MI, we examined the response of microbial communities to anthropogenic N additions. Using high-throughput pyrosequencing techniques we quantified changes in soil microbial communities across the nitrogen gradients. We observed strong directional shifts in community composition at both sites; N fertilization consistently impacted both the phylogenetic and taxonomic structure of soil bacterial community structure in a predictable manner regardless of ecosystem type. For example, at both sites Acidobacteria experienced significant declines as nitrogen increased, while other groups such as Actinobacteria and Bacteroidetes increased in relative abundance. Our results suggest that bacterial communities across these N fertility gradients are structured by either nitrogen and/or soil carbon availability, rather than by shifts in the plant community or soil pH indirectly associated with the elevated nitrogen inputs. Still, this field-work does not incorporate changes in soil processes (e.g. soil respiration) or microbial activity (e.g. microbial biomass and extracellular enzyme activity), or separate N from C effects. To

  2. Neotropical Andes hot springs harbor diverse and distinct planktonic microbial communities.

    Science.gov (United States)

    Delgado-Serrano, Luisa; López, Gina; Bohorquez, Laura C; Bustos, José R; Rubiano, Carolina; Osorio-Forero, César; Junca, Howard; Baena, Sandra; Zambrano, María M

    2014-07-01

    Microbial explorations of hot springs have led to remarkable discoveries and improved our understanding of life under extreme conditions. The Andean Mountains harbor diverse habitats, including an extensive chain of geothermal heated water sources. In this study, we describe and compare the planktonic microbial communities present in five high-mountain hot springs with distinct geochemical characteristics, at varying altitudes and geographical locations in the Colombian Andes. The diversity and structure of the microbial communities were assessed by pyrosequencing the V5 - V6 region of the 16S rRNA gene. The planktonic communities varied in terms of diversity indexes and were dominated by the bacterial phyla Proteobacteria, Aquificae, Chloroflexi, Cyanobacteria, Firmicutes, Nitrospirae, and Thermotogae, with site-specific bacterial taxa also observed in some cases. Statistical analyses showed that these microbial communities were distinct from one another and that they clustered in a manner consistent with physicochemical parameters of the environment sampled. Multivariate analysis suggested that pH and sulfate were among the main variables influencing population structure and diversity. The results show that despite their geographical proximity and some shared geochemical characteristics, there were few shared operational taxonomic units (OTUs) and that community structure was influenced mainly by environmental factors that have resulted in different microbial populations.

  3. Ohmic resistance affects microbial community and electrochemical kinetics in a multi-anode microbial electrochemical cell

    Science.gov (United States)

    Multi-anode microbial electrochemical cells (MXCs) are considered as one of the most promising configurations for scale-up of MXCs, but fundamental understanding of anode kinetics governing current density is limited in the MXCs. In this study we first assessed microbial communi...

  4. Soil Microbial Community Changes in Wooded Mountain Pastures due to Simulated Effects of Cattle Grazing

    NARCIS (Netherlands)

    Kohler, F.; Hamelin, J.; Gillet, F.; Gobat, J.M.; Buttler, A.

    2005-01-01

    The effect of cattle activity on pastures can be subdivided into three categories of disturbances: herbage removal, dunging and trampling. The objective of this study was to assess separately or in combination the effect of these factors on the potential activities of soil microbial communities and

  5. Evolutionary relationships of wild hominids recapitulated by gut microbial communities.

    Directory of Open Access Journals (Sweden)

    Howard Ochman

    Full Text Available Multiple factors over the lifetime of an individual, including diet, geography, and physiologic state, will influence the microbial communities within the primate gut. To determine the source of variation in the composition of the microbiota within and among species, we investigated the distal gut microbial communities harbored by great apes, as present in fecal samples recovered within their native ranges. We found that the branching order of host-species phylogenies based on the composition of these microbial communities is completely congruent with the known relationships of the hosts. Although the gut is initially and continuously seeded by bacteria that are acquired from external sources, we establish that over evolutionary timescales, the composition of the gut microbiota among great ape species is phylogenetically conserved and has diverged in a manner consistent with vertical inheritance.

  6. Anodic and cathodic microbial communities in single chamber microbial fuel cells.

    Science.gov (United States)

    Daghio, Matteo; Gandolfi, Isabella; Bestetti, Giuseppina; Franzetti, Andrea; Guerrini, Edoardo; Cristiani, Pierangela

    2015-01-25

    Microbial fuel cells (MFCs) are a rapidly growing technology for energy production from wastewater and biomasses. In a MFC, a microbial biofilm oxidizes organic matter and transfers electrons from reduced compounds to an anode as the electron acceptor by extracellular electron transfer (EET). The aim of this work was to characterize the microbial communities operating in a Single Chamber Microbial Fuel Cell (SCMFC) fed with acetate and inoculated with a biogas digestate in order to gain more insight into anodic and cathodic EET. Taxonomic characterization of the communities was carried out by Illumina sequencing of a fragment of the 16S rRNA gene. Microorganisms belonging to Geovibrio genus and purple non-sulfur (PNS) bacteria were found to be dominant in the anodic biofilm. The alkaliphilic genus Nitrincola and anaerobic microorganisms belonging to Porphyromonadaceae family were the most abundant bacteria in the cathodic biofilm.

  7. Quantifying electron fluxes in methanogenic microbial communities

    NARCIS (Netherlands)

    Junicke, H.

    2015-01-01

    Anaerobic digestion is a widely applied process in which close interactions between different microbial groups result in the formation of renewable energy in the form of biogas. Nevertheless, the regulatory mechanisms of the electron transfer between acetogenic bacteria and methanogenic archaea in t

  8. Phylogenetic & Physiological Profiling of Microbial Communities of Contaminated Soils/Sediments: Identifying Microbial consortia...

    Energy Technology Data Exchange (ETDEWEB)

    Terence L. Marsh

    2004-05-26

    The goals of this study were: (1) survey the microbial community in soil samples from a site contaminated with heavy metals using new rapid molecular techniques that are culture-independent; (2) identify phylogenetic signatures of microbial populations that correlate with metal ion contamination; and (3) cultivate these diagnostic strains using traditional as well as novel cultivation techniques in order to identify organisms that may be of value in site evaluation/management or bioremediation.

  9. Resistance and Resilience of Soil Microbial Communities Exposed to Petroleum-Derived Compounds

    DEFF Research Database (Denmark)

    Modrzynski, Jakub Jan

    Functioning of soil microbial communities is generally considered resilient to disturbance, including chemical stress. Activities of soil microbial communities are often sustained in polluted environments due to exceptional plasticity of microbial communities and functional redundancy. Pollution......-induced community tolerance (PICT) often develops following chemical stress. Nonetheless, environmental pollution may severely disturb functioning of soil microbial communities, thereby threatening provision of important ecosystem services provided by microorganisms. Pollution with petroleum and petroleum......-derived compounds (PDCs) is a significant environmental problem on a global scale. Research addressing interactions between microorganisms and PDC pollution is dominated by studies of biodegradation, with less emphasis on microbial ecotoxicology. Soil microbial communities are generally considered highly resilient...

  10. Acclimation of subsurface microbial communities to mercury

    DEFF Research Database (Denmark)

    de Lipthay, Julia R.; Rasmussen, Lasse Dam; Oregaard, Gunnar

    2008-01-01

    We studied the acclimation to mercury of bacterial communities of different depths from contaminated and noncontaminated floodplain soils. The level of mercury tolerance of the bacterial communities from the contaminated site was higher than those of the reference site. Furthermore, the level...... of mercury tolerance and functional versatility of bacterial communities in contaminated soils initially were higher for surface soil, compared with the deeper soils. However, following new mercury exposure, no differences between bacterial communities were observed, which indicates a high adaptive potential...... of the subsurface communities, possibly due to differences in the availability of mercury. IncP-1 trfA genes were detected in extracted community DNA from all soil depths of the contaminated site, and this finding was correlated to the isolation of four different mercury-resistance plasmids, all belonging...

  11. Manipulating soil microbial communities in extensive green roof substrates.

    Science.gov (United States)

    Molineux, Chloe J; Connop, Stuart P; Gange, Alan C

    2014-09-15

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated, we added mycorrhizal fungi and a microbial mixture ('compost tea') to green roof rootzones, composed mainly of crushed brick or crushed concrete. The study revealed that growing media type and depth play a vital role in the microbial ecology of green roofs. There are complex relationships between depth and type of substrate and the biomass of different microbial groups, with no clear pattern being observed. Following the addition of inoculants, bacterial groups tended to increase in biomass in shallower substrates, whereas fungal biomass change was dependent on depth and type of substrate. Increased fungal biomass was found in shallow plots containing more crushed concrete and deeper plots containing more crushed brick where compost tea (a live mixture of beneficial bacteria) was added, perhaps due to the presence of helper bacteria for arbuscular mycorrhizal fungi (AMF). Often there was not an additive affect of the microbial inoculations but instead an antagonistic interaction between the added AM fungi and the compost tea. This suggests that some species of microbes may not be compatible with others, as competition for limited resources occurs within the various substrates. The overall results suggest that microbial inoculations of green roof habitats are sustainable. They need only be done once for increased biomass to be found in subsequent years, indicating that this is a novel and viable method of enhancing roof community composition.

  12. Long-Term Effects of Multiwalled Carbon Nanotubes and Graphene on Microbial Communities in Dry Soil.

    Science.gov (United States)

    Ge, Yuan; Priester, John H; Mortimer, Monika; Chang, Chong Hyun; Ji, Zhaoxia; Schimel, Joshua P; Holden, Patricia A

    2016-04-01

    Little is known about the long-term effects of engineered carbonaceous nanomaterials (ECNMs) on soil microbial communities, especially when compared to possible effects of natural or industrial carbonaceous materials. To address these issues, we exposed dry grassland soil for 1 year to 1 mg g(-1) of either natural nanostructured material (biochar), industrial carbon black, three types of multiwalled carbon nanotubes (MWCNTs), or graphene. Soil microbial biomass was assessed by substrate induced respiration and by extractable DNA. Bacterial and fungal communities were examined by terminal restriction fragment length polymorphism (T-RFLP). Microbial activity was assessed by soil basal respiration. At day 0, there was no treatment effect on soil DNA or T-RFLP profiles, indicating negligible interference between the amended materials and the methods for DNA extraction, quantification, and community analysis. After a 1-year exposure, compared to the no amendment control, some treatments reduced soil DNA (e.g., biochar, all three MWCNT types, and graphene; P < 0.05) and altered bacterial communities (e.g., biochar, carbon black, narrow MWCNTs, and graphene); however, there were no significant differences across the amended treatments. These findings suggest that ECNMs may moderately affect dry soil microbial communities but that the effects are similar to those from natural and industrial carbonaceous materials, even after 1-year exposure.

  13. Molecular analysis of microbial communities in endotracheal tube biofilms.

    Directory of Open Access Journals (Sweden)

    Scott Cairns

    Full Text Available BACKGROUND: Ventilator-associated pneumonia is the most prevalent acquired infection of patients on intensive care units and is associated with considerable morbidity and mortality. Evidence suggests that an improved understanding of the composition of the biofilm communities that form on endotracheal tubes may result in the development of improved preventative strategies for ventilator-associated pneumonia. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this study was to characterise microbial biofilms on the inner luminal surface of extubated endotracheal tubes from ICU patients using PCR and molecular profiling. Twenty-four endotracheal tubes were obtained from twenty mechanically ventilated patients. Denaturing gradient gel electrophoresis (DGGE profiling of 16S rRNA gene amplicons was used to assess the diversity of the bacterial population, together with species specific PCR of key marker oral microorganisms and a quantitative assessment of culturable aerobic bacteria. Analysis of culturable aerobic bacteria revealed a range of colonisation from no growth to 2.1×10(8 colony forming units (cfu/cm(2 of endotracheal tube (mean 1.4×10(7 cfu/cm(2. PCR targeting of specific bacterial species detected the oral bacteria Streptococcus mutans (n = 5 and Porphyromonas gingivalis (n = 5. DGGE profiling of the endotracheal biofilms revealed complex banding patterns containing between 3 and 22 (mean 6 bands per tube, thus demonstrating the marked complexity of the constituent biofilms. Significant inter-patient diversity was evident. The number of DGGE bands detected was not related to total viable microbial counts or the duration of intubation. CONCLUSIONS/SIGNIFICANCE: Molecular profiling using DGGE demonstrated considerable biofilm compositional complexity and inter-patient diversity and provides a rapid method for the further study of biofilm composition in longitudinal and interventional studies. The presence of oral microorganisms in

  14. Temperature sensitivity of soil microbial communities: An application of macromolecular rate theory to microbial respiration

    Science.gov (United States)

    Alster, Charlotte J.; Koyama, Akihiro; Johnson, Nels G.; Wallenstein, Matthew D.; Fischer, Joseph C.

    2016-06-01

    There is compelling evidence that microbial communities vary widely in their temperature sensitivity and may adapt to warming through time. To date, this sensitivity has been largely characterized using a range of models relying on versions of the Arrhenius equation, which predicts an exponential increase in reaction rate with temperature. However, there is growing evidence from laboratory and field studies that observe nonmonotonic responses of reaction rates to variation in temperature, indicating that Arrhenius is not an appropriate model for quantitatively characterizing temperature sensitivity. Recently, Hobbs et al. (2013) developed macromolecular rate theory (MMRT), which incorporates thermodynamic temperature optima as arising from heat capacity differences between isoenzymes. We applied MMRT to measurements of respiration from soils incubated at different temperatures. These soils were collected from three grassland sites across the U.S. Great Plains and reciprocally transplanted, allowing us to isolate the effects of microbial community type from edaphic factors. We found that microbial community type explained roughly 30% of the variation in the CO2 production rate from the labile C pool but that temperature and soil type were most important in explaining variation in labile and recalcitrant C pool size. For six out of the nine soil × inoculum combinations, MMRT was superior to Arrhenius. The MMRT analysis revealed that microbial communities have distinct heat capacity values and temperature sensitivities sometimes independent of soil type. These results challenge the current paradigm for modeling temperature sensitivity of soil C pools and understanding of microbial enzyme dynamics.

  15. Temporal dynamics of hot desert microbial communities reveal structural and functional responses to water input

    Science.gov (United States)

    Armstrong, Alacia; Valverde, Angel; Ramond, Jean-Baptiste; Makhalanyane, Thulani P.; Jansson, Janet K.; Hopkins, David W.; Aspray, Thomas J.; Seely, Mary; Trindade, Marla I.; Cowan, Don A.

    2016-01-01

    The temporal dynamics of desert soil microbial communities are poorly understood. Given the implications for ecosystem functioning under a global change scenario, a better understanding of desert microbial community stability is crucial. Here, we sampled soils in the central Namib Desert on sixteen different occasions over a one-year period. Using Illumina-based amplicon sequencing of the 16S rRNA gene, we found that α-diversity (richness) was more variable at a given sampling date (spatial variability) than over the course of one year (temporal variability). Community composition remained essentially unchanged across the first 10 months, indicating that spatial sampling might be more important than temporal sampling when assessing β-diversity patterns in desert soils. However, a major shift in microbial community composition was found following a single precipitation event. This shift in composition was associated with a rapid increase in CO2 respiration and productivity, supporting the view that desert soil microbial communities respond rapidly to re-wetting and that this response may be the result of both taxon-specific selection and changes in the availability or accessibility of organic substrates. Recovery to quasi pre-disturbance community composition was achieved within one month after rainfall. PMID:27680878

  16. Extreme CO2 disturbance and the resilience of soil microbial communities

    Science.gov (United States)

    McFarland, Jack W.; Waldrop, Mark P.; Haw, Monica

    2013-01-01

    Carbon capture and storage (CSS) technology has the potential to inadvertently release large quantities of CO2 through geologic substrates and into surrounding soils and ecosystems. Such a disturbance has the potential to not only alter the structure and function of plant and animal communities, but also soils, soil microbial communities, and the biogeochemical processes they mediate. At Mammoth Mountain, we assessed the soil microbial community response to CO2 disturbance (derived from volcanic ‘cold’ CO2) that resulted in localized tree kill; soil CO2 concentrations in our study area ranged from 0.6% to 60%. Our objectives were to examine how microbial communities and their activities are restructured by extreme CO2 disturbance, and assess the response of major microbial taxa to the reintroduction of limited plant communities following an extensive period (15–20 years) with no plants. We found that CO2-induced tree kill reduced soil carbon (C) availability along our sampling transect. In response, soil microbial biomass decreased by an order of magnitude from healthy forest to impacted areas. Soil microorganisms were most sensitive to changes in soil organic C, which explained almost 60% of the variation for microbial biomass C (MBC) along the CO2gradient. We employed phospholipid fatty acid analysis and quantitative PCR (qPCR) to determine compositional changes among microbial communities in affected areas and found substantial reductions in microbial biomass linked to the loss of soil fungi. In contrast, archaeal populations responded positively to the CO2 disturbance, presumably due to reduced competition of bacteria and fungi, and perhaps unique adaptations to energy stress. Enzyme activities important in the cycling of soil C, nitrogen (N), and phosphorus (P) declined with increasing CO2, though specific activities (per unit MBC) remained stable or increased suggesting functional redundancy among restructured communities. We conclude that both the

  17. IN-VITRO EFFECTS OF HERBICIDES ON SOIL MICROBIAL COMMUNITIES

    Directory of Open Access Journals (Sweden)

    AABID HUSSAIN LONE

    2014-03-01

    Full Text Available Effect of six different herbicides representing four chemical families on soil microbial communities was studied using laboratory microcosm approach. The herbicides tested were isoproturon, metribuzin, clodinafop propargyl, atlantis (Mesosulfuron methyl 3% + Idosulfuron Methyl Sodium 0.6% WG and sulfosulfuron applied at normal agricultural rates, and UPH-110 (Clodinafop propargyl 12% + Metribuzin 42% WG tested at four different application rates. Microbial response to the applied herbicides was studied following cultivation dependent approach. The microbial community showed a mixed response towards applied herbicides. With a few exceptions, metribuzin displayed a negative, clodinafop a positive and sulphonylurea herbicides a neutral effect while as the effect of isoproturon was variable. Significant toxic impact of UPH-110 was mostly observed at higher concentrations (@ 600 and 1000 g ha-1. The magnitude of hazard and duration of toxicity increased as the dose of UPH-110 increased. The influence whether positive or negative, was only transitory in nature and recovered to the level of untreated microcosms by or before 30th day of application. Among the microbial groups studied, fungal population was least affected at field rate, bacteria, actinomycetes and Azotobacter showed mixed response while as the phosphorus solubilizers population showed a tendency to increase in response to the applied herbicides.The herbicidal impact on soil microbial population was found to depend on the nature and dose of herbicide used and also the type of microbial group

  18. Exploring the Impacts of Anthropogenic Disturbance on Seawater and Sediment Microbial Communities in Korean Coastal Waters Using Metagenomics Analysis

    Science.gov (United States)

    Won, Nam-Il; Kim, Ki-Hwan; Kang, Ji Hyoun; Park, Sang Rul; Lee, Hyuk Je

    2017-01-01

    The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA). However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene), we analyzed and compared seawater and sediment communities between sand mining and control (natural) sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium) are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA. PMID:28134828

  19. Exploring the Impacts of Anthropogenic Disturbance on Seawater and Sediment Microbial Communities in Korean Coastal Waters Using Metagenomics Analysis

    Directory of Open Access Journals (Sweden)

    Nam-Il Won

    2017-01-01

    Full Text Available The coastal ecosystems are considered as one of the most dynamic and vulnerable environments under various anthropogenic developments and the effects of climate change. Variations in the composition and diversity of microbial communities may be a good indicator for determining whether the marine ecosystems are affected by complex forcing stressors. DNA sequence-based metagenomics has recently emerged as a promising tool for analyzing the structure and diversity of microbial communities based on environmental DNA (eDNA. However, few studies have so far been performed using this approach to assess the impacts of human activities on the microbial communities in marine systems. In this study, using metagenomic DNA sequencing (16S ribosomal RNA gene, we analyzed and compared seawater and sediment communities between sand mining and control (natural sites in southern coastal waters of Korea to assess whether anthropogenic activities have significantly affected the microbial communities. The sand mining sites harbored considerably lower levels of microbial diversities in the surface seawater community during spring compared with control sites. Moreover, the sand mining areas had distinct microbial taxonomic group compositions, particularly during spring season. The microbial groups detected solely in the sediment load/dredging areas (e.g., Marinobacter, Alcanivorax, Novosphingobium are known to be involved in degradation of toxic chemicals such as hydrocarbon, oil, and aromatic compounds, and they also contain potential pathogens. This study highlights the versatility of metagenomics in monitoring and diagnosing the impacts of human disturbance on the environmental health of marine ecosystems from eDNA.

  20. Assembly-driven community genomics of a hypersaline microbial ecosystem.

    Directory of Open Access Journals (Sweden)

    Sheila Podell

    Full Text Available Microbial populations inhabiting a natural hypersaline lake ecosystem in Lake Tyrrell, Victoria, Australia, have been characterized using deep metagenomic sampling, iterative de novo assembly, and multidimensional phylogenetic binning. Composite genomes representing habitat-specific microbial populations were reconstructed for eleven different archaea and one bacterium, comprising between 0.6 and 14.1% of the planktonic community. Eight of the eleven archaeal genomes were from microbial species without previously cultured representatives. These new genomes provide habitat-specific reference sequences enabling detailed, lineage-specific compartmentalization of predicted functional capabilities and cellular properties associated with both dominant and less abundant community members, including organisms previously known only by their 16S rRNA sequences. Together, these data provide a comprehensive, culture-independent genomic blueprint for ecosystem-wide analysis of protein functions, population structure, and lifestyles of co-existing, co-evolving microbial groups within the same natural habitat. The "assembly-driven" community genomic approach demonstrated in this study advances our ability to push beyond single gene investigations, and promotes genome-scale reconstructions as a tangible goal in the quest to define the metabolic, ecological, and evolutionary dynamics that underpin environmental microbial diversity.

  1. Impact of No-Tillage and Conventional Tillage Systems on Soil Microbial Communities

    Directory of Open Access Journals (Sweden)

    Reji P. Mathew

    2012-01-01

    Full Text Available Soil management practices influence soil physical and chemical characteristics and bring about changes in the soil microbial community structure and function. In this study, the effects of long-term conventional and no-tillage practices on microbial community structure, enzyme activities, and selected physicochemical properties were determined in a continuous corn system on a Decatur silt loam soil. The long-term no-tillage treatment resulted in higher soil carbon and nitrogen contents, viable microbial biomass, and phosphatase activities at the 0–5 cm depth than the conventional tillage treatment. Soil microbial community structure assessed using phospholipid fatty acid (PLFA analysis and automated ribosomal intergenic spacer analysis (ARISA varied by tillage practice and soil depth. The abundance of PLFAs indicative of fungi, bacteria, arbuscular mycorrhizal fungi, and actinobacteria was consistently higher in the no-till surface soil. Results of principal components analysis based on soil physicochemical and enzyme variables were in agreement with those based on PLFA and ARISA profiles. Soil organic carbon was positively correlated with most of the PLFA biomarkers. These results indicate that tillage practice and soil depth were two important factors affecting soil microbial community structure and activity, and conservation tillage practices improve both physicochemical and microbiological properties of soil.

  2. Plant growth and soil microbial community structure of legumes and grasses grown in monoculture or mixture

    Institute of Scientific and Technical Information of China (English)

    CHEN Meimei; CHEN Baodong; MARSCHNER Petra

    2008-01-01

    A greenhouse pot experiment was conducted to investigate the influence of soil moisture eontent on plant growth and the rhizospheremicrobial community structure of four plant species (white clover, alfalfa, sudan grass, tall fescue), grown individually or in a mixture.The soil moisture content was adjusted to 55% or 80% water holding capacity (WHC). The results indicated that the total plant biomassof one pot was lower at 55% WHC. At a given soil moisture, the total plant biomass of white clover and tall fescue in the mixture waslower than that in a monoculture, indicating their poor competitiveness. For leguminous plants, the decrease in soil moisture reducedthe total microbial biomass, bacterial biomass, fungal biomass, and fungal/baeterial ratio in soil as assessed by the phospholipid fattyacid analysis, whereas, lower soil moisture increased those parameters in the tall fescue. The microbial biomass in the soil with legumeswas higher than that in the soil with grasses and the two plant groups differed in soil microbial community composition. At high soilmoisture content, microbial communities of the plant mixture were similar to those of the legume monoculture, and the existenceof legumes in the mixture enhanced the bacterial and fungal biomass in the soil compared to the grasses grown in the monoculture,indicating that legumes played a dominant role in the soil microbial community changes in the plant mixture.

  3. Cellular content of biomolecules in sub-seafloor microbial communities

    DEFF Research Database (Denmark)

    Braun, Stefan; Morono, Yuki; Becker, Kevin W.;

    2016-01-01

    Microbial biomolecules, typically from the cell envelope, can provide crucial information about distribution, activity, and adaptations of sub-seafloor microbial communities. However, when cells die these molecules can be preserved in the sediment on timescales that are likely longer than...... the lifetime of their microbial sources. Here we provide for the first time measurements of the cellular content of biomolecules in sedimentary microbial cells. We separated intact cells from sediment matrices in samples from surficial, deeply buried, organic-rich, and organic-lean marine sediments by density...... and mass spectrometry for biomolecule analyses. Because cell extracts from density centrifugation still contained considerable amounts of detrital particles and non-cellular biomolecules, we further purified cells from two samples by fluorescence-activated cell sorting (FACS). Cells from these highly...

  4. Microbial Community Responses to Glycine Addition in Kansas Prairie Soils

    Science.gov (United States)

    Bottos, E.; Roy Chowdhury, T.; White, R. A., III; Brislawn, C.; Fansler, S.; Kim, Y. M.; Metz, T. O.; McCue, L. A.; Jansson, J.

    2015-12-01

    Advances in sequencing technologies are rapidly expanding our abilities to unravel aspects of microbial community structure and function in complex systems like soil; however, characterizing the highly diverse communities is problematic, due primarily to challenges in data analysis. To tackle this problem, we aimed to constrain the microbial diversity in a soil by enriching for particular functional groups within a community through addition of "trigger substrates". Such trigger substrates, characterized by low molecular weight, readily soluble and diffusible in soil solution, representative of soil organic matter derivatives, would also be rapidly degradable. A relatively small energy investment to maintain the cell in a state of metabolic alertness for such substrates would be a better evolutionary strategy and presumably select for a cohort of microorganisms with the energetics and cellular machinery for utilization and growth. We chose glycine, a free amino acid (AA) known to have short turnover times (in the range of hours) in soil. As such, AAs are a good source of nitrogen and easily degradable, and can serve as building blocks for microbial proteins and other biomass components. We hypothesized that the addition of glycine as a trigger substrate will decrease microbial diversity and evenness, as taxa capable of metabolizing it are enriched in relation to those that are not. We tested this hypothesis by incubating three Kansas native prairie soils with glycine for 24 hours at 21 degree Celsius, and measured community level responses by 16S rRNA gene sequencing, metagenomics, and metatranscriptomics. Preliminary evaluation of 16S rRNA gene sequences revealed minor changes in bacterial community composition in response to glycine addition. We will also present data on functional gene abundance and expression. The results of these analyses will be useful in designing sequencing strategies aimed at dissecting and deciphering complex microbial communities.

  5. Which Members of the Microbial Communities Are Active? Microarrays

    Science.gov (United States)

    Morris, Brandon E. L.

    only at the early stages of understanding the microbial processes that occur in petroliferous formations and the surrounding subterranean environment. Important first steps in characterising the microbiology of oilfield systems involve identifying the microbial community structure and determining how population diversity changes are affected by the overall geochemical and biological parameters of the system. This is relatively easy to do today by using general 16S rRNA primers for PCR and building clone libraries. For example, previous studies using molecular methods characterised many dominant prokaryotes in petroleum reservoirs (Orphan et al., 2000) and in two Alaskan North Slope oil facilities (Duncan et al., 2009; Pham et al., 2009). However, the problem is that more traditional molecular biology approaches, such as 16S clone libraries, fail to detect large portions of the community perhaps missing up to half of the biodiversity (see Hong et al., 2009) and require significant laboratory time to construct large libraries necessary to increase the probability of detecting the majority of even bacterial biodiversity. In the energy sector, the overarching desire would be to quickly assess the extent of in situ hydrocarbon biodegradation or to disrupt detrimental processes such as biofouling, and in these cases it may not be necessary to identify specific microbial species. Rather, it would be more critical to evaluate metabolic processes or monitor gene products that are implicated in the specific activity of interest. Research goals such as these are well suited for a tailored application of microarray technology.

  6. Seasonal Dynamics of Shallow-Hyporheic-Zone Microbial Community Structure along a Heavy-Metal Contamination Gradient

    OpenAIRE

    Feris, Kevin P.; Ramsey, Philip W.; Frazar, Chris; Rillig, Matthias; Moore, Johnnie N.; Gannon, James E.; William E Holben

    2004-01-01

    Heavy metals contaminate numerous freshwater streams and rivers worldwide. Previous work by this group demonstrated a relationship between the structure of hyporheic microbial communities and the fluvial deposition of heavy metals along a contamination gradient during the fall season. Seasonal variation has been documented in microbial communities in numerous terrestrial and aquatic environments, including the hyporheic zone. The current study was designed to assess whether relationships betw...

  7. Culture-independent methods for identifying microbial communities in cheese

    OpenAIRE

    Jany, Jean-Luc; Barbier, Georges

    2008-01-01

    International audience; This review focuses on the culture-independent methods available for the description of both bacterial and fungal communities in cheese. Important steps of the culture-independent strategy, which relies on bulk DNA extraction from cheese and polymerase chain reaction (PCR) amplification of selected sequences, are discussed. We critically evaluate the identification techniques already used for monitoring microbial communities in cheese, including PCR-denaturing gradient...

  8. Microbial activities and communities in oil sands tailings ponds

    Energy Technology Data Exchange (ETDEWEB)

    Gieg, Lisa; Ramos, Esther; Clothier, Lindsay; Bordenave, Sylvain; Lin, Shiping; Voordouw, Gerrit; Dong, Xiaoli; Sensen, Christoph [University of Calgary (Canada)

    2011-07-01

    This paper discusses how the microbial communities and their activity play a vital role in tailings ponds. The ponds contain microorganisms along with metals, hydrocarbon diluent, naphthenic acid and others. The ponds play an important role in mining operations because they store bitumen extraction waste and also allow water to be re-used in the bitumen extraction process. Pond management presents a few challenges that include, among others, gas emissions and the presence of toxic and corrosive acids. Microbial activities and communities help in managing these ponds. Microbial activity measurement in active and inactive ponds is described and analyzed and the results are presented. The conditions for reducing sulfate, nitrate and iron are also presented. From the results it can be concluded that naphthenic acids can potentially serve as substrates for anaerobic populations in tailings ponds.

  9. Investigating the Response of Microbial Communities to Cyclodextrin

    Science.gov (United States)

    Szponar, N.; Slater, G.; Smith, J.

    2009-05-01

    Recent studies have found applications of hydroxypropyl-β-cyclodextrin (HPβCD) to be highly effective in removing DDT from soils in situ. However, the persistence of HPβCD within the soil and its impact on soil microbial communities is still unclear. It has been suggested that cyclodextrin might provide a substrate for microbial communities resulting in changes in the ongoing effectiveness of remediation and/or soil hydraulic properties. The potential exists that stimulation of the soil microbial community may contribute to removal of DDT, along with the solubilization effects normally associated with cyclodextrin treatment. This study investigated the response of soil microbial communities from a site undergoing remediation of DDT with HPβCD through microcosm and bench scale column studies. Phospholipid fatty acid (PLFA) analysis and their natural abundance 13C signatures can be used to identify in situ microbial metabolism of HPβCD. Heterotrophic organisms have PLFA with 13C signatures 3 to 6‰ depleted from their carbon source. Cyclodextrin was found to have a δ13C of -16‰ resulting from its formation via enzymatic degradation of cornstarch. In contrast, soil organic matter, had a predominantly C3 plant derived signature and a δ13C of -25‰. Incorporation of HPβCD by soil microbial communities would therefore cause a shift to a more enriched isotopic value. While microcosm studies demonstrated no noticeable change in biomass and few changes in PLFA distribution, column studies treated with a 10% solution of HPβCD demonstrated an approximate doubling of microbial biomass after 6 weeks of application based on PLFA concentrations. Concurrent changes in PLFA distribution further indicated a response to cyclodextrin. Changes in PLFA concentration and distribution were concurrent with isotopic enrichment of PLFA in treated columns. This isotopic enrichment provided direct evidence for microbial consumption of cyclodextrin. Incorporation of 13C enriched

  10. Metaproteogenomics reveals the soil microbial communities active in nutrient cycling processes under different tree species

    Science.gov (United States)

    Keiblinger, Katharina Maria; Masse, Jacynthe; Zühlke, Daniela; Riedel, Katharina; Zechmeister-Boltenstern, Sophie; Prescott, Cindy E.; Grayston, Sue

    2016-04-01

    Tree species exert strong effects on microbial communities in litter and soil and may alter rates of soil processes fundamental to nutrient cycling and carbon fluxes (Prescott and Grayston 2013). However, the influence of tree species on decomposition processes are still contradictory and poorly understood. An understanding of the mechanisms underlying plant influences on soil processes is important for our ability to predict ecosystem response to altered global/environmental conditions. In order to link microbial community structure and function to forest-floor nutrient cycling processes, we sampled forest floors under western redcedar (Thuja plicata), Douglas-fir (Pseudotsuga menziesii) and Sitka spruce (Picea sitchensis) grown in nutrient-poor sites in common garden experiments on Vancouver island (Canada). We measured forest-floor total N, total C, initial NH4+ and NO3- concentrations, DOC, Cmic and Nmic. Gross rates of ammonification and NH4+ consumption were measured using the 15N pool-dilution method. Organic carbon quality was assessed through FTIR analyses. Microbial community structure was analysed by a metaproteogenomic approach using 16S and ITS amplification and sequencing with MiSeq platform. Proteins were extracted and peptides characterized via LC-MS/MS on a Velos Orbitrap to assess the active microbial community. Different microbial communities were active under the three tree species and variation in process rates were observed and will be discussed. This research provides new insights on microbial processes during organic matter decomposition. The metaproteogenomic approach enables us to investigate these changes with respect to possible effects on soil C-storage at even finer taxonomic resolution.

  11. Oceanographic structure drives the assembly processes of microbial eukaryotic communities.

    Science.gov (United States)

    Monier, Adam; Comte, Jérôme; Babin, Marcel; Forest, Alexandre; Matsuoka, Atsushi; Lovejoy, Connie

    2015-03-17

    Arctic Ocean microbial eukaryote phytoplankton form subsurface chlorophyll maximum (SCM), where much of the annual summer production occurs. This SCM is particularly persistent in the Western Arctic Ocean, which is strongly salinity stratified. The recent loss of multiyear sea ice and increased particulate-rich river discharge in the Arctic Ocean results in a greater volume of fresher water that may displace nutrient-rich saltier waters to deeper depths and decrease light penetration in areas affected by river discharge. Here, we surveyed microbial eukaryotic assemblages in the surface waters, and within and below the SCM. In most samples, we detected the pronounced SCM that usually occurs at the interface of the upper mixed layer and Pacific Summer Water (PSW). Poorly developed SCM was seen under two conditions, one above PSW and associated with a downwelling eddy, and the second in a region influenced by the Mackenzie River plume. Four phylogenetically distinct communities were identified: surface, pronounced SCM, weak SCM and a deeper community just below the SCM. Distance-decay relationships and phylogenetic structure suggested distinct ecological processes operating within these communities. In the pronounced SCM, picophytoplanktons were prevalent and community assembly was attributed to water mass history. In contrast, environmental filtering impacted the composition of the weak SCM communities, where heterotrophic Picozoa were more numerous. These results imply that displacement of Pacific waters to greater depth and increased terrigenous input may act as a control on SCM development and result in lower net summer primary production with a more heterotroph dominated eukaryotic microbial community.

  12. Microbial community structure in the rhizosphere of rice plants

    Directory of Open Access Journals (Sweden)

    Björn eBreidenbach

    2016-01-01

    Full Text Available The microbial community in the rhizosphere environment is critical for the health of land plants and the processing of soil organic matter. The objective of this study was to determine the extent to which rice plants shape the microbial community in rice field soil over the course of a growing season. Rice (Oryza sativa was cultivated under greenhouse conditions in rice field soil from Vercelli, Italy and the microbial community in the rhizosphere of planted soil microcosms was characterized at four plant growth stages using quantitative PCR and 16S rRNA gene pyrotag analysis and compared to that of unplanted bulk soil. The abundances of 16S rRNA genes in the rice rhizosphere were on average twice that of unplanted bulk soil, indicating a stimulation of microbial growth in the rhizosphere. Soil environment type (i.e. rhizosphere versus bulk soil had a greater effect on the community structure than did time (e.g. plant growth stage. Numerous phyla were affected by the presence of rice plants, but the strongest effects were observed for Gemmatimonadetes, Proteobacteria and Verrucomicrobia. With respect to functional groups of microorganisms, potential iron reducers (e.g. Geobacter, Anaeromyxobacter and fermenters (e.g. Clostridiaceae, Opitutaceae were notably enriched in the rhizosphere environment. A Herbaspirillum species was always more abundant in the rhizosphere than bulk soil and was enriched in the rhizosphere during the early stage of plant growth.

  13. Bacterial Invasion Dynamics in Zebrafish Gut Microbial Communities

    Science.gov (United States)

    Logan, Savannah; Jemielita, Matthew; Wiles, Travis; Schlomann, Brandon; Hammer, Brian; Guillemin, Karen; Parthasarathy, Raghuveer

    Microbial communities residing in the vertebrate intestine play an important role in host development and health. These communities must be in part shaped by interactions between microbial species as they compete for resources in a physically constrained system. To better understand these interactions, we use light sheet microscopy and zebrafish as a model organism to image established gut microbial communities as they are invaded by robustly-colonizing challengers. We demonstrate that features of the challenger, including motility and spatial distribution, impact success in invasion and in outcompeting the original community. We also show that physical characteristics of the host, such as the motility of the gut, play important roles in mediating inter-species competition. Finally, we examine the influence of the contact-dependent type VI secretion system (T6SS), which is used by specific bacteria to cause cell lysis by injecting toxic effector proteins into competitors. Our findings provide insights into the determinants of microbial success in the complex ecosystems found in the gut.

  14. Post fumigation recovery of soil microbial community structure

    Science.gov (United States)

    Soil fumigants have been extensively used to control target soil-borne pathogens and weeds for the past few decades. It is known that the fumigants with broad biocidal activity can affect both target and non-target soil organisms, but the recovery of soil microbial communities are unknown until rece...

  15. Microbial community structure in three deep-sea carbonate crusts

    NARCIS (Netherlands)

    Heijs, S. K.; Aloisi, G.; Bouloubassi, I.; Pancost, R. D.; Pierre, C.; Damste, J. S. Sinninghe; Gottschal, J. C.; van Elsas, J. D.; Forney, L. J.

    2006-01-01

    Carbonate crusts in marine environments can act as sinks for carbon dioxide. Therefore, understanding carbonate crust formation could be important for understanding global warming. In the present study, the microbial communities of three carbonate crust samples from deep-sea mud volcanoes in the eas

  16. Denitrification and the denitrifier community in coastal microbial mats

    NARCIS (Netherlands)

    Fan, H.; Bolhuis, H.; Stal, L.J.

    2015-01-01

    Denitrification was measured in three structurally different coastal microbial mats by using the stable isotope technique. The composition of the denitrifying community was determined by analyzing the nitrite reductase (nirS and nirK) genes using clone libraries and the GeoChip. The highest potentia

  17. Microbial community response during the iron fertilization experiment LOHAFEX

    Digital Repository Service at National Institute of Oceanography (India)

    Thiele, S.; Fuchs, B.M.; Ramaiah, N.; Amanna, R.

    was enhanced within the fertilized area, a succession - like response of the microbial community upon the algal bloom was averted by highly effective grazing. Only small-celled members like the SAR11 and SAR86 clades could possibly escape the grazing pressure...

  18. Microbial community engineering for biopolymer production from glycerol

    NARCIS (Netherlands)

    Moralejo-Gárate, H.; Mar'atusalihat, E.; Kleerebezem, R.; Van Loosdrecht, M.C.M.

    2011-01-01

    In this work, the potential of using microbial community engineering for production of polyhydroxyalkanoates (PHA) from glycerol was explored. Crude glycerol is a by-product of the biofuel (biodiesel and bioethanol) industry and potentially a good substrate for bioplastic production. A PHA-producing

  19. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Shengmu; Xue, Kai; He, Zhili; VanNostrand, Joy D.; Liu, Jianshe; Hobbie, Sarah E.; Reich, Peter B.; Zhou, Jizhong

    2010-05-17

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functional structure impact soil microbial communities, 12 samples were collected from the BioCON plots in which nitrogenous fertilizer was added to simulate the effect of increasing nitrogen deposition and 12 samples from without added fertilizer. DNA from the 24 samples was extracted using a freeze-grind protocol, amplified, labeled with a fluorescent dye, and then hybridized to GeoChip, a functional gene array containing probes for genes involved in N, S and C cycling, metal resistance and organic contaminant degradation. Detrended correspondence analysis (DCA) of all genes detected was performed to analyze microbial community patterns. The first two axes accounted for 23.5percent of the total variation. The samples fell into two major groups: fertilized and non-fertilized, suggesting that nitrogenous fertilizer had a significant impact on soil microbial community structure and diversity. The functional gene numbers detected in fertilized samples was less that detected in non-fertilizer samples. Functional genes involving in the N cycling were mainly discussed.

  20. Impacts of chemical gradients on microbial community structure

    DEFF Research Database (Denmark)

    Chen, Jianwei; Hanke, Anna; Tegetmeyer, Halina E

    2017-01-01

    Succession of redox processes is sometimes assumed to define a basic microbial community structure for ecosystems with oxygen gradients. In this paradigm, aerobic respiration, denitrification, fermentation and sulfate reduction proceed in a thermodynamically determined order, known as the 'redox ...... Journal advance online publication, 17 January 2017; doi:10.1038/ismej.2016.175....

  1. The role of the commensal gut microbial community in broiler chickens

    NARCIS (Netherlands)

    Lan, Y.; Verstegen, M.W.A.; Tamminga, S.; Williams, B.A.; Erdi, G.; Boer, H.

    2005-01-01

    To understand the relationship between the gastrointestinal inhabiting microbial community and broiler health, a literature review is presented. The available information on the development of gut microbial community, the relationship between commensal microflora and digestive function, the role of

  2. Unravelling the active microbial community in a thermophilic anaerobic digester-microbial electrolysis cell coupled system under different conditions.

    Science.gov (United States)

    Cerrillo, Míriam; Viñas, Marc; Bonmatí, August

    2017-03-01

    Thermophilic anaerobic digestion (AD) of pig slurry coupled to a microbial electrolysis cell (MEC) with a recirculation loop was studied at lab-scale as a strategy to increase AD stability when submitted to organic and nitrogen overloads. The system performance was studied, with the recirculation loop both connected and disconnected, in terms of AD methane production, chemical oxygen demand removal (COD) and volatile fatty acid (VFA) concentrations. Furthermore, the microbial population was quantitatively and qualitatively assessed through DNA and RNA-based qPCR and high throughput sequencing (MiSeq), respectively to identify the RNA-based active microbial populations from the total DNA-based microbial community composition both in the AD and MEC reactors under different operational conditions. Suppression of the recirculation loop reduced the AD COD removal efficiency (from 40% to 22%) and the methane production (from 0.32 to 0.03 m(3) m(-3) d(-1)). Restoring the recirculation loop led to a methane production of 0.55 m(3) m(-3) d(-1) concomitant with maximum MEC COD and ammonium removal efficiencies of 29% and 34%, respectively. Regarding microbial analysis, the composition of the AD and MEC anode populations differed from really active microorganisms. Desulfuromonadaceae was revealed as the most active family in the MEC (18%-19% of the RNA relative abundance), while hydrogenotrophic methanogens (Methanobacteriaceae) dominated the AD biomass.

  3. Anode microbial communities produced by changing from microbial fuel cell to microbial electrolysis cell operation using two different wastewaters

    KAUST Repository

    Kiely, Patrick D.

    2011-01-01

    Conditions in microbial fuel cells (MFCs) differ from those in microbial electrolysis cells (MECs) due to the intrusion of oxygen through the cathode and the release of H2 gas into solution. Based on 16S rRNA gene clone libraries, anode communities in reactors fed acetic acid decreased in species richness and diversity, and increased in numbers of Geobacter sulfurreducens, when reactors were shifted from MFCs to MECs. With a complex source of organic matter (potato wastewater), the proportion of Geobacteraceae remained constant when MFCs were converted into MECs, but the percentage of clones belonging to G. sulfurreducens decreased and the percentage of G. metallireducens clones increased. A dairy manure wastewater-fed MFC produced little power, and had more diverse microbial communities, but did not generate current in an MEC. These results show changes in Geobacter species in response to the MEC environment and that higher species diversity is not correlated with current. © 2010 Elsevier Ltd.

  4. How microbial community composition regulates coral disease development.

    Directory of Open Access Journals (Sweden)

    Justin Mao-Jones

    2010-03-01

    Full Text Available Reef coral cover is in rapid decline worldwide, in part due to bleaching (expulsion of photosynthetic symbionts and outbreaks of infectious disease. One important factor associated with bleaching and in disease transmission is a shift in the composition of the microbial community in the mucus layer surrounding the coral: the resident microbial community-which is critical to the healthy functioning of the coral holobiont-is replaced by pathogenic microbes, often species of Vibrio. In this paper we develop computational models for microbial community dynamics in the mucus layer in order to understand how the surface microbial community responds to changes in environmental conditions, and under what circumstances it becomes vulnerable to overgrowth by pathogens. Some of our model's assumptions and parameter values are based on Vibrio spp. as a model system for other established and emerging coral pathogens. We find that the pattern of interactions in the surface microbial community facilitates the existence of alternate stable states, one dominated by antibiotic-producing beneficial microbes and the other pathogen-dominated. A shift to pathogen dominance under transient stressful conditions, such as a brief warming spell, may persist long after environmental conditions have returned to normal. This prediction is consistent with experimental findings that antibiotic properties of Acropora palmata mucus did not return to normal long after temperatures had fallen. Long-term loss of antibiotic activity eliminates a critical component in coral defense against disease, giving pathogens an extended opportunity to infect and spread within the host, elevating the risk of coral bleaching, disease, and mortality.

  5. Microbial community succession on developing lesions on human enamel

    Directory of Open Access Journals (Sweden)

    Lino Torlakovic

    2012-03-01

    Full Text Available Dental caries is one of the most common diseases in the world. However, our understanding of how the microbial community composition changes in vivo as caries develops is lacking.An in vivo model was used in a longitudinal cohort study to investigate shifts in the microbial community composition associated with the development of enamel caries.White spot lesions were generated in vivo on human teeth predetermined to be extracted for orthodontic reasons. The bacterial microbiota on sound enamel and on developing carious lesions were identified using the Human Oral Microbe Identification Microarray (HOMIM, which permits the detection of about 300 of the approximate 600 predominant bacterial species in the oral cavity.After only seven weeks, 75% of targeted teeth developed white spot lesions (8 individuals, 16 teeth. The microbial community composition of the plaque over white spot lesions differed significantly as compared to sound enamel. Twenty-five bacterial taxa, including Streptococcus mutans, Atopobium parvulum, Dialister invisus, and species of Prevotella and Scardovia, were significantly associated with initial enamel lesions. In contrast, 14 bacterial taxa, including species of Fusobacterium, Campylobacter, Kingella, and Capnocytophaga, were significantly associated with sound enamel.The bacterial community composition associated with the progression of enamel lesions is specific and much more complex than previously believed. This investigation represents one of the first longitudinally-derived studies for caries progression and supports microbial data from previous cross-sectional studies on the development of the disease. Thus, the in vivo experiments of generating lesions on teeth destined for extraction in conjunction with HOMIM analyses represent a valid model to study succession of supragingival microbial communities associated with caries development and to study efficacy of prophylactic and restorative treatments.

  6. Microbial community structure of different electrode materials in constructed wetland incorporating microbial fuel cell.

    Science.gov (United States)

    Wang, Junfeng; Song, Xinshan; Wang, Yuhui; Abayneh, Befkadu; Ding, Yi; Yan, Denghua; Bai, Junhong

    2016-12-01

    The microbial fuel cell coupled with constructed wetland (CW-MFC) microcosms were operated under fed-batch mode for evaluating the effect of electrode materials on bioelectricity generation and microbial community composition. Experimental results indicated that the bioenergy output in CW-MFC increased with the substrate concentration; maximum average voltage (177mV) was observed in CW-MFC with carbon fiber felt (CFF). In addition, the four different materials resulted in the formation of significantly different microbial community distribution around the anode electrode. The relative abundance of Proteobacteria in CFF and foamed nickel (FN) was significantly higher than that in stainless steel mesh (SSM) and graphite rod (GR) samples. Notably, the findings indicate that CW-MFC utilizing FN anode electrode could apparently improve relative abundance of Dechloromonas, which has been regarded as a denitrifying and phosphate accumulating microorganism.

  7. Anodic microbial community diversity as a predictor of the power output of microbial fuel cells.

    Science.gov (United States)

    Stratford, James P; Beecroft, Nelli J; Slade, Robert C T; Grüning, André; Avignone-Rossa, Claudio

    2014-03-01

    The relationship between the diversity of mixed-species microbial consortia and their electrogenic potential in the anodes of microbial fuel cells was examined using different diversity measures as predictors. Identical microbial fuel cells were sampled at multiple time-points. Biofilm and suspension communities were analysed by denaturing gradient gel electrophoresis to calculate the number and relative abundance of species. Shannon and Simpson indices and richness were examined for association with power using bivariate and multiple linear regression, with biofilm DNA as an additional variable. In simple bivariate regressions, the correlation of Shannon diversity of the biofilm and power is stronger (r=0.65, p=0.001) than between power and richness (r=0.39, p=0.076), or between power and the Simpson index (r=0.5, p=0.018). Using Shannon diversity and biofilm DNA as predictors of power, a regression model can be constructed (r=0.73, pmicrobial communities.

  8. Microbial degradation and impact of Bracken toxin ptaquiloside on microbial communities in soil

    DEFF Research Database (Denmark)

    Engel, Pernille; Brandt, Kristian Koefoed; Rasmussen, Lars Holm

    2007-01-01

    ), but not in the NZ soil (weak acid loamy Entisol). In the DK soil PTA turnover was predominantly due to microbial degradation (biodegradation); chemical hydrolysis was occurring mainly in the uppermost A horizon where pH was very low (3.4). Microbial activity (basal respiration) and growth ([3H]leucine incorporation...... assay) increased after PTA exposure, indicating that the Bracken toxin served as a C substrate for the organotrophic microorganisms. On the other hand, there was no apparent impact of PTA on community size as measured by substrate-induced respiration or composition as indicated by community......-level physiological profiles. Our results demonstrate that PTA stimulates microbial activity and that microorganisms play a predominant role for rapid PTA degradation in Bracken-impacted soils....

  9. Methods for understanding microbial community structures and functions in microbial fuel cells: a review.

    Science.gov (United States)

    Zhi, Wei; Ge, Zheng; He, Zhen; Zhang, Husen

    2014-11-01

    Microbial fuel cells (MFCs) employ microorganisms to recover electric energy from organic matter. However, fundamental knowledge of electrochemically active bacteria is still required to maximize MFCs power output for practical applications. This review presents microbiological and electrochemical techniques to help researchers choose the appropriate methods for the MFCs study. Pre-genomic and genomic techniques such as 16S rRNA based phylogeny and metagenomics have provided important information in the structure and genetic potential of electrode-colonizing microbial communities. Post-genomic techniques such as metatranscriptomics allow functional characterizations of electrode biofilm communities by quantifying gene expression levels. Isotope-assisted phylogenetic analysis can further link taxonomic information to microbial metabolisms. A combination of electrochemical, phylogenetic, metagenomic, and post-metagenomic techniques offers opportunities to a better understanding of the extracellular electron transfer process, which in turn can lead to process optimization for power output.

  10. Succession of aquatic microbial communities as a result of the water quality variations in continuous water

    Institute of Scientific and Technical Information of China (English)

    WANG Rong-chang; WEN Xiang-hua; QIAN Yi

    2004-01-01

    The changes of structural and functional parameters of aquatic microbial communities in continuous water on campus of Tsinghua University, China are investigated by polyurethane foam unit(PFU) method. The measured compositions of the communities include alga, protozoa, and some metazoa(such as rotifers). The measured indicators of water quality include water temperature, pH value, dissolved oxygen(DO), potassium permanganate index(CODMn), total nitrogen(TN), total phosphorus(TP) and chlorophyll-a(Chla). The trophic level, expressed by the trophic level indices(TLIc), is assessed with analytic hierarchy process and principal component analysis(AHP-PCA) method. The changing trends of the structural and functional parameters of aquatic microbial communities, such as Margalef index of diversity(D), Shannon-weaver index of diversity (H), Heterotropy index(HI), number of species when the colonization gets equilibrium(Seq), colonizing speed constant(G) and time spent when 90 percent of Seq colonized in PFU(T90%), are also analyzed. The experimental results showed the succession of aquatic microbial communities along the water flow is consistent with the water quality changes, so the parameters of microbial community can reflect the changes of water quality from the ecological view.

  11. Assessing coral reefs on a Pacific-wide scale using the microbialization score.

    Directory of Open Access Journals (Sweden)

    Tracey McDole

    Full Text Available The majority of the world's coral reefs are in various stages of decline. While a suite of disturbances (overfishing, eutrophication, and global climate change have been identified, the mechanism(s of reef system decline remain elusive. Increased microbial and viral loading with higher percentages of opportunistic and specific microbial pathogens have been identified as potentially unifying features of coral reefs in decline. Due to their relative size and high per cell activity, a small change in microbial biomass may signal a large reallocation of available energy in an ecosystem; that is the microbialization of the coral reef. Our hypothesis was that human activities alter the energy budget of the reef system, specifically by altering the allocation of metabolic energy between microbes and macrobes. To determine if this is occurring on a regional scale, we calculated the basal metabolic rates for the fish and microbial communities at 99 sites on twenty-nine coral islands throughout the Pacific Ocean using previously established scaling relationships. From these metabolic rate predictions, we derived a new metric for assessing and comparing reef health called the microbialization score. The microbialization score represents the percentage of the combined fish and microbial predicted metabolic rate that is microbial. Our results demonstrate a strong positive correlation between reef microbialization scores and human impact. In contrast, microbialization scores did not significantly correlate with ocean net primary production, local chla concentrations, or the combined metabolic rate of the fish and microbial communities. These findings support the hypothesis that human activities are shifting energy to the microbes, at the expense of the macrobes. Regardless of oceanographic context, the microbialization score is a powerful metric for assessing the level of human impact a reef system is experiencing.

  12. Utilization of Alternate Chirality Enantiomers in Microbial Communities

    Science.gov (United States)

    Pikuta, Elena V.; Hoover, Richard B.

    2010-01-01

    Our previous study of chirality led to interesting findings for some anaerobic extremophiles: the ability to metabolize substrates with alternate chirality enantiomers of amino acids and sugars. We have subsequently found that not just separate microbial species or strains but entire microbial communities have this ability. The functional division within a microbial community on proteo- and sugarlytic links was also reflected in a microbial diet with L-sugars and D-amino acids. Several questions are addressed in this paper. Why and when was this feature developed in a microbial world? Was it a secondary de novo adaptation in a bacterial world? Or is this a piece of genetic information that has been left in modern genomes as an atavism? Is it limited exclusively to prokaryotes, or does this ability also occur in eukaryotes? In this article, we have used a broader approach to study this phenomenon using anaerobic extremophilic strains from our laboratory collection. A series of experiments were performed on physiologically different groups of extremophilic anaerobes (pure and enrichment cultures). The following characteristics were studied: 1) the ability to grow on alternate chirality enantiomers -- L-sugars and D- amino acids; 2) Growth-inhibitory effect of alternate chirality enantiomers; 3) Stickland reaction with alternate chirality amino acids. The results of this research are presented in this paper.

  13. Microbial communities on Australian modified atmosphere packaged Atlantic salmon.

    Science.gov (United States)

    Powell, S M; Tamplin, M L

    2012-05-01

    The role of specific spoilage organisms (SSO) in products such as Atlantic salmon has been well documented. However, little is known about what other micro-organisms are present and these organisms may indirectly influence spoilage by their interactions with the SS0. We used a combination of culture-based and DNA-based methods to explore the microbial communities found on Atlantic salmon fillets packed in a modified atmosphere of carbon dioxide and nitrogen. After 15 days the communities were dominated by Shewanella spp. or Carnobacterium spp. and a variety of other genera were present in smaller numbers. Variability in the microbial community composition in packages processed on the same day was also observed. This was mostly due to differences in the presence of minor members of the community including species from genera such as Iodobacter, Serratia, Morganella and Yersinia. The combination of culture-based and culture-independent methods provided greater insight into the development of microbial communities on Atlantic salmon than would have been possible using only one method. This work highlights the potential importance of lactic acid bacteria (LAB) in fresh Atlantic salmon stored under modified atmosphere conditions.

  14. Permissiveness of soil microbial communities towards broad host range plasmids

    DEFF Research Database (Denmark)

    Klümper, Uli

    larger than previously assumed. I was able to show abundant plasmid transfer from the Gram negative donor strains to a wide diversity of Gram positive soil bacteria, formerly thought to constitute distinct clusters of gene transfer. Moreover, among the observed transconjugants, I identified a core super...... environmental factors that modulate plasmid transfer in soil microbial communities. In order to attain these goals, I developed a high-throughput method that enabled me to evaluate the permissiveness of bacterial communities towards introduced plasmids. This new approach is based on the introduction...... fraction of soil the bacteria (up to 1 in 10,000) were able to take up any of these broad host range conjugal plasmids. The transconjugal pools comprised 11 bacterial phyla. This finding indicates that the realized transfer range of broad host range plasmids in environmental microbial communities is much...

  15. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Emily B.; Crump, Alex R.; Resch, Charles T.; Fansler, Sarah; Arntzen, Evan; Kennedy, David W.; Fredrickson, Jim K.; Stegen, James C.

    2016-12-16

    Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptual model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.

  16. Dynamic changes in microbial community structure and function in phenol-degrading microcosms inoculated with cells from a contaminated aquifer.

    Science.gov (United States)

    Elliott, David R; Scholes, Julie D; Thornton, Steven F; Rizoulis, Athanasios; Banwart, Steven A; Rolfe, Stephen A

    2010-02-01

    Contamination of aquifers by organic pollutants threatens groundwater supplies and the environment. In situ biodegradation of organic pollutants by microbial communities is important for the remediation of contaminated sites, but our understanding of the relationship between microbial development and pollutant biodegradation is poor. A particular challenge is understanding the in situ status of microorganisms attached to solid surfaces, but not accessible via conventional sampling of groundwater. We have developed novel flow-through microcosms and examined dynamic changes in microbial community structure and function in a phenol-degrading system. Inoculation of these microcosms with a complex microbial community from a plume in a phenol-contaminated aquifer led to the initial establishment of a population dominated by a few species, most attached to the solid substratum. Initially, phenol biodegradation was incomplete, but as the microbial community structure became more complex, phenol biodegradation was more extensive and complete. These results were replicated between independent microcosms, indicating a deterministic succession of species. This work demonstrates the importance of examining community dynamics when assessing the potential for microbial biodegradation of organic pollutants. It provides a novel system in which such measurements can be made readily and reproducibly to study the temporal development and spatial succession of microbial communities during biodegradation of organic pollutants at interfaces within such environments.

  17. Patterns in the composition of microbial communities from a subtropical river: effects of environmental, spatial and temporal factors.

    Directory of Open Access Journals (Sweden)

    Lemian Liu

    Full Text Available Microbes are key components of aquatic ecosystems and play crucial roles in global biogeochemical cycles. However, the spatiotemporal dynamics of planktonic microbial community composition in riverine ecosystems are still poorly understood. In this study, we used denaturing gradient gel electrophoresis of PCR-amplified 16S and 18S rRNA gene fragments and multivariate statistical methods to explore the spatiotemporal patterns and driving factors of planktonic bacterial and microbial eukaryotic communities in the subtropical Jiulong River, southeast China. Both bacterial and microbial eukaryotic communities varied significantly in time and were spatially structured according to upper stream, middle-lower stream and estuary. Among all the environmental factors measured, water temperature, conductivity, PO4-P and TN/TP were best related to the spatiotemporal distribution of bacterial community, while water temperature, conductivity, NOx-N and transparency were closest related to the variation of eukaryotic community. Variation partitioning, based on partial RDA, revealed that environmental factors played the most important roles in structuring the microbial assemblages by explaining 11.3% of bacterial variation and 17.5% of eukaryotic variation. However, pure spatial factors (6.5% for bacteria and 9.6% for eukaryotes and temporal factors (3.3% for bacteria and 5.5% for eukaryotes also explained some variation in microbial distribution, thus inherent spatial and temporal variation of microbial assemblages should be considered when assessing the impact of environmental factors on microbial communities.

  18. Intraspecific Variation in Microbial Symbiont Communities of the Sun Sponge, Hymeniacidon heliophila, from Intertidal and Subtidal Habitats.

    Science.gov (United States)

    Weigel, Brooke L; Erwin, Patrick M

    2015-11-13

    Sponges host diverse and complex communities of microbial symbionts that display a high degree of host specificity. The microbiomes of conspecific sponges are relatively constant, even across distant locations, yet few studies have directly examined the influence of abiotic factors on intraspecific variation in sponge microbial community structure. The contrast between intertidal and subtidal environments is an ideal system to assess the effect of environmental variation on sponge-microbe symbioses, producing two drastically different environments on a small spatial scale. Here, we characterized the microbial communities of individual intertidal and subtidal Hymeniacidon heliophila sponges, ambient seawater, and sediment from a North Carolina oyster reef habitat by partial (Illumina sequencing) and nearly full-length (clone libraries) 16S rRNA gene sequence analyses. Clone library sequences were compared to H. heliophila symbiont communities from the Gulf of Mexico and Brazil, revealing strong host specificity of dominant symbiont taxa across expansive geographic distances. Sediment and seawater samples yielded clearly distinct microbial communities from those found in H. heliophila. Despite the close proximity of the sponges sampled, significant differences between subtidal and intertidal sponges in the diversity, structure, and composition of their microbial communities were detected. Differences were driven by changes in the relative abundance of a few dominant microbial symbiont taxa, as well as the presence or absence of numerous rare microbial taxa. These findings suggest that extreme abiotic fluctuations, such as periodic air exposure in intertidal habitats, can drive intraspecific differences in complex host-microbe symbioses.

  19. Unique pioneer microbial communities exposed to volcanic sulfur dioxide

    Science.gov (United States)

    Fujimura, Reiko; Kim, Seok-Won; Sato, Yoshinori; Oshima, Kenshiro; Hattori, Masahira; Kamijo, Takashi; Ohta, Hiroyuki

    2016-01-01

    Newly exposed volcanic substrates contain negligible amounts of organic materials. Heterotrophic organisms in newly formed ecosystems require bioavailable carbon and nitrogen that are provided from CO2 and N2 fixation by pioneer microbes. However, the knowledge of initial ecosystem developmental mechanisms, especially the association between microbial succession and environmental change, is still limited. This study reports the unique process of microbial succession in fresh basaltic ash, which was affected by long-term exposure to volcanic sulfur dioxide (SO2). Here we compared the microbial ecosystems among deposits affected by SO2 exposure at different levels. The results of metagenomic analysis suggested the importance of autotrophic iron-oxidizing bacteria, particularly those involved in CO2 and N2 fixation, in the heavily SO2 affected site. Changes in the chemical properties of the deposits after the decline of the SO2 impact led to an apparent decrease in the iron-oxidizer abundance and a possible shift in the microbial community structure. Furthermore, the community structure of the deposits that had experienced lower SO2 gas levels showed higher similarity with that of the control forest soil. Our results implied that the effect of SO2 exposure exerted a selective pressure on the pioneer community structure by changing the surrounding environment of the microbes.

  20. Relating Microbial Community Structure to a Dominant Environmental Variable in a Complex Environment; An Example from a Chromium Contaminated Site

    Energy Technology Data Exchange (ETDEWEB)

    Palumbo, Anthony Vito [ORNL; Schryver, Jack C [ORNL; Pfiffner, Susan M. [University of Tennessee, Knoxville (UTK); Marsh, Terence [Michigan State University, East Lansing; Brandt, Craig C [ORNL

    2008-01-01

    In a complex environment, it can be difficult to assess the degree to which a continuous variable influences microbial community structure. We propose a method that involves using the community data to "predict" the value of the presumed dominant variable. The assumption is that in order to "predict" the variable the community composition must be sensitive to or affected by the variable in question. The concentration range over which the prediction is accurate should thus provide information on the concentrations that influence community structure. We explored this approach using T-RLFP data on at a site polluted by tannery wastes. We were able to use the microbial community structure measures to predict Cr concentration over a surprisingly wide range of concentration. Although, it appears from this work that this approach can give useful information about the relationships between microbial community structure and specific environmental conditions much further testing is required.

  1. Methane dynamics regulated by microbial community response to permafrost thaw.

    Science.gov (United States)

    McCalley, Carmody K; Woodcroft, Ben J; Hodgkins, Suzanne B; Wehr, Richard A; Kim, Eun-Hae; Mondav, Rhiannon; Crill, Patrick M; Chanton, Jeffrey P; Rich, Virginia I; Tyson, Gene W; Saleska, Scott R

    2014-10-23

    Permafrost contains about 50% of the global soil carbon. It is thought that the thawing of permafrost can lead to a loss of soil carbon in the form of methane and carbon dioxide emissions. The magnitude of the resulting positive climate feedback of such greenhouse gas emissions is still unknown and may to a large extent depend on the poorly understood role of microbial community composition in regulating the metabolic processes that drive such ecosystem-scale greenhouse gas fluxes. Here we show that changes in vegetation and increasing methane emissions with permafrost thaw are associated with a switch from hydrogenotrophic to partly acetoclastic methanogenesis, resulting in a large shift in the δ(13)C signature (10-15‰) of emitted methane. We used a natural landscape gradient of permafrost thaw in northern Sweden as a model to investigate the role of microbial communities in regulating methane cycling, and to test whether a knowledge of community dynamics could improve predictions of carbon emissions under loss of permafrost. Abundance of the methanogen Candidatus 'Methanoflorens stordalenmirensis' is a key predictor of the shifts in methane isotopes, which in turn predicts the proportions of carbon emitted as methane and as carbon dioxide, an important factor for simulating the climate feedback associated with permafrost thaw in global models. By showing that the abundance of key microbial lineages can be used to predict atmospherically relevant patterns in methane isotopes and the proportion of carbon metabolized to methane during permafrost thaw, we establish a basis for scaling changing microbial communities to ecosystem isotope dynamics. Our findings indicate that microbial ecology may be important in ecosystem-scale responses to global change.

  2. The impact of genetically modified crops on soil microbial communities.

    Science.gov (United States)

    Giovannetti, Manuela; Sbrana, Cristiana; Turrini, Alessandra

    2005-01-01

    Genetically modified (GM) plants represent a potential benefit for environmentally friendly agriculture and human health. Though, poor knowledge is available on potential hazards posed by unintended modifications occurring during genetic manipulation. The increasing amount of reports on ecological risks and benefits of GM plants stresses the need for experimental works aimed at evaluating the impact of GM crops on natural and agro-ecosystems. Major environmental risks associated with GM crops include their potential impact on non-target soil microorganisms playing a fundamental role in crop residues degradation and in biogeochemical cycles. Recent works assessed the effects of GM crops on soil microbial communities on the basis of case-by-case studies, using multimodal experimental approaches involving different target and non-target organisms. Experimental evidences discussed in this review confirm that a precautionary approach should be adopted, by taking into account the risks associated with the unpredictability of transformation events, of their pleiotropic effects and of the fate of transgenes in natural and agro-ecosystems, weighing benefits against costs.

  3. Disordered microbial communities in asthmatic airways.

    Directory of Open Access Journals (Sweden)

    Markus Hilty

    Full Text Available BACKGROUND: A rich microbial environment in infancy protects against asthma [1], [2] and infections precipitate asthma exacerbations [3]. We compared the airway microbiota at three levels in adult patients with asthma, the related condition of COPD, and controls. We also studied bronchial lavage from asthmatic children and controls. PRINCIPAL FINDINGS: We identified 5,054 16S rRNA bacterial sequences from 43 subjects, detecting >70% of species present. The bronchial tree was not sterile, and contained a mean of 2,000 bacterial genomes per cm(2 surface sampled. Pathogenic Proteobacteria, particularly Haemophilus spp., were much more frequent in bronchi of adult asthmatics or patients with COPD than controls. We found similar highly significant increases in Proteobacteria in asthmatic children. Conversely, Bacteroidetes, particularly Prevotella spp., were more frequent in controls than adult or child asthmatics or COPD patients. SIGNIFICANCE: The results show the bronchial tree to contain a characteristic microbiota, and suggest that this microbiota is disturbed in asthmatic airways.

  4. Microbial community structure elucidates performance of Glyceria maxima plant microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Timmers, Ruud A.; Strik, David P.B.T.B.; Hamelers, Bert; Buisman, Cees [Wageningen Univ. (Netherlands). Sub-dept. of Environmental Technology; Rothballer, Michael; Hartmann, Anton [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg (Germany). Dept. Microbe-Plant Interactions; Engel, Marion; Schulz, Stephan; Schloter, Michael [Helmholtz Zentrum Muenchen, German Research Center for Environmental Health, Neuherberg (Germany). Dept. Terrestrial Ecogenetics

    2012-04-15

    The plant microbial fuel cell (PMFC) is a technology in which living plant roots provide electron donor, via rhizodeposition, to a mixed microbial community to generate electricity in a microbial fuel cell. Analysis and localisation of the microbial community is necessary for gaining insight into the competition for electron donor in a PMFC. This paper characterises the anode-rhizosphere bacterial community of a Glyceria maxima (reed mannagrass) PMFC. Electrochemically active bacteria (EAB) were located on the root surfaces, but they were more abundant colonising the graphite granular electrode. Anaerobic cellulolytic bacteria dominated the area where most of the EAB were found, indicating that the current was probably generated via the hydrolysis of cellulose. Due to the presence of oxygen and nitrate, short-chain fatty acid-utilising denitrifiers were the major competitors for the electron donor. Acetate-utilising methanogens played a minor role in the competition for electron donor, probably due to the availability of graphite granules as electron acceptors. (orig.)

  5. Eukaryotic and prokaryotic microbial communities during microalgal biomass production.

    Science.gov (United States)

    Lakaniemi, Aino-Maija; Hulatt, Chris J; Wakeman, Kathryn D; Thomas, David N; Puhakka, Jaakko A

    2012-11-01

    Eukaryotic and bacterial communities were characterized and quantified in microalgal photobioreactor cultures of freshwater Chlorella vulgaris and marine Dunaliella tertiolecta. The microalgae exhibited good growth, whilst both cultures contained diverse bacterial communities. Both cultures included Proteobacteria and Bacteroidetes, while C. vulgaris cultures also contained Actinobacteria. The bacterial genera present in the cultures were different due to different growth medium salinities and possibly different extracellular products. Bacterial community profiles were relatively stable in D. tertiolecta cultures but not in C. vulgaris cultures likely due to presence of ciliates (Colpoda sp.) in the latter. The presence of ciliates did not, however, cause decrease in total number of C. vulgaris or bacteria during 14 days of cultivation. Quantitative PCR (qPCR) reliably showed relative microalgal and bacterial cell numbers in the batch cultures with stable microbial communities, but was not effective when bacterial communities varied. Raw culture samples were successfully used as qPCR templates.

  6. Bacterial community profiles in low microbial abundance sponges

    KAUST Repository

    Giles, Emily

    2012-09-04

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either \\'low microbial abundance\\' (LMA) or \\'high microbial abundance\\' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community. © 2012 Federation of European Microbiological Societies.

  7. Microbial community structure of Arctic seawater as revealed by pyrosequencing

    Institute of Scientific and Technical Information of China (English)

    LI Yang; WANG Zhen; LIN Xuezheng

    2016-01-01

    This study aimed to determine the microbial community structure of seawater in (ICE-1) and out (FUBIAO) of the pack ice zone in the Arctic region. Approximate 10 L seawater was filtrated by 0.2 μm Whatman nuclepore filters and the environmental genomic DNA was extracted. We conducted a detailed census of microbial communities by pyrosequencing. Analysis of the microbial community structures indicated that these two samples had high bacterial, archaeal and eukaryotic diversity. Proteobacteria and Bacteroidetes were the two dominant members of the bacterioplankton community in both samples, and their relative abundance were 51.29% and 35.39%, 72.95%and 23.21%, respectively. Euryarchaeota was the most abundant archaeal phylum, and the relative abundance was nearly up to 100% in FUBIAO and 60% in ICE-1. As for the eukaryotes, no_rank_Eukaryota, Arthropoda and no_rank_Metazoa were the most abundant groups in Sample FUBIAO, accounting for 85.29% of the total reads. The relative abundance of the most abundant phylum in Sample ICE-1, no_rank_Eukaryota and no_rank_Metazoa, was up to 90.69% of the total reads. Alphaproteobacteria, Flavobacteria and Gammaproteobacteria were the top three abundant classes in the two samples at the bacterial class level. There were also differences in the top ten abundant bacterial, archaeal and eukaryotic OTUs at the level of 97% similarity between the two samples.

  8. Bacterial community profiles in low microbial abundance sponges.

    Science.gov (United States)

    Giles, Emily C; Kamke, Janine; Moitinho-Silva, Lucas; Taylor, Michael W; Hentschel, Ute; Ravasi, Timothy; Schmitt, Susanne

    2013-01-01

    It has long been recognized that sponges differ in the abundance of associated microorganisms, and they are therefore termed either 'low microbial abundance' (LMA) or 'high microbial abundance' (HMA) sponges. Many previous studies concentrated on the dense microbial communities in HMA sponges, whereas little is known about microorganisms in LMA sponges. Here, two LMA sponges from the Red Sea, two from the Caribbean and one from the South Pacific were investigated. With up to only five bacterial phyla per sponge, all LMA sponges showed lower phylum-level diversity than typical HMA sponges. Interestingly, each LMA sponge was dominated by a large clade within either Cyanobacteria or different classes of Proteobacteria. The overall similarity of bacterial communities among LMA sponges determined by operational taxonomic unit and UniFrac analysis was low. Also the number of sponge-specific clusters, which indicate bacteria specifically associated with sponges and which are numerous in HMA sponges, was low. A biogeographical or host-dependent distribution pattern was not observed. In conclusion, bacterial community profiles of LMA sponges are clearly different from profiles of HMA sponges and, remarkably, each LMA sponge seems to harbour its own unique bacterial community.

  9. Ecotoxicological Impact of the Bioherbicide Leptospermone on the Microbial Community of Two Arable Soils

    Science.gov (United States)

    Romdhane, Sana; Devers-Lamrani, Marion; Barthelmebs, Lise; Calvayrac, Christophe; Bertrand, Cédric; Cooper, Jean-François; Dayan, Franck E.; Martin-Laurent, Fabrice

    2016-01-01

    The ecotoxicological impact of leptospermone, a β-triketone bioherbicide, on the bacterial community of two arable soils was investigated. Soil microcosms were exposed to 0 × (control), 1 × or 10 × recommended dose of leptospermone. The β-triketone was moderately adsorbed to both soils (i.e.,: Kfa ~ 1.2 and Koc ~ 140 mL g−1). Its dissipation was lower in sterilized than in unsterilized soils suggesting that it was mainly influenced by biotic factors. Within 45 days, leptospermone disappeared almost entirely from one of the two soils (i.e., DT50 < 10 days), while 25% remained in the other. The composition of the microbial community assessed by qPCR targeting 11 microbial groups was found to be significantly modified in soil microcosms exposed to leptospermone. Pyrosequencing of 16S rRNA gene amplicons showed a shift in the bacterial community structure and a significant impact of leptospermone on the diversity of the soil bacterial community. Changes in the composition, and in the α- and β-diversity of microbial community were transient in the soil able to fully dissipate the leptospermone, but were persistent in the soil where β-triketone remained. To conclude the bacterial community of the two soils was sensitive to leptospermone and its resilience was observed only when leptospermone was fully dissipated. PMID:27252691

  10. Unanticipated Geochemical and Microbial Community Structure under Seasonal Ice Cover in a Dilute, Dimictic Arctic Lake.

    Science.gov (United States)

    Schütte, Ursel M E; Cadieux, Sarah B; Hemmerich, Chris; Pratt, Lisa M; White, Jeffrey R

    2016-01-01

    Despite most lakes in the Arctic being perennially or seasonally frozen for at least 40% of the year, little is known about microbial communities and nutrient cycling under ice cover. We assessed the vertical microbial community distribution and geochemical composition in early spring under ice in a seasonally ice-covered lake in southwest Greenland using amplicon-based sequencing that targeted 16S rRNA genes and using a combination of field and laboratory aqueous geochemical methods. Microbial communities changed consistently with changes in geochemistry. Composition of the abundant members responded strongly to redox conditions, shifting downward from a predominantly heterotrophic aerobic community in the suboxic waters to a heterotrophic anaerobic community in the anoxic waters. Operational taxonomic units (OTUs) of Sporichthyaceae, Comamonadaceae, and the SAR11 Clade had higher relative abundances above the oxycline and OTUs within the genus Methylobacter, the phylum Lentisphaerae, and purple sulfur bacteria (PSB) below the oxycline. Notably, a 13-fold increase in sulfide at the oxycline was reflected in an increase and change in community composition of potential sulfur oxidizers. Purple non-sulfur bacteria were present above the oxycline and green sulfur bacteria and PSB coexisted below the oxycline, however, PSB were most abundant. For the first time we show the importance of PSB as potential sulfur oxidizers in an Arctic dimictic lake.

  11. Effect of environmental conditions on the fatty acid fingerprint of microbial communities

    Science.gov (United States)

    Biryukov, Mikhail; Dippold, Michaela; Kuzyakov, Yakov

    2014-05-01

    Lipid biomarkers, especially phospholipids, are routinely used to characterize microbial community structure in environmental samples. Interpretations of these fingerprints mainly depend on rare results of pure cultures which were cultivated under standardized batch conditions. However, membrane lipids (e.g. phopholipid biomarker) build up the interface between microorganisms and their environment and consequently are prone to be adapted according to the environmental conditions. We cultivated several bacteria, isolated from soil (gram-positive and gram-negative) under various conditions e.g. C supply and temperature regimes. Effect of growth conditions on phospholipids fatty acid (PLFA) as well as neutral lipid fatty acids (NLFA) and glycolipid fatty acids (GLFA) was investigated by conventional method of extraction and derivatization, followed by assessments with gas chromatography mass spectrometry (GC-MS). In addition, phospholipids were measured as intact molecules by ultra high performance liquid chromatography - quadrupole - time of flight mass spectrometer (UHPLC-Q-ToF) to further assess the composition of headgroups with fatty acids residues and their response on changing environmental conditions. PLFA fingerprints revealed a strong effect of growth stage, C supply and temperature e.g. decrease of temperature increased the amount of branched and/or unsaturated fatty acids to maintain the membrane fluidity. This strongly changes the ratio of specific to unspecific fatty acids depending on environmental conditions. Therefore, amounts of specific fatty acids cannot be used to assess biomass of a functional microbial group in soil. Intracellular neutral lipids depended less on environmental conditions reflecting a more stable biomarker group but also showed less specific fatty acids then PLFA. Therefore, combination of several lipid classes is suggested as more powerful tool to assess amounts and functionality of environmental microbial communities. Further

  12. Changes in enzymes activity, substrate utilization pattern and diversity of soil microbial communities under cadmium pollution

    Institute of Scientific and Technical Information of China (English)

    Muhammad Akmal; WANG Hai-zhen; WU Jian-jun; XU Jian-ming; XU De-fu

    2005-01-01

    Heavy metal pollution has received increasing attention in recent years mainly because of the public awareness of environmental issues. In this study we have evaluated the effect of cadmium(Cd) on enzymes activity, substrate utilization pattern and diversity of microbial communities in soil spiked with 0, 20, 40, 60, 80, and 100 mg/kg Cd, during 60 d of incubation at 25℃. Enzyme activities determined at 0, 15, 30, 45, and 60 d after heavy metal application(DAA) showed marked declines for various Cd treatments, and up to 60 DAA, 100 mg/kg Cd resulted in 50.1%, 47.4%, and 39.8 % decreases in soil urease, acid phosphatase and dehydrogenase activities,respectively to control. At 60 DAA, substrate utilization pattern of soil microbial communities determined by inoculating Biolog ECO plates indicated that Cd addition had markedly inhibited the functional activity of soil microbial communities and multivariate analysis of sole carbon source utilization showed significantly different utilization patterns for 80 and 100 mg/kg Cd treatments. The structural diversity of soil microbial communities assessed by PCR-DGGE method at 60 DAA, illustrated that DGGE patterns in soil simplified with increasing Cd concentration, and clustering of DGGE profiles for various Cd treatments revealed that they had more than 50% difference with that of control.

  13. Application of Nonlinear Analysis Methods for Identifying Relationships Between Microbial Community Structure and Groundwater Geochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Schryver, Jack C.; Brandt, Craig C.; Pfiffner, Susan M.; Palumbo, A V.; Peacock, Aaron D.; White, David C.; McKinley, James P.; Long, Philip E.

    2006-02-01

    The relationship between groundwater geochemistry and microbial community structure can be complex and difficult to assess. We applied nonlinear and generalized linear data analysis methods to relate microbial biomarkers (phospholipids fatty acids, PLFA) to groundwater geochemical characteristics at the Shiprock uranium mill tailings disposal site that is primarily contaminated by uranium, sulfate, and nitrate. First, predictive models were constructed using feedforward artificial neural networks (NN) to predict PLFA classes from geochemistry. To reduce the danger of overfitting, parsimonious NN architectures were selected based on pruning of hidden nodes and elimination of redundant predictor (geochemical) variables. The resulting NN models greatly outperformed the generalized linear models. Sensitivity analysis indicated that tritium, which was indicative of riverine influences, and uranium were important in predicting the distributions of the PLFA classes. In contrast, nitrate concentration and inorganic carbon were least important, and total ionic strength was of intermediate importance. Second, nonlinear principal components (NPC) were extracted from the PLFA data using a variant of the feedforward NN. The NPC grouped the samples according to similar geochemistry. PLFA indicators of Gram-negative bacteria and eukaryotes were associated with the groups of wells with lower levels of contamination. The more contaminated samples contained microbial communities that were predominated by terminally branched saturates and branched monounsaturates that are indicative of metal reducers, actinomycetes, and Gram-positive bacteria. These results indicate that the microbial community at the site is coupled to the geochemistry and knowledge of the geochemistry allows prediction of the community composition.

  14. Community-analyzer: a platform for visualizing and comparing microbial community structure across microbiomes.

    Science.gov (United States)

    Kuntal, Bhusan K; Ghosh, Tarini Shankar; Mande, Sharmila S

    2013-10-01

    A key goal in comparative metagenomics is to identify microbial group(s) which are responsible for conferring specific characteristics to a given environment. These characteristics are the result of the inter-microbial interactions between the resident microbial groups. We present a new GUI-based comparative metagenomic analysis application called Community-Analyzer which implements a correlation-based graph layout algorithm that not only facilitates a quick visualization of the differences in the analyzed microbial communities (in terms of their taxonomic composition), but also provides insights into the inherent inter-microbial interactions occurring therein. Notably, this layout algorithm also enables grouping of the metagenomes based on the probable inter-microbial interaction patterns rather than simply comparing abundance values of various taxonomic groups. In addition, the tool implements several interactive GUI-based functionalities that enable users to perform standard comparative analyses across microbiomes. For academic and non-profit users, the Community-Analyzer is currently available for download from: http://metagenomics.atc.tcs.com/Community_Analyzer/.

  15. Metagenomic analysis of soil microbial communities

    Directory of Open Access Journals (Sweden)

    Đokić Lidija

    2010-01-01

    Full Text Available Ramonda serbica and Ramonda nathaliae, rare resurrection plants growing in the Balkan Peninsula, produce a high amount of phenolic compounds as a response to stress. The composition and size of bacterial communities in two rhizosphere soil samples of these plants were analyzed using a metagenomic approach. Fluorescent in situ hybridization (FISH experiments together with DAPI staining showed that the metabolically active bacteria represent only a small fraction, approximately 5%, of total soil bacteria. Using universal bacteria - specific primers 16S rDNA genes were amplified directly from metagenomic DNAs and two libraries were constructed. The Restriction Fragment Length Polymorphism (RLFP method was used in library screening. Amongst 192 clones, 35 unique operational taxonomic units (OTUs were determined from the rhizosphere of R. nathaliae, and 13 OTUs out of 80 clones in total from the library of R. serbica. Representative clones from each OTU were sequenced. The majority of sequences from metagenomes showed very little similarity to any cultured bacteria. In conclusion, the bacterial communities in the studied soil samples showed quite poor diversity. .

  16. Simulating Microbial Community Patterning Using Biocellion

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Seung-Hwa; Kahan, Simon H.; Momeni, Babak

    2014-04-17

    Mathematical modeling and computer simulation are important tools for understanding complex interactions between cells and their biotic and abiotic environment: similarities and differences between modeled and observed behavior provide the basis for hypothesis forma- tion. Momeni et al. [5] investigated pattern formation in communities of yeast strains engaging in different types of ecological interactions, comparing the predictions of mathematical modeling and simulation to actual patterns observed in wet-lab experiments. However, simu- lations of millions of cells in a three-dimensional community are ex- tremely time-consuming. One simulation run in MATLAB may take a week or longer, inhibiting exploration of the vast space of parameter combinations and assumptions. Improving the speed, scale, and accu- racy of such simulations facilitates hypothesis formation and expedites discovery. Biocellion is a high performance software framework for ac- celerating discrete agent-based simulation of biological systems with millions to trillions of cells. Simulations of comparable scale and accu- racy to those taking a week of computer time using MATLAB require just hours using Biocellion on a multicore workstation. Biocellion fur- ther accelerates large scale, high resolution simulations using cluster computers by partitioning the work to run on multiple compute nodes. Biocellion targets computational biologists who have mathematical modeling backgrounds and basic C++ programming skills. This chap- ter describes the necessary steps to adapt the original Momeni et al.'s model to the Biocellion framework as a case study.

  17. Microbial communities mediating algal detritus turnover under anaerobic conditions

    Directory of Open Access Journals (Sweden)

    Jessica M. Morrison

    2017-01-01

    Full Text Available Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta, Chara sp. strain IWP1 (Charophyceae, and kelp Ascophyllum nodosum (phylum Phaeophyceae, using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT, sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT, and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes, Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate

  18. Microbial communities mediating algal detritus turnover under anaerobic conditions

    Science.gov (United States)

    Morrison, Jessica M.; Murphy, Chelsea L.; Baker, Kristina; Zamor, Richard M.; Nikolai, Steve J.; Wilder, Shawn; Elshahed, Mostafa S.

    2017-01-01

    Background Algae encompass a wide array of photosynthetic organisms that are ubiquitously distributed in aquatic and terrestrial habitats. Algal species often bloom in aquatic ecosystems, providing a significant autochthonous carbon input to the deeper anoxic layers in stratified water bodies. In addition, various algal species have been touted as promising candidates for anaerobic biogas production from biomass. Surprisingly, in spite of its ecological and economic relevance, the microbial community involved in algal detritus turnover under anaerobic conditions remains largely unexplored. Results Here, we characterized the microbial communities mediating the degradation of Chlorella vulgaris (Chlorophyta), Chara sp. strain IWP1 (Charophyceae), and kelp Ascophyllum nodosum (phylum Phaeophyceae), using sediments from an anaerobic spring (Zodlteone spring, OK; ZDT), sludge from a secondary digester in a local wastewater treatment plant (Stillwater, OK; WWT), and deeper anoxic layers from a seasonally stratified lake (Grand Lake O’ the Cherokees, OK; GL) as inoculum sources. Within all enrichments, the majority of algal biomass was metabolized within 13–16 weeks, and the process was accompanied by an increase in cell numbers and a decrease in community diversity. Community surveys based on the V4 region of the 16S rRNA gene identified different lineages belonging to the phyla Bacteroidetes, Proteobacteria (alpha, delta, gamma, and epsilon classes), Spirochaetes, and Firmicutes that were selectively abundant under various substrate and inoculum conditions. Within all kelp enrichments, the microbial communities structures at the conclusion of the experiment were highly similar regardless of the enrichment source, and were dominated by the genus Clostridium, or family Veillonellaceae within the Firmicutes. In all other enrichments the final microbial community was dependent on the inoculum source, rather than the type of algae utilized as substrate. Lineages enriched

  19. Abiotic drivers and plant traits explain landscape-scale patterns in soil microbial communities.

    Science.gov (United States)

    de Vries, Franciska T; Manning, Pete; Tallowin, Jerry R B; Mortimer, Simon R; Pilgrim, Emma S; Harrison, Kathryn A; Hobbs, Phil J; Quirk, Helen; Shipley, Bill; Cornelissen, Johannes H C; Kattge, Jens; Bardgett, Richard D

    2012-11-01

    The controls on aboveground community composition and diversity have been extensively studied, but our understanding of the drivers of belowground microbial communities is relatively lacking, despite their importance for ecosystem functioning. In this study, we fitted statistical models to explain landscape-scale variation in soil microbial community composition using data from 180 sites covering a broad range of grassland types, soil and climatic conditions in England. We found that variation in soil microbial communities was explained by abiotic factors like climate, pH and soil properties. Biotic factors, namely community-weighted means (CWM) of plant functional traits, also explained variation in soil microbial communities. In particular, more bacterial-dominated microbial communities were associated with exploitative plant traits versus fungal-dominated communities with resource-conservative traits, showing that plant functional traits and soil microbial communities are closely related at the landscape scale.

  20. Bioremediation of petroleum hydrocarbons: catabolic genes, microbial communities, and applications.

    Science.gov (United States)

    Fuentes, Sebastián; Méndez, Valentina; Aguila, Patricia; Seeger, Michael

    2014-06-01

    Bioremediation is an environmental sustainable and cost-effective technology for the cleanup of hydrocarbon-polluted soils and coasts. In spite of that longer times are usually required compared with physicochemical strategies, complete degradation of the pollutant can be achieved, and no further confinement of polluted matrix is needed. Microbial aerobic degradation is achieved by the incorporation of molecular oxygen into the inert hydrocarbon molecule and funneling intermediates into central catabolic pathways. Several families of alkane monooxygenases and ring hydroxylating dioxygenases are distributed mainly among Proteobacteria, Actinobacteria, Firmicutes and Fungi strains. Catabolic routes, regulatory networks, and tolerance/resistance mechanisms have been characterized in model hydrocarbon-degrading bacteria to understand and optimize their metabolic capabilities, providing the basis to enhance microbial fitness in order to improve hydrocarbon removal. However, microbial communities taken as a whole play a key role in hydrocarbon pollution events. Microbial community dynamics during biodegradation is crucial for understanding how they respond and adapt to pollution and remediation. Several strategies have been applied worldwide for the recovery of sites contaminated with persistent organic pollutants, such as polycyclic aromatic hydrocarbons and petroleum derivatives. Common strategies include controlling environmental variables (e.g., oxygen availability, hydrocarbon solubility, nutrient balance) and managing hydrocarbon-degrading microorganisms, in order to overcome the rate-limiting factors that slow down hydrocarbon biodegradation.

  1. Principal methods for isolation and identification of soil microbial communities.

    Science.gov (United States)

    Stefanis, Christos; Alexopoulos, Athanasios; Voidarou, Chrissa; Vavias, Stavros; Bezirtzoglou, Eugenia

    2013-01-01

    Soil microbial populations play crucial role in soil properties and influence below-ground ecosystem processes. Microbial composition and functioning changes the soil quality through decomposition of organic matter, recycling of nutrients, and biological control of parasites of plants. Moreover, the discovery that soil microbes may translate into benefits for biotechnology, management of agricultural, forest, and natural ecosystems, biodegradation of pollutants, and waste treatment systems maximized the need of scientists for the isolation and their characterization. Operations such as the production of antibiotics and enzymic activities from microorganisms of soil constitute objectives of industry in her effort to cope with the increase of population of earth and disturbance of environment and may ameliorate the effects of global climate change. In the past decades, new biochemical and molecular techniques have been developed in our effort to identify and classify soil bacteria. The goal of measuring the soil microbial diversity is difficult because of the limited knowledge about bacteria species and classification through families and orders. Molecular techniques extend our knowledge about microbial diversity and help the taxonomy of species. Measuring and monitoring soil microbial communities can lead us to better understanding of their composition and function in many ecosystem processes.

  2. The skin microbiome: Associations between altered microbial communities and disease.

    Science.gov (United States)

    Weyrich, Laura S; Dixit, Shreya; Farrer, Andrew G; Cooper, Alan J; Cooper, Alan J

    2015-11-01

    A single square centimetre of the human skin can contain up to one billion microorganisms. These diverse communities of bacteria, fungi, mites and viruses can provide protection against disease, but can also exacerbate skin lesions, promote disease and delay wound healing. This review addresses the current knowledge surrounding the healthy skin microbiome and examines how different alterations to the skin microbial communities can contribute to disease. Current methodologies are considered, changes in microbial diversity and colonisation by specific microorganisms are discussed in the context of atopic dermatitis, psoriasis, acne vulgaris and chronic wounds. The recent impact of modern Westernised lifestyles on the human skin microbiome is also examined, as well as the potential benefits and pitfalls of novel therapeutic strategies. Further analysis of the human skin microbiome, and its interactions with the host immune system and other commensal microorganisms, will undoubtedly elucidate molecular mechanisms for disease and reveal gateways for novel therapeutic treatment strategies.

  3. Soil Microbial Community Responses to Short-term Multiple Experimental Climate Change Drivers

    Science.gov (United States)

    Li, Guanlin; Lee, Jongyeol; Lee, Sohye; Roh, Yujin; Son, Yowhan

    2016-04-01

    It is agreed that soil microbial communities are responsible for the cycling of carbon and nutrients in ecosystems; however, the response of these microbial communities to climate change has not been clearly understood. In this study, we measured the direct and interactive effects of climate change drivers on soil bacterial and fungal communities (abundance and composition) in an open-field multifactor climate change experiment. The experimental treatment system was established with two-year-old Pinus densiflora seedlings at Korea University in April 2013, and consisted of six different treatments with three replicates: two levels of air temperature warming (control and +3° C) were crossed with three levels of precipitation manipulation (control, -30% and +30%). After 2.5 years of treatments, in August, 2015, soil samples were collected from the topsoil (0-15cm) of all plots (n=18). High-throughput sequencing technology was used to assess the abundance and composition of soil bacterial and fungal community. Analysis of variance for a blocked split-plot design was used to detect the effects of climate change drivers and their interaction on the abundance and composition of soil bacterial and fungal community. Our results showed that 1) only the significant effect of warming on fungal community abundance was observed (P <0.05); 2) on average, warming decreased both bacterial and fungal community abundance by 20.90% and 32.30%, 6.69% and 45.89%, 14.71% and 19.56% in control, decreased, and increased precipitation plots, respectively; 3) however, warming increased the relative bacterium/fungus ratio on average by 14.03%, 37.03% and 14.31% in control, decreased, and increased precipitation plots, respectively; 4) the phylogenetic distribution of bacterial and fungal groups and their relative abundance varied among treatments; 5) treatments altered the relative abundance of Ascomycota and Basidiomycota, where Ascomycota decreased with a concomitant increase in the

  4. Quantitative comparison of the in situ microbial communities in different biomes

    Energy Technology Data Exchange (ETDEWEB)

    White, D.C. [Tennessee Univ., Knoxville, TN (United States)]|[Oak Ridge National Lab., TN (United States); Ringelberg, D.B.; Palmer, R.J. [Tennessee Univ., Knoxville, TN (United States). Center for Environmental Biotechnology

    1995-12-31

    A system to define microbial communities in different biomes requires the application of non-traditional methodology. Classical microbiological methods have severe limitations for the analysis of environmental samples. Pure-culture isolation, biochemical testing, and/or enumeration by direct microscopic counting are not well suited for the estimation of total biomass or the assessment of community composition within environmental samples. Such methods provide little insight into the in situ phenotypic activity of the extant microbiota since these techniques are dependent on microbial growth and thus select against many environmental microorganisms which are non- culturable under a wide range of conditions. It has been repeatedly documented in the literature that viable counts or direct counts of bacteria attached to sediment grains are difficult to quantitative and may grossly underestimate the extent of the existing community. The traditional tests provide little indication of the in situ nutritional status or for evidence of toxicity within the microbial community. A more recent development (MIDI Microbial Identification System), measure free and ester-linked fatty acids from isolated microorganisms. Bacterial isolates are identified by comparing their fatty acid profiles to the MIKI database which contains over 8000 entries. The application of the MIKI system to the analysis of environmental samples however, has significant drawbacks. The MIDI system was developed to identify clinical microorganisms and requires their isolation and culture on trypticase soy agar at 27{degrees}C. Since many isolates are unable to grow at these restrictive growth conditions, the system does not lend itself to identification of some environmental organisms. A more applicable methodology for environmental microbial analysis is based on the liquid extrication and separation of microbial lipids from environmental samples, followed by quantitative analysis using gas chromatography/

  5. Microbial community composition of transiently wetted Antarctic Dry Valley soils

    Directory of Open Access Journals (Sweden)

    Thomas D. Neiderberger

    2015-01-01

    Full Text Available During the summer months, wet (hyporheic soils associated with ephemeral streams and lake edges in the Antarctic Dry Valleys (DV become hotspots of biological activity and are hypothesized to be an important source of carbon and nitrogen for arid DV soils. Recent research in the DV has focused on the geochemistry and microbial ecology of lakes and arid soils, with substantially less information being available on hyporheic soils. Here we determined the unique properties of hyporheic microbial communities, resolved their relationship to environmental parameters and to compared them to archetypal arid DV soils. Generally, pH increased and chlorophyll a concentrations decreased along transects from wet to arid soils (9.0 to ~7.0 for pH and ~0.8 to ~ 5 µg/cm3 for chlorophyll a, respectively. Soil water content decreased to below ~3% in the arid soils. Community fingerprinting-based principle component analyses revealed that bacterial communities formed distinct clusters specific to arid and wet soils; however, eukaryotic communities that clustered together did not have similar soil moisture content nor did they group together based on sampling location. Collectively, rRNA pyrosequencing indicated a considerably higher abundance of Cyanobacteria in wet soils and a higher abundance of Acidobacterial, Actinobacterial, Deinococcus/Thermus, Bacteroidetes, Firmicutes, Gemmatimonadetes, Nitrospira and Planctomycetes in arid soils. The two most significant differences at the genus level were Gillisia signatures present in arid soils and chloroplast signatures related to Streptophyta that were common in wet soils. Fungal dominance was observed in arid soils and Viridplantae were more common in wet soils. This research represents an in-depth characterization of microbial communities inhabiting wet DV soils. Results indicate that the repeated wetting of hyporheic zones has a profound impact on the bacterial and eukaryotic communities inhabiting in these areas.

  6. Effect of Increasing Nitrogen Deposition on Soil Microbial Communities

    OpenAIRE

    2011-01-01

    Increasing nitrogen deposition, increasing atmospheric CO2, and decreasing biodiversity are three main environmental changes occurring on a global scale. The BioCON (Biodiversity, CO2, and Nitrogen) ecological experiment site at the University of Minnesota's Cedar Creek Ecosystem Science Reserve started in 1997, to better understand how these changes would affect soil systems. To understand how increasing nitrogen deposition affects the microbial community diversity, heterogeneity, and functi...

  7. Coexistence facilitates interspecific biofilm formation in complex microbial communities

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Røder, Henriette Lyng; Russel, Jakob

    2016-01-01

    Social interactions in which bacteria respond to one another by modifying their phenotype are central determinants of microbial communities. It is known that interspecific interactions influence the biofilm phenotype of bacteria; a phenotype that is central to the fitness of bacteria. However...... correlated with an increase in planktonic cell numbers, thus implying a behavioral response rather than mere growth competition. Our findings suggest that an increase in biofilm formation is a common adaptive response to long-term coexistence....

  8. Microbial Fingerprints of Community Structure Correlate with Changes in Ecosystem Function Induced by Perturbing the Redox Environment

    Science.gov (United States)

    Mills, A. L.; Ford, R. M.; Vallino, J. J.; Herman, J. S.; Hornberger, G. M.

    2001-12-01

    Restoration of high-quality groundwater has been an elusive engineering goal. Consequently, natural microbially-mediated reactions are increasingly relied upon to degrade organic contaminants, including hydrocarbons and many synthetic compounds. Of concern is how the introduction of an organic chemical contaminant affects the indigenous microbial communities, the geochemistry of the aquifer, and the function of the ecosystem. The presence of functional redundancy in microbial communities suggests that recovery of the community after a disturbance such as a contamination event could easily result in a community that is similar in function to that which existed prior to the contamination, but which is compositionally quite different. To investigate the relationship between community structure and function we observed the response of a diverse microbial community obtained from raw sewage to a dynamic redox environment using an aerobic/anaerobic/aerobic cycle. To evaluate changes in community function CO2, pH, ammonium and nitrate levels were monitored. A phylogenetically-based DNA technique (tRFLP) was used to assess changes in microbial community structure. Principal component analysis of the tRFLP data revealed significant changes in the composition of the microbial community that correlated well with changes in community function. Results from our experiments will be discussed in the context of a metabolic model based the biogeochemistry of the system. The governing philosophy of this thermodynamically constrained metabolic model is that living systems synthesize and allocate cellular machinery in such a way as to "optimally" utilize available resources in the environment. The robustness of this optimization-based approach provides a powerful tool for studying relationships between microbial diversity and ecosystem function.

  9. Metaproteomics of complex microbial communities in biogas plants.

    Science.gov (United States)

    Heyer, Robert; Kohrs, Fabian; Reichl, Udo; Benndorf, Dirk

    2015-09-01

    Production of biogas from agricultural biomass or organic wastes is an important source of renewable energy. Although thousands of biogas plants (BGPs) are operating in Germany, there is still a significant potential to improve yields, e.g. from fibrous substrates. In addition, process stability should be optimized. Besides evaluating technical measures, improving our understanding of microbial communities involved into the biogas process is considered as key issue to achieve both goals. Microscopic and genetic approaches to analyse community composition provide valuable experimental data, but fail to detect presence of enzymes and overall metabolic activity of microbial communities. Therefore, metaproteomics can significantly contribute to elucidate critical steps in the conversion of biomass to methane as it delivers combined functional and phylogenetic data. Although metaproteomics analyses are challenged by sample impurities, sample complexity and redundant protein identification, and are still limited by the availability of genome sequences, recent studies have shown promising results. In the following, the workflow and potential pitfalls for metaproteomics of samples from full-scale BGP are discussed. In addition, the value of metaproteomics to contribute to the further advancement of microbial ecology is evaluated. Finally, synergistic effects expected when metaproteomics is combined with advanced imaging techniques, metagenomics, metatranscriptomics and metabolomics are addressed.

  10. Biofouling and microbial communities in membrane distillation and reverse osmosis.

    Science.gov (United States)

    Zodrow, Katherine R; Bar-Zeev, Edo; Giannetto, Michael J; Elimelech, Menachem

    2014-11-18

    Membrane distillation (MD) is an emerging desalination technology that uses low-grade heat to drive water vapor across a microporous hydrophobic membrane. Currently, little is known about the biofilms that grow on MD membranes. In this study, we use estuarine water collected from Long Island Sound in a bench-scale direct contact MD system to investigate the initial stages of biofilm formation. For comparison, we studied biofilm formation in a bench-scale reverse osmosis (RO) system using the same feedwater. These two membrane desalination systems expose the natural microbial community to vastly different environmental conditions: high temperatures with no hydraulic pressure in MD and low temperature with hydraulic pressure in RO. Over the course of 4 days, we observed a steady decline in bacteria concentration (nearly 2 orders of magnitude) in the MD feed reservoir. Even with this drop in planktonic bacteria, significant biofilm formation was observed. Biofilm morphologies on MD and RO membranes were markedly different. MD membrane biofilms were heterogeneous and contained several colonies, while RO membrane biofilms, although thicker, were a homogeneous mat. Phylogenetic analysis using next-generation sequencing of 16S rDNA showed significant shifts in the microbial communities. Bacteria representing the orders Burkholderiales, Rhodobacterales, and Flavobacteriales were most abundant in the MD biofilms. On the basis of the results, we propose two different regimes for microbial community shifts and biofilm development in RO and MD systems.

  11. Bioinformatics for whole-genome shotgun sequencing of microbial communities.

    Directory of Open Access Journals (Sweden)

    Kevin Chen

    2005-07-01

    Full Text Available The application of whole-genome shotgun sequencing to microbial communities represents a major development in metagenomics, the study of uncultured microbes via the tools of modern genomic analysis. In the past year, whole-genome shotgun sequencing projects of prokaryotic communities from an acid mine biofilm, the Sargasso Sea, Minnesota farm soil, three deep-sea whale falls, and deep-sea sediments have been reported, adding to previously published work on viral communities from marine and fecal samples. The interpretation of this new kind of data poses a wide variety of exciting and difficult bioinformatics problems. The aim of this review is to introduce the bioinformatics community to this emerging field by surveying existing techniques and promising new approaches for several of the most interesting of these computational problems.

  12. Linking microbial community structure and microbial processes: An empirical and conceptual overview

    Science.gov (United States)

    Bier, R.L.; Bernhardt, E.S.;; Boot, C.M.; Graham, E.B.;; Hall, E.K.; Lennon, J.T.; Nemergut, D.R.; Osborne, B.B.; Ruiz-Gonzalez, C.; Schimel, J.P.; Waldrop, Mark P.; Wallenstein, M.D.

    2015-01-01

    A major goal of microbial ecology is to identify links between microbial community structure and microbial processes. Although this objective seems straightforward, there are conceptual and methodological challenges to designing studies that explicitly evaluate this link. Here, we analyzed literature documenting structure and process responses to manipulations to determine the frequency of structure-process links and whether experimental approaches and techniques influence link detection. We examined nine journals (published 2009–13) and retained 148 experimental studies measuring microbial community structure and processes. Many qualifying papers (112 of 148) documented structure and process responses, but few (38 of 112 papers) reported statistically testing for a link. Of these tested links, 75% were significant and typically used Spearman or Pearson's correlation analysis (68%). No particular approach for characterizing structure or processes was more likely to produce significant links. Process responses were detected earlier on average than responses in structure or both structure and process. Together, our findings suggest that few publications report statistically testing structure-process links. However, when links are tested for they often occur but share few commonalities in the processes or structures that were linked and the techniques used for measuring them.

  13. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    Science.gov (United States)

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-01-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores. PMID:28230151

  14. Potential microbial contamination during sampling of permafrost soil assessed by tracers

    Science.gov (United States)

    Bang-Andreasen, Toke; Schostag, Morten; Priemé, Anders; Elberling, Bo; Jacobsen, Carsten S.

    2017-02-01

    Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.

  15. Regime shift in sandy beach microbial communities following Deepwater Horizon oil spill remediation efforts.

    Science.gov (United States)

    Engel, Annette Summers; Gupta, Axita A

    2014-01-01

    need to assess the persistence and impact of the newly formed microbial communities to the overall sandy beach ecosystems.

  16. Regime shift in sandy beach microbial communities following Deepwater Horizon oil spill remediation efforts.

    Directory of Open Access Journals (Sweden)

    Annette Summers Engel

    . Future research will need to assess the persistence and impact of the newly formed microbial communities to the overall sandy beach ecosystems.

  17. Metagenomic Insights into Evolution of a Heavy Metal-Contaminated Groundwater Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, Christopher L.; Deng, Ye; Gentry, Terry J.; Fields, Matthew W.; Wu, Liyou; Barua, Soumitra; Barry, Kerrie; Tringe, Susannah G.; Watson, David B.; He, Zhili; Hazen, Terry C.; Tiedje, James M.; Rubin, Edward M.; Zhou, Jizhong

    2010-02-15

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents (~;;50 years) have resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying ?- and ?-proteobacterial populations. The resulting community is over-abundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could be a key mechanism in rapidly responding and adapting to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  18. Metagenomic insights into evolution of heavy metal-contaminated groundwater microbial community

    Energy Technology Data Exchange (ETDEWEB)

    Hemme, C.L.; Deng, Y.; Gentry, T.J.; Fields, M.W.; Wu, L.; Barua, S.; Barry, K.; Green-Tringe, S.; Watson, D.B.; He, Z.; Hazen, T.C.; Tiedje, J.M.; Rubin, E.M.; Zhou, J.

    2010-07-01

    Understanding adaptation of biological communities to environmental change is a central issue in ecology and evolution. Metagenomic analysis of a stressed groundwater microbial community reveals that prolonged exposure to high concentrations of heavy metals, nitric acid and organic solvents ({approx}50 years) has resulted in a massive decrease in species and allelic diversity as well as a significant loss of metabolic diversity. Although the surviving microbial community possesses all metabolic pathways necessary for survival and growth in such an extreme environment, its structure is very simple, primarily composed of clonal denitrifying {gamma}- and {beta}-proteobacterial populations. The resulting community is overabundant in key genes conferring resistance to specific stresses including nitrate, heavy metals and acetone. Evolutionary analysis indicates that lateral gene transfer could have a key function in rapid response and adaptation to environmental contamination. The results presented in this study have important implications in understanding, assessing and predicting the impacts of human-induced activities on microbial communities ranging from human health to agriculture to environmental management, and their responses to environmental changes.

  19. Spatiotemporal development of the bacterial community in a tubular longitudinal microbial fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung Rae; Premier, Giuliano C. [Glamorgan Univ., Pontypridd (United Kingdom). Faculty of Advnaced Technology; Beecroft, Nelli J.; Avignone-Rossa, Claudio [Surrey Univ., Guildford (United Kingdom). Microbial Sciences; Varcoe, John R.; Slade, Robert C.T. [Surrey Univ., Guildford (United Kingdom). Chemical Sciences; Dinsdale, Richard M.; Guwy, Alan J. [Glamorgan Univ., Pontypridd (United Kingdom). Faculty of Health, Sport and Science; Thumser, Alfred [Surrey Univ., Guildford (United Kingdom). Biochemical Sciences

    2011-05-15

    The spatiotemporal development of a bacterial community in an exoelectrogenic biofilm was investigated in sucrose-fed longitudinal tubular microbial fuel cell reactors, consisting of two serially connected modules. The proportional changes in the microbial community composition were assessed by polymerase chain reaction-denaturing gradient gel electrophoresis (DGGE) and DNA sequencing in order to relate them to the performance and stability of the bioelectrochemical system. The reproducibility of duplicated reactors, evaluated by cluster analysis and Jaccard's coefficient, shows 80-90% similarity in species composition. Biofilm development through fed-batch start-up and subsequent stable continuous operation results in a population shift from {gamma}-Proteobacteria- and Bacteroidetes- to Firmicutes-dominated communities, with other diverse species present at much lower relative proportions. DGGE patterns were analysed by range-weighted richness (Rr) and Pareto-Lorenz evenness distribution curves to investigate the evolution of the bacterial community. The first modules shifted from dominance by species closely related to Bacteroides graminisolvens, Raoultella ornithinolytica and Klebsiella sp. BM21 at the start of continuous-mode operation to a community dominated by Paludibacter propionicigenes-, Lactococcus sp.-, Pantoea agglomerans- and Klebsiella oxytoca-related species with stable power generation (6.0 W/m{sup 3}) at day 97. Operational strategies that consider the dynamics of the population will provide useful parameters for evaluating system performance in the practical application of microbial fuel cells. (orig.)

  20. Disordered microbial communities in the upper respiratory tract of cigarette smokers.

    Directory of Open Access Journals (Sweden)

    Emily S Charlson

    Full Text Available Cigarette smokers have an increased risk of infectious diseases involving the respiratory tract. Some effects of smoking on specific respiratory tract bacteria have been described, but the consequences for global airway microbial community composition have not been determined. Here, we used culture-independent high-density sequencing to analyze the microbiota from the right and left nasopharynx and oropharynx of 29 smoking and 33 nonsmoking healthy asymptomatic adults to assess microbial composition and effects of cigarette smoking. Bacterial communities were profiled using 454 pyrosequencing of 16S sequence tags (803,391 total reads, aligned to 16S rRNA databases, and communities compared using the UniFrac distance metric. A Random Forest machine-learning algorithm was used to predict smoking status and identify taxa that best distinguished between smokers and nonsmokers. Community composition was primarily determined by airway site, with individuals exhibiting minimal side-of-body or temporal variation. Within airway habitats, microbiota from smokers were significantly more diverse than nonsmokers and clustered separately. The distributions of several genera were systematically altered by smoking in both the oro- and nasopharynx, and there was an enrichment of anaerobic lineages associated with periodontal disease in the oropharynx. These results indicate that distinct regions of the human upper respiratory tract contain characteristic microbial communities that exhibit disordered patterns in cigarette smokers, both in individual components and global structure, which may contribute to the prevalence of respiratory tract complications in this population.

  1. Utilization and control of ecological interactions in polymicrobial infections and community-based microbial cell factories

    DEFF Research Database (Denmark)

    Wigneswaran, Vinoth; Amador Hierro, Cristina Isabel; Jelsbak, Lotte;

    2016-01-01

    Microbial activities are most often shaped by interactions between co-existing microbes within mixed-species communities. Dissection of the molecular mechanisms of species interactions within communities is a central issue in microbial ecology, and our ability to engineer and control microbial co...

  2. Field Evidence for Magnetite Formation by a Methanogenic Microbial Community

    Science.gov (United States)

    Rossbach, S.; Beaver, C. L.; Williams, A.; Atekwana, E. A.; Slater, L. D.; Ntarlagiannis, D.; Lund, A.

    2015-12-01

    The aged, subsurface petroleum spill in Bemidji, Minnesota, has been surveyed with magnetic susceptibility (MS) measurements. High MS values were found in the free-product phase around the fluctuating water table. Although we had hypothesized that high MS values are related to the occurrence of the mineral magnetite resulting from the activity of iron-reducing bacteria, our microbial analysis pointed to the presence of a methanogenic microbial community at the locations and depths of the highest MS values. Here, we report on a more detailed microbial analysis based on high-throughput sequencing of the 16S rRNA gene of sediment samples from four consecutive years. In addition, we provide geochemical data (FeII/FeIII concentrations) to refine our conceptual model of methanogenic hydrocarbon degradation at aged petroleum spills and demonstrate that the microbial induced changes of sediment properties can be monitored with MS. The methanogenic microbial community at the Bemidji site consisted mainly of the syntrophic, hydrocarbon-degrading Smithella and the hydrogenotrophic, methane-generating Methanoregula. There is growing evidence in the literature that not only Bacteria, but also some methanogenic Archaea are able to reduce iron. In fact, a recent study reported that the methanogen Methanosarcina thermophila produced magnetite during the reduction of ferrihydrite in a laboratory experiment when hydrogen was present. Therefore, our finding of high MS values and the presence of magnetite in the methanogenic zone of an aged, subsurface petroleum spill could very well be the first field evidence for magnetite formation during methanogenic hydrocarbon degradation.

  3. Systems biology: Functional analysis of natural microbial consortia using community proteomics.

    Science.gov (United States)

    VerBerkmoes, Nathan C; Denef, Vincent J; Hettich, Robert L; Banfield, Jillian F

    2009-03-01

    We know very little about the metabolic functioning and evolutionary dynamics of microbial communities. Recent advances in comprehensive, sequencing-based methods, however, are laying a molecular foundation for new insights into how microbial communities shape the Earth's biosphere. Here we explore the convergence of microbial ecology, genomics, biological mass spectrometry and informatics that form the new field of microbial community proteogenomics. We discuss the first applications of proteogenomics and its potential for studying the physiology, ecology and evolution of microbial populations and communities.

  4. Effect of DNA extraction methods and sampling techniques on the apparent structure of cow and sheep rumen microbial communities.

    Science.gov (United States)

    Henderson, Gemma; Cox, Faith; Kittelmann, Sandra; Miri, Vahideh Heidarian; Zethof, Michael; Noel, Samantha J; Waghorn, Garry C; Janssen, Peter H

    2013-01-01

    Molecular microbial ecology techniques are widely used to study the composition of the rumen microbiota and to increase understanding of the roles they play. Therefore, sampling and DNA extraction methods that result in adequate yields of microbial DNA that also accurately represents the microbial community are crucial. Fifteen different methods were used to extract DNA from cow and sheep rumen samples. The DNA yield and quality, and its suitability for downstream PCR amplifications varied considerably, depending on the DNA extraction method used. DNA extracts from nine extraction methods that passed these first quality criteria were evaluated further by quantitative PCR enumeration of microbial marker loci. Absolute microbial numbers, determined on the same rumen samples, differed by more than 100-fold, depending on the DNA extraction method used. The apparent compositions of the archaeal, bacterial, ciliate protozoal, and fungal communities in identical rumen samples were assessed using 454 Titanium pyrosequencing. Significant differences in microbial community composition were observed between extraction methods, for example in the relative abundances of members of the phyla Bacteroidetes and Firmicutes. Microbial communities in parallel samples collected from cows by oral stomach-tubing or through a rumen fistula, and in liquid and solid rumen digesta fractions, were compared using one of the DNA extraction methods. Community representations were generally similar, regardless of the rumen sampling technique used, but significant differences in the abundances of some microbial taxa such as the Clostridiales and the Methanobrevibacter ruminantium clade were observed. The apparent microbial community composition differed between rumen sample fractions, and Prevotellaceae were most abundant in the liquid fraction. DNA extraction methods that involved phenol-chloroform extraction and mechanical lysis steps tended to be more comparable. However, comparison of data

  5. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes.

    Science.gov (United States)

    Justé, A; Thomma, B P H J; Lievens, B

    2008-09-01

    In the last two decades major changes have occurred in how microbial ecologists study microbial communities. Limitations associated with traditional culture-based methods have pushed for the development of culture-independent techniques, which are primarily based on the analysis of nucleic acids. These methods are now increasingly applied in food microbiology as well. This review presents an overview of current community profiling techniques with their (potential) applications in food and food-related ecosystems. We critically assessed both the power and limitations of these techniques and present recent advances in the field of food microbiology attained by their application. It is unlikely that a single approach will be universally applicable for analyzing microbial communities in unknown matrices. However, when screening samples for well-defined species or functions, techniques such as DNA arrays and real-time PCR have the potential to overtake current culture-based methods. Most importantly, molecular methods will allow us to surpass our current culturing limitations, thus revealing the extent and importance of the 'non-culturable' microbial flora that occurs in food matrices and production.

  6. Cellular content of biomolecules in sub-seafloor microbial communities

    Science.gov (United States)

    Braun, Stefan; Morono, Yuki; Becker, Kevin W.; Hinrichs, Kai-Uwe; Kjeldsen, Kasper U.; Jørgensen, Bo B.; Lomstein, Bente Aa.

    2016-09-01

    Microbial biomolecules, typically from the cell envelope, can provide crucial information about distribution, activity, and adaptations of sub-seafloor microbial communities. However, when cells die these molecules can be preserved in the sediment on timescales that are likely longer than the lifetime of their microbial sources. Here we provide for the first time measurements of the cellular content of biomolecules in sedimentary microbial cells. We separated intact cells from sediment matrices in samples from surficial, deeply buried, organic-rich, and organic-lean marine sediments by density centrifugation. Amino acids, amino sugars, muramic acid, and intact polar lipids were analyzed in both whole sediment and cell extract, and cell separation was optimized and evaluated in terms of purity, separation efficiency, taxonomic resemblance, and compatibility to high-performance liquid chromatography and mass spectrometry for biomolecule analyses. Because cell extracts from density centrifugation still contained considerable amounts of detrital particles and non-cellular biomolecules, we further purified cells from two samples by fluorescence-activated cell sorting (FACS). Cells from these highly purified cell extracts had an average content of amino acids and lipids of 23-28 fg cell-1 and 2.3 fg cell-1, respectively, with an estimated carbon content of 19-24 fg cell-1. In the sediment, the amount of biomolecules associated with vegetative cells was up to 70-fold lower than the total biomolecule content. We find that the cellular content of biomolecules in the marine subsurface is up to four times lower than previous estimates. Our approach will facilitate and improve the use of biomolecules as proxies for microbial abundance in environmental samples and ultimately provide better global estimates of microbial biomass.

  7. Aurelia aurita Ephyrae Reshape a Coastal Microbial Community.

    Science.gov (United States)

    Zoccarato, Luca; Celussi, Mauro; Pallavicini, Alberto; Fonda Umani, Serena

    2016-01-01

    Over the last two decades, increasing attention has been paid to the impact of jellyfish blooms on marine communities. Aurelia aurita is one of the most studied of the Scyphozoans, and several studies have been carried out to describe its role as a top-down controller within the classical food web. However, little data are available to define the effects of these jellyfish on microbial communities. The aims of this study were to describe the predation impact of A. aurita ephyrae on a natural microplanktonic assemblage, and to determine any reshaping effects on the prokaryote community composition and functioning. Surface coastal water was used to set up a 24-h grazing experiment in microcosms. Samples were collected to determine the variations in prey biomass, heterotrophic carbon production (HCP), extracellular leucine aminopeptidase activity, and grazing pressure. A next-generation sequencing technique was used to investigate biodiversity shifts within the prokaryote and protist communities through the small subunit rRNA tag approach. This study shows that A. aurita ephyrae were responsible for large decreases in the abundances of the more motile microplankton groups, such as tintinnids, Dinophyceae, and aloricate ciliates. Bacillariophyceae and Mediophyceae showed smaller reductions. No evidence of selective predation emerged in the analysis of the community diversity down to the family level. The heterotrophic prokaryote biomass increased significantly (by up to 45%), in parallel with increases in HCP and leucine aminopeptidase activity (40%). Significant modifications were detected in prokaryotic community composition. Some classes of Gammaproteobacteria and Flavobacteriia showed higher relative abundances when exposed to A. aurita ephyrae, while there was a net decrease for Alphaproteobacteria. Overall, this study provides new insight into the effects of A. aurita on microbial communities, underlining their selective predation toward the more motile groups of

  8. Aurelia aurita Ephyrae Reshape a Coastal Microbial Community

    Science.gov (United States)

    Zoccarato, Luca; Celussi, Mauro; Pallavicini, Alberto; Fonda Umani, Serena

    2016-01-01

    Over the last two decades, increasing attention has been paid to the impact of jellyfish blooms on marine communities. Aurelia aurita is one of the most studied of the Scyphozoans, and several studies have been carried out to describe its role as a top-down controller within the classical food web. However, little data are available to define the effects of these jellyfish on microbial communities. The aims of this study were to describe the predation impact of A. aurita ephyrae on a natural microplanktonic assemblage, and to determine any reshaping effects on the prokaryote community composition and functioning. Surface coastal water was used to set up a 24-h grazing experiment in microcosms. Samples were collected to determine the variations in prey biomass, heterotrophic carbon production (HCP), extracellular leucine aminopeptidase activity, and grazing pressure. A next-generation sequencing technique was used to investigate biodiversity shifts within the prokaryote and protist communities through the small subunit rRNA tag approach. This study shows that A. aurita ephyrae were responsible for large decreases in the abundances of the more motile microplankton groups, such as tintinnids, Dinophyceae, and aloricate ciliates. Bacillariophyceae and Mediophyceae showed smaller reductions. No evidence of selective predation emerged in the analysis of the community diversity down to the family level. The heterotrophic prokaryote biomass increased significantly (by up to 45%), in parallel with increases in HCP and leucine aminopeptidase activity (40%). Significant modifications were detected in prokaryotic community composition. Some classes of Gammaproteobacteria and Flavobacteriia showed higher relative abundances when exposed to A. aurita ephyrae, while there was a net decrease for Alphaproteobacteria. Overall, this study provides new insight into the effects of A. aurita on microbial communities, underlining their selective predation toward the more motile groups of

  9. Microbial community composition is unaffected by anode potential

    KAUST Repository

    Zhu, Xiuping

    2014-01-21

    There is great controversy on how different set anode potentials affect the performance of a bioelectrochemical system (BES). It is often reported that more positive potentials improve acclimation and performance of exoelectrogenic biofilms, and alter microbial community structure, while in other studies relatively more negative potentials were needed to achieve higher current densities. To address this issue, the biomass, electroactivity, and community structure of anodic biofilms were examined over a wide range of set anode potentials (-0.25, -0.09, 0.21, 0.51, and 0.81 V vs a standard hydrogen electrode, SHE) in single-chamber microbial electrolysis cells. Maximum currents produced using a wastewater inoculum increased with anode potentials in the range of -0.25 to 0.21 V, but decreased at 0.51 and 0.81 V. The maximum currents were positively correlated with increasing biofilm biomass. Pyrosequencing indicated biofilm communities were all similar and dominated by bacteria most similar to Geobacter sulfurreducens. Differences in anode performance with various set potentials suggest that the exoelectrogenic communities self-regulate their exocellular electron transfer pathways to adapt to different anode potentials. © 2013 American Chemical Society.

  10. Toxicity of zero-valent iron nanoparticles to a trichloroethylene-degrading groundwater microbial community.

    Science.gov (United States)

    Zabetakis, Kara M; Niño de Guzmán, Gabriela T; Torrents, Alba; Yarwood, Stephanie

    2015-01-01

    The microbiological impact of zero-valent iron used in the remediation of groundwater was investigated by exposing a trichloroethylene-degrading anaerobic microbial community to two types of iron nanoparticles. Changes in total bacterial and archaeal population numbers were analyzed using qPCR and were compared to results from a blank and negative control to assess for microbial toxicity. Additionally, the results were compared to those of samples exposed to silver nanoparticles and iron filings in an attempt to discern the source of toxicity. Statistical analysis revealed that the three different iron treatments were equally toxic to the total bacteria and archaea populations, as compared with the controls. Conversely, the silver nanoparticles had a limited statistical impact when compared to the controls and increased the microbial populations in some instances. Therefore, the findings suggest that zero-valent iron toxicity does not result from a unique nanoparticle-based effect.

  11. Alteration of microbial properties and community structure in soils exposed to napropamide

    Institute of Scientific and Technical Information of China (English)

    GUO Hua; CHEN Guofeng; LV Zhaoping; ZHAO Hua; YANG Hong

    2009-01-01

    The effect of pesticide napropamide (N,N-diethyl-2-(1-naphthalenyloxy) propanamide) on soil microorganisms for long-term (56 d) was assessed by monitoring changes in soil microbial biological responses. Soils were treated with napropamide at 0, 2, 10, 20, 40 and 80 mg/kg soil and sampled at intervals of 1, 3, 7, 14, 28, 42 and 56 d. The average microbial biomass C declined in napropamide-treated soils as compared to the control. The same trend was observed on microbial biomass N after napropamide application. We also determined the basal soil respiration (BSR) and observed a high level in soils treated with napropamide during the first 7 d of experiment. But with the passage of incubation time, BSR with napropamide decreased relative to the control. Application of napropamide at 2-80 mg/kg soil had inhibitory effects on the activity of urease and invertase. Activity of catalase was enhanced during the initial 7 d of napropamide application, but soon recovered to the basal level. The depressed enzyme activities might be due to the toxicity of napropamide to the soil microbial populations. To further understand the effect of napropamide on microbial communities, a PCR-DGGE-based experiment and cluster analysis of 16S rDNA community profiles were performed. Our analysis revealed an apparent difference in bacterial-community composition between the napropamide treatments and control. Addition of napropamide apparently increased the number of bands during the 7-14 d of incubation. These results imply that napropamide-induced toxicity was responsible for the disturbance of the microbial populations in soil.

  12. Identifying the microbial communities and operational conditions for optimized wastewater treatment in microbial fuel cells.

    Science.gov (United States)

    Ishii, Shun'ichi; Suzuki, Shino; Norden-Krichmar, Trina M; Wu, Angela; Yamanaka, Yuko; Nealson, Kenneth H; Bretschger, Orianna

    2013-12-01

    Microbial fuel cells (MFCs) are devices that exploit microorganisms as "biocatalysts" to recover energy from organic matter in the form of electricity. MFCs have been explored as possible energy neutral wastewater treatment systems; however, fundamental knowledge is still required about how MFC-associated microbial communities are affected by different operational conditions and can be optimized for accelerated wastewater treatment rates. In this study, we explored how electricity-generating microbial biofilms were established at MFC anodes and responded to three different operational conditions during wastewater treatment: 1) MFC operation using a 750 Ω external resistor (0.3 mA current production); 2) set-potential (SP) operation with the anode electrode potentiostatically controlled to +100 mV vs SHE (4.0 mA current production); and 3) open circuit (OC) operation (zero current generation). For all reactors, primary clarifier effluent collected from a municipal wastewater plant was used as the sole carbon and microbial source. Batch operation demonstrated nearly complete organic matter consumption after a residence time of 8-12 days for the MFC condition, 4-6 days for the SP condition, and 15-20 days for the OC condition. These results indicate that higher current generation accelerates organic matter degradation during MFC wastewater treatment. The microbial community analysis was conducted for the three reactors using 16S rRNA gene sequencing. Although the inoculated wastewater was dominated by members of Epsilonproteobacteria, Gammaproteobacteria, and Bacteroidetes species, the electricity-generating biofilms in MFC and SP reactors were dominated by Deltaproteobacteria and Bacteroidetes. Within Deltaproteobacteria, phylotypes classified to family Desulfobulbaceae and Geobacteraceae increased significantly under the SP condition with higher current generation; however those phylotypes were not found in the OC reactor. These analyses suggest that species

  13. Distinctive tropical forest variants have unique soil microbial communities, but not always low microbial diversity

    Directory of Open Access Journals (Sweden)

    Binu M Tripathi

    2016-04-01

    Full Text Available There has been little study of whether different variants of tropical rainforest have distinct soil microbial communities and levels of diversity. We compared bacterial and fungal community composition and diversity between primary mixed dipterocarp, secondary mixed dipterocarp, white sand heath, inland heath, and peat swamp forests in Brunei Darussalam, northwest Borneo by analyzing Illumina Miseq sequence data of 16S rRNA gene and ITS1 region. We hypothesized that white sand heath, inland heath and peat swamp forests would show lower microbial diversity and relatively distinct microbial communities (compared to MDF primary and secondary forests due to their distinctive environments. We found that soil properties together with bacterial and fungal communities varied significantly between forest types. Alpha and beta-diversity of bacteria was highest in secondary dipterocarp and white sand heath forests. Also, bacterial alpha diversity was strongly structured by pH, adding another instance of this widespread pattern in nature. The alpha diversity of fungi was equally high in all forest types except peat swamp forest, although fungal beta-diversity was highest in primary and secondary mixed dipterocarp forests. The relative abundance of ectomycorrhizal (EcM fungi varied significantly between forest types, with highest relative abundance observed in MDF primary forest. Overall, our results suggest that the soil bacterial and fungal communities in these forest types are to a certain extent predictable and structured by soil properties, but that diversity is not determined by how distinctive the conditions are. This contrasts with the diversity patterns seen in rainforest trees, where distinctive soil conditions have consistently lower tree diversity.

  14. Microbial community shifts influence patterns in tropical forest nitrogen fixation.

    Science.gov (United States)

    Reed, Sasha C; Townsend, Alan R; Cleveland, Cory C; Nemergut, Diana R

    2010-10-01

    The role of biodiversity in ecosystem function receives substantial attention, yet despite the diversity and functional relevance of microorganisms, relationships between microbial community structure and ecosystem processes remain largely unknown. We used tropical rain forest fertilization plots to directly compare the relative abundance, composition and diversity of free-living nitrogen (N)-fixer communities to in situ leaf litter N fixation rates. N fixation rates varied greatly within the landscape, and 'hotspots' of high N fixation activity were observed in both control and phosphorus (P)-fertilized plots. Compared with zones of average activity, the N fixation 'hotspots' in unfertilized plots were characterized by marked differences in N-fixer community composition and had substantially higher overall diversity. P additions increased the efficiency of N-fixer communities, resulting in elevated rates of fixation per nifH gene. Furthermore, P fertilization increased N fixation rates and N-fixer abundance, eliminated a highly novel group of N-fixers, and increased N-fixer diversity. Yet the relationships between diversity and function were not simple, and coupling rate measurements to indicators of community structure revealed a biological dynamism not apparent from process measurements alone. Taken together, these data suggest that the rain forest litter layer maintains high N fixation rates and unique N-fixing organisms and that, as observed in plant community ecology, structural shifts in N-fixing communities may partially explain significant differences in system-scale N fixation rates.

  15. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica

    Science.gov (United States)

    Achberger, Amanda M.; Christner, Brent C.; Michaud, Alexander B.; Priscu, John C.; Skidmore, Mark L.; Vick-Majors, Trista J.; Adkins, W.

    2016-01-01

    Subglacial Lake Whillans (SLW) is located beneath ∼800 m of ice on the Whillans Ice Stream in West Antarctica and was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA) amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules) data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax) and archaea (Candidatus Nitrosoarchaeum) related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34–36 cm) supported the hypothesis that methane cycling occurs beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several operational taxonomic units abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella), suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new

  16. Microbial Community Structure of Subglacial Lake Whillans, West Antarctica

    Directory of Open Access Journals (Sweden)

    Amanda M Achberger

    2016-09-01

    Full Text Available Subglacial Lake Whillans (SLW, located beneath ~800 m of ice on the Whillans Ice Stream in West Antarctica was sampled in January of 2013, providing the first opportunity to directly examine water and sediments from an Antarctic subglacial lake. To minimize the introduction of surface contaminants to SLW during its exploration, an access borehole was created using a microbiologically clean hot water drill designed to reduce the number and viability of microorganisms in the drilling water. Analysis of 16S rRNA genes (rDNA amplified from samples of the drilling and borehole water allowed an evaluation of the efficacy of this approach and enabled a confident assessment of the SLW ecosystem inhabitants. Based on an analysis of 16S rDNA and rRNA (i.e., reverse-transcribed rRNA molecules data, the SLW community was found to be bacterially dominated and compositionally distinct from the assemblages identified in the drill system. The abundance of bacteria (e.g., Candidatus Nitrotoga, Sideroxydans, Thiobacillus, and Albidiferax and archaea (Candidatus Nitrosoarcheaum related to chemolithoautotrophs was consistent with the oxidation of reduced iron, sulfur, and nitrogen compounds having important roles as pathways for primary production in this permanently dark ecosystem. Further, the prevalence of Methylobacter in surficial lake sediments combined with the detection of methanogenic taxa in the deepest sediment horizons analyzed (34-36 cm provided evidence for methane cycling beneath the West Antarctic Ice Sheet. Large ratios of rRNA to rDNA were observed for several OTUs abundant in the water column and sediments (e.g., Albidiferax, Methylobacter, Candidatus Nitrotoga, Sideroxydans, and Smithella, suggesting a potentially active role for these taxa in the SLW ecosystem. Our findings are consistent with chemosynthetic microorganisms serving as the ecological foundation in this dark subsurface environment, providing new organic matter that sustains a

  17. Microbial community succession in alkaline, saline bauxite residue: a cross-refinery study

    Science.gov (United States)

    Santini, T.; Malcolm, L. I.; Tyson, G. W.; Warren, L. A.

    2015-12-01

    Bauxite residue, a byproduct of the Bayer process for alumina refining, is an alkaline, saline tailings material that is generally considered to be inhospitable to microbial life. In situ remediation strategies promote soil formation in bauxite residue by enhancing leaching of saline, alkaline pore water, and through incorporation of amendments to boost organic matter content, decrease pH, and improve physical structure. The amelioration of chemical and physical conditions in bauxite residue is assumed to support diversification of microbial communities from narrow, poorly functioning microbial communities towards diverse, well-functioning communities. This study aimed to characterise microbial communities in fresh and remediated bauxite residues from refineries worldwide, to identify (a) whether initial microbial communities differed between refineries; (b) major environmental controls on microbial community composition; and (c) whether remediation successfully shifts the composition of microbial communities in bauxite residue towards those found in reference (desired endpoint) soils. Samples were collected from 16 refineries and characterised using 16S amplicon sequencing to examine microbial community composition and structure, in conjunction with physicochemical analyses. Initial microbial community composition was similar across refineries but partitioned into two major groups. Microbial community composition changes slowly over time and indicates that alkalinity and salinity inhibit diversification. Microbially-based strategies for in situ remediation should consider the initial microbial community composition and whether the pre-treatment of chemical properties would optimise subsequent bioremediation outcomes. During in situ remediation, microbial communities become more diverse and develop wider functional capacity, indicating progression towards communities more commonly observed in natural grassland and forest soils.

  18. Response of a salt marsh microbial community to antibiotic contamination.

    Science.gov (United States)

    Fernandes, Joana P; Almeida, C Marisa R; Basto, M Clara P; Mucha, Ana P

    2015-11-01

    Salt marsh plants and associated microorganisms can have an important role in contaminant removal from estuaries, through bioremediation processes. Nevertheless, the interaction between emerging contaminants, namely antibiotics, and plant-microorganism associations in estuarine environment are still scarcely known. In this vein, the aim of the present study was to evaluate, in controlled conditions, the response of a salt marsh plant-microorganism association to a contamination with a veterinary antibiotic. For that a salt marsh plant (Phragmites australis) and its respective rhizosediment were collected in a temperate estuary (Lima estuary, NW Portugal) and exposed for 7 days to enrofloxacin (ENR) under different nutritional conditions in sediment elutriates. Response was evaluated in terms of ENR removal and changes in microbial community structure (evaluated by ARISA) and abundance (estimated by DAPI). In general, no significant changes were observed in microbial abundance. Changes in bacterial richness and diversity were observed but only in unplanted systems. However, multivariate analysis of ARISA profiles showed significant effect of both the presence of plant and type of treatment on the microbial community structure, with significant differences among all treatment groups. In addition, plants and associated microorganisms presented a potential for antibiotic removal that, although highly dependent on their nutritional status, can be a valuable asset to recover impacted areas such as estuarine ones.

  19. In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities

    Energy Technology Data Exchange (ETDEWEB)

    Bohn, Paul W. [Univ. of Notre Dame, IN (United States); Shrout, J. D. [Univ. of Notre Dame, IN (United States); Sweedler, J. V. [Univ. of Illinois, Urbana-Champaign, IL (United States); Farrand, S. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-01-25

    This document constitutes the final technical report for DE-SC0006642, In Situ Correlated Molecular Imaging of Chemically Communicating Microbial Communities, a project carried out collaboratively by investigators at Notre Dame and UIUC. The work carried out under DOE support in this project produced advances in two areas: development of new highly sophisticated correlated imaging approaches and the application of these new tools to the growth and differentiation of microbial communities under a variety of environmental conditions. A significant effort involved the creation of technical enhancements and sampling approaches to allow us to advance heterocorrelated mass spectrometry imaging (MSI) and correlated Raman microscopy (CRM) from bacterial cultures and biofilms. We then exploited these measurement advances in heterocorrelated MS/CRM imaging to determine relationship of signaling molecules and excreted signaling molecules produced by P. aeruginosa to conditions relevant to the rhizosphere. In particular, we: (1) developed a laboratory testbed mimic for the rhizosphere to enable microbial growth on slides under controlled conditions; (2) integrated specific measurements of (a) rhamnolipids, (b) quinolone/quinolones, and (c) phenazines specific to P. aeruginosa; and (3) utilized the imaging tools to probe how messenger secretion, quorum sensing and swarming behavior are correlated with behavior.

  20. Bioinformatic approaches reveal metagenomic characterization of soil microbial community.

    Directory of Open Access Journals (Sweden)

    Zhuofei Xu

    Full Text Available As is well known, soil is a complex ecosystem harboring the most prokaryotic biodiversity on the Earth. In recent years, the advent of high-throughput sequencing techniques has greatly facilitated the progress of soil ecological studies. However, how to effectively understand the underlying biological features of large-scale sequencing data is a new challenge. In the present study, we used 33 publicly available metagenomes from diverse soil sites (i.e. grassland, forest soil, desert, Arctic soil, and mangrove sediment and integrated some state-of-the-art computational tools to explore the phylogenetic and functional characterizations of the microbial communities in soil. Microbial composition and metabolic potential in soils were comprehensively illustrated at the metagenomic level. A spectrum of metagenomic biomarkers containing 46 taxa and 33 metabolic modules were detected to be significantly differential that could be used as indicators to distinguish at least one of five soil communities. The co-occurrence associations between complex microbial compositions and functions were inferred by network-based approaches. Our results together with the established bioinformatic pipelines should provide a foundation for future research into the relation between soil biodiversity and ecosystem function.

  1. Microbial Community Structure and Enzyme Activities in Semiarid Agricultural Soils

    Science.gov (United States)

    Acosta-Martinez, V. A.; Zobeck, T. M.; Gill, T. E.; Kennedy, A. C.

    2002-12-01

    The effect of agricultural management practices on the microbial community structure and enzyme activities of semiarid soils of different textures in the Southern High Plains of Texas were investigated. The soils (sandy clay loam, fine sandy loam and loam) were under continuous cotton (Gossypium hirsutum L.) or in rotations with peanut (Arachis hypogaea L.), sorghum (Sorghum bicolor L.) or wheat (Triticum aestivum L.), and had different water management (irrigated or dryland) and tillage (conservation or conventional). Microbial community structure was investigated using fatty acid methyl ester (FAME) analysis by gas chromatography and enzyme activities, involved in C, N, P and S cycling of soils, were measured (mg product released per kg soil per h). The activities of b-glucosidase, b-glucosaminidase, alkaline phosphatase, and arylsulfatase were significantly (Pconservation tillage in comparison to continuous cotton under conventional tillage. Principal component analysis showed FAME profiles of these soils separated distinctly along PC1 (20 %) and PC2 (13 %) due to their differences in soil texture and management. No significant differences were detected in FAME profiles due to management practices for the same soils in this sampling period. Enzyme activities provide early indications of the benefits in microbial populations and activities and soil organic matter under crop rotations and conservation tillage in comparison to the typical practices in semiarid regions of continuous cotton and conventional tillage.

  2. [Effects of colistin sulfate residue on soil microbial community structure].

    Science.gov (United States)

    Ma, Yi; Peng, Jin-Ju; Chen, Jin-Jun; Fan, Ting-Li; Sun, Yong-Xue

    2014-06-01

    By using fumigation extraction and phospholipid fatty acid (PLFA) methods, the change of characteristics of soil microbial community structure caused by residue of colistin sulfate (CS) was studied. The results showed that the CS (w(cs) > or = 5 mg x kg(-1)) had a significant effect on the microbial biomass carbon (MBC) and it was dose-dependent where MBC decreased with the increase of CS concentration in soil. The MBC in soil decreased by 52. 1% when the CS concentration reached 50 mg x kg(-1). The total PLFA of soil in each CS treatment was significantly decreased during the sampling period compared with the control group and showed a dose-dependent relationship. The soil microbial community structure and diversity in the low CS group (w(cs) = 0.5 mg x kg(-1)) were not significantly different from the control group on 7th and 49th day. However, they were significantly different on 21st and 35th day especially in the high CS group (w(cs) = 50 mg x kg(-1)). It was concluded that CS could change the structure of soil microorganisms and varied with time which might be caused by the chemical conversion and degradation of CS in soil.

  3. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China

    Science.gov (United States)

    Yang, Wen; Jeelani, Nasreen; Leng, Xin; Cheng, Xiaoli; An, Shuqing

    2016-05-01

    The role of exotic plants in regulating soil microbial community structure and activity following invasion chronosequence remains unclear. We investigated soil microbial community structure and microbial respiration following Spartina alterniflora invasion in a chronosequence of 6-, 10-, 17-, and 20-year-old by comparing with bare flat in a coastal wetland of China. S. alterniflora invasion significantly increased soil moisture and salinity, the concentrations of soil water-soluble organic carbon and microbial biomass carbon (MBC), the quantities of total and various types of phospholipid fatty acids (PLFAs), the fungal:bacterial PLFAs ratio and cumulative microbial respiration compared with bare flat. The highest MBC, gram-negative bacterial and saturated straight-chain PLFAs were found in 10-year-old S. alterniflora soil, while the greatest total PLFAs, bacterial and gram-positive bacterial PLFAs were found in 10- and 17-year-old S. alterniflora soils. The monounsaturated:branched PLFAs ratio declined, and cumulative microbial respiration on a per-unit-PLFAs increased following S. alterniflora invasion in the chronosequence. Our results suggest that S. alterniflora invasion significantly increased the biomass of soil various microbial groups and microbial respiration compared to bare flat soil by increasing soil available substrate, and modifying soil physiochemical properties. Soil microbial community reached the most enriched condition in the 10-year-old S. alterniflora community.

  4. COMPETITIVE METAGENOMIC DNA HYBRIDIZATION IDENTIFIES HOST-SPECIFIC GENETIC MARKERS IN HUMAN FECAL MICROBIAL COMMUNITIES

    Science.gov (United States)

    Although recent technological advances in DNA sequencing and computational biology now allow scientists to compare entire microbial genomes, the use of these approaches to discern key genomic differences between natural microbial communities remains prohibitively expensive for mo...

  5. Effects of hydraulic frac fluids and formation waters on groundwater microbial communities

    Science.gov (United States)

    Jiménez, Núria; Krüger, Martin

    2015-04-01

    Shale gas is being considered as a complementary energy resource to other fossil fuels. Its exploitation requires using advanced drilling techniques and hydraulic stimulation (fracking). During fracking operations, large amounts of fluids (fresh water, proppants and chemicals) are injected at high pressures into the formations, to create fractures and fissures, and thus to release gas from the source rock into the wellbore. The injected fluid partly remains in the formation, while up to 40% flows back to the surface, together with reservoir waters, sometimes containing dissolved hydrocarbons, high salt concentrations, etc. The aim of our study was to investigate the potential impacts of frac or geogenic chemicals, frac fluid, formation water or flowback on groudnwater microbial communities. Laboratory experiments under in situ conditions (i.e. at in situ temperatures, with high pressure, etc.) were conducted using groundwater samples from three different locations. Series of microcosms (3 of each kind) containing R2 broth medium or groundwater spiked with either single frac chemicals (including biocides), frac fluids, artificial reservoir water, NaCl, or different mixtures of reservoir water and frac fluid (to simulate flowback) were incubated in the dark. Controls included non-amended and non-inoculated microcosms. Classical microbiological methods and molecular analyses were used to assess changes in the microbial abundance, community structure and function in response to the different treatments. Microbial communities were quite halotolerant and their growth benefited from low concentrations of reservoir waters or salt, but they were negatively affected by higher concentrations of formation waters, salt, biocides, frac fluids or flowback. Changes on the microbial community structure could be detected by T-RFLP. Single frac components like guar gum or choline chloride could be used as substrates, while the effects of others like triethanolamine or light oil

  6. Diversity, composition, and geographical distribution of microbial communities in California salt marsh sediments

    Science.gov (United States)

    Cordova-Kreylos, A. L.; Cao, Y.; Green, P.G.; Hwang, H.-M.; Kuivila, K.M.; LaMontagne, M.G.; Van De Werfhorst, L. C.; Holden, P.A.; Scow, K.M.

    2006-01-01

    The Pacific Estuarine Ecosystem Indicators Research Consortium seeks to develop bioindicators of toxicant-induced stress and bioavailability for wetland biota. Within this framework, the effects of environmental and pollutant variables on microbial communities were studied at different spatial scales over a 2-year period. Six salt marshes along the California coastline were characterized using phospholipid fatty acid (PLFA) analysis and terminal restriction fragment length polymorphism (TRFLP) analysis. Additionally, 27 metals, six currently used pesticides, total polychlorinated biphenyls and polycyclic aromatic hydrocarbons, chlordanes, nonachlors, dichlorodiphenyldichloroethane, and dichlorodiphenyldichloroethylene were analyzed. Sampling was performed over large (between salt marshes), medium (stations within a marsh), and small (different channel depths) spatial scales. Regression and ordination analysis suggested that the spatial variation in microbial communities exceeded the variation attributable to pollutants. PLFA analysis and TRFLP canonical correspondence analysis (CCA) explained 74 and 43% of the variation, respectively, and both methods attributed 34% of the variation to tidal cycles, marsh, year, and latitude. After accounting for spatial variation using partial CCA, we found that metals had a greater effect on microbial community composition than organic pollutants had. Organic carbon and nitrogen contents were positively correlated with PLFA biomass, whereas total metal concentrations were positively correlated with biomass and diversity. Higher concentrations of heavy metals were negatively correlated with branched PLFAs and positively correlated with methyl- and cyclo-substituted PLFAs. The strong relationships observed between pollutant concentrations and some of the microbial indicators indicated the potential for using microbial community analyses in assessments of the ecosystem health of salt marshes. Copyright ?? 2006, American Society for

  7. Microbial community structure of leaf-cutter ant fungus gardens and refuse dumps.

    Directory of Open Access Journals (Sweden)

    Jarrod J Scott

    Full Text Available BACKGROUND: Leaf-cutter ants use fresh plant material to grow a mutualistic fungus that serves as the ants' primary food source. Within fungus gardens, various plant compounds are metabolized and transformed into nutrients suitable for ant consumption. This symbiotic association produces a large amount of refuse consisting primarily of partly degraded plant material. A leaf-cutter ant colony is thus divided into two spatially and chemically distinct environments that together represent a plant biomass degradation gradient. Little is known about the microbial community structure in gardens and dumps or variation between lab and field colonies. METHODOLOGY/PRINCIPAL FINDINGS: Using microbial membrane lipid analysis and a variety of community metrics, we assessed and compared the microbiota of fungus gardens and refuse dumps from both laboratory-maintained and field-collected colonies. We found that gardens contained a diverse and consistent community of microbes, dominated by Gram-negative bacteria, particularly gamma-Proteobacteria and Bacteroidetes. These findings were consistent across lab and field gardens, as well as host ant taxa. In contrast, dumps were enriched for Gram-positive and anaerobic bacteria. Broad-scale clustering analyses revealed that community relatedness between samples reflected system component (gardens/dumps rather than colony source (lab/field. At finer scales samples clustered according to colony source. CONCLUSIONS/SIGNIFICANCE: Here we report the first comparative analysis of the microbiota from leaf-cutter ant colonies. Our work reveals the presence of two distinct communities: one in the fungus garden and the other in the refuse dump. Though we find some effect of colony source on community structure, our data indicate the presence of consistently associated microbes within gardens and dumps. Substrate composition and system component appear to be the most important factor in structuring the microbial communities

  8. Nanomodification of the electrodes in microbial fuel cell: impact of nanoparticle density on electricity production and microbial community

    DEFF Research Database (Denmark)

    Al Atraktchi, Fatima Al-Zahraa; Zhang, Yifeng; Angelidaki, Irini

    2014-01-01

    The nano-decoration of electrode with nanoparticles is one effective way to enhance power output of microbial fuel cells (MFCs). However, the amount of nanoparticles used for decoration has not been optimized yet, and how it affects the microbial community is still unknown. In this study, different....... Different densities of Au nanoparticles also resulted in different microbial communities on the anode. More diverse bacterial communities were found with higher Au nanoparticle densities. These results provide new dimensions in understanding electrode modification with nanoparticles in MFC systems....

  9. Manipulating soil microbial communities in extensive green\\ud roof substrates

    OpenAIRE

    Molineux, Chloe; Connop, Stuart; Gange, Alan

    2014-01-01

    There has been very little investigation into the soil microbial community on green roofs, yet this below ground habitat is vital for ecosystem functioning. Green roofs are often harsh environments that would greatly benefit from having a healthy microbial system, allowing efficient nutrient cycling and a degree of drought tolerance in dry summer months. To test if green roof microbial communities could be manipulated,we added mycorrhizal fungi and a microbial mixture (‘compost tea’) to green...

  10. Cheese rind microbial communities: diversity, composition and origin.

    Science.gov (United States)

    Irlinger, Françoise; Layec, Séverine; Hélinck, Sandra; Dugat-Bony, Eric

    2015-01-01

    Cheese rinds host a specific microbiota composed of both prokaryotes (such as Actinobacteria, Firmicutes and Proteobacteria) and eukaryotes (primarily yeasts and moulds). By combining modern molecular biology tools with conventional, culture-based techniques, it has now become possible to create a catalogue of the biodiversity that inhabits this special environment. Here, we review the microbial genera detected on the cheese surface and highlight the previously unsuspected importance of non-inoculated microflora--raising the question of the latter's environmental sources and their role in shaping microbial communities. There is now a clear need to revise the current view of the cheese rind ecosystem (i.e. that of a well-defined, perfectly controlled ecosystem). Inclusion of these new findings should enable us to better understand the cheese-making process.

  11. Seasonal Variation on Microbial Community and Methane Production during Anaerobic Digestion of Cattle Manure in Brazil.

    Science.gov (United States)

    Resende, Juliana Alves; Godon, Jean-Jacques; Bonnafous, Anaïs; Arcuri, Pedro Braga; Silva, Vânia Lúcia; Otenio, Marcelo Henrique; Diniz, Cláudio Galuppo

    2016-04-01

    Anaerobic digestion is an alternative method for the treatment of animal manure and wastewater. The anaerobic bioconversion of biomass requires a multi-step biological process, including microorganisms with distinct roles. The diversity and composition of microbial structure in pilot-scale anaerobic digestion operating at ambient temperature in Brazil were studied. Influence of the seasonal and temporal patterns on bacterial and archaeal communities were assessed by studying the variations in density, dynamic and diversity and structure. The average daily biogas produced in the summer and winter months was 18.7 and 16 L day(-1), respectively, and there was no difference in the average methane yield. Quantitative PCR analysis revealed that no differences in abundances and dynamics were found for bacterial communities and the total number of Archaea in different seasons. Analysis of bacterial clone libraries revealed a predominance of Firmicutes (54.5 %/summer and 46.7 %/winter) and Bacteroidetes (31.4 %/summer and 44.4 %/winter). Within the Archaea, the phylum Euryarchaeota was predominant in both digesters. Phylogenetic distribution showed changes in percentage between the phyla identified, but no alterations were recorded in the quality and amount of produced methane or community dynamics. The results may suggest that redundancy of microbial groups may have occurred, pointing to a more complex microbial community in the ecosystem related to this ambient temperature system.

  12. The Role of Soil Organic Matter, Nutrients, and Microbial Community Structure on the Performance of Microbial Fuel Cells

    Science.gov (United States)

    Rooney-Varga, J. N.; Dunaj, S. J.; Vallino, J. J.; Hines, M. E.; Gay, M.; Kobyljanec, C.

    2011-12-01

    Microbial fuel cells (MFCs) offer the potential for generating electricity, mitigating greenhouse gas emissions, and bioremediating pollutants through utilization of a plentiful, natural, and renewable resource: soil organic carbon. In the current study, we analyzed microbial community structure, MFC performance, and soil characteristics in different microhabitats (bulk soil, anode, and cathode) within MFCs constructed from agricultural or forest soils in order to determine how soil type and microbial dynamics influence MFC performance. MFCs were constructed with soils from agricultural and hardwood forest sites at Harvard Forest (Petersham, MA). The bulk soil characteristics were analyzed, including polyphenols, short chain fatty acids, total organic C and N, abiotic macronutrients, N and P mineralization rates, CO2 respiration rates, and MFC power output. Microbial community structure of the anodes, cathodes, and bulk soils was determined with molecular fingerprinting methods, which included terminal restriction length polymorphism (T-RFLP) analysis and 16S rRNA gene sequencing analysis. Our results indicated that MFCs constructed from agricultural soil had power output about 17 times that of forest soil-based MFCs and respiration rates about 10 times higher than forest soil MFCs. Agricultural soil MFCs had lower C:N ratios, polyphenol content, and acetate concentrations than forest soil MFCs, suggesting that active agricultural MFC microbial communities were supported by higher quality organic carbon. Microbial community profile data indicate that the microbial communities at the anode of the high power MFCs were less diverse than in low power MFCs and were dominated by Deltaproteobacteria, Geobacter, and, to a lesser extent, Clostridia, while low-power MFC anode communities were dominated by Clostridia. These data suggest that the presence of organic carbon substrate (acetate) was not the major limiting factor in selecting for highly electrogenic microbial

  13. Biochar affects soil organic matter cycling and microbial functions but does not alter microbial community structure in a paddy soil.

    Science.gov (United States)

    Tian, Jing; Wang, Jingyuan; Dippold, Michaela; Gao, Yang; Blagodatskaya, Evgenia; Kuzyakov, Yakov

    2016-06-15

    The application of biochar (BC) in conjunction with mineral fertilizers is one of the most promising management practices recommended to improve soil quality. However, the interactive mechanisms of BC and mineral fertilizer addition affecting microbial communities and functions associated with soil organic matter (SOM) cycling are poorly understood. We investigated the SOM in physical and chemical fractions, microbial community structure (using phospholipid fatty acid analysis, PLFA) and functions (by analyzing enzymes involved in C and N cycling and Biolog) in a 6-year field experiment with BC and NPK amendment. BC application increased total soil C and particulate organic C for 47.4-50.4% and 63.7-74.6%, respectively. The effects of BC on the microbial community and C-cycling enzymes were dependent on fertilization. Addition of BC alone did not change the microbial community compared with the control, but altered the microbial community structure in conjunction with NPK fertilization. SOM fractions accounted for 55% of the variance in the PLFA-related microbial community structure. The particulate organic N explained the largest variation in the microbial community structure. Microbial metabolic activity strongly increased after BC addition, particularly the utilization of amino acids and amines due to an increase in the activity of proteolytic (l-leucine aminopeptidase) enzymes. These results indicate that microorganisms start to mine N from the SOM to compensate for high C:N ratios after BC application, which consequently accelerate cycling of stable N. Concluding, BC in combination with NPK fertilizer application strongly affected microbial community composition and functions, which consequently influenced SOM cycling.

  14. Microbial community mapping in intestinal tract of broiler chicken.

    Science.gov (United States)

    Xiao, Yingping; Xiang, Yun; Zhou, Weidong; Chen, Jinggang; Li, Kaifeng; Yang, Hua

    2016-10-06

    Domestic chickens are valuable sources of protein associated with producing meat and eggs for humans. The gastrointestinal tract (GIT) houses a large microbial community, and these microbiota play an important role in growth and health of chickens, contributing to the enhancement of nutrient absorption and improvement of the birds' immune systems. To improve our understanding of the chicken intestinal microbial composition, microbiota inhabiting 5 different intestinal locations (duodenum, jejunum, ileum, cecum, and colon) of 42-day-old broiler chickens were detected based on 16S rRNA gene sequence analysis. As a result, 1,502,554 sequences were clustered into 796 operational taxonomic units (OTUs) at the 97% sequence similarity value and identified into 15 phyla and 288 genera. Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Cyanobacteria were the major microbial groups and Firmicutes was the dominant phylum in duodenum, jejunum, ileum and colon accounting for > 60% of sequences, while Bacteroidetes was the dominant phylum in cecum (>50% of sequences), but little in the other four gut sections. At the genus level, the major microbial genera across all gut sections were Lactobacillus, Enterococcus, Bacteroides, and Corynebacterium. Lactobacillus was the predominant genus in duodenum, jejunum, and ileum (>35%), but was rarely present in cecum, and Bacteroides was the most dominant group in cecum (about 40%), but rarely present in the other 4 intestinal sections. Differences of microbial composition between the 5 intestinal locations might be a cause and consequence of gut functional differences and may also reflect host selection mediated by innate or adaptive immune responses. All these results could offer some information for the future study on the relationship between intestinal microbiota and broiler chicken growth performance as well as health.

  15. Biogeochemical drivers of microbial community convergence across actively retreating glaciers

    Energy Technology Data Exchange (ETDEWEB)

    Castle, Sarah C.; Nemergut, Diana R.; Grandy, A. Stuart; Leff, Jonathan W.; Graham, Emily B.; Hood, Eran; Schmidt, Steven K.; Wickings, Kyle; Cleveland, Cory C.

    2016-10-01

    The ecological processes that influence biogeographical patterns of microorganisms are actively debated. To investigate how such patterns emerge during ecosystem succession, we examined the biogeochemical drivers of bacterial community assembly in soils over two environmentally distinct, recently deglaciated chronosequences separated by a distance of more than 1,300 kilometers. Our results show that despite different geographic, climatic, and soil chemical and physical characteristics at the two sites, soil bacterial community structure and decomposer function converged during plant succession. In a comparative analysis, we found that microbial communities in early succession soils were compositionally distinct from a group of diverse, mature forest soils, but that the differences between successional soils and mature soils decreased from early to late stages of succession. Differences in bacterial community composition across glacial sites were largely explained by pH. However, successional patterns and community convergence across sites were more consistently related to soil organic carbon and organic matter chemistry, which appeared to be tightly coupled with bacterial community structure across both young and mature soils.

  16. Soil Rhizosphere Microbial Communities and Enzyme Activities under Organic Farming in Alabama

    Directory of Open Access Journals (Sweden)

    Zachary Senwo

    2011-07-01

    Full Text Available Evaluation of the soil rhizosphere has been limited by the lack of robust assessments that can explore the vast complex structure and diversity of soil microbial communities. Our objective was to combine fatty acid methyl ester (FAME and pyrosequencing techniques to evaluate soil microbial community structure and diversity. In addition, we evaluated biogeochemical functionality of the microbial communities via enzymatic activities of nutrient cycling. Samples were taken from a silt loam at 0–10 and 10–20 cm in an organic farm under lettuce (Lactuca sativa, potato (Solanum tuberosum, onion (Allium cepa L, broccoli (Brassica oleracea var. botrytis and Tall fescue pasture grass (Festuca arundinacea. Several FAMEs (a15:0, i15:0, i15:1, i16:0, a17:0, i17:0, 10Me17:0, cy17:0, 16:1ω5c and 18:1ω9c varied among the crop rhizospheres. FAME profiles of the soil microbial community under pasture showed a higher fungal:bacterial ratio compared to the soil under lettuce, potato, onion, and broccoli. Soil under potato showed higher sum of fungal FAME indicators compared to broccoli, onion and lettuce. Microbial biomass C and enzyme activities associated with pasture and potato were higher than the other rhizospheres. The lowest soil microbial biomass C and enzyme activities were found under onion. Pyrosequencing revealed significant differences regarding the maximum operational taxonomic units (OTU at 3% dissimilarity level (roughly corresponding to the bacterial species level at 0–10 cm (581.7–770.0 compared to 10–20 cm (563.3–727.7 soil depths. The lowest OTUs detected at 0–10 cm were under broccoli (581.7; whereas the lowest OTUs found at 10–20 cm were under potato (563.3. The predominant phyla (85% in this soil at both depths were Bacteroidetes (i.e., Flavobacteria, Sphingobacteria, and Proteobacteria. Flavobacteriaceae and Xanthomonadaceae were predominant under broccoli. Rhizobiaceae, Hyphomicrobiaceae, and Acidobacteriaceae were more

  17. Profile Changes in the Soil Microbial Community When Desert Becomes Oasis.

    Science.gov (United States)

    Li, Chen-hua; Tang, Li-song; Jia, Zhong-jun; Li, Yan

    2015-01-01

    The conversion of virgin desert into oasis farmland creates two contrasting types of land-cover. During oasis formation with irrigation and fertilizer application, however, the changes in the soil microbial population, which play critical roles in the ecosystem, remain poorly understood. We applied high-throughput pyrosequencing to investigate bacterial and archaeal communities throughout the profile (0-3 m) in an experimental field, where irrigation and fertilization began in 1990 and cropped with winter wheat since then. To assess the effects of cultivation, the following treatments were compared with the virgin desert: CK (no fertilizer), PK, NK, NP, NPK, NPKR, and NPKM (R: straw residue; M: manure fertilizer). Irrigation had a greater impact on the overall microbial community than fertilizer application. The greatest impact occurred in topsoil (0-0.2 m), e.g., Cyanobacteria (25% total abundance) were most abundant in desert soil, while Actinobacteria (26%) were most abundant in oasis soil. The proportions of extremophilic and photosynthetic groups (e.g., Deinococcus-Thermus and Cyanobacteria) decreased, while the proportions of R-strategy (e.g., Gammaproteobacteria including Xanthomonadales), nitrifying (e.g., Nitrospirae), and anaerobic bacteria (e.g., Anaerolineae) increased throughout the oasis profile. Archaea occurred only in oasis soil. The impact of fertilizer application was mainly reflected in the non-dominant communities or finer taxonomic divisions. Oasis formation led to a dramatic shift in microbial community and enhanced soil enzyme activities. The rapidly increased soil moisture and decreased salt caused by irrigation were responsible for this shift. Furthermore, difference in fertilization and crop growth altered the organic carbon contents in the soil, which resulted in differences of microbial communities within oasis.

  18. Microbial communities associated with the larval gut and eggs of the Western corn rootworm.

    Directory of Open Access Journals (Sweden)

    Flavia Dematheis

    Full Text Available BACKGROUND: The western corn rootworm (WCR is one of the economically most important pests of maize. A better understanding of microbial communities associated with guts and eggs of the WCR is required in order to develop new pest control strategies, and to assess the potential role of the WCR in the dissemination of microorganisms, e.g., mycotoxin-producing fungi. METHODOLOGY/PRINCIPAL FINDINGS: Total community (TC DNA was extracted from maize rhizosphere, WCR eggs, and guts of larvae feeding on maize roots grown in three different soil types. Denaturing gradient gel electrophoresis (DGGE and sequencing of 16S rRNA gene and ITS fragments, PCR-amplified from TC DNA, were used to investigate the fungal and bacterial communities, respectively. Microorganisms in the WCR gut were not influenced by the soil type. Dominant fungal populations in the gut were affiliated to Fusarium spp., while Wolbachia was the most abundant bacterial genus. Identical ribosomal sequences from gut and egg samples confirmed a transovarial transmission of Wolbachia sp. Betaproteobacterial DGGE indicated a stable association of Herbaspirillum sp. with the WCR gut. Dominant egg-associated microorganisms were the bacterium Wolbachia sp. and the fungus Mortierella gamsii. CONCLUSION/SIGNIFICANCE: The soil type-independent composition of the microbial communities in the WCR gut and the dominance of only a few microbial populations suggested either a highly selective environment in the gut lumen or a high abundance of intracellular microorganisms in the gut epithelium. The dominance of Fusarium species in the guts indicated WCR larvae as vectors of mycotoxin-producing fungi. The stable association of Herbaspirillum sp. with WCR gut systems and the absence of corresponding sequences in WCR eggs suggested that this bacterium was postnatally acquired from the environment. The present study provided new insights into the microbial communities associated with larval guts and eggs of

  19. Profile Changes in the Soil Microbial Community When Desert Becomes Oasis.

    Directory of Open Access Journals (Sweden)

    Chen-hua Li

    Full Text Available The conversion of virgin desert into oasis farmland creates two contrasting types of land-cover. During oasis formation with irrigation and fertilizer application, however, the changes in the soil microbial population, which play critical roles in the ecosystem, remain poorly understood. We applied high-throughput pyrosequencing to investigate bacterial and archaeal communities throughout the profile (0-3 m in an experimental field, where irrigation and fertilization began in 1990 and cropped with winter wheat since then. To assess the effects of cultivation, the following treatments were compared with the virgin desert: CK (no fertilizer, PK, NK, NP, NPK, NPKR, and NPKM (R: straw residue; M: manure fertilizer. Irrigation had a greater impact on the overall microbial community than fertilizer application. The greatest impact occurred in topsoil (0-0.2 m, e.g., Cyanobacteria (25% total abundance were most abundant in desert soil, while Actinobacteria (26% were most abundant in oasis soil. The proportions of extremophilic and photosynthetic groups (e.g., Deinococcus-Thermus and Cyanobacteria decreased, while the proportions of R-strategy (e.g., Gammaproteobacteria including Xanthomonadales, nitrifying (e.g., Nitrospirae, and anaerobic bacteria (e.g., Anaerolineae increased throughout the oasis profile. Archaea occurred only in oasis soil. The impact of fertilizer application was mainly reflected in the non-dominant communities or finer taxonomic divisions. Oasis formation led to a dramatic shift in microbial community and enhanced soil enzyme activities. The rapidly increased soil moisture and decreased salt caused by irrigation were responsible for this shift. Furthermore, difference in fertilization and crop growth altered the organic carbon contents in the soil, which resulted in differences of microbial communities within oasis.

  20. Spatial Variation in Anaerobic Microbial Communities in Wetland Margin Soils

    Science.gov (United States)

    Rich, H.; Kannenberg, S.; Ludwig, S.; Nelson, L. C.; Spawn, S.; Porterfield, J.; Schade, J. D.

    2012-12-01

    Climate change is predicted to increase the severity and frequency of precipitation and drought events, which may result in substantial temporal variation in the size of wetlands. Wetlands are the world's largest natural emitter of methane, a greenhouse gas that is 20 times more effective at trapping heat than carbon dioxide. Changes in the dynamics of wetland size may lead to changes in the extent and timing of inundation of soils in ephemeral margins, which is likely to influence microbes that rely on anoxic conditions. The impact on process rates may depend on the structure of the community of microbes present in the soil, however, the link between microbial structure and patterns in process rates in soils is not well understood. Our goal was to use molecular techniques to compare microorganism communities in two wetlands that differ in the extent and duration of inundation of marginal soils to assess how these communities may change with changes in climate, and the potential consequences for methane production. This will allow us to examine how community composition changes with soil conditions such as moisture content, frequency of drought and abundance of available carbon. The main focus of this project was to determine the presence or absence of acetoclastic (AC) and hydrogenotrophic (HT) methanogens. AC methanogens use acetate as their main substrate, while HT methanogens use Hydrogen and Carbon dioxide. The relative proportion of these pathways depends on soil conditions, such as competition with other anaerobic microbes and the amount of labile carbon, and spatial patterns in the presence of each can give insight into the soil conditions of a wetland site. We sampled soil from three different wetland ponds of varying permanence in the St Olaf Natural Lands in Northfield, Minnesota, and extracted DNA from these soil samples with a MoBio PowerSoil DNA Isolation Kit. With PCR and seven different primer sets, we tested the extracted DNA for the presence of

  1. Electricity generation from food wastes and microbial community structure in microbial fuel cells.

    Science.gov (United States)

    Jia, Jianna; Tang, Yu; Liu, Bingfeng; Wu, Di; Ren, Nanqi; Xing, Defeng

    2013-09-01

    Microbial fuel cell (MFC) was studied as an alternate and a novel way to dispose food wastes (FWs) in a waste-to-energy form. Different organic loading rate obviously affected the performance of MFCs fed with FWs. The maximum power density of ~18 W/m(3) (~556 mW/m(2)) was obtained at COD of 3200±400 mg/L and the maximum coulombic efficiency (CE) was ~27.0% at COD of 4900±350 mg/L. The maximum removals of COD, total carbohydrate (TC) and total nitrogen (TN) were ~86.4%, ~95.9% and ~16.1%, respectively. Microbial community analysis using 454 pyrosequencing of 16S rRNA gene demonstrated the combination of the dominant genera of the exoelectrogenic Geobacter and fermentative Bacteroides effectively drove highly efficient and reliable MFC systems with functions of organic matters degradation and electricity generation.

  2. Systems modeling approaches for microbial community studies: From metagenomics to inference of the community structure

    Directory of Open Access Journals (Sweden)

    Mark eHanemaaijer

    2015-03-01

    Full Text Available Microbial communities play important roles in health, industrial applications and earth's ecosystems. With current molecular techniques we can characterize these systems in unprecedented detail. However, such methods provide little mechanistic insight into how the genetic properties and the dynamic couplings between individual microorganisms give rise to their dynamic activities. Neither do they give insight into what we call `the community state', that is the fluxes and concentrations of nutrients within the community. This knowledge is a prerequisite for rational control and intervention in microbial communities. Therefore, the inference of the community structure from experimental data is a major current challenge. We will argue that this inference problem requires mathematical models that can integrate heterogeneous experimental data with existing knowledge. We propose that two types of models are needed. Firstly, mathematical models that integrate existing genomic, physiological, and physicochemical information with metagenomics data so as to maximize information content and predictive power. This can be achieved with the use of constraint-based genome-scale stoichiometric modeling of community metabolism which is ideally suited for this purpose. Next, we propose a simpler coarse-grained model, which is tailored to solve the inference problem from the experimental data. This model unambiguously relate to the more detailed genome-scale stoichiometric models which act as heterogeneous data integrators. The simpler inference models are, in our opinion, key to understanding microbial ecosystems, yet until now, have received remarkably little attention. This has led to the situation where the modeling of microbial communities, using only genome-scale models is currently more a computational, theoretical exercise than a method useful to the experimentalist.

  3. Perturbation of an arctic soil microbial community by metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Niraj [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Shah, Vishal [Department of Biology, Dowling College, Oakdale, NY 11769 (United States); Walker, Virginia K., E-mail: walkervk@queensu.ca [Department of Biology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada); Department of Biology, School of Environmental Studies and Department of Microbiology and Immunology, Queen' s University, Kingston, Ontario K7L 3N6 (Canada)

    2011-06-15

    Highlights: {yields} Silver, copper and silica nanoparticles had an impact on arctic soil {yields} A microbial community toxicity indicator was developed {yields} Community surveys using pyrosequencing confirmed a shift in bacterial biodiversity {yields} Troublingly, silver nanoparticles were highly toxic to a plant beneficial bacterium - Abstract: Technological advances allowing routine nanoparticle (NP) manufacture have enabled their use in electronic equipment, foods, clothing and medical devices. Although some NPs have antibacterial activity, little is known about their environmental impact and there is no information on the influence of NPs on soil in the possibly vulnerable ecosystems of polar regions. The potential toxicity of 0.066% silver, copper or silica NPs on a high latitude (>78{sup o}N) soil was determined using community level physiological profiles (CLPP), fatty acid methyl ester (FAME) assays and DNA analysis, including sequencing and denaturing gradient gel electrophoresis (DGGE). The results of these different investigations were amalgamated in order to develop a community toxicity indicator, which revealed that of the three NPs examined, silver NPs could be classified as highly toxic to these arctic consortia. Subsequent culture-based studies confirmed that one of the community-identified plant-associating bacteria, Bradyrhizobium canariense, appeared to have a marked sensitivity to silver NPs. Thus, NP contamination of arctic soils particularly by silver NPs is a concern and procedures for mitigation and remediation of such pollution should be a priority for investigation.

  4. Responses of soil microbial communities in the rhizosphere of cucumber (Cucumis sativus L.) to exogenously applied p-hydroxybenzoic acid.

    Science.gov (United States)

    Zhou, Xingang; Yu, Gaobo; Wu, Fengzhi

    2012-08-01

    Changes in soil biological properties have been implicated as one of the causes of soil sickness, a phenomenon that occurs in continuous monocropping systems. However, the causes for these changes are not yet clear. The aim of this work was to elucidate the role of p-hydroxybenzoic acid (PHBA), an autotoxin of cucumber (Cucumis sativus L.), in changing soil microbial communities. p-Hydroxybenzoic acid was applied to soil every other day for 10 days in cucumber pot assays. Then, the structures and sizes of bacterial and fungal communities, dehydrogenase activity, and microbial carbon biomass (MCB) were assessed in the rhizosphere soil. Structures and sizes of rhizosphere bacterial and fungal communities were analyzed by polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) and real-time PCR, respectively. p-Hydroxybenzoic acid inhibited cucumber seedling growth and stimulated rhizosphere dehydrogenase activity, MBC content, and bacterial and fungal community sizes. Rhizosphere bacterial and fungal communities responded differently to exogenously applied PHBA. The PHBA decreased the Shannon-Wiener index for the rhizosphere bacterial community but increased that for the rhizosphere fungal community. In addition, the response of the rhizosphere fungal community structure to PHBA acid was concentration dependent, but was not for the rhizosphere bacterial community structure. Our results indicate that PHBA plays a significant role in the chemical interactions between cucumber and soil microorganisms and could account for the changes in soil microbial communities in the continuously monocropped cucumber system.

  5. Heat output by marine microbial and viral communities

    Science.gov (United States)

    Djamali, Essmaiil; Nulton, James D.; Turner, Peter J.; Rohwer, Forest; Salamon, Peter

    2012-09-01

    The Marine Microbial Food Web (MMFW) includes heterotrophicmicrobes and their protist and viral predators. These microbes consume dissolved organic matter thereby making the MMFW a major component of global biogeochemical and energy cycles. However, quantification of the MMFW contribution to these cycles is dependent on a handful of techniques, all of which require laboratory-derived conversion factors. Here we describe a differential calorimeter capable of measuring the small amounts of heat produced by marine microbes and viruses at natural populations. Using this ultra-sensitive calorimeter, we show that heat production in the presence of viruses is significantly larger than in their absence. This increased heat output occurs despite a net decrease in the number of microbes. This provides direct evidence for top-down control of microbial populations by viruses and shows that there is increased re-mineralization. A comparative statics model was developed to interpret the calorimeter measurements. The spirit of the model is thermodynamic - it restricts its view to net changes in the populations and net heat produced. The model predicts that approximately 25% of the total heat production during the growth phase of a pelagic microbial community is due directly to viral activities. This result has implications for the energy budget of our planet and for climate prediction.

  6. PAH effects on meio- and microbial benthic communities strongly depend on bioavailability.

    Science.gov (United States)

    Lindgren, J Fredrik; Hassellöv, Ida-Maja; Dahllöf, Ingela

    2014-01-01

    The effects of anthropogenic pollutants in dissimilar habitats can vary depending on differences in bioavailability. The factors determining bioavailability are not yet fully understood. This study was performed to evaluate whether analysis of total PAH concentrations in sediments is a satisfactory measurement to indicate environmental effects or if bioavailability is needed to be taken into account. We have here performed a 60-day experiment, where nominal PAH concentrations of 1,300 μg/kg sediment were added to three different marine sediments. Meiofaunal and microbial communities were analyzed for alterations in community response at 30 and 60 days. Results showed that bioavailability of PAHs varied between the three different sediments. Nonetheless, the petroleum addition gave rise to significant negative effects on all three sediments at both time points. The two direct measurements of toxicity on the microbial community, potential nitrification and denitrification, displayed a lower effect of the PAH addition in the muddy sediment at both time points, compared to the other two sediment types. No effects were seen in the analysis of meiofaunal community structure. Measurements of PAH bioavailability in the three sediment types concurred with the results from the microbial community, revealing a lower bioavailability in the muddy sediment compared to the other two sediment types, 34% compared to sandy and 18% compared to organic at day 0. At day 60 it was 61% lower compared to sandy and 20% lower compared to organic. The negative effects of the PAH addition on the microbial nitrogen cycle were in six out of eight cases best correlated to the amount of alkylated bioavailable PAH in the sediments, and thus microbial nitrogen cycle is a possible good indicator for assessing PAH-induced stress. The results presented here have implications for risk analysis studies of petroleum-contaminated marine sediments; consequently, sediment characteristics and its effects on

  7. Response of microbial communities to phytoremediation of nickel contaminated soils

    Institute of Scientific and Technical Information of China (English)

    CAI Xinde; QIU Rongliang; CHEN Guizhu; ZENG Xiaowen; FANG Xiaohang

    2007-01-01

    Through pot experiment,effects ofphytoremediation on microbial communities in soils at different nickel treatment levels were studied.Two Ni hyperaccumulating and one Ni tolerant species were planted in paddy soils different in Ni concentration,ranging from 100 to 1 600 mg/kg.After 110 days of incubation,soil microbial activities were analyzed.Results showed that populations of bacteria,fungus,and actinomycetes and biomass of the microorganisms were stimulated when nickel was added at a rate of 100 mg/kg in non-rhizospheric soil.When the rate was over 100 mg/kg in the soil,adverse effects on the soil microbial communities were observed.The plantation of Ni hyperaccumulating species could increase both the population and biomass of soil microorganisms,because,by absorbing nickel from the soil and excreting root exudates,the plants reduced nickel toxicity and improved the living environment of the microbes.However,different plant species had different effects on microorganisms in soil.Randomly Amplified Polymorphic DNA (RAPD) with five primers was used in this study in 25 soil samples of four types of soils.A total of 947 amplified bands were obtained,including 888 polymorphic bands and 59 non-polymorphic bands.The results indicated that the composition of microbial DNA sequences had changed because of the addition of nickel to the treated soils.Shannon-Weaver index of soil microbial DNA sequences reduced in the nickel contaminated soils with increasing nickel concentration.The changes in ShannonWeaver index in the four types of soils ranged from 1.65 to 2.32 for Alyssum corsicum,1.37 to 2.27 for Alyssum murale,1.37 to 1.96 for Brassicajuncea,and 1.19 to 1.85 for nonrhizospheric soil.With the same amount of nickel added to soils,the Shannon-Weaver index in rhizospheric soil with plants was higher than that in non-rhizospheric soil.

  8. Convergent development of anodic bacterial communities in microbial fuel cells.

    KAUST Repository

    Yates, Matthew D

    2012-05-10

    Microbial fuel cells (MFCs) are often inoculated from a single wastewater source. The extent that the inoculum affects community development or power production is unknown. The stable anodic microbial communities in MFCs were examined using three inocula: a wastewater treatment plant sample known to produce consistent power densities, a second wastewater treatment plant sample, and an anaerobic bog sediment. The bog-inoculated MFCs initially produced higher power densities than the wastewater-inoculated MFCs, but after 20 cycles all MFCs on average converged to similar voltages (470±20 mV) and maximum power densities (590±170 mW m(-2)). The power output from replicate bog-inoculated MFCs was not significantly different, but one wastewater-inoculated MFC (UAJA3 (UAJA, University Area Joint Authority Wastewater Treatment Plant)) produced substantially less power. Denaturing gradient gel electrophoresis profiling showed a stable exoelectrogenic biofilm community in all samples after 11 cycles. After 16 cycles the predominance of Geobacter spp. in anode communities was identified using 16S rRNA gene clone libraries (58±10%), fluorescent in-situ hybridization (FISH) (63±6%) and pyrosequencing (81±4%). While the clone library analysis for the underperforming UAJA3 had a significantly lower percentage of Geobacter spp. sequences (36%), suggesting that a predominance of this microbe was needed for convergent power densities, the lower percentage of this species was not verified by FISH or pyrosequencing analyses. These results show that the predominance of Geobacter spp. in acetate-fed systems was consistent with good MFC performance and independent of the inoculum source.

  9. Microbial community structure affects marine dissolved organic matter composition

    Directory of Open Access Journals (Sweden)

    Elizabeth B Kujawinski

    2016-04-01

    Full Text Available Marine microbes are critical players in the global carbon cycle, affecting both the reduction of inorganic carbon and the remineralization of reduced organic compounds back to carbon dioxide. Members of microbial consortia all depend on marine dissolved organic matter (DOM and in turn, affect the molecules present in this heterogeneous pool. Our understanding of DOM produced by marine microbes is biased towards single species laboratory cultures or simplified field incubations, which exclude large phototrophs and protozoan grazers. Here we explore the interdependence of DOM composition and bacterial diversity in two mixed microbial consortia from coastal seawater: a whole water community and a <1.0-μm community dominated by heterotrophic bacteria. Each consortium was incubated with isotopically-labeled glucose for 9 days. Using stable-isotope probing techniques and electrospray ionization Fourier-transform ion cyclotron resonance mass spectrometry, we show that the presence of organisms larger than 1.0-μm is the dominant factor affecting bacterial diversity and low-molecular-weight (<1000 Da DOM composition over this experiment. In the <1.0-μm community, DOM composition was dominated by compounds with lipid and peptide character at all time points, confirmed by fragmentation spectra with peptide-containing neutral losses. In contrast, DOM composition in the whole water community was nearly identical to that in the initial coastal seawater. These differences in DOM composition persisted throughout the experiment despite shifts in bacterial diversity, underscoring an unappreciated role for larger microorganisms in constraining DOM composition in the marine environment.

  10. Temporal dynamics of microbial communities in microcosms in response to pollutants.

    Science.gov (United States)

    Jiao, Shuo; Zhang, Zhengqing; Yang, Fan; Lin, Yanbing; Chen, Weimin; Wei, Gehong

    2017-02-01

    Elucidating the mechanisms underlying microbial succession is a major goal of microbial ecology research. Given the increasing human pressure on the environment and natural resources, responses to the repeated introduction of organic and inorganic pollutants are of particular interest. To investigate the temporal dynamics of microbial communities in response to pollutants, we analysed the microbial community structure in batch microcosms that were inoculated with soil bacteria following exposure to individual or combined pollutants (phenanthrene, n-octadecane, phenanthrene + n-octadecane and phenanthrene + n-octadecane + CdCl2 ). Subculturing was performed at 10-day intervals, followed by high-throughput sequencing of 16S rRNA genes. The dynamics of microbial communities in response to different pollutants alone and in combination displayed similar patterns during enrichment. Specifically, the repression and induction of microbial taxa were dominant, and the fluctuation was not significant. The rate of appearance for new taxa and the temporal turnover within microbial communities were higher than the rates reported in other studies of microbial communities in air, water and soil samples. In addition, conditionally rare taxa that were specific to the treatments exhibited higher betweenness centrality values in the co-occurrence network, indicating a strong influence on other interactions in the community. These results suggest that the repeated introduction of pollutants could accelerate microbial succession in microcosms, resulting in the rapid re-equilibration of microbial communities.

  11. Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem.

    Directory of Open Access Journals (Sweden)

    Fuensanta García-Orenes

    Full Text Available Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA. Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain: residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass, suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage.

  12. Changes in soil microbial community structure influenced by agricultural management practices in a mediterranean agro-ecosystem.

    Science.gov (United States)

    García-Orenes, Fuensanta; Morugán-Coronado, Alicia; Zornoza, Raul; Cerdà, Artemi; Scow, Kate

    2013-01-01

    Agricultural practices have proven to be unsuitable in many cases, causing considerable reductions in soil quality. Land management practices can provide solutions to this problem and contribute to get a sustainable agriculture model. The main objective of this work was to assess the effect of different agricultural management practices on soil microbial community structure (evaluated as abundance of phospholipid fatty acids, PLFA). Five different treatments were selected, based on the most common practices used by farmers in the study area (eastern Spain): residual herbicides, tillage, tillage with oats and oats straw mulching; these agricultural practices were evaluated against an abandoned land after farming and an adjacent long term wild forest coverage. The results showed a substantial level of differentiation in the microbial community structure, in terms of management practices, which was highly associated with soil organic matter content. Addition of oats straw led to a microbial community structure closer to wild forest coverage soil, associated with increases in organic carbon, microbial biomass and fungal abundances. The microbial community composition of the abandoned agricultural soil was characterised by increases in both fungal abundances and the metabolic quotient (soil respiration per unit of microbial biomass), suggesting an increase in the stability of organic carbon. The ratio of bacteria:fungi was higher in wild forest coverage and land abandoned systems, as well as in the soil treated with oat straw. The most intensively managed soils showed higher abundances of bacteria and actinobacteria. Thus, the application of organic matter, such as oats straw, appears to be a sustainable management practice that enhances organic carbon, microbial biomass and activity and fungal abundances, thereby changing the microbial community structure to one more similar to those observed in soils under wild forest coverage.

  13. Plant and bird presence strongly influences the microbial communities in soils of Admiralty Bay, Maritime Antarctica.

    Directory of Open Access Journals (Sweden)

    Lia C R S Teixeira

    Full Text Available Understanding the environmental factors that shape microbial communities is crucial, especially in extreme environments, like Antarctica. Two main forces were reported to influence Antarctic soil microbes: birds and plants. Both birds and plants are currently undergoing relatively large changes in their distribution and abundance due to global warming. However, we need to clearly understand the relationship between plants, birds and soil microorganisms. We therefore collected rhizosphere and bulk soils from six different sampling sites subjected to different levels of bird influence and colonized by Colobanthus quitensis and Deschampsia antarctica in Admiralty Bay, King George Island, Maritime Antarctic. Microarray and qPCR assays targeting 16S rRNA genes of specific taxa were used to assess microbial community structure, composition and abundance and analyzed with a range of soil physico-chemical parameters. The results indicated significant rhizosphere effects in four out of the six sites, including areas with different levels of bird influence. Acidobacteria were significantly more abundant in soils with little bird influence (low nitrogen and in bulk soil. In contrast, Actinobacteria were significantly more abundant in the rhizosphere of both plant species. At two of the sampling sites under strong bird influence (penguin colonies, Firmicutes were significantly more abundant in D. antarctica rhizosphere but not in C. quitensis rhizosphere. The Firmicutes were also positively and significantly correlated to the nitrogen concentrations in the soil. We conclude that the microbial communities in Antarctic soils are driven both by bird and plants, and that the effect is taxa-specific.

  14. Microbial community analysis of anaerobic reactors treating soft drink wastewater.

    Directory of Open Access Journals (Sweden)

    Takashi Narihiro

    Full Text Available The anaerobic packed-bed (AP and hybrid packed-bed (HP reactors containing methanogenic microbial consortia were applied to treat synthetic soft drink wastewater, which contains polyethylene glycol (PEG and fructose as the primary constituents. The AP and HP reactors achieved high COD removal efficiency (>95% after 80 and 33 days of the operation, respectively, and operated stably over 2 years. 16S rRNA gene pyrotag analyses on a total of 25 biofilm samples generated 98,057 reads, which were clustered into 2,882 operational taxonomic units (OTUs. Both AP and HP communities were predominated by Bacteroidetes, Chloroflexi, Firmicutes, and candidate phylum KSB3 that may degrade organic compound in wastewater treatment processes. Other OTUs related to uncharacterized Geobacter and Spirochaetes clades and candidate phylum GN04 were also detected at high abundance; however, their relationship to wastewater treatment has remained unclear. In particular, KSB3, GN04, Bacteroidetes, and Chloroflexi are consistently associated with the organic loading rate (OLR increase to 1.5 g COD/L-d. Interestingly, KSB3 and GN04 dramatically decrease in both reactors after further OLR increase to 2.0 g COD/L-d. These results indicate that OLR strongly influences microbial community composition. This suggests that specific uncultivated taxa may take central roles in COD removal from soft drink wastewater depending on OLR.

  15. Iron Homeostasis in Yellowstone National Park Hot Spring Microbial Communities

    Science.gov (United States)

    Brown, I.; Tringe, S. G.; Franklin, H.; Bryant, D. A.; Klatt, C. G.; Sarkisova, S. A.; Guevara, M.

    2010-01-01

    It has been postulated that life may have originated on Earth, and possibly on Mars, in association with hydrothermal activity and high concentrations of ferrous iron. However, it is not clear how an iron-rich thermal hydrosphere could be hospitable to microbes, since reduced iron appears to stimulate oxidative stress in all domains of life and particularly in oxygenic phototrophs. Therefore, the study of microbial diversity in iron-depositing hot springs (IDHS) and the mechanisms of iron homeostasis and suppression of oxidative stress may help elucidate how Precambrian organisms could withstand the extremely high concentrations of reactive oxygen species (ROS) produced by interaction between environmental Fe(2+) and O2. Proteins and clusters of orthologous groups (COGs) involved in the maintenance of Fe homeostasis found in cyanobacteria (CB) inhabiting environments with high and low [Fe] were main target of this analysis. Preliminary results of the analysis suggest that the Chocolate Pots (CP) microbial community is heavily dominated by phototrophs from the cyanobacteria (CB), Chloroflexi and Chlorobi phyla, while the Mushroom Spring (MS) effluent channel harbors a more diverse community in which Chloroflexi are the dominant phototrophs. It is speculated that CB inhabiting IDHS have an increased tolerance to both high concentrations of Fe(2+) and ROS produced in the Fenton reaction. This hypothesis was explored via a comparative analysis of the diversity of proteins and COGs involved in Fe and redox homeostasis in the CP and MS microbiomes.

  16. Similar Microbial Communities Found on Two Distant Seafloor Basalts.

    Science.gov (United States)

    Singer, Esther; Chong, Lauren S; Heidelberg, John F; Edwards, Katrina J

    2015-01-01

    The oceanic crust forms two thirds of the Earth's surface and hosts a large phylogenetic and functional diversity of microorganisms. While advances have been made in the sedimentary realm, our understanding of the igneous rock portion as a microbial habitat has remained limited. We present the first comparative metagenomic microbial community analysis from ocean floor basalt environments at the Lō'ihi Seamount, Hawai'i, and the East Pacific Rise (EPR; 9°N). Phylogenetic analysis indicates the presence of a total of 43 bacterial and archaeal mono-phyletic groups, dominated by Alpha- and Gammaproteobacteria, as well as Thaumarchaeota. Functional gene analysis suggests that these Thaumarchaeota play an important role in ammonium oxidation on seafloor basalts. In addition to ammonium oxidation, the seafloor basalt habitat reveals a wide spectrum of other metabolic potentials, including CO2 fixation, denitrification, dissimilatory sulfate reduction, and sulfur oxidation. Basalt communities from Lō'ihi and the EPR show considerable metabolic and phylogenetic overlap down to the genus level despite geographic distance and slightly different seafloor basalt mineralogy.

  17. Metagenomic Sequencing of an In Vitro-Simulated Microbial Community

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, Jenna L.; Darling, Aaron E.; Eisen, Jonathan A.

    2009-12-01

    Background: Microbial life dominates the earth, but many species are difficult or even impossible to study under laboratory conditions. Sequencing DNA directly from the environment, a technique commonly referred to as metagenomics, is an important tool for cataloging microbial life. This culture-independent approach involves collecting samples that include microbes in them, extracting DNA from the samples, and sequencing the DNA. A sample may contain many different microorganisms, macroorganisms, and even free-floating environmental DNA. A fundamental challenge in metagenomics has been estimating the abundance of organisms in a sample based on the frequency with which the organism's DNA was observed in reads generated via DNA sequencing. Methodology/Principal Findings: We created mixtures of ten microbial species for which genome sequences are known. Each mixture contained an equal number of cells of each species. We then extracted DNA from the mixtures, sequenced the DNA, and measured the frequency with which genomic regions from each organism was observed in the sequenced DNA. We found that the observed frequency of reads mapping to each organism did not reflect the equal numbers of cells that were known to be included in each mixture. The relative organism abundances varied significantly depending on the DNA extraction and sequencing protocol utilized. Conclusions/Significance: We describe a new data resource for measuring the accuracy of metagenomic binning methods, created by in vitro-simulation of a metagenomic community. Our in vitro simulation can be used to complement previous in silico benchmark studies. In constructing a synthetic community and sequencing its metagenome, we encountered several sources of observation bias that likely affect most metagenomic experiments to date and present challenges for comparative metagenomic studies. DNA preparation methods have a particularly profound effect in our study, implying that samples prepared with

  18. Comparison of intact polar lipid with microbial community composition of vent deposits of the Rainbow and Lucky Strike hydrothermal fields

    NARCIS (Netherlands)

    Gibson, R.A.; van der Meer, M.T.J.; Hopmans, E.C.; Reysenbach, A.-L.; Schouten, S.; Sinninghe Damsté, J.S.

    2013-01-01

    The intact polar lipid (IPL) composition of twelve hydrothermal vent deposits from the Rainbow (RHF) and Lucky Strike hydrothermal fields (LSHF) has been investigated in order to assess its utility as a proxy for microbial community composition associated with deep-sea hydrothermal locations. Gene-b

  19. An evaluation of the impact of multi-walled carbon nanotubes on soil microbial community structure and functional diversity

    Science.gov (United States)

    Increasing application of carbon nanotubes (CNTs) triggers the need for an assessment of their effects on organisms in the environment. Soil microbial communities play a significant role in soil organic matter dynamics and nutrient cycling. This study evaluated the impacts of multi-walled carbon nan...

  20. Microbial community response to the CO2 injection and storage in the saline aquifer, Ketzin, Germany

    Science.gov (United States)

    Morozova, Daria; Zettlitzer, Michael; Vieth, Andrea; Würdemann, Hilke

    2010-05-01

    The concept of CO2 capture and storage in the deep underground is currently receiving great attention as a consequence of the effects of global warming due to the accumulation of carbon dioxide gas in the atmosphere. The EU funded CO2SINK project is aimed as a pilot storage of CO2 in a saline aquifer located near Ketzin, Germany. One of the main aims of the project is to develop efficient monitoring procedures for assessing the processes that are triggered in the reservoir by CO2 injection. This study reveals analyses of the composition and activity of the microbial community of a saline CO2 storage aquifer and its response to CO2 injection. The availability of CO2 has an influence on the metabolism of both heterotrophic microorganisms, which are involved in carbon cycle, and lithoautotrophic microorganisms, which are able to use CO2 as the sole carbon source and electron acceptor. Injection of CO2 in the supercritical state (temperature above 31.1 °C, pressure above 72.9 atm) may induce metabolic shifts in the microbial communities. Furthermore, bacterial population and activity can be strongly influenced by changes in pH value, pressure, temperature, salinity and other abiotic factors, which will be all influenced by CO2 injection into the deep subsurface. Analyses of the composition of microbial communities and its changes should contribute to an evaluation of the effectiveness and reliability of the long-term CO2 storage technique. The interactions between microorganisms and the minerals of both the reservoir and the cap rock may cause major changes to the structure and chemical composition of the rock formations, which would influence the permeability within the reservoir. In addition, precipitation and corrosion may occur around the well affecting the casing and the casing cement. By using Fluorescence in situ Hybridisation (FISH) and molecular fingerprinting such as Polymerase-Chain-Reaction Single-Strand-Conformation Polymorphism (PCR-SSCP) and Denaturing

  1. Characterization and identification of microbial communities in bovine necrotic vulvovaginitis.

    Science.gov (United States)

    Shpigel, N Y; Adler-Ashkenazy, L; Scheinin, S; Goshen, T; Arazi, A; Pasternak, Z; Gottlieb, Y

    2017-01-01

    Bovine necrotic vulvovaginitis (BNVV) is a severe and potentially fatal disease of post-partum cows that emerged in Israel after large dairy herds were merged. While post-partum cows are commonly affected by mild vulvovaginitis (BVV), in BNVV these benign mucosal abrasions develop into progressive deep necrotic lesions leading to sepsis and death if untreated. The etiology of BNVV is still unknown and a single pathogenic agent has not been found. We hypothesized that BNVV is a polymicrobial disease where the normally benign vaginal microbiome is remodeled and affects the local immune response. To this end, we compared the histopathological changes and the microbial communities using 16S rDNA metagenetic technique in biopsies taken from vaginal lesions in post-partum cows affected by BVV and BNVV. The hallmark of BNVV was the formation of complex polymicrobial communities in the submucosal fascia and abrogation of neutrophil recruitment in these lesions. Additionally, there was a marked difference in the composition of bacterial communities in the BNVV lesions in comparison to the benign BVV lesions. This difference was characterized by the abundance of Bacteroidetes and lower total community membership in BNVV. Indicator taxa for BNVV were Parvimonas, Porphyromonas, unclassified Veillonellaceae, Mycoplasma and Bacteroidetes, whereas unclassified Clostridiales was an indicator for BVV. The results support a polymicrobial etiology for BNVV.

  2. Response of Antarctic cryoconite microbial communities to light.

    Science.gov (United States)

    Bagshaw, Elizabeth A; Wadham, Jemma L; Tranter, Martyn; Perkins, Rupert; Morgan, Alistair; Williamson, Christopher J; Fountain, Andrew G; Fitzsimons, Sean; Dubnick, Ashley

    2016-06-01

    Microbial communities on polar glacier surfaces are found dispersed on the ice surface, or concentrated in cryoconite holes and cryolakes, which are accumulations of debris covered by a layer of ice for some or all of the year. The ice lid limits the penetration of photosynthetically available radiation (PAR) to the sediment layer, since the ice attenuates up to 99% of incoming radiation. This suite of field and laboratory experiments demonstrates that PAR is an important control on primary production in cryoconite and cryolake ecosystems. Increased light intensity increased efficiency of primary production in controlled laboratory incubations of debris from the surface of Joyce Glacier, McMurdo Dry Valleys, Antarctica. However, when light intensity was increased to levels near that received on the ice surface, without the protection of an ice lid, efficiency decreased and measurements of photophysiology showed that the communities suffered light stress. The communities are therefore well adapted to low light levels. Comparison with Arctic cryoconite communities, which are typically not covered by an ice lid for the majority of the ablation season, showed that these organisms were also stressed by high light, so they must employ strategies to protect against photodamage.

  3. Microbial Community Dynamics of Lactate Enriched Hanford Groundwaters

    Energy Technology Data Exchange (ETDEWEB)

    Mosher, Jennifer J.; Drake, Meghan M.; Carroll, Susan L.; Yang, Zamin K.; Schadt, Christopher W.; Brown, Stephen D.; Podar, Mircea; Hazen, Terry C.; Arkin, Adam P.; Phelps, Tommy J.; Palumbo, Anthony V.; Faybishenko, Boris A.; Elias, Dwayne A.

    2010-05-01

    The Department of Energy site at Hanford, WA, has been historically impacted by U and Cr from the nuclear weapons industry. In an attempt to stimulate microbial remediation of these metals, in-situ lactate enrichment experiments are ongoing. In order to bridge the gap from the laboratory to the field, we inoculated triplicate anaerobic, continuous-flow glass reactors with groundwater collected from well Hanford 100-H in order to obtain a stable, enriched community while selecting for metal-reducing bacteria. Each reactor was fed from a single carboy containing defined media with 30 mM lactate at a rate of 0.223 ml/min under continuous nitrogen flow at 9 ml/min. Cell counts, organic acids, gDNA (for qPCR and pyrosequencing) and gases were sampled during the experiment. Cell counts remained low (less than 1x107 cells/ml) during the first two weeks of the experiment, but by day 20, had reached a density greater than 1x108 cells/ml. Metabolite analysis showed a decrease in the lactate concentrations over time. Pyruvate concentrations ranged from 20-40 uM the first week of the experiment then was undetectable after day 10. Likewise, formate appeared in the reactors during the first week with concentrations of 1.48-1.65 mM at day 7 then the concentrations decreased to 0.69-0.95 on day 10 and were undetectable on day 15. Acetate was present in low amounts on day 3 (0.15-0.33 mM) and steadily increased to 3.35-5.22 mM over time. Similarly, carbon dioxide was present in low concentrations early on and increased to 0.28-0.35 mM as the experiment progressed. We also were able to detect low amounts of methane (10-20 uM) during the first week of the experiment, but by day 10 the methane was undetectable. From these results and pyrosequencing analysis, we conclude that a shift in the microbial community dynamics occurred over time to eventually form a stable and enriched microbial community. Comprehensive investigations such as these allow for the examination of not only which

  4. A community assessment model appropriate for the Iranian community.

    Directory of Open Access Journals (Sweden)

    Kourosh Holakouie Naieni

    2014-03-01

    Full Text Available Community assessment is one of the core competencies for public health professionals; mainly because it gives them a better understanding of the strengths and drawbacks of their jurisdictions. We planned to recognize an appropriate model that provides a conceptual framework for the Iranian community.This study was conducted in Tehran, during 2009-2010 and consisted of two parts: a review of the literature and qualitative interview with selected experts as well as focus group discussion with health field staff. These steps were done to develop a conceptual framework: planning for a steering committee, forming a working committee, re-viewing community assessment models and projects, preparing the proposed model draft, in-depth interview and focused group discussions with national experts, finalizing the draft, and preparing the final model.Three different models published and applied routinely in different contexts. The 2008 North Carolina Community Assessment model was used as a reference. Ten national and 18 international projects were compared to the reference and one and six projects were completely compatible with this model, respectively.Our final proposed model takes communities through eight steps to complete a collaborative community assessment: form a community assessment team, solicit community participation and gain inter-sectoral collaboration, establish a working committee, empower the community, collect and analyze community's primary and secondary statistics, solicit community input to select health priorities, evaluate the community assessment and develop the community assessment document, an develop the community action plans.

  5. Systematic evaluation of bias in microbial community profiles induced by whole genome amplification

    NARCIS (Netherlands)

    Direito, S.O.L.; Zaura, E.; Little, M.; Ehrenfreund, P.; Röling, W.F.M.

    2014-01-01

    Whole genome amplification methods facilitate the detection and characterization of microbial communities in low biomass environments. We examined the extent to which the actual community structure is reliably revealed and factors contributing to bias. One widely used [multiple displacement amplific

  6. Comparative analysis of microbial community between different cathode systems of microbial fuel cells for denitrification.

    Science.gov (United States)

    Li, Chao; Xu, Ming; Lu, Yi; Fang, Fang; Cao, Jiashun

    2016-01-01

    Two types of cathodic biofilm in microbial fuel cells (MFC) were established for comparison on their performance and microbial communities. Complete autotrophic simultaneous nitrification and denitrification (SND) without organics addition was achieved in nitrifying-MFC (N-MFC) with a total nitrogen (TN) removal rate of 0.35 mg/(L·h), which was even higher than that in denitrifying-MFC (D-MFC) at same TN level. Integrated denaturing gradient gel electrophoresis analysis based on both 16S rRNA and nirK genes showed that Alpha-, Gammaproteobacteria were the main denitrifier communities. Some potential autotrophic denitrifying bacteria which can use electrons and reducing power from cathodes, such as Shewanella oneidensis, Shewanella loihica, Pseudomonas aeruginosa, Starkeya novella and Rhodopseudomonas palustris were identified and selectively enriched on cathode biofilms. Further, relative abundance of denitrifying bacteria characterized by nirK/16S ratios was much higher in biofilm than suspended sludge according to real-time polymerase chain reaction. The highest enrichment efficiency for denitrifiers was obtained in N-MFC cathode biofilms, which confirmed autotrophic denitrifying bacteria enrichment is the key factor for a D-MFC system.

  7. Wastewater treatment and public health in Nunavut: a microbial risk assessment framework for the Canadian Arctic

    DEFF Research Database (Denmark)

    Daley, Kiley; Jamieson, Rob; Rainham, Daniel

    2017-01-01

    . This review offers a conceptual framework and evaluation of current knowledge to enable the first microbial risk assessment of exposure scenarios associated with food-harvesting and recreational activities in Arctic communities, where simplified wastewater systems are being operated.......Wastewater management in Canadian Arctic communities is influenced by several geographical factors including climate, remoteness, population size, and local food-harvesting practices. Most communities use trucked collection services and basic treatment systems, which are capable of only low...... into the terrestrial and aquatic environment at random times. Northern communities rely heavily on their local surroundings as a source of food, drinking water, and recreation, thus creating the possibility of human exposure to wastewater effluent. Human exposure to microbial hazards present in municipal wastewater...

  8. Phylogenetic and Functional Diversity of Microbial Communities Associated with Subsurface Sediments of the Sonora Margin, Guaymas Basin

    OpenAIRE

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan Georges Philippe; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Barry A Cragg; Parkes, Ronald John; Joy D Van Nostrand; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    International audience; Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PC...

  9. Statistical approach of functional profiling for a microbial community.

    Directory of Open Access Journals (Sweden)

    Lingling An

    Full Text Available Metagenomics is a relatively new but fast growing field within environmental biology and medical sciences. It enables researchers to understand the diversity of microbes, their functions, cooperation, and evolution in a particular ecosystem. Traditional methods in genomics and microbiology are not efficient in capturing the structure of the microbial community in an environment. Nowadays, high-throughput next-generation sequencing technologies are powerfully driving the metagenomic studies. However, there is an urgent need to develop efficient statistical methods and computational algorithms to rapidly analyze the massive metagenomic short sequencing data and to accurately detect the features/functions present in the microbial community. Although several issues about functions of metagenomes at pathways or subsystems level have been investigated, there is a lack of studies focusing on functional analysis at a low level of a hierarchical functional tree, such as SEED subsystem tree.A two-step statistical procedure (metaFunction is proposed to detect all possible functional roles at the low level from a metagenomic sample/community. In the first step a statistical mixture model is proposed at the base of gene codons to estimate the abundances for the candidate functional roles, with sequencing error being considered. As a gene could be involved in multiple biological processes the functional assignment is therefore adjusted by utilizing an error distribution in the second step. The performance of the proposed procedure is evaluated through comprehensive simulation studies. Compared with other existing methods in metagenomic functional analysis the new approach is more accurate in assigning reads to functional roles, and therefore at more general levels. The method is also employed to analyze two real data sets.metaFunction is a powerful tool in accurate profiling functions in a metagenomic sample.

  10. Seasonal variation in functional properties of microbial communities in beech forest soil.

    Science.gov (United States)

    Koranda, Marianne; Kaiser, Christina; Fuchslueger, Lucia; Kitzler, Barbara; Sessitsch, Angela; Zechmeister-Boltenstern, Sophie; Richter, Andreas

    2013-05-01

    Substrate quality and the availability of nutrients are major factors controlling microbial decomposition processes in soils. Seasonal alteration in resource availability, which is driven by plants via belowground C allocation, nutrient uptake and litter fall, also exerts effects on soil microbial community composition. Here we investigate if seasonal and experimentally induced changes in microbial community composition lead to alterations in functional properties of microbial communities and thus microbial processes. Beech forest soils characterized by three distinct microbial communities (winter and summer community, and summer community from a tree girdling plot, in which belowground carbon allocation was interrupted) were incubated with different (13)C-labeled substrates with or without inorganic N supply and analyzed for substrate use and various microbial processes. Our results clearly demonstrate that the three investigated microbial communities differed in their functional response to addition of various substrates. The winter communities revealed a higher capacity for degradation of complex C substrates (cellulose, plant cell walls) than the summer communities, indicated by enhanced cellulase activities and reduced mineralization of soil organic matter. In contrast, utilization of labile C sources (glucose) was lower in winter than in summer, demonstrating that summer and winter community were adapted to the availability of different substrates. The saprotrophic community established in girdled plots exhibited a significantly higher utilization of complex C substrates than the more plant root associated community in control plots if additional nitrogen was provided. In this study we were able to demonstrate experimentally that variation in resource availability as well as seasonality in temperate forest soils cause a seasonal variation in functional properties of soil microorganisms, which is due to shifts in community structure and physiological

  11. Molecular assessment of bacterial community dynamics and functional endpoints during sediment bioaccumulation test

    NARCIS (Netherlands)

    Diepens, N.J.; Dimitrov, M.R.; Koelmans, A.A.; Smidt, H.

    2015-01-01

    Whole sediment toxicity tests play an important role in environmental risk assessment of organic chemicals. It is not clear, however, to what extent changing microbial community composition and associated functions affect sediment test results. We assessed the development of bacterial communities in

  12. Soil Microbial Community Structure and Metabolic Activity of Pinus elliottii Plantations across Different Stand Ages in a Subtropical Area.

    Directory of Open Access Journals (Sweden)

    Zeyan Wu

    Full Text Available Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA combined with community level physiological profiles (CLPP method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12 and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand

  13. Soil Microbial Community Structure and Metabolic Activity of Pinus elliottii Plantations across Different Stand Ages in a Subtropical Area.

    Science.gov (United States)

    Wu, Zeyan; Haack, Stacey Elizabeth; Lin, Wenxiong; Li, Bailian; Wu, Linkun; Fang, Changxun; Zhang, Zhixing

    2015-01-01

    Soil microbes play an essential role in the forest ecosystem as an active component. This study examined the hypothesis that soil microbial community structure and metabolic activity would vary with the increasing stand ages in long-term pure plantations of Pinus elliottii. The phospholipid fatty acids (PLFA) combined with community level physiological profiles (CLPP) method was used to assess these characteristics in the rhizospheric soils of P. elliottii. We found that the soil microbial communities were significantly different among different stand ages of P. elliottii plantations. The PLFA analysis indicated that the bacterial biomass was higher than the actinomycic and fungal biomass in all stand ages. However, the bacterial biomass decreased with the increasing stand ages, while the fungal biomass increased. The four maximum biomarker concentrations in rhizospheric soils of P. elliottii for all stand ages were 18:1ω9c, 16:1ω7c, 18:3ω6c (6,9,12) and cy19:0, representing measures of fungal and gram negative bacterial biomass. In addition, CLPP analysis revealed that the utilization rate of amino acids, polymers, phenolic acids, and carbohydrates of soil microbial community gradually decreased with increasing stand ages, though this pattern was not observed for carboxylic acids and amines. Microbial community diversity, as determined by the Simpson index, Shannon-Wiener index, Richness index and McIntosh index, significantly decreased as stand age increased. Overall, both the PLFA and CLPP illustrated that the long-term pure plantation pattern exacerbated the microecological imbalance previously described in the rhizospheric soils of P. elliottii, and markedly decreased the soil microbial community diversity and metabolic activity. Based on the correlation analysis, we concluded that the soil nutrient and C/N ratio most significantly contributed to the variation of soil microbial community structure and metabolic activity in different stand ages of P

  14. [Characteristics of microbial community and operation efficiency in biofilter process for drinking water purification].

    Science.gov (United States)

    Xiang, Hong; Lü, Xi-Wu; Yang, Fei; Yin, Li-Hong; Zhu, Guang-Can

    2011-04-01

    In order to explore characteristics of microbial community and operation efficiency in biofilter (biologically-enhanced active filter and biological activated carbon filter) process for drinking water purification, Biolog and polymerase chain reaction-single strand conformation polymorphism (PCR-SSCP) techniques were applied to analyze the metabolic function and structure of microbial community developing in biofilters. Water quality parameters, such as NH; -N, NO; -N, permanganate index, UV254 and BDOC etc, were determined in inflow and outflow of biofilters for investigation of operation efficiency of the biofilters. The results show that metabolic capacity of microbial community of the raw water is reduced after the biofilters, which reflect that metabolically active microbial communities in the raw water can be intercepted by biofilters. After 6 months operation of biofilters, the metabolic profiles of microbial communities are similar between two kinds of biologically-enhanced active filters, and utilization of carbon sources of microbial communities in the two filters are 73.4% and 75.5%, respectively. The metabolic profiles of microbial communities in two biological activated carbon filters showed significant difference. The carbon source utilization rate of microbial community in granule-activated carbon filter is 79.6%, which is obviously higher than 53.8% of the rate in the columnar activated carbon filter (p water purification efficiency was not significant (p > 0.05). However, in biological activated carbon filters, granule-activated carbon is conducive to microbial growth and reproduction, and the microbial communities in the biofilter present high metabolic activities, and the removal efficiency for NH4(+)-N, permanganate index and BDOC is better than the columnar activated carbon filter(p < 0.05). The results also suggest that operation efficiency of biofilter is related to the metabolic capacity of microbial community in biofilter.

  15. Microbial communities affecting albumen photography heritage: a methodological survey

    Science.gov (United States)

    Puškárová, Andrea; Bučková, Mária; Habalová, Božena; Kraková, Lucia; Maková, Alena; Pangallo, Domenico

    2016-02-01

    This study is one of the few investigations which analyze albumen prints, perhaps the most important photographic heritage of the late 19th and early 20th centuries. The chemical composition of photographic samples was assessed using Fourier-transform infrared spectroscopy and X-ray fluorescence. These two non-invasive techniques revealed the complex nature of albumen prints, which are composed of a mixture of proteins, cellulose and salts. Microbial sampling was performed using cellulose nitrate membranes which also permitted the trapped microflora to be observed with a scanning electron microscope. Microbial analysis was performed using the combination of culture-dependent (cultivation in different media, including one 3% NaCl) and culture-independent (bacterial and fungal cloning and sequencing) approaches. The isolated microorganisms were screened for their lipolytic, proteolytic, cellulolytic, catalase and peroxidase activities. The combination of the culture-dependent and -independent techniques together with enzymatic assays revealed a substantial microbial diversity with several deteriogen microorganisms from the genera Bacillus, Kocuria, Streptomyces and Geobacillus and the fungal strains Acrostalagmus luteoalbus, Bjerkandera adusta, Pleurotus pulmonarius and Trichothecium roseum.

  16. [Analysis of Microbial Community in the Membrane Bio-Reactor (MBR) Rural Sewage Treatment System].

    Science.gov (United States)

    Kong, Xiao; Cui, Bing-jian; Jin, De-cai; Wu, Shang-hua; Yang, Bo; Deng, Ye; Zhuang, Guo-qiang; Zhuang, Xu-liang

    2015-09-01

    Uncontrolled release and arbitrary irrigation reuse of rural wastewater may lead to water pollution, and the microbial pathogens could threaten the safety of freshwater resources and public health. To understand the microbial community structure of rural wastewater and provide the theory for microbial risk assessment of wastewater irrigation, microbial community diversities in the Membrane Bio-Reactor (MBR) process for rural wastewater treatment was studied by terminal restriction fragment length polymorphism (T-RFLP) and 16S rDNA gene clone library. Meanwhile, changes of Arcobacter spp. and total bacteria before and after treatment were detected through real-time quantitative PCR. The clone library results showed that there were 73 positive clones included Proteobacteria (91. 80%), Firmicutes (2. 70%), Bacteroidetes (1. 40%), and uncultured bacteria (4. 10%) in the untreated wastewater. The typical pathogenic genus Arcobacter belonging to e-Proteobacteria was the dominant component of the library, accounting for 68. 5% of all clones. The main groups and their abundance in different treatments were significantly distinct. The highest values of species abundance (S), Shannon-Wiener (H) and Evenness (E) were observed in the adjusting tank, which were 43. 0, 3. 56 and 0. 95, respectively. The real-time quantitative PCR results showed that the copy number of Arcobacter spp. was (1. 09 ± 0. 064 0) x 10(11) copies.L-1 in the untreated sewage, which was consistent with the result of 16S rDNA gene clone library. Compared to untreated wastewater, bacterial copy number in the treated effluent decreased 100 to 1 000 times, respectively, suggesting that MBR treatment system could remove the microbial quantity in such scale. In the recycled water, the physicochemical parameters and indicator bacteria met the water quality standard of farmland irrigation. However, further research is needed to estimate the potential health risks caused by residual pathogenic microorganisms in

  17. Spatial patterns and links between microbial community composition and function in cyanobacterial mats

    KAUST Repository

    Alnajjar, Mohammad Ahmad

    2014-08-06

    We imaged reflectance and variable fluorescence in 25 cyanobacterial mats from four distant sites around the globe to assess, at different scales of resolution, spatial variabilities in the physiological parameters characterizing their photosynthetic capacity, including the absorptivity by chlorophyll a (Achl), maximum quantum yield of photosynthesis (Ymax), and light acclimation irradiance (Ik). Generally, these parameters significantly varied within individual mats on a sub-millimeter scale, with about 2-fold higher variability in the vertical than in the horizontal direction. The average vertical profiles of Ymax and Ik decreased with depth in the mat, while Achl exhibited a sub-surface maximum. The within-mat variability was comparable to, but often larger than, the between-sites variability, whereas the within-site variabilities (i.e., between samples from the same site) were generally lowest. When compared based on averaged values of their photosynthetic parameters, mats clustered according to their site of origin. Similar clustering was found when the community composition of the mats\\' cyanobacterial layers were compared by automated ribosomal intergenic spacer analysis (ARISA), indicating a significant link between the microbial community composition and function. Although this link is likely the result of community adaptation to the prevailing site-specific environmental conditions, our present data is insufficient to identify the main factors determining these patterns. Nevertheless, this study demonstrates that the spatial variability in the photosynthetic capacity and light acclimation of benthic phototrophic microbial communities is at least as large on a sub-millimeter scale as it is on a global scale, and suggests that this pattern of variability scaling is similar for the microbial community composition. © 2014 Al-Najjar, Ramette, Kühl, Hamza, Klatt and Polerecky.

  18. Life at the wedge: the activity and diversity of arctic ice wedge microbial communities.

    Science.gov (United States)

    Wilhelm, Roland C; Radtke, Kristin J; Mykytczuk, Nadia C S; Greer, Charles W; Whyte, Lyle G

    2012-04-01

    The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .

  19. Microbial Community Structure of a Leachfield Soil: Response to Intermittent Aeration and Tetracycline Addition

    Directory of Open Access Journals (Sweden)

    David A. Potts

    2013-04-01

    Full Text Available Soil-based wastewater treatment systems, or leachfields, rely on microbial processes for improving the quality of wastewater before it reaches the groundwater. These processes are affected by physicochemical system properties, such as O2 availability, and disturbances, such as the presence of antimicrobial compounds in wastewater. We examined the microbial community structure of leachfield mesocosms containing native soil and receiving domestic wastewater under intermittently-aerated (AIR and unaerated (LEACH conditions before and after dosing with tetracycline (TET. Community structure was assessed using phospholipid fatty acid analysis (PLFA, analysis of dominant phylotypes using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR–DGGE, and cloning and sequencing of 16S rRNA genes. Prior to dosing, the same PLFA biomarkers were found in soil from AIR and LEACH treatments, although AIR soil had a larger active microbial population and higher concentrations for nine of 32 PLFA markers found. AIR soil also had a larger number of dominant phylotypes, most of them unique to this treatment. Dosing of mesocosms with TET had a more marked effect on AIR than LEACH soil, reducing the size of the microbial population and the number and concentration of PLFA markers. Dominant phylotypes decreased by ~15% in response to TET in both treatments, although the AIR treatment retained a higher number of phylotypes than the LEACH treatment. Fewer than 10% of clones were common to both OPEN ACCESS Water 2013, 5 506 AIR and LEACH soil, and fewer than 25% of the clones from either treatment were homologous with isolates of known genus and species. These included human pathogens, as well as bacteria involved in biogeochemical transformations of C, N, S and metals, and biodegradation of various organic contaminants. Our results show that intermittent aeration has a marked effect on the size and structure of the microbial community that develops in

  20. Rhizosphere microbial community and its response to plant species and soil history

    NARCIS (Netherlands)

    Garbeva, P.V.; van Elsas, J.D.; Van Veen, J.A.

    2008-01-01

    The plant rhizosphere is a dynamic environment in which many parameters may influence the population structure, diversity and activity of the microbial community. Two important factors determining the structure of microbial community present in the vicinity of plant roots are plant species and soil

  1. Impact of long-term Diesel Contamination on Soil Microbial Community Structure

    NARCIS (Netherlands)

    Sutton, N.B.; Maphosa, F.; Morillo, J.A.; Abu Al-Soud, W.; Langenhoff, A.A.M.; Grotenhuis, J.T.C.; Rijnaarts, H.H.M.; Smidt, H.

    2013-01-01

    Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical pro

  2. Microbial activity and community structure in two drained fen soils in the Ljubljana Marsh

    NARCIS (Netherlands)

    Kraigher, Barbara; Stres, Blaz; Hacin, Janez; Ausec, Luka; Mahne, Ivan; van Elsas, Jan D.; Mandic-Mulec, Ines

    2006-01-01

    Fen peatlands are specific wetland ecosystems containing high soil organic carbon (SOC). There is a general lack of knowledge about the microbial communities that abound in these systems. We examined the microbial activity and community structure in two fen soils differing in SOC content sampled fro

  3. Integrated omics for the identification of key functionalities in biological wastewater treatment microbial communities

    OpenAIRE

    Narayanasamy, Shaman; Muller, Emilie; Sheik, Abdul; Wilmes, Paul

    2015-01-01

    Biological wastewater treatment plants harbour diverse and complex microbial communities which prominently serve as models for microbial ecology and mixed culture biotechnological processes. Integrated omic analyses (combined metagenomics, metatranscriptomics, metaproteomics and metabolomics) are currently gaining momentum towards providing enhanced understanding of community structure, function and dynamics in situ as well as offering the potential to discover novel biological functionalitie...

  4. Microbial communities associated with stable fly (Diptera: Muscidae) larvae and their developmental substrates

    Science.gov (United States)

    Bacteria are essential for stable fly (Stomoxys calcitrans (L.)) larval survival and development, but little is known about the innate microbial communities of stable flies, and it is not known if their varied dietary substrates influence their gut microbial communities. This investigation utilized ...

  5. Shifts of microbial communities of wheat (Triticum aestivum L.) cultivation in a closed artificial ecosystem.

    Science.gov (United States)

    Qin, Youcai; Fu, Yuming; Dong, Chen; Jia, Nannan; Liu, Hong

    2016-05-01

    The microbial communities of plant ecosystems are in relation to plant growing environment, but the alteration in biodiversity of rhizosphere and phyllosphere microbial communities in closed and controlled environments is unknown. The purpose of this study is to analyze the change regularity of microbial communities with wheat plants dependent-cultivated in a closed artificial ecosystem. The microbial community structures in closed-environment treatment plants were investigated by a culture-dependent approach, polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE), and Illumina Miseq high-throughput sequencing. The results indicated that the number of microbes decreased along with time, and the magnitude of bacteria, fungi, and actinomycetes were 10(7)-10(8), 10(5), and 10(3)-10(4) CFU/g (dry weight), respectively. The analysis of PCR-DGGE and Illumina Miseq revealed that the wheat leaf surface and near-root substrate had different microbial communities at different periods of wheat ecosystem development and showed that the relative highest diversity of microbial communities appeared at late and middle periods of the plant ecosystem, respectively. The results also indicated that the wheat leaf and substrate had different microbial community compositions, and the wheat substrate had higher richness of microbial community than the leaf. Flavobacterium, Pseudomonas, Paenibacillus, Enterobacter, Penicillium, Rhodotorula, Acremonium, and Alternaria were dominant in the wheat leaf samples, and Pedobacter, Flavobacterium, Halomonas, Marinobacter, Salinimicrobium, Lysobacter, Pseudomonas, Halobacillus, Xanthomonas, Acremonium, Monographella, and Penicillium were dominant populations in the wheat near-root substrate samples.

  6. Influences of space, soil, nematodes and plants on microbial community composition of chalk grassland soils

    NARCIS (Netherlands)

    Yergeau, E.; Bezemer, T.M.; Hedlund, K.; Mortimer, S.R.; Kowalchuk, G.A.; Putten, van der W.H.

    2010-01-01

    Microbial communities respond to a variety of environmental factors related to resources (e.g. plant and soil organic matter), habitat (e.g. soil characteristics) and predation (e.g. nematodes, protozoa and viruses). However, the relative contribution of these factors on microbial community composit

  7. Methanogenic degradation of (amino)aromatic compounds by anaerobic microbial communities

    NARCIS (Netherlands)

    Linkova, Y.V.; Stams, A.J.M.

    2011-01-01

    Degradation of a range of aromatic substrates by anaerobic microbial communities was studied. Active methanogenic microbial communities decomposing aminoaromatic acids and azo dyes into CH4 and CO2 were isolated. Products of primary conversion were found to be 2-hydroxybenzyl and benzyl alcohols gra

  8. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient

    OpenAIRE

    Shelton, Jenna L.; Akob, Denise M.; Jennifer C McIntosh; Noah Fierer; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, a...

  9. Methanobacterium Dominates Biocathodic Archaeal Communities in Methanogenic Microbial Electrolysis Cells

    KAUST Repository

    Siegert, Michael

    2015-07-06

    © 2015 American Chemical Society. Methane is the primary end product from cathodic current in microbial electrolysis cells (MECs) in the absence of methanogenic inhibitors, but little is known about the archaeal communities that develop in these systems. MECs containing cathodes made from different materials (carbon brushes, or plain graphite blocks or blocks coated with carbon black and platinum, stainless steel, nickel, ferrihydrite, magnetite, iron sulfide, or molybdenum disulfide) were inoculated with anaerobic digester sludge and acclimated at a set potential of -600 mV (versus a standard hydrogen electrode). The archaeal communities on all cathodes, except those coated with platinum, were predominated by Methanobacterium (median 97% of archaea). Cathodes with platinum contained mainly archaea most similar to Methanobrevibacter. Neither of these methanogens were abundant (<0.1% of archaea) in the inoculum, and therefore their high abundance on the cathode resulted from selective enrichment. In contrast, bacterial communities on the cathode were more diverse, containing primarily δ-Proteobacteria (41% of bacteria). The lack of a consistent bacterial genus on the cathodes indicated that there was no similarly selective enrichment of bacteria on the cathode. These results suggest that the genus Methanobacterium was primarily responsible for methane production in MECs when cathodes lack efficient catalysts for hydrogen gas evolution. (Figure Presented).

  10. Effects of pesticides on community composition and activity of sediment microbes - responses at various levels of microbial community organization

    Energy Technology Data Exchange (ETDEWEB)

    Widenfalk, Anneli [Department of Environmental Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE-750 07 Uppsala (Sweden)], E-mail: anneli.widenfalk@kemi.se; Bertilsson, Stefan [Limnology/Department of Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvaegen 20, SE-752 36 Uppsala (Sweden); Sundh, Ingvar [Department of Microbiology, Swedish University of Agricultural Sciences, P.O. Box 7025, SE-750 07 Uppsala (Sweden); Goedkoop, Willem [Department of Environmental Assessment, Swedish University of Agricultural Sciences, P.O. Box 7050, SE-750 07 Uppsala (Sweden)

    2008-04-15

    A freshwater sediment was exposed to the pesticides captan, glyphosate, isoproturon, and pirimicarb at environmentally relevant and high concentrations. Effects on sediment microorganisms were studied by measuring bacterial activity, fungal and total microbial biomass as community-level endpoints. At the sub-community level, microbial community structure was analysed (PLFA composition and bacterial 16S rRNA genotyping, T-RFLP). Community-level endpoints were not affected by pesticide exposure. At lower levels of microbial community organization, however, molecular methods revealed treatment-induced changes in community composition. Captan and glyphosate exposure caused significant shifts in bacterial community composition (as T-RFLP) at environmentally relevant concentrations. Furthermore, differences in microbial community composition among pesticide treatments were found, indicating that test compounds and exposure concentrations induced multidirectional shifts. Our study showed that community-level end points failed to detect these changes, underpinning the need for application of molecular techniques in aquatic ecotoxicology. - Molecular techniques revealed pesticide-induced changes at lower levels of microbial community organization that were not detected by community-level end points.

  11. Metabolic activity and genetic diversity of microbial communities inhabiting the rhizosphere of halophyton plants.

    Science.gov (United States)

    Bárány, Agnes; Szili-Kovács, Tibor; Krett, Gergely; Füzy, Anna; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    A preliminary study was conducted to compare the community level physiological profile (CLPP) and genetic diversity of rhizosphere microbial communities of four plant species growing nearby Kiskunság soda ponds, namely Böddi-szék, Kelemen-szék and Zab-szék. CLPP was assessed by MicroResp method using 15 different substrates while Denaturing Gradient Gel Electrophoresis (DGGE) was used to analyse genetic diversity of bacterial communities. The soil physical and chemical properties were quite different at the three sampling sites. Multivariate statistics (PCA and UPGMA) revealed that Zab-szék samples could be separated according to their genetic profile from the two others which might be attributed to the geographical location and perhaps the differences in soil physical properties. Böddi-szék samples could be separated from the two others considering the metabolic activity which could be explained by their high salt and low humus contents. The number of bands in DGGE gels was related to the metabolic activity, and positively correlated with soil humus content, but negatively with soil salt content. The main finding was that geographical location, soil physical and chemical properties and the type of vegetation were all important factors influencing the metabolic activity and genetic diversity of rhizosphere microbial communities.

  12. Long-term forest soil warming alters microbial communities in temperate forest soils

    Directory of Open Access Journals (Sweden)

    Kristen M DeAngelis

    2015-02-01

    Full Text Available Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER site (Petersham, MA have warmed soils 5oC above ambient temperatures for 5, 8 and 20 years. We used this chronosequence to examine soil microbial communities in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences. Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 10% to 2% relative abundance with warming. We also observed a significant decrease in mean bacterial ribosomal RNA gene copy number in warming plots compared to controls, a trait linked to maximum growth rate or trophic strategy among bacteria. Increased bacterial alpha diversity, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria suggest that more or alternative niche space is being created over the course of long-term warming.

  13. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

    Energy Technology Data Exchange (ETDEWEB)

    Robidart, Julie C.; Callister, Stephen J.; Song, Peng F.; Nicora, Carrie D.; Wheat, Charles G.; Girguis, Peter R.

    2013-05-07

    Microbes play a key role in mediating all aquatic biogeochemical cycles, and ongoing efforts are aimed at better understanding the relationships between microbial phylogenetic and physiological diversity, and habitat physical and chemical characteristics. Establishing such relationships is facilitated by sampling and studying microbiology and geochemistry at the appropriate spatial and temporal scales, to access information on the past and current environmental state that contributes to observed microbial abundances and activities. A modest number of sampling systems exist to date, few of which can be used in remote, harsh environments such as hydrothermal vents, where the ephemeral nature of venting underscores the necessity for higher resolution sampling. We have developed a robust, continuous fluid sampling system for co-registered microbial and biogeochemical analyses. The osmosis-powered bio-osmosampling system (BOSS) use no electricity, collects fluids with daily resolution or better, can be deployed in harsh, inaccessible environments and can sample fluids continuously for up to five years. Here we present a series of tests to examine DNA, RNA and protein stability over time, as well as material compatability, via lab experiments. We also conducted two field deployments at deep-sea hydrothermal vents to assess changes in microbial diversity and protein expression as a function of the physico-chemical environment. Our data reveal significant changes in microbial community composition co-occurring with relatively modest changes in the geochemistry. These data additionally provide new insights into the distribution of an enigmatic sulfur oxidizing symbiont in its free-living state. Data from the second deployment reveal differences in the representation of peptides over time, underscoring the utility of the BOSS in meta-proteomic studies. In concert, these data demonstrate the efficacy of this approach, and illustrate the value of using this method to study

  14. Assessment of Soil Health in Urban Agriculture: Soil Enzymes and Microbial Properties

    Directory of Open Access Journals (Sweden)

    Avanthi Deshani Igalavithana

    2017-02-01

    Full Text Available Urban agriculture has been recently highlighted with the increased importance for recreation in modern society; however, soil quality and public health may not be guaranteed because of continuous exposure to various pollutants. The objective of this study was to evaluate the soil quality of urban agriculture by soil microbial assessments. Two independent variables, organic and inorganic fertilizers, were considered. The activities of soil enzymes including dehydrogenase, β-glucosidase, arylsulfatase, urease, alkaline and acid phosphatases were used as indicators of important microbial mediated functions and the soil chemical properties were measured in the soils applied with organic or inorganic fertilizer for 10 years. Fatty acid methyl ester analysis was applied to determine the soil microbial community composition. Relatively higher microbial community richness and enzyme activities were found in the organic fertilizers applied soils as compared to the inorganic fertilizers applied soils. Principal component analysis explained the positive influence of organic fertilizers on the microbial community. The application of organic fertilizers can be a better alternative compared to inorganic fertilizers for the long-term health and security of urban agriculture.

  15. Effects of octahedral molecular sieve on treatment performance, microbial metabolism, and microbial community in expanded granular sludge bed reactor.

    Science.gov (United States)

    Pan, Fei; Xu, Aihua; Xia, Dongsheng; Yu, Yang; Chen, Guo; Meyer, Melissa; Zhao, Dongye; Huang, Ching-Hua; Wu, Qihang; Fu, Jie

    2015-12-15

    This study evaluated the effects of synthesized octahedral molecular sieve (OMS-2) nanoparticles on the anaerobic microbial community in a model digester, expanded granular sludge bed (EGSB) reactor. The addition of OMS-2 (0.025 g/L) in the EGSB reactors resulted in an enhanced operational performance, i.e., COD removal and biogas production increased by 4% and 11% respectively, and effluent volatile fatty acid (VFA) decreased by 11% relative to the control group. The Biolog EcoPlate™ test was employed to investigate microbial metabolism in the EGSB reactors. Results showed that OMS-2 not only increased the microbial metabolic level but also significantly changed the community level physiological profiling of the microorganisms. The Illumina MiSeq high-throughput sequencing of 16S rRNA gene indicated OMS-2 enhanced the microbial diversity and altered the community structure. The largest bacterial genus Lactococcus, a lactic acid bacterium, reduced from 29.3% to 20.4% by abundance in the presence of 0.25 g/L OMS-2, which may be conducive to decreasing the VFA production and increasing the microbial diversity. OMS-2 also increased the quantities of acetogenic bacteria and Archaea, and promoted the acetogenesis and methanogenesis. The X-ray photoelectron spectroscopy illustrated that Mn(IV)/Mn(III) with high redox potential in OMS-2 were reduced to Mn(II) in the EGSB reactors; this in turn affected the microbial community.

  16. Learning Community Assessment 101--Best Practices

    Science.gov (United States)

    Huerta, Juan Carlos; Hansen, Michele J.

    2013-01-01

    Good assessment is part of all good learning communities, and this article provides a useful set of best practices for learning community assessment planning: (1) articulating agreed-upon learning community program goals; (2) identifying the purpose of assessment (e.g., summative or formative); (3) employing qualitative and quantitative assessment…

  17. Soil microbial substrate properties and microbial community responses under irrigated organic and reduced-tillage crop and forage production systems.

    Science.gov (United States)

    Ghimire, Rajan; Norton, Jay B; Stahl, Peter D; Norton, Urszula

    2014-01-01

    Changes in soil microbiotic properties such as microbial biomass and community structure in response to alternative management systems are driven by microbial substrate quality and substrate utilization. We evaluated irrigated crop and forage production in two separate four-year experiments for differences in microbial substrate quality, microbial biomass and community structure, and microbial substrate utilization under conventional, organic, and reduced-tillage management systems. The six different management systems were imposed on fields previously under long-term, intensively tilled maize production. Soils under crop and forage production responded to conversion from monocropping to crop rotation, as well as to the three different management systems, but in different ways. Under crop production, four years of organic management resulted in the highest soil organic C (SOC) and microbial biomass concentrations, while under forage production, reduced-tillage management most effectively increased SOC and microbial biomass. There were significant increases in relative abundance of bacteria, fungi, and protozoa, with two- to 36-fold increases in biomarker phospholipid fatty acids (PLFAs). Under crop production, dissolved organic C (DOC) content was higher under organic management than under reduced-tillage and conventional management. Perennial legume crops and organic soil amendments in the organic crop rotation system apparently favored greater soil microbial substrate availability, as well as more microbial biomass compared with other management systems that had fewer legume crops in rotation and synthetic fertilizer applications. Among the forage production management systems with equivalent crop rotations, reduced-tillage management had higher microbial substrate availability and greater microbial biomass than other management systems. Combined crop rotation, tillage management, soil amendments, and legume crops in rotations considerably influenced soil

  18. Microbial community dynamics in the forefield of glaciers.

    Science.gov (United States)

    Bradley, James A; Singarayer, Joy S; Anesio, Alexandre M

    2014-11-22

    Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat.

  19. Marine snow microbial communities: scaling of abundances with aggregate size

    DEFF Research Database (Denmark)

    Kiørboe, Thomas

    2003-01-01

    Marine aggregates are inhabited by diverse microbial communities, and the concentration of attached microbes typically exceeds concentrations in the ambient water by orders of magnitude. An extension of the classical Lotka-Volterra model, which includes 3 trophic levels (bacteria, flagellates......, ciliates) and considers colonization, detachment, growth and predator-prey interactions on the surface of the particle, was used to examine the processes that govern abundances of attached micro-organisms. Effects of sinking on colonization rates as well as the fractal nature of natural aggregates were...... also taken into account. As input for the model, I used experimentally determined encounter and detachment rates, and density-dependent growth and grazing rates, as well as information on relevant properties of natural aggregates, all taken from the literature. The model reproduces the temporal...

  20. Is metagenomics resolving identification of functions in microbial communities?

    Science.gov (United States)

    Chistoserdova, Ludmila

    2014-01-01

    We are coming up on the tenth anniversary of the broad use of the method involving whole metagenome shotgun sequencing, referred to as metagenomics. The application of this approach has definitely revolutionized microbiology and the related fields, including the realization of the importance of the human microbiome. As such, metagenomics has already provided a novel outlook on the complexity and dynamics of microbial communities that are an important part of the biosphere of the planet. Accumulation of massive amounts of sequence data also caused a surge in the development of bioinformatics tools specially designed to provide pipelines for data analysis and visualization. However, a critical outlook into the field is required to appreciate what could be and what has currently been gained from the massive sequence databases that are being generated with ever-increasing speed.

  1. Metagenomic insights into the dynamics of microbial communities in food.

    Science.gov (United States)

    Kergourlay, Gilles; Taminiau, Bernard; Daube, Georges; Champomier Vergès, Marie-Christine

    2015-11-20

    Metagenomics has proven to be a powerful tool in exploring a large diversity of natural environments such as air, soil, water, and plants, as well as various human microbiota (e.g. digestive tract, lungs, skin). DNA sequencing techniques are becoming increasingly popular and less and less expensive. Given that high-throughput DNA sequencing approaches have only recently started to be used to decipher food microbial ecosystems, there is a significant growth potential for such technologies in the field of food microbiology. The aim of this review is to present a survey of recent food investigations via metagenomics and to illustrate how this approach can be a valuable tool in the better characterization of foods and their transformation, storage and safety. Traditional food in particular has been thoroughly explored by global approaches in order to provide information on multi-species and multi-organism communities.

  2. Soil microbial communities are shaped by vegetation type and park age in cities under cold climate.

    Science.gov (United States)

    Hui, Nan; Jumpponen, Ari; Francini, Gaia; Kotze, D Johan; Liu, Xinxin; Romantschuk, Martin; Strömmer, Rauni; Setälä, Heikki

    2017-03-01

    Soil microbes play a key role in controlling ecosystem functions and providing ecosystem services. Yet, microbial communities in urban green space soils remain poorly characterized. Here we compared soil microbial communities in 41 urban parks of (i) divergent plant functional types (evergreen trees, deciduous trees and lawn) and (ii) different ages (constructed 10, ∼50 and >100 years ago). These microbial communities were also compared to those in 5 control forests in southern Finland. Our results indicate that, despite frequent disturbances in urban parks, urban soil microbes still followed the classic patterns typical of plant-microbe associations in natural environments: both bacterial and fungal communities in urban parks responded to plant functional groups, but fungi were under tighter control of plants than bacteria. We show that park age shaped the composition of microbial communities, possibly because vegetation in old parks have had a longer time to modify soil properties and microbial communities than in young parks. Furthermore, control forests harboured distinct but less diverse soil microbial communities than urban parks that are under continuous anthropogenic disturbance. Our results highlight the importance of maintaining a diverse portfolio of urban green spaces and plant communities therein to facilitate complex microbial communities and functions in urban systems.

  3. Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR.

    Science.gov (United States)

    Rosenkranz, F; Cabrol, L; Carballa, M; Donoso-Bravo, A; Cruz, L; Ruiz-Filippi, G; Chamy, R; Lema, J M

    2013-11-01

    Phenol is a common wastewater contaminant from various industrial processes, including petrochemical refineries and chemical compounds production. Due to its toxicity to microbial activity, it can affect the efficiency of biological wastewater treatment processes. In this study, the efficiency of an Anaerobic Sequencing Batch Reactor (ASBR) fed with increasing phenol concentrations (from 120 to 1200 mg L(-1)) was assessed and the relationship between phenol degradation capacity and the microbial community structure was evaluated. Up to a feeding concentration of 800 mg L(-1), the initial degradation rate steadily increased with phenol concentration (up to 180 mg L(-1) d(-1)) and the elimination capacity remained relatively constant around 27 mg phenol removed∙gVSS(-1) d(-1). Operation at higher concentrations (1200 mg L(-1)) resulted in a still efficient but slower process: the elimination capacity and the initial degradation rate decreased to, respectively, 11 mg phenol removed∙gVSS(-1) d(-1) and 154 mg L(-1) d(-1). As revealed by Denaturing Gradient Gel Electrophoresis (DGGE) analysis, the increase of phenol concentration induced level-dependent structural modifications of the community composition which suggest an adaptation process. The increase of phenol concentration from 120 to 800 mg L(-1) had little effect on the community structure, while it involved drastic structural changes when increasing from 800 to 1200 mg L(-1), including a strong community structure shift, suggesting the specialization of the community through the emergence and selection of most adapted phylotypes. The thresholds of structural and functional disturbances were similar, suggesting the correlation of degradation performance and community structure. The Canonical Correspondence Analysis (CCA) confirmed that the ASBR functional performance was essentially driven by specific community traits. Under the highest feeding concentration, the most abundant ribotype probably involved in

  4. Abundance and functional diversity of riboswitches in microbial communities

    Directory of Open Access Journals (Sweden)

    Gelfand Mikhail S

    2007-10-01

    Full Text Available Abstract Background Several recently completed large-scale enviromental sequencing projects produced a large amount of genetic information about microbial communities ('metagenomes' which is not biased towards cultured organisms. It is a good source for estimation of the abundance of genes and regulatory structures in both known and unknown members of microbial communities. In this study we consider the distribution of RNA regulatory structures, riboswitches, in the Sargasso Sea, Minnesota Soil and Whale Falls metagenomes. Results Over three hundred riboswitches were found in about 2 Gbp metagenome DNA sequences. The abundabce of riboswitches in metagenomes was highest for the TPP, B12 and GCVT riboswitches; the S-box, RFN, YKKC/YXKD, YYBP/YKOY regulatory elements showed lower but significant abundance, while the LYS, G-box, GLMS and YKOK riboswitches were rare. Regions downstream of identified riboswitches were scanned for open reading frames. Comparative analysis of identified ORFs revealed new riboswitch-regulated functions for several classes of riboswitches. In particular, we have observed phosphoserine aminotransferase serC (COG1932 and malate synthase glcB (COG2225 to be regulated by the glycine (GCVT riboswitch; fatty acid desaturase ole1 (COG1398, by the cobalamin (B12 riboswitch; 5-methylthioribose-1-phosphate isomerase ykrS (COG0182, by the SAM-riboswitch. We also identified conserved riboswitches upstream of genes of unknown function: thiamine (TPP, cobalamine (B12, and glycine (GCVT, upstream of genes from COG4198. Conclusion This study demonstrates applicability of bioinformatics to the analysis of RNA regulatory structures in metagenomes.

  5. Metagenomic analysis of microbial community in uranium-contaminated soil.

    Science.gov (United States)

    Yan, Xun; Luo, Xuegang; Zhao, Min

    2016-01-01

    Uranium tailing is a serious pollution challenge for the environment. Based on metagenomic sequencing analysis, we explored the functional and structural diversity of the microbial community in six soil samples taken at different soil depths from uranium-contaminated and uncontaminated areas. Kyoto Encyclopedia of Genes and Genomes Orthology (KO) groups were obtained using a Basic Local Alignment Search Tool search based on the universal protein resource database. The KO-pathway network was then constructed using the selected KOs. Finally, alpha and beta diversity analyses were performed to explore the differences in soil bacterial diversity between the radioactive soil and uncontaminated soil. In total, 30-68 million high-quality reads were obtained. Sequence assembly yielded 286,615 contigs; and these contigs mostly annotated to 1699 KOs. The KO distributions were similar among the six soil samples. Moreover, the proportion of the metabolism of other amino acids (e.g., beta-alanine, taurine, and hypotaurine) and signal transduction was significantly lower in radioactive soil than in uncontaminated soil, whereas the proportion of membrane transport and carbohydrate metabolism was higher. Additionally, KOs were mostly enriched in ATP-binding cassette transporters and two-component systems. According to diversity analyses, Actinobacteria and Proteobacteria were the dominant phyla in radioactive and uncontaminated soil, and Robiginitalea, Microlunatus, and Alicyclobacillus were the dominant genera in radioactive soil. Taken together, these results demonstrate that soil microbial community, structure, and functions show significant changes in uranium-contaminated soil. The dominant categories such as Actinobacteria and Proteobacteria may be applied in environmental governance for uranium-contaminated soil in southern China.

  6. Two distinct microbial communities revealed in the sponge Cinachyrella

    Directory of Open Access Journals (Sweden)

    Marie Laure Cuvelier

    2014-11-01

    Full Text Available Marine sponges are vital components of benthic and coral reef ecosystems, providing shelter and nutrition for many organisms. In addition, sponges act as an essential carbon and nutrient link between the pelagic and benthic environment by filtering large quantities of seawater. Many sponge species harbor a diverse microbial community (including Archaea, Bacteria and Eukaryotes, which can constitute up to 50% of the sponge biomass. Sponges of the genus Cinachyrella are common in Caribbean and Floridian reefs and their archaeal and bacterial microbiomes were explored here using 16S rDNA tag pyrosequencing. Cinachyrella specimens and seawater samples were collected from the same South Florida reef at two different times of year. In total, 639 OTUs (12 archaeal and 627 bacterial belonging to 2 archaeal and 21 bacterial phyla were detected in the sponges. Based on their microbiomes, the six sponge samples formed two distinct groups, namely sponge group 1 (SG1 with low diversity (Shannon-Weiner index: 3.73 ± 0.22 and SG2 with higher diversity (Shannon-Weiner index: 5.95 ± 0.25. Hosts’ 28S rDNA sequences further confirmed that the sponge specimens were composed of two taxa closely related to Cinachyrella kuekenthalli. Both sponge groups were dominated by Proteobacteria, but Alphaproteobacteria were significantly more abundant in SG1. SG2 harbored many bacterial phyla (>1% of sequences present in low abundance or below detection limits (<0.07% in SG1 including: Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, PAUC34f, Poribacteria and Verrucomicrobia. Furthermore, SG1 and SG2 only had 95 OTUs in common, representing 30.5% and 22.4% of SG1 and SG2’s total OTUs, respectively. These results suggest that the sponge host may exert a pivotal influence on the nature and structure of the microbial community and may only be marginally affected by external environment parameters.

  7. Field degradation of aminopyralid and clopyralid and microbial community response to application in Alaskan soils.

    Science.gov (United States)

    Tomco, Patrick L; Duddleston, Khrystyne N; Schultz, Emily Jo; Hagedorn, Birgit; Stevenson, Timothy J; Seefeldt, Steven S

    2016-02-01

    High-latitude regions experience unique conditions that affect the degradation rate of agrochemicals in the environment. In the present study, data collected from 2 field sites in Alaska, USA (Palmer and Delta) were used to generate a kinetic model for aminopyralid and clopyralid degradation and to describe the microbial community response to herbicide exposure. Field plots were sprayed with herbicides and sampled over the summer of 2013. Quantification was performed via liquid chromatrography/tandem mass spectrometry, and microbial diversity was assessed via next-generation sequencing of bacterial 16S ribosomal ribonucleic acid (rRNA) genes. Both compounds degraded rapidly via pseudo-first-order degradation kinetics between 0 d and 28 d (t1/2  = 9.1-23.0 d), and then degradation slowed thereafter through 90 d. Aminopyralid concentration was 0.048 μg/g to 0.120 μg/g at 90 d post application, whereas clopyralid degraded rapidly at the Palmer site but was recovered in Delta soil at a concentraction of 0.046 μg/g. Microbial community diversity was moderately impacted by herbicide treatment, with the effect more pronounced at Delta. These data predict reductions in crop yield when sensitive plants (potatoes, tomatoes, marigolds, etc.) are rotated onto treated fields. Agricultural operations in high-latitude regions, both commercial and residential, rely heavily on cultivation of such crops and care must be taken when rotating.

  8. Effects of repeated applications of fungicide carbendazim on its persistence and microbial community in soil

    Institute of Scientific and Technical Information of China (English)

    YU Yunlong; CHU Xiaoqiang; PANG Guohui; XIANG Yueqin; FANG Hua

    2009-01-01

    Carbendazim, a systemic benzimidazole fungicide, is applied repeatedly to control of plant diseases including soilborne diseases, over a growing season. Studies were carried out under laboratory conditions to assess the effects of repeated carbendazim applications on its persistence and microbial community in soil. The results indicate that dissipation of carbendazim in soil was accelerated with its application frequency. The degradation rate constant of carbendazim was increased significantly from 0.074 d-1 to 0.79 d-1. The corresponding half-life was shorten markedly from 9.3 d to 0.9 d after four repeated applications. No significant inhibitory effect of carbendazim on soil microbial utilization of the carbon sources was observed after first treatment, but a slight increase in average well color development (AWCD) was shown after second, third, and fourth applications. It suggested that soil microorganisms become adapted to carbendazim after repeated application. Simpson and Shannon indexes of soil microbial community from carbendazim treated soil were also similar to those from the control soil, indicating that the richness and dominant character of soil microorganisms remain unchangeable after repeated application. However, after first, second, and third addition of carbendazim, McIntosh indexes on day 21 were significantly increased as compared with the control, suggesting that balance of soil microorganisms was altered due to the enrichment of the specific carbendazim-adapting strains in soil.

  9. Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus).

    Science.gov (United States)

    Loudon, Andrew H; Woodhams, Douglas C; Parfrey, Laura Wegener; Archer, Holly; Knight, Rob; McKenzie, Valerie; Harris, Reid N

    2014-04-01

    Beneficial cutaneous bacteria on amphibians can protect against the lethal disease chytridiomycosis, which has devastated many amphibian species and is caused by the fungus Batrachochytrium dendrobatidis. We describe the diversity of bacteria on red-backed salamanders (Plethodon cinereus) in the wild and the stability of these communities through time in captivity using culture-independent Illumina 16S rRNA gene sequencing. After field sampling, salamanders were housed with soil from the field or sterile media. The captive conditions led to different trajectories of bacterial communities. Eight OTUs present on >90% of salamanders in the field, through time, and in both treatments were defined as the core community, suggesting that some bacteria are closely associated with the host and are independent of an environmental reservoir. One of these taxa, a Pseudomonas sp., was previously cultured from amphibians and found to be antifungal. As all host-associated bacteria were found in the soil reservoir, environmental microbes strongly influence host-microbial diversity and likely regulate the core community. Using PICRUSt, an exploratory bioinformatics tool to predict gene functions, we found that core skin bacteria provided similar gene functions to the entire community. We suggest that future experiments focus on testing whether core bacteria on salamander skin contribute to the observed resistance to chytridiomycosis in this species even under hygenic captive conditions. For disease-susceptible hosts, providing an environmental reservoir with defensive bacteria in captive-rearing programs may improve outcomes by increasing bacterial diversity on threatened amphibians or increasing the likelihood that defensive bacteria are available for colonization.

  10. The impact of biofumigation and chemical fumigation methods on the structure and function of the soil microbial community.

    Science.gov (United States)

    Omirou, Michalis; Rousidou, Constantina; Bekris, Fotios; Papadopoulou, Kalliope K; Menkissoglou-Spiroudi, Urania; Ehaliotis, Constantinos; Karpouzas, Dimitrios G

    2011-01-01

    Biofumigation (BIOF) is carried out mainly by the incorporation of brassica plant parts into the soil, and this fumigation activity has been linked to their high glucosinolate (GSL) content. GSLs are hydrolyzed by the endogenous enzyme myrosinase to release isothiocyanates (ITCs). A microcosm study was conducted to investigate the effects induced on the soil microbial community by the incorporation of broccoli residues into soil either with (BM) or without (B) added myrosinase and of chemical fumigation, either as soil application of 2-phenylethyl ITC (PITC) or metham sodium (MS). Soil microbial activity was evaluated by measuring fluorescein diacetate hydrolysis and soil respiration. Effects on the structure of the total microbial community were assessed by phospholipid fatty acid analysis, while the impact on important fungal (ascomycetes (ASC)) and bacterial (ammonia-oxidizing bacteria (AOB)) guilds was evaluated by denaturating gradient gel electrophoresis (DGGE). Overall, B, and to a lesser extent BM, stimulated microbial activity and biomass. The diminished effect of BM compared to B was particularly evident in fungi and Gram-negative bacteria and was attributed to rapid ITC release following the myrosinase treatment. PITC did not have a significant effect, whereas an inhibitory effect was observed in the MS-treated soil. DGGE analysis showed that the ASC community was temporarily altered by BIOF treatments and more persistently by the MS treatment, while the structure of the AOB community was not affected by the treatments. Cloning of the ASC community showed that MS application had a deleterious effect on potential plant pathogens like Fusarium, Nectria, and Cladosporium compared to BIOF treatments which did not appear to inhibit them. Our findings indicate that BIOF induces changes on the structure and function of the soil microbial community that are mostly related to microbial substrate availability changes derived from the soil amendment with fresh

  11. Functional assays and metagenomic analyses reveals differences between the microbial communities inhabiting the soil horizons of a Norway spruce plantation.

    Directory of Open Access Journals (Sweden)

    Stéphane Uroz

    Full Text Available In temperate ecosystems, acidic forest soils are among the most nutrient-poor terrestrial environments. In this context, the long-term differentiation of the forest soils into horizons may impact the assembly and the functions of the soil microbial communities. To gain a more comprehensive understanding of the ecology and functional potentials of these microbial communities, a suite of analyses including comparative metagenomics was applied on independent soil samples from a spruce plantation (Breuil-Chenue, France. The objectives were to assess whether the decreasing nutrient bioavailability and pH variations that naturally occurs between the organic and mineral horizons affects the soil microbial functional biodiversity. The 14 Gbp of pyrosequencing and Illumina sequences generated in this study revealed complex microbial communities dominated by bacteria. Detailed analyses showed that the organic soil horizon was significantly enriched in sequences related to Bacteria, Chordata, Arthropoda and Ascomycota. On the contrary the mineral horizon was significantly enriched in sequences related to Archaea. Our analyses also highlighted that the microbial communities inhabiting the two soil horizons differed significantly in their functional potentials according to functional assays and MG-RAST analyses, suggesting a functional specialisation of these microbial communities. Consistent with this specialisation, our shotgun metagenomic approach revealed a significant increase in the relative abundance of sequences related glycoside hydrolases in the organic horizon compared to the mineral horizon that was significantly enriched in glycoside transferases. This functional stratification according to the soil horizon was also confirmed by a significant correlation between the functional assays performed in this study and the functional metagenomic analyses. Together, our results suggest that the soil stratification and particularly the soil resource

  12. Responses of soil microbial communities to experimental warming in alpine grasslands on the qinghai-tibet plateau.

    Science.gov (United States)

    Zhang, Bin; Chen, Shengyun; He, Xingyuan; Liu, Wenjie; Zhao, Qian; Zhao, Lin; Tian, Chunjie

    2014-01-01

    Global surface temperature is predicted to increase by at least 1.5°C by the end of this century. However, the response of soil microbial communities to global warming is still poorly understood, especially in high-elevation grasslands. We therefore conducted an experiment on three types of alpine grasslands on the Qinghai-Tibet Plateau to study the effect of experimental warming on abundance and composition of soil microbial communities at 0-10 and 10-20 cm depths. Plots were passively warmed for 3 years using open-top chambers and compared to adjacent control plots at ambient temperature. Soil microbial communities were assessed using phospholipid fatty acid (PLFA) analysis. We found that 3 years of experimental warming consistently and significantly increased microbial biomass at the 0-10 cm soil depth of alpine swamp meadow (ASM) and alpine steppe (AS) grasslands, and at both the 0-10 and 10-20 cm soil depths of alpine meadow (AM) grasslands, due primarily to the changes in soil temperature, moisture, and plant coverage. Soil microbial community composition was also significantly affected by warming at the 0-10 cm soil depth of ASM and AM and at the 10-20 cm soil depth of AM. Warming significantly decreased the ratio of fungi to bacteria and thus induced a community shift towards bacteria at the 0-10 cm soil depth of ASM and AM. While the ratio of arbuscular mycorrhizal fungi to saprotrophic fungi (AMF/SF) was significantly decreased by warming at the 0-10 cm soil depth of ASM, it was increased at the 0-10 cm soil depth of AM. These results indicate that warming had a strong influence on soil microbial communities in the studied high-elevation grasslands and that the effect was dependent on grassland type.

  13. Community-Level Physiological Profiling of Microbial Communities in Constructed Wetlands: Effects of Sample Preparation.

    Science.gov (United States)

    Button, Mark; Weber, Kela; Nivala, Jaime; Aubron, Thomas; Müller, Roland Arno

    2016-03-01

    Community-level physiological profiling (CLPP) using BIOLOG® EcoPlates™ has become a popular method for characterizing and comparing the functional diversity, functional potential, and metabolic activity of heterotrophic microbial communities. The method was originally developed for profiling soil communities; however, its usage has expanded into the fields of ecotoxicology, agronomy, and the monitoring and profiling of microbial communities in various wastewater treatment systems, including constructed wetlands for water pollution control. When performing CLPP on aqueous samples from constructed wetlands, a wide variety of sample characteristics can be encountered and challenges may arise due to excessive solids, color, or turbidity. The aim of this study was to investigate the impacts of different sample preparation methods on CLPP performed on a variety of aqueous samples covering a broad range of physical and chemical characteristics. The results show that using filter paper, centrifugation, or settling helped clarify samples for subsequent CLPP analysis, however did not do so as effectively as dilution for the darkest samples. Dilution was able to provide suitable clarity for the darkest samples; however, 100-fold dilution significantly affected the carbon source utilization patterns (CSUPs), particularly with samples that were already partially or fully clear. Ten-fold dilution also had some effect on the CSUPs of samples which were originally clear; however, the effect was minimal. Based on these findings, for this specific set of samples, a 10-fold dilution provided a good balance between ease of use, sufficient clarity (for dark samples), and limited effect on CSUPs. The process and findings outlined here can hopefully serve future studies looking to utilize CLPP for functional analysis of microbial communities and also assist in comparing data from studies where different sample preparation methods were utilized.

  14. Soil Microbial Community Composition During Natural Recovery in the Loess Plateau, China

    Institute of Scientific and Technical Information of China (English)

    XIAO Lie; LIU Guo-bin; XUE Sha; ZHANG Chao

    2013-01-01

    This study aimed to determine the characteristics of soil microbial community composition and its relationship with soil chemical properties during natural recovery in the Loess Plateau. The soil microbial community composition was analyzed by comparing the soil microbial phospholipid fatty acids (PLFAs) of eight croplands abandoned for 1, 3, 5, 10, 13, 15, 20, and 30 yr in the Dunshan watershed, northern Loess Plateau, China. The results showed that soil organic carbon, total nitrogen, soil microbial biomass carbon, and soil microbial biomass nitrogen signiifcantly increased with the abandonment duration, whereas the metabolic quotient signiifcantly decreased. The Shannon richness and Shannon evenness of PLFAs signiifcantly increased after 10 yr of abandonment. Gram-negative, Gram-positive, bacterial, fungal, and total PLFAs linearly increased with increased abandonment duration. Redundancy analysis showed that the abandonment duration was the most important environmental factor in determining the PLFA microbial community composition. The soil microbial PLFAs changed from anteiso-to iso-, unsaturated to saturated, and short-to long-chain during natural recovery. Therefore, in the Loess Plateau, cropland abandonment for natural recovery resulted in the increase of the soil microbial PLFA biomass and microbial PLFA species and changed the microbial from chemolithotrophic to a more heterotrophic community.

  15. Structural and functional diversity of microbial communities from a lake sediment contaminated with trenbolone, an endocrine-disrupting chemical

    Energy Technology Data Exchange (ETDEWEB)

    Radl, Viviane [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany)]. E-mail: barbosa@gsf.de; Pritsch, Karin [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany); Munch, Jean Charles [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany); Schloter, Michael [GSF National Research Center for Environment and Health, Institute of Soil Ecology, PO Box 1129, D-85764, Neuherberg (Germany)

    2005-09-15

    Effects of trenbolone (TBOH), a hormone used in cattle production, on the structure and function of microbial communities in a fresh water sediment from a lake in Southern Germany were studied in a microcosm experiment. The microbial community structure and the total gene pool of the sediment, assessed by 16S rRNA/rDNA and RAPD fingerprint analysis, respectively, were not significantly affected by TBOH. In contrast, the N-acetyl-glucosaminidase activity was almost 50% lower in TBOH treated samples (P<0.05). Also, the substrate utilization potential, measured using the BIOLOG[reg] system, was reduced after TBOH treatment. Interestingly, this potential did not recover at the end of the experiment, i.e. 19 days after the addition of the chemical. Repeated application of TBOH did not lead to an additional reduction in the substrate utilization potential. Overall results indicate that microbial community function was more sensitive to TBOH treatment than the community structure and the total gene pool. - The steroid hormone trenbolone affects microbial community function in a lake sediment.

  16. Phylogenetic and functional diversity of microbial communities associated with subsurface sediments of the Sonora Margin, Guaymas Basin.

    Science.gov (United States)

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A; Parkes, John R; Van Nostrand, Joy D; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments.

  17. Phylogenetic and Functional Diversity of Microbial Communities Associated with Subsurface Sediments of the Sonora Margin, Guaymas Basin

    Science.gov (United States)

    Vigneron, Adrien; Cruaud, Perrine; Roussel, Erwan G.; Pignet, Patricia; Caprais, Jean-Claude; Callac, Nolwenn; Ciobanu, Maria-Cristina; Godfroy, Anne; Cragg, Barry A.; Parkes, John R.; Van Nostrand, Joy D.; He, Zhili; Zhou, Jizhong; Toffin, Laurent

    2014-01-01

    Subsurface sediments of the Sonora Margin (Guaymas Basin), located in proximity of active cold seep sites were explored. The taxonomic and functional diversity of bacterial and archaeal communities were investigated from 1 to 10 meters below the seafloor. Microbial community structure and abundance and distribution of dominant populations were assessed using complementary molecular approaches (Ribosomal Intergenic Spacer Analysis, 16S rRNA libraries and quantitative PCR with an extensive primers set) and correlated to comprehensive geochemical data. Moreover the metabolic potentials and functional traits of the microbial community were also identified using the GeoChip functional gene microarray and metabolic rates. The active microbial community structure in the Sonora Margin sediments was related to deep subsurface ecosystems (Marine Benthic Groups B and D, Miscellaneous Crenarchaeotal Group, Chloroflexi and Candidate divisions) and remained relatively similar throughout the sediment section, despite defined biogeochemical gradients. However, relative abundances of bacterial and archaeal dominant lineages were significantly correlated with organic carbon quantity and origin. Consistently, metabolic pathways for the degradation and assimilation of this organic carbon as well as genetic potentials for the transformation of detrital organic matters, hydrocarbons and recalcitrant substrates were detected, suggesting that chemoorganotrophic microorganisms may dominate the microbial community of the Sonora Margin subsurface sediments. PMID:25099369

  18. Constraining Microbial Community Response During Oil Sands Reclamation via Lipid and Isotope Biosignatures

    Science.gov (United States)

    Bradford, L. M.; Ziolkowski, L. A.; Ngonadi, N.; Warren, L. A.; Slater, G. F.

    2013-12-01

    A pilot scale reclamation project in the Athabasca oil sands region (Fort McMurray, Alberta, Canada) has created an artificial freshwater fen typical of the boreal forest region in which the oil sands occur. At this site, composite tailings (CT) residue was overlain with a thick sand cap and a freshwater fen constructed on top. This project began in 2009, with most wetland development occurring over the summer of 2012. It is recognized that the response of microbial communities to reclamation activities has the potential to play a significant role in the outcome of reclamation. Microbial biodegradation of petroleum residues may improve reclamation outcomes, while production of by-products, particularly hydrogen sulphide gas (H2S) via bacterial sulphate reduction, must be assessed to manage any potential negative impacts. Phospholipid fatty acid (PLFA) concentration and isotopic analysis were used to characterize the response of in situ microbial communities within the reclamation fen system. Increases in PLFA concentrations were observed in sediment taken from the sand layer at sample sites within the fen from during its establishment. Initial values equivalent to circa 106 cells/gram in July 2011 increased to values equivalent to 107cells/gram in August 2012 and then to 108 cells/gram in November 2012. Analysis of the radiocarbon (Δ14C) content of total organic carbon shows an increase in Δ14C from highly depleted values (-983×2‰) in July 2011, consistent with petroleum hydrocarbons dominating the total organic carbon, to more 14C enriched values as fen development progressed (-423×2.1‰ in August 2012 and -417×1.4‰ in November 2012). This indicates inputs of more modern organic matter potentially associated with the peat used to construct the fen and/or inputs from recent photosynthesis. The correlation between the observed PLFA increases and this increase in modern carbon inputs suggests that reclamation activities have stimulated the increase in the

  19. Carbon Cycling in Restored Wisconsin Grasslands: Examining Linkages Between Plant Diversity, Microbial Communities and Ecosystem Processes

    Science.gov (United States)

    Cahill, K. N.; Kucharik, C. J.; Balser, T. C.; Foley, J. A.

    2002-12-01

    It is important to characterize the variability of carbon (C) fluxes and stocks and the relationship between biotic and abiotic factors and C sequestration, a proposed strategy to help mitigate climate change. An observation site to study C cycling was established on land enrolled in the USDA Conservation Reserve Program in southwestern Wisconsin in spring 2002 on silt-loam soil. The site was converted from intensive row-crop agriculture in 1987 to three adjacent land cover types: an assortment of native C4 grasses, two C3 grasses and a nitrogen-fixer, and a disk planted, no-tillage food plot rotation of maize and soybeans. Key goals of the study were to characterize the effect of plant species composition and microbial community characteristics on carbon cycling in an attempt to link above- and below-ground processes. Measurements of soil surface CO2 efflux were made on a near-weekly basis during the growing season using a LICOR-6400, concurrently with soil surface moisture adjacent to the CO2 collars. Thermocouples were installed to record hourly average air temperature and soil temperature at 5 depths, from 2 to 70 cm, and water content sensors made hourly average measurements at 15 and 30 cm. Leaf area index measurements were made weekly, aboveground vegetation biomass was collected monthly, and belowground root biomass was collected bimonthly. Monthly microbial measurements included an assessment of community physiological profiles using BiOLOG, and assays of community composition (lipid analysis) and activity. Preliminary results suggest that land cover types significantly altered carbon cycling and microbial community structure and function, leading to different rates of C sequestration.

  20. Environmental shaping of codon usage and functional adaptation across microbial communities.

    Science.gov (United States)

    Roller, Masa; Lucić, Vedran; Nagy, István; Perica, Tina; Vlahovicek, Kristian

    2013-10-01

    Microbial communities represent the largest portion of the Earth's biomass. Metagenomics projects use high-throughput sequencing to survey these communities and shed light on genetic capabilities that enable microbes to inhabit every corner of the biosphere. Metagenome studies are generally based on (i) classifying and ranking functions of identified genes; and (ii) estimating the phyletic distribution of constituent microbial species. To understand microbial communities at the systems level, it is necessary to extend these studies beyond the species' boundaries and capture higher levels of metabolic complexity. We evaluated 11 metagenome samples and demonstrated that microbes inhabiting the same ecological niche share common preferences for synonymous codons, regardless of their phylogeny. By exploring concepts of translational optimization through codon usage adaptation, we demonstrated that community-wide bias in codon usage can be used as a prediction tool for lifestyle-specific genes across the entire microbial community, effectively considering microbial communities as meta-genomes. These findings set up a 'functional metagenomics' platform for the identification of genes relevant for adaptations of entire microbial communities to environments. Our results provide valuable arguments in defining the concept of microbial species through the context of their interactions within the community.

  1. Soil fertility and the impact of exotic invasion on microbial communities in Hawaiian forests.

    Science.gov (United States)

    Kao-Kniffin, Jenny; Balser, Teri C

    2008-07-01

    Exotic plant invasions into Hawaiian montane forests have altered many important nutrient cycling processes and pools. Across different ecosystems, researchers are uncovering the mechanisms involved in how invasive plants impact the soil microbial community-the primary mediator of soil nutrient cycling. We examined whether the invasive plant, Hedychium gardnerianum, altered microbial community composition in forests dominated by a native tree, Metrosideros polymorpha, under varying soil nutrient limitations and soil fertility properties within forest plots of the Hawaii long-term substrate age gradient (LSAG). Microbial community lipid analysis revealed that when nutrient limitation (as determined by aboveground net primary production [ANPP]) and soil fertility were taken into account, plant species differentially altered soil microbial community composition. Microbial community characteristics differed under invasive and native plants primarily when N or P was added to the older, highly weathered, P-limited soils. Long-term fertilization with N or P at the P-limited site led to a significant increase in the relative abundance of the saprophytic fungal indicator (18:2 omega 6c,9c) under the invasive plant. In the younger, N-limited soils, plant species played a minor role in influencing soil microbial community composition. We found that the general rhizosphere microbial community structure was determined more by soil fertility than by plant species. This study indicates that although the aggressive invasion of a nutrient-demanding, rapidly decomposable, and invasive plant into Hawaiian forests had large impacts on soil microbial decomposers, relatively little impact occurred on the overall soil microbial community structure. Instead, soil nutrient conditions were more important determinants of the overall microbial community structure within Hawaii's montane forests.

  2. MG-RAST, a Metagenomics Service for Analysis of Microbial Community Structure and Function.

    Science.gov (United States)

    Keegan, Kevin P; Glass, Elizabeth M; Meyer, Folker

    2016-01-01

    Approaches in molecular biology, particularly those that deal with high-throughput sequencing of entire microbial communities (the field of metagenomics), are rapidly advancing our understanding of the composition and functional content of microbial communities involved in climate change, environmental pollution, human health, biotechnology, etc. Metagenomics provides researchers with the most complete picture of the taxonomic (i.e., what organisms are there) and functional (i.e., what are those organisms doing) composition of natively sampled microbial communities, making it possible to perform investigations that include organisms that were previously intractable to laboratory-controlled culturing; currently, these constitute the vast majority of all microbes on the planet. All organisms contained in environmental samples are sequenced in a culture-independent manner, most often with 16S ribosomal amplicon methods to investigate the taxonomic or whole-genome shotgun-based methods to investigate the functional content of sampled communities. Metagenomics allows researchers to characterize the community composition and functional content of microbial communities, but it cannot show which functional processes are active; however, near parallel developments in transcriptomics promise a dramatic increase in our knowledge in this area as well. Since 2008, MG-RAST (Meyer et al., BMC Bioinformatics 9:386, 2008) has served as a public resource for annotation and analysis of metagenomic sequence data, providing a repository that currently houses more than 150,000 data sets (containing 60+ tera-base-pairs) with more than 23,000 publically available. MG-RAST, or the metagenomics RAST (rapid annotation using subsystems technology) server makes it possible for users to upload raw metagenomic sequence data in (preferably) fastq or fasta format. Assessments of sequence quality, annotation with respect to multiple reference databases, are performed automatically with minimal

  3. Arctic microbial community dynamics influenced by elevated CO2 levels

    Directory of Open Access Journals (Sweden)

    K. Schulz

    2012-09-01

    Full Text Available The Arctic Ocean ecosystem is particular vulnerable for ocean acidification (OA related alterations due to the relatively high CO2 solubility and low carbonate saturation states of its cold surface waters. Thus far, however, there is only little known about the consequences of OA on the base of the food web. In a mesocosm CO2-enrichment experiment (overall CO2 levels ranged from ∼180 to 1100 μatm in the Kongsfjord off Svalbard, we studied the consequences of OA on a natural pelagic microbial community. The most prominent finding of our study is the profound effect of OA on the composition and growth of the Arctic phytoplankton community, i.e. the picoeukaryotic photoautotrophs and to a lesser extent the nanophytoplankton prospered. A shift towards the smallest phytoplankton as a result of OA will have direct consequences for the structure and functioning of the pelagic food web and thus for the biogeochemical cycles. Furthermore, the dominant pico- and nanophytoplankton groups were found prone to viral lysis, thereby shunting the carbon accumulation in living organisms into the dissolved pools of organic carbon and subsequently affecting the efficiency of the biological pump in these Arctic waters.

  4. Microbial community analysis of a full-scale DEMON bioreactor.

    Science.gov (United States)

    Gonzalez-Martinez, Alejandro; Rodriguez-Sanchez, Alejandro; Muñoz-Palazon, Barbara; Garcia-Ruiz, Maria-Jesus; Osorio, Francisco; van Loosdrecht, Mark C M; Gonzalez-Lopez, Jesus

    2015-03-01

    Full-scale applications of autotrophic nitrogen removal technologies for the treatment of digested sludge liquor have proliferated during the last decade. Among these technologies, the aerobic/anoxic deammonification process (DEMON) is one of the major applied processes. This technology achieves nitrogen removal from wastewater through anammox metabolism inside a single bioreactor due to alternating cycles of aeration. To date, microbial community composition of full-scale DEMON bioreactors have never been reported. In this study, bacterial community structure of a full-scale DEMON bioreactor located at the Apeldoorn wastewater treatment plant was analyzed using pyrosequencing. This technique provided a higher-resolution study of the bacterial assemblage of the system compared to other techniques used in lab-scale DEMON bioreactors. Results showed that the DEMON bioreactor was a complex ecosystem where ammonium oxidizing bacteria, anammox bacteria and many other bacterial phylotypes coexist. The potential ecological role of all phylotypes found was discussed. Thus, metagenomic analysis through pyrosequencing offered new perspectives over the functioning of the DEMON bioreactor by exhaustive identification of microorganisms, which play a key role in the performance of bioreactors. In this way, pyrosequencing has been proven as a helpful tool for the in-depth investigation of the functioning of bioreactors at microbiological scale.

  5. Characterization of Microbial Communities Found in Bioreactor Effluent

    Science.gov (United States)

    Flowe, Candice

    2013-01-01

    The purpose of this investigation was to examine microbial communities of simulated wastewater effluent from hollow fiber membrane bioreactors collected from the Space Life Science Laboratory and Texas Technical University. Microbes were characterized using quantitative polymerase chain reaction where a total count of bacteria and fungi were determined. The primers that were used to determine the total count of bacteria and fungi were targeted for 16S rDNA genes and the internal transcribed spacer, respectively. PCR products were detected with SYBR Green I fluorescent dye and a melting curve analysis was performed to identify unique melt profiles resulting from DNA sequence variations from each species of the community. Results from both the total bacteria and total fungi count assays showed that distinct populations were present in isolates from these bioreactors. This was exhibited by variation in the number of peaks observed on the melting curve analysis graph. Further analysis of these results using species-specific primers will shed light on exactly which microbes are present in these effluents. Information gained from this study will enable the design of a system that can efficiently monitor microbes that play a role in the biogeochemical cycling of nitrogen in wastewater on the International Space Station to assist in the design of a sustainable system capable of converting this nutrient.

  6. Inoculum composition determines microbial community and function in an anaerobic sequential batch reactor.

    Science.gov (United States)

    Perrotta, Allison R; Kumaraswamy, Rajkumari; Bastidas-Oyanedel, Juan R; Alm, Eric J; Rodríguez, Jorge

    2017-01-01

    The sustainable recovery of resources from wastewater streams can provide many social and environmental benefits. A common strategy to recover valuable resources from wastewater is to harness the products of fermentation by complex microbial communities. In these fermentation bioreactors high microbial community diversity within the inoculum source is commonly assumed as sufficient for the selection of a functional microbial community. However, variability of the product profile obtained from these bioreactors is a persistent challenge in this field. In an attempt to address this variability, the impact of inoculum on the microbial community structure and function within the bioreactor was evaluated using controlled laboratory experiments. In the course of this work, sequential batch reactors were inoculated with three complex microbial inocula and the chemical and microbial compositions were monitored by HPLC and 16S rRNA amplicon analysis, respectively. Microbial community dynamics and chemical profiles were found to be distinct to initial inoculate and highly reproducible. Additionally we found that the generation of a complex volatile fatty acid profile was not specific to the diversity of the initial microbial inoculum. Our results suggest that the composition of the original inoculum predictably contributes to bioreactor community structure and function.

  7. Inoculum composition determines microbial community and function in an anaerobic sequential batch reactor

    Science.gov (United States)

    Perrotta, Allison R.; Kumaraswamy, Rajkumari; Bastidas-Oyanedel, Juan R.; Alm, Eric J.

    2017-01-01

    The sustainable recovery of resources from wastewater streams can provide many social and environmental benefits. A common strategy to recover valuable resources from wastewater is to harness the products of fermentation by complex microbial communities. In these fermentation bioreactors high microbial community diversity within the inoculum source is commonly assumed as sufficient for the selection of a functional microbial community. However, variability of the product profile obtained from these bioreactors is a persistent challenge in this field. In an attempt to address this variability, the impact of inoculum on the microbial community structure and function within the bioreactor was evaluated using controlled laboratory experiments. In the course of this work, sequential batch reactors were inoculated with three complex microbial inocula and the chemical and microbial compositions were monitored by HPLC and 16S rRNA amplicon analysis, respectively. Microbial community dynamics and chemical profiles were found to be distinct to initial inoculate and highly reproducible. Additionally we found that the generation of a complex volatile fatty acid profile was not specific to the diversity of the initial microbial inoculum. Our results suggest that the composition of the original inoculum predictably contributes to bioreactor community structure and function. PMID:28196102

  8. Effect of continuous oleate addition on microbial communities involved in anaerobic digestion process

    DEFF Research Database (Denmark)

    Baserba, Manel Garrido; Angelidaki, Irini; Karakashev, Dimitar Borisov

    2012-01-01

    In the present study, the microbial diversity in anaerobic reactors, continuously exposed to oleate, added to a manure reactor influent, was investigated. Relative changes in archaeal community were less remarkable in comparison to changes in bacterial community indicating that dominant archaeal ...... a comprehensive picture on oleate degrading microbial communities in high organic strength wastewater. The findings might be utilized for development of strategies for biogas production from lipid-riched wastes....

  9. Microbial biofilm community in a thermophilic trickling bio filter used for continuous biohydrogen production

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Y.; Park, E.-J. [Korea Advanced Inst. of Science and Technology, Daejeon (Korea, Republic of). Dept. of Chemical and Biomolecular Engineering; Oh, Y.-K. [Pusan National Univ., Pusan (Korea, Republic of). Dept. of Chemical Engineering; Park, S. [Pusan National Univ., Pusan (Korea, Republic of). Dept. of Chemical Engineering]|[Pusan National Univ., Pusan (Korea, Republic of). Inst. for Environmental Technology and Industry

    2004-07-01

    The microbial community in a thermophilic trickling biofilter reactor (TBR) that produces biohydrogen was examined. In particular, nonculture-based molecular methods were used to characterize the microbial community in the biofilm formed on the matrixes that were packed in the reactor. The operation of the bioreactor was described. TBR demonstrated long term stability to produce hydrogen. Biomass volatile suspended solids (VSS) in the TBR decreased gradually as bed height increased from the bottom of the bed. Epifluorescence microscopy of 6-diamidino-2-phenylindole (DAPI)-stained cells and denaturing gradient gel electrophoresis (DGGE) analysis both indicate that microbial composition changes in the TBR according to bed height. The dominant phylogenetic groups in the system were identified along with the comparative analysis of morphology of microbial community and the DGGE profiles of the microbial community in terms of total genomic DNA extracted from biofilm cells. 10 refs., 1 tab., 5 figs.

  10. Genetic and functional diversity of soil microbial communities associated to grapevine plants and wine quality

    Science.gov (United States)

    Mocali, Stefano; Fabiano, Arturo; Kuramae, Eiko; de Hollander, Matias; Kowalchuck, George; Vignozzi, Nadia; Valboa, Giuseppe; Pastorelli, Roberta; Fornasier, Flavio; Priori, Simone; Costantini, Edoardo

    2014-05-01

    Introduction Despite the economic importance of vineyards in Italy, the wine sector is facing severe challenges from increased global competition and climate changes. The quality of the grape at harvest has a strong direct impact on final wine quality and the strong relationship between wine composition, aroma, taste and soil properties has been outlined in the "Terroir concept". However, information on the impact of soil microbial communities on soil functions, grapevine plants and wine quality is still lacking. Objectives The aim of this study was to explore the composition and the potential functions of soil microbial communities associated to grapevine plants grown in two soils which showed similar physical, chemical and hydrological properties but which provided a different wine quality. Materials and Methods Soils from two sites of the Chianti region in Tuscany (BRO11 and BRO12) cultivated with the grapevine cultivar Sangiovese with contrasting wine quality were examined by means of a structural and functional approach: specifically, GeoChip microarrays, pyrosequencing of 16S rRNA and 18S rRNA genes, enzyme assays and measurements of some soil biological properties, such as microbial biomass C and soil respiration, were carried out. Results Enzyme assays and soil biological analyses revealed a higher biological activity in BRO11 as compared to BRO12. The structure of soil microbial communities, assessed using 16S and 18S rRNA gene-targeted pyrosequencing, revealed a higher presence of Actinobacteria in the BRO12 than in the BRO11 soil where, in contrast, the alfa-Proteobacteria are more abundant. GeoChip microarray analyses revealed a consistent difference in genes involved in S cycling, with a significant overrepresentation of sulfur-oxidation genes in BRO11 and increased levels of sulfate reduction genes BRO12. These results are consistent with the high content of sulfates and the abundance of Firmicutes such as Sulfobacillus thermosulfidooxidans in the BRO

  11. Long-term forest soil warming alters microbial communities in temperate forest soils.

    Science.gov (United States)

    DeAngelis, Kristen M; Pold, Grace; Topçuoğlu, Begüm D; van Diepen, Linda T A; Varney, Rebecca M; Blanchard, Jeffrey L; Melillo, Jerry; Frey, Serita D

    2015-01-01

    Soil microbes are major drivers of soil carbon cycling, yet we lack an understanding of how climate warming will affect microbial communities. Three ongoing field studies at the Harvard Forest Long-term Ecological Research (LTER) site (Petersham, MA) have warmed soils 5°C above ambient temperatures for 5, 8, and 20 years. We used this chronosequence to test the hypothesis that soil microbial communities have changed in response to chronic warming. Bacterial community composition was studied using Illumina sequencing of the 16S ribosomal RNA gene, and bacterial and fungal abundance were assessed using quantitative PCR. Only the 20-year warmed site exhibited significant change in bacterial community structure in the organic soil horizon, with no significant changes in the mineral soil. The dominant taxa, abundant at 0.1% or greater, represented 0.3% of the richness but nearly 50% of the observations (sequences). Individual members of the Actinobacteria, Alphaproteobacteria and Acidobacteria showed strong warming responses, with one Actinomycete decreasing from 4.5 to 1% relative abundance with warming. Ribosomal RNA copy number can obfuscate community profiles, but is also correlated with maximum growth rate or trophic strategy among bacteria. Ribosomal RNA copy number correction did not affect community profiles, but rRNA copy number was significantly decreased in warming plots compared to controls. Increased bacterial evenness, shifting beta diversity, decreased fungal abundance and increased abundance of bacteria with low rRNA operon copy number, including Alphaproteobacteria and Acidobacteria, together suggest that more or alternative niche space is being created over the course of long-term warming.

  12. Soil microbial community responses to contamination with silver, aluminium oxide and silicon dioxide nanoparticles.

    Science.gov (United States)

    McGee, C F; Storey, S; Clipson, N; Doyle, E

    2017-02-14

    Soil microorganisms are key contributors to nutrient cycling and are essential for the maintenance of healthy soils and sustainable agriculture. Although the antimicrobial effects of a broad range of nanoparticulate substances have been characterised in vitro, little is known about the impact of these compounds on microbial communities in environments such as soil. In this study, the effect of three widely used nanoparticulates (silver, silicon dioxide and aluminium oxide) on bacterial and fungal communities in an agricultural pastureland soil was examined in a microcosm-based experiment using a combination of enzyme analysis, molecular fingerprinting and amplicon sequencing. A relatively low concentration of silver nanoparticles (AgNPs) significantly reduced total soil dehydrogenase and urease activity, while Al2O3 and SiO2 nanoparticles had no effect. Amplicon sequencing revealed substantial shifts in bacterial community composition in soils amended with AgNPs, with significant decreases in the relative abundance of Acidobacteria and Verrucomicrobia and an increase in Proteobacteria. In particular, the relative abundance of the Proteobacterial genus Dyella significantly increased in AgNP amended soil. The effects of Al2O3 and SiO2 NPs on bacterial community composition were less pronounced. AgNPs significantly reduced bacterial and archaeal amoA gene abundance in soil, with the archaea more susceptible than bacteria. AgNPs also significantly impacted soil fungal community structure, while Al2O3 and SiO2 NPs had no effect. Several fungal ribotypes increased in soil amended with AgNPs, compared to control soil. This study highlights the need to consider the effects of individual nanoparticles on soil microbial communities when assessing their environmental impact.

  13. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland.

    Science.gov (United States)

    Lange, Markus; Habekost, Maike; Eisenhauer, Nico; Roscher, Christiane; Bessler, Holger; Engels, Christof; Oelmann, Yvonne; Scheu, Stefan; Wilcke, Wolfgang; Schulze, Ernst-Detlef; Gleixner, Gerd

    2014-01-01

    Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness) and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA) analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs). In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

  14. Biotic and abiotic properties mediating plant diversity effects on soil microbial communities in an experimental grassland.

    Directory of Open Access Journals (Sweden)

    Markus Lange

    Full Text Available Plant diversity drives changes in the soil microbial community which may result in alterations in ecosystem functions. However, the governing factors between the composition of soil microbial communities and plant diversity are not well understood. We investigated the impact of plant diversity (plant species richness and functional group richness and plant functional group identity on soil microbial biomass and soil microbial community structure in experimental grassland ecosystems. Total microbial biomass and community structure were determined by phospholipid fatty acid (PLFA analysis. The diversity gradient covered 1, 2, 4, 8, 16 and 60 plant species and 1, 2, 3 and 4 plant functional groups (grasses, legumes, small herbs and tall herbs. In May 2007, soil samples were taken from experimental plots and from nearby fields and meadows. Beside soil texture, plant species richness was the main driver of soil microbial biomass. Structural equation modeling revealed that the positive plant diversity effect was mainly mediated by higher leaf area index resulting in higher soil moisture in the top soil layer. The fungal-to-bacterial biomass ratio was positively affected by plant functional group richness and negatively by the presence of legumes. Bacteria were more closely related to abiotic differences caused by plant diversity, while fungi were more affected by plant-derived organic matter inputs. We found diverse plant communities promoted faster transition of soil microbial communities typical for arable land towards grassland communities. Although some mechanisms underlying the plant diversity effect on soil microorganisms could be identified, future studies have to determine plant traits shaping soil microbial community structure. We suspect differences in root traits among different plant communities, such as root turnover rates and chemical composition of root exudates, to structure soil microbial communities.

  15. Dramatic shifts in benthic microbial eukaryote communities following the Deepwater Horizon oil spill.

    Directory of Open Access Journals (Sweden)

    Holly M Bik

    Full Text Available Benthic habitats harbour a significant (yet unexplored diversity of microscopic eukaryote taxa, including metazoan phyla, protists, algae and fungi. These groups are thought to underpin ecosystem functioning across diverse marine environments. Coastal marine habitats in the Gulf of Mexico experienced visible, heavy impacts following the Deepwater Horizon oil spill in 2010, yet our scant knowledge of prior eukaryotic biodiversity has precluded a thorough assessment of this disturbance. Using a marker gene and morphological approach, we present an intensive evaluation of microbial eukaryote communities prior to and following oiling around heavily impacted shorelines. Our results show significant changes in community structure, with pre-spill assemblages of diverse Metazoa giving way to dominant fungal communities in post-spill sediments. Post-spill fungal taxa exhibit low richness and are characterized by an abundance of known hydrocarbon-degrading genera, compared to prior communities that contained smaller and more diverse fungal assemblages. Comparative taxonomic data from nematodes further suggests drastic impacts; while pre-spill samples exhibit high richness and evenness of genera, post-spill communities contain mainly predatory and scavenger taxa alongside an abundance of juveniles. Based on this community analysis, our data suggest considerable (hidden initial impacts across Gulf beaches may be ongoing, despite the disappearance of visible surface oil in the region.

  16. [Carbon sources metabolic characteristics of airborne microbial communities in constructed wetlands].

    Science.gov (United States)

    Song, Zhi-Wen; Wang, Lin; Xu, Ai-Ling; Wu, Deng-Deng; Xia, Yan

    2015-02-01

    Using BIOLOG-GN plates, this article describes the carbon sources metabolic characteristics of airborne microbial communities in a free surface-flow constructed wetland in different seasons and clarify the correlation between airborne microbial metabolic functions and environmental factors. The average well color development (AWCD), carbon metabolic profiles and McIntosh values of airborne microbial communities in different seasons were quite different. Analysis of the variations showed that AWCD in spring and summer differed significantly from that in autumn and winter (P metabolic community, carbohydrates metabolic community, polymers metabolic community and carboxylic acids metabolic community respectively. Principal component analysis showed that the carbon metabolic characteristics of airborne microbial community in autumn were similar to those in winter but different from those in spring and summer. The characteristics of carbon metabolism revealed differences between summer and spring, autumn, or winter. These differences were mainly caused by amines or amides while the differences between spring and autumn or winter were mainly caused by carboxylic acids. Environmental factors, including changes in wind speed, temperature, and humidity acted to influence the carbon sources metabolic properties of airborne microbial community. The dominant environmental factors that acted to influence the carbon sources metabolic properties of airborne microbial community varied between different seasons.

  17. Culture-Dependent and -Independent Methods Capture Different Microbial Community Fractions in Hydrocarbon-Contaminated Soils.

    Directory of Open Access Journals (Sweden)

    Franck O P Stefani

    Full Text Available Bioremediation is a cost-effective and sustainable approach for treating polluted soils, but our ability to improve on current bioremediation strategies depends on our ability to isolate microorganisms from these soils. Although culturing is widely used in bioremediation research and applications, it is unknown whether the composition of cultured isolates closely mirrors the indigenous microbial community from contaminated soils. To assess this, we paired culture-independent (454-pyrosequencing of total soil DNA with culture-dependent (isolation using seven different growth media techniques to analyse the bacterial and fungal communities from hydrocarbon-contaminated soils. Although bacterial and fungal rarefaction curves were saturated for both methods, only 2.4% and 8.2% of the bacterial and fungal OTUs, respectively, were shared between datasets. Isolated taxa increased the total recovered species richness by only 2% for bacteria and 5% for fungi. Interestingly, none of the bacteria that we isolated were representative of the major bacterial OTUs recovered by 454-pyrosequencing. Isolation of fungi was moderately more effective at capturing the dominant OTUs observed by culture-independent analysis, as 3 of 31 cultured fungal strains ranked among the 20 most abundant fungal OTUs in the 454-pyrosequencing dataset. This study is one of the most comprehensive comparisons of microbial communities from hydrocarbon-contaminated soils using both isolation and high-throughput sequencing methods.

  18. Host genetics is associated with the gut microbial community membership rather than the structure.

    Science.gov (United States)

    Zhao, Peihua; Irwin, David M; Dong, Dong

    2016-04-26

    The issue of what factors shape the gut microbiota has been studied for years. However, questions on the contribution of host genetics to the colonizing process of the gut microbiota and to the extent that host genetics affect the gut microbiota have not yet been clearly answered. Most recently published reports have concluded that host genetics make a smaller contribution than other factors, such as diet, in determining the gut microbiota. Here we have exploited the increasing amount of fecal 16S rRNA gene sequencing data that are becoming available to conduct an analysis to assess the influence of host genetics on the diversity of the gut microbiota. By re-analyzing data obtained from over 5000 stool samples, representing individuals living on five continents and ranging in age from 3 days to 87 years, we found that the strength of the various factors affecting the membership or structure of the gut microbiota are quite different, which leads us to a hypothesis that the presence or absence of taxa is largely controlled by host genetics, whereas non-genetic factors regulate the abundance of each taxon. This hypothesis is supported by the finding that the genome similarity positively correlates with the similarity of community membership. Finally, we showed that only severe perturbations are able to alter the gut microbial community membership. In summary, our work provides new insights into understanding the complexities of the gut microbial community and how it responds to changes imposed on it.

  19. Microbial community analysis in biotrickling filters treating isopropanol air emissions.

    Science.gov (United States)

    Pérez, M Carmen; Alvarez-Hornos, F Javier; San-Valero, Pau; Marzal, Paula; Gabaldón, Carmen

    2013-01-01

    The evolution of the microbial community was analysed over one year in two biotrickling filters operating under intermittent feeding conditions and treating isopropanol emissions, a pollutant typically found in the flexography sector. Each reactor was packed with one media: plastic cross-flow-structured material or polypropylene rings. The communities were monitored by fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) analysis of the 16S rRNA region. After inoculation with activated sludge, the biotrickling filters were operated using inlet loads (ILs) from 20 to 65 g C m(-3) h(-1) and empty-bed residence times (EBRTs) from 14 to 160 s. Removal efficiencies higher than 80% were obtained with ILs up to 35 g C m(-3) h(-1) working at EBRTs as low as 24 s. There was an increase in the total percentage of the target domains of up to around 80% at the end of the experiment. Specifically, the Gammaproteobacteria domain group, which includes the well-known volatile organic compound (VOC)-degrading species such as Pseudomonas putida, showed a noticeable rise in the two biotrickling filters of 26% and 27%, respectively. DGGE pattern band analysis revealed a stable band of Pseudomonas putida in all the samples monitored, even in the lower diversity communities. In addition, at similar operational conditions, the biotrickling filter with a greater relative abundance of Pseudomonas sp. (19.2% vs. 8%) showed higher removal efficiency (90% vs. 79%). Results indicate the importance of undertaking a further in-depth study of the involved species in the biofiltration process and their specific function.

  20. Impact of lfuxapyroxad on the microbial community structure and functional diversity in the silty-loam soil

    Institute of Scientific and Technical Information of China (English)

    WU Xiao-hu; XU Jun; LIU Yong-zhuo; DONG Feng-shou; LIU Xin-gang; ZHANG Wen-wen; ZHENG Yong-quan

    2015-01-01

    The aim of this work was to assess the effect of applying three different doses of lfuxapyroxad on microbial activity, com-munity structure and functional diversity as measured by respiration, microbial biomass C, phospholipid fatty acid (PLFA) and community-level physiological proifles (CLPPs). Our results demonstrated that substrate-induced respiration (on day 15) and microbial biomass C (on days 7 and 15) were inhibited by lfuxapyroxad, but stimulation was observed thereafter. In contrast, lfuxapyroxad addition increased the basal respiration and metabolic quotients (qCO2) and respiratory quotients (QR). Analysis of the PLFA proifles revealed that the total and bacterial biomass (both Gram-positive bacteria (GP) and Gram-negative bacteria (GN)) were decreased within the initial 15 days, whereas those as wel as the GN/GP ratio were increased at days 30 and 60. Fluxapyroxad input decreased the fungi biomass but increased the bacteria/fungi ratio at al incubation time. Moreover, high lfuxapyroxad input (75 mg lfuxapyroxad kg–1 soil dry weight) increased the microbial stress level. A principal component analysis (PCA) of the PLFAs revealed that lfuxapyroxad treatment signiifcantly shifted the microbial community structure, but al of the observed effects were transient. Biolog results showed that average wel color development (AWCD) and functional diversity index (H´) were increased only on day 60. In addition, the dissipation of lfuxa-pyroxad was slow in soil, and the degradation half-lives varied from 158 to 385 days depending on the concentration tested.

  1. Initial studies to assess microbial impacts on nuclear waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Horn, J.M.; Meike, A.; McCright, R.D. [Lawrence Livermore National Lab., CA (United States); Economides, B. [Univ. of California, Berkeley, CA (United States). Dept. of Geology and Geophysics

    1996-02-20

    The impacts of the native and introduced bacteria on the performance of geologic nuclear waste disposal facilities should be evaluated because these bacteria could promote corrosion of repository components and alteration of chemical and hydrological properties of the surrounding engineered and rock barriers. As a first step towards investigating these potentialities, native and introduced bacteria obtained from post-construction Yucca Mountain (YM) rock were isolated under varying conditions, including elevated temperature, low nutrient availability, and the absence of available oxygen. Individual isolates are being screened for activities associated with microbially induced corrosion of metals (MIC). Preliminary determination of growth rates of whole YM microbial communities under varying conditions was also undertaken.

  2. Impact of chromium-contaminated wastewaters on the microbial community of a river.

    Science.gov (United States)

    Branco, Rita; Chung, Ana-Paula; Veríssimo, António; Morais, Paula V

    2005-09-01

    The influence of chromium on the microbial community structure was analyzed in a river system subjected to long-term chromium contamination, by plating and by sequencing 16S rRNA genes cloned from DNA extracted from the river sediments. We also analyzed the influence of chromium on the ability of the microbial community to resist and reduce Cr(VI) and on its resistance to antibiotics. Shifts in the microbial community structure were analyzed by amplified ribosomal DNA restriction analysis fingerprinting. The isolates obtained were phylogenetically related to Actinobacteria, Firmicutes, Bacteroidetes and Proteobacteria, whereas Acidobacteria and Deltaproteobacteria were only revealed by clone analyses. Cr(VI)-resistant and Cr(VI)-reducing strains were isolated in all sites examined. However, each sample site had a microbial community with a different antibiotic resistance pattern. Our study seems to indicate that in this river ecosystem chromium influenced the microbial communities, altering some of their functional characteristics, such as the percentage of the microbial community able to resist or to reduce Cr(VI) and the phylogenetic groups isolated, but it did not affect the structural diversity. Furthermore, the concentration of Cr(VI) in the sediments could not be correlated with a lower number of bacteria or lower index of generic diversity, neither with the ability of the microbial community to resist or to reduce higher Cr(VI) concentrations.

  3. Microbial Aggregate and Functional Community Distribution in a Sequencing Batch Reactor with Anammox Granules

    KAUST Repository

    Sun, Shan

    2013-05-01

    Anammox (anaerobic ammonium oxidation) process is a one-step conversion of ammonia into nitrogen gas with nitrite as an electron acceptor. It has been developed as a sustainable technology for ammonia removal from wastewater in the last decade. For wastewater treatment, anammox biomass was widely developed as microbial aggregate where the conditions for enrichment of anammox community must be delicately controlled and growth of other bacteria especially NOB should be suppressed to enhance nitrogen removal efficiency. Little is known about the distribution of microbial aggregates in anammox process. Thus the objective of our study was to assess whether segregation of biomass occurs in granular anammox system. In this study, a laboratory-scale sequential batch reactor (SBR) was successfully operated for a period of 80 days with granular anammox biomass. Temporal and spatial distribution of microbial aggregates was studied by particle characterization system and the distribution of functional microbial communities was studied with qPCR and 16s rRNA amplicon pyrosequencing. Our study revealed the spatial and temporal distribution of biomass aggregates based on their sizes and density. Granules (>200 μm) preferentially accumulated in the bottom of the reactor while floccules (30-200 μm) were relatively rich at the top layer. The average density of aggregate was higher at the bottom than the density of those at the top layer. Degranulation caused by lack of hydrodynamic shear force in the top layer was considered responsible for this phenomenon. NOB was relatively rich in the top layer while percentage of anammox population was higher at the bottom, and anammox bacteria population gradually increased over a period of time. NOB growth was supposed to be associated with the increase of floccules based on the concurrent occurrence. Thus, segregation of biomass can be utilized to develop an effective strategy to enrich anammox and wash out NOB by shortening the settling

  4. Reactor performances and microbial communities of biogas reactors: effects of inoculum sources.

    Science.gov (United States)

    Han, Sheng; Liu, Yafeng; Zhang, Shicheng; Luo, Gang

    2016-01-01

    Anaerobic digestion is a very complex process that is mediated by various microorganisms, and the understanding of the microbial community assembly and its corresponding function is critical in order to better control the anaerobic process. The present study investigated the effect of different inocula on the microbial community assembly in biogas reactors treating cellulose with various inocula, and three parallel biogas reactors with the same inoculum were also operated in order to reveal the reproducibility of both microbial communities and functions of the biogas reactors. The results showed that the biogas production, volatile fatty acid (VFA) concentrations, and pH were different for the biogas reactors with different inocula, and different steady-state microbial community patterns were also obtained in different biogas reactors as reflected by Bray-Curtis similarity matrices and taxonomic classification. It indicated that inoculum played an important role in shaping the microbial communities of biogas reactor in the present study, and the microbial community assembly in biogas reactor did not follow the niche-based ecology theory. Furthermore, it was found that the microbial communities and reactor performances of parallel biogas reactors with the same inoculum were different, which could be explained by the neutral-based ecology theory and stochastic factors should played important roles in the microbial community assembly in the biogas reactors. The Bray-Curtis similarity matrices analysis suggested that inoculum affected more on the microbial community assembly compared to stochastic factors, since the samples with different inocula had lower similarity (10-20 %) compared to the samples from the parallel biogas reactors (30 %).

  5. Photochemical Control of Organic Carbon Availability to Coastal Microbial Communities

    Science.gov (United States)

    Miller, W. L.; Reader, H. E.; Powers, L. C.

    2010-12-01

    Chromophoric dissolved organic matter (CDOM) is the fraction of dissolved organic matter that absorbs solar radiation. In terrestrially influenced locations high concentrations of CDOM help to shield the biological community from harmful UV radiation. Although CDOM is largely biologically refractory in nature, photochemistry has the potential to transform biologically refractory carbon into more biolabile forms. Studies suggest that in marine systems, the effect of UVR on carbon availability and subsequent bacterial production varies widely, ranging from a +200% increase to a -75% decrease (Mopper and Kieber, 2002). Evidence suggests that the largely negative or “no-effect” samples are from oligotrophic waters and that terrestrially influenced samples experience a more positive effect on the biolability of carbon after irradiation. To quantify the effects of photochemistry on the biolability of DOC in a terrestrially influenced system, a quarterly sampling effort was undertaken at three estuarine locations off the coast of Georgia, USA for a total of 14 apparent quantum yield (AQY) determinations. Large expanses of salt marsh on the coast of Georgia, create a large non-point source of DOC to the coastal ocean. Sapelo Sound, the northernmost sampling site, is dominated by offshore waters and receives little to no freshwater input throughout the year. Altamaha Sound, the southernmost sampling site, is strongly influenced by the Altamaha River, which drains the largest watershed in the state of Georgia. Doboy Sound, situated between these two sites, is largely marine dominated but is influenced by fresh water during periods of high river flow. Each sample was 0.2um filter-sterilized before irradiation in a Suntest Solar Simulator; using optical filters to create 7 distinct radiance spectra in 15 samples for determination of AQY spectra for release of biolabile DOC. Irradiated samples were consequently inoculated with the natural microbial community concentrated

  6. Next generation sequencing data of a defined microbial mock community

    Science.gov (United States)

    Singer, Esther; Andreopoulos, Bill; Bowers, Robert M.; Lee, Janey; Deshpande, Shweta; Chiniquy, Jennifer; Ciobanu, Doina; Klenk, Hans-Peter; Zane, Matthew; Daum, Christopher; Clum, Alicia; Cheng, Jan-Fang; Copeland, Alex; Woyke, Tanja

    2016-01-01

    Generating sequence data of a defined community composed of organisms with complete reference genomes is indispensable for the benchmarking of new genome sequence analysis methods, including assembly and binning tools. Moreover the validation of new sequencing library protocols and platforms to assess critical components such as sequencing errors and biases relies on such datasets. We here report the next generation metagenomic sequence data of a defined mock community (Mock Bacteria ARchaea Community; MBARC-26), composed of 23 bacterial and 3 archaeal strains with finished genomes. These strains span 10 phyla and 14 classes, a range of GC contents, genome sizes, repeat content and encompass a diverse abundance profile. Short read Illumina and long-read PacBio SMRT sequences of this mock community are described. These data represent a valuable resource for the scientific community, enabling extensive benchmarking and comparative evaluation of bioinformatics tools without the need to simulate data. As such, these data can aid in improving our current sequence data analysis toolkit and spur interest in the development of new tools. PMID:27673566

  7. Photosynthetic carbon incorporation and turnover in Antarctic cryptoendolithic microbial communities: Are they the slowest-growing communities on earth

    Energy Technology Data Exchange (ETDEWEB)

    Johnston, C.G.; Vestal, J.R. (Univ. of Cincinnati, OH (USA))

    1991-08-01

    The main forms of terrestrial life in the cold, desolate Ross Desert of Antarctica are lichen-dominated or cyanobacterium-dominated cryptoendolithic (hidden in rock) microbial communities. Though microbial community biomass (as measured by extractable lipid phosphate) was well within the range of values determined for their microbial communities, community lipid carbon turnover times (calculated from community lipid biomass, rates of community photosynthetic carbon incorporation into lipids versus temperature, and the in situ temperature record) were among the longest on Earth (ca. 20,000 years). When the temperature is above freezing and moisture is present, moderate rates of photosynthesis can be measured. Lichen communities had a psychrophilic temperature response (maximal rate of 4.5 ng of C h{sup {minus}1}m{sup {minus}2} at 10C) while cyanobacteria communities had maximal rates at 20 to 30C(3 ng of C h{sup {minus}1} m{sup {minus}2}). These extraordinarily slowly growing communities were not nutrient limited. No significant changes in photosynthetic metabolism simple, tenacious microbial communities demonstrate strategies of survival under conditions normally considered too extreme for life.

  8. Effect of altitude and season on microbial activity, abundance and community structure in Alpine forest soils.

    Science.gov (United States)

    Siles, José A; Cajthaml, Tomas; Minerbi, Stefano; Margesin, Rosa

    2016-03-01

    In the current context of climate change, the study of microbial communities along altitudinal gradients is especially useful. Only few studies considered altitude and season at the same time. We characterized four forest sites located in the Italian Alps, along an altitude gradient (545-2000 m a.s.l.), to evaluate the effect of altitude in spring and autumn on soil microbial properties. Each site in each season was characterized with regard to soil temperature, physicochemical properties, microbial activities (respiration, enzymes), community level physiological profiles (CLPP), microbial abundance and community structure (PLFA). Increased levels of soil organic matter (SOM) and nutrients were found at higher altitudes and in autumn, resulting in a significant increase of (soil dry-mass related) microbial activities and abundance at higher altitudes. Significant site- and season-specific effects were found for enzyme production. The significant interaction of the factors site and incubation temperature for soil microbial activities indicated differences in microbial communities and their responses to temperature among sites. CLPP revealed site-specific effects. Microbial community structure was influenced by altitudinal, seasonal and/or site-specific effects. Correlations demonstrated that altitude, and not season, was the main factor determining the changes in abiotic and biotic characteristics at the sites investigated.

  9. 77 FR 45350 - Notice of Availability of Microbial Risk Assessment Guideline: Pathogenic Microorganisms With...

    Science.gov (United States)

    2012-07-31

    ... Assessment Guideline: Pathogenic Microorganisms with Focus on Food and Water (MRA Guideline). The MRA... document, Microbial Risk Assessment Guideline: Pathogenic Microorganisms with Focus on Food and Water will... AGENCY Notice of Availability of Microbial Risk Assessment Guideline: Pathogenic Microorganisms...

  10. Impact of long-term diesel contamination on soil microbial community structure

    DEFF Research Database (Denmark)

    Sutton, Nora; Maphosa, Farai; Morillo, Jose

    2013-01-01

    Microbial community composition and diversity at a diesel-contaminated railway site were investigated by pyrosequencing of bacterial and archaeal 16S rRNA gene fragments to understand the interrelationships among microbial community composition, pollution level, and soil geochemical and physical...... properties. To this end, 26 soil samples from four matrix types with various geochemical characteristics and contaminant concentrations were investigated. The presence of diesel contamination significantly impacted microbial community composition and diversity, regardless of the soil matrix type. Clean...... samples showed higher diversity than contaminated samples (P

  11. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient.

    Science.gov (United States)

    Shelton, Jenna L; Akob, Denise M; McIntosh, Jennifer C; Fierer, Noah; Spear, John R; Warwick, Peter D; McCray, John E

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells

  12. Environmental drivers of differences in microbial community structure in crude oil reservoirs across a methanogenic gradient

    Directory of Open Access Journals (Sweden)

    Jenna L Shelton

    2016-09-01

    Full Text Available Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow up-dip wells was different than the 17 deeper, down-dip wells, and that

  13. Environmental Drivers of Differences in Microbial Community Structure in Crude Oil Reservoirs across a Methanogenic Gradient

    Science.gov (United States)

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells

  14. Environmental drivers of differences in microbial community structure in crude oil reservoirs across a methanogenic gradient

    Science.gov (United States)

    Shelton, Jenna L.; Akob, Denise M.; McIntosh, Jennifer C.; Fierer, Noah; Spear, John R.; Warwick, Peter D.; McCray, John E.

    2016-01-01

    Stimulating in situ microbial communities in oil reservoirs to produce natural gas is a potentially viable strategy for recovering additional fossil fuel resources following traditional recovery operations. Little is known about what geochemical parameters drive microbial population dynamics in biodegraded, methanogenic oil reservoirs. We investigated if microbial community structure was significantly impacted by the extent of crude oil biodegradation, extent of biogenic methane production, and formation water chemistry. Twenty-two oil production wells from north central Louisiana, USA, were sampled for analysis of microbial community structure and fluid geochemistry. Archaea were the dominant microbial community in the majority of the wells sampled. Methanogens, including hydrogenotrophic and methylotrophic organisms, were numerically dominant in every well, accounting for, on average, over 98% of the total Archaea present. The dominant Bacteria groups were Pseudomonas, Acinetobacter, Enterobacteriaceae, and Clostridiales, which have also been identified in other microbially-altered oil reservoirs. Comparing microbial community structure to fluid (gas, water, and oil) geochemistry revealed that the relative extent of biodegradation, salinity, and spatial location were the major drivers of microbial diversity. Archaeal relative abundance was independent of the extent of methanogenesis, but closely correlated to the extent of crude oil biodegradation; therefore, microbial community structure is likely not a good sole predictor of methanogenic activity, but may predict the extent of crude oil biodegradation. However, when the shallow, highly biodegraded, low salinity wells were excluded from the statistical analysis, no environmental parameters could explain the differences in microbial community structure. This suggests that the microbial community structure of the 5 shallow, up-dip wells was different than the 17 deeper, down-dip wells. Also, the 17 down-dip wells

  15. Monitoring impact of mefenacet treatment on soil microbial communities by PCR-DGGE fingerprinting and conventional testing procedures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The effect of acetanilide herbicide mefenacet on soil microbial communities was studied using paddy soil samples with different short-term treatments. The culturable bacteria (plate counts), dehydrogenase activity and changes in community structure(denaturing gradient gel electrophoresis (DGGE) analysis) were used for biological community assessments. Mefenacet was a significant stimulus to cultural aerobic bacteria and dehydrogenase activity while Sphingobacterium multivorum Y1, a bacterium efficiently degrading the mefenacet, only induced the increasing colony-forming unit (CFU) of bacteria but little effect on dehydrogenase activity during the whole experiment. The degree of similarity between the 16S rDNA profiles of the communities was quantified by numerically analyzing the DGGE band patterns. Similarity dendrograms showed that the microbial community structures of the mefenacet-treated and non-treated soils were not significantly different. But supplement ofS. multivorum Y1 could increase the diversity of the microbial community in the mefenacet-polluted paddy soil. This work is a new attempt to apply the S. multivorum Y1for remediation of the mefenacet-polluted environments.

  16. Activity assessment of microbial fibrinolytic enzymes.

    Science.gov (United States)

    Kotb, Essam

    2013-08-01

    Conversion of fibrinogen to fibrin inside blood vessels results in thrombosis, leading to myocardial infarction and other cardiovascular diseases. In general, there are four therapy options: surgical operation, intake of antiplatelets, anticoagulants, or fibrinolytic enzymes. Microbial fibrinolytic enzymes have attracted much more attention than typical thrombolytic agents because of the expensive prices and the side effects of the latter. The fibrinolytic enzymes were successively discovered from different microorganisms, the most important among which is the genus Bacillus. Microbial fibrinolytic enzymes, especially those from food-grade microorganisms, have the potential to be developed as functional food additives and drugs to prevent or cure thrombosis and other related diseases. There are several assay methods for these enzymes; this may due to the insolubility of substrate, fibrin. Existing assay methods can be divided into three major groups. The first group consists of assay of fibrinolytic activity with natural proteins as substrates, e.g., fibrin plate methods. The second and third groups of assays are suitable for kinetic studies and are based on the determination of hydrolysis of synthetic peptide esters. This review will deal primarily with the microorganisms that have been reported in literature to produce fibrinolytic enzymes and the first review discussing the methods used to assay the fibrinolytic activity.

  17. Effects of application of corn straw on soil microbial community structure during the maize growing season.

    Science.gov (United States)

    Lu, Ping; Lin, Yin-Hua; Yang, Zhong-Qi; Xu, Yan-Peng; Tan, Fei; Jia, Xu-Dong; Wang, Miao; Xu, De-Rong; Wang, Xi-Zhuo

    2015-01-01

    This study investigated the influence of corn straw application on soil microbial communities and the relationship between such communities and soil properties in black soil. The crop used in this study was maize (Zea mays L.). The five treatments consisted of applying a gradient (50, 100, 150, and 200%) of shattered corn straw residue to the soil. Soil samples were taken from May through September during the 2012 maize growing season. The microbial community structure was determined using phospholipid fatty acid (PLFA) analysis. Our results revealed that the application of corn straw influenced the soil properties and increased the soil organic carbon and total nitrogen. Applying corn straw to fields also influenced the variation in soil microbial biomass and community composition, which is consistent with the variations found in soil total nitrogen (TN) and soil respiration (SR). However, the soil carbon-to-nitrogen ratio had no effect on soil microbial communities. The abundance of PLFAs, TN, and SR was higher in C1.5 than those in other treatments, suggesting that the soil properties and soil microbial community composition were affected positively by the application of corn straw to black soil. A Principal Component Analysis indicated that soil microbial communities were different in the straw decomposition processes. Moreover, the soil microbial communities from C1.5 were significantly different from those of CK (p straw treatments that correlated with SR (p straw positively influences soil properties and soil microbial communities and that these properties affect these communities. The individual PLFA signatures were sensitive indicators that reflected the changes in the soil environment condition.

  18. Supercritical fluid extraction and ultra performance liquid chromatography of respiratory quinones for microbial community analysis in environmental and biological samples.

    Science.gov (United States)

    Hanif, Muhammad; Atsuta, Yoichi; Fujie, Koichi; Daimon, Hiroyuki

    2012-03-05

    Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE) and ultra performance liquid chromatography (UPLC) method for the analysis of bacterial respiratory quinones (RQ) in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA) detector was successfully applied to the simultaneous determination of ubiquinones (UQ) and menaquinones (MK) without tedious pretreatment. Supercritical carbon dioxide (scCO(2)) extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost) and biological samples (swine and Japanese quail feces).

  19. Supercritical Fluid Extraction and Ultra Performance Liquid Chromatography of Respiratory Quinones for Microbial Community Analysis in Environmental and Biological Samples

    Directory of Open Access Journals (Sweden)

    Koichi Fujie

    2012-03-01

    Full Text Available Microbial community structure plays a significant role in environmental assessment and animal health management. The development of a superior analytical strategy for the characterization of microbial community structure is an ongoing challenge. In this study, we developed an effective supercritical fluid extraction (SFE and ultra performance liquid chromatography (UPLC method for the analysis of bacterial respiratory quinones (RQ in environmental and biological samples. RQ profile analysis is one of the most widely used culture-independent tools for characterizing microbial community structure. A UPLC equipped with a photo diode array (PDA detector was successfully applied to the simultaneous determination of ubiquinones (UQ and menaquinones (MK without tedious pretreatment. Supercritical carbon dioxide (scCO2 extraction with the solid-phase cartridge trap proved to be a more effective and rapid method for extracting respiratory quinones, compared to a conventional organic solvent extraction method. This methodology leads to a successful analytical procedure that involves a significant reduction in the complexity and sample preparation time. Application of the optimized methodology to characterize microbial communities based on the RQ profile was demonstrated for a variety of environmental samples (activated sludge, digested sludge, and compost and biological samples (swine and Japanese quail feces.

  20. Effect of a high strength chemical industry wastewater on microbial community dynamics and mesophilic methane generation.

    Science.gov (United States)

    Venkatakrishnan, Harish; Tan, Youming; Majid, Maszenan Bin Abdul; Pathak, Santosh; Sendjaja, Antonius Yudi; Li, Dongzhe; Liu, Jerry Jian Lin; Zhou, Yan; Ng, Wun Jern

    2014-04-01

    A high strength chemical industry wastewater was assessed for its impact on anaerobic microbial community dynamics and consequently mesophilic methane generation. Cumulative methane production was 251 mL/g total chemical oxygen demand removed at standard temperature and pressure at the end of 30 days experimental period with a highest recorded methane percentage of 80.6% of total biogas volume. Volatile fatty acids (VFAs) analysis revealed that acetic acid was the major intermediate VFAs produced with propionic acid accumulating over the experimental period. Quantitative analysis of microbial communities in the test and control groups with quantitative real time polymerase chain reaction highlighted that in the test group, Eubacteria (96.3%) was dominant in comparison with methanogens (3.7%). The latter were dominated by Methanomicrobiales and Methanobacteriales while Methanosarcinaceae in test groups increased over the experimental period, reaching a maximum on day 30. Denaturing gradient gel electrophoresis profile was performed, targeting the 16S rRNA gene of Eubacteria and Archaea, with the DNA samples extracted at 3 different time points from the test groups. A phylogenetic tree was constructed for the sequences using the neighborhood joining method. The analysis revealed that the presence of organisms resembling Syntrophomonadaceae could have contributed to increased production of acetic and propionic acid intermediates while decrease of organisms resembling Pelotomaculum sp. could have most likely contributed to accumulation of propionic acid. This study suggested that the degradation of organic components within the high strength industrial wastewater is closely linked with the activity of certain niche microbial communities within eubacteria and methanogens.

  1. Effect of cypermethrin insecticide on the microbial community in cucumber phyllosphere

    Institute of Scientific and Technical Information of China (English)

    ZHANG Baoguo; ZHANG Hongxun; JIN Bo; TANG Ling; YANG Jianzhou; LI Baoju; ZHUANG Guoqiang; BAI Zhihui

    2008-01-01

    Cucumber (Cucumis sativus) is one of the most widely used vegetable in the world, and different pesticides have been extensively used for controlling the insects and disease pathogens of this plant. However, little is known about how the pesticides affect the microbial community in cucumber phyllosphere. This study was the first attempt to assess the impact of pyrethroid insecticide cyperemethrin on the microbial communities of cucumber phyllosphere using biochemical and genetic approaches. Phospholipid fatty acid (PLFA) assay indicated that cyperemethrin insecticide treatment led to a significant increase in both total and bacterial biomass and a decrease in fungal biomass and the ratio of Gram-positive (GP) bacteria to Gram-negative (GN) bacteria within the cucumber phyllosphere. Principal-component analyses (PCA) suggested that the number of unsaturated and cyclopropane PLFAs (16:1ω9t,18:1ω7, cy17:0, cy19:0) increased with the insecticide treatment, whereas the saturated PLFA i16:0, i17:0 decreased. The increase of GN bacteria implied that the cypermethrin insecticide might be a nutrient for the growth of these phyllosphere microbes. Terminal restriction fragment length polymorphism (T-RFLP) reinforced the PLFA results. A significant change of bacterial community structure was observed in the separate dendrogram cluster between control and treated samples with the cucumber phyllosphere following cypermethrin insecticide treatment. Moreover, the increased terminal restriction fragments (T-RFs) (58, 62, 89, 99, 119, 195, 239,311,340, and 473 bp) indicated that some bacteria might play a significant role in the insecticide degradation within the cucumber phylosphere, whereas the disappeared T-RFs (44, 51, 96, 223, 306, and 338 bp) implied that some other bacteria might potentially serve as microbial indicator of cyperemethrin insecticide exposure.

  2. The Effect of Initial Inoculum Source on the Microbial Community Structure and Dynamics in Laboratory-Scale Sequencing Batch Reactors

    KAUST Repository

    Hernandez, Susana

    2011-07-01

    Understanding the factors that shapes the microbial community assembly in activated sludge wastewater treatment processes provide a conceptual foundation for improving process performance. The aim of this study was to compare two major theories (deterministic theory and neutral theory) regarding the assembly of microorganisms in activated sludge: Six lab-scale activated sludge sequencing batch reactors were inoculated with activated sludge collected from three different sources (domestic, industrial, and sugar industry WWTP). Additionally, two reactors were seeded with equal proportion of sludge from the three WWTPs. Duplicate reactors were used for each sludge source (i.e. domestic, industrial, sugar and mix). Reactors were operated in parallel for 11 weeks under identical conditions. Bacterial diversity and community structure in the eight SBRs were assessed by 16S rRNA gene pyrosequencing. The 16S rRNA gene sequences were analyzed using taxonomic and clustering analysis and by measuring diversity indices (Shannon-weaver and Chao1 indices). Cluster analysis revealed that the microbial community structure was dynamic and that replicate reactors evolved differently. Also the microbial community structure in the SBRs seeded with a different sludge did not converge after 11 weeks of operation under identical conditions. These results suggest that history and distribution of taxa in the source inoculum were stronger regulating factors in shaping bacterial community structure than environmental factors. This supports the neutral theory which states that the assembly of the local microbial community from the metacommunity is random and is regulated by the size and diversity of the metacommunity. Furthermore, sludge performance, measured by COD and ammonia removal, confirmed that broad-scale functions (e.g. COD removal) are not influenced by dynamics in the microbial composition, while specific functions (e.g. nitrification) are more susceptible to these changes.

  3. Analysis of the microbial community of the biocathode of a hydrogen-producing microbial electrolysis cell.

    Science.gov (United States)

    Croese, Elsemiek; Pereira, Maria Alcina; Euverink, Gert-Jan W; Stams, Alfons J M; Geelhoed, Jeanine S

    2011-12-01

    The microbial electrolysis cell (MEC) is a promising system for hydrogen production. Still, expensive catalysts such as platinum are needed for efficient hydrogen evolution at the cathode. Recently, the possibility to use a biocathode as an alternative for platinum was shown. The microorganisms involved in hydrogen evolution in such systems are not yet identified. We analyzed the microbial community of a mixed culture biocathode that was enriched in an MEC bioanode. This biocathode produced 1.1 A m(-2) and 0.63 m3 H2 m(-3) cathode liquid volume per day. The bacterial population consisted of 46% Proteobacteria, 25% Firmicutes, 17% Bacteroidetes, and 12% related to other phyla. The dominant ribotype belonged to the species Desulfovibrio vulgaris. The second major ribotype cluster constituted a novel taxonomic group at the genus level, clustering within uncultured Firmicutes. The third cluster belonged to uncultured Bacteroidetes and grouped in a taxonomic group from which only clones were described before; most of these clones originated from soil samples. The identified novel taxonomic groups developed under environmentally unusual conditions, and this may point to properties that have not been considered before. A pure culture of Desulfovibrio strain G11 inoculated in a cathode of an MEC led to a current development from 0.17 to 0.76 A m(-2) in 9 days, and hydrogen gas formation was observed. On the basis of the known characteristics of Desulfovibrio spp., including its ability to produce hydrogen, we propose a mechanism for hydrogen evolution through Desulfovibrio spp. in a biocathode system.

  4. Microbial Community Metabolic Modeling: A Community Data-Driven Network Reconstruction: COMMUNITY DATA-DRIVEN METABOLIC NETWORK MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Henry, Christopher S. [Division of Mathematics and Computer Science, Argonne National Laboratory, Argonne Illinois; Computation Institute, University of Chicago, Chicago Illinois; Bernstein, Hans C. [Biodetection Sciences, National Security Directorate, Pacific Northwest National Laboratory Richland Washington; Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman Washington; Weisenhorn, Pamela [Division of Mathematics and Computer Science, Argonne National Laboratory, Argonne Illinois; Division of Biosciences, Argonne National Laboratory, Argonne Illinois; Taylor, Ronald C. [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; Lee, Joon-Yong [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; Zucker, Jeremy [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington; Song, Hyun-Seob [Biological Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland Washington

    2016-06-02

    Metabolic network modeling of microbial communities provides an in-depth understanding of community-wide metabolic and regulatory processes. Compared to single organism analyses, community metabolic network modeling is more complex because it needs to account for interspecies interactions. To date, most approaches focus on reconstruction of high-quality individual networks so that, when combined, they can predict community behaviors as a result of interspecies interactions. However, this conventional method becomes ineffective for communities whose members are not well characterized and cannot be experimentally interrogated in isolation. Here, we tested a new approach that uses community-level data as a critical input for the network reconstruction process. This method focuses on directly predicting interspecies metabolic interactions in a community, when axenic information is insufficient. We validated our method through the case study of a bacterial photoautotroph-heterotroph consortium that was used to provide data needed for a community-level metabolic network reconstruction. Resulting simulations provided experimentally validated predictions of how a photoautotrophic cyanobacterium supports the growth of an obligate heterotrophic species by providing organic carbon and nitrogen sources.

  5. Interactive effects of hypoxia and polybrominated diphenyl ethers (PBDEs) on microbial community assembly in surface marine sediments.

    Science.gov (United States)

    Chan, Yuki; Li, Amy; Gopalakrishnan, Singaram; Shin, Paul K S; Wu, Rudolf S S; Pointing, Stephen B; Chiu, Jill M Y

    2014-08-30

    Hypoxia alters the oxidation-reduction balance and the biogeochemical processes in sediments, but little is known about its impacts on the microbial community that is responsible for such processes. In this study, we investigated the effects of hypoxia and the ubiquitously dispersed flame-retardant BDE47 on the bacterial communities in marine surface sediments during a 28-days microcosm experiment. Both hypoxia and BDE47 alone significantly altered the bacterial community and reduced the species and genetic diversity. UniFrac analysis revealed that BDE47 selected certain bacterial species and resulted in major community shifts, whereas hypoxia changed the relative abundances of taxa, suggesting slower but nonetheless significant community shifts. These two stressors targeted mostly different taxa, but they both favored Bacteroidetes and suppressed Gammaproteobacteria. Importantly, the impacts of BDE47 on bacterial communities were different under hypoxic and normoxic conditions, highlighting the need to consider risk assessments for BDE47 in a broader context of interaction with hypoxia.

  6. Development and application of functional gene arrays for microbial community analysis

    Institute of Scientific and Technical Information of China (English)

    Z.L.HE; J.D.VAN NOSTRAND; L.Y.WU; J.Z.ZHOU

    2008-01-01

    Functional gene markers can provide important information about functional gene diversity and potential activity of microbial communities.Although microarray technology has been successfully applied to study gene expression for pure cultures,simple,and artificial microbial communities,adapting such a technology to analyze complex microbial communities still presents a lot of challenges in terms of design,sample preparation,and data analysis.This work is focused on the development and application of functional gene arrays (FGAs) to target key functional gene markers for microbial community studies.A few key issues specifically related to FGAs,such as oligonucleotide probe design,nucleic acid extraction and purification,data analysis,specificity,sensitivity,and quantitative capability are discussed in detail.Recent studies have demonstrated that FGAs can provide specific,sensitive,and potentially quantitative information about microbial communities from a variety of natural environments and controlled ecosystems.This technology is expected to revolutionize the analysis of microbial communities,and link microbial structure to ecosystem functioning.

  7. Structure of microbial communities in Sphagnum peatlands and effect of atmospheric carbon dioxide enrichment.

    Science.gov (United States)

    Mitchell, E A D; Gilbert, D; Buttler, A; Amblard, C; Grosvernier, P; Gobat, J M

    2003-08-01

    Little is known about the structure of microbial communities in Sphagnum peatlands, and the potential effects of the increasing atmospheric CO2 concentration on these communities are not known. We analyzed the structure of microbial communities in five Sphagnum-dominated peatlands across Europe and their response to CO2 enrichment using miniFACE systems. After three growing seasons, Sphagnum samples were analyzed for heterotrophic bacteria, cyanobacteria, microalgae, heterotrophic flagellates, ciliates, testate amoebae, fungi, nematodes, and rotifers. Heterotrophic organisms dominated the microbial communities and together represented 78% to 97% of the total microbial biomass. Testate amoebae dominated the protozoan biomass. A canonical correspondence analysis revealed a significant correlation between the microbial community data and four environmental variables (Na+, DOC, water table depth, and DIN), reflecting continentality, hydrology, and nitrogen deposition gradients. Carbon dioxide enrichment modified the structure of microbial communities, but total microbial biomass was unaffected. The biomass of heterotrophic bacteria increased by 48%, and the biomass of testate amoebae decreased by 13%. These results contrast with the absence of overall effect on methane production or on the vegetation, but are in line with an increased below-ground vascular plant biomass at the same sites. We interpret the increase in bacterial biomass as a response to a CO2-induced enhancement of Sphagnum exudation. The causes for the decrease of testate amoebae are unclear but could indicate a top-down rather than a bottom-up control on their density.

  8. Asynchronous responses of soil microbial community and understory plant community to simulated nitrogen deposition in a subtropical forest.

    Science.gov (United States)

    Wu, Jianping; Liu, Wenfei; Fan, Houbao; Huang, Guomin; Wan, Songze; Yuan, Yinghong; Ji, Chunfeng

    2013-10-01

    Atmospheric nitrogen (N) deposition greatly affects ecosystem processes and properties. However, few studies have simultaneously examined the responses of both the above- and belowground communities to N deposition. Here, we investigated the effects of 8 years of simulated N deposition on soil microbial communities and plant diversity in a subtropical forest. The quantities of experimental N added (g of N m(-2) year(-1)) and treatment codes were 0 (N0, control), 6 (N1), 12 (N2), and 24 (N3). Phospholipid fatty acids (PLFAs) analysis was used to characterize the soil microbial community while plant diversity and coverage were determined in the permanent field plots. Microbial abundance was reduced by the N3 treatment, and plant species richness and coverage were reduced by both N2 and N3 treatments. Declines in plant species richness were associated with decreased abundance of arbuscular mycorrhizal fungi, increased bacterial stress index, and reduced soil pH. The plasticity of soil microbial community would be more related to the different responses among treatments when compared with plant community. These results indicate that long-term N deposition has greater effects on the understory plant community than on the soil microbial community and different conservation strategies should be considered.

  9. Assessing the "Learning" in Learning Communities

    Science.gov (United States)

    Gansemer-Topf, Ann M.; Tietjen, Kari

    2015-01-01

    Although assessment has been an integral part of the development and expansion of learning communities, much of the assessment was focused on investigating student satisfaction, retention, and graduation. This chapter provides a case study illustrating one learning community's efforts to create assessments focused on student learning.

  10. Investigating the impact of storage conditions on microbial community composition in soil samples.

    Directory of Open Access Journals (Sweden)

    Benjamin E R Rubin

    Full Text Available Recent advances in DNA sequencing technologies have allowed scientists to probe increasingly complex biological systems, including the diversity of bacteria in the environment. However, despite a multitude of recent studies incorporating these methods, many questions regarding how environmental samples should be collected and stored still persist. Here, we assess the impact of different soil storage conditions on microbial community composition using Illumina-based 16S rRNA V4 amplicon sequencing. Both storage time and temperature affected bacterial community composition and structure. Frozen samples maintained the highest alpha diversity and differed least in beta diversity, suggesting the utility of cold storage for maintaining consistent communities. Samples stored for intermediate times (three and seven days had both the highest alpha diversity and the largest differences in overall beta diversity, showing the degree of community change after sample collection. These divergences notwithstanding, differences in neither storage time nor storage temperature substantially altered overall communities relative to more than 500 previously examined soil samples. These results systematically support previous studies and stress the importance of methodological consistency for accurate characterization and comparison of soil microbiological assemblages.

  11. Leaf litter decomposition of four different deciduous tree species - resource stoichiometry, nutrient release and microbial community composition

    Science.gov (United States)

    Leitner, S.; Keiblinger, K. M.; Zechmeister-Boltenstern, S.

    2012-04-01

    Recently, there has been increasing interest in the role of microbial communities for ecosystem processes like litter decomposition and nutrient cycling. For example, fungi are thought to be key players during litter decomposition in terrestrial ecosystems because they are able to degrade recalcitrant compounds like lignin and also dominate the decomposition of cellulose and hemicellulose, whereas bacteria seem to play an important role for lignin decomposition especially under anaerobic conditions. However, our knowledge about the contribution of bacteria and fungi to decomposition is still scarce. The aim of the present study was to elucidate how the microbial decomposer community is affected by resource stoichiometry and how changes in community composition affect litter decomposition and nutrient cycling. To this end, we collected leaf litter of four deciduous tree species (beech (Fagus), oak (Quercus), alder (Alnus) and ash tree (Fraxinus)) at four different seasons (winter, spring, summer and autumn) in an Austrian forest (Schottenwald, 48°14'N16°15'E; MAT=9°C; soil type: dystric cambiosol; soil C:N=16) in 2010. We determined litter nutrient content (micro- and macronutrients) and extractable nutrients and assessed the microbial community by PFLA analysis to test the following hypotheses: (i) tree species affects microbial community composition, (ii) microbial community composition changes over the course of the year, and (iii) narrow litter C:nutrient ratios favour nutrient release. Our data show that litter of different tree species varied in their stoichiometry, with C:N ratios between 16 (alder) and 46 (beech) and C:P ratios between 309 (ash) and 1234 (alder). Tree species had a significant impact on microbial community composition: highest amounts of actinomycetes and protozoa were observed for alder, while arbuscular mycorrhizae were lowest for oak. Bacteria were favoured by litter with narrow C:N shortly after litterfall. During litter decomposition

  12. Short-time effect of heavy metals upon microbial community activity

    Energy Technology Data Exchange (ETDEWEB)

    Wang Fei [Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health and School of Environmental Sciences, China University of Geosciences, 430074 Wuhan (China); Yao Jun, E-mail: yaojun@cug.edu.cn [Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health and School of Environmental Sciences, China University of Geosciences, 430074 Wuhan (China); Si Yang; Chen Huilun; Russel, Mohammad; Chen Ke; Qian Yiguang [Key Laboratory of Biogeology and Environmental Geology of Chinese Ministry of Education and Sino-Hungarian Joint Laboratory of Environmental Science and Health and School of Environmental Sciences, China University of Geosciences, 430074 Wuhan (China); Zaray, Gyula [Department of Chemical Technology and Environmental Chemistry, Eoetvoes University, H-1518 Budapest, P.O. Box 32 (Hungary); Bramanti, Emilia [Laboratory of Instrumental Analytical Chemistry, Institute for Chemical and Physical Processes, Area di Ricerca, Via G. Moruzzi 1, 56124 Pisa (Italy)

    2010-01-15

    Microcalorimetry was applied to assess and compare the toxic effect of heavy metals, such as As, Cu, Cd, Cr, Co, Pb and Zn, on the soil microbial activities and community. About 1.0 g soil spiked 5.0 mg glucose and 5.0 mg ammonium sulfate, the microbial activities were recorded as power-time curves, and their indices, microbial growth rate constant k, total heat evolution Q{sub T}, metabolic enthalpy {Delta}H{sub met} and mass specific heat rate J{sub Q/S}, were calculated. Comparing these thermodynamic parameters associated with growth yield, a general order of toxicity to the soil was found to be Cr > Pb > As > Co > Zn > Cd > Cu. When soil was exposed to heavy metals, the amount of bacteria and fungi decreased with the incubation time, and the bacterial number diminished sharply. It illustrates that fungi are more tolerant, and bacteria-fungi ratio would be altered under metal stress. To determine the status of the glucose consumed, a glucose biosensor with eggshell membrane was used to measure the remaining glucose in soil sample. Results showed that the time at which glucose was consumed completely was agreed with the microcalorimetric time to a large extent, and depended on the toxicity of heavy metals as well.

  13. Demethylation of methylarsonic acid by a microbial community.

    Science.gov (United States)

    Yoshinaga, Masafumi; Cai, Yong; Rosen, Barry P

    2011-05-01

    Arsenic is one of the most widespread environmental carcinogens and has created devastating human health problems worldwide, yet little is known about mechanisms of biotransformation in contaminated regions. Methylarsonic acid [MAs(V)], extensively utilized as an herbicide, is largely demethylated to more toxic inorganic arsenite, which causes environmental problems. To understand the process of demethylation of methylarsenicals, soil samples commonly used on Florida golf courses were studied. Several soil extracts were found to demethylate MAs(V) to inorganic arsenite [As(III)]. From these extracts, a bacterial isolate was capable of reducing MAs(V) to MAs(III) but not of demethylating to As(III). A second bacterial isolate was capable of demethylating MAs(III) to As(III) but not of reducing MAs(V). A mixed culture could carry out the complete process of reduction and demethylation, demonstrating that demethylation of MAs(V) to As(III) is a two-step process. Analysis of the 16S ribosomal DNA sequences of the two organisms identified the MAs(V)-reducing and the MAs(III)-demethylating isolates as belong to Burkholderia and Streptomyces species respectively. This is the first report of a novel pathway of degradation of a methylarsenical herbicide by sequential reduction and demethylation in a microbial soil community, which we propose plays a significant role in the arsenic biogeocycle.

  14. Microbial Community Structure of Casing Soil During Mushroom Growth

    Institute of Scientific and Technical Information of China (English)

    CAI Wei-Ming; YAO Huai-Ying; FENG Wei-Lin; JIN Qun-Li; LIU Yue-Yan; LI Nan-Yi; ZHENG Zhong

    2009-01-01

    The culturable bacterial population and phospholipid fatty acid (PLFA)profile of casing soil were investigated at different mushroom (Agaricus bisporusI cropping stages.The change in soil bacterial PLFAs was always accompanied by a change in the soil culturable bacterial population in the first flush.Comparatively higher culturable bacterial population and bacterial PLFAs were found in the casing soil at the primordia formation stage of the first flush.There was a significant increase in the ratio of fungal to bacterial PLFAs during mushroom growth.Multivariate analysis of PLFA data demonstrated that the mushroom cropping stage could considerably affect the microbial community structure of the casing soil.The bacterial population increased significantly from casing soil application to the primordia formation stage of the first flush.Casing soil application resulted in an increase in the ratio of gram-negative bacterial PLFAs to gram-positive bacterial PLFAs,suggesting that some gram-negative bacteria might play an important role in mushroom sporophore initiation.

  15. Collective Resistance in Microbial Communities by Intracellular Antibiotic Deactivation

    Science.gov (United States)

    Sorg, Robin A.; Lin, Leo; van Doorn, G. Sander; Sorg, Moritz; Olson, Joshua; Nizet, Victor; Veening, Jan-Willem

    2016-01-01

    The structure and composition of bacterial communities can compromise antibiotic efficacy. For example, the secretion of β-lactamase by individual bacteria provides passive resistance for all residents within a polymicrobial environment. Here, we uncover that collective resistance can also develop via intracellular antibiotic deactivation. Real-time luminescence measurements and single-cell analysis demonstrate that the opportunistic human pathogen Streptococcus pneumoniae grows in medium supplemented with chloramphenicol (Cm) when resistant bacteria expressing Cm acetyltransferase (CAT) are present. We show that CAT processes Cm intracellularly but not extracellularly. In a mouse pneumonia model, more susceptible pneumococci survive Cm treatment when coinfected with a CAT-expressing strain. Mathematical modeling predicts that stable coexistence is only possible when antibiotic resistance comes at a fitness cost. Strikingly, CAT-expressing pneumococci in mouse lungs were outcompeted by susceptible cells even during Cm treatment. Our results highlight the importance of the microbial context during infectious disease as a potential complicating factor to antibiotic therapy. PMID:28027306

  16. Tropical forest soil microbial communities couple iron and carbon biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Dubinsky, E.A.; Silver, W.L.; Firestone, M.K.

    2009-10-15

    We report that iron-reducing bacteria are primary mediators of anaerobic carbon oxidation in upland tropical soils spanning a rainfall gradient (3500 - 5000 mm yr-1) in northeast Puerto Rico. The abundant rainfall and high net primary productivity of these tropical forests provide optimal soil habitat for iron-reducing and iron-oxidizing bacteria. Spatially and temporally dynamic redox conditions make iron-transforming microbial communities central to the belowground carbon cycle in these wet tropical forests. The exceedingly high abundance of iron-reducing bacteria (up to 1.2 x 10{sup 9} cells per gram soil) indicated that they possess extensive metabolic capacity to catalyze the reduction of iron minerals. In soils from the higher rainfall sites, measured rates of ferric iron reduction could account for up to 44 % of organic carbon oxidation. Iron reducers appeared to compete with methanogens when labile carbon availability was limited. We found large numbers of bacteria that oxidize reduced iron at sites with high rates of iron reduction and large numbers of iron-reducers. the coexistence of large populations of ironreducing and iron-oxidizing bacteria is evidence for rapid iron cycling between its reduced and oxidized states, and suggests that mutualistic interactions among these bacteria ultimately fuel organic carbon oxidation and inhibit CH4 production in these upland tropical forests.

  17. Some Limitations of BIOLOG System for Determining Soil Microbial Community

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A laboratory experiment was conducted to evaluate the effect of triphenyltetrazolium chloride (TTC)on soil microorganisms and the availability of pH characterization medium in BIOLOG plates. Applicationof TTC decreased the color development sharply and resulted in a great biocidal effect on the growth andreproduction of soil microorganisms, indicating that TTC can affect the discrimination on soil microbialcommunity. The microtitration plates with 21 carbon sources and two different pH levels (4.7 and 7.0) wereused to determine microbial community structure of eight red soils. The average utilization (average wellcolour development) of the carbon sources in the plates with different pH levels generally followed the samesigmoidal pattern as that in the traditional BIOLOG plates, but the pH 4.7 plates increased the discrimination of this technique, compared with the pH 7.0 plates. Since most tested soils are acid, it seemed that it's better to use a suitable pH characterization medium for a specific soil in the sole carbon source test.

  18. Long-term oil contamination causes similar changes in microbial communities of two distinct soils.

    Science.gov (United States)

    Liao, Jingqiu; Wang, Jie; Jiang, Dalin; Wang, Michael Cai; Huang, Yi

    2015-12-01

    Since total petroleum hydrocarbons (TPH) are toxic and persistent in environments, studying the impact of oil contamination on microbial communities in different soils is vital to oil production engineering, effective soil management and pollution control. This study analyzed the impact of oil contamination on the structure, activity and function in carbon metabolism of microbial communities of Chernozem soil from Daqing oil field and Cinnamon soil from Huabei oil field through both culture-dependent techniques and a culture-independent technique-pyrosequencing. Results revealed that pristine microbial communities in these two soils presented disparate patterns, where Cinnamon soil showed higher abundance of alkane, (polycyclic aromatic hydrocarbons) PAHs and TPH degraders, number of cultivable microbes, bacterial richness, bacterial biodiversity, and stronger microbial activity and function in carbon metabolism than Chernozem soil. It suggested that complicated properties of microbes and soils resulted in the difference in soil microbial patterns. However, the changes of microbial communities caused by oil contamination were similar in respect of two dominant phenomena. Firstly, the microbial community structures were greatly changed, with higher abundance, higher bacterial biodiversity, occurrence of Candidate_division_BRC1 and TAO6, disappearance of BD1-5 and Candidate_division_OD1, dominance of Streptomyces, higher percentage of hydrocarbon-degrading groups, and lower percentage of nitrogen-transforming groups. Secondly, microbial activity and function in carbon metabolism were significantly enhanced. Based on the characteristics of microbial communities in the two soils, appropriate strategy for in situ bioremediation was provided for each oil field. This research underscored the usefulness of combination of culture-dependent techniques and next-generation sequencing techniques both to unravel the microbial patterns and understand the ecological impact of

  19. Microbial communities of the Costa Rica Margin: contamination controls and community analysis

    Science.gov (United States)

    Martino, A. J.; Biddle, J.; House, C. H.

    2013-12-01

    Most microbiology work in marine subsurface sediments has been focused in the upper 100-200 meters of sediment, as the switchover from advanced piston coring (APC) to extended core barrel coring (XCB) generally occurs around this depth. This leads to large increases in drilling-induced contamination and interferes in molecular studies. Here, we utilized deep 16S rRNA sequencing of DNA from both the subsurface sediments and the drilling fluid as a strategy for separating sequence information originating from drill-fluid contamination from that which represents the indigenous microbial communities of the sediments. This permitted a characterization of both sediment microbial communities and drilling-fluid communities that was thorough enough to confidently show the differences in the communities. Examination of the results suggests that sequences originating from drilling fluid may be only a minor portion of the data obtained from even the deepest XCB cores examined, and further that the different community composition of the drilling fluid should permit the subtraction of contaminating lineages from the analysis. As part of this work, we also show an extensive community composition analysis of multiple samples from two drilling sites of IODP Expedition 334, on the upper plate of the subduction zone between the Cocos plate and the Caribbean plate, off the Costa Rica Margin. Preliminary analysis of the sequence data suggests that the bacterial communities at both the upper slope site (1379) and the mid-slope site (1378) are dominated by Chloroflexi, Nitrospirae, Actinobacteria, Planctomycetes, and Proteobacteria, while Archaeal communities are dominated by the Miscellaneous Crenarchaeotal Group. Using universal primers revealed that the relative dominance of Bacteria to Archaea differs between the two sites, and the trends of increasing and decreasing abundance with depth are nearly opposite between the sites. At site 1379, the Bacterial to Archaeal relationship seems

  20. Soil Microbial Community Responses to Long-Term Global Change Factors in a California Grassland

    Science.gov (United States)

    Qin, K.; Peay, K.

    2015-12-01

    Soil fungal and bacterial communities act as mediators of terrestrial carbon and nutrient cycling, and interact with the aboveground plant community as both pathogens and mutualists. However, these soil microbial communities are sensitive to changes in their environment. A better understanding of the response of soil microbial communities to global change may help to predict future soil microbial diversity, and assist in creating more comprehensive models of terrestrial carbon and nutrient cycles. This study examines the effects of four global change factors (increased temperature, increased variability in precipitation, nitrogen deposition, and CO2 enrichment) on soil microbial communities at the Jasper Ridge Global Change Experiment (JRGCE), a full-factorial global change manipulative experiment on three hectares of California grassland. While similar studies have examined the effects of global change on soil microbial communities, few have manipulated more factors or been longer in duration than the JRGCE, which began field treatments in 1998. We find that nitrogen deposition, CO2 enrichment, and increased variability in precipitation significantly affect the structure of both fungal and bacterial communities, and explain more of the variation in the community structures than do local soil chemistry or aboveground plant community. Fungal richness is correlated positively with soil nitrogen content and negatively with soil water content. Arbuscular mycorrhizal fungi (AMF), which associate closely with herbaceous plants' roots and assist in nutrient uptake, decrease in both richness and relative abundance in elevated CO2 treatments.

  1. Influence of Panax ginseng Continuous Cropping on Metabolic Function of Soil Microbial Communities

    Institute of Scientific and Technical Information of China (English)

    YING Yi-xin; DING Wan-long; ZHOU Ying-qun; LI Yong

    2012-01-01

    Objective To investigate the influence of Panax ginseng continuous cropping on the carbon substrate metabolic activity of microbes in soils sampled from Dafang,Huangni,and Wulidi in Jilin Province,China.Methods Soil metabolisms of soil communities were characterized by community level physiological profiles using BIOLOGTM EcoPlate.Results Soils sampled from the three sites were analyzed and their metabolic activities were compared.Principal component analysis explored the significant variance in metabolic function of microbial communities in soils,though the Shannon index and the evenness index of them were similar.Futhermore,two principal components(PC1 and PC2),which contributed 67.83% and 10.78% of total variance,were extracted respectively.And also,substrates significantly correlated with PC1 and PC2 at the three sampling sites were identified.Conclusion Characteristic of soil is the primary factor influencing microbial communities,and P.ginseng continuous cropping has significant influence on microbial community.Though soil samples show similar microbial metabolic profiles,microbial communities in rhizosphere soil are changed obviously during the cultivation of P.ginseng,which would finally result in the unbalance of microbial community.Phytopathogens would gradually be the predominants in rhizosphere soil and make P.ginseng sick.

  2. Effect of Elevated Salt Concentrations on the Aerobic Granular Sludge Process: Linking Microbial Activity with Microbial Community Structure

    NARCIS (Netherlands)

    Bassin, J.P.; Pronk, M.; Muyzer, G.; Kleerebezem, R.; Dezotti, M.; Van Loosdrecht, M.C.M.

    2011-01-01

    The long- and short-term effects of salt on biological nitrogen and phosphorus removal processes were studied in an aerobic granular sludge reactor. The microbial community structure was investigated by PCR-denaturing gradient gel electrophoresis (DGGE) on 16S rRNA and amoA genes. PCR products obtai

  3. Functional activity of soil microbial communities in post-fire pine stands of Tolyatti, Samara oblast

    Science.gov (United States)

    Maksimova, E. Yu.; Kudinova, A. G.; Abakumov, E. V.

    2017-02-01

    The state of microbial communities in gray-humus soils (Eutric Fluvic Arenosols (Ochric)) of pine stands in the city of Tolyatti after forest fires of 2010 is analyzed. It is shown that fires exert negative effects on the structure and metabolic activity of microbial communities in the postpyrogenic soils. The content of the carbon of microbial biomass and the intensity of microbial respiration in the upper organic horizons of the post-fire plots decrease by 6.5 and 3.4 times, respectively, in comparison with those in the soils of background plots. However, the fire has not affected the studied microbiological parameters of the soils at the depths of more than 10 cm. The maximum content of the carbon of microbial biomass carbon and the maximum intensity of microbial respiration have been found in the subsurface AY2 and AC horizons two-three years the fire. An increase in the microbial metabolic quotient (the ratio of soil respiration to microbial biomass) attests to the disturbance of the ecophysiological state of soil microbial communities after the pyrogenic impact.

  4. Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes

    NARCIS (Netherlands)

    Justé, A.; Thomma, B.P.H.J.; Lievens, B.

    2008-01-01

    In the last two decades major changes have occurred in how microbial ecologists study microbial communities. Limitations associated with traditional culture-based methods have pushed for the development of culture-independent techniques, which are primarily based on the analysis of nucleic acids. Th

  5. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics

    NARCIS (Netherlands)

    Lombard, Nathalie; Prestat, Emmanuel; van Elsas, Jan Dirk; Simonet, Pascal

    2011-01-01

    Metagenomics approaches represent an important way to acquire information on the microbial communities present in complex environments like soil. However, to what extent do these approaches provide us with a true picture of soil microbial diversity? Soil is a challenging environment to work with. It

  6. Forensic microbiology: Evolving from discriminating distinct microbes to characterizing entire microbial communities on decomposing remains

    Science.gov (United States)

    The body of an animal encompasses a multitude of compositionally and functionally unique microbial environments, from the skin to the gastrointestinal system. Each of these systems harbor microbial communities that have adapted in order to cohabitate with their specific host resulting in a distinct...

  7. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles

    Science.gov (United States)

    Ebrahimi, Ali; Or, Dani

    2016-04-01

    Microbial communities inhabiting soil aggregates dynamically adjust their activity and composition in response to variations in hydration and other external conditions. These rapid dynamics shape signatures of biogeochemical activity and gas fluxes emitted from soil profiles. Mechanistic models of microbial processes in unsaturated aggregate pore networks revealed dynamic interplay between oxic and anoxic microsites that are jointly shaped by hydration and by aerobic and anaerobic microbial communities. The spatial extent of anoxic niches (hotspots) flicker in time (hot moments) and support significant anaerobic microbial activity even in aerated soil profiles. We employed an individual-based model for microbial community life in soil aggregate assemblies represented by 3-D angular pore networks with profiles of water, carbon, and oxygen that vary with soil depth as boundary conditions. The study integrates microbial activity within aggregates of different sizes and soil depth to obtain biogeochemical fluxes over the soil profile. The results quantify impacts of dynamic shifts in microbial community composition on CO2 and N2O production rates in soil profiles in good agreement with experimental data. Aggregate size distribution and the shape of resource profiles in a soil determine how hydration dynamics shape denitrification and carbon utilization rates. Results from the mechanistic model for microbial activity in aggregates of different sizes were used to derive parameters for analytical representation of soil biogeochemical processes across large scales of interest for hydrological and climate models.

  8. Structure and Function of Metal- and Nitrate-reducing Microbial Communities in the FRC Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Akob, Denise M.; Mills, Heath J.; Kerkhof, Lee; Gihring, Thomas M.; Kostk, Joel E.

    2006-04-05

    The overall goal of this study is to evaluate structure-function relationships of sedimentary microbial communities likely to regulate U(VI) reduction and immobilization in the subsurface of Area 2 at the Field Research Center (FRC), Oak Ridge, TN. Microcosm experiments were conducted under near in situ conditions with FRC subsurface materials cocontaminated with high levels of U(VI) and nitrate. The activity, abundance, and community composition of microorganisms was determined in microcosm samples, stimulated with ethanol or glucose, and compared to those from sediment cores and unamended controls. Activity was assessed by monitoring terminal electron accepting processes (TEAPs; nitrate, sulfate, uranium, and iron reduction) as well as electron donor utilization. Microbial functional groups, nitrate- and iron(III)-reducing bacteria, were enumerated during the nitrate- and metal-reduction phases of the incubation and in sediment core samples using a most probable number (MPN) serial dilution assay. U(VI) and Fe(III) were reduced concurrently in the glucose but not the ethanol treatments. In ethanol-amended microcosms, U(VI) was reduced during a 4-day lag phase between nitrate- and Fe(III)-reduction phases. Biostimulation resulted in 3 to 5 orders of magnitude higher counts of Fe(III)-reducing bacteria, whereas populations of nitrate-reducers were enhanced by 1 to 3 orders of magnitude. One to 2 orders of magnitude more Fe(III)-reducers were observed in ethanol- as compared to glucose-amended treatments in parallel with enhanced U(VI) removal in ethanol treatments. Cultivatable Fe(III)-reducing bacteria in the ethanol treatments were dominated by Geobacter sp. while those cultured on glucose were dominated by fermentative organisms, i.e., Tolumonas sp. Currently, carbon substrate utilization is being examined through HPLC analysis of microcosm porewaters. In addition, changes in the overall microbial community composition are being assessed using cultivation

  9. Microbial community functional structures in wastewater treatment plants as characterized by GeoChip.

    Directory of Open Access Journals (Sweden)

    Xiaohui Wang

    Full Text Available BACKGROUND: Biological WWTPs must be functionally stable to continuously and steadily remove contaminants which rely upon the activity of complex microbial communities. However, knowledge is still lacking in regard to microbial community functional structures and their linkages to environmental variables. AIMS: To investigate microbial community functional structures of activated sludge in wastewater treatment plants (WWTPs and to understand the effects of environmental factors on their structure. METHODS: 12 activated sludge samples were collected from four WWTPs in Beijing. A comprehensive functional gene array named GeoChip 4.2 was used to determine the microbial functional genes involved in a variety of biogeochemical processes such as carbon, nitrogen, phosphorous and sulfur cycles, metal resistance, antibiotic resistance and organic contaminant degradation. RESULTS: High similarities of the microbial community functional structures were found among activated sludge samples from the four WWTPs, as shown by both diversity indices and the overlapped genes. For individual gene category, such as egl, amyA, lip, nirS, nirK, nosZ, ureC, ppx, ppk, aprA, dsrA, sox and benAB, there were a number of microorganisms shared by all 12 samples. Canonical correspondence analysis (CCA showed that the microbial functional patterns were highly correlated with water temperature, dissolved oxygen (DO, ammonia concentrations and loading rate of chemical oxygen demand (COD. Based on the variance partitioning analyses (VPA, a total of 53% of microbial community variation from GeoChip data can be explained by wastewater characteristics (25% and operational parameters (23%, respectively. CONCLUSIONS: This study provided an overall picture of microbial community functional structures of activated sludge in WWTPs and discerned the linkages between microbial communities and environmental variables in WWTPs.

  10. GENOME-BASED MODELING AND DESIGN OF METABOLIC INTERACTIONS IN MICROBIAL COMMUNITIES

    Directory of Open Access Journals (Sweden)

    Radhakrishnan Mahadevan

    2012-10-01

    With the advent of genome sequencing, omics technologies, bioinformatics and genome-scale modeling, researchers now have unprecedented capabilities to analyze and engineer the metabolism of microbial communities. The goal of this review is to summarize recent applications of genome-scale metabolic modeling to microbial communities. A brief introduction to lumped community models is used to motivate the need for genome-level descriptions of individual species and their metabolic interactions. The review of genome-scale models begins with static modeling approaches, which are appropriate for communities where the extracellular environment can be assumed to be time invariant or slowly varying. Dynami