WorldWideScience

Sample records for assess mechanical properties

  1. Assessing the mechanical properties of nuclear materials using spherical nano-indentation

    International Nuclear Information System (INIS)

    Hickey, J.; Hardie, C.

    2015-01-01

    This paper reports on the assessment of a nano-indentation test, using tips of spherical geometry, to calculate the mechanical properties of nuclear materials at the micron-scale. The test method is based on incrementally loading and unloading the tip into a sample of material with unknown mechanical properties. The incremental indentation stress, strain and elastic modulus are calculated by analysing each increment's unload curve. Two samples of iron and tungsten were used with a spherical indenter tip with an apparent radius of 30 μm. The method for calculating the mechanical properties is based on two markers that define the top and bottom of each load increment's unload curve. As such, the bottom marker can be moved down the unload curve to increase the proportion of data included in the results. This simulates increasing the percent unloaded from just one data set. The results showed that increasing the percent unloaded during each increment was beneficial as it reduced the effects of creep at the top of the unload curve and pile-up of material around the indenter tip as the test progressed. However, it is likely that increasing the percentage unloaded results in the inclusion of a higher proportion of reverse plasticity effects in the calculated results. (authors)

  2. Program of assessment of mechanical and corrosion mechanical properties of reactor internals materials due to operation conditions in WWERs

    International Nuclear Information System (INIS)

    Ruscak, M.; Zamboch, M.

    1998-01-01

    Reactor internals are subject to three principle operation influences: neutron and gamma irradiation, mechanical stresses, both static and dynamic, and coolant chemistry. Several cases of damage have been reported in previous years in both boiling and pressure water reactors. They are linked with the term of irradiation assisted stress corrosion cracking as a possible damage mechanism. In WWERs, the principal material used for reactor internals is austenitic titanium stabilized stainless steel 08Kh18N10T, however high strength steels are used as well. To assess the changes of mechanical properties and to determine whether sensitivity to intergranular cracking can be increased by high neutron fluences, the experimental program has been started. The goal is to assure safe operation of the internals as well as life management for all planned operation period. The program consists of tests of material properties, both mechanical and corrosion-mechanical. Detailed neutron fluxes calculation as well as stress and deformation calculations are part of the assessment. Model of change will be proposed in order to plan inspections of the facility. In situ measurements of internals will be used to monitor exact status of structure during operation. Tensile specimens manufactured from both base metal and model weld joint have been irradiated to the total fluences of 3-20 dpa. Changes of mechanical properties are tested by the tensile test, stress corrosion cracking tests are performed in the autoclave with water loop and active loading. Operation temperature, pressure and water chemistry are chosen for the tests. (author)

  3. Mechanical properties of chemically modified portuguese pinewood

    OpenAIRE

    Lopes, Duarte B; Mai, Carsten; Militz, Holger

    2014-01-01

    To turn wood into a construction material with enhanced properties, many methods of chemical modification have been developed in the last few decades. In this work, mechanical properties of pine wood were chemically modified, compared and evaluated. Maritime pine wood (Pinus pinaster) was modified with four chemical processes: 1,3-dimethylol-4,5- dihydroxyethyleneurea, N-methylol melamine formaldehyde, tetra-alkoxysilane and wax. The following mechanical properties were assessed experiment...

  4. Mechanical properties of the human Achilles tendon, in vivo

    DEFF Research Database (Denmark)

    Kongsgaard, M; Nielsen, C H; Hegnsvad, S

    2011-01-01

    Ultrasonography has been widely applied for in vivo measurements of tendon mechanical properties. Assessments of human Achilles tendon mechanical properties have received great interest. Achilles tendon injuries predominantly occur in the tendon region between the Achilles-soleus myotendinous...... junction and Achilles-calcaneus osteotendinous junction i.e. in the free Achilles tendon. However, there has been no adequate ultrasound based method for quantifying the mechanical properties of the free human Achilles tendon. This study aimed to: 1) examine the mechanical properties of the free human...

  5. Assessment of structural, thermal, and mechanical properties of portlandite through molecular dynamics simulations

    Energy Technology Data Exchange (ETDEWEB)

    Hajilar, Shahin, E-mail: shajilar@iastate.edu [Department of Civil, Construction and Environmental Engineering, Iowa State University, Ames, IA 50011-1066 (United States); Shafei, Behrouz, E-mail: shafei@iastate.edu [Department of Civil, Construction and Environmental Engineering, Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-1066 (United States)

    2016-12-15

    The structural, thermal, and mechanical properties of portlandite, the primary solid phase of ordinary hydrated cement paste, are investigated using the molecular dynamics method. To understand the effects of temperature on the structural properties of portlandite, the coefficients of thermal expansion of portlandite are determined in the current study and validated with what reported from the experimental tests. The atomic structure of portlandite equilibrated at various temperatures is then subjected to uniaxial tensile strains in the three orthogonal directions and the stress-strain curves are developed. Based on the obtained results, the effect of the direction of straining on the mechanical properties of portlandite is investigated in detail. Structural damage analysis is performed to reveal the failure mechanisms in different directions. The energies of the fractured surfaces are calculated in different directions and compared to those of the ideal surfaces available in the literature. The key mechanical properties, including tensile strength, Young's modulus, and fracture strain, are extracted from the stress-strain curves. The sensitivity of the obtained mechanical properties to temperature and strain rate is then explored in a systematic way. This leads to valuable information on how the structural and mechanical properties of portlandite are affected under various exposure conditions and loading rates. - Graphical abstract: Fracture mechanism of portlandite under uniaxial strain in the z-direction. - Highlights: • The structural, thermal, and mechanical properties of portlandite are investigated. • The coefficients of thermal expansion are determined. • The stress-strain relationships are studied in three orthogonal directions. • The effects of temperature and strain rate on mechanical properties are examined. • The plastic energy required for fracture in the crystalline structure is reported.

  6. Assessing the functional mechanical properties of bioengineered organs with emphasis on the lung.

    Science.gov (United States)

    Suki, Béla

    2014-09-01

    Recently, an exciting new approach has emerged in regenerative medicine pushing the forefront of tissue engineering to create bioartificial organs. The basic idea is to create biological scaffolds made of extracellular matrix (ECM) that preserves the three-dimensional architecture of an entire organ. These scaffolds are then used as templates for functional tissue and organ reconstruction after re-seeding the structure with stem cells or appropriately differentiated cells. In order to make sure that these bioartificial organs will be able to function in the mechanical environment of the native tissue, it is imperative to fully characterize their mechanical properties and match them with those of the normal native organs. This mini-review briefly summarizes modern measurement techniques of mechanical function characterized mostly by the material or volumetric stiffness. Micro-scale and macro-scale techniques such as atomic force microscopy and the tissue strip stress-strain approach are discussed with emphasis on those that combine mechanical measurements with structural visualization. Proper micro-scale stiffness helps attachment and differentiation of cells in the bioartificial organ whereas macro-scale functionality is provided by the overall mechanical properties of the construct. Several approaches including failure mechanics are also described, which specifically probe the contributions of the main ECM components including collagen, elastin, and proteoglycans to organ level ECM function. Advantages, drawbacks, and possible pitfalls as well as interpretation of the data are given throughout. Finally, specific techniques to assess the functionality of the ECM of bioartificial lungs are separately discussed. © 2014 Wiley Periodicals, Inc.

  7. Respiratory system dynamical mechanical properties: modeling in time and frequency domain.

    Science.gov (United States)

    Carvalho, Alysson Roncally; Zin, Walter Araujo

    2011-06-01

    The mechanical properties of the respiratory system are important determinants of its function and can be severely compromised in disease. The assessment of respiratory system mechanical properties is thus essential in the management of some disorders as well as in the evaluation of respiratory system adaptations in response to an acute or chronic process. Most often, lungs and chest wall are treated as a linear dynamic system that can be expressed with differential equations, allowing determination of the system's parameters, which will reflect the mechanical properties. However, different models that encompass nonlinear characteristics and also multicompartments have been used in several approaches and most specifically in mechanically ventilated patients with acute lung injury. Additionally, the input impedance over a range of frequencies can be assessed with a convenient excitation method allowing the identification of the mechanical characteristics of the central and peripheral airways as well as lung periphery impedance. With the evolution of computational power, the airway pressure and flow can be recorded and stored for hours, and hence continuous monitoring of the respiratory system mechanical properties is already available in some mechanical ventilators. This review aims to describe some of the most frequently used models for the assessment of the respiratory system mechanical properties in both time and frequency domain.

  8. Dynamic mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Taniguchi, Wataru

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of dynamic triaxial tests, measurement of elastic wave velocity and liquefaction tests that aim at getting hold of dynamic mechanical properties. We can get hold of dependency on the shearing strain of the shearing modulus and hysteresis damping constant, the application for the mechanical model etc. by dynamic triaxial tests, the acceptability of maximum shearing modulus obtained from dynamic triaxial tests etc. by measurement of elastic wave velocity and dynamic strength caused by cyclic stress etc. by liquefaction tests. (author)

  9. Tissue-Level Mechanical Properties of Bone Contributing to Fracture Risk.

    Science.gov (United States)

    Nyman, Jeffry S; Granke, Mathilde; Singleton, Robert C; Pharr, George M

    2016-08-01

    Tissue-level mechanical properties characterize mechanical behavior independently of microscopic porosity. Specifically, quasi-static nanoindentation provides measurements of modulus (stiffness) and hardness (resistance to yielding) of tissue at the length scale of the lamella, while dynamic nanoindentation assesses time-dependent behavior in the form of storage modulus (stiffness), loss modulus (dampening), and loss factor (ratio of the two). While these properties are useful in establishing how a gene, signaling pathway, or disease of interest affects bone tissue, they generally do not vary with aging after skeletal maturation or with osteoporosis. Heterogeneity in tissue-level mechanical properties or in compositional properties may contribute to fracture risk, but a consensus on whether the contribution is negative or positive has not emerged. In vivo indentation of bone tissue is now possible, and the mechanical resistance to microindentation has the potential for improving fracture risk assessment, though determinants are currently unknown.

  10. Influence of Storage on Briquettes Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Brožek M.

    2014-09-01

    Full Text Available The effects of the storage place, placing manner, and storage time on mechanical properties of briquettes made from birch chips were laboratorily tested. A unique methodology developed by the present author enabling a relatively easy assessment of mechanical properties of the briquettes is described. The briquettes properties were evaluated by their density and rupture force determination. From the test results it follows that if the briquettes are stored in a well closed plastic bag, neither the place nor the storage time influence significantly their life time. When stored in a net plastic bag, the briquettes get seriously damaged, namely depending on their storage place and storage time.

  11. Ultrasound-based testing of tendon mechanical properties

    DEFF Research Database (Denmark)

    Seynnes, O R; Bojsen-Møller, J.; Albracht, K

    2015-01-01

    In the past 20 years, the use of ultrasound-based methods has become a standard approach to measure tendon mechanical properties in vivo. Yet the multitude of methodological approaches adopted by various research groups probably contribute to the large variability of reported values. The technique......, or signal synchronization; and 2) in physiological considerations related to the viscoelastic behavior or length measurements of tendons. Hence, the purpose of the present review is to assess and discuss the physiological and technical aspects connected to in vivo testing of tendon mechanical properties...

  12. Sterilizing elastomeric chains without losing mechanical properties. Is it possible?

    Directory of Open Access Journals (Sweden)

    Matheus Melo Pithon

    2015-06-01

    Full Text Available OBJECTIVE: To investigate the effects of different sterilization/disinfection methods on the mechanical properties of orthodontic elastomeric chains. METHODS: Segments of elastomeric chains with 5 links each were sent for sterilization by cobalt 60 (Co60 (20 KGy gamma ray technology. After the procedure, the elastomeric chains were contaminated with clinical samples of Streptococcus mutans. Subsequently, the elastomeric chains were submitted to sterilization/disinfection tests carried out by means of different methods, forming six study groups, as follows: Group 1 (control - without contamination, Group 2 (70°GL alcohol, Group 3 (autoclave, Group 4 (ultraviolet, Group 5 (peracetic acid and Group 6 (glutaraldehyde. After sterilization/disinfection, the effectiveness of these methods, by Colony forming units per mL (CFU/mL, and the mechanical properties of the material were assessed. Student's t-test was used to assess the number of CFUs while ANOVA and Tukey's test were used to assess elastic strength. RESULTS: Ultraviolet treatment was not completely effective for sterilization. No loss of mechanical properties occurred with the use of the different sterilization methods (p > 0.05. CONCLUSION: Biological control of elastomeric chains does not affect their mechanical properties.

  13. Small specimen technique for assessing mechanical properties of metallic components

    Energy Technology Data Exchange (ETDEWEB)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Morcelli, Aparecido E., E-mail: rmlobo@ipen.br, E-mail: morcelliae@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    Small Punch Test (SPT) is one of the most promising techniques of small specimen test, which was originally applied in testing of irradiated materials in nuclear engineering. Then it was introduced to other fields as an almost nondestructive method to measure the local mechanical properties that are difficult to be obtained using conventional mechanical tests. Most studies to date are focused on metallic materials, although SPT applications are recently spreading to other materials. The small punch test (SPT) employs small-sized specimens (for example, samples measuring 8 mm in diameter and 0.5 mm thick). The specimen is firmly clamped between two circular dies and is bi-axially strained until failure into a circular hole using a hemispherical punch. The 'load-punch displacement' record can be used to estimate the yield strength, the ultimate tensile strength, the tensile elongation, and the temperature of the ductile-to-brittle transition. Recently, some researchers are working on the use of miniature notched or pre-cracked specimens (denoted as p-SPT) to validate its geometry and dimensions for obtaining the fracture properties of metallic materials. In a first approach, the technique makes it possible to convert primary experimental data into conventional mechanical properties of a massive specimen. In this paper a comprehensive review of the different STP applications is presented with the aim of clarifying its usefulness. (author)

  14. Small specimen technique for assessing mechanical properties of metallic components

    International Nuclear Information System (INIS)

    Lobo, Raquel M.; Andrade, Arnaldo H.P.; Morcelli, Aparecido E.

    2017-01-01

    Small Punch Test (SPT) is one of the most promising techniques of small specimen test, which was originally applied in testing of irradiated materials in nuclear engineering. Then it was introduced to other fields as an almost nondestructive method to measure the local mechanical properties that are difficult to be obtained using conventional mechanical tests. Most studies to date are focused on metallic materials, although SPT applications are recently spreading to other materials. The small punch test (SPT) employs small-sized specimens (for example, samples measuring 8 mm in diameter and 0.5 mm thick). The specimen is firmly clamped between two circular dies and is bi-axially strained until failure into a circular hole using a hemispherical punch. The 'load-punch displacement' record can be used to estimate the yield strength, the ultimate tensile strength, the tensile elongation, and the temperature of the ductile-to-brittle transition. Recently, some researchers are working on the use of miniature notched or pre-cracked specimens (denoted as p-SPT) to validate its geometry and dimensions for obtaining the fracture properties of metallic materials. In a first approach, the technique makes it possible to convert primary experimental data into conventional mechanical properties of a massive specimen. In this paper a comprehensive review of the different STP applications is presented with the aim of clarifying its usefulness. (author)

  15. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  16. Bone biopsy needles. Mechanical properties, needle design and specimen quality

    International Nuclear Information System (INIS)

    Keulers, Annika; Penzkofer, T.; Cunha-Cruz, V.C.; Bruners, P.; Helmholtz Inst. fuer biomedizinische Technik, Aachen; Braunschweig, T.; Schmitz-Rode, T.; Mahnken, A.; Helmholtz Inst. fuer biomedizinische Technik, Aachen

    2011-01-01

    To quantitatively analyze differences in mechanical properties, needle design including signs of wear, subjective handling and specimen quality of bone biopsy needles. Materials and Methods: In this study 19 different bone biopsy systems (total 38; 2 /type) were examined. With each biopsy needle five consecutive samples were obtained from vertebral bodies of swine. During puncture a force-torques sensor measured the mechanical properties and subjective handling was assessed. Before and after each biopsy the needles were investigated using a profile projector and signs of wear were recorded. Afterwards, a pathologist semi-quantitatively examined the specimen regarding sample quality. The overall evaluation considered mechanical properties, needle wear, subjective handling and sample quality. Differences were assessed for statistical significance using ANOVA and t-test. Results: Needle diameter (p = 0.003) as well as needle design (p = 0.008) affect the mechanical properties significantly. Franseen design is significantly superior to other needle designs. Besides, length reduction recorded by the profile projector, as a quality criterion showed notable distinctions in between the needle designs. Conclusion: Bone biopsy needles vary significantly in performance. Needle design has an important influence on mechanical properties, handling and specimen quality. Detailed knowledge of those parameters would improve selecting the appropriate bone biopsy needle. (orig.)

  17. Mechanical properties of human atherosclerotic intima tissue.

    Science.gov (United States)

    Akyildiz, Ali C; Speelman, Lambert; Gijsen, Frank J H

    2014-03-03

    Progression and rupture of atherosclerotic plaques in coronary and carotid arteries are the key processes underlying myocardial infarctions and strokes. Biomechanical stress analyses to compute mechanical stresses in a plaque can potentially be used to assess plaque vulnerability. The stress analyses strongly rely on accurate representation of the mechanical properties of the plaque components. In this review, the composition of intima tissue and how this changes during plaque development is discussed from a mechanical perspective. The plaque classification scheme of the American Heart Association is reviewed and plaques originating from different vascular territories are compared. Thereafter, an overview of the experimental studies on tensile and compressive plaque intima properties are presented and the results are linked to the pathology of atherosclerotic plaques. This overview revealed a considerable variation within studies, and an enormous dispersion between studies. Finally, the implications of the dispersion in experimental data on the clinical applications of biomechanical plaque modeling are presented. Suggestions are made on mechanical testing protocol for plaque tissue and on using a standardized plaque classification scheme. This review identifies the current status of knowledge on plaque mechanical properties and the future steps required for a better understanding of the plaque type specific material properties. With this understanding, biomechanical plaque modeling may eventually provide essential support for clinical plaque risk stratification. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Lithophysal Rock Mass Mechanical Properties of the Repository Host Horizon

    International Nuclear Information System (INIS)

    D. Rigby

    2004-01-01

    The purpose of this calculation is to develop estimates of key mechanical properties for the lithophysal rock masses of the Topopah Spring Tuff (Tpt) within the repository host horizon, including their uncertainties and spatial variability. The mechanical properties to be characterized include an elastic parameter, Young's modulus, and a strength parameter, uniaxial compressive strength. Since lithophysal porosity is used as a surrogate property to develop the distributions of the mechanical properties, an estimate of the distribution of lithophysal porosity is also developed. The resulting characterizations of rock parameters are important for supporting the subsurface design, developing the preclosure safety analysis, and assessing the postclosure performance of the repository (e.g., drift degradation and modeling of rockfall impacts on engineered barrier system components)

  19. Mechanical Properties of Austenitic Stainless Steel Made by Additive Manufacturing.

    Science.gov (United States)

    Luecke, William E; Slotwinski, John A

    2014-01-01

    Using uniaxial tensile and hardness testing, we evaluated the variability and anisotropy of the mechanical properties of an austenitic stainless steel, UNS S17400, manufactured by an additive process, selective laser melting. Like wrought materials, the mechanical properties depend on the orientation introduced by the processing. The recommended stress-relief heat treatment increases the tensile strength, reduces the yield strength, and decreases the extent of the discontinuous yielding. The mechanical properties, assessed by hardness, are very uniform across the build plate, but the stress-relief heat treatment introduced a small non-uniformity that had no correlation to position on the build plate. Analysis of the mechanical property behavior resulted in four conclusions. (1) The within-build and build-to-build tensile properties of the UNS S17400 stainless steel are less repeatable than mature engineering structural alloys, but similar to other structural alloys made by additive manufacturing. (2) The anisotropy of the mechanical properties of the UNS S17400 material of this study is larger than that of mature structural alloys, but is similar to other structural alloys made by additive manufacturing. (3) The tensile mechanical properties of the UNS S17400 material fabricated by selective laser melting are very different from those of wrought, heat-treated 17-4PH stainless steel. (4) The large discontinuous yielding strain in all tests resulted from the formation and propagation of Lüders bands.

  20. Assessment of the mechanical properties of sisal fiber-reinforced silty clay using triaxial shear tests.

    Science.gov (United States)

    Wu, Yankai; Li, Yanbin; Niu, Bin

    2014-01-01

    Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil's strength and improves the soil's mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  1. Assessment of the Mechanical Properties of Sisal Fiber-Reinforced Silty Clay Using Triaxial Shear Tests

    Directory of Open Access Journals (Sweden)

    Yankai Wu

    2014-01-01

    Full Text Available Fiber reinforcement is widely used in construction engineering to improve the mechanical properties of soil because it increases the soil’s strength and improves the soil’s mechanical properties. However, the mechanical properties of fiber-reinforced soils remain controversial. The present study investigated the mechanical properties of silty clay reinforced with discrete, randomly distributed sisal fibers using triaxial shear tests. The sisal fibers were cut to different lengths, randomly mixed with silty clay in varying percentages, and compacted to the maximum dry density at the optimum moisture content. The results indicate that with a fiber length of 10 mm and content of 1.0%, sisal fiber-reinforced silty clay is 20% stronger than nonreinforced silty clay. The fiber-reinforced silty clay exhibited crack fracture and surface shear fracture failure modes, implying that sisal fiber is a good earth reinforcement material with potential applications in civil engineering, dam foundation, roadbed engineering, and ground treatment.

  2. Mechanical properties along interfaces of bonded structures in fusion reactors

    International Nuclear Information System (INIS)

    Hassan, M.H.; Kulcinski, G.L.

    1993-01-01

    Proper assessment of the mechanical properties along interfaces of bonded structures currently used in many fusion reactor designs is essential to compare the different fabrication techniques. A Mechanical Properties Microprobe (MPM) was used to measure hardness and Young's modules along the interfaces of Be/Cu bonded structure. The MPM was able to distinguish different fabrication techniques by a direct measurement of the hardness, Young's modules, and H/E 2 which reflects the ability of deformation of the interfacial region

  3. Assessment of the mechanical properties of area-elastic sport surfaces with video analysis

    NARCIS (Netherlands)

    de Koning, J.J.; Nigg, B.M.; Gerritsen, K.G.M.

    1997-01-01

    Mechanical properties of a surface are assumed to he of importance with respect to injuries, comfort, and performance in sport. For a better understanding of the factors that do influence the etiology of injuries as well as comfort, a method was developed to compare mechanical characteristics of

  4. Mechanical properties of jennite: A theoretical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Juhyuk, E-mail: juhyuk.moon@stonybrook.edu [Civil Engineering Program, Department of Mechanical Engineering, Stony Brook University, NY 11794 (United States); Yoon, Seyoon [School of Engineering, Kings College, University of Aberdeen, Aberdeen AB24 3UE (United Kingdom); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720 (United States)

    2015-05-15

    The objective of this study is to determine the mechanical properties of jennite. To date, several hypotheses have been proposed to predict the structural properties of jennite. For the first time as reported herein, the isothermal bulk modulus of jennite was measured experimentally. Synchrotron-based high-pressure x-ray diffraction experiments were performed to observe the variation of lattice parameters under pressure. First-principles calculations were applied to compare with the experimental results and predict additional structural properties. Accurately measured isothermal bulk modulus herein (K{sub 0} = 64(2) GPa) and the statistical assessment on experimental and theoretical results suggest reliable mechanical properties of shear and Young's modulus, Poisson's ratio, and elastic tensor coefficients. Determination of these fundamental structural properties is the first step toward greater understanding of calcium–silicate–hydrate, as well as provides a sound foundation for forthcoming atomic level simulations.

  5. Statistical Assessment of the Effect of Chemical Composition on Mechanical Properties of Hypereutectic AlSi17CuNiMg Silumin

    Directory of Open Access Journals (Sweden)

    J. Szymszal

    2007-07-01

    Full Text Available The paper presents a statistical assessment of the effect of chemical composition on mechanical properties of hypereutectic AlSi17 silumin, which is expected to act as a counterpart of alloys used by automotive industry and aviation for casting of high-duty engine parts in West European countries and USA. The studies on the choice of chemical composition of silumins were preceded by analysis of the reference literature to state what effect some selected alloying elements and manufacturing technology may have on the mechanical properties (HB, Rm and A5 of these alloys. As alloying additives, Cu, Ni and Mg in proper combinations were used. The alloy after modification with phosphorus (CuF was cast into a metal mould. Basing on the results obtained, it has been reported that the developed silumin of hypereutectic composition is characterised by properties similar to its Western counterparts.

  6. Compressional, mechanical and release properties of a novel gum in paracetamol tablet formulations

    Directory of Open Access Journals (Sweden)

    Adedokun Musiliu O.

    2014-09-01

    Full Text Available The binding properties of Eucalyptus gum obtained from the incised trunk of Eucalyptus tereticornis, were evaluated in paracetamol tablet formulations, in comparison with that of Gelatin B.P. In so doing, the compression properties were analyzed using density measurements and the compression equations of Heckel, Kawakita and Gurham. In our work, the mechanical properties of the tablets were assessed using the crushing strength and friability of the tablets, while the drug release properties of the tablets were assessed using disintegration and dissolution times. The results of the study reveal that tablet formulations incorporating Eucalyptus gum as binder, exhibited faster onset and higher amount of plastic deformation during compression than those containing gelatin. What is more, the Gurnham equation could be used as a substitute for the Kawakita equation in describing the compression properties of pharmaceutical tablets. Furthermore, the crushing strength, disintegration and dissolution times of the tablets increased with binder concentration, while friability values decreased. We noted that no significant differences in properties exist between formulations derived from the two binders (p > 0.05 exist. While tablets incorporating gelatin exhibited higher values for mechanical properties, Eucalyptus gum tablets had better balance between mechanical and release properties - as seen from the CSFR/Dt values. Tablets of good mechanical and release properties were prepared using Eucalyptus gum as a binder, and, therefore, it could serve as an alternative binder in producing tablets with good mechanical strength and fast drug release.

  7. Characterization of mechanical properties and microstructure of highly irradiated SS 316

    Energy Technology Data Exchange (ETDEWEB)

    Karthik, V., E-mail: karthik@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India); Kumar, RanVijay; Vijayaragavan, A.; Venkiteswaran, C.N.; Anandaraj, V.; Parameswaran, P.; Saroja, S.; Muralidharan, N.G.; Joseph, Jojo; Kasiviswanathan, K.V.; Jayakumar, T.; Raj, Baldev [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2013-08-15

    Cold worked austenitic stainless steel type AISI 316 is used as the material for fuel cladding and wrapper of the Fast Breeder Test Reactor (FBTR), India. The evaluation of mechanical properties of these core structurals is very essential to assess its integrity and ensure safe and productive operation of FBTR to very high burn-ups. The changes in the mechanical properties of these core structurals are associated with microstructural changes caused by high fluence neutron irradiation and temperatures of 673–823 K. Remote tensile testing has been used for evaluating the tensile properties of irradiated clad tubes and shear punch test using small disk specimens for evaluating the properties of irradiated hexagonal wrapper. This paper will highlight the methods employed for evaluating the mechanical properties of the irradiated cladding and wrapper and discuss the trends in properties as a function of dpa (displacement per atom) and irradiation temperature.

  8. Implementation of nondestructive testing and mechanical performance approaches to assess low temperature fracture properties of asphalt binders

    Directory of Open Access Journals (Sweden)

    Salman Hakimzadeh

    2017-05-01

    Full Text Available In the present work, three different asphalt binders were studied to assess their fracture behavior at low temperatures. Fracture properties of asphalt materials were obtained through conducting the compact tension [C(T] and indirect tensile [ID(T] strength tests. Mechanical fracture tests were followed by performing acoustic emissions test to determine the “embrittlement temperature” of binders which was used in evaluation of thermally induced microdamages in binders. Results showed that both nondestructive and mechanical testing approaches could successfully capture low-temperature cracking behavior of asphalt materials. It was also observed that using GTR as the binder modifier significantly improved thermal cracking resistance of PG64-22 binder. The overall trends of AE test results were consistent with those of mechanical tests. Keywords: Thermal cracking, Indirect tensile strength test, Compact tension test, Nondestructive approach, Acoustic emission test, Embrittlement temperature

  9. Martensite and bainite in steels: transformation mechanism and mechanical properties

    International Nuclear Information System (INIS)

    Bhadeshia, H.K.D.H.

    1997-01-01

    Many essential properties of iron alloys depend on what actually happens when one allotropic form gives way to another, i.e. on the mechanism of phase change. The dependence of the mechanical properties on the atomic mechanism by which bainite and martensite grow is the focus of this paper. The discussion is illustrated in the context of some common engineering design parameters, and with a brief example of the inverse problem in which the mechanism may be a function of the mechanical properties. (orig.)

  10. Static mechanical properties of buffer material

    International Nuclear Information System (INIS)

    Takaji, Kazuhiko; Suzuki, Hideaki

    1999-11-01

    The buffer material is expected to maintain its low water permeability, self-sealing properties, radionuclides adsorption and retardation properties, thermal conductivity, chemical buffering properties, overpack supporting properties, stress buffering properties, etc. over a long period of time. Natural clay is mentioned as a material that can relatively satisfy above. Among the kinds of natural clay, bentonite when compacted is superior because (i) it has exceptionally low water permeability and properties to control the movement of water in buffer, (ii) it fills void spaces in the buffer and fractures in the host rock as it swells upon water uptake, (iii) it has the ability to exchange cations and to adsorb cationic radioelements. In order to confirm these functions for the purpose of safety assessment, it is necessary to evaluate buffer properties through laboratory tests and engineering-scale tests, and to make assessments based on the ranges in the data obtained. This report describes the procedures, test conditions, results and examinations on the buffer material of unconfined compression tests, one-dimensional consolidation tests, consolidated-undrained triaxial compression tests and consolidated-undrained triaxial creep tests that aim at getting hold of static mechanical properties. We can get hold of the relationship between the dry density and tensile stress etc. by Brazilian tests, between the dry density and unconfined compressive strength etc. by unconfined compression tests, between the consolidation stress and void ratio etc. by one-dimensional consolidation tests, the stress pass of each effective confining pressure etc. by consolidated-undrained triaxial compression tests and the axial strain rate with time of each axial stress etc. by consolidated-undrained triaxial creep tests. (author)

  11. Ultrasonic evaluation of the physical and mechanical properties of granites.

    Science.gov (United States)

    Vasconcelos, G; Lourenço, P B; Alves, C A S; Pamplona, J

    2008-09-01

    Masonry is the oldest building material that survived until today, being used all over the world and being present in the most impressive historical structures as an evidence of spirit of enterprise of ancient cultures. Conservation, rehabilitation and strengthening of the built heritage and protection of human lives are clear demands of modern societies. In this process, the use of nondestructive methods has become much common in the diagnosis of structural integrity of masonry elements. With respect to the evaluation of the stone condition, the ultrasonic pulse velocity is a simple and economical tool. Thus, the central issue of the present paper concerns the evaluation of the suitability of the ultrasonic pulse velocity method for describing the mechanical and physical properties of granites (range size between 0.1-4.0 mm and 0.3-16.5 mm) and for the assessment of its weathering state. The mechanical properties encompass the compressive and tensile strength and modulus of elasticity, and the physical properties include the density and porosity. For this purpose, measurements of the longitudinal ultrasonic pulse velocity with distinct natural frequency of the transducers were carried out on specimens with different size and shape. A discussion of the factors that induce variations on the ultrasonic velocity is also provided. Additionally, statistical correlations between ultrasonic pulse velocity and mechanical and physical properties of granites are presented and discussed. The major output of the work is the confirmation that ultrasonic pulse velocity can be effectively used as a simple and economical nondestructive method for a preliminary prediction of mechanical and physical properties, as well as a tool for the assessment of the weathering changes of granites that occur during the serviceable life. This is of much interest due to the usual difficulties in removing specimens for mechanical characterization.

  12. Experimental research on the residual mechanical properties of an ordinary concretes after fire

    OpenAIRE

    Santos, C.C.; Rodrigues, J.P.

    2015-01-01

    This paper summarizes the results of an experimental research to assess the residual mechanical properties of an ordinary concrete after fire. It was studied the influence of the cooling process, the maximum temperature that the concrete was subjected to and the loading level on the residual mechanical properties of calcareous and granite aggregate concretes. The properties studied were the residual compressive, tensile, splitting and flexural strengths and modulus of elasticit...

  13. Fibril morphology and tendon mechanical properties in patellar tendinopathy: effects of heavy slow resistance training

    DEFF Research Database (Denmark)

    Kongsgaard, Mads; Qvortrup, Klaus; Larsen, Jytte Overgaard

    2010-01-01

    BACKGROUND: Patellar tendinopathy is characterized by pathologic abnormalities. Heavy slow resistance training (HSR) is effective in the management of patellar tendinopathy, but the underlying functional mechanisms remain elusive. PURPOSE: To investigate fibril morphology and mechanical properties...... assessed symptoms/function and maximal tendon pain during activity. Tendon biopsy samples were analyzed for fibril density, volume fraction, and mean fibril area. Tendon mechanical properties were assessed using force and ultrasonography samplings. RESULTS: Patients improved in symptoms/function (P = .02...... area decreased (-26% +/- 21%, P = .04) in tendinopathic tendons after HSR. CONCLUSION: Fibril morphology is abnormal in tendinopathy, but tendon mechanical properties are not. Clinical improvements after HSR were associated with changes in fibril morphology toward normal fibril density and mean fibril...

  14. Mechanical properties of experimental composites with different calcium phosphates fillers.

    Science.gov (United States)

    Okulus, Zuzanna; Voelkel, Adam

    2017-09-01

    Calcium phosphates (CaPs)-containing composites have already shown good properties from the point of view of dental restorative materials. The purpose of this study was to examine the crucial mechanical properties of twelve hydroxyapatite- or tricalcium phosphate-filled composites. The raw and surface-treated forms of both CaP fillers were applied. As a reference materials two experimental glass-containing composites and one commercial dental restorative composite were applied. Nano-hardness, elastic modulus, compressive, flexural and diametral tensile strength of all studied materials were determined. Application of statistical methods (one-way analysis of variance and cluster agglomerative analysis) allowed for assessing the similarities between examined materials according to the values of studied parameters. The obtained results show that in almost all cases the mechanical properties of experimental CaPs-composites are comparable or even better than mechanical properties of examined reference materials. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Phase imaging of mechanical properties of live cells (Conference Presentation)

    Science.gov (United States)

    Wax, Adam

    2017-02-01

    The mechanisms by which cells respond to mechanical stimuli are essential for cell function yet not well understood. Many rheological tools have been developed to characterize cellular viscoelastic properties but these typically require direct mechanical contact, limiting their throughput. We have developed a new approach for characterizing the organization of subcellular structures using a label free, noncontact, single-shot phase imaging method that correlates to measured cellular mechanical stiffness. The new analysis approach measures refractive index variance and relates it to disorder strength. These measurements are compared to cellular stiffness, measured using the same imaging tool to visualize nanoscale responses to flow shear stimulus. The utility of the technique is shown by comparing shear stiffness and phase disorder strength across five cellular populations with varying mechanical properties. An inverse relationship between disorder strength and shear stiffness is shown, suggesting that cell mechanical properties can be assessed in a format amenable to high throughput studies using this novel, non-contact technique. Further studies will be presented which include examination of mechanical stiffness in early carcinogenic events and investigation of the role of specific cellular structural proteins in mechanotransduction.

  16. Some experimental considerations regarding ion beam simulation of neutron irradiation for mechanical property measurements

    International Nuclear Information System (INIS)

    Styris, D.L.; Jones, R.H.; Harling, O.K.; Kulcinski, G.L.; Marshall, R.P.

    1975-01-01

    A preliminary assessment of the requirements for mechanical property data related to CTR materials is given. The status of ion simulation for mechanical property measurements is described. A damage analysis and calculations for light ions are presented along with sample size, heating and cooling, and surface considerations

  17. Recent Developments in On-Line Assessment of Steel Strip Properties

    International Nuclear Information System (INIS)

    Meilland, P.; Kroos, J.; Buchholtz, O. W.; Hartmann, H.-J.

    2006-01-01

    On-line non-destructive assessment of steel strip properties is a subject of growing interest amongst European manufacturers, as it provides information all along the products length, without slowing down the production. Arcelor, Salzgitter and TKS recently undertook a collective effort to assess the performance of 3 systems for flat carbon steel strips mechanical properties at the exit of galvanizing lines

  18. Predicting Silk Fiber Mechanical Properties through Multiscale Simulation and Protein Design.

    Science.gov (United States)

    Rim, Nae-Gyune; Roberts, Erin G; Ebrahimi, Davoud; Dinjaski, Nina; Jacobsen, Matthew M; Martín-Moldes, Zaira; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y

    2017-08-14

    Silk is a promising material for biomedical applications, and much research is focused on how application-specific, mechanical properties of silk can be designed synthetically through proper amino acid sequences and processing parameters. This protocol describes an iterative process between research disciplines that combines simulation, genetic synthesis, and fiber analysis to better design silk fibers with specific mechanical properties. Computational methods are used to assess the protein polymer structure as it forms an interconnected fiber network through shearing and how this process affects fiber mechanical properties. Model outcomes are validated experimentally with the genetic design of protein polymers that match the simulation structures, fiber fabrication from these polymers, and mechanical testing of these fibers. Through iterative feedback between computation, genetic synthesis, and fiber mechanical testing, this protocol will enable a priori prediction capability of recombinant material mechanical properties via insights from the resulting molecular architecture of the fiber network based entirely on the initial protein monomer composition. This style of protocol may be applied to other fields where a research team seeks to design a biomaterial with biomedical application-specific properties. This protocol highlights when and how the three research groups (simulation, synthesis, and engineering) should be interacting to arrive at the most effective method for predictive design of their material.

  19. Assessment of mechanical properties of isolated bovine intervertebral discs from multi-parametric magnetic resonance imaging.

    Science.gov (United States)

    Recuerda, Maximilien; Périé, Delphine; Gilbert, Guillaume; Beaudoin, Gilles

    2012-10-12

    division into four clusters for the nucleus pulposus and into three or four clusters for the annulus fibrosus. The compressive moduli and the permeabilities of isolated IVDs can be assessed mostly by MT and diffusion sequences. However, the relationships have to be improved with the inclusion of MRI parameters more sensitive to IVD degeneration. Before the use of this technique to quantify the mechanical properties of IVDs in vivo on patients suffering from various diseases, the relationships have to be defined for each degeneration state of the tissue that mimics the pathology. Our MRI protocol associated to principal component analysis and agglomerative hierarchical clustering are promising tools to classify the degenerated intervertebral discs and further find biomarkers and predictive factors of the evolution of the pathologies.

  20. Complex approach mechanical properties and formability assessment of selected deep-drawing steels

    Directory of Open Access Journals (Sweden)

    J. Štaba

    2009-07-01

    Full Text Available The paper analyses the properties of deep-drawing sheets of three grades (Re = 320 to 475 MPa, surface-treated with hot-dip galvanizing, made of microalloyed steels. Deformation properties are assessed using tensile tests, technological Erichsen or cupping tests. These characteristics, as well as the behaviour of the surface layer, are also investigated under dynamic conditions (modified Erichsen test using a drop tester, or using flat bending fatigue tests. Using microscopic analysis the deformation properties of the surface layer are evaluated. The results show the compactness of the surface layer, high deformation characteristics, as well as fatigue properties of the investigated deep-drawing materials, suitable for application in the automotive industry.

  1. Characterizing the macro and micro mechanical properties of scaffolds for rotator cuff repair.

    Science.gov (United States)

    Smith, Richard D J; Zargar, Nasim; Brown, Cameron P; Nagra, Navraj S; Dakin, Stephanie G; Snelling, Sarah J B; Hakimi, Osnat; Carr, Andrew

    2017-11-01

    Retearing after rotator cuff surgery is a major clinical problem. Numerous scaffolds are being used to try to reduce retear rates. However, few have demonstrated clinical efficacy. We hypothesize that this lack of efficacy is due to insufficient mechanical properties. Therefore, we compared the macro and nano/micro mechanical properties of 7 commercially available scaffolds to those of the human supraspinatus tendons, whose function they seek to restore. The clinically approved scaffolds tested were X-Repair, LARS ligament, Poly-Tape, BioFiber, GraftJacket, Permacol, and Conexa. Fresh frozen cadaveric human supraspinatus tendon samples were used. Macro mechanical properties were determined through tensile testing and rheometry. Scanning probe microscopy and scanning electron microscopy were performed to assess properties of materials at the nano/microscale (morphology, Young modulus, loss tangent). None of the scaffolds tested adequately approximated both the macro and micro mechanical properties of human supraspinatus tendon. Macroscale mechanical properties were insufficient to restore load-bearing function. The best-performing scaffolds on the macroscale (X-Repair, LARS ligament) had poor nano/microscale properties. Scaffolds approximating tendon properties on the nano/microscale (BioFiber, biologic scaffolds) had poor macroscale properties. Existing scaffolds failed to adequately approximate the mechanical properties of human supraspinatus tendons. Combining the macroscopic mechanical properties of a synthetic scaffold with the micro mechanical properties of biologic scaffold could better achieve this goal. Future work should focus on advancing techniques to create new scaffolds with more desirable mechanical properties. This may help improve outcomes for rotator cuff surgery patients. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  2. Complex approach mechanical properties and formability assessment of selected deep-drawing steels

    OpenAIRE

    J. Štaba; M. Buršák

    2009-01-01

    The paper analyses the properties of deep-drawing sheets of three grades (Re = 320 to 475 MPa), surface-treated with hot-dip galvanizing, made of microalloyed steels. Deformation properties are assessed using tensile tests, technological Erichsen or cupping tests. These characteristics, as well as the behaviour of the surface layer, are also investigated under dynamic conditions (modified Erichsen test using a drop tester), or using flat bending fatigue tests. Using microscopic analysis the d...

  3. Mechanical properties of rock at high temperatures

    International Nuclear Information System (INIS)

    Kinoshita, Naoto; Abe, Tohru; Wakabayashi, Naruki; Ishida, Tsuyoshi.

    1997-01-01

    The laboratory tests have been performed in order to investigate the effects of temperature up to 300degC and pressure up to 30 MPa on the mechanical properties of three types of rocks, Inada granite, Sanjoume andesite and Oya tuff. The experimental results indicated that the significant differences in temperature dependence of mechanical properties exist between the three rocks, because of the difference of the factors which determine the mechanical properties of the rocks. The effect of temperature on the mechanical properties for the rocks is lower than that of pressure and water content. Temperature dependence of the mechanical properties is reduced by increase in pressure in the range of pressure and temperature investigated in this paper. (author)

  4. Mechanical properties of depleted uranium-2 w/o molybdenum alloy

    International Nuclear Information System (INIS)

    Deel, O.L.; Burian, R.J.

    1979-01-01

    The primary objective of this program is to develop data and techniques for determining the dynamic impact response of radioactive-material shipping-container systems for environmental control and safety overview and assessment. One phase of this program is the dynamic testing of 1/8-, 1/4-, and 1/2-scale models of uranium-shielded truck casks. These linearly scaled models are fabricated from the same materials typically used in full-size prototype casks. In order to analytically evaluate the results of dynamic tests, it is necessary to know the mechanical properties of the materials of construction. Since the properties of cast uranium--molybdenum alloys vary significantly with casting and heat-treating techniques, it is necessary to fully characterize the mechanical properties of the uranium used in the model tests. This report presents the results of these studies. The uranium alloy exhibited a tensile strength equal to or greater than that reported by others. As indicated by the percentage of elongation and reduction in area, the ductility was lower. Comparative data for the other mechanical properties measured were not found in the literature

  5. Mechanical properties of the normal human cartilage-bone complex in relation to age

    DEFF Research Database (Denmark)

    Ding, Ming; Dalstra, M; Linde, F

    1998-01-01

    OBJECTIVE: This study investigates the age-related variations in the mechanical properties of the normal human tibial cartilage-bone complex and the relationships between cartilage and bone. DESIGN: A novel technique was applied to assess the mechanical properties of the cartilage and bone by mea...... that are of importance for the understanding of the etiology and pathogenesis of degenerative joint diseases, such as arthrosis....

  6. Assesment of influncing factors on mechanical and electrical properties of Al/Cu joints

    Science.gov (United States)

    Selvaraj, R. Meby; Hynes, N. Rajesh Jesudoss

    2018-05-01

    Joining of dissimilar materials opens up challenging opportunities in todays technology. Al/Cu weldments are used in applications that demands corrosion resistance, thermal and electrical conducting properties. In dissimilar joining mechanical and thermal properties result in large stress gradients during heating. The Al-Cu joints are lighter, cheaper and have conductivity equal to copper alloy. The main scope of this study is to assess the influencing factors of Al/Cu joints in mechanical and electrical properties. It includes the influence of the dilution between the base metals, influence of physical properties, influence of welding parameters, influence of filler metal, influence of heat treatment, and influence of electrical properties

  7. Biodegradability and mechanical properties of starch films from Andean crops.

    Science.gov (United States)

    Torres, F G; Troncoso, O P; Torres, C; Díaz, D A; Amaya, E

    2011-05-01

    Different Andean crops were used to obtain starches not previously reported in literature as raw material for the production of biodegradable polymers. The twelve starches obtained were used to prepare biodegradable films by casting. Water and glycerol were used as plasticizers. The mechanical properties of the starch based films were assessed by means of tensile tests. Compost tests and FTIR tests were carried out to assess biodegradability of films. The results show that the mechanical properties (UTS, Young's modulus and elongation at break) of starch based films strongly depend on the starch source used for their production. We found that all the starch films prepared biodegrade following a three stage process and that the weight loss rate of all the starch based films tested was higher than the weight loss rate of the cellulose film used as control. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. Assessing changes on poly(ethylene terephthalate) properties after recycling: Mechanical recycling in laboratory versus postconsumer recycled material

    Energy Technology Data Exchange (ETDEWEB)

    López, María del Mar Castro, E-mail: quimcl02@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); Ares Pernas, Ana Isabel, E-mail: aares@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); Abad López, Ma José, E-mail: mjabad@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); and others

    2014-10-15

    Keeping rheological, mechanical and thermal properties of virgin poly(ethylene terephthalate), PET, is necessary to assure the quality of second-market applications. A comparative study of these properties has been undertaken in virgin, mechanical recycled and commercial recycled PET samples. Viscoelastic characterization was carried out by rheological measurements. Mechanical properties were estimated by tensile and Charpy impact strength tests. Thermal properties and crystallinity were evaluated by differential scanning calorimetry and a deconvolution procedure was applied to study the population of the different crystals. Molecular conformational changes related to crystallinity values were studied by FTIR spectroscopy. Variations in average molecular weight were predicted from rheology. Besides, the presence-absence of linear and cyclic oligomeric species was measured by mass spectrometry techniques, as MALDI-TOF. Mechanical recycled PET undergoes a significant decline in rheological, mechanical and thermal properties upon increasing the number of reprocessing steps. This is due to the cleavage of the ester bonds with reduction in molar mass and raise in cyclic oligomeric species, in particular [GT{sub c}]{sub n} and [GT{sub c}]{sub n}-G type. Chain shortening plus enrichment in trans conformers favour the crystallization process which occurs earlier and faster with modification in crystal populations. Additional physicochemical steps are necessary to preserve the main benefits of PET. - Highlights: • Combination of multiple techniques to characterize the effects of recycling in PET. • Cleavage of ester bonds reduced viscosity, Mw, toughness in mechanical recycled PET. • Virgin, mechanical recycled and commercial recycled PET differ in crystal populations. • Cyclic oligomers [GT{sub c}]{sub n} and [GT{sub c}]{sub n}-G increase from the fourth extrusion cycle onwards.

  9. Mechanical Properties for Reliability Analysis of Structures in Glassy Carbon

    CERN Document Server

    Garion, Cédric

    2014-01-01

    Despite its good physical properties, the glassy carbon material is not widely used, especially for structural applications. Nevertheless, its transparency to particles and temperature resistance are interesting properties for the applications to vacuum chambers and components in high energy physics. For example, it has been proposed for fast shutter valve in particle accelerator [1] [2]. The mechanical properties have to be carefully determined to assess the reliability of structures in such a material. In this paper, mechanical tests have been carried out to determine the elastic parameters, the strength and toughness on commercial grades. A statistical approach, based on the Weibull’s distribution, is used to characterize the material both in tension and compression. The results are compared to the literature and the difference of properties for these two loading cases is shown. Based on a Finite Element analysis, a statistical approach is applied to define the reliability of a structural component in gl...

  10. Chronic alcohol abuse in men alters bone mechanical properties by affecting both tissue mechanical properties and microarchitectural parameters.

    Science.gov (United States)

    Cruel, M; Granke, M; Bosser, C; Audran, M; Hoc, T

    2017-06-01

    Alcohol-induced secondary osteoporosis in men has been characterized by higher fracture prevalence and a modification of bone microarchitecture. Chronic alcohol consumption impairs bone cell activity and results in an increased fragility. A few studies highlighted effects of heavy alcohol consumption on some microarchitectural parameters of trabecular bone. But to date and to our knowledge, micro- and macro-mechanical properties of bone of alcoholic subjects have not been investigated. In the present study, mechanical properties and microarchitecture of trabecular bone samples from the iliac crest of alcoholic male patients (n=15) were analyzed and compared to a control group (n=8). Nanoindentation tests were performed to determine the tissue's micromechanical properties, micro-computed tomography was used to measure microarchitectural parameters, and numerical simulations provided the apparent mechanical properties of the samples. Compared to controls, bone tissue from alcoholic patients exhibited an increase of micromechanical properties at tissue scale, a significant decrease of apparent mechanical properties at sample scale, and significant changes in several microarchitectural parameters. In particular, a crucial role of structure model index (SMI) on mechanical properties was identified. 3D microarchitectural parameters are at least as important as bone volume fraction to predict bone fracture risk in the case of alcoholic patients. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Real-time observations of mechanical stimulus-induced enhancements of mechanical properties in osteoblast cells

    International Nuclear Information System (INIS)

    Zhang Xu; Liu Xiaoli; Sun Jialun; He Shuojie; Lee, Imshik; Pak, Hyuk Kyu

    2008-01-01

    Osteoblast, playing a key role in the pathophysiology of osteoporosis, is one of the mechanical stress sensitive cells. The effects of mechanical load-induced changes of mechanical properties in osteoblast cells were studied at real-time. Osteoblasts obtained from young Wister rats were exposed to mechanical loads in different frequencies and resting intervals generated by atomic force microscopy (AFM) probe tip and simultaneously measured the changes of the mechanical properties by AFM. The enhancement of the mechanical properties was observed and quantified by the increment of the apparent Young's modulus, E * . The observed mechanical property depended on the frequency of applied tapping loads. For the resting interval is 50 s, the mechanical load-induced enhancement of E * -values disappears. It seems that the enhanced mechanical property was recover able under no additional mechanical stimulus

  12. Estimating the mechanical properties of the brittle deformation zones at Olkiluoto

    International Nuclear Information System (INIS)

    Hudson, J.A.; Cosgrove, J.W.; Johansson, E.

    2008-09-01

    In rock mechanics modelling to support repository design and safety assessment for the Olkiluoto site, it is necessary to obtain the relevant rock mechanics parameters, these being an essential pre-requisite for the modelling. The parameters include the rock stress state, the properties of the intact rock and the rock mass, and the properties of the brittle deformation zones which represent major discontinuities in the rock mass continuum. However, because of the size and irregularity of the brittle deformation zones, it is not easy to estimate their mechanical properties, i.e. their deformation and strength properties. Following Section 1 explaining the motivation for the work and the objective of the Report, in Sections 2 and 3, the types of fractures and brittle deformation zones that can be encountered are described with an indication of the mechanisms that lead to complex structures. The geology at Olkiluoto is then summarized in Section 4 within the context of this Report. The practical aspects of encountering the brittle deformation zones in outcrops, drillholes and excavations are described in Sections 5 and 6 with illustrative examples of drillhole core intersections in Section 7. The various theoretical, numerical and practical methods for estimating the mechanical properties of the brittle deformation zones are described in Section 8, together with a Table summarizing each method's advantages, disadvantages and utility in estimating the mechanical properties of the zones. We emphasise that the optimal approach to estimating the mechanical properties of the brittle deformation zones cannot be determined without a good knowledge, not only of each estimation method's capabilities and idiosyncrasies, but also of the structural geology background and the specific nature of the brittle deformation zones being characterized. Finally, in Section 9, a Table is presented outlining each method's applicability to the Olkiluoto site. A flowchart is included to

  13. Evaluation of the basic mechanical and thermal properties of deep crystalline rocks

    International Nuclear Information System (INIS)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Jeon, Seok Won

    2001-04-01

    This report provides the mechanical and thermal properties of granitic intact rocks obtained from Deep Core Drilling Program which is carried out as part of the assessment of deep geological environmental condition. These data are the basic material properties of the core samples from the boreholes drilled up to 500 m depth at the Yusung and Kosung sites. These sites were selected based on the result of preliminary site evaluation study. In this study, the mechanical properties include density, porosity, P-wave velocity, S-wave velocity, uniaxial compressive strength, Young's modulus, Poisson's ratio, tensile strength, and shear strength of fractures, and the thermal properties are heat conductivity, thermal expansion coefficient, specific heat and so on. Those properties were measured through laboratory tests and these data are compared with the existing test results of several domestic rocks

  14. Evaluation of the basic mechanical and thermal properties of deep crystalline rocks

    Energy Technology Data Exchange (ETDEWEB)

    Park, Byoung Yoon; Bae, Dae Seok; Kim, Chun Soo; Kim, Kyung Su; Koh, Young Kwon; Jeon, Seok Won

    2001-04-01

    This report provides the mechanical and thermal properties of granitic intact rocks obtained from Deep Core Drilling Program which is carried out as part of the assessment of deep geological environmental condition. These data are the basic material properties of the core samples from the boreholes drilled up to 500 m depth at the Yusung and Kosung sites. These sites were selected based on the result of preliminary site evaluation study. In this study, the mechanical properties include density, porosity, P-wave velocity, S-wave velocity, uniaxial compressive strength, Young's modulus, Poisson's ratio, tensile strength, and shear strength of fractures, and the thermal properties are heat conductivity, thermal expansion coefficient, specific heat and so on. Those properties were measured through laboratory tests and these data are compared with the existing test results of several domestic rocks.

  15. Mechanical properties of chemical vapor deposited coatings for fusion reactor application

    International Nuclear Information System (INIS)

    Mullendore, A.W.; Whitley, J.B.; Pierson, H.O.; Mattox, D.M.

    1980-01-01

    Chemical vapor deposited coatings of TiB 2 , TiC and boron on graphite substrates are being developed for application as limiter materials in magnetic confinement fusion reactors. In this application severe thermal shock conditions exist and to do effective thermo-mechanical modelling of the material response it is necessary to acquire elastic moduli, fracture strength and strain to fracture data for the coatings. Four point flexure tests have been conducted from room temperature to 2000 0 C on TiB 2 and boron coated graphite with coatings in tension and compression and the mechanical properties extracted from the load-deflection data. In addition, stress relaxation tests from 500 to 1150 0 C were performed on TiB 2 and TiC coated graphite beams to assess the low levels of plastic deformation which occur in these coatings. Significant differences have been observed between the effective mechanical properties of the coatings and literature values of the bulk properties

  16. Non-destructive thermo-mechanical behavior assessment of glass-ceramics for dental applications

    Science.gov (United States)

    Kordatos, E. Z.; Abdulkadhim, Z.; Feteira, A. M.

    2017-05-01

    Every year millions of people seek dental treatment to either repair damaged, unaesthetic and dysfunctional teeth or replace missing natural teeth. Several dental materials have been developed to meet the stringent requirements in terms of mechanical properties, aesthetics and chemical durability in the oral environment. Glass-ceramics exhibit a suitable combination of these properties for dental restorations. This research is focused on the assessment of the thermomechanical behavior of bio-ceramics and particularly lithium aluminosilicate glass-ceramics (LAS glass-ceramics). Specifically, methodologies based on Infrared Thermography (IRT) have been applied in order the structure - property relationship to be evaluated. Non-crystallized, partially crystallized and fully crystallized glass-ceramic samples have been non-destructively assessed in order their thermo-mechanical behavior to be associated with their micro-structural features.

  17. Evaluation of thermo-mechanical properties data of carbon-based plasma facing materials

    International Nuclear Information System (INIS)

    Ulrickson, M.; Barabash, V.R.; Matera, R.; Roedig, M.; Smith, J.J.; Janev, R.K.

    1991-03-01

    This Report contains the proceedings, results and conclusions of the work done and the analysis performed during the IAEA Consultants' Meeting on ''Evaluation of thermo-mechanical properties data of carbon-based plasma facing materials'', convened on December 17-21, 1990, at the IAEA Headquarters in Vienna. Although the prime objective of the meeting was to critically assess the available thermo-mechanical properties data for certain types of carbon-based fusion relevant materials, the work of the meeting went well beyond this task. The meeting participants discussed in depth the scope and structure of the IAEA material properties database, the format of data presentation, the most appropriate computerized system for data storage, retrieval, exchange and management. The existing IAEA ALADDIN system was adopted as a convenient tool for this purpose and specific ALADDIN labelling schemes and dictionaries were established for the material properties data. An ALADDIN formatted test-file for the thermo-physical and thermo-mechanical properties of pyrolytic graphite is appended to this Report for illustrative purposes. (author)

  18. Damage Mechanisms and Mechanical Properties of High-Strength Multiphase Steels

    Directory of Open Access Journals (Sweden)

    Sebastian Heibel

    2018-05-01

    Full Text Available The usage of high-strength steels for structural components and reinforcement parts is inevitable for modern car-body manufacture in reaching lightweight design as well as increasing passive safety. Depending on their microstructure these steels show differing damage mechanisms and various mechanical properties which cannot be classified comprehensively via classical uniaxial tensile testing. In this research, damage initiation, evolution and final material failure are characterized for commercially produced complex-phase (CP and dual-phase (DP steels in a strength range between 600 and 1000 MPa. Based on these investigations CP steels with their homogeneous microstructure are characterized as damage tolerant and hence less edge-crack sensitive than DP steels. As final fracture occurs after a combination of ductile damage evolution and local shear band localization in ferrite grains at a characteristic thickness strain, this strain measure is introduced as a new parameter for local formability. In terms of global formability DP steels display advantages because of their microstructural composition of soft ferrite matrix including hard martensite particles. Combining true uniform elongation as a measure for global formability with the true thickness strain at fracture for local formability the mechanical material response can be assessed on basis of uniaxial tensile testing incorporating all microstructural characteristics on a macroscopic scale. Based on these findings a new classification scheme for the recently developed high-strength multiphase steels with significantly better formability resulting of complex underlying microstructures is introduced. The scheme overcomes the steel designations using microstructural concepts, which provide no information about design and production properties.

  19. Mechanical properties of provisional dental materials: A systematic review and meta-analysis.

    Science.gov (United States)

    Astudillo-Rubio, Daniela; Delgado-Gaete, Andrés; Bellot-Arcís, Carlos; Montiel-Company, José María; Pascual-Moscardó, Agustín; Almerich-Silla, José Manuel

    2018-01-01

    Provisional restorations represent an important phase during the rehabilitation process, knowledge of the mechanical properties of the available materials allows us to predict their clinical performance. At present, there is no systematic review, which supports the clinicians' criteria, in the selection of a specific material over another for a particular clinical situation. The purpose of this systematic review and meta-analysis was to assess and compare the mechanical properties of dimethacrylates and monomethacrylates used in fabricating direct provisional restorations, in terms of flexural strength, fracture toughness and hardness. This review followed the PRISMA guidelines. The searches were conducted in PubMed, Embase, Web of Science, Scopus, the New York Academy of Medicine Grey Literature Report and were complemented by hand-searching, with no limitation of time or language up to January 10, 2017. Studies that assess and compare the mechanical properties of dimethacrylate- and monomethacrylate-based provisional restoration materials were selected. A quality assessment of full-text articles were performed according to modified ARRIVE and CONSORT criteria and modified Cochrane Collaboration's tool for in vitro studies. Initially, 256 articles were identified. After removing the duplicates and applying the selection criteria, 24 articles were included in the qualitative synthesis and 7 were included in the quantitative synthesis (meta-analysis). It may be concluded that dimethacrylate-based provisional restorations presented better mechanical behavior than monomethacrylate-based ones in terms of flexural strength and hardness. Fracture toughness showed no significant differences. Within the monomethacrylate group, polymethylmethacrylate showed greater flexural strength than polyethylmethacrylate.

  20. Mechanical properties of provisional dental materials: A systematic review and meta-analysis.

    Directory of Open Access Journals (Sweden)

    Daniela Astudillo-Rubio

    Full Text Available Provisional restorations represent an important phase during the rehabilitation process, knowledge of the mechanical properties of the available materials allows us to predict their clinical performance. At present, there is no systematic review, which supports the clinicians' criteria, in the selection of a specific material over another for a particular clinical situation. The purpose of this systematic review and meta-analysis was to assess and compare the mechanical properties of dimethacrylates and monomethacrylates used in fabricating direct provisional restorations, in terms of flexural strength, fracture toughness and hardness. This review followed the PRISMA guidelines. The searches were conducted in PubMed, Embase, Web of Science, Scopus, the New York Academy of Medicine Grey Literature Report and were complemented by hand-searching, with no limitation of time or language up to January 10, 2017. Studies that assess and compare the mechanical properties of dimethacrylate- and monomethacrylate-based provisional restoration materials were selected. A quality assessment of full-text articles were performed according to modified ARRIVE and CONSORT criteria and modified Cochrane Collaboration's tool for in vitro studies. Initially, 256 articles were identified. After removing the duplicates and applying the selection criteria, 24 articles were included in the qualitative synthesis and 7 were included in the quantitative synthesis (meta-analysis. It may be concluded that dimethacrylate-based provisional restorations presented better mechanical behavior than monomethacrylate-based ones in terms of flexural strength and hardness. Fracture toughness showed no significant differences. Within the monomethacrylate group, polymethylmethacrylate showed greater flexural strength than polyethylmethacrylate.

  1. Selected mechanical properties of modified beech wood

    Directory of Open Access Journals (Sweden)

    Jiří Holan

    2008-01-01

    Full Text Available This thesis deals with an examination of mechanical properties of ammonia treated beach wood with a trademark Lignamon. For determination mechanical properties were used procedures especially based on ČSN. From the results is noticeable increased density of wood by 22% in comparison with untreated beach wood, which makes considerable increase of the most mechanical wood properties. Considering failure strength was raised by 32% and modulus of elasticity was raised at average about 46%.

  2. Relationships among ultrasonic and mechanical properties of cancellous bone in human calcaneus in vitro.

    Science.gov (United States)

    Wear, Keith A; Nagaraja, Srinidhi; Dreher, Maureen L; Sadoughi, Saghi; Zhu, Shan; Keaveny, Tony M

    2017-10-01

    Clinical bone sonometers applied at the calcaneus measure broadband ultrasound attenuation and speed of sound. However, the relation of ultrasound measurements to bone strength is not well-characterized. Addressing this issue, we assessed the extent to which ultrasonic measurements convey in vitro mechanical properties in 25 human calcaneal cancellous bone specimens (approximately 2×4×2cm). Normalized broadband ultrasound attenuation, speed of sound, and broadband ultrasound backscatter were measured with 500kHz transducers. To assess mechanical properties, non-linear finite element analysis, based on micro-computed tomography images (34-micron cubic voxel), was used to estimate apparent elastic modulus, overall specimen stiffness, and apparent yield stress, with models typically having approximately 25-30 million elements. We found that ultrasound parameters were correlated with mechanical properties with R=0.70-0.82 (pmechanical properties beyond that provided by bone quantity alone (p≤0.05). Adding ultrasound variables to linear regression models based on bone quantity improved adjusted squared correlation coefficients from 0.65 to 0.77 (stiffness), 0.76 to 0.81 (apparent modulus), and 0.67 to 0.73 (yield stress). These results indicate that ultrasound can provide complementary (to bone quantity) information regarding mechanical behavior of cancellous bone. Published by Elsevier Inc.

  3. Microstructures and mechanical properties of aging materials

    International Nuclear Information System (INIS)

    Liaw, P.K.; Viswanathan, R.; Murty, K.L.; Simonen, E.P.; Frear, D.

    1993-01-01

    This book contains a collection of papers presented at the symposium on ''Microstructures and Mechanical Properties of Aging Materials,'' that was held in Chicago, IL. November 2-5, 1992 in conjunction with the Fall Meeting of The Minerals, Metals and Materials Society (TMS). The subjects of interest in the symposium included: (1) mechanisms of microstructural degradation, (2) effects of microstructural degradation on mechanical behavior, (3) development of life prediction methodology for in-service structural and electronic components, (4) experimental techniques to monitor degradation of microstructures and mechanical properties, and (5) effects of environment on microstructural degradation and mechanical properties. Individual papers have been processed separately for inclusion in the appropriate data bases

  4. Assessment of empirical potential for MOX nuclear fuels and thermomechanical properties

    Science.gov (United States)

    Balboa, Hector; Van Brutzel, Laurent; Chartier, Alain; Le Bouar, Yann

    2017-11-01

    We assess five empirical interatomic potentials in the approximation of rigid ions and pair interactions for the (U1-y,Puy)O solid solution. The assessment compares available experimental data and Fink's recommendation with simulations on: the structural, thermodynamics, and mechanical properties over the full range of plutonium composition, from pure UO2 to pure PuO2 and for temperatures ranging from 300 K to the melting point. The best results are obtained by potentials referred as Cooper and Potashnikov potentials. The first one reproduces more accurately recommendations for the thermodynamics and mechanical properties exhibiting ductile-like behaviour during crack propagation, while the second one gives brittle behaviour at low temperature.

  5. Possibilities for modelling the effect of compression on mechanical and physical properties of various Dutch soil types

    NARCIS (Netherlands)

    Perdok, U.D.; Kroesbergen, B.; Hoogmoed, W.B.

    2002-01-01

    The state of compactness of the arable soil layer changes during the growing season as a result of tillage and traction. The aim of this study was to assess and predict some soil mechanical and physical properties governing machine performance and crop response. The following mechanical properties

  6. Mechanical Properties of Composite Materials

    Directory of Open Access Journals (Sweden)

    Mitsuhiro Okayasu

    2014-10-01

    Full Text Available An examination has been made of the mechanical and failure properties of several composite materials, such as a short and a long carbon fiber reinforced plastic (short- and long-CFRP and metal based composite material. The short CFRP materials were used for a recycled CFRP which fabricated by the following process: the CFRP, consisting of epoxy resin with carbon fiber, is injected to a rectangular plate cavity after mixing with acrylonitrile butadiene styrene resin with different weight fractions of CFRP. The fatigue and ultimate tensile strength (UTS increased with increasing CFRP content. These correlations, however, break down, especially for tensile strength, as the CFPR content becomes more than 70%. Influence of sample temperature on the bending strength of the long-CFRP was investigated, and it appears that the strength slightly degreases with increasing the temperature, due to the weakness in the matrix. Broken fiber and pull-out or debonding between the fiber and matrix were related to the main failure of the short- and long-CFRP samples. Mechanical properties of metal based composite materials have been also investigated, where fiber-like high hardness CuAl2 structure is formed in aluminum matrix. Excellent mechanical properties were obtained in this alloy, e.g., the higher strength and the higher ductility, compared tothe same alloy without the fiber-like structure. There are strong anisotropic effects on the mechanical properties due to the fiber-like metal composite in a soft Al based matrix.

  7. Nondestructive measurement of esophageal biaxial mechanical properties utilizing sonometry

    Science.gov (United States)

    Aho, Johnathon M.; Qiang, Bo; Wigle, Dennis A.; Tschumperlin, Daniel J.; Urban, Matthew W.

    2016-07-01

    Malignant esophageal pathology typically requires resection of the esophagus and reconstruction to restore foregut continuity. Reconstruction options are limited and morbid. The esophagus represents a useful target for tissue engineering strategies based on relative simplicity in comparison to other organs. The ideal tissue engineered conduit would have sufficient and ideally matched mechanical tolerances to native esophageal tissue. Current methods for mechanical testing of esophageal tissues both in vivo and ex vivo are typically destructive, alter tissue conformation, ignore anisotropy, or are not able to be performed in fluid media. The aim of this study was to investigate biomechanical properties of swine esophageal tissues through nondestructive testing utilizing sonometry ex vivo. This method allows for biomechanical determination of tissue properties, particularly longitudinal and circumferential moduli and strain energy functions. The relative contribution of mucosal-submucosal layers and muscular layers are compared to composite esophagi. Swine thoracic esophageal tissues (n  =  15) were tested by pressure loading using a continuous pressure pump system to generate stress. Preconditioning of tissue was performed by pressure loading with the pump system and pre-straining the tissue to in vivo length before data was recorded. Sonometry using piezocrystals was utilized to determine longitudinal and circumferential strain on five composite esophagi. Similarly, five mucosa-submucosal and five muscular layers from thoracic esophagi were tested independently. This work on esophageal tissues is consistent with reported uniaxial and biaxial mechanical testing and reported results using strain energy theory and also provides high resolution displacements, preserves native architectural structure and allows assessment of biomechanical properties in fluid media. This method may be of use to characterize mechanical properties of tissue engineered esophageal

  8. Cartilage-like mechanical properties of poly (ethylene glycol)-diacrylate hydrogels.

    Science.gov (United States)

    Nguyen, Quynhhoa T; Hwang, Yongsung; Chen, Albert C; Varghese, Shyni; Sah, Robert L

    2012-10-01

    Hydrogels prepared from poly-(ethylene glycol) (PEG) have been used in a variety of studies of cartilage tissue engineering. Such hydrogels may also be useful as a tunable mechanical material for cartilage repair. Previous studies have characterized the chemical and mechanical properties of PEG-based hydrogels, as modulated by precursor molecular weight and concentration. Cartilage mechanical properties vary substantially, with maturation, with depth from the articular surface, in health and disease, and in compression and tension. We hypothesized that PEG hydrogels could mimic a broad range of the compressive and tensile mechanical properties of articular cartilage. The objective of this study was to characterize the mechanical properties of PEG hydrogels over a broad range and with reference to articular cartilage. In particular, we assessed the effects of PEG precursor molecular weight (508 Da, 3.4 kDa, 6 kDa, and 10 kDa) and concentration (10-40%) on swelling property, equilibrium confined compressive modulus (H(A0)), compressive dynamic stiffness, and hydraulic permeability (k(p0)) of PEG hydrogels in static/dynamic confined compression tests, and equilibrium tensile modulus (E(ten)) in tension tests. As molecular weight of PEG decreased and concentration increased, hydrogels exhibited a decrease in swelling ratio (31.5-2.2), an increase in H(A0) (0.01-2.46 MPa) and E(ten) (0.02-3.5 MPa), an increase in dynamic compressive stiffness (0.055-42.9 MPa), and a decrease in k(p0) (1.2 × 10(-15) to 8.5 × 10(-15) m(2)/(Pa s)). The frequency-dependence of dynamic compressive stiffness amplitude and phase, as well as the strain-dependence of permeability, were typical of the time- and strain-dependent mechanical behavior of articular cartilage. H(A0) and E(ten) were positively correlated with the final PEG concentration, accounting for swelling. These results indicate that PEG hydrogels can be prepared to mimic many of the static and dynamic mechanical

  9. Study of anisotropic mechanical properties for aeronautical PMMA

    Directory of Open Access Journals (Sweden)

    Wei Shang

    Full Text Available For the properties of polymer are relative to its structure, the main purpose of the present work is to investigate the mechanical properties of the aeronautical PMMA which has been treated by the directional tensile technology. Isodyne images reveal the stress state in directional PMMA. And then, an anisotropic mechanical model is established. Furthermore, all mechanical parameters are measured by the digital image correlation method. Finally, based on the anisotropic mechanical model and mechanical parameters, the FEM numerical simulation and experimental methods are applied to analyze the fracture mechanical properties along different directions.

  10. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of as-cast Ti-Cu alloys.

    Science.gov (United States)

    Zhang, Erlin; Ren, Jing; Li, Shengyi; Yang, Lei; Qin, Gaowu

    2016-10-21

    Ti-Cu sintered alloys have shown good antibacterial abilities. However, the sintered method (powder metallurgy) is not convenient to produce devices with a complex structure. In this paper, Ti-Cu alloys with 2.0, 3.0 and 4.0 wt.% Cu were prepared in an arc melting furnace and subjected to different heat treatments: solid solution and ageing, to explore the possibility of preparing an antibacterial Ti-Cu alloy by a casting method and to examine the effect of Cu content. Phase identification was conducted on an XRD diffraction meter, and the microstructure was observed by a metallographic microscope, a scanning electron microscope (SEM) with energy disperse spectroscopy (EDS) and transmission electron microscopy (TEM). Microhardness and the compressive property of Ti-Cu alloys were tested, and the corrosion resistance and antibacterial activity were assessed in order to investigate the effect of the Cu content. Results showed that the as-cast Ti-Cu alloys exhibited a very low antibacterial rate against Staphylococcus aureus (S. aureus). Heat treatment improved the antibacterial rate significantly, especially after a solid and ageing treatment (T6). Antibacterial rates as high as 90.33% and 92.57% were observed on Ti-3Cu alloy and Ti-4Cu alloy, respectively. The hardness, the compressive yield strength, the anticorrosion resistance and the antibacterial rate of Ti-Cu alloys increased with an increase of Cu content in all conditions. It was demonstrated that homogeneous distribution and a fine Ti 2 Cu phase played a very important role in the mechanical property, anticorrosion and antibacterial properties. Furthermore, it should be pointed out that the Cu content should be at least 3 wt.% to obtain good antibacterial properties (>90% antibacterial rate) as well as satisfactory mechanical properties.

  11. Effect of water absorption on mechanical properties of flax fibre reinforced composites

    CSIR Research Space (South Africa)

    Guduri, BBR

    2007-01-01

    Full Text Available Scutched and line flax fibres, with mean linear density of about 19.5 decitex, were utilized for this study. Mechanical properties of fibre and resin were measured for assessing their contribution in the composite matrix. Polypropylene (PP)/ short...

  12. Mechanical Properties of Organic Semiconductors for Stretchable, Highly Flexible, and Mechanically Robust Electronics.

    Science.gov (United States)

    Root, Samuel E; Savagatrup, Suchol; Printz, Adam D; Rodriquez, Daniel; Lipomi, Darren J

    2017-05-10

    Mechanical deformability underpins many of the advantages of organic semiconductors. The mechanical properties of these materials are, however, diverse, and the molecular characteristics that permit charge transport can render the materials stiff and brittle. This review is a comprehensive description of the molecular and morphological parameters that govern the mechanical properties of organic semiconductors. Particular attention is paid to ways in which mechanical deformability and electronic performance can coexist. The review begins with a discussion of flexible and stretchable devices of all types, and in particular the unique characteristics of organic semiconductors. It then discusses the mechanical properties most relevant to deformable devices. In particular, it describes how low modulus, good adhesion, and absolute extensibility prior to fracture enable robust performance, along with mechanical "imperceptibility" if worn on the skin. A description of techniques of metrology precedes a discussion of the mechanical properties of three classes of organic semiconductors: π-conjugated polymers, small molecules, and composites. The discussion of each class of materials focuses on molecular structure and how this structure (and postdeposition processing) influences the solid-state packing structure and thus the mechanical properties. The review concludes with applications of organic semiconductor devices in which every component is intrinsically stretchable or highly flexible.

  13. Chromium carbide-CNT nanocomposites with enhanced mechanical properties

    International Nuclear Information System (INIS)

    Singh, Virendra; Diaz, Rene; Balani, Kantesh; Agarwal, Arvind; Seal, Sudipta

    2009-01-01

    Chromium carbide is widely used as a tribological coating material in high-temperature applications requiring high wear resistance and hardness. Herein, an attempt has been made to further enhance the mechanical and wear properties of chromium carbide coatings by reinforcing carbon nanotubes (CNTs) as a potential replacement of soft binder matrix using plasma spraying. The microstructures of the sprayed CNT-reinforced Cr 3 C 2 coatings were characterized using transmission electron microscopy and scanning electron microscopy. The mechanical properties were assessed using micro-Vickers hardness, nanoindentation and wear measurements. CNT reinforcement improved the hardness of the coating by 40% and decreased the wear rate of the coating by almost 45-50%. Cr 3 C 2 reinforced with 2 wt.% CNT had an elastic modulus 304.5 ± 29.2 GPa, hardness of 1175 ± 60 VH 0.300 and a coefficient of friction of 0.654. It was concluded that the CNT reinforcement increased the wear resistance by forming intersplat bridges while the improvement in the hardness was attributed to the deformation resistance of CNTs under indentation

  14. Stochastic modelling in design of mechanical properties of nanometals

    International Nuclear Information System (INIS)

    Tengen, T.B.; Wejrzanowski, T.; Iwankiewicz, R.; Kurzydlowski, K.J.

    2010-01-01

    Polycrystalline nanometals are being fabricated through different processing routes and conditions. The consequence is that nanometals having the same mean grain size may have different grain size dispersion and, hence, may have different material properties. This has often led to conflicting reports from both theoretical and experimental findings about the evolutions of the mechanical properties of nanomaterials. The present paper employs stochastic model to study the impact of microstructure evolution during grain growth on the mechanical properties of polycrystalline nanometals. The stochastic model for grain growth and the stochastic model for changes in mechanical properties of nanomaterials are proposed. The model for the mechanical properties developed is tested on aluminium samples.Many salient features of the mechanical properties of the aluminium samples are revealed. The results show that the different mechanisms of grain growth impart different nature of response to the material mechanical properties. The conventional, homologous and anomalous temperature dependences of the yield stress have also been revealed to be due to different nature of interactions of the microstructures during evolution.

  15. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti-Ag sintered alloys.

    Science.gov (United States)

    Chen, Mian; Zhang, Erlin; Zhang, Lan

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti-Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti-Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti-Ag phase, residual pure Ag and Ti were the mainly phases in Ti-Ag(S75) sintered alloy while Ti2Ag was synthesized in Ti-Ag(S10) sintered alloy. The mechanical test indicated that Ti-Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti-Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti-Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti2Ag and its distribution. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Mechanical properties of ordered alloys

    International Nuclear Information System (INIS)

    Kroupa, F.

    1977-06-01

    A survey is given of the metallophysical fundamentals of the mechanical properties of ordered two-phase alloys. Alloys of this type have a superlattice structure in a substitution mixed crystal. Ordering is achieved by slow cooling or by annealing below the critical temperature, during which ordering domains (antiphase domains) are formed. At a high degree of ordering, the dislocations are concentrated to form pairs, so-called super-dislocations. The mechanical properties may be selectively changed by varying different parameters (size of the ordering domains, degree of ordering, energy of the antiphase boundaries) by a special composition and heat treatment.(GSC) [de

  17. Skin mechanical properties and modeling: A review.

    Science.gov (United States)

    Joodaki, Hamed; Panzer, Matthew B

    2018-04-01

    The mechanical properties of the skin are important for various applications. Numerous tests have been conducted to characterize the mechanical behavior of this tissue, and this article presents a review on different experimental methods used. A discussion on the general mechanical behavior of the skin, including nonlinearity, viscoelasticity, anisotropy, loading history dependency, failure properties, and aging effects, is presented. Finally, commonly used constitutive models for simulating the mechanical response of skin are discussed in the context of representing the empirically observed behavior.

  18. Material properties of biofilms – key methods for understanding permeability and mechanics

    Science.gov (United States)

    Billings, Nicole; Birjiniuk, Alona; Samad, Tahoura S.; Doyle, Patrick S.; Ribbeck, Katharina

    2015-01-01

    Microorganisms can form biofilms, which are multicellular communities surrounded by a hydrated extracellular matrix of polymers. Central properties of the biofilm are governed by this extracellular matrix, which provides mechanical stability to the three-dimensional biofilm structure, regulates the ability of the biofilm to adhere to surfaces, and determines the ability of the biofilm to adsorb gasses, solutes, and foreign cells. Despite their critical relevance for understanding and eliminating of biofilms, the materials properties of the extracellular matrix are understudied. Here, we offer the reader a guide to current technologies that can be utilized to specifically assess the permeability and mechanical properties of the biofilm matrix and its interacting components. In particular, we highlight technological advances in instrumentation and interactions between multiple disciplines that have broadened the spectrum of methods available to conduct these studies. We review pioneering work that furthers our understanding of the material properties of biofilms. PMID:25719969

  19. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    Energy Technology Data Exchange (ETDEWEB)

    Natsuki, Toshiaki [Shinshu University, Faculty of Textile Science and Technology, Ueda (Japan); Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan); Natsuki, Jun [Shinshu University, Institute of Carbon Science and Technology, Nagano (Japan)

    2017-04-15

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  20. Prediction of mechanical properties for hexagonal boron nitride nanosheets using molecular mechanics model

    International Nuclear Information System (INIS)

    Natsuki, Toshiaki; Natsuki, Jun

    2017-01-01

    Mechanical behaviors of nanomaterials are not easy to be evaluated in the laboratory because of their extremely small size and difficulty controlling. Thus, a suitable model for the estimation of the mechanical properties for nanomaterials becomes very important. In this study, the elastic properties of boron nitride (BN) nanosheets, including the elastic modulus, the shear modulus, and the Poisson's ratio, are predicted using a molecular mechanics model. The molecular mechanics force filed is established to directly incorporate the Morse potential function into the constitutive model of nanostructures. According to the molecular mechanics model, the chirality effect of hexagonal BN nanosheets on the elastic modulus is investigated through a closed-form solution. The simulated result shows that BN nanosheets exhibit an isotropic elastic property. The present analysis yields a set of very simple formulas and is able to be served as a good approximation on the mechanical properties for the BN nanosheets. (orig.)

  1. Effect of Mechanical Alloying Atmospheres and Oxygen Concentration on Mechanical Properties of ODS Ferritic Steels

    International Nuclear Information System (INIS)

    Noh, Sanghoon; Choi, Byoungkwon; Han, Changhee; Kim, Kibaik; Kang, Sukhoon; Chun, Youngbum; Kim, Taekyu

    2013-01-01

    Finely dispersed nano-oxide particles with a high number density in the homogeneous grain matrix are essential to achieve superior mechanical properties at high temperatures, and these unique microstructures can be obtained through the mechanical alloying (MA) and hot consolidation process. The microstructure and mechanical property of ODS steel significantly depends on its powder property and the purity after the MA process. These contents should be carefully controlled to improve the mechanical property at elevated temperature. In particular, appropriate the control of oxygen concentration improves the mechanical property of ODS steel at high temperature. An effective method is to control the mechanical alloying atmosphere by high purity inert gas. In the present study, the effects of mechanical alloying atmospheres and oxygen concentration on the mechanical property of ODS steel were investigated. ODS ferritic alloys were fabricated in various atmospheres, and the HIP process was used to investigate the effects of MA atmospheres and oxygen concentration on the microstructure and mechanical property. ODS ferritic alloys milled in an Ar-H 2 mixture, and He is effective to reduce the excess oxygen concentration. The YH 2 addition made an extremely reduced oxygen concentration by the internal oxygen reduction reaction and resulted in a homogeneous microstructure and superior creep strength

  2. Mechanical properties of nuclear waste glasses

    International Nuclear Information System (INIS)

    Connelly, A.J.; Hand, R.J.; Bingham, P.A.; Hyatt, N.C.

    2011-01-01

    The mechanical properties of nuclear waste glasses are important as they will determine the degree of cracking that may occur either on cooling or following a handling accident. Recent interest in the vitrification of intermediate level radioactive waste (ILW) as well as high level radioactive waste (HLW) has led to the development of new waste glass compositions that have not previously been characterised. Therefore the mechanical properties, including Young's modulus, Poisson's ratio, hardness, indentation fracture toughness and brittleness of a series of glasses designed to safely incorporate wet ILW have been investigated. The results are presented and compared with the equivalent properties of an inactive simulant of the current UK HLW glass and other nuclear waste glasses from the literature. The higher density glasses tend to have slightly lower hardness and indentation fracture toughness values and slightly higher brittleness values, however, it is shown that the variations in mechanical properties between these different glasses are limited, are well within the range of published values for nuclear waste glasses, and that the surveyed data for all radioactive waste glasses fall within relatively narrow range.

  3. The challenges of achieving good electrical and mechanical properties when making structural supercapacitors

    Science.gov (United States)

    Ciocanel, C.; Browder, C.; Simpson, C.; Colburn, R.

    2013-04-01

    The paper presents results associated with the electro-mechanical characterization of a composite material with power storage capability, identified throughout the paper as a structural supercapacitor. The structural supercapacitor uses electrodes made of carbon fiber weave, a separator made of Celgard 3501, and a solid PEG-based polymer blend electrolyte. To be a viable structural supercapacitor, the material has to have good mechanical and power storage/electrical properties. The literature in this area is inconsistent on which electrical properties are evaluated, and how those properties are assessed. In general, measurements of capacitance or specific capacitance (i.e. capacitance per unit area or per unit volume) are made, without considering other properties such as leakage resistance and equivalent series resistance of the supercapacitor. This paper highlights the significance of these additional electrical properties, discusses the fluctuation of capacitance over time, and proposes methods to improve the stability of the material's electric properties over time.

  4. Mechanical and electro-mechanical properties of three-dimensional nanoporous graphene-poly(vinylidene fluoride composites

    Directory of Open Access Journals (Sweden)

    G. P. Zheng

    2016-09-01

    Full Text Available Three-dimensional nanoporous graphene monoliths are utilized to prepare graphene-poly(vinylidene fluoride nanocomposites with enhanced mechanical and electro-mechanical properties. Pre-treatment of the polymer (poly(vinylidene fluoride, PVDF with graphene oxides (GOs facilitates the formation of uniform and thin PVDF films with a typical thickness below 100 nm well coated at the graphene nano-sheets. Besides their excellent compressibility, ductility and mechanical strength, the nanoporous graphene-PVDF nanocomposites are found to possess high sensitivity in strain-dependent electrical conductivity. The improved mechanical and electro-mechanical properties are ascribed to the enhanced crystalline β phase in PVDF which possesses piezoelectricity. The mechanical relaxation analyses on the interfaces between graphene and PVDF reveal that the improved mechanical and electro-mechanical properties could result from the interaction between the –C=O groups in the nanoporous graphene and the –CF2 groups in PVDF, which also explains the important role of GOs in the preparation of the graphene-polymer nanocomposites with superior combined mechanical and electro-mechanical properties.

  5. Microstructure, mechanical properties, bio-corrosion properties and antibacterial properties of Ti–Ag sintered alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Mian [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Erlin, E-mail: zhangel@atm.neu.edu.cn [Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, Northeastern University, Shenyang 110819 (China); Zhang, Lan [State Key Laboratory for Mechanical Behavior of Materials, Xi' an Jiaotong University, Xi' an 710049 (China)

    2016-05-01

    In this research, Ag element was selected as an antibacterial agent to develop an antibacterial Ti–Ag alloy by a powder metallurgy. The microstructure, phase constitution, mechanical properties, corrosion resistance and antibacterial properties of the Ti–Ag sintered alloys have been systematically studied by X-ray diffraction (XRD), scanning electron microscope (SEM), compressive test, electrochemical measurements and antibacterial test. The effects of the Ag powder size and the Ag content on the antibacterial property and mechanical property as well as the anticorrosion property have been investigated. The microstructure results have shown that Ti–Ag phase, residual pure Ag and Ti were the mainly phases in Ti–Ag(S75) sintered alloy while Ti{sub 2}Ag was synthesized in Ti–Ag(S10) sintered alloy. The mechanical test indicated that Ti–Ag sintered alloy showed a much higher hardness and the compressive yield strength than cp-Ti but the mechanical properties were slightly reduced with the increase of Ag content. Electrochemical results showed that Ag powder size had a significant effect on the corrosion resistance of Ti–Ag sintered alloy. Ag content increased the corrosion resistance in a dose dependent way under a homogeneous microstructure. Antibacterial tests have demonstrated that antibacterial Ti–Ag alloy was successfully prepared. It was also shown that the Ag powder particle size and the Ag content influenced the antibacterial activity seriously. The reduction in the Ag powder size was benefit to the improvement in the antibacterial property and the Ag content has to be at least 3 wt.% in order to obtain a strong and stable antibacterial activity against Staphylococcus aureus bacteria. The bacterial mechanism was thought to be related to the Ti{sub 2}Ag and its distribution. - Highlights: • Ti–Ag alloy with up to 99% antibacterial rate was developed by powder metallurgy. • The effects of the Ag powder size and the Ag content on the

  6. Variability of mechanical properties of nuclear pressure vessel steels

    International Nuclear Information System (INIS)

    Petrequin, P.; Soulat, P.

    1980-01-01

    Causes of variability of mechanical properties nuclear pressure vessel steels are reviewed and discussed. The effects of product shape and size, processing history and heat treatment are investigated. Some quantitative informations are given on the scatter of mechanical properties of typical pressure vessel components. The necessity of using recommended or standardized properties for comparing mechanical properties before and after irradiation in pin pointed. (orig.) [de

  7. Experimental Analysis of Tensile Mechanical Properties of Sprayed FRP

    Directory of Open Access Journals (Sweden)

    Zhao Yang

    2016-01-01

    Full Text Available To study the tensile mechanical properties of sprayed FRP, 13 groups of specimens were tested through uniaxial tensile experiments, being analyzed about stress-strain curve, tensile strength, elastic modulus, breaking elongation, and other mechanical properties. Influencing factors on tensile mechanical properties of sprayed FRP such as fiber type, resin type, fiber volume ratio, fiber length, and composite thickness were studied in the paper too. The results show that both fiber type and resin type have an obvious influence on tensile mechanical properties of sprayed FRP. There will be a specific fiber volume ratio for sprayed FRP to obtain the best tensile mechanical property. The increase of fiber length can lead to better tensile performance, while that of composite thickness results in property degradation. The study can provide reference to popularization and application of sprayed FRP material used in structure reinforcement.

  8. Basic rock properties for the thermo-hydro-mechanical analysis of a high-level radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jhin Wung; Kang, Chul Hyung

    1999-04-01

    Deep geological radioactive waste disposal is generally based on the isolation of the waste from the biosphere by multiple barriers. The host rock is one of these barriers which should provide a stable mechanical and chemical environment for the engineered barriers. In the evaluation of the safety of the high-level radioactive waste disposal systems, an important part of the safety analysis is an assessment of the coupling or interaction between thermal, hydrological, and mechanical effects. In order to do this assessment, adequate data on the characteristics of different host rocks are necessary. The properties of the rock and rock discontinuity are very complex and their values vary in a wide range. The accuracy of the result of the assessment depends on the values of these properties used. The present study is an attempt to bring together and condense data for the basic properties of various rock masses, which are needed in the thermo-hydro-mechanical analysis for the deep geological radioactive waste repository. The testing and measurement methods for these basic properties are also presented. Domestic data for deep geological media should be supplemented in the future, due to the insufficiency and the lack of accuracy of the data available at present. (author). 28 refs., 21 figs.

  9. Basic rock properties for the thermo-hydro-mechanical analysis of a high-level radioactive waste repository

    International Nuclear Information System (INIS)

    Kim, Jhin Wung; Kang, Chul Hyung

    1999-04-01

    Deep geological radioactive waste disposal is generally based on the isolation of the waste from the biosphere by multiple barriers. The host rock is one of these barriers which should provide a stable mechanical and chemical environment for the engineered barriers. In the evaluation of the safety of the high-level radioactive waste disposal systems, an important part of the safety analysis is an assessment of the coupling or interaction between thermal, hydrological, and mechanical effects. In order to do this assessment, adequate data on the characteristics of different host rocks are necessary. The properties of the rock and rock discontinuity are very complex and their values vary in a wide range. The accuracy of the result of the assessment depends on the values of these properties used. The present study is an attempt to bring together and condense data for the basic properties of various rock masses, which are needed in the thermo-hydro-mechanical analysis for the deep geological radioactive waste repository. The testing and measurement methods for these basic properties are also presented. Domestic data for deep geological media should be supplemented in the future, due to the insufficiency and the lack of accuracy of the data available at present. (author). 28 refs., 21 figs

  10. Mechanical Properties of Moringa ( Moringa oleifera ) Seeds in ...

    African Journals Online (AJOL)

    Mechanical properties are very important in the design of machines and the analysis of the behaviour of products during agricultural processing. In this research work, the mechanical properties of Moringa were determined as design parameters for the development of an oil expeller for the crop. The properties were the ...

  11. Food mechanical properties and dietary ecology.

    Science.gov (United States)

    Berthaume, Michael A

    2016-01-01

    Interdisciplinary research has benefitted the fields of anthropology and engineering for decades: a classic example being the application of material science to the field of feeding biomechanics. However, after decades of research, discordances have developed in how mechanical properties are defined, measured, calculated, and used due to disharmonies between and within fields. This is highlighted by "toughness," or energy release rate, the comparison of incomparable tests (i.e., the scissors and wedge tests), and the comparison of incomparable metrics (i.e., the stress and displacement-limited indices). Furthermore, while material scientists report on a myriad of mechanical properties, it is common for feeding biomechanics studies to report on just one (energy release rate) or two (energy release rate and Young's modulus), which may or may not be the most appropriate for understanding feeding mechanics. Here, I review portions of materials science important to feeding biomechanists, discussing some of the basic assumptions, tests, and measurements. Next, I provide an overview of what is mechanically important during feeding, and discuss the application of mechanical property tests to feeding biomechanics. I also explain how 1) toughness measures gathered with the scissors, wedge, razor, and/or punch and die tests on non-linearly elastic brittle materials are not mechanical properties, 2) scissors and wedge tests are not comparable and 3) the stress and displacement-limited indices are not comparable. Finally, I discuss what data gathered thus far can be best used for, and discuss the future of the field, urging researchers to challenge underlying assumptions in currently used methods to gain a better understanding between primate masticatory morphology and diet. © 2016 Wiley Periodicals, Inc.

  12. A probabilistic approach to rock mechanical property characterization for nuclear waste repository design

    International Nuclear Information System (INIS)

    Kim, Kunsoo; Gao, Hang

    1996-01-01

    A probabilistic approach is proposed for the characterization of host rock mechanical properties at the Yucca Mountain site. This approach helps define the probability distribution of rock properties by utilizing extreme value statistics and Monte Carlo simulation. We analyze mechanical property data of tuff obtained by the NNWSI Project to assess the utility of the methodology. The analysis indicates that laboratory measured strength and deformation data of Calico Hills and Bullfrog tuffs follow an extremal. probability distribution (the third type asymptotic distribution of the smallest values). Monte Carlo simulation is carried out to estimate rock mass deformation moduli using a one-dimensional tuff model proposed by Zimmermann and Finley. We suggest that the results of these analyses be incorporated into the repository design

  13. Review of research on the mechanical properties of the human tooth

    Science.gov (United States)

    Zhang, Ya-Rong; Du, Wen; Zhou, Xue-Dong; Yu, Hai-Yang

    2014-01-01

    ‘Bronze teeth' reflect the mechanical properties of natural teeth to a certain extent. Their mechanical properties resemble those of a tough metal, and the gradient of these properties lies in the direction from outside to inside. These attributes confer human teeth with effective mastication ability. Understanding the various mechanical properties of human teeth and dental materials is the basis for the development of restorative materials. In this study, the elastic properties, dynamic mechanical properties (visco-elasticity) and fracture mechanical properties of enamel and dentin were reviewed to provide a more thorough understanding of the mechanical properties of human teeth. PMID:24743065

  14. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, Uthamalingam

    1995-01-01

    A composition and method of preparing YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T.sub.c. About 5-20% additions give rise to substantially improved mechanical properties.

  15. Enhancement of mechanical properties of 123 superconductors

    Science.gov (United States)

    Balachandran, U.

    1995-04-25

    A composition and method are disclosed of preparing YBa{sub 2}Cu{sub 3}O{sub 7{minus}x} superconductor. Addition of tin oxide containing compounds to YBCO superconductors results in substantial improvement of fracture toughness and other mechanical properties without affect on T{sub c}. About 5-20% additions give rise to substantially improved mechanical properties.

  16. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Science.gov (United States)

    Kim, Sang-Young; Shim, Chun Sik; Sturtevant, Caleb; Kim, Dave (Dae-Wook); Song, Ha Cheol

    2014-09-01

    Glass Fiber Reinforced Plastic (GFRP) structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties

  17. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Directory of Open Access Journals (Sweden)

    Kim Sang-Young

    2014-09-01

    Full Text Available Glass Fiber Reinforced Plastic (GFRP structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties

  18. Mechanical properties and production quality of hand-layup and vacuum infusion processed hybrid composite materials for GFRP marine structures

    Directory of Open Access Journals (Sweden)

    Sang-Young Kim

    2014-09-01

    Full Text Available Glass Fiber Reinforced Plastic (GFRP structures are primarily manufactured using hand lay-up or vacuum infusion techniques, which are cost-effective for the construction of marine vessels. This paper aims to investigate the mechanical properties and failure mechanisms of the hybrid GFRP composites, formed by applying the hand lay-up processed exterior and the vacuum infusion processed interior layups, providing benefits for structural performance and ease of manufacturing. The hybrid GFRP composites contain one, two, and three vacuum infusion processed layer sets with consistent sets of hand lay-up processed layers. Mechanical properties assessed in this study include tensile, compressive and in-plane shear properties. Hybrid composites with three sets of vacuum infusion layers showed the highest tensile mechanical properties while those with two sets had the highest mechanical properties in compression. The batch homogeneity, for the GFRP fabrication processes, is evaluated using the experimentally obtained mechanical properties.

  19. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment

    Directory of Open Access Journals (Sweden)

    Mianmian Bao

    2018-03-01

    Full Text Available Previous study has shown that Ti-3Cu alloy shows good antibacterial properties (>90% antibacterial rate, but the mechanical properties still need to be improved. In this paper, a series of heat-treatment processes were selected to adjust the microstructure in order to optimize the properties of Ti-3Cu alloy. Microstructure, mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy at different conditions was systematically investigated by X-ray diffraction, optical microscope, scanning electron microscope, transmission electron microscopy, electrochemical measurements, tensile test, fatigue test and antibacterial test. Heat treatment could significantly improve the mechanical properties, corrosion resistance and antibacterial rate due to the redistribution of copper elements and precipitation of Ti2Cu phase. Solid solution treatment increased the yield strength from 400 to 740 MPa and improved the antibacterial rate from 33% to 65.2% while aging treatment enhanced the yield strength to 800–850 MPa and antibacterial rate (>91.32%. It was demonstrated that homogeneous distribution and fine Ti2Cu phase plays a very important role in mechanical properties, corrosion resistance and antibacterial properties.

  20. Optimization of mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy by heat treatment.

    Science.gov (United States)

    Bao, Mianmian; Liu, Ying; Wang, Xiaoyan; Yang, Lei; Li, Shengyi; Ren, Jing; Qin, Gaowu; Zhang, Erlin

    2018-03-01

    Previous study has shown that Ti-3Cu alloy shows good antibacterial properties (>90% antibacterial rate), but the mechanical properties still need to be improved. In this paper, a series of heat-treatment processes were selected to adjust the microstructure in order to optimize the properties of Ti-3Cu alloy. Microstructure, mechanical properties, biocorrosion properties and antibacterial properties of wrought Ti-3Cu alloy at different conditions was systematically investigated by X-ray diffraction, optical microscope, scanning electron microscope, transmission electron microscopy, electrochemical measurements, tensile test, fatigue test and antibacterial test. Heat treatment could significantly improve the mechanical properties, corrosion resistance and antibacterial rate due to the redistribution of copper elements and precipitation of Ti 2 Cu phase. Solid solution treatment increased the yield strength from 400 to 740 MPa and improved the antibacterial rate from 33% to 65.2% while aging treatment enhanced the yield strength to 800-850 MPa and antibacterial rate (>91.32%). It was demonstrated that homogeneous distribution and fine Ti 2 Cu phase plays a very important role in mechanical properties, corrosion resistance and antibacterial properties.

  1. Design-relevant mechanical properties of 316-type stainless steels for superconducting magnets

    Energy Technology Data Exchange (ETDEWEB)

    Tobler, R.L.; Nishimura, A.; Yamamoto, J.

    1996-08-01

    Worldwide interest in austenitic alloys for structural applications in superconducting magnets has led to an expanded database for the 316-type stainless steels. We review the cryogenic mechanical properties of wrought, cast, and welded steels at liquid helium temperature (4 K), focussing on aspects of material behavior relevant to magnet design. Fracture mechanics parameters essential to structural reliability assessments are presented, including strength, toughness, and fatigue parameters that are critical for some component designs. (author). 105 refs.

  2. Design-relevant mechanical properties of 316-type stainless steels for superconducting magnets

    International Nuclear Information System (INIS)

    Tobler, R.L.; Nishimura, A.; Yamamoto, J.

    1996-08-01

    Worldwide interest in austenitic alloys for structural applications in superconducting magnets has led to an expanded database for the 316-type stainless steels. We review the cryogenic mechanical properties of wrought, cast, and welded steels at liquid helium temperature (4 K), focussing on aspects of material behavior relevant to magnet design. Fracture mechanics parameters essential to structural reliability assessments are presented, including strength, toughness, and fatigue parameters that are critical for some component designs. (author). 105 refs

  3. How preconditioning affects the measurement of poro-viscoelastic mechanical properties in biological tissues

    NARCIS (Netherlands)

    Hosseini, S.M.; Wilson, W.; Ito, K.; Donkelaar, van C.C.

    2014-01-01

    It is known that initial loading curves of soft biological tissues are substantially different from subsequent loadings. The later loading curves are generally used for assessing the mechanical properties of a tissue, and the first loading cycles, referred to as preconditioning, are omitted.

  4. Structure–mechanics property relationship of waste derived biochars

    Energy Technology Data Exchange (ETDEWEB)

    Das, Oisik, E-mail: odas566@aucklanduni.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Sarmah, Ajit K., E-mail: a.sarmah@auckland.ac.nz [Department of Civil and Environmental Engineering, University of Auckland, Auckland 1142 (New Zealand); Bhattacharyya, Debes, E-mail: d.bhattacharyya@auckland.ac.nz [Department of Mechanical Engineering, Center for Advanced Composite Materials, University of Auckland, Auckland 1142 (New Zealand)

    2015-12-15

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X–ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900 °C and 60 min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01 GPa, respectively. It was shown that a combination of higher heat treatment (≥ 500 °C) temperature and longer residence time (~ 60 min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. - Highlights: • Characterization was done on waste based biochars which included nanoindentation. • Pine saw dust biochar made at 900 °C for 60 min had highest hardness/modulus. • Combination of temperature/residence time affect biochar's mechanical propertie.s • Aromaticity and crystallinity positively affected biochar's mechanical properties.

  5. Structure–mechanics property relationship of waste derived biochars

    International Nuclear Information System (INIS)

    Das, Oisik; Sarmah, Ajit K.; Bhattacharyya, Debes

    2015-01-01

    The widespread applications of biochar in agriculture and environmental remediation made the scientific community ignore its mechanical properties. Hence, to examine the scope of biochar's structural applications, its mechanical properties have been investigated in this paper through nanoindentation technique. Seven waste derived biochars, made under different pyrolysis conditions and from diverse feedstocks, were studied via nanoindentation, infrared spectroscopy, X–ray crystallography, thermogravimetry, and electron microscopy. Following this, an attempt was made to correlate the biochars' hardness/modulus with reaction conditions and their chemical properties. The pine wood biochar made at 900 °C and 60 min residence time was found to have the highest hardness and elastic modulus of 4.29 and 25.01 GPa, respectively. It was shown that a combination of higher heat treatment (≥ 500 °C) temperature and longer residence time (~ 60 min) increases the values of hardness and modulus. It was further realized that pyrolysis temperature was a more dominant factor than residence time in determining the final mechanical properties of biochar particles. The degree of aromaticity and crystallinity of the biochar were also correlated with higher values of hardness and modulus. - Highlights: • Characterization was done on waste based biochars which included nanoindentation. • Pine saw dust biochar made at 900 °C for 60 min had highest hardness/modulus. • Combination of temperature/residence time affect biochar's mechanical propertie.s • Aromaticity and crystallinity positively affected biochar's mechanical properties.

  6. Metal Additive Manufacturing: A Review of Mechanical Properties

    Science.gov (United States)

    Lewandowski, John J.; Seifi, Mohsen

    2016-07-01

    This article reviews published data on the mechanical properties of additively manufactured metallic materials. The additive manufacturing techniques utilized to generate samples covered in this review include powder bed fusion (e.g., EBM, SLM, DMLS) and directed energy deposition (e.g., LENS, EBF3). Although only a limited number of metallic alloy systems are currently available for additive manufacturing (e.g., Ti-6Al-4V, TiAl, stainless steel, Inconel 625/718, and Al-Si-10Mg), the bulk of the published mechanical properties information has been generated on Ti-6Al-4V. However, summary tables for published mechanical properties and/or key figures are included for each of the alloys listed above, grouped by the additive technique used to generate the data. Published values for mechanical properties obtained from hardness, tension/compression, fracture toughness, fatigue crack growth, and high cycle fatigue are included for as-built, heat-treated, and/or HIP conditions, when available. The effects of test orientation/build direction on properties, when available, are also provided, along with discussion of the potential source(s) (e.g., texture, microstructure changes, defects) of anisotropy in properties. Recommendations for additional work are also provided.

  7. Effects of local mechanical and fracture properties on LBB behavior of a dissimilar metal welded joint in nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Du, L.Y.; Wang, G.Z., E-mail: gzwang@ecust.edu.cn; Xuan, F.Z.; Tu, S.T.

    2013-12-15

    Highlights: • Effect of local mechanical and fracture properties on LBB behavior were investigated. • Considering local mechanical properties leads to slightly high LBB curve. • Use of fracture resistance of base or weld will produce non-conservative LBB result. • Local fracture properties of interface region cannot be ignored in LBB analysis. - Abstract: In this paper, three-dimensional finite element models with and without considering local mechanical properties were built for a dissimilar metal welded joint (DMWJ) connected the safe end to pipe-nozzle of a reactor pressure vessel. The inner circumferential surface cracks were postulated at the interface of A508 steel and buttering Alloy52Mb. Based on the elastic–plastic fracture mechanics theory of J-integral, the crack growth stability was analyzed. The effects of the local mechanical and fracture resistance properties on LBB behavior were investigated. The results show that considering local mechanical properties leads to slightly high LBB curve. For the A508/Alloy52Mb interface region cracks in the DMWJ, if the fracture resistance curve of base metal A508 or the buttering Alloy52Mb is used, the non-conservative (unsafe) LBB assessment result will be produced. With increasing the applied bending moment, the degree of un-conservatism in LBB behavior becomes large. Therefore, to obtain accurate LBB assessment results, the local fracture resistance properties of the interface region should be used.

  8. Uncertainty analysis on probabilistic fracture mechanics assessment methodology

    International Nuclear Information System (INIS)

    Rastogi, Rohit; Vinod, Gopika; Chandra, Vikas; Bhasin, Vivek; Babar, A.K.; Rao, V.V.S.S.; Vaze, K.K.; Kushwaha, H.S.; Venkat-Raj, V.

    1999-01-01

    Fracture Mechanics has found a profound usage in the area of design of components and assessing fitness for purpose/residual life estimation of an operating component. Since defect size and material properties are statistically distributed, various probabilistic approaches have been employed for the computation of fracture probability. Monte Carlo Simulation is one such procedure towards the analysis of fracture probability. This paper deals with uncertainty analysis using the Monte Carlo Simulation methods. These methods were developed based on the R6 failure assessment procedure, which has been widely used in analysing the integrity of structures. The application of this method is illustrated with a case study. (author)

  9. Mechanical properties of fracture zones

    International Nuclear Information System (INIS)

    Leijon, B.

    1993-05-01

    Available data on mechanical characteristics of fracture zones are compiled and discussed. The aim is to improve the basis for adequate representation of fracture zones in geomechanical models. The sources of data researched are primarily borehole investigations and case studies in rock engineering, involving observations of fracture zones subjected to artificial load change. Boreholes only yield local information about the components of fracture zones, i.e. intact rock, fractures and various low-strength materials. Difficulties are therefore encountered in evaluating morphological and mechanical properties of fracture zones from borehole data. Although often thought of as macroscopically planar features, available field data consistently show that fracture zones are characterized by geometrical irregularities such as thickness variations, surface undulation and jogs. These irregularities prevail on all scales. As a result, fracture zones are on all scales characterized by large, in-plane variation of strength- and deformational properties. This has important mechanical consequences in terms of non-uniform stress transfer and complex mechanisms of shear deformation. Field evidence for these findings, in particular results from the underground research laboratory in Canada and from studies of induced fault slip in deep mines, is summarized and discussed. 79 refs

  10. Mechanical properties of self-curing concrete (SCUC

    Directory of Open Access Journals (Sweden)

    Magda I. Mousa

    2015-12-01

    Full Text Available The mechanical properties of concrete containing self-curing agents are investigated in this paper. In this study, two materials were selected as self-curing agents with different amounts, and the addition of silica fume was studied. The self-curing agents were, pre-soaked lightweight aggregate (Leca; 0.0%, 10%, 15%, and 20% of volume of sand; or polyethylene-glycol (Ch.; 1%, 2%, and 3% by weight of cement. To carry out this study the cement content of 300, 400, 500 kg/m3, water/cement ratio of 0.5, 0.4, 0.3 and 0.0%, 15% silica fume of weight of cement as an additive were used in concrete mixes. The mechanical properties were evaluated while the concrete specimens were subjected to air curing regime (in the laboratory environment with 25 °C, 65% R.H. during the experiment. The results show that, the use of self-curing agents in concrete effectively improved the mechanical properties. The concrete used polyethylene-glycol as self-curing agent, attained higher values of mechanical properties than concrete with saturated Leca. In all cases, either 2% Ch. or 15% Leca was the optimum ratio compared with the other ratios. Higher cement content and/or lower water/cement ratio lead(s to more efficient performance of self-curing agents in concrete. Incorporation of silica fume into self-curing concrete mixture enhanced all mechanical properties, not only due to its pozzolanic reaction, but also due to its ability to retain water inside concrete.

  11. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel

    Directory of Open Access Journals (Sweden)

    AH Huang

    2010-02-01

    Full Text Available Mesenchymal stem cells (MSCs are an attractive cell source for cartilage tissue engineering given their ability to undergo chondrogenesis in 3D culture systems. Mechanical forces play an important role in regulating both cartilage development and MSC chondrogenic gene expression, however, mechanical stimulation has yet to enhance the mechanical properties of engineered constructs. In this study, we applied long-term dynamic compression to MSC-seeded constructs and assessed whether varying pre-culture duration, loading regimens and inclusion of TGF-beta3 during loading would influence functional outcomes and these phenotypic transitions. Loading initiated before chondrogenesis decreased functional maturation, although chondrogenic gene expression increased. In contrast, loading initiated after chondrogenesis and matrix elaboration further improved the mechanical properties of MSC-based constructs, but only when TGF-beta3 levels were maintained and under specific loading parameters. Although matrix quantity was not affected by dynamic compression, matrix distribution, assessed histologically and by FT-IRIS analysis, was significantly improved on the micro- (pericellular and macro- (construct expanse scales. Further, whole genome expression profiling revealed marked shifts in the molecular topography with dynamic loading. These results demonstrate, for the first time, that dynamic compressive loading initiated after a sufficient period of chondro-induction and with sustained TGF-beta exposure enhances matrix distribution and the mechanical properties of MSC-seeded constructs.

  12. PVA/Polysaccharides Blended Films: Mechanical Properties

    Directory of Open Access Journals (Sweden)

    Fábio E. F. Silva

    2013-01-01

    Full Text Available Blends of polyvinyl alcohol (PVA and angico gum (AG and/or cashew gum (CG were used to produce films by casting method. Morphological and mechanical properties of these films were studied and compared to the properties of a commercial collagen membrane of bovine origin (MBO. The films presented thickness varying from 70 to 140 μm (PVA/AG and 140 to 200 μm (PVA/CG. Macroscopic analysis showed that a PVA/CG film was very similar to MBO regarding the color and transparency. The higher values of tensile strength (TS and elastic modulus (EM were observed in the film. On the other hand, PVA/CG and PVA/CG-AG presented the highest value of percentage of elongation (E%. Pearson’s Correlation Analysis revealed a positive correlation between TS and EM and a negative correlation between E% and EM. The PVA/CG film presented mechanical properties very similar to MBO, with the advantage of a higher E% (11.96 than MBO (2.94. The properties of the PVA blended films depended on the polysaccharide added in the blend, as well as the acid used as a catalyst. However, all produced films presented interesting mechanical characteristics which enables several biotechnological applications.

  13. Allegheny County Property Assessment Appeals

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Lists property assessment appeals filed and heard with the Board of Property Assessment Appeals and Review (BPAAR) and the hearing results, for tax years 2015 to...

  14. Probing cell mechanical properties with microfluidic devices

    Science.gov (United States)

    Rowat, Amy

    2012-02-01

    Exploiting flow on the micron-scale is emerging as a method to probe cell mechanical properties with 10-1000x advances in throughput over existing technologies. The mechanical properties of cells and the cell nucleus are implicated in a wide range of biological contexts: for example, the ability of white blood cells to deform is central to immune response; and malignant cells show decreased stiffness compared to benign cells. We recently developed a microfluidic device to probe cell and nucleus mechanical properties: cells are forced to deform through a narrow constrictions in response to an applied pressure; flowing cells through a series of constrictions enables us to probe the ability of hundreds of cells to deform and relax during flow. By tuning the constriction width so it is narrower than the width of the cell nucleus, we can specifically probe the effects of nuclear physical properties on whole cell deformability. We show that the nucleus is the rate-limiting step in cell passage: inducing a change in its shape to a multilobed structure results in cells that transit more quickly; increased levels of lamin A, a nuclear protein that is key for nuclear shape and mechanical stability, impairs the passage of cells through constrictions. We are currently developing a new class of microfluidic devices to simultaneously probe the deformability of hundreds of cell samples in parallel. Using the same soft lithography techniques, membranes are fabricated to have well-defined pore distribution, width, length, and tortuosity. We design the membranes to interface with a multiwell plate, enabling simultaneous measurement of hundreds of different samples. Given the wide spectrum of diseases where altered cell and nucleus mechanical properties are implicated, such a platform has great potential, for example, to screen cells based on their mechanical phenotype against a library of drugs.

  15. Dynamic Mechanical and Thermal Properties of Bagasse/Glass Fiber/Polypropylene Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Mehdi Roohani

    2016-06-01

    Full Text Available This work aims to evaluate the thermal and dynamic mechanical properties of bagasse/glass fiber/polypropylene hybrid composites. Composites were prepared by the melt compounding method and their properties were characterized by differential scanning calorimetry (DSC and dynamic mechanical analysis (DMA. DSC results found that with incorporation of bagasse and glass fiber the melting temperature (Tm and the crystallisation temperature (Tc shift to higher temperatures and the degree of crystallinity (Xc increase. These findings suggest that the fibers played the role of a nucleating agent in composites. Dynamic mechanical analysis indicated that by the incorporation of bagasse and glass fiber into polypropylene, the storage modulus ( and the loss modulus ( increase whereas the mechanical loss factor (tanδ decrease. To assess the effect of reinforcement with increasing temperature, the effectiveness coefficient C was calculated at different temperature ranges and revealed that, at the elevated temperatures, improvement of mechanical properties due to the presence of fibers was more noticeable. The fiber-matrix adhesion efficiency determined by calculating of adhesion factor A in terms of the relative damping of the composite (tan δc and the polymer (tan δpand volume fraction of the fibers (Фf. Calculated adhesion factor A values indicated that by adding glass fiber to bagasse/polypropylene system, the fiber-matrix adhesion improve. Hybrid composite containing 25% bagasse and 15% glass fiber showed better fiber-matrix adhesion.

  16. DTA and DSC study on the effect of mechanical dispersion on poly(tetrafluorethylene properties

    Directory of Open Access Journals (Sweden)

    Dumitraşa Mihai

    2014-12-01

    Full Text Available Poly(tetrafluorethylene particles were obtained by mechanical processing of the formed polymer (Teflon bar. In order to assess the effect of mechanical wear on polymer properties, their melting and crystallization behaviour was investigated by DSC and DTA, and the results were compared to the ones obtained for the native polymer. An increase of the crystallinity degree and an accentuated decrease of the average molecular weight were found for the samples submitted to mechanical wear, as a result of mechanical degradation of the polymer

  17. Mechanical properties of natural fibre reinforced polymer composites

    Indian Academy of Sciences (India)

    In the present communication, a study on the synthesis and mechanical properties of new series of green composites involving Hibiscus sabdariffa fibre as a reinforcing material in urea–formaldehyde (UF) resin based polymer matrix has been reported. Static mechanical properties of randomly oriented intimately mixed ...

  18. Mechanical properties of carbon nanotubes

    Science.gov (United States)

    Salvetat, J.-P.; Bonard, J.-M.; Thomson, N. H.; Kulik, A. J.; Forró, L.; Benoit, W.; Zuppiroli, L.

    A variety of outstanding experimental results on the elucidation of the elastic properties of carbon nanotubes are fast appearing. These are based mainly on the techniques of high-resolution transmission electron microscopy (HRTEM) and atomic force microscopy (AFM) to determine the Young's moduli of single-wall nanotube bundles and multi-walled nanotubes, prepared by a number of methods. These results are confirming the theoretical predictions that carbon nanotubes have high strength plus extraordinary flexibility and resilience. As well as summarising the most notable achievements of theory and experiment in the last few years, this paper explains the properties of nanotubes in the wider context of materials science and highlights the contribution of our research group in this rapidly expanding field. A deeper understanding of the relationship between the structural order of the nanotubes and their mechanical properties will be necessary for the development of carbon-nanotube-based composites. Our research to date illustrates a qualitative relationship between the Young's modulus of a nanotube and the amount of disorder in the atomic structure of the walls. Other exciting results indicate that composites will benefit from the exceptional mechanical properties of carbon nanotubes, but that the major outstanding problem of load transfer efficiency must be overcome before suitable engineering materials can be produced.

  19. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  20. Prediction of mechanical properties of trabecular bone using quantitative MRI

    International Nuclear Information System (INIS)

    Lammentausta, E; Hakulinen, M A; Jurvelin, J S; Nieminen, M T

    2006-01-01

    Techniques for quantitative magnetic resonance imaging (MRI) have been developed for non-invasive estimation of the mineral density and structure of trabecular bone. The R* 2 relaxation rate (i.e. 1/T* 2 ) is sensitive to bone mineral density (BMD) via susceptibility differences between trabeculae and bone marrow, and by binarizing MRI images, structural variables, such as apparent bone volume fraction, can be assessed. In the present study, trabecular bone samples of human patellae were investigated in vitro at 1.5 T to determine the ability of MRI-derived variables (R* 2 and bone volume fraction) to predict the mechanical properties (Young's modulus, yield stress and ultimate strength). Further, the MRI variables were correlated with reference measurements of volumetric BMD and bone area fraction as determined with a clinical pQCT system. The MRI variables correlated significantly (p 2 and MRI-derived bone volume fraction further improved the prediction of yield stress and ultimate strength. Although pQCT showed a trend towards better prediction of the mechanical properties, current results demonstrate the feasibility of combined MR imaging of marrow susceptibility and bone volume fraction in predicting the mechanical strength of trabecular bone and bone mineral density

  1. The mechanical properties of nanofilled resin-based composites: characterizing discrete filler particles and agglomerates using a micromanipulation technique.

    LENUS (Irish Health Repository)

    Curtis, Andrew R

    2009-02-01

    To assess the mechanical properties of discrete filler particles representative of several inorganic fillers in modern dental resin-based composites (RBCs) and to assess the validity of a novel micromanipulation technique.

  2. Spatial and temporal variations of the callus mechanical properties during bone transport

    Energy Technology Data Exchange (ETDEWEB)

    Mora-Macias, J.; Reina-Romo, E.; Pajares, A.; Miranda, P.; Dominguez, J.

    2016-07-01

    Nanoindentation allows obtaining the elastic modulus and the hardness of materials point by point. This technique has been used to assess the mechanical propeties of the callus during fracture healing. However, as fas as the authors know, the evaluation of mechanical properties by this technique of the distraction and the docking-site calluses generated during bone transport have not been reported yet. Therefore, the aim of this work is using nanoindentation to assess the spatial and temporal variation of the elastic modulus of the woven bone generated during bone transport. Nanoindentation measurements were carried out using 6 samples from sheep sacrificed at different stages of the bone transport experiments. The results obtained show an important heterogeneity of the elastic modulus of the woven bone without spatial trends. In the case of temporal variation, a clear increase of the mean elastic modulus with time after surgery was observed (from 7±2GPa 35 days after surgery to 14±2GPa 525 days after surgery in the distraction callus and a similar increase in the docking site callus). Comparison with the evolution of the elastic modulus in the woven bone generated during fracture healing shows that mechanical properties increase slower in the case of the woven bone generated during bone transport. (Author)

  3. In vivo assessment of regional mechanics post-myocardial infarction: A focus on the road ahead.

    Science.gov (United States)

    Romito, Eva; Shazly, Tarek; Spinale, Francis G

    2017-10-01

    Cardiovascular disease, particularly the occurrence of myocardial infarction (MI), remains a leading cause of morbidity and mortality (Go et al., Circulation 127: e6-e245, 2013; Go et al. Circulation 129: e28-e292, 2014). There is growing recognition that a key factor for post-MI outcomes is adverse remodeling and changes in the regional structure, composition, and mechanical properties of the MI region itself. However, in vivo assessment of regional mechanics post-MI can be confounded by the species, temporal aspects of MI healing, as well as size, location, and extent of infarction across myocardial wall. Moreover, MI regional mechanics have been assessed over varying phases of the cardiac cycle, and thus, uniform conclusions regarding the material properties of the MI region can be difficult. This review assesses past studies that have performed in vivo measures of MI mechanics and attempts to provide coalescence on key points from these studies, as well as offer potential recommendations for unifying approaches in terms of regional post-MI mechanics. A uniform approach to biophysical measures of import will allow comparisons across studies, as well as provide a basis for potential therapeutic markers.

  4. Molecular mechanisms in compatibility and mechanical properties of Polyacrylamide/Polyvinyl alcohol blends.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Che, Yu; Yang, Mingming; Li, Xinpei; Zhang, Yingfeng

    2017-01-01

    The objectives of this study were to develop a computational model based on molecular dynamics technique to investigate the compatibility and mechanical properties of Polyacrylamide (PAM)/Polyvinyl alcohol (PVA) blends. Five simulation models of PAM/PVA with different composition ratios (4/0, 3/1, 2/2, 1/3, 0/4) were constructed and simulated by using molecular dynamics (MD) simulation. The interaction mechanisms of molecular chains in PAM/PVA blend system were elaborated from the aspects of the compatibility, mechanical properties, binding energy and pair correlation function, respectively. The computed values of solubility parameters for PAM and PVA indicate PAM has a good miscibility with PVA. The results of the static mechanical analysis, based on the equilibrium structures of blends with differing component ratios, shows us that the elastic coefficient, engineering modulus, and ductility are increased with the addition of PVA content, which is 4/0 PAM/PVAPVAPVAPVAPVA. Moreover, binding energy results indicate that a stronger interaction exists among PVA molecular chains comparing with PAM molecular chains, which is why the mechanical properties of blend system increasing with the addition of PVA content. Finally, the results of pair correlation functions (PCFs) between polar functional groups and its surrounding hydrogen atoms, indicated they interact with each other mainly by hydrogen bonds, and the strength of three types of polar functional groups has the order of O(-OH)>O(-C=O)>N(-NH 2 ). This further elaborates the root reason why the mechanical properties of blend system increase with the addition of PVA content. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Measurement of the mechanical properties of layered systems

    International Nuclear Information System (INIS)

    Blank, E.

    2002-01-01

    Thin films for integrated electronic circuitry, packaging and small structures in micro-electromechanical systems (MEMS) as well as protective coatings require mechanical testing to control fabrication processes, guarantee product quality and establish data bases for engineering purposes. They generally escape classical materials testing owing to their small size in at least one dimension and their incorporation into larger structures. The fact that material properties change in the micro- and nanometer range when sample dimensions reach the scale of defect structures, implies that sample and probe size become part of the property evaluation process. Although research into the mechanical behaviour of thin films and small structures now is established, the fundamentals of mechanical testing continue to be identified while there is a growing need for methods allowing to measure intrinsic material properties. This lecture will focus on the mechanics of thin film and small volume structures and review recently developed testing techniques for measuring materials properties, particularly indentation, bulge and bend testing. The effect of specimen and probe geometry on property evaluation will be discussed. The use of Raman spectroscopy for residual stress measurement will be illustrated. (Author)

  6. In-situ measurement of mechanical properties of structural components using cyclic ball indentation technique

    International Nuclear Information System (INIS)

    Chatterjee, S.; Madhusoodanan, K.; Panwar, Sanjay; Rupani, B.B.

    2007-01-01

    Material properties of components change during service due to environmental conditions. Measurement of mechanical properties of the components is important for assessing their fitness for service. In many instances, it is not possible to remove sizable samples from the component for doing the measurement in laboratory. In-situ technique for measurement of mechanical properties has great significance in such cases. One of the nondestructive methods that can be adopted for in-situ application is based on cyclic ball indentation technique. It involves multiple indentation cycles (at the same penetration location) on a metallic surface by a spherical indenter. Each cycle consists of indentation, partial unload and reload sequences. Presently, commercial systems are available for doing indentation test on structural component for limited applications. But, there is a genuine need of remotely operable compact in-situ property measurement system. Considering the importance of such applications Reactor Engineering Division of BARC has developed an In-situ Property Measurement System (IProMS), which can be used for in-situ measurement of mechanical properties of a flat or tubular component. This paper highlights the basic theory of measurement, qualification tests on IProMS and results from tests done on flat specimens and tubular component. (author)

  7. Assessment of rock mechanical properties and seismic slope stability in variably weathered layered basalts

    Science.gov (United States)

    Greenwood, William; Clark, Marin; Zekkos, Dimitrios; Von Voigtlander, Jennifer; Bateman, Julie; Lowe, Katherine; Hirose, Mitsuhito; Anderson, Suzanne; Anderson, Robert; Lynch, Jerome

    2016-04-01

    A field and laboratory experimental study was conducted to assess the influence of weathering on the mechanical properties of basalts in the region of the Kohala volcano on the island of Hawaii. Through the systematic characterization of the weathering profiles developed in different precipitation regimes, we aim to explain the regional pattern of stability of slopes in layered basalts that were observed during the 2006 Mw 6.7 Kiholo Bay earthquake. While deeper weathering profiles on the wet side of the island might be expected to promote more and larger landslides, the distribution of landslides during the Kiholo Bay earthquake did not follow this anticipated trend. Landslide frequency (defined as number of landslides divided by total area) was similar on the steepest slopes (> 50-60) for both the dry and the wet side of the study area suggesting relatively strong ground materials irrespective of weathering. The study location is ideally suited to investigate the role of precipitation, and more broadly of climate, on the mechanical properties of the local rock units because the presence of the Kohala volcano produces a significant precipitation gradient on what are essentially identical basaltic flows. Mean annual precipitation (MAP) varies by more than an order of magnitude, from 200 mm/year on the western side of the volcano to 4000 mm/year in the eastern side. We will present results of measured shear wave velocities using a seismic surface wave methodology. These results were paired with laboratory testing on selected basalt specimens that document the sample-scale shear wave velocity and unconfined compressive strength of the basaltic rocks. Shear wave velocity and unconfined strength of the rocks are correlated and are both significantly lower in weathered rocks near the ground surface than at depth. This weathering-related reduction in shear wave velocity extends to greater depths in areas of high precipitation compared to areas of lower precipitation

  8. Modeling the mechanics of cancer: effect of changes in cellular and extra-cellular mechanical properties.

    Science.gov (United States)

    Katira, Parag; Bonnecaze, Roger T; Zaman, Muhammad H

    2013-01-01

    Malignant transformation, though primarily driven by genetic mutations in cells, is also accompanied by specific changes in cellular and extra-cellular mechanical properties such as stiffness and adhesivity. As the transformed cells grow into tumors, they interact with their surroundings via physical contacts and the application of forces. These forces can lead to changes in the mechanical regulation of cell fate based on the mechanical properties of the cells and their surrounding environment. A comprehensive understanding of cancer progression requires the study of how specific changes in mechanical properties influences collective cell behavior during tumor growth and metastasis. Here we review some key results from computational models describing the effect of changes in cellular and extra-cellular mechanical properties and identify mechanistic pathways for cancer progression that can be targeted for the prediction, treatment, and prevention of cancer.

  9. Rationally designed synthetic protein hydrogels with predictable mechanical properties.

    Science.gov (United States)

    Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi

    2018-02-12

    Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.

  10. Characterization and modelling of the mechanical properties of mineral wool

    DEFF Research Database (Denmark)

    Chapelle, Lucie

    2016-01-01

    and as a consequence focus on the mechanical properties of mineral wool has intensified. Also understanding the deformation mechanisms during compression of low density mineral wool is crucial since better thickness recovery after compression will result in significant savings on transport costs. The mechanical...... properties of mineral wool relate closely to the arrangement and characteristics of the fibres inside the material. Because of the complex architecture of mineral wool, the characterization and the understanding of the mechanism of deformations require a new methodology. In this PhD thesis, a methodology...... of the structure on mechanical properties can be explored. The size of the representative volume elements for the prediction of the elastic properties is determined for two types of applied boundary conditions. For sufficiently large volumes, the predicted elastic properties are consistent with results from...

  11. Mechanical properties of low dimensional materials

    Science.gov (United States)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  12. Mechanical properties of additively manufactured octagonal honeycombs

    Energy Technology Data Exchange (ETDEWEB)

    Hedayati, R., E-mail: rezahedayati@gmail.com [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands); Sadighi, M.; Mohammadi-Aghdam, M. [Department of Mechanical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Ave, Tehran (Iran, Islamic Republic of); Zadpoor, A.A. [Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft (Netherlands)

    2016-12-01

    Honeycomb structures have found numerous applications as structural and biomedical materials due to their favourable properties such as low weight, high stiffness, and porosity. Application of additive manufacturing and 3D printing techniques allows for manufacturing of honeycombs with arbitrary shape and wall thickness, opening the way for optimizing the mechanical and physical properties for specific applications. In this study, the mechanical properties of honeycomb structures with a new geometry, called octagonal honeycomb, were investigated using analytical, numerical, and experimental approaches. An additive manufacturing technique, namely fused deposition modelling, was used to fabricate the honeycomb from polylactic acid (PLA). The honeycombs structures were then mechanically tested under compression and the mechanical properties of the structures were determined. In addition, the Euler-Bernoulli and Timoshenko beam theories were used for deriving analytical relationships for elastic modulus, yield stress, Poisson's ratio, and buckling stress of this new design of honeycomb structures. Finite element models were also created to analyse the mechanical behaviour of the honeycombs computationally. The analytical solutions obtained using Timoshenko beam theory were close to computational results in terms of elastic modulus, Poisson's ratio and yield stress, especially for relative densities smaller than 25%. The analytical solutions based on the Timoshenko analytical solution and the computational results were in good agreement with experimental observations. Finally, the elastic properties of the proposed honeycomb structure were compared to those of other honeycomb structures such as square, triangular, hexagonal, mixed, diamond, and Kagome. The octagonal honeycomb showed yield stress and elastic modulus values very close to those of regular hexagonal honeycombs and lower than the other considered honeycombs. - Highlights: • The octagonal

  13. Mechanical and electromechanical properties of graphene and their potential application in MEMS

    International Nuclear Information System (INIS)

    Khan, Zulfiqar H; Kermany, Atieh R; Iacopi, Francesca; Öchsner, Andreas

    2017-01-01

    Graphene-based micro-electromechanical systems (MEMS) are very promising candidates for next generation miniaturized, lightweight, and ultra-sensitive devices. In this review, we review the progress to date of the assessment of the mechanical, electromechanical, and thermomechanical properties of graphene for application in graphene-based MEMS. Graphene possesses a plethora of outstanding properties—such as a 1 TPa Young’s modulus, exceptionally high 2D failure strength that stems from its sp 2 hybridization, and strong sigma bonding between carbon atoms. Such exceptional mechanical properties can enable, for example, graphene-based sound sources capable of generating sound beyond the audible range. The recently engineered piezoelectric properties of atomic force microscope tip-pressed graphene membranes or supported graphene on SiO 2 substrates, have paved the way in fabricating graphene-based nano-generators and actuators. On the other hand, graphene’s piezoresistive properties have enabled miniaturized pressure and strain sensors. 2D graphene nano-mechanical resonators can potentially measure ultralow forces, charges and potentially detect single atomic masses. The exceptional tribology of graphene can play a significant role in achieving superlubricity. In addition, the highest reported thermal conductivity of graphene is amenable for use in chips and providing better performing MEMS, as heat is efficiently dissipated. On top of that, graphene membranes could be nano-perforated to realize specialized applications like DNA translocation and desalination. Finally, to ensure stability and reliability of the graphene-based MEMS, adhesion is an important mechanical property that should be considered. In general, graphene could be used as a structural material in resonators, sensors, actuators and nano-generators with better performance and sensitivity than conventional MEMS. (topical review)

  14. Mechanical properties of organic nanofibers

    DEFF Research Database (Denmark)

    Kjelstrup-Hansen, Jakob; Hansen, Ole; Rubahn, H.R.

    2006-01-01

    Intrinsic elastic and inelastic mechanical Properties of individual, self-assembled, quasi-single-crystalline para-hexaphenylene nanofibers supported on substrates with different hydrophobicities are investigated as well as the interplay between the fibers and the underlying substrates. We find...

  15. Mechanical properties of a new thermoplastic polymer orthodontic archwire

    Energy Technology Data Exchange (ETDEWEB)

    Varela, Juan Carlos; Velo, Marcos [Grupo de investigación en Ortodoncia, Facultad de Odontología, Universidad Santiago de Compostela, Santiago de Compostela (Spain); Espinar, Eduardo; Llamas, Jose Maria [Grupo de investigación en Ortodoncia, Facultad de Odontología, Universidad de Sevilla (Spain); Rúperez, Elisa; Manero, Jose Maria [Dept. C. Materiales e Ing. Metalúrgica, Universitat Politècnica de Catalunya, Centre de Recerca Nanoenginyeria, Member of Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain); Javier Gil, F., E-mail: francesc.xavier.gil@upc.edu [Dept. C. Materiales e Ing. Metalúrgica, Universitat Politècnica de Catalunya, Centre de Recerca Nanoenginyeria, Member of Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, CIBER-BBN (Spain)

    2014-09-01

    A new thermoplastic polymer for orthodontic applications was obtained and extruded into wires with round and rectangular cross sections. We evaluated the potential of new aesthetic archwire: tensile, three point bending, friction and stress relaxation behaviour, and formability characteristics were assessed. Stresses delivered were generally slightly lower than typical beta-titanium and nickel-titanium archwires. The polymer wire has good instantaneous mechanical properties; tensile stress decayed about 2% over 2 h depending on the initial stress relaxation for up to 120 h. High formability allowed shape bending similar to that associated with stainless steel wires. The friction coefficients were lower than the metallic conventional archwires improving the slipping with the brackets. This new polymer could be a good candidate for aesthetic orthodontic archwires. - Highlights: • A new thermoplastic polymer for orthodontic applications was obtained. • This polymer could be a good candidate for aesthetic orthodontic archwires. • The polymer has good mechanical properties as orthodontic wire coating. • The friction coefficients were lower than the metallic archwires improving the slipping with the brackets. • High formability allowed shape bending similar to that associated with stainless steel wires.

  16. CURING AND MECHANICAL PROPERTIES OF CHLOROSULPHONATED POLYETHYLENE RUBBER BLEND

    Directory of Open Access Journals (Sweden)

    Jaroslava Budinski-Simendić

    2011-09-01

    Full Text Available In this paper, the curing and mechanical properties of two series of prepared blends, i.e., chlorosulphonated polyethylene (CSM/isobutylene-co-isoprene (IIR rubber blends and chlorosulphonated polyethylene (CSM/chlorinated isobutylene-co-isoprene (CIIR rubber blends were carried out. Blends were prepared using a two-roll mill at a temperature of 40-50 °C. The curing was assessed using a Monsanto oscillating disc rheometer R-100. The process of vulcanization accelerated sulfur of pure rubbers and their blends was carried out in an electrically heated laboratory hydraulic press under a pressure of about 4 MPa and 160 °C. The stress-strain experiments were performed using a tensile tester machine (Zwick 1425. Results indicate that the scorch time, ts2, and optimum cure time, tc90, increase with increasing CSM content in both blends. The value of modulus at 100 and 300% elongation and tensile strength increases with increasing CSM content, whereas elongation at break shows a decreasing trend. The enhancement in mechanical properties was supported by data of crosslink density in these samples obtained from swelling measurement and scanning electron microscopy studies of the rubber blends fractured surfaces

  17. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic.

    Science.gov (United States)

    Elsaka, Shaymaa E; Elnaghy, Amr M

    2016-07-01

    The aim of this study was to assess the mechanical properties of recently introduced zirconia reinforced lithium silicate glass-ceramic. Two types of CAD/CAM glass-ceramics (Vita Suprinity (VS); zirconia reinforced lithium silicate and IPS e.max CAD (IC); lithium disilicate) were used. Fracture toughness, flexural strength, elastic modulus, hardness, brittleness index, and microstructures were evaluated. Data were analyzed using independent t tests. Weibull analysis of flexural strength data was also performed. VS had significantly higher fracture toughness (2.31±0.17MPam(0.5)), flexural strength (443.63±38.90MPa), elastic modulus (70.44±1.97GPa), and hardness (6.53±0.49GPa) than IC (Pglass-ceramic revealed significantly a higher brittleness index (2.84±0.26μm(-1/2)) (lower machinability) than IC glass-ceramic (Pglass-ceramic revealed a lower probability of failure and a higher strength than IC glass-ceramic according to Weibull analysis. The VS zirconia reinforced lithium silicate glass-ceramic revealed higher mechanical properties compared with IC lithium disilicate glass-ceramic. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  18. Mechanical properties of a new thermoplastic polymer orthodontic archwire

    International Nuclear Information System (INIS)

    Varela, Juan Carlos; Velo, Marcos; Espinar, Eduardo; Llamas, Jose Maria; Rúperez, Elisa; Manero, Jose Maria; Javier Gil, F.

    2014-01-01

    A new thermoplastic polymer for orthodontic applications was obtained and extruded into wires with round and rectangular cross sections. We evaluated the potential of new aesthetic archwire: tensile, three point bending, friction and stress relaxation behaviour, and formability characteristics were assessed. Stresses delivered were generally slightly lower than typical beta-titanium and nickel-titanium archwires. The polymer wire has good instantaneous mechanical properties; tensile stress decayed about 2% over 2 h depending on the initial stress relaxation for up to 120 h. High formability allowed shape bending similar to that associated with stainless steel wires. The friction coefficients were lower than the metallic conventional archwires improving the slipping with the brackets. This new polymer could be a good candidate for aesthetic orthodontic archwires. - Highlights: • A new thermoplastic polymer for orthodontic applications was obtained. • This polymer could be a good candidate for aesthetic orthodontic archwires. • The polymer has good mechanical properties as orthodontic wire coating. • The friction coefficients were lower than the metallic archwires improving the slipping with the brackets. • High formability allowed shape bending similar to that associated with stainless steel wires

  19. MECHANICAL AND THERMO–MECHANICAL PROPERTIES OF BI-DIRECTIONAL AND SHORT CARBON FIBER REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    G. AGARWAL

    2014-10-01

    Full Text Available This paper based on bidirectional and short carbon fiber reinforced epoxy composites reports the effect of fiber loading on physical, mechanical and thermo-mechanical properties respectively. The five different fiber loading, i.e., 10wt. %, 20wt. %, 30wt. %, 40wt. % and 50wt. % were taken for evaluating the above said properties. The physical and mechanical properties, i.e., hardness, tensile strength, flexural strength, inter-laminar shear strength and impact strength are determined to represent the behaviour of composite structures with that of fiber loading. Thermo-mechanical properties of the material are measured with the help of Dynamic Mechanical Analyser to measure the damping capacity of the material that is used to reduce the vibrations. The effect of storage modulus, loss modulus and tan delta with temperature are determined. Finally, Cole–Cole analysis is performed on both bidirectional and short carbon fiber reinforced epoxy composites to distinguish the material properties of either homogeneous or heterogeneous materials. The results show that with the increase in fiber loading the mechanical properties of bidirectional carbon fiber reinforced epoxy composites increases as compared to short carbon fiber reinforced epoxy composites except in case of hardness, short carbon fiber reinforced composites shows better results. Similarly, as far as Loss modulus, storage modulus is concerned bidirectional carbon fiber shows better damping behaviour than short carbon fiber reinforced composites.

  20. Assessment and propagation of mechanical property uncertainties in fatigue life prediction of composite laminates

    DEFF Research Database (Denmark)

    Castro, Oscar; Branner, Kim; Dimitrov, Nikolay Krasimirov

    2018-01-01

    amplitude loading cycles. Fatigue life predictions of unidirectional and multi-directional glass/epoxy laminates are carried out to validate the proposed model against experimental data. The probabilistic fatigue behavior of laminates is analyzed under constant amplitude loading conditions as well as under......A probabilistic model for estimating the fatigue life of laminated composite materials considering the uncertainty in their mechanical properties is developed. The uncertainty in the material properties is determined from fatigue coupon tests. Based on this uncertainty, probabilistic constant life...... diagrams are developed which can efficiently estimate probabilistic É›-N curves at any load level and stress ratio. The probabilistic É›-N curve information is used in a reliability analysis for fatigue limit state proposed for estimating the probability of failure of composite laminates under variable...

  1. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1992-01-01

    Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sample tested. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  2. Mechanical properties of F82H plates with different thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp; Tanigawa, Hiroyasu

    2016-11-01

    Highlights: • Mass effect, homogeneity, and anisotropy in mechanical properties were studied. • Thickness dependence of tensile property was not observed. • Thickness dependence of Charpy impact property was observed. • Appropriate mechanical properties were obtained using an electric furnace. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel and it is indispensable to develop the manufacturing technology for producing large-scale components of DEMO blanket with appropriate mechanical properties. This is because mechanical properties are generally degraded with increasing production volume. In this work, we focused mechanical properties of F82H–BA12 heat which was melted in a 20 tons electric arc furnace. Plates with difference thicknesses from 18 to 100 mm{sup t} were made from its ingot through forging and hot-rolling followed by heat treatments. Tensile and Charpy impact tests were then performed on plates focusing on their homogeneity and anisotropy. From the result, their homogeneity and anisotropy were not significant. No obvious differences were observed in tensile properties between the plates with different thicknesses. However, Charpy impact property changed with increasing plate thickness, i.e. the ductile brittle transition temperature of a 100 mm{sup t} thick plate was higher than that of the other thinner plates.

  3. Structural and mechanical properties of welded joints of reduced activation martensitic steels

    International Nuclear Information System (INIS)

    Filacchioni, G.; Montanari, R.; Tata, M.E.; Pilloni, L.

    2002-01-01

    Gas tungsten arc welding and electron beam welding methods were used to realise welding pools on plates of reduced activation martensitic steels. Structural and mechanical features of these simulated joints have been investigated in as-welded and post-welding heat-treated conditions. The research allowed to assess how each welding technique affects the original mechanical properties of materials and to find suitable post-welding heat treatments. This paper reports results from experimental activities on BATMAN II and F82H mod. steels carried out in the frame of the European Blanket Project - Structural Materials Program

  4. Electromagnetic and Dynamic Mechanical Properties of Epoxy and Vinylester-Based Composites Filled with Graphene Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Fabrizio Marra

    2016-07-01

    Full Text Available Development of epoxy or epoxy-based vinyl ester composites with improved mechanical and electromagnetic properties, filled with carbon-based nanomaterials, is of crucial interest for use in aerospace applications as radar absorbing materials at radio frequency. Numerous studies have highlighted the fact that the effective functional properties of this class of polymer composites are strongly dependent on the production process, which affects the dispersion of the nanofiller in the polymer matrix and the formation of micro-sized aggregations, degrading the final properties of the composite. The assessment of the presence of nanofiller aggregation in a composite through microscopy investigations is quite inefficient in the case of large scale applications, and in general provides local information about the aggregation state of the nanofiller rather than an effective representation of the degradation of the functional properties of the composite due to the presence of the aggregates. In this paper, we investigate the mechanical, electrical, and electromagnetic properties of thermosetting polymer composites filled with graphene nanoplatelets (GNPs. Moreover, we propose a novel approach based on measurements of the dielectric permittivity of the composite in the 8–12 GHz range in order to assess the presence of nanofiller aggregates and to estimate their average size and dimensions.

  5. Mechanical properties of self-compacting concrete state-of-the-art report of the RILEM technical committee 228-MPS on mechanical properties of self-compacting concrete

    CERN Document Server

    Schutter, Geert

    2014-01-01

    The State-of-the-Art Report of RILEM Technical Committee 228-MPS on Mechanical properties of Self-Compacting Concrete (SCC) summarizes an extensive body of information related to mechanical properties and mechanical behaviour of SCC. Due attention is given to the fact that the composition of SCC varies significantly. A wide range of  mechanical properties are considered, including compressive strength, stress-strain relationship, tensile and flexural strengths, modulus of elasticity, shear strength, effect of elevated temperature, such as fire spalling and residual properties after fire, in-situ properties, creep, shrinkage, bond properties, and structural behaviour. A chapter on fibre-reinforced SCC is included, as well as a chapter on specialty SCC, such as light-weight SCC, heavy-weight SCC, preplaced aggregate SCC, special fibre reinforced SCC, and underwater concrete.

  6. Size-dependent mechanical properties of 2D random nanofibre networks

    International Nuclear Information System (INIS)

    Lu, Zixing; Zhu, Man; Liu, Qiang

    2014-01-01

    The mechanical properties of nanofibre networks (NFNs) are size dependent with respect to different fibre diameters. In this paper, a continuum model is developed to reveal the size-dependent mechanical properties of 2D random NFNs. Since such size-dependent behaviours are attributed to different micromechanical mechanisms, the surface effects and the strain gradient (SG) effects are, respectively, introduced into the mechanical analysis of NFNs. Meanwhile, a modified fibre network model is proposed, in which the axial, bending and shearing deformations are incorporated. The closed-form expressions of effective modulus and Poisson's ratio are obtained for NFNs. Different from the results predicted by conventional fibre network model, the present model predicts the size-dependent mechanical properties of NFNs. It is found that both surface effects and SG effects have significant influences on the effective mechanical properties. Moreover, the present results show that the shearing deformation of fibre segment is also crucial to precisely evaluate the effective mechanical properties of NFNs. This work mainly aims to provide an insight into the micromechanical mechanisms of NFNs. Besides, this work is also expected to provide a more accurate theoretical model for 2D fibre networks. (paper)

  7. Microstructure and Mechanical Properties of Porous Mullite

    Science.gov (United States)

    Hsiung, Chwan-Hai Harold

    Mullite (3 Al2O3 : 2 SiO2) is a technologically important ceramic due to its thermal stability, corrosion resistance, and mechanical robustness. One variant, porous acicular mullite (ACM), has a unique needle-like microstructure and is the material platform for The Dow Chemical Company's diesel particulate filter AERIFY(TM). The investigation described herein focuses on the microstructure-mechanical property relationships in acicular mullites as well as those with traditional porous microstructures with the goal of illuminating the critical factors in determining their modulus, strength, and toughness. Mullites with traditional pore morphologies were made to serve as references via slipcasting of a kaolinite-alumina-starch slurry. The starch was burned out to leave behind a pore network, and the calcined body was then reaction-sintered at 1600C to form mullite. The samples had porosities of approximately 60%. Pore size and shape were altered by using different starch templates, and pore size was found to influence the stiffness and toughness. The ACM microstructure was varied along three parameters: total porosity, pore size, and needle size. Total porosity was found to dominate the mechanical behavior of ACM, while increases in needle and pore size increased the toughness at lower porosities. ACM was found to have much improved (˜130%) mechanical properties relative to its non-acicular counterpart at the same porosity. A second set of investigations studied the role of the intergranular glassy phase which wets the needle intersections of ACM. Removal of the glassy phase via an HF etch reduced the mechanical properties by ˜30%, highlighting the intergranular phase's importance to the enhanced mechanical properties of ACM. The composition of the glassy phase was altered by doping the ACM precursor with magnesium and neodymium. Magnesium doping resulted in ACM with greatly reduced fracture strength and toughness. Studies showed that the mechanical properties of the

  8. Mechanical properties used for the qualification of transport casks

    International Nuclear Information System (INIS)

    Salzbrenner, R.; Crenshaw, T.B.; Sorenson, K.B.

    1993-01-01

    The qualification process that should be sufficient for qualification of a specific cask (material/geometry combination) has been examined. The prototype cask should be tested to determine its overall variation in microstructure, chemistry, and mechanical properties. This prototype may also be subjected to 'proof testing' to demonstrate the validity of the design analysis (including the mechanical properties used in the analysis). The complete mechanical property mapping does not necessarily have to precede the proof testing (i.e., portions of the cask which experience only low (elastic) loads during the drop test are suitable for mechanical test specimens). The behavior of the prototype cask and the production casks are linked by assuring that each cask possesses at least the minimum level of one or more critical mechanical properties. This may be done by measuring the properties of interest directly, or by relying on a secondary measurement (such as subsize mechanical test results or microstructure/compositional measurements) which has been statistically correlated to the critical properties. The database required to show the correlation between the secondary measurement and the valid design property may be established by tests on the material from the prototype cask. The production controls must be demonstrated as being adequate to assure that a uniform product is produced. The testing of coring (or test block or prolongation) samples can only be viewed as providing a valid link to the benchmark results provided by the prototype cask if the process used to create follow-on casks remains essentially similar. The MOSAIK Test Program has demonstrated the qualification method through the benchmarking stage. The program did not establish for qualifying serial production casks through, for example, a correlation between small specimen parameters and valid design fracture toughness properties. Such a correlation would require additional experimental work. (J.P.N.)

  9. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature.

    Science.gov (United States)

    Halász, István Zoltán; Bárány, Tamás

    2016-08-24

    In this work, the effect of mixing temperature (T mix ) on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT) oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR) and polar (acrylonitrile butadiene rubber, NBR) rubbers were modified by CBT (20 phr) for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA) tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM). CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state), which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5-10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  10. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    Science.gov (United States)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  11. Mechanical and mineral properties of osteogenesis imperfecta human bones at the tissue level.

    Science.gov (United States)

    Imbert, Laurianne; Aurégan, Jean-Charles; Pernelle, Kélig; Hoc, Thierry

    2014-08-01

    Osteogenesis imperfecta (OI) is a genetic disorder characterized by an increase in bone fragility on the macroscopic scale, but few data are available to describe the mechanisms involved on the tissue scale and the possible correlations between these scales. To better understand the effects of OI on the properties of human bone, we studied the mechanical and chemical properties of eight bone samples from children suffering from OI and compared them to the properties of three controls. High-resolution computed tomography, nanoindentation and Raman microspectroscopy were used to assess those properties. A higher tissue mineral density was found for OI bone (1.131 gHA/cm3 vs. 1.032 gHA/cm3, p=0.032), along with a lower Young's modulus (17.6 GPa vs. 20.5 GPa, p=0.024). Obviously, the mutation-induced collagen defects alter the collagen matrix, thereby affecting the mineralization. Raman spectroscopy showed that the mineral-to-matrix ratio was higher in the OI samples, while the crystallinity was lower, suggesting that the mineral crystals were smaller but more abundant in the case of OI. This change in crystal size, distribution and composition contributes to the observed decrease in mechanical strength. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Material modeling of biofilm mechanical properties.

    Science.gov (United States)

    Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E

    2014-05-01

    A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Mechanism of mechanical property enhancement in nitrogen and titanium implanted 321 stainless steel

    International Nuclear Information System (INIS)

    Xu Ming; Li Liuhe; Liu Youming; Cai Xun; Chen Qiulong; Chu, Paul K.

    2006-01-01

    Ion implantation is a well-known method to modify surface mechanical properties. The improvement of the mechanical properties can usually be attributed to the formation of new strengthening phases, solution strengthening, dislocation strengthening, or grain refinement. However, in many cases, the roles of individual factors are not clear. In this study, we implanted nitrogen and titanium into 321 stainless steel samples to investigate the enhancement mechanism of the mechanical properties. Nano-indentation experiments were conducted to measure the hardness under various loadings. The N and Ti implanted 321 stainless steel samples were found to behave differently in the hardness (GPa) versus depth (nm) diagram. The effects of the radiation damage, solution strengthening, and dispersion strengthening phase were analyzed. Characterization of the modified layers was performed using techniques such as Auger electron spectroscopy (AES) and grazing incidence X-ray diffraction (GIXRD). Transmission electron microscopy (TEM) and X-ray diffraction were also applied to reveal the structure of the untreated 321 stainless steel

  14. SWCNT Composites, Interfacial Strength and Mechanical Properties

    DEFF Research Database (Denmark)

    Ma, Jing; Larsen, Mikael

    2013-01-01

    Abstract: Single-Walled Carbon Nanotubes (SWCNT) have despite the superior mechanical properties not fully lived up to the promise as reinforcement in SWCNT composites. The strain transfer from matrix to carbon nanotubes (CNT) is poorly understood and is caused by both fewer localized strong...... is applied to the composite materials. The effect of polymer matrix, modification and concentration of the CNTs are discussed. The strain transfer i.e. 2D band shift under tension is compared to the mechanical properties of the SWCNT composite material....

  15. The thermal and mechanical properties of electron beam-irradiated polylactide

    International Nuclear Information System (INIS)

    Kuk, In Seol; Jung, Chan Hee; Hwang, In Tae; Choi, Jae Hak; Nho, Young Chang

    2010-01-01

    The effect of electron beam irradiation on the thermal and mechanical properties of polylactide (PLA) was investigated in this research. PLA films were irradiated by electron beams at different absorption doses ranging from 20 to 200 kGy. The thermal and mechanical properties of the irradiated PLA films were investigated by means of differential scanning calorimeter, thermogravimetric analyzer, universal testing machine, dynamic mechanical analyzer, and thermal mechanical analyzer. The results revealed that the chain scission of the PLA predominated over the crosslinking during the irradiation, which considerably deteriorated the thermal and mechanical properties of the PLA

  16. Halloysite reinforced epoxy composites with improved mechanical properties

    Directory of Open Access Journals (Sweden)

    Saif Muhammad Jawwad

    2016-03-01

    Full Text Available Halloysite nanotubes (HNTs reinforced epoxy composites with improved mechanical properties were prepared. The prepared HNTs reinforced epoxy composites demonstrated improved mechanical properties especially the fracture toughness and flexural strength. The flexural modulus of nanocomposite with 6% mHNTs loading was 11.8% higher than that of neat epoxy resin. In addition, the nanocomposites showed improved dimensional stability. The prepared halloysite reinforced epoxy composites were characterized by thermal gravimetric analysis (TGA. The improved properties are attributed to the unique characteristics of HNTs, uniform dispersion of reinforcement and interfacial coupling.

  17. Comparative analysis of deterministic and probabilistic fracture mechanical assessment tools

    Energy Technology Data Exchange (ETDEWEB)

    Heckmann, Klaus [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Koeln (Germany); Saifi, Qais [VTT Technical Research Centre of Finland, Espoo (Finland)

    2016-11-15

    Uncertainties in material properties, manufacturing processes, loading conditions and damage mechanisms complicate the quantification of structural reliability. Probabilistic structure mechanical computing codes serve as tools for assessing leak- and break probabilities of nuclear piping components. Probabilistic fracture mechanical tools were compared in different benchmark activities, usually revealing minor, but systematic discrepancies between results of different codes. In this joint paper, probabilistic fracture mechanical codes are compared. Crack initiation, crack growth and the influence of in-service inspections are analyzed. Example cases for stress corrosion cracking and fatigue in LWR conditions are analyzed. The evolution of annual failure probabilities during simulated operation time is investigated, in order to identify the reasons for differences in the results of different codes. The comparison of the tools is used for further improvements of the codes applied by the partners.

  18. Mechanical properties of ion-implanted alumina

    International Nuclear Information System (INIS)

    Pope, S.G.

    1988-01-01

    Monolithic oxide ceramics are being proposed as structural materials in continuously more-demanding applications. The demands being placed on these materials have caused concern pertaining to the continued growth of oxide structural ceramics due to limited toughness. The realization that ceramic strength and toughness can be affected by surface conditions has led to many surface-modification techniques, all striving to improve the mechanical properties of ceramics. Along these lines, the effects of ion implantation as a surface modification technique for improvement of the mechanical properties of alumina were studied. Initially, sapphire samples were implanted with elemental ion species that would produce oxide precipitates within the sapphire surface when annealed in an oxygen-containing atmosphere. Optimum conditions as determined from implantation into sapphire were then used to modify a polycrystalline alumina. Specific modifications in microhardness, indentation fracture toughness and flexure strength are reported for the parameters studied. Microstructure and phase relationships related to modified surfaces properties are also reported

  19. Mechanical properties of porous silicon by depth-sensing nanoindentation techniques

    International Nuclear Information System (INIS)

    Fang Zhenqian; Hu Ming; Zhang Wei; Zhang Xurui; Yang Haibo

    2009-01-01

    Porous silicon (PS) was prepared using the electrochemical corrosion method. Thermal oxidation of the as-prepared PS samples was performed at different temperatures for tuning their mechanical properties. The mechanical properties of as-prepared and oxidized PS were thoroughly investigated by depth-sensing nanoindentation techniques with the continuous stiffness measurements option. The morphology of as-prepared and oxidized PS was characterized by field emission scanning electron microscope and the effect of observed microstructure changes on the mechanical properties was discussed. It is shown that the hardness and Young's elastic modulus of as-prepared PS exhibit a strong dependence on the preparing conditions and decrease with increasing current density. In particular, the mechanical properties of oxidized PS are improved greatly compared with that of as-prepared ones and increase with increasing thermal oxidation temperature. The mechanism responsible for the mechanical property enhancement is possibly the formation of SiO 2 cladding layers encapsulating on the inner surface of the incompact sponge PS to decrease the porosity and strengthen the interconnected microstructure

  20. Mechanical properties of brain tissue by indentation : interregional variation

    NARCIS (Netherlands)

    Dommelen, van J.A.W.; Sande, van der T.P.J.; Hrapko, M.; Peters, G.W.M.

    2010-01-01

    Although many studies on the mechanical properties of brain tissue exist, some controversy concerning the possible differences in mechanical properties of white and gray matter tissue remains. Indentation experiments are conducted on white and gray matter tissue of various regions of the cerebrum

  1. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    Directory of Open Access Journals (Sweden)

    Hadryś D.

    2016-12-01

    Full Text Available New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF in weld metal deposit (WMD is obtained in MIG welding method with micro-jet cooling in relation to ordinary MIG welding method. This article presents the influence of the cooling medium and the number of micro-jet streams on mechanical properties of the welded joint. Mechanical properties were described by force which is necessary to destroy weld joint.

  2. Mechanical properties and morphology of poly(etheretherKetone)

    Science.gov (United States)

    Cebe, Peggy; Chung, Shirley; Gupta, Amitava; Hong, Su-Don

    1987-01-01

    Mechanical properties and morphology of poly(etheretherketone) (PEEK) were studied for samples having different thermal histories. Isothermal and rate-dependent crystallization were studied to ascertain the relationship between crystallinity/morphology and processing condition. Degree of crystallinity and microstructure were controlled by cooling the melt at different rates, ranging from quenching to slowly cooling, and by annealing amorphous material above the glass transition temperature Tg. It is found that degree of crystallinity was not as important as processing history in determining the room temperature mechanical properties. Samples with the same degree of crystallinity had very different tensile properties, depending on rate of cooling from the melt. All samples yielded by shear band formation and necked down. Quenched films had the largest breaking strains, drawing to 270 percent. Slowly cooled films exhibited ductile failure at relatively low strains. Best combined mechanical properties were obtained from semicrystalline films cooled at intermediate rates from the melt.

  3. Time-varying properties of renal autoregulatory mechanisms

    DEFF Research Database (Denmark)

    Zou, Rui; Cupples, Will A; Yip, K P

    2002-01-01

    In order to assess the possible time-varying properties of renal autoregulation, time-frequency and time-scaling methods were applied to renal blood flow under broad-band forced arterial blood pressure fluctuations and single-nephron renal blood flow with spontaneous oscillations obtained from...... normotensive (Sprague-Dawley, Wistar, and Long-Evans) rats, and spontaneously hypertensive rats. Time-frequency analyses of normotensive and hypertensive blood flow data obtained from either the whole kidney or the single-nephron show that indeed both the myogenic and tubuloglomerular feedback (TGF) mechanisms...... have time-varying characteristics. Furthermore, we utilized the Renyi entropy to measure the complexity of blood-flow dynamics in the time-frequency plane in an effort to discern differences between normotensive and hypertensive recordings. We found a clear difference in Renyi entropy between...

  4. Experimental study on influence of carbon dioxide on porous structure and mechanical properties of shale rock

    Directory of Open Access Journals (Sweden)

    Danuta Miedzińska

    2017-12-01

    Full Text Available Shale rocks are geological formations which can be unconventional gas reservoirs. During their interaction with carbon dioxide, which can be used as a fracturing fluid in shale gas recovery process, many phenomena take place that can influence rock structure and mechanical properties. The research on changes in rock structure under super critical carbon dioxide interaction and their influence of shale properties were presented in the paper. The structural tests were carried out with the use of microscopic techniques with different resolutions of visualization. The uniaxial compression test was applied as a mechanical properties’ assessment experiment. As a result of research, some dependence was observed. The bigger decrease was in porosity after infiltration in lower zooms, the bigger increase in porosity in high zooms and mechanical properties was noticed. Keywords: geomechanics, shale rock, carbon dioxide

  5. The effect of artificial accelerated weathering on the mechanical properties of maxillofacial polymers PDMS and CPE.

    Science.gov (United States)

    Eleni, P N; Krokida, M K; Polyzois, G L

    2009-06-01

    The effect of UVA-UVB irradiation on the mechanical properties of three different industrial types of polydimethylsiloxane and chlorinated polyethylene samples, used in maxillofacial prostheses, was investigated in this study. Mechanical properties and thermal analysis are commonly used to determine the structural changes and mechanical strength. An aging chamber was used in order to simulate the solar radiation and assess natural aging. Compression and tensile tests were conducted on a Zwick testing machine. Durometer Shore A hardness measurements were carried out in a CV digital Shore A durometer according to ASTM D 2240. Glass transition temperature was evaluated with a differential scanning calorimeter. Simple mathematical models were developed to correlate the measured properties with irradiation time. The effect of UVA-UVB irradiation on compressive behavior affected model parameters. Significant deterioration seems to occur due to irradiation in samples.

  6. Microstructure, mechanical properties and bio-corrosion properties of Mg-Si(-Ca, Zn) alloy for biomedical application.

    Science.gov (United States)

    Zhang, Erlin; Yang, Lei; Xu, Jianwei; Chen, Haiyan

    2010-05-01

    Mg-Si alloy was investigated for biomedical application due to the biological function of Si in the human body. However, Mg-Si alloy showed a low ductility due to the presence of coarse Mg(2)Si. Ca and Zn elements were used to refine and modify the morphology of Mg(2)Si in order to improve the corrosion resistance and the mechanical properties. The cell toxicity of Mg, Zn and Ca metals was assessed by an MTT test. The test results indicated that increasing the concentrations of Mg, Zn and Ca ions did not cause cell toxicity, which showed that the release of these three elements would not lead to cell toxicity. Then, microstructure, mechanical properties and bio-corrosion properties of as-cast Mg-Si(-Ca, Zn) alloys were investigated by optical microscopy, scanning electronic microscopy, mechanical properties testing and electrochemical measurement. Ca element can slightly refine the grain size and the morphology Mg(2)Si phase in Mg-Si alloy. The bio-corrosion resistance of Mg-Si alloys was improved by the addition of Ca due to the reduction and refinement of Mg(2)Si phase; however, no improvement was observed in the strength and elongation. The addition of 1.6% Zn to Mg-0.6Si can modify obviously the morphology of Mg(2)Si phase from course eutectic structure to a small dot or short bar shape. As a result, tensile strength, elongation and bio-corrosion resistance were all improved significantly; especially, the elongation improved by 115.7%. It was concluded that Zn element was one of the best alloying elements of Mg-Si alloy for biomedical application. Copyright (c) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  7. Mechanical Properties of Picea sitchensis

    DEFF Research Database (Denmark)

    Bräuner, Lise; Hoffmeyer, Preben; Poulsson, Lise

    2000-01-01

    the requirements at the same level as Danish grown Norway spruce. The study shows that Sitka spruce and Norway spruce of the same origin exhibit highly comparable mechanical properties. Key words: annual ring width, bending strength, characteristic strength, dry density, EN 338, INSTA 142, modulus of elasticity...

  8. Mechanical Properties of Stable Glasses Using Nanoindentation

    Science.gov (United States)

    Wolf, Sarah; Liu, Tianyi; Jiang, Yijie; Ablajan, Keyume; Zhang, Yue; Walsh, Patrick; Turner, Kevin; Fakhraai, Zahra

    Glasses with enhanced stability over ordinary, liquid quenched glasses have been formed via the process of Physical Vapor Deposition (PVD) by using a sufficiently slow deposition rate and a substrate temperature slightly below the glass transition temperature. These stable glasses have been shown to exhibit higher density, lower enthalpy, and better kinetic stability over ordinary glass, and are typically optically birefringent, due to packing and orientational anisotropy. Given these exceptional properties, it is of interest to further investigate how the properties of stable glasses compare to those of ordinary glass. In particular, the mechanical properties of stable glasses remain relatively under-investigated. While the speed of sound and elastic moduli have been shown to increase with increased stability, little is known about their hardness and fracture toughness compared to ordinary glasses. In this study, glasses of 9-(3,5-di(naphthalen-1-yl)phenyl)anthracene were deposited at varying temperatures relative to their glass transition temperature, and their mechanical properties measured by nanoindentation. Hardness and elastic modulus of the glasses were compared across substrate temperatures. After indentation, the topography of these films were studied using Atomic Force Microscopy (AFM) in order to further compare the relationship between thermodynamic and kinetic stability and mechanical failure. Z.F. and P.W. acknowledge funding from NSF(DMREF-1628407).

  9. A study on thermal and mechanical properties of mechanically milled HDPE and PP

    International Nuclear Information System (INIS)

    Can, S.; Tan, S.

    2003-01-01

    In this study, mechanical mixing of HDPE and PP was performed via ball milling. Prepared compositions were 75/25 , 50/50 , 25/75 w/w HDPE/PP. Milling time and ball to powder ratio (B/P) were kept constant and system was cooled by adding solid CO 2 to improve the milling efficiency. To compare these systems with traditional methods, mixtures were also melt mixed by Brabender Plasti-Corder. Both milled and melt mixed systems were examined with DSC for thermal properties and tensile testing for mechanical properties Results are discussed by comparing milled , melt mixed and as-received polymers. It is observed that, unlike ball milled systems' in melt mixed systems mechanical properties are composition dependent. In addition , ball milling results in amorphization of both polymers and very high amounts of PP (75wt %) creates very amorphous HDPE structure. (Original)

  10. Characterization of the mechanical properties of tough biopolymer fibres from the mussel byssus of Aulacomya ater.

    Science.gov (United States)

    Troncoso, O P; Torres, F G; Grande, C J

    2008-07-01

    Byssus fibres are tough biopolymer fibres produced by mussels to attach themselves to rocks. In this communication, we present the mechanical properties of the byssus from the South American mussel Aulacomya ater which have not been previously reported in the literature. The mechanical properties of the whole threads were assessed by uniaxial tensile tests of dry and hydrated specimens. Elastoplastic and elastomeric stress-strain curves were found for byssal threads from A. ater in the dry and hydrated state, respectively. The results obtained from mechanical tests were modelled using linear, power-law-type and Mooney-Rivlin relationships. These methods for dealing with tensile measurements of mussel byssus have the potential to be used with other stretchy biomaterials.

  11. Mechanical property characterization of polymeric composites reinforced by continuous microfibers

    Science.gov (United States)

    Zubayar, Ali

    Innumerable experimental works have been conducted to study the effect of polymerization on the potential properties of the composites. Experimental techniques are employed to understand the effects of various fibers, their volume fractions and matrix properties in polymer composites. However, these experiments require fabrication of various composites which are time consuming and cost prohibitive. Advances in computational micromechanics allow us to study the various polymer based composites by using finite element simulations. The mechanical properties of continuous fiber composite strands are directional. In traditional continuous fiber laminated composites, all fibers lie in the same plane. This provides very desirable increases in the in-plane mechanical properties, but little in the transverse mechanical properties. The effect of different fiber/matrix combinations with various orientations is also available. Overall mechanical properties of different micro continuous fiber reinforced composites with orthogonal geometry are still unavailable in the contemporary research field. In this research, the mechanical properties of advanced polymeric composite reinforced by continuous micro fiber will be characterized based on analytical investigation and FE computational modeling. Initially, we have chosen IM7/PEEK, Carbon Fiber/Nylon 6, and Carbon Fiber/Epoxy as three different case study materials for analysis. To obtain the equivalent properties of the micro-hetero structures, a concept of micro-scale representative volume elements (RVEs) is introduced. Five types of micro scale RVEs (3 square and 2 hexagonal) containing a continuous micro fiber in the polymer matrix were designed. Uniaxial tensile, lateral expansion and transverse shear tests on each RVE were designed and conducted by the finite element computer modeling software ANSYS. The formulae based on elasticity theory were derived for extracting the equivalent mechanical properties (Young's moduli, shear

  12. Enhancing Microstructure and Mechanical Properties of AZ31-MWCNT Nanocomposites through Mechanical Alloying

    Directory of Open Access Journals (Sweden)

    J. Jayakumar

    2013-01-01

    Full Text Available Multiwall carbon nanotubes (MWCNTs reinforced Mg alloy AZ31 nanocomposites were fabricated by mechanical alloying and powder metallurgy technique. The reinforcement material MWCNTs were blended in three weight fractions (0.33%, 0.66%, and 1% with the matrix material AZ31 (Al-3%, zinc-1% rest Mg and blended through mechanical alloying using a high energy planetary ball mill. Specimens of monolithic AZ31 and AZ31-MWCNT composites were fabricated through powder metallurgy technique. The microstructure, density, hardness, porosity, ductility, and tensile properties of monolithic AZ31 and AZ31-MWCNT nano composites were characterized and compared. The characterization reveals significant reduction in CNT (carbon nanoTube agglomeration and enhancement in microstructure and mechanical properties due to mechanical alloying through ball milling.

  13. Response of mechanical properties of glasses to their chemical, thermal and mechanical histories

    DEFF Research Database (Denmark)

    Yue, Yuanzheng

    , surface, thermal history or excess entropy of the final glass state. Here I review recent progresses in understanding of the responses of mechanical properties of oxide glasses to the compositional variation, thermal history and mechanical deformation. The tensile strength, elastic modulus and hardness...... of glass fibers are dependent on the thermal history (measured as fictive temperature), tension, chemical composition and redox state. However, the fictive temperature affects the hardness of bulk glass in a complicated manner, i.e., the effect does not exhibit a clear regularity in the range...... and micro-cracks occurring during indentation of a glass is discussed briefly. Finally I describe the future perspectives and challenges in understanding responses of mechanical properties of oxide glasses to compositional variation, thermal history and mechanical deformation....

  14. Effect of Camphorquinone Concentration in Physical-Mechanical Properties of Experimental Flowable Resin Composites

    Directory of Open Access Journals (Sweden)

    Dayany da Silva Alves Maciel

    2018-01-01

    Full Text Available The aim of this study was to evaluate the effect of camphorquinone concentration in physical-mechanical properties of experimental flowable composites in order to find the concentration that results in maximum conversion, balanced mechanical strength, and minimum shrinkage stress. Model composites based on BISGMA/TEGDMA with 70% wt filler loading were prepared containing different concentrations of camphorquinone (CQ on resin matrix (0.25%, 0.50%, 1%, 1.50%, and 2% by weight. Degree of conversion was determined by FTIR. Surface hardness was assessed before and after 24 h ethanol storage and softening rate was determined. Depth of cure was determined by Knoop hardness evaluation at different depths. Color was assessed by reflectance spectrophotometer, employing the CIE-Lab system. Flexural strength and elastic modulus were determined by a three-point bending test. Shrinkage stress was determined in a Universal Testing Machine in a high compliance system. Data were submitted to ANOVA and Tukey’s test (α = 0.05. The increase in CQ concentration caused a significant increase on flexural strength and luminosity of composites. Surface hardness was not affected by the concentration of CQ. Composite containing 0.25% wt CQ showed lower elastic modulus and shrinkage stress when compared to others. Depth of cure was 3 mm for composite containing 1% CQ and 2 mm for the other tested composites. Degree of conversion was inversely correlated with softening rate and directly correlated with elastic modulus and shrinkage stress. In conclusion, CQ concentration affects polymerization characteristics and mechanical strength of composites. The concentration of CQ in flowable composite for optimized polymerization and properties was 1% wt of the resin matrix, which allows adequate balance among degree of conversion, depth of cure, mechanical properties, and color characteristics of these materials.

  15. Study of mechanical properties of films of nanocomposites LLDPE/bentonite

    International Nuclear Information System (INIS)

    Silva, Eduardo M.; Carvalho, Laura H.; Canedo, Eduardo L.; Coutinho, Maria G.F.; Costa, Raquel B.; Araujo, Arthur R.A.

    2011-01-01

    Mechanical properties of LLDPE/bentonite clay were determined as a function of clay content (1 and 2% w/w), purification and organophilization. Raw materials were characterized by FTIR and XRD. Nanocomposites were obtained as flat films and characterized by XRD and mechanical properties. Results indicate that best overall mechanical properties were displayed by systems containing purified clay and that they tended to decrease with increasing clay content. Organofilization was effective and only intercalated nanocomposites were obtained. (author)

  16. Bioprinting of hybrid tissue constructs with tailorable mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Schuurman, W; Khristov, V; Pot, M W; Dhert, W J A; Malda, J [Department of Orthopaedics, University Medical Center Utrecht (Netherlands); Van Weeren, P R, E-mail: j.malda@umcutrecht.nl [Faculty of Veterinary Sciences, Department of Equine Sciences, Utrecht University (Netherlands)

    2011-06-15

    Tissue/organ printing aims to recapitulate the intrinsic complexity of native tissues. For a number of tissues, in particular those of musculoskeletal origin, adequate mechanical characteristics are an important prerequisite for their initial handling and stability, as well as long-lasting functioning. Hence, organized implants, possessing mechanical characteristics similar to the native tissue, may result in improved clinical outcomes of regenerative approaches. Using a bioprinter, grafts were constructed by alternate deposition of thermoplastic fibers and (cell-laden) hydrogels. Constructs of different shapes and sizes were manufactured and mechanical properties, as well as cell viability, were assessed. This approach yields novel organized viable hybrid constructs, which possess favorable mechanical characteristics, within the same range as those of native tissues. Moreover, the approach allows the use of multiple hydrogels and can thus produce constructs containing multiple cell types or bioactive factors. Furthermore, since the hydrogel is supported by the thermoplastic material, a broader range of hydrogel types can be used compared to bioprinting of hydrogels alone. In conclusion, we present an innovative and versatile approach for bioprinting, yielding constructs of which the mechanical stiffness provided by thermoplastic polymers can potentially be tailored, and combined specific cell placement patterns of multiple cell types embedded in a wide range of hydrogels. (communication)

  17. Bioprinting of hybrid tissue constructs with tailorable mechanical properties

    International Nuclear Information System (INIS)

    Schuurman, W; Khristov, V; Pot, M W; Dhert, W J A; Malda, J; Van Weeren, P R

    2011-01-01

    Tissue/organ printing aims to recapitulate the intrinsic complexity of native tissues. For a number of tissues, in particular those of musculoskeletal origin, adequate mechanical characteristics are an important prerequisite for their initial handling and stability, as well as long-lasting functioning. Hence, organized implants, possessing mechanical characteristics similar to the native tissue, may result in improved clinical outcomes of regenerative approaches. Using a bioprinter, grafts were constructed by alternate deposition of thermoplastic fibers and (cell-laden) hydrogels. Constructs of different shapes and sizes were manufactured and mechanical properties, as well as cell viability, were assessed. This approach yields novel organized viable hybrid constructs, which possess favorable mechanical characteristics, within the same range as those of native tissues. Moreover, the approach allows the use of multiple hydrogels and can thus produce constructs containing multiple cell types or bioactive factors. Furthermore, since the hydrogel is supported by the thermoplastic material, a broader range of hydrogel types can be used compared to bioprinting of hydrogels alone. In conclusion, we present an innovative and versatile approach for bioprinting, yielding constructs of which the mechanical stiffness provided by thermoplastic polymers can potentially be tailored, and combined specific cell placement patterns of multiple cell types embedded in a wide range of hydrogels. (communication)

  18. Rock mass mechanical property estimations for the Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Lin, M.; Hardy, M.P.; Bauer, S.J.

    1993-06-01

    Rock mass mechanical properties are important in the design of drifts and ramps. These properties are used in evaluations of the impacts of thermomechanical loading of potential host rock within the Yucca Mountain Site Characterization Project. Representative intact rock and joint mechanical properties were selected for welded and nonwelded tuffs from the currently available data sources. Rock mass qualities were then estimated using both the Norwegian Geotechnical Institute (Q) and Geomechanics Rating (RMR) systems. Rock mass mechanical properties were developed based on estimates of rock mass quality, the current knowledge of intact properties, and fracture/joint characteristics. Empirical relationships developed to correlate the rock mass quality indices and the rock mass mechanical properties were then used to estimate the range of rock mass mechanical properties

  19. Physicochemical and mechanical properties of carbamazepine cocrystals with saccharin.

    Science.gov (United States)

    Rahman, Ziyaur; Samy, Raghu; Sayeed, Vilayat A; Khan, Mansoor A

    2012-01-01

    The aim of present research was to investigate the physicochemical, mechanical properties, and stability characteristics of cocrystal of carbamazepine (CBZ) using saccharin (SAC) as a coformer. The cocrystals were prepared by solubility method and characterized by pH-solubility profile, intrinsic dissolution by static disk method, and surface morphology by scanning electron microscopy (SEM), crystallinity by differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD), and mechanical properties by Heckel analysis. Stability of the cocrystals were assessed by storing them at 60 (°)C for two weeks, 25 (°)C/60%RH, 40 (°)C/75%RH and 40 (°)C/94%RH for one month and compared with the stability of CBZ. The solubility profile of cocrystal was similar to CBZ. The cocrystal and CBZ have shown the same stability profile at all the conditions of studies except at 40 (°)C/94%RH. Unlike the CBZ, cocrystal was stable against dihydrate transformation. The compacts of cocrystal have a greater tensile strength and more compressibility. The Heckel analysis suggested that plastic deformation started at low compression pressure in the cocrystal than CBZ. In summary, the cocrystal form of carbamazepine provides another avenue for product development which is more stable than the parent drug.

  20. Micro-mechanical properties of different sites on woodpecker's skull.

    Science.gov (United States)

    Ni, Yikun; Wang, Lizhen; Liu, Xiaoyu; Zhang, Hongquan; Lin, Chia-Ying; Fan, Yubo

    2017-11-01

    The uneven distributed microstructure featured with plate-like spongy bone in woodpecker's skull has been found to further help reduce the impact during woodpecker's pecking behavior. Therefore, this work was to investigate the micro-mechanical properties and composition on different sites of Great Spotted woodpecker's (GSW) skull. Different sites were selected on forehead, tempus and occiput, which were also compared with those of Eurasian Hoopoe (EH) and Lark birds (LB). Micro structural parameters assessed from micro computed tomography (μCT) occurred significantly difference between GSW, EH and LB. The micro finite element (micro-FE) models were developed and the simulation was performed as a compression process. The maximal stresses of GSW's micro-FE models were all lower than those of EH and LB respectively and few concentrated stresses were noticed on GSW's trabecular bone. Fourier transform infrared mapping suggesting a greater organic content in the occiput of GSW's cranial bone compared with others. The nano-hardness of the GSW's occiput was decreasing from forehead to occiput. The mechanical properties, site-dependent hardness distribution and special material composition of GSW's skull bone are newly found in this study. These factors may lead to a new design of bulk material mimicking these characteristics.

  1. Effects of Feed Supplementation on Mineral Composition, Mechanical Properties and Structure in Femurs of Iberian Red Deer Hinds (Cervus elaphus hispanicus)

    OpenAIRE

    Olguin, Cesar A.; Landete-Castillejos, Tomas; Ceacero, Francisco; Garc?a, Andr?s J.; Gallego, Laureano

    2013-01-01

    Few studies in wild animals have assessed changes in mineral profile in long bones and their implications for mechanical properties. We examined the effect of two diets differing in mineral content on the composition and mechanical properties of femora from two groups each with 13 free-ranging red deer hinds. Contents of Ca, P, Mg, K, Na, S, Cu, Fe, Mn, Se, Zn, B and Sr, Young's modulus of elasticity (E), bending strength and work of fracture were assessed in the proximal part of the diaphysi...

  2. Microstructural Evolution and Mechanical Properties in Superlight Mg-Li Alloy Processed by High-Pressure Torsion

    Directory of Open Access Journals (Sweden)

    Qian Su

    2018-04-01

    Full Text Available Microstructural evolution and mechanical properties of LZ91 Mg-Li alloy processed by high-pressure torsion (HPT at an ambient temperature were researched in this paper. The microstructure analysis demonstrated that significant grain refinement was achieved after HPT processing with an average grain size reducing from 30 μm (the as-received condition to approximately 230 nm through 10 turns. X-ray diffraction analysis revealed LZ91 alloy was consisted of α phase (hexagonal close-packed structure, hcp and β phase (body-centered cubic structure, bcc before and after HPT processing. The mean value of microhardness increased with the increasing number of HPT turns. This significantly increased hardness of specimens can be explained by Hall-Petch strengthening. Simultaneously, the distribution of microhardness along the specimens was different from other materials after HPT processing due to the different mechanical properties of two different phases. The mechanical properties of LZ91 alloy processed by HPT were assessed by the micro-tensile testing at 298, 373, 423, and 473 K. The results demonstrate that the ultra-fine grain LZ91 Mg-Li alloy exhibits excellent mechanical properties: tensile elongation is approximately 400% at 473 K with an initial strain rate of 1 × 10−2 s−1.

  3. Influence of autoclave sterilization on the surface parameters and mechanical properties of six orthodontic wires.

    Science.gov (United States)

    Pernier, C; Grosgogeat, B; Ponsonnet, L; Benay, G; Lissac, M

    2005-02-01

    Orthodontic wires are frequently packaged in individual sealed bags in order to avoid cross-contamination. The instructions on the wrapper generally advise autoclave sterilization of the package and its contents if additional protection is desired. However, sterilization can modify the surface parameters and the mechanical properties of many types of material. The aim of this research was to determine the influence of one of the most widely used sterilization processes, autoclaving (18 minutes at 134 degrees C, as recommended by the French Ministry of Health), on the surface parameters and mechanical properties of six wires currently used in orthodontics (one stainless steel alloy: Tru-Chrome RMO; two nickel-titanium shape memory alloys: Neo Sentalloy and Neo Sentalloy with Ionguard GAC; and three titanium-molybdenum alloys: TMA(R) and Low Friction TMA Ormco and Resolve GAC). The alloys were analysed on receipt and after sterilization, using surface structure observation techniques, including optical, scanning electron and atomic force microscopy and profilometry. The mechanical properties were assessed by three-point bending tests. The results showed that autoclave sterilization had no adverse effects on the surface parameters or on the selected mechanical properties. This supports the possibility for practitioners to systematically sterilize wires before placing them in the oral environment.

  4. Phase Morphology and Mechanical Properties of Cyclic Butylene Terephthalate Oligomer-Containing Rubbers: Effect of Mixing Temperature

    Directory of Open Access Journals (Sweden)

    István Zoltán Halász

    2016-08-01

    Full Text Available In this work, the effect of mixing temperature (Tmix on the mechanical, rheological, and morphological properties of rubber/cyclic butylene terephthalate (CBT oligomer compounds was studied. Apolar (styrene butadiene rubber, SBR and polar (acrylonitrile butadiene rubber, NBR rubbers were modified by CBT (20 phr for reinforcement and viscosity reduction. The mechanical properties were determined in tensile, tear, and dynamical mechanical analysis (DMTA tests. The CBT-caused viscosity changes were assessed by parallel-plate rheometry. The morphology was studied by scanning electron microscopy (SEM. CBT became better dispersed in the rubber matrices with elevated mixing temperatures (at which CBT was in partially molten state, which resulted in improved tensile properties. With increasing mixing temperature the size of the CBT particles in the compounds decreased significantly, from few hundred microns to 5–10 microns. Compounding at temperatures above 120 °C and 140 °C for NBR and SBR, respectively, yielded reduced tensile mechanical properties most likely due to the degradation of the base rubber. The viscosity reduction by CBT was more pronounced in mixes with coarser CBT dispersions prepared at lower mixing temperatures.

  5. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    International Nuclear Information System (INIS)

    Pérez Daroca, D.; Jaroszewicz, S.; Llois, A.M.; Mosca, H.O.

    2013-01-01

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement

  6. Phonon spectrum, mechanical and thermophysical properties of thorium carbide

    Energy Technology Data Exchange (ETDEWEB)

    Pérez Daroca, D., E-mail: pdaroca@tandar.cnea.gov.ar [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Jaroszewicz, S. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina); Llois, A.M. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Consejo Nacional de Investigaciones Cientı´ficas y Técnicas (Argentina); Mosca, H.O. [Gerencia de Investigación y Aplicaciones, Comisión Nacional de Energía Atómica (Argentina); Instituto de Tecnología Jorge A. Sabato, UNSAM-CNEA (Argentina)

    2013-06-15

    In this work, we study, by means of density functional perturbation theory and the pseudopotential method, mechanical and thermophysical properties of thorium carbide. These properties are derived from the lattice dynamics in the quasi-harmonic approximation. The phonon spectrum of ThC presented in this article, to the best authors’ knowledge, have not been studied, neither experimentally, nor theoretically. We compare mechanical properties, volume thermal expansion and molar specific capacities with previous results and find a very good agreement.

  7. Probabilistic-Stochastic Model of Distribution of Physical and Mechanical Properties of Soft Mineral Rocks

    Directory of Open Access Journals (Sweden)

    O.O. Sdvizhkova

    2017-12-01

    Full Text Available The physical and mechanical characteristics of soils and soft rocks obtained as a result of laboratory tests are important initial parameters for assessing the stability of natural and artificial slopes. Such properties of rocks as adhesion and the angle of internal friction are due to the influence of a number of natural and technogenic factors. At the same time, from the set of factors influencing the stability of the slope, the most significant ones are singled out, which to a greater extent determine the properties of the rocks. The more factors are taken into account in the geotechnical model, the more closely the properties of the rocks are studied, which increases the accuracy of the scientific forecast of the landslide danger of the slope. On the other hand, an increase in the number of factors involved in the model complicates it and causes a decrease in the reliability of geotechnical calculations. The aim of the work is to construct a statistical distribution of the studied physical and mechanical properties of soft rocks and to substantiate a probabilistic statistical model. Based on the results of laboratory tests of rocks, the statistical distributions of the quantitative traits studied, the angle of internal friction φ and the cohesion, were constructed. It was established that the statistical distribution of physical mechanical properties of rocks is close to a uniform law.

  8. Bone density does not reflect mechanical properties in early-stage arthrosis

    DEFF Research Database (Denmark)

    Ding, Ming; Danielsen, CC; Hvid, I

    2001-01-01

    : medial arthrosis, lateral control, normal medial and normal lateral controls. The specimens were tested in compression to determine mechanical properties and then physical/compositional properties. Compared to the normal medial control, we found reductions in ultimate stress, Young's modulus, and failure...... cancellous bone and the 3 controls. None of the mechanical properties of arthrotic cancellous bone could be predicted by the physical/compositional properties measured. The increase in bone tissue in early-stage arthrotic cancellous bone did not make up for the loss of mechanical properties, which suggests...

  9. Investigation of microstructure and mechanical properties of proton irradiated Zircaloy 2

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Apu, E-mail: asarkar@barc.gov.in [Mechanical Metallurgy Division, Bhabha Atomic Reserch Centre, Mumbai, 400 085 (India); Kumar, Ajay [Nuclear Physics Division, Bhabha Atomic Reserch Centre, Mumbai, 400 085 (India); Mukherjee, S.; Sharma, S.K.; Dutta, D.; Pujari, P.K. [Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Agarwal, A.; Gupta, S.K.; Singh, P. [Ion Accelerator Development Division, Bhabha Atomic Research Centre, Mumbai, 400 085 (India); Chakravartty, J.K. [Mechanical Metallurgy Division, Bhabha Atomic Reserch Centre, Mumbai, 400 085 (India)

    2016-10-15

    Samples of Zircaloy 2 have been irradiated with 4 MeV protons to two different doses. Microstructures of the unirradiated and irradiated samples have been characterized by Electron Back Scatter Diffraction (EBSD), X-ray diffraction line profile analysis (XRDLPA), Positron Annihilation Lifetime Spectroscopy (PALS) and Coincident Doppler Broadening (CDB) Spectroscopy. Tensile tests and micro hardness measurements have been carried out at room temperature to assess the changes in mechanical properties of Zircaloy 2 due to proton irradiation. The correlation of dislocation density, grain size and yield stress of the irradiated samples indicated that an increase in dislocation density due to irradiation is responsible for the change in mechanical behavior of irradiated Zircaloy.

  10. An Assessment of Mechanical and Tribological Property of Hybrid Aluminium Metal Matrix Composite

    Directory of Open Access Journals (Sweden)

    R. Santosh Kumar

    2017-04-01

    Full Text Available Composite materials has huge requirement in the area of automobile, aerospace, and wear resistant applications. This study presents the synthesis of composite reinforced with SiC and Al2O3 using gravity stir casting. Stir casting is the manufacturing process that is incorporated to produce the composite material because of its extreme bonding capacity with base material. The composition of reinforcement with 6061 aluminium matrix is SiC-7.5% and Al2O3 -2.5% respectively. The average size of reinforcement particle is 30-40 microns. The synthesised composite casting is machined using EDM to prepare specimens for various tests. Microstructure study was carried and the microstructure images prove the existence and dispersion of reinforcement particles in the metal matrix. There is no visible porosity is observed. The hardness of the specimen is tested using Vickers hardness tester and found considerable increase when compare with parent alloy Al 6061. Also mechanical and tribological properties of hybrid Aluminium metal matrix composite were employed. The fortifying material, Silicon Carbide is composed of tetrahedral of carbon and silicon atoms with strong bonds in crystal lattice along with its excellent wear resistance property and alumina have high strength and wear resistance. To avoid enormous material wastage and to achieve absolute accuracy, wire-cut EDM process is capitalised to engrave the specimen as per required dimensions. Three Tensile test specimens were prepared, in order to achieve reliability in results as per ASTM- E8 standard, and the values were tabulated. Impact test was carried out and the readings were tabulated. Wear test was carried out using pin on disc wear test apparatus and the results show considerable increase in wear resistant property when compare with parent alloy Al6061.The above work proves the successful fabrication of composite and evaluation of properties.

  11. Modelling of volumetric composition and mechanical properties of unidirectional hemp/epoxy composites - Effect of enzymatic fibre treatment

    DEFF Research Database (Denmark)

    Liu, Ming; Thygesen, Anders; Meyer, Anne S.

    2016-01-01

    The objective of the present study is to assess the effect of enzymatic fibre treatments on the fibre performance in unidirectional hemp/epoxy composites by modelling the volumetric composition and mechanical properties of the composites. It is shown that the applied models can well predict...... the changes in volumetric composition and mechanical properties of the composites when differently treated hemp fibres are used. The decrease in the fibre correlated porosity factor with the enzymatic fibre treatments shows that the removal of pectin by pectinolytic enzymes results in a better fibre...

  12. Mechanical properties of intra-ocular lenses

    Science.gov (United States)

    Ehrmann, Klaus; Kim, Eon; Parel, Jean-Marie

    2008-02-01

    Cataract surgery usually involves the replacement of the natural crystalline lens with a rigid or foldable intraocular lens to restore clear vision for the patient. While great efforts have been placed on optimising the shape and optical characteristics of IOLs, little is know about the mechanical properties of these devices and how they interact with the capsular bag once implanted. Mechanical properties measurements were performed on 8 of the most commonly implanted IOLs using a custom build micro tensometer. Measurement data will be presented for the stiffness of the haptic elements, the buckling resistance of foldable IOLs, the dynamic behaviour of the different lens materials and the axial compressibility. The biggest difference between the lens types was found between one-piece and 3-piece lenses with respect to the flexibility of the haptic elements

  13. Mechanical properties of austenitic stainless steels in sodium

    International Nuclear Information System (INIS)

    Lloyd, G.J.

    1978-03-01

    A detailed review of the mechanical properties of austenitic stainless steels in liquid sodium is presented. Consideration has been given to the influence of the of the impurities in reactor sodium and metallurgical variables upon the stress rupture life, the low cycle fatigue and combined creep/fatigue resistance, elastic-plastic crack propagation rates, the high cycle fatigue life, tensile properties and fracture toughness. The effects of exposure to contaminated sodium prior to testing are also discussed. Examples of the success of mechanistic interpretations of materials behaviour in sodium are given and additionally, the extent to which mechanical properties in sodium may be predicted with the use of appropriate data. (author)

  14. Mechanical and dynamic mechanical behaviour of novel glass ...

    Indian Academy of Sciences (India)

    M Rajesh

    the intra-ply woven fabric hybridization enhances impact and damping properties of the composite ... Keywords. Intra-ply hybrid; natural fibre; mechanical properties; dynamic mechanical analysis; vibration; .... analysis test is conducted in nitrogen environment over a ..... Mnson J A and Jolliet O 2001 Life cycle assessment of.

  15. The Mechanical Properties of Recycled Polyethylene-Polyethylene Terephthalate Composites

    Directory of Open Access Journals (Sweden)

    Ehsan Avazverdi

    2015-02-01

    Full Text Available Polyethylene terephthalate (PET, one of the thermoplastic polymers, is encountered with arduous problems in its recycling. After recycling, its mechanical properties drop dramatically and therefore it cannot be used to produce the products as virgin PET does. Polyethylene is a thermoplastic polymer which can be easily recycled using the conventional recycling processes. The decreased mechanical properties of virgin polyethylene due to the environmental factors can be improved by reinforcing fillers. In this paper, we studied the effects of adding recycled polyethylene terephthalate (rPET as a filler, in various amounts with different sizes, on the physical and mechanical properties of recycled polyethylene. Composite samples were prepared using an internal mixer at temperature 185°C, well below rPET melting point (250°C, and characterized by their mechanical properties. To improve the compatibility between different components, PE grafted with maleic anhydride was added as a coupling agent in all the compositions under study. The mechanical properties of the prepared samples were performed using the tensile strength, impact strength, surface hardness and melt flow index (MFI tests. To check the dispersity of the polyethylene terephthalate powder in the polyethylene matrix, light microscopy was used. The results showed that the addition of rPET improved the tensile energy, tensile modulus and surface hardness of the composites while reduced the melt flow index, elongation-at-yield, tensile strength and fracture energy of impact test. We could conclude that with increasing rPET percentage in the recycled polyethylene matrix, the composite became brittle, in other words it decreased the plastic behavior of recycled polyethylene. Decreasing particle size led to higher surface contacts, increased the mechanical properties and made the composite more brittle. The light microscopy micrographs of the samples showed a good distribution of small r

  16. Microstructure and mechanical properties of laser treated aluminium alloys

    NARCIS (Netherlands)

    deHosson, JTM; vanOtterloo, LDM; Noordhuis, J; Mazumder, J; Conde, O; Villar, R; Steen, W

    1996-01-01

    Al-Cu alloys and an Al-Cu-Mg alloy, Al 2024-T3, were exposed to laser treatments at various scan velocities. In this paper the microstructural features and mechanical properties are reported. As far as the mechanical property of the Al-Cu-Mg alloy is concerned a striking observation is a minimum in

  17. Mechanical property estimation with ABI and FEM simulation

    International Nuclear Information System (INIS)

    Sharma, Kamal; Singh, P.K.; Das, Gautam; Bhasin, Vivek; Vaze, K.K.; Ghosh, A.K.

    2007-01-01

    A combined mechanical property evaluation methodology with ABI (Automated Ball Indentation) simulation and Artificial Neural Network (ANN) analysis is evolved to evaluate the mechanical properties for material. The experimental load deflection data is converted into meaningful mechanical properties for this material. An ANN database is generated with the help of contact type finite element analysis by numerically simulating the ABI process for various magnitudes of yield strength (σ yp ) (200 MPa - 500 MPa) with a range of strain hardening exponent (n) (0.1 - 0.5) and strength coefficient (K) (500 MPa - 1500 MPa). For the present problem, a ball indenter of 1.57 mm diameter having Young's modulus approximately 100 times more than the test piece is used to minimize the error due to indenter deformation. Test piece dimension is kept large enough in comparison to the indenter configuration in the simulation to minimize the deflection at the outer edge of the test piece. Further this database after the neural network training; is used to analyze measured material properties of different test pieces. The ANN predictions are reconfirmed with contact type finite element analysis for an arbitrary selected test sample. The methodology evolved in this work can be extended to predict material properties for any irradiated nuclear material in the service. (author)

  18. Influence of different processing techniques on the mechanical properties of used tires in embankment construction

    International Nuclear Information System (INIS)

    Edincliler, Ayse; Baykal, Goekhan; Saygili, Altug

    2010-01-01

    Use of the processed used tires in embankment construction is becoming an accepted way of beneficially recycling scrap tires due to shortages of natural mineral resources and increasing waste disposal costs. Using these used tires in construction requires an awareness of the properties and the limitations associated with their use. The main objective of this paper is to assess the different processing techniques on the mechanical properties of used tires-sand mixtures to improve the engineering properties of the available soil. In the first part, a literature study on the mechanical properties of the processed used tires such as tire shreds, tire chips, tire buffings and their mixtures with sand are summarized. In the second part, large-scale direct shear tests are performed to evaluate shear strength of tire crumb-sand mixtures where information is not readily available in the literature. The test results with tire crumb were compared with the other processed used tire-sand mixtures. Sand-used tire mixtures have higher shear strength than that of the sand alone and the shear strength parameters depend on the processing conditions of used tires. Three factors are found to significantly affect the mechanical properties: normal stress, processing techniques, and the used tire content.

  19. Influence of different processing techniques on the mechanical properties of used tires in embankment construction.

    Science.gov (United States)

    Edinçliler, Ayşe; Baykal, Gökhan; Saygili, Altug

    2010-06-01

    Use of the processed used tires in embankment construction is becoming an accepted way of beneficially recycling scrap tires due to shortages of natural mineral resources and increasing waste disposal costs. Using these used tires in construction requires an awareness of the properties and the limitations associated with their use. The main objective of this paper is to assess the different processing techniques on the mechanical properties of used tires-sand mixtures to improve the engineering properties of the available soil. In the first part, a literature study on the mechanical properties of the processed used tires such as tire shreds, tire chips, tire buffings and their mixtures with sand are summarized. In the second part, large-scale direct shear tests are performed to evaluate shear strength of tire crumb-sand mixtures where information is not readily available in the literature. The test results with tire crumb were compared with the other processed used tire-sand mixtures. Sand-used tire mixtures have higher shear strength than that of the sand alone and the shear strength parameters depend on the processing conditions of used tires. Three factors are found to significantly affect the mechanical properties: normal stress, processing techniques, and the used tire content. Copyright 2009. Published by Elsevier Ltd.

  20. Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites

    Directory of Open Access Journals (Sweden)

    Hudson Alves Silvério

    2014-12-01

    Full Text Available In this work, the effects of incorporating cellulose nanocrystals from soy hulls (WSH30 on the mechanical, thermal, and barrier properties of methylcellulose (MC nanocomposites were evaluated. MC/WSH30 nanocomposite films with different filler levels (2, 4, 6, 8, and 10% were prepared by casting. Compared to neat MC film, improvements in the mechanical and barrier properties were observed, while thermal stability was retained. The improved mechanical properties of nanocomposites prepared may be attributed to mechanical percolation of WSH30, formation of a continuous network of WSH30 linked by hydrogen interactions and a close association between filler and matrix.

  1. Mechanical, thermal, and barrier properties of methylcellulose/cellulose nanocrystals nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Silverio, Hudson Alves; Flauzino Neto, Wilson Pires; Silva, Ingrid Souza Vieira da; Rosa, Joyce Rover; Pasquini, Daniel, E-mail: pasquini@iqufu.ufu.br, E-mail: danielpasquini2005@yahoo.com.br [Universidade de Uberlandia (USU), MG (Brazil). Instituto de Quimica; Assuncao, Rosana Maria Nascimento de [Universidade de Uberlandia (USU), Ituiutaba, MG (brazil). Fac. de Ciencias Integradas do Pontal; Barud, Hernane da Silva; Ribeiro, Sidney Jose Lima [Universidade Estadual Paulista Julio de Mesquita Filho (UNESP), Araraquara, SP (Brazil). Instituto de Quimica

    2014-11-15

    In this work, the effects of incorporating cellulose nanocrystals from soy hulls (WSH{sub 30}) on the mechanical, thermal, and barrier properties of methylcellulose (MC) nanocomposites were evaluated. MC/WSH{sub 30} nanocomposite films with different filler levels (2, 4, 6, 8, and 10%) were prepared by casting. Compared to neat MC film, improvements in the mechanical and barrier properties were observed, while thermal stability was retained. The improved mechanical properties of nanocomposites prepared may be attributed to mechanical percolation of WSH{sub 30}, formation of a continuous network of WSH{sub 30} linked by hydrogen interactions and a close association between filler and matrix. (author)

  2. Nucleus geometry and mechanical properties of resistance spot ...

    Indian Academy of Sciences (India)

    Keywords. Automotive steels; resistance spot welding; mechanical properties; nucleus geometry. 1. .... High va- lues of hardness can be explained with martensitic forma- ... interface of DP450–DP600 steels may have stainless steel properties.

  3. Mutual associations among microstructural, physical and mechanical properties of human cancellous bone

    DEFF Research Database (Denmark)

    Ding, Ming; Odgaard, A; Danielsen, CC

    2002-01-01

    structure and mechanical properties. In this study, 160 cancellous bone specimens were produced from 40 normal human tibiae aged from 16 to 85 years at post-mortem. The specimens underwent micro-CT and the microstructural properties were calculated using unbiased three-dimensional methods. The specimens...... were tested to determine the mechanical properties and the physical/compositional properties were evaluated. The type of structure together with anisotropy correlated well with Young's modulus of human tibial cancellous bone. The plate-like structure reflected high mechanical stress and the rod......-like structure low mechanical stress. There was a strong correlation between the type of trabecular structure and the bone-volume fraction. The most effective microstructural properties for predicting the mechanical properties of cancellous bone seem to differ with age....

  4. Multiscale simulation of mechanical properties of TiNb alloy

    Science.gov (United States)

    Nikonov, A. Yu.

    2017-12-01

    The article presents a numerical simulation of the mechanical properties of a Ti-Nb β-alloy on three different scales. The ab-initio approach is used to estimate the concentrations of the Ti alloy with required elastic properties. On the basis of molecular dynamics simulation, we calculate the adhesive force between individual particles of the alloy. The calculated dependence is implemented within the movable cellular automata method to determine the mechanical properties of Ti-Nb depending on the interparticle free space.

  5. Determining the mechanical properties of rat skin with digital image speckle correlation.

    Science.gov (United States)

    Guan, E; Smilow, Sarah; Rafailovich, Miriam; Sokolov, Jonathan

    2004-01-01

    Accurate measurement of the mechanical properties of skin has numerous implications in surgical repair, dermal disorders and the diagnosis and treatment of trauma to the skin. Investigation of facial wrinkle formation, as well as research in the areas of skin aging and cosmetic product assessment can also benefit from alternative methodologies for the measurement of mechanical properties. A noncontact, noninvasive technique, digital image speckle correlation (DISC), has been successfully introduced to measure the deformation field of a skin sample loaded by a material test machine. With the force information obtained from the loading device, the mechanical properties of the skin, such as Young's modulus, linear limitation and material strength, can be calculated using elastic or viscoelastic theory. The DISC method was used to measure the deformation of neonatal rat skin, with and without a glycerin-fruit-oil-based cream under uniaxial tension. Deformation to failure procedure of newborn rat skin was recorded and analyzed. Single skin layer failures were observed and located by finding the strain concentration. Young's moduli of freshly excised rat skin, cream-processed rat skin and unprocessed rat skin, 24 h after excision, were found with tensile tests to be 1.6, 1.4 and 0.7 MPa, respectively. Our results have shown that DISC provides a novel technique for numerous applications in dermatology and reconstructive surgeries. Copyright 2004 S. Karger AG, Basel

  6. A Novel Method of Mechanical Oxidation of CNT for Polymer Nanocomposite Application: Evaluation of Mechanical, Dynamic Mechanical, and Rheological Properties

    Directory of Open Access Journals (Sweden)

    Priyanka Pandey

    2014-01-01

    Full Text Available A new approach of oxidation of carbon nanotubes has been used to oxidize the CNTs. A comparative aspect of the mechanical oxidation and acid oxidation process has been established. FTIR analysis and titration method have shown the higher feasibility of the mechanical oxidation method to oxidize the CNTs. Comparatively less damage to the CNTs has been observed in case of mechanically oxidized as compared to acid oxidized CNTs. The mechanical properties of the nanocomposites reinforced with the acid oxidized CNT (ACNT and mechanically oxidized CNTs (McCNT were analyzed and relatively higher properties in the nanocomposites reinforced with McCNT were noticed. The less degree of entanglement in the McCNTs was noticed as compared to ACNTs. The dynamic mechanical analysis of the nanocomposites revealed much improved load transfer capability in the McCNT reinforced composites. Further, the rheological properties of the nanocomposites revealed the higher performance of McCNT reinforced composites.

  7. Bio-composites based on polypropylene reinforced with Almond Shells particles: Mechanical and thermal properties

    International Nuclear Information System (INIS)

    Essabir, H.; Nekhlaoui, S.; Malha, M.; Bensalah, M.O.; Arrakhiz, F.Z.; Qaiss, A.; Bouhfid, R.

    2013-01-01

    Highlights: • Almond Shells (ASs) particles have been used as reinforcement in polypropylene matrix. • The SEBS-g-MA has been used to improve the adhesion between matrix and particles. • The mechanical and thermal properties of the composite have been improved by the AS. - Abstract: In this work, Almond Shells (ASs) particles are used as reinforcement in a thermoplastic matrix as polypropylene (PP). Composites containing Almond Shells (ASs) particles with and without compatibilizer (maleic anhydride grafted polypropylene; SEBS-g-MA) for various particle content (5, 10, 15, 20, 25, 30 wt.%) was investigated by means of studying their mechanical, thermal and rheological properties. The composites were prepared in a twin-screw extruder and assessed by means of X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), tensile testing and Dynamic Mechanical Analysis (DMA). Results show a clear improvement in mechanical and rheological properties from the use of Almond Shells particles in the matrix without and with maleic anhydride compatibilizer, corresponding to a gain in Young’s modulus of 56.2% and 35% respectively, at 30 wt.% particle loading. Thermal analysis revealed that incorporation of particle in the composites resulted in increase in the initial thermal decomposition temperatures

  8. Region-specific mechanical properties of the human patella tendon

    DEFF Research Database (Denmark)

    Haraldsson, B T; Aagaard, P; Krogsgaard, M

    2004-01-01

    The present study investigated the mechanical properties of tendon fascicles from the anterior and posterior human patellar tendon. Collagen fascicles from the anterior and posterior human patellar tendon in healthy young men (mean +/- SD, 29.0 +/- 4.6 yr, n = 6) were tested in a mechanical rig...... portion of the tendon, indicating region-specific material properties....

  9. Measurement of material mechanical properties in microforming

    Science.gov (United States)

    Yun, Wang; Xu, Zhenying; Hui, Huang; Zhou, Jianzhong

    2006-02-01

    As the rapid market need of micro-electro-mechanical systems engineering gives it the wide development and application ranging from mobile phones to medical apparatus, the need of metal micro-parts is increasing gradually. Microforming technology challenges the plastic processing technology. The findings have shown that if the grain size of the specimen remains constant, the flow stress changes with the increasing miniaturization, and also the necking elongation and the uniform elongation etc. It is impossible to get the specimen material properties in conventional tensile test machine, especially in the high precision demand. Therefore, one new measurement method for getting the specimen material-mechanical property with high precision is initiated. With this method, coupled with the high speed of Charge Coupled Device (CCD) camera and high precision of Coordinate Measuring Machine (CMM), the elongation and tensile strain in the gauge length are obtained. The elongation, yield stress and other mechanical properties can be calculated from the relationship between the images and CCD camera movement. This measuring method can be extended into other experiments, such as the alignment of the tool and specimen, micro-drawing process.

  10. Characterization of Mechanical Properties of Microbial Biofilms

    Science.gov (United States)

    Callison, Elizabeth; Gose, James; Perlin, Marc; Ceccio, Steven

    2017-11-01

    The physical properties of microbial biofilms grown subject to shear flows determine the form and mechanical characteristics of the biofilm structure, and consequently, the turbulent interactions over and through the biofilm. These biofilms - sometimes referred to as slime - are comprised of microbial cells and extracellular polymeric substance (EPS) matrices that surround the multicellular communities. Some of the EPSs take the form of streamers that tend to oscillate in flows, causing increased turbulent mixing and drag. As the presence of EPS governs the compliance and overall stability of the filamentous streamers, investigation of the mechanical properties of biofilms may also inform efforts to understand hydrodynamic performance of fouled systems. In this study, a mixture of four diatom genera was grown under turbulent shear flow on test panels. The mechanical properties and hydrodynamic performance of the biofilm were investigated using rheology and turbulent flow studies in the Skin-Friction Flow Facility at the University of Michigan. The diatoms in the mixture of algae were identified, and the elastic and viscous moduli were determined from small-amplitude oscillations, while a creep test was used to evaluate the biofilm compliance.

  11. Research on working property and early age mechanical property of self-compacting concrete used in steel-concrete structure

    International Nuclear Information System (INIS)

    Zhao Yongguang

    2013-01-01

    Background: Self-compacting concrete that has good working property is the prerequisite of steel-concrete structure. The early age mechanical property of self-compacting concrete is the important parameter when design steel-concrete structure. Purpose: This paper attempts to research the working property and early age mechanical property of self-compacting concrete. Methods: Test is used to research the working property and early age mechanical property of self-compacting concrete. Results: Self-compacting concrete that could meet the requirement of steel-concrete structure has been mixed and parameters of early age mechanical property of self-compacting concrete which is necessary for design of steel-concrete structure have been presented. Conclusions: Base on the results, this paper can guide the construction of self-compacting concrete in steel-concrete structure and the design and construction of steel-concrete structure. (author)

  12. Mechanical and Thermal Properties of the AH of FRW Universe

    International Nuclear Information System (INIS)

    Yi-Huan, Wei

    2010-01-01

    We calculate the work made out by the apparent horizon (AH) of the Friedmann–Robertson–Walker (FRW) universe and the heat flux through the AH from the first law of thermodynamics. We discuss the mechanical properties of the AH and analyze the universe model for which the mechanical properties can change. Finally, the thermal properties of the AH of FRW universe are discussed

  13. Assessment of some mechanical properties and microstructure of ...

    African Journals Online (AJOL)

    AlMMC and compares the properties of the composites and those of the aluminium 6063 (AA6063) alloy. Periwinkle shells were milled to particle sizes of 75μm and 150μm and used to produce PPS-AlMMC at 1,5,10 and 15wt% filler loadings ...

  14. Investigation of Mechanical Properties and Interfacial Mechanics of Crystalline Nanomaterials

    Science.gov (United States)

    Qin, Qingquan

    Nanowires (NWs) and nanotubes (NTs) are critical building blocks of nanotechnologies. The operation and reliability of these nanomaterials based devices depend on their mechanical properties of the nanomaterials, which is therefore important to accurately measure the mechanical properties. Besides, the NW--substrate interfaces also play a critical role in both mechanical reliability and electrical performance of these nanodevices, especially when the size of the NW is small. In this thesis, we focus on the mechanical properties and interface mechanics of three important one dimensional (1D) nanomaterials: ZnO NWs, Ag NWs and Si NWs. For the size effect study, this thesis presents a systematic experimental investigation on the elastic and failure properties of ZnO NWs under different loading modes: tension and buckling. Both tensile modulus (from tension) and bending modulus (from buckling) were found to increase as the NW diameter decreased from 80 to 20 nm. The elastic modulus also shows loading mode dependent; the bending modulus increases more rapidly than the tensile modulus. The tension experiments showed that fracture strain and strength of ZnO NWs increase as the NW diameter decrease. A resonance testing setup was developed to measure elastic modulus of ZnO NWs to confirm the loading mode dependent effect. A systematic study was conducted on the effect of clamping on resonance frequency and thus measured Young's modulus of NWs via a combined experiment and simulation approach. A simple scaling law was provided as guidelines for future designs to accurate measure elastic modulus of a cantilevered NW using the resonance method. This thesis reports the first quantitative measurement of a full spectrum of mechanical properties of five-fold twinned Ag NWs including Young's modulus, yield strength and ultimate tensile strength. In situ tensile testing of Ag NWs with diameters between 34 and 130 nm was carried out inside a SEM. Young's modulus, yield strength and

  15. [Studies on the mechanical properties of the knee ligament].

    Science.gov (United States)

    Kubotera, D

    1987-04-01

    To study mechanical properties of the knee ligaments, tension tests at various speeds were performed on the knee of a dog with only the collateral ligament. The results showed that the tensile force was greater in high speed than in low speed test. The difference may be caused in a viscous property of the ligament. The mechanical properties of ligaments can therefore be treated as those of viscoelastic materials and expressed by a modified Voigt model consisting of a non-linear spring element and a dash pot component. Observations regarding the ultrastructure of human knee ligaments using an electron scanning microscope revealed wavy bundles of collagen fiber connected with coarse fibers like network running in parallel with the long axis as the main structure. The above structure and properties were considered to be the decisive factors in the mechanical actions of the knee ligament.

  16. Elevated-Temperature Mechanical Properties of Lead-Free Sn-0.7Cu- xSiC Nanocomposite Solders

    Science.gov (United States)

    Mohammadi, A.; Mahmudi, R.

    2018-02-01

    Mechanical properties of Sn-0.7 wt.%Cu lead-free solder alloy reinforced with 0 vol.%, 1 vol.%, 2 vol.%, and 3 vol.% 100-nm SiC particles have been assessed using the shear punch testing technique in the temperature range from 25°C to 125°C. The composite materials were fabricated by the powder metallurgy route by blending, compacting, sintering, and finally extrusion. The 2 vol.% SiC-containing composite showed superior mechanical properties. In all conditions, the shear strength was adversely affected by increasing test temperature, and the 2 vol.% SiC-containing composite showed superior mechanical properties. Depending on the test temperature, the shear yield stress and ultimate shear strength increased, respectively, by 3 MPa to 4 MPa and 4 MPa to 5.5 MPa, in the composite materials. The strength enhancement was mostly attributed to the Orowan particle strengthening mechanism due to the SiC nanoparticles, and to a lesser extent to the coefficient of thermal expansion mismatch between the particles and matrix in the composite solder. A modified shear lag model was used to predict the total strengthening achieved by particle addition, based on the contribution of each of the above mechanisms.

  17. Mechanical properties of the beetle elytron, a biological composite material

    Science.gov (United States)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  18. Superconducting state mechanisms and properties

    CERN Document Server

    Kresin, Vladimir Z; Wolf, Stuart A

    2014-01-01

    'Superconducting State' provides a very detailed theoretical treatment of the key mechanisms of superconductivity, including the current state of the art (phonons, magnons, and plasmons). A very complete description is given of the electron-phonon mechanism responsible for superconductivity in the majority of superconducting systems, and the history of its development, as well as a detailed description of the key experimental techniques used to study the superconducting state and determine the mechanisms. In addition, there are chapters describing the discovery and properties of the key superconducting compounds that are of the most interest for science, and applications including a special chapter on the cuprate superconductors. It provides detailed treatments of some very novel aspects of superconductivity, including multiple bands (gaps), the "pseudogap" state, novel isotope effects beyond BCS, and induced superconductivity.

  19. Enhancement of mechanical properties of epoxy/graphene nanocomposite

    Science.gov (United States)

    Berhanuddin, N. I. C.; Zaman, I.; Rozlan, S. A. M.; Karim, M. A. A.; Manshoor, B.; Khalid, A.; Chan, S. W.; Meng, Q.

    2017-10-01

    Graphene is a novel class of nanofillers possessing outstanding characteristics including most compatible with most polymers, high absolute strength, high aspect ratio and cost effectiveness. In this study, graphene was used to reinforce epoxy as a matrix, to enhance its mechanical properties. Two types of epoxy composite were developed which are epoxy/graphene nanocomposite and epoxy/modified graphene nanocomposite. The fabrication of graphene was going through thermal expansion and sonication process. Chemical modification was only done for modified graphene where 4,4’-Methylene diphenyl diisocyanate (MDI) is used. The mechanical properties of both nanocomposite, such as Young’s modulus and maximum stress were investigated. Three weight percentage were used for this study which are 0.5 wt%, 1.0 wt% and 1.5 wt%. At 0.5 wt%, modified and unmodified shows the highest value compared to neat epoxy, where the value were 8 GPa, 6 GPa and 0.675 GPa, respectively. For maximum stress, neat epoxy showed the best result compared to both nanocomposite due to the changes of material properties when adding the filler into the matrix. Therefore, both nanocomposite increase the mechanical properties of the epoxy, however modification surface of graphene gives better improvement.

  20. Mechanical Properties and Acoustic Emission Properties of Rocks with Different Transverse Scales

    Directory of Open Access Journals (Sweden)

    Xi Yan

    2017-01-01

    Full Text Available Since the stability of engineering rock masses has important practical significance to projects like mining, tunneling, and petroleum engineering, it is necessary to study mechanical properties and stability prediction methods for rocks, cementing materials that are composed of minerals in all shapes and sizes. Rocks will generate acoustic emission during damage failure processes, which is deemed as an effective means of monitoring the stability of coal rocks. In the meantime, actual mining and roadway surrounding rocks tend to have transverse effects; namely, the transverse scale is larger than the length scale. Therefore, it is important to explore mechanical properties and acoustic emission properties of rocks under transverse size effects. Considering the transverse scale effects of rocks, this paper employs the microparticle flow software PFC2D to explore the influence of different aspect ratios on damage mechanics and acoustic emission properties of rocks. The results show that (1 the transverse scale affects uniaxial compression strength of rocks. As the aspect ratio increases, uniaxial compression strength of rocks decreases initially and later increases, showing a V-shape structure and (2 although it affects the maximum hit rate and the strain range of acoustic emission, it has little influence on the period of occurrence. As the transverse scale increases, both damage degree and damage rate of rocks decrease initially and later increase.

  1. Microstructure, mechanical properties and chemical degradation of brazed AISI 316 stainless steel/alumina systems

    International Nuclear Information System (INIS)

    Paiva, O.C.; Barbosa, M.A.

    2008-01-01

    The main aims of the present study are simultaneously to relate the brazing parameters with: (i) the correspondent interfacial microstructure, (ii) the resultant mechanical properties and (iii) the electrochemical degradation behaviour of AISI 316 stainless steel/alumina brazed joints. Filler metals on such as Ag-26.5Cu-3Ti and Ag-34.5Cu-1.5Ti were used to produce the joints. Three different brazing temperatures (850, 900 and 950 deg. C), keeping a constant holding time of 20 min, were tested. The objective was to understand the influence of the brazing temperature on the final microstructure and properties of the joints. The mechanical properties of the metal/ceramic (M/C) joints were assessed from bond strength tests carried out using a shear solicitation loading scheme. The fracture surfaces were studied both morphologically and structurally using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and X-ray diffraction analysis (XRD). The degradation behaviour of the M/C joints was assessed by means of electrochemical techniques. It was found that using a Ag-26.5Cu-3Ti brazing alloy and a brazing temperature of 850 deg. C, produces the best results in terms of bond strength, 234 ± 18 MPa. The mechanical properties obtained could be explained on the basis of the different compounds identified on the fracture surfaces by XRD. On the other hand, the use of the Ag-34.5Cu-1.5Ti brazing alloy and a brazing temperature of 850 deg. C produces the best results in terms of corrosion rates (lower corrosion current density), 0.76 ± 0.21 μA cm -2 . Nevertheless, the joints produced at 850 deg. C using a Ag-26.5Cu-3Ti brazing alloy present the best compromise between mechanical properties and degradation behaviour, 234 ± 18 MPa and 1.26 ± 0.58 μA cm -2 , respectively. The role of Ti diffusion is fundamental in terms of the final value achieved for the M/C bond strength. On the contrary, the Ag and Cu distribution along the brazed interface seem to

  2. Montmorillonite polyaniline nanocomposites: Preparation, characterization and investigation of mechanical properties

    International Nuclear Information System (INIS)

    Soundararajah, Q.Y.; Karunaratne, B.S.B.; Rajapakse, R.M.G.

    2009-01-01

    The interest in clay polymer nanocomposites (CPN) materials, initially developed by researchers at Toyota, has grown dramatically over the last decade. They have attracted great interest, both in industry and in academia, because they often exhibit remarkable improvement in materials' properties when compared with virgin polymer or conventional micro- and macro-composites. These improvements can include high moduli, increased strength and heat resistance, decreased gas permeability and flammability, optical transparency and increased biodegradability of biodegradable polymers. Such enhancement in the properties of nanocomposites occurs mostly due to their unique phase morphology and improved interfacial properties. Because of these enhanced properties they find applications in the fields of electronics, automobile industry, packaging, and construction. This study aims at investigating the mechanical property enhancement of polyaniline (PANI) intercalated with montmorillonite (MMT) clay. The MMT-PANI nanocomposites displayed improved mechanical properties compared to the neat polymer or clay. The enhancement was achieved at low clay content probably due to its exfoliated structure. The increased interfacial areas and improved bond characteristics may attribute to the mechanical property enhancement

  3. In vivo measurement of mechanical properties of human long bone by using sonic sound

    Energy Technology Data Exchange (ETDEWEB)

    Hossain, M. Jayed, E-mail: zed.hossain06@gmail.com; Rahman, M. Moshiur, E-mail: razib-121@yahoo.com; Alam, Morshed [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka 1000 (Bangladesh)

    2016-07-12

    Vibration analysis has evaluated as non-invasive techniques for the in vivo assessment of bone mechanical properties. The relation between the resonant frequencies, long bone geometry and mechanical properties can be obtained by vibration analysis. In vivo measurements were performed on human ulna as a simple beam model with an experimental technique and associated apparatus. The resonant frequency of the ulna was obtained by Fast Fourier Transformation (FFT) analysis of the vibration response of piezoelectric accelerometer. Both elastic modulus and speed of the sound were inferred from the resonant frequency. Measurement error in the improved experimental setup was comparable with the previous work. The in vivo determination of bone elastic response has potential value in screening programs for metabolic bone disease, early detection of osteoporosis and evaluation of skeletal effects of various therapeutic modalities.

  4. Micro-finite-element method to assess elastic properties of trabecular bone at micro- and macroscopic level.

    Science.gov (United States)

    Rieger, R; Auregan, J C; Hoc, T

    2018-03-01

    The objective of the present study is to assess the mechanical behavior of trabecular bone based on microCT imaging and micro-finite-element analysis. In this way two methods are detailed: (i) direct determination of macroscopic elastic property of trabecular bone; (ii) inverse approach to assess mechanical properties of trabecular bone tissue. Thirty-five females and seven males (forty-two subjects) mean aged (±SD) 80±11.7 years from hospitals of Assistance publique-Hôpitaux de Paris (AP-HP) diagnosed with osteoporosis following a femoral neck fracture due to a fall from standing were included in this study. Fractured heads were collected during hip replacement surgery. Standardized bone cores were removed from the femoral head's equator by a trephine in a water bath. MicroCT images acquisition and analysis were performed with CTan ® software and bone volume fraction was then determined. Micro-finite-element simulations were per-formed using Abaqus 6.9-2 ® software in order to determine the macroscopic mechanical behaviour of the trabecular bone. After microCT acquisition, a longitudinal compression test was performed and the experimental macroscopic Young's Modulus was extracted. An inverse approach based on the whole trabecular bone's mechanical response and micro-finite-element analysis was performed to determine microscopic mechanical properties of trabecular bone. In the present study, elasticity of the tissue was shown to be similar to that of healthy tissue but with a lower yield stress. Classical histomorphometric analysis form microCT imaging associated with an inverse micro-finite-element method allowed to assess microscopic mechanical trabecular bone parameters. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  5. Modification of mechanical properties of Si crystal irradiated by Kr-beam

    International Nuclear Information System (INIS)

    Guo, Xiaowei; Momota, Sadao; Nitta, Noriko; Yamaguchi, Takaharu; Sato, Noriyuki; Tokaji, Hideto

    2015-01-01

    Graphical abstract: - Highlights: • Modification of mechanical properties of silicon crystal irradiated by Kr-beam was observed by means of continuous measurements of nano-indentation technique. • Modified mechanical properties show fluence-dependence. • Young's modulus is more sensitive to crystal to amorphous phase transition while hardness is more sensitive to damage induced by ion beam irradiation. • The depth profile of modified mechanical properties have a potential application of determining the longitudinal size of phase transition region induced by nanoindentation. - Abstract: The application of ion-beam irradiation in fabrication of structures with micro-/nanometer scale has achieved striking improvement. However, an inevitable damage results in the change of mechanical properties in irradiated materials. To investigate the relation between mechanical properties and ion-irradiation damages, nanoindentation was performed on crystalline silicon irradiated by Kr-beam with an energy of 240 keV. Modified Young's modulus and nanohardness, provided from the indentation, indicated fluence dependence. Stopping and range of ions in matter (SRIM) calculation, transmission electron microscopy (TEM) observation, and Rutherford backscattering-channeling (RBS-C) measurement were utilized to understand the irradiation effect on mechanical properties. In addition, the longitudinal size of the phase transition region induced by indentation was firstly evaluated based on the depth profile of modified nanohardness

  6. Dependence of Glass Mechanical Properties on Thermal and Pressure History

    DEFF Research Database (Denmark)

    Smedskjær, Morten Mattrup; Bauchy, Mathieu

    Predicting the properties of new glasses prior to manufacturing is a topic attracting great industrial and scientific interest. Mechanical properties are currently of particular interest given the increasing demand for stronger, thinner, and more flexible glasses in recent years. However, as a non......-equilibrium material, the structure and properties of glass depend not only on its composition, but also on its thermal and pressure histories. Here we review our recent findings regarding the thermal and pressure history dependence of indentation-derived mechanical properties of oxide glasses....

  7. DNA origami compliant nanostructures with tunable mechanical properties.

    Science.gov (United States)

    Zhou, Lifeng; Marras, Alexander E; Su, Hai-Jun; Castro, Carlos E

    2014-01-28

    DNA origami enables fabrication of precise nanostructures by programming the self-assembly of DNA. While this approach has been used to make a variety of complex 2D and 3D objects, the mechanical functionality of these structures is limited due to their rigid nature. We explore the fabrication of deformable, or compliant, objects to establish a framework for mechanically functional nanostructures. This compliant design approach is used in macroscopic engineering to make devices including sensors, actuators, and robots. We build compliant nanostructures by utilizing the entropic elasticity of single-stranded DNA (ssDNA) to locally bend bundles of double-stranded DNA into bent geometries whose curvature and mechanical properties can be tuned by controlling the length of ssDNA strands. We demonstrate an ability to achieve a wide range of geometries by adjusting a few strands in the nanostructure design. We further developed a mechanical model to predict both geometry and mechanical properties of our compliant nanostructures that agrees well with experiments. Our results provide a basis for the design of mechanically functional DNA origami devices and materials.

  8. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete

    International Nuclear Information System (INIS)

    Beigi, Morteza H.; Berenjian, Javad; Lotfi Omran, Omid; Sadeghi Nik, Aref; Nikbin, Iman M.

    2013-01-01

    Highlights: • We investigate combine effects of fibers and nanosilica on SCC. • The mechanical, rheological, and durability properties were tested and compared. • Microstructural properties of concrete were assessed using AFM and XRD techniques. • Nanosilica and fibers can improve the mechanical properties and durability of SCC. - Graphical abstract: - Abstract: Previous studies have shown that application of fibers in concrete enhances scratching, flexural and tensile strength. Self-Compacting Concrete (SCC) is a highly flowable and coherent concrete able to self-compact under its own weight. On the other hand, nanosilica particles and artificial pozzolans possessing high efficiency in concrete technology can improve structural properties of cement-based materials. Previous studies have suggested self-compacting and fiber-reinforced concretes for more stable and efficient buildings. Therefore, the present study aimed to evaluate the effects of nanosilica and different concrete reinforcing fibers including steel, polypropylene and glass on the performance of concrete. In this study mechanical (compressive, splitting tensile and flexural strength, toughness and modulus of elasticity), rheological (L-Box, slump flow, T50) and durability (resist chloride ion penetration (RCPT) and water absorption) properties are assessed. In addition, microstructural properties of concrete were assessed using Atomic Force Microscopy (AFM) and X-Ray Diffraction (XRD) techniques. Totally, 40 concrete mixes , labeled as A, B, C and D, with nanosilica contents of 0, 2, 4 and 6 weight percent (wt.%) of cement, respectively and three types of reinforcing fibers (steel: 0.2, 0.3 and 0.5 volume percent (v%) and polypropylene: 0.1, 0.15 and 0.2 v% and glass: 0.15, 0.2 and 0.3 v%) were evaluated. The results of the study showed that the presence of both nanosilica and reinforcing fibers in optimal percentages, can improve the mechanical properties and durability of self

  9. Electro-optical and physic-mechanical properties of colored alicyclic polyimide

    Science.gov (United States)

    Kravtsova, V.; Umerzakova, M.; Korobova, N.; Timoshenkov, S.; Timoshenkov, V.; Orlov, S.; Iskakov, R.; Prikhodko, O.

    2016-09-01

    Main optical, thermal and mechanical properties of new compositions based on alicyclic polyimide and active bright red 6C synthetic dye have been studied. It was shown that the transmission ratio of the new material in the region of 400-900 nm and 2.0 wt.% dye concentration was around 60-70%. Thermal, mechanical and electrical properties of new colored compositions were comparable with the properties of original polyimide.

  10. Mechanical properties of soldered joints of niobium base alloys

    International Nuclear Information System (INIS)

    Grishin, V.L.

    1980-01-01

    Mechanical properties of soldered joints of niobium alloys widely distributed in industry: VN3, VN4, VN5A, VN5AE, VN5AEP etc., 0.6-1.2 mm thick are investigated. It is found out that the usage of zirconium-vanadium, titanium-tantalum solders for welding niobium base alloys permits to obtain soldered joints with satisfactory mechanical properties at elevated temperatures

  11. Fuel cladding mechanical properties for transient analysis

    International Nuclear Information System (INIS)

    Johnson, G.D.; Hunter, C.W.; Hanson, J.E.

    1976-01-01

    Out-of-pile simulated transient tests have been conducted on irradiated fast-reactor fuel pin cladding specimens at heating rates of 10 0 F/s (5.6 0 K/s) and 200 0 F/s (111 0 K/s) to generate mechanical property information for use in describing cladding behavior during off-normal events. Mechanical property data were then analyzed, applying the Larson-Miller Parameter to the effects of heating rate and neutron fluence. Data from simulated transient tests on TREAT-tested fuel pins demonstrate that Plant Protective System termination of 3$/s transients prevents significant damage to cladding. The breach opening produced during simulated transient testing is shown to decrease in size with increasing neutron fluence

  12. Characterization of porosity in support of mechanical property analysis

    International Nuclear Information System (INIS)

    Price, R.H.; Martin, R.J. III; Boyd, P.J.

    1993-01-01

    The general applicability of laboratory data for engineering purposes is a prime concern for the design and licensing of a potential repository of high level nuclear waste at Yucca Mountain. In order for the results of experiments to be applicable to the repository scale, the data must be scaled to in situ size and conditions. Previous laboratory investigations of tuff have shown that porosity has a dominant, general effect on mechanical properties. As a result, it is very important for the interpretation of mechanical property data that porosity is measured on each sampled test. Porosity alone, however, does not address all of the issues important to mechanical behavior. Variability in size and distribution of pore space produces significantly different mechanical properties. A nondestructive technique for characterizing the internal structure of the sample prior to testing is being developed and the results are being analyzed. The information obtained from this technique can help in both qualitative and quantitative interpretation of test results

  13. Simple display system of mechanical properties of cells and their dispersion.

    Directory of Open Access Journals (Sweden)

    Yuji Shimizu

    Full Text Available The mechanical properties of cells are unique indicators of their states and functions. Though, it is difficult to recognize the degrees of mechanical properties, due to small size of the cell and broad distribution of the mechanical properties. Here, we developed a simple virtual reality system for presenting the mechanical properties of cells and their dispersion using a haptic device and a PC. This system simulates atomic force microscopy (AFM nanoindentation experiments for floating cells in virtual environments. An operator can virtually position the AFM spherical probe over a round cell with the haptic handle on the PC monitor and feel the force interaction. The Young's modulus of mesenchymal stem cells and HEK293 cells in the floating state was measured by AFM. The distribution of the Young's modulus of these cells was broad, and the distribution complied with a log-normal pattern. To represent the mechanical properties together with the cell variance, we used log-normal distribution-dependent random number determined by the mode and variance values of the Young's modulus of these cells. The represented Young's modulus was determined for each touching event of the probe surface and the cell object, and the haptic device-generating force was calculated using a Hertz model corresponding to the indentation depth and the fixed Young's modulus value. Using this system, we can feel the mechanical properties and their dispersion in each cell type in real time. This system will help us not only recognize the degrees of mechanical properties of diverse cells but also share them with others.

  14. Rhenium Mechanical Properties and Joining Technology

    Science.gov (United States)

    Reed, Brian D.; Biaglow, James A.

    1996-01-01

    Iridium-coated rhenium (Ir/Re) provides thermal margin for high performance and long life radiation cooled rockets. Two issues that have arisen in the development of flight Ir/Re engines are the sparsity of rhenium (Re) mechanical property data (particularly at high temperatures) required for engineering design, and the inability to directly electron beam weld Re chambers to C103 nozzle skirts. To address these issues, a Re mechanical property database is being established and techniques for creating Re/C103 transition joints are being investigated. This paper discusses the tensile testing results of powder metallurgy Re samples at temperatures from 1370 to 2090 C. Also discussed is the evaluation of Re/C103 transition pieces joined by both, explosive and diffusion bonding. Finally, the evaluation of full size Re transition pieces, joined by inertia welding, as well as explosive and diffusion bonding, is detailed.

  15. Computer simulations of the mechanical properties of metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob; Vegge, Tejs

    1999-01-01

    Atomic-scale computer simulations can be used to gain a better understanding of the mechanical properties of materials. In this paper we demonstrate how this can be done in the case of nanocrystalline copper, and give a brief overview of how simulations may be extended to larger length scales....... Nanocrystline metals are metals with grain sizes in the nanometre range, they have a number of technologically interesting properties such as much increased hardness and yield strength. Our simulations show that the deformation mechanisms are different in these materials than in coarse-grained materials...

  16. Mechanical Properties and Durability of CNT Cement Composites

    Directory of Open Access Journals (Sweden)

    María del Carmen Camacho

    2014-02-01

    Full Text Available In the present paper, changes in mechanical properties of Portland cement-based mortars due to the addition of carbon nanotubes (CNT and corrosion of embedded steel rebars in CNT cement pastes are reported. Bending strength, compression strength, porosity and density of mortars were determined and related to the CNT dosages. CNT cement paste specimens were exposed to carbonation and chloride attacks, and results on steel corrosion rate tests were related to CNT dosages. The increase in CNT content implies no significant variations of mechanical properties but higher steel corrosion intensities were observed.

  17. Preparation and Mechanical Properties of Aligned Discontinuous Carbon Fiber Composites

    OpenAIRE

    DENG Hua; GAO Junpeng; BAO Jianwen

    2018-01-01

    Aligned discontinuous carbon fiber composites were fabricated from aligned discontinuous carbon fiber prepreg, which was prepared from continuous carbon fiber prepreg via mechanical high-frequency cutting. The internal quality and mechanical properties were characterized and compared with continuous carbon fiber composites. The results show that the internal quality of the aligned discontinuous carbon fiber composites is fine and the mechanical properties have high retention rate after the fi...

  18. Swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) hydrogels.

    Science.gov (United States)

    Suzuki, Atsushi; Sasaki, Saori

    2015-12-01

    Physically crosslinked poly(vinyl alcohol) gels are versatile biomaterials due to their excellent biocompatibility. In the past decades, physically crosslinked poly(vinyl alcohol) and poly(vinyl alcohol)-based hydrogels have been extensively studied for biomedical applications. However, these materials have not yet been implemented due to their mechanical strength. Physically crosslinked poly(vinyl alcohol) gels consist of a swollen amorphous network of poly(vinyl alcohol) physically crosslinked by microcrystallites. Although the mechanical properties can be improved to some extent by controlling the distribution of microcrystallites on the nano- and micro-scales, enhancing the mechanical properties while maintaining high water content remains very difficult. It may be technologically impossible to significantly improve the mechanical properties while keeping the gel's high water absorbance ability using conventional fabrication methods. Physical and chemical understandings of the swelling and mechanical properties of physically crosslinked poly(vinyl alcohol) gels are considered here; some promising strategies for their practical applications are presented. This review focuses more on the recent studies on swelling and mechanical properties of poly(vinyl alcohol) hydrogels, prepared using only poly(vinyl alcohol) and pure water with no other chemicals, as potential biomedical materials. © IMechE 2015.

  19. Mechanical properties of roll extruded nuclear reactor piping

    International Nuclear Information System (INIS)

    Steichen, J.M.; Knecht, R.L.

    1975-01-01

    The elevated temperature mechanical properties of large diameter (28 inches) seamless pipe produced by roll extrusion for use as primary piping for sodium coolant in the Fast Flux Test Facility (FFTF) have been characterized. The three heats of Type 316H stainless steel piping material used exhibited consistent mechanical properties and chemical compositions. Tensile and creep-rupture properties exceeded values on which the allowable stresses for ASME Code Case 1592 on Nuclear Components in Elevated Temperature Service were based. Tensile strength and ductility were essentially unchanged by aging in static sodium at 1050 0 F for times to 10,000 hours. High strain rate tensile tests showed that tensile properties were insensitive to strain rate at temperatures to 900 0 F and that for temperatures of 1050 0 F and above both strength and ductility significantly increased with increasing strain rate. Fatigue-crack propagation properties were comparable to results obtained on plate material and no differences in crack propagation were found between axial and circumferential orientations. (U.S.)

  20. Mechanical properties of canine osteosarcoma-affected antebrachia.

    Science.gov (United States)

    Steffey, Michele A; Garcia, Tanya C; Daniel, Leticia; Zwingenberger, Allison L; Stover, Susan M

    2017-05-01

    To determine the influence of neoplasia on the biomechanical properties of canine antebrachia. Ex vivo biomechanical study. Osteosarcoma (OSA)-affected canine antebrachia (n = 12) and unaffected canine antebrachia (n = 9). Antebrachia were compressed in axial loading until failure. A load-deformation curve was used to acquire the structural mechanical properties of neoplastic and unaffected specimens. Structural properties and properties normalized by body weight (BW) and radius length were compared using analysis of variance (ANOVA). Modes of failure were compared descriptively. Neoplastic antebrachia fractured at, or adjacent to, the OSA in the distal radial diaphysis. Unaffected antebrachia failed via mid-diaphyseal radial fractures with a transverse cranial component and an oblique caudal component. Structural mechanical properties were more variable in neoplastic antebrachia than unaffected antebrachia, which was partially attributable to differences in bone geometry related to dog size. When normalized by dog BW and radial length, strength, stiffness, and energy to yield and failure, were lower in neoplastic antebrachia than in unaffected antebrachia. OSA of the distal radial metaphysis in dogs presented for limb amputation markedly compromises the structural integrity of affected antebrachia. However, biomechanical properties of affected bones was sufficient for weight-bearing, as none of the neoplastic antebrachia fractured before amputation. The behavior of tumor invaded bone under cyclic loading warrants further investigations to evaluate the viability of in situ therapies for bone tumors in dogs. © 2017 The American College of Veterinary Surgeons.

  1. Correlation between the mechanical and histological properties of liver tissue.

    Science.gov (United States)

    Yarpuzlu, Berkay; Ayyildiz, Mehmet; Tok, Olgu Enis; Aktas, Ranan Gulhan; Basdogan, Cagatay

    2014-01-01

    In order to gain further insight into the mechanisms of tissue damage during the progression of liver diseases as well as the liver preservation for transplantation, an improved understanding of the relation between the mechanical and histological properties of liver is necessary. We suggest that this relation can only be established truly if the changes in the states of those properties are investigated dynamically as a function of post mortem time. In this regard, we first perform mechanical characterization experiments on three bovine livers to investigate the changes in gross mechanical properties (stiffness, viscosity, and fracture toughness) for the preservation periods of 5, 11, 17, 29, 41 and 53h after harvesting. Then, the histological examination is performed on the samples taken from the same livers to investigate the changes in apoptotic cell count, collagen accumulation, sinusoidal dilatation, and glycogen deposition as a function of the same preservation periods. Finally, the correlation between the mechanical and histological properties is investigated via the Spearman's Rank-Order Correlation method. The results of our study show that stiffness, viscosity, and fracture toughness of bovine liver increase as the preservation period is increased. These macroscopic changes are very strongly correlated with the increase in collagen accumulation and decrease in deposited glycogen level at the microscopic level. Also, we observe that the largest changes in mechanical and histological properties occur after the first 11-17h of preservation. © 2013 Elsevier Ltd. All rights reserved.

  2. Mechanical properties of flexible knitted composites

    NARCIS (Netherlands)

    Haan, de J.; Peijs, A.A.J.M.

    1996-01-01

    This study investigates the influence of the matrix material and the degree of prestretch of a knitted fibre structure on the mechanical properties of knitted composites with low fibre volume fractions. By embedding a flexible textile structure in an elastomeric matrix, composite materials are

  3. Modeling mechanical properties of cast aluminum alloy using artificial neural network

    International Nuclear Information System (INIS)

    Jokhio, M.H.; Panhwar, M.I.

    2009-01-01

    Modeling is widely used to investigate the mechanical properties of engineering materials due to increasing demand of low cost and high strength to weight ratio for many engineering applications. The aluminum casting alloys are cost competitive material and possess the desired properties. The mechanical properties largely depend upon composition of alloys and their processing method. Alloy design involves controlling mechanical properties via optimization of the composition and processing parameters. For optimization the possible root is empirical modeling and its more refined version is the analysis of the wide range of data using ANN (Artificial Neural Networks) modeling. The modeling of mechanical properties of the aluminum alloys are the main objective of present work. For this purpose, some data were collected and experimentally prepared using conventional casting method. A MLP (Multilayer Perceptron) network was developed, which is trained by using the error back propagation algorithm. (author)

  4. Examination of the Thermo-mechanical Properties of E-Glass/Carbon Composites

    Directory of Open Access Journals (Sweden)

    Hande Sezgin

    2017-12-01

    Full Text Available Eight-ply E-glass, carbon and E-glass/carbon fabric-reinforced polyester based hybrid composites were manufactured in this study. A vacuum infusion system was used as the production method. Dynamic mechanical analysis, thermogravimetric analysis and differential scanning calorimetry analysis were conducted to examine the thermo-mechanical properties of composite samples. The effect of reinforcement type and different stacking sequences of fabric plies on the thermo-mechanical properties of composite samples were also investigated. Results showed that the type and alignment of reinforcement material has a signifi cant effect on the dynamic mechanical properties of composite samples.

  5. Radiation Improved Mechanical and Thermal Property of PP/HDPE

    International Nuclear Information System (INIS)

    Chaisupaditsin, M.; Thammit, C.; Techakiatkul, C.

    1998-01-01

    The mechanical properties, thermal properties and gel contents of PP-irradiated HDPE blends were studied. HDPE was gamma irradiated in the dose range of 10-30 kGy. The ratios of polymer blends of 30PP:70HDPE was mixed by a twin screw extruder at speed of 50 rpm. Irradiated HDPE with 30 kGy showed the highest gel contents. The blends ratio of 30PP:70HDPE (30 kGy) shows better heat resistance than the blends with non-irradiated HDPE. With increasing the radiation doses, the mechanical properties of the blends were improved

  6. Unique microstructure and excellent mechanical properties of ADI

    Directory of Open Access Journals (Sweden)

    Jincheng Liu

    2006-11-01

    Full Text Available Amongst the cast iron family, ADI has a unique microstructure and an excellent, optimised combination of mechanical properties. The main microstructure of ADI is ausferrite, which is a mixture ofextremely fine acicular ferrite and stable, high carbon austenite. There are two types of austenite in ADI:(1 the coarser and more equiaxed blocks of austenite between non-parallel acicular structures, which exist mainly in the last solidified area, and (2 the thin films of ustenite between the individual ferriteplatelets in the acicular structure. It is this unique microstructure, which gives ADI its excellent static and dynamic properties, and good low temperature impact toughness. The effect of microstructure on the mechanical properties is explained in more detail by examining the microstructure at the atomic scale. Considering the nanometer grain sizes, the unique microstructure, the excellent mechanical properties,good castability, (which enables near net shape components to be produced economically and in large volumes, and the fact that it can be 100% recycled, it is not overemphasized to call ADI a high-tech,nanometer and “green” material. ADI still has the potential to be further improved and its production and the number of applications for ADI will continue to grow, driven by the resultant cost savings over alternative materials.

  7. Assessment of the viscoelastic mechanical properties of polycarbonate urethane for medical devices.

    Science.gov (United States)

    Beckmann, Agnes; Heider, Yousef; Stoffel, Marcus; Markert, Bernd

    2018-06-01

    The underlying research work introduces a study of the mechanical properties of polycarbonate urethane (PCU), used in the construction of various medical devices. This comprises the discussion of a suitable material model, the application of elemental experiments to identify the related parameters and the numerical simulation of the applied experiments in order to calibrate and validate the mathematical model. In particular, the model of choice for the simulation of PCU response is the non-linear viscoelastic Bergström-Boyce material model, applied in the finite-element (FE) package Abaqus®. For the parameter identification, uniaxial tension and unconfined compression tests under in-laboratory physiological conditions were carried out. The geometry of the samples together with the applied loadings were simulated in Abaqus®, to insure the suitability of the modelling approach. The obtained parameters show a very good agreement between the numerical and the experimental results. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. Effect of thermal ageing on mechanical properties of a high-strength ODS alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hoon; Kim, Sung Hwan; Jang, Chang Heui [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Kim, Tae Kyu [Nuclear Materials DivisionKorea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    A new high-strength ODS alloy, ARROS, was recently developed for the application as the cladding material of a Sodium-cooled fast reactor (SFR). To assess the long-term integrity under thermal ageing, ARROS was thermally aged in air at 650°C for 1000 h. The degree of thermal ageing was assessed by mechanical tests such as uniaxial tensile, hardness, and small punch tests at from room temperature to 650°C. Tensile strength was slightly decreased but elongation, hardness, and small punch energy were hardly changed at all test temperatures for the specimen aged at 650°C for 1000 h. However, the variation in mechanical properties such as hardness and small punch energy increased after thermal ageing. Using the test results, the correlation between tensile strength and maximum small punch load was established.

  9. Effects of surface atomistic modification on mechanical properties of gold nanowires

    International Nuclear Information System (INIS)

    Sun, Xiao-Yu; Xu, Yuanjie; Wang, Gang-Feng; Gu, Yuantong; Feng, Xi-Qiao

    2015-01-01

    Highlights: • Molecular dynamics simulations of surface modification effect of Au nanowires. • Surface modification can greatly affect the mechanical properties of nanowires. • Core–shell model is used to elucidate the effect of residual surface stress. - Abstract: Modulation of the physical and mechanical properties of nanowires is a challenging issue for their technological applications. In this paper, we investigate the effects of surface modification on the mechanical properties of gold nanowires by performing molecular dynamics simulations. It is found that by modifying a small density of silver atoms to the surface of a gold nanowire, the residual surface stress state can be altered, rendering a great improvement of its plastic yield strength. This finding is in good agreement with experimental measurements. The underlying physical mechanisms are analyzed by a core–shell nanowire model. The results are helpful for the design and optimization of advanced nanomaterial with superior mechanical properties

  10. The Determination of Some Mechanical Properties of Scheffe's ...

    African Journals Online (AJOL)

    The work determined some mechanical properties of fresh and matured concrete. These properties include Slump, Compressive Strength, Static modulus of elasticity and Modulus of rigidity. It applied Scheffe's optimization theory to determine the ratio of the combined constituents of the concrete mix. The results showed that ...

  11. Mechanical properties of irradiated materials

    International Nuclear Information System (INIS)

    Robertson, I.M.; Robach, J.; Wirth, B.

    2001-01-01

    The effect of irradiation on the mechanical properties of metals is considered with particular attention being paid to the development of defect-free channels following uniaxial tensile loading. The in situ transmission electron microscope deformation technique is coupled with dislocation dynamic computer simulations to reveal the fundamental processes governing the elimination of defects by glissile dislocations. The observations of preliminary experiments are reported.(author)

  12. Strengthening mechanisms and mechanical properties of high interstitial stainless steel for drill collar and its corrosion resistance

    Science.gov (United States)

    Lee, Eunkyung

    Two types (CN66, CN71) of high interstitial stainless steels (HISSs) were investigated for down-hole application in sour gas well environments. Experiments were designed to identify factors that have a significant effect on mechanical properties. The three factors examined in the study were carbon + nitrogen content (0.66 or 0.71 mass %), cooling rate in quenching (air or water), and heat treatment time (2 or 4 hours). The results showed that the cooling rate, C+N content, and the two-factor interaction of these variables have a significant effect on the mechanical properties of HISSs. Based on the statistical analysis results on mechanical properties, extensive analyses were undertaken to understand the strengthening mechanisms of HISSs. Microstructure analysis revealed that a pearlite phase with a high carbide and/or nitride content is dissolved in the matrix by heat treatment at 1,200 ºC which is considered the dissolution to increase the concentration of interstitial elements in steels. The distribution of elements in HISSs was investigated by quantitative mapping using EPMA, which showed that the high carbon concentration (carbide/cementite) area was decreased by increases in both the cooling rate and C+N content. The ferrite volume fraction of each specimen is increased by an increase in cooling rate, because there is insufficient time to form austenite from retained ferrite. The lattice expansion of HISS was investigated by the calculation of lattice parameters under various conditions, and these investigations confirm the solid solution strengthening effect on HISSs. CN66 with heat treatment at fast cooling has the highest wear resistance; a finding that was consistent with hardening mechanisms that occur due to an increased ferrite volume fraction. In addition, precipitates on the surface and the chemical bonding of chromium were investigated. As the amount of CrN bonding increased, the wear resistance also increased. This study also assessed the

  13. PVA/Polysaccharides Blended Films: Mechanical Properties

    OpenAIRE

    Silva, Fábio E. F.; Di-Medeiros, Maria Carolina B.; Batista, Karla A.; Fernandes, Kátia F.

    2013-01-01

    Blends of polyvinyl alcohol (PVA) and angico gum (AG) and/or cashew gum (CG) were used to produce films by casting method. Morphological and mechanical properties of these films were studied and compared to the properties of a commercial collagen membrane of bovine origin (MBO). The films presented thickness varying from 70 to 140 μm (PVA/AG) and 140 to 200 μm (PVA/CG). Macroscopic analysis showed that a PVA/CG film was very similar to MBO regarding the color and transparency. The higher valu...

  14. Chitosan fibers with improved biological and mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Albanna, Mohammad Z; Bou-Akl, Therese H; Blowytsky, Oksana; Walters, Henry L; Matthew, Howard W T

    2013-04-01

    The low mechanical properties of hydrogel materials such as chitosan hinder their broad utility for tissue engineering applications. Previous research efforts improved the mechanical properties of chitosan fiber through chemical and physical modifications; however, unfavorable toxicity effects on cells were reported. In this paper, we report the preparation of chitosan fibers with improved mechanical and biocompatibility properties. The structure-property relationships of extruded chitosan fibers were explored by varying acetic acid (AA) concentration, ammonia concentration, annealing temperature and degree of heparin crosslinking. Results showed that optimizing AA concentration to 2vol% improved fiber strength and stiffness by 2-fold. Extruding chitosan solution into 25wt% of ammonia solution reduced fiber diameters and improved fiber strength by 2-fold and stiffness by 3-fold, due to an increase in crystallinity as confirmed by XRD. Fiber annealing further reduced fiber diameter and improved fiber strength and stiffness as temperature increased. Chitosan fibers crosslinked with heparin had increased diameter but lower strength and stiffness properties and higher breaking strain values. When individual parameters were combined, further improvement in fiber mechanical properties was achieved. All mechanically improved fibers and heparin crosslinked fibers promoted valvular interstitial cells (VIC) attachment and growth over 10 day cultures. Our results demonstrate the ability to substantially improve the mechanical properties of chitosan fibers without adversely affecting their biological properties. The investigated treatments offer numerous advantages over previous physical/chemical modifications and thus are expected to expand the utility of chitosan fibers with tunable mechanical properties in various tissue engineering applications. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Microstructure and Mechanical Properties of a Laser Treated Al Alloy

    NARCIS (Netherlands)

    Noordhuis, J.; Hosson, J.Th.M. De

    An Al-Cu-Mg alloy, Al 2024-T3, was exposed to laser treatments at various scan velocities. In this paper the microstructural features and mechanical properties are reported. As far as the mechanical property is concerned a striking observation is a minimum in the hardness value at a laser scan

  16. Utilizing a reference material for assessing absolute tumor mechanical properties in modality independent elastography

    Science.gov (United States)

    Kim, Dong Kyu; Weis, Jared A.; Yankeelov, Thomas E.; Miga, Michael I.

    2014-03-01

    There is currently no reliable method for early characterization of breast cancer response to neoadjuvant chemotherapy (NAC) [1,2]. Given that disruption of normal structural architecture occurs in cancer-bearing tissue, we hypothesize that further structural changes occur in response to NAC. Consequently, we are investigating the use of modalityindependent elastography (MIE) [3-8] as a method for monitoring mechanical integrity to predict long term outcomes in NAC. Recently, we have utilized a Demons non-rigid image registration method that allows 3D elasticity reconstruction in abnormal tissue geometries, making it particularly amenable to the evaluation of breast cancer mechanical properties. While past work has reflected relative elasticity contrast ratios [3], this study improves upon that work by utilizing a known stiffness reference material within the reconstruction framework such that a stiffness map becomes an absolute measure. To test, a polyvinyl alcohol (PVA) cryogel phantom and a silicone rubber mock mouse tumor phantom were constructed with varying mechanical stiffness. Results showed that an absolute measure of stiffness could be obtained based on a reference value. This reference technique demonstrates the ability to generate accurate measurements of absolute stiffness to characterize response to NAC. These results support that `referenced MIE' has the potential to reliably differentiate absolute tumor stiffness with significant contrast from that of surrounding tissue. The use of referenced MIE to obtain absolute quantification of biomarkers is also translatable across length scales such that the characterization method is mechanics-consistent at the small animal and human application.

  17. Mechanical Properties of a Library of Low-Band-Gap Polymers

    DEFF Research Database (Denmark)

    Roth, Bérenger; Savagatrup, Suchol; de los Santos, Nathaniel V.

    2016-01-01

    The mechanical properties of low-band-gap polymers are important for the long-term survivability of roll to-roll processed organic electronic devices. Such devices, e.g., solar cells, displays, and thin-film transistors, must survive the rigors of roll-to-roll coating and also thermal...... of low-band-gap polymers to better understand the connection between molecular structures and mechanical properties in order to design conjugated polymers that permit mechanical robustness and even extreme deformability. While one of the principal conclusions of these experiments is that the structure...... of an isolated molecule only partially determines the mechanical properties another important codeterminant is the packing structure some general trends can be identified. (1) Fused rings tend to increase the modulus and decrease the ductility. (2) Branched side chains have the opposite effect. Despite...

  18. Dynamic Mechanical Properties of PMN/CNFs/EP Composites

    International Nuclear Information System (INIS)

    Shi Minxian; Huang Zhixiong; Qin Yan

    2011-01-01

    In this research, piezoelectric ceramic PMN(lead magnesium niobate-lead zirconate-lead titanate)/carbon nano-fibers(CNFs)/epoxy resin(EP) ccomposites were prepared and the dynamic mechanical properties and damping mechanism of PMN/CNFs/EP composites were investigated. The addition of CNFs into PMN/EP composite results in decrease of volume resistivity of the composite. When the concentration of CNFs is 0.6% weight of epoxy resin the volume resistivity of PMN/CNFs/EP composite is about 10 8 Ω·m. Dynamic mechanical analysis indicates that the loss factor, loss area, and damping temperature range of PMN/CNFs/EP composites increase with the CNFs content increasing till to 0.6% of weight of epoxy resin. When the CNFs content is more than 0.6% the damping properties of composites decrease oppositely. In PMN/CNFs/EP composites, the CNFs content 0.6% and the volume resistivity of PMN/CNFs/EP composites about 10 8 Ω·m just satisfy the practicing condition of piezo-damping, so the composites show optimal damping property.

  19. Long term mechanical properties of alkali activated slag

    Science.gov (United States)

    Zhu, J.; Zheng, W. Z.; Xu, Z. Z.; Leng, Y. F.; Qin, C. Z.

    2018-01-01

    This article reports a study on the microstructural and long-term mechanical properties of the alkali activated slag up to 180 days, and cement paste is studied as the comparison. The mechanical properties including compressive strength, flexural strength, axis tensile strength and splitting tensile strength are analyzed. The results showed that the alkali activated slag had higher compressive and tensile strength, Slag is activated by potassium silicate (K2SiO3) and sodium hydroxide (NaOH) solutions for attaining silicate modulus of 1 using 12 potassium silicate and 5.35% sodium hydroxide. The volume dosage of water is 35% and 42%. The results indicate that alkali activated slag is a kind of rapid hardening and early strength cementitious material with excellent long-term mechanical properties. Single row of holes block compressive strength, single-hole block compressive strength and standard solid brick compressive strength basically meet engineering requirements. The microstructures of alkali activated slag are studied by X-ray diffraction (XRD). The hydration products of alkali-activated slag are assured as hydrated calcium silicate and hydrated calcium aluminate.

  20. Development the Mechanical Properties of (AL-Li-Cu Alloy

    Directory of Open Access Journals (Sweden)

    Ihsan Kadhom AlNaimi

    2017-11-01

    Full Text Available The aim of this research is to develop mechanical properties of a new aluminium-lithium-copper alloy. This alloy prepared under control atmosphere by casting in a permanent metal mould. The microstructure was examined and mechanical properties were tested before and after heat treatment to study the influence of heat treatment on its mechanical properties including; modulus of elasticity, tensile strength, impact, and fatigue. The results showed that the modulus of elasticity of the prepared alloy is higher than standard alloy about 2%. While the alloy that heat treated for 6 h and cooled in water, then showed a higher ultimate tensile stress comparing with as-cast alloy. The homogenous heat treatment gives best fatigue behaviour comparing with as-cast and other heat treatment alloys. Also, the impact test illustrates that the homogeneous heat treatment alloy gives the highest value.

  1. Effects of heat treatment on mechanical properties of h13 steel

    Science.gov (United States)

    Guanghua, Yan; Xinmin, Huang; Yanqing, Wang; Xingguo, Qin; Ming, Yang; Zuoming, Chu; Kang, Jin

    2010-12-01

    Heat treatment on the mechanical properties of H13 hot working die steel for die casting is discussed. The H13 steel for die casting was treated by different temperatures of vacuum quenching, tempering, and secondary tempering to investigate its mechanical properties. Strength, plasticity, hardness, and impact toughness of the H13 hot working die steel for die casting were measured. Microstructure, grain size, and carbide particle size after heat treatment have a great impact on the mechanical properties of H13 hot working die steel for die casting. The microstructure of the H13 was analyzed by scanning electron microscopy (SEM) and by a metallographic microscope. It is found that H13 exhibits excellent mechanical properties after vacuum quenching at 1050°C and twice tempering at 600°C.

  2. Assessment of the mechanics of a tissue-engineered rat trachea in an image-processing environment.

    Science.gov (United States)

    Silva, Thiago Henrique Gomes da; Pazetti, Rogerio; Aoki, Fabio Gava; Cardoso, Paulo Francisco Guerreiro; Valenga, Marcelo Henrique; Deffune, Elenice; Evaristo, Thaiane; Pêgo-Fernandes, Paulo Manuel; Moriya, Henrique Takachi

    2014-07-01

    Despite the recent success regarding the transplantation of tissue-engineered airways, the mechanical properties of these grafts are not well understood. Mechanical assessment of a tissue-engineered airway graft before implantation may be used in the future as a predictor of function. The aim of this preliminary work was to develop a noninvasive image-processing environment for the assessment of airway mechanics. Decellularized, recellularized and normal tracheas (groups DECEL, RECEL, and CONTROL, respectively) immersed in Krebs-Henseleit solution were ventilated by a small-animal ventilator connected to a Fleisch pneumotachograph and two pressure transducers (differential and gauge). A camera connected to a stereomicroscope captured images of the pulsation of the trachea before instillation of saline solution and after instillation of Krebs-Henseleit solution, followed by instillation with Krebs-Henseleit with methacholine 0.1 M (protocols A, K and KMCh, respectively). The data were post-processed with computer software and statistical comparisons between groups and protocols were performed. There were statistically significant variations in the image measurements of the medial region of the trachea between the groups (two-way analysis of variance [ANOVA], pmechanical assessment of engineered tracheal grafts that will enable evaluation of the viscoelastic properties of neo-tracheas prior to transplantation.

  3. Determination of Some Mechanical Properties of Almond Seed ...

    African Journals Online (AJOL)

    Akorede

    I. INTRODUCTION. Information on mechanical properties of agricultural products as a function of moisture content is needed in the design and adjustment of machines used during harvest, separation, cleaning, handling and storage. It is also used in processing these agricultural materials into food. The properties useful for ...

  4. Measuring Mechanical Properties Of Optical Glasses

    Science.gov (United States)

    Tucker, Dennis S.; Nichols, Ronald L.

    1989-01-01

    Report discusses mechanical tests measuring parameters of strength and fracture mechanics of optical glasses. To obtain required tables of mechanical properties of each glass of interest, both initial-strength and delayed-fracture techniques used. Modulus of rupture measured by well-known four-point bending method. Initial bending strength measured by lesser-known double-ring method, in which disk of glass supported on one face near edge by larger ring and pressed on its other face by smaller concentric ring. Method maximizes stress near center, making it more likely specimen fractures there, and thereby suppresses edge effects. Data from tests used to predict reliabilities and lifetimes of glass optical components of several proposed spaceborne instruments.

  5. Processing and properties of mechanically alloyed sintered steels with hard inclusions

    International Nuclear Information System (INIS)

    Gutsfeld, C.

    1991-10-01

    The aim of this work was the development of mechanically alloyed sintered steels with inert hard inclusions and their characterisation concerning the mechanical properties and the sliding wear behaviour. For this material concept the hard materials NbC, TiC, TiN and Al 2 O 3 were chosen with volume contents upto 20%. Mechanical alloying of the raw powders is a necessary prerequisit for an extreme fine and homogeneous microstructure and good mechanical and wear properties. Through a connecting powder annealing a conventional powder metallurgical processing with cold pressing and sintering is possible. For the consolidation pressureless liquid phase sintering initiated through phosphorus contents of 0,6% is suitable. Because of the strong hampering of grain growth through the included hard particles sintering densities upto 99% TD are possible with extreme fine microstructures. The mechanical properties can be varied in wide ranges. So tensile strengths of 1150 MPa, elongations at fracture of 17%, hardness of over 800 HV and fatigue strengths of 370 MPa have been reached. Throughout HIP or sinter forging the mechanical properties can be improved furthermore. (orig.) [de

  6. Modeling of mechanical properties in alpha/beta-titanium alloys

    Science.gov (United States)

    Kar, Sujoy Kumar

    2005-11-01

    The accelerated insertion of titanium alloys in component application requires the development of predictive capabilities for various aspects of their behavior, for example, phase stability, microstructural evolution and property-microstructure relationships over a wide range of length and time scales. In this presentation some navel aspects of property-microstructure relationships and microstructural evolution in alpha/beta Ti alloys will be discussed. Neural Network (NN) Models based on a Bayesian framework have been developed to predict the mechanical properties of alpha/beta Ti alloys. The development of such rules-based model requires the population of extensive databases, which in the present case are microstructurally-based. The steps involved in database development include producing controlled variations of the microstructure using novel approaches to heat-treatments, the use of standardized stereology protocols to characterize and quantify microstructural features rapidly, and mechanical testing of the heat-treated specimens. These databases have been used to train and test NN Models for prediction of mechanical properties. In addition, these models have been used to identify the influence of individual microstructural features on the mechanical properties, consequently guiding the efforts towards development of more robust mechanistically based models. In order to understand the property-microstructure relationships, a detailed understanding of microstructure evolution is imperative. The crystallography of the microstructure developing as a result of the solid-state beta → beta+alpha transformation has been studied in detail by employing Scanning Electron Microscopy (SEM), Orientation Imaging Microscopy (in a high resolution SEM), site-specific TEM sample preparation using focused ion beam, and TEM based techniques. The influence of variant selection on the evolution of microstructure will be specifically addressed.

  7. Mechanical properties and corrosion behaviour of MIG welded 5083 aluminium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Durmus, Huelya [Celal Bayar Univ., Turgutlu-Manisa (Turkey)

    2011-07-01

    For this study 5083 Aluminium alloy plates, as used in automobiles and watercraft, were experimentally MIG welded. The plates were joined with different wires and at various currents. The effects of welding with different parameters on the mechanical and corrosion properties were investigated. The corrosion behaviour of the MIG welded 5083 Aluminium base material was also investigated. The effects of the chemical composition of the filler material on the mechanical properties were examined by metallographic inspection and tensile testing. By EDS and XRD analyses of specimens it turned out that different structures in the weld metal (Cu3Si) affect its mechanical properties. The mechanical properties of the specimens welded with 5356 filler metal were found as quite well improved as compared to those specimens welded with 4043 and 5183 filler material. The results of the metallographic analysis, and mechanical and corrosion tests exhibited that the 5356 filler material was most suitable for the 5083 Al alloy base material. (orig.)

  8. Mechanical Properties of Additively Manufactured Thick Honeycombs

    Directory of Open Access Journals (Sweden)

    Reza Hedayati

    2016-07-01

    Full Text Available Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  9. An Introduction to the Mechanical Properties of Ceramics

    Science.gov (United States)

    Green, David J.

    1998-09-01

    Over the past twenty-five years ceramics have become key materials in the development of many new technologies as scientists have been able to design these materials with new structures and properties. An understanding of the factors that influence their mechanical behavior and reliability is essential. This book will introduce the reader to current concepts in the field. It contains problems and exercises to help readers develop their skills. This is a comprehensive introduction to the mechanical properties of ceramics, and is designed primarily as a textbook for advanced undergraduates in materials science and engineering. It will also be of value as a supplementary text for more general courses and to industrial scientists and engineers involved in the development of ceramic-based products, materials selection and mechanical design.

  10. Microstructure and mechanical properties of as-cast Zr-Nb alloys.

    Science.gov (United States)

    Kondo, Ryota; Nomura, Naoyuki; Suyalatu; Tsutsumi, Yusuke; Doi, Hisashi; Hanawa, Takao

    2011-12-01

    On the basis of the microstructures and mechanical properties of as-cast Zr-(0-24)Nb alloys the effects of phase constitution on the mechanical properties and magnetic susceptibility are discussed in order to develop Zr alloys for use in magnetic resonance imaging (MRI). The microstructures were evaluated using an X-ray diffractometer, an optical microscope, and a transmission electron microscope; the mechanical properties were evaluated by a tensile test. The α' phase was dominantly formed with less than 6 mass% Nb content. The ω phase was formed in Zr-(6-20)Nb alloys, but disappeared from Zr-22Nb. The β phase dominantly existed in Zr-(9-24)Nb alloys. The mechanical properties as well as the magnetic susceptibility of the Zr-Nb alloys varied depending on the phase constitution. The Zr-Nb alloys consisting of mainly α' phase showed high strength, moderate ductility, and a high Young's modulus, retaining low magnetic susceptibility. Zr-Nb alloys containing a larger volume of ω phase were found to be brittle and, thus, should be avoided, despite their low magnetic susceptibility. When the Zr-Nb alloys consisted primarily of β phase the effect of ω phase weakened the mechanical properties, thereby leading to an increase in ductility, even with an increase in magnetic susceptibility. The minimum value of Young's modulus was obtained for Zr-20Nb, because this composition was the phase boundary between the β and ω phases. However, the magnetic susceptibility of the alloy was half that of Ti-6Al-4V alloys. Zr-Nb alloys consisting of α' or β phase have excellent mechanical properties with low magnetic susceptibility and, thus, these alloys could be useful for medical devices used in MRI. Copyright © 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  11. Mechanical properties of TiN films deposited by changed-pressure r.f. sputtering

    International Nuclear Information System (INIS)

    Kubo, Y.; Hashimoto, M.

    1991-01-01

    TiN was deposited onto glass, stainless steel and cemented carbide by r.f. magnetron sputtering. The mechanical properties of TiN such as hardness, internal stress and adhesion were assessed by the Vickers microhardness test, the bending method and the modified scratch test. It was found that the operating pressure during sputtering deposition strongly affects these mechanical properties. As the operating pressure is increased beyond 0.6-0.7 Pa, the adhesion of TiN films onto the substrate increases enormously, but the hardness decreases owing to the release of the high compressive stress in the film. Therefore changing the pressure from high to low during deposition could be a good way of optimizing both hardness and adhesion. The effectiveness of this changed-pressure process was experimentally verified by cutting tests using TiN-coated cemented carbide tools. This process will be applicable to any other hard coating materials having high compressive stresses. (orig.)

  12. Influence of tempering temperature on mechanical properties of cast steels

    Directory of Open Access Journals (Sweden)

    G. Golański

    2008-12-01

    Full Text Available The paper presents results of research on the influence of tempering temperature on structure and mechanical properties of bainite hardened cast steel: G21CrMoV4 – 6 (L21HMF and G17CrMoV5 – 10 (L17HMF. Investigated cast steels were taken out from internal frames of steam turbines serviced for long time at elevated temperatures. Tempering of the investigated cast steel was carried out within the temperature range of 690 ÷ 730 C (G21CrMoV4 – 6 and 700 ÷ 740 C (G17CrMoV5 – 10. After tempering the cast steels were characterized by a structure of tempered lower bainite with numerous precipitations of carbides. Performed research of mechanical properties has shown that high temperatures of tempering of bainitic structure do not cause decrease of mechanical properties beneath the required minimum.oo It has also been proved that high-temperature tempering (>720 oC ensures high impact energy at the 20% decrease of mechanical properties.

  13. Effect of neutron radiation on mechanical properties of permanent near core structures

    International Nuclear Information System (INIS)

    Tavassoli, A.A.

    1988-01-01

    Several hundred specimens have been tested in order to assess the effects of low dose neutron radiation ( 0 C and ductility and toughness are primary design concerns, the changes provoked, by doses up to 1.3 dpa, in overall mechanical properties of welded joints are small. For upper core structure, where the operating temperature is about 550 0 C and fatigue and creep resistance are major design needs, the changes induced, through formation of up to about 2 appm helium, in conventional fatigue properties or fatigue with short hold times are negligible. With increasing hold time, intergranular rupture in irradiated specimens is enhanced but the limited number of tests does not allow definite conclusions to be drawn. 53 refs, 3 tabs, 9 figs

  14. Improved mechanical properties of retorted carrots by ultrasonic pre-treatments.

    Science.gov (United States)

    Day, Li; Xu, Mi; Øiseth, Sofia K; Mawson, Raymond

    2012-05-01

    The use of ultrasound pre-processing treatment, compared to blanching, to enhance mechanical properties of non-starchy cell wall materials was investigated using carrot as an example. The mechanical properties of carrot tissues were measured by compression and tensile testing after the pre-processing treatment prior to and after retorting. Carrot samples ultrasound treated for 10 min at 60 °C provided a higher mechanical strength (P<0.05) to the cell wall structure than blanching for the same time period. With the addition of 0.5% CaCl(2) in the pre-treatment solution, both blanching and ultrasound treatment showed synergistic effect on enhancing the mechanical properties of retorted carrot pieces. At a relatively short treatment time (10 min at 60 °C) with the use of 0.5% CaCl(2), ultrasound treatment achieved similar enhancement to the mechanical strength of retorted carrots to blanching for a much longer time period (i.e. 40 min). The mechanism involved appears to be related to the stress responses present in all living plant matter. However, there is a need to clarify the relative importance of the potential stress mechanisms in order to get a better understanding of the processing conditions likely to be most effective. The amount of ultrasound treatment required is likely to involve low treatment intensities and there are indications from the structural characterisation and mechanical property analyses that the plant cell wall tissues were more elastic than that accomplished using low temperature long time blanching. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  15. The effect of thermo-mechanical processing on the mechanical properties of molybdenum - 2 volume % lanthana

    International Nuclear Information System (INIS)

    Mueller, A.J.; Shields, J.A. Jr.; Buckman, R.W. Jr.

    2001-01-01

    Variations in oxide species and consolidation method have been shown to have a significant effect on the mechanical properties of oxide dispersion strengthened (ODS) molybdenum material. The mechanical behavior of molybdenum - 2 volume % La 2 O 3 mill product forms, produced by CSM Industries by a wet doping process, were characterized over the temperature range of -150 o C to 1800 o C. The various mill product forms evaluated ranged from thin sheet stock to bar stock. Tensile properties of the material in the various product forms were not significantly affected by the vast difference in total cold work. Creep properties, however, were sensitive to the total amount of cold work as well as the starting microstructure. Stress-relieved .material had superior creep rupture properties to recrystallized material at 1200 o C, while at 1500 o C and above the opposite was observed. Thus it is necessary to match the appropriate thermo-mechanical processing and microstructure of molybdenum - 2 volume % La 2 O 3 to the demands of the application being considered. (author)

  16. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.; Aldhahri, Musab A.; Abdel-wahab, Mohamed Shaaban; Tamayol, Ali; Moghaddam, K. Mollazadeh; Ben Rached, Fathia; Pain, Arnab; Khademhosseini, Ali; Memic, Adnan; Chaieb, Saharoui

    2017-01-01

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  17. Microfibrous silver-coated polymeric scaffolds with tunable mechanical properties

    KAUST Repository

    Kalakonda, Parvathalu.

    2017-07-07

    Electrospun scaffolds of poly(glycerol sebacate)/poly(ε-caprolactone) (PGS/PCL) have been used for engineered tissues due to their desirable thermal and mechanical properties as well as their tunable degradability. In this paper, we fabricated micro-fibrous scaffolds from a composite of PGS/PCL using a standard electrospinning method and coated them with silver (Ag). The low temperature coating method prevented substrate melting and the Ag coating decreases the pore size and increases the diameter of fibers which resulted in enhanced thermal and mechanical properties. We further compared the mechanical properties of the composite fibrous scaffolds with different thicknesses of Ag coated scaffolds. The composite fibrous scaffold with a 275 nm Ag coating showed higher tensile modulus (E) and ultimate tensile strength (UTS) without any post-processing treatment. Lastly, potential controlled release of the Ag coating from the composite fibrous scaffolds could present interesting biomedical applications.

  18. Effects of humidity on the mechanical properties of gecko setae.

    Science.gov (United States)

    Prowse, Michael S; Wilkinson, Matt; Puthoff, Jonathan B; Mayer, George; Autumn, Kellar

    2011-02-01

    We tested the hypothesis that an increase in relative humidity (RH) causes changes in the mechanical properties of the keratin of adhesive gecko foot hairs (setae). We measured the effect of RH on the tensile deformation properties, fracture, and dynamic mechanical response of single isolated tokay gecko setae and strips of the smooth lamellar epidermal layer. The mechanical properties of gecko setae were strongly affected by RH. The complex elastic modulus (measured at 5 Hz) of a single seta at 80% RH was 1.2 GPa, only 39% of the value when dry. An increase in RH reduced the stiffness and increased the strain to failure. The loss tangent increased significantly with humidity, suggesting that water absorption produces a transition to a more viscous type of deformation. The influence of RH on the properties of the smooth epidermal layer was comparable with that of isolated seta, with the exception of stress at rupture. These values were two to four times greater for the setae than for the smooth layer. The changes in mechanical properties of setal keratin were consistent with previously reported increases in contact forces, supporting the hypothesis that an increase in RH softens setal keratin, which increases adhesion and friction. Copyright © 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Mechanical and physical properties of agro-based fiberboard

    Science.gov (United States)

    S. Lee; T.F. Shupe; C.Y. Hse

    2006-01-01

    In order to better utilize agricultural fibers as an alternative resource for composite panels, several variables were investigated to improve mechanical and physical properties of agm-based fiberboard. This study focused on the effect of fiber morphology, slenderness ratios (UD), and fiber mixing combinations on panel properties. The panel construction types were also...

  20. Mechanical Properties and Tensile Fatigue of Graphene Nanoplatelets Reinforced Polymer Nanocomposites

    Directory of Open Access Journals (Sweden)

    Ming-Yuan Shen

    2013-01-01

    Full Text Available Graphene nanoplatelets (GNPs are novel nanofillers possessing attractive characteristics, including robust compatibility with most polymers, high absolute strength, and cost effectiveness. In this study, GNPs were used to reinforce epoxy composite and epoxy/carbon fiber composite laminates to enhance their mechanical properties. The mechanical properties of GNPs/epoxy nanocomposite, such as ultimate tensile strength and flexure properties, were investigated. The fatigue life of epoxy/carbon fiber composite laminate with GPs-added 0.25 wt% was increased over that of neat laminates at all levels of cyclic stress. Consequently, significant improvement in the mechanical properties of ultimate tensile strength, flexure, and fatigue life was attained for these epoxy resin composites and carbon fiber-reinforced epoxy composite laminates.

  1. Cold forging stem of total hip prosthesis with hybrid mechanical properties

    International Nuclear Information System (INIS)

    Lopes, E.S.N.; Contieri, R.J.; Cardoso, F.F.; Cremasco, A.; Button, S.T.; Caram, R.

    2010-01-01

    Type β Ti alloy is one of the most versatile groups of materials with regard to mechanical properties. Aspects such as alloying elements selection, mechanical processing and heat treatment routes empower these materials in applications where hybrid mechanical behavior is necessary. The aim of this study is to produce stems of total hip prostheses with hybrid mechanical properties using Ti-Nb alloys. Ingots were produced by using arc melting. Following, samples were subjected to specific heat treatment aiming to make cold forging. Sample characterization includes X-ray diffraction, scanning electron microscopy, Vickers hardness tests and tensile test. The experiments performed allowed to examine the effects of heat treatment parameters on the microstructure and mechanical behavior. Finally, results obtained show that the application of specific heat treatments of quenching and aging makes feasible the manufacturing of orthopedic devices with hybrid mechanical properties with regions where high mechanical strength was prioritized, while in others, low elastic modulus was the main concern. (author)

  2. Retrogradation of concentrated starch systems : mechanism and consequences for product properties

    NARCIS (Netherlands)

    Keetels, C.J.A.M.

    1995-01-01

    The mechanical properties of concentrated starch + water systems were studied during heating, cooling and storage. Methods used were a small-amplitude dynamic rheological test and compression between parallel plates. The mechanical properties were related to the structure of the gels.

  3. Mechanical properties of amyloid-like fibrils defined by secondary structures

    Science.gov (United States)

    Bortolini, C.; Jones, N. C.; Hoffmann, S. V.; Wang, C.; Besenbacher, F.; Dong, M.

    2015-04-01

    Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology are extensively studied - among these parameters, the secondary structures and the pH have been revealed to be crucial, since a variation in pH changes the fibril morphology and net chirality during protein aggregation. It is important to quantify the mechanical properties of these fibrils in order to help the design of effective strategies for treating diseases related to the presence of amyloid fibrils. In this work, we show that by changing pH the mechanical properties of amyloid-like fibrils vary as well. In particular, we reveal that these mechanical properties are strongly related to the content of secondary structures. We analysed and estimated the Young's modulus (E) by comparing the persistence length (Lp) - measured from the observation of TEM images by using statistical mechanics arguments - with the mechanical information provided by peak force quantitative nanomechanical property mapping (PF-QNM). The secondary structure content and the chirality are investigated by means of synchrotron radiation circular dichroism (SR-CD). Results arising from this study could be fruitfully used as a protocol to investigate other medical or engineering relevant peptide fibrils.Amyloid and amyloid-like fibrils represent a generic class of highly ordered nanostructures that are implicated in some of the most fatal neurodegenerative diseases. On the other hand, amyloids, by possessing outstanding mechanical robustness, have also been successfully employed as functional biomaterials. For these reasons, physical and chemical factors driving fibril self-assembly and morphology

  4. PHYSICAL AND MECHANICAL PROPERTIES OF JUVENILE Schizolobium amazonicum WOOD

    Directory of Open Access Journals (Sweden)

    Graziela Baptista Vidaurre

    2018-03-01

    Full Text Available ABSTRACT Growth in world demand for wood implies a search for new fast growing species with silvicultural potential, and in this scenario for native species such as Paricá . Thus, the objective of this study was determining the physical and mechanical wood properties of the Schizolobium amazonicum species (known as Paricá in Brazil. Trees were collected from commercial plantations located in the north of Brazil with ages of 5, 7, 9 and 11 years. Four logs from trees of each age in the longitudinal direction of the trees were obtained, and later a diametrical plank of each log was taken to manufacture the specimens which were used to evaluate some physical and mechanical properties of the wood. The basic density of Paricá was reduced in the basetop direction and no difference between the radial positions was observed, while the average basic density of this wood was characterized as low. The region close to the bark showed less longitudinal contraction and also greater homogeneity of this property along the trunk, while for tangential contraction the smallest variation was found in the region near the pith. Paricá wood contraction was characterized as low. Age influenced most of the mechanical properties, where logs from the base had the highest values of mechanical strength.

  5. Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing

    International Nuclear Information System (INIS)

    Campoli, G.; Borleffs, M.S.; Amin Yavari, S.; Wauthle, R.; Weinans, H.; Zadpoor, A.A.

    2013-01-01

    Highlights: ► Finite element (FE) models were used to predict the mechanical properties of porous biomaterials. ► Porous materials were produced using additive manufacturing techniques. ► Manufacturing irregularities need to be implemented in FE models. ► FE models are more accurate than analytical models in predicting mechanical properties. - Abstract: An important practical problem in application of open-cell porous biomaterials is the prediction of the mechanical properties of the material given its micro-architecture and the properties of its matrix material. Although analytical methods can be used for this purpose, these models are often based on several simplifying assumptions with respect to the complex architecture and cannot provide accurate prediction results. The aim of the current study is to present finite element (FE) models that can predict the mechanical properties of porous titanium produced using selective laser melting or selective electron beam melting. The irregularities caused by the manufacturing process including structural variations of the architecture are implemented in the FE models using statistical models. The predictions of FE models are compared with those of analytical models and are tested against experimental data. It is shown that, as opposed to analytical models, the predictions of FE models are in agreement with experimental observations. It is concluded that manufacturing irregularities significantly affect the mechanical properties of porous biomaterials

  6. Mechanical Properties of Nanofilled Polypropylene Composites

    Directory of Open Access Journals (Sweden)

    Cristina-Elisabeta PELIN

    2015-06-01

    Full Text Available The paper presents a study concerning mechanical performance of thermoplastic nanocomposites based on isotactic polypropylene matrix, nanofilled with montmorillonite modified with quaternary ammonium salt and carboxyl functionalized carbon nanotubes, respectively, added in the same concentration relative to the matrix. The nanofilled and single polymer materials were obtained by simple melt compounding through extrusion process followed by injection molding into specific shape specimens for mechanical testing of the samples. Mechanical properties were evaluated by tensile and 3 point bending tests. In terms of modulus of elasticity, the results showed overall positive effects concerning the effect of nanofiller addition to the thermoplastic polymer. The fracture cross section of the tested specimens was characterized by FT-IR spectroscopy and SEM microscopy.

  7. Mechanical properties of molybdenum-sealing glass-ceramics

    International Nuclear Information System (INIS)

    Swearengen, J.C.; Eagan, R.J.

    1975-07-01

    Elastic constants, thermal expansion, strength, and fracture toughness were determined for a molybdenum-sealing glass-ceramic containing approximately 31 volume percent Zn 2 SiO 4 crystals in a glass matrix. The microstructure was studied for two different crystallization treatments and moderate changes in composition. Mechanical properties of the composite were compared with the properties of the constituent phases through application of mixture theory and by fractographic observations. The reinforcing effects of the crystal phase at room temperature are evident in comparison with the properties of the residual glass but not necessarily in comparison with the parent glass. Fracture toughness of the composite depends primarily upon additive properties of the separate phases instead of by interactive effects such as microcracks. (U.S.)

  8. Structure and mechanical properties of Octopus vulgaris suckers.

    Science.gov (United States)

    Tramacere, Francesca; Kovalev, Alexander; Kleinteich, Thomas; Gorb, Stanislav N; Mazzolai, Barbara

    2014-02-06

    In this study, we investigate the morphology and mechanical features of Octopus vulgaris suckers, which may serve as a model for the creation of a new generation of attachment devices. Octopus suckers attach to a wide range of substrates in wet conditions, including rough surfaces. This amazing feature is made possible by the sucker's tissues, which are pliable to the substrate profile. Previous studies have described a peculiar internal structure that plays a fundamental role in the attachment and detachment processes of the sucker. In this work, we present a mechanical characterization of the tissues involved in the attachment process, which was performed using microindentation tests. We evaluated the elasticity modulus and viscoelastic parameters of the natural tissues (E ∼ 10 kPa) and measured the mechanical properties of some artificial materials that have previously been used in soft robotics. Such a comparison of biological prototypes and artificial material that mimics octopus-sucker tissue is crucial for the design of innovative artificial suction cups for use in wet environments. We conclude that the properties of the common elastomers that are generally used in soft robotics are quite dissimilar to the properties of biological suckers.

  9. Mechanical properties of amorphous and polycrystalline multilayer systems

    International Nuclear Information System (INIS)

    Barzen, I.; Edinger, M.; Scherer, J.; Ulrich, S.; Jung, K.; Ehrhardt, H.

    1993-01-01

    Amorphous and polycrystalline multilayer structures containing materials with metallic (Cr, Cr 3 C 2 ), ionic (Al 2 O 3 ) and covalent (SiC) bonding have been prepared by magnetron sputtering and ion plating in a dual-source apparatus. Up to 1000 layers have been deposited with a constant total thickness of 2.3 μm. Below a single-layer thickness of 10-30 nm the mechanical properties stress and hardness show strong variations. On one hand it is possible that below a certain thickness the mechanical properties of a single layer change. On the other hand electrical resistance and electron spin density measurements indicate that electronic effects may be involved. An attempt is made to explain the observed correlations by transport mechanisms of the electrons, by saturation of dangling bonds with delocalized electrons and by changes in the electronic band structure. (orig.)

  10. The Effect of Bedding Structure on Mechanical Property of Coal

    Directory of Open Access Journals (Sweden)

    Zetian Zhang

    2014-01-01

    Full Text Available The mechanical property of coal, influencing mining activity considerably, is significantly determined by the natural fracture distributed within coal mass. In order to study the effecting mechanism of bedding structure on mechanical property of coal, a series of uniaxial compression tests and mesoscopic tests have been conducted. The experimental results show that the distribution characteristic of calcite particles, which significantly influences the growth of cracks and the macroscopic mechanical properties of coal, is obviously affected by the bedding structure. Specifically, the uniaxial compression strength of coal sample is mainly controlled by bedding structure, and the average peak stress of specimens with axes perpendicular to the bedding planes is 20.00 MPa, which is 2.88 times the average amount of parallel ones. The test results also show a close relationship between the bedding structure and the whole deformation process under uniaxial loading.

  11. Estimation of mechanical properties of single wall carbon nanotubes ...

    Indian Academy of Sciences (India)

    Molecular mechanics; single wall carbon nanotube; mechanical proper- ... Fracture Mechanics); Rossi & Meo 2009). Furthermore, the work carried out by Natsuki & Endo. (2004), Xiao et al (2005) and Sun & Zhao (2005) in the direction of ..... Jin Y and Yuan F G 2003 Simulation of elastic properties of single walled carbon ...

  12. Electron-beam irradiation effects on mechanical properties of PEEK/CF composite

    International Nuclear Information System (INIS)

    Sasuga, Tsuneo; Seguchi, Tadao

    1989-01-01

    Carbon fibre-reinforced composite (PEEK/CF) using polyarylether-ether-ketone (PEEK) as a matrix material was prepared and electron-beam irradiation effects on the mechanical properties at low and high temperatures were studied. The flexural strength and modulus of the unirradiated PEEK/CF were almost the same as those of carbon fibre-reinforced composites with epoxide resin. The mechanical properties at room temperature were little affected by irradiation up to 180 MGy, but in the test at 77K the strength of the specimens irradiated over 100 MGy was slightly decreased. The mechanical properties of the unirradiated specimen decreased with increasing testing temperature, but the high-temperature properties were improved by irradiation, i.e. the strength measured at 413K for the specimen irradiated with 120 MGy almost reached the value for the unirradiated specimen measured at room temperature. It was apparent from the viscoelastic measurement that the improvement of mechanical properties at high temperature resulted from the high-temperature shift of the glass transition of the matrix PEEK caused by radiation-induced cross-linking. (author)

  13. Some Physical and Mechanical Properties of Daniellia Ogea Harms ...

    African Journals Online (AJOL)

    ADOWIE PERE

    density were the physical properties tested while the mechanical properties were the modulus of rupture ... 300kN capacity of the food laboratory of the department of Agriculture of the University. ..... Negro, F; Cremonini, C; Zanuttini, R (2013).

  14. assessment of mechanical properties of mild steel drawn using

    African Journals Online (AJOL)

    DJFLEX

    2009-07-17

    Jul 17, 2009 ... properties of these oils are determined by their fatty acid radicals which may ... Fatty acids have outstanding effectiveness as boundary lubricants. This is ..... Chapters. 1 to 3. Sharma, C.S., Rice, W.B. and Salmon, R.., 1967.

  15. Physical and mechanical properties of gamma radiation cross-linked polyethylene

    International Nuclear Information System (INIS)

    Gonzalez, Maria E.; Romero, G.; Smolko, Eduardo E.

    1999-01-01

    Granulated LDPE 2003 polyethylene was extruded and irradiated under nitrogen with 150, 200 and 300 kGy gamma rays doses to produce cross-linking. The study of the physical and mechanical properties shows that the product has a high degree of molecular cross-linking, can be heated up to 200 C for 2 hours without deformation and that the mechanical properties improve. Preliminary aging tests indicate that after heating at 60 C for 4 weeks no physical or mechanical deterioration can be observed. (author)

  16. Mechanical and corrosion properties of AA8011 sheets and foils:

    OpenAIRE

    Asanović, Vanja; Dalijić, Kemal; Radonjić, Dragan

    2006-01-01

    The mechanical and corrosion properties of a twin-roll cast Al-Fe-Si aluminum alloy with 0.74 % Fe and 0.52 % Si (AA8011) were investigated. The influence of the thermo-mehanical processing route on the mechanical behavior of AA8011 sheets was determined. Comparisons were made with AA3003 and A199.5 sheets. The restoration of the mechanical properties was used in the analysis of the recrystallization behavior of the twin-roll cast AA8011 alloy deformed under cold-working conditions and subseq...

  17. Influence of Compatibilizer and Processing Conditions on Morphology, Mechanical Properties, and Deformation Mechanism of PP/Clay Nano composite

    International Nuclear Information System (INIS)

    Akbari, B.; Bagheri, R.

    2012-01-01

    Polypropylene/montmorillonite nano composite was prepared by melt intercalation method using a twin-screw extruder with starve feeding system in this paper. The effects of compatibilizer, extruder rotor speed and feeding rate on properties of nano composite were investigated. Structure, tensile, and impact properties and deformation mechanism of the compounds were studied. For investigation of structure and deformation mechanisms, X-ray diffraction (XRD) and transmission optical microscopy (TOM) techniques were utilized, respectively. The results illustrate that introduction of the compatibilizer and also variation of the processing conditions affect structure and mechanical properties of nano composite.

  18. Mechanical properties of welded joints of duplex steels

    International Nuclear Information System (INIS)

    Kawiak, M.; Nowacki, J.

    2003-01-01

    The paper presents the study results of mechanical properties of duplex steels UNS S31803 welded joints as well as duplex and NV A36 steels welded joints. They have ben welded by FCAW method in CO 2 using FCW 2205-H flux-cored wire. The joints have been subjected: tensile tests, impact tests, bending tests, hardness tests and metallographic investigations. The influence of welding parameters and mechanical properties of the joints was appreciated. The welding method assured high tensile strength of the joints (approximately 770 MPa) and high impact strength of the welds (approximately 770 J). All samples were broken outside of welds. (author)

  19. Improvement of the mechanical properties of reinforced aluminum foam samples

    Science.gov (United States)

    Formisano, A.; Barone, A.; Carrino, L.; De Fazio, D.; Langella, A.; Viscusi, A.; Durante, M.

    2018-05-01

    Closed-cell aluminum foam has attracted increasing attention due to its very interesting properties, thanks to which it is expected to be used as both structural and functional material. A research challenge is the improvement of the mechanical properties of foam-based structures adopting a reinforced approach that does not compromise their lightness. Consequently, the aim of this research is the fabrication of enhanced aluminum foam samples without significantly increasing their original weight. In this regard, cylindrical samples with a core of closed-cell aluminum foam and a skin of fabrics and grids of different materials were fabricated in a one step process and were mechanically characterized, in order to investigate their behaviour and to compare their mechanical properties to the ones of the traditional foam.

  20. Thermal and Mechanical Properties of Poly(butylene succinate Films Reinforced with Silica

    Directory of Open Access Journals (Sweden)

    Sangviroon Nanthaporn

    2015-01-01

    Full Text Available In recent year, bioplastics have become more popular resulting from the growing concerns on environmental issues and the rising fossil fuel price. However, their applications were limited by its mechanical and thermal properties. The aim of this research is thus to improve mechanical and thermal properties of PBS bioplastic films by reinforcing with silica. Due to the poor interfacial interaction between the PBS matrix and silica, glycidyl methacrylate grafted poly(butylene succinate (PBS-g-GMA was used as a compatibilizer in order to improve the interaction between bioplastic films and filler. PBS-g-GMA was prepared in a twin-screw extruder and analyzed by the FTIR spectrometer. PBS and silica were then mixed in a twin-screw extruder and processed into films by a chill-roll cast extruder. The effects of silica loading on thermal and mechanical properties of the prepared bioplastic films were investigated. It was found that the mechanical properties of PBS/silica composite films were improved when 1%wt of silica was added. However, the mechanical properties decreased with increasing silica loading due to the agglomeration of silica particles. The results also show that the silica/PBS films with PBS-g-GMA possessed improved mechanical properties over the films without the compatibilizer.

  1. Microstructure and mechanical properties after annealing of equal-channel angular pressed interstitial-free steel

    International Nuclear Information System (INIS)

    Hazra, Sujoy S.; Pereloma, Elena V.; Gazder, Azdiar A.

    2011-01-01

    The evolution of microstructure, microtexture and mechanical properties during isothermal annealing of an ultrafine-grained interstitial-free steel after eight passes of route B C room temperature equal-channel angular pressing (ECAP) was studied. The microstructure and microtexture were characterized by electron back-scattering diffraction, and mechanical properties were assessed by shear punch and uniaxial tensile testing. Homogeneous coarsening via continuous recrystallization of the ECAP microstructure is accompanied by minor changes in the ∼63% high-angle boundary population and a sharpening of the original ECAP texture. This is followed by abnormal growth during the final stages of softening due to local growth advantages. Linear correlations between shear and tensile data were established for yield, ultimate strength and total elongation. After yield, the changes in uniaxial tensile behaviour from geometrical softening after ECAP to load drop, Lueders banding and continuous yielding after annealing is attributable to a coarsening of the microstructure.

  2. Effect of helium implantation on mechanical properties of EUROFER97 evaluated by nanoindentation

    International Nuclear Information System (INIS)

    Roldán, M.; Fernández, P.; Rams, J.; Jiménez-Rey, D.; Ortiz, C.J.; Vila, R.

    2014-01-01

    Helium effects on EUROFER97 mechanical properties were studied by means of nanoindentation. The steel was implanted with He ions in a stair-like profile configuration using energies from 2 to 15 MeV at room temperature. Firstly, a deep nanoindentation study was carried out on as-received state (normalized + tempered) in order to obtain a reliable properties database at the nanometric scale, including aspects such as indentation size effect. The nanoindentation hardness of tests on He implanted samples showed a hardness increase depending on the He concentration. The hardness increase follows the He implantation concentration profile with a good accuracy according to BCA calculations using MARLOWE code, considering the whole volume affected by the nanoindentation tests. The results obtained in this work shown that nanoindentation technique permits to assess any change of hardness properties due to ion implantation

  3. Experimental measurement and modeling analysis on mechanical properties of incudostapedial joint.

    Science.gov (United States)

    Zhang, Xiangming; Gan, Rong Z

    2011-10-01

    The incudostapedial (IS) joint between the incus and stapes is a synovial joint consisting of joint capsule, cartilage, and synovial fluid. The mechanical properties of the IS joint directly affect the middle ear transfer function for sound transmission. However, due to the complexity and small size of the joint, the mechanical properties of the IS joint have not been reported in the literature. In this paper, we report our current study on mechanical properties of human IS joint using both experimental measurement and finite element (FE) modeling analysis. Eight IS joint samples with the incus and stapes attached were harvested from human cadaver temporal bones. Tension, compression, stress relaxation and failure tests were performed on those samples in a micro-material testing system. An analytical approach with the hyperelastic Ogden model and a 3D FE model of the IS joint including the cartilage, joint capsule, and synovial fluid were employed to derive mechanical parameters of the IS joint. The comparison of measurements and modeling results reveals the relationship between the mechanical properties and structure of the IS joint.

  4. On the mechanical properties of tooth enamel under spherical indentation.

    Science.gov (United States)

    Chai, Herzl

    2014-11-01

    The mechanical properties of tooth enamel generally exhibit large variations, which reflect its structural and material complexity. Some key properties were evaluated under localized contact, simulating actual functioning conditions. Prominent cusps of extracted human molar teeth were polished down ~0.7 mm below the cusp tip and indented by tungsten carbide balls. The internal damage was assessed after unloading from longitudinal or transverse sections. The ultimate tensile stress (UTS) was determined using a novel bilayer specimen. The damage is characterized by penny-like radial cracks driven by hoop stresses and cylindrical cracks driven along protein-rich interrod materials by shear stresses. Shallow cone cracks typical of homogeneous materials which may cause rapid tooth wear under repeat contact are thus avoided. The mean stress vs. indentation strain curve is highly nonlinear, attributable to plastic shearing of protein between and within enamel rods. This curve is also affected by damage, especially radial cracks, the onset of which depends on ball radius. Several material properties were extracted from the tests, including shear strain at the onset of ring cracks γ(F) (=0.14), UTS (=119 MPa), toughness K(C) (=0.94 MPa m(1/2)), a crack propagation law and a constitutive response determined by trial and error with the aid of a finite-element analysis. These quantities, which are only slightly sensitive to anatomical location within the enamel region tested, facilitate a quantitative assessment of crown failure. Causes for variations in published UTS and K(C) values are discussed. Copyright © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  5. Intrinsic and extrinsic mechanical properties related to the differentiation of mesenchymal stem cells.

    Science.gov (United States)

    Lee, Jin-Ho; Park, Hun-Kuk; Kim, Kyung Sook

    2016-05-06

    Diverse intrinsic and extrinsic mechanical factors have a strong influence on the regulation of stem cell fate. In this work, we examined recent literature on the effects of mechanical environments on stem cells, especially on differentiation of mesenchymal stem cells (MSCs). We provide a brief review of intrinsic mechanical properties of single MSC and examined the correlation between the intrinsic mechanical property of MSC and the differentiation ability. The effects of extrinsic mechanical factors relevant to the differentiation of MSCs were considered separately. The effect of nanostructure and elasticity of the matrix on the differentiation of MSCs were summarized. Finally, we consider how the extrinsic mechanical properties transfer to MSCs and then how the effects on the intrinsic mechanical properties affect stem cell differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.

  6. Synthesis, microstructure and mechanical properties of ceria ...

    Indian Academy of Sciences (India)

    Unknown

    ceria stabilized zirconia powders with improved mechanical properties. Ce–ZrO2 with 20 wt% ... structural ceramic materials (Garvie et al 1975; Evans and. Cannon 1986) ... thermal expansion matching with that of iron alloys. (Tsukuma and ...

  7. Mechanical properties of cork under contact stresses

    International Nuclear Information System (INIS)

    Parralejo, A. D.; Guiberteau, F.; Fortes, M. A.; Rosa, M. E.

    2001-01-01

    In this work our interest is focussed on the mechanical behaviour of natural cork under contact stresses. Many of the applications of this curious material are related with its mechanical response under such a stress field, however this topic has not been still sufficiently considered in the scientific literature. For this purpose, we proposed the use of Hertzian indentation tests. By using this mythology we have investigated the cork structure influence on the corresponding mechanical properties. Our results reveal a clear mechanical anisotropy effect. Moreover, the elastic modulus corresponding to specific directions have been estimated. Several are the main advantages of this specific test mythology versus traditional uniaxial compression tests, specially simplicity and local character. (Author) 9 refs

  8. Mechanical properties and failure behaviour of graphene/silicene/graphene heterostructures

    International Nuclear Information System (INIS)

    Chung, Jing-Yang; Sorkin, Viacheslav; Pei, Qing-Xiang; Zhang, Yong-Wei; Chiu, Cheng-Hsin

    2017-01-01

    Van der Waals heterostructures based on graphene and other 2D materials have attracted great attention recently. In this study, the mechanical properties and failure behaviour of a graphene/silicene/graphene heterostructure are investigated using molecular dynamics simulations. We find that by sandwiching silicene in-between two graphene layers, both ultimate tensile strength and Young’s modulus of the heterostructure increase approximately by a factor of 10 compared with those of stand-alone silicene. By examining the fracture process of the heterostructure, we find that graphene and silicene exhibit quite different fracture behaviour. While graphene undergoes cleavage through its zigzag edge only, silicene can cleave through both its zigzag and armchair edges. In addition, we study the effects of temperature and strain rate on the mechanical properties of the heterostructure and find that an increase in temperature results in a decrease in its mechanical strength and stiffness, while an increase in strain rate leads to an increase in its mechanical strength without significant changes in its stiffness. We further explore the failure mechanism and show that the temperature and strain-rate dependent fracture stress can be accurately described by the kinetic theory of fracture. Our findings provide a deep insight into the mechanical properties and failure mechanism of graphene/silicene heterostructures. (paper)

  9. Effect of Processing Steps on the Mechanical Properties and Surface Appearance of 6063 Aluminium Extruded Products

    Science.gov (United States)

    Asensio-Lozano, Juan; Suárez-Peña, Beatriz; Vander Voort, George F.

    2014-01-01

    6063 aluminum anodized extrusions may exhibit a common surface defect known as streaking, characterized by the formation of narrow bands with a surface gloss different from the surrounding material. The origin of this banding lies in the differential surface topography produced after etching during the anodizing stage, shown to be connected to certain microstructural characteristics. The present study has attempted to determine the origin of these defects and measure the mechanical properties in these zones, properties which were either barely acceptable or did not meet the specification’s requirements. Quantitative metallography and mechanical testing, both tensile and microhardness, were used for materials assessment at the different steps of the process of manufacturing 6063 anodized extrusions. The results of this research show that nonequilibrium solidification rates during billet casting could lead to the formation of coarse eutectic Mg2Si particles which have a deleterious effect on both mechanical properties and surface appearance in the anodized condition. However, differences in the size and density of the coarse Mg2Si particles have been found to exist in the streak profile compared to the surrounding zones. The study revealed the importance of these particles in explaining the origin of the marginal or sub-marginal properties and anodizing surface defects found. PMID:28788673

  10. Effect of Processing Steps on the Mechanical Properties and Surface Appearance of 6063 Aluminium Extruded Products

    Directory of Open Access Journals (Sweden)

    Juan Asensio-Lozano

    2014-05-01

    Full Text Available 6063 aluminum anodized extrusions may exhibit a common surface defect known as streaking, characterized by the formation of narrow bands with a surface gloss different from the surrounding material. The origin of this banding lies in the differential surface topography produced after etching during the anodizing stage, shown to be connected to certain microstructural characteristics. The present study has attempted to determine the origin of these defects and measure the mechanical properties in these zones, properties which were either barely acceptable or did not meet the specification’s requirements. Quantitative metallography and mechanical testing, both tensile and microhardness, were used for materials assessment at the different steps of the process of manufacturing 6063 anodized extrusions. The results of this research show that nonequilibrium solidification rates during billet casting could lead to the formation of coarse eutectic Mg2Si particles which have a deleterious effect on both mechanical properties and surface appearance in the anodized condition. However, differences in the size and density of the coarse Mg2Si particles have been found to exist in the streak profile compared to the surrounding zones. The study revealed the importance of these particles in explaining the origin of the marginal or sub-marginal properties and anodizing surface defects found.

  11. Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images.

    NARCIS (Netherlands)

    Rietbergen, van B.; Majumdar, S.; Pistoia, W.; Newitt, D.C.; Kothari, M.; Laib, A.; Rüegsegger, P.

    1998-01-01

    Recently, new micro-finite element (micro-FE) techniques have been introduced to calculate cancellous bone mechanical properties directly from high-resolution images of its internal architecture. Also recently, new peripheral quantitative computed tomography (pQCT) and magnetic resonance (MR)

  12. Comparison of mechanical properties for several electrical spring contact alloys

    International Nuclear Information System (INIS)

    Nordstrom, T.V.

    1976-06-01

    Work was conducted to determine whether beryllium-nickel alloy 440 had mechanical properties which made it suitable as a substitute for the presently used precious metal contact alloys Paliney 7 and Neyoro G, in certain electrical contact applications. Possible areas of applicability for the alloy were where extremely low contact resistance was not necessary or in components encountering elevated temperatures above those presently seen in weapons applications. Evaluation of the alloy involved three major experimental areas: 1) measurement of the room temperature microplastic (epsilon approximately 10 -6 ) and macroplastic (epsilon approximately 10 -3 ) behavior of alloy 440 in various age hardening conditions, 2) determination of applied stress effects on stress relaxation or contact force loss and 3) measurement of elevated temperature mechanical properties and stress relaxation behavior. Similar measurements were also made on Neyoro G and Paliney 7 for comparison. The primary results of the study show that beryllium-nickel alloy 440 is from a mechanical properties standpoint, equal or superior to the presently used Paliney 7 and Neyoro G for normal Sandia requirements. For elevated temperature applications, alloy 440 has clearly superior mechanical properties

  13. Basic requirements of mechanical properties for nuclear pressure vessel materials in ASME-BPV code

    International Nuclear Information System (INIS)

    Ning Dong; Yao Weida

    2011-01-01

    The four basic aspects of strengths, ductility, toughness and fatigue strengths can be summarized for overall mechanical properties requirements of materials for nuclear pressure-retaining vessels in ASME-BPV code. These mechanical property indexes involve in the factors of melting, manufacture, delivery conditions, check or recheck for mechanical properties and chemical compositions, etc. and relate to degradation and damage accumulation during the use of materials. This paper specifically accounts for the basic requirements and theoretic basis of mechanical properties for nuclear pressure vessel materials in ASME-BPV code and states the internal mutual relationships among the four aspects of mechanical properties. This paper focuses on putting forward at several problems on mechanical properties of materials that shall be concerned about during design and manufacture for nuclear pressure vessels according to ASME-BPV code. (author)

  14. Mechanical properties of papercrete

    Directory of Open Access Journals (Sweden)

    Zaki Harith

    2018-01-01

    Full Text Available This paper studies the uses, of waste paper as an additional material in concrete mixes. Papercrete is a term as the name seems, to imply a mixture of paper and concrete. It is a new, composite material using waste paper, as a partial addition of Portland cement, and is a sustainable, building material due to, reduced amount of waste paper being put to use. It gains, latent strength due to presence of hydrogen bonds in microstructure of paper. Papercrete has been, reported to be a low cost alternative, building construction, material and has, good sound absorption, and thermal insulation; to be a lightweight and fire-resistant material. The percent of waste paper used (after treating namely (5%, 10%, 15% and 20% by weight of cement to explore the mechanical properties of the mixes (compressive strength, splitting tensile strength, flexural strength, density, as compared with references mixes, it was found that fresh properties affected significantly by increasing the waste paper content. The compressive strength, splitting tensile strength, flexural strength and density got decreased with increase in the percentage of paper.

  15. Metallurgical Mechanisms Controlling Mechanical Properties of Aluminum Alloy 2219 Produced By Electron Beam Freeform Fabrication

    Science.gov (United States)

    Domack, Marcia S.; Taminger, Karen M. B.; Begley, Matthew

    2006-01-01

    The electron beam freeform fabrication (EBF3) layer-additive manufacturing process has been developed to directly fabricate complex geometry components. EBF3 introduces metal wire into a molten pool created on the surface of a substrate by a focused electron beam. Part geometry is achieved by translating the substrate with respect to the beam to build the part one layer at a time. Tensile properties have been demonstrated for electron beam deposited aluminum and titanium alloys that are comparable to wrought products, although the microstructures of the deposits exhibit features more typical of cast material. Understanding the metallurgical mechanisms controlling mechanical properties is essential to maximizing application of the EBF3 process. In the current study, mechanical properties and resulting microstructures were examined for aluminum alloy 2219 fabricated over a range of EBF3 process variables. Material performance was evaluated based on tensile properties and results were compared with properties of Al 2219 wrought products. Unique microstructures were observed within the deposited layers and at interlayer boundaries, which varied within the deposit height due to microstructural evolution associated with the complex thermal history experienced during subsequent layer deposition. Microstructures exhibited irregularly shaped grains, typically with interior dendritic structures, which were described based on overall grain size, morphology, distribution, and dendrite spacing, and were correlated with deposition parameters. Fracture features were compared with microstructural elements to define fracture paths and aid in definition of basic processing-microstructure-property correlations.

  16. Mechanical Properties of Isotactic Polypropylene Modified with Thermoplastic Potato Starch

    Science.gov (United States)

    Knitter, M.; Dobrzyńska-Mizera, M.

    2015-05-01

    In this paper selected mechanical properties of isotactic polypropylene (iPP) modified with potato starch have been presented. Thermoplastic starch (TPS) used as a modifier in the study was produced from potato starch modified with glycerol. Isotactic polypropylene/thermoplastic potato starch composites (iPP/TPS) that contained 10, 30, 50 wt.% of modified starch were examined using dynamic mechanical-thermal analysis, static tensile, Brinell hardness, and Charpy impact test. The studies indicated a distinct influence of a filler content on the mechanical properties of composites in comparison with non-modified polypropylene.

  17. Mechanical Properties of Plug Welds after Micro-Jet Cooling

    OpenAIRE

    Hadryś D.

    2016-01-01

    New technology of micro-jet welding could be regarded as a new way to improve mechanical properties of plug welds. The main purpose of that paper was analyzing of mechanical properties of plug welds made by MIG welding method with micro-jet cooling. The main way for it was comparison of plug welds made by MIG welding method with micro-jet cooling and plug welds made by ordinary MIG welding method. It is interesting for steel because higher amount of acicular ferrite (AF) in weld metal deposit...

  18. The factors influencing microstructure and mechanical properties of ADI

    Directory of Open Access Journals (Sweden)

    A. Vaško

    2009-01-01

    Full Text Available The paper deals with the influence of different conditions of isothermal heat treatment on microstructure and mechanical properties of austempered ductile iron (ADI. Different temperature of isothermal transformation of austenite and different holding time at this temperature were used for heat treatment of specimens. The microstructure of specimens after casting and after heat treatment was evaluated by STN EN ISO 945 and by image analysis (using Lucia software. Mechanical properties were evaluated by the tensile test, the Rockwell hardness test and fatigue tests.

  19. Structure-property effects on mechanical, friction and wear properties of electron modified PTFE filled EPDM composite

    Directory of Open Access Journals (Sweden)

    2009-01-01

    Full Text Available Tribological properties of Ethylene-Propylene-Diene-rubber (EPDM containing electron modified Polytetrafluoroethylene (PTFE have been investiagted with the help of pin on disk tribometer without lubrication for a testing time of 2 hrs in atmospheric conditions at a sliding speed and applied normal load of 0.05 m•s–1 and FN = 1 N, respectively. Radiation-induced chemical changes in electron modified PTFE powders were analyzed using Electron Spin Resonance (ESR and Fourier Transform Infrared (FTIR specroscopy to characterize the effects of compatibility and chemical coupling of modified PTFE powders with EPDM on mechanical, friction and wear properties. The composites showed different friction and wear behaviour due to unique morphology, dispersion behaviour and radiation functionalization of PTFE powders. In general, EPDM reinforced with electron modified PTFE powder demonstrated improvement both in mechanical and tribological properties. However, the enhanced compatibility of PTFE powder resulting from the specific chemical coupling of PTFE powder with EPDM has been found crucial for mechanical, friction and wear properties.

  20. Effects of heat treatment on the mechanical properties of kenaf fiber

    Energy Technology Data Exchange (ETDEWEB)

    Carada, Paulo Teodoro D. L. [Master’s student in the Graduate School of Science and Engineering, Mechanical Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan); Fujii, Toru; Okubo, Kazuya [Professor in the Faculty of Science and Engineering, Department of Mechanical and Systems Engineering, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe City, Kyoto Prefecture, 610-0394 (Japan)

    2016-05-18

    Natural fibers are utilized in various ways. One specific application of it, is in the field natural fiber composite (NFC). Considerable amount of researches are conducted in this field due to rising concerns in the harmful effects of synthetic materials to the environment. Additionally, these researches are done in order to overcome the drawbacks which limit the wide use of natural fiber. A way to improve NFC is to look into the reinforcing component (natural fiber). Treatments, which are classified as mechanical or chemical in nature, can be done in order to improve the performance of the natural fiber. The aim of this study is to assess the effects of heat treatment in the mechanical properties of kenaf fiber. In addition, the response of mechanical properties after exposure to high moisture environment of heat-treated kenaf fibers was observed. Heat treatment was done for one hour with the following heating temperatures: 140, 160, 180, and 200 °C. X-ray diffraction analysis was done to calculate the crystallinity index of kenaf fibers after heat treatment. The results showed that increase in tensile strength can be attained when kenaf fibers are heat treated at 140 °C. However, the tensile modulus showed inconsistency with respect to heat treatment temperature. The computed crystallinity index of the fiber matched the tensile strength observed in non-treated and heat-treated kenaf fibers. The results obtained in this study can be used for applications where heat treatment on kenaf fibers is needed.

  1. Fullerene–epoxy nanocomposites-enhanced mechanical properties at low nanofiller loading

    International Nuclear Information System (INIS)

    Rafiee, Mohammad A.; Yavari, Fazel; Rafiee, Javad; Koratkar, Nikhil

    2011-01-01

    In this study, we characterized the mechanical properties of fullerence (C 60 ) epoxy nanocomposites at various weight fractions of fullerene additives in the epoxy matrix. The mechanical properties measured were the Young’s modulus, ultimate tensile strength, fracture toughness, fracture energy, and the material’s resistance to fatigue crack propagation. All of the above properties of the epoxy polymer were significantly enhanced by the fullerene additives at relatively low nanofiller loading fractions (∼0.1 to 1% of the epoxy matrix weight). By contrast, other forms of nanoparticle fillers such as silica, alumina, and titania nanoparticles require up to an order of magnitude higher weight fraction to achieve comparable enhancement in properties.

  2. Improvement of mechanical properties of zirconia-toughened alumina by sinter forging

    NARCIS (Netherlands)

    He, Y.; Winnubst, Aloysius J.A.; Verweij, H.; Burggraaf, Anthonie; Burggraaf, A.J.

    1994-01-01

    ZTA powder with a composition of 85 wt% alumina/15 wt% zirconia was prepared by a gel precipitation method. Sinter forging was performed with this powder to enhance the mechanical properties of ZTA materials. The influence of processing flaws on mechanical properties of sinter forged materials and

  3. Properties and mechanical behaviour of fuel cans of fast neutron reactors

    International Nuclear Information System (INIS)

    Cauvin, R.; Boutard, J.L.

    1983-06-01

    Mechanical properties of Stainless steel-316 irradiated up to 100 dpa in fast neutron reactors are examined. Microscopic phenomena involved are reviewed: precipitation, segregation, dislocations, vacancies. Influence on mechanical behaviour of materials are examined: tensile properties, creep, ductility. Consequences on reactor dimensioning are given in conclusion [fr

  4. Microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Chaoyong [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); Pan, Fusheng, E-mail: fspan@cqu.edu.cn [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China); National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044 (China); Chongqing Academy of Science and Technology, Chongqing 401123 (China); Zhang, Lei; Pan, Hucheng; Song, Kai; Tang, Aitao [College of Materials Science and Engineering, Chongqing University, Chongqing 400044 (China)

    2017-01-01

    In this study, as-extruded Mg-Sr alloys were studied for orthopedic application, and the microstructure, mechanical properties, bio-corrosion properties and cytotoxicity of as-extruded Mg-Sr alloys were investigated by optical microscopy, scanning electron microscopy with an energy dispersive X-ray spectroscopy, X-ray diffraction, tensile and compressive tests, immersion test, electrochemical test and cytotoxicity test. The results showed that as-extruded Mg-Sr alloys were composed of α-Mg and Mg{sub 17}Sr{sub 2} phases, and the content of Mg{sub 17}Sr{sub 2} phases increased with increasing Sr content. As-extruded Mg-Sr alloy with 0.5 wt.% Sr was equiaxed grains, while the one with a higher Sr content was long elongated grains and the grain size of the long elongated grains decreased with increasing Sr content. Tensile and compressive tests showed an increase of both tensile and compressive strength and a decrease of elongation with increasing Sr content. Immersion and electrochemical tests showed that as-extruded Mg-0.5Sr alloy exhibited the best anti-corrosion property, and the anti-corrosion property of as-extruded Mg-Sr alloys deteriorated with increasing Sr content, which was greatly associated with galvanic couple effect. The cytotoxicity test revealed that as-extruded Mg-0.5Sr alloy did not induce toxicity to cells. These results indicated that as-extruded Mg-0.5Sr alloy with suitable mechanical properties, corrosion resistance and good cytocompatibility was potential as a biodegradable implant for orthopedic application. - Highlights: • Biodegradable as-extruded Mg-Sr alloys were fabricated. • Microstructure of alloys changed with increasing Sr content. • Mechanical properties of alloys could be controlled by adjusting the Sr content. • Corrosion properties of alloys decreased with increasing Sr content. • As-extruded Mg-0.5Sr alloy was potential for orthopedic application.

  5. Biocompatibility of calcium phosphate bone cement with optimised mechanical properties: an in vivo study.

    Science.gov (United States)

    Palmer, Iwan; Nelson, John; Schatton, Wolfgang; Dunne, Nicholas J; Buchanan, Fraser; Clarke, Susan A

    2016-12-01

    This work establishes the in vivo performance of modified calcium phosphate bone cements for vertebroplasty of spinal fractures using a lapine model. A non-modified calcium phosphate bone cement and collagen-calcium phosphate bone cements composites with enhanced mechanical properties, utilising either bovine collagen or collagen from a marine sponge, were compared to a commercial poly(methyl methacrylate) cement. Conical cement samples (8 mm height × 4 mm base diameter) were press-fit into distal femoral condyle defects in New Zealand White rabbits and assessed after 5 and 10 weeks. Bone apposition and tartrate-resistant acid phosphatase activity around cements were assessed. All implants were well tolerated, but bone apposition was higher on calcium phosphate bone cements than on poly(methyl methacrylate) cement. Incorporation of collagen showed no evidence of inflammatory or immune reactions. Presence of positive tartrate-resistant acid phosphatase staining within cracks formed in calcium phosphate bone cements suggested active osteoclasts were present within the implants and were actively remodelling within the cements. Bone growth was also observed within these cracks. These findings confirm the biological advantages of calcium phosphate bone cements over poly(methyl methacrylate) and, coupled with previous work on enhancement of mechanical properties through collagen incorporation, suggest collagen-calcium phosphate bone cement composite may offer an alternative to calcium phosphate bone cements in applications where low setting times and higher mechanical stability are important.

  6. Tensile mechanical properties of U3Si2-Al fuel plate

    International Nuclear Information System (INIS)

    Xu Yong; Hu Huawei; Zhuang Hongquan; Wang Xishu

    2003-01-01

    The fuel plate made of fuel meat, with the U 3 Si 2 -Al dispersion fuel center, and 6061 Al alloy cladding, is a new kind of fuel used in research reactors. The mechanical property data of the fuel meat is the basic data in the design of fuel group, but the mechanical property of this fuel meat has not been studied all over the world till now. In this paper, the mechanical properties of U 3 Si 2 -Al fuel meats of different sizes used in research reactors are investigated and analyzed, and at the same time the carrying capacity of tensile in different directions are also compared. In order to get more knowledge about the mechanical properties of the fuel meat, the tensile experiment has been carried out repeatedly. Considering the lower ratio of elongation and the brittleness, the microscope has been used to examine the zone of fracture after tensile test. (authors)

  7. Size Effect of Defects on the Mechanical Properties of Graphene

    Science.gov (United States)

    Park, Youngho; Hyun, Sangil

    2018-03-01

    Graphene, a two-dimensional material, has been studied and utilized for its excellent material properties. In reality, achieving a pure single-crystalline structure in graphene is difficult, so usually graphene may have various types of defects in it. Vacancies, Stone-Wales defects, and grain boundaries can drastically change the material properties of graphene. Graphene with vacancy defects has been of interest because it is a two-dimensional analogy of three-dimensional porous materials. It has efficient material properties, and can function as a part of modern devices. The mechanical properties have been studied by using molecular dynamics for either a single vacancy defect with various sizes or multiple vacancy defects with same defect ratios. However, it is not clear which one has more influence on the mechanical properties between the size of the defects and the defect ratio. Therefore, we investigated the hole-size effect on the mechanical properties of single-crystalline graphene at various defect ratios. A void defect with large size can have a rather high tensile modulus with a low fracture strain compared to a void defect with small size. We numerically found that the tensile properties of scattered single vacancies is similar to that of amorphous graphene. We suspect that this is due to the local orbital change of the carbon atoms near the boundary of the void defects, so-called the interfacial phase.

  8. Effects of gamma rays on the physical and mechanical properties of hide

    International Nuclear Information System (INIS)

    Sutrisno Puspodikoro.

    1976-01-01

    The effect of gamma rays on the physical and mechanical properties of hide has been studied, using Gammacell 220 as an irradiator. The determination of the physical and mechanical properties of the irradiated hide was carried out by Balai Penelitian Kulit (Leather Research Institute) at Yogyakarta. Experiments show that up to a certain dose of irradiation, favourable effects can be obtained, while higher doses impair the physical and mechanical properties of the leather raw materials. (author)

  9. Mechanical properties of polyelectrolyte multilayer self-assembled films

    International Nuclear Information System (INIS)

    Dai Xinhua; Zhang Yongjun; Guan Ying; Yang Shuguang; Xu Jian

    2005-01-01

    The mechanical properties of electrostatic self-assembled multilayer films from polyacrylic acid (PAA) and C 60 -ethylenediamine adduct (C 60 -EDA) or poly(allylamine hydrochloride) (PAH) were evaluated by atomic force microscopy (AFM) wear experiments. Because of the higher molecular weight of PAH, the wear resistance of the (PAH/PAA) 10 film is higher than that of the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film; that is, the former is mechanically more stable than the latter. The mechanical stability of both films can be improved significantly by heat treatment, which changes the nature of the linkage from ionic to covalent. The AFM measurement also reveals that the (PAH/PAA) 2 (C 60 -EDA/PAA) 8 film is softer than the (PAH/PAA) 10 film. The friction properties of the heated films were measured. These films can be developed as potential lubrication coatings for microelectromechanical systems

  10. Prediction of mechanical properties of Al alloys with change of cooling rate

    Directory of Open Access Journals (Sweden)

    Quan-Zhi Dong

    2012-11-01

    Full Text Available The solidification process significantly affects the mechanical properties and there are lots of factors that affect the solidification process. Much progress has been made in the research on the effect of solidification on mechanical properties. Among them, the PF (Phase Field model and CA (Cellular Automata model are widely used as simulation methods which can predict nucleation and its growth, and the size and morphology of the grains during solidification. Although they can give accurate calculation results, it needs too much computational memory and calculation time. So it is difficult to apply the simulation to the real production process. In this study, a more practical simulation approach which can predict the mechanical properties of real aluminum alloys is proposed, by identifying through experiment the relationship between cooling rate and SDAS (Secondary Dendrite Arm Spacing and mechanical properties. The experimentally measured values and the values predicted by simulation have relatively small differences and the mechanical properties of a variety of Al alloys are expected to be predicted before casting through use of the simulation.

  11. Effect of stacking sequence on mechanical properties neem wood veneer plastic composites

    Science.gov (United States)

    Nagamadhu, M.; Kumar, G. C. Mohan; Jeyaraj, P.

    2018-04-01

    This study investigates the effect of wood veneer stacking sequence on mechanical properties of neem wood polymer composite (WPC) experimentally. Wood laminated samples were fabricated by conventional hand layup technique in a mold and cured under pressure at room temperature and then post cured at elevated temperature. Initially, the tensile, flexural, and impact test were conducted to understand the effect of weight fraction of fiber on mechanical properties. The mechanical properties have increased with the weight fraction of fiber. Moreover the stacking sequence of neem wood plays an important role. As it has a significant impact on the mechanical properties. The results indicated that 0°/0° WPC shows highest mechanical properties as compared to other sequences (90°/90°, 0°/90°, 45°/90°, 45°/45°). The Fourier Transform Infrared Spectroscopy (FTIR) Analysis were carried out to identify chemical compounds both in raw neem wood and neem wood epoxy composite. The microstructure raw/neat neem wood and the interfacial bonding characteristics of neem wood composite investigated using Scanning electron microscopy images.

  12. Influence of Temperature on Mechanical Properties of Jute/Biopolymer Composites

    DEFF Research Database (Denmark)

    Løvdal, Alexandra Liv Vest; Laursen, Louise Løcke; Løgstrup Andersen, Tom

    2013-01-01

    Biopolymers and natural fibers are receiving wide attention for the potential to have good performance composites with low environmental impact. A current limitation of most biopolymers is however their change in mechanical properties at elevated temperatures. This study investigates the mechanical...... of the fibers. Altogether, the results demonstrate that the thermal sensitivity parameters typically provided for polymers, e.g., the glass transition temperature and the heat deflection temperature, cannot be used as sole parameters for determining the gradual change in mechanical properties of polymers...... properties of two biomass-based polymers, polylactic acid (PLA) and cellulose acetate (CA), as a function of ambient temperature in the range from 5 to 80C. Tests were done for neat polymers and for jute fiber/biopolymer composites. Micromechanical models were applied to back-calculate the reinforcement...

  13. Mechanical and tribological properties of ion beam-processed surfaces

    International Nuclear Information System (INIS)

    Kodali, P.

    1998-01-01

    The intent of this work was to broaden the applications of well-established surface modification techniques and to elucidate the various wear mechanisms that occur in sliding contact of ion-beam processed surfaces. The investigation included characterization and evaluation of coatings and modified surfaces synthesized by three surface engineering methods; namely, beam-line ion implantation, plasma-source ion implantation, and DC magnetron sputtering. Correlation among measured properties such as surface hardness, fracture toughness, and wear behavior was also examined. This dissertation focused on the following areas of research: (1) investigating the mechanical and tribological properties of mixed implantation of carbon and nitrogen into single crystal silicon by beam-line implantation; (2) characterizing the mechanical and tribological properties of diamond-like carbon (DLC) coatings processed by plasma source ion implantation; and (3) developing and evaluating metastable boron-carbon-nitrogen (BCN) compound coatings for mechanical and tribological properties. The surface hardness of a mixed carbon-nitrogen implant sample improved significantly compared to the unimplanted sample. However, the enhancement in the wear factor of this sample was found to be less significant than carbon-implanted samples. The presence of nitrogen might be responsible for the degraded wear behavior since nitrogen-implantation alone resulted in no improvement in the wear factor. DLC coatings have low friction, low wear factor, and high hardness. The fracture toughness of DLC coatings has been estimated for the first time. The wear mechanism in DLC coatings investigated with a ruby slider under a contact stress of 1 GPa was determined to be plastic deformation. The preliminary data on metastable BCN compound coatings indicated high friction, low wear factor, and high hardness

  14. Effect of manufacturing and experimental conditions on the mechanical and surface properties of silicone elastomer scaffolds used in endothelial mechanobiological studies.

    Science.gov (United States)

    Campeau, Marc-Antoine; Lortie, Audrey; Tremblay, Pierrick; Béliveau, Marc-Olivier; Dubé, Dominic; Langelier, Ève; Rouleau, Léonie

    2017-07-14

    Mechanobiological studies allow the characterization of cell response to mechanical stresses. Cells need to be supported by a material with properties similar to the physiological environment. Silicone elastomers have been used to produce various in vitro scaffolds of different geometries for endothelial cell studies given its relevant mechanical, optical and surface properties. However, obtaining defined and repeatable properties is a challenge as depending on the different manufacturing and processing steps, mechanical and surface properties may vary significantly between research groups. The impact of different manufacturing and processing methods on the mechanical and surface properties was assessed by measuring the Young's modulus and the contact angle. Silicone samples were produced using different curing temperatures and processed with different sterilization techniques and hydrophilization conditions. Different curing temperatures were used to obtain materials of different stiffness with a chosen silicone elastomer, i.e. Sylgard 184 ® . Sterilization by boiling had a tendency to stiffen samples cured at lower temperatures whereas UV and ethanol did not alter the material properties. Hydrophilization using sulphuric acid allowed to decrease surface hydrophobicity, however this effect was lost over time as hydrophobic recovery occurred. Extended contact with water maintained decreased hydrophobicity up to 7 days. Mechanobiological studies require complete cell coverage of the scaffolds used prior to mechanical stresses exposure. Different concentrations of fibronectin and collagen were used to coat the scaffolds and cell seeding density was varied to optimize cell coverage. This study highlights the potential bias introduced by manufacturing and processing conditions needed in the preparation of scaffolds used in mechanobiological studies involving endothelial cells. As manufacturing, processing and cell culture conditions are known to influence cell

  15. Physicochemical and mechanical properties of paracetamol cocrystal with 5-nitroisophthalic acid.

    Science.gov (United States)

    Hiendrawan, Stevanus; Veriansyah, Bambang; Widjojokusumo, Edward; Soewandhi, Sundani Nurono; Wikarsa, Saleh; Tjandrawinata, Raymond R

    2016-01-30

    We report novel pharmaceutical cocrystal of a popular antipyretic drug paracetamol (PCA) with coformer 5-nitroisophhthalic acid (5NIP) to improve its tabletability. The cocrystal (PCA-5NIP at molar ratio of 1:1) was synthesized by solvent evaporation technique using methanol as solvent. The physicochemical properties of cocrystal were characterized by powder X-ray diffraction (PXRD), differential scanning calorimetry (DSC), thermogravimetry analysis (TGA), fourier transform infrared spectroscopy (FTIR), hot stage polarized microscopy (HSPM) and scanning electron microscopy (SEM). Stability of the cocrystal was assessed by storing them at 40°C/75% RH for one month. Compared to PCA, the cocrystal displayed superior tableting performance. PCA-5NIP cocrystal showed a similar dissolution profile as compared to PCA and exhibited good stability. This study showed the utility of PCA-5NIP cocrystal for improving mechanical properties of PCA. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. Material, compressional and mechanical properties of Borassus ...

    African Journals Online (AJOL)

    The compressional and mechanical properties of tablet formulations incorporating native and modified Borassus aethiopum starches as binder were evaluated. The native Borassus aethiopum starch (BAS) was modified to yield fully gelatinised starch (FGBAS) and microcrystalline starch (MBAS). The compressional ...

  17. Mechanical and irradiation properties of zirconium alloys irradiated in HANARO

    International Nuclear Information System (INIS)

    Kwon, Oh Hyun; Eom, Kyong Bo; Kim, Jae Ik; Suh, Jung Min; Jeon, Kyeong Lak

    2011-01-01

    These experimental studies are carried out to build a database for analyzing fuel performance in nuclear power plants. In particular, this study focuses on the mechanical and irradiation properties of three kinds of zirconium alloy (Alloy A, Alloy B and Alloy C) irradiated in the HANARO (High-flux Advanced Neutron Application Reactor), one of the leading multipurpose research reactors in the world. Yield strength and ultimate tensile strength were measured to determine the mechanical properties before and after irradiation, while irradiation growth was measured for the irradiation properties. The samples for irradiation testing are classified by texture. For the irradiation condition, all samples were wrapped into the capsule (07M-13N) and irradiated in the HANARO for about 100 days (E > 1.0 MeV, 1.1 10 21 n/cm 2 ). These tests and results indicate that the mechanical properties of zirconium alloys are similar whether unirradiated or irradiated. Alloy B has shown the highest yield strength and tensile strength properties compared to other alloys in irradiated condition. Even though each of the zirconium alloys has a different alloying content, this content does not seem to affect the mechanical properties under an unirradiated condition and low fluence. And all the alloys have shown the tendency to increase in yield strength and ultimate tensile strength. Transverse specimens of each of the zirconium alloys have a slightly lower irradiation growth tendency than longitudinal specimens. However, for clear analysis of texture effects, further testing under higher irradiation conditions is needed

  18. Nature's amazing biopolymer: basic mechanical and hydrological properties of soil affected by plant exudates

    Science.gov (United States)

    Naveed, Muhammad; Roose, Tiina; Raffan, Annette; George, Timothy; Bengough, Glyn; Brown, Lawrie; Keyes, Sam; Daly, Keith; Hallett, Paul

    2016-04-01

    Plant exudates are known to have a very large impact on soil physical properties through changes in mechanical and hydrological processes driven by long-chain polysaccharides and surface active compounds. Whilst these impacts are well known, the basic physical properties of these exudates have only been reported in a small number of studies. We present data for exudates obtained from barley roots and chia seeds, incorporating treatments examining biological decomposition of the exudates. When these exudates were added to a sandy loam soil, contact angle and drop penetration time increased exponentially with increasing exudate concentration. These wetting properties were strongly correlated with both exudate density and zero-shear viscosity, but not with exudate surface tension. Water holding capacity and water repellency of exudate mixed soil tremendously increased with exudate concentration, however they were significantly reduced on decomposition when measured after 14 days of incubation at 16C. Mechanical stability greatly increased with increasing exudate amendment to soils, which was assessed using a rheological amplitude sweep test near saturation, at -50 cm matric potential (field capacity) using indentation test, and at air-dry condition using the Brazilian test. This reflects that exudates not only attenuate plant water stress but also impart mechanical stability to the rhizosphere. These data are highly relevant to the understanding and modelling of rhizosphere development, which is the next phase of our research.

  19. Mechanical Properties of Nylon Harp Strings

    Science.gov (United States)

    Lynch-Aird, Nicolas; Woodhouse, Jim

    2017-01-01

    Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young’s modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young’s modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings. PMID:28772858

  20. Mechanical Properties of Nylon Harp Strings

    Directory of Open Access Journals (Sweden)

    Nicolas Lynch-Aird

    2017-05-01

    Full Text Available Monofilament nylon strings with a range of diameters, commercially marketed as harp strings, have been tested to establish their long-term mechanical properties. Once a string had settled into a desired stress state, the Young’s modulus was measured by a variety of methods that probe different time-scales. The modulus was found to be a strong function of testing frequency and also a strong function of stress. Strings were also subjected to cyclical variations of temperature, allowing various thermal properties to be measured: the coefficient of linear thermal expansion and the thermal sensitivities of tuning, Young’s modulus and density. The results revealed that the particular strings tested are divided into two groups with very different properties: stress-strain behaviour differing by a factor of two and some parametric sensitivities even having the opposite sign. Within each group, correlation studies allowed simple functional fits to be found to the key properties, which have the potential to be used in automated tuning systems for harp strings.

  1. Mechanical and fracture properties at impact loading of selected steels for nuclear power engineering

    International Nuclear Information System (INIS)

    Buchar, J.; Bilek, Z.

    1988-01-01

    The possibilities are briefly characterized of experimental research of mechanical and fracture properties of steels used in nuclear power engineering. Attention is paid to plastic deformation and the assessment of fracture formation during impact loading. The results are reported for steels 15Kh2MFA and 10GN2MFA. For steel 15Kh2MFA the effect was also studied of neutron radiation at different temperatures. From the theory developed for non-irradiated material 10GN2MFA, a prediction is made within the original model of the fracture stress value for steel 15Kh2MFA in both non-irradiated and irradiated states. The conclusion is arrived at that the existing methods of assessing steel properties at impact load allow obtaining knowledge of all significant effects during actual stress, this using only small specimens of the materials. (Z.M.). 4 figs., 8 refs

  2. High energy radiation effects on mechanical properties of butyl rubber compounds

    International Nuclear Information System (INIS)

    Pozenato, Cristina A.; Scagliusi, Sandra R.; Cardoso, Elisabeth C.L.; Lugao, Ademar B.

    2013-01-01

    The high energy radiation on butyl rubber compounds causes a number of chemical reactions that occur after initial ionization and excitation events. These reactions lead to changes in molecular mass of the polymer through scission and crosslinking of the molecules, being able to affect the physical and mechanical properties. Butyl rubber has excellent mechanical properties and oxidation resistance as well as low gas and water vapor permeability. Due to all these properties butyl rubber is widely used industrially and particularly in tires manufacturing. In accordance with various authors, the major effect of high energy, such as gamma rays in butyl rubber, is the yielding of free-radicals along with changes in mechanical properties. There were evaluated effects imparted from high energy radiation on mechanical properties of butyl rubber compounds, non-irradiated and irradiated with 25 kGy, 50 kGy, 150 kGy and 200 kGy. It was also observed a sharp reducing in stress rupture and elongation at break for doses higher than 50 kGy, pointing toward changes in polymeric chain along build-up of free radicals and consequent degradation. (author)

  3. Relationship between Magnetic and Mechanical Properties of Cermet Tools

    International Nuclear Information System (INIS)

    Ahn, Dong Gil; Lee, Jeong Hee

    2000-01-01

    The commercial cermet cutting tools consist of multi-carbide and a binder metal of iron group, such as cobalt and nickel which are ferromagnetic. In this paper, a new approach to evaluate the mechanical properties of TiCN based cermet by magnetic properties were studied in relation to binder content and sintering conditions. The experimental cermet was prepared using commercial composition with the other binder contents by PM process. It was found that the magnetic properties of the sintered cermets remarkably depended on the microstructure and the total carbon content. The magnetic saturation was proportional to increment of coercive force. At high carbon content in sintered cermet, the magnetic saturation was increased by decreasing the concentration of solutes such as W, Mo, Ti in Co-Ni binder. As the coercive force increases, the hardness usually increases. The strength and toughness of the cermet also increased with increasing the magnetic saturation. The measurement of magnetic properties made it possible to evaluate the mechanical properties in the cermet cutting tools

  4. Investigation on Mechanical Properties of Graphene Oxide reinforced GFRP

    Science.gov (United States)

    Arun, G. K.; Sreenivas, Nikhil; Brahma Reddy, Kesari; Sai Krishna Reddy, K.; Shashi Kumar, M. E.; Pramod, R.

    2018-02-01

    Graphene and E-glass fibres individually find a very wide field of applications because of their various mechanical and chemical properties. Recently graphene has attracted both academic and industrial interest because it can produce a dramatic improvement in properties at very low filler content. The primary interest of this venture is to investigate on Graphene reinforced polymer matrix nanocomposites and finding the mechanical properties. The composites were fabricated by Hand Lay Process and have been evaluated by the addition of Graphene with 1, 1.5, 2, 2.5 and 3 by weight% as reinforcement in composites. The theoretical and experimental results validate the increase in properties such as tensile strength, hardness and flexural strength with increase in weight proportions from 1% to 3% of graphene powder. It was observed that the composite material with 2.5% weight fraction of graphene yielded superior properties over other weight percentages. Graphene reinforced polymer matrix nanocomposites finds its major applications in the manufacture of aircraft bodies, ballistic missiles, sporting equipment, marine applications and extraterrestrial ventures.

  5. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications

    Directory of Open Access Journals (Sweden)

    Gh. Barati Darband

    2017-03-01

    Full Text Available Plasma Electrolyte Oxidation (PEO process has increasingly been employed to improve magnesium surface properties by fabrication of an MgO-based coating. Originating from conventional anodizing procedures, this high-voltage process produces an adhesive ceramic film on the surface. The present article provides a comprehensive review around mechanisms of PEO coatings fabrication and their different properties. Due to complexity of PEO coatings formation, a complete explanation regarding fabrication mechanisms of PEO coatings has not yet been proposed; however, the most important advancements in the field of fabrication mechanisms of PEO coatings were gathered in this work. Mechanisms of PEO coatings fabrication on magnesium were reviewed considering voltage–time plots, optical spectrometry, acoustic emission spectrometry and electronic properties of the ceramic film. Afterwards, the coatings properties, affecting parameters and improvement strategies were discussed. In addition, corrosion resistance of coatings, important factors in corrosion resistance and methods for corrosion resistance improvement were considered. Tribological properties (important factors and improvement methods of coatings were also studied. Since magnesium and its alloys are broadly used in biological applications, the biological properties of PEO coatings, important factors in their biological performance and existing methods for improvement of coatings were explained. Addition of ceramic based nanoparticles and formation of nanocomposite coatings may considerably influence properties of plasma electrolyte oxidation coatings. Nanocomposite coatings properties and nanoparticles adsorption mechanisms were included in a separate sector. Another method to improve coatings properties is formation of hybrid coatings on PEO coatings which was discussed in the end.

  6. Manufacturing of hydrogel biomaterials with controlled mechanical properties for tissue engineering applications.

    Science.gov (United States)

    Vedadghavami, Armin; Minooei, Farnaz; Mohammadi, Mohammad Hossein; Khetani, Sultan; Rezaei Kolahchi, Ahmad; Mashayekhan, Shohreh; Sanati-Nezhad, Amir

    2017-10-15

    Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite

  7. Metal-ceramic materials. Study and prediction of effective mechanical properties

    International Nuclear Information System (INIS)

    Karakulov, Valerii V.; Smolin, Igor Yu.

    2016-01-01

    Mechanical behavior of stochastic metal-ceramic composite materials was numerically simulated on mesoscopic scale level. Deformation of mesoscopic volumes of composites, whose structure consists of a metal matrix and randomly distributed ceramic inclusions, was numerically simulated. The results of the numerical simulation were used for evaluation of the effective elastic and strength properties of metal-ceramic materials with different parameters of the structure. The values of the effective mechanical properties of investigated materials were obtained, and the character of the dependence of the effective elastic and strength properties on the structure parameters of composites was determined.

  8. Determining the Mechanical Properties of Lattice Block Structures

    Science.gov (United States)

    Wilmoth, Nathan

    2013-01-01

    Lattice block structures and shape memory alloys possess several traits ideal for solving intriguing new engineering problems in industries such as aerospace, military, and transportation. Recent testing at the NASA Glenn Research Center has investigated the material properties of lattice block structures cast from a conventional aerospace titanium alloy as well as lattice block structures cast from nickel-titanium shape memory alloy. The lattice block structures for both materials were sectioned into smaller subelements for tension and compression testing. The results from the cast conventional titanium material showed that the expected mechanical properties were maintained. The shape memory alloy material was found to be extremely brittle from the casting process and only compression testing was completed. Future shape memory alloy lattice block structures will utilize an adjusted material composition that will provide a better quality casting. The testing effort resulted in baseline mechanical property data from the conventional titanium material for comparison to shape memory alloy materials once suitable castings are available.

  9. Mechanical properties and microstructure of laser treated Al-Cu-Mg alloys

    NARCIS (Netherlands)

    Hosson, J.Th.M. De; Noordhuis, J.

    1993-01-01

    The mechanical properties and microstructural features of Al-Cu-Mg alloys were investigated, as exposed to laser treatments at various scan velocities. As far as the mechanical property is concerned a striking observation is a minimum in the hardness value at a laser scan velocity of 1/2 cm/s.

  10. Effect of Short Fiber Reinforcement on Mechanical Properties of Hybrid Phenolic Composites

    Directory of Open Access Journals (Sweden)

    Sembian Manoharan

    2014-01-01

    Full Text Available Fiber plays an important role in determining the hardness, strength, and dynamic mechanical properties of composite material. In the present work, enhancement of viscoelastic behaviour of hybrid phenolic composites has been synergistically investigated. Five different phenolic composites, namely, C1, C2, C3, C4, and C5, were fabricated by varying the weight percentage of basalt and aramid fiber, namely, 25, 20, 15, 10, and 5% by compensating with barium sulphate (BaSO4 to keep the combined reinforcement concentration at 25 wt%. Hardness was measured to examine the resistance of composites to indentation. The hardness of phenolic composites increased from 72.2 to 85.2 with increase in basalt fiber loading. Composite C1 (25 wt% fiber is 1.2 times harder than composite C5. Compression test was conducted to find out compressive strength of phenolic composites and compressive strength increased with increase in fiber content. Dynamic mechanical analysis (DMA was carried out to assess the temperature dependence mechanical properties in terms of storage modulus (E′, loss modulus (E′′, and damping factor (tan δ. The results indicate great improvement of E′ values and decrease in damping behaviour of composite upon fiber addition. Further X-ray powder diffraction (XRD and energy-dispersive X-ray (EDX analysis were employed to characterize the friction composites.

  11. Structural and Mechanical Properties of TiN-TiC-TiO System: First Principle Study

    Science.gov (United States)

    Farhadizadeh, Ali Reza; Amadeh, Ahmad Ali; Ghomi, Hamidreza

    2017-11-01

    Mechanical and structural properties of ternary system of TiN-TiO-TiC are investigated using first principle methods. 70 different compositions of Ti 100 (NOC) 100 with cubic structure are examined in order to illustrate the trend of properties variations. The geometry of compounds is optimized, and then, their chemical stability is assessed. Afterward, shear, bulk and young moduli, Cauchy pressure, Zener ratio, hardness and {H}3/{E}2 ratio are computed based on elastic constants. Graphical ternary diagram is used to represent the trend of such properties when the content of nitrogen, oxygen and carbon varies. The results show that incorporation of oxygen into the system decreases the hardness and {H}3/{E}2 ratio while subsequently ductility increases due to positive Cauchy pressure. It is revealed that the maximum {H}3/{E}2 ratio occurs when both nitrogen and carbon with a little amount of oxygen are incorporated. Ti 100 N 30 C 70 owns the highest hardness and {H}3/{E}2 ratio equal to 39.5 and 0.2 GPa, respectively. In addition, the G/B of this compound, which is about 0.9, shows it is brittle. It is also observed that the solid solutions have better mechanical properties with respect to titanium nitride and titanium carbide. The obtained results could be used to enhance monolayer coatings as well as to design multilayers with specific mechanical properties. The authors would like to acknowledge the financial support of University of Tehran Science and Technology Park for this research under Grant No. 94061

  12. Effect of extrusion processing on the microstructure, mechanical properties, biocorrosion properties and antibacterial properties of Ti-Cu sintered alloys

    International Nuclear Information System (INIS)

    Zhang, Erlin; Li, Shengyi; Ren, Jing; Zhang, Lan; Han, Yong

    2016-01-01

    Ti-Cu sintered alloys, Ti-Cu(S) alloy, have exhibited good anticorrosion resistance and strong antibacterial properties, but low ductility in previous study. In this paper, Ti-Cu(S) alloys were subjected to extrusion processing in order to improve the comprehensive property. The phase constitute, microstructure, mechanical property, biocorrosion property and antibacterial activity of the extruded alloys, Ti-Cu(E), were investigated in comparison with Ti-Cu(S) by X-ray diffraction (XRD), optical microscopy (OM), scanning electronic microscopy (SEM) with energy disperse spectroscopy (EDS), mechanical testing, electrochemical testing and plate-count method in order to reveal the effect of the extrusion process. XRD, OM and SEM results showed that the extrusion process did not change the phase constitute but refined the grain size and Ti 2 Cu particle significantly. Ti-Cu(E) alloys exhibited higher hardness and compressive yield strength than Ti-Cu(S) alloys due to the fine grain and Ti 2 Cu particles. With the consideration of the total compressive strain, it was suggested that the extrusion process could improve the ductility of Ti-Cu alloy(S) alloys. Electrochemical results have indicated that the extrusion process improved the corrosion resistance of Ti-Cu(S) alloys. Plate-count method displayed that both Ti-Cu(S) and Ti-Cu(E) exhibited strong antibacterial activity (> 99%) against S. aureus. All these results demonstrated that hot forming processing, such as the extrusion in this study, refined the microstructure and densified the alloy, in turn improved the ductility and strength as well as anticorrosion properties without reduction in antibacterial properties. - Highlights: • Hot extrusion refined the grain size and Ti 2 Cu phase significantly. • Hot extrusion increased the mechanical properties and the corrosion resistance. • The antibacterial properties was not affected by the hot process.

  13. Mechanical properties of ion implanted ceramic surfaces

    International Nuclear Information System (INIS)

    Burnett, P.J.

    1985-01-01

    This thesis investigates the mechanisms by which ion implantation can affect those surface mechanical properties of ceramics relevant to their tribological behaviour, specifically hardness and indentation fracture. A range of model materials (including single crystal Si, SiC, A1 2 0 3 , Mg0 and soda-lime-silica glass) have been implanted with a variety of ion species and at a range of ion energies. Significant changes have been found in both low-load microhardness and indentation fracture behaviour. The changes in hardness have been correlated with the evolution of an increasingly damaged and eventually amorphous thin surface layer together with the operation of radiation-, solid-solution- and precipitation-hardening mechanisms. Compressive surface stresses have been shown to be responsible for the observed changes in identation fracture behaviour. In addition, the levels of surface stress present have been correlated with the structure of the surface layer and a simple quantitative model proposed to explain the observed stress-relief upon amorphisation. Finally, the effects of ion implantation upon a range of polycrystalline ceramic materials has been investigated and the observed properties modifications compared and contrasted to those found for the model single crystal materials. (author)

  14. Rheological and mechanical properties of recycled polyethylene films contaminated by biopolymer.

    Science.gov (United States)

    Gere, D; Czigany, T

    2018-06-01

    Nowadays, with the increasing amount of biopolymers used, it can be expected that biodegradable polymers (e.g. PLA, PBAT) may appear in the petrol-based polymer waste stream. However, their impact on the recycling processes is not known yet; moreover, the properties of the products made from contaminated polymer blends are not easily predictable. Therefore, our goal was to investigate the rheological and mechanical properties of synthetic and biopolymer compounds. We made different compounds from regranulates of mixed polyethylene film waste and original polylactic acid (PLA) by extruison, and injection molded specimens from the compounds. We investigated the rheological properties of the regranulates, and the mechanical properties of the samples. When PLA was added, the viscosity and specific volume of all the blends decreased, and mechanical properties (tensile strength, modulus, and impact strength) changed significantly. Young's modulus increased, while elongation at break and impact strength decreased with the increase of the weight fraction of PLA. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Mechanical properties of Nd-Ba-Cu-O bulk superconductors

    International Nuclear Information System (INIS)

    Matsui, Motohide; Sakai, Naomichi; Murakami, Masato; Osamura, Kozo

    2003-01-01

    We investigated the effects of Nd422 and Ag particles on the mechanical properties in Nd-Ba-Cu-O bulk superconductors. Both Nd422 and Ag particles were effective in decreasing the amount of microcracks running along the c direction. In the case of Nd422, however, excessive Nd422 addition enhanced the crack propagation, resulting in the degradation of mechanical strength. In the case of Ag addition, the beneficial effect of its ductile mechanical property was not observed. This was due to a relatively large size of Ag particles and low interfacial strength between Ag and Nd123 matrix. It was remarkable that the Weibull coefficient of the sample with Ag 2 O addition exceeded 13, which is reliable enough for practical engineering applications

  16. Mechanical properties of bioactive glass putty formulations

    NARCIS (Netherlands)

    van Gestel, N.A.P.; Geurts, J.A.P.; Hulsen, D.J.W.; Hofmann, S.; Ito, K.; van Rietbergen, B.; Arts, J.J.C.

    2016-01-01

    Introduction: Bioactive glass (BAG) has been studied widely and seems to be a very promising biomaterial in regeneration of large bone defects and osteomyelitis treatment, because of its bone bonding and antibacterial properties[1]-[5]. Its high stiffness could potentially also enable mechanical

  17. Mechanical Properties in a Bamboo Fiber/PBS Biodegradable Composite

    Science.gov (United States)

    Ogihara, Shinji; Okada, Akihisa; Kobayashi, Satoshi

    In recent years, biodegradable plastics which have low effect on environment have been developed. However, many of them have lower mechanical properties than conventional engineering plastics. Reinforcing them with a natural fiber is one of reinforcing methods without a loss of their biodegradability. In the present study, we use a bamboo fiber as the reinforcement and polybutylenesuccinate (PBS) as the matrix. We fabricate long fiber unidirectional composites and cross-ply laminate with different fiber weight fractions (10, 20, 30, 40 and 50wt%). We conduct tensile tests to evaluate the mechanical properties of these composites. In addition, we measure bamboo fiber strength distribution. We discuss the experimentally-obtained properties based on the mechanical properties of the constituent materials. Young's modulus and tensile strength in unidirectional composite and cross-ply laminate increase with increasing fiber weight fraction. However, the strain at fracture showed decreasing tendency. Young's modulus in fiber and fiber transverse directions are predictable by the rules of mixture. Tensile strength in fiber direction is lower than Curtin's prediction of strength which considers distribution of fiber strength. Young's modulus in cross-ply laminate is predictable by the laminate theory. However, analytical prediction of Poisson's ratio in cross-ply laminate by the laminate theory is lower than the experimental results.

  18. Mechanical performance of carbon-epoxy laminates. Part I: quasi-static and impact bending properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part I of this study, quasi-static and impact bending properties of four aeronautical grade carbon-epoxy laminates have been determined and compared. Materials tested were unidirectional cross-ply (tape and bidirectional woven textile (fabric carbon fiber lay-up architectures, impregnated with standard and rubber-toughened resins, respectively, giving rise to 1.5 mm-thick laminates. Quasi-static mechanical properties assessed in transversal mode loading were modulus of elasticity, flexural strength and tenacity at the maximum load, whereas the net absorbed energy was determined under translaminar impact conditions. Two-dimensional woven carbon fiber reinforcements embedded in a rubber-toughened matrix presented the best mechanical performance under static loading. Under dynamic loading conditions, woven fiber fabric pre-forms were favorably sensitive to increasing impact energies regardless the nature of the employed epoxy resin. However, it was concluded that great care should be taken with this material within the low energy impact regimen.

  19. Mechanical properties and microstructure of laser treated Al-Cu-Mg alloys

    OpenAIRE

    De Hosson , J.; Noordhuis , J.

    1993-01-01

    The mechanical properties and microstructural features of Al-Cu-Mg alloys were investigated, as exposed to laser treatments at various scan velocities. As far as the mechanical property is concerned a striking observation is a minimum in the hardness value at a laser scan velocity of 1/2 cm/s. Usually an increasing hardness with increasing laser scan velocities is reported in the literature. This remarkable property could be explained based on the microstructural features observed by transmis...

  20. Structural characterization and mechanical properties of polypropylene reinforced natural fibers

    Science.gov (United States)

    Karim, M. A. A.; Zaman, I.; Rozlan, S. A. M.; Berhanuddin, N. I. C.; Manshoor, B.; Mustapha, M. S.; Khalid, A.; Chan, S. W.

    2017-10-01

    Recently the development of natural fiber composite instead of synthetics fiber has lead to eco-friendly product manufacturing to meet various applications in the field of automotive, construction and manufacturing. The use of natural fibers offer an alternative to the reinforcing fibers because of their good mechanical properties, low density, renewability, and biodegradability. In this present research, the effects of maleic anhydride polypropylene (MAPP) on the mechanical properties and material characterization behaviour of kenaf fiber and coir fiber reinforced polypropylene were investigated. Different fractions of composites with 10wt%, 20wt% and 30wt% fiber content were prepared by using brabender mixer at 190°C. The 3wt% MAPP was added during the mixing. The composites were subsequently molded with injection molding to prepare the test specimens. The mechanical properties of the samples were investigated according to ISO 527 to determine the tensile strength and modulus. These results were also confirmed by the SEM machine observations of fracture surface of composites and FTIR analysis of the chemical structure. As the results, the presence of MAPP helps increasing the mechanical properties of both fibers and 30wt% kenaf fiber with 3wt% MAPP gives the best result compare to others.

  1. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites.

    Science.gov (United States)

    Li, Feng; Jiang, Xiaosong; Shao, Zhenyi; Zhu, Degui; Zhu, Minhao

    2018-04-16

    Biomaterial composites made of titanium and hydroxyapatite (HA) powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD), back scattered electron imaging (BSE), scanning electron microscope (SEM) equipped with energy dispersive spectrometer (EDS), electron probe microanalyzer (EPMA), and transmission electron microscope (TEM). The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca₃(PO₄)₂, Ti x P y , and Ti₃O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.

  2. Microstructure and Mechanical Properties of Graphene-Reinforced Titanium Matrix/Nano-Hydroxyapatite Nanocomposites

    Directory of Open Access Journals (Sweden)

    Feng Li

    2018-04-01

    Full Text Available Biomaterial composites made of titanium and hydroxyapatite (HA powder are among the most important biomedicalmaterials due to their good mechanical properties and biocompatibility. In this work, graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites were prepared by vacuum hot-pressing sintering. The microstructure and mechanical properties of graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were systematically investigated. Microstructures of the nanocomposites were examined by X-ray diffraction (XRD, back scattered electron imaging (BSE, scanning electron microscope (SEM equipped with energy dispersive spectrometer (EDS, electron probe microanalyzer (EPMA, and transmission electron microscope (TEM. The mechanical properties were determined from microhardness, shear strength, and compressive strength. Results showed that during the high-temperature sintering process, complex chemical reactions occurred, resulting in new phases of nucleation such as Ca3(PO42, TixPy, and Ti3O.The new phases, which easily dropped off under the action of external force, could hinder the densification of sintering and increase the brittleness of the nanocomposites. Results demonstrated that graphene had an impact on the microstructure and mechanical properties of the nanocomposites. Based on the mechanical properties and microstructure of the nanocomposites, the strengthening and fracture mechanisms of the graphene-reinforced titanium matrix/nano-hydroxyapatite nanocomposites with different graphene content were analyzed.

  3. Development of a novel sodium fusidate-loaded triple polymer hydrogel wound dressing: Mechanical properties and effects on wound repair.

    Science.gov (United States)

    Jin, Sung Giu; Kim, Kyeong Soo; Kim, Dong Wuk; Kim, Dong Shik; Seo, Youn Gee; Go, Toe Gyung; Youn, Yu Seok; Kim, Jong Oh; Yong, Chul Soon; Choi, Han-Gon

    2016-01-30

    To develop a novel sodium fusidate-loaded triple polymer hydrogel dressing (TPHD), numerious polyvinyl alcohol-based (PVA) hydrogel dressings were prepared with various hydrophilic polymers using the freeze-thaw method, and their hydrogel dressing properties were assessed. Among the hydrophilic polymers tested, sodium alginate (SA) improved the swelling capacity the most, and polyvinyl pyrrolidone (PVP) provided the greatest improvement in bioadhesive stength and mechanical properties. Thus, PVA based-TPHDs were prepared using different ratios of PVP:SA. The effect of selected PVP:SA ratios on the swelling capacity, bioadhesive strength, mechanical properties, and drug release, permeation and deposition characteristics of sodium fusidate-loaded PVA-based TPHDs were assessed. As the ratio of PVP:SA increased in PVA-loaded TPHD, the swelling capacity, mechanical properties, drug release, permeation and deposition were improved. The TPHD containing PVA, PVP, SA and sodium fusidate at the weight ratio of 10/6/1/1 showed excellent hydrogel dressing properties, release, permeation and deposition of drug. Within 24h, 71.8 ± 1.3% of drug was released. It permeated 625.1 ± 81.2 μg/cm(2) through the skin and deposited of 313.8 ± 24.1 μg/cm(2) within 24h. The results of in vivo pharmacodynamic studies showed that sodium fusidate-loaded TPHD was more effective in improving the repair process than was a commercial product. Thus, this sodium fusidate-loaded TPHD could be a novel tool in wound care. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. On the Mechanical Properties of Chiral Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Mahnaz Zakeri

    2013-12-01

    Full Text Available Carbon nanotubes (CNTs are specific structures with valuable characteristics. In general, the structure of each nanotube is defined by a unique chiral vector. In this paper, different structures of short single-walled CNTs are simulated and their mechanical properties are determined using finite element method. For this aim, a simple algorithm is presented which is able to model the geometry of single-walled CNTs with any desired structure based on nano-scale continuum mechanics approach. By changing the chiral angle from 0 to 30 degree for constant length to radius ratio, the effect of nanotube chirality on its mechanical properties is evaluated. It is observed that the tensile modulus of CNTs changes between 0.93-1.02 TPa for different structures, and it can be higher for chiral structures than zigzag and armchair ones. Also, for different chiral angles, the bending modulus changes between 0.76-0.82 TPa, while the torsional modulus varies in the range of 0.283-0.301TPa.

  5. Effects of Stress Concentration on the Mechanical Properties of Carbon Fiber Reinforced Plastic

    Directory of Open Access Journals (Sweden)

    Ryo Naito

    2017-03-01

    Full Text Available Mechanical properties of conventional CFRP plates with small holes were investigated systematically. Those artificial holes are considered to be rivet connection between CFRP and other materials. The machining holes were employed with different number (n=0-5 and different mode, e.g., parallel (Sample A, 45 degree (Sample B and perpendicular (Sample C against the loading direction. To understand the mechanical properties of the CFRP plates clearly, tensile tests and failure analysis were conducted experimentally. Excellent mechanical properties were obtained for Sample A, compared to the other ones. This is due to the different size of the cross-section area in the specimen. With increasing the number of rivet hole, the mechanical properties were lineally decreasing. Such mechanical properties were analyzed by direct observation using a high speed camera, i.e., in-situ measurement of deformation during the tensile loading was carried

  6. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    International Nuclear Information System (INIS)

    Oksiuta, Z.; Mueller, P.; Spaetig, P.; Baluc, N.

    2011-01-01

    The Fe-14Cr-2W-0.3Ti-0.3Y 2 O 3 oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 deg. C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 deg. C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 deg. C).

  7. Effect of thermo-mechanical treatments on the microstructure and mechanical properties of an ODS ferritic steel

    Energy Technology Data Exchange (ETDEWEB)

    Oksiuta, Z., E-mail: oksiuta@pb.edu.pl [Bialystok Technical University, Mechanical Department, Wiejska 45c, 15-351 Bialystok (Poland); Mueller, P.; Spaetig, P.; Baluc, N. [Ecole Polytechnique Federale de Lausanne (EPFL), Centre de Recherches en Physique des Plasmas, Association Euratom-Confederation Suisse, 5232 Villigen PSI (Switzerland)

    2011-05-15

    The Fe-14Cr-2W-0.3Ti-0.3Y{sub 2}O{sub 3} oxide dispersion strengthened (ODS) reduced activation ferritic (RAF) steel was fabricated by mechanical alloying of a pre-alloyed, gas atomised powder with yttria nano-particles, followed by hot isostatic pressing and thermo-mechanical treatments (TMTs). Two kinds of TMT were applied: (i) hot pressing, or (ii) hot rolling, both followed by annealing in vacuum at 850 deg. C. The use of a thermo-mechanical treatment was found to yield strong improvement in the microstructure and mechanical properties of the ODS RAF steel. In particular, hot pressing leads to microstructure refinement, equiaxed grains without texture, and an improvement in Charpy impact properties, especially in terms of the upper shelf energy (about 4.5 J). Hot rolling leads to elongated grains in the rolling direction, with a grain size ratio of 6:1, higher tensile strength and reasonable ductility up to 750 deg. C, and better Charpy impact properties, especially in terms of the ductile-to-brittle transition temperature (about 55 deg. C).

  8. The fracture properties and toughening mechanisms of bone and dentin

    Science.gov (United States)

    Koester, Kurt John

    The mechanical properties of bone and dentin and in particular their fracture properties, are the subject of intense research. The relevance of these properties is increasing as our population ages and fracture incidence impacts the lives of a greater portion of the population. A robust framework is needed to understand the fracture properties of bone and dentin to guide researchers as they attempt to characterize the effects of aging, disease, and pharmaceutical treatments on the properties of these mineralized tissues. In the present work, this framework is provided and applied to human bone, human dentin, and animal bone. In situ electron microscopy was also used to identify the salient toughening mechanisms in bone and dentin. It was found that bone and dentin are extrinsically toughened materials and consequently their fracture properties are best characterized utilizing a crack-growth resistance approach. A description of the different mechanical measurements commonly employed when using small animal models (rats and mice) to evaluate the influence of drug therapies on bone fragility is provided. A study where these properties were measured for a large population of wild-type rats and mice was also conducted. Given my findings, it was determined that for the most complete understanding of small animal bone it was necessary to measure strength and toughness. Strength measurements probe the flaw distribution and toughness measurements to evaluate the resistance to facture in the presence of a single dominant worst-case flaw.

  9. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    Science.gov (United States)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  10. Biocompatibility of calcium phosphate bone cement with optimized mechanical properties.

    Science.gov (United States)

    Palmer, Iwan; Nelson, John; Schatton, Wolfgang; Dunne, Nicholas J; Buchanan, Fraser J; Clarke, Susan A

    2016-02-01

    The broad aim of this work was to investigate and optimize the properties of calcium phosphate bone cements (CPCs) for use in vertebroplasty to achieve effective primary fixation of spinal fractures. The incorporation of collagen, both bovine and from a marine sponge (Chondrosia reniformis), into a CPC was investigated. The biological properties of the CPC and collagen-CPC composites were assessed in vitro through the use of human bone marrow stromal cells. Cytotoxicity, proliferation, and osteoblastic differentiation were evaluated using lactate dehydrogenase, PicoGreen, and alkaline phosphatase activity assays, respectively. The addition of both types of collagen resulted in an increase in cytotoxicity, albeit not to a clinically relevant level. Cellular proliferation after 1, 7, and 14 days was unchanged. The osteogenic potential of the CPC was reduced through the addition of bovine collagen but remained unchanged in the case of the marine collagen. These findings, coupled with previous work showing that incorporation of marine collagen in this way can improve the physical properties of CPCs, suggest that such a composite may offer an alternative to CPCs in applications where low setting times and higher mechanical stability are important. © 2015 The Authors. Journal of Biomedical Materials Research Part B: Applied Biomaterials Published by Wiley Periodicals, Inc.

  11. Determination of the Mechanical Properties of Rubber by FT-NIR

    OpenAIRE

    Pornprasit, Rattapol; Pornprasit, Philaiwan; Boonma, Pruet; Natwichai, Juggapong

    2016-01-01

    Mechanical tests, for example, tensile and hardness tests, are usually used to evaluate the properties of rubber materials. In this work, mechanical properties of selected rubber materials, that is, natural rubber (NR), styrene butadiene rubber (SBR), nitrile butadiene rubber (NBR), and ethylene propylene diene monomer (EPDM), were evaluated using a near infrared (NIR) spectroscopy technique. Here, NR/NBR and NR/EPDM blends were first prepared. All of the samples were then scanned using a FT-...

  12. Assessment of Mechanical Properties and Damage of High Performance Concrete Subjected to Magnesium Sulfate Environment

    Directory of Open Access Journals (Sweden)

    Sheng Cang

    2017-01-01

    Full Text Available Sulfate attack is one of the most important problems affecting concrete structures, especially magnesium sulfate attack. This paper presents an investigation on the mechanical properties and damage evolution of high performance concrete (HPC with different contents of fly ash exposure to magnesium sulfate environment. The microstructure, porosity, mass loss, dimensional variation, compressive strength, and splitting tensile strength of HPC were investigated at various erosion times up to 392 days. The ultrasonic pulse velocity (UPV propagation in HPC at different erosion time was determined by using ultrasonic testing technique. A relationship between damage and UPV of HPC was derived according to damage mechanics, and a correlation between the damage of HPC and erosion time was obtained eventually. The results indicated that (1 the average increasing amplitude of porosity for HPCs was 34.01% before and after exposure to magnesium sulfate solution; (2 the damage evolution of HPCs under sulfate attack could be described by an exponential fitting; (3 HPC containing 20% fly ash had the strongest resistance to magnesium sulfate attack.

  13. Mechanical properties and material characterization of polysialate structural composites

    Science.gov (United States)

    Foden, Andrew James

    One of the major concerns in using Fiber Reinforced Composites in applications that are subjected to fire is their resistance to high temperature. Some of the fabrics used in FRC, such as carbon, are fire resistant. However, almost all the resins used cannot withstand temperatures higher than 200°C. This dissertation deals with the development and use of a potassium aluminosilicate (GEOPOLYMER) resin that is inorganic and can sustain more than 1000°C. The results presented include the mechanical properties of the unreinforced polysialate matrix in tension, flexure, and compression as well as the strain capacities and surface energy. The mechanical properties of the matrix reinforced with several different fabrics were obtained in flexure, tension, compression and shear. The strength and stiffness of the composite was evaluated for each loading condition. Tests were conducted on unexposed samples as well as samples exposed to temperatures from 200 to 1000°C. Fatigue properties were determined using flexural loading. A study of the effect of several processing variables on the properties of the composite was undertaken to determine the optimum procedure for manufacturing composite plates. The processing variables studied were the curing temperature and pressure, and the post cure drying time required to remove any residual water. The optimum manufacturing conditions were determined using the void content, density, fiber volume fraction, and flexural strength. Analytical models are presented based on both micro and macro mechanical analysis of the composite. Classic laminate theory is used to evaluate the state of the composite as it is being loaded to determine the failure mechanisms. Several failure criteria theories are considered. The analysis is then used to explain the mechanical behavior of the composite that was observed during the experimental study.

  14. Mechanical properties and fracture behavior of single-layer phosphorene at finite temperatures

    International Nuclear Information System (INIS)

    Sha, Zhen-Dong; Pei, Qing-Xiang; Ding, Zhiwei; Zhang, Yong-Wei; Jiang, Jin-Wu

    2015-01-01

    Phosphorene, a new two-dimensional (2D) material beyond graphene, has attracted great attention in recent years due to its superior physical and electrical properties. However, compared to graphene and other 2D materials, phosphorene has a relatively low Young’s modulus and fracture strength, which may limit its applications due to possible structure failures. For the mechanical reliability of future phosphorene-based nanodevices, it is necessary to have a deep understanding of the mechanical properties and fracture behaviors of phosphorene. Previous studies on the mechanical properties of phosphorene were based on first principles calculations at 0 K. In this work, we employ molecular dynamics simulations to explore the mechanical properties and fracture behaviors of phosphorene at finite temperatures. It is found that temperature has a significant effect on the mechanical properties of phosphorene. The fracture strength and strain reduce by more than 65% when the temperature increases from 0 K to 450 K. Moreover, the fracture strength and strain in the zigzag direction is more sensitive to the temperature rise than that in the armchair direction. More interestingly, the failure crack propagates preferably along the groove in the puckered structure when uniaxial tension is applied in the armchair direction. In contrast, when the uniaxial tension is applied in the zigzag direction, multiple cracks are observed with rough fracture surfaces. Our present work provides useful information about the mechanical properties and failure behaviors of phosphorene at finite temperatures. (paper)

  15. Opportunities for using spatial property assessment data in air pollution exposure assessments

    Directory of Open Access Journals (Sweden)

    Keller C Peter

    2005-10-01

    Full Text Available Abstract Background Many epidemiological studies examining the relationships between adverse health outcomes and exposure to air pollutants use ambient air pollution measurements as a proxy for personal exposure levels. When pollution levels vary at neighbourhood levels, using ambient pollution data from sparsely located fixed monitors may inadequately capture the spatial variation in ambient pollution. A major constraint to moving toward exposure assessments and epidemiological studies of air pollution at a neighbourhood level is the lack of readily available data at appropriate spatial resolutions. Spatial property assessment data are widely available in North America and may provide an opportunity for developing neighbourhood level air pollution exposure assessments. Results This paper provides a detailed description of spatial property assessment data available in the Pacific Northwest of Canada and the United States, and provides examples of potential applications of spatial property assessment data for improving air pollution exposure assessment at the neighbourhood scale, including: (1 creating variables for use in land use regression modelling of neighbourhood levels of ambient air pollution; (2 enhancing wood smoke exposure estimates by mapping fireplace locations; and (3 using data available on individual building characteristics to produce a regional air pollution infiltration model. Conclusion Spatial property assessment data are an extremely detailed data source at a fine spatial resolution, and therefore a source of information that could improve the quality and spatial resolution of current air pollution exposure assessments.

  16. SOLUTION TREATMENT EFFECT ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF AUTOMOTIVE CAST ALLOY

    Directory of Open Access Journals (Sweden)

    Eva Tillová

    2012-02-01

    Full Text Available The contribution describes influence of the heat treatment (solution treatment at temperature 545°C and 565°C with different holding time 2, 4, 8, 16 and 32 hours; than water quenching at 40°C and natural aging at room temperature during 24 hours on mechanical properties (tensile strength and Brinell hardness and microstructure of the secondary AlSi12Cu1Fe automotive cast alloy. Mechanical properties were measured in line with EN ISO. A combination of different analytical techniques (light microscopy, scanning electron microscopy (SEM were therefore been used for study of microstructure. Solution treatment led to changes in microstructure includes the spheroidization and coarsening of eutectic silicon. The dissolution of precipitates and the precipitation of finer hardening phase further increase the hardness and tensile strength of the alloy. Optimal solution treatment (545°C/4 hours most improves mechanical properties and there mechanical properties are comparable with mechanical properties of primary AlSi12Cu1Fe alloy. Solution treatment at 565 °C caused testing samples distortion, local melting process and is not applicable for this secondary alloy with 12.5 % Si.

  17. Grewia Gum 1: Some Mechanical and Swelling Properties of ...

    African Journals Online (AJOL)

    Purpose: To study the mechanical and dynamic swelling properties of grewia gum, evaluate its compression behaviour and determine the effect of drying methods on its properties. Methods: Compacts (500 mg) of both freeze-dried and air-dried grewia gum were separately prepared by compression on a potassium bromide ...

  18. Mechanical properties of structural amorphous steels: Intrinsic correlations, conflicts, and optimizing strategies

    International Nuclear Information System (INIS)

    Liu, Z. Q.; Zhang, Z. F.

    2013-01-01

    Amorphous steels have demonstrated superior properties and great potentials for structural applications since their emergence, yet it still remains unclear about how and why their mechanical properties are correlated with other factors and how to achieve intended properties by designing their compositions. Here, the intrinsic interdependences among the mechanical, thermal, and elastic properties of various amorphous steels are systematically elucidated and a general trade-off relation is exposed between the strength and ductility/toughness. Encouragingly, a breakthrough is achievable that the strength and ductility/toughness can be simultaneously improved by tuning the compositions. The composition dependences of the properties and alloying effects are further analyzed thoroughly and interpreted from the fundamental plastic flow and atomic bonding characters. Most importantly, systematic strategies are outlined for optimizing the mechanical properties of the amorphous steels. The study may help establish the intrinsic correlations among the compositions, atomic structures, and properties of the amorphous steels, and provide useful guidance for their alloy design and property optimization. Thus, it is believed to have implications for the development and applications of the structural amorphous steels

  19. Effect of precipitates on mechanical properties of AA2195

    International Nuclear Information System (INIS)

    Kim, Jae-Hee; Jeun, Jeong-Hoon; Chun, Hyun-Jin; Lee, Ye Rim; Yoo, Joon-Tae; Yoon, Jong-Hoon; Lee, Ho-Sung

    2016-01-01

    Addition of 1–4 wt.% lithium into a conventional Al–Cu–Mg alloy allows lower density and higher mechanical properties, which are attractive for aerospace applications. In this study, fundamental investigations including phase and microstructure evolution, resulting in strengthening, of the AA2195 are conducted to observe a possibility of production with commercial level. Precipitation sequence and kinetics during post-annealing were evaluated with variations of temperature and holding time. Microstructures revealed formation and evolution in representative precipitates including θ (Al_2Cu), ß′ (Al_3Zr), and T (Al_xLi_yCu) series. Aluminum alloys have low hardness, modulus, and strength before aging, but precipitates such as θ′ (Al_2Cu), ß′ (Al_3Zr), and T_1 (Al_2LiCu) show enhanced mechanical properties of AA2195 tempered because of their interaction with dislocation. However, longer holding time and higher annealing temperature result in significant decreases in mechanical properties due to the presence of incoherent precipitates (θ phase) and coarsening of the precipitates via grain-boundary diffusion. In the current study, the tensile strength of 560 MPa was obtained with post-heat treatment without work hardening. This value has never been achieved in other studies. The maximum strength was reported as 500 MPa without a work hardening process. - Highlights: • A relationship between microstructure and mechanical properties to post annealing AA2195. • A formation and dissolution of the precipitates were observed for various treatment. • An optimum post-annealing condition was obtained.

  20. Effect of precipitates on mechanical properties of AA2195

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Hee [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Jeun, Jeong-Hoon [Department of Materials Science and Engineering, Seoul National University, Seoul (Korea, Republic of); Chun, Hyun-Jin [Southeast University, Nanjing (China); Lee, Ye Rim [Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of); Yoo, Joon-Tae [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Yoon, Jong-Hoon [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of); Lee, Ho-Sung, E-mail: hslee@kari.re.kr [Launcher Structure and Materials Team, Korea Aerospace Research Institute, Daejeon (Korea, Republic of); Department of Aerospace System Engineering, University of Science & Technology, Daejeon (Korea, Republic of)

    2016-06-05

    Addition of 1–4 wt.% lithium into a conventional Al–Cu–Mg alloy allows lower density and higher mechanical properties, which are attractive for aerospace applications. In this study, fundamental investigations including phase and microstructure evolution, resulting in strengthening, of the AA2195 are conducted to observe a possibility of production with commercial level. Precipitation sequence and kinetics during post-annealing were evaluated with variations of temperature and holding time. Microstructures revealed formation and evolution in representative precipitates including θ (Al{sub 2}Cu), ß′ (Al{sub 3}Zr), and T (Al{sub x}Li{sub y}Cu) series. Aluminum alloys have low hardness, modulus, and strength before aging, but precipitates such as θ′ (Al{sub 2}Cu), ß′ (Al{sub 3}Zr), and T{sub 1} (Al{sub 2}LiCu) show enhanced mechanical properties of AA2195 tempered because of their interaction with dislocation. However, longer holding time and higher annealing temperature result in significant decreases in mechanical properties due to the presence of incoherent precipitates (θ phase) and coarsening of the precipitates via grain-boundary diffusion. In the current study, the tensile strength of 560 MPa was obtained with post-heat treatment without work hardening. This value has never been achieved in other studies. The maximum strength was reported as 500 MPa without a work hardening process. - Highlights: • A relationship between microstructure and mechanical properties to post annealing AA2195. • A formation and dissolution of the precipitates were observed for various treatment. • An optimum post-annealing condition was obtained.

  1. Characterization of the mechanical properties of resected porcine organ tissue using optical fiber photoelastic polarimetry.

    Science.gov (United States)

    Hudnut, Alexa W; Babaei, Behzad; Liu, Sonya; Larson, Brent K; Mumenthaler, Shannon M; Armani, Andrea M

    2017-10-01

    Characterizing the mechanical behavior of living tissue presents an interesting challenge because the elasticity varies by eight orders of magnitude, from 50Pa to 5GPa. In the present work, a non-destructive optical fiber photoelastic polarimetry system is used to analyze the mechanical properties of resected samples from porcine liver, kidney, and pancreas. Using a quasi-linear viscoelastic fit, the elastic modulus values of the different organ systems are determined. They are in agreement with previous work. In addition, a histological assessment of compressed and uncompressed tissues confirms that the tissue is not damaged during testing.

  2. Antioxidant Property of Jobelyn as the Possible Mechanism Underlying

    Directory of Open Access Journals (Sweden)

    Solomon Umukoro

    2013-01-01

    Full Text Available   Introduction: Amnesia or loss of memory is the cardinal hallmark of Alzheimer’s disease (AD, a progressive neurodegenerative disorder associated with ageing process. Although, AD had been discovered over a century ago, drugs which could cure or halt the progression of the disease are yet to see the light of the day. However, there has been a growing interest in the use of phytomedicines with multipronged mechanisms of action that could target various aspects of the pathologies of AD. Jobelyn (JB is a potent antioxidant African polyherbal formulation with active components that have been acclaimed to show neuroprotection. T his investigation was carried out to evaluate whether JB has anti-amnesic and antioxidant activities.   Methods: The alteration of alternation behavior in the Y-maze paradigm was utilized as the test for memory function in mice. The effect of JB on a cetylcholinesterase (AChE activity, malondialdehyde (MDA level and the concentrations of glutathione (GSH in the frontal cortex and hippocampus were assessed in rats as means of providing insight into the mechanism underlying its anti-amnesic activity. The animals were given JB (1, 2.5 or 5mg/kg, i.p. daily for 7 days before the biochemical assays or test for memory functions were carried out.   Results: JB was found to produce a significant increase in the level of alternation behavior compared with the control, suggesting anti-amnesic activity. Also, JB reversed the memory impairment induced by scopolamine, which further indicates anti-amnesic property. Furthermore, JB demonstrated a significant inhibition of MDA formation in the frontal cortex and hippocampus of rats, indicating antioxidant property. In addition, it increased the defense armory of the brain tissues, as it significantly increased the concentrations of GSH in the frontal cortex and hippocampus of rats. However, JB did not demonstrate any inhibitory effect against AChE activity in the frontal cortex and

  3. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties

    International Nuclear Information System (INIS)

    Farhat, Walid A; Chen Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Yeger, Herman; Sherman, Christopher; Derwin, Kathleen

    2008-01-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization

  4. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties.

    Science.gov (United States)

    Farhat, Walid A; Chen, Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Sherman, Christopher; Derwin, Kathleen; Yeger, Herman

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  5. Porcine bladder acellular matrix (ACM): protein expression, mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Farhat, Walid A [Department of Surgery, Division of Urology, University of Toronto and Hospital for Sick Children, Toronto, ON M5G 1X8 (Canada); Chen Jun; Haig, Jennifer; Antoon, Roula; Litman, Jessica; Yeger, Herman [Department of Developmental and Stem Cell Biology, Research Institute, Hospital for Sick Children, Toronto, ON M5G 1X8 (Canada); Sherman, Christopher [Department of Anatomic Pathology, Sunnybrook and Women' s College Health Sciences Centre, Toronto, ON (Canada); Derwin, Kathleen [Department of Biomedical Engineering, Lerner Research Institute and Orthopaedic Research Center, Cleveland Clinic Foundation, Cleveland, OH (United States)], E-mail: walid.farhat@sickkids.ca

    2008-06-01

    Experimentally, porcine bladder acellular matrix (ACM) that mimics extracellular matrix has excellent potential as a bladder substitute. Herein we investigated the spatial localization and expression of different key cellular and extracellular proteins in the ACM; furthermore, we evaluated the inherent mechanical properties of the resultant ACM prior to implantation. Using a proprietary decellularization method, the DNA contents in both ACM and normal bladder were measured; in addition we used immunohistochemistry and western blots to quantify and localize the different cellular and extracellular components, and finally the mechanical testing was performed using a uniaxial mechanical testing machine. The mean DNA content in the ACM was significantly lower in the ACM compared to the bladder. Furthermore, the immunohistochemical and western blot analyses showed that collagen I and IV were preserved in the ACM, but possibly denatured collagen III in the ACM. Furthermore, elastin, laminin and fibronectin were mildly reduced in the ACM. Although the ACM did not exhibit nucleated cells, residual cellular components (actin, myosin, vimentin and others) were still present. There was, on the other hand, no significant difference in the mean stiffness between the ACM and the bladder. Although our decellularization method is effective in removing nuclear material from the bladder while maintaining its inherent mechanical properties, further work is mandatory to determine whether these residual DNA and cellular remnants would lead to any immune reaction, or if the mechanical properties of the ACM are preserved upon implantation and cellularization.

  6. Development and Application of Optical Coherence Elastography for Detection of Mechanical Property Changes Occurring in Early Osteoarthritis

    Science.gov (United States)

    Hirota, Koji

    We demonstrate a computationally-efficient method for optical coherence elastography (OCE) based on fringe washout method for a spectral-domain OCT (SD-OCT) system. By sending short pulses of mechanical perturbation with ultrasound or shock wave during the image acquisition of alternating depth profiles, we can extract cross-sectional mechanical assessment of tissue in real-time. This was achieved through a simple comparison of the intensity in adjacent depth profiles acquired during the states of perturbation and non-perturbation in order to quantify the degree of induced fringe washout. Although the results indicate that our OCE technique based on the fringe washout effect is sensitive enough to detect mechanical property changes in biological samples, there is some loss of sensitivity in comparison to previous techniques in order to achieve computationally efficiency and minimum modification in both hardware and software in the OCT system. The tissue phantom study was carried with various agar density samples to characterize our OCE technique. Young's modulus measurements were achieved with the atomic force microscopy (AFM) to correlate to our OCE assessment. Knee cartilage samples of monosodium iodoacetate (MIA) rat models were utilized to replicate cartilage damage of a human model. Our proposed OCE technique along with intensity and AFM measurements were applied to the MIA models to assess the damage. The results from both the phantom study and MIA model study demonstrated the strong capability to assess the changes in mechanical properties of the OCE technique. The correlation between the OCE measurements and the Young's modulus values demonstrated in the OCE data that the stiffer material had less magnitude of fringe washout effect. This result is attributed to the fringe washout effect caused by axial motion that the displacement of the scatterers in the stiffer samples in response to the external perturbation induces less fringe washout effect.

  7. Mechanical properties of nanodiamond-reinforced hydroxyapatite composite coatings deposited by suspension plasma spraying

    Science.gov (United States)

    Chen, Xiuyong; Zhang, Botao; Gong, Yongfeng; Zhou, Ping; Li, Hua

    2018-05-01

    Hydroxyapatite (HA) coatings suffer from poor mechanical properties, which can be enhanced via incorporation of secondary bioinert reinforcement material. Nanodiamond (ND) possesses excellent mechanical properties to play the role as reinforcement for improving the mechanical properties of brittle HA bioceramic coatings. The major persistent challenge yet is the development of proper deposition techniques for fabricating the ND reinforced HA coatings. In this study, we present a novel deposition approach by plasma spraying the mixtures of ND suspension and micron-sized HA powder feedstock. The effect of ND reinforcement on the microstructure and the mechanical properties of the coatings such as hardness, adhesive strength and friction coefficient were examined. The results showed that the ND-reinforced HA coatings display lower porosity, fewer unmelted particles and uniform microstructure, in turn leading to significantly enhanced mechanical properties. The study presented a promising approach to fabricate ND-reinforced HA composite coatings on metal-based medical implants for potential clinical application.

  8. Improvement of mechanical properties of polymeric composites: Experimental methods and new systems

    Science.gov (United States)

    Nguyen, Felix Nhanchau

    Filler- (e.g., particulate or fiber) reinforced structural polymers or polymeric composites have changed the way things are made. Today, they are found, for example, in air/ground transportation vehicles, sporting goods, ballistic barrier applications and weapons, electronic packaging, musical instruments, fashion items, and more. As the demand increases, so does the desire to have not only well balanced mechanical properties, but also light weight and low cost. This leads to a constant search for novel constituents and additives, new fabrication methods and analytical techniques. To achieve new or improved composite materials requires more than the identification of the right reinforcements to be used with the right polymer matrix at the right loading. Also, an optimized adhesion between the two phases and a toughened matrix system are needed. This calls for new methods to predict, modify and assess the level of adhesion, and new developments in matrix tougheners to minimize compromises in other mechanical/thermal properties. Furthermore, structural optimization, associated with fabrication (e.g., avoidance of fiber-fiber touching or particle aggregation), and sometimes special properties, such as electrical conductivity or magnetic susceptibility are necessary. Finally, the composite system's durability, often under hostile conditions, is generally mandatory. The present study researches new predictive and experimental methods for optimizing and characterizing filler-matrix adhesion and develops a new type of epoxy tougheners. Specifically, (1) a simple thermodynamic parameter evaluated by UNIFAC is applied successfully to screen out candidate adhesion promoters, which is necessary for optimization of the physio-chemical interactions between the two phases; (2) an optical-acoustical mechanical test assisted with an acoustic emission technique is developed to de-convolute filler debonding/delamination among many other micro failure events, and (3) novel core

  9. Effect of flexible fuels on mechanical properties of reinforced polyoxymethylenes (POM

    Directory of Open Access Journals (Sweden)

    M. Gómez-Mares

    2014-08-01

    Full Text Available The use of flexible fuels has been increased during the last years making essential to run compatibility tests with those materials exposed to them. In this work the effect of the flexible fuels M15A (Volume Mixture of 85% fuel C and 15 % Aggressive methanol and M30A (Volume mixture of 70% fuel C and 30 % Aggressive methanol on the mechanical properties of some polymers of the Polyoxymethylene (POM family is assessed. The polymers chosen had different levels of glass fiber filler (0, 10 and 25%. The samples were immersed on fuel and kept on a chamber at 80°C during 1008h. The results showed that the properties of polymers with filler are more affected than the ones of the polymers without it. Tensile stress at break and Tensile stress at yield diminished with the fuel exposure. The most aggressive fuel was found to be M30A, due to the higher methanol concentration.

  10. Pit slope manual chapter 3. Mechanical properties

    Energy Technology Data Exchange (ETDEWEB)

    Gyenge, M.; Herget, G.

    1977-01-01

    Guidance is given on the procedures required to obtain adequate knowledge of the mechanical properties of the soils and rocks which constitute the walls of the pit. The reason why certain data is necessary is explained and the tests required to obtain these data are described.

  11. Mechanical properties, reliability assessment and design of ceramic components used in high temperature assemblies

    International Nuclear Information System (INIS)

    Bendeich, P.J.

    2002-01-01

    The use of ceramic materials in high temperature structural components holds may advantages over conventional materials such as metals. These include high temperature strength, creep resistance, wear resistance, corrosion resistance, and stiffness. The tradeoff for these improved properties is the brittle nature of ceramics and their tendency for catastrophic failure and lack of damage tolerance. In this work some the various strategies available to overcome these limitations are reviewed. These include stochastic design strategies using the Weibull and Batdorf methods of failure probability prediction rather than the more familiar deterministic methods. Fracture mechanics analysis is also used extensively in this work to predict damage tolerance and failure conditions. A range of testing methods was utilised to provide material information for the methods outlined above. These included: flexural strength measurement for the determination of failure probability parameters; fracture toughness measurement using indentation methods and crack growth measurement; thermal expansion measurement; temperature dependant dynamic Young's modulus measurement; and thermal shock testing using a central heating laser. A new inverse method for measuring specific heat was developed and critically examined for practical use. This is particularly valuable in modelling transient thermal conditions for use in thermal shock analysis. A shape optimisation technique utilising a biological growth law was adapted for use with ceramic components utilising failure probability as the objective function. These methods were utilised in the design and subsequent failure analysis of a high temperature hotpress ram. The results of the failure probability analysis showed that the design had a very low probability of failure under normal operating conditions. Fracture mechanics analysis indicated that damage tolerance in the critical retaining bolt mechanism was high with damage likely to cause

  12. Determination of thermal and mechanical properties of HDPE-based polymer blends for use in traffic signs

    Directory of Open Access Journals (Sweden)

    Benito A. Stradi-Granados

    2016-06-01

    Full Text Available Two recycled high-density polyethylene specimens and two recycled high-density polyethylene blends were characterized in terms of their thermal and mechanical properties with the purpose of assessing their suitability for the construction of traffic signs. Traffic signs constructed from recycled plastics provide an application for materials that otherwise with end up in landfills. The HDPE composite containing 25% LDPE and 5% ABS had the best mechanical and thermal performance. Of importance is the recycling of ABS that traditionally had not been recycled locally and found its final fate in landfills.

  13. Influence of ionizing radiation and use of plasticizers on the mechanical properties and barrier properties of biodegradable films

    International Nuclear Information System (INIS)

    Ponce, Patricia; Parra, Duclerc F.; Carr, Laura G.; Sato, Juliana S.; Lugao, Ademar B.

    2005-01-01

    This work reports the influence of radiation and plasticizers on the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of edible films made of starch. These films were prepared with 4 g of starch/100 mL of water; 2-10 g polyethylene glycol (PEG)/100 g starch; and at natural pH. Tensile strength and percentage elongation were measured using a Mechanical Universal Testing Machine Instron 4400R and the water vapour permeability was determined according to ASTM E96-80 (ASTM, 1989). The mechanical properties of starch films are influenced by the plasticizer concentration. An increase in PEG content showed a considerable increase in elongation percentage and a decrease in the tensile strength of the films, also increase the permeability of the films in water. After irradiation, the barrier properties [water vapour permeability (WVP)] and mechanical properties (tensile strength and elongation) of the films were improved due to chemical reactions among polymer molecules. The films were irradiated at room temperature with gamma radiation. Irradiated starch cassava films with polyethylene glycol (PEG) as plasticizer have good flexibility and low water permeability, which indicate potential application as edible films (author)

  14. Measurement of Mechanical Properties of Cantilever Shaped Materials

    Directory of Open Access Journals (Sweden)

    Thomas Thundat

    2008-05-01

    Full Text Available Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young’s modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature

  15. Mechanical properties of 238PuO2

    International Nuclear Information System (INIS)

    Petrovic, J.J.; Hecker, S.S.; Land, C.C.; Rohr, D.L.

    1977-04-01

    The mechanical properties of 238 PuO 2 have been examined in the Los Alamos Scientific Laboratory mechanical test facility built to handle α-radioactive materials. Compression tests were conducted as a function of temperature, strain rate, grain size, density, and storage time. At temperatures less than or equal to 1400 0 C, test specimens of 238 PuO 2 exhibit pseudobrittle behavior due to internal cracks. Plastic deformation is ''localized'' at the crack tips. Generalized plastic deformation is observed at 1500 0 C. Ultimate stress values decrease markedly with increasing temperature and decreasing strain rate, and decrease less with decreasing density, increasing storage time, and increasing grain size. Room temperature fracture is transgranular, whereas intergranular fracture predominates at elevated temperatures. Crack-free specimens of 239 PuO 2 exhibit extensive plastic deformation at 1000 0 C and above. The relationship of these test results to the impact properties of 238 PuO 2 fuel in radioisotope thermoelectric generators is discussed

  16. Analysis of mechanical property data obtained from nuclear pressure vessel surveillance capsules

    International Nuclear Information System (INIS)

    Perrin, J.S.

    1977-01-01

    A typical pressure vessel surveillance capsule examination program provides mechanical property data from tensile, Charpy V-notch impact, and, in some cases, fracture mechanics specimens. This data must be analyzed in conjunction with the unirradiated baseline mechanical property data to determine the effect of irradiation on the mechanical properties. In the case of Charpy impact specimens, for example, irradiation typically causes an increase in the transition temperature, and a decrease in the upper shelf energy level. The results of the Charpy impact and other mechanical specimen tests must be evaluated to determine if property changes are occurring in the manner expected when the reactor was put into service. The large amount of data obtained from surveillance capsule examinations in recent years enables one to make fairly good predictions. After the changes in the mechanical properties of specimens from a particular surveillance capsule have been experimentally determined and evaluated, they must be related to the reactor pressure vessel. This requires a knowledge of the neutron fluence of the surveillance capsule, and the ratio of the surveillance capsule fluence to the pressure vessel wall fluence. This ratio is frequently specified by the reactor manufacturer, or can be calculated from a knowledge of the geometry and materials of the reactor components inside the pressure vessel. A knowledge of the exact neutron fluence of the capsule specimens and the capsule to vessel wall neutron fluence ratio is of great importance, since inaccuracies in these numbers cause just as serious a problem as inaccuracies in the mechanical property determinations. A further area causing analysis difficulties is problems encountered in recent capsule programs relating to capsule design, construction, operation, and dismantling. (author)

  17. Mechanical Properties of a Bainitic Steel Producible by Hot Rolling

    Directory of Open Access Journals (Sweden)

    Rana R.

    2017-12-01

    Full Text Available A carbide-free bainitic microstructure is suitable for achieving a combination of ultra high strength and high ductility. In this work, a steel containing nominally 0.34C-2Mn-1.5Si-1Cr (wt.% was produced via industrial hot rolling and laboratory heat treatments. The austenitization (900°C, 30 min. and austempering (300-400°C, 3 h treatments were done in salt bath furnaces. The austempering treatments were designed to approximately simulate the coiling step, following hot rolling and run-out-table cooling, when the bainitic transformation would take place and certain amount of austenite would be stabilized due to suppression of carbide precipitation. The microstructures and various mechanical properties (tensile properties, bendability, flangeability, and room and subzero temperature impact toughness relevant for applications were characterized. It was found that the mechanical properties were highly dependent on the stability of the retained austenite, presence of martensite in the microstructure and the size of the microstructural constituents. The highest amount of retained austenite (~ 27 wt.% was obtained in the sample austempered at 375°C but due to lower austenite stability and coarser overall microstructure, the sample exhibited lower tensile ductility, bendability, flangeability and impact toughness. The sample austempered at 400°C also showed poor properties due to the presence of initial martensite and coarse microstructure. The best combination of mechanical properties was achieved for the samples austempered at 325-350°C with a lower amount of retained austenite but with the highest mechanical stability.

  18. Investigations on the microstructure and mechanical properties

    Indian Academy of Sciences (India)

    This paper addresses the weldability, microstructure and mechanical properties of the multi-pass welding of super-duplex stainless steel (SDSS). Pulsed current gas tungsten arc welding (PCGTAW) was carried out employing ER2553 and ERNiCrMo-4 fillers. Microstructure examination showed the presence of austenite in ...

  19. ODS steel fabrication: relationships between process, microstructure and mechanical properties

    International Nuclear Information System (INIS)

    Couvrat, M.

    2011-01-01

    Oxide Dispersion Strengthened (ODS) steels are promising candidate materials for generation IV and fusion nuclear energy systems thanks to their excellent thermal stability, high-temperature creep strength and good irradiation resistance. Their superior properties are attributed both to their nano-structured matrix and to a high density of Y-Ti-O nano-scale clusters (NCs). ODS steels are generally prepared by Mechanical Alloying of a pre-alloyed Fe-Cr-W-Ti powder with Y 2 O 3 powder. A fully dense bar or tube is then produced from this nano-structured powder by the mean of hot extrusion. The aim of this work was to determine the main parameters of the process of hot extrusion and to understand the link between the fabrication process, the microstructure and the mechanical properties. The material microstructure was characterized at each step of the process and bars were extruded with varying hot extrusion parameters so as to identify the impact of these parameters. Temperature then appeared to be the main parameter having a great impact on microstructure and mechanical properties of the extruded material. We then proposed a cartography giving the microstructure versus the process parameters. Based on these results, it is possible to control very accurately the obtained material microstructure and mechanical properties setting the extrusion parameters. (author) [fr

  20. Study the bonding mechanism of binders on hydroxyapatite surface and mechanical properties for 3DP fabrication bone scaffolds.

    Science.gov (United States)

    Wei, Qinghua; Wang, Yanen; Li, Xinpei; Yang, Mingming; Chai, Weihong; Wang, Kai; zhang, Yingfeng

    2016-04-01

    In 3DP fabricating artificial bone scaffolds process, the interaction mechanism between binder and bioceramics power determines the microstructure and macro mechanical properties of Hydroxyapatite (HA) bone scaffold. In this study, we applied Molecular Dynamics (MD) methods to investigating the bonding mechanism and essence of binders on the HA crystallographic planes for 3DP fabrication bone scaffolds. The cohesive energy densities of binders and the binding energies, PCFs g(r), mechanical properties of binder/HA interaction models were analyzed through the MD simulation. Additionally, we prepared the HA bone scaffold specimens with different glues by 3DP additive manufacturing, and tested their mechanical properties by the electronic universal testing machine. The simulation results revealed that the relationship of the binding energies between binders and HA surface is consistent with the cohesive energy densities of binders, which is PAM/HA>PVA/HA>PVP/HA. The PCFs g(r) indicated that their interfacial interactions mainly attribute to the ionic bonds and hydrogen bonds which formed between the polar atoms, functional groups in binder polymer and the Ca, -OH in HA. The results of mechanical experiments verified the relationship of Young׳s modulus for three interaction models in simulation, which is PVA/HA>PAM/HA>PVP/HA. But the trend of compressive strength is PAM/HA>PVA/HA>PVP/HA, this is consistent with the binding energies of simulation. Therefore, the Young׳s modulus of bone scaffolds are limited by the Young׳s modulus of binders, and the compressive strength is mainly decided by the viscosity of binder. Finally, the major reasons for differences in mechanical properties between simulation and experiment were found, the space among HA pellets and the incomplete infiltration of glue were the main reasons influencing the mechanical properties of 3DP fabrication HA bone scaffolds. These results provide useful information in choosing binder for 3DP fabrication

  1. Mechanical properties of timber deteriorated by beetles in ancient buildings: an experimental analysis

    Directory of Open Access Journals (Sweden)

    Sandra Mendes

    2018-01-01

    Full Text Available The purpose of this study is to analyse the loss of physical-mechanical properties of pine wood from old buildings (100 to 200 years old deteriorated by wood boring beetle (Anobium punctatum, De Geer and aims to contribute to the safety assessment of structural elements in buildings. The effect of degradation can be considered by assuming the reduction of cross-section properties in case of Anobium punctatum degradation, since the galleries formed within the wood are usually surrounded by a considerable amount of sound wood. In this study, a new methodology was developed for qualitative estimation of degradation levels, which was promising. They were then correlated with results of compression tests parallel to the fibers in specimens with 30×30×90 mm: compressive strength, modulus of elasticity and plastic extension. It has been found that, even at relatively important levels of degradation, the loss of properties is small to moderate.

  2. Microstructure mechanical properties relationship in bainitic structures

    International Nuclear Information System (INIS)

    Altuna, M. A.; Gutierrez, I.

    2005-01-01

    In the present work, the microstructures and their mechanical properties have been studies in different bainitic structures. therefore, different bainitic morphologies have been produced by isothermal treatments carried out at different temperatures. For these steels, 400-450 degree centigree is the optimum range of temperatures in order to obtain bainitic structures. If the Temperature is higher, perlite is also formed and if it is lower, martensite is obtained during quenching. SEM and EBSD/OIM techniques were applied in order to study the microstructure. Tensile tests were carried out for mechanical characterization. (Author) 20 refs

  3. Dynamic texture perception, oral processing behaviour and bolus properties of emulsion-filled gels with and without contrasting mechanical properties

    NARCIS (Netherlands)

    Devezeaux de Lavergne, M.S.M.; Tournier, C.; Bertrand, D.; Salles, C.; Velde, van de F.; Stieger, M.A.

    2016-01-01

    Many highly palatable foods are composed of multiple components which can have considerably different mechanical properties leading to contrasting texture sensations. The aim of this study was to better understand the impact of contrasting mechanical properties in semi-solid gels on oral processing

  4. Effects of Radiation on Mechanical Properties of Poly (butylene succinate) and Cassava Starch Blends

    International Nuclear Information System (INIS)

    Hemvichian, K.; Dechasasawat, K.; Kangsumrith, W.; Suwanmala, P.

    2014-01-01

    This research compared the effects of gamma and electron beam irradiation at different doses on the mechanical properties of polymer blends between poly(butylene succinate) (PBS) and cassava starch. Two types of starch were used to prepare thermoplastic starch (TPS), native cassava starch and hydrophobic starch. PBS/TPS blends were compounded at five different weight ratios using a twin-screw extruder. Mechanical properties and degradation were evaluated in comparison to unirradiated samples. Results indicated that the incorpora- tion of TPS prepared from native cassava starch decreased the mechanical properties of PBS/TPS blends, whereas the addition of TPS prepared from hydrophobic starch improved the mechanical properties of the blends. In addition, the maximum mechanical properties of PBS/TPS blends were achieved when samples were exposed to irradiation at 120 kGy. Using soil burial evaluation, the degradation rate of blends was found to increase with the addition of TPS. Therefore we have demonstrated in this study that the type of TPS and irradiation treatment can significantly alter the mechanical properties and degradation of PBS/TPS blends.

  5. Assessment of microstructure stability of cold worked Ti-modified austenitic stainless steel during aging using ultrasonic velocity measurements and correlation with mechanical properties

    International Nuclear Information System (INIS)

    Vasudevan, M.; Palanichamy, P.

    2003-01-01

    As ultrasonic velocity is sensitive to the changes in texture, it is a more reliable technique than mechanical property measurements for assessment of microstructural stability (recrystallization behaviour) of cold worked alloy where recrystallization is coupled with precipitation. Hence ultrasonic velocity measurements have been employed for studying the influence of Ti/C ratio on the microstructural stability of cold worked Ti-modified austenitic stainless steel during isochronal aging. In this alloy precipitation of TiC is known to retard recovery and recrystallization. The variation in ultrasonic velocity with aging temperature exhibited a three stage behaviour at all three frequencies employed (2, 10 and 20 MHz) and correlated well with the microstructural changes. Based on the microstructural investigations, the three stages have been identified to be recovery, progress of recrystallization and completion of recrystallization. There was one to one correspondence between the variation in the hardness, strength values and the variation in the ultrasonic velocity values as a function of aging temperature in assessing the microstructural changes, except when the interaction between the TiC precipitation and recrystallization is stronger

  6. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review

    Directory of Open Access Journals (Sweden)

    Zhi Yan

    2017-01-01

    Full Text Available Piezoelectric nanomaterials (PNs are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  7. Modified Continuum Mechanics Modeling on Size-Dependent Properties of Piezoelectric Nanomaterials: A Review.

    Science.gov (United States)

    Yan, Zhi; Jiang, Liying

    2017-01-26

    Piezoelectric nanomaterials (PNs) are attractive for applications including sensing, actuating, energy harvesting, among others in nano-electro-mechanical-systems (NEMS) because of their excellent electromechanical coupling, mechanical and physical properties. However, the properties of PNs do not coincide with their bulk counterparts and depend on the particular size. A large amount of efforts have been devoted to studying the size-dependent properties of PNs by using experimental characterization, atomistic simulation and continuum mechanics modeling with the consideration of the scale features of the nanomaterials. This paper reviews the recent progresses and achievements in the research on the continuum mechanics modeling of the size-dependent mechanical and physical properties of PNs. We start from the fundamentals of the modified continuum mechanics models for PNs, including the theories of surface piezoelectricity, flexoelectricity and non-local piezoelectricity, with the introduction of the modified piezoelectric beam and plate models particularly for nanostructured piezoelectric materials with certain configurations. Then, we give a review on the investigation of the size-dependent properties of PNs by using the modified continuum mechanics models, such as the electromechanical coupling, bending, vibration, buckling, wave propagation and dynamic characteristics. Finally, analytical modeling and analysis of nanoscale actuators and energy harvesters based on piezoelectric nanostructures are presented.

  8. Application of artificial intelligence methods for prediction of steel mechanical properties

    Directory of Open Access Journals (Sweden)

    Z. Jančíková

    2008-10-01

    Full Text Available The target of the contribution is to outline possibilities of applying artificial neural networks for the prediction of mechanical steel properties after heat treatment and to judge their perspective use in this field. The achieved models enable the prediction of final mechanical material properties on the basis of decisive parameters influencing these properties. By applying artificial intelligence methods in combination with mathematic-physical analysis methods it will be possible to create facilities for designing a system of the continuous rationalization of existing and also newly developing industrial technologies.

  9. Data for prediction of mechanical properties of aspen flakeboards

    Science.gov (United States)

    C. G. Carll; P. Wang

    1983-01-01

    This research compared two methods of producing flakeboards with uniform density distribution (which could then be used to predict bending properties of flakeboards with density gradients). One of the methods was suspected of producing weak boards because it involved exertion of high pressures on cold mats. Although differences were found in mechanical properties of...

  10. Effects of Polyethylene Glycol on the Mechanical Properties of ...

    African Journals Online (AJOL)

    Akorede

    investigate the mechanical properties and microstructural evaluation of steel. The test ... quenchant on the properties of steel (Eshraghi-Kakhki et al, ... Alloy Steel ... Table 1: Chemical composition of the steel used in this experiment. Elements. C. Si. S ... Cu. W. As. Composition 0.0555 0.00180 0.0029 0.3031 0.0003 0.0060.

  11. Pressing Speed, Specific Pressure and Mechanical Properties of Aluminium Cast

    Directory of Open Access Journals (Sweden)

    Gaspar S.

    2016-06-01

    Full Text Available Recent research in the process of aluminum alloy die castings production, which is nowadays deeply implemented into the rapidly growing automobile, shipping and aircraft industries, is aimed at increasing the useful qualitative properties of the die casting in order to obtain its high mechanical properties at acceptable economic cost. Problem of technological factors of high pressure die casting has been a subject of worldwide research (EU, US, Japan, etc.. The final performance properties of die castings are subjected to a large number of technological factors. The main technological factors of high pressure die casting are as follows: plunger pressing speed, specific (increase pressure, mold temperature as well as alloy temperature. The contribution discusses the impact of the plunger pressing speed and specific (increase pressure on the mechanical properties of the casting aluminum alloy.

  12. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    Energy Technology Data Exchange (ETDEWEB)

    Muthukumaran, Padmalosini [Department of Bioengineering, National University of Singapore (Singapore); Lim, Chwee Teck [Department of Bioengineering, National University of Singapore (Singapore); Department of Mechanical Engineering, National University of Singapore (Singapore); Mechanobiology Institute, National University of Singapore (Singapore); Singapore-MIT Alliance for Research and Technology (SMART), National University of Singapore (Singapore); Lee, Taeyong, E-mail: bielt@nus.edu.sg [Department of Bioengineering, National University of Singapore (Singapore)

    2012-07-06

    Highlights: Black-Right-Pointing-Pointer Estradiol induced stiffness changes of osteoblasts were quantified using AFM. Black-Right-Pointing-Pointer Estradiol causes significant decrease in the stiffness of osteoblasts. Black-Right-Pointing-Pointer Decreased stiffness was caused by decreased density of f-actin network. Black-Right-Pointing-Pointer Stiffness changes were not associated with mineralized matrix of osteoblasts. Black-Right-Pointing-Pointer Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E{sup Asterisk-Operator }) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with {beta}-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E{sup Asterisk-Operator }. The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E{sup Asterisk-Operator} of osteoblasts significantly decreased by 43-46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness

  13. Estradiol influences the mechanical properties of human fetal osteoblasts through cytoskeletal changes

    International Nuclear Information System (INIS)

    Muthukumaran, Padmalosini; Lim, Chwee Teck; Lee, Taeyong

    2012-01-01

    Highlights: ► Estradiol induced stiffness changes of osteoblasts were quantified using AFM. ► Estradiol causes significant decrease in the stiffness of osteoblasts. ► Decreased stiffness was caused by decreased density of f-actin network. ► Stiffness changes were not associated with mineralized matrix of osteoblasts. ► Estradiol increases inherent alkaline phosphatase activity of osteoblasts. -- Abstract: Estrogen is known to have a direct effect on bone forming osteoblasts and bone resorbing osteoclasts. The cellular and molecular effects of estrogen on osteoblasts and osteoblasts-like cells have been extensively studied. However, the effect of estrogen on the mechanical property of osteoblasts has not been studied yet. It is important since mechanical property of the mechanosensory osteoblasts could be pivotal to its functionality in bone remodeling. This is the first study aimed to assess the direct effect of estradiol on the apparent elastic modulus (E ∗ ) and corresponding cytoskeletal changes of human fetal osteoblasts (hFOB 1.19). The cells were cultured in either medium alone or medium supplemented with β-estradiol and then subjected to Atomic Force Microscopy indentation (AFM) to determine E ∗ . The underlying changes in cytoskeleton were studied by staining the cells with TRITC-Phalloidin. Following estradiol treatment, the cells were also tested for proliferation, alkaline phosphatase activity and mineralization. With estradiol treatment, E ∗ of osteoblasts significantly decreased by 43–46%. The confocal images showed that the changes in f-actin network observed in estradiol treated cells can give rise to the changes in the stiffness of the cells. Estradiol also increases the inherent alkaline phosphatase activity of the cells. Estradiol induced stiffness changes of osteoblasts were not associated with changes in the synthesized mineralized matrix of the cells. Thus, a decrease in osteoblast stiffness with estrogen treatment was

  14. Thermo-mechanical properties of SOFC components investigated by a combined method

    DEFF Research Database (Denmark)

    Teocoli, Francesca; Esposito, Vincenzo; Ramousse, Severine

    , and differential thermo-mechanical behavior at each layer. The combination of such factors can have a critical effect on the final shape and microstructure, and on the mechanical integrity. Thermo-mechanical properties and sintering mechanisms of important SOFC materials (CGO, YSZ, ScYSZ) were systematically...

  15. Mechanical properties of polymer-infiltrated-ceramic (sodium aluminum silicate) composites for dental restoration.

    Science.gov (United States)

    Cui, Bencang; Li, Jing; Wang, Huining; Lin, Yuanhua; Shen, Yang; Li, Ming; Deng, Xuliang; Nan, Cewen

    2017-07-01

    To fabricate indirect restorative composites for CAD/CAM applications and evaluate the mechanical properties. Polymer-infiltrated-ceramic composites were prepared through infiltrating polymer into partially sintered sodium aluminum silicate ceramic blocks and curing. The corresponding samples were fabricated according to standard ISO-4049 using for mechanical properties measurement. The flexural strength and fracture toughness were measured using a mechanical property testing machine. The Vickers hardness and elastic modulus were calculated from the results of nano-indentation. The microstructures were investigated using secondary electron detector. The density of the porous ceramic blocks was obtained through TG-DTA. The conversion degrees were calculated from the results of mid-infrared spectroscopy. The obtained polymer infiltrated composites have a maximum flexural strength value of 214±6.5MPa, Vickers hardness of 1.76-2.30GPa, elastic modulus of 22.63-27.31GPa, fracture toughness of 1.76-2.35MPam 1/2 and brittleness index of 0.75-1.32μm -1/2 . These results were compared with those of commercial CAD/CAM blocks. Our results suggest that these materials with good mechanical properties are comparable to two commercial CAD/CAM blocks. The sintering temperature could dramatically influence the mechanical properties. Restorative composites with superior mechanical properties were produced. These materials mimic the properties of natural dentin and could be a promising candidate for CAD/CAM applications. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    International Nuclear Information System (INIS)

    Mierke, Claudia Tanja

    2013-01-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation. (paper)

  17. The role of focal adhesion kinase in the regulation of cellular mechanical properties

    Science.gov (United States)

    Mierke, Claudia Tanja

    2013-12-01

    The regulation of mechanical properties is necessary for cell invasion into connective tissue or intra- and extravasation through the endothelium of blood or lymph vessels. Cell invasion is important for the regulation of many healthy processes such as immune response reactions and wound healing. In addition, cell invasion plays a role in disease-related processes such as tumor metastasis and autoimmune responses. Until now the role of focal adhesion kinase (FAK) in regulating mechanical properties of cells and its impact on cell invasion efficiency is still not well known. Thus, this review focuses on mechanical properties regulated by FAK in comparison to the mechano-regulating protein vinculin. Moreover, it points out the connection between cancer cell invasion and metastasis and FAK by showing that FAK regulates cellular mechanical properties required for cellular motility. Furthermore, it sheds light on the indirect interaction of FAK with vinculin by binding to paxillin, which then impairs the binding of paxillin to vinculin. In addition, this review emphasizes whether FAK fulfills regulatory functions similar to vinculin. In particular, it discusses the differences and the similarities between FAK and vinculin in regulating the biomechanical properties of cells. Finally, this paper highlights that both focal adhesion proteins, vinculin and FAK, synergize their functions to regulate the mechanical properties of cells such as stiffness and contractile forces. Subsequently, these mechanical properties determine cellular invasiveness into tissues and provide a source sink for future drug developments to inhibit excessive cell invasion and hence, metastases formation.

  18. Quantum mechanical properties of graphene nano-flakes and quantum dots.

    Science.gov (United States)

    Shi, Hongqing; Barnard, Amanda S; Snook, Ian K

    2012-11-07

    In recent years considerable attention has been given to methods for modifying and controlling the electronic and quantum mechanical properties of graphene quantum dots. However, as these types of properties are indirect consequences of the wavefunction of the material, a more efficient way of determining properties may be to engineer the wavefunction directly. One way of doing this may be via deliberate structural modifications, such as producing graphene nanostructures with specific sizes and shapes. In this paper we use quantum mechanical simulations to determine whether the wavefunction, quantified via the distribution of the highest occupied molecular orbital, has a direct and reliable relationship to the physical structure, and whether structural modifications can be useful for wavefunction engineering. We find that the wavefunction of small molecular graphene structures can be different from those of larger nanoscale counterparts, and the distribution of the highest occupied molecular orbital is strongly affected by the geometric shape (but only weakly by edge and corner terminations). This indicates that both size and shape may be more useful parameters in determining quantum mechanical and electronic properties, which should then be reasonably robust against variations in the chemical passivation or functionalisation around the circumference.

  19. Effective thermo-mechanical properties and shape memory effect of CNT/SMP composites

    Science.gov (United States)

    Yang, Qingsheng; Liu, Xia; Leng, Fangfang

    2009-07-01

    Shape memory polymer (SMP) has been applied in many fields as intelligent sensors and actuators. In order to improve the mechanical properties and recovery force of SMP, the addition of minor amounts of carbon nanotubes (CNT) into SMP has attracted wide attention. A micromechanical model and thermo-mechanical properties of CNT/SMP composites were studied in this paper. The thermo-mechanical constitutive relation of intellectual composites with isotropic and transversely isotropic CNT was obtained. Moreover, the shape memory effect of CNT/SMP composites and the effect of temperature and the volume fraction of CNT were discussed. The work shows that CNT/SMP composites exhibit excellent macroscopic thermo-mechanical properties and shape memory effect, while both of them can be affected remarkably by temperature and the microstructure parameters.

  20. Effects of mechanical strain on optical properties of ZnO nanowire

    Science.gov (United States)

    Vazinishayan, Ali; Lambada, Dasaradha Rao; Yang, Shuming; Zhang, Guofeng; Cheng, Biyao; Woldu, Yonas Tesfaye; Shafique, Shareen; Wang, Yiming; Anastase, Ndahimana

    2018-02-01

    The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW) before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM) software package ABAQUS and three-dimensional (3D) finite-difference time-domain (FDTD) methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  1. Effects of mechanical strain on optical properties of ZnO nanowire

    Directory of Open Access Journals (Sweden)

    Ali Vazinishayan

    2018-02-01

    Full Text Available The main objective of this study is to investigate the influences of mechanical strain on optical properties of ZnO nanowire (NW before and after embedding ZnS nanowire into the ZnO nanowire, respectively. For this work, commercial finite element modeling (FEM software package ABAQUS and three-dimensional (3D finite-difference time-domain (FDTD methods were utilized to analyze the nonlinear mechanical behavior and optical properties of the sample, respectively. Likewise, in this structure a single focused Gaussian beam with wavelength of 633 nm was used as source. The dimensions of ZnO nanowire were defined to be 12280 nm in length and 103.2 nm in diameter with hexagonal cross-section. In order to investigate mechanical properties, three-point bending technique was adopted so that both ends of the model were clamped with mid-span under loading condition and then the physical deformation model was imported into FDTD solutions to study optical properties of ZnO nanowire under mechanical strain. Moreover, it was found that increase in the strain due to the external load induced changes in reflectance, transmittance and absorptance, respectively.

  2. Assessment of aggregate quality and petrographic properties' influence on rock quality: A case study from Nordland county, Norway

    Science.gov (United States)

    Kløve Keiding, Jakob; Erichsen, Eyolf; Heldal, Tom; Aslaksen Aasly, Kari

    2017-04-01

    Good access to construction materials is crucial for future infrastructure development and continued economic growth. In Norway >80 % of construction materials come from crushed aggregates and represent an growing share of the consumption. Although recycling to some extend can cover the need for construction materials, economic growth, increasing population and urbanization necessitates exploitation of new rock resources in Norway as well as many other parts of the world. Aggregates must fulfill a number of technical requirements to ensure high quality and long life expectancy of new roads, buildings and structures. Aggregates also have to be extracted near the consumer market. Particularly for road construction strict criteria are in place for wearing course for roads with high traffic density. Thus knowledge of mechanical rock quality is paramount for both exploitation as well as future resource and land-use planning but is often not assessed or mapped beyond the quarry scale. The Geological survey of Norway runs a database with information about crushed aggregate deposits from >1500 Norwegian quarries and sample sites. Here we use mechanical test analyses from the database to assess the aggregate quality in the Nordland county, Norway. Maps have been produced linking bed rock geology with rock quality parameters. The survey documents that the county is challenged in meeting the requirements for roads with high traffic density and especially in the middle parts of the county many samples have weak mechanical properties. This to some degree reflect that weak Cambro-Silurian rocks like phyllite, schist, carbonate and greenstone are abundant in Nordland. Typically mechanically stronger rock types such as gabbro, monzonite and granite are also exposed in large parts of the county, but are also characterized by relative poor or very variable mechanical test quality. Preliminary results indicate that many intrinsic parameters influence the mechanical rock strength, but

  3. Mechanical properties of dense to porous alumina/lanthanum hexaaluminate composite ceramics

    International Nuclear Information System (INIS)

    Negahdari, Zahra; Willert-Porada, Monika; Pfeiffer, Carolin

    2010-01-01

    For development of new composite materials based on lanthanum hexaaluminate and alumina ceramics, a better understanding of the microstructure-properties relationship is essential. In this paper, attention was focused on the evaluation of mechanical properties of lanthanum hexaaluminate/alumina particulate composite. It was found out that the lanthanum hexaaluminate content plays a critical role in determination of the microstructure and mechanical properties of the composite ceramics. In situ formation of plate-like lanthanum hexaaluminate in the ceramic matrix was accompanied with formation of pores so that the microstructure shifted from dense to porous. Increasing the lanthanum hexaaluminate content up to a certain value enhanced the fracture toughness, increased the hardness, and increased the elastic modulus of the composite materials. Further increase in the lanthanum hexaaluminate content degraded the hardness as well as the elastic modulus of composite ceramics. The influence of lanthanum hexaaluminate on mechanical properties was described by means of microstructure, porosity, and intrinsic characteristics of lanthanum hexaaluminate.

  4. The Relation between the Rheological Properties of Gels and the Mechanical Properties of Their Corresponding Aerogels

    Directory of Open Access Journals (Sweden)

    Mingze Sun

    2018-04-01

    Full Text Available A series of low density, highly porous clay/poly(vinyl alcohol composite aerogels, incorporating ammonium alginate, were fabricated via a convenient and eco-friendly freeze drying method. It is significant to understand rheological properties of precursor gels because they directly affect the form of aerogels and their processing behaviors. The introduction of ammonium alginate impacted the rheological properties of colloidal gels and improved the mechanical performance of the subject aerogels. The specific compositions and processing conditions applied to those colloidal gel systems brought about different aerogel morphologies, which in turn translated into the observed mechanical properties. The bridge between gel rheologies and aerogel structures are established in the present work.

  5. Role of sequence and structural polymorphism on the mechanical properties of amyloid fibrils.

    Directory of Open Access Journals (Sweden)

    Gwonchan Yoon

    Full Text Available Amyloid fibrils playing a critical role in disease expression, have recently been found to exhibit the excellent mechanical properties such as elastic modulus in the order of 10 GPa, which is comparable to that of other mechanical proteins such as microtubule, actin filament, and spider silk. These remarkable mechanical properties of amyloid fibrils are correlated with their functional role in disease expression. This suggests the importance in understanding how these excellent mechanical properties are originated through self-assembly process that may depend on the amino acid sequence. However, the sequence-structure-property relationship of amyloid fibrils has not been fully understood yet. In this work, we characterize the mechanical properties of human islet amyloid polypeptide (hIAPP fibrils with respect to their molecular structures as well as their amino acid sequence by using all-atom explicit water molecular dynamics (MD simulation. The simulation result suggests that the remarkable bending rigidity of amyloid fibrils can be achieved through a specific self-aggregation pattern such as antiparallel stacking of β strands (peptide chain. Moreover, we have shown that a single point mutation of hIAPP chain constituting a hIAPP fibril significantly affects the thermodynamic stability of hIAPP fibril formed by parallel stacking of peptide chain, and that a single point mutation results in a significant change in the bending rigidity of hIAPP fibrils formed by antiparallel stacking of β strands. This clearly elucidates the role of amino acid sequence on not only the equilibrium conformations of amyloid fibrils but also their mechanical properties. Our study sheds light on sequence-structure-property relationships of amyloid fibrils, which suggests that the mechanical properties of amyloid fibrils are encoded in their sequence-dependent molecular architecture.

  6. Mechanical properties of timber from wind damaged Norway spruce

    DEFF Research Database (Denmark)

    Hoffmeyer, Preben

    2003-01-01

    A storm may subject a tree to such bending stresses that extensive compression damage develops in the lee side. The tree may survive the wind load or it may be thrown. However, the damage is inherent and it may be of a magnitude to influence the mechanical properties of boards sawn from the stem....... The paper reports on a investigation of the relation between degree of damage and mechanical proper-ties of sawn timber from wind damaged Norway spruce. The project included about 250 bolts from wind damaged trees. The majority of bolts were cut to deliver a full-diameter plank containing the pith...

  7. The mechanism and properties of acid-coagulated milk gels

    Directory of Open Access Journals (Sweden)

    Chanokphat Phadungath

    2005-03-01

    Full Text Available Acid-coagulated milk products such as fresh acid-coagulated cheese varieties and yogurt areimportant dairy food products. However, little is known regarding the mechanisms involved in gel formation, physical properties of acid gels, and the effects of processing variables such as heat treatment and gelation temperature on the important physical properties of acid milk gels. This paper reviews the modern concepts of possible mechanisms involved in the formation of particle milk gel aggregation, along with recent developments including the use of techniques such as dynamic low amplitude oscillatory rheology to observe the gel formation process, and confocal laser scanning microscopy to monitor gel microstructure.

  8. Mechanical properties of ZTA: correlation with structural properties and influence of ageing

    Czech Academy of Sciences Publication Activity Database

    Exare, C.; Kiat, J. M.; Guiblin, N.; Petříček, Václav

    2016-01-01

    Roč. 2016, May (2016), s. 1-7, č. článku 4264062. ISSN 2090-8628 R&D Projects: GA ČR(CZ) GA14-03276S Institutional support: RVO:68378271 Keywords : mechanical properties * zirconia toughened alumina * powder diffraction Subject RIV: BM - Solid Matter Physics ; Magnetism

  9. Evaluation of mechanical properties of hybrid fiber (hemp, jute, kevlar) reinforced composites

    Science.gov (United States)

    Suresha, K. V.; Shivanand, H. K.; Amith, A.; Vidyasagar, H. N.

    2018-04-01

    In today's world composites play wide role in all the engineering fields. The reinforcement of composites decides the properties of the material. Natural fiber composites compared to synthetic fiber possesses poor mechanical properties. The solution for this problem is to use combination of natural fiber and synthetic fiber. Hybridization helps to improve the overall mechanical properties of the material. In this study, hybrid reinforced composites of Hemp fabric/Kevlar fabric/Epoxy and Jute fabric/ Kevlar fabric/Epoxy composites are fabricated using Simple hand layup technique followed by Vacuum bagging process. Appropriate test methods as per standards and guidelines are followed to analyze mechanical behavior of the composites. The mechanical characteristics like tensile, compression and flexural properties of the hybrid reinforced composites are tested as per the ASTM standards by series of tensile test; compression test and three point bending tests were conducted on the hybrid composites. A quantitative relationship between the Hemp fabric/Kevlar fabric/Epoxy and Jute/ Kevlar fabric/Epoxy has been established with constant thickness.

  10. Mechanical, thermal and swelling properties of phosphorylated nanocellulose fibrils/PVA nanocomposite membranes.

    Science.gov (United States)

    Niazi, Muhammad Bilal Khan; Jahan, Zaib; Berg, Sigrun Sofie; Gregersen, Øyvind Weiby

    2017-12-01

    Cellulose nanofibrils (CNF) have strong reinforcing properties when incorporated in a compatible polymer matrix. This work reports the effect of the addition of phosphorylated nanocellulose (PCNF) on the mechanical, thermal and swelling properties of poly(vinyl alcohol) (PVA) nanocomposite membranes. The incorporation of nanocellulose in PVA reduced the crystallinity at 0%RH. However, when the films were exposed to higher humidities the crystallinity increased. No apparent trend is observed for mechanical properties for dry membranes (0% RH). However, at 93% RH the elastic modulus increased strongly from 0.12MPa to 0.82MPa when adding 6% PCNF. At higher humidities, the moisture uptake has large influence on storage modulus, tan δ and tensile properties. Membranes containing 1% PCNF absorbed most moisture. Swelling, thermal and mechanical properties indicate a good potential for applying of PVA/phosphorylated nanocellulose composite membranes for CO 2 separation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Mechanical properties of copper-lithium alloys produced by mechanic alloyed and hot extrusion

    International Nuclear Information System (INIS)

    Castillo B, Ricardo; Gorziglia S, Ezio; Penaloza V, Augusto

    2004-01-01

    In this work are presented the progress carried out on the characterization of some physical and mechanical properties, together with the determination of the micro mechanism of fracture of the Cu-2% wt Li, that was obtained by mechanical alloying followed hot extrusion at 500 o C and 700 o C. Hardness and tensile mechanical tests were performed together with metallographic and fractographic analysis. The experimental results obtained with powders of the Cu-Li alloy studied are compared with powder of pure copper, under similar test conditions. The results show that by hot extrusion was allowed to obtain very high densification levels for the materials under study. Moreover, it was found that lithium reduce both the tensile strength and elongation, of copper by a mechanism of embrittlement. The results are compares with the literature (au)

  12. Effect of mechanical alloying and compaction parameters on the mechanical properties and microstructure of EUROFER 97 ODS steel

    International Nuclear Information System (INIS)

    Ramar, A.; Oksiuta, Z.; Baluc, N.; Schaeublin, R.

    2006-01-01

    Oxide dispersion strengthened (ODS) ferritic / martensitic (F/M) steels appear to be promising candidates for the future fusion reactor. Their inherent properties, good thermal conductivity, swelling resistance and low radiation damage accumulation, deriving from the base material EUROFER 97, are further enhanced by the presence of the fine dispersion of oxide particles. They would allow in principle for a higher operating temperature of the fusion reactor, which improves its thermal efficiency. In effect, their strength remains higher than the base material with increasing temperature. Their creep properties are also improved relatively to the base material. It is the pinning of dislocations at dispersed oxide particles that helps to improve the high temperature mechanical properties. EUROFER97 is a reduced activation F/M steel, whose chemical composition is 8.9 wt. % Cr, 1.1 wt. % W, 0.47 wt. % Mn, 0.2 wt. % V, 0.14 wt. % Ta and 0.11 wt. % C and Fe for the balance. A new ODS F/M steel based on EUROFER 97 is developed with the strengthening material as Y 2 O 3 maintained at 0.3wt% based on our past experience. The ODS powder is produced by a different powder metallurgy route. The Eurofer 97 atomized powder with particle sizes around 45 μm is ball milled in argon atmosphere in a planetary ball mill together with Yttria particles with sizes about 10 to 30 nm. The milled powders are now canned in a steel container. They are degassed at 450 o C for 3 hours under a vacuum of 10-5 mbar. The canned sample is sealed in vacuum and finally compacted by hot isostatic pressing (HIP) in argon atmosphere under a pressure of 180 MPa at 1000 o C for 1 hour. Electron microscopy and X-ray diffraction observations are done at regular intervals during ball milling to identify changes in the particle and crystallite size and in particular with the solubility of Yttria in the matrix. Further, The microstructure and mechanical properties of final compacted material is assessed. The

  13. Thermal, electrical, mechanical and fluidity properties of polyester ...

    Indian Academy of Sciences (India)

    Bariş Şimşek

    2018-04-13

    Apr 13, 2018 ... of POREC simultaneously is necessary for real-world applications. ... analysis approach containing a design of experiment (DoE) methodology ...... C–S–H gel and mechanical properties: case of ternary Port- land cements ...

  14. Mechanical properties and microstructure of long term thermal aged WWER 440 RPV steel

    Energy Technology Data Exchange (ETDEWEB)

    Kolluri, M., E-mail: kolluri@nrg.eu [Nuclear Research & Consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands); Kryukov, A. [Scientific and Engineering Centre for Nuclear and Radiation Safety, 107140 Moscow (Russian Federation); Magielsen, A.J. [Nuclear Research & Consultancy Group (NRG), P.O. Box 25, 1755 ZG Petten (Netherlands); Hähner, P. [European Commission, Joint Research Centre, Directorate G – Nuclear Safety and Security, P.O. Box 2, 1755 ZG Petten (Netherlands); Petrosyan, V. [Armenian Scientific Research Institute for Nuclear Plant Operation (ARMATOM), 0027 Yerevan (Armenia); Sevikyan, G. [Armenian Nuclear Power Plant (ANPP), 0911, Metsamor, Armavir Marz (Armenia); Szaraz, Z. [European Commission, Joint Research Centre, Directorate G – Nuclear Safety and Security, P.O. Box 2, 1755 ZG Petten (Netherlands)

    2017-04-01

    The integrity assessment of the Reactor Pressure Vessel (RPV) is essential for the safe and Long Term Operation (LTO) of a Nuclear Power Plant (NPP). Hardening and embrittlement of RPV caused by neutron irradiation and thermal ageing are main reasons for mechanical properties degradation during the operation of an NPP. The thermal ageing-induced degradation of RPV steels becomes more significant with extended operational lives of NPPs. Consequently, the evaluation of thermal ageing effects is important for the structural integrity assessments required for the lifetime extension of NPPs. As a part of NRG's research programme on Structural Materials for safe-LTO of Light Water Reactor (LWR) RPVs, WWER-440 surveillance specimens, which have been thermal aged for 27 years (∼200,000 h) at 290 °C in a surveillance channel of Armenian-NPP, are investigated. Results from the mechanical and microstructural examination of these thermal aged specimens are presented in this article. The results indicate the absence of significant long term thermal ageing effect of 15Cr2MoV-A steel. No age hardening was detected in aged tensile specimens compared with the as-received condition. There is no difference between the impact properties of as-received and thermal aged weld metals. The upper shelf energy of the aged steel remains the same as for the as-received material at a rather high level of about 120 J. The T{sub 41} value did not change and was found to be about 10 °C. The microstructure of thermal aged weld, consisting carbides, carbonitrides and manganese-silicon inclusions, did not change significantly compared to as-received state. Grain-boundary segregation of phosphorus in long term aged weld is not significant either which has been confirmed by the absence of intergranular fracture increase in the weld. Negligible hardening and embrittlement observed after such long term thermal ageing is attributed to the optimum chemical composition of 15Cr2MoV-A for high

  15. Bidirectional Thermo-Mechanical Properties of Foam Core Materials Using DIC

    DEFF Research Database (Denmark)

    Taher, Siavash Talebi; Thomsen, Ole Thybo; M Dulieu-Barton, Janice

    2011-01-01

    mechanical properties at room and at elevated temperatures. The MAF enables the realization of pure compression or high compression to shear bidirectional loading conditions that is not possible with conventional Arcan fixtures. The MAF is attached to a standard universal test machine equiped...... with an environmental chamber using specially designed grips that allow the specimen to rotate, and hence reduces paristic effects due to misalignment. The objective is to measure the unidirectional and bidirectional mechanical properties of PVC foam materials at elevated tempreature using digital image correlation...

  16. Mechanical Properties of Magnesium-Rare Earth Alloy Systems: A Review

    Directory of Open Access Journals (Sweden)

    Sravya Tekumalla

    2014-12-01

    Full Text Available Magnesium-rare earth based alloys are increasingly being investigated due to the formation of highly stable strengthening phases, activation of additional deformation modes and improvement in mechanical properties. Several investigations have been done to study the effect of rare earths when they are alloyed to pure magnesium and other Mg alloys. In this review, the mechanical properties of the previously investigated different magnesium-rare earth based binary alloys, ternary alloys and other higher alloys with more than three alloying elements are presented.

  17. Microstructure, mechanical property and metal release of As-SLM CoCrW alloy under different solution treatment conditions.

    Science.gov (United States)

    Lu, Yanjin; Wu, Songquan; Gan, Yiliang; Zhang, Shuyuan; Guo, Sai; Lin, Junjie; Lin, Jinxin

    2015-03-01

    In the study, the microstructure, mechanical property and metal release behavior of selective laser melted CoCrW alloys under different solution treatment conditions were systemically investigated to assess their potential use in orthopedic implants. The effects of the solution treatment on the microstructure, mechanical properties and metal release were systematically studied by OM, SEM, XRD, tensile test, and ICP-AES, respectively. The XRD indicated that during the solution treatment the alloy underwent the transformation of γ-fcc to ε-hcp phase; the ε-hcp phase nearly dominated in the alloy when treated at 1200°C following the water quenching; the results from OM, SEM showed that the microstructural change was occurred under different solution treatments; solution at 1150°C with furnace cooling contributed to the formation of larger precipitates at the grain boundary regions, while the size and number of the precipitates was decreased as heated above 1100°C with the water quenching; moreover, the diamond-like structure was invisible at higher solution temperature over 1150°C following water quenching; compared with the furnace cooling, the alloy quenched by water showed excellent mechanical properties and low amount of metal release; as the alloy heated at 1200°C, the mechanical properties of the alloy reached their optimum combination at UTS=1113.6MPa, 0.2%YS=639.5MPa, and E%=20.1%, whilst showed the lower total quantity of metal release. It is suggested that a proper solution treatment is an efficient strategy for improving the mechanical properties and corrosion resistance of As-SLM CoCrW alloy that show acceptable tensile ductility. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. A method for quantifying mechanical properties of tissue following viral infection.

    Directory of Open Access Journals (Sweden)

    Vy Lam

    Full Text Available Viral infection and replication involves the reorganization of the actin network within the host cell. Actin plays a central role in the mechanical properties of cells. We have demonstrated a method to quantify changes in mechanical properties of fabricated model three-dimensional (3D connective tissue following viral infection. Using this method, we have characterized the impact of infection by the human herpesvirus, cytomegalovirus (HCMV. HCMV is a member of the herpesvirus family and infects a variety of cell types including fibroblasts. In the body, fibroblasts are necessary for maintaining connective tissue and function by creating mechanical force. Using this 3D connective tissue model, we observed that infection disrupted the cell's ability to generate force and reduced the cumulative contractile force of the tissue. The addition of HCMV viral particles in the absence of both viral gene expression and DNA replication was sufficient to disrupt tissue function. We observed that alterations of the mechanical properties are, in part, due to a disruption of the underlying complex actin microfilament network established by the embedded fibroblasts. Finally, we were able to prevent HCMV-mediated disruption of tissue function by the addition of human immune globulin against HCMV. This study demonstrates a method to quantify the impact of viral infection on mechanical properties which are not evident using conventional cell culture systems.

  19. Mechanical and natural durability properties of wood treated with a novel organic preservative/consolidant product

    International Nuclear Information System (INIS)

    Lionetto, Francesca; Frigione, Mariaenrica

    2009-01-01

    An organic preservative/consolidant of new formulation was selected in order to evaluate its effect on the mechanical properties of worm-eaten walnut wood. Walnut wood is widely used for the realization of artistic handworks (e.g. statues, altars, etc.) furniture and flooring. The flexural strength and modulus of elasticity, the toughness and the hardness were determined on both treated and untreated samples. The experimental results showed that the product increased significantly the flexural strength while the other mechanical properties were not appreciably affected by the chemical treatment. The microstructure of the samples tested was observed using scanning electron microscopy. The preserving character against insects of the investigated product was assessed by both visual inspection and measurements of weight loss on the treated specimens after their exposure to living insects. The samples on which the product was applied, exposed to Oligomerus ptilinoides for one year, were more resistant to decay than the corresponding untreated samples.

  20. The Mechanical Properties of Candidate Superalloys for a Hybrid Turbine Disk

    Science.gov (United States)

    Gabb, Timothy P.; MacKay, Rebecca A.; Draper, Susan L.; Sudbrack, Chantal K.; Nathal, Michael V.

    2013-01-01

    The mechanical properties of several cast blade superalloys and one powder metallurgy disk superalloy were assessed for potential use in a dual alloy hybrid disk concept of joined dissimilar bore and web materials. Grain size was varied for each superalloy class. Tensile, creep, fatigue, and notch fatigue tests were performed at 704 to 815 degC. Typical microstructures and failure modes were determined. Preferred materials were then selected for future study as the bore and rim alloys in this hybrid disk concept. Powder metallurgy superalloy LSHR at 15 micron grain size and single crystal superalloy LDS-1101+Hf were selected for further study, and future work is recommended to develop the hybrid disk concept.

  1. Preparation and properties of mesoporous silica/bismaleimide/diallylbisphenol composites with improved thermal stability, mechanical and dielectric properties

    Directory of Open Access Journals (Sweden)

    2011-06-01

    Full Text Available New composites with improved thermal stability, mechanical and dielectric properties were developed, which consist of 2,2'-diallylbisphenol A (DBA/4,4'-bismaleimidodiphenylmethane (BDM resin and a new kind of organic/inorganic mesoporous silica (MPSA. Typical properties (curing behavior and mechanism, thermal stability, mechanical and dielectric properties of the composites were systematically investigated, and their origins were discussed. Results show that MPSA/DBA/BDM composites have similar curing temperature as DBA/BDM resin does; however, they have different curing mechanisms, and thus different crosslinked networks. The content of MPSA has close relation with the integrated performance of cured composites. Compared with cured DBA/BDM resin, composites with suitable content of MPSA show obviously improved flexural strength and modulus as well as impact strength; in addition, all composites not only have lower dielectric constant and similar frequency dependence, more interestingly, they also exhibit better stability of frequency on dielectric loss. For thermal stability, the addition of MPSA to DBA/BDM resin significantly decreases the coefficient of thermal expansion, and improves the char yield at high temperature with a slightly reduced glass transition temperature. All these differences in macro-properties are attributed to the different crosslinked networks between MPSA/DBA/BDM composites and DBA/BDM resin.

  2. Mechanical properties of nanocrystalline palladium prepared by magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Castrup, Anna; Hahn, Horst [Forschungszentrum Karlsruhe (Germany); Technical University of Darmstadt (Germany); Scherer, Torsten; Ivanisenko, Yulia; Choi, In-Suk; Kraft, Oliver [Forschungszentrum Karlsruhe (Germany)

    2009-07-01

    Nanocrystalline metals and alloys with grain sizes well below 100 nm often demonstrate unique deformation behaviour and therefore attract a great interest in material science. The understanding of deformation mechanisms operating in nanocrystalline materials is important to predict their mechanical properties. In the present study Pd films of 1{mu}m thickness were prepared using UHV rf magnetron sputtering on dog bone shaped Kapton substrates and on Si/SiO2 wafers. The films were sputtered using multilayer technology with an individual layer thickness of 10 nm. This resulted in grain sizes of about 20 nm. Initial microstructure and texture were characterized using conventional XRD measurements and transmission electron microscopy (TEM) in both cross section- and plane view. The mechanical properties were investigated using tensile testing and nanoindentation at several strain rates. An increased hardness and strength as compared to coarse grained Pd was observed, as well as high strain rate sensitivity. The microstructure in the gauge section after tensile testing was again analyzed using TEM in order to reveal signatures of deformation mechanisms like dislocation motion or twinning.

  3. Mechanical performance of carbon-epoxy laminates. Part II: quasi-static and fatigue tensile properties

    Directory of Open Access Journals (Sweden)

    José Ricardo Tarpani

    2006-06-01

    Full Text Available In Part II of this work, quasi-static tensile properties of four aeronautical grade carbon-epoxy composite laminates, in both the as-received and pre-fatigued states, have been determined and compared. Quasi-static mechanical properties assessed were tensile strength and stiffness, tenacity (toughness at the maximum load and for a 50% load drop-off. In general, as-molded unidirectional cross-ply carbon fiber (tape reinforcements impregnated with either standard or rubber-toughened epoxy resin exhibited the maximum performance. The materials also displayed a significant tenacification (toughening after exposed to cyclic loading, resulting from the increased stress (the so-called wear-in phenomenon and/or strain at the maximum load capacity of the specimens. With no exceptions, two-dimensional woven textile (fabric pre-forms fractured catastrophically under identical cyclic loading conditions imposed to the fiber tape architecture, thus preventing their residual properties from being determined.

  4. Assessment of the excitelet algorithm for in-situ mechanical characterization of orthotropic structures

    Science.gov (United States)

    Ostiguy, Pierre-Claude; Quaegebeur, Nicolas; Masson, Patrice

    2012-04-01

    Damage detection and localization on composites can be impaired by inaccurate knowledge of the mechanical properties of the structure. This paper demonstrates the feasibility of using a chirplet-based correlation technique, called Excitelet, to evaluate the mechanical properties of orthotropic carbon fibre-based composite laminates. The method relies on the identification of an optimal correlation coefficient between measured and simulated dispersed signals measured on a structure using piezoceramic (PZT) transducers. Finite Element Model (FEM) is first conducted to demonstrate the capability of the approach to evaluate the mechanical properties of a composite structure. Experimental validation is then conducted on a unidirectionnal 2.30 mm thick laminate composed of unidirectional plies and a 2.35 mm thick laminate composed of unidirectional plies oriented at [0, 90]4s. Surface bonded PZT transducers were used both for actuation and sensing of guided waves bursts measured at 0° and 90° with respect to upper ply fibre orientation. The characterization is performed at various frequencies below 100 kHz using A0 or S0 modes and comparison with the material properties measured following ASTM standard testing is presented. The results indicate that large correlation coefficients are obtained between the measurements and simulated signals for both A0 and S0 modes when accurate properties are used as inputs for the model. Strategies based on multiple modes correlation are also assessed in order to improve the accuracy of the characterization approach. The results obtained using the proposed approach for the unidirectional plate and most of the results obtained using the proposed approach for the [0, 90]4s laminate are in agreement with the uncertainty associated with ASTM tests results while the proposed method is non destructive and can be performed prior to each imaging processing.

  5. Mechanical properties of hyaline and repair cartilage studied by nanoindentation.

    Science.gov (United States)

    Franke, O; Durst, K; Maier, V; Göken, M; Birkholz, T; Schneider, H; Hennig, F; Gelse, K

    2007-11-01

    Articular cartilage is a highly organized tissue that is well adapted to the functional demands in joints but difficult to replicate via tissue engineering or regeneration. Its viscoelastic properties allow cartilage to adapt to both slow and rapid mechanical loading. Several cartilage repair strategies that aim to restore tissue and protect it from further degeneration have been introduced. The key to their success is the quality of the newly formed tissue. In this study, periosteal cells loaded on a scaffold were used to repair large partial-thickness cartilage defects in the knee joint of miniature pigs. The repair cartilage was analyzed 26 weeks after surgery and compared both morphologically and mechanically with healthy hyaline cartilage. Contact stiffness, reduced modulus and hardness as key mechanical properties were examined in vitro by nanoindentation in phosphate-buffered saline at room temperature. In addition, the influence of tissue fixation with paraformaldehyde on the biomechanical properties was investigated. Although the repair process resulted in the formation of a stable fibrocartilaginous tissue, its contact stiffness was lower than that of hyaline cartilage by a factor of 10. Fixation with paraformaldehyde significantly increased the stiffness of cartilaginous tissue by one order of magnitude, and therefore, should not be used when studying biomechanical properties of cartilage. Our study suggests a sensitive method for measuring the contact stiffness of articular cartilage and demonstrates the importance of mechanical analysis for proper evaluation of the success of cartilage repair strategies.

  6. Elastic and Mechanical Properties of the MAX Phases

    Science.gov (United States)

    Barsoum, Michel W.; Radovic, Miladin

    2011-08-01

    The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.

  7. Mechanical properties of a biodegradable bone regeneration scaffold

    Science.gov (United States)

    Porter, B. D.; Oldham, J. B.; He, S. L.; Zobitz, M. E.; Payne, R. G.; An, K. N.; Currier, B. L.; Mikos, A. G.; Yaszemski, M. J.

    2000-01-01

    Poly (Propylene Fumarate) (PPF), a novel, bulk erosion, biodegradable polymer, has been shown to have osteoconductive effects in vivo when used as a bone regeneration scaffold (Peter, S. J., Suggs, L. J., Yaszemski, M. J., Engel, P. S., and Mikos, A. J., 1999, J. Biomater. Sci. Polym. Ed., 10, pp. 363-373). The material properties of the polymer allow it to be injected into irregularly shaped voids in vivo and provide mechanical stability as well as function as a bone regeneration scaffold. We fabricated a series of biomaterial composites, comprised of varying quantities of PPF, NaCl and beta-tricalcium phosphate (beta-TCP), into the shape of right circular cylinders and tested the mechanical properties in four-point bending and compression. The mean modulus of elasticity in compression (Ec) was 1204.2 MPa (SD 32.2) and the mean modulus of elasticity in bending (Eb) was 1274.7 MPa (SD 125.7). All of the moduli were on the order of magnitude of trabecular bone. Changing the level of NaCl from 20 to 40 percent, by mass, did not decrease Ec and Eb significantly, but did decrease bending and compressive strength significantly. Increasing the beta-TCP from 0.25 g/g PPF to 0.5 g/g PPF increased all of the measured mechanical properties of PPF/NVP composites. These results indicate that this biodegradable polymer composite is an attractive candidate for use as a replacement scaffold for trabecular bone.

  8. Evaluation the Mechanical Properties of Shot Peened TIG Welded Aluminum Sheets

    Directory of Open Access Journals (Sweden)

    Ahmed Ameed Zain Al-Abideen

    2017-04-01

    Full Text Available A tungsten inert gas (TIG welding is one of the most popular kinds of welding used to join metals mainly for aluminum alloys. However, many challenges may be met with this kind of joining process; these challenges arise from decay of mechanical properties of welded materials. In the present study, an attempt was made to enhancing the mechanical properties of TIG weld joint of 6061-T6 aluminum alloy by hardening the surfaces using shoot peening technique. To optimize the shoot peening process three times of exposure (5, 10, and 15 min. was used. All peened and unpeened, and welded and unwelded samples were characterized by metallographic test to indicate the phase transformation and modification in microstructure occurring during welding process. Tensile test and Vickers micro-hardness measurements were performed for all samples to investigate the effect of shoot peening on mechanical properties of welded aluminum. The results indicated a significant improvement in properties for peened welded and unwelded samples compared with those unpeened one. Also, the results showed that the tensile and microhardness properties were increased with increasing the time of exposure to 15 min. due to generation of compressive residual stresses at surface.

  9. Mechanical properties of HDPE/UHMWPE blends: effect of filler loading and filler treatment.

    Science.gov (United States)

    Lai, K L K; Roziyanna, A; Ogunniyi, D S; Zainal, Arifin M I; Azlan, Ariffin A

    2004-05-01

    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.

  10. Densely crosslinked polycarbosiloxanes .2. Thermal and mechanical properties

    NARCIS (Netherlands)

    Flipsen, T.A C; Derks, R.; van der Vegt, H.A.; Stenekes, R.; Pennings, A.J; Hadziioannou, G

    1997-01-01

    The thermal and mechanical properties of two densely crosslinked polycarbosiloxane systems were investigated in relation to the molecular structure. The networks were prepared from functional branched prepolymers and crosslinked via a hydrosilylation curing reaction. The prepolymers having only

  11. On the correlation between fuel structure and mechanical properties of UO2

    International Nuclear Information System (INIS)

    Blank, H.; Mandler, R.; Matzke, H.; Routbort, J.; Werner, P.

    1983-01-01

    The relation between the structure of a UO 2 fuel and its mechanical properties are discussed and illustrated for particular types of UO 2 by measurements of fracture surface energy, hardness, fracture stress and compressive deformation at 1870 and 1970 K. This gives the background for treating the question whether it is possible to find a simple experimental method for correlating the mechanical properties of UO 2 before irradiation with those after various irradiation histories. Hardness measurements might be such a method if combined with a detailed structural analysis and sufficient knowledge about the irradiation history. However, for a meaningful interpretation of the data the presently available 'classical' methods of fracture mechanics are inadequate and, furthermore, sufficient additional (not yet available) information on the relations between mechanical properties and structural details are required. (author)

  12. Effect of Macrosegregation on the Microstructure and Mechanical Properties of a Pressure-Vessel Steel

    Science.gov (United States)

    Yan, Guanghua; Han, Lizhan; Li, Chuanwei; Luo, Xiaomeng; Gu, Jianfeng

    2017-07-01

    Macrosegregation refers to the chemical segregation, which occurs quite commonly in the large forgings such as nuclear reactor pressure vessel. This work assesses the effect of macrosegregation and homogenization treatment on the mechanical properties of a pressure-vessel steel (SA508 Gr.3). It was found that the primary reason for the inhomogeneity of the microstructure was the segregation of Mn, Mo, and Ni. Martensite, and coarse upper bainite with M-A (martensite-austenite) islands have been obtained, respectively, in the positive and negative segregation zone during a simulated quenching process. During tempering, the carbon-rich M-A islands decomposed into a mixture of ferrite and numerous carbides which deteriorated the toughness of the material. The segregation has been substantially minimized by a homogenizing treatment. The results indicate that the material homogenized has a higher impact toughness than the material with segregation, due to the reduction in M-A island in the negative segregation zone. It can be concluded that the microstructure and mechanical properties have been improved remarkably by means of homogenization treatment.

  13. Tailoring the Electrochemical and Mechanical Properties of PEDOT:PSS Films for Bioelectronics

    KAUST Repository

    Elmahmoudy, Mohammed

    2017-02-21

    The effect of 3-glycidoxypropyltrimethoxysilane (GOPS) content in poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) dispersions on the properties of films spun cast from these formulations is investigated. It has been found out that the concentration of GOPS has a tremendous, yet gradual impact on the electrical, electrochemical, and mechanical properties of the PEDOT:PSS/GOPS films and that there is an optimum concentration which maximizes a particular feature of the film such as its water uptake or elasticity. The benefits of aqueous stability and mechanical strength with GOPS are to be compensated by an increase in the electrochemical impedance. GOPS aids obtaining excellent mechanical integrity in aqueous media with still highly conducting properties. Moreover, active devices like organic electrochemical transistors that contain 1 wt% GOPS, which is a concentration that leads to film with high electrical conductivity with sufficient mechanical stability and softness, exhibit steady performance over three weeks. These results suggest that variations in the concentration of such an additive like GOPS can enable a facile co-optimization of electrical and mechanical properties of a conducting polymer film for in vivo bioelectronics application.

  14. Effect of cobalt doping on the mechanical properties of ZnO nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Vahtrus, Mikk; Šutka, Andris [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia); Polyakov, Boris [Institute of Solid State Physics, University of Latvia, Kengaraga 8, LV-1063 Riga (Latvia); Oras, Sven; Antsov, Mikk [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia); Doebelin, Nicola [RMS Foundation, Bischmattstrasse 12, Bettlach 2544 (Switzerland); Institute of Geological Sciences, University of Bern, Baltzerstrasse 1–3, Bern 3012 (Switzerland); Lõhmus, Rünno; Nõmmiste, Ergo [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia); Vlassov, Sergei, E-mail: vlassovs@ut.ee [Institute of Physics, University of Tartu, W. Ostwaldi 1, 50412 Tartu (Estonia)

    2016-11-15

    In this work, we investigate the influence of doping on the mechanical properties of ZnO nanowires (NWs) by comparing the mechanical properties of pure and Co-doped ZnO NWs grown in similar conditions and having the same crystallographic orientation [0001]. The mechanical characterization included three-point bending tests made with atomic force microscopy and cantilever beam bending tests performed inside scanning electron microscopy. It was found that the Young's modulus of ZnO NWs containing 5% of Co was approximately a third lower than that of the pure ZnO NWs. Bending strength values were comparable for both materials and in both cases were close to theoretical strength indicating high quality of NWs. Dependence of mechanical properties on NW diameter was found for both doped and undoped ZnO NWs. - Highlights: •Effect of Co doping on the mechanical properties of ZnO nanowires is studied. •Co substitutes Zn atoms in ZnO crystal lattice. •Co addition affects crystal lattice parameters. •Co addition results in significantly decreased Young's modulus of ZnO. •Bending strength for doped and undoped wires is close to the theoretical strength.

  15. Cryogenic mechanical properties of Al-Cu-Li-Zr alloy 2090

    International Nuclear Information System (INIS)

    Glazer, J.; Dalder, E.N.C.; Emigh, R.A.; Verzasconi, S.L.; Yu, W.

    1986-01-01

    The mechanical properties of aluminum-lithium alloy 2090-T8E41 were evaluated at 298 K, 77 K, and 4 K. Previously reported tensile and fracture toughness properties at room temperature were confirmed. This alloy exhibits substantially improved properties at cryogenic temperatures; the strength, elongation, fracture toughness and fatigue crack growth resistance all improve simultaneously as the testing temperature decreases. This alloy has cryogenic properties superior to those of aluminum alloys currently used for cryogenic applications

  16. Design and mechanical properties of insect cuticle.

    Science.gov (United States)

    Vincent, Julian F V; Wegst, Ulrike G K

    2004-07-01

    Since nearly all adult insects fly, the cuticle has to provide a very efficient and lightweight skeleton. Information is available about the mechanical properties of cuticle-Young's modulus of resilin is about 1 MPa, of soft cuticles about 1 kPa to 50 MPa, of sclerotised cuticles 1-20 GPa; Vicker's Hardness of sclerotised cuticle ranges between 25 and 80 kgf mm(-2); density is 1-1.3 kg m(-3)-and one of its components, chitin nanofibres, the Young's modulus of which is more than 150 GPa. Experiments based on fracture mechanics have not been performed although the layered structure probably provides some toughening. The structural performance of wings and legs has been measured, but our understanding of the importance of buckling is lacking: it can stiffen the structure (by elastic postbuckling in wings, for example) or be a failure mode. We know nothing of fatigue properties (yet, for instance, the insect wing must undergo millions of cycles, flexing or buckling on each cycle). The remarkable mechanical performance and efficiency of cuticle can be analysed and compared with those of other materials using material property charts and material indices. Presented in this paper are four: Young's modulus-density (stiffness per unit weight), specific Young's modulus-specific strength (elastic hinges, elastic energy storage per unit weight), toughness-Young's modulus (fracture resistance under various loading conditions), and hardness (wear resistance). In conjunction with a structural analysis of cuticle these charts help to understand the relevance of microstructure (fibre orientation effects in tendons, joints and sense organs, for example) and shape (including surface structure) of this fibrous composite for a given function. With modern techniques for analysis of structure and material, and emphasis on nanocomposites and self-assembly, insect cuticle should be the archetype for composites at all levels of scale.

  17. PICA Variants with Improved Mechanical Properties

    Science.gov (United States)

    Thornton, Jeremy; Ghandehari, Ehson M.; Fan, Wenhong; Stackpoole, Margaret; Chavez-Garcia, Jose

    2011-01-01

    Phenolic Impregnated Carbon Ablator (PICA) is a member of the family of Lightweight Ceramic Ablators (LCAs) and was developed at NASA Ames Research Center as a thermal protection system (TPS) material for the Stardust mission probe that entered the Earth s atmosphere faster than any other probe or vehicle to date. PICA, carbon fiberform base and phenolic polymer, shows excellent thermal insulative properties at heating rates from about 250 W/sq cm to 1000 W/sq cm. The density of standard PICA - 0.26 g/cu cm to 0.28 g/cu cm - can be changed by changing the concentration of the phenolic resin. By adding polymers to the phenolic resin before curing it is possible to significantly improve the mechanical properties of PICA without significantly increasing the density.

  18. Mechanical properties of low-density polyethylene filled by graphite nanoplatelets

    DEFF Research Database (Denmark)

    Carotenuto, G.; De Nicola, S.; Palomba, M.

    2012-01-01

    The mechanical properties of GNP/LDPE nanocomposites (graphite nanoplatelets/low density polyethylene) have been investigated, in order to establish the effect of nanoscale reinforcement within the polymer matrix. Results show that the presence of the filler does not involve a change...... in the microscopic structure of the polymer. However, on a macroscopic scale, GNPs limit the mobility of the polymer chains, resulting in an increase in stiffness for the final composite. Orientation of GNPs within the LDPE matrix is also an important issue that affects mechanical properties and it has been...

  19. Effects of feed supplementation on mineral composition, mechanical properties and structure in femurs of Iberian red deer hinds (Cervus elaphus hispanicus).

    Science.gov (United States)

    Olguin, Cesar A; Landete-Castillejos, Tomas; Ceacero, Francisco; García, Andrés J; Gallego, Laureano

    2013-01-01

    Few studies in wild animals have assessed changes in mineral profile in long bones and their implications for mechanical properties. We examined the effect of two diets differing in mineral content on the composition and mechanical properties of femora from two groups each with 13 free-ranging red deer hinds. Contents of Ca, P, Mg, K, Na, S, Cu, Fe, Mn, Se, Zn, B and Sr, Young's modulus of elasticity (E), bending strength and work of fracture were assessed in the proximal part of the diaphysis (PD) and the mid-diaphysis (MD). Whole body measures were also recorded on the hinds. Compared to animals on control diets, those on supplemented diets increased live weight by 6.5 kg and their kidney fat index (KFI), but not carcass weight, body or organ size, femur size or cortical thickness. Supplemental feeding increased Mn content of bone by 23%, Cu by 9% and Zn by 6%. These differences showed a mean fourfold greater content of these minerals in supplemental diet, whereas femora did not reflect a 5.4 times greater content of major minerals (Na and P) in the diet. Lower content of B and Sr in supplemented diet also reduced femur B by 14% and Sr by 5%. There was a subtle effect of diet only on E and none on other mechanical properties. Thus, greater availability of microminerals but not major minerals in the diet is reflected in bone composition even before marked body effects, bone macro-structure or its mechanical properties are affected.

  20. Effects of feed supplementation on mineral composition, mechanical properties and structure in femurs of Iberian red deer hinds (Cervus elaphus hispanicus.

    Directory of Open Access Journals (Sweden)

    Cesar A Olguin

    Full Text Available Few studies in wild animals have assessed changes in mineral profile in long bones and their implications for mechanical properties. We examined the effect of two diets differing in mineral content on the composition and mechanical properties of femora from two groups each with 13 free-ranging red deer hinds. Contents of Ca, P, Mg, K, Na, S, Cu, Fe, Mn, Se, Zn, B and Sr, Young's modulus of elasticity (E, bending strength and work of fracture were assessed in the proximal part of the diaphysis (PD and the mid-diaphysis (MD. Whole body measures were also recorded on the hinds. Compared to animals on control diets, those on supplemented diets increased live weight by 6.5 kg and their kidney fat index (KFI, but not carcass weight, body or organ size, femur size or cortical thickness. Supplemental feeding increased Mn content of bone by 23%, Cu by 9% and Zn by 6%. These differences showed a mean fourfold greater content of these minerals in supplemental diet, whereas femora did not reflect a 5.4 times greater content of major minerals (Na and P in the diet. Lower content of B and Sr in supplemented diet also reduced femur B by 14% and Sr by 5%. There was a subtle effect of diet only on E and none on other mechanical properties. Thus, greater availability of microminerals but not major minerals in the diet is reflected in bone composition even before marked body effects, bone macro-structure or its mechanical properties are affected.

  1. Physical, mechanical, and biodegradable properties of meranti wood polymer composites

    International Nuclear Information System (INIS)

    Enamul Hoque, M.; Aminudin, M.A.M.; Jawaid, M.; Islam, M.S.; Saba, N.; Paridah, M.T.

    2014-01-01

    Highlights: • In-situ polymerization and solution casting method used to manufacture WPC. • In-situ WPC exhibited better properties compared to pure wood, 5% WPC and 20% WPC. • Lowest water absorption and least biodegradability shown by In-situ wood. - Abstract: In-situ polymerization and solution casting techniques are two effective methods to manufacture wood polymer composites (WPCs). In this study, wood polymer composites (WPCs) were manufactured from meranti sapwood by solution casting and in-situ polymerization process using methyl methacrylate (MMA) and epoxy matrix respectively. Physical, mechanical, and morphological characterizations of fabricated WPCs were then carried out to analyse their properties. Morphological properties of composites samples were analyzed through scanning electron microscopy (SEM). The result reveals that in-situ wood composite exhibited better properties compared to pure wood, 5% WPC and 20% WPC. Moreover, in-situ WPC had lowest water absorption and least biodegraded. Conversely, pure wood shown moderate mechanical strength, high biodegradation and water absorption rate. In term of biodegradation, earth-medium brought more severe effect than water in deteriorating the properties of the specimens

  2. Mechanical, Permeability, and Degradation Properties of 3D Designed Poly(1,8 Octanediol-co-Citrate)(POC) Scaffolds for Soft Tissue Engineering

    Science.gov (United States)

    Jeong, Claire G.; Hollister, Scott J.

    2015-01-01

    Poly(1,8-octanediol-co-citric acid) (POC) is a synthetic biodegradable elastomer that can be processed into 3D scaffolds for tissue engineering. We investigated the effect of designed porosity on the mechanical properties, permeability and degradation profiles of the POC scaffolds. For mechanical properties, scaffold compressive data was fit to a 1D nonlinear elastic model and solid tensile data was fit to a Neohookean incompressible nonlinear elastic model. Chondrocytes were seeded on scaffolds to assess the biocompatibility of POC. Increased porosity was associated with increased degradation rate, increased permeability, and decreased mechanical stiffness which also became less nonlinear. Scaffold characterization in this paper will provide design guidance for POC scaffolds to meet the mechanical and biological parameters needed for engineering soft tissues such as cartilage. PMID:20091910

  3. Morphology, mechanical and thermal oxidative aging properties of HDPE composites reinforced by nonmetals recycled from waste printed circuit boards.

    Science.gov (United States)

    Yang, Shuangqiao; Bai, Shibing; Wang, Qi

    2016-11-01

    In this study nonmetals recycled from waste printed circuit boards (NPCB) is used as reinforce fillers in high-density polyethylene (HDPE) composites. The morphology, mechanical and thermal oxidative aging properties of NPCB reinforced HDPE composites are assessed and it compared with two other commercial functional filler for the first time. Mechanical test results showed that NPCB could be used as reinforcing fillers in the HDPE composites and mechanical properties especially for stiffness is better than other two commercial fillers. The improved mechanical property was confirmed by the higher aspect ratio and strong interfacial adhesion in scanning electron microscopy (SEM) studies. The heat deflection temperature (HDT) test showed the presence of fiberglass in NPCB can improve the heat resistance of composite for their potential applications. Meanwhile, the oxidation induction time (OIT) and the Fourier transform infrared (FTIR) spectroscopy results showed that NPCB has a near resistance to oxidation as two other commercial fillers used in this paper. The above results show the reuse of NPCB in the HDPE composites represents a promising way for resolving both the environmental pollution and the high-value reuse of resources. Copyright © 2015. Published by Elsevier Ltd.

  4. Influence of porosity and pore shape on structural, mechanical and biological properties of poly ϵ-caprolactone electro-spun fibrous scaffolds.

    Science.gov (United States)

    Fuller, Kieran P; Gaspar, Diana; Delgado, Luis M; Pandit, Abhay; Zeugolis, Dimitrios I

    2016-05-01

    Electro-spun scaffolds are utilized in a diverse spectrum of clinical targets, with an ever-increasing quantity of work progressing to clinical studies and commercialization. The limited number of conformations in which the scaffolds can be fabricated hampers their wide acceptance in clinical practice. Herein, we assessed a single-strep fabrication process for predesigned electro-spun scaffold preparation and the ramifications of the introduction of porosity (0, 30, 50, 70%) and pore shape (circle, rhomboid, square) on structural, mechanical (tensile and ball burst) and biological (dermal fibroblast and THP-1) properties. The collector design did not affect the fibrous nature of the scaffold. Modulation of the porosity and pore shape offered control over the mechanical properties of the scaffolds. Neither the porosity nor the pore shape affected cellular (dermal fibroblast and THP-1) response. Overall, herein we provide evidence that electro-spun scaffolds of controlled architecture can be fabricated with fibrous fidelity, adequate mechanical properties and acceptable cytocompatibility for a diverse range of clinical targets.

  5. Mechanical Properties of Low Density Alloys at Cryogenic Temperatures

    International Nuclear Information System (INIS)

    Jiao, X. D.; Liu, H. J.; Li, L. F.; Yang, K.

    2006-01-01

    Low-density alloys include aluminum alloys, titanium alloys and magnesium alloys. Aluminum alloys and titanium alloys have been widely investigated and used as structural materials for cryogenic applications because of their light weight and good low-temperature mechanical properties.For aerospace applications, persistent efforts are being devoted to reducing weight and improving performance. Magnesium alloys are the lightest structural alloys among those mentioned above. Therefore, it is necessary to pay attention to magnesium alloys and to investigate their behaviors at cryogenic temperatures. In this paper, we have investigated the mechanical properties and microstructures of some magnesium alloys at cryogenic temperatures. Experimental results on both titanium and magnesium alloys are taken into account in considering these materials for space application

  6. The Effect of Void Shape on the Mechanical Properties of Rock

    International Nuclear Information System (INIS)

    D.O. Potyondy

    2006-01-01

    The bonded-particle model for rock (Potyondy and Cundall, 2004) represents rock by a dense packing of non-uniform-sized circular or spherical particles that are bonded together at their contact points and whose mechanical behavior is simulated by the distinct-element method using the two- and three-dimensional programs PFC2D and PFC3D. A bonded-particle model of lithophysal tuff has been used to study the effect of lithophysae (hollow, bubble-like voids) on the mechanical properties (Young's modulus and unconfined compressive strength) of this rock, and to quantify the variability of these properties. The model reproduces the failure mechanisms observed in the laboratory and exhibits a reduction of strength and modulus with increasing lithophysal volume fraction. The effect of void shape on mechanical properties is studied by inserting randomly distributed voids of simple shape (circle, triangle and star) and by inserting voids corresponding with lithophysal cavities identified in panel maps of the walls of a tunnel through this material. These studies address tunnel-stability issues associated with mechanical degradation of planned emplacement drifts at Yucca Mountain, which is the designated site for the proposed US high-level nuclear waste repository

  7. Effect of SMAT on microstructural and mechanical properties of AA2024

    International Nuclear Information System (INIS)

    Tadge, Prashant; Sasikumar, C.

    2016-01-01

    In recent days surface mechanical attrition treatment (SMAT) had attracted the attention of researchers as it produces a nano-crystalline surface with improved mechanical properties. In the present study Al-4%Cu alloy used in automobile and aerospace application is subjected to surface mechanical attrition treatment using steel shots. The microstructural changes introduced on the surface of the Al alloy was investigated using Scanning Electron Microscopy (SEM). The secondary phases formed during the SMAT process is been investigated using EDX and XRD analysis. The effects of SMAT on the mechanical properties were analyzed using a tensile testing. The SMA treatment had resulted in severe plastic deformation of the surface, thereby yielded a nanocrystalline surface with a grain size of 30 to 50 nm. Further, it is also found that the SMAT produced ultra nanocrystalline particles of Cu_2Al dispersed uniformly into α-Al matrix. These microstructural changes had resulted in considerable change in the mechanical properties of these alloys. The tensile strength of these alloys had increased from ∼212 MPa to 303 MPa while the fracture toughness increased up to 28% in 10 minutes of SMAT.

  8. Improvement of thermo-mechanical properties of ceramic materials for nuclear applications

    International Nuclear Information System (INIS)

    Decroix, G.M.; Gosset, D.; Kryger, B.; Boussuge, M.; Burlet, H.

    1994-01-01

    In order to improve the thermo-mechanical properties of materials used as neutron absorbers in nuclear reactors, cermet or cercer have been produced with two original microstructures: micro- or macro-dispersed composites. The composites thermal shock resistance has been evaluated in an image furnace. The microstructures we obtained involve different reinforcement mechanisms, such as crack deflection, crack branching, crack bridging or microcrack toughening, and improvement of thermal conductivity. The results reveal a significant improvement of the thermo-mechanical properties of the boron base neutron absorbers whose fabrication process leads to a macro-dispersed microstructure. (authors). 8 refs., 8 figs., 2 tabs

  9. Theoretical and experimental determination of mechanical properties of superconducting composite wire

    International Nuclear Information System (INIS)

    Gray, W.H.; Sun, C.T.

    1976-07-01

    The mechanical properties of a composite superconducting (NbTi/Cu) wire are characterized in terms of the mechanical properties of each constituent material. For a particular composite superconducting wire, five elastic material constants were experimentally determined and theoretically calculated. Since the Poisson's ratios for the fiber and the matrix material were very close, there was essentially no (less than 1 percent) difference among all the theoretical predictions for any individual mechanical constant. Because of the expense and difficulty of producing elastic constant data of 0.1 percent accuracy, and therefore conclusively determining which theory is best, no further experiments were performed

  10. Fabrication and Mechanical Properties of TiC/TiAl Composites

    Institute of Scientific and Technical Information of China (English)

    YUE Yun-long; GONG Yan-sheng; WU Hai-tao; WANG Chuan-bin; ZHANG Lian-meng

    2004-01-01

    TiC/TiAl composites with different TiC content were fabricated by rapid heating technique ofspark plasma sintering (SPS). The effect of TiC particles on microstructure and mechanical properties of TiAl matrix was investigated. The results indicate that grain sizes of TiAl matrix decrease and mechanical properties are improved because of the addition of TiC particles. The composites display a 26.8% increase in bending strength when10wt% TiC is added and 43.8% improvement in fracture toughness when 5 wt % TiC is added compared to valuesof TiC-free materials. Grain-refinement and dispersion-strengthening were the main strengthening mechanism. Theimprovement of fracture toughness was due to the deflexion of TiC particles to the crack.

  11. The mechanical properties, deformation and thermomechanical properties of alkali treated and untreated Agave continuous fibre reinforced epoxy composites

    International Nuclear Information System (INIS)

    Mylsamy, K.; Rajendran, I.

    2011-01-01

    Research highlights: → New renewable and biodegradable Agave americana fibre. → Environmentally free materials. → Good mechanical properties of Agave fibre reinforced epoxy composite materials. → Surface modification of the fibre (Alkali treatment) imported good mechanical properties. → Future scope in light weight materials manufacture. -- Abstract: The mechanical properties such as tensile, compressive, flexural, impact strength and water absorption of the alkali treated continuous Agave fibre reinforced epoxy composite (TCEC) and untreated continuous Agave fibre reinforced epoxy composite (UTCEC) were analysed. A comparison of the surfaces of TCEC and UTCEC composites was carried out by dynamic mechanical analysis (DMA), Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The thermomechanical properties of the composite reinforced with sodium hydroxide (NaOH) treated Agave fibres were considerably good as the shrinkage of the fibre during alkali treatment had facilitated more points of fibre resin interface. The SEM micrograph and FTIR spectra of the impact fracture surfaces of TCEC clearly demonstrate the better interfacial adhesion between fibre and the matrix. In both analyses the TCEC gave good performance than UTCEC and, thus, there is a scope for its application in light weight manufacture in future.

  12. Crystallization and mechanical properties of biodegradable poly(p ...

    Indian Academy of Sciences (India)

    Effect of ome-POSS on the isothermal melt crystallization and dynamic mechanical properties of PPDO in the ... attracting more and more attention in recent times.12–14 Blen- ..... spent at Ts is enough to erase the crystalline memory of the.

  13. Mechanical and Thermal Properties of Bamboo Pulp Fiber Reinforced Polyethylene Composites

    Directory of Open Access Journals (Sweden)

    Wenhan Ren

    2014-05-01

    Full Text Available The purpose of this study was to investigate the mechanical and thermal properties of high-density polyethylene (HDPE composites reinforced by bamboo pulp fibers (BPF. Using a twin-screw extruder, polymer composites were fabricated using BPF and bamboo flour (BF as the reinforcement and HDPE as the matrix. Tensile and flexural tests of the HDPE composites were performed to determine the mechanical properties under different conditions. The thermal properties of HDPE composites were characterized by thermogravimetric analysis (TGA and dynamic mechanical analysis (DMA. The results showed that BPF improved the mechanical and thermal properties of the polymer composites more than did BF. The tensile and flexural strength of composites with 30 wt% BPF were increased by 61.46% and 22.94%, respectively, while the tensile and flexural modulus were increased by 84.52% and 27.30%, respectively. Compared to composites with 50 wt% BF, the T5% of composites with 50 wt% BPF increased by 20.18 °C. As the BPF content increased, the storage modulus (E’ and loss modulus (E” initially increased, followed by a decrease. Compared to the BF/HDPE composites, BPF/HDPE composites reinforced at 30 wt% had a higher storage modulus (E’ and loss modulus (E” and lower damping parameter (tanδ.

  14. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction.

    Science.gov (United States)

    Ma, Hao; Zheng, Xiaoyang; Luo, Xuan; Yi, Yong; Yang, Fan

    2018-01-30

    Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM) method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress) of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  15. Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction

    Directory of Open Access Journals (Sweden)

    Hao Ma

    2018-01-01

    Full Text Available Silica aerogels are highly porous 3D nanostructures and have exhibited excellent physio-chemical properties. Although silica aerogels have broad potential in many fields, the poor mechanical properties greatly limit further applications. In this study, we have applied the finite volume method (FVM method to calculate the mechanical properties of silica aerogels with different geometric properties such as particle size, pore size, ligament diameter, etc. The FVM simulation results show that a power law correlation existing between relative density and mechanical properties (elastic modulus and yield stress of silica aerogels, which are consistent with experimental and literature studies. In addition, depending on the relative densities, different strategies are proposed in order to synthesize silica aerogels with better mechanical performance by adjusting the distribution of pore size and ligament diameter of aerogels. Finally, the results suggest that it is possible to synthesize silica aerogels with ultra-low density as well as high strength and stiffness as long as the textural features are well controlled. It is believed that the FVM simulation methodology could be a valuable tool to study mechanical performance of silica aerogel based materials in the future.

  16. Physico-mechanical properties of coir fiber/LDPE composites: Effect of chemical treatment and compatibilizer

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, Nirupama; Agarwal, Vijay Kumar; Sihha, Shishir [Indian Institute of Technology Roorkee, Uttrakhand (India)

    2015-12-15

    Coir fiber/low density polyethylene (LDPE) composites were fabricated with different fiber loading (10- 30 wt%) using compression molding technique. A fiber loading of 20 wt% was found optimum, with maximum mechanical properties. Further, the effect of fiber treatment (alkali and acrylic acid) and compatibilizer (MA-g-LDPE) incorporation on the mechanical and water absorption properties of the LDPE composites were studied and compared. The results showed that MA-g-LDPE incorporation into untreated and treated fiber composites led to improved mechanical properties and water resistance compared with the same composite formulation without MA-g-LDPE. However, treated fiber composites with MA-g-LDPE showed lower mechanical properties than untreated fiber without MA-g- LDPE, due to the removal of hydroxyl groups from the hemicellulose and lignin region of the fiber and degradation of fibers by chemical attack. From SEM studies on the tensile fractured composite samples, a good relationship has been observed between the morphological and mechanical properties.

  17. Effective Mechanical Property Estimation of Composite Solid Propellants Based on VCFEM

    Directory of Open Access Journals (Sweden)

    Liu-Lei Shen

    2018-01-01

    Full Text Available A solid rocket motor is one of the critical components of solid missiles, and its life and reliability mostly depend on the mechanical behavior of a composite solid propellant (CSP. Effective mechanical properties are critical material constants to analyze the structural integrity of propellant grain. They are estimated by a numerical method that combines the Voronoi cell finite element method (VCFEM and the homogenization method in the present paper. The correctness of this combined method has been validated by comparing with a standard finite element method and conventional theoretical models. The effective modulus and the effective Poisson’s ratio of a CSP varying with volume fraction and component material properties are estimated. The result indicates that the variations of the volume fraction of inclusions and the properties of the matrix have obvious influences on the effective mechanical properties of a CSP. The microscopic numerical analysis method proposed in this paper can also be used to provide references for the design and the analysis of other large volume fraction composite materials.

  18. Soil mechanical properties of MBT waste from Luxembourg, Germany and Thailand

    Directory of Open Access Journals (Sweden)

    Pattaraporn Pimolthai

    2014-12-01

    Full Text Available Mechanical and biological treatments (MBT of waste have become well known in Europe and Asia. The maximum particle size of waste is reduced by the removal of larger plastic materials from municipal solid waste during mechanical processing. The mechanical properties of the MBT waste are significantly changed by this process. An effective treatment system can lead to a better quality of output materials which do not cause environmental problems. This paper shows the comparative mechanical properties of MBT wastes from Luxembourg, Germany and Thailand. This research focused on the smaller 10 mm-fraction of MBT samples, in order to describe and evaluate the potential application of the small size material as a cover liner in landfill sites. Therefore the smaller 10 mm-fraction of MBT samples were tested for geotechnical properties. The small size waste particles were analysed in laboratory tests in order to determine their particle size, particle shape, compaction, permeability, shear strength, porosity and water absorption capacity, including comparison with the properties of soil material. The results showed that reduced particles were likely to act as a compact, low permeable material with a high potential for water absorption. The amount of remaining fibre and foil components in the materials cause different mechanical and hydraulic behaviours in the samples. The leachate of MBT samples showed very low concentrations of chemical oxygen demand, ammonium, and heavy metals, compared to the landfill leachate of untreated waste.

  19. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, A. [Department of Mechanical Engineering, National Institute of Technology, Warangal 506 004 (India)], E-mail: adepu_kumar7@yahoo.co.in; Sundarrajan, S. [Scientist ' G' , Defence Research and Development Laboratory, Hyderabad 500 028 (India)

    2009-04-15

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties.

  20. Optimization of pulsed TIG welding process parameters on mechanical properties of AA 5456 Aluminum alloy weldments

    International Nuclear Information System (INIS)

    Kumar, A.; Sundarrajan, S.

    2009-01-01

    The present work pertains to the improvement of mechanical properties of AA 5456 Aluminum alloy welds through pulsed tungsten inert gas (TIG) welding process. Taguchi method was employed to optimize the pulsed TIG welding process parameters of AA 5456 Aluminum alloy welds for increasing the mechanical properties. Regression models were developed. Analysis of variance was employed to check the adequacy of the developed models. The effect of planishing on mechanical properties was also studied and observed that there was improvement in mechanical properties. Microstructures of all the welds were studied and correlated with the mechanical properties

  1. Effect of cold drawing on mechanical properties of biodegradable fibers.

    Science.gov (United States)

    La Mantia, Francesco Paolo; Ceraulo, Manuela; Mistretta, Maria Chiara; Morreale, Marco

    2017-01-26

    Biodegradable polymers are currently gaining importance in several fields, because they allow mitigation of the impact on the environment related to disposal of traditional, nonbiodegradable polymers, as well as reducing the utilization of oil-based sources (when they also come from renewable resources). Fibers made of biodegradable polymers are of particular interest, though, it is not easy to obtain polymer fibers with suitable mechanical properties and to tailor these to the specific application. The main ways to tailor the mechanical properties of a given biodegradable polymer fiber are based on crystallinity and orientation control. However, crystallinity can only marginally be modified during processing, while orientation can be controlled, either during hot drawing or cold stretching. In this paper, a systematic investigation of the influence of cold stretching on the mechanical and thermomechanical properties of fibers prepared from different biodegradable polymer systems was carried out. Rheological and thermal characterization helped in interpreting the orientation mechanisms, also on the basis of the molecular structure of the polymer systems. It was found that cold drawing strongly improved the elastic modulus, tensile strength and thermomechanical resistance of the fibers, in comparison with hot-spun fibers. The elastic modulus showed higher increment rates in the biodegradable systems upon increasing the draw ratio.

  2. Investigation of mechanical properties and operative deformation mechanism in nano-crystalline Ni–Co/SiC electrodeposits

    International Nuclear Information System (INIS)

    Lari Baghal, S.M.; Amadeh, A.; Heydarzadeh Sohi, M.

    2012-01-01

    Highlights: ► The tensile properties of Ni–Co and Ni–Co/SiC deposits were investigated. ► The SiC particles enhanced tensile strength and ductility of nano-structured composites. ► The deformation mechanism at low and high strain rates were studied. - Abstract: Ni–Co/SiC nano-composites were prepared via electrodeposition from a modified Watts bath containing SiC particles with average particle size of 50 nm, SDS as surfactant and saccharin as grain refiner in appropriate amounts. The effect of nano-particle incorporation on microstructure, mechanical properties and deformation mechanism of electrodeposits were investigated. The mechanical properties of electrodeposits were investigated by Vickers microhardness and tensile tests. The results indicated that incorporation of SiC particles into a 15 nm Ni–Co matrix had no considerable effect on its microhardness and yield strength, that is, dispersion hardening did not operate in this range of grain size. However it was observed that co-deposition of uniform distributed SiC particles can significantly improve the ultimate tensile strength and elongation to failure of the deposits. Calculation of apparent activation volume from tensile test results at different strain rates proved that incorporation of SiC nano-particles are responsible for stress-assisted activation of GB atoms mechanism that can significantly increase the plasticity. Nano-crystalline Ni–Co matrix showed a mixed mod behavior of ductile and brittle fracture whereas incorporation of SiC particles and increasing the strain rate promoted ductile fracture mode.

  3. A comprehensive investigation into the effect of temperature variation on the mechanical properties of sustainable concrete

    OpenAIRE

    El Mir Abdulkader; Nehme Salem

    2017-01-01

    Minimizing the production energy and resources consumption are the key principle for engineering sustainability. In the case of concrete structures, this concept can be achieved by the use of materials in the most efficient way considering in the mix design the optimal mechanical and durability properties. The substitution of ordinary Portland cement for other supplementary cementitious materials is assessing the possibility of enhancing the sustainability and decreasing the environmental imp...

  4. Layer-by-layer assembled PVA/Laponite multilayer free-standing films and their mechanical and thermal properties

    International Nuclear Information System (INIS)

    Patro, T Umasankar; Wagner, H Daniel

    2011-01-01

    Structural arrangements of nanoplatelets in a polymer matrix play an important role in determining their properties. In the present study, multilayered composite films of poly(vinyl alcohol) (PVA) with Laponite clay are assembled by layer-by-layer (LBL) deposition. The LBL films are found to be hydrated, flexible and transparent. A facile and solvent-free method—by depositing self-assembled monolayers (SMA) of a functional silane on substrates—is demonstrated for preparing free-standing LBL films. Evolution of nanostructures in LBL films is correlated with thermal and mechanical properties. A well-dispersed solvent-cast PVA/Laponite composite film is also studied for comparison. We found that structurally ordered LBL films with an intercalated nanoclay system exhibits tensile strength, modulus and toughness, which are significantly higher than that of the conventional nanocomposites with well-dispersed clay particles and that of pure PVA. This indicates that clay platelets are oriented in the applied stress direction, leading to efficient interfacial stress transfer. In addition, various grades of composite LBL films are prepared by chemical crosslinking and their mechanical properties are assessed. On account of these excellent properties, the LBL films may find potential use as optical and structural elements, and as humidity sensors.

  5. Layer-by-layer assembled PVA/Laponite multilayer free-standing films and their mechanical and thermal properties.

    Science.gov (United States)

    Patro, T Umasankar; Wagner, H Daniel

    2011-11-11

    Structural arrangements of nanoplatelets in a polymer matrix play an important role in determining their properties. In the present study, multilayered composite films of poly(vinyl alcohol) (PVA) with Laponite clay are assembled by layer-by-layer (LBL) deposition. The LBL films are found to be hydrated, flexible and transparent. A facile and solvent-free method-by depositing self-assembled monolayers (SMA) of a functional silane on substrates-is demonstrated for preparing free-standing LBL films. Evolution of nanostructures in LBL films is correlated with thermal and mechanical properties. A well-dispersed solvent-cast PVA/Laponite composite film is also studied for comparison. We found that structurally ordered LBL films with an intercalated nanoclay system exhibits tensile strength, modulus and toughness, which are significantly higher than that of the conventional nanocomposites with well-dispersed clay particles and that of pure PVA. This indicates that clay platelets are oriented in the applied stress direction, leading to efficient interfacial stress transfer. In addition, various grades of composite LBL films are prepared by chemical crosslinking and their mechanical properties are assessed. On account of these excellent properties, the LBL films may find potential use as optical and structural elements, and as humidity sensors.

  6. Role of differential physical properties in the collective mechanics and dynamics of tissues

    Science.gov (United States)

    Das, Moumita

    Living cells and tissues are highly mechanically sensitive and active. Mechanical stimuli influence the shape, motility, and functions of cells, modulate the behavior of tissues, and play a key role in several diseases. In this talk I will discuss how collective biophysical properties of tissues emerge from the interplay between differential mechanical properties and statistical physics of underlying components, focusing on two complementary tissue types whose properties are primarily determined by (1) the extracellular matrix (ECM), and (2) individual and collective cell properties. I will start with the structure-mechanics-function relationships in articular cartilage (AC), a soft tissue that has very few cells, and its mechanical response is primarily due to its ECM. AC is a remarkable tissue: it can support loads exceeding ten times our body weight and bear 60+ years of daily mechanical loading despite having minimal regenerative capacity. I will discuss the biophysical principles underlying this exceptional mechanical response using the framework of rigidity percolation theory, and compare our predictions with experiments done by our collaborators. Next I will discuss ongoing theoretical work on how the differences in cell mechanics, motility, adhesion, and proliferation in a co-culture of breast cancer cells and healthy breast epithelial cells may modulate experimentally observed differential migration and segregation. Our results may provide insights into the mechanobiology of tissues with cell populations with different physical properties present together such as during the formation of embryos or the initiation of tumors. This work was partially supported by a Cottrell College Science Award.

  7. Mechanical and electrical properties of low density polyethylene filled with carbon nanotubes

    International Nuclear Information System (INIS)

    Sabet, Maziyar; Soleimani, Hassan

    2014-01-01

    Carbon nanotubes (CNTs) reveal outstanding electrical and mechanical properties in addition to nanometer scale diameter and high aspect ratio, consequently, making it an ideal reinforcing agent for high strength polymer composites. Low density polyethylene (LDPE)/CNT composites were prepared via melt compounding. Mechanical and electrical properties of (LDPE)/CNT composites with different CNT contents were studied in this research

  8. Microstructure, Mechanical Properties, and Toughening Mechanisms of a New Hot Stamping-Bake Toughening Steel

    Science.gov (United States)

    Lin, Tao; Song, Hong-Wu; Zhang, Shi-Hong; Cheng, Ming; Liu, Wei-Jie; Chen, Yun

    2015-09-01

    In this article, the hot stamping-bake toughening process has been proposed following the well-known concept of bake hardening. The influences of the bake time on the microstructure and the mechanical properties of the hot stamped-baked part were studied by means of scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and mechanical tests at room temperature. The results show that the amount of the retained austenite was nearly not changed by the bake process. Also observed were spherical Cu-rich precipitates of about 15 nm in martensite laths. According to the Orowan mechanism, their contribution of the Cu-rich precipitates to the strength is approximately 245 MPa. With the increase of the bake time, the tensile strength of the part was decreased, whereas both the ductility and the product of the tensile strength and ductility were increased then decreased. The tensile strength and ductility product and the tensile strength are as high as 21.9 GPa pct, 2086 MPa, respectively. The excellent combined properties are due to the transformation-induced plasticity effect caused by retained austenite.

  9. Microstructure and mechanical properties of Mg–HAP composites

    Indian Academy of Sciences (India)

    Administrator

    tion of load bearing capacity and suitable mechanical and metallurgical properties. ... lity as compared to β-TCP in our body fluid (Kwon et al. 2003). The HAP ... steel crucible under the protection of gas mixture contain- ing SF6 and CO2.

  10. Microstructure and mechanical properties of SiC materials

    International Nuclear Information System (INIS)

    Yarahmadi, M.

    1985-01-01

    The effect of the microstructure on the mechanical properties of SiC materials of different chemical composition (SSiC, SiSiC, and RSiC) was investigated. Furthermore, the creep strength was determined on oxidized samples and on non-pretreated samples. (HSCH)

  11. Mechanical properties of clayey soils and thermal solicitations

    International Nuclear Information System (INIS)

    Boisson, J.Y.

    1992-01-01

    Changes in permeability and mechanical properties of three clayey soils with temperature have been studied by using a special oedometric cell. The action of a thermal solicitation on the fabric and the behavior of the samples is highlighted. 3 figs., 1 tab

  12. Microstructural modification of pure Mg for improving mechanical and biocorrosion properties.

    Science.gov (United States)

    Ahmadkhaniha, D; Järvenpää, A; Jaskari, M; Sohi, M Heydarzadeh; Zarei-Hanzaki, A; Fedel, M; Deflorian, F; Karjalainen, L P

    2016-08-01

    In this study, the effect of microstructural modification on mechanical properties and biocorrosion resistance of pure Mg was investigated for tailoring a load-bearing orthopedic biodegradable implant material. This was performed utilizing the friction stir processing (FSP) in 1-3 passes to refine the grain size. Microstructure was examined in an optical microscope and scanning electron microscope with an electron backscatter diffraction unit. X-ray diffraction method was used to identify the texture. Mechanical properties were measured by microhardness and tensile testing. Electrochemical impedance spectroscopy was applied to evaluate corrosion behavior. The results indicate that even applying a single pass of FSP refined the grain size significantly. Increasing the number of FSP passes further refined the structure, increased the mechanical strength and intensified the dominating basal texture. The best combination of mechanical properties and corrosion resistance were achieved after three FSP passes. In this case, the yield strength was about six times higher than that of the as-cast Mg and the corrosion resistance was also improved compared to that in the as-cast condition. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Atomistic modeling of mechanical properties of polycrystalline graphene.

    Science.gov (United States)

    Mortazavi, Bohayra; Cuniberti, Gianaurelio

    2014-05-30

    We performed molecular dynamics (MD) simulations to investigate the mechanical properties of polycrystalline graphene. By constructing molecular models of ultra-fine-grained graphene structures, we studied the effect of different grain sizes of 1-10 nm on the mechanical response of graphene. We found that the elastic modulus and tensile strength of polycrystalline graphene decrease with decreasing grain size. The calculated mechanical proprieties for pristine and polycrystalline graphene sheets are found to be in agreement with experimental results in the literature. Our MD results suggest that the ultra-fine-grained graphene structures can show ultrahigh tensile strength and elastic modulus values that are very close to those of pristine graphene sheets.

  14. Effects of Zoledronate and Mechanical Loading during Simulated Weightlessness on Bone Structure and Mechanical Properties

    Science.gov (United States)

    Scott, R. T.; Nalavadi, M. O.; Shirazi-Fard, Y.; Castillo, A. B.; Alwood, J. S.

    2016-01-01

    Space flight modulates bone remodeling to favor bone resorption. Current countermeasures include an anti-resorptive drug class, bisphosphonates (BP), and high-force loading regimens. Does the combination of anti-resorptives and high-force exercise during weightlessness have negative effects on the mechanical and structural properties of bone? In this study, we implemented an integrated model to mimic mechanical strain of exercise via cyclical loading (CL) in mice treated with the BP Zoledronate (ZOL) combined with hindlimb unloading (HU). Our working hypothesis is that CL combined with ZOL in the HU model induces additive structural and mechanical changes. Thirty-two C57BL6 mice (male,16 weeks old, n8group) were exposed to 3 weeks of either HU or normal ambulation (NA). Cohorts of mice received one subcutaneous injection of ZOL (45gkg), or saline vehicle, prior to experiment. The right tibia was axially loaded in vivo, 60xday to 9N in compression, repeated 3xweek during HU. During the application of compression, secant stiffness (SEC), a linear estimate of slope of the force displacement curve from rest (0.5N) to max load (9.0N), was calculated for each cycle once per week. Ex vivo CT was conducted on all subjects. For ex vivo mechanical properties, non-CL left femurs underwent 3-point bending. In the proximal tibial metaphysis, HU decreased, CL increased, and ZOL increased the cancellous bone volume to total volume ratio by -26, +21, and +33, respectively. Similar trends held for trabecular thickness and number. Ex vivo left femur mechanical properties revealed HU decreased stiffness (-37),and ZOL mitigated the HU stiffness losses (+78). Data on the ex vivo Ultimate Force followed similar trends. After 3 weeks, HU decreased in vivo SEC (-16). The combination of CL+HU appeared additive in bone structure and mechanical properties. However, when HU + CL + ZOL were combined, ZOL had no additional effect (p0.05) on in vivo SEC. Structural data followed this trend with

  15. Molecular Modeling for Calculation of Mechanical Properties of Epoxies with Moisture Ingress

    Science.gov (United States)

    Clancy, Thomas C.; Frankland, Sarah J.; Hinkley, J. A.; Gates, T. S.

    2009-01-01

    Atomistic models of epoxy structures were built in order to assess the effect of crosslink degree, moisture content and temperature on the calculated properties of a typical representative generic epoxy. Each atomistic model had approximately 7000 atoms and was contained within a periodic boundary condition cell with edge lengths of about 4 nm. Four atomistic models were built with a range of crosslink degree and moisture content. Each of these structures was simulated at three temperatures: 300 K, 350 K, and 400 K. Elastic constants were calculated for these structures by monitoring the stress tensor as a function of applied strain deformations to the periodic boundary conditions. The mechanical properties showed reasonably consistent behavior with respect to these parameters. The moduli decreased with decreasing crosslink degree with increasing temperature. The moduli generally decreased with increasing moisture content, although this effect was not as consistent as that seen for temperature and crosslink degree.

  16. Using Quantum Mechanics to Predict Shock Properties of Explosives

    National Research Council Canada - National Science Library

    Romero, N. A; Mattson, W. D; Rice, B. M

    2006-01-01

    .... As little as ten years ago, quantum mechanical calculations were restricted to predictions of static properties of systems containing tens of atoms, thus limiting first principles explorations to gas...

  17. Mechanical properties correlation to processing parameters for advanced alumina based refractories

    Directory of Open Access Journals (Sweden)

    Dimitrijević Marija M.

    2012-01-01

    Full Text Available Alumina based refractories are usually used in metallurgical furnaces and their thermal shock resistance is of great importance. In order to improve thermal shock resistance and mechanical properties of alumina based refractories short ceramic fibers were added to the material. SEM technique was used to compare the microstructure of specimens and the observed images gave the porosity and morphological characteristics of pores in the specimens. Standard compression test was used to determine the modulus of elasticity and compression strength. Results obtained from thermal shock testing and mechanical properties measurements were used to establish regression models that correlated specimen properties to process parameters.

  18. Mechanical properties of cement concrete composites containing nano-metakaolin

    Science.gov (United States)

    Supit, Steve Wilben Macquarie; Rumbayan, Rilya; Ticoalu, Adriana

    2017-11-01

    The use of nano materials in building construction has been recognized because of its high specific surface area, very small particle sizes and more amorphous nature of particles. These characteristics lead to increase the mechanical properties and durability of cement concrete composites. Metakaolin is one of the supplementary cementitious materials that has been used to replace cement in concrete. Therefore, it is interesting to investigate the effectiveness of metakaolin (in nano scale) in improving the mechanical properties including compressive strength, tensile strength and flexural strength of cement concretes. In this experiment, metakaolin was pulverized by using High Energy Milling before adding to the concrete mixes. The pozzolan Portland cement was replaced with 5% and 10% nano-metakaolin (by wt.). The result shows that the optimum amount of nano-metakaolin in cement concrete mixes is 10% (by wt.). The improvement in compressive strength is approximately 123% at 3 days, 85% at 7 days and 53% at 28 days, respectively. The tensile and flexural strength results also showed the influence of adding 10% nano-metakaolin (NK-10) in improving the properties of cement concrete (NK-0). Furthermore, the Backscattered Electron images and X-Ray Diffraction analysis were evaluated to support the above findings. The results analysis confirm the pores modification due to nano-metakaolin addition, the consumption of calcium hydroxide (CH) and the formation of Calcium Silicate Hydrate (CSH) gel as one of the beneficial effects of amorphous nano-metakaolin in improving the mechanical properties and densification of microstructure of mortar and concrete.

  19. Multiscale mechanisms of nutritionally induced property variation in spider silks

    Science.gov (United States)

    Nobbs, Madeleine; Martens, Penny J.; Tso, I-Min; Chuang, Wei-Tsung; Chang, Chung-Kai; Sheu, Hwo-Shuenn

    2018-01-01

    Variability in spider major ampullate (MA) silk properties at different scales has proven difficult to determine and remains an obstacle to the development of synthetic fibers mimicking MA silk performance. A multitude of techniques may be used to measure multiscale aspects of silk properties. Here we fed five species of Araneoid spider solutions that either contained protein or were protein deprived and performed silk tensile tests, small and wide-angle X-ray scattering (SAXS/WAXS), amino acid composition analyses, and silk gene expression analyses, to resolve persistent questions about how nutrient deprivation induces variations in MA silk mechanical properties across scales. Our analyses found that the properties of each spider’s silk varied differently in response to variations in their protein intake. We found changes in the crystalline and non-crystalline nanostructures to play specific roles in inducing the property variations we found. Across treatment MaSp expression patterns differed in each of the five species. We found that in most species MaSp expression and amino acid composition variations did not conform with our predictions based on a traditional MaSp expression model. In general, changes to the silk’s alanine and proline compositions influenced the alignment of the proteins within the silk’s amorphous region, which influenced silk extensibility and toughness. Variations in structural alignment in the crystalline and non-crystalline regions influenced ultimate strength independent of genetic expression. Our study provides the deepest insights thus far into the mechanisms of how MA silk properties vary from gene expression to nanostructure formations to fiber mechanics. Such knowledge is imperative for promoting the production of synthetic silk fibers. PMID:29390013

  20. Mechanical reliability assessment of optical fibres in Radiation environments

    International Nuclear Information System (INIS)

    Van Uffelen, M.

    2006-01-01

    After more than two decades of intensive research and even some pioneering applications in space, optical fibres are now finding their way in various radiation environments, including both fission and future fusion nuclear-power plants, and high-energy physics experiments. For example, next to distributed monitoring applications of large nuclear infrastructures, fibre-optics can also be used for data communications during maintenance operations in the reactor vessel of the future ITER (International Thermonuclear Experimental Reactor), or for plasma diagnostics applications during operation of the reactor. These maintenance and diagnostics tasks require the optical fibres to withstand extremely high doses of radiation, up to MGy dose levels and temperatures above 150 degrees Celsius. The reliability assessment of fibre-optic systems for their qualification in nuclear environments often requires to meet stringent radiation tolerance levels. The majority of (usually accelerated) radiation assessments have so far focused on optical properties, such as wavelength-dependent radiation induced attenuation and radio-luminescence. The relation of these radiation effects with the fabrication methods and other environmental parameters has been the subject of years of research. Only a few results are available on the long-term evolution of mechanical properties of irradiated optical fibres. As a first step towards understanding the long-term reliability of fibre-optic composite cables in hostile radiation environments, we therefore performed dynamic fatigue tests with different commercial-grade optical fibres, both multi-mode and single-mode types