WorldWideScience

Sample records for assess genetic diversity

  1. Biodiversity assessment in forests - from genetic diversity to landscape diversity

    Directory of Open Access Journals (Sweden)

    Granke O

    2009-01-01

    Full Text Available Assessing biodiversity in forests requires a reliable and sustainable monitoring concept, which must include all levels of diversity, the genetic, the species and the landscape level. Diversity studies should not be reduced to quantitative analysis, but qualitative interpretations are an important part for the understanding of the results. Also, the linkage of terrestrial data and remote sensing data as well the implementation of abiotic and biotic data collected on existing monitoring systems are useful sources to analyse cause-effect relationships and interactions between the different aspects of diversity.

  2. Genetic diversity assessed by microsatellite markers in sweet corn cultivars

    OpenAIRE

    Ana Daniela Lopes; Carlos Alberto Scapim; Maria de Fátima Pires da Silva Machado; Claudete Aparecida Mangolin; Tereza Aparecida Silva; Liriana Belizário Cantagali; Flávia França Teixeira; Freddy Mora

    2015-01-01

    Information on genetic diversity is essential to the characterization and utilization of germplasm. The genetic diversity of twenty-two sweet corn cultivars (seventeen open-pollinated varieties, OPV, and five hybrids, H) was investigated by applying simple sequence repeat markers. A total of 257 primers were tested, of which 160 were found to be usable in terms of high reproducibility for all the samples tested; 45 were polymorphic loci, of which 30 were used to assess the genetic diversity o...

  3. Assessment of genetic diversity of sweet potato in Puerto Rico

    Science.gov (United States)

    Sweet potato (Ipomoea batatas L.) is the seventh most important food crop due to its distinct advantages, such as adaptability to different environmental conditions and high nutritional value. Assessing the genetic diversity of this important crop is necessary due to the constant increase of demand ...

  4. Genetic diversity assessed by microsatellite markers in sweet corn cultivars

    Directory of Open Access Journals (Sweden)

    Ana Daniela Lopes

    2015-12-01

    Full Text Available Information on genetic diversity is essential to the characterization and utilization of germplasm. The genetic diversity of twenty-two sweet corn cultivars (seventeen open-pollinated varieties, OPV, and five hybrids, H was investigated by applying simple sequence repeat markers. A total of 257 primers were tested, of which 160 were found to be usable in terms of high reproducibility for all the samples tested; 45 were polymorphic loci, of which 30 were used to assess the genetic diversity of sweet corn cultivars. We detected a total of 86 alleles using 30 microsatellite primers. The mean polymorphism was 82 %. The highest heterozygosity values (Ho = 0.20 were found in the PR030-Doce Flor da Serra and BR427 III OPVs, whereas the lowest values (0.14 were recorded in the MG161-Branco Doce and Doce Cubano OPVs. The polymorphism information content ranged from 0.19 (Umc2319 to 0.71 (Umc2205. The analysis of molecular variance revealed that most of the genetic variability was concentrated within the cultivars of sweet corn (75 %, with less variability between them (25 %. The consensus tree derived from the neighbor-joining (NJ algorithm using 1,000 bootstrapping replicates revealed seven genetically different groups. Nei’s diversity values varied between 0.103 (Doce do Hawai × CNPH-1 cultivars and 0.645 (Amarelo Doce × Lili cultivars, indicating a narrow genetic basis. The Lili hybrid was the most distant cultivar, as revealed by Principal Coordinates Analysis and the NJ tree. This study on genetic diversity will be useful for planning future studies on sweet corn genetic resources and can complement the breeding programs for this crop.

  5. Assessment of genetic diversity of Xanthomonas oryzae pv. oryzae

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@Bacterial blight of rice, caused by Xanthomonas oryzae pv. Oryzae(Xoo. ), is one of the major rice diseases in China. Making clear the shift of genetic diversity of the pathogen will provide important information for rice breeding. Strains collected from 11 provinces located in Southern region of the Changjiang River in China were assessed by using inoculation method and IS-PCR(Insertion Sequence-Based Polymerase Chain Reaction) analysis.

  6. Molecular assessment of genetic diversity in mung bean germplasm

    Indian Academy of Sciences (India)

    G. Roopa Lavanya; Jyoti Srivastava; Shirish A. Ranade

    2008-04-01

    RAPD profiles were used to identify the extent of diversity among 54 accessions of mung bean that included both improved and local land races. Out of the 40 primers screened, seven primers generated 174 amplification products with an average of 24.85 bands per primer. The RAPD profiles were analysed for Jaccard’s similarity coefficients that was found to be in the range from 0 to 0.48, indicating the presence of wide range of genetic diversity at molecular level. Cluster analysis was carried out based on distances (1-similarity coefficient) using neighbour-joining method in Free Tree package. The dendrogram resolved all the accessions into two major clusters, I (with 11 accessions) and II (with 43 accessions). However, the cluster was further divided into four subclusters (II A with six, II B with nine, II C with 15 and II D with 13 accessions). The distribution of the accessions in different clusters and subclusters appeares to be related to their performance in field conditions for 10 morphological traits that were scored. This study indicated that the RAPD profiles provide an easy and simple technique for preliminary genetic diversity assessment of mung bean accessions that may reflect morphological trait differences among them.

  7. Genetic diversity assessment of summer squash landraces using molecular markers.

    Science.gov (United States)

    Mady, Emad A; Helaly, Alaa Al-Din; Abu El-Hamd, Abdel Naem; Abdou, Arafa; Shanan, Shamel A; Craker, Lyle E

    2013-07-01

    Plant identification, classification, and genotyping within a germplasm collection are essential elements for establishing a breeding program that enhances the probability of plants with desirable characteristics in the market place. In this study, random amplified polymorphic DNA (RAPD) was used as a molecular tool to assess the diversity and relationship among 20 summer squash (Curcubita pepo L.) landraces traditionally used to treat hypertension and prostate hyperplasia. A total of 10 RAPD primers produced 65 reproducible bands of which 46 (70.77 %) were polymorphic, indicating a large number of genotypes within the summer squash lines. Cluster analysis divided the summer squash germplasm into two groups, one including one landrace and a second containing 19 landraces that could be divided into five sub-groups. Results of this study indicate the potential of RAPD markers for the identification and assessment of genetic variations among squash landraces and provide a number of choices for developing a successful breeding program to improve summer squash.

  8. Assessment of genetic diversity in Brazilian barley using SSR markers

    OpenAIRE

    Jéssica Rosset Ferreira; Jorge Fernando Pereira; Caroline Turchetto; Euclydes Minella; Luciano Consoli; Carla Andréa Delatorre

    2016-01-01

    Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag1...

  9. Assessment of genetic diversity in Brazilian barley using SSR markers.

    Science.gov (United States)

    Ferreira, Jéssica Rosset; Pereira, Jorge Fernando; Turchetto, Caroline; Minella, Euclydes; Consoli, Luciano; Delatorre, Carla Andréa

    2016-03-01

    Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs. PMID:27007902

  10. Assessment of genetic diversity in Brazilian barley using SSR markers

    Directory of Open Access Journals (Sweden)

    Jéssica Rosset Ferreira

    2016-03-01

    Full Text Available Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC, with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs.

  11. Assessment of genetic diversity in Brazilian barley using SSR markers

    Science.gov (United States)

    Ferreira, Jéssica Rosset; Pereira, Jorge Fernando; Turchetto, Caroline; Minella, Euclydes; Consoli, Luciano; Delatorre, Carla Andréa

    2016-01-01

    Abstract Barley is a major cereal grown widely and used in several food products, beverage production and animal fodder. Genetic diversity is a key component in breeding programs. We have analyzed the genetic diversity of barley accessions using microsatellite markers. The accessions were composed of wild and domesticated barley representing genotypes from six countries and three breeding programs in Brazil. A total of 280 alleles were detected, 36 unique to Brazilian barley. The marker Bmag120 showed the greatest polymorphism information content (PIC), with the highest mean value found on chromosome three, and the lowest on chromosomes four and six. The wild accessions presented the highest diversity followed by the foreign genotypes. Genetic analysis was performed using Principal Coordinates Analysis, UPGMA clustering, and Bayesian clustering analysis implemented in Structure. All results obtained by the different methods were similar. Loss of genetic diversity has occurred in Brazilian genotypes. The number of alleles detected in genotypes released in 1980s was higher, whereas most of the cultivars released thereafter showed lower PIC and clustered in separate subgroups from the older cultivars. The use of a more diverse panel of genotypes should be considered in order to exploit novel alleles in Brazilian barley breeding programs. PMID:27007902

  12. Genetic Diversity Of Plukenetia Volubilis L. Assessed By ISSR Markers*

    Directory of Open Access Journals (Sweden)

    Ocelák M.

    2015-12-01

    Full Text Available The diversity and genetic relationships in 173 sacha inchi samples were analyzed using ISSR markers. Thirty ISSR primers were used, only 8 showed variability in tested samples. ISSR fragments ranged from 200 to 2500 bp. The mean number of bands per primer was 12 and the average number of polymorphic bands per primer was 11. The lowest percentages of polymorphic bands (27%, gene diversity (0.103, and Shannon’s information index (0.15 were exhibited by the Santa Lucia population, which was also geographically most distant. This fact may be attributed to a very small size of this group. In contrast, the Dos de Mayo population exhibited the highest percentage of polymorphic bands (78%, and the Santa Cruz population the highest Nei’s gene diversity index (0.238 and Shannon’s information index (0.357. The obtained level of genetic variability was 36% among tested populations and 64% within populations. Although the diversity indices were low, a cluster analysis revealed 8 clusters containing mainly samples belonging to individual populations. Principal coordinate analysis clearly distinguished Chumbaquihui, Pucallpa, Dos de Mayo, and Aguas de Oro populations, the others were intermixed. The obtained results indicated the level of genetic diversity present in this location of Peru, although it is influenced by anthropological aspects and independent on the geographical distances.

  13. Genetic Diversity Of Plukenetia Volubilis L. Assessed By ISSR Markers*

    OpenAIRE

    Ocelák M.; Čepková P. Hlásná; Viehmannová I.; Dvořáková Z.; Huansi D.C.; Lojka B.

    2015-01-01

    The diversity and genetic relationships in 173 sacha inchi samples were analyzed using ISSR markers. Thirty ISSR primers were used, only 8 showed variability in tested samples. ISSR fragments ranged from 200 to 2500 bp. The mean number of bands per primer was 12 and the average number of polymorphic bands per primer was 11. The lowest percentages of polymorphic bands (27%), gene diversity (0.103), and Shannon’s information index (0.15) were exhibited by the Santa Lucia population, which was a...

  14. Genetic diversity of Cuban pineapple germplasm assessed by AFLP Markers

    Directory of Open Access Journals (Sweden)

    Ermis Yanes Paz

    2012-01-01

    Full Text Available The Cuban pineapple germplasm collection represents the genetic diversity of pineapple cultivated in that country and includes other important genotypes obtained from the germplasm collections in Brazil and Martinique. The collection has previously been characterized with morphological descriptors but a molecular characterization has been lacking. With this aim, 56 six genotypes of A. comosus and one of Bromelia pinguin were analyzed with a total of 191 AFLP markers. A dendrogram that represents the genetic relationships between these samples based on the AFLP results showed a low level of diversity in the Cuban pineapple collection. All Ananas comosus accessions, being the majority obtained from farmers in different regions in Cuba, are grouped at distances lower than 0.20. Molecular characterization was in line with morphological characterization. These results are useful for breeding and conservation purposes.

  15. Genetic diversity assessment in brassica germplasm based on morphological attributes

    International Nuclear Information System (INIS)

    Genetic diversity of 28 Brassica genotypes was studied using different morphological attributes. Data were recorded on days to maturity (DM), plant height (PH), primary branches plant (PBPP), pod length (PL), seed pod (SP), 1000 - seed weight (1000 - SW), yield plant (YPP) and oil (percentage). Three checks (Pakola, CM and TA), were used to check the performance of collected materials with already available brassica varieties. significant statistical differences were observed among the tested genotypes based on the studied morphological traits. Among the tested genotypes, genotype keelboat proved to be superior as compared to other studied genotypes due to maximum level of studied traits like pod length (7.03 cm), seed pod (32.33), 1000 - seed weight (5.38 g), seed yield plant (110.8 g) and oil content (52.9 percentage. The highest level of performance recorded by kalabat in terms of branches plant, pod length (cm), number of seed pod, seed yield plant (g), 1000 - seed weight (g) and oil content (percentage), indicates that this genotype is genetically different and superior than the other studied genotype. Therefore, genotype kalabat can be either used as variety after adaptability trials over a larger area or included in Brassica breeding programmes as a good source of genetic variation. (author)

  16. Assessment of the Genetic Diversity in Forest Tree Populations Using Molecular Markers

    Directory of Open Access Journals (Sweden)

    Ilga Porth

    2014-04-01

    Full Text Available Molecular markers have proven to be invaluable tools for assessing plants’ genetic resources by improving our understanding with regards to the distribution and the extent of genetic variation within and among species. Recently developed marker technologies allow the uncovering of the extent of the genetic variation in an unprecedented way through increased coverage of the genome. Markers have diverse applications in plant sciences, but certain marker types, due to their inherent characteristics, have also shown their limitations. A combination of diverse marker types is usually recommended to provide an accurate assessment of the extent of intra- and inter-population genetic diversity of naturally distributed plant species on which proper conservation directives for species that are at risk of decline can be issued. Here, specifically, natural populations of forest trees are reviewed by summarizing published reports in terms of the status of genetic variation in the pure species. In general, for outbred forest tree species, the genetic diversity within populations is larger than among populations of the same species, indicative of a negligible local spatial structure. Additionally, as is the case for plants in general, the diversity at the phenotypic level is also much larger than at the marker level, as selectively neutral markers are commonly used to capture the extent of genetic variation. However, more and more, nucleotide diversity within candidate genes underlying adaptive traits are studied for signatures of selection at single sites. This adaptive genetic diversity constitutes important potential for future forest management and conservation purposes.

  17. Assessment of genetic diversity in tomato landraces using ISSR markers

    Directory of Open Access Journals (Sweden)

    Henareh Mashhid

    2016-01-01

    Full Text Available Tomato is one of the most economically important vegetable crops in many parts of the world. Turkey and Iran are the main producers of tomatoes in the world. The objective of this study was to assess the genetic variation of 93 tomato landraces from East Anatolian region of Turkey and North-West of Iran, along with three commercial cultivars using 14 ISSR primers. The percentage of polymorphic loci (PPL for all primers was 100%. The mean of expected heterozygosity (He for the primers varied from 0.153 (UBC808 to 0.30 (UBC848. The dendrogram placed the landraces and commercial cultivars into nine groups. The genotypes originating from the same region, often located in the same group or two adjacent groups. The highest likelihood of the data was obtained when population were located into 2 sub-populations (K = 2. These sub-populations had Fst value of 0.16 and 0.21.

  18. Assessing Genetic Diversity Based on Gliadin Proteins in Aegilops cylindrica Populations from Northwest of Iran

    Directory of Open Access Journals (Sweden)

    Toraj KHABIRI

    2013-02-01

    Full Text Available Wild wheat progenitors served as a valuable gene pool in breeding perspectives. In this respect, gliadins could be an important tool in assessing genetic variability as protein markers. Thus, genetic diversity of gliadin protein patterns in seventeen populations of Aegilops cylindrica collected from northwest of Iran were investigated using acid polyacrylamide gel electrophoresis. Results showed that the highest number of bands in the electrophoregrams were related to the ω type of geliadins. Conversely, the lowest number of bands were pertained to the β type of gliadins. Genetic diversity between populations was greater than within population variation. Assessment of total variation for the three gliadin types indicated that the highest total variation was related to β type while, the lowest one was belonged to ω type. Cluster analysis using complete linkage method divided populations into two separated groups in which genetic diversity does not follow from geographical distribution.

  19. Assessment of genetic diversity in maize inbred lines using RAPD markers

    Directory of Open Access Journals (Sweden)

    Daniela Cristina Bruel

    2007-01-01

    Full Text Available RAPD molecular markers were used to analyze genetic diversity between 16 corn lines. Twenty-two primerswere used resulting in the amplification of 265 fragments, of which 237 (84.44% were polymorphic. Using the UPGMAmethod the genetic associations obtained showed 5 distinct heterotic groups. A principal coordinates analysis also showed anassociation of lines in 5 groups, in agreement with the results observed in the dendrogram. A bootstrap procedure wasapplied to verify whether the amount of markers used was sufficient to ensure reliability of the results, the procedure showeda coefficient of variation of 8.3%, suggesting that the markers were sufficient to assess genetic diversity between the analyzedlines. The high rate of polymorphism between lines revealed by RAPD markers indicated that the method is efficient to analyzegenetic diversity in corn lines and that the genetic divergence can be used to establish consistent heterotic groups between cornlines.

  20. Continental-scale assessment of genetic diversity and population structure in quaking aspen (Populus tremuloides)

    OpenAIRE

    Callahan, Colin M.; Rowe, Carol A.; Ryel, Ronald J.; Shaw, John D.; Madritch, Michael D.; Mock, Karen E.

    2013-01-01

    Aim: Quaking aspen (Populus tremuloides) has the largest natural distribution of any tree native to North America. The primary objectives of this study were to characterize range-wide genetic diversity and genetic structuring in quaking aspen, and to assess the influence of glacial history and rear-edge dynamics. Location: North America. Methods: Using a sample set representing the full longitudinal and latitudinal extent of the species’ distribution, we examined geographical patterns o...

  1. Assessment of genetic diversity in Saccharum using SSR markers and capillary electrophoresis

    Science.gov (United States)

    This study was conducted to assess the genetic diversity amongst 12 Saccharum clones from 3 species using SSR markers and CE (capillary electrophoresis). Genomic DNA of 12 sugarcane cultivars was amplified with 19 SSR primer pairs. A total of 229 bands generated with a size range between 100 and 26...

  2. Genetic diversity and variability in two Italian autochthonous donkey genetic types assessed by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Donato Matassino

    2014-01-01

    Full Text Available Since 13rd century, Italian domestic autochthonous donkey population has been characterised by Mediterranean grey mousy cruciate ancestral phenotype, currently typical of Amiata donkey (AD genetic type. This phenotype persisted up to the 16th century when a marked introduction of Hispanic and French big sized and dark bay or darkish coloured sires occurred. In the context of a safeguard programme of Latial Equide resources, the aim of this research was to evaluate the genetic diversity and similarity between the AD breed and an autochthonous donkey population native from Lazio, the Viterbese donkey (VD, using molecular markers. A total of 135 animals (50 AD and 85 VD were genetically characterised by using 16 short tandem repeat markers. A high genetic differentiation between populations (FST=0.158; P<0.01 and a low betweenbreeds genetic similarity (0.233±0.085 were observed. Correspondence analysis, the result of STRUCTURE software analysis and analysis of molecular variance would seem to indicate genetically different entities as well. It would be desirable to increase the number of comparison with other breeds to better understand the origin of VD. Moreover, results obtained in this study suggest that the loss of genetic variation observed in VD could mainly derive from unnoticed sub-population structuring (Wahlund effect, rather than to other factors such as inbreeding, null alleles or selection influence.

  3. Assessing genetic diversity of wild populations of Japanese flounder using AFLP markers

    Institute of Scientific and Technical Information of China (English)

    XU Xiaofei; ZHANG Quanqi; WANG Zhigang; QI Jie; ZHANG Zhifeng; BAO Zhenmin; Heisuke Nakagawa

    2006-01-01

    Amplified fragment length polymorphism (AFLP) analysis was used to evaluate the genetic diversity of four wild geographical populations of Japanese flounder (Paralichthys olivaceus). A total of 775 loci (58.32% of which was polymorphic) in the range between 100 and 1 300 base pairs were detected from 110 individuals using seven primer combinations. The percentage of polymorphic loci detected by single primer combination for each population was calculated, ranging from 19.59% to 53.33%. Genetic similarities within and among the populations were calculated from the binary matrices of presence - absence. Phylogenetic tree of four populations was constructed by using the UPGMA method using PHYLIP Version 3.5. According to intrapopulation genetic similarities, CW population displayed the highest genetic diversity value and KY population had the lowest genetic diversity value.The distance between CW and CF populations was the farthest, which was possibly resulted from the farthest distance of Weihai of Shandong and Fujian of China compared with the geographical distance between other locations of populations. The subpopulation differentiation value ( Gst ) is 0.356 5, showing a certain extent of differentiation among the four geographical populations. AFLP technology was confirmed to be an effective tool to assess within- and among-population genetic diversity of Japanese flounder. The present survey provided significant insights for research in the Japanese flounder breeding program.

  4. Single nucleotide polymorphisms for assessing genetic diversity in castor bean (Ricinus communis

    Directory of Open Access Journals (Sweden)

    Rabinowicz Pablo D

    2010-01-01

    Full Text Available Abstract Background Castor bean (Ricinus communis is an agricultural crop and garden ornamental that is widely cultivated and has been introduced worldwide. Understanding population structure and the distribution of castor bean cultivars has been challenging because of limited genetic variability. We analyzed the population genetics of R. communis in a worldwide collection of plants from germplasm and from naturalized populations in Florida, U.S. To assess genetic diversity we conducted survey sequencing of the genomes of seven diverse cultivars and compared the data to a reference genome assembly of a widespread cultivar (Hale. We determined the population genetic structure of 676 samples using single nucleotide polymorphisms (SNPs at 48 loci. Results Bayesian clustering indicated five main groups worldwide and a repeated pattern of mixed genotypes in most countries. High levels of population differentiation occurred between most populations but this structure was not geographically based. Most molecular variance occurred within populations (74% followed by 22% among populations, and 4% among continents. Samples from naturalized populations in Florida indicated significant population structuring consistent with local demes. There was significant population differentiation for 56 of 78 comparisons in Florida (pairwise population ϕPT values, p Conclusion Low levels of genetic diversity and mixing of genotypes have led to minimal geographic structuring of castor bean populations worldwide. Relatively few lineages occur and these are widely distributed. Our approach of determining population genetic structure using SNPs from genome-wide comparisons constitutes a framework for high-throughput analyses of genetic diversity in plants, particularly in species with limited genetic diversity.

  5. Genetic Diversity Assessment of Acid Lime (Citrus Aurantifolia Swingle Landraces of Eastern Nepal Using RAPD Markers

    Directory of Open Access Journals (Sweden)

    NN Munankarmi

    2014-09-01

    Full Text Available Acid lime (Citrus aurantifolia Swingle is an important commercial fruit crop, cultivated from terai to high hill landscapes of Nepal. However, production and productivity is very low due to various reasons including infestations by various diseases and pests, lack of diseases and pests resistant and high yielding varieties. In this context, determination of genetic variation at molecular level is fundamental to citrus breeders for the development of elite cultivars with desirable traits. In the present study, Random Amplified Polymorphic DNA (RAPD marker technique has been employed to assess genetic diversity in 60 acid lime landraces representing different agro-ecological zones of eastern Nepal. Nine selected arbitrary primers generated 79 RAPD fragments of which 75 were polymorphic (94.94%. Phenogram was constructed by NTSYSPC ver. 2.21i using UPGMA cluster analysis based on Jaccard’s similarity coefficient to deduce overall genetic diversity and relationships of the acidlime genotypes under study. Sixty acid lime landraces formed seven clusters and similarity value ranged from 38% to 98% with an average of 72%. Genetic variation at different agro-ecological zones was assessed using Popgene ver. 1.32 and found 47% to 69.6% polymorphism. Shannon’s index and Nei’s gene diversity showed highest level of acid lime diversity in Terai zone (PPB, 69.62%; H, 0.213; I, 0.325 followed by mid-hill zone (PPB, 67.09%; H, 0.208; I, 0.317. The results obtained will be useful to citrus breeders for elite cultivar development. The RAPD-PCR technique is found to be the rapid and effective tool for genetic diversity assessment in acid lime landraces of Nepal.

  6. Genetic Diversity in Jatropha curcas L. Assessed with SSR and SNP Markers

    Directory of Open Access Journals (Sweden)

    Juan M. Montes

    2014-08-01

    Full Text Available Jatropha curcas L. (jatropha is an undomesticated plant that has recently received great attention for its utilization in biofuel production, rehabilitation of wasteland, and rural development. Knowledge of genetic diversity and marker-trait associations is urgently needed for the design of breeding strategies. The main goal of this study was to assess the genetic structure and diversity in jatropha germplasm with co-dominant markers (Simple Sequence Repeats (SSR and Single Nucleotide Polymorphism (SNP in a diverse, worldwide, germplasm panel of 70 accessions. We found a high level of homozygosis in the germplasm that does not correspond to the purely outcrossing mating system assumed to be present in jatropha. We hypothesize that the prevalent mating system of jatropha comprise a high level of self-fertilization and that the outcrossing rate is low. Genetic diversity in accessions from Central America and Mexico was higher than in accession from Africa, Asia, and South America. We identified makers associated with the presence of phorbol esters. We think that the utilization of molecular markers in breeding of jatropha will significantly accelerate the development of improved cultivars.

  7. ATPase 8/6 GENE BASED GENETIC DIVERSITY ASSESSMENT OF SNAKEHEAD MURREL, Channa striata (Perciformes, Channidae).

    Science.gov (United States)

    Baisvar, V S; Kumar, R; Singh, M; Singh, A K; Chauhan, U K; Nagpure, N S; Kushwaha, B

    2015-10-01

    The mitochondrial DNA (mtDNA) ATPase 8/6 gene has been used in phylogenetic as well as in phylogeographic studies along with other mtDNA markers. In this study, ATPase gene sequences were used to assess the genetic structuring and phylogeographic patterns in Channa striata. Out of 884 nucleotide positions generated in ATPase 8/6 genes, 76 were polymorphic. The study suggested 23 unique haplotypes from 67 individuals of nine populations collected from different riverine systems of India. The ATPase 8/6 sequence revealed highest haplotype as well as nucleotide diversities in Imphal River population and lowest diversities in Tapti River population. The pattern of genetic diversity and haplotype network indicated distinct mitochondrial lineages for Chaliyar population, whereas mismatch distribution strongly suggested a population expansion in mid pleistocene epoch (0.4 Mya) with distinct genetic structuring in C. striata. The baseline information on genetic variation and the population sub-structuring would facilitate conservation and management of this important snakehead murrel.

  8. ATPase 8/6 GENE BASED GENETIC DIVERSITY ASSESSMENT OF SNAKEHEAD MURREL, Channa striata (Perciformes, Channidae).

    Science.gov (United States)

    Baisvar, V S; Kumar, R; Singh, M; Singh, A K; Chauhan, U K; Nagpure, N S; Kushwaha, B

    2015-10-01

    The mitochondrial DNA (mtDNA) ATPase 8/6 gene has been used in phylogenetic as well as in phylogeographic studies along with other mtDNA markers. In this study, ATPase gene sequences were used to assess the genetic structuring and phylogeographic patterns in Channa striata. Out of 884 nucleotide positions generated in ATPase 8/6 genes, 76 were polymorphic. The study suggested 23 unique haplotypes from 67 individuals of nine populations collected from different riverine systems of India. The ATPase 8/6 sequence revealed highest haplotype as well as nucleotide diversities in Imphal River population and lowest diversities in Tapti River population. The pattern of genetic diversity and haplotype network indicated distinct mitochondrial lineages for Chaliyar population, whereas mismatch distribution strongly suggested a population expansion in mid pleistocene epoch (0.4 Mya) with distinct genetic structuring in C. striata. The baseline information on genetic variation and the population sub-structuring would facilitate conservation and management of this important snakehead murrel. PMID:27169232

  9. Assessment of sorghum genetic resources for genetic diversity and drought tolerance using molecular markers and agro-morphological traits

    International Nuclear Information System (INIS)

    Forty sorghum genotype were investigated for genetic diversity and drought tolerance. Diversity parameters were estimated using 16 simple sequence repeats markers. For assessment of drought tolerance, the genotype were field evaluated under normal and drought stress condition for two seasons in three environments, in Sudan. In total, 98 SSRs alleles were detected with an average of 6.1 alleles per locus. The estimated polymorphic information contents ranged from 0.33 to 0.86. The genetic similarity ranged from 0.00 to 0.88 with a low mean of 0.32. The dendrogram, generated from the UPGMA cluster analysis, showed two main clusters differentiated into nine sub-clusters with close relationship to morphological characters and pedigree information. Mantel statistics revealed a good fit of the cophenetic values to the original data set (r= 0.88). The overall mean genetic diversity was 0.67. Significant differences were detected among genotypes under both normal and drought stressed conditions for all measured traits. Based on the relative yield, the most drought-tolerant genotypes were Arfa Gadamak, Wad Ahmed, El-Najada, Korcola, ICSR 92003 And Sham Sham. Drought five days delay in flowering, and the earliest genotypes were PI 569695, PI 570446, PI 569953, Dwarf White Milo and PI 56995. (Author)

  10. Development of SSR Markers and Assessment of Genetic Diversity in Medicinal Chrysanthemum morifolium Cultivars

    Science.gov (United States)

    Feng, Shangguo; He, Renfeng; Lu, Jiangjie; Jiang, Mengying; Shen, Xiaoxia; Jiang, Yan; Wang, Zhi'an; Wang, Huizhong

    2016-01-01

    Chrysanthemum morifolium, is a well-known flowering plant worldwide, and has a high commercial, floricultural, and medicinal value. In this study, simple-sequence repeat (SSR) markers were generated from EST datasets and were applied to assess the genetic diversity among 32 cultivars. A total of 218 in silico SSR loci were identified from 7300 C. morifolium ESTs retrieved from GenBank. Of all SSR loci, 61.47% of them (134) were hexa-nucleotide repeats, followed by tri-nucleotide repeats (17.89%), di-nucleotide repeats (12.39%), tetra-nucleotide repeats (4.13%), and penta-nucleotide repeats (4.13%). In this study, 17 novel EST-SSR markers were verified. Along with 38 SSR markers reported previously, 55 C. morifolium SSR markers were selected for further genetic diversity analysis. PCR amplification of these EST-SSRs produced 1319 fragments, 1306 of which showed polymorphism. The average polymorphism information content of the SSR primer pairs was 0.972 (0.938–0.993), which showed high genetic diversity among C. morifolium cultivars. Based on SSR markers, 32 C. morifolium cultivars were separated into two main groups by partitioning of the clusters using the unweighted pair group method with arithmetic mean dendrogram, which was further supported by a principal coordinate analysis plot. Phylogenetic relationship among C. morifolium cultivars as revealed by SSR markers was highly consistent with the classification of medicinal C. morifolium populations according to their origin and ecological distribution. Our results demonstrated that SSR markers were highly reproducible and informative, and could be used to evaluate genetic diversity and relationships among medicinal C. morifolium cultivars. PMID:27379163

  11. Assessment of Genetic Diversity in Bamboo Accessions of India Using Molecular Markers

    Directory of Open Access Journals (Sweden)

    Bharat Gami

    2015-06-01

    Full Text Available Bamboo is an important grass with wide scale applications in paper industries, medicines, constructions industries. It is potential feedstock for advanced biofuel production due to its favourable characteristics, natural abundance, rapid growth, perennial nature and higher CO2 sequestration. The objective of this study is to understand genetic diversity between the bamboo accessions with respect to geographical origin to correlate molecular information with feedstock characterization and adaptation to abiotic stress. In this study, genomic DNA was extracted from twenty bamboo accessions collected from different regions of India and genetic variations were assessed by inter simple sequence repeat (ISSR based molecular marker approach using 8 primers. Maximum genetic distance was observed between Bambusa wamin-Itanagar & B. ventricosa-Durg (0.48221 & minimum genetic distance between Bambusa balcooa-Modasa & Bambusa balcooa-Tripura (0.00787. Bambusa balcooa and Bambusa vulgaris were genetically similar as compared to other accessions. The genetic distance is independent of geographical distance for the bamboo accessions considered in this study. The findings of this study will help to understand the degree of differences between bamboo accessions under the same environmental conditions and to identify the representative accessions that can be used for abiotic stress resistance studies. The information can be explored for screening of closely related bamboo accessions for abiotic stress resistance screening trials.

  12. RAPD Assessment of Genetic Diversity of Yunjie(Eruca sativa Mill.) in China

    Institute of Scientific and Technical Information of China (English)

    SUN Wan-cang; WANG He-lin; GUAN Chun-yun; MENG Ya-xiong; ZHANG Jin-wen; LIU Zi-gang; ZHANG Tao; LI Xun; CHEN She-yuan; ZENG Xiu-cong

    2003-01-01

    Genetic diversity of Yunjie (Eruca sativa Mill. ) in China was assessed by analyses of RAPD (randomly amplified polymorphic DNA) markers. Twenty native cultivars representing Yunjie-growing ecotypes in China were selected as material in this study. Twelve out of the 64 tested random decamer primers were able to identify 131 stable RAPD bands from these Yunjie cultivars. Of them 105 bands, or 80.15% of the total, were polymorphic. Most Yunjie cultivars from the same ecotype had their characteristic DNA bands.Cluster analysis by unweighted pair group method of arithmetic means (UPGMA) suggested that the 20 Yunjie genotypes could be divided into four groups. The genetic distances among the 20 cultivars varied from 0. 117 8between Shuozhou and Shenchi to 0. 499 4 between Hetian and Xiliang. Hetian alone could be a new type of Yunjie identified in China because it had the greatest genetic distance from all the other tested cultivars. These results indicate that Chinese Yunjie have abundant genetic diversity. Classification of Chinese Yunjie based on the RAPD information was in good agreement with the relationships between these Yunjie cultivars in their geographic origins and their plant morphology.

  13. Genetic Diversity Assessment of Portuguese Cultivated Vicia faba L. through IRAP Markers

    Directory of Open Access Journals (Sweden)

    Diana Tomás

    2016-03-01

    Full Text Available Faba bean have been grown in Portugal for a long time and locally adapted populations are still maintained on farm. The genetic diversity of four Portuguese faba bean populations that are still cultivated in some regions of the country was evaluated using the Inter Retrotransposons Amplified Polymorphism (IRAP technique. It was shown that molecular markers based on retrotransposons previously identified in other species can be efficiently used in the genetic variability assessment of Vicia faba. The IRAP experiment targeting Athila yielded the most informative banding patterns. Cluster analysis using the neighbor-joining algorithm generated a dendrogram that clearly shows the distribution pattern of V. faba samples. The four equina accessions are separated from each other and form two distinct clades while the two major faba bean accessions are not unequivocally separated by the IRAP. Fluorescent In Situ Hybridization (FISH analysis of sequences amplified by IRAP Athila revealed a wide distribution throughout V. faba chromosomes, confirming the whole-genome coverage of this molecular marker. Morphological characteristics were also assessed through cluster analysis of seed characters using the unweighted pair group method arithmetic average (UPGMA and principal component analysis (PCA, showing a clear discrimination between faba bean major and equina groups. It was also found that the seed character most relevant to distinguish accessions was 100 seed weight. Seed morphological traits and IRAP evaluation give similar results supporting the potential of IRAP analysis for genetic diversity studies.

  14. ASSESSMENT OF GENETIC DIVERSITY OF REHMANNIA GLUTINOSA LIBOSCH BASED ON ISSR MARKERS

    Directory of Open Access Journals (Sweden)

    YANQING ZHOU, WUJUN GAO, HONGYING DUAN, FENGPING GU

    2007-08-01

    Full Text Available In order to assess the genetic diversity of Rehmannia glutinosa Libosch cultivars ( lines in Huai zone, Inter-simple sequence repeat (ISSR was performed. Ten appropriate ISSR primers were selected from a total of 44 ISSR ones for ISSR PCR amplification. The ten primers could amplify one hundred and ten bands. Based on them, A Jaccard’s genetic similarity matrix and a dendrogram for these ten cultivars were established using SPSS 10.0 software. In this dendrogram, they could be divided into two groups : Group1 contained six individuals such as Zupei 85.5, Datian 85.5, Zupei 9302, Jinbai, Jinzhuangyuan and Datian9302; Group2 consisted of four ones such as Beijing No.1, Dahongpao, Dihuang9104 and wild dihuang. Furthermore, Principal coordinate analysis (PCA supported the above cluster analysis; Shannon\\'s Information index (I is 0.3577, effective number of alleles (Ne is 1.4037, the percentage of polymorphic loci is 71.82 % by means of POPGENE32 software; A DNA fingerprint was developed with a single primer, ISSR6, in which each of ten individuals tested had its unique fingerprint pattern and was distinguished from each other. The results revealed that ISSR method is suitable for DNA fingerprinting, identification and genetic diversity analysis of Rehmannia glutinosa in Huai zone.

  15. Genetic Diversity of Landraces in Gossypium arboreum L. Race sinense Assessed with Simple Sequence Repeat Markers

    Institute of Scientific and Technical Information of China (English)

    Wang-Zhen Guo; Bao-Liang Zhou; Lu-Ming Yang; Wei Wang; Tian-Zhen Zhang

    2006-01-01

    Asiatic cotton (Gossypium arboreum L.) is an "Old World" cultivated cotton species, the sinense race of which is planted extensively in China. This species is still used in the current tetraploid cotton breeding program as an elite germplasm line, and is also used as a model for genomic research in Gossypium. In the present study, 60 cotton microsatellite markers, averaging 4.6 markers for each A-genome chromosome,were chosen to assess the genetic diversity of 109 accessions. These included 106 G. arboreum landraces,collected from 18 provinces throughout four Asiatic cotton-growing regions in China. A total of 128 alleles were detected, with an average of 2.13 alleles per locus. The largest number of alleles, as well as the maximum number of polymorphic loci, was detected in the A03 linkage group. No polymorphic alleles were detected on chromosome 10. The polymorphism information content for the 22 polymorphic microsatellite loci varied from 0.52 to 0.98, with an average of 0.89. Genetic diversity analysis revealed that the landraces in the Southern region had more genetic variability than those from the other two regions, and no significant difference was detected between landraces in the Yangtze and the Yellow River Valley regions. These findings are consistent with the history of sinense introduction, with the Southern region being the presumed center of origin for Chinese Asiatic cotton, and with subsequent northeastward extension to the Yangtze and Yellow River Valleys. Cluster analysis, based on simple sequence repeat data for 60 microsatellite loci, clearly differentiated Vietnamese and G. herbaceum landraces from the sinense landrace. No relationship between inter-variety similarity and geographical ecological region was observed. The present findings indicate that the Southern region landraces may have been directly introduced into the provinces in the middle and lower Yangtze River Valley, where Asiatic cotton was most extensively grown, and further race

  16. Comparative assessment of genetic diversity in cytoplasmic and nuclear genome of upland cotton.

    Science.gov (United States)

    Egamberdiev, Sharof S; Saha, Sukumar; Salakhutdinov, Ilkhom; Jenkins, Johnie N; Deng, Dewayne; Y Abdurakhmonov, Ibrokhim

    2016-06-01

    The importance of the cytoplasmic genome for many economically important traits is well documented in several crop species, including cotton. There is no report on application of cotton chloroplast specific SSR markers as a diagnostic tool to study genetic diversity among improved Upland cotton lines. The complete plastome sequence information in GenBank provided us an opportunity to report on 17 chloroplast specific SSR markers using a cost-effective data mining strategy. Here we report the comparative analysis of genetic diversity among a set of 42 improved Upland cotton lines using SSR markers specific to chloroplast and nuclear genome, respectively. Our results revealed that low to moderate level of genetic diversity existed in both nuclear and cytoplasm genome among this set of cotton lines. However, the specific estimation suggested that genetic diversity is lower in cytoplasmic genome compared to the nuclear genome among this set of Upland cotton lines. In summary, this research is important from several perspectives. We detected a set of cytoplasm genome specific SSR primer pairs by using a cost-effective data mining strategy. We reported for the first time the genetic diversity in the cytoplasmic genome within a set of improved Upland cotton accessions. Results revealed that the genetic diversity in cytoplasmic genome is narrow, compared to the nuclear genome within this set of Upland cotton accessions. Our results suggested that most of these polymorphic chloroplast SSRs would be a valuable complementary tool in addition to the nuclear SSR in the study of evolution, gene flow and genetic diversity in Upland cotton.

  17. Genetic effects of habitat restoration in the Laurentian Great Lakes: an assessment of lake sturgeon origin and genetic diversity

    Science.gov (United States)

    Jamie Marie Marranca; Amy Welsh; Roseman, Edward F.

    2015-01-01

    Lake sturgeon (Acipenser fulvescens) have experienced significant habitat loss, resulting in reduced population sizes. Three artificial reefs were built in the Huron-Erie corridor in the Great Lakes to replace lost spawning habitat. Genetic data were collected to determine the source and numbers of adult lake sturgeon spawning on the reefs and to determine if the founder effect resulted in reduced genetic diversity. DNA was extracted from larval tail clips and 12 microsatellite loci were amplified. Larval genotypes were then compared to 22 previously studied spawning lake sturgeon populations in the Great Lakes to determine the source of the parental population. The effective number of breeders (Nb) was calculated for each reef cohort. The larval genotypes were then compared to the source population to determine if there were any losses in genetic diversity that are indicative of the founder effect. The St. Clair and Detroit River adult populations were found to be the source parental population for the larvae collected on all three artificial reefs. There were large numbers of contributing adults relative to the number of sampled larvae. There was no significant difference between levels of genetic diversity in the source population and larval samples from the artificial reefs; however, there is some evidence for a genetic bottleneck in the reef populations likely due to the founder effect. Habitat restoration in the Huron-Erie corridor is likely resulting in increased habitat for the large lake sturgeon population in the system and in maintenance of the population's genetic diversity.

  18. Assessment of genetic diversity in Indian rice germplasm (Oryza sativa L.): use of random versus trait-linked microsatellite markers

    Indian Academy of Sciences (India)

    Sheel Yadav; Ashutosh Singh; M. R. Singh; Nitika Goel; K. K. Vinod; T. Mohapatra; A. K. Singh

    2013-12-01

    Assessment of genetic diversity in a crop germplasm is a vital part of plant breeding. DNA markers such as microsatellite or simple sequence repeat markers have been widely used to estimate the genetic diversity in rice. The present study was carried out to decipher the pattern of genetic diversity in terms of both phenotypic and genotypic variability, and to assess the efficiency of random vis-à-vis QTL linked/gene based simple sequence repeat markers in diversity estimation. A set of 88 rice accessions that included landraces, farmer’s varieties and popular Basmati lines were evaluated for agronomic traits and molecular diversity. The random set of SSR markers included 50 diversity panel markers developed under IRRI’s Generation Challenge Programme (GCP) and the trait-linked/gene based markers comprised of 50 SSR markers reportedly linked to yield and related components. For agronomic traits, significant variability was observed, ranging between the maximum for grains/panicle and the minimum for panicle length. The molecular diversity based grouping indicated that varieties from a common centre were genetically similar, with few exceptions. The trait-linked markers gave an average genetic dissimilarity of 0.45 as against that of 0.37 by random markers, along with an average polymorphic information constant value of 0.48 and 0.41 respectively. The correlation between the kinship matrix generated by trait-linked markers and the phenotype based distance matrix (0.29) was higher than that of random markers (0.19). This establishes the robustness of trait-linked markers over random markers in estimating genetic diversity of rice germplasm.

  19. Genetic Diversity of Dalmatian Sage (Salvia offi cinalis L. as Assessed by RAPD Markers

    Directory of Open Access Journals (Sweden)

    Zlatko Liber

    2014-10-01

    Full Text Available Dalmatian or common sage (Salvia officinalis L. is an outcrossing plant species native to East Adriatic coast. Random Amplified Polymorphic DNA markers (RAPD were used to analyze genetic diversity and structure of ten natural populations from the East-Adriatic coastal region. The highest genetic diversity was found in populations from the central and south Dalmatia, while the highest frequency down-weighted marker values were found in the northernmost populations and the southern most inland population. Although analysis of molecular variance (AMOVA revealed that most of the genetic diversity was attributable to differences among individuals within populations, highly significant φST values suggested the existence of genetic differentiation among populations. By assuming Hardy-Weinberg equilibrium within populations, the calculated FST value among population was moderate. Bayesian model-based clustering method revealed that at K = 2 all individuals belonging to two northern populations were assigned to a separate cluster from the individuals belonging to the rest of the population. At K = 3, the newly formed cluster grouped the majority of individuals belonging to populations from central Dalmatia. The high correlation between matrices of genetic and geographical distances showed that isolation by distance may play a considerable role in overall structuring of the genetic diversity.

  20. Genetic Diversity of Dalmatian Sage (Salvia officinalis L. as Assessed by RAPD Markers

    Directory of Open Access Journals (Sweden)

    Zlatko Liber

    2014-09-01

    Full Text Available Dalmatian or common sage (Salvia officinalis L. is an outcrossing plant species native to East Adriatic coast. Random Amplified Polymorphic DNA markers (RAPD were used to analyze genetic diversity and structure of ten natural populations from the East-Adriatic coastal region. The highest genetic diversity was found in populations from the central and south Dalmatia, while the highest frequency down-weighted marker values were found in the northernmost populations and the southern most inland population. Although analysis of molecular variance (AMOVA revealed that most of the genetic diversity was attributable to differences among individuals within populations, highly significant φST values suggested the existence of genetic differentiation among populations. By assuming Hardy-Weinberg equilibrium within populations, the calculated FST value among population was moderate. Bayesian model-based clustering method revealed that at K = 2 all individuals belonging to two northern populations were assigned to a separate cluster from the individuals belonging to the rest of the population. At K = 3, the newly formed cluster grouped the majority of individuals belonging to populations from central Dalmatia. The high correlation between matrices of genetic and geographical distances showed that isolation by distance may play a considerable role in overall structuring of the genetic diversity.

  1. Using Random Amplified Polymorphic DNA to Assess Genetic Diversity and Structure of Natural Calophyllum brasiliense (Clusiaceae) Populations in Riparian Forests

    OpenAIRE

    Evânia Galvão Mendonça; Anderson Marcos de Souza; Fábio de Almeida Vieira; Regiane Abjaud Estopa; Cristiane Aparecida Fioravante Reis; Dulcinéia de Carvalho

    2014-01-01

    The objective of this study was to assess the genetic variability in two natural populations of Calophyllum brasiliense located along two different rivers in the state of Minas Gerais, Brazil, using RAPD molecular markers. Eighty-two polymorphic fragments were amplified using 27 primers. The values obtained for Shannon index (I) were 0.513 and 0.530 for the populations located on the margins of the Rio Grande and Rio das Mortes, respectively, demonstrating the high genetic diversity in the st...

  2. Assessment of genetic diversity in indigenous turmeric (Curcuma longa) germplasm from India using molecular markers.

    Science.gov (United States)

    Verma, Sushma; Singh, Shweta; Sharma, Suresh; Tewari, S K; Roy, R K; Goel, A K; Rana, T S

    2015-04-01

    Curcuma longa L., commonly known as turmeric, is one of the economically and medicinally important plant species. It is predominantly cultivated in the tropical and sub tropical countries. India is the largest producer, and exporter of turmeric in the world, followed by China, Indonesia, Bangladesh and Thailand. In the present study, Directed Amplification of Minisatellite DNA (DAMD) and Inter Simple Sequence Repeats (ISSR), methods were used to estimate the genetic variability in indigenous turmeric germplasm. Cumulative data analysis for DAMD (15) and ISSR (13) markers resulted into 478 fragments, out of which 392 fragments were polymorphic, revealing 82 % polymorphism across the turmeric genotypes. Wide range of pairwise genetic distances (0.03-0.59) across the genotypes revealed that these genotypes are genetically quite diverse. The UPGMA dendrogram generated using cumulative data showed significant relationships amongst the genotypes. All 29 genotypes studied grouped into two clusters irrespective of their geographical affiliations with 100 % bootstrap value except few genotypes, suggesting considerable diversity amongst the genotypes. These results suggested that the current collection of turmeric genotypes preserve the vast majority of natural variations. The results further demonstrate the efficiency and reliability of DAMD and ISSR markers in determining the genetic diversity and relationships among the indigenous turmeric germplasm. DAMD and ISSR profiling have identified diverse turmeric genotypes, which could be further utilized in various genetic improvement programmes including conventional as well as marker assisted breeding towards development of new and desirable turmeric genotypes.

  3. Assessment of genetic diversity in broomcorn millet (Panicum miliaceum L.) using SSR markers.

    Science.gov (United States)

    Hu, Xingyu; Wang, Jianfei; Lu, Ping; Zhang, Hongsheng

    2009-08-01

    The genetic diversity of 118 accessions of broomcorn millet (Panicum miliaceum L.), collected from various ecological areas, was analyzed. Using 46 SSR (Simple Sequence Repeat) polymorphic markers from rice, wheat, oat and barley, a total of 226 alleles were found, which exhibited moderate level of diversity. The number of alleles per primer ranged from two to nine, with an average of 4.91. The range of polymorphism information content (PIC) was 0.284-0.980 (average, 0.793). The expected heterozygosity (He) varied from 0.346 to 0.989, with an average of 0.834. The average coefficient of the genetic similarity of SSR markers among the 118 accessions was 0.609, and it ranged from 0.461 to 0.851. The UPGMA (Unweight Pair Group Method with Arithmetic Mean) clustering analysis at the genetic similarity value of 0.609 grouped the 118 accessions into five groups. Mantel test meant that geographical origin and genetic distance presented positive correlation. The clustering results were consistent with known information on ecological growing areas. The genetic similarity coefficient of the accessions in the Loess Plateau ecotype was significantly lower than those in the other ecotypes. It indicates that the highest level of genetic diversity occurred in the Loess Plateau, which is probably the original site of Panicum miliaceum. PMID:19683672

  4. Genetic diversity and relationships among 177 public sunflower inbred lines assessed by TRAP markers

    Science.gov (United States)

    One hundred and seventy-seven public sunflower inbred lines released by the U.S. Department of Agriculture (USDA)-Agricultural Research Services (ARS) from the 1970s to 2005, were investigated for genetic diversity using the target region amplification polymorphism (TRAP) marker technique. A total ...

  5. Genetic diversity of Chilean and Brazilian Alstroemeria species assessed by AFLP analysis

    NARCIS (Netherlands)

    Han, T.H.; Jeu, de M.J.; Eck, van H.J.; Jacobsen, E.

    2000-01-01

    One to three accessions of 22 Alstroemeria species, an interspecific hybrid (A. aurea ́ A. inodora), and single accessions of Bomarea salsilla and Leontochir ovallei were evaluated using the AFLP-marker technique to estimate the genetic diversity within the genus Alstroemeria. Three primer combinati

  6. Genetic diversity in mesoamerican populations of mahogany (Swietenia macrophylla), assessed using RAPDs.

    Science.gov (United States)

    Gillies, A C; Navarro, C; Lowe, A J; Newton, A C; Hernández, M; Wilson, J; Cornelius, J P

    1999-12-01

    Swietenia macrophylla King, a timber species native to tropical America, is threatened by selective logging and deforestation. To quantify genetic diversity within the species and monitor the impact of selective logging, populations were sampled across Mesoamerica, from Mexico to Panama, and analysed for RAPD DNA variation. Ten decamer primers generated 102 polymorphic RAPD bands and pairwise distances were calculated between populations according to Nei, then used to construct a radial neighbour-joining dendrogram and examine intra- and interpopulation variance coefficients, by analysis of molecular variation (AMOVA). Populations from Mexico clustered closely together in the dendrogram and were distinct from the rest of the populations. Those from Belize also clustered closely together. Populations from Panama, Guatemala, Costa Rica, Nicaragua and Honduras, however, did not cluster closely by country but were more widely scattered throughout the dendrogram. This result was also reflected by an autocorrelation analysis of genetic and geographical distance. Genetic diversity estimates indicated that 80% of detected variation was maintained within populations and regression analysis demonstrated that logging significantly decreased population diversity (P = 0.034). This study represents one of the most wide-ranging surveys of molecular variation within a tropical tree species to date. It offers practical information for the future conservation of mahogany and highlights some factors that may have influenced the partitioning of genetic diversity in this species across Mesoamerica.

  7. Usefulness of WRKY gene-derived markers for assessing genetic diversity of Florida coconut cultivars

    Science.gov (United States)

    Analysis of the genetic diversity and population structure within Florida coconut (Cocos nucifera L.) germplasm representing eight cultivars was previously described using 15 microsatellite (simple sequence repeat, SSR) markers. Here we report on the analysis of the same genotypes using 13 markers d...

  8. Genetic diversity in maize dent landraces assessed by morphological and molecular markers

    Directory of Open Access Journals (Sweden)

    Ristić Danijela

    2013-01-01

    Full Text Available Maize Research Institute “Zemun Polje” genebank maintains a collection of landraces grouped into 18 agro-ecological collected from ex-Yugoslavia territories. The application and comparison of different marker systems are important for the characterization and use of maize landraces in breeding program, as potential sources of desirable traits. In this study, 15 morphological traits, 7 RAPD primers and 10 SSR primer pairs were applied to i to determine genetic distance between 21 maize dent landraces and ii compare results obtained on morphological and molecular markers. Phenotypic analysis showed high level of heterogeneity between landraces. Higher level of genetic diversity was obtained with SSR than with RAPD. Genetic distance mean value for RAPD data was 0.35 i.e. for SSR 0.48. Based on the morphological traits and molecular markers, unweighted pairgroup method (UPGMA analysis was applied for cluster analysis, using statistical NTSYSpc program package. Cluster analysis of morphological and molecular markers distances did not show the same population grouping. Better agreement with agro-ecological data was obtained with RAPD markers. Correlations between dissimilarity matrices for different types of markers were low. Data obtained in this work could be useful for further study of a larger number of landraces, and conservation of genetic resources and their genetic diversity. [Projekat Ministarstva nauke Republike Srbije, br. TR31028: Exploitation of maize diversity to improve grain quality and drought tolerance

  9. Genetic diversity among Juglans regia L. genotypes assessed by morphological traits and microsatellite markers

    Directory of Open Access Journals (Sweden)

    R. Mahmoodi

    2013-05-01

    Full Text Available In this study, genetic diversity was assayed among 16 accessions and five cultivars of Persian walnut (Juglans regia L. using morphological traits and nine simple sequence repeat (SSR markers. Samples were collected from Agriculture Research Center of Urmia city (North West Iran. Study on important morphological traits revealed genetic similarity of -0.6 to 0.99 based on CORR coefficient. The microsatellite marker system produced 34 alleles in range of 160-290 bp. The minimum (2 and maximum (7 number of alleles were obtained from WGA71 and WGA202 genetic loci, respectively. The mean number of alleles per locus was 4.25. Jaccard’s similarity coefficient ranged from 0.13 to 0.76. The results of this paper indicate high diversity among these genotypes which could be used for breeding management.

  10. Genetic diversity among Juglans regia L. genotypes assessed by morphological traits and microsatellite markers

    Energy Technology Data Exchange (ETDEWEB)

    Mahmoodi, R.; Rahmani, F.; Rezaee, R.

    2013-06-01

    In this study, genetic diversity was assayed among 16 accessions and five cultivars of Persian walnut (Juglans regia L.) using morphological traits and nine simple sequence repeat (SSR) markers. Samples were collected from Agriculture Research Center of Urmia city (North West Iran). Study on important morphological traits revealed genetic similarity of -0.6 to 0.99 based on CORR coefficient. The microsatellite marker system produced 34 alleles in range of 160-290 bp. The minimum (2) and maximum (7) number of alleles were obtained from WGA71 and WGA202 genetic loci, respectively. The mean number of alleles per locus was 4.25. Jaccards similarity coefficient ranged from 0.13 to 0.76. The results of this paper indicate high diversity among these genotypes which could be used for breeding management. (Author) 28 refs.

  11. Genetic diversity and relationship of Mauremys mutica and M. annamensis assessed by DNA barcoding sequences.

    Science.gov (United States)

    Zhao, Jian; Li, Wei; Wen, Ping; Zhang, Dandan; Zhu, Xinping

    2016-09-01

    The mitochondrial DNA cytochrome c oxidase subunit I gene (COI) has been used as an efficient barcoding tool for species identification of animals. In this study, the barcoding sequences were used to assess the genetic diversity and relationship of Mauremy mutica and M. annamensis. Four currently recognized groups of M. mutica were classified into two groups in this study, with 6% intergroup distances, the S group and the N group, consistent to the calling of "southern turtle" and "northern turtle" in folk of China. The north population and Taiwan population formed the N group, and further, the Taiwan population was differentiated as a monophyly originated from the north population, consistent to the calling of "big green head" for the Taiwan population and "small green head" for the north population. The Vietnam, Hainan population, and M. annamensis formed the S group, and the barcoding sequences could not distinguish them from each other. Based on the molecular data and phenotypes of existing hybrids, hybrid origin of M. annamensis may be another possibility. PMID:26260182

  12. Genetic Diversity Assessment in Several Barley (Hordeum vulgare L. Cultivars Using Microsatellite Markers

    Directory of Open Access Journals (Sweden)

    Mohammad Reza BLORI-MOGHADAM

    2011-05-01

    Full Text Available In the present study, genetic diversity in seven cultivars of cultivated barley (Hordeum vulgare populations was evaluated using 10 microsatellite markers. Genomic DNA was extracted from fresh leaves and amplification reactions were done by PCR. The amplification products were separated on 6% denaturing polyacrylamide gels containing 7M urea and visualized via silver staining method. High level of polymorphism was observed among populations. Polymorphic bands ranged from 100 to 300 bp. Altogether 65 alleles were observed among all genotypes, with an average of 9.2 alleles per locus for all loci. Polymorphic information content (PIC ranged from 0.80 to 0.88 with an average of 0.84. �Sahand� populations showed the lowest mean of gene diversity whereas the highest mean of heterozygosity observed in Rayhan populations that can prepare a powerful resource of genetic diversity for breeding programs. The genotypes were clustered using unweight pair-group method on arithmetic average by POPGEN32 software. The dendrogram discriminated all the genotypes in several groups. The results showed that SSR markers have a high ability to reveal most of the information in a single locus and can be used for genetic analysis in molecular levels determination of genetic similarity and clustering barley cultivars.

  13. Assessment of genetic diversity in the sorghum reference set using EST-SSR markers.

    Science.gov (United States)

    Ramu, P; Billot, C; Rami, J-F; Senthilvel, S; Upadhyaya, H D; Ananda Reddy, L; Hash, C T

    2013-08-01

    Selection and use of genetically diverse genotypes are key factors in any crop breeding program to develop cultivars with a broad genetic base. Molecular markers play a major role in selecting diverse genotypes. In the present study, a reference set representing a wide range of sorghum genetic diversity was screened with 40 EST-SSR markers to validate both the use of these markers for genetic structure analyses and the population structure of this set. Grouping of accessions is identical in distance-based and model-based clustering methods. Genotypes were grouped primarily based on race within the geographic origins. Accessions derived from the African continent contributed 88.6 % of alleles confirming the African origin of sorghum. In total, 360 alleles were detected in the reference set with an average of 9 alleles per marker. The average PIC value was 0.5230 with a range of 0.1379-0.9483. Sub-race, guinea margaritiferum (Gma) from West Africa formed a separate cluster in close proximity to wild accessions suggesting that the Gma group represents an independent domestication event. Guineas from India and Western Africa formed two distinct clusters. Accessions belongs to the kafir race formed the most homogeneous group as observed in earlier studies. This analysis suggests that the EST-SSR markers used in the present study have greater discriminating power than the genomic SSRs. Genetic variance within the subpopulations was very high (71.7 %) suggesting that the germplasm lines included in the set are more diverse. Thus, this reference set representing the global germplasm is an ideal material for the breeding community, serving as a community resource for trait-specific allele mining as well as genome-wide association mapping.

  14. Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-based markers.

    Science.gov (United States)

    Smýkal, P; Bačová-Kerteszová, N; Kalendar, R; Corander, J; Schulman, A H; Pavelek, M

    2011-05-01

    Retrotransposon segments were characterized and inter-retrotransposon amplified polymorphism (IRAP) markers developed for cultivated flax (Linum usitatissimum L.) and the Linum genus. Over 75 distinct long terminal repeat retrotransposon segments were cloned, the first set for Linum, and specific primers designed for them. IRAP was then used to evaluate genetic diversity among 708 accessions of cultivated flax comprising 143 landraces, 387 varieties, and 178 breeding lines. These included both traditional and modern, oil (86), fiber (351), and combined-use (271) accessions, originating from 36 countries, and 10 wild Linum species. The set of 10 most polymorphic primers yielded 141 reproducible informative data points per accession, with 52% polymorphism and a 0.34 Shannon diversity index. The maximal genetic diversity was detected among wild Linum species (100% IRAP polymorphism and 0.57 Jaccard similarity), while diversity within cultivated germplasm decreased from landraces (58%, 0.63) to breeding lines (48%, 0.85) and cultivars (50%, 0.81). Application of Bayesian methods for clustering resulted in the robust identification of 20 clusters of accessions, which were unstratified according to origin or user type. This indicates an overlap in genetic diversity despite disruptive selection for fiber versus oil types. Nevertheless, eight clusters contained high proportions (70-100%) of commercial cultivars, whereas two clusters were rich (60%) in landraces. These findings provide a basis for better flax germplasm management, core collection establishment, and exploration of diversity in breeding, as well as for exploration of the role of retrotransposons in flax genome dynamics. PMID:21293839

  15. Assessment of genetic diversity in Mucuna species of India using randomly amplified polymorphic DNA and inter simple sequence repeat markers.

    Science.gov (United States)

    Patil, Ravishankar R; Pawar, Kiran D; Rane, Manali R; Yadav, Shrirang R; Bapat, Vishwas A; Jadhav, Jyoti P

    2016-04-01

    Genus Mucuna which is native to China and Eastern India comprises of perennial climbing legume with long slender branches, trifoliate leaves and bear green or brown pod covered with soft or rigid hairs that cause intense irritation. The plants of this genus are agronomically and economically important and commercially cultivated in India, China and other regions of the world. The high degrees of taxonomical confusions exist in Mucuna species that make authentic identification and classification difficult. In the present study, the genetic diversity among the 59 accessions of six species and three varieties of M. pruriens has been assessed using DNA fingerprinting based molecular markers techniques namely randomly amplified polymorphic DNA (RAPD), inter simple sequence repeats (ISSR) and combined dataset of RAPD and ISSR. Also, genetic relationship among two endemic species of Mucuna namely M. imbricata and M. macrocarpa and two varieties namely IIHR hybrid (MHR) and Dhanwantari (MD) with other species under study was investigated by using cluster analysis and principal coordinate analysis. The cluster analysis of RAPD, ISSR and combined dataset of RAPD and ISSR clearly demonstrated the existence of high interspecific variation than intra-specific variation in genus Mucuna. The utility and efficacy of RAPD and ISSR for the study of intra species and interspecies genetic diversity was evident from AMOVA and PCoA analysis. This study demonstrates the genetic diversity in Mucuna species and indicates that these markers could be successfully used to assess genetic variation among the accessions of Mucuna species. PMID:27436912

  16. Genetic diversity among some currants (Ribes spp.) cultivars as assessed by AFLP markers

    International Nuclear Information System (INIS)

    Currants cultivation has increased its popularity in Turkey due to the use of more currants in Turkish cuisine. To provide farmers with well adapted currants cultivars, some currants cultivars have been planted in various geographical regions of Turkey. In this study, genetic diversity among some of these currants cultivars has been analyzed using AFLP markers. Our results indicated that red and black currants genotypes are genetically distinct, sharing very small proportion of AFLP markers. Selected currants genotypes from Turkey shared all AFLP markers suggesting that they might be the same genotype. (author)

  17. Genetic diversity in three groups of barley germplasm assessed by simple sequence repeats.

    Science.gov (United States)

    Matus, I A; Hayes, P M

    2002-12-01

    Genetic diversity can be measured by several criteria, including phenotype, pedigree, allelic diversity at marker loci, and allelic diversity at loci controlling phenotypes of interest. Abundance, high level of polymorphism, and ease of genotyping make simple sequence repeats (SSRs) an excellent molecular marker system for genetics diversity analyses. In this study, we used a set of mapped SSRs to survey three representative groups of barley germplasm: a sample of crop progenitor (Hordeum vulgare subsp. spontaneum) accessions, a group of mapping population parents, and a group of varieties and elite breeding lines. The objectives were to determine (i) how informative SSRs are in these three sets of barley germplasm resources and (ii) the utility of SSRs in classifying barley germplasm. A total of 687 alleles were identified at 42 SSR loci in 147 genotypes. The number of alleles per locus ranged from 4 to 31, with an average of 16.3. Crop progenitors averaged 10.3 alleles per SSR locus, mapping population parents 8.3 alleles per SSR locus, and elite breeding lines 5.8 alleles per SSR locus. There were many exclusive (unique) alleles. The polymorphism information content values for the SSRs ranged from 0.08 to 0.94. The cluster analysis indicates a high level of diversity within the crop progenitors accessions and within the mapping population parents. It also shows a lower level of diversity within the elite breeding germplasm. Our results demonstrate that this set of SSRs was highly informative and was useful in generating a meaningful classification of the germplasm that we sampled. Our long-term goal is to determine the utility of molecular marker diversity as a tool for gene discovery and efficient use of germplasm. PMID:12502254

  18. Morphological characterization and assessment of genetic diversity in minicore collection of pigeonpea [Cajanus Cajan (L. Millsp.

    Directory of Open Access Journals (Sweden)

    Muniswamy, S., Lokesha, R. *, Dharmaraj, P.S., Yamanura1 and Diwan, J.R.

    2014-06-01

    Full Text Available An investigation was undertaken to ascertain the extent of genetic diversity present among 196 pigeon pea genotypes using D2 statistic. A wider genetic diversity was observed for nine characters as evidenced by formation of 13 clusters. Number of pods per plant contributed most (59.83% towards divergence, followed by plant height ( 21.55 The highest inter cluster distance was observed between the cluster XIII and VII, followed by cluster V and XIII, II and XIII and cluster XII and VII, which indicates that the crosses among the genotypes between these clusters may result in better segregants and high heterotic combinations. Cluster mean analysis indicated that cluster V contains dwarf and early maturing genotypes and cluster XIII possess high yielding entries. Morphological characterization was also carried out for 15 traits can be used in varietal purification and seed production.

  19. Assessment of the Genetic Diversity of Pummelo Germplasms Using AFLP and SSR Markers

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    The genetic diversities of 110 pummelo germplasms and 12 of their relatives were analyzed by SSR and AFLP methods. Approximately 99.1% of the 335 SSR loci were polymorphic, and 9.85 alleles per SSR locus were identified. The gene diversity values changed from 0.1939 to 0.9073, and 46 SSR polymorphic bands were scored. 72% of the 343 AFLP loci were polymorphic, and 82 polymorphic loci per AFLP were identified. Heterozygosity changed from 0.21863 to 0.28445,and 44 AFLP polymorphic bands were scored. The UPGMA result showed that 122 pummelo genotypes and their relatives could be divided into eight groups, and the pummelo genotypes composed mainly of Shatian pummelo varieties group,Wendan pummelo vareties group and a huge hybrid pummelo varieties group. The classification result was expected to widen the genetic background of pummelos using various target varieties.

  20. Assessment of genetic diversity in a highly valuable medicinal plant Catharanthus roseus using molecular markers

    OpenAIRE

    Ranjan Kumar Shaw; Laxmikanta Acharya; Arup Kumar Mukherjee

    2009-01-01

    Genetic diversity was evaluated among 14 cultivars of Catharanthus roseus using RAPD and ISSR markers.The RAPD primers resulted in the amplification of 56 bands, among which 46 (82%) bands were polymorphic Four ISSRprimers amplified 31 loci out of which 17 were polymorphic and 14 are monomorphic. The Jaccard's similarity derived fromthe combined marker system showed that the varieties First Kiss Coral and Cooler Orchid were the most closely relatedcultivars, with 98% similarity. In the dendro...

  1. A Genomic Encyclopedia of the Root Nodule Bacteria: assessing genetic diversity through a systematic biogeographic survey.

    Science.gov (United States)

    Reeve, Wayne; Ardley, Julie; Tian, Rui; Eshragi, Leila; Yoon, Je Won; Ngamwisetkun, Pinyaruk; Seshadri, Rekha; Ivanova, Natalia N; Kyrpides, Nikos C

    2015-01-01

    Root nodule bacteria are free-living soil bacteria, belonging to diverse genera within the Alphaproteobacteria and Betaproteobacteria, that have the capacity to form nitrogen-fixing symbioses with legumes. The symbiosis is specific and is governed by signaling molecules produced from both host and bacteria. Sequencing of several model RNB genomes has provided valuable insights into the genetic basis of symbiosis. However, the small number of sequenced RNB genomes available does not currently reflect the phylogenetic diversity of RNB, or the variety of mechanisms that lead to symbiosis in different legume hosts. This prevents a broad understanding of symbiotic interactions and the factors that govern the biogeography of host-microbe symbioses. Here, we outline a proposal to expand the number of sequenced RNB strains, which aims to capture this phylogenetic and biogeographic diversity. Through the Vavilov centers of diversity (Proposal ID: 231) and GEBA-RNB (Proposal ID: 882) projects we will sequence 107 RNB strains, isolated from diverse legume hosts in various geographic locations around the world. The nominated strains belong to nine of the 16 currently validly described RNB genera. They include 13 type strains, as well as elite inoculant strains of high commercial importance. These projects will strongly support systematic sequence-based studies of RNB and contribute to our understanding of the effects of biogeography on the evolution of different species of RNB, as well as the mechanisms that determine the specificity and effectiveness of nodulation and symbiotic nitrogen fixation by RNB with diverse legume hosts.

  2. Genetic diversity of Chilean and Brazilian alstroemeria species assessed by AFLP analysis.

    Science.gov (United States)

    Han, T H; de Jeu, M; van Eck, H; Jacobsen, E

    2000-05-01

    One to three accessions of 22 Alstroemeria species, an interspecific hybrid (A. aurea x A. inodora), and single accessions of Bomarea salsilla and Leontochir ovallei were evaluated using the AFLP-marker technique to estimate the genetic diversity within the genus Alstroemeria. Three primer combinations generated 716 markers and discriminated all Alstroemeria species. The dendrogram inferred from the AFLP fingerprints supported the conjecture of the generic separation of the Chilean and Brazilian Alstroemeria species. The principal co-ordinate plot showed the separate allocation of the A. ligtu group and the allocation of A. aurea, which has a wide range of geographical distribution and genetic variation, in the middle of other Alstroemeria species. The genetic distances, based on AFLP markers, determined the genomic contribution of the parents to the interspecific hybrid. PMID:10849081

  3. Assessing genetic diversity of wild and hatchery samples of the Chinese sucker (Myxocyprinus asiaticus) by the mitochondrial DNA control region.

    Science.gov (United States)

    Wu, Jiayun; Wu, Bo; Hou, Feixia; Chen, Yongbai; Li, Chong; Song, Zhaobin

    2016-01-01

    To restore the natural populations of Chinese sucker (Myxocyprinus asiaticus), a hatchery release program has been underway for nearly 10 years. Using DNA sequences of the mitochondrial control region, we assessed the genetic diversity and genetic structure among samples collected from three sites of the wild population as well as from three hatcheries. The haplotype diversity of the wild samples (h = 0.899-0.975) was significantly higher than that of the hatchery ones (h = 0.296-0.666), but the nucleotide diversity was almost identical between them (π = 0.0170-0.0280). Relatively high gene flow was detected between the hatchery and wild samples. Analysis of effective population size indicated that M. asiaticus living in the Yangtze River has been expanding following a bottleneck in the recent past. Our results suggest the hatchery release programs for M. asiaticus have not reduced the genetic diversity, but have influenced the genetic structure of the species in the upper Yangtze River. PMID:25242190

  4. Sampling effects on the assessment of genetic diversity of rhizobia associated with soybean and common bean

    NARCIS (Netherlands)

    Alberton, O.; Kaschuk, G.; Hungria, M.

    2006-01-01

    Biological nitrogen fixation plays a key role in agriculture sustainability, and assessment of rhizobial diversity contributes to worldwide knowledge of biodiversity of soil microorganisms, to the usefulness of rhizobial collections and to the establishment of long-term strategies aimed at increasin

  5. Genetic Diversity Assessment and Identification of New Sour Cherry Genotypes Using Intersimple Sequence Repeat Markers

    Directory of Open Access Journals (Sweden)

    Roghayeh Najafzadeh

    2014-01-01

    Full Text Available Iran is one of the chief origins of subgenus Cerasus germplasm. In this study, the genetic variation of new Iranian sour cherries (which had such superior growth characteristics and fruit quality as to be considered for the introduction of new cultivars was investigated and identified using 23 intersimple sequence repeat (ISSR markers. Results indicated a high level of polymorphism of the genotypes based on these markers. According to these results, primers tested in this study specially ISSR-4, ISSR-6, ISSR-13, ISSR-14, ISSR-16, and ISSR-19 produced good and various levels of amplifications which can be effectively used in genetic studies of the sour cherry. The genetic similarity among genotypes showed a high diversity among the genotypes. Cluster analysis separated improved cultivars from promising Iranian genotypes, and the PCoA supported the cluster analysis results. Since the Iranian genotypes were superior to the improved cultivars and were separated from them in most groups, these genotypes can be considered as distinct genotypes for further evaluations in the framework of breeding programs and new cultivar identification in cherries. Results also confirmed that ISSR is a reliable DNA marker that can be used for exact genetic studies and in sour cherry breeding programs.

  6. Genetic diversity as assessed by ISSR markers in Blackgram (Vigna mungo (L. Hepper

    Directory of Open Access Journals (Sweden)

    Nadarajan N

    2009-12-01

    Full Text Available An investigation was carried out on a collection of 23 blackgram genotypes involving 16 releasedvarieties, six pre release cultures and one wild species Vigna mungo var. silvestris to study the genetic diversityusing twelve ISSR primers. The number of alleles produced by different ISSR primers ranged from eight to 17with an average of 11.5 per primer and the level of polymorphism was found to be 82.05 percent. Similaritymeasures and clustering analyses were made using ISSR data. The resulting dendrogram distributed the 23blackgram genotypes into five main clusters. The highest genetic similarity coefficient was measured betweengenotypes CBG 671 and CBG 632. The results of PCoA were comparable to that of grouping based on UPGMAand 23 genotypes were grouped into four groups. Genotype Vigna mungo var. silvestris was placed separatelyfrom rest of the genotypes in both the analyses. Grouping of varieties using ISSR markers did not show anyrelevance to their pedigree. All the pre release cultures in one group revealed that only a portion of geneticvariation has been exploited. The results revealed that, genetic diversity is low among the varieties releasedfrom the respective institute and hence genotypes were grouped according to the research institutes from whichthey released. It suggests that the research institutes have to enlarge the genetic base for variety development.

  7. Assessment of Genetic Diversities of Selected Laminaria (Laminariales,Phaeophyta) Gametophytes by Inter-Simple Sequence Repeat Analysis

    Institute of Scientific and Technical Information of China (English)

    Xiu-Liang WANG; Chen-Lin LIU; Xiao-Jie LI; Yi-Zhou CONG; De-Lin DUAN

    2005-01-01

    Inter-simple sequence repeat (ISSR) analysis was used to assess genetic diversity among 10pairs of male and female Laminaria gametophytes. A total of 58 amplification loci was obtained from 10selected ISSR primers, of which 34 revealed polymorphism among the gametophytes. Genetic distances were calculated with the Dice coefficient ranging from 0.006 to 0.223. A dendrogram based on the unweighted pair-group method arithmetic (UPGMA) average showed that most male and female gametophytes of the same species were clustered together and that 10 pairs of gametophytes were divided into four groups. This was generally consistent with the taxonomic categories. The main group consisted of six pairs of gametophytes, which were selected from Laminaria japonica Aresch. by intensive inbreeding through artificial hybridization. One specific marker was cloned, but was not converted successfully into a sequence characterized amplified region (SCAR) marker. Our results demonstrate the feasibility of applying ISSR markers to evaluate Laminaria germplasm diversities.

  8. Assessing genetic diversity among six populations of Gossypium arboreum L. using microsatellites markers.

    Science.gov (United States)

    Sethi, Khushboo; Siwach, Priyanka; Verma, Surender Kumar

    2015-10-01

    Among the four cultivated cotton species, G. hirsutum (allotetraploid) presently holds a primary place in cultivation. Efforts to further improve this primary cotton face the constraints of its narrow genetic base due to repeated selective breeding and hence demands enrichment of diversity in the gene pool. G. arboreum (diploid species) is an invaluable genetic resource with great potential in this direction. Based on the dispersal and domestication in different directions from Indus valley, different races of G. arboreum have evolved, each having certain traits like drought and disease resistance, which the tetraploid cotton lack. Due to lack of systematic, race wise characterization of G. arboreum germplasm, it  has not been explored fully. During the present study, 100 polymorphic SSR loci were  used to genotype 95 accessions belonging to 6 races of G. arboreum producing 246 polymorphic alleles; mean number of effective alleles was 1.505. AMOVA showed 14 % of molecular variance among population groups, 34 % among individuals and remaining 52 % within individuals. UPGMA dendrogram, based on Nei's genetic distance, distributed the six populations in two major clusters of 3 populations each; race 'bengalense' was found more close to 'cernuum' than the others. The clustering of 95 genotypes by UPGMA tree generation as well as PCoA analysis clustered 'bengalense' genotypes into one group along with some genotypes of 'cernuum', while rest of the genotypes made separate clusters. Outcomes of this research should be helpful in identifying the genotypes for their further utilization in hybridization program to obtain high level of germplasm diversity. PMID:26600679

  9. Seed traits, fatty acid profile and genetic diversity assessment in Pongamia pinnata (L.) Pierre germplasm.

    Science.gov (United States)

    Sharma, Shyam Sundar; Islam, Md Aminul; Malik, Anoop Anand; Kumar, Kamlesh; Negi, Madan Singh; Tripathi, Shashi Bhushan

    2016-04-01

    Phenotypic variation of important seed traits like seed length, seed breadth, seed thickness, 100 seed weight and seed oil content were recorded in a total of 157 collected accessions of Pongamia. Out of these, fatty acid profiles of 38 accessions selected based on their high and low oil content was analyzed. Fatty acid profile revealed high variability in stearic, oleic and linoleic acid which varied from 0.42 to 10.61 %, 34.34 to 74.58 %, and 7.00 to 31.28 % respectively. Variations in palmitic and linolenic acid were small. Iodine value, saponification number and cetane number (CN) of fatty acid methyl esters (FAME) of seed oil ranges from 186.99 to 201.25, 81.13 to 108.19 and 46.16 to 56.47 respectively. Fatty acid compositions, degree of unsaturation and CN are the important parameters, which are used to determine quality of FAME were used as biodiesel. Some of the Pongamia accessions identified were higher in oil content while some accessions showed higher degree of unsaturation and a few of them had CN values higher than 55. Genetic diversity analysis with six TE-AFLP primers generated a total of 334 bands out of which 174 (52.10 %) were polymorphic. The genetic similarity ranged from 0.11 to 0.47. These findings clearly showed high level of genetic diversity and all economically desirable traits were not present in a single genotype of Pongamia. All these traits could be selected from these CPTs and transfer to a single elite variety through selection and breeding programme and could be utilized for large scale multiplication and plantation to produce high quantity and quality biodiesel in future. PMID:27436911

  10. Importance of Genetic Diversity Assessment in Crop Plants and Its Recent Advances: An Overview of Its Analytical Perspectives

    Directory of Open Access Journals (Sweden)

    M. Govindaraj

    2015-01-01

    Full Text Available The importance of plant genetic diversity (PGD is now being recognized as a specific area since exploding population with urbanization and decreasing cultivable lands are the critical factors contributing to food insecurity in developing world. Agricultural scientists realized that PGD can be captured and stored in the form of plant genetic resources (PGR such as gene bank, DNA library, and so forth, in the biorepository which preserve genetic material for long period. However, conserved PGR must be utilized for crop improvement in order to meet future global challenges in relation to food and nutritional security. This paper comprehensively reviews four important areas; (i the significance of plant genetic diversity (PGD and PGR especially on agriculturally important crops (mostly field crops; (ii risk associated with narrowing the genetic base of current commercial cultivars and climate change; (iii analysis of existing PGD analytical methods in pregenomic and genomic era; and (iv modern tools available for PGD analysis in postgenomic era. This discussion benefits the plant scientist community in order to use the new methods and technology for better and rapid assessment, for utilization of germplasm from gene banks to their applied breeding programs. With the advent of new biotechnological techniques, this process of genetic manipulation is now being accelerated and carried out with more precision (neglecting environmental effects and fast-track manner than the classical breeding techniques. It is also to note that gene banks look into several issues in order to improve levels of germplasm distribution and its utilization, duplication of plant identity, and access to database, for prebreeding activities. Since plant breeding research and cultivar development are integral components of improving food production, therefore, availability of and access to diverse genetic sources will ensure that the global food production network becomes more

  11. Using SSR Markers For Assessment Genetic Diversity And Detection Drought Escape Candidate Genes In Barley Lines (Hordeum Vulgare L.

    Directory of Open Access Journals (Sweden)

    Gougerdchi Vahideh

    2014-12-01

    Full Text Available Assessment of genetic diversity using molecular markers is one of the primary and important steps in breeding programs. In this study, genetic diversity of 52 barley lines evaluated using 68 SSR primer pairs and 47 primer pairs produced clear and polymorphic banding pattern. In general, 153 polymorphic alleles detected. The number of observed polymorphic alleles varied from 2 to 9, with an average of 3.26 alleles per locus. Polymorphic Information Content (PIC ranged from 0.07 to 0.81, with an average of 0.45. In this research, SSR markers differentiated the studied lines efficiently. Using cluster analysis, studied barley lines divided into two groups. Genetic diversity was relatively corresponding with geographical origins, because the lines related to a country somewhat diverged from each other. Two-rowed Iranian and Chinese barleys classified in one subgroup. Also, most six-rowed barleys classified in one subgroup. Association mapping analysis was used to identify candidate genes for drought escape in barley lines and 16 informative markers were identified after which confirmation in other tests could be suitable for marker assisted breeding drought escape.

  12. Assessment of genetic diversity in a highly valuable medicinal plant Catharanthus roseus using molecular markers

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Shaw

    2009-01-01

    Full Text Available Genetic diversity was evaluated among 14 cultivars of Catharanthus roseus using RAPD and ISSR markers.The RAPD primers resulted in the amplification of 56 bands, among which 46 (82% bands were polymorphic Four ISSRprimers amplified 31 loci out of which 17 were polymorphic and 14 are monomorphic. The Jaccard's similarity derived fromthe combined marker system showed that the varieties First Kiss Coral and Cooler Orchid were the most closely relatedcultivars, with 98% similarity. In the dendrogram constructed on the basis of both RAPD and ISSR data two clear clusterswere obtained. The smaller cluster included C. roseus Cv Blue Pearl and C. roseus Cv. Patricia White and the larger clusterwas subdivided into two sub clusters with C. roseus Cv. First Kiss Polka Dot isolated from the rest of the cultivars. This maybe useful for breeding for improved quality.

  13. MOLECULAR MARKER STUDIES OF SELECTED MEDICINAL PLANTS FOR ASSESSMENT OF GENETIC DIVERSITY

    Directory of Open Access Journals (Sweden)

    A. RAJALAKSHMI

    2014-07-01

    Full Text Available Objective: The aim of this study is to examine the total antioxidant activity and Genetic relationships between six different medicinal plants were analysed. Method: The total antioxidant were analysed by using DPPH Photometric assay. The genomic DNA and RAPD Work were analyzed in selected medicinal plan using standard method. Mathwork software was used to draw the dendogram. Result: The results observed in the present study are Out of the 5 selected plants showed high antioxidant activity followed by Clitoria ternatea blue leaves, Solanum nigrum blue Berries, Syzygium cumini, Clitoria ternatea white leaves, Solanum nigrum Red berries, Phyllanthus emblica. The Syzygium cumini has the maximum antioxidant property this was confirmed by using DPPH photometric assay Figue 1. Isolation of genomic DNA from six different selected medicinal plants by using Random Amplified Polymorphic DNA (RAPD markers and analyse its genetic diversity. A dendrogram was constructed using Euclidean distance methods. Based on the number of bands the medicinal plants were grouped to form1-4 clusters. Conclusion: To analyse it evolutionary process.

  14. Genetic diversity and divergence among Spanish beef cattle breeds assessed by a bovine high-density SNP chip.

    Science.gov (United States)

    Cañas-Álvarez, J J; González-Rodríguez, A; Munilla, S; Varona, L; Díaz, C; Baro, J A; Altarriba, J; Molina, A; Piedrafita, J

    2015-11-01

    The availability of SNP chips for massive genotyping has proven to be useful to genetically characterize populations of domestic cattle and to assess their degree of divergence. In this study, the Illumina BovineHD BeadChip genotyping array was used to describe the genetic variability and divergence among 7 important autochthonous Spanish beef cattle breeds. The within-breed genetic diversity, measured as the marker expected heterozygosity, was around 0.30, similar to other European cattle breeds. The analysis of molecular variance revealed that 94.22% of the total variance was explained by differences within individuals whereas only 4.46% was the result of differences among populations. The degree of genetic differentiation was small to moderate as the pairwise fixation index of genetic differentiation among breeds (F) estimates ranged from 0.026 to 0.068 and the Nei's D genetic distances ranged from 0.009 to 0.016. A neighbor joining (N-J) phylogenetic tree showed 2 main groups of breeds: Pirenaica, Bruna dels Pirineus, and Rubia Gallega on the one hand and Avileña-Negra Ibérica, Morucha, and Retinta on the other. In turn, Asturiana de los Valles occupied an independent and intermediate position. A principal component analysis (PCA) applied to a distance matrix based on marker identity by state, in which the first 2 axes explained up to 17.3% of the variance, showed a grouping of animals that was similar to the one observed in the N-J tree. Finally, a cluster analysis for ancestries allowed assigning all the individuals to the breed they belong to, although it revealed some degree of admixture among breeds. Our results indicate large within-breed diversity and a low degree of divergence among the autochthonous Spanish beef cattle breeds studied. Both N-J and PCA groupings fit quite well to the ancestral trunks from which the Spanish beef cattle breeds were supposed to derive.

  15. Genetic diversity and population structure of 10 Chinese indigenous egg-type duck breeds assessed by microsatellite polymorphism

    Indian Academy of Sciences (India)

    Li Hui-Fang; Song Wei-Tao; Shu Jing-Ting; Chen Kuan-Wei; Zhu Wen-Qi; Han Wei; Xu Wen-Juan

    2010-04-01

    The genetic structure and diversity of 10 Chinese indigenous egg-type duck breeds were investigated using 29 microsatellite markers. The total number of animals examined were 569, on average 57 animals per breed were selected. The microsatellite marker set analysed provided 177 alleles (mean 6.1 alleles per locus, ranging from 3 to 10). All populations showed high levels of heterozygosity with the lowest estimate of 0.539 for the Jinding ducks, and the highest 0.609 observed for Jingjiang partridge ducks. The global heterozygote deficit across all populations ($F_{\\text{IT}}$) amounted to $-0.363$. About 10% of the total genetic variability originated from differences among breeds, with all loci contributing significantly. An unrooted consensus tree was constructed using the NeighborNet tree based on the Reynold’s genetic distance. The structure software was used to assess genetic clustering of these egg-type duck breeds. Clustering analysis provided an accurate representation of the current genetic relations among the breeds. An integrated analysis was undertaken to obtain information on the population dynamics in Chinese indigenous egg-type duck breeds, and to better determine the conservation priorities.

  16. Assessment of genetic diversity in glandless cotton germplasm resources by using agronomic traits and molecular markers

    Institute of Scientific and Technical Information of China (English)

    Zhikun LI; Xingfen WANG; Yan ZHANG; Guiyin ZHANG; Liqiang WU; Jina CHI; Zhiying MA

    2008-01-01

    Seventy-one glandless cotton germplasm resources were firstly evaluated genetically by using nine agronomic traits,33 simple sequence repeat (SSR) primers and ten amplified fragment length polymorphism (AFLP)primer combinations.Principal component analysis (PCA) of the agronomic traits showed that the first six principal components (PCs) explained a total of 86.352% of the phenotypic variation.A total of 329 alleles were amplified for 33 SSR primers,and 232 polymorphic bands in a total of 389 bands were obtained by using ten AFLP primer combinations.The average polymorphic information content (PIC) value was 0.80 and 0.18 for SSR primers and AFLP primer combinations,respectively.The DIST (average taxonomic distance) and DICE (Nei and Li's pairwise distance) coefficients ranged from 0.373 to 3.164 and 0.786 to 0.948,respectively,for agronomic traits and SSR & AFLP data based on UPGMA analysis.This suggested that there was a higher diversity in the evaluated population for both agronomic traits and molecular markers.The Mantel's test showed that the correlation between the dendrograms based on agronomic traits and SSR & AFLP data was non-significant.

  17. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds

    Science.gov (United States)

    Breed utilization, genetic improvement, and industry consolidation are predicted to have major impacts on the genetic composition of commercial chickens. Consequently, the question arises as to whether sufficient genetic diversity remains within industry stocks to address future needs. With the ch...

  18. Assessment of genetic and functional diversity of phosphate solubilizing fluorescent pseudomonads isolated from rhizospheric soil

    Directory of Open Access Journals (Sweden)

    Narayanan Kannan

    2008-12-01

    Full Text Available Abstract Background Phosphorus is an essential macronutrient for the growth of plants. However, in most soils a large portion of phosphorus becomes insoluble and therefore, unavailable to plants. Knowledge on biodiversity of phosphate-solubilizing fluorescent pseudomonads is essential to understand their ecological role and their utilization in sustainable agriculture. Results Of 443 fluorescent pseudomonad strains tested, 80 strains (18% showed positive for the solubilization of tri-calcium phosphate (Ca3(PO42 by the formation of visible dissolution halos on Pikovskaya's agar. These phosphate solubilizing strains showed high variability in utilizing various carbon sources. Numerical taxonomy of the phosphate solubilizing strains based on their carbon source utilization profiles resulted into three major phenons at a 0.76 similarity coefficient level. Genotypic analyses of strains by BOX (bacterial repetitive BOX element-polymerase chain reaction (PCR resulted into three distinct genomic clusters and 26 distinct BOX profiles at a 80% similarity level. On the basis of phenotypic characterization and 16S rRNA gene phylogenetic analyses strains were identified as Pseudomonas aeruginosa, P. mosselii, P. monteilii, P. plecoglossicida, P. putida, P. fulva and P. fluorescens. These phosphate solubilizing strains also showed the production of plant growth promoting enzymes, hormones and exhibited antagonism against phytopathogenic fungi that attack on various crops. Gene specific primers have identified the putative antibiotic producing strains. These putative strains were grown in fermentation media and production of antibiotics was confirmed by thin layer chromatography (TLC and high performance liquid chromatography (HPLC. Conclusion Present study revealed a high degree of functional and genetic diversity among the phosphate solubilizing fluorescent pseudomonad bacteria. Due to their innate potential of producing an array of plant growth promoting

  19. Assessing Genetic Diversity Cocoa (Theobroma cacaoL.) Collection Resistant to Cocoa Pod Borer Using Simple Sequence Repeat Markers

    OpenAIRE

    Agung Wahyu Susilo; Dapeng Zhang; Lambert Motilal

    2013-01-01

    Breeding  for  cocoa  pod  borer  (CPB)  resistance  on  cocoa  was  initiated  by selecting  the  resistant  genotypes  through  cocoa  farm  in  the  endemic  area.  For breeding  purpose  the  collected  genotypes  should  be  assessed  for  their  diversity  in  constructing  appropriate  mating  design.  This  research  has  objective  to assess  genetic  diversity  of  the  exploratory  collection  using  DNA  fingerprinting. The  tested  clones  were  25  exploratory  collections  comp...

  20. Genetic diversity and differentiation of sea trout (Salmo trutta) populations in Lithuanian rivers assessed by microsatellite DNA variation.

    Science.gov (United States)

    Samuiloviene, Aurelija; Kontautas, Antanas; Gross, Riho

    2009-11-01

    The genetic diversity and differentiation of sea trout were studied in three river basins in Lithuania: Akmena-Dane, Bartuva, and Nemunas. A total of 282 individuals were genotyped at eight microsatellite loci. A similar level of genetic diversity was found in all of the populations studied: mean allelic richness ranged from 3.64 to 5.03, and average expected heterozygosity ranged from 0.588 to 0.721. Significant genetic divergence was observed among the different river basins as well as between populations within the drainages. All pairwise F (ST) values were highly significant, ranging from 0.027 to 0.197. The analysis of molecular variance showed rather weak hierarchical population structuring within the Nemunas basin, which may be explained by extensive gene flow among different river basins or, alternatively, reflect the influence of artificial breeding. Information on genetic diversity and differentiation of the Lithuanian sea trout populations will be useful for future management decisions.

  1. Assessment of genetic diversity and anthracnose disease response among Zimbabwe sorghum germplasm.

    Science.gov (United States)

    The USDA-ARS National Plant Germplasm System maintains a Zimbabwe sorghum collection of 1,235 accessions from different provinces. This germplasm has not been extensively employed in U.S. breeding programs due to the lack of phenotypic and genetic characterization. Therefore, 68 accessions from th...

  2. Assessment of genetic diversity and estimation of genetic parameters for remobilization related traits of wheat under drought conditions

    Directory of Open Access Journals (Sweden)

    Farshadfar Ezatollah

    2016-01-01

    Full Text Available In order to evaluate genetic variability and estimation of remobilization related traits in wheat using biometrical genetic techniques an experiment was conducted in a randomized complete blocks design with three replicates under post-anthesis drought stress conditions in the Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran during 2011-2012 cropping season. The results of analysis of variance showed significant differences between the genotypes for all studied traits except current photosynthesis (CP and current photosynthesis share into kernel yield (CPSKY. High genetic gain and broad sense heritability estimates were observed for penultimate remobilization share into kernel yield (PenRSKY and internodes remobilization share into kernel yield (IRSKY indicating high genetic potential, low effect of environment and predominant role of additive gene effect on their expression. Spike dry matter remobilization (SDMR, spike dry matter remobilization efficiency (SDMRE and spike remobilization share into kernel yield (SRSKY exhibited the highest phenotypic and genetic positive correlation with kernel yield (KY. Moreover, the highest genotypic and phenotypic covariance was observed between kernel yield (KY and SDMR, CP, SDMRE and SRSKY, respectively. The highest environmental covariance was identified between kernel yield (KY, peduncle dry matter remobilization (PedDMR and penultimate dry matter remobilization (PenDMR, respectively. High co-heritability was detected between SDMRE and PedDMR, PedDMRE and PenDMR and between peduncle remobilization share into kernel yield (PedRSKY and internodes dry matter remobilization efficiency (IDMRE, suggesting that selection of either of the traits would simultaneously affect the others, positively.

  3. Genetic diversity assessment of sesame core collection in China by phenotype and molecular markers and extraction of a mini-core collection

    Directory of Open Access Journals (Sweden)

    Zhang Yanxin

    2012-11-01

    Full Text Available Abstract Background Sesame (Sesamum indicum L. is one of the four major oil crops in China. A sesame core collection (CC was established in China in 2000, but no complete study on its genetic diversity has been carried out at either the phenotypic or molecular level. To provide technical guidance, a theoretical basis for further collection, effective protection, reasonable application, and a complete analysis of sesame genetic resources, a genetic diversity assessment of the sesame CC in China was conducted using phenotypic and molecular data and by extracting a sesame mini-core collection (MC. Results Results from a genetic diversity assessment of sesame CC in China were significantly inconsistent at the phenotypic and molecular levels. A Mantel test revealed the insignificant correlation between phenotype and molecular marker information (r = 0.0043, t = 0.1320, P = 0.5525. The Shannon-Weaver diversity index (I and Nei genetic diversity index (h were higher (I = 0.9537, h = 0.5490 when calculated using phenotypic data from the CC than when using molecular data (I = 0.3467, h = 0.2218. A mini-core collection (MC containing 184 accessions was extracted based on both phenotypic and molecular data, with a low mean difference percentage (MD, 1.64%, low variance difference percentage (VD, 22.58%, large variable rate of coefficient of variance (VR, 114.86%, and large coincidence rate of range (CR, 95.76%. For molecular data, the diversity indices and the polymorphism information content (PIC for the MC were significantly higher than for the CC. Compared to an alternative random sampling strategy, the advantages of capturing genetic diversity and validation by extracting a MC using an advanced maximization strategy were proven. Conclusions This study provides a comprehensive characterization of the phenotypic and molecular genetic diversities of the sesame CC in China. A MC was extracted using both phenotypic and molecular data. Low MD% and VD%, and

  4. Genetic diversity of wheat grain quality and determination the best clustering technique and data type for diversity assessment

    Directory of Open Access Journals (Sweden)

    Khodadadi Mostafa

    2014-01-01

    Full Text Available Wheat is an important staple in human nutrition and improvement of its grain quality characters will have high impact on population's health. The objectives of this study were assessing variation of some grain quality characteristics in the Iranian wheat genotypes and identify the best type of data and clustering method for grouping genotypes. In this study 30 spring wheat genotypes were cultivated through randomized complete block design with three replications in 2009 and 2010 years. High significant difference among genotypes for all traits except for Sulfate, K, Br and Cl content, also deference among two years mean for all traits were no significant. Meanwhile there were significant interaction between year and genotype for all traits except Sulfate and F content. Mean values for crude protein, Zn, Fe and Ca in Mahdavi, Falat, Star, Sistan genotypes were the highest. The Ca and Br content showed the highest and the lowest broadcast heritability respectively. In this study indicated that the Root Mean Square Standard Deviation is efficient than R Squared and R Squared efficient than Semi Partial R Squared criteria for determining the best clustering technique. Also Ward method and canonical scores identified as the best clustering method and data type for grouping genotypes, respectively. Genotypes were grouped into six completely separate clusters and Roshan, Niknejad and Star genotypes from the fourth, fifth and sixth clusters had high grain quality characters in overall.

  5. Microsatellite Marker Based Assessment of Genetic Diversity among Cultivars, Landraces and Wild Relatives in Rice

    Institute of Scientific and Technical Information of China (English)

    J.R. Kannan Bapu; S. Ganesh Ram; S. Vinothini; T.S. Raveendran

    2007-01-01

    @@ India being the primary center of origin for rice had a very large treasure of local land races, most of which are out of cultivation today. The exact genetic potential and their differences from commercial varieties and the magnitude of heterogeneity still present in them are not well catalogued. Hence the need to characterize the available land races has become imminent in the modem day concept of crop improvement (Rezai and Frey, 1990).

  6. Genetic Diversity Assessment and Identification of New Sour Cherry Genotypes Using Intersimple Sequence Repeat Markers

    OpenAIRE

    Roghayeh Najafzadeh; Kazem Arzani; Naser Bouzari; Ali Saei

    2014-01-01

    Iran is one of the chief origins of subgenus Cerasus germplasm. In this study, the genetic variation of new Iranian sour cherries (which had such superior growth characteristics and fruit quality as to be considered for the introduction of new cultivars) was investigated and identified using 23 intersimple sequence repeat (ISSR) markers. Results indicated a high level of polymorphism of the genotypes based on these markers. According to these results, primers tested in this study specially IS...

  7. Assessment of genetic diversity in Dalbergia sissoo clones through RAPD profiling

    Institute of Scientific and Technical Information of China (English)

    Meena Bakshi; Arvind Sharma

    2011-01-01

    We studied the genetic polymorphism among 29 clones of shisham (Dalbergia sissoo Roxb) belonging to different geographic regions using random amplified polymorphic DNA (RAPD) markers. Out of 30 primers used, only 20 primers generated polymorphism in amplified product. In total 232 bands were amplified with 20 primers, of which 192 (82%) were polymorphic with an average of 9.6 bands/primer. The resolving power (Rp) ranged from 2.14 (Primer 5) to 11.93 (Primer 4). Primer 4 and Primer 3 possessed high Rp value. Polymorphism in- formation content (PIC) ranged from 0.15 (Primer 5) to 0.37 (Primer 4). Primer 4 amplified total 18 bands in 29 genotypes with PIC value of 0.37 hence; this set of primer was most informative. The similarity co- efficient analysis revealed two clusters. The first cluster comprised of only 10 clones and the second major cluster comprised of 19 clones. The genetic similarity among 29 clones ranged from 25.86% (clone 10 and 235) to 100% (clone 19 and 59), suggesting a wide genetic base in shisham clones.

  8. Genetic diversity in Entamoeba histolytica

    Indian Academy of Sciences (India)

    C Graham Clark; Mehreen Zaki; Ibne Karim Md Ali

    2002-11-01

    Genetic diversity within Entamoeba histolytica led to the re-description of the species 10 years ago. However, more recent investigation has revealed significant diversity within the re-defined species. Both protein-coding and non-coding sequences show variability, but the common feature in all cases is the presence of short tandem repeats of varying length and sequence. The ability to identify strains of E. histolytica may lead to insights into the population structure and epidemiology of the organism.

  9. Human Capital and Genetic Diversity

    OpenAIRE

    Sequeira, Tiago; Santos, Marcelo,; Ferreira-Lopes, Alexandra

    2013-01-01

    The determinants of human capital have been studied sparsely in the literature. Although there is a huge literature on the determinants of schooling linked with the quality of schooling, there are not many contributions that explore the deep determinants of investment in, quantity and quality of human capital. This paper investigates the relationship between human capital and the ancestral genetic diversity of populations. It highlights a strong hump-shaped relationship between genetic divers...

  10. Genetic diversity of clones of acerola assessed by ISSR molecular markers

    Directory of Open Access Journals (Sweden)

    Eveline Nogueira Lima

    2015-07-01

    Full Text Available The Indian cherry (Malpighia emarginata is a tropical fruit originated from American continent. In Brazilian orchards, there was high variability among cultivated genotypes. On the order hand, high variability allows the identification of superior genotypes for cropping industry. This study aimed to evaluate the genetic variability among 56 genotypes using ISSR (Inter Simple Sequence Repeats primers. Leaf samples were collected in Pacajus-CE and taken to the laboratory of Molecular Biology postharvest, in Fortaleza. Altogether, 20 primers were used which yielded 148 polymorphic bands (79.57%, enabling the differentiation within the population study. As a result, this information may be used in future studies on breeding programs, such as choosing best combinations for parental crossings.

  11. Genetic diversity in Trichomonas vaginalis.

    Science.gov (United States)

    Meade, John C; Carlton, Jane M

    2013-09-01

    Recent advances in genetic characterisation of Trichomonas vaginalis isolates show that the extensive clinical variability in trichomoniasis and its disease sequelae are matched by significant genetic diversity in the organism itself, suggesting a connection between the genetic identity of isolates and their clinical manifestations. Indeed, a high degree of genetic heterogeneity in T vaginalis isolates has been observed using multiple genotyping techniques. A unique two-type population structure that is both local and global in distribution has been identified, and there is evidence of recombination within each group, although sexual recombination between the groups appears to be constrained. There is conflicting evidence in these studies for correlations between T vaginalis genetic identity and clinical presentation, metronidazole susceptibility, and the presence of T vaginalis virus, underscoring the need for adoption of a common standard for genotyping the parasite. Moving forward, microsatellite genotyping and multilocus sequence typing are the most robust techniques for future investigations of T vaginalis genotype-phenotype associations.

  12. Genetic diversity in Trichomonas vaginalis.

    Science.gov (United States)

    Meade, John C; Carlton, Jane M

    2013-09-01

    Recent advances in genetic characterisation of Trichomonas vaginalis isolates show that the extensive clinical variability in trichomoniasis and its disease sequelae are matched by significant genetic diversity in the organism itself, suggesting a connection between the genetic identity of isolates and their clinical manifestations. Indeed, a high degree of genetic heterogeneity in T vaginalis isolates has been observed using multiple genotyping techniques. A unique two-type population structure that is both local and global in distribution has been identified, and there is evidence of recombination within each group, although sexual recombination between the groups appears to be constrained. There is conflicting evidence in these studies for correlations between T vaginalis genetic identity and clinical presentation, metronidazole susceptibility, and the presence of T vaginalis virus, underscoring the need for adoption of a common standard for genotyping the parasite. Moving forward, microsatellite genotyping and multilocus sequence typing are the most robust techniques for future investigations of T vaginalis genotype-phenotype associations. PMID:23702460

  13. Genetic diversity in four populations of Nguni (Zulu sheep assessed by microsatellite analysis

    Directory of Open Access Journals (Sweden)

    Nokuthula W. Kunene

    2014-02-01

    Full Text Available Zulu sheep are found mainly in the rural KwaZulu-Natal province and the numbers are declining due to indiscriminate inbreeding. There is thus a need for phenotypic and genetic characterisation as a first phase for planning conservation strategies. Zulu sheep populations sampled were from Makhathini research station (MS (n=33, University of Zululand (UZ (n=21, a community at KwaMthethwa (KM (n=32 and from Msinga (EM (n=33. One European breed Appen - ninica (AP was used as out group. Microsatellite analysis using 29 microsatellite loci was used in this study. Among the Zulu sheep, the mean number of alleles per locus was the lowest (3.86 in UZ and the highest (6.24 was realised in EM. The mean values of observed and expected heterozygosity were 0.57 and 0.61, respectively. Neighbour-joining tree showed two main Zulu sheep clusters: the UZ, KM and MS sheep populations clustered together and the second cluster included only representatives from the EM population. The STRUCTURE analysis showed that KM, AP and EM were founded in separate clusters, whereas UZ and MS clustered together. The study demonstrated that there was a common origin of the population from the research stations (MS and UZ populations. It also demonstrated that the EM had a different history for the other three populations. This work suggests that exchange of rams could be useful in reducing inbreeding when considering conservation breeding programmes.

  14. Genetic selection and conservation of genetic diversity*.

    Science.gov (United States)

    Blackburn, H D

    2012-08-01

    For 100s of years, livestock producers have employed various types of selection to alter livestock populations. Current selection strategies are little different, except our technologies for selection have become more powerful. Genetic resources at the breed level have been in and out of favour over time. These resources are the raw materials used to manipulate populations, and therefore, they are critical to the past and future success of the livestock sector. With increasing ability to rapidly change genetic composition of livestock populations, the conservation of these genetic resources becomes more critical. Globally, awareness of the need to steward genetic resources has increased. A growing number of countries have embarked on large scale conservation efforts by using in situ, ex situ (gene banking), or both approaches. Gene banking efforts have substantially increased and data suggest that gene banks are successfully capturing genetic diversity for research or industry use. It is also noteworthy that both industry and the research community are utilizing gene bank holdings. As pressures grow to meet consumer demands and potential changes in production systems, the linkage between selection goals and genetic conservation will increase as a mechanism to facilitate continued livestock sector development. PMID:22827378

  15. Assessment of genetic diversity by simple sequence repeat markers among forty elite varieties in the germplasm for malting barley breeding.

    Science.gov (United States)

    Wang, Jun-mei; Yang, Jian-ming; Zhu, Jing-huan; Jia, Qiao-jun; Tao, Yue-zhi

    2010-10-01

    The genetic diversity and relationship among 40 elite barley varieties were analyzed based on simple sequence repeat (SSR) genotyping data. The amplified fragments from SSR primers were highly polymorphic in the barley accessions investigated. A total of 85 alleles were detected at 35 SSR loci, and allelic variations existed at 29 SSR loci. The allele number per locus ranged from 1 to 5 with an average of 2.4 alleles per locus detected from the 40 barley accessions. A cluster analysis based on the genetic similarity coefficients was conducted and the 40 varieties were classified into two groups. Seven malting barley varieties from China fell into the same subgroup. It was found that the genetic diversity within the Chinese malting barley varieties was narrower than that in other barley germplasm sources, suggesting the importance and feasibility of introducing elite genotypes from different origins for malting barley breeding in China. PMID:20872987

  16. Assessment of genetic diversity by simple sequence repeat markers among forty elite varieties in the germplasm for malting barley breeding*

    Science.gov (United States)

    Wang, Jun-mei; Yang, Jian-ming; Zhu, Jing-huan; Jia, Qiao-jun; Tao, Yue-zhi

    2010-01-01

    The genetic diversity and relationship among 40 elite barley varieties were analyzed based on simple sequence repeat (SSR) genotyping data. The amplified fragments from SSR primers were highly polymorphic in the barley accessions investigated. A total of 85 alleles were detected at 35 SSR loci, and allelic variations existed at 29 SSR loci. The allele number per locus ranged from 1 to 5 with an average of 2.4 alleles per locus detected from the 40 barley accessions. A cluster analysis based on the genetic similarity coefficients was conducted and the 40 varieties were classified into two groups. Seven malting barley varieties from China fell into the same subgroup. It was found that the genetic diversity within the Chinese malting barley varieties was narrower than that in other barley germplasm sources, suggesting the importance and feasibility of introducing elite genotypes from different origins for malting barley breeding in China. PMID:20872987

  17. Genetic Diversity Assessment Across Different Genotypes Of Mungbean And Urdbean Using Molecular Markers

    Directory of Open Access Journals (Sweden)

    Ashwini Narasimhan , B.R.Patil and S. Datta, M. Kaashyap

    2010-07-01

    Full Text Available Pulses compliment the daily diet of Indians along with cereals. They are rich in proteins with satisfactory proportion ofcarbohydrates. Mungbean, Vigna radiata and Urd bean, Vigna mungo are the important grain legume crops in agriculture,particularly in India. MYMV (Mungbean Yellow vein Mosaic Virus is a virus transmitted by whitefly, Bemesia tabaci, themost serious disease of Mungbean and Urdbean. In this study, six each of MYMV resistant and susceptible genotypes inMungbean and Urbean respectively were selected for the diversity analysis using molecular markers. Twenty four RGAprimers from cowpea were used to screen the twenty four genotypes. Dendrogram generated clearly indicated two bigclusters at 15% similarity. All mungbean genotypes made one cluster (cluster A except PS16, which was included in othercluster made by Urdbean genotypes (cluster B. Cluster A contained eleven genotypes while cluster B contained thirteengenotypes. Cluster A and B were further classified into two sub clusters namely A1 and A2, B1 and B2 respectively. A1consisted of seven genotypes of which five were resistant (PANT MUNG 1, PANT MUNG 5, HUM 12, PUSA 9531, HUM1 and two were susceptible (TARM 2, KOPERGAON 3, while A2 comprised of remaining four genotypes in which threewere susceptible (TAP 7, SML 134 and SML 668, and one (AKM 8803 was resistant. Further, it was found that fourmungbean resistant genotypes of A1 namely Pant Mung1, Pant Mung5, HUM 12, and PUSA 9531 made one cluster at 55%similarity. Cluster B, again was subdivided into B1 and B2. B1 consisted a single genotype which was a cross between IPU99-25* SPS5 while, B2 consisted of the rest of the twelve genotypes. It was interesting to see that two resistant (IPU 02-33and IPU 6-02 and two susceptible (LBG 20 and T9 genotypes of Urd bean made separate cluster with a similarity of 99 percent and which indicated that though genotypes are differing at resistant locus, they are highly similar at all other loci.

  18. Development of a SNP array and its application to genetic mapping and diversity assessment in pepper (Capsicum spp.)

    Science.gov (United States)

    Cheng, Jiaowen; Qin, Cheng; Tang, Xin; Zhou, Huangkai; Hu, Yafei; Zhao, Zicheng; Cui, Junjie; Li, Bo; Wu, Zhiming; Yu, Jiping; Hu, Kailin

    2016-01-01

    The development and application of single nucleotide polymorphisms (SNPs) is in its infancy for pepper. Here, a set of 15,000 SNPs were chosen from the resequencing data to develop an array for pepper with 12,720 loci being ultimately synthesized. Of these, 8,199 (~64.46%) SNPs were found to be scorable and covered ~81.18% of the whole genome. With this array, a high-density interspecific genetic map with 5,569 SNPs was constructed using 297 F2 individuals, and genetic diversity of a panel of 399 pepper elite/landrace lines was successfully characterized. Based on the genetic map, one major QTL, named Up12.1, was detected for the fruit orientation trait. A total of 65 protein-coding genes were predicted within this QTL region based on the current annotation of the Zunla-1 genome. In summary, the thousands of well-validated SNP markers, high-density genetic map and genetic diversity information will be useful for molecular genetics and innovative breeding in pepper. Furthermore, the mapping results lay foundation for isolating the genes underlying variation in fruit orientation of Capsicum. PMID:27623541

  19. Comparative analysis of genetic diversity in Canadian barley assessed by SSR, DarT, and pedigree data.

    Science.gov (United States)

    Lamara, Mebarek; Zhang, Li Yi; Marchand, Suzanne; Tinker, Nicholas A; Belzile, François

    2013-06-01

    The aim of this study was to measure genetic diversity and population structure among 92 Canadian barley cultivars using two types of molecular markers (SSRs and DArTs) and pedigree data. A total of 368 alleles were identified at 50 SSR loci. The number of alleles per locus ranged between 2 and 13 ([Formula: see text] = 7.36) and PIC values ranged from 0.34 to 0.86 ([Formula: see text] = 0.69). For the biallelic DArT markers, the genetic distance matrix was based on 971 markers whose PIC values ranged between 0.06 and 0.50 ([Formula: see text] = 0.39). A third distance matrix was computed based on the kinship coefficient. Clustering of genotypes was performed based on the genetic distance matrix and the three dendrograms obtained showed the genetic relationships among barley cultivars. The topological similarity of the three dendrograms was estimated using a congruence index and showed the three dendrograms to be in very good agreement. Statistical analysis also showed a highly significant correlation between the SSR and DArT matrices (r = 0.80, p 0.5 was 3.8 cM. Information obtained from comparing results of different genetic diversity estimation methods should be useful for the improvement and conservation of barley genetic resources. PMID:23957675

  20. AFLP markers for the assessment of genetic diversity in european and North American potato varieties cultivated in Iran

    Directory of Open Access Journals (Sweden)

    Saeed Tarkesh Esfahani

    2009-01-01

    Full Text Available Information about the genetic diversity of potato germplasm in Iran is important for variety identification andto enhance the classification of germplasm collections and exploit them in breeding programs and for the development andintroduction of new varieties. AFLP fingerprinting was applied to a group of cultivated potato varieties to find if there is anygeographical differentiation in potato diversity from Europe and North America. The high level of polymorphism within potatovarieties and the high number of variety-specific bands suggest that AFLPs are powerful markers for diversity analysis inpotato varieties. No region-specific AFLP markers were found (present in varieties from the same origin and absent inothers. The UPGMA dendrogram revealed four distinct clusters corresponding almost to the geographical origin of thevarieties. However, the bootstrap support for branches was rather weak. No clusters clearly distinguished varieties fromEurope and North America. Varieties from the same geographical origins however tended to group together within eachcluster. The mean similarity and the UPGMA dendrogram both suggest that North American varieties have nearly identicalgenetic diversity to European varieties. The results of AMOVA revealed large within-region variations which accounted for94.5% of the total molecular variance. The between-region variation, although accounting for only 5.5% of the total variation,was statistically significant. AFLP technology was successfully used to evaluate diversity between different geographicalgroups of potatoes and is recommended for potato genetic studies.

  1. Assessing the Genetic Diversity and Genealogical Reconstruction of Cypress (Cupressus funebris Endl. Breeding Parents Using SSR Markers

    Directory of Open Access Journals (Sweden)

    Hanbo Yang

    2016-07-01

    Full Text Available To identify genetic diversity, genetic structure and the relationship among accessions, and further establish a core collection for the long-term breeding of cypress (Cupressus funebris Endl., the genealogy of breeding parents was reconstructed using simple sequence repeat (SSR molecular markers. Seventeen SSR markers were used to detect molecular polymorphisms among 290 cypress accessions from five provinces and 53 accessions with unknown origin in China. A total of 92 alleles (Na were detected with 5.412 alleles per locus and an average polymorphism information content (PIC of 0.593. The haplotype diversity (H ranged from 0.021 to 0.832, with an average of 0.406. The number of alleles (Na and the effective number of alleles (Ne ranged from 4.294 to 5.176 and from 2.488 to 2.817 among five populations, respectively. The pairwise population matrix of Nei’s genetic distance ranged from 0.008 to 0.023. Based on the results of unweighted pair group method average (UPGMA cluster and population structure analyses, 343 breeding parents were divided into two major groups. Lower genetic differentiation coefficients and closer genetic relationships were observed among cypress breeding parents, suggesting that the genetic basis was narrow, and the genetic relationship was confused by frequent introduction and wide cultivation. Moreover, we reconstructed the genealogy between breeding parents and 30 accessions of breeding parents from an identified core collection. According to the present study, not only geographic origin but also the relationship of the individuals should be considered in future crossbreeding work.

  2. Assessment of the Genetic Relationship and Diversity of Mango and Its Relatives by cpISSR Marker

    Institute of Scientific and Technical Information of China (English)

    HE Xin-hua; GUO Yong-ze; LI Yang-rui; OU Shi-jin

    2007-01-01

    Chloroplast inter-simple sequence repeat markers in mango were developed and used to analyze the genetic relationship and diversity of mango and its relatives. Thirty-six mango cultivars (Mangifera indica L.) and its relative species collected from the fruit germplasm collection in the Guangxi Academy of Agricultural Sciences, China, were examined by ISSR-PCR with chloroplast DNA (cpDNA). Eight better primers for chloroplast DNA that provided reproducible, polymorphic DNA amplification patterns were screened from 50 ISSR primers and used for UPGMA analysis. According to the band patterns with 8 primers for chloroplast DNA, all cultivars tested were distinguished from each other and these showed ample genetic diversity; the average percentage of polymorphism was 77.2%. The 36 samples could be clustered into four groups by UPGMA analysis at the coefficient 0.74. The results indicated that the cpISSR marker was a new powerful tool for the identification of mango cultivars or its relative species, and their genetic relationship analysis and diversity evaluation.

  3. The assessment of genetic diversity between and within brassica species and their wild relative (eruca sativa) using ssr markers

    International Nuclear Information System (INIS)

    Microsatellites markers were tested for their ability to distinguish genomic distribution of the Brassica species of the U Triangle and E. sativa. The objectives of the present study were to investigate the genetic diversity of six Brassica species from U-Triangle (representing three genomes, A, B, C) and one from genus Eruca and to identify promising sources of genetic variation for breeding purposes. A total of 54 SSR markers were analyzed in order to detect variation between and within the selected genomes. Three primer pairs depicted the greatest genetic diversity showing 97% polymorphism between Brassica and Eruca genomes (2.55 alleles per locus). Polymorphic Information Content (PIC) values ranged from 0.40 (SSR primer Na14-DO7) to 0.79 (NA10-G09). For comparison within Brassica genomes and Eruca, all the genomes were grouped in three modules i.e., ABE, ACE and BCE (Fig. 1). The tetraploid originating from their parental diploids along-with Eruca was considered in the same module. For the estimation of relatedness within and among genomes, dice coefficients were computed as a measure of genetic similarity matrix. On the basis of genetic distances, dendrogram was constructed through cluster analysis. Two major clusters at coefficient of similarity level (0.47) were observed. One cluster comprised of all Brassica genomes and their accessions, while another consisting of all accessions of Eruca genome. The cluster containing Brassica genomes was further subdivided into four sub-groups that contained diploid and tetraploid species in a way that tetraploid species were grouped in between their diploid parental species with varying genetic distances. Present findings confirmed the validity of SSR markers in genomic studies. (author)

  4. New STS molecular markers for assessment of genetic diversity and DNA fingerprinting in hop (Humulus lupulus L.).

    Science.gov (United States)

    Patzak, Josef; Vrba, Lukás; Matousek, Jaroslav

    2007-01-01

    Molecular markers have been increasingly used in genetic studies of crop species for their applicability in breeding programs. In this work, we report on the development of new sequence-tagged site (STS) markers based on sequence information from several identified hop (Humulus lupulus L.) genes. We demonstrate the usefulness of these STS markers and compare them to SSRs for identifying hop genotypes and estimating genetic diversity in a collection of 68 hop cultivars from around the world. We found 3 individual gene variants (A, B, C) of the chs_H1 gene in this collection. The most frequent gene variant, B (AJ304877), was not detected in Mt. Hood, Glacier, and Horizon (US) cultivars. Gene variant A came from an American germplasm through wild hops. We found length polymorphism in intron 1 of the chs2 gene, and 4 different amplified markers were detected in PCRs. The chs3 gene was found in only one third of the cultivars. None of the variants of the studied CHS genes were found in Humulus japonicus. We detected 5 major gene variants of DNA-binding protein in the collection of H. lupulus cultivars and 2 others in H. japonicus. We also found 3 individual gene variants of an endochitinase gene. The distribution of gene variants did not correlate with any resistance. We proved that developed STS markers can be successfully used for the analysis of genetic diversity and can substitute and supplement SSR markers in hop. PMID:17546067

  5. Assessment of genetic diversity by simple sequence repeat markers among forty elite varieties in the germplasm for malting barley breeding*

    OpenAIRE

    Wang, Jun-mei; Yang, Jian-Ming; Zhu, Jing-huan; Jia, Qiao-jun; Tao, Yue-zhi

    2010-01-01

    The genetic diversity and relationship among 40 elite barley varieties were analyzed based on simple sequence repeat (SSR) genotyping data. The amplified fragments from SSR primers were highly polymorphic in the barley accessions investigated. A total of 85 alleles were detected at 35 SSR loci, and allelic variations existed at 29 SSR loci. The allele number per locus ranged from 1 to 5 with an average of 2.4 alleles per locus detected from the 40 barley accessions. A cluster analysis based o...

  6. Development of Soybean EST-SSR Markers and Their Use to Assess Genetic Diversity in the Subgenus Soja

    Institute of Scientific and Technical Information of China (English)

    LIU Yu-lin; LI Ying-hui; ZHOU Guo-an; Uzokwe N; CHANG Ru-zhen; CHEN Shou-yi; QIU Li-juan

    2010-01-01

    Developing expressed sequence tag-derived SSR (EST-SSR) markers is imperative in genetic research. In this paper, we reported 37 EST-SSR markers which were developed from 286 unigenes obtained from soybean eDNA library. Among the 286 markers designed for the 4 accessions of Glycine max and 6 of its wild progenitor (G. soja) within the subgenus Soja,209 markers amplified DNA fragments, taking 73.1% and 37 markers appeared to be polymorphic, which was 12.9% of the total. The 37 loci detected a total of 142 alleles, while the PIC values varied from 0.194 to 0.794. Both the number of alleles per locus and PIC value were significantly related to the SSR motif. Six EST-SSR loci may be fixed for different alleles between G. max and G. soja since they were particularly polymorphic among the 6 G. soja accessions. A neighbor-joining tree placed the G. max accessions together as a group within the G. soja, though the average genetic distance among G. soja accessions was much higher. These new EST-SSRs markers will be useful for genetic diversity analysis, genetic mapping construction and gene discovery in Soja subgenus.

  7. Diversity Maintenance in Genetic Programming

    Science.gov (United States)

    Motoki, Tatsuya; Numaguchi, Yasushi

    This paper is motivated by an experimental result that better performing genetic programming runs tend to have higher phenotypic diversity. To maintain phenotypic diversity, we apply implicit fitness sharing and its variant, called unfitness multiplying. To apply these methods to problems in which individuals have infinite kinds of possible behaviours, we classify posible behaviours into 50 achievement levels, and assign a reward or a penalty to each level. In implicit fitness sharing a reward is shared out among individuals with the same achievement level, and in unfitness multiplying a penalty is multiplied by the number of individuals with the same level and is distributed to related individuals. Five benchmark problems (11-multiplexer, sextic polynomial, four-sine, intertwined spiral, and artificial ant problems) are used to illustrate the effect of the methods. The results show that our methods clearly promote diversity and lead population to a smooth frequency distribution of achievement levels, and that our methods usually perform better than the original implicit fitness sharing on success rate and the best (raw) fitness. We also observe that the unfitness multiplying makes a quite different ranking over individuals than the one by the implicit fitness sharing.

  8. Assessment of Genetic Diversity of Zoonotic Brucella spp. Recovered from Livestock in Egypt Using Multiple Locus VNTR Analysis

    Directory of Open Access Journals (Sweden)

    Ahmed M. S. Menshawy

    2014-01-01

    Full Text Available Brucellosis is endemic in most parts of Egypt, where it is caused mainly by Brucella melitensis biovar 3, and affects cattle and small ruminants in spite of ongoing efforts devoted to its control. Knowledge of the predominant Brucella species/strains circulating in a region is a prerequisite of a brucellosis control strategy. For this reason a study aiming at the evaluation of the phenotypic and genetic heterogeneity of a panel of 17 Brucella spp. isolates recovered from domestic ruminants (cattle, buffalo, sheep, and goat from four governorates during a period of five years (2002–2007 was carried out using microbiological tests and molecular biology techniques (PCR, MLVA-15, and sequencing. Thirteen strains were identified as B. melitensis biovar 3 while all phenotypic and genetic techniques classified the remaining isolates as B. abortus (n=2 and B. suis biovar 1 (n=2. MLVA-15 yielded a high discriminatory power (h=0.801, indicating a high genetic diversity among the B. melitensis strains circulating among domestic ruminants in Egypt. This is the first report of the isolation of B. suis from cattle in Egypt which, coupled with the finding of B. abortus, suggests a potential role of livestock as reservoirs of several zoonotic Brucella species in the region.

  9. Assessment of Worldwide Genetic Diversity of Siberian Wild Rye (Elymus sibiricus L. Germplasm Based on Gliadin Analysis

    Directory of Open Access Journals (Sweden)

    Changbing Zhang

    2012-04-01

    Full Text Available E. sibiricus L., the type species of the genus Elymus, is a perennial, self-pollinating and allotetraploid grass indigenous to Northern Asia, which in some countries can be cultivated as an important forage grass. In the present study, eighty-six Elymus sibiricus accessions, mostly from different parts of Asia, were assayed by gliadin markers based on Acid Polyacrylamide Gel Electrophoresis to differentiate and explore their genetic relationships. The genetic similarity matrix was calculated by 47 polymorphic bands, which ranged from 0.108 to 0.952 with an average of 0.373. The total Shannon diversity index (Ho and the Simpson index (He was 0.460 and 0.302, respectively. Cluster analysis showed a clear demarcation between accessions from Qinghai-Tibetan Plateau, China and the others as separate groups. The clustering pattern was probably dependent on geographic origin and ecological adaptability of the accessions. The population structure analysis based on Shannon indices showed that the proportion of variance within and among the five geographic regions of the Northern Hemisphere was 55.9 and 44.1%, respectively, or 63.4 and 36.6% within and among six Chinese provinces. This distinct geographical divergence was perhaps depended on ecogeographical conditions such as climate difference and mountain distribution. The results of gladin analysis in this study are useful for the collection and preservation of E. sibiricus germplasm resources.

  10. Use of microsatellite markers to assess the identity and genetic diversity of Vitis labrusca and Vitis rotundifolia cultivars

    Directory of Open Access Journals (Sweden)

    Mariane Ruzza Schuck

    2014-07-01

    Full Text Available Ten grapevine cultivars were genotyped at eight microsatellite loci to characterize their identity and genetic diversity. Of these, nine cultivar profiles matched with those of databases and ‘Magoon’ matched with ‘Regale’ in the present study and ‘Regale’ in the University of California (Davis database, implicating a likely error in planting. The number of alleles ranged from 5 (VVM5 to 9 (VVMD31, and the observed heterozygosity ranged from 37.14 (VVMD5 to 97.14% (VVMD27, with no significant differences in relation to the expected values for any of the loci, with the exception of VVMD5. The polymorphism information content values were observed to be above 0.25 in more than 85% of the loci analyzed, and VVMD31 was the most informative. The UPGMA analysis clustered the cultivars into two distinct groups. Within each group, the most divergent cultivars were ‘Bountiful’ (V. rotundifolia and ‘Goethe’ (V. labrusca, also exhibiting the largest number of private alleles, 4 and 7, respectively. When comparing the two groups, the most divergent accessions were ‘Bountiful’ and ‘Bordo’, with the highest Nei distance. It was demonstrated that there is sufficient genetic variability in the cultivars used in this study to support breeding programs.

  11. Population genetic diversity and fitness in multiple environments

    Directory of Open Access Journals (Sweden)

    McGreevy Thomas J

    2010-07-01

    Full Text Available Abstract Background When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater and stressful conditions (diluted seawater. The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis. Results Populations with very low genetic diversity demonstrated reduced fitness relative to high diversity populations even under permissive conditions. Population performance decreased in the stressful environment for all levels of genetic diversity relative to performance in the permissive environment. Twenty percent of the lowest diversity populations went extinct before the end of the study in permissive conditions, whereas 73% of the low diversity lines went extinct in the stressful environment. All high genetic diversity populations persisted for the duration of the study, although population sizes and reproduction were reduced under stressful environmental conditions. Levels of fitness varied more among replicate low diversity populations than among replicate populations with high genetic diversity. There was a significant correlation

  12. Personalized medicine and human genetic diversity.

    Science.gov (United States)

    Lu, Yi-Fan; Goldstein, David B; Angrist, Misha; Cavalleri, Gianpiero

    2014-09-01

    Human genetic diversity has long been studied both to understand how genetic variation influences risk of disease and infer aspects of human evolutionary history. In this article, we review historical and contemporary views of human genetic diversity, the rare and common mutations implicated in human disease susceptibility, and the relevance of genetic diversity to personalized medicine. First, we describe the development of thought about diversity through the 20th century and through more modern studies including genome-wide association studies (GWAS) and next-generation sequencing. We introduce several examples, such as sickle cell anemia and Tay-Sachs disease that are caused by rare mutations and are more frequent in certain geographical populations, and common treatment responses that are caused by common variants, such as hepatitis C infection. We conclude with comments about the continued relevance of human genetic diversity in medical genetics and personalized medicine more generally. PMID:25059740

  13. The Use of Some Morphological Traits for the Assessment of Genetic Diversity in Spinach (Spinacia Oleracea L. Landraces

    Directory of Open Access Journals (Sweden)

    Ebadi-Segheloo Asghar

    2014-12-01

    Full Text Available Investigation of native accessions of spinach (Spinacia oleracea L. would be aid in the development of new genetically improved varieties, so in this research 121 spinach landraces, collected from the various spinach growing areas of Iran, were evaluated to determine their diversity using several agro-morphological traits. High coefficients of variation (CV were recorded in fresh yield, leaf area and dry yield. Using principal component (PC analysis, the first three PCs with eigenvalues more than 0.9 contributed 80.56% of the variability among accessions. The first PC was related to leaf yield performance (fresh and dry yields, leaf numbers at flowering and lateral branches while the PC2 was related to leaf characteristic (leaf width, petiole length, petiole diameter and leaf area. The third PC was related to seed characteristic (seed yield and 1000-seed weight and was named as seed property component. The 121 spinach landraces were grouped into six clusters using cluster analysis. Each cluster had some specific characteristics of its own and the clusters I and II were clearly separated from clusters III and V and also from clusters IV and VI. The studied accessions are an important resource for the generation of a core collection of spinach in the world. The results of present research will support tasks of conservation and utilization of landraces in spinach breeding programs.

  14. Multiple paternity does not depend on male genetic diversity.

    Science.gov (United States)

    Thonhauser, Kerstin E; Raveh, Shirley; Penn, Dustin J

    2014-07-01

    Polyandry is common in many species and it has been suggested that females engage in multiple mating to increase the genetic diversity of their offspring (genetic diversity hypothesis). Multiple paternity occurs in 30% of litters in wild populations of house mice, Mus musculus musculus, and multiple-sired litters are genetically more diverse than single-sired ones. Here, we aimed to test whether female house mice produce multiple-sired litters when they have the opportunity to produce genetically diverse litters. We assessed the rates of multiple paternity when females could choose to mate with two males that were genetically dissimilar to each other (i.e. nonsiblings and MHC dissimilar) compared with when females could choose to mate with two males that were genetically similar to each other (i.e. siblings and shared MHC alleles). Multiple mating may depend upon a female's own condition, and, therefore, we also tested whether inbred (from full-sibling matings) females were more likely to produce multiple-sired progeny than outbred controls. Overall we found that 29% of litters had multiple sires, but we found no evidence that females were more likely to produce multiple-sired litters when they had the opportunity to mate with genetically dissimilar males compared with controls, regardless of whether females were inbred or outbred. Thus, our findings do not support the idea that female mice increase multiple paternity when they have the opportunity to increase the genetic diversity of their offspring, as expected from the genetic diversity hypothesis.

  15. Genetic diversity increases insect herbivory on oak saplings.

    Directory of Open Access Journals (Sweden)

    Bastien Castagneyrol

    Full Text Available A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four oak (Quercus robur half-sib families. We quantified genetic diversity at the plot level by genotyping all oak saplings and assessed overall damage caused by ectophagous and endophagous herbivores along a gradient of increasing genetic diversity. Damage due to ectophagous herbivores increased with the genetic diversity in oak sapling populations as a result of higher levels of damage in mixtures than in monocultures for all families (complementarity effect rather than because of the presence of more susceptible oak genotypes in mixtures (selection effect. Assemblages of different oak genotypes would benefit polyphagous herbivores via improved host patch location, spill over among neighbouring saplings and diet mixing. By contrast, genetic diversity was a poor predictor of the abundance of endophagous herbivores, which increased with individual sapling apparency. Plant genetic diversity may not provide sufficient functional contrast to prevent tree sapling colonization by specialist herbivores while enhancing the foraging of generalist herbivores. Long term studies are nevertheless required to test whether the effect of genetic diversity on herbivory change with the ontogeny of trees and local adaptation of specialist herbivores.

  16. Genetic diversity of Rhodopirellula strains.

    Science.gov (United States)

    Frank, Carsten S; Klockow, Christine; Richter, Michael; Glöckner, Frank Oliver; Harder, Jens

    2013-10-01

    Rhodopirellula baltica SH1(T) is a marine planctomycete with 7,325 genes in its genome. Ten strains of the genus Rhodopirellula were studied in whole genome microarray experiments to assess the extent of their genetic relatedness to R. baltica SH1(T). DNA of strains which were previously affiliated with the species R. baltica (OTU A) hybridized with 3,645-5,728 genes of the type strain on the microarray. Strains SH398 and 6C (OTU B), representing a closely related species with an average nucleotide identity of 88 %, showed less hybridization signals: 1,816 and 3,302 genes gave a hybridization signal, respectively. Comparative genomics of eight permanent draft genomes revealed the presence of over 4,000 proteins common in R. baltica SH1(T) and strains of OTU A or B. The genus Rhodopirellula is characterized by large genomes, with over 7,000 genes per genome and a core genome of around 3000 genes. Individual Rhodopirellula strains have a large portion of strain-specific genes. PMID:23975513

  17. How does ecological disturbance influence genetic diversity?

    Science.gov (United States)

    Banks, Sam C; Cary, Geoffrey J; Smith, Annabel L; Davies, Ian D; Driscoll, Don A; Gill, A Malcolm; Lindenmayer, David B; Peakall, Rod

    2013-11-01

    Environmental disturbance underpins the dynamics and diversity of many of the ecosystems of the world, yet its influence on the patterns and distribution of genetic diversity is poorly appreciated. We argue here that disturbance history may be the major driver that shapes patterns of genetic diversity in many natural populations. We outline how disturbance influences genetic diversity through changes in both selective processes and demographically driven, selectively neutral processes. Our review highlights the opportunities and challenges presented by genetic approaches, such as landscape genomics, for better understanding and predicting the demographic and evolutionary responses of natural populations to disturbance. Developing this understanding is now critical because disturbance regimes are changing rapidly in a human-modified world. PMID:24054910

  18. Assessment of genetic diversity among barley cultivars and breeding lines adapted to the US Pacific Northwest, and its implications in breeding barley for imidazolinone-resistance.

    Directory of Open Access Journals (Sweden)

    Sachin Rustgi

    Full Text Available Extensive application of imidazolinone (IMI herbicides had a significant impact on barley productivity contributing to a continuous decline in its acreage over the last two decades. A possible solution to this problem is to transfer IMI-resistance from a recently characterized mutation in the 'Bob' barley AHAS (acetohydroxy acid synthase gene to other food, feed and malting barley cultivars. We focused our efforts on transferring IMI-resistance to barley varieties adapted to the US Pacific Northwest (PNW, since it comprises ∼23% (335,000 ha of the US agricultural land under barley production. To effectively breed for IMI-resistance, we studied the genetic diversity among 13 two-rowed spring barley cultivars/breeding-lines from the PNW using 61 microsatellite markers, and selected six barley genotypes that showed medium to high genetic dissimilarity with the 'Bob' AHAS mutant. The six selected genotypes were used to make 29-53 crosses with the AHAS mutant and a range of 358-471 F1 seeds were obtained. To make informed selection for the recovery of the recipient parent genome, the genetic location of the AHAS gene was determined and its genetic nature assessed. Large F2 populations ranging in size from 2158-2846 individuals were evaluated for herbicide resistance and seedling vigor. Based on the results, F3 lines from the six most vigorous F2 genotypes per cross combination were evaluated for their genetic background. A range of 20%-90% recovery of the recipient parent genome for the carrier chromosome was observed. An effort was made to determine the critical dose of herbicide to distinguish between heterozygotes and homozygotes for the mutant allele. Results suggested that the mutant can survive up to the 10× field recommended dose of herbicide, and the 8× and 10× herbicide doses can distinguish between the two AHAS mutant genotypes. Finally, implications of this research in sustaining barley productivity in the PNW are discussed.

  19. Evolution and genetic diversity of Theileria.

    Science.gov (United States)

    Sivakumar, Thillaiampalam; Hayashida, Kyoko; Sugimoto, Chihiro; Yokoyama, Naoaki

    2014-10-01

    Theileria parasites infect a wide range of domestic and wild ruminants worldwide, causing diseases with varying degrees of severity. A broad classification, based on the parasite's ability to transform the leukocytes of host animals, divides Theileria into two groups, consisting of transforming and non-transforming species. The evolution of transforming Theileria has been accompanied by drastic changes in its genetic makeup, such as acquisition or expansion of gene families, which are thought to play critical roles in the transformation of host cells. Genetic variation among Theileria parasites is sometimes linked with host specificity and virulence in the parasites. Immunity against Theileria parasites primarily involves cell-mediated immune responses in the host. Immunodominance and major histocompatibility complex class I phenotype-specificity result in a host immunity that is tightly focused and strain-specific. Immune escape in Theileria is facilitated by genetic diversity in its antigenic determinants, which potentially results in a loss of T cell receptor recognition in its host. In the recent past, several reviews have focused on genetic diversity in the transforming species, Theileriaparva and Theileriaannulata. In contrast, genetic diversity in Theileriaorientalis, a benign non-transforming parasite, which occasionally causes disease outbreaks in cattle, has not been extensively examined. In this review, therefore, we provide an outline of the evolution of Theileria, which includes T. orientalis, and discuss the possible mechanisms generating genetic diversity among parasite populations. Additionally, we discuss the potential implications of a genetically diverse parasite population in the context of Theileria vaccine development.

  20. Genetic diversity of 11 European pig breeds

    NARCIS (Netherlands)

    Lavall, G.; Iannuccelli, N.; Legault, C.; Milan, D.; Groenen, M.A.M.; Andersson, L.; Fredholm, M.; Geldermann, H.; Foulley, J.L.; Chevalet, C.; Ollivier, L.

    2000-01-01

    A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosi

  1. Implications of recurrent disturbance for genetic diversity.

    Science.gov (United States)

    Davies, Ian D; Cary, Geoffrey J; Landguth, Erin L; Lindenmayer, David B; Banks, Sam C

    2016-02-01

    Exploring interactions between ecological disturbance, species' abundances and community composition provides critical insights for ecological dynamics. While disturbance is also potentially an important driver of landscape genetic patterns, the mechanisms by which these patterns may arise by selective and neutral processes are not well-understood. We used simulation to evaluate the relative importance of disturbance regime components, and their interaction with demographic and dispersal processes, on the distribution of genetic diversity across landscapes. We investigated genetic impacts of variation in key components of disturbance regimes and spatial patterns that are likely to respond to climate change and land management, including disturbance size, frequency, and severity. The influence of disturbance was mediated by dispersal distance and, to a limited extent, by birth rate. Nevertheless, all three disturbance regime components strongly influenced spatial and temporal patterns of genetic diversity within subpopulations, and were associated with changes in genetic structure. Furthermore, disturbance-induced changes in temporal population dynamics and the spatial distribution of populations across the landscape resulted in disrupted isolation by distance patterns among populations. Our results show that forecast changes in disturbance regimes have the potential to cause major changes to the distribution of genetic diversity within and among populations. We highlight likely scenarios under which future changes to disturbance size, severity, or frequency will have the strongest impacts on population genetic patterns. In addition, our results have implications for the inference of biological processes from genetic data, because the effects of dispersal on genetic patterns were strongly mediated by disturbance regimes. PMID:26839689

  2. Integrating Fisheries Dependent and Independent Approaches to assess Fisheries, Abundance, Diversity, Distribution and Genetic Connectivity of Red Sea Elasmobranch Populations

    KAUST Repository

    Spaet, Julia L.

    2014-05-01

    The Red Sea has long been recognized as a global hotspot of marine biodiversity. Ongoing overfishing, however, is threatening this unique ecosystem, recently leading to the identification of the Red Sea as one of three major hotspots of extinction risk for sharks and rays worldwide. Elasmobranch catches in Saudi Arabian Red Sea waters are unregulated, often misidentified and unrecorded, resulting in a lack of species-specific landings information, which would be vital for the formulation of effective management strategies. Here we employed an integrated approach of fisheries dependent and independent survey methods combined with molecular tools to provide biological, ecological and fisheries data to aid in the assessment of the status of elasmobranch populations in the Red Sea. Over the course of two years, we conducted market surveys at the biggest Saudi Arabian fish market in Jeddah. Market landings were dominated by, mostly immature individuals - implying both recruitment and growth overfishing. Additionally, we employed baited remote underwater video (BRUVS) and longline surveys along almost the entire length of the Red Sea coast of Saudi Arabia as well as at selected reef systems in Sudan. The comparison of catch per unit effort (CPUE) data for Saudi Arabian Red Sea BRUVS and longline surveys to published data originating from non-Red Sea ocean systems revealed CPUE values several orders of magnitude lower for both survey methods in the Red Sea compared to other locations around the world. Finally, we infered the regional population structure of four commercially important shark species between the Red Sea and the Western Indian Ocean.We genotyped nearly 2000 individuals at the mitochondrial control region as well as a total of 20 microsatellite loci. Genetic homogeneity could not be rejected for any of the four species across the spatial comparison. Based on high levels of region-wide exploitation, we suggest that, for management purposes, the population

  3. Nephronophthisis: A Genetically Diverse Ciliopathy

    Directory of Open Access Journals (Sweden)

    Roslyn J. Simms

    2011-01-01

    Full Text Available Nephronophthisis (NPHP is an autosomal recessive cystic kidney disease and a leading genetic cause of established renal failure (ERF in children and young adults. Early presenting symptoms in children with NPHP include polyuria, nocturia, or secondary enuresis, pointing to a urinary concentrating defect. Renal ultrasound typically shows normal kidney size with increased echogenicity and corticomedullary cysts. Importantly, NPHP is associated with extra renal manifestations in 10–15% of patients. The most frequent extrarenal association is retinal degeneration, leading to blindness. Increasingly, molecular genetic testing is being utilised to diagnose NPHP and avoid the need for a renal biopsy. In this paper, we discuss the latest understanding in the molecular and cellular pathogenesis of NPHP. We suggest an appropriate clinical management plan and screening programme for individuals with NPHP and their families.

  4. Genetic and Metabolite Diversity of Sardinian Populations of Helichrysum italicum

    Science.gov (United States)

    Melito, Sara; Sias, Angela; Petretto, Giacomo L.; Chessa, Mario; Pintore, Giorgio; Porceddu, Andrea

    2013-01-01

    Background Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. Key results The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. Conclusions The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil. PMID:24260149

  5. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum.

    Directory of Open Access Journals (Sweden)

    Sara Melito

    Full Text Available BACKGROUND: Helichrysum italicum (Asteraceae is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. METHODS: H. italicum plants were AFLP fingerprinted and the composition of their leaf essential oil characterized by GC-MS. The relationships between the genetic structure of the populations, soil, habitat and climatic variables and the essential oil chemotypes present were evaluated using Bayesian clustering, contingency analyses and AMOVA. KEY RESULTS: The Sardinian germplasm could be partitioned into two AFLP-based clades. Populations collected from the southwestern region constituted a homogeneous group which remained virtually intact even at high levels of K. The second, much larger clade was more diverse. A positive correlation between genetic diversity and elevation suggested the action of natural purifying selection. Four main classes of compounds were identified among the essential oils, namely monoterpenes, oxygenated monoterpenes, sesquiterpenes and oxygenated sesquiterpenes. Oxygenated monoterpene levels were significantly correlated with the AFLP-based clade structure, suggesting a correspondence between gene pool and chemical diversity. CONCLUSIONS: The results suggest an association between chemotype, genetic diversity and collection location which is relevant for the planning of future collections aimed at identifying valuable sources of essential oil.

  6. Genetic Diversity of Neisseria gonorrhoeae Housekeeping Genes

    OpenAIRE

    Viscidi, Raphael P.; Demma, James C.

    2003-01-01

    Molecular typing of Neisseria gonorrhoeae strains is an important tool for epidemiological studies of gonococcal infection and transmission. The recently developed multilocus sequence typing (MLST) method is based on the genetic variation among housekeeping genes. As a preliminary investigation for the development of such a method, we characterized the genetic diversity at 18 gonococcal housekeeping gene loci. Approximately 17,500 nucleotides, spanning 18 loci, were sequenced from 24 isolates...

  7. Genetic erosion of diversity in cereals

    OpenAIRE

    Petrović Sofija; Dimitrijević Miodrag

    2012-01-01

    Cereals play an important role in human nutrition. Consequently, one of the main goals in breeding is to obtain varieties with high genetic potential for yield. Modern agricultural production includes the expansion of intensive varieties over large areas that lead to narrow selection criteria in breeding programs. The consequence is a drastic reduction in the number of species and genotypes (genetic erosion), or harming biological diversity of local populat...

  8. Genetic Diversity Analysis of Lates calcarifer (Bloch 1790) in Captive and Wild Populations Using RAPD Markers

    OpenAIRE

    Muthusamy RAJASEKAR; Muthusamy THANGARAJ; Thathiredypalli R. BARATHKUMAR; Jayachandran SUBBURAJ; Kaliyan MUTHAZHAGAN

    2012-01-01

    Lates calcarifer (Bloch 1790) is one of the major economically important cultivable fish species in India. In this study, three populations of L. calcarifer was selected to assess the genetic diversity. Of which, two wild (Mudaslodai, Muthupettai) and one captive (Mutukadu) population. The genetic diversity of three populations of this species was studied using Random Amplified Polymorphic DNA (RAPD) markers. Ten random primers were used for the assessment of their genetic diversity and const...

  9. Using AFLP-RGA markers to assess genetic diversity among pigeon pea (Cajanus cajan genotypes in relation to major diseases

    Directory of Open Access Journals (Sweden)

    Prakash G Pati

    2014-06-01

    Full Text Available Resistance gene analog (RGA-anchored amplified fragment length polymorphism (AFLP-RGA marker system was used in order to evaluate genetic relationships among 22 pigeon pea genotypes with varied responses to Fusarium wilt and sterility mosaic disease. Five AFLP-RGA primer combinations (E-CAG/wlrk-S, M-GTG/wlrk-S, M-GTG/wlrk-AS, E-CAT/S1-INV and E-CAG/wlrk-AS produced 173 scorable fragments, of which 157 (90.7% were polymorphic, with an average of 31.4 fragments per primer combination. The polymorphism rates obtained with the five primers were 83.3%, 92.0%, 92.3%, 93.0% and 93.1%, respectively. Mean polymorphic information content (PIC values ranged from 0.24 (with E-CAT/S1-INV to 0.30 (with E-CAG/wlrk-AS, whereas resolving power (RP values varied from 11.06 (with M-GTG/wlrk-S to 25.51 (with E-CAG/wlrk-AS and marker index (MI values ranged from 5.98 (with M-GTG/wlrk-S to 12.30 (with E-CAG/wlrk-AS. We identified a positive correlation between MI and RP (r²=0.98, p<0.05, stronger that that observed for the comparison between PIC and RP (r²=0.88, p<0.05. That implies that either MI or RP is the best parameter for selecting more informative AFLP-RGA primer combinations. The Jaccard coefficient ranged from 0.07 to 0.72, suggesting a broad genetic base in the genotypes studied. A neighbor-joining tree, based on the unweighted pair group method with arithmetic mean, distinguished cultivated species from wild species. The grouping of resistant genotypes in different clusters would help in the selection of suitable donors for resistance breeding in pigeon pea.

  10. Does genetic diversity predict health in humans?

    Directory of Open Access Journals (Sweden)

    Hanne C Lie

    Full Text Available Genetic diversity, especially at genes important for immune functioning within the Major Histocompatibility Complex (MHC, has been associated with fitness-related traits, including disease resistance, in many species. Recently, genetic diversity has been associated with mate preferences in humans. Here we asked whether these preferences are adaptive in terms of obtaining healthier mates. We investigated whether genetic diversity (heterozygosity and standardized mean d(2 at MHC and nonMHC microsatellite loci, predicted health in 153 individuals. Individuals with greater allelic diversity (d(2 at nonMHC loci and at one MHC locus, linked to HLA-DRB1, reported fewer symptoms over a four-month period than individuals with lower d(2. In contrast, there were no associations between MHC or nonMHC heterozygosity and health. NonMHC-d(2 has previously been found to predict male preferences for female faces. Thus, the current findings suggest that nonMHC diversity may play a role in both natural and sexual selection acting on human populations.

  11. Genetic diversity of eleven European pig breeds

    Directory of Open Access Journals (Sweden)

    Foulley Jean-Louis

    2000-03-01

    Full Text Available Abstract A set of eleven pig breeds originating from six European countries, and including a small sample of wild pigs, was chosen for this study of genetic diversity. Diversity was evaluated on the basis of 18 microsatellite markers typed over a total of 483 DNA samples collected. Average breed heterozygosity varied from 0.35 to 0.60. Genotypic frequencies generally agreed with Hardy-Weinberg expectations, apart from the German Landrace and Schwäbisch-Hällisches breeds, which showed significantly reduced heterozygosity. Breed differentiation was significant as shown by the high among-breed fixation index (overall FST = 0.27, and confirmed by the clustering based on the genetic distances between individuals, which grouped essentially all individuals in 11 clusters corresponding to the 11 breeds. The genetic distances between breeds were first used to construct phylogenetic trees. The trees indicated that a genetic drift model might explain the divergence of the two German breeds, but no reliable phylogeny could be inferred among the remaining breeds. The same distances were also used to measure the global diversity of the set of breeds considered, and to evaluate the marginal loss of diversity attached to each breed. In that respect, the French Basque breed appeared to be the most "unique" in the set considered. This study, which remains to be extended to a larger set of European breeds, indicates that using genetic distances between breeds of farm animals in a classical taxonomic approach may not give clear resolution, but points to their usefulness in a prospective evaluation of diversity.

  12. Crop genetic diversity benefits farmland biodiversity in cultivated fields

    OpenAIRE

    Chateil, Carole; GOLDRINGER, ISABELLE; Tarallo, Léa; Kerbiriou, Christian; Le Viol, Isabelle; PONGE, Jean-François; Salmon, Sandrine; Gachet, Sophie; Porcher, Emmanuelle

    2013-01-01

    International audience This study tested whether increasing crop genetic diversity benefited farmland biodiversity in bread wheat (Triticum aestivum) fields, using an experimental approach in which arthropod and wild plant diversity were compared in a genetically homogeneous wheat variety vs. a variety mixture. The diversity of wild plant species was not affected by crop genetic diversity. However, we showed for the first time a positive impact of crop genetic diversity on below (collembol...

  13. Managing genetic diversity and society needs

    Directory of Open Access Journals (Sweden)

    Arthur da Silva Mariante

    2008-07-01

    Full Text Available Most livestock are not indigenous to Brazil. Several animal species were considered domesticated in the pre-colonial period, since the indigenous people manage them as would be typical of European livestock production. For over 500 years there have been periodic introductions resulting in the wide range of genetic diversity that for centuries supported domestic animal production in the country. Even though these naturalized breeds have acquired adaptive traits after centuries of natural selection, they have been gradually replaced by exotic breeds, to such an extent, that today they are in danger of extinction To avoid further loss of this important genetic material, in 1983 Embrapa Genetic Resources and Biotechnology decided to include conservation of animal genetic resources among its priorities. In this paper we describe the effort to genetically characterize these populations, as a tool to ensure their genetic variability. To effectively save the threatened local breeds of livestock it is important to find a niche market for each one, reinserting them in production systems. They have to be utilized in order to be conserved. And there is no doubt that due to their adaptive traits, the Brazilian local breeds of livestock can play an important role in animal production, to meet society needs.

  14. Assessment of Functional EST-SSR Markers (Sugarcane) in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis

    Science.gov (United States)

    Ul Haq, Shamshad; Kumar, Pradeep; Singh, R. K.; Verma, Kumar Sambhav; Bhatt, Ritika; Sharma, Meenakshi; Kachhwaha, Sumita; Kothari, S. L.

    2016-01-01

    Expressed sequence tags (ESTs) are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74%) were the most abundant followed by di- (26.10%), tetra- (4.67%), penta- (1.5%), and hexanucleotide (1.2%) repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA). Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC) ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks. PMID:27340568

  15. Assessment of genetic diversity among Chinese upland cottons with Fusarium and/or Verticillium wilts resistance by AFLP and SSR markers

    Institute of Scientific and Technical Information of China (English)

    WANG Xingfen; MA Jun; YANG Shuo; ZHANG Guiyin; MA Zhiying

    2007-01-01

    Genetic diversity among 95 Chinese upland cottons with Fusarium and/or Verticillium wilts resistance was estimated using Amplified Fragment Length Polymorphism (AFLP) and Simple Sequence Repeat (SSR) markers.Twenty EcoRI-MseI AFLP and 19 SSR primers with polymorphism were selected to perform the fingerprinting.The results showed that 20 AFLP primer pairs produced a total of 1 480 major bands among 95 genotypes,and 214 were polymorphic bands.The number of total bands per primer pair ranged from 47 to 109,with an average of 74.0.The polymorphism information content (PIC) values for the 20 primer pairs varied from 0.01 (E-ACT/M-CAT) to 0.24 (E-ACA/MCTA),and the average value was 0.09.Nineteen SSR primers generated 89 DNA bands,of which 61 were polymorphic.The total number of alleles per locus varied from 3 to 8,with an average of 4.7.The average PIC value for the SSR amplification products was 0.69.Genetic similarity estimates for the entire data set ranged from 0.978 to 0.998 based on AFLP and SSR bands.It was proved that the close genetic relationship and narrow genetic diversity existed in the tested cultivars.The clustering patterns could not be correlated to the geographic origin,the pedigree and common parentage of the cultivars.

  16. Assessment of Functional EST-SSR Markers (Sugarcane) in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis.

    Science.gov (United States)

    Ul Haq, Shamshad; Kumar, Pradeep; Singh, R K; Verma, Kumar Sambhav; Bhatt, Ritika; Sharma, Meenakshi; Kachhwaha, Sumita; Kothari, S L

    2016-01-01

    Expressed sequence tags (ESTs) are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74%) were the most abundant followed by di- (26.10%), tetra- (4.67%), penta- (1.5%), and hexanucleotide (1.2%) repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA). Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC) ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks. PMID:27340568

  17. Assessment of Functional EST-SSR Markers (Sugarcane in Cross-Species Transferability, Genetic Diversity among Poaceae Plants, and Bulk Segregation Analysis

    Directory of Open Access Journals (Sweden)

    Shamshad Ul Haq

    2016-01-01

    Full Text Available Expressed sequence tags (ESTs are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74% were the most abundant followed by di- (26.10%, tetra- (4.67%, penta- (1.5%, and hexanucleotide (1.2% repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA. Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks.

  18. Great ape genetic diversity and population history

    DEFF Research Database (Denmark)

    Prado-Martinez, Javier; Sudmant, Peter H.; Kidd, Jeffrey M.;

    2013-01-01

    Most great ape genetic variation remains uncharacterized; however, its study is critical for understanding population history, recombination, selection and susceptibility to disease. Here we sequence to high coverage a total of 79 wild- and captive-born individuals representing all six great ape...... species and seven subspecies and report 88.8 million single nucleotide polymorphisms. Our analysis provides support for genetically distinct populations within each species, signals of gene flow, and the split of common chimpanzees into two distinct groups: Nigeria-Cameroon/western and central....../eastern populations. We find extensive inbreeding in almost all wild populations, with eastern gorillas being the most extreme. Inferred effective population sizes have varied radically over time in different lineages and this appears to have a profound effect on the genetic diversity at, or close to, genes in almost...

  19. Genetic Diversity of Koala Retroviral Envelopes

    Directory of Open Access Journals (Sweden)

    Wenqin Xu

    2015-03-01

    Full Text Available Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  20. Genetic diversity of koala retroviral envelopes.

    Science.gov (United States)

    Xu, Wenqin; Gorman, Kristen; Santiago, Jan Clement; Kluska, Kristen; Eiden, Maribeth V

    2015-03-01

    Genetic diversity, attributable to the low fidelity of reverse transcription, recombination and mutation, is an important feature of infectious retroviruses. Under selective pressure, such as that imposed by superinfection interference, gammaretroviruses commonly adapt their envelope proteins to use alternative receptors to overcome this entry block. The first characterized koala retroviruses KoRV subgroup A (KoRV-A) were remarkable in their absence of envelope genetic variability. Once it was determined that KoRV-A was present in all koalas in US zoos, regardless of their disease status, we sought to isolate a KoRV variant whose presence correlated with neoplastic malignancies. More than a decade after the identification of KoRV-A, we isolated a second subgroup of KoRV, KoRV-B from koalas with lymphomas. The envelope proteins of KoRV-A and KoRV-B are sufficiently divergent to confer the ability to bind and employ distinct receptors for infection. We have now obtained a number of additional KoRV envelope variants. In the present studies we report these variants, and show that they differ from KoRV-A and KoRV-B envelopes in their host range and superinfection interference properties. Thus, there appears to be considerable variation among KoRVs envelope genes suggesting genetic diversity is a factor following the KoRV-A infection process.

  1. Do Farmers reduce genetic diversity when they domesticate tropical trees? a case study from Amazonia.

    NARCIS (Netherlands)

    Hollingsworth, P.M.; Dawson, I.K.; Goodall-Copestake, W.P.; Richardson, J.E.; Weber, J.C.; Sotelo Montes, C.; Pennington, R.T.

    2005-01-01

    Agroforestry ecosystems may be an important resource for conservation and sustainable use of tropical trees, but little is known of the genetic diversity they contain. Inga edulis, a widespread indigenous fruit tree in South America, is used as a model to assess the maintenance of genetic diversity

  2. Genetic diversity in aspen and its relation to arthropod abundance.

    Science.gov (United States)

    Zhang, Chunxia; Vornam, Barbara; Volmer, Katharina; Prinz, Kathleen; Kleemann, Frauke; Köhler, Lars; Polle, Andrea; Finkeldey, Reiner

    2014-01-01

    The ecological consequences of biodiversity have become a prominent public issue. Little is known on the effect of genetic diversity on ecosystem services. Here, a diversity experiment was established with European and North American aspen (Populus tremula, P. tremuloides) planted in plots representing either a single deme only or combinations of two, four and eight demes. The goals of this study were to explore the complex inter- and intraspecific genetic diversity of aspen and to then relate three measures for diversity (deme diversity, genetic diversity determined as Shannon index or as expected heterozygosity) to arthropod abundance. Microsatellite and AFLP markers were used to analyze the genetic variation patterns within and between the aspen demes and deme mixtures. Large differences were observed regarding the genetic diversity within demes. An analysis of molecular variance revealed that most of the total genetic diversity was found within demes, but the genetic differentiation among demes was also high. The complex patterns of genetic diversity and differentiation resulted in large differences of the genetic variation within plots. The average diversity increased from plots with only one deme to plots with two, four, and eight demes, respectively and separated plots with and without American aspen. To test whether intra- and interspecific diversity impacts on ecosystem services, arthropod abundance was determined. Increasing genetic diversity of aspen was related to increasing abundance of arthropods. However, the relationship was mainly driven by the presence of American aspen suggesting that species identity overrode the effect of intraspecific variation of European aspen.

  3. Multiple paternity does not depend on male genetic diversity

    OpenAIRE

    Thonhauser, Kerstin E.; Raveh, Shirley; Penn, Dustin J.

    2014-01-01

    Polyandry is common in many species and it has been suggested that females engage in multiple mating to increase the genetic diversity of their offspring (genetic diversity hypothesis). Multiple paternity occurs in 30% of litters in wild populations of house mice, Mus musculus musculus, and multiple-sired litters are genetically more diverse than single-sired ones. Here, we aimed to test whether female house mice produce multiple-sired litters when they have the opportunity to produce genetic...

  4. Restoration of coral populations in light of genetic diversity estimates

    OpenAIRE

    Shearer, T. L.; Porto, I; Zubillaga, A. L.

    2009-01-01

    Due to the importance of preserving the genetic integrity of populations, strategies to restore damaged coral reefs should attempt to retain the allelic diversity of the disturbed population; however, genetic diversity estimates are not available for most coral populations. To provide a generalized estimate of genetic diversity (in terms of allelic richness) of scleractinian coral populations, the literature was surveyed for studies describing the genetic structure of coral populations using ...

  5. Genetic diversity in two introduced biofouling amphipods (Amphipods valida and Jassa marmorata) along the Pacific North American coast: investigation into molecular identification and cryptic diversity

    Science.gov (United States)

    We investigated patterns of genetic diversity among invasive populations of A. valida and J. marmorata from the Pacific North American coast to assess the accuracy of morphological identification and determine whether or not cryptic diversity and multiple introductions contribute...

  6. Evaluation of genetic diversity in different Pakistani wheat land races

    International Nuclear Information System (INIS)

    Wheat is one of the main sources of nutrition worldwide. Genetic improvement of the seed makes wheat a source of high quality flour for human consumption and for other industrial uses. With the help of molecular markers, the available germplasm of wheat can be assessed for future breeding programs. Therefore, the aim of the present work was to analyze the genetic diversity among 15 Pakistani wheat land races based on Random Amplified Polymorphism DNA (RAPD) markers. A total of 284 DNA fragments were amplified, ranging in size from 200bp to 1100bp by using six primers. The number of DNA fragments for each primer varied from 2 (OPC-6) to 9 (OPC-8) with an average of 6 fragments per primer. Out of 284 amplified products, 120 were monomorphic and 137 were polymorphic showing an average of 7.8% polymorphism per primer. One specific marker was detected both for OPC-1 and OPC-8, two for OPC-5, while no RAPD specific marker was detected for the remaining primers. The genetic similarity index values ranged from 0.36 to 0.93, with an average of 0.64. Maximum genetic similarity (91%) was observed between Sur bej and Khushkawa. On the contrary, minimum genetic similarity (32%) was observed in Khushkaba-1 and Khushkawa. The dendrogram resulting from the NTSYS cluster analysis showed that the studied genotypes are divided into two main clusters from the same node. The first cluster contained 13 land races, while the second cluster contained only 2 land races. The dendrogram clustered the genotypes into 5 groups and showed efficiency in identifying genetic variability. These results indicated the usefulness of RAPD technique in estimating the genetic diversity among wheat genetic resources. (author)

  7. Conservation of Genetic Diversity in Culture Plants

    Directory of Open Access Journals (Sweden)

    MAXIM A.

    2010-08-01

    Full Text Available The most important international document relating to the conservation of biodiversity is one adopted by theUN in Rio de Janeiro (1992 that "Convention on Biodiversity". Based on this agreement, the EU has taken a series ofmeasures to reduce genetic erosion in agriculture, which grew with the expansion of industrialized agriculture.Throughout its existence, mankind has used some 10,000 growing plant species. According to FAO statistics, today,90% of food production is ensured by some 120 growing plant species. In addition to drastic reduction in specificdiversity, the advent of industrialized agriculture has generated a process of strong genetic erosion. Old varieties andlocal varieties of crops have mostly been affected, in favour of "modern" varieties. Landraces are characterized by highheterogenity. They have the advantage of being much better adapted to biotic and abiotic stress conditions (diseases,pests, drought, low in nutrients, etc. and have excellent taste qualities, which can justify a higher price recovery thancommercial varieties. Thanks to these features, these crops need small inputs, which correspond to the concept ofsustainable development. Landraces are an invaluable genetic potential for obtaining new varieties of plants and are bestsuited for crop cultivation in ecological systems, becoming more common. Also, for long term food security in thecontext of global warming, rich genetic diversity will be require. “In situ” and “ex situ” conservation are the two majorstrategies used in the conservation of plant genetic resources. There is a fundamental difference between these twostrategies: “ex situ” conservation involves sampling, transfer and storage of a particular species population away fromthe original location, while “in situ” conservation (in their natural habitat implies that the varieties of interest,management and monitoring their place of origin takes place in the community to which they belong. These

  8. Molecular diversity and genetic relationships in Secale

    Indian Academy of Sciences (India)

    E. SANTOS; M. MATOS; P. SILVA; A. M. FIGUEIRAS; C. BENITO; O. PINTO-CARNIDE

    2016-06-01

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships amongSecalespp. and among cultivars ofSecale cerealeusing RAPDs, ISSRs and sequence analysis of six exons ofScMATE1gene.Thirteen ryes (cultivated and wild) were genotyped using 21 RAPD and 16 ISSR primers. A total of 435 markers (242 RAPDsand 193 ISSRs) were obtained, with 293 being polymorphic (146 RAPDs and 147 ISSRs). Two RAPD and nine ISSR primersgenerated more than 80% of polymorphism. The ISSR markers were more polymorphic and informative than RAPDs. Further,69% of the ISSR primers selected achieved at least 70% of DNA polymorphism. The study of six exons of theScMATE1gene also demonstrated a high genetic variability that subsists inSecalegenus. One difference observed in exon 1 sequencesfromS. vaviloviiseems to be correlated with Al sensitivity in this species. The genetic relationships obtained using RAPDs,ISSRs and exons ofScMATE1gene were similar.S. ancestrale ,S. kuprijanoviiandS. cerealewere grouped in the same clusterandS. segetalewas in another cluster.S. vaviloviishowed evidences of not being clearly an isolate species and having greatintraspecific difference

  9. Molecular diversity and genetic relationships in Secale.

    Science.gov (United States)

    Santos, E; Matos, M; Silva, P; Figueiras, A M; Benito, C; Pinto-Carnide, O

    2016-06-01

    The objective of this study was to quantify the molecular diversity and to determine the genetic relationships among Secale spp. and among cultivars of Secale cereale using RAPDs, ISSRs and sequence analysis of six exons of ScMATE1 gene. Thirteen ryes (cultivated and wild) were genotyped using 21 RAPD and 16 ISSR primers. A total of 435 markers (242 RAPDs and 193 ISSRs) were obtained, with 293 being polymorphic (146 RAPDs and 147 ISSRs). Two RAPD and nine ISSR primers generated more than 80% of polymorphism. The ISSR markers were more polymorphic and informative than RAPDs. Further, 69% of the ISSR primers selected achieved at least 70% of DNA polymorphism. The study of six exons of the ScMATE1 gene also demonstrated a high genetic variability that subsists in Secale genus. One difference observed in exon 1 sequences from S. vavilovii seems to be correlated with Al sensitivity in this species. The genetic relationships obtained using RAPDs, ISSRs and exons of ScMATE1 gene were similar. S. ancestrale, S. kuprijanovii and S. cereale were grouped in the same cluster and S. segetale was in another cluster. S. vavilovii showed evidences of not being clearly an isolate species and having great intraspecific differences. PMID:27350669

  10. The silent threat of low genetic diversity

    Science.gov (United States)

    Hunter, Margaret E.

    2013-01-01

    Across the Caribbean, protected coastal waters have served as primary feeding and breeding grounds for the endangered Antillean manatee. Unfortunately, these same coastal waters are also a popular “habitat” for humans. In the past, the overlap between human and manatee habitat allowed for manatee hunting and threatened the survival of these gentle marine mammals. Today, however, threats are much more inadvertent and are often related to coastal development, degraded habitats and boat strikes. In the state of Florida, decades of research on the species’ biological needs have helped conservationists address threats to its survival. For example, low wake zones and boater education have protected manatees from boat strikes, and many of their critical winter refuges are now protected. The Florida population has grown steadily, thus increasing from approximately 1,200 in 1991 to more than 5,000 in 2010. It is conceivable that in Florida manatees may one day be reclassified as “threatened” rather than “endangered.” Yet, in other parts of the Caribbean, threats still loom. This includes small, isolated manatee populations found on islands that can be more susceptible to extinction and lack of genetic diversity. To ensure the species’ long-term viability, scientists have turned their sights to the overall population dynamics of manatees throughout the Caribbean. Molecular genetics has provided new insights into long-term threats the species faces. Fortunately, the emerging field of conservation genetics provides managers with tools and strategies for protecting the species’ long-term viability.

  11. Low genetic diversity and high genetic differentiation in the critically endangered Omphalogramma souliei (Primulaceae):implications for its conservation

    Institute of Scientific and Technical Information of China (English)

    Yuan HUANG; Chang-Qin ZHANG; De-Zhu LI

    2009-01-01

    Omphalogramma souliei Franch. Is an endangered perennial herb only distributed in alpine areas of SW China. ISSR markers were applied to determine the genetic variation and genetic structure of 60 individuals of three populations of O. Souliei in NW Yunnan, China. The genetic diversity at the species level is low with P= 42.5% (percentage of polymorphic bands) and Hsp=0.1762 (total genetic diversity). However, a high level of genetic differentiation among populations was detected based on different measures (Nei's genetic diversity analysis: Gst=0.6038; AMOVA analysis: Fst=0.6797). Low level of genetic diversity within populations and significant genetic differentiation among populations might be due to the mixed mating system in which xenog-amy predominated and autogamy played an assistant role in O. Souliei. The genetic drift due to small population size and limited current gene flow also resulted in significant genetic differentiation. The assessment of genetic variation and differentiation of the endangered species provides important information for conservation on a genetic basis. Conservation strategies for this rare endemic species are proposed.

  12. Genetic Diversity Increases Insect Herbivory on Oak Saplings

    OpenAIRE

    Castagneyrol, Bastien; Lagache, Lelia; Giffard, Brice; Kremer, Antoine; Jactel, Herve

    2012-01-01

    A growing body of evidence from community genetics studies suggests that ecosystem functions supported by plant species richness can also be provided by genetic diversity within plant species. This is not yet true for the diversity-resistance relationship as it is still unclear whether damage by insect herbivores responds to genetic diversity in host plant populations. We developed a manipulative field experiment based on a synthetic community approach, with 15 mixtures of one to four ...

  13. Pyrosequencing and genetic diversity of microeukaryotes

    DEFF Research Database (Denmark)

    Harder, Christoffer Bugge

    Free-living, heterotrophic protozoa have an important ecological role in most terrestrial ecosystems by their grazing of bacteria as one of the first links in food chains and webs. Furthermore, some of them serve as reservoirs for disease-causing bacteria and /or as occasional opportunistic...... pathogens themselves. Protozoa is a morphological group which occurs in many different eukaryotic phyla, and many apparently morphologically similar types are very different from each others genetically. This complicates the development of good primers for analysis of their diversity with modern DNA based...... methods. Compared to other microorganisms such as fungi, algae and bacteria, much less is known about protozoa. It has been an essential element of this thesis to to advance our knowledge of protozoa by developing new primers for DNA-based studies of protozoa impact on ecosystems or as indicators...

  14. Assessment of genetic diversity on a sample of cocoa accessions resistant to witches' broom disease based on RAPD and pedigree data Avaliação da diversidade genética em uma amostra de acessos de cacau resistentes à doença vassoura-de-bruxa, com base em dados de RAPD e pedigree

    OpenAIRE

    Ronaldo Carvalho dos Santos; José Luís Pires; Uilson Vanderley Lopes; Karina Peres G. Gramacho; Acassi Batista Flores; Rita de Cássia S. Bahia; Helaine C. Cristine Ramos; Ronan Xavier Corrêa; Dario Ahnert

    2005-01-01

    Genetic diversity in cocoa (Theobroma cacao L.) has been assessed based on morphological and molecular markers for germplasm management and breeding purposes. Pedigree data is available in cocoa but it has not been used for assessing genetic relatedness. The geneitic diversity of 30 clonal cocoa accessions resistant to witche´ broom disease, from the CEPEC series, were studied on the basis of RAPD data and pedigree information. Twenty of these accessions descend from the TSA-644 clone, ...

  15. Pattern of genetic diversity among Fusarium wilt resistant castor germplasm accessions (Ricinus communis L.

    Directory of Open Access Journals (Sweden)

    K. Anjani

    2010-03-01

    Full Text Available Wilt caused by Fusarium oxysporum f.sp. ricini (Wr Gordon is one of the major yield losing diseases in castor.Cultivating wilt resistant cultivars is an effective strategy to control the disease. Utilization of diverse sources ofstable resistance is a prerequisite for durable resistance breeding. The experiment was conducted to identifygenetically diverse resistant sources in castor germplasm. Genetic diversity among 20 identified wilt resistantgermplasm was assessed using multivariate classificatory methods. Wide genetic diversity was demonstratedamong these accessions. These accessions are valuable in wilt resistance breeding programme. They wouldserve as base diverse material for wilt resistance breeding, wilt resistant genepool construction and moleculartagging of resistant genes.

  16. [Research Progress on Genetic Diversity in Animal Parasitic Nematodes].

    Science.gov (United States)

    YIN, Fang-yuan; LI, Fa-cai; ZHAO, Jun-long; HU, Min

    2015-10-01

    The development of molecular genetic markers for parasitic nematodes has significant implications in fundamental and applied research in Veterinary Parasitology. Knowledge on genetic diversity of nematodes would not only provide a theoretical basis for understanding the spread of drug-resistance alleles, but also have implications in the development of nematode control strategies. This review discusses the applications of molecular genetic markers (RFLP, RAPD, PCR-SSCP, AFLP, SSR and mitochondrial DNA) in research on the genetic diversity of parasitic nematodes.

  17. [Research Progress on Genetic Diversity in Animal Parasitic Nematodes].

    Science.gov (United States)

    YIN, Fang-yuan; LI, Fa-cai; ZHAO, Jun-long; HU, Min

    2015-10-01

    The development of molecular genetic markers for parasitic nematodes has significant implications in fundamental and applied research in Veterinary Parasitology. Knowledge on genetic diversity of nematodes would not only provide a theoretical basis for understanding the spread of drug-resistance alleles, but also have implications in the development of nematode control strategies. This review discusses the applications of molecular genetic markers (RFLP, RAPD, PCR-SSCP, AFLP, SSR and mitochondrial DNA) in research on the genetic diversity of parasitic nematodes. PMID:26931047

  18. Genetic diversity in the Yangtze finless porpoise by RAPD analysis

    Institute of Scientific and Technical Information of China (English)

    He Shunping; Wang Ding; Wang Wei; Chen Daoquan; Zhao Qingzhong; Gong Weiming

    2005-01-01

    To estimate the genetic diversity in the Yangtze finless porpoise (Neophocaenaphocaenoides asiaeorientalis), the randomly amplified polymorphic DNA techniquewas applied to examine ten animals captured from the Yangtze River. Out of 20 arbitrary primers used in the experiment, seventeen produced clearly reproducible bged from 0.0986 to 0.5634. Compared with other cetacean populations, this genetic distance is quite low. Such a low genetic diversity suggests that this population may be suffering from reduced genetic variation, and be very fragile. More studiesare needed for understanding the basis for this apparent low genetic diversity and to help protect this endangered, unique population.

  19. A preliminary examination of genetic diversity in the Indian false vampire bat Megaderma lyra

    Directory of Open Access Journals (Sweden)

    Emmanuvel Rajan, K.

    2006-12-01

    Full Text Available Habitat loss and fragmentation have serious consequences for species extinction as well as genetic diversity within a species. Random Amplified Polymorphic DNA (RAPD analysis was employed to assess the genetic diversity within and between four natural populations of M. lyra. Our results suggest that the genetic diversity varied from 0.21 to 0.26 with a mean of 0.11 to 0.13 (± SD. The mean Gst value of 0.15 was obtained from all four populations and estimated average Nm (1.41 showing gene flow between the populations. AMOVA analysis showed 88.96% within and 11.04% among the studied populations. Cluster analyses of RAPD phenotypes showed that specimens were not grouped by geographical origin. The genetic diversity found in the M. lyra population may be explained by its breeding behaviors. Though preliminary, the results indicate that all four populations should be considered to maintain the genetic diversity.

  20. Genetic diversity and maternal origin of Bangladeshi chicken.

    Science.gov (United States)

    Bhuiyan, M S A; Chen, Shanyuan; Faruque, S; Bhuiyan, A K F H; Beja-Pereira, Albano

    2013-06-01

    Local domestic chicken populations are of paramount importance as a source of protein in developing countries. Bangladesh possesses a large number of native chicken populations which display a broad range of phenotypes well adapted to the extreme wet and hot environments of this region. This and the fact that wild jungle fowls (JFs) are still available in some regions of the country, it urges to study the present genetic diversity and relationships between Bangladeshi autochthonous chicken populations. Here, we report the results of the mitochondrial DNA (mtDNA) sequence polymorphisms analyses to assess the genetic diversity and possible maternal origin of Bangladeshi indigenous chickens. A 648-bp fragment of mtDNA control region (D-loop) was analyzed in 96 samples from four different chicken populations and one red JF population. Sequence analysis revealed 39 variable sites that defined 25 haplotypes. Estimates of haplotype and nucleotide diversities ranged from 0.745 to 0.901 and from 0.011 to 0.016, respectively. The pairwise differences between populations ranged from 0.091 to 1.459 while most of the PhiST (ΦST) values were significant. Furthermore, AMOVA analysis revealed 89.16 % of the total genetic diversity was accounted for within population variation, indicating little genetic differentiation among the studied populations. The median network analysis from haplotypes of Bangladeshi chickens illustrated five distinct mitochondrial haplogroups (A, D, E, F and I). Individuals from all Bangladeshi chicken populations were represented in the major clades D and E; those maternal origins are presumed to be from Indian Subcontinent and Southeast Asian countries, more particularly from South China, Vietnam, Myanmar and Thailand. Further, phylogenetic analysis between indigenous chicken populations and sub-species of red JFs showed G. g. gallus and G. g. spadiceus shared with almost all haplogroups and had major influence than G. g. murghi in the origin of

  1. Genetic diversity and maternal origin of Bangladeshi chicken.

    Science.gov (United States)

    Bhuiyan, M S A; Chen, Shanyuan; Faruque, S; Bhuiyan, A K F H; Beja-Pereira, Albano

    2013-06-01

    Local domestic chicken populations are of paramount importance as a source of protein in developing countries. Bangladesh possesses a large number of native chicken populations which display a broad range of phenotypes well adapted to the extreme wet and hot environments of this region. This and the fact that wild jungle fowls (JFs) are still available in some regions of the country, it urges to study the present genetic diversity and relationships between Bangladeshi autochthonous chicken populations. Here, we report the results of the mitochondrial DNA (mtDNA) sequence polymorphisms analyses to assess the genetic diversity and possible maternal origin of Bangladeshi indigenous chickens. A 648-bp fragment of mtDNA control region (D-loop) was analyzed in 96 samples from four different chicken populations and one red JF population. Sequence analysis revealed 39 variable sites that defined 25 haplotypes. Estimates of haplotype and nucleotide diversities ranged from 0.745 to 0.901 and from 0.011 to 0.016, respectively. The pairwise differences between populations ranged from 0.091 to 1.459 while most of the PhiST (ΦST) values were significant. Furthermore, AMOVA analysis revealed 89.16 % of the total genetic diversity was accounted for within population variation, indicating little genetic differentiation among the studied populations. The median network analysis from haplotypes of Bangladeshi chickens illustrated five distinct mitochondrial haplogroups (A, D, E, F and I). Individuals from all Bangladeshi chicken populations were represented in the major clades D and E; those maternal origins are presumed to be from Indian Subcontinent and Southeast Asian countries, more particularly from South China, Vietnam, Myanmar and Thailand. Further, phylogenetic analysis between indigenous chicken populations and sub-species of red JFs showed G. g. gallus and G. g. spadiceus shared with almost all haplogroups and had major influence than G. g. murghi in the origin of

  2. Genetic diversity in cultivated carioca common beans based on molecular marker analysis

    Directory of Open Access Journals (Sweden)

    Juliana Morini Küpper Cardoso Perseguini

    2011-01-01

    Full Text Available A wide array of molecular markers has been used to investigate the genetic diversity among common bean species. However, the best combination of markers for studying such diversity among common bean cultivars has yet to be determined. Few reports have examined the genetic diversity of the carioca bean, commercially one of the most important common beans in Brazil. In this study, we examined the usefulness of two molecular marker systems (simple sequence repeats - SSRs and amplified fragment length polymorphisms - AFLPs for assessing the genetic diversity of carioca beans. The amount of information provided by Roger's modified genetic distance was used to analyze SSR data and Jaccards similarity coefficient was used for AFLP data. Seventy SSRs were polymorphic and 20 AFLP primer combinations produced 635 polymorphic bands. Molecular analysis showed that carioca genotypes were quite diverse. AFLPs revealed greater genetic differentiation and variation within the carioca genotypes (Gst = 98% and Fst = 0.83, respectively than SSRs and provided better resolution for clustering the carioca genotypes. SSRs and AFLPs were both suitable for assessing the genetic diversity of Brazilian carioca genotypes since the number of markers used in each system provided a low coefficient of variation. However, fingerprint profiles were generated faster with AFLPs, making them a better choice for assessing genetic diversity in the carioca germplasm.

  3. Genetic risk assessment

    International Nuclear Information System (INIS)

    Based on the induction of germ cell mutations in mammals international and national committees developed concepts for quantifying radiation-induced genetic risk in humans. Genetic effects dominated the thinking o the UNSCEAR (United Nations Scientific Committee on the Effect of Atomic Radiation) Report in 1958, the BEAR (Biological Effects of Atomic Radiations) Report form the National Academy of Sciences, the National Research Council in 1956, and the British counterpart, the Medical Research Council , in 1956. an interesting personal account of the development of the work of the BEIR (Biological Effects of Ionizing Radiations) and UNSCEAR Committee was published recently by Russell. The quality of risk estimation depends on the data base and on the concepts used. The current status of both aspects for quantifying genetic risk is reviewed in this paper

  4. HIV Populations Are Large and Accumulate High Genetic Diversity in a Nonlinear Fashion

    OpenAIRE

    Maldarelli, Frank; Kearney, Mary; Palmer, Sarah; Stephens, Robert; Mican, JoAnn; Polis, Michael A.; Davey, Richard T.; Kovacs, Joseph; Shao, Wei; Rock-Kress, Diane; Metcalf, Julia A.; Rehm, Catherine; Greer, Sarah E.; Lucey, Daniel L.; Danley, Kristen

    2013-01-01

    HIV infection is characterized by rapid and error-prone viral replication resulting in genetically diverse virus populations. The rate of accumulation of diversity and the mechanisms involved are under intense study to provide useful information to understand immune evasion and the development of drug resistance. To characterize the development of viral diversity after infection, we carried out an in-depth analysis of single genome sequences of HIV pro-pol to assess diversity and divergence a...

  5. Genetic Diversity of RAPD Mark for Natural Davidia involucrata Populations

    Institute of Scientific and Technical Information of China (English)

    Congwen Song; Manzhu Bao

    2006-01-01

    The genetic diversity and genetic variation within and among populations of five natural Davidia involucrata populations were studied from 13 primers based on random amplified polymorphic DNA (RAPD) analysis.The results show that natural D.involucrata population has a rich genetic diversity,and the differences among populations are significant.Twenty-six percent of genetic variation exists among D.involucrata populations,which is similar to that of the endangered tree species Liriodendron chinense and Cathaya argyrophylla in China,but different from more widely distributed tree species.The analysis of the impacts of sampling method on genetic diversity parameters shows that the number of sampled individuals has little effect on the effective number of alleles and genetic diversity,but has a marked effect on the genetic differentiation among populations and gene flows.This study divides the provenances of D.involucrata into two parts,namely,a southeast and a northwest provenance.

  6. Genetic diversity of noroviruses in Brazil

    Directory of Open Access Journals (Sweden)

    Julia Monassa Fioretti

    2011-12-01

    Full Text Available Norovirus (NoV infections are a major cause of acute gastroenteritis outbreaks around the world. In Brazil, the surveillance system for acute diarrhoea does not include the diagnosis of NoV, precluding the ability to assess its impact on public health. The present study assessed the circulation of NoV genotypes in different Brazilian states by partial nucleotide sequencing analysis of the genomic region coding for the major capsid viral protein. NoV genogroup II genotype 4 (GII.4 was the prevalent (78% followed by GII.6, GII.7, GII.12, GII.16 and GII.17, demonstrating the great diversity of NoV genotypes circulating in Brazil. Thus, this paper highlights the importance of a virological surveillance system to detect and characterize emerging strains of NoV and their spreading potential.

  7. 花生表型及SSR遗传多样性的研究%Phenotype and SSR-Based Genetic Diversity Assessment in Peanut

    Institute of Scientific and Technical Information of China (English)

    康红梅; 李保云; 孙毅

    2012-01-01

    The study had analyzed the Shannon-Weaver and Simpson indexes of phenotypic traits including plant type,presence or absence of hair,grain color,grain shape,leaf shape,habit of growth,flowering habit,particle size, particle color on 75 peanut cultivars(28 identified cultivars and 47 local cultivars) from Institute of Industrial Crops,Shanxi Academy of Agricultral Science. The results showed that genetic diversity index of 75 peanut cultivars were SWI =0. 924,SI =0.500 respectively,flowering habit was the lowest(SWI = 0. 139,SI =0. 014) .while Shannon-Weaver index of grain color was the highest with value of 1.841 ,and Simpson index was 0. 712. 48 pairs SSR markers of peanut were used to analyse genetic diversity of the tested materials, the results were as follows: (1) 35 pairs SSR markers(72. 9% )were polymorphic,and 215 polymorphic bands had been detected,6 polymorphic bands could be detected by each marker averagely. (2) On the basis of the results, the genetic similarity(GS) among 75 peanut cultivars were in a range from 0. 25 to 0. 85, with the mean of 0. 55 , and the average genetic similarity among the 28 identified cultivars were 0. 6 at a range of 0. 39 -0. 85.%对山西省农业科学院经济作物研究所保存的75份花生材料(包括28个已审定的花生品种和47个地方品种)进行了包括株型、茸毛的有无、叶色、粒形、叶形、生长习性、开花习性、粒大小、粒色等表型性状的Shannon-Weaver遗传多样性指数(简称SWI)和Simpson遗传多样性指数(简称SI)分析.结果表明:参试的75份花生品种遗传多样性指数分别为SWI=0.924,SI=0.500,其中以开花习性最低(SWI=0.139,SI =0.014),而Shannon-Weaver指数以粒色最高为1.841,Simpson指数为0.712.利用48对SSR引物对这些材料进行了遗传多样性分析,结果如下:(1)在48对花生的SSR引物中,有35对(占所用引物总数的72.9%)具有多态性,共检测到215条多态性条带,平均每对引物可扩增6

  8. Mapping genetic and phylogenetic diversity of a temperate forest using remote sensing based upscaling methods

    Science.gov (United States)

    Escriba, C. G.; Yamasaki, E.; Leiterer, R.; Tedder, A.; Shimizu, K.; Morsdorf, F.; Schaepman, M. E.

    2015-12-01

    Functioning and resilience of forest ecosystems under environmental pressures increases when biodiversity at genetic, species, canopy and ecosystem level is higher. Therefore mapping and monitoring diversity becomes a necessity to assess changes in ecosystems and understanding their consequences. Diversity can be assessed by using different metrics, such as diversity of functional traits or genetic diversity amongst others. In-situ approaches have provided useful, but usually spatially constrained information, often dependent on expert knowledge. We propose using remote sensing in combination with in-situ sampling at different spatial scales. We map phylogenetic and genetic diversity using airborne imaging spectroscopy in combination with terrestrial and airborne laser scanning, as well as exhaustive in-situ sampling schemes. To this end, we propose to link leaf optical properties using a taxonomic approach (spectranomics) to genetic and phylogenetic diversity. The test site is a managed mixed temperate forest on the south-facing slope of Laegern Mountain, Switzerland (47°28'42.0" N, 8°21'51.8" E, 682 m.a.s.l.). The intensive sampling area is roughly 300m x 300m and dominant species are European beech (Fagus sylvatica) and Ash (Fraxinus excelsior). We perform phylogenetic and intraspecific genetic variation analyses for the five most dominant tree species at the test site. For these species, information on functional biochemical and architectural plant traits diversity is retrieved from imaging spectroscopy and laser scanning data and validated with laboratory and in-situ measurements. To assess regional-scale genetic diversity, the phylogenetic and genetic signals are quantified using the remote sensing data, resulting in spatially distributed intra-specific genetic variation. We discuss the usefulness of combined remote sensing and in-situ sampling, to bridge diversity scales from genetic to canopy level.

  9. Genetic diversity of tropical-adapted onion germplasm assessed by RAPD markers Diversidade genética em germoplasma tropical de cebola estimada via marcadores RAPD

    Directory of Open Access Journals (Sweden)

    Maria do Desterro M dos Santos

    2012-03-01

    Full Text Available Onion is a crop of significant socioeconomic importance to Brazil. Onion germplasm with adaptation to tropical and sub-tropical conditions has played an important role in the development of this crop in the country. In this context, we studied the genetic diversity in a germplasm collection potentially useful for the development of cultivars for tropical and subtropical regions. The genetic variability of 21 accessions/cultivars that have been used as germplasm and/or were developed by onion breeding programs in Brazil was evaluated via RAPD markers. The following accessions were included in the study :'Red Creole', 'Roxa IPA-3', 'Valenciana 14', 'Beta Cristal', 'Diamante', 'Composto IPA-6', 'Aurora', 'Bojuda Rio Grande', 'Alfa Tropical', 'Pêra IPA-4', 'Primavera', 'Belém IPA-9', 'Crioula Alto Vale', 'Conquista', 'Pira-Ouro', 'Vale-Ouro IPA-11', 'Franciscana IPA-10', 'Serrana', 'CNPH 6400', 'Petroline', and 'Baia Periforme'. From the 520 primers used in the initial screening only 38 displayed stable polymorphisms. They produced 624 amplicons, of which 522 (83.7% were monomorphic and 102 (16.3% were polymorphic. An average similarity coefficient of 0.72 was calculated among accessions based upon this subgroup of polymorphic amplicons. This allowed the discrimination of this germplasm collection into six groups with only one of them comprising more than one accession. The main group was formed by 16 accessions ('Diamante', 'Composto IPA-6', 'Aurora', 'Bojuda Rio Grande', 'Conquista', 'Pira-Ouro', 'Serrana', 'Vale-Ouro IPA-11', 'Baia Periforme', 'Primavera', 'Franciscana IPA-10', 'Belém IPA-9', 'Crioula Alto Vale', 'Petroline', 'Pêra IPA-4' and 'Alfa Tropical', for which the genetic origin (with few exceptions can be traced back to the variety 'Baia Periforme'. The populations 'Red Creole', 'Roxa IPA-3', 'Beta Cristal', 'CNPH 6400', and 'Valenciana 14' comprised a set of five isolated groups, showing genetic divergence among them and in

  10. Does genetic diversity hinder parasite evolution in social insect colonies?

    DEFF Research Database (Denmark)

    Hughes, William Owen Hamar; Boomsma, Jacobus Jan

    2006-01-01

    of host genetic diversity on parasite evolution by carrying out serial passages of a virulent fungal pathogen through leaf-cutting ant workers of known genotypes. Parasite virulence increased over the nine-generation span of the experiment while spore production decreased. The effect of host relatedness...... upon virulence appeared limited. However, parasites cycled through more genetically diverse hosts were more likely to go extinct during the experiment and parasites cycled through more genetically similar hosts had greater spore production. These results indicate that host genetic diversity may indeed...

  11. Endemic insular and coastal Tunisian date palm genetic diversity.

    Science.gov (United States)

    Zehdi-Azouzi, Salwa; Cherif, Emira; Guenni, Karim; Abdelkrim, Ahmed Ben; Bermil, Aymen; Rhouma, Soumaya; Salah, Mohamed Ben; Santoni, Sylvain; Pintaud, Jean Christophe; Aberlenc-Bertossi, Frédérique; Hannachi, Amel Salhi

    2016-04-01

    The breeding of crop species relies on the valorisation of ancestral or wild varieties to enrich the cultivated germplasm. The Tunisian date palm genetic patrimony is being threatened by diversity loss and global climate change. We have conducted a genetic study to evaluate the potential of spontaneous coastal resources to improve the currently exploited Tunisian date palm genetic pool. Eighteen microsatellite loci of Phoenix dactylifera L. were used to compare the genetic diversity of coastal accessions from Kerkennah, Djerba, Gabès and continental date palm accessions from Tozeur. A collection of 105 date palms from the four regions was analysed. This study has provided us with an extensive understanding of the local genetic diversity and its distribution. The coastal date palm genotypes exhibit a high and specific genetic diversity. These genotypes are certainly an untapped reservoir of agronomically important genes to improve cultivated germplasm in continental date palm. PMID:26895027

  12. Endemic insular and coastal Tunisian date palm genetic diversity.

    Science.gov (United States)

    Zehdi-Azouzi, Salwa; Cherif, Emira; Guenni, Karim; Abdelkrim, Ahmed Ben; Bermil, Aymen; Rhouma, Soumaya; Salah, Mohamed Ben; Santoni, Sylvain; Pintaud, Jean Christophe; Aberlenc-Bertossi, Frédérique; Hannachi, Amel Salhi

    2016-04-01

    The breeding of crop species relies on the valorisation of ancestral or wild varieties to enrich the cultivated germplasm. The Tunisian date palm genetic patrimony is being threatened by diversity loss and global climate change. We have conducted a genetic study to evaluate the potential of spontaneous coastal resources to improve the currently exploited Tunisian date palm genetic pool. Eighteen microsatellite loci of Phoenix dactylifera L. were used to compare the genetic diversity of coastal accessions from Kerkennah, Djerba, Gabès and continental date palm accessions from Tozeur. A collection of 105 date palms from the four regions was analysed. This study has provided us with an extensive understanding of the local genetic diversity and its distribution. The coastal date palm genotypes exhibit a high and specific genetic diversity. These genotypes are certainly an untapped reservoir of agronomically important genes to improve cultivated germplasm in continental date palm.

  13. Beauveria bassiana: quercetinase production and genetic diversity

    Directory of Open Access Journals (Sweden)

    Eula Maria de M. B Costa

    2011-03-01

    Full Text Available Beauveria bassiana genetic diversity and ability to synthesize quercetin 2,3-dioxygenase (quercetinase were analyzed. B. bassiana isolates, obtained from Brazilian soil samples, produced quercetinase after induction using 0.5 g/L quercetin. B. bassiana ATCC 7159 (29.6 nmol/mL/min and isolate IP 11 (27.5 nmol/ml/min showed the best performances and IP 3a (9.5 nmol/mL/min presented the lowest level of quercetinase activity in the culture supernatant. A high level of polymorphism was detected by random amplified polymorphic DNA (RAPD analysis. The use of internal-transcribed-spacer ribosomal region restriction fragment length polymorphism (ITS-RFLP did not reveal characteristic markers to differentiate isolates. However, the ITS1-5.8S-ITS2 region sequence analysis provided more information on polymorphism among the isolates, allowing them to be clustered by relative similarity into three large groups. Correlation was tested according to the Person's correlation. Data of our studies showed, that lower associations among groups, level of quercetinase production, or geographical origin could be observed. This study presents the production of a novel biocatalyst by B. bassiana and suggests the possible industrial application of this fungal species in large-scale biotechnological manufacture of quercetinase.

  14. Indigenous cattle in Sri Lanka: production systems and genetic diversity

    International Nuclear Information System (INIS)

    Production status, farming systems and genetic diversity of indigenous cattle in Sri Lanka were evaluated using six geographically distinct populations. The indigenous cattle population of the country is considered as a nondescript mixture of genotypes, and represents more than half of the total cattle population of 1.2 million heads. Five distinct indigenous populations were investigated for morphological analysis, and four were included in evaluating genetic differences. Farming systems were analysed using a pre-tested structured questionnaire. The genetic variation was assessed within and between populations using 15 autosomal and two Y-specific microsatellite markers, and compared with two indigenous populations from the African region. Farming system analysis revealed that indigenous cattle rearing was based on traditional mixed-crop integration practices and operates under limited or no input basis. The contribution of indigenous cattle to total tangible income ranged from zero to 90% reflecting the high variation in the purpose of keeping. Morphometric measurements explained specific phenotypic characteristics arising from geographical isolation and selective breeding. Though varying according to the region, the compact body, narrow face, small horns and humps with shades of brown and black coat colour described the indigenous cattle phenotype in general. Genetic analysis indicated that indigenous cattle in Sri Lanka have high diversity with average number of alleles per locus ranging from 7.9 to 8.5. Average heterozygosity of different regions varied within a narrow range (0.72 ± 0.04 to 0.76 ± 0.03). Genetic distances between regions were low (0.085 and 0.066) suggesting a similar mixture of genotypes across regions. Y-specific analysis indicated a possible introgression of Taurine cattle in one of the cattle populations. (author)

  15. Microsatellite variability reveals high genetic diversity and low genetic differentiation in a critical giant panda population

    Institute of Scientific and Technical Information of China (English)

    Jiandong YANG; Zhihe ZHANG; Fujun SHEN; Xuyu YANG; Liang ZHANG; Limin CHEN; Wenping ZHANG; Qing ZHU; Rong HOU

    2011-01-01

    Understanding present patterns of genetic diversity is critical in order to design effective conservation and management strategies for endangered species.Tangjiahe Nature Reserve (NR) is one of the most important national reserves for giant pandas Ailuropoda melanoleuca in China.Previous studies have shown that giant pandas in Tangjiahe NR may be threatened by population decline and fragmentation.Here we used 10 microsatellite DNA markers to assess the genetic variability in the Tangjiahe population.The results indicate a low level of genetic differentiation between the Hongshihe and Motianling subpopulations in the reserve.Assignment tests using the Bayesian clustering method in STRUCTURE identified one genetic cluster from 42 individuals of the two subpopulations.All individuals from the same subpopulation were assigned to one cluster.This indicates high gene flow between subpopulations.F statistic analyses revealed a low Fls-value of 0.024 in the total population and implies a randomly mating population in Tangjiahe NR.Additionally,our data show a high level of genetic diversity for the Tangjiahe population.Mean allele number (A),Allelic richness (AR) and mean expected heterozygosity (HE) for the Tangiiahe population was 5.9,5.173 and 0.703,respectively.This wild giant panda population can be restored through concerted effort [Current Zoology 57 (6):717-724,2011].

  16. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests.

    Science.gov (United States)

    Banhos, Aureo; Hrbek, Tomas; Sanaiotti, Tânia M; Farias, Izeni Pires

    2016-01-01

    Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja) is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest. PMID:26871719

  17. Reduction of Genetic Diversity of the Harpy Eagle in Brazilian Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Aureo Banhos

    Full Text Available Habitat loss and fragmentation intensify the effects of genetic drift and endogamy, reducing genetic variability of populations with serious consequences for wildlife conservation. The Harpy Eagle (Harpia harpyja is a forest dwelling species that is considered near threatened and suffers from habitat loss in the forests of the Neotropical region. In this study, 72 historical and current samples were assessed using eight autosomal microsatellite markers to investigate the distribution of genetic diversity of the Harpy Eagle of the Amazonian and Atlantic forests in Brazil. The results showed that the genetic diversity of Harpy Eagle decreased in the regions where deforestation is intense in the southern Amazon and Atlantic Forest.

  18. Genetic structure and diversity of cultivated soybean (Glycine max (L.) Merr.) landraces in China

    NARCIS (Netherlands)

    Li, Yinghui; Guan, Rongxia; Liu, Zhangxiong; Ma, Yansong; Wang, Lixia; Li, Linhai; Lin, Fanyun; Luan, Weijiang; Chen, Pengyin; Yan, Zhe; Guan, Yuan; Zhu, Li; Ning, Xuecheng; Smulders, M.J.M.; Li, W.; Piao, Rihua; Cui, Yanhua; Yu, Zhongmei; Guan, Min; Chang, Ruzhen; Hou, Anfu; Shi, Ainong; Zhang, Bo; Zhu, Shenlong; Qiu, L.

    2008-01-01

    The Chinese genebank contains 23,587 soybean landraces collected from 29 provinces. In this study, a representative collection of 1,863 landraces were assessed for genetic diversity and genetic differentiation in order to provide useful information for effective management and utilization. A total o

  19. Genetic diversity of carrot (Daucus carota L.) cultivars revealed by analysis of SSR loci

    Science.gov (United States)

    In this work we evaluate a collection of 88 carrot cultivars and landraces for polymorphisms at SSR loci and use the obtained markers to assess the genetic diversity, and we show molecular evidence for divergence between Asiatic and Western carrot genetic pools. The use of primer pairs flanking repe...

  20. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    Science.gov (United States)

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures. PMID:26656801

  1. Levels of genetic diversity and taxonomic status of Epinephelus species in United Arab Emirates fish markets.

    Science.gov (United States)

    Ketchum, Remi N; Dieng, Mame M; Vaughan, Grace O; Burt, John A; Idaghdour, Youssef

    2016-04-30

    Understanding the patterns of genetic diversity of fish species is essential for marine conservation and management. This is particularly important in the Arabian Gulf where marine life is subject to extreme environmental conditions that could impact genetic diversity. Here we assess genetic diversity of the most commercially important fish in the United Arab Emirates; groupers (Epinephelus spp.). Sequencing of 973 bp mitochondrial DNA from 140 tissue samples collected in four main fish markets revealed 58 haplotypes clustered within three groups. Data analysis revealed the presence of three distinct Epinephelus species being marketed as one species (hammour): Epinephelus coioides, Epinephelus areolatus and Epinephelus bleekeri. We report species-specific genetic markers and demonstrate that all three species exhibit relatively low levels of genetic variation, reflecting the effect of overfishing and environmental pressures. In light of the genetic evidence presented here, conservation and management of groupers in the UAE warrant the implementation of species-specific measures.

  2. Extreme genetic diversity in asexual grass thrips populations.

    Science.gov (United States)

    Fontcuberta García-Cuenca, A; Dumas, Z; Schwander, T

    2016-05-01

    The continuous generation of genetic variation has been proposed as one of the main factors explaining the maintenance of sexual reproduction in nature. However, populations of asexual individuals may attain high levels of genetic diversity through within-lineage diversification, replicate transitions to asexuality from sexual ancestors and migration. How these mechanisms affect genetic variation in populations of closely related sexual and asexual taxa can therefore provide insights into the role of genetic diversity for the maintenance of sexual reproduction. Here, we evaluate patterns of intra- and interpopulation genetic diversity in sexual and asexual populations of Aptinothrips rufus grass thrips. Asexual A. rufus populations are found throughout the world, whereas sexual populations appear to be confined to few locations in the Mediterranean region. We found that asexual A. rufus populations are characterized by extremely high levels of genetic diversity, both in comparison with their sexual relatives and in comparison with other asexual species. Migration is extensive among asexual populations over large geographic distances, whereas close sexual populations are strongly isolated from each other. The combination of extensive migration with replicate evolution of asexual lineages, and a past demographic expansion in at least one of them, generated high local clone diversities in A. rufus. These high clone diversities in asexual populations may mimic certain benefits conferred by sex via genetic diversity and could help explain the extreme success of asexual A. rufus populations. PMID:26864612

  3. The structural diversity of artificial genetic polymers

    OpenAIRE

    Anosova, Irina; Kowal, Ewa A.; Dunn, Matthew R.; Chaput, John C.; Van Horn, Wade D.; Egli, Martin

    2015-01-01

    Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeg...

  4. Genetic diversity and population structure of endangered Aquilaria malaccensis revealed potential for future conservation.

    Science.gov (United States)

    Singh, Pradeep; Nag, Akshay; Parmar, Rajni; Ghosh, Sneha; Bhau, Brijmohan Singh; Sharma, Ram Kumar

    2015-12-01

    The endangered Aquilaria malaccensis,is an important plant with high economic values. Characterization of genetic diversity and population structure is receiving tremendous attention for effective conservation of genetic resources. Considering important repositories of biological diversity, the genetic relationships of 127 A. malaccensis accessions from 10 home gardens of three states of northeast India were assessed using amplified fragment length polymorphism (AFLP). Of the 1153 fragments amplified with four AFLP primer combinations, 916 (79.4%) were found to be polymorphic. Polymorphic information content (PIC) and marker index (MI) of each primer combination correlate significantly with the number of genotypes resolved. Overall, a high genetic diversity (avg. 71.85%) was recorded. Further, high gene flow (Nm: 3.37), low genetic differentiation (FST: 0.069) and high within population genetic variation (93%) suggests that most of the genetic diversity is restricted within population. Neighbour joining (NJ), principal coordinate analysis (PCoA) and Bayesian-based STRUCTURE grouped all the accessions in two clusters with significant intermixing between populations, therefore, revealed that two genetically distinct gene pools are operating in the A. malaccensis populations cultivated in home gardens. Based on the various diversity inferences, five diverse populations (JOH, FN, HLF, DHM and ITN) were identified, which can be potentially exploited to develop conservation strategies for A. malaccensis.

  5. Genetic and metabolite diversity of Sardinian populations of Helichrysum italicum

    OpenAIRE

    Melito, Sara; Sias, Angela; Petretto, Giacomo Luigi; Chessa, Mario; Pintore, Giorgio Antonio Mario; Porceddu, Andrea

    2013-01-01

    Background: Helichrysum italicum (Asteraceae) is a small shrub endemic to the Mediterranean Basin, growing in fragmented and diverse habitats. The species has attracted attention due to its secondary metabolite content, but little effort has as yet been dedicated to assessing the genetic and metabolite diversity present in these populations. Here, we describe the diversity of 50 H. italicum populations collected from a range of habitats in Sardinia. Methods: H. italicum plants were AFLP fi...

  6. Potential for Incorporation of Genetic Polymorphism Data in Human Health Risk Assessment

    Science.gov (United States)

    This overview summarizes several EPA assessment publications evaluating the potential impact of genetic polymorphisms in ten metabolizing enzymes on the variability in enzyme function across ethnically diverse populations.

  7. Genetic diversity in the SIR model of pathogen evolution.

    Directory of Open Access Journals (Sweden)

    Isabel Gordo

    Full Text Available We introduce a model for assessing the levels and patterns of genetic diversity in pathogen populations, whose epidemiology follows a susceptible-infected-recovered model (SIR. We model the population of pathogens as a metapopulation composed of subpopulations (infected hosts, where pathogens replicate and mutate. Hosts transmit pathogens to uninfected hosts. We show that the level of pathogen variation is well predicted by analytical expressions, such that pathogen neutral molecular variation is bounded by the level of infection and increases with the duration of infection. We then introduce selection in the model and study the invasion probability of a new pathogenic strain whose fitness (R(0(1+s is higher than the fitness of the resident strain (R(0. We show that this invasion probability is given by the relative increment in R(0 of the new pathogen (s. By analyzing the patterns of genetic diversity in this framework, we identify the molecular signatures during the replacement and compare these with those observed in sequences of influenza A.

  8. Global to local genetic diversity indicators of evolutionary potential in tree species within and outside forests

    DEFF Research Database (Denmark)

    Graudal, Lars; Aravanopoulos, Filippos; Bennadji, Zohra;

    2014-01-01

    -monitoring schemes. Here, we provide a review and an assessment of the different attempts made to provide such indicators for tree genetic diversity from the global level down to the level of the management unit. So far, no generally accepted indicators have been provided as international standards, nor tested...... distributions (patterns of genetic variation of key adaptive traits in the ecological space) of selected species is a realistic way of assessing the trend of intra-specific variation, and thus provides a state indicator of tree genetic diversity also able to reflect possible pressures threatening genetic...... independently of state indicators. A coherent set of indicators covering diversity-productivity-knowledge-management based on the genecological approach is proposed for application on appropriate groups of tree species in the wild and in cultivation worldwide. These indicators realistically reflect the state...

  9. Genetic Diversity of Plasmodium falciparum in Haiti: Insights from Microsatellite Markers.

    Directory of Open Access Journals (Sweden)

    Tamar E Carter

    Full Text Available Hispaniola, comprising Haiti and the Dominican Republic, has been identified as a candidate for malaria elimination. However, incomplete surveillance data in Haiti hamper efforts to assess the impact of ongoing malaria control interventions. Characteristics of the genetic diversity of Plasmodium falciparum populations can be used to assess parasite transmission, which is information vital to evaluating malaria elimination efforts. Here we characterize the genetic diversity of P. falciparum samples collected from patients at seven sites in Haiti using 12 microsatellite markers previously employed in population genetic analyses of global P. falciparum populations. We measured multiplicity of infections, level of genetic diversity, degree of population geographic substructure, and linkage disequilibrium (defined as non-random association of alleles from different loci. For low transmission populations like Haiti, we expect to see few multiple infections, low levels of genetic diversity, high degree of population structure, and high linkage disequilibrium. In Haiti, we found low levels of multiple infections (12.9%, moderate to high levels of genetic diversity (mean number of alleles per locus = 4.9, heterozygosity = 0.61, low levels of population structure (highest pairwise Fst = 0.09 and no clustering in principal components analysis, and moderate linkage disequilibrium (ISA = 0.05, P<0.0001. In addition, population bottleneck analysis revealed no evidence for a reduction in the P. falciparum population size in Haiti. We conclude that the high level of genetic diversity and lack of evidence for a population bottleneck may suggest that Haiti's P. falciparum population has been stable and discuss the implications of our results for understanding the impact of malaria control interventions. We also discuss the relevance of parasite population history and other host and vector factors when assessing transmission intensity from genetic diversity data.

  10. Inference of genetic diversity in popcorn S3 progenies.

    Science.gov (United States)

    Pena, G F; do Amaral, A T; Ribeiro, R M; Ramos, H C C; Boechat, M S B; Santos, J S; Mafra, G S; Kamphorst, S H; de Lima, V J; Vivas, M; de Souza Filho, G A

    2016-01-01

    Molecular markers are a useful tool for identification of complementary heterotic groups in breeding programs aimed at the production of superior hybrids, particularly for crops such as popcorn in which heterotic groups are not well-defined. The objective of the present study was to analyze the genetic diversity of 47 genotypes of tropical popcorn to identify possible heterotic groups for the development of superior hybrids. Four genotypes of high genetic value were studied: hybrid IAC 125, strain P2, and varieties UENF 14 and BRS Angela. In addition, 43 endogamous S3 progenies obtained from variety UENF 14 were used. Twenty-five polymorphic SSR-EST markers were analyzed. A genetic distance matrix was obtained and the following molecular diversity parameters were estimated: number of alleles, number of effective alleles, polymorphism information content (PIC), observed and expected heterozygosities, Shannon diversity index, and coefficient of inbreeding. We found a moderate PIC and high diversity index, indicating that the studied population presents both good discriminatory ability and high informativeness for the utilized markers. The dendrogram built based on the dissimilarity matrix indicated six distinct groups. Our findings demonstrate the genetic diversity among the evaluated genotypes and provide evidence for heterotic groups in popcorn. Furthermore, the functional genetic diversity indicates that there are informative genetic markers for popcorn. PMID:27173336

  11. Assessment of structural diversity in combinatorial synthesis.

    Science.gov (United States)

    Fergus, Suzanne; Bender, Andreas; Spring, David R

    2005-06-01

    This article covers the combinatorial synthesis of small molecules with maximal structural diversity to generate a collection of pure compounds that are attractive for lead generation in a phenotypic, high-throughput screening approach. Nature synthesises diverse small molecules, but there are disadvantages with using natural product sources. The efficient chemical synthesis of structural diversity (and complexity) is the aim of diversity-oriented synthesis, and recent progress is reviewed. Specific highlights include a discussion of strategies to obtain structural diversity and an analysis of molecular descriptors used to classify compounds. The assessment of how successful one synthesis is versus another is subjective, therefore we test-drive software to assess structural diversity in combinatorial synthesis, which is freely available via a web interface.

  12. Understanding Genetic Diversity of Sorghum Using Quantitative Traits

    Science.gov (United States)

    Sinha, Sweta; Kumaravadivel, N.

    2016-01-01

    Sorghum is the important cereal crop around the world and hence understanding and utilizing the genetic variation in sorghum accessions are essential for improving the crop. A good understanding of genetic variability among the accessions will enable precision breeding. So profiling the genetic diversity of sorghum is imminent. In the present investigation, forty sorghum accessions consisting of sweet sorghum, grain sorghum, forage sorghum, mutant lines, maintainer lines, and restorer lines were screened for genetic diversity using quantitative traits. Observations were recorded on 14 quantitative traits, out of which 9 diverse traits contributing to maximum variability were selected for genetic diversity analysis. The principle component analysis revealed that the panicle width, stem girth, and leaf breadth contributed maximum towards divergence. By using hierarchical cluster analysis, the 40 accessions were grouped under 6 clusters. Cluster I contained maximum number of accessions and cluster VI contained the minimum. The maximum intercluster distance was observed between cluster VI and cluster IV. Cluster III had the highest mean value for hundred-seed weight and yield. Hence the selection of parents must be based on the wider intercluster distance and superior mean performance for yield and yield components. Thus in the present investigation quantitative data were able to reveal the existence of a wide genetic diversity among the sorghum accessions used providing scope for further genetic improvement. PMID:27382499

  13. Genetic diversity in Monilinia laxa populations in stone fruit species in Hungary.

    Science.gov (United States)

    Fazekas, Mónika; Madar, Anett; Sipiczki, Matthias; Miklós, Ida; Holb, Imre J

    2014-06-01

    The objectives of this study were firstly, to determine the genetic diversity of Monilinia laxa isolates from Hungary, using the PCR-based inter-simple sequence repeat (ISSR) and randomly amplified polymorphic DNA (RAPD) technique; secondly, to prepare genetic diversity groups based on the dendrograms; and finally, to select some relevant isolates to study their fungicide sensitivity. 55 and 77 random amplified polymorphic ISSR and RAPD markers, of which 23 and 18 were polymorphic and 32 and 59 monomorphic, respectively, were used to assess the genetic diversity and to study the structure of M. laxa populations in Hungary. 27 isolates out of 57 ones were confirmed as M. laxa from several orchards (subpopulations) in three geographical regions, in various inoculum sources and in various hosts, were used. 10 fungicides and 12 isolates selected from genetic diversity groups based on the ISSR dendrograms were used to determine the fungicide sensitivity of the selected isolates. The analysis of population structure revealed that genetic diversity within locations, inoculum sources and host (H(S)) accounted for 99 % of the total genetic diversity (H(T)), while genetic diversity among locations, inoculum sources and host represented only 1 %. The relative magnitude of gene differentiation between subpopulations (G(ST)) and the estimate of the number of migrants per generation (Nm) averaged 0.005-0.009 and 53.9-99.2, respectively, for both ISSR and RAPD data set. The results obtained in dendrograms were in accordance with the gene diversity analysis. Grouping of isolates in the dendrograms was irrespective of whether they came from the same or different geographical locations. There was no relationship between clustering among isolates from inoculum sources and hosts. In the fungicide sensitivity tests, five isolates out of 12 were partly insensitive to boscalid+piraclostrobin, cyprodinil, fenhexamid or prochloraz. Obtained results in genetic diversity of M. laxa

  14. The characterization of goat genetic diversity : Towards a genomic approach

    NARCIS (Netherlands)

    Ajmone-Marsan, P.; Colli, L.; Han, J. L.; Achilli, A.; Lancioni, H.; Joost, S.; Crepaldi, P.; Pilla, F.; Stella, A.; Taberlet, P.; Boettcher, P.; Negrini, R.; Lenstra, J. A.

    2014-01-01

    The investigation of genetic diversity at molecular level has been proposed as a valuable complement and sometimes proxy to phenotypic diversity of local breeds and is presently considered as one of the FAO priorities for breed characterization. By recommending a set of selected molecular markers fo

  15. Genetic diversity among five T4-like bacteriophages

    Directory of Open Access Journals (Sweden)

    Bertrand Claire

    2006-05-01

    Full Text Available Abstract Background Bacteriophages are an important repository of genetic diversity. As one of the major constituents of terrestrial biomass, they exert profound effects on the earth's ecology and microbial evolution by mediating horizontal gene transfer between bacteria and controlling their growth. Only limited genomic sequence data are currently available for phages but even this reveals an overwhelming diversity in their gene sequences and genomes. The contribution of the T4-like phages to this overall phage diversity is difficult to assess, since only a few examples of complete genome sequence exist for these phages. Our analysis of five T4-like genomes represents half of the known T4-like genomes in GenBank. Results Here, we have examined in detail the genetic diversity of the genomes of five relatives of bacteriophage T4: the Escherichia coli phages RB43, RB49 and RB69, the Aeromonas salmonicida phage 44RR2.8t (or 44RR and the Aeromonas hydrophila phage Aeh1. Our data define a core set of conserved genes common to these genomes as well as hundreds of additional open reading frames (ORFs that are nonconserved. Although some of these ORFs resemble known genes from bacterial hosts or other phages, most show no significant similarity to any known sequence in the databases. The five genomes analyzed here all have similarities in gene regulation to T4. Sequence motifs resembling T4 early and late consensus promoters were observed in all five genomes. In contrast, only two of these genomes, RB69 and 44RR, showed similarities to T4 middle-mode promoter sequences and to the T4 motA gene product required for their recognition. In addition, we observed that each phage differed in the number and assortment of putative genes encoding host-like metabolic enzymes, tRNA species, and homing endonucleases. Conclusion Our observations suggest that evolution of the T4-like phages has drawn on a highly diverged pool of genes in the microbial world. The T4

  16. Genetic signatures of ecological diversity along an urbanization gradient

    Science.gov (United States)

    O’Donnell, James L.; Lowell, Natalie C.; Shelton, Andrew O.; Samhouri, Jameal F.; Hennessey, Shannon M.; Feist, Blake E.; Williams, Gregory D.

    2016-01-01

    Despite decades of work in environmental science and ecology, estimating human influences on ecosystems remains challenging. This is partly due to complex chains of causation among ecosystem elements, exacerbated by the difficulty of collecting biological data at sufficient spatial, temporal, and taxonomic scales. Here, we demonstrate the utility of environmental DNA (eDNA) for quantifying associations between human land use and changes in an adjacent ecosystem. We analyze metazoan eDNA sequences from water sampled in nearshore marine eelgrass communities and assess the relationship between these ecological communities and the degree of urbanization in the surrounding watershed. Counter to conventional wisdom, we find strongly increasing richness and decreasing beta diversity with greater urbanization, and similar trends in the diversity of life histories with urbanization. We also find evidence that urbanization influences nearshore communities at local (hundreds of meters) rather than regional (tens of km) scales. Given that different survey methods sample different components of an ecosystem, we then discuss the advantages of eDNA—which we use here to detect hundreds of taxa simultaneously—as a complement to traditional ecological sampling, particularly in the context of broad ecological assessments where exhaustive manual sampling is impractical. Genetic data are a powerful means of uncovering human-ecosystem interactions that might otherwise remain hidden; nevertheless, no sampling method reveals the whole of a biological community. PMID:27672503

  17. Maintenance of genetic diversity through plant-herbivore interactions

    OpenAIRE

    Gloss, Andrew D.; Dittrich, Anna C. Nelson; Goldman-Huertas, Benjamin; Whiteman, Noah K.

    2013-01-01

    Identifying the factors governing the maintenance of genetic variation is a central challenge in evolutionary biology. New genomic data, methods and conceptual advances provide increasing evidence that balancing selection, mediated by antagonistic species interactions, maintains functionally-important genetic variation within species and natural populations. Because diverse interactions between plants and herbivorous insects dominate terrestrial communities, they provide excellent systems to ...

  18. Impacts of genetic bottlenecks on soybean genome diversity

    OpenAIRE

    Hyten, David L; Song, Qijian; Zhu, Youlin; Choi, Ik-Young; Nelson, Randall L.; Costa, Jose M.; Specht, James E; Shoemaker, Randy C.; Cregan, Perry B

    2006-01-01

    Soybean has undergone several genetic bottlenecks. These include domestication in Asia to produce numerous Asian landraces, introduction of relatively few landraces to North America, and then selective breeding over the past 75 years. It is presumed that these three human-mediated events have reduced genetic diversity. We sequenced 111 fragments from 102 genes in four soybean populations representing the populations before and after genetic bottlenecks. We show that soybean has lost many rare...

  19. Understanding Genetic Diversity of Sorghum Using Quantitative Traits

    OpenAIRE

    Sinha, Sweta; Kumaravadivel, N.

    2016-01-01

    Sorghum is the important cereal crop around the world and hence understanding and utilizing the genetic variation in sorghum accessions are essential for improving the crop. A good understanding of genetic variability among the accessions will enable precision breeding. So profiling the genetic diversity of sorghum is imminent. In the present investigation, forty sorghum accessions consisting of sweet sorghum, grain sorghum, forage sorghum, mutant lines, maintainer lines, and restorer lines w...

  20. Genetic diversity in farm animals - A review

    NARCIS (Netherlands)

    Groeneveld, L. F.; Lenstra, J. A.; Eding, H.; Toro, M. A.; Scherf, B.; Pilling, D.; Negrini, R.; Finlay, E. K.; Jianlin, H.; Groeneveld, E.; Weigend, S.

    2010-01-01

    Domestication of livestock species and a long history of migrations, selection and adaptation have created an enormous variety of breeds. Conservation of these genetic resources relies on demographic characterization, recording of production environments and effective data management. In addition, m

  1. Hitchhiker's guide to genetic diversity in socially structured populations

    Institute of Scientific and Technical Information of China (English)

    L.S.PREMO

    2012-01-01

    When selection increases the frequency of a beneficial gene substitution it can also increase the frequencies of linked neutral alleles through a process called genetic hitchhiking.A model built to investigate reduced genetic diversity in Pleistocene hominins shows that genetic hitchhiking can have a strong effect on neutral diversity in the presence of culturally mediated migration.Under conditions in which genetic and cultural variants are transmitted symmetrically,neutral genes may also hitchhike to higher frequencies on the coattails of adaptive cultural traits through a process called cultural hitchhiking.Cultural hitchhiking has been proposed to explain why some species of matrilineal whales display relatively low levels of mitochondrial DNA diversity,and it may be applicable to humans as well.This paper provides a critical review of recent models of both types of hitchhiking in socially structured populations.The models' assumptions and predictions are compared and discussed in the hope that studies of reduced genetic diversity in humans might improve our understanding of reduced genetic diversity in other species,and vice versa [Current Zoology 58 (1):287-297,2012].

  2. Effect of Heavy Metals Pollution on Soil Microbial Diversity and Bermudagrass Genetic Variation

    Science.gov (United States)

    Xie, Yan; Fan, Jibiao; Zhu, Weixi; Amombo, Erick; Lou, Yanhong; Chen, Liang; Fu, Jinmin

    2016-01-01

    Heavy metal pollution is a serious global environmental problem as it adversely affects plant growth and genetic variation. It also alters the composition and activity of soil microbial communities. The objectives of this study were to determine the soil microbial diversity, bermudagrass genetic variation in Cd contaminated or uncontaminated soils from Hunan province of China, and to evaluate Cd-tolerance of bermudagrass at different soils. The Biolog method, hydroponic experiments and simple sequence repeat markers were used to assess the functional diversity of microorganisms, Cd-tolerance and the genetic diversity of bermudagrass, respectively. Four of the sampling sites were heavily contaminated with heavy metals. The total bioactivity, richness, and microbial diversity decreased with increasing concentration of heavy metal. The hydroponic experiment revealed that bermudagrass populations collected from polluted sites have evolved, encompassing the feature of a higher resistance to Cd toxicity. Higher genetic diversity was observed to be more in contaminated populations than in uncontaminated populations. Heavy metal pollution can result in adverse effects on plant growth, soil microbial diversity and activity, and apparently has a stronger impact on the genetic structure. The results of this study provide new insights and a background to produce a genetic description of populations in a species that is suitable for use in phytoremediation practices. PMID:27303431

  3. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-11-01

    Full Text Available In order to adopt strategies for forest conservation and development,it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in termof polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province.These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.

  4. Genetic diversity in Populus nigra plantations from west of Iran

    Directory of Open Access Journals (Sweden)

    Afrooz Alimohamadi

    2012-12-01

    Full Text Available In order to adopt strategies for forest conservation and development, it is necessary to estimate the amount and distribution of genetic diversity in existing populations of poplar in Iran. In this study, the genetic diversity between eight stands of Populus nigra established in Kermanshah province was evaluated on the basis of molecular and morphological markers. To amplify microsatellite loci (WPMS09, WPMS16 and WPMS18, DNA extraction from young and fresh leaveswas done. Various conditions of the PCR assay were examined and to evaluate the morphological variation of the morphological characters leaves (consist of 19 traits were measured. In addition, height growth was measured, to evaluate the growth function of the stands in homogeneous conditions. Genetic diversity in term of polymorphic loci was 0%, because three investigated microsatellite loci were monomorphic. The total number of alleles for 3 microsatellite loci was 6 (na = 2, ne = 2, heo = 1, hee = 0.51. Genetic identity based on Nei was 100%, so genetic distance was 0%. The whole sampled trees represented the same thus the genotype. No significant differences between the mean values of all morphological characters and height growth were revealed. Observed genetic similarity gave indication that same ramets had been selected to plant in poplar plantation established in Kermanshah province. These results suggest the need for an initial evaluation of the genetic diversity in selected ramets for planting in plantation to avoid repetition.  

  5. Genetic diversity and genetic differentiation of natural populations of Pinus kesiya var. Langbinanensis

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Genetic diversity and genetic differentiation of natural populations of Pinus kesiya var. Langbinanensis were examined by means of electrophoresis technique. Analysis of 9 enzyme systems including 16 loci showed that all the three natural populations of the pine were high in genetic diversity but low in inter -population genetic differentiation. The proportion of polymorphic loci is 0.667 , with eachlocus holding 2.13 alleles, averagely. The average expected and obse rved heterozygosity was 0.288 and 0.197, respectively. The gene differentiation among populations was 0.052, but the mean genetic distance was only 0.015.

  6. Radiation induced mutants in elite genetic background for the augmentation of genetic diversity

    International Nuclear Information System (INIS)

    Rice (Oryza sativa L.), an important food crop for India, shows large genetic diversity. However, despite the large genetic resource, high genetic similarity is reported in cultivated varieties indicating genetic erosion. Radiation induced mutations provide genetic variability in elite background. In the present study, twenty gamma ray induced mutants of rice variety WL112 (carrying sd-1 semi-dwarfing gene) were analysed for genetic diversity using microsatellite markers. The high range of genetic diversity among mutants indicated that the mutants possess potential for enhancing variability in rice. Cluster analysis showed presence of five clusters having small sub-clusters. Earliness, semi-dwarf stature or resistance to blast disease observed among the mutants showed that these will be useful in breeding programmes. (author)

  7. The structural diversity of artificial genetic polymers.

    Science.gov (United States)

    Anosova, Irina; Kowal, Ewa A; Dunn, Matthew R; Chaput, John C; Van Horn, Wade D; Egli, Martin

    2016-02-18

    Synthetic genetics is a subdiscipline of synthetic biology that aims to develop artificial genetic polymers (also referred to as xeno-nucleic acids or XNAs) that can replicate in vitro and eventually in model cellular organisms. This field of science combines organic chemistry with polymerase engineering to create alternative forms of DNA that can store genetic information and evolve in response to external stimuli. Practitioners of synthetic genetics postulate that XNA could be used to safeguard synthetic biology organisms by storing genetic information in orthogonal chromosomes. XNA polymers are also under active investigation as a source of nuclease resistant affinity reagents (aptamers) and catalysts (xenozymes) with practical applications in disease diagnosis and treatment. In this review, we provide a structural perspective on known antiparallel duplex structures in which at least one strand of the Watson-Crick duplex is composed entirely of XNA. Currently, only a handful of XNA structures have been archived in the Protein Data Bank as compared to the more than 100 000 structures that are now available. Given the growing interest in xenobiology projects, we chose to compare the structural features of XNA polymers and discuss their potential to access new regions of nucleic acid fold space. PMID:26673703

  8. Indigenous cattle in Sri Lanka: Production systems and genetic diversity

    International Nuclear Information System (INIS)

    Full text: The production status, farming systems and genetic diversity of indigenous cattle in Sri Lanka were evaluated using six geographically distinct populations in Sri Lanka, which is a small island located below the southern tip of Indian subcontinent. The indigenous cattle population of the country is considered as a non-descript type mixture of genotypes, and represent more than the half of total cattle population of 1.2 million heads. Six distinct indigenous populations (NE, NC, So, No, TK and Th) were investigated for morphological and genetic differences. The respective farming systems were also evaluated to complete the requirement in developing conservation and utilization strategies. The sampling was carried out based on the non-existence of artificial insemination facilities to assure the target populations are indigenous. The six populations were assumed genetically isolated from each other in the absence of nomadic pattern of rearing and regular cattle migration. The farming systems were analyzed using a pre-tested structured questionnaire by single visits to each location. Single visits were practiced, as there is no variation in farming system according to the period of the year. Morphometric measurements were taken during the visit and the genetic variation was assessed within and between five populations using 15 autosomal and two Y-specific microsatellite markers. The farming system analysis revealed that indigenous cattle are reared as a traditional practice in all the regions of the country under limited or no input situations. Since the low productivity masks its real contribution to the rural livelihood, the level of utilization was confounded within the attributes of respective farming systems. The contribution of indigenous cattle to total tangible income ranged from 0% to 90% in different regions reflecting the high variation in the purpose of keeping indigenous cattle. Integration with crop, especially with paddy was the common

  9. DEVELOPMENT OF EPIC GENETIC MARKERS AND THE UTILITY OF A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL APPROACH TO EXAMINING PATTERNS OF GENETIC DIVERSITY

    Science.gov (United States)

    Use of population genetic measures for assessing the structure of natural populations and the condition of biological resources has increased steadily since the 1970's. Traditionally, genetic diversity within and among geographic areas is assessed based on a one-time sampling of...

  10. Low genetic diversity in a marine nature reserve: re-evaluating diversity criteria in reserve design

    OpenAIRE

    Bell, J.J; Okamura, B.

    2005-01-01

    Little consideration has been given to the genetic composition of populations associated with marine reserves, as reserve designation is generally to protect specific species, communities or habitats. Nevertheless, it is important to conserve genetic diversity since it provides the raw material for the maintenance of species diversity over longer, evolutionary time-scales and may also confer the basis for adaptation to environmental change. Many current marine reserves are small in size and i...

  11. Genetic Diversity of Cultivated Lentil (Lens culinaris Medik.) and Its Relation to the World's Agro-ecological Zones.

    Science.gov (United States)

    Khazaei, Hamid; Caron, Carolyn T; Fedoruk, Michael; Diapari, Marwan; Vandenberg, Albert; Coyne, Clarice J; McGee, Rebecca; Bett, Kirstin E

    2016-01-01

    Assessment of genetic diversity and population structure of germplasm collections plays a critical role in supporting conservation and crop genetic enhancement strategies. We used a cultivated lentil (Lens culinaris Medik.) collection consisting of 352 accessions originating from 54 diverse countries to estimate genetic diversity and genetic structure using 1194 polymorphic single nucleotide polymorphism (SNP) markers which span the lentil genome. Using principal coordinate analysis, population structure analysis and UPGMA cluster analysis, the accessions were categorized into three major groups that prominently reflected geographical origin (world's agro-ecological zones). The three clusters complemented the origins, pedigrees, and breeding histories of the germplasm. The three groups were (a) South Asia (sub-tropical savannah), (b) Mediterranean, and (c) northern temperate. Based on the results from this study, it is also clear that breeding programs still have considerable genetic diversity to mine within the cultivated lentil, as surveyed South Asian and Canadian germplasm revealed narrow genetic diversity. PMID:27507980

  12. Genetic diversity and population structure of an important wild berry crop.

    Science.gov (United States)

    Zoratti, Laura; Palmieri, Luisa; Jaakola, Laura; Häggman, Hely

    2015-01-01

    The success of plant breeding in the coming years will be associated with access to new sources of variation, which will include landraces and wild relatives of crop species. In order to access the reservoir of favourable alleles within wild germplasm, knowledge about the genetic diversity and the population structure of wild species is needed. Bilberry (Vaccinium myrtillus) is one of the most important wild crops growing in the forests of Northern European countries, noted for its nutritional properties and its beneficial effects on human health. Assessment of the genetic diversity of wild bilberry germplasm is needed for efforts such as in situ conservation, on-farm management and development of plant breeding programmes. However, to date, only a few local (small-scale) genetic studies of this species have been performed. We therefore conducted a study of genetic variability within 32 individual samples collected from different locations in Iceland, Norway, Sweden, Finland and Germany, and analysed genetic diversity among geographic groups. Four selected inter-simple sequence repeat primers allowed the amplification of 127 polymorphic loci which, based on analysis of variance, made it possible to identify 85 % of the genetic diversity within studied bilberry populations, being in agreement with the mixed-mating system of bilberry. Significant correlations were obtained between geographic and genetic distances for the entire set of samples. The analyses also highlighted the presence of a north-south genetic gradient, which is in accordance with recent findings on phenotypic traits of bilberry. PMID:26483325

  13. [Evolutionary process unveiled by the maximum genetic diversity hypothesis].

    Science.gov (United States)

    Huang, Yi-Min; Xia, Meng-Ying; Huang, Shi

    2013-05-01

    As two major popular theories to explain evolutionary facts, the neutral theory and Neo-Darwinism, despite their proven virtues in certain areas, still fail to offer comprehensive explanations to such fundamental evolutionary phenomena as the genetic equidistance result, abundant overlap sites, increase in complexity over time, incomplete understanding of genetic diversity, and inconsistencies with fossil and archaeological records. Maximum genetic diversity hypothesis (MGD), however, constructs a more complete evolutionary genetics theory that incorporates all of the proven virtues of existing theories and adds to them the novel concept of a maximum or optimum limit on genetic distance or diversity. It has yet to meet a contradiction and explained for the first time the half-century old Genetic Equidistance phenomenon as well as most other major evolutionary facts. It provides practical and quantitative ways of studying complexity. Molecular interpretation using MGD-based methods reveal novel insights on the origins of humans and other primates that are consistent with fossil evidence and common sense, and reestablished the important role of China in the evolution of humans. MGD theory has also uncovered an important genetic mechanism in the construction of complex traits and the pathogenesis of complex diseases. We here made a series of sequence comparisons among yeasts, fishes and primates to illustrate the concept of limit on genetic distance. The idea of limit or optimum is in line with the yin-yang paradigm in the traditional Chinese view of the universal creative law in nature.

  14. Genetic Diversity among Ancient Nordic Populations

    DEFF Research Database (Denmark)

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R;

    2010-01-01

    , the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two...

  15. Regional specificity of genetically diverse garlic varieties

    Science.gov (United States)

    Garlic is a profitable crop for small to medium-sized vegetable farmers. Despite the increasing market for specialty garlic, it is remarkable how little is known about the diverse types of garlic available. Farmers need to know which garlic types perform well under their growing conditions, and th...

  16. The Host Genetic Diversity in Malaria Infection

    Directory of Open Access Journals (Sweden)

    Vitor R. R. de Mendonça

    2012-01-01

    Full Text Available Populations exposed to Plasmodium infection develop genetic mechanisms of protection against severe disease. The clinical manifestation of malaria results primarily from the lysis of infected erythrocytes and subsequent immune and inflammatory responses. Herein, we review the genetic alterations associated with erythrocytes or mediators of the immune system, which might influence malaria outcome. Moreover, polymorphisms in genes related to molecules involved in mechanisms of cytoadherence and their influence on malaria pathology are also discussed. The results of some studies have suggested that the combinatorial effects of a set of genetic factors in the erythrocyte-immunology pathway might be relevant to host resistance or susceptibility against Plasmodium infection. However, these results must be interpreted with caution because of the differences observed in the functionality and frequency of polymorphisms within different populations. With the recent advances in molecular biology techniques, more robust studies with reliable data have been reported, and the results of these studies have identified individual genetic factors for consideration in preventing severe disease and the individual response to treatment.

  17. Genetic diversity of human blastocystis isolates in khorramabad, central iran.

    Directory of Open Access Journals (Sweden)

    Ebrahim Badparva

    2014-03-01

    Full Text Available There are some genetic differences in Blastocystis that show the existence of species or genotypes. One of these genes that help in identifying Blastocystis is SSUrRNA. The aim of this study was assessment of genetic diversity of Blastocystis by PCR with seven pairs of STS primers.This study was done on 511 stool samples collected from patients referred to the health care centers of Khorramabad, Central Iran, in 2012. Genomic DNA was extracted and in order to determine the Blastocystis subtype in contaminated samples, seven pairs of primers STS (subtype specific sequence-tagged site were used.Out of 511 samples, 33 (6.5% samples were infected with Blastocystis. Subtype (ST of 30 samples was identified and three subtypes 2, 3 and 4 were determined. Mix infection was reported 10% which 3.33% of the infection was for the mixture of ST 3 and ST5 and 6.67% was for the mixture of ST 2 and ST 3.The predominant subtype was ST3 that is the main human subtype. The dominance of ST2 and 5 are important in this study. This superiority has been reported in some of the studies in ST 2 which is different from the studies in other countries, because they have announced priorities of the ST1 and ST6 after ST3.

  18. Genetic diversity analysis of common beans based on molecular markers

    Directory of Open Access Journals (Sweden)

    Homar R. Gill-Langarica

    2011-01-01

    Full Text Available A core collection of the common bean (Phaseolus vulgaris L., representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each, as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP +3/+3 primer combinations and seven simple sequence repeats (SSR loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA and molecular variance (AMOVA analyses. AFLP analysis produced 530 bands (88.5% polymorphic while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus. AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  19. Genetic diversity analysis of common beans based on molecular markers.

    Science.gov (United States)

    Gill-Langarica, Homar R; Muruaga-Martínez, José S; Vargas-Vázquez, M L Patricia; Rosales-Serna, Rigoberto; Mayek-Pérez, Netzahualcoyotl

    2011-10-01

    A core collection of the common bean (Phaseolus vulgaris L.), representing genetic diversity in the entire Mexican holding, is kept at the INIFAP (Instituto Nacional de Investigaciones Forestales, Agricolas y Pecuarias, Mexico) Germplasm Bank. After evaluation, the genetic structure of this collection (200 accessions) was compared with that of landraces from the states of Oaxaca, Chiapas and Veracruz (10 genotypes from each), as well as a further 10 cultivars, by means of four amplified fragment length polymorphisms (AFLP) +3/+3 primer combinations and seven simple sequence repeats (SSR) loci, in order to define genetic diversity, variability and mutual relationships. Data underwent cluster (UPGMA) and molecular variance (AMOVA) analyses. AFLP analysis produced 530 bands (88.5% polymorphic) while SSR primers amplified 174 alleles, all polymorphic (8.2 alleles per locus). AFLP indicated that the highest genetic diversity was to be found in ten commercial-seed classes from two major groups of accessions from Central Mexico and Chiapas, which seems to be an important center of diversity in the south. A third group included genotypes from Nueva Granada, Mesoamerica, Jalisco and Durango races. Here, SSR analysis indicated a reduced number of shared haplotypes among accessions, whereas the highest genetic components of AMOVA variation were found within accessions. Genetic diversity observed in the common-bean core collection represents an important sample of the total Phaseolus genetic variability at the main Germplasm Bank of INIFAP. Molecular marker strategies could contribute to a better understanding of the genetic structure of the core collection as well as to its improvement and validation.

  20. Genetic diversity among ancient Nordic populations.

    Science.gov (United States)

    Melchior, Linea; Lynnerup, Niels; Siegismund, Hans R; Kivisild, Toomas; Dissing, Jørgen

    2010-01-01

    Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13%) than among extant Danes and Scandinavians (approximately 2.5%) as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture) that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP) was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.

  1. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    Directory of Open Access Journals (Sweden)

    Alexandra Erfmeier

    Full Text Available Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of

  2. The role of propagule pressure, genetic diversity and microsite availability for Senecio vernalis invasion.

    Science.gov (United States)

    Erfmeier, Alexandra; Hantsch, Lydia; Bruelheide, Helge

    2013-01-01

    Genetic diversity is supposed to support the colonization success of expanding species, in particular in situations where microsite availability is constrained. Addressing the role of genetic diversity in plant invasion experimentally requires its manipulation independent of propagule pressure. To assess the relative importance of these components for the invasion of Senecio vernalis, we created propagule mixtures of four levels of genotype diversity by combining seeds across remote populations, across proximate populations, within single populations and within seed families. In a first container experiment with constant Festuca rupicola density as matrix, genotype diversity was crossed with three levels of seed density. In a second experiment, we tested for effects of establishment limitation and genotype diversity by manipulating Festuca densities. Increasing genetic diversity had no effects on abundance and biomass of S. vernalis but positively affected the proportion of large individuals to small individuals. Mixtures composed from proximate populations had a significantly higher proportion of large individuals than mixtures composed from within seed families only. High propagule pressure increased emergence and establishment of S. vernalis but had no effect on individual growth performance. Establishment was favoured in containers with Festuca, but performance of surviving seedlings was higher in open soil treatments. For S. vernalis invasion, we found a shift in driving factors from density dependence to effects of genetic diversity across life stages. While initial abundance was mostly linked to the amount of seed input, genetic diversity, in contrast, affected later stages of colonization probably via sampling effects and seemed to contribute to filtering the genotypes that finally grew up. In consequence, when disentangling the mechanistic relationships of genetic diversity, seed density and microsite limitation in colonization of invasive plants, a clear

  3. Genetic structure and diversity of Shorea obtusa (Dipterocarpaceae) in Thailand

    Institute of Scientific and Technical Information of China (English)

    Chadaporn SENAKUN; Suchitra CHANGTRAGOON; Pairot PRAMUAL; Preecha PRATHEPHA

    2011-01-01

    Shorea obtusa is a keystone species of the dry deciduous dipterocarp forest in Thailand. In this study,the genetic structure and diversity of this species were evaluated by means of five microsatellite markers. A total of 146 trees were collected from five populations encompassing major forest regions of Thailand. High levels of genetic diversity were found among the five populations with the average He of 0.664. Genetic differentiations between populations, although significant, were low with approximately 3% of genetic variation partitioned among populations. This may indicate that the populations sampled were recently part of a continuous population. A tree constructed using the unweighted pair group method with arithmetic average, based on Nei's genetic distance, divided the populations into three groups. This separation was consistent with the altitudinal zonation of the populations,thus indicating that altitude might play a significant role in the genetic structure of S. obtusa. Areas of high genetic diversity were identified which could be considered priorities for conservation.

  4. Vietnamese chickens: a gate towards Asian genetic diversity

    Directory of Open Access Journals (Sweden)

    Bed'Hom B

    2010-06-01

    Full Text Available Abstract Background Chickens represent an important animal genetic resource and the conservation of local breeds is an issue for the preservation of this resource. The genetic diversity of a breed is mainly evaluated through its nuclear diversity. However, nuclear genetic diversity does not provide the same information as mitochondrial genetic diversity. For the species Gallus gallus, at least 8 maternal lineages have been identified. While breeds distributed westward from the Indian subcontinent usually share haplotypes from 1 to 2 haplogroups, Southeast Asian breeds exhibit all the haplogroups. The Vietnamese Ha Giang (HG chicken has been shown to exhibit a very high nuclear diversity but also important rates of admixture with wild relatives. Its geographical position, within one of the chicken domestication centres ranging from Thailand to the Chinese Yunnan province, increases the probability of observing a very high genetic diversity for maternal lineages, and in a way, improving our understanding of the chicken domestication process. Results A total of 106 sequences from Vietnamese HG chickens were first compared to the sequences of published Chinese breeds. The 25 haplotypes observed in the Vietnamese HG population belonged to six previously published haplogroups which are: A, B, C, D, F and G. On average, breeds from the Chinese Yunnan province carried haplotypes from 4.3 haplogroups. For the HG population, haplogroup diversity is found at both the province and the village level (0.69. The AMOVA results show that genetic diversity occurred within the breeds rather than between breeds or provinces. Regarding the global structure of the mtDNA diversity per population, a characteristic of the HG population was the occurrence of similar pattern distribution as compared to G. gallus spadiceus. However, there was no geographical evidence of gene flow between wild and domestic populations as observed when microsatellites were used. Conclusions

  5. SSR-based genetic diversity and structure of garlic accessions from Brazil.

    Science.gov (United States)

    da Cunha, Camila Pinto; Resende, Francisco Vilela; Zucchi, Maria Imaculada; Pinheiro, José Baldin

    2014-10-01

    Garlic is a spice and a medicinal plant; hence, there is an increasing interest in 'developing' new varieties with different culinary properties or with high content of nutraceutical compounds. Phenotypic traits and dominant molecular markers are predominantly used to evaluate the genetic diversity of garlic clones. However, 24 SSR markers (codominant) specific for garlic are available in the literature, fostering germplasm researches. In this study, we genotyped 130 garlic accessions from Brazil and abroad using 17 polymorphic SSR markers to assess the genetic diversity and structure. This is the first attempt to evaluate a large set of accessions maintained by Brazilian institutions. A high level of redundancy was detected in the collection (50 % of the accessions represented eight haplotypes). However, non-redundant accessions presented high genetic diversity. We detected on average five alleles per locus, Shannon index of 1.2, HO of 0.5, and HE of 0.6. A core collection was set with 17 accessions, covering 100 % of the alleles with minimum redundancy. Overall FST and D values indicate a strong genetic structure within accessions. Two major groups identified by both model-based (Bayesian approach) and hierarchical clustering (UPGMA dendrogram) techniques were coherent with the classification of accessions according to maturity time (growth cycle): early-late and midseason accessions. Assessing genetic diversity and structure of garlic collections is the first step towards an efficient management and conservation of accessions in genebanks, as well as to advance future genetic studies and improvement of garlic worldwide.

  6. Genetic diversity among ancient Nordic populations.

    Directory of Open Access Journals (Sweden)

    Linea Melchior

    Full Text Available Using established criteria for work with fossil DNA we have analysed mitochondrial DNA from 92 individuals from 18 locations in Denmark ranging in time from the Mesolithic to the Medieval Age. Unequivocal assignment of mtDNA haplotypes was possible for 56 of the ancient individuals; however, the success rate varied substantially between sites; the highest rates were obtained with untouched, freshly excavated material, whereas heavy handling, archeological preservation and storage for many years influenced the ability to obtain authentic endogenic DNA. While the nucleotide diversity at two locations was similar to that among extant Danes, the diversity at four sites was considerably higher. This supports previous observations for ancient Britons. The overall occurrence of haplogroups did not deviate from extant Scandinavians, however, haplogroup I was significantly more frequent among the ancient Danes (average 13% than among extant Danes and Scandinavians (approximately 2.5% as well as among other ancient population samples reported. Haplogroup I could therefore have been an ancient Southern Scandinavian type "diluted" by later immigration events. Interestingly, the two Neolithic samples (4,200 YBP, Bell Beaker culture that were typed were haplogroup U4 and U5a, respectively, and the single Bronze Age sample (3,300-3,500 YBP was haplogroup U4. These two haplogroups have been associated with the Mesolithic populations of Central and Northern Europe. Therefore, at least for Southern Scandinavia, our findings do not support a possible replacement of a haplogroup U dominated hunter-gatherer population by a more haplogroup diverse Neolithic Culture.

  7. Population structure and genetic diversity of black redhorse (Moxostoma duquesnei) in a highly fragmented watershed

    Science.gov (United States)

    Reid, S.M.; Wilson, C.C.; Mandrak, N.E.; Carl, L.M.

    2008-01-01

    Dams have the potential to affect population size and connectivity, reduce genetic diversity, and increase genetic differences among isolated riverine fish populations. Previous research has reported adverse effects on the distribution and demographics of black redhorse (Moxostoma duquesnei), a threatened fish species in Canada. However, effects on genetic diversity and population structure are unknown. We used microsatellite DNA markers to assess the number of genetic populations in the Grand River (Ontario) and to test whether dams have resulted in a loss of genetic diversity and increased genetic differentiation among populations. Three hundred and seventy-seven individuals from eight Grand River sites were genotyped at eight microsatellite loci. Measures of genetic diversity were moderately high and not significantly different among populations; strong evidence of recent population bottlenecks was not detected. Pairwise FST and exact tests identified weak (global FST = 0.011) but statistically significant population structure, although little population structuring was detected using either genetic distances or an individual-based clustering method. Neither geographic distance nor the number of intervening dams were correlated with pairwise differences among populations. Tests for regional equilibrium indicate that Grand River populations were either in equilibrium between gene flow and genetic drift or that gene flow is more influential than drift. While studies on other species have identified strong dam-related effects on genetic diversity and population structure, this study suggests that barrier permeability, river fragment length and the ecological characteristics of affected species can counterbalance dam-related effects. ?? 2007 Springer Science+Business Media B.V.

  8. Genetic Diversity Based on Allozyme Alleles of Chinese Cultivated Rice

    Institute of Scientific and Technical Information of China (English)

    TANG Sheng-xiang; WEI Xing-hua; JIANG Yun-zhu; D S Brar; G S Khush

    2007-01-01

    Genetic diversity was analyzed with 6 632 core rice cultivars selected from 60 282 Chinese rice accessions on the basis of 12 allozyme loci, Pgil, Pgi2, Ampl, Amp2, Amp3, Amp4, Sdh1, Adh1, Est1, Est2, Est5 and Est9, by starch gel electrophoresis. Among the materials examined, 52 alleles at 12 polymorphic loci were identified, which occupied 96.3% of 54 alleles found in cultivated germplasm of O.sativa L. The number of alleles per locus ranged from 2 to 7 with an average of 4.33. The gene diversity (He) each locus varied considerably from 0.017 for Amp4 to 0.583 for Est2 with an average gene diversity (Ht) 0.271, and Shannon-Wiener index from 0.055 to 0.946 with an average of 0.468. The degree of polymorphism (DP) was in a range from 0.9 to 46.9% with an average of 21.4%. It was found that the genetic diversity in japonica (Keng) subspecies was lower in terms of allele's number, Ht and S-W index, being 91.8, 66.2 and 75.7% of indica (Hsien) one, respectively. Significant genetic differentiation between indica and japonica rice has been appeared in the loci Pgil, Amp2, Pgi2, and Est2, with higher average coefficient of genetic differentiation (Gst) 0.635, 0.626, 0.322 and 0.282, respectively. Except less allele number per locus (3.33) for modern cultivars, being 76.9% of landraces, the Ht and S-W index showed in similar between the modern cultivars and the landraces detected. In terms of allozyme, the rice cultivars in the Southwest Plateau and Central China have richer genetic diversity. The present study reveals again that Chinese cultivated rice germplasm has rich genetic diversity, showed by the allozyme allele variation.

  9. High genetic diversity in a potentially vulnerable tropical tree species despite extreme habitat loss.

    Science.gov (United States)

    Noreen, Annika M E; Webb, Edward L

    2013-01-01

    Over the last 150 years, Singapore's primary forest has been reduced to less than 0.2% of its previous area, resulting in extinctions of native flora and fauna. Remaining species may be threatened by genetic erosion and inbreeding. We surveyed >95% of the remaining primary forest in Singapore and used eight highly polymorphic microsatellite loci to assess genetic diversity indices of 179 adults (>30 cm stem diameter), 193 saplings (>1 yr), and 1,822 seedlings (consequences of habitat loss: (1) that the K. malaccensis population in Singapore experienced a genetic bottleneck and a reduction in effective population size, and (2) K. malaccensis recruits would exhibit genetic erosion and inbreeding compared to adults. Contrary to expectations, we detected neither a population bottleneck nor a reduction in effective population size, and high genetic diversity in all age classes. Genetic diversity indices among age classes were not significantly different: we detected overall high expected heterozygosity (He = 0.843-0.854), high allelic richness (R = 16.7-19.5), low inbreeding co-efficients (FIS = 0.013-0.076), and a large proportion (30.1%) of rare alleles (i.e. frequency cause for concern, as rare alleles could be lost due to stochastic factors. The high outcrossing rate (tm = 0.961), calculated from seedlings, may be instrumental in maintaining genetic diversity and suggests that pollination by highly mobile bee species in the genus Apis may provide resilience to acute habitat loss. PMID:24367531

  10. Genetic diversity of Plasmodium vivax and Plasmodium falciparum in Honduras

    Directory of Open Access Journals (Sweden)

    Lopez Ana

    2012-11-01

    Full Text Available Abstract Background Understanding the population structure of Plasmodium species through genetic diversity studies can assist in the design of more effective malaria control strategies, particularly in vaccine development. Central America is an area where malaria is a public health problem, but little is known about the genetic diversity of the parasite’s circulating species. This study aimed to investigate the allelic frequency and molecular diversity of five surface antigens in field isolates from Honduras. Methods Five molecular markers were analysed to determine the genotypes of Plasmodium vivax and Plasmodium falciparum from endemic areas in Honduras. Genetic diversity of ama-1, msp-1 and csp was investigated for P. vivax, and msp-1 and msp-2 for P. falciparum. Allelic frequencies were calculated and sequence analysis performed. Results and conclusion A high genetic diversity was observed within Plasmodium isolates from Honduras. A different number of genotypes were elucidated: 41 (n = 77 for pvama-1; 23 (n = 84 for pvcsp; and 23 (n = 35 for pfmsp-1. Pvcsp sequences showed VK210 as the only subtype present in Honduran isolates. Pvmsp-1 (F2 was the most polymorphic marker for P. vivax isolates while pvama-1 was least variable. All three allelic families described for pfmsp-1 (n = 30 block 2 (K1, MAD20, and RO33, and both allelic families described for the central domain of pfmsp-2 (n = 11 (3D7 and FC27 were detected. However, K1 and 3D7 allelic families were predominant. All markers were randomly distributed across the country and no geographic correlation was found. To date, this is the most complete report on molecular characterization of P. vivax and P. falciparum field isolates in Honduras with regards to genetic diversity. These results indicate that P. vivax and P. falciparum parasite populations are highly diverse in Honduras despite the low level of transmission.

  11. Genetic diversity studies of Kherigarh cattle based on microsatellite markers

    Indian Academy of Sciences (India)

    A. K. Pandey; Rekha Sharma; Yatender Singh; B. B. Prakash; S. P. S. Ahlawat

    2006-08-01

    We report a genetic diversity study of Kherigarh cattle, a utility draught-purpose breed of India, currently declining at a startling rate, by use of microsatellite markers recommended by the Food and Agriculture Organization. Microsatellite genotypes were derived, and allelic and genotypic frequencies, heterozygosities and gene diversity were estimated. A total of 131 alleles were distinguished by the 21 microsatellite markers used. All the microsatellites were highly polymorphic, with mean (± s.e.) allelic number of 6.24 ± 1.7, ranging 4–10 per locus. The observed heterozygosity in the population ranged between 0.261 and 0.809, with mean (± s.e.) of 0.574 ± 0.131, indicating considerable genetic variation in this population. Genetic bottleneck hypotheses were also explored. Our data suggest that the Kherigarh breed has not experienced a genetic bottleneck in the recent past.

  12. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Science.gov (United States)

    Rivarola, Maximo; Foster, Jeffrey T; Chan, Agnes P; Williams, Amber L; Rice, Danny W; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M J; Khouri, Hoda M; Beckstrom-Sternberg, Stephen M; Allan, Gerard J; Keim, Paul; Ravel, Jacques; Rabinowicz, Pablo D

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  13. Castor bean organelle genome sequencing and worldwide genetic diversity analysis.

    Directory of Open Access Journals (Sweden)

    Maximo Rivarola

    Full Text Available Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and forensic tools, we carried out an extensive chloroplast sequence diversity analysis. Taking advantage of the recently published genome sequence of castor bean, we assembled the chloroplast and mitochondrion genomes extracting selected reads from the available whole genome shotgun reads. Using the chloroplast reference genome we used the methylation filtration technique to readily obtain draft genome sequences of 7 geographically and genetically diverse castor bean accessions. These sequence data were used to identify single nucleotide polymorphism markers and phylogenetic analysis resulted in the identification of two major clades that were not apparent in previous population genetic studies using genetic markers derived from nuclear DNA. Two distinct sub-clades could be defined within each major clade and large-scale genotyping of castor bean populations worldwide confirmed previously observed low levels of genetic diversity and showed a broad geographic distribution of each sub-clade.

  14. Combined use of a new SNP-based assay and multilocus SSR markers to assess genetic diversity of Xylella fastidiosa subsp. pauca infecting citrus and coffee plants.

    Science.gov (United States)

    Montes-Borrego, Miguel; Lopes, Joao R S; Jiménez-Díaz, Rafael M; Landa, Blanca B

    2015-03-01

    Two haplotypes of Xylella fastidiosa subsp. pauca (Xfp) that correlated with their host of origin were identified in a collection of 90 isolates infecting citrus and coffee plants in Brazil, based on a single-nucleotide polymorphism in the gyrB sequence. A new single-nucleotide primer extension (SNuPE) protocol was designed for rapid identification of Xfp according to the host source. The protocol proved to be robust for the prediction of the Xfp host source in blind tests using DNA from cultures of the bacterium, infected plants, and insect vectors allowed to feed on Xfp-infected citrus plants. AMOVA and STRUCTURE analyses of microsatellite data separated most Xfp populations on the basis of their host source, indicating that they were genetically distinct. The combined use of the SNaPshot protocol and three previously developed multilocus SSR markers showed that two haplotypes and distinct isolates of Xfp infect citrus and coffee in Brazil and that multiple, genetically different isolates can be present in a single orchard or infect a single tree. This combined approach will be very useful in studies of the epidemiology of Xfp-induced diseases, host specificity of bacterial genotypes, the occurrence of Xfp host jumping, vector feeding habits, etc., in economically important cultivated plants or weed host reservoirs of Xfp in Brazil and elsewhere. PMID:26415663

  15. Dynamic Change of Genetic Diversity in Conserved Populations with Different Initial Genetic Architectures

    Institute of Scientific and Technical Information of China (English)

    LU Yun-feng; LI Hong-wei; WU Ke-liang; WU Chang-xin

    2013-01-01

    Maintenance and management of genetic diversity of farm animal genetic resources (AnGR) is very important for biological, socioeconomical and cultural significance. The core concern of conservation for farm AnGR is the retention of genetic diversity of conserved populations in a long-term perspective. However, numerous factors may affect evolution of genetic diversity of a conserved population. Among those factors, the genetic architecture of conserved populations is little considered in current conservation strategies. In this study, we investigated the dynamic changes of genetic diversity of conserved populations with two scenarios on initial genetic architectures by computer simulation in which thirty polymorphic microsatellite loci were chosen to represent genetic architecture of the populations with observed heterozygosity (Ho) and expected heterozygosity (He), observed and mean effective number of alleles (Ao and Ae), number of polymorphic loci (NP) and the percentage of polymorphic loci (PP), number of rare alleles (RA) and number of non-rich polymorphic loci (NRP) as the estimates of genetic diversity. The two scenarios on genetic architecture were taken into account, namely, one conserved population with same allele frequency (AS) and another one with actual allele frequency (AA). The results showed that the magnitude of loss of genetic diversity is associated with genetic architecture of initial conserved population, the amplitude of genetic diversity decline in the context AS was more narrow extent than those in context AA, the ranges of decline of Ho and Ao were about 4 and 2 times in AA compared with that in AS, respectively, the occurrence of first monomorphic locus and the time of change of measure NP in scenario AA is 20 generations and 23 generations earlier than that in scenario AS, respectively. Additionally, we found that NRP, a novel measure proposed by our research group, was a proper estimate for monitoring the evolution of genetic diversity

  16. GENETIC DIVERSITY OF THE WILD AND REARED PSEUDOSCIAENA CROCEA

    Institute of Scientific and Technical Information of China (English)

    王军; 苏永全; 全成干; 丁少雄; 张纹

    2001-01-01

    The genetic diversity of both wild and reared Pseudosciaena crocea (Richardson) col-lected from Guan-Jing-Yang in Ningde, China in May 1999 was investigated by random amplified poly-morphic DNA (RAPD) in the present study. The polymorphism and mean difference of the wild popula-tion as revealed by RAPD were 18.9% and 0.0960 respectively, and those of the reared stocks were rel-atively lower, with 16.7% in polymorphism and 0.0747 in mean difference. The genetic distance be-tween the two stocks was 0.0041. From the comprehensive investigation, the main reasons for the loss of genetic diversity were probably overilshing, small number of parents as broodstocks and the debatable arti-ficial ranching. Results from this study also showed that the large yellow croaker populations distributed along Fujian coastal waters including Guan-Jing-Yang still potentially wide genetic variability. It is sug-gested that genetic management and prevention should be scientifically conducted in order to maintain and improve the genetic diversity of the P. crocea population.

  17. GENETIC DIVERSITY OF THE WILD AND REARED PSEUDOSCIAENA CROCEA

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The genetic diversity of both wild and reared Pseudosciaena crocea (Richardson) collected from Guan-Jing-Yang in Ningde, China in May 1999 was investigated by random amplified polymorphic DNA (RAPD) in the present study. The polymorphism and mean difference of the wild population as revealed by RAPD were 18.9% and 0.0960 respectively, and those of the reared stocks were relatively lower, with 16.7% in polymorphism and 0.0747 in mean difference. The genetic distance between the two stocks was 0.0041. From the comprehensive investigation, the main reasons for the loss of genetic diversity were probably overfishing, small number of parents as broodstocks and the debatable artificial ranching. Results from this study also showed that the large yellow croaker populations distributed along Fujian coastal waters including Guan-Jing-Yang still potentially wide genetic variability. It is suggested that genetic management and prevention should be scientifically conducted in order to maintain and improve the genetic diversity of the P. crocea population.

  18. Genetic diversity in wild populations of Paulownia fortune.

    Science.gov (United States)

    Li, H Y; Ru, G X; Zhang, J; Lu, Y Y

    2014-11-01

    The genetic diversities of 16 Paulownia fortunei populations involving 143 individuals collected from 6 provinces in China were analyzed using amplified fragment length polymorphism (AFLP). A total of 9 primer pairs with 1169 polymorphic loci were screened out, and each pair possessed 132 bands on average. The percentage of polymorphic bands (98.57%), the effective number of alleles (1.2138-1.2726), Nei's genetic diversity (0.1566-0.1887), and Shannon's information index (0.2692-0.3117) indicated a plentiful genetic diversity and different among Paulownia fortunei populations. The genetic differentiation coefficient between populations was 0.2386, while the gene flow was 1.0954, and the low gene exchange promoted genetic differentiation. Analysis of variance indicated that genetic variation mainly occurred within populations (81.62% of total variation) rather than among populations (18.38%). The 16 populations were divided by unweighted pair-group method with arithmetic means (UPGMA) into 4 groups with obvious regionalism, in which the populations with close geographical locations (latitude) were clustered together. PMID:25739286

  19. Genetic diversity and conservation status of managed vicuña (Vicugna vicugna) populations in Argentina.

    Science.gov (United States)

    Anello, M; Daverio, M S; Romero, S R; Rigalt, F; Silbestro, M B; Vidal-Rioja, L; Di Rocco, F

    2016-02-01

    The vicuña (Vicugna vicugna) was indiscriminately hunted for more than 400 years and, by the end of 1960s, it was seriously endangered. At that time, a captive breeding program was initiated in Argentina by the National Institute of Agricultural Technology (INTA) with the aim of preserving the species. Nowadays, vicuñas are managed in captivity and in the wild to obtain their valuable fiber. The current genetic status of Argentinean vicuña populations is virtually unknown. Using mitochondrial DNA and microsatellite markers, we assessed levels of genetic diversity of vicuña populations managed in the wild and compared it with a captive population from INTA. Furthermore, we examined levels of genetic structure and evidence for historical bottlenecks. Overall, all populations revealed high genetic variability with no signs of inbreeding. Levels of genetic diversity between captive and wild populations were not significantly different, although the captive population showed the lowest estimates of allelic richness, number of mitochondrial haplotypes, and haplotype diversity. Significant genetic differentiation at microsatellite markers was found between free-living populations from Jujuy and Catamarca provinces. Moreover, microsatellite data also revealed genetic structure within the Catamarca management area. Genetic signatures of past bottlenecks were detected in wild populations by the Garza Williamson test. Results from this study are discussed in relation to the conservation and management of the species.

  20. Reducing the loss of genetic diversity associated with assisted colonization-like introductions of animals

    Institute of Scientific and Technical Information of China (English)

    Jaana KEKKONEN; Jon E BROMMER

    2015-01-01

    Translocations, especially assisted colonizations, of animals are increasingly used as a conservation management tool. In many cases, however, limited funding and other logistic challenges limit the number of individuals available for translocation. In conservation genetics, small populations are predicted to rapidly lose genetic diversity which can deteriorate population sur-vival. Thus, how worried should we be about the loss of genetic diversity when introducing small, isolated populations? Histori-cal species introductions provide a means to assess these issues. Here we review 13 studies of “assisted colonization-like” intro-ductions of animals, where only a small known number of founders established an isolated population without secondary contact to the source population. We test which factors could be important in retaining genetic diversity in these cases. In many cases, loss in heterozygosity (-12.1%) was detected, and more seriously the loss in allelic richness (-27.8 %). Number of founders seemed to have an effect but it also indicated that high population growth rate could help to retain genetic diversity, i.e. future management actions could be effective even with a limited number of founders if population growth would be enhanced. On the contrary, translocated organisms with longer generation times did not seem to retain more genetic diversity. We advocate that, where possible, future studies on translocated animals should report the loss of genetic diversity (both heterozygosity and allelic richness), which is essential for meta-analyses like this one for deepening our understanding of the genetic consequences of as-sisted colonization, and justifying management decisions [Current Zoology 61 (5): 827–834, 2015].

  1. Genetic diversity of natural Hepatacodium miconioides populations in Zhejiang Province

    Institute of Scientific and Technical Information of China (English)

    LI Junmin; JIN Zexin

    2006-01-01

    Hepatacodium miconioides is the Class Ⅱ protected plant species in China.This paper studies the genetic diversity and differentiation of its nine natural populations in Zhejiang Province by using random amplified polymorphic DNA (RAPD) technique.Twelve random primers were selected in the amplification,and 164 repetitive loci were produced.The percentage of polymorphic loci in each H.miconioides population ranged from 14.60% to 27.44%,with an average of 20.73%.Among the test populations,Kuochangshan had the highest percentage of polymorphic loci,Simingshan took the second place,and Guanyinping had the lowest percentage.As estimated by Shannon index,the genetic diversity within H.miconioides populations accounted for 27.28% of the total genetic diversity,while that among H.miconioides populations accounted for 72.72%.The genetic differentiation among H.miconioides populations as estimated by Nei index was 0.715,7.This figure was generally consistent with that estimated by Shannon index,i.e.,the genetic differentiation among populations was relatively high,but that within populations was relatively low.The gene flow among H.miconioides populations was relatively low (0.198,7),and the genetic similarity ranged from 0.655,7 to 0.811,9,with an average of 0.730,6.The highest genetic distance among populations was 0.422,9,while the lowest was 0.208,3.All the results showed that there was a distinct genetic differentiation among H.miconioides populations.The genetic distance matrix of nine test populations was calculated using this method,and the clustering analysis was made using the unweighted pair group method with arithmetic mean (UPGMA).The cluster analysis suggested that the ninepopulations of H.miconioides in Zhejiang Province could be divided into two groups,the eastern Zhejiang group and the western Zhejiang group.

  2. Risk assessment of Genetically Modified Organisms (GMOs

    Directory of Open Access Journals (Sweden)

    Waigmann E

    2012-10-01

    Full Text Available

    EFSA’s remit in the risk assessment of GMOs is very broad encompassing genetically modified plants, microorganisms and animals and assessing their safety for humans, animals and the environment. The legal frame for GMOs is set by Directive 2001/18/EC on their release into the environment, and Regulation (EC No 1829/2003 on GM food and feed. The main focus of EFSA’s GMO Panel and GMO Unit lies in the evaluation of the scientific risk assessment of new applications for market authorisation of GMOs, and in the development of corresponding guidelines for the applicants. The EFSA GMO Panel has elaborated comprehensive guidance documents on GM plants, GM microorganisms and GM animals, as well as on specific aspects of risk assessment such as the selection of comparators. EFSA also provides special scientific advice upon request of the European Commission; examples are post-market environmental monitoring of GMOs, and consideration of potential risks of new plant breeding techniques. The GMO Panel regularly reviews its guidance documents in the light of experience gained with the evaluation of applications, technological progress in breeding technologies and scientific developments in the diverse areas of risk assessment.

  3. Sequence variation and genetic diversity in the giant panda

    Institute of Scientific and Technical Information of China (English)

    张亚平; Oliver A.Ryder; 范志勇; 张和明; 何廷美; 何光昕; 张安居; 费立松; 钟顺隆; 陈红; 张成林; 杨明海; 朱飞兵; 彭真信; 普天春; 陈玉村; 姚敏达; 郭伟

    1997-01-01

    About 336-444 bp mitochondrial D-loop region and tRNA gene were sequenced for 40 individuals of the giant panda which were collected from Mabian, Meigu, Yuexi, Baoxing, Pingwu, Qingchuan, Nanping and Baishuijiang, respectively. 9 haplotypes were found in 21 founders. The results showed that the giant panda has low genetic variations, and that there is no notable genetic isolation among geographical populations. The ancestor of the living giant panda population perhaps appeared in the late Pleistocene, and unfortunately, might have suffered bottle-neck attacks. Afterwards, its genetic diversity seemed to recover to some extent.

  4. Gene diversity and genetic variation in lung flukes (genus Paragonimus).

    Science.gov (United States)

    Blair, David; Nawa, Yukifumi; Mitreva, Makedonka; Doanh, Pham Ngoc

    2016-01-01

    Paragonimiasis caused by lung flukes (genus Paragonimus) is a neglected disease occurring in Asia, Africa and the Americas. The genus is species-rich, ancient and widespread. Genetic diversity is likely to be considerable, but investigation of this remains confined to a few populations of a few species. In recent years, studies of genetic diversity have moved from isoenzyme analysis to molecular phylogenetic analysis based on selected DNA sequences. The former offered better resolution of questions relating to allelic diversity and gene flow, whereas the latter is more suitable for questions relating to molecular taxonomy and phylogeny. A picture is emerging of a highly diverse taxon of parasites, with the greatest diversity found in eastern and southern Asia where ongoing speciation might be indicated by the presence of several species complexes. Diversity of lung flukes in Africa and the Americas is very poorly sampled. Functional molecules that might be of value for immunodiagnosis, or as targets for medical intervention, are of great interest. Characterisation of these from Paragonimus species has been ongoing for a number of years. However, the imminent release of genomic and transcriptomic data for several species of Paragonimus will dramatically increase the rate of discovery of such molecules, and illuminate their diversity within and between species.

  5. Detection of Genetic Variation and Genetic Diversity in Two Indian Mudskipper Species (Boleophthalmus boddarti, B. dussumieri using RAPD Marker

    Directory of Open Access Journals (Sweden)

    Vellaichamy RAMANADEVI

    2013-05-01

    Full Text Available Due to the environmental changes and habitat destruction the mudskipper fish population is decreasing in recent years. To predict the fish population structure, frequent manual survey and molecular methods are widely used. Molecular markers such as RAPD, microsatellite, allozyme, D-loop haplotype are frequently adopted to assess the population structure of an organism. In this study ten- arbitrary primers were screened to estimate the genetic relationships and diversity of two mudskipper species (Boleophthalmus boddarti and B. dussumieri in Vellar estuary, Tamilnadu, India. By this RAPD marker study, the genetic diversity (H in B. boddarti was more (0.0116 ± 0.0066 than in B. dussumieri (0.0056 ± 0.0024 in Vellar estuary (India. The genetic distance between B. boddarti and B. dussumieri was 1.7943. By observing the species specific bands and the phylogenetic analysis it is revealed that these two species clearly deviated into separate clusters emphasizing the distinct species status.

  6. Pneumocystis carinii: genetic diversity and cell biology.

    Science.gov (United States)

    Smulian, A G

    2001-12-01

    As an important opportunistic pulmonary pathogen, Pneumocystis carinii has been the focus of extensive research over the decades. The use of laboratory animal models has permitted a detailed understanding of the host-parasite interaction but an understanding of the basic biology of P. carinii has lagged due in large part to the inability of the organism to grow well in culture and to the lack of a tractable genetic system. Molecular techniques have demonstrated extensive heterogeneity among P. carinii organisms isolated from different host species. Characterization of the genes and genomes of the Pneumocystis family has supported the notion that the family comprises different species rather than strains within the genus Pneumocystis and contributed to the understanding of the pathophysiology of infection. Many of the technical obstacles in the study of the organisms have been overcome in the past decade and the pace of research into the basic biology of the organism has accelerated. Biochemical pathways have been inferred from the presence of key enzyme activities or gene sequences, and attempts to dissect cellular pathways have been initiated. The Pneumocystis genome project promises to be a rich source of information with regard to the functional activity of the organism and the presence of specific biochemical pathways. These advances in our understanding of the biology of this organism should provide for future studies leading to the control of this opportunistic pathogen.

  7. Genetic diversity and demographic instability in Riftia pachyptila tubeworms from eastern Pacific hydrothermal vents

    Directory of Open Access Journals (Sweden)

    Lutz Richard A

    2011-04-01

    Full Text Available Abstract Background Deep-sea hydrothermal vent animals occupy patchy and ephemeral habitats supported by chemosynthetic primary production. Volcanic and tectonic activities controlling the turnover of these habitats contribute to demographic instability that erodes genetic variation within and among colonies of these animals. We examined DNA sequences from one mitochondrial and three nuclear gene loci to assess genetic diversity in the siboglinid tubeworm, Riftia pachyptila, a widely distributed constituent of vents along the East Pacific Rise and Galápagos Rift. Results Genetic differentiation (FST among populations increased with geographical distances, as expected under a linear stepping-stone model of dispersal. Low levels of DNA sequence diversity occurred at all four loci, allowing us to exclude the hypothesis that an idiosyncratic selective sweep eliminated mitochondrial diversity alone. Total gene diversity declined with tectonic spreading rates. The southernmost populations, which are subjected to superfast spreading rates and high probabilities of extinction, are relatively homogenous genetically. Conclusions Compared to other vent species, DNA sequence diversity is extremely low in R. pachyptila. Though its dispersal abilities appear to be effective, the low diversity, particularly in southern hemisphere populations, is consistent with frequent local extinction and (recolonization events.

  8. Loss of Genetic Diversity of Jatropha curcas L. through Domestication: Implications for Its Genetic Improvement

    DEFF Research Database (Denmark)

    Sanou, Haby; Angel Angulo-Escalante, Miguel; Martinez-Herrera, Jorge;

    2015-01-01

    Jatropha curcas L. has been promoted as a “miracle” tree in many parts of the world, but recent studies have indicated very low levels of genetic diversity in various landraces. In this study, the genetic diversity of landrace collections of J. curcas was compared with the genetic diversity of th...

  9. Molecular Diversity and Genetic Structure of Durum Wheat Landraces

    Directory of Open Access Journals (Sweden)

    GULNAR SHIKHSEYIDOVA

    2015-06-01

    Full Text Available To determine the genetic diversity of durum wheat, 41 accessions from Morocco, Ethiopia, Turkey, Lebanon, Kazakhstan, China, and Mongolia were analyzed through Inter-Simple Sequence Repeats (ISSR molecular markers. Out of the used twenty primers, 15 primers that included a considerable polymorphism were selected for the analyses. Among the genotypes under study, 163 fragments (73.7% were polymorph. Several indexes were used to determine the most appropriate primers. While UBC812, UBC864, UBC840, and UBC808 primers were among those markers which produced the highest number of bands and polymorphic bands, they also dedicated the highest rate of polymorphic index content (PIC. These primers also possessed the highest amounts of effective multiplex ratio (EMR and marker index (MI. Therefore, these primers can be recommended for genetic evaluation of the durum wheat. The results of cluster analysis and principle component analysis indicated that the observed genetic diversity in wheat materials under study is geographically structured. The results also indicated that the genetic diversity index based on ISSR markers was higher for Turkey, Lebanon, Morocco, and Ethiopia accessions than for other countries. The high level of polymorphism in this collections durum wheat would agree with the suggestion that Fertile Crescent and parts of Africa are first possible diversity center of this crop.

  10. Genetic diversity in diploid vs. tetraploid Rorippa amphibia (Brassicaceae)

    NARCIS (Netherlands)

    P.C. Luttikhuizen; M. Stift; P. Kuperus; P.H. van Tienderen

    2007-01-01

    The frequency of polyploidy increases with latitude in the Northern Hemisphere, especially in deglaciated, recently colonized areas. The cause or causes of this pattern are largely unknown, but a greater genetic diversity of individual polyploid plants due to a doubled genome and/or a hybrid origin

  11. Genetic diversity of Ascaris in southwestern Uganda

    DEFF Research Database (Denmark)

    Betson, Martha; Nejsum, Peter; Llewellyn-Hughes, Julia;

    2012-01-01

    Despite the common occurrence of ascariasis in southwestern Uganda, helminth control in the region has been limited. To gain further insights into the genetic diversity of Ascaris in this area, a parasitological survey in mothers (n=41) and children (n=74) living in two villages, Habutobere and M...

  12. Genetic diversity of Actinobacillus lignieresii isolates from different hosts

    DEFF Research Database (Denmark)

    Kokotovic, Branko; Angen, Øystein; Bisgaard, Magne

    2011-01-01

    Genetic diversity detected by analysis of amplified fragment length polymorphisms (AFLPs) of 54 Actinobacilus lignieresii isolates from different hosts and geographic localities is described. On the basis of variances in AFLP profiles, the strains were grouped in two major clusters; one comprisin...

  13. Molecular genetic diversity and genetic structure of Vietnamese indigenous pig populations

    DEFF Research Database (Denmark)

    Pham, L. D.; Do, Duy Ngoc; Nam, L. Q.;

    2014-01-01

    alleles (MNA = 10.1), gene diversity (He = 0.82), allele richness (5.33) and number of private alleles (10). Thirteen percentage of the total genetic variation observed was due to differences among populations. The neighbour-joining dendrogram obtained from Nei's standard genetic distance differentiated...

  14. Population structure and genetic diversity of the orchid bee Eufriesea violacea (Hymenoptera, Apidae, Euglossini) from Atlantic Forest remnants in southern and southeastern Brazil

    OpenAIRE

    Freiria, Gabriele; Ruim, Juliana; Souza, Rogério; Sofia, Silvia

    2012-01-01

    In this study, both the genetic diversity and population genetic structure of Eufriesea violacea from six Atlantic Forest fragments, located in four Brazilian states, were assessed using microsatellite markers. The results showed that genetic diversity was high in all populations and the genetic differentiation (Φ ST), based on allelic frequency differences, for all population pairwise comparisons was found to be significantly different from zero, indicating from low to moderate genetic diffe...

  15. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems.

    Directory of Open Access Journals (Sweden)

    Sascha van der Meer

    Full Text Available Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68, which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G"ST = 0.269 and 0.164 and DEST = 0.190 and 0.124, respectively and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands.

  16. Genetic Diversity and Spatial Genetic Structure of the Grassland Perennial Saxifraga granulata along Two River Systems.

    Science.gov (United States)

    van der Meer, Sascha; Jacquemyn, Hans

    2015-01-01

    Due to changes in land use, the natural habitats of an increasing number of plant species have become more and more fragmented. In landscapes that consist of patches of suitable habitat, the frequency and extent of long-distance seed dispersal can be expected to be an important factor determining local genetic diversity and regional population structure of the remaining populations. In plant species that are restricted to riparian habitats, rivers can be expected to have a strong impact on the dynamics and spatial genetic structure of populations as they may enable long-distance seed dispersal and thus maintain gene flow between fragmented populations. In this study, we used polymorphic microsatellite markers to investigate the genetic diversity and the spatial genetic structure of 28 populations of Saxifraga granulata along two rivers in central Belgium. We hypothesized that rivers might be essential for gene flow among increasingly isolated populations of this species. Genetic diversity was high (HS = 0.68), which to a certain extent can be explained by the octoploid nature of S. granulata in the study area. Populations along the Dijle and Demer rivers were also highly differentiated (G"ST = 0.269 and 0.164 and DEST = 0.190 and 0.124, respectively) and showed significant isolation-by-distance, indicating moderate levels of gene flow primarily between populations that are geographically close to each other. Along the river Demer population genetic diversity was higher upstream than downstream, suggesting that seed dispersal via the water was not the primary mode of dispersal. Overall, these results indicate that despite increasing fragmentation populations along both rivers were highly genetically diverse. The high ploidy level and longevity of S. granulata have most likely buffered negative effects of fragmentation on genetic diversity and the spatial genetic structure of populations in riparian grasslands. PMID:26079603

  17. Analysis of population structure and genetic diversity of Egyptian and exotic rice (Oryza sativa L.) genotypes.

    Science.gov (United States)

    Salem, Khaled F M; Sallam, Ahmed

    2016-01-01

    Understanding the population structure and genetic diversity is a very important goal to improve the economic value of crops. In rice, a loss of genetic diversity in the last few centuries is observed. To address this challenge, a set of 22 lines from three different regions - India (two), and Philippines (six), and Egypt (14) - were used to assess the genetic diversity and the features of population structure. These genotypes were analyzed using 106 SSR alleles that showed a clear polymorphism among the lines. Genetic diversity was estimated based on the number of different alleles, polymorphism information content (PIC), and gene diversity. A total of 106 SSR alleles was identified from the 23 SSR loci and used to study the population structure and carry out a cluster analysis. All SSR loci showed a wide range of the number of different alleles extended from two (one loci) to seven alleles (three loci). Five and eight loci showed high PIC and gene diversity (≥0.70), respectively. The results of population structure are in agreement with cluster analysis results. Both analyses revealed two different subpopulations (G1 and G2) with different genetic properties in number of private alleles, number of different alleles (Na), number of effective alleles (Ne), expected heterozygosity (He), and Shannon's Information Index (SII). Our findings indicate that five SSR loci (RM 111, RM 307, RM 22, RM 19, and RM 271) could be used in breeding programs to enhance the marker-assisted selection through QTL mapping and association studies. A high genetic diversity found between genotypes which can be exploited to improve and produce rice cultivars for important traits (e.g. high agronomic features and tolerance to biotic or/and abiotic stresses).

  18. Soil properties drive a negative correlation between species diversity and genetic diversity in a tropical seasonal rainforest.

    Science.gov (United States)

    Xu, Wumei; Liu, Lu; He, Tianhua; Cao, Min; Sha, Liqing; Hu, Yuehua; Li, Qiaoming; Li, Jie

    2016-01-01

    A negative species-genetic diversity correlation (SGDC) could be predicted by the niche variation hypothesis, whereby an increase in species diversity within community reduces the genetic diversity of the co-occurring species because of the reduction in average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of the species within community. We tested these predictions within a 20 ha tropical forest dynamics plot (FDP) in the Xishuangbanna tropical seasonal rainforest. We established 15 plots within the FDP and investigated the soil properties, tree diversity, and genetic diversity of a common tree species Beilschmiedia roxburghiana within each plot. We observed a significant negative correlation between tree diversity and the genetic diversity of B. roxburghiana within the communities. Using structural equation modeling, we further determined that the inter-plot environmental characteristics (soil pH and phosphorus availability) directly affected tree diversity and that the tree diversity within the community determined the genetic diversity of B. roxburghiana. Increased soil pH and phosphorus availability might promote the coexistence of more tree species within community and reduce genetic diversity of B. roxburghiana for the reduced average niche breadth; alternatively, competition could reduce effective population size and therefore genetic diversity of B. roxburghiana within community. PMID:26860815

  19. Environmental pollution affects genetic diversity in wild bird populations.

    Science.gov (United States)

    Eeva, Tapio; Belskii, Eugen; Kuranov, Boris

    2006-09-19

    Many common environmental pollutants, together with nuclear radiation, are recognized as genotoxic. There is, however, very little information on pollution-related genetic effects on free-living animal populations, especially in terrestrial ecosystems. We investigated whether genetic diversity in two small insectivorous passerines, the great tit (Parus major) and the pied flycatcher (Ficedula hypoleuca), was changed near point sources of heavy metals (two copper smelters) or radioactive isotopes (nuclear material reprocessing plant). We measured concentration of heavy metals and nucleotide diversity in mitochondrial DNA in feather samples taken from nestlings in multiple polluted areas and at control sites. In both species, heavy metal concentrations - especially of arsenic - were increased in feathers collected at smelter sites. The P. major population living near a smelter showed significantly higher nucleotide diversity than a control population in an unpolluted site, suggesting increased mutation rates in a polluted environment. On the contrary, F. hypoleuca showed reduced nucleotide diversity at both smelter sites but increased nucleotide diversity near the source of radioactivity. Our results show that heavy metal pollution and low level nuclear radiation affect the nucleotide diversity in two free-living insectivorous passerines. We suggest that the different response in these two species may be due to their different ability to handle toxic compounds in the body. PMID:16807076

  20. Genetic diversity and molecular genealogy of local silkworm varieties

    Directory of Open Access Journals (Sweden)

    Zhouhe Du

    2013-03-01

    Full Text Available In order to explore the genetic diversity and systematic differentiation pattern among silkworm varieties, aiming to guide hybridization breeding, we sequenced a total of 72 Bmamy2 gene fragments from local silkworm varieties. The analysis of nucleotide sequence diversity and systematic differentiation indicated that there was rich genovariation in the sequencing region of Bmamy2 gene, and the base mutation rate is 5.6–8.2%, the haplotype diversity is 0.8294, and the nucleotide diversity is 0.0236±0.00122, suggesting Bmamy2 being a better marking gene with rich nucleotide sequence diversity, based on which the genetic diversity among different local silkworm varieties can be identified. The same heredity population structure is proclaimed by several analysis methods that every clade consisting of varieties from different geosystems and ecological types, while the varieties from the same geosystem and ecotype belong to different clades in the phylogeny. There is no population structure pattern that different varieties claded together according to geosystem or ecotype. It can be speculated that the silkworm origins from mixture of kinds of several voltinism mulberry silkworm, Bombyx mandarina, while the domestication events took place in several regions, from which the domesticated mulberry silkworms are all devoting to the domesticated silkworm population of today.

  1. Analysis of the genetic diversity of super sweet corn inbred lines using SSR and SSAP markers.

    Science.gov (United States)

    Ko, W R; Sa, K J; Roy, N S; Choi, H-J; Lee, J K

    2016-01-01

    In this study, we compared the efficiency of simple sequence repeat (SSR) and sequence specific amplified polymorphism (SSAP) markers for analyzing genetic diversity, genetic relationships, and population structure of 87 super sweet corn inbred lines from different origins. SSR markers showed higher average gene diversity and Shannon's information index than SSAP markers. To assess genetic relationships and characterize inbred lines using SSR and SSAP markers, genetic similarity (GS) matrices were constructed. The dendrogram using SSR marker data showed a complex pattern with nine clusters and a GS of 53.0%. For SSAP markers, three clusters were observed with a GS of 50.8%. Results of combined marker data showed six clusters with 53.5% GS. To analyze the genetic population structure of SSR and SSAP marker data, the 87 inbred lines were divided into groups I, II, and admixed based on the membership probability threshold of 0.8. Using combined marker data, the population structure was K = 3 and was divided into groups I, II, III, and admixed. This study represents a comparative analysis of SSR and SSAP marker data for the study of genetic diversity and genetic relationships in super sweet corn inbred lines. Our results would be useful for maize-breeding programs in Korea. PMID:26909914

  2. Allozymes Genetic Diversity of Quercus mongolica Fisch in China

    Institute of Scientific and Technical Information of China (English)

    LI Wenying; GU Wanchun

    2006-01-01

    A gel electrophoresis method was used to study the genetic diversity of 8 Quercus mongolica populations throughout its range in China.Eleven of 21 loci from 13 enzymes assayed were polymorphic.Q.mongolica maintained low level of genetic variation compared with the average Quercus species.At the species level,: the mean number of alleles per locus (A) was 1.905, the percentage of polymorphic loci (P) was 52.38%, the observed heterozygosity (He) was 0.092 and the expected heterozygosity (He) was 0.099.At the population level, the estimates were A =1.421, P =28.976%, Ho= 0.088, He =0.085.Genetic differentiation (Gst was high among populations, it was 0.107.According to the UPGMA cluster analysis based on the genetic distance, 4 populations located in northeast and 2 populations in southwest of the geographical distribution are classified into 2 subgroups, but there was no clear relationship between genetic distance and geographic distance among populations.The low level of genetic diversity of Q.mongolica might be related to the long-term exploitation as economic tree species in history are comparatively seriously disturbed and damaged by human beings, and most of the existing stands are secondary forests.

  3. Detection of Genetic Variation and Genetic Diversity in Two Indian Mudskipper Species (Boleophthalmus boddarti, B. dussumieri) using RAPD Marker

    OpenAIRE

    Vellaichamy RAMANADEVI; Muthusamy THANGARAJ; Anbazhagan SURESHKUMAR; Jayachandran SUBBURAJ

    2013-01-01

    Due to the environmental changes and habitat destruction the mudskipper fish population is decreasing in recent years. To predict the fish population structure, frequent manual survey and molecular methods are widely used. Molecular markers such as RAPD, microsatellite, allozyme, D-loop haplotype are frequently adopted to assess the population structure of an organism. In this study ten- arbitrary primers were screened to estimate the genetic relationships and diversity of two mudskipper spec...

  4. Genetic diversity of Hungarian Maize dwarf mosaic virus isolates.

    Science.gov (United States)

    Gell, Gyöngyvér; Balázs, Ervin; Petrik, Kathrin

    2010-04-01

    The genetic diversity of the coat-protein (CP) region and the untranslated C-terminal region (3'UTR) of Maize dwarf mosaic virus (MDMV) was analyzed to evaluate the variability between isolates (inter-isolate sequence diversity). The results of inter-isolate sequence diversity analysis showed that the diversity of the MDMV CP gene is fairly high (p-distance: up to 0.136). During sequence analysis, a 13 amino-acid residue insertion and an 8 amino-acid residue deletion were found within the N-terminal region of the CP gene. The phylogenetic analysis showed that-unlike other potyvirus species in this subgroup-the MDMV isolates could not be distinguished on the basis of their host plants or geographic origins.

  5. Genetic diversity assessed using microsatellite DNA of spiny head croaker ( Collichthys lucidus) from the Zhoushan offshore waters%舟山近海棘头梅童鱼群体遗传多样性微卫星DNA分析

    Institute of Scientific and Technical Information of China (English)

    林能锋; 苏永全; 丁少雄; 王军

    2011-01-01

    应用6对可在棘头梅童鱼(Collichthy lucidels)中扩增的大黄鱼(Rseudosciaena Crocea)微卫星引物对浙江舟山近海的棘头梅童鱼群体进行PCR扩增,变性聚丙烯酰胺凝胶电泳分析扩增产物.6对引物在群体中共扩增出46个等位基因,平均每个位点得到5.308 0个有效等位基因.各位点的PIC值为0.4126~0.893 5(平均值0.670 8),PCIC4和PC8F5为中度多态性位点,PC4H12、PC5E11、PCIOF10及PC10G6为高度多态性位点,这些位点可以做为棘头梅童鱼群体遗传学研究的有效的分子遗传标记.6个位点的连锁分析显示,各位点间不存在明显的连锁关系.各位点在群体中的观测杂合度(Ho)为0.4545~0.9167(平均值0.6591),期望杂合度(He)为0.4680~0.9019(平均值0.6997),与其他海水鱼类比较,浙江近海的棘头梅童鱼群体遗传多样性偏低.对各位点进行Hardy-Weinberg平衡检测表明,PC4H12、PC10F10及PC10G6位点的等位基因频率偏离了平衡,综合现有的资源调查资料,遗传多样性的降低与近年来棘头梅童鱼资源的下降有关.%Spiny head croaker ( Collichthy lucidus) is a demersal and diminutive fish species, and was an abundant resource in the East China Sea until about 20 years ago. With the development of marine fisheries, much of the breeding stock of spiny head croaker and juvenile populations were overfished employing the traditional two-stick stow net method. To propose reasonable protection of the C. lucidus resource, it is important to understand the background of its population genetics. In this study, samples of spiny head croaker from Zhoushan offshore waters in Zhejiang province were collected and the genetic diversity analyzed. Six microsatellite loci developed from P.crocea were employed to assess the levels of allelic diversity and heterozygosity of the C. lucidus population. A total of 46 alleles were obtained from 24 individuals at six loci. The number of alleles per locus ranged from 4 to 13

  6. Genetic Diversity and Population Structure of Theileria annulata in Oman.

    Directory of Open Access Journals (Sweden)

    Salama Al-Hamidhi

    Full Text Available Theileriosis, caused by a number of species within the genus Theileria, is a common disease of livestock in Oman. It is a major constraint to the development of the livestock industry due to a high rate of morbidity and mortality in both cattle and sheep. Since little is currently known about the genetic diversity of the parasites causing theileriosis in Oman, the present study was designed to address this issue with specific regard to T. annulata in cattle.Blood samples were collected from cattle from four geographically distinct regions in Oman for genetic analysis of the Theileria annulata population. Ten genetic markers (micro- and mini-satellites representing all four chromosomes of T. annulata were applied to these samples using a combination of PCR amplification and fragment analysis. The resultant genetic data was analysed to provide a first insight into the structure of the T. annulata population in Oman.We applied ten micro- and mini-satellite markers to a total of 310 samples obtained from different regions (174 [56%] from Dhofar, 68 [22%] from Dhira, 44 [14.5%] from Batinah and 24 [8%] from Sharqia. A high degree of allelic diversity was observed among the four parasite populations. Expected heterozygosity for each site ranged from 0.816 to 0.854. A high multiplicity of infection was observed in individual hosts, with an average of 3.3 to 3.4 alleles per locus, in samples derived from Batinah, Dhofar and Sharqia regions. In samples from Dhira region, an average of 2.9 alleles per locus was observed. Mild but statistically significant linkage disequilibrium between pairs of markers was observed in populations from three of the four regions. In contrast, when the analysis was performed at farm level, no significant linkage disequilibrium was observed. Finally, no significant genetic differentiation was seen between the four populations, with most pair-wise FST values being less than 0.03. Slightly higher FST values (GST' = 0.075,

  7. Determinants of Genetic Diversity of Spontaneous Drug Resistance in Bacteria.

    Science.gov (United States)

    Couce, Alejandro; Rodríguez-Rojas, Alexandro; Blázquez, Jesús

    2016-07-01

    Any pathogen population sufficiently large is expected to harbor spontaneous drug-resistant mutants, often responsible for disease relapse after antibiotic therapy. It is seldom appreciated, however, that while larger populations harbor more mutants, the abundance distribution of these mutants is expected to be markedly uneven. This is because a larger population size allows early mutants to expand for longer, exacerbating their predominance in the final mutant subpopulation. Here, we investigate the extent to which this reduction in evenness can constrain the genetic diversity of spontaneous drug resistance in bacteria. Combining theory and experiments, we show that even small variations in growth rate between resistant mutants and the wild type result in orders-of-magnitude differences in genetic diversity. Indeed, only a slight fitness advantage for the mutant is enough to keep diversity low and independent of population size. These results have important clinical implications. Genetic diversity at antibiotic resistance loci can determine a population's capacity to cope with future challenges (i.e., second-line therapy). We thus revealed an unanticipated way in which the fitness effects of antibiotic resistance can affect the evolvability of pathogens surviving a drug-induced bottleneck. This insight will assist in the fight against multidrug-resistant microbes, as well as contribute to theories aimed at predicting cancer evolution.

  8. The influence of recombination on human genetic diversity.

    Directory of Open Access Journals (Sweden)

    Chris C A Spencer

    2006-09-01

    Full Text Available In humans, the rate of recombination, as measured on the megabase scale, is positively associated with the level of genetic variation, as measured at the genic scale. Despite considerable debate, it is not clear whether these factors are causally linked or, if they are, whether this is driven by the repeated action of adaptive evolution or molecular processes such as double-strand break formation and mismatch repair. We introduce three innovations to the analysis of recombination and diversity: fine-scale genetic maps estimated from genotype experiments that identify recombination hotspots at the kilobase scale, analysis of an entire human chromosome, and the use of wavelet techniques to identify correlations acting at different scales. We show that recombination influences genetic diversity only at the level of recombination hotspots. Hotspots are also associated with local increases in GC content and the relative frequency of GC-increasing mutations but have no effect on substitution rates. Broad-scale association between recombination and diversity is explained through covariance of both factors with base composition. To our knowledge, these results are the first evidence of a direct and local influence of recombination hotspots on genetic variation and the fate of individual mutations. However, that hotspots have no influence on substitution rates suggests that they are too ephemeral on an evolutionary time scale to have a strong influence on broader scale patterns of base composition and long-term molecular evolution.

  9. Genetic diversity analysis of Tibetan wild barley using SSR markers.

    Science.gov (United States)

    Feng, Zong-Yun; Liu, Xian-Jun; Zhang, Yi-Zheng; Ling, Hong-Qing

    2006-10-01

    One hundred and six accessions of wild barley collected from Tibet, China, including 50 entries of the two-rowed wild barley Hordeum vulgare ssp. spontaneum (HS), 29 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon (HA), and 27 entries of the six-rowed wild barley Hordeum vulgare ssp. agriocrithon var. lagunculiforme (HL), were analyzed using 30 SSR markers selected from the seven barley linkage groups for studying genetic diversity and evolutionary relationship of the three subspecies of Tibetan wild barley to cultivated barley in China. Over the 30 genetic loci that were studied, 229 alleles were identified among the 106 accessions, of which 70 were common alleles. H. vulgare ssp. spontaneum possesses about thrice more private alleles (2.83 alleles/locus) than HS (0.93 alleles/locus), whereas almost no private alleles were detected in HL. The genetic diversity among-subspecies is much higher than that within-subspecies. Generally, the genetic diversity among the three subspecies is of the order HS > HL > HA. Phylogenetic analysis of the 106 accessions showed that all the accessions of HS and HA was clustered in their own groups, whereas the 27 accessions of HL were separated into two groups (14 entries with group HS and the rest with group HA). This indicated that HL was an intermediate form between HS and HA. Based on this study and previous works, we suggested that Chinese cultivated barley might evolve from HS via HL to HA. PMID:17046592

  10. Genetic diversity and population genetics of large lungworms (Dictyocaulus, Nematoda) in wild deer in Hungary.

    Science.gov (United States)

    Ács, Zoltán; Hayward, Alexander; Sugár, László

    2016-09-01

    Dictyocaulus nematode worms live as parasites in the lower airways of ungulates and can cause significant disease in both wild and farmed hosts. This study represents the first population genetic analysis of large lungworms in wildlife. Specifically, we quantify genetic variation in Dictyocaulus lungworms from wild deer (red deer, fallow deer and roe deer) in Hungary, based on mitochondrial cytochrome c oxidase subunit 1 (cox1) sequence data, using population genetic and phylogenetic analyses. The studied Dictyocaulus taxa display considerable genetic diversity. At least one cryptic species and a new parasite-host relationship are revealed by our molecular study. Population genetic analyses for Dictyocaulus eckerti revealed high gene flow amongst weakly structured spatial populations that utilise the three host deer species considered here. Our results suggest that D. eckerti is a widespread generalist parasite in ungulates, with a diverse genetic backround and high evolutionary potential. In contrast, evidence of cryptic genetic structure at regional geographic scales was observed for Dictyocaulus capreolus, which infects just one host species, suggesting it is a specialist within the studied area. D. capreolus displayed lower genetic diversity overall, with only moderate gene flow compared to the closely related D. eckerti. We suggest that the differing vagility and dispersal behaviour of hosts are important contributing factors to the population structure of lungworms, and possibly other nematode parasites with single-host life cycles. Our findings are of relevance for the management of lungworms in deer farms and wild deer populations. PMID:27150969

  11. Genetic diversity affects colony survivorship in commercial honey bee colonies

    Science.gov (United States)

    Tarpy, David R.; vanEngelsdorp, Dennis; Pettis, Jeffrey S.

    2013-08-01

    Honey bee ( Apis mellifera) queens mate with unusually high numbers of males (average of approximately 12 drones), although there is much variation among queens. One main consequence of such extreme polyandry is an increased diversity of worker genotypes within a colony, which has been shown empirically to confer significant adaptive advantages that result in higher colony productivity and survival. Moreover, honey bees are the primary insect pollinators used in modern commercial production agriculture, and their populations have been in decline worldwide. Here, we compare the mating frequencies of queens, and therefore, intracolony genetic diversity, in three commercial beekeeping operations to determine how they correlate with various measures of colony health and productivity, particularly the likelihood of queen supersedure and colony survival in functional, intensively managed beehives. We found the average effective paternity frequency ( m e ) of this population of honey bee queens to be 13.6 ± 6.76, which was not significantly different between colonies that superseded their queen and those that did not. However, colonies that were less genetically diverse (headed by queens with m e ≤ 7.0) were 2.86 times more likely to die by the end of the study when compared to colonies that were more genetically diverse (headed by queens with m e > 7.0). The stark contrast in colony survival based on increased genetic diversity suggests that there are important tangible benefits of increased queen mating number in managed honey bees, although the exact mechanism(s) that govern these benefits have not been fully elucidated.

  12. Genetic diversity of different Tunisian fig (Ficuscarica L.) collections revealed by RAPD fingerprints.

    Science.gov (United States)

    Salhi-Hannachi, Amel; Chatti, Khaled; Saddoud, Olfa; Mars, Messaoud; Rhouma, Abdelmajid; Marrakchi, Mohamed; Trifi, Mokhtar

    2006-12-01

    The genetic diversity in Tunisian fig (Ficus carica L.) was studied using RAPD markers. Thirty-five fig cultivars originating from diverse geographical areas and belonging to three collections were analysed. Random decamer primers were screened to assess their ability to detect polymorphisms in this crop. Forty-four RAPD markers were revealed and used to survey the genetic diversity and to detect cases of mislabelling. As a result, considerable genetic diversity was detected among the studied F. carica accessions. The relationships among the 35 varieties were studied by cluster analysis. The dendrogram showed two main groups composed of cultivars with similar geographic origin. Moreover, the male accessions (caprifigs) were clustered indistinctively within the female ones, suggesting a narrow genetic diversity among these accessions. Our data proved that RAPD markers are useful for germplasm discrimination as well as for investigation of patterns of variation in fig. Since this designed procedure has permitted to establish a molecular database of the reference collections, the opportunity of this study is discussed in relation to the improvement and rational management of fig germplasm.

  13. Genetic diversity and construction of core collection in Chinese wheat genetic resources

    Institute of Scientific and Technical Information of China (English)

    HAO ChenYang; DONG YuChen; WANG LanFen; YOU GuangXia; ZHANG HongNa; GE HongMei; JIA JiZeng; ZHANG XueYong

    2008-01-01

    Genetic diversity among 5029 accessions representing a proposed Chinese wheat core collection was analyzed using 78 pairs of fluorescent microsatellite (SSR) primers mapped to 21 chromosomes. A stepwise hierarchical sampling strategy with priority based on 4×105 SSR data-points was used to construct a core collection from the 23090 initial collections. The core collection consisted of 1160 accessions, including 762 landraces, 348 modern varieties and 50 introduced varieties. The core ac-counts for 23.1% of the 5029 candidate core accessions and 5% of the 23090 initial collections, but retains 94.9% of alleles from the candidate collections and captures 91.5% of the genetic variation in the initial collections. These data indicate that it is possible to maintain genetic diversity in a core col-lection while retaining fewer accessions than the accepted standard, i.e., 10% of the initial collections captured more than 70% of their genetic diversity. Estimated genetic representation of the core con-structed by preferred sampling (91.5%) is much higher than that by random sampling (79.8%). Both mean genetic richness and genetic diversity indices of the landraces were higher than those of the modern varieties in the core. Structure and principal coordinate analysis revealed that the landraces and the modern varieties were two relatively independent subpopulations. Strong genetic differentia-tion associated with ecological environments has occurred in the landraces, but was relatively weak in the modern cultivars. In addition, a mini-core collection was constructed, which consisted of 231 ac-cessions with an estimated 70% representation of the genetic variation from the initial collections. The mini-core has been distributed to various research and breeding institutes for detailed phenotyping and breeding of genetic introgression lines.

  14. Genetic Diversity Analysis of Lates calcarifer (Bloch 1790 in Captive and Wild Populations Using RAPD Markers

    Directory of Open Access Journals (Sweden)

    Muthusamy RAJASEKAR

    2012-08-01

    Full Text Available Lates calcarifer (Bloch 1790 is one of the major economically important cultivable fish species in India. In this study, three populations of L. calcarifer was selected to assess the genetic diversity. Of which, two wild (Mudaslodai, Muthupettai and one captive (Mutukadu population. The genetic diversity of three populations of this species was studied using Random Amplified Polymorphic DNA (RAPD markers. Ten random primers were used for the assessment of their genetic diversity and construction of the dendrogram. A total of 589 scorable bands were obtained, 93.12% of them were polymorphic. The Nei�s gene diversity (H of two wild populations were more (0.0504 � 0.0670 and 0.0519 � 0.0953 than the captive population (0.0489 � 0.0850. The clustering pattern obtained by UPGMA method emphasized the wild populations were clustered in one clade and captive population was deviated into another clade. This study proved that RAPD analysis has the ability to discriminate L. calcarifer populations. Further molecular studies, comprising a higher number of molecular tools are still required to precisely evaluate the genetic structure of all seabass populations along the Indian coast.

  15. Tuberculosis, genetic diversity and fitness in the red deer, Cervus elaphus.

    Science.gov (United States)

    Queirós, João; Vicente, Joaquín; Alves, Paulo C; de la Fuente, José; Gortazar, Christian

    2016-09-01

    Understanding how genetic diversity, infections and fitness interact in wild populations is a major challenge in ecology and management. These interactions were addressed through heterozygosity-fitness correlation analyses, by assessing the genetic diversity, tuberculosis (TB) and body size in adult red deer. Heterozygosity-fitness correlation models provided a better understanding of the link between genetic diversity and TB at individual and population levels. A single local effect was found for Ceh45 locus at individual level, enhancing the importance of its close functional genes in determining TB presence. At population level, the ability of the red deer to control TB progression correlated positively with population genetic diversity, indicating that inbred populations might represent more risk of deer TB severity. Statistical models also gained insights into the dynamics of multi-host interaction in natural environments. TB prevalence in neighbouring wild boar populations was positively associated with deer TB at both individual and population levels. Additionally, TB presence correlated positively with red deer body size, for which "general and local effect" hypotheses were found. Although body size might be correlated with age, an indirect genetic effect on TB presence could be implied. This study provides new insights towards understanding host-pathogen interactions in wild populations and their relation to fitness traits. PMID:27245150

  16. Genetic Diversity in Lens Species Revealed by EST and Genomic Simple Sequence Repeat Analysis.

    Directory of Open Access Journals (Sweden)

    Harsh Kumar Dikshit

    Full Text Available Low productivity of pilosae type lentils grown in South Asia is attributed to narrow genetic base of the released cultivars which results in susceptibility to biotic and abiotic stresses. For enhancement of productivity and production, broadening of genetic base is essentially required. The genetic base of released cultivars can be broadened by using diverse types including bold seeded and early maturing lentils from Mediterranean region and related wild species. Genetic diversity in eighty six accessions of three species of genus Lens was assessed based on twelve genomic and thirty one EST-SSR markers. The evaluated set of genotypes included diverse lentil varieties and advanced breeding lines from Indian programme, two early maturing ICARDA lines and five related wild subspecies/species endemic to the Mediterranean region. Genomic SSRs exhibited higher polymorphism in comparison to EST SSRs. GLLC 598 produced 5 alleles with highest gene diversity value of 0.80. Among the studied subspecies/species 43 SSRs detected maximum number of alleles in L. orientalis. Based on Nei's genetic distance cultivated lentil L. culinaris subsp. culinaris was found to be close to its wild progenitor L. culinaris subsp. orientalis. The Prichard's structure of 86 genotypes distinguished different subspecies/species. Higher variability was recorded among individuals within population than among populations.

  17. Genetic diversity analysis of Cuban traditional rice (Oryza sativa L. varieties based on microsatellite markers

    Directory of Open Access Journals (Sweden)

    Alba Alvarez

    2007-01-01

    Full Text Available Microsatellite polymorphism was studied in a sample of 39 traditional rice (Oryza sativa L. varieties and 11 improved varieties widely planted in Cuba. The study was aimed at assessing the extent of genetic variation in traditional and improved varieties and to establish their genetic relationship for breeding purposes. Heterozygosity was analyzed at each microsatellite loci and for each genotype using 10 microsatellite primer pairs. Between varieties genetic relationship was estimated. The number of alleles per microsatellite loci was 4 to 8, averaging 6.6 alleles per locus. Higher heterozygosity (H was found in traditional varieties (H TV = 0.72 than in improved varieties (H IV = 0.42, and 68% of the total microsatellite alleles were found exclusively in the traditional varieties. Genetic diversity, represented by cluster analysis, indicated three different genetic groups based on their origin. Genetic relationship estimates based on the proportion of microsatellite loci with shared alleles indicated that the majority of traditional varieties were poorly related to the improved varieties. We also discuss the more efficient use of the available genetic diversity in future programs involving genetic crosses.

  18. Genetic diversity and selection regulates evolution of infectious bronchitis virus.

    Science.gov (United States)

    Toro, Haroldo; van Santen, Vicky L; Jackwood, Mark W

    2012-09-01

    Conventional and molecular epidemiologic studies have confirmed the ability of infectious bronchitis virus (IBV) to rapidly evolve and successfully circumvent extensive vaccination programs implemented since the early 1950s. IBV evolution has often been explained as variation in gene frequencies as if evolution were driven by genetic drift alone. However, the mechanisms regulating the evolution of IBV include both the generation of genetic diversity and the selection process. IBV's generation of genetic diversity has been extensively investigated and ultimately involves mutations and recombination events occurring during viral replication. The relevance of the selection process has been further understood more recently by identifying genetic and phenotypic differences between IBV populations prior to, and during, replication in the natural host. Accumulating evidence suggests that multiple environmental forces within the host, including immune responses (or lack thereof) and affinity for cell receptors, as well as physical and biochemical conditions, are responsible for the selection process. Some scientists have used or adopted the related quasispecies frame to explain IBV evolution. The quasispecies frame, while providing a distinct explanation of the dynamics of populations in which mutation is a frequent event, exhibits relevant limitations which are discussed herein. Instead, it seems that IBV populations evolving by the generation of genetic variability and selection on replicons follow the evolutionary mechanisms originally proposed by Darwin. Understanding the mechanisms underlying the evolution of IBV is of basic relevance and, without doubt, essential to appropriately control and prevent the disease.

  19. Turtle carapace anomalies: the roles of genetic diversity and environment.

    Directory of Open Access Journals (Sweden)

    Guillermo Velo-Antón

    Full Text Available BACKGROUND: Phenotypic anomalies are common in wild populations and multiple genetic, biotic and abiotic factors might contribute to their formation. Turtles are excellent models for the study of developmental instability because anomalies are easily detected in the form of malformations, additions, or reductions in the number of scutes or scales. METHODOLOGY/PRINCIPAL FINDINGS: In this study, we integrated field observations, manipulative experiments, and climatic and genetic approaches to investigate the origin of carapace scute anomalies across Iberian populations of the European pond turtle, Emys orbicularis. The proportion of anomalous individuals varied from 3% to 69% in local populations, with increasing frequency of anomalies in northern regions. We found no significant effect of climatic and soil moisture, or climatic temperature on the occurrence of anomalies. However, lower genetic diversity and inbreeding were good predictors of the prevalence of scute anomalies among populations. Both decreasing genetic diversity and increasing proportion of anomalous individuals in northern parts of the Iberian distribution may be linked to recolonization events from the Southern Pleistocene refugium. CONCLUSIONS/SIGNIFICANCE: Overall, our results suggest that developmental instability in turtle carapace formation might be caused, at least in part, by genetic factors, although the influence of environmental factors affecting the developmental stability of turtle carapace cannot be ruled out. Further studies of the effects of environmental factors, pollutants and heritability of anomalies would be useful to better understand the complex origin of anomalies in natural populations.

  20. Characterization of the genetic diversity, structure and admixture of British chicken breeds.

    Science.gov (United States)

    Wilkinson, S; Wiener, P; Teverson, D; Haley, C S; Hocking, P M

    2012-10-01

    The characterization of livestock genetic diversity can inform breed conservation initiatives. The genetic diversity and genetic structure were assessed in 685 individual genotypes sampled from 24 British chicken breeds. A total of 239 alleles were found across 30 microsatellite loci with a mean number of 7.97 alleles per locus. The breeds were highly differentiated, with an average F(ST) of 0.25, similar to that of European chicken breeds. The genetic diversity in British chicken breeds was comparable to that found in European chicken breeds, with an average number of alleles per locus of 3.59, ranging from 2.00 in Spanish to 4.40 in Maran, and an average expected heterozygosity of 0.49, ranging from 0.20 in Spanish to 0.62 in Araucana. However, the majority of breeds were not in Hardy-Weinberg Equilibrium, as indicated by heterozygote deficiency in the majority of breeds (average F(IS) of 0.20), with an average observed heterozygote frequency of 0.39, ranging from 0.15 in Spanish to 0.49 in Cochin. Individual-based clustering analyses revealed that most individuals clustered to breed origin. However, genetic subdivisions occurred in several breeds, and this was predominantly associated with flock supplier and occasionally by morphological type. The deficit of heterozygotes was likely owing to a Wahlund effect caused by sampling from different flocks, implying structure within breeds. It is proposed that gene flow amongst flocks within breeds should be enhanced to maintain the current levels of genetic diversity. Additionally, certain breeds had low levels of both genetic diversity and uniqueness. Consideration is required for the conservation and preservation of these potentially vulnerable breeds. PMID:22497565

  1. Challenges and opportunities in estimating viral genetic diversity from next-generation sequencing data

    Directory of Open Access Journals (Sweden)

    Niko eBeerenwinkel

    2012-09-01

    Full Text Available Many viruses, including the clinically relevant RNA viruses HIV and HCV, exist in large populations and display high genetic heterogeneity within and between infected hosts. Assessing intra-patient viral genetic diversity is essential for understanding the evolutionary dynamics of viruses, for designing effective vaccines, and for the success of antiviral therapy. Next-generation sequencing technologies allow the rapid and cost-effective acquisition of thousands to millions of short DNA sequences from a single sample. However, this approach entails several challenges in experimental design and computational data analysis. Here, we review the entire process of inferring viral diversity from sample collection to computing measures of genetic diversity. We discuss sample preparation, including reverse transcription and amplification, and the effect of experimental conditions on diversity estimates due to in vitro base substitutions, insertions, deletions, and recombination. The use of different next-generation sequencing platforms and their sequencing error profiles are compared in the context of various applications of diversity estimation, ranging from the detection of single nucleotide variants to the reconstruction of whole-genome haplotypes. We describe the statistical and computational challenges arising from these technical artifacts, and we review existing approaches, including available software, for their solution. Finally, we discuss open problems, and highlight successful biomedical applications and potential future clinical use of next-generation sequencing to estimate viral diversity.

  2. Genetic diversity in Isoetes yunguiensis,a rare and endangered endemic fern in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Jinming; Wahiti R.Gituru; LIU Xing; WANG Qingfeng

    2007-01-01

    Isoetes yunguiensis is an endangered and endemic fern in China.Field survey indicated that only one population and no more than 50 individuals occur in the wild.The genetic variation of 46 individuals from the population remaining at Pingha (Guizhou Province,China)was assessed by Random Amplified Polymorphic DNA (RAPD)fingerprinting.Twelve primers were screened from sixty ten-bp arbitrary primers,and a total of 95 DNA fragments were scored.Of these,62.1%were polymorphic loci,which indicated that high level genetic variation existed in the natural population.The accumulation of genetic variation in the history of the taxon and the apparent minimal reduction effect on genetic diversity following destruction of habitat might be responsible for the high level genetic diversity presently remaining in the I.yunguiensis population.However,with the continuing decrease of population size,the genetic diversity will gradually be lost.We suggest that the materials from the extant population should be used for re-establishment of the populations.

  3. Genetic diversity and population structure of Miscanthus sinensis germplasm in China.

    Directory of Open Access Journals (Sweden)

    Hua Zhao

    Full Text Available Miscanthus is a perennial rhizomatous C4 grass native to East Asia. Endowed with great biomass yield, high ligno-cellulose composition, efficient use of radiation, nutrient and water, as well as tolerance to stress, Miscanthus has great potential as an excellent bioenergy crop. Despite of the high potential for biomass production of the allotriploid hybrid M. ×giganteus, derived from M. sacchariflorus and M. sinensis, other options need to be explored to improve the narrow genetic base of M. ×giganteus, and also to exploit other Miscanthus species, including M. sinensis (2n = 2x = 38, as bioenergy crops. In the present study, a large number of 459 M. sinensis accessions, collected from the wide geographical distribution regions in China, were genotyped using 23 SSR markers transferable from Brachypodium distachyon. Genetic diversity and population structure were assessed. High genetic diversity and differentiation of the germplasm were observed, with 115 alleles in total, a polymorphic rate of 0.77, Nei's genetic diversity index (He of 0.32 and polymorphism information content (PIC of 0.26. Clustering of germplasm accessions was primarily in agreement with the natural geographic distribution. AMOVA and genetic distance analyses confirmed the genetic differentiation in the M. sinensis germplasm and it was grouped into five clusters or subpopulations. Significant genetic variation among subpopulations indicated obvious genetic differentiation in the collections, but within-subpopulation variation (83% was substantially greater than the between-subpopulation variation (17%. Considerable phenotypic variation was observed for multiple traits among 300 M. sinensis accessions. Nine SSR markers were found to be associated with heading date and biomass yield. The diverse Chinese M. sinensis germplasm and newly identified SSR markers were proved to be valuable for breeding Miscanthus varieties with desired bioenergy traits.

  4. Bartonella Prevalence and Genetic Diversity in Small Mammals from Ethiopia

    DEFF Research Database (Denmark)

    Meheretu, Yonas; Leirs, Herwig E.l.; Welegerima, Kiros;

    2013-01-01

    More than 500 small mammals were trapped at 3 localities in northern Ethiopia to investigate Bartonella infection prevalence and the genetic diversity of the Bartonella spp. We extracted total DNA from liver samples and performed PCR using the primers 1400F and 2300R targeting 852 bp of the Barto......More than 500 small mammals were trapped at 3 localities in northern Ethiopia to investigate Bartonella infection prevalence and the genetic diversity of the Bartonella spp. We extracted total DNA from liver samples and performed PCR using the primers 1400F and 2300R targeting 852 bp...... of the Bartonella RNA polymerase beta subunit (rpoB) gene. We used a generalized linear mixed model to relate the probability of Bartonella infection to species, season, locality, habitat, sex, sexual condition, weight, and ectoparasite infestation. Overall, Bartonella infection prevalence among the small mammals...

  5. Genetic diversity in Brazilian tall coconut populations by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Francisco Elias Ribeiro

    2013-12-01

    Full Text Available The tall coconut palm was introduced in Brazil in 1553, originating from the island of Cape Verde. The aim of the presentstudy was to evaluate the genetic diversity of ten populations of Brazilian tall coconut by 13 microsatellite markers. Samples werecollected from 195 individuals of 10 different populations. A total of 68 alleles were detected, with an average of 5.23 alleles perlocus. The mean expected and observed heterozygosity value was 0.459 and 0.443, respectively. The number of alleles per populationranged from 36 to 48, with a mean of 40.9 alleles. We observed the formation of two groups, the first formed by the populationsof Baía Formosa, Georgino Avelino and São José do Mipibu, and the second by the populations of Japoatã, Pacatuba and Praia doForte. These results reveal a high level of genetic diversity in the Brazilian populations.

  6. Isolation of genetically diverse Marburg viruses from Egyptian fruit bats.

    Directory of Open Access Journals (Sweden)

    Jonathan S Towner

    2009-07-01

    Full Text Available In July and September 2007, miners working in Kitaka Cave, Uganda, were diagnosed with Marburg hemorrhagic fever. The likely source of infection in the cave was Egyptian fruit bats (Rousettus aegyptiacus based on detection of Marburg virus RNA in 31/611 (5.1% bats, virus-specific antibody in bat sera, and isolation of genetically diverse virus from bat tissues. The virus isolates were collected nine months apart, demonstrating long-term virus circulation. The bat colony was estimated to be over 100,000 animals using mark and re-capture methods, predicting the presence of over 5,000 virus-infected bats. The genetically diverse virus genome sequences from bats and miners closely matched. These data indicate common Egyptian fruit bats can represent a major natural reservoir and source of Marburg virus with potential for spillover into humans.

  7. A genomic scale map of genetic diversity in Trypanosoma cruzi

    Directory of Open Access Journals (Sweden)

    Ackermann Alejandro A

    2012-12-01

    Full Text Available Abstract Background Trypanosoma cruzi, the causal agent of Chagas Disease, affects more than 16 million people in Latin America. The clinical outcome of the disease results from a complex interplay between environmental factors and the genetic background of both the human host and the parasite. However, knowledge of the genetic diversity of the parasite, is currently limited to a number of highly studied loci. The availability of a number of genomes from different evolutionary lineages of T. cruzi provides an unprecedented opportunity to look at the genetic diversity of the parasite at a genomic scale. Results Using a bioinformatic strategy, we have clustered T. cruzi sequence data available in the public domain and obtained multiple sequence alignments in which one or two alleles from the reference CL-Brener were included. These data covers 4 major evolutionary lineages (DTUs: TcI, TcII, TcIII, and the hybrid TcVI. Using these set of alignments we have identified 288,957 high quality single nucleotide polymorphisms and 1,480 indels. In a reduced re-sequencing study we were able to validate ~ 97% of high-quality SNPs identified in 47 loci. Analysis of how these changes affect encoded protein products showed a 0.77 ratio of synonymous to non-synonymous changes in the T. cruzi genome. We observed 113 changes that introduce or remove a stop codon, some causing significant functional changes, and a number of tri-allelic and tetra-allelic SNPs that could be exploited in strain typing assays. Based on an analysis of the observed nucleotide diversity we show that the T. cruzi genome contains a core set of genes that are under apparent purifying selection. Interestingly, orthologs of known druggable targets show statistically significant lower nucleotide diversity values. Conclusions This study provides the first look at the genetic diversity of T. cruzi at a genomic scale. The analysis covers an estimated ~ 60% of the genetic diversity present in the

  8. Genetic Diversity Enhances Restoration Success by Augmenting Ecosystem Services

    OpenAIRE

    Reynolds, Laura K.; Karen J McGlathery; Waycott, Michelle

    2012-01-01

    Disturbance and habitat destruction due to human activities is a pervasive problem in near-shore marine ecosystems, and restoration is often used to mitigate losses. A common metric used to evaluate the success of restoration is the return of ecosystem services. Previous research has shown that biodiversity, including genetic diversity, is positively associated with the provision of ecosystem services. We conducted a restoration experiment using sources, techniques, and sites similar to actua...

  9. Effects of inbreeding on the genetic diversity of populations.

    OpenAIRE

    Charlesworth, Deborah

    2003-01-01

    The study of variability within species is important to all biologists who use genetic markers. Since the discovery of molecular variability among normal individuals, data have been collected from a wide range of organisms, and it is important to understand the major factors affecting diversity levels and patterns. Comparisons of inbreeding and outcrossing populations can contribute to this understanding, and therefore studying plant populations is important, because related species often hav...

  10. Castor Bean Organelle Genome Sequencing and Worldwide Genetic Diversity Analysis

    OpenAIRE

    Rivarola, Maximo; Foster, Jeffrey T.; Chan, Agnes P.; Williams, Amber L.; Rice, Danny W; Liu, Xinyue; Melake-Berhan, Admasu; Huot Creasy, Heather; Puiu, Daniela; Rosovitz, M. J.; Khouri, Hoda M.; Beckstrom-Sternberg, Stephen M.; Allan, Gerard J; Keim, Paul; Ravel, Jacques

    2011-01-01

    Castor bean is an important oil-producing plant in the Euphorbiaceae family. Its high-quality oil contains up to 90% of the unusual fatty acid ricinoleate, which has many industrial and medical applications. Castor bean seeds also contain ricin, a highly toxic Type 2 ribosome-inactivating protein, which has gained relevance in recent years due to biosafety concerns. In order to gain knowledge on global genetic diversity in castor bean and to ultimately help the development of breeding and for...

  11. Analysis of Genetic Diversity Among Sweetpotato Landraces in China

    Institute of Scientific and Technical Information of China (English)

    HE Xue-qin; LIU Qing-chang; WANG Yu-ping; ZHAI Hong

    2004-01-01

    Genetic diversity of 48 sweetpotato landraces randomly sampled from Anhui,Fujian, Henan and Guangdong provinces in China was analyzed using RAPD, ISSR and AFLP markers. Thirty RAPD primers, 14 ISSR primers and 9 AFLP primer pairs generated 227, 249 and 260 polymorphic bands, respectively. AFLP markers were better than RAPD and ISSR markers in terms of the number of polymorphic bands detected and the experimental stability. These three molecular markers revealed the similar results that Chinese landraces exhibited a high level of genetic diversity, and the genetic variation of Guangdong landraces was significantly higher than those of the landraces from the other three regions. These results supported the hypothesis that China was a secondary center of sweetpotato diversity. The present results also supported the view that sweetpotato was first introduced to Guangdong and from there spread to other regions of China. The dendrogram based on the combined RAPD, ISSR and AFLP dataset could separate the 48 landraces into two groups: One mainly including 8 landraces from Guangdong and the other consisting of the remaining landraces from Guangdong and landraces from the other three regions. Thus, the utilization of Guangdong landraces should be specially considered in sweetpotato breeding.

  12. Increased extinction potential of insular fish populations with reduced life history variation and low genetic diversity.

    Directory of Open Access Journals (Sweden)

    Michael Hellmair

    Full Text Available Theoretical work has shown that reduced phenotypic heterogeneity leads to population instability and can increase extinction potential, yet few examples exist of natural populations that illustrate how varying levels expressed diversity may influence population persistence, particularly during periods of stochastic environmental fluctuation. In this study, we assess levels of expressed variation and genetic diversity among demographically independent populations of tidewater goby (Eucyclogobius newberryi, show that reductions in both factors typically coincide, and describe how low levels of diversity contribute to the extinction risk of these isolated populations. We illustrate that, for this annual species, continuous reproduction is a safeguard against reproductive failure by any one population segment, as natural, stochastically driven salinity increases frequently result in high mortality among juvenile individuals. Several study populations deviated from the natural pattern of year-round reproduction typical for the species, rendering those with severely truncated reproductive periods vulnerable to extinction in the event of environmental fluctuation. In contrast, demographically diverse populations are more likely to persist through such periods through the continuous presence of adults with broader physiological tolerance to abrupt salinity changes. Notably, we found a significant correlation between genetic diversity and demographic variation in the study populations, which could be the result of population stressors that restrict both of these diversity measures simultaneously, or suggestive of a causative relationship between these population characteristics. These findings demonstrate the importance of biocomplexity at the population level, and assert that the maintenance of diversity contributes to population resilience and conservation of this endangered species.

  13. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    Directory of Open Access Journals (Sweden)

    Spurthi N Nayak

    Full Text Available Sugarcane (Saccharum spp. and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1 genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2 form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance.

  14. Promoting utilization of Saccharum spp. genetic resources through genetic diversity analysis and core collection construction.

    Science.gov (United States)

    Nayak, Spurthi N; Song, Jian; Villa, Andrea; Pathak, Bhuvan; Ayala-Silva, Tomas; Yang, Xiping; Todd, James; Glynn, Neil C; Kuhn, David N; Glaz, Barry; Gilbert, Robert A; Comstock, Jack C; Wang, Jianping

    2014-01-01

    Sugarcane (Saccharum spp.) and other members of Saccharum spp. are attractive biofuel feedstocks. One of the two World Collections of Sugarcane and Related Grasses (WCSRG) is in Miami, FL. This WCSRG has 1002 accessions, presumably with valuable alleles for biomass, other important agronomic traits, and stress resistance. However, the WCSRG has not been fully exploited by breeders due to its lack of characterization and unmanageable population. In order to optimize the use of this genetic resource, we aim to 1) genotypically evaluate all the 1002 accessions to understand its genetic diversity and population structure and 2) form a core collection, which captures most of the genetic diversity in the WCSRG. We screened 36 microsatellite markers on 1002 genotypes and recorded 209 alleles. Genetic diversity of the WCSRG ranged from 0 to 0.5 with an average of 0.304. The population structure analysis and principal coordinate analysis revealed three clusters with all S. spontaneum in one cluster, S. officinarum and S. hybrids in the second cluster and mostly non-Saccharum spp. in the third cluster. A core collection of 300 accessions was identified which captured the maximum genetic diversity of the entire WCSRG which can be further exploited for sugarcane and energy cane breeding. Sugarcane and energy cane breeders can effectively utilize this core collection for cultivar improvement. Further, the core collection can provide resources for forming an association panel to evaluate the traits of agronomic and commercial importance.

  15. Genetic diversity and genetic structure of consecutive breeding generations of golden mandarin fish (Siniperca scherzeri Steindachner) using microsatellite markers.

    Science.gov (United States)

    Luo, X N; Yang, M; Liang, X F; Jin, K; Lv, L Y; Tian, C X; Yuan, Y C; Sun, J

    2015-09-25

    In this study, 12 polymorphic microsatellites were inves-tigated to determine the genetic diversity and structure of 5 consecu-tive selected populations of golden mandarin fish (Siniperca scherzeri Steindachner). The total numbers of alleles, average heterozyosity, and average polymorphism information content showed that the genetic diversity of these breeding populations was decreasing. Additionally, pairwise fixation index FST values among populations and Da values in-creased from F1 generation to subsequent generations (FST values from 0.0221-0.1408; Da values from 0.0608-0.1951). Analysis of molecular variance indicated that most genetic variations arise from individuals within populations (about 92.05%), while variation among populations accounted for only 7.95%. The allele frequency of the loci SC75-220 and SC101-222 bp changed regularly in the 5 breeding generations. Their frequencies were gradually increased and showed an enrichment trend, indicating that there may be genetic correlations between these 2 loci and breeding traits. Our study indicated that microsatellite markers are effective for assessing the genetic variability in the golden mandarin fish breeding program.

  16. HIV populations are large and accumulate high genetic diversity in a nonlinear fashion.

    Science.gov (United States)

    Maldarelli, Frank; Kearney, Mary; Palmer, Sarah; Stephens, Robert; Mican, JoAnn; Polis, Michael A; Davey, Richard T; Kovacs, Joseph; Shao, Wei; Rock-Kress, Diane; Metcalf, Julia A; Rehm, Catherine; Greer, Sarah E; Lucey, Daniel L; Danley, Kristen; Alter, Harvey; Mellors, John W; Coffin, John M

    2013-09-01

    HIV infection is characterized by rapid and error-prone viral replication resulting in genetically diverse virus populations. The rate of accumulation of diversity and the mechanisms involved are under intense study to provide useful information to understand immune evasion and the development of drug resistance. To characterize the development of viral diversity after infection, we carried out an in-depth analysis of single genome sequences of HIV pro-pol to assess diversity and divergence and to estimate replicating population sizes in a group of treatment-naive HIV-infected individuals sampled at single (n = 22) or multiple, longitudinal (n = 11) time points. Analysis of single genome sequences revealed nonlinear accumulation of sequence diversity during the course of infection. Diversity accumulated in recently infected individuals at rates 30-fold higher than in patients with chronic infection. Accumulation of synonymous changes accounted for most of the diversity during chronic infection. Accumulation of diversity resulted in population shifts, but the rates of change were low relative to estimated replication cycle times, consistent with relatively large population sizes. Analysis of changes in allele frequencies revealed effective population sizes that are substantially higher than previous estimates of approximately 1,000 infectious particles/infected individual. Taken together, these observations indicate that HIV populations are large, diverse, and slow to change in chronic infection and that the emergence of new mutations, including drug resistance mutations, is governed by both selection forces and drift.

  17. Influence of ethnolinguistic diversity on the sorghum genetic patterns in subsistence farming systems in eastern Kenya.

    Directory of Open Access Journals (Sweden)

    Vanesse Labeyrie

    Full Text Available Understanding the effects of actions undertaken by human societies on crop evolution processes is a major challenge for the conservation of genetic resources. This study investigated the mechanisms whereby social boundaries associated with patterns of ethnolinguistic diversity have influenced the on-farm distribution of sorghum diversity. Social boundaries limit the diffusion of planting material, practices and knowledge, thus shaping crop diversity in situ. To assess the effect of social boundaries, this study was conducted in the contact zone between the Chuka, Mbeere and Tharaka ethnolinguistic groups in eastern Kenya. Sorghum varieties were inventoried and samples collected in 130 households. In all, 297 individual plants derived from seeds collected under sixteen variety names were characterized using a set of 18 SSR molecular markers and 15 morphological descriptors. The genetic structure was investigated using both a Bayesian assignment method and distance-based clustering. Principal Coordinates Analysis was used to describe the structure of the morphological diversity of the panicles. The distribution of the varieties and the main genetic clusters across ethnolinguistic groups was described using a non-parametric MANOVA and pairwise Fisher tests. The spatial distribution of landrace names and the overall genetic spatial patterns were significantly correlated with ethnolinguistic partition. However, the genetic structure inferred from molecular makers did not discriminate the short-cycle landraces despite their morphological distinctness. The cases of two improved varieties highlighted possible fates of improved materials. The most recent one was often given the name of local landraces. The second one, that was introduced a dozen years ago, displays traces of admixture with local landraces with differential intensity among ethnic groups. The patterns of congruence or discordance between the nomenclature of farmers' varieties and the

  18. Initial genetic diversity enhances population establishment and alters genetic structuring of a newly established Daphnia metapopulation.

    Science.gov (United States)

    Holmes, Christopher J; Pantel, Jelena H; Schulz, Kimberly L; Cáceres, Carla E

    2016-07-01

    When newly created habitats are initially colonized by genotypes with rapid population growth rates, later arriving colonists may be prevented from establishing. Although these priority effects have been documented in multiple systems, their duration may be influenced by the diversity of the founding population. We conducted a large-scale field manipulation to investigate how initial clonal diversity influences temporal and landscape patterns of genetic structure in a developing metapopulation. Six genotypes of obligately asexual Daphnia pulex were stocked alone (no clonal diversity) or in combination ('high' clonal diversity) into newly created experimental woodland ponds. We also measured the population growth rate of all clones in the laboratory when raised on higher-quality and lower-quality resources. Our predictions were that in the 3 years following stocking, clonally diverse populations would be more likely to persist than nonclonally diverse populations and exhibit evidence for persistent founder effects. We expected that faster growing clones would be found in more pools and comprise a greater proportion of individuals genotyped from the landscape. Genetic composition, both locally and regionally, changed significantly following stocking. Six of 27 populations exhibited evidence for persistent founder effects, and populations stocked with 'high' clonal diversity were more likely to exhibit these effects than nonclonally diverse populations. Performance in the laboratory was not predictive of clonal persistence or overall dominance in the field. Hence, we conclude that although laboratory estimates of fitness did not fully explain metapopulation genetic structure, initial clonal diversity did enhance D. pulex population establishment and persistence in this system.

  19. A MULTI-LOCUS, MULTI-TAXA PHYLOGEOGRAPHICAL ANALYSIS OF GENETIC DIVERSITY

    Science.gov (United States)

    In addition to measuring spatial patterns of genetic diversity, population genetic measures of biological resources should include temporal data that indicate whether the observed patterns are the result of historical or contemporary processes. In general, genetic measures focus...

  20. Evaluation of the genetic diversity of microsatellite markers among four strains of Oreochromis niloticus.

    Science.gov (United States)

    Dias, M A D; de Freitas, R T F; Arranz, S E; Villanova, G V; Hilsdorf, A W S

    2016-06-01

    Different strains of Nile tilapia can be found worldwide. To successfully use them in breeding programs, they must be genetically characterized. In this study, four strains of Nile tilapia - UFLA, GIFT, Chitralada and Red-Stirling - were genetically characterized using 10 noncoding microsatellite loci and two microsatellites located in the promoter and first intron of the growth hormone gene (GH). The two microsatellites in the GH gene were identified at positions -693 to -679 in the promoter [motif (ATTCT)8 ] and in intron 1 at positions +140 to +168 [motif (CTGT)7 ]. Genetic diversity was measured as mean numbers of alleles and expected heterozygosity, which were 4 and 0.60 (GIFT), 3.5 and 0.71 (UFLA), 4.5 and 0.57 (Chitralada) and 2.5 and 0.42 (Red-Stirling) respectively. Genetic differentiation was estimated both separately and in combination for noncoding and GH microsatellites markers using Jost's DEST index. The UFLA and GIFT strains were the least genetically divergent (DEST  = 0.10), and Chitralada and Red-Stirling were the most (DEST  = 0.58). The UFLA strain was genetically characterized for the first time and, because of its unique origin and genetic distinctness, may prove to be an important resource for genetic improvement of Nile tilapia. This study shows that polymorphisms found in coding gene regions might be useful for assessing genetic differentiation among strains. PMID:26932188

  1. Characterisation of the genetic diversity of Brucella by multilocus sequencing

    Directory of Open Access Journals (Sweden)

    MacMillan Alastair P

    2007-04-01

    Full Text Available Abstract Background Brucella species include economically important zoonotic pathogens that can infect a wide range of animals. There are currently six classically recognised species of Brucella although, as yet unnamed, isolates from various marine mammal species have been reported. In order to investigate genetic relationships within the group and identify potential diagnostic markers we have sequenced multiple genetic loci from a large sample of Brucella isolates representing the known diversity of the genus. Results Nine discrete genomic loci corresponding to 4,396 bp of sequence were examined from 160 Brucella isolates. By assigning each distinct allele at a locus an arbitrary numerical designation the population was found to represent 27 distinct sequence types (STs. Diversity at each locus ranged from 1.03–2.45% while overall genetic diversity equated to 1.5%. Most loci examined represent housekeeping gene loci and, in all but one case, the ratio of non-synonymous to synonymous change was substantially Brucella species, B. abortus, B. melitensis, B. ovis and B. neotomae correspond to well-separated clusters. With the exception of biovar 5, B. suis isolates cluster together, although they form a more diverse group than other classical species with a number of distinct STs corresponding to the remaining four biovars. B. canis isolates are located on the same branch very closely related to, but distinguishable from, B. suis biovar 3 and 4 isolates. Marine mammal isolates represent a distinct, though rather weakly supported, cluster within which individual STs display one of three clear host preferences. Conclusion The sequence database provides a powerful dataset for addressing ongoing controversies in Brucella taxonomy and a tool for unambiguously placing atypical, phenotypically discordant or newly emerging Brucella isolates. Furthermore, by using the phylogenetic backbone described here, robust and rationally selected markers for use in

  2. Genetic diversity of Cosmos species revealed by RAPD and ISSR markers.

    Science.gov (United States)

    Rodríguez-Bernal, A; Piña-Escutia, J L; Vázquez-García, L M; Arzate-Fernández, A M

    2013-12-04

    The genus Cosmos is native of America and is constituted by 34 species; 28 of them are endemic of Mexico. The cosmos are used as a nematicide, antimalarial, and antioxidative agent. The aim of this study was to estimate the genetic diversity among 7 cosmos species based on random amplified polymorphic DNA (RAPD) and inter-simple sequences repeats (ISSR) markers. With RAPD markers, the obtained polymorphism was 91.7 % and the genetic diversity was 0.33, whereas these values were 65.6%, and 0.22 from ISSR markers, respectively, indicating the presence of high genetic diversity among the Cosmos species that were analyzed. The unweighted pair group method with arithmetic mean dendrograms that were obtained with both markers were notably similar, revealing 2 clusters and indicating a clear genetic differentiation among the Cosmos species that were assessed. The first cluster comprised the species Cosmos sulphureus, Cosmos pacificus, and Cosmos diversifolius, while the second cluster included the species Cosmos purpureus, Cosmos crithmifolius, Cosmos bipinnatus, and Cosmos parviflorus. Besides this, the Cosmos species were clustered according to their collection sites. The Mantel test corroborates the correlation between the genetic distance and the geographic altitude of each Cosmos species. The results suggest that it is necessary to preserve the Cosmos species in their natural habitat in addition to the germoplasm collection for ex situ conservation.

  3. Hidden genetic diversity in the green alga Spirogyra (Zygnematophyceae, Streptophyta

    Directory of Open Access Journals (Sweden)

    Chen Charlotte

    2012-06-01

    Full Text Available Abstract Background The unbranched filamentous green alga Spirogyra (Streptophyta, Zygnemataceae is easily recognizable based on its vegetative morphology, which shows one to several spiral chloroplasts. This simple structure falsely points to a low genetic diversity: Spirogyra is commonly excluded from phylogenetic analyses because the genus is known as a long-branch taxon caused by a high evolutionary rate. Results We focused on this genetic diversity and sequenced 130 Spirogyra small subunit nuclear ribosomal DNA (SSU rDNA strands of different origin. The resulting SSU rDNA sequences were used for phylogenetic analyses using complex evolutionary models (posterior probability, maximum likelihood, neighbor joining, and maximum parsimony methods. The sequences were between 1672 and 1779 nucleotides long. Sequence comparisons revealed 53 individual clones, but our results still support monophyly of the genus. Our data set did not contain a single slow-evolving taxon that would have been placed on a shorter branch compared to the remaining sequences. Out of 130 accessions analyzed, 72 showed a secondary loss of the 1506 group I intron, which formed a long-branched group within the genus. The phylogenetic relationship to the genus Spirotaenia was not resolved satisfactorily. The genetic distance within the genus Spirogyra exceeded the distances measured within any other genus of the remaining Zygnemataceae included in this study. Conclusion Overall, we define eight distinct clades of Spirogyra, one of them including the genus Sirogonium. A large number of non-homoplasious synapomorphies (NHS; 114 NHS in total was found for Spirogyra (41 NHS and for each clade (totaling 73 NHS. This emphasizes the high genetic diversity of this genus and the distance to the remaining Zygnematophyceae.

  4. Genetic diversity and bottleneck studies in the Marwari horse breed

    Indian Academy of Sciences (India)

    A. K. Gupta; M. Chauhan; S. N. Tandon; Sonia

    2005-12-01

    Genetic diversity within the Marwari breed of horses was evaluated using 26 different microsatellite pairs with 48 DNA samples from unrelated horses. This molecular characterisation was undertaken to evaluate the problem of genetic bottlenecks also, if any, in this breed. The estimated mean (± s.e.) allelic diversity was 5.9 (± 2.24), with a total of 133 alleles. A high level of genetic variability within this breed was observed in terms of high values of mean (± s.e.) effective number of alleles (3.3 ± 1.27), observed heterozygosity (0.5306 ± 0.22), expected Levene’s heterozygosity (0.6612 ± 0.15), expected Nei’s heterozygosity (0.6535 ± 0.14), and polymorphism information content (0.6120 ± 0.03). Low values of Wright’s fixation index, $F_{\\text{IS}}$ (0.2433 ± 0.05) indicated low levels of inbreeding. This basic study indicated the existence of substantial genetic diversity in the Marwari horse population. No significant genotypic linkage disequilibrium was detected across the population, suggesting no evidence of linkage between loci. A normal ‘L’ shaped distribution of mode–shift test, non-significant heterozygote excess on the basis of different models, as revealed from Sign, Standardized differences and Wilcoxon sign rank tests as well as non-significant ratio value suggested that there was no recent bottleneck in the existing Marwari breed population, which is important information for equine breeders. This study also revealed that the Marwari breed can be differentiated from some other exotic breeds of horses on the basis of three microsatellite primers.

  5. Genetic Analysis of Diversity within a Chinese Local Sugarcane Germplasm Based on Start Codon Targeted Polymorphism

    OpenAIRE

    Youxiong Que; Yongbao Pan; Yunhai Lu; Cui Yang; Yuting Yang; Ning Huang; Liping Xu

    2014-01-01

    In-depth information on sugarcane germplasm is the basis for its conservation and utilization. Data on sugarcane molecular markers are limited for the Chinese sugarcane germplasm collections. In the present study, 20 start codon targeted (SCoT) marker primers were designed to assess the genetic diversity among 107 sugarcane accessions within a local sugarcane germplasm collection. These primers amplified 176 DNA fragments, of which 163 were polymorphic (92.85%). Polymorphic information conten...

  6. Consumer Acceptance of Genetically Modified Foods: Traits, Labels and Diverse Information

    OpenAIRE

    Huffman, Wallace E

    2010-01-01

    New experimental economic methods are described and used to assess consumers' willingness to pay for food products that might be made from new transgenic and intragenic genetically modified (GM) traits. Participants in auctions are randomly chosen adult consumers in major US metropolitan areas and not college students. Food labels are kept simple and focus on key attributes of experimental goods. Diverse private information from the agricultural biotech industry (largely Monsanto and Syngenta...

  7. Using genetic diversity information to establish core collections of Stylosanthes capitata and Stylosanthes macrocephala

    OpenAIRE

    Melissa Oliveira Santos-Garcia; Guilherme Toledo-Silva; Rodrigo Possidonio Sassaki; Thais Helena Ferreira; Rosângela Maria Simeão Resende; Lucimara Chiari; Cláudio Takao Karia; Marcelo Ayres Carvalho; Fábio Gelape Faleiro; Maria Imaculada Zucchi; Anete Pereira Souza

    2012-01-01

    Stylosanthes species are important forage legumes in tropical and subtropical areas. S. macrocephala and S. capitata germplasm collections that consist of 134 and 192 accessions, respectively, are maintained at the Brazilian Agricultural Research Corporation Cerrados (Embrapa-Cerrados). Polymorphic microsatellite markers were used to assess genetic diversity and population structure with the aim to assemble a core collection. The mean values of H O and H E for S. macrocephala were 0.08 and 0....

  8. Genetic relationship and diversity among coconut (Cocos nucifera L.) accessions revealed through SCoT analysis

    OpenAIRE

    Rajesh, M. K.; Sabana, A. A.; Rachana, K. E.; Rahman, Shafeeq; Jerard, B. A.; Karun, Anitha

    2015-01-01

    Coconut (Cocos nucifera L.) is one of the important palms grown both as a homestead and plantation crop in countries and most island territories of tropical regions. Different DNA-based marker systems have been utilized to assess the extent of genetic diversity in coconut. Advances in genomics research have resulted in the development of novel gene-targeted markers. In the present study, we have used a simple and novel marker system, start codon targeted polymorphism (SCoT), for its evaluatio...

  9. Genetic diversity analysis in a set of Caricaceae accessions using resistance gene analogues

    OpenAIRE

    Sengupta, Samik; Das, Basabdatta; Acharyya, Pinaki; Prasad, Manoj; Ghose, Tapas Kumar

    2014-01-01

    Background In order to assess genetic diversity of a set of 41 Caricaceae accessions, this study used 34 primer pairs designed from the conserved domains of bacterial leaf blight resistance genes from rice, in a PCR based approach, to identify and analyse resistance gene analogues from various accessions of Carica papaya, Vasconcellea goudotiana, V. microcarpa, V. parviflora, V. pubescens, V. stipulata and, V. quercifolia and Jacaratia spinosa. Results Of the 34 primer pairs fourteen gave amp...

  10. Genetic diversity in cattle of eight regions in Costa Rica.

    Directory of Open Access Journals (Sweden)

    Juan Miguel Cordero-Solórzano

    2015-06-01

    Full Text Available The aim of this study was to explore the extent of inter-regional genetic diversity present in the cattle of Costa Rica. 1498 DNA samples were collected (year 2013 from eight different regions within the country. Allelic frequencies and major population genetic parameters were determined for eighteen microsatellite markers. An analysis of molecular variance was also carried out and genetic distances were calculated between cattle from different regions. At the national level, a high allelic diversity was found, with an average of 14.6±1.01 observed alleles and 5.6+0.37 effective alleles per marker. Observed (Ho and expected (He heterozygosities were 0.76±0.01 and 0.81±01, respectively. Polymorphic Information Content (PIC and Coefficient of Inbreeding (FIS were 0.79±0.06 and 0.06±0.004, respectively. At the regional level, Ho ranged between 0.73±0.02 in the South Central region to 0.78±0.01 in the North Huetar region. The dendrogram showed three clearly distinct groups, Metropolitan Central and West Central regions in one group, Caribbean Huetar, South Central, Central Pacific and Chorotega regions in a second group; and North Huetar and Brunca regions in a third intermediate group. Estimates of genetic differentiation (RST were significant between regions from different groups and non-significant for regions within the same group. Genetic differences between regions are related to differential proliferation of breed groups based on their adaptability to the agro-ecological conditions and production systems prevailing in each region.

  11. Genetic diversity of albanian goat breeds estimated by molecular markers.

    Directory of Open Access Journals (Sweden)

    GENTIAN HYKAJ

    2014-06-01

    Full Text Available Goats are one of the most important livestock species in Albania. The aim of this study is evaluation of genetic diversity, genetic structure and genetic distances between six Albanian local goat breeds, using three set of markers: 31 microsatellite markers, AFLP markers based on three primer combinations, and 26 SNP markers. A total of 185 individuals representing six different Albanian goat breeds (Capore, Muzhake, Dukati, Liqenasi, Hasi and Mati were analyzed. All microsatellite markers were highly polymorphic. A total number of 331 alleles were observed at 30 microsatellite loci. The average observed heterozygosity was 0.673.The global heterozygosity deficit (FIT was estimated 0.11 and global breed differentiation evaluated by FST, was estimated 0.02. The AMOVA revealed that percentage of variation among populations was 2.04% and within populations was 97.96%. AFLP analysis using three primer combinations revealed 107 polymorphic markers. The FST value across all markers was 0.031, indicating that 3.1% of total genetic variation is due to breed differentiation. SNPs analysis indicated: Expected heterozygosity per locus ranged from 0.0059 to 0.526 with an average value for all loci, 0.316, while the values of observed heterozygosity (HO ranged from 0.0059 to 0.517, with an average value of 0.282. The results obtained here reflect gaot management in Albania. Based on the results of this study, we may conclude that Albanian goat breed are important reservoir of genetic diversity, have a low level of differentiation and high level of admixture.

  12. Genetic diversity Genetic diversity pattern in finger millet [Eleusine coracana (L. Gaertn

    Directory of Open Access Journals (Sweden)

    S. R. Shinde, S. V. Desai, and R. M. Pawar

    2013-09-01

    Full Text Available The genetic distance for 41 genotypes of finger millet collected from different geographical areas was estimated using D2 statistics. These genotypes were grouped into seven clusters. Cluster II, I, V, VI, and III comprised 17, 10, 7, 3 and 2 genotypes, respectively. The clusters IV and VII were mono-genotypic indicating wide divergence from other clusters. Most of the strains were from same origin and found to be one or more components of seven clusters indicating the presence of wide genetic variability among the material belonging to same geographical origin. The highest inter-cluster distance was observed between clusters II and VII followed by IV and VII suggesting the use of genotypes from these clusters to serve as potential parents for hybridization. The characters iron content (70.12% contributed maximum towards divergence followed by plant height (11.72% , days to physiological maturity (7.07% and days to 50% flowering (5.49%.

  13. Avaliação da diversidade genética em pimentão através de análise multivariada Assessment of genetic diversity in sweet pepper using multivariate analysis

    Directory of Open Access Journals (Sweden)

    Valter R. Oliveira

    1999-03-01

    Full Text Available A diversidade entre 133 genótipos de pimentão (Capsicum annuum L., em relação a doze características agronômicas, foi avaliada através de técnicas de análise multivariada (distância D² de Mahalanobis, agrupamento pelo método de Tocher e dispersão em eixos cartesianos. O ensaio foi conduzido no período de 6 de outubro de 1993 a 19 de março de 1994, em condições de campo, no município de Viçosa (MG, em solo Podzólico vermelho-amarelo câmbico. O delineamento experimental utilizado foi blocos completos casualizados, com três repetições, sendo cada parcela composta por seis plantas (2,16 m². Com a metodologia utilizada foi observada a colocação dos genótipos em quinze grupos. Os genótipos P-141-195-F10, P-142-270-F10, P-141-90-F13, cv. Apolo AG 511 e P-142-222-F13 destacaram-se pela diversidade e elevada produtividade (935 g/planta e qualidade de frutos (frutos brilhantes, com formato cônico, de coloração verde-escura uniforme e com reduzida presença de deformações, o que os qualifica como promissores para serem utilizados em programas de melhoramento. As características com menor contribuição para a diversidade genética foram produção total de frutos por planta, número de dias para o início do florescimento, índice de concentração da colheita, diâmetro do caule e diâmetro do pedúnculo. As características de maior contribuição foram altura da primeira bifurcação, altura da planta, relação comprimento/largura do fruto e índice de precocidade.Diversity among 133 sweet pepper (Capsicum annuum L. genotypes in relation to twelve agronomic characteristics was assessed through multivariate analysis techniques (Mahalanobis' D² distances, Tocher's cluster analysis, and dispersion graph analysis. The trial was carried out from October 6, 1993 to March 19, 1994, under field conditions, in Viçosa (MG, on a red yellow podzolic soil. The experimental design was a complete randomized block, with three

  14. Microsatellite based genetic diversity and relationships among ten Creole and commercial cattle breeds raised in Brazil

    Directory of Open Access Journals (Sweden)

    Almeida Leonardo D

    2007-12-01

    Full Text Available Abstract Background Brazil holds the largest commercial cattle populations worldwide. Local cattle breeds can be classified according to their origin, as exotic or Creole. Exotic breeds imported in the last 100 years, both zebuine and taurine, currently make up the bulk of the intensively managed populations. Locally adapted Creole breeds, originated from cattle introduced by the European conquerors derive from natural selection and events of breed admixture. While historical knowledge exists on the Brazilian Creole breeds very little is known on their genetic composition. The objective of this study was to assess the levels of genetic diversity, phylogenetic relationships and patterns of taurine/zebuine admixture among ten cattle breeds raised in Brazil. Results Significant reduction of heterozygosity exists due both to within-population inbreeding and to breed differentiation in both subspecies (taurine and zebuine. For taurine breeds the number of markers that contribute to breed differentiation is larger than for zebuine. A consistently similar number of alleles was seen in both subspecies for all microsatellites. Four Creole breeds were the most genetically diverse followed by the zebuine breeds, the two specialized taurine breeds and the Creole Caracu. Pairwise genetic differentiation were all significant indicating that all breeds can be considered as genetically independent entities. A STRUCTURE based diagram indicated introgression of indicine genes in the local Creole breeds and suggested that occasional Creole introgression can be detected in some Zebuine animals. Conclusion This study reports on a comprehensive study of the genetic structure and diversity of cattle breeds in Brazil. A significant amount of genetic variation is maintained in the local cattle populations. The genetic data show that Brazilian Creole breeds constitute an important and diverse reservoir of genetic diversity for bovine breeding and conservation. The

  15. On the origin of sweet potato (Ipomoea batatas (L.) Lam.) genetic diversity in New Guinea, a secondary centre of diversity

    OpenAIRE

    Roullier, C; Kambouo, R; Paofa, J; McKey, D; Lebot, V.

    2013-01-01

    New Guinea is considered the most important secondary centre of diversity for sweet potato (Ipomoea batatas). We analysed nuclear and chloroplast genetic diversity of 417 New Guinea sweet potato landraces, representing agro-morphological diversity collected throughout the island, and compared this diversity with that in tropical America. The molecular data reveal moderate diversity across all accessions analysed, lower than that found in tropical America. Nuclear data confirm p...

  16. Genetic Diversity of Pectobacterium carotovorum subsp. brasiliensis Isolated in Korea

    Directory of Open Access Journals (Sweden)

    Dong Hwan Lee

    2014-06-01

    Full Text Available The plant pathogenic bacterial genus Pectobacteirum consists of heterogeneous strains. The P. carotovorum species is a complex strain showing divergent characteristics, and a new subspecies named P. carotovorum subsp. brasiliensis has been identified recently. In this paper, we re-identified the P. carotovorum subsp. brasiliensis isolates from those classified under the subspecies carotovorum and newly isolated P. carotovorum subsp. brasiliensis strains. All isolates were able to produce plant cell-wall degrading enzymes such as pectate lyase, polygalacturonase, cellulase and protease. We used genetic and biochemical methods to examine the diversity of P. carotovorum subsp. brasiliensis isolates, and found genetic diversity within the brasiliensis subsp. isolates in Korea. The restriction fragment length polymorphism analysis based on the recA gene revealed a unique pattern for the brasiliensis subspecies. The Korean brasiliensis subsp. isolates were divided into four clades based on pulsed-field gel electrophoresis. However, correlations between clades and isolated hosts or year could not be found, suggesting that diverse brasiliensis subsp. isolates existed.

  17. Genetic Diversity and Molecular Evolution of Chinese Waxy Maize Germplasm

    Science.gov (United States)

    Zheng, Hongjian; Wang, Hui; Yang, Hua; Wu, Jinhong; Shi, Biao; Cai, Run; Xu, Yunbi; Wu, Aizhong; Luo, Lijun

    2013-01-01

    Waxy maize (Zea mays L. var. certaina Kulesh), with many excellent characters in terms of starch composition and economic value, has grown in China for a long history and its production has increased dramatically in recent decades. However, the evolution and origin of waxy maize still remains unclear. We studied the genetic diversity of Chinese waxy maize including typical landraces and inbred lines by SSR analysis and the results showed a wide genetic diversity in the Chinese waxy maize germplasm. We analyzed the origin and evolution of waxy maize by sequencing 108 samples, and downloading 52 sequences from GenBank for the waxy locus in a number of accessions from genus Zea. A sharp reduction of nucleotide diversity and significant neutrality tests (Tajima’s D and Fu and Li’s F*) were observed at the waxy locus in Chinese waxy maize but not in nonglutinous maize. Phylogenetic analysis indicated that Chinese waxy maize originated from the cultivated flint maize and most of the modern waxy maize inbred lines showed a distinct independent origin and evolution process compared with the germplasm from Southwest China. The results indicated that an agronomic trait can be quickly improved to meet production demand by selection. PMID:23818949

  18. Estimation of Genetic Diversity in Genetic Stocks of Hexaploid Wheat Using Seed Storage Proteins

    Directory of Open Access Journals (Sweden)

    Tanweer Kumar

    2014-07-01

    Full Text Available Bread wheat (Triticum aestivum L. is an allohexaploid specie, consist of three genomes AABBDD having 2n = 6x = 42 chromosomes. The wheat is a staple food of human beings due to its bread making quality which is composed of seed storage proteins of wheat especially High Molecular Weight Glutenins (HMW-GS. During present research, HMW-GS were analyzed in genetic stocks of common wheat consist of Nullisomic- tetrasomic, ditelosomic and deletion lines of group 3 homoeologous chromosomes by Sodium Dodecyle Sulpahate Polyacrylamide Gel Electrophoresis (SDS-PAGE. Protocol for protein extraction and separation was optimized. The protein profiles were used to estimate genetic distances and Phylogenetic relationships among the genetic stocks were evaluated. Genetic stocks showed different banding patterns and each protein band was considered as a locus/allele. Alleles were scored as present (1 and absent (0 to generate bivariate 1-0 data matrix. A total of 45 alleles were amplified. Genetic distance among the genetic stocks ranged from 0-72%. A dendrogram was constructed using computer program Pop Gene version 3.2. Genetic stocks of wheat were clustered in 3group A, B and C comprising 4, 4 and 1 genotypes, respectively. Maximum differences were observed among Dit-3BS and NT-3B3D and hence it is recommended that these 2 genetic stocks should be crossed to obtain maximum genetic diversity in the segregating population of wheat.

  19. Genetic diversity of Colombian sheep by microsatellite markers

    Directory of Open Access Journals (Sweden)

    Ricardo Ocampo

    2016-03-01

    Full Text Available In Colombia the sheep production systems are managed under extensive conditions and mainly correspond to peasant production systems so their genetic management has led to increased homozygosity and hence productivity loss. The aim of this study was to determine the genetic diversity in 549 individuals corresponding to 13 sheep breeds in Colombia, using a panel of 11 microsatellite molecular markers. One hundred and fifty seven alleles were found (average of 14.27 alleles/locus, with a range of observed and expected heterozygosity from 0.44 to 0.84 and 0.67 to 0.86, respectively. Thirty-three of 143 Hardy Weinberg tests performed showed significant deviations (p < 0.05 due to a general lack of heterozygous individuals. The Fis ranged from 0.01 in Corriedale to 0.15 for the Persian Black Head breed, suggesting that there are presenting low to moderate levels of inbreeding. Overall, Colombian sheep showed high levels of genetic diversity which is very important for future selection and animal breeding programs.

  20. Genetic diversity of coronaviruses in Miniopterus fuliginosus bats.

    Science.gov (United States)

    Du, Jiang; Yang, Li; Ren, Xianwen; Zhang, Junpeng; Dong, Jie; Sun, Lilian; Zhu, Yafang; Yang, Fan; Zhang, Shuyi; Wu, Zhiqiang; Jin, Qi

    2016-06-01

    Coronaviruses, such as severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus, pose significant public health threats. Bats have been suggested to act as natural reservoirs for both these viruses, and periodic monitoring of coronaviruses in bats may thus provide important clues about emergent infectious viruses. The Eastern bent-wing bat Miniopterus fuliginosus is distributed extensively throughout China. We therefore analyzed the genetic diversity of coronaviruses in samples of M. fuliginosus collected from nine Chinese provinces during 2011-2013. The only coronavirus genus found was Alphacoronavirus. We established six complete and five partial genomic sequences of alphacoronaviruses, which revealed that they could be divided into two distinct lineages, with close relationships to coronaviruses in Miniopterus magnater and Miniopterus pusillus. Recombination was confirmed by detecting putative breakpoints of Lineage 1 coronaviruses in M. fuliginosus and M. pusillus (Wu et al., 2015), which supported the results of topological and phylogenetic analyses. The established alphacoronavirus genome sequences showed high similarity to other alphacoronaviruses found in other Miniopterus species, suggesting that their transmission in different Miniopterus species may provide opportunities for recombination with different alphacoronaviruses. The genetic information for these novel alphacoronaviruses will improve our understanding of the evolution and genetic diversity of coronaviruses, with potentially important implications for the transmission of human diseases. PMID:27125516

  1. Sézary Syndrome: Translating Genetic Diversity into Personalized Medicine.

    Science.gov (United States)

    Chevret, Edith; Merlio, Jean-Philippe

    2016-07-01

    Sézary syndrome is probably the most studied cutaneous T-cell lymphoma subtype. Beyond the consensus criteria for Sézary syndrome diagnosis, Sézary cells display heterogeneous phenotypes and differentiation profiles. In the face of SS diversity, the great hope is to develop targeted therapies based on next-generation sequencing to define the genetic landscape of Sézary syndrome. Prasad et al. report on the use of exome sequencing and RNA sequencing to study selected CD4(+) blood cells from 15 patients with erythroderma Sézary syndrome, 14 of whom fulfilled the conventional criteria for diagnosis. The most common genetic abnormality, TP53 gene deletion on chromosome arm 17p and/or mutation, was observed in 58% of patients. However, mutations affecting PLCG1, STAT5B, GLI3, and CARD11 each were detected in only one individual. Nevertheless, Prasad et al. report single point mutations or copy number alterations in several new genes and in new fusion genes, with predicted biological relevance. This information underscores the diversity of genetic alterations and of the mechanisms of alterations of single genes. At the individual level, Sézary cells may combine alterations of genes involved in T-cell signaling, NF-kB and JAK-signal transducer and activator of transcription pathways, apoptosis control, chromatin remodeling, and DNA damage response. The therapeutic relevance of these potential targets needs to be evaluated with tests of function. PMID:27342034

  2. Genetic diversity and population differentiation in the cockle Cerastoderma edule estimated by microsatellite markers

    Science.gov (United States)

    Martínez, L.; Méndez, J.; Insua, A.; Arias-Pérez, A.; Freire, R.

    2013-03-01

    The edible cockle Cerastoderma edule is a marine bivalve commercially fished in several European countries that have lately suffered a significant decrease in production. Despite its commercial importance, genetic studies in this species are scarce. In this work, genetic diversity and population differentiation of C. edule has been assessed using 11 microsatellite markers in eight locations from the European Atlantic coast. All localities showed similar observed and expected heterozygosity values, but displayed differences in allelic richness, with lowest values obtained for localities situated farther north. Global Fst value revealed the existence of significant genetic structure; all but one locality from the Iberian Peninsula were genetically homogeneous, while more remote localities from France, The Netherlands, and Scotland were significantly different from all other localities. A combined effect of isolation by distance and the existence of barriers that limit gene flow may explain the differentiation observed.

  3. Genetic diversity of the cestode Echinococcus multilocularis in red foxes at a continental scale in Europe.

    Directory of Open Access Journals (Sweden)

    Jenny Knapp

    Full Text Available BACKGROUND: Alveolar echinococcosis (AE is a severe helminth disease affecting humans, which is caused by the fox tapeworm Echinococcus multilocularis. AE represents a serious public health issue in larger regions of China, Siberia, and other regions in Asia. In Europe, a significant increase in prevalence since the 1990s is not only affecting the historically documented endemic area north of the Alps but more recently also neighbouring regions previously not known to be endemic. The genetic diversity of the parasite population and respective distribution in Europe have now been investigated in view of generating a fine-tuned map of parasite variants occurring in Europe. This approach may serve as a model to study the parasite at a worldwide level. METHODOLOGY/PRINCIPAL FINDINGS: The genetic diversity of E. multilocularis was assessed based upon the tandemly repeated microsatellite marker EmsB in association with matching fox host geographical positions. Our study demonstrated a higher genetic diversity in the endemic areas north of the Alps when compared to other areas. CONCLUSIONS/SIGNIFICANCE: The study of the spatial distribution of E. multilocularis in Europe, based on 32 genetic clusters, suggests that Europe can be considered as a unique global focus of E. multilocularis, which can be schematically drawn as a central core located in Switzerland and Jura Swabe flanked by neighbouring regions where the parasite exhibits a lower genetic diversity. The transmission of the parasite into peripheral regions is governed by a "mainland-island" system. Moreover, the presence of similar genetic profiles in both zones indicated a founder event.

  4. Genetic diversity of populations and clones of Rhopilema esculentum in China based on AFLP analysis

    Institute of Scientific and Technical Information of China (English)

    QIAO Hongjin; LIU Xiangquan; ZHANG Xijia; JIANG Haibin; WANG Jiying; ZHANG Limin

    2013-01-01

    Amplified fragment length polymorphisms (AFLP) markers were developed to assess the genetic variation of populations and clones of Rhopilema esculentum Kishinouye (Scyphozoa,Rhizostomatidae).One hundred and seventy-nine loci from 56 individuals of two hatchery populations and two wild populations were genotyped with five primer combinations.The polymorphic ratio,Shannon's diversity index and average heterozygosity were 70.3%,0.346 and 0.228 for the white hatchery population,74.3%,0.313,and 0.201 for the red hatchery population,79.3%,0.349,and 0.224 for the Jiangsu wild population,and 74.9%,0.328 and 0.210 for the Penglai wild population,respectively.Thus,all populations had a relatively high level of genetic diversity.A specific band was identified that could separate the white from the red hatchery population.There was 84.85% genetic differentiation within populations.Individual cluster analysis using unweighted pair-group method with arithmetic mean (UPGMA) suggested that hatchery populations and wild populations could be divided.For the hatchery populations,the white and red populations clustered separately; however,for the wild populations,Penglai and Jiangsu populations clustered together.The genetic diversity at the clone level was also determined.Our data suggest that there are relatively high genetic diversities within populations but low genetic differentiation between populations,which may be related to the long-term use of germplasm resources from Jiangsu Province for artificial seeding and releasing.These findings will benefit the artificial seeding and conservation of the germplasm resources.

  5. Genetic diversity and relationships of Vietnamese and European pig breeds

    International Nuclear Information System (INIS)

    Full text: East Asia contains more than 50% of the world's pig population and Europe about 30% (according to FAO inventory. Both indigenous resources were domesticated from different sub-species and are assumed to be the basis of the world-wide genetic diversity in pig. Indigenous resources of Asia, however, are less defined and only rarely compared with European breeds. Taking advantage of DNA diagnostics, animals within as well as between breeds from Vietnam and Europe were analysed for numerous well defined markers in order to gain more knowledge about pig genetic biodiversity. The main objective was to investigate indigenous Vietnamese pig breeds from different local geographic regions. A set of pig breeds was chosen for this study of genetic diversity: five indigenous breeds from Vietnam (Mong Cai, Muong Khuong, Co, Meo, Tap Na), two exotic breeds kept in Vietnam (Large White, Landrace), three European commercial breeds (Pietrain, Landrace, Large White), and European Wild Boar. Samples and data from 317 animals (17 to 32 unrelated animals per breed) were collected. A panel of 27 polymorphic microsatellite loci was chosen according to FAO recommendations for diversity analyses and genetic distance studies. The loci were distributed evenly over the porcine genome with additional loci linked to immunological relevant genes (MHC, IFNG). Moreover, a few Type I loci (RYR1, FSH) were genotyped. DNA was isolated and PCR fragment lengths analysis were carried out on an ALF DNA sequencer (Pharmacia, Freiburg, Germany). Some of the RFLPs were analysed by agarose gel electrophoresis. Selected microsatellite alleles of equal lengths were sequenced for animals of different breeds. Within-breed diversity estimated heterozygosities and tests for Hardy-Weinberg equilibrium by taking into account sample sizes, tests per locus and breed as well as breed-locus combinations. Calculations were performed using the BIOSYS-1 software package. Breed differentiation was evaluated by the

  6. Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity.

    Science.gov (United States)

    Burle, Marília Lobo; Fonseca, Jaime Roberto; Kami, James A; Gepts, Paul

    2010-09-01

    Brazil is the largest producer and consumer of common bean (Phaseolus vulgaris L.), which is the most important source of human dietary protein in that country. This study assessed the genetic diversity and the structure of a sample of 279 geo-referenced common bean landraces from Brazil, using molecular markers. Sixty-seven microsatellite markers spread over the 11 linkage groups of the common bean genome, as well as Phaseolin, PvTFL1y, APA and four SCAR markers were used. As expected, the sample showed lower genetic diversity compared to the diversity in the primary center of diversification. Andean and Mesoamerican gene pools were both present but the latter gene pool was four times more frequent than the former. The two gene pools could be clearly distinguished; limited admixture was observed between these groups. The Mesoamerican group consisted of two sub-populations, with a high level of admixture between them leading to a large proportion of stabilized hybrids not observed in the centers of domestication. Thus, Brazil can be considered a secondary center of diversification of common bean. A high degree of genome-wide multilocus associations even among unlinked loci was observed, confirming the high level of structure in the sample and suggesting that association mapping should be conducted in separate Andean and Mesoamerican Brazilian samples. PMID:20502861

  7. Origin and genetic diversity of diploid parthenogenetic Artemia in Eurasia.

    Directory of Open Access Journals (Sweden)

    Marta Maccari

    Full Text Available There is wide interest in understanding how genetic diversity is generated and maintained in parthenogenetic lineages, as it will help clarify the debate of the evolution and maintenance of sexual reproduction. There are three mechanisms that can be responsible for the generation of genetic diversity of parthenogenetic lineages: contagious parthenogenesis, repeated hybridization and microorganism infections (e.g. Wolbachia. Brine shrimps of the genus Artemia (Crustacea, Branchiopoda, Anostraca are a good model system to investigate evolutionary transitions between reproductive systems as they include sexual species and lineages of obligate parthenogenetic populations of different ploidy level, which often co-occur. Diploid parthenogenetic lineages produce occasional fully functional rare males, interspecific hybridization is known to occur, but the mechanisms of origin of asexual lineages are not completely understood. Here we sequenced and analysed fragments of one mitochondrial and two nuclear genes from an extensive set of populations of diploid parthenogenetic Artemia and sexual species from Central and East Asia to investigate the evolutionary origin of diploid parthenogenetic Artemia, and geographic origin of the parental taxa. Our results indicate that there are at least two, possibly three independent and recent maternal origins of parthenogenetic lineages, related to A. urmiana and Artemia sp. from Kazakhstan, but that the nuclear genes are very closely related in all the sexual species and parthenogegetic lineages except for A. sinica, who presumable took no part on the origin of diploid parthenogenetic strains. Our data cannot rule out either hybridization between any of the very closely related Asiatic sexual species or rare events of contagious parthenogenesis via rare males as the contributing mechanisms to the generation of genetic diversity in diploid parthenogenetic Artemia lineages.

  8. Diversity Controlling Genetic Algorithm for Order Acceptance and Scheduling Problem

    Directory of Open Access Journals (Sweden)

    Cheng Chen

    2014-01-01

    Full Text Available Selection and scheduling are an important topic in production systems. To tackle the order acceptance and scheduling problem on a single machine with release dates, tardiness penalty, and sequence-dependent setup times, in this paper a diversity controlling genetic algorithm (DCGA is proposed, in which a diversified population is maintained during the whole search process through survival selection considering both the fitness and the diversity of individuals. To measure the similarity between individuals, a modified Hamming distance without considering the unaccepted orders in the chromosome is adopted. The proposed DCGA was validated on 1500 benchmark instances with up to 100 orders. Compared with the state-of-the-art algorithms, the experimental results show that DCGA improves the solution quality obtained significantly, in terms of the deviation from upper bound.

  9. The impact of recent events on human genetic diversity.

    Science.gov (United States)

    Jobling, Mark A

    2012-03-19

    The historical record tells us stories of migrations, population expansions and colonization events in the last few thousand years, but what was their demographic impact? Genetics can throw light on this issue, and has mostly done so through the maternally inherited mitochondrial DNA (mtDNA) and the male-specific Y chromosome. However, there are a number of problems, including marker ascertainment bias, possible influences of natural selection, and the obscuring layers of the palimpsest of historical and prehistorical events. Y-chromosomal lineages are particularly affected by genetic drift, which can be accentuated by recent social selection. A diversity of approaches to expansions in Europe is yielding insights into the histories of Phoenicians, Roma, Anglo-Saxons and Vikings, and new methods for producing and analysing genome-wide data hold much promise. The field would benefit from more consensus on appropriate methods, and better communication between geneticists and experts in other disciplines, such as history, archaeology and linguistics.

  10. Genetic Diversity of Indonesian Snake Fruits as Food Diversification Resources

    Directory of Open Access Journals (Sweden)

    Tri Budiyanti

    2015-01-01

    Full Text Available Indonesia is one of the megabiodivesity, which is rich with germplasms including tropical fruit. Snake fruit (Salacca spp. is a native fruit of Indonesia with a scaly peel and sweet-tart taste. The genetic diversity of 17 accessions of Indonesian snake fruit was resolved using the Random Amplified Polymorphic DNA Polymerase Chain Reaction with 5 primers. The study demonstrated that the samples were grouped in six different clusters with coefficient of similarity ranged from 0.12 to 0.71. The value indicated the wide range of genetic variability among the tested plants. This variability was an important resources for the snake fruit breeding program in developing the consumer‘s preferred product which by the end supports the plant diversification program.

  11. Genetic diversity analysis of Brassica oleracea L.by SSR

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    SSR analysis on genetic diversity of 30 samples was carried out. Five primers selected from 36 primers were used to amplify 30 samples in this experiment, PCR products were separated by 6% polyacrylamide gel electrophoresis, silver staining and photographed. The results of SSR were analyzed by UPGMA clustering. The results showed that a total of 21 gene alleles were detected by 5 SSR primers. The number of alleles ranged from 2 to 5 with an average of 4.2.PIC range was 0.257-0.921, with an average of 0.543. The average coefficient of genetic similarity of SSR markers among materials was 0.432. Some of cabbage cultivars in the experiment were divided into four groups except cultivars which come from Japan.

  12. Genetic Diversity Analysis among Greengram genotypes using RAPD Markers

    Directory of Open Access Journals (Sweden)

    M.Pandiyan., N.Senthil, P.Sivakumar, AR.Muthiah and N.Ramamoorthi

    2010-07-01

    Full Text Available Green gram is also one of the important pulse crops. Conventional breeding methods are very much difficult to utilize in thedevelopment of new genotypes. Hence incorporation of the molecular approaches along with the conventional techniques ismost powerful method. Evaluation of the available wild accessions are more useful for selecting desirable gene sources.Genetic diversity analysis place an important role in this purpose. For this molecular analysis of selected 18 accessions ingreengram (representing all nine clusters was carried out through RAPD markers. Out of ten primers used nine werepolymorphic in which the primer OPS-11 exhibited 100 per cent polymorphism. The value of similarity indices 0.72 to 0.91indicates high genetic similarity among the selected accessions at molecular level.

  13. Genetic Diversity of Eight Domestic Goat Populations Raised in Turkey.

    Science.gov (United States)

    Bulut, Zafer; Kurar, Ercan; Ozsensoy, Yusuf; Altunok, Vahdettin; Nizamlioglu, Mehmet

    2016-01-01

    The objective of this study was to determine the intra- and intergenetic diversities of eight different goat populations in Turkey including Hair, Angora, Kilis, Yayladag, Shami, Honamli, Saanen, and Alpine. A total of 244 DNA samples were genotyped using 11 microsatellites loci. The genetic differentiation between breeds was considerable as a result of the statistically significant (P 0.05). Heterozygosity values ranged between 0.62 and 0.73. According to the structure and assignment test, Angora and Yayladag goats were assigned to the breed they belong to, while other breeds were assigned to two or more different groups. Because this study for the first time presented genetic data on the Yayladag goat, results of structure analysis and assigned test suggest that further analyses are needed using additional and different molecular markers. PMID:27092309

  14. Genetic Diversity of Eight Domestic Goat Populations Raised in Turkey

    Directory of Open Access Journals (Sweden)

    Zafer Bulut

    2016-01-01

    Full Text Available The objective of this study was to determine the intra- and intergenetic diversities of eight different goat populations in Turkey including Hair, Angora, Kilis, Yayladag, Shami, Honamli, Saanen, and Alpine. A total of 244 DNA samples were genotyped using 11 microsatellites loci. The genetic differentiation between breeds was considerable as a result of the statistically significant (P0.05. Heterozygosity values ranged between 0.62 and 0.73. According to the structure and assignment test, Angora and Yayladag goats were assigned to the breed they belong to, while other breeds were assigned to two or more different groups. Because this study for the first time presented genetic data on the Yayladag goat, results of structure analysis and assigned test suggest that further analyses are needed using additional and different molecular markers.

  15. Family Assessment and Genetic Counseling.

    Science.gov (United States)

    Carpenter, Pat; And Others

    Presented are two papers from a panel discussion on prenatal diagnosis and genetic counseling with families. D. Blackston (director of the Developmental Evaluation Clinic, Decatur, Georgia) points out that a concise family history, pregnancy and birth data, developmental history, careful physical examination, and appropriate laboratory studies are…

  16. [Risk assessment of genetically modified organisms].

    Science.gov (United States)

    Costa, Thadeu Estevam Moreira Maramaldo; Dias, Aline Peçanha Muzy; Scheidegger, Erica Miranda Damasio; Marin, Victor Augustus

    2011-01-01

    Since the commercial approve in 1996, the global area of transgenic crops has raised more than 50 times. In the last two decades, governments have been planning strategies and protocols for safety assessment of food and feed genetically modified (GM). Evaluation of food safety should be taken on a case-by-case analysis depending on the specific traits of the modified crops and the changes introduced by the genetic modification, using for this the concept of substantial equivalence. This work presents approaches for the risk assessment of GM food, as well as some problems related with the genetic construction or even with the expression of the inserted gene.

  17. Identification and Analysis of Genetic Diversity Structure Within Pisum Genus Based on Microsatellite Markers

    Institute of Scientific and Technical Information of China (English)

    ZONG Xu-xiao; Rebecca Ford; Robert R Redden; GUAN Jian-ping; WANG Shu-min

    2009-01-01

    To assesse the genetic diversity among wild and cultivated accessions of 8 taxonomic groups in 2 species, and 5 subspecies under Pisum genus, and to analyze population structure and their genetic relationships among various groups of taxonomy,the study tried to verify the fitness of traditionally botanical taxonomic system under Pisum genus and to provide essential information for the exploration and utilization of wild relatives of pea genetic resources. 197 Pisum accessions from 62 counties of 5 continents were employed for SSR analysis using 21 polymorphic primer pairs in this study. Except for cultivated field pea Pisum sativum ssp. sativum vat. sativum (94 genotypes), also included were wild relative genotypes that were classified as belonging to P. fulvum, P. sativum ssp.abyssinicum, P. sativum ssp. asiaticum, P. sativum ssp. transcaucasicum, P. sativum ssp. elatius vat. elatius, P. sativum ssp. elatius vat. pumilio and P. sativum ssp.sativum vat. arvense (103 genotypes). The PCA analyses and 3-dimension PCA graphs were conducted and drawn by NTSYSpe 2.2d statistical package. Nei78 genetic distances among groups of genetic resources were calculated, and cluster analysis using UPGMA method was carried out by using Popgene V1.32 statistical package, the dendrogram was drawn by MEGA3.1 statistical package. Allelie statistics were carried out by Popgene V1.32. The significance test between groups of genotypes was carried out by Fstat V2.9.3.2 statistical package. 104 polymorphic bands were amplified using 21 SSR primer pairs with unambiguous unique polymorphic bands. 4.95 alleles were detected by each SSR primer pair in average, of which 65.56% were effective alleles for diversity. PSAD270, PSAC58, PSAA18, PSAC75, PSAA175 and PSAB72 were the most effective SSR pairs. SSR alleles were uniformly distributed among botanical taxon units under Pisum genus, but significant difference appeared in most pairwise comparisons for genetic diversity between taxon unit based

  18. Multilocus genotypic data reveal high genetic diversity and low population genetic structure of Iranian indigenous sheep.

    Science.gov (United States)

    Vahidi, S M F; Faruque, M O; Falahati Anbaran, M; Afraz, F; Mousavi, S M; Boettcher, P; Joost, S; Han, J L; Colli, L; Periasamy, K; Negrini, R; Ajmone-Marsan, P

    2016-08-01

    Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat-tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7-22) and by the high within-breed expected heterozygosity (average 0.75, range 0.72-0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between-population component, and by the small fixation index (FST  = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within-breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes, are discussed. PMID:26953226

  19. Genetic Diversity Analysis of the Natural Populations of Mediterra­nean Mussels [Mytilus galloprovincialis (Lmk.] in Agadir Bay: Assess­ment of the Molecular Polymorphism and Environmental Impact

    Directory of Open Access Journals (Sweden)

    Amal Korrida

    2010-07-01

    Full Text Available Mediterranean mussel (Mytilus galloprovincialis Lmk has a great environmental and economic importance for Morocco. This work studies the genetic structure and impact of chemical pollution on three different marine populations of Mytilus galloprovincialis that live within Agadir bay. Three collections were made at two clean sites (Cape Ghir and Cape Aglou and at an impacted site exposed to intense boating and industrial activities (Anza. A 300-bp portion of the mitochondrial DNA coding-region Cytochrome C Oxidase subunit 1 (COI was studied by polymerase chain reaction (PCR and DNA sequencing reactions to assess and evaluate amounts of polymorphism in each site. Genetic analysis using COI for 64 individuals showed no significant differentiation between the three subpopulations. AMOVA demonstrated that only 2.83% of variation exists between populations. Besides the genetic evidence presented herein, mussel’s adaptation mechanisms and strategies to marine pollution are also discussed.

  20. Managing Genetic Variation to Conserve Genetic Diversity in Goats and Sheep

    Directory of Open Access Journals (Sweden)

    J. N. B. Shrestha

    2010-01-01

    Full Text Available Domestic goat and sheep populations maintained for many generations with small numbers of male and female parents, or declining in total numbers, not only endure accumulated genetic drift but also a steady rise in inbreeding, which can be directly attributed to dispersive forces of evolutionary significance that influence gene frequency. Increasing effective population size shows theoretical promise in lessening the impact on erosion of biodiversity from genetic drift. For example, doubling the effective numbers of parents which increases effective population size reduces rate of inbreeding by nearly one-half in many of the scenarios in the present study. Similarly, equalizing the number of male and female parents can decrease the variance among progeny of each parent, which in turn increases effective population size. The recurring erosion of domestic goat and sheep diversity has contributed to decreased fecundity, reduced fitness and poor adaptability, all known to influence efficiency of production. The potential loss in performance of livestock and poultry following many generations of accumulated genetic drift, which often goes unnoticed, can be predicted for specific populations from precise estimates of their mean value, additive genetic variance and heritability along with their effective number of male and female parents. For example, when the effective population size decreases from 200 to 40, the potential reduction in mean performance for economically important traits of goat and sheep populations following 20 generations of accumulated genetic drift will nearly double. In contrast, increasing effective population size from 200 to 600 will have the potential reduction in mean performance. The accumulation of favourable mutations could imply an effective population size of 100 or more, which is equal to a rise in rate of inbreeding of 0.5% or less, may be acceptable in sustaining genetic response to artificial selection in commercial

  1. On the Biological and Genetic Diversity in Neospora caninum

    Directory of Open Access Journals (Sweden)

    John T. Ellis

    2010-03-01

    Full Text Available Neospora caninum is a parasite regarded a major cause of foetal loss in cattle. A key requirement to an understanding of the epidemiology and pathogenicity of N. caninum is knowledge of the biological characteristics of the species and the genetic diversity within it. Due to the broad intermediate host range of the species, worldwide geographical distribution and its capacity for sexual reproduction, significant biological and genetic differences might be expected to exist. N. caninum has now been isolated from a variety of different host species including dogs and cattle. Although isolates of this parasite show only minor differences in ultrastructure, considerable differences have been reported in pathogenicity using mainly mouse models. At the DNA level, marked levels of polymorphism between isolates were detected in mini- and microsatellites found in the genome of N. caninum. Knowledge of what drives the biological differences that have been observed between the various isolates at the molecular level is crucial in aiding our understanding of the epidemiology of this parasite and, in turn, the development of efficacious strategies, such as live vaccines, for controlling its impact. The purpose of this review is to document and discuss for the first time, the nature of the diversity found within the species Neospora caninum.

  2. Whole mitochondrial genome genetic diversity in an Estonian population sample.

    Science.gov (United States)

    Stoljarova, Monika; King, Jonathan L; Takahashi, Maiko; Aaspõllu, Anu; Budowle, Bruce

    2016-01-01

    Mitochondrial DNA is a useful marker for population studies, human identification, and forensic analysis. Commonly used hypervariable regions I and II (HVI/HVII) were reported to contain as little as 25% of mitochondrial DNA variants and therefore the majority of power of discrimination of mitochondrial DNA resides in the coding region. Massively parallel sequencing technology enables entire mitochondrial genome sequencing. In this study, buccal swabs were collected from 114 unrelated Estonians and whole mitochondrial genome sequences were generated using the Illumina MiSeq system. The results are concordant with previous mtDNA control region reports of high haplogroup HV and U frequencies (47.4 and 23.7% in this study, respectively) in the Estonian population. One sample with the Northern Asian haplogroup D was detected. The genetic diversity of the Estonian population sample was estimated to be 99.67 and 95.85%, for mtGenome and HVI/HVII data, respectively. The random match probability for mtGenome data was 1.20 versus 4.99% for HVI/HVII. The nucleotide mean pairwise difference was 27 ± 11 for mtGenome and 7 ± 3 for HVI/HVII data. These data describe the genetic diversity of the Estonian population sample and emphasize the power of discrimination of the entire mitochondrial genome over the hypervariable regions.

  3. Past and future range shifts and loss of diversity in dwarf willow (Salix herbaceae L.) inferred from genetics, fossils and modelling

    DEFF Research Database (Denmark)

    Alsos, Inger Greve; Alm, Torbjørn; Normand, Signe;

    2009-01-01

    Aim  Climate change may cause loss of genetic diversity. Here we explore how a multidisciplinary approach can be used to infer effects of past climate change on species distribution and genetic diversity and also to predict loss of diversity due to future climate change. We use the arctic...... during the last glaciation was inferred based on the fossil records and distribution modelling. A 46-57% reduction in suitable areas was predicted in 2080 compared to present. However, mainly southern alpine populations may go extinct, causing a loss of about 5% of the genetic diversity in the species...... of the genetic diversity in S. herbacea. For other species with different glacial histories, however, the expected climate-change induced regional extinction may cause a more severe loss of genetic diversity. We conclude that our multidisciplinary approach may be a useful tool for assessing impact of climate...

  4. Genetic diversity of neotropical Myotis (chiroptera: vespertilionidae with an emphasis on South American species.

    Directory of Open Access Journals (Sweden)

    Roxanne J Larsen

    Full Text Available BACKGROUND: Cryptic morphological variation in the Chiropteran genus Myotis limits the understanding of species boundaries and species richness within the genus. Several authors have suggested that it is likely there are unrecognized species-level lineages of Myotis in the Neotropics. This study provides an assessment of the diversity in New World Myotis by analyzing cytochrome-b gene variation from an expansive sample ranging throughout North, Central, and South America. We provide baseline genetic data for researchers investigating phylogeographic and phylogenetic patterns of Myotis in these regions, with an emphasis on South America. METHODOLOGY AND PRINCIPAL FINDINGS: Cytochrome-b sequences were generated and phylogenetically analyzed from 215 specimens, providing DNA sequence data for the most species of New World Myotis to date. Based on genetic data in our sample, and on comparisons with available DNA sequence data from GenBank, we estimate the number of species-level genetic lineages in South America alone to be at least 18, rather than the 15 species currently recognized. CONCLUSIONS: Our findings provide evidence that the perception of lower species richness in South American Myotis is largely due to a combination of cryptic morphological variation and insufficient sampling coverage in genetic-based systematic studies. A more accurate assessment of the level of diversity and species richness in New World Myotis is not only helpful for delimiting species boundaries, but also for understanding evolutionary processes within this globally distributed bat genus.

  5. Parallel responses of species and genetic diversity to El Nino Southern Oscillation-induced environmental destruction

    NARCIS (Netherlands)

    D.F.R. Cleary; C.Y. Fauvelot; J. Genner; S.B.J. Menken; A.O. Mooers

    2006-01-01

    Species diversity within communities and genetic diversity within species are two fundamental levels of biodiversity. Positive relationships between species richness and within-species genetic diversity have recently been documented across natural and semi-natural habitat islands, leading Vellend to

  6. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Science.gov (United States)

    Garrido-Sanz, Daniel; Meier-Kolthoff, Jan P; Göker, Markus; Martín, Marta; Rivilla, Rafael; Redondo-Nieto, Miguel

    2016-01-01

    The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR) with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH) identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI) approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as PGPR.

  7. Genomic and Genetic Diversity within the Pseudomonas fluorescens Complex.

    Directory of Open Access Journals (Sweden)

    Daniel Garrido-Sanz

    Full Text Available The Pseudomonas fluorescens complex includes Pseudomonas strains that have been taxonomically assigned to more than fifty different species, many of which have been described as plant growth-promoting rhizobacteria (PGPR with potential applications in biocontrol and biofertilization. So far the phylogeny of this complex has been analyzed according to phenotypic traits, 16S rDNA, MLSA and inferred by whole-genome analysis. However, since most of the type strains have not been fully sequenced and new species are frequently described, correlation between taxonomy and phylogenomic analysis is missing. In recent years, the genomes of a large number of strains have been sequenced, showing important genomic heterogeneity and providing information suitable for genomic studies that are important to understand the genomic and genetic diversity shown by strains of this complex. Based on MLSA and several whole-genome sequence-based analyses of 93 sequenced strains, we have divided the P. fluorescens complex into eight phylogenomic groups that agree with previous works based on type strains. Digital DDH (dDDH identified 69 species and 75 subspecies within the 93 genomes. The eight groups corresponded to clustering with a threshold of 31.8% dDDH, in full agreement with our MLSA. The Average Nucleotide Identity (ANI approach showed inconsistencies regarding the assignment to species and to the eight groups. The small core genome of 1,334 CDSs and the large pan-genome of 30,848 CDSs, show the large diversity and genetic heterogeneity of the P. fluorescens complex. However, a low number of strains were enough to explain most of the CDSs diversity at core and strain-specific genomic fractions. Finally, the identification and analysis of group-specific genome and the screening for distinctive characters revealed a phylogenomic distribution of traits among the groups that provided insights into biocontrol and bioremediation applications as well as their role as

  8. Elevated Genetic Diversity in the Emerging Blueberry Pathogen Exobasidium maculosum.

    Directory of Open Access Journals (Sweden)

    Jane E Stewart

    Full Text Available Emerging diseases caused by fungi are increasing at an alarming rate. Exobasidium leaf and fruit spot of blueberry, caused by the fungus Exobasidium maculosum, is an emerging disease that has rapidly increased in prevalence throughout the southeastern USA, severely reducing fruit quality in some plantings. The objectives of this study were to determine the genetic diversity of E. maculosum in the southeastern USA to elucidate the basis of disease emergence and to investigate if populations of E. maculosum are structured by geography, host species, or tissue type. We sequenced three conserved loci from 82 isolates collected from leaves and fruit of rabbiteye blueberry (Vaccinium virgatum, highbush blueberry (V. corymbosum, and southern highbush blueberry (V. corymbosum hybrids from commercial fields in Georgia and North Carolina, USA, and 6 isolates from lowbush blueberry (V. angustifolium from Maine, USA, and Nova Scotia, Canada. Populations of E. maculosum from the southeastern USA and from lowbush blueberry in Maine and Nova Scotia are distinct, but do not represent unique species. No difference in genetic structure was detected between different host tissues or among different host species within the southeastern USA; however, differentiation was detected between populations in Georgia and North Carolina. Overall, E. maculosum showed extreme genetic diversity within the conserved loci with 286 segregating sites among the 1,775 sequenced nucleotides and each isolate representing a unique multilocus haplotype. However, 94% of the nucleotide substitutions were silent, so despite the high number of mutations, selective constraints have limited changes to the amino acid sequences of the housekeeping genes. Overall, these results suggest that the emergence of Exobasidium leaf and fruit spot is not due to a recent introduction or host shift, or the recent evolution of aggressive genotypes of E. maculosum, but more likely as a result of an increasing

  9. The Nuclear DNA Content and Genetic Diversity of Lampetra morii

    Science.gov (United States)

    Yan, Xinyu; Meng, Wenbin; Wu, Fenfang; Xu, Anlong; Chen, Shangwu; Huang, Shengfeng

    2016-01-01

    We investigated the nuclear DNA content and genetic diversity of a river lamprey, the Korean lamprey Lampetra morii, which is distributed in the northeast of China. L. morii spends its whole life cycle in fresh water, and its adult size is relatively small (~160 mm long) compared with that of other lampreys. The haploid nuclear DNA content of L. morii is 1.618 pg (approximately 1.582 Gb) in germline cells, and there is ~15% germline DNA loss in somatic cells. These values are significantly smaller than those of Petromyzon marinus, a lamprey with a published draft genome. The chromosomes of L. morii are small and acrocentric, with a diploid modal number of 2n = 132, lower than some other lampreys. Sequence and AFLP analyses suggest that the allelic polymorphism rate (~0.14% based on examined nuclear and mitochondrial DNA sequences) of L. morii is much lower than that (~2%) of P. marinus. Phylogenetic analysis based on a mitochondrial DNA fragment confirms that L. morii belongs to the genus Lampetra, which, together with the genus Lethenteron, forms a sister group to P. marinus. These genetic background data are valuable for subsequent genetic and genomic research on L. morii. PMID:27388621

  10. Genetic diversity revealed by AFLP markers in Albanian goat breeds

    Directory of Open Access Journals (Sweden)

    Hoda Anila

    2012-01-01

    Full Text Available The amplified fragment length polymorphism (AFLP technique with three EcoRI/TaqI primer combinations was used in 185 unrelated individuals, representative of 6 local goat breeds of Albania, and 107 markers were generated. The mean Nei’s expected heterozygosity value for the whole population was 0.199 and the mean Shannon index was 0.249, indicating a high level of within-breed diversity. Wright’s FST index, Nei’s unbiased genetic distance and Reynolds’ genetic distance were calculated. Pairwise Fst values among the populations ranged from 0.019 to 0.047. A highly significant average FST of 0.031 was estimated, showing a low level of breed subdivision. Most of the variation is accounted for by differences among individuals. Cluster analysis based on Reynolds’ genetic distance between breeds and PCA were performed. An individual UPGMA tree based on Jaccard’s similarity index showed clusters with individuals from all goat breeds. Analysis of population structure points to a high level of admixture among breeds.

  11. Genetic diversity of Taenia solium cysticerci from naturally infected pigs of central Mexico.

    Science.gov (United States)

    Bobes, Raúl J; Fragoso, Gladis; Reyes-Montes, María del Rocio; Duarte-Escalante, Esperanza; Vega, Rodrigo; de Aluja, Aline S; Zúñiga, Gerardo; Morales, Julio; Larralde, Carlos; Sciutto, Edda

    2010-02-26

    This study was designed to explore if each individual case of naturally acquired porcine cysticercosis, living in different geographic rural areas of central Mexico, is caused by one or more different specimens of Taenia solium tapeworm. The genetic variability among cysticerci from the same pig and that from different pigs was assessed by random amplified polymorphic DNA markers (RAPDs), through the percentage of polymorphic loci, the number of effective alleles, the expected heterozygosity and the Shannon index. The parasite population's reproductive structure was estimated through the association index (I(A)), and the degree of genetic differentiation and variation was determined using AMOVA. Using six different random primers, and a total of 181 cysticerci from 14 pigs, 88 different loci were amplified: 85% were polymorphic between pigs and 24% within pigs. The phenogram grouped the cysticerci into eight major clusters, with differences in the genetic distances among all cysticerci from 14 pigs ranging from 0.78 to 1. Most of the cysticerci grouped in accord with their different geographical origin and with their pig of origin. The similarity matrix produced from the phenogram (obtained by UPGMA) and the original similarity matrix yielded a good cophenetic correlation (r=0.82317, P=0.0004), which suggests that the phenogram accurately represents the original genetic similarities between isolates. The combination of I(A) (0.0-0.089) with the genetic diversity index (0.009-0.073) supports the idea that DNA diversity in T. solium cysticerci of naturally infected pigs is within the range expected from a recombination process occurring during sexual reproduction. The small genetic diversity found within the cysticerci of each pig (33.81%), when compared with that between pigs (66.19%), indicates that pigs are rarely infected by different tapeworms. It would then appear that porcine cysticercosis courses with effective concomitant immunity, as occurs in ovine

  12. Increased genetic diversity as a defence against parasites is undermined by social parasites: Microdon mutabilis hoverflies infesting Formica lemani ant colonies

    OpenAIRE

    Gardner, M. G.; Schönrogge, K.; Elmes, G. W.; Thomas, J A

    2006-01-01

    Genetic diversity can benefit social insects by providing variability in immune defences against parasites and pathogens. However, social parasites of ants infest colonies and not individuals, and for them a different relationship between genetic diversity and resistance may exist. Here, we investigate the genetic variation, assessed using up to 12 microsatellite loci, of workers in 91 Formica lemani colonies in relation to their infestation by the specialist social parasite Microdon mutabili...

  13. Analysis of Genetic Diversity and Development of SCAR Markers in a Mycogone perniciosa Population.

    Science.gov (United States)

    Wang, Wei; Li, Xiao; Chen, Bingzhi; Wang, Shuang; Li, Chenghuan; Wen, Zhiqiang

    2016-07-01

    The fungus Mycogone perniciosa is a major pathogen of the common button mushroom Agaricus bisporus. Analysis of genetic diversity in M. Perniciosa may assist in developing methods for prophylaxis and treatment of M. Perniciosa infections. For this, it is necessary to classify M. Perniciosa into relevant class groups quickly and efficiently. Random amplified polymorphic DNA (RAPD), inter-simple sequence repeats (ISSR), and sequence-related amplified polymorphism (SRAP) markers were used to obtain genetic fingerprints and assess the genetic variation among 49 strains of M. perniciosa collected from different areas of Fujian Province in China. Analysis of DNA sequence polymorphism revealed two major distinct groups (Group I and Group II). Specific DNA fragments that were identified through RAPD, ISSR, and SRAP markers were sequenced and used for the designing of stable sequence-characterized amplified region (SCAR) markers. The resulting SCAR markers were then validated against the classified groups of M. perniciosa. PMID:26960290

  14. Can we assess genetic risks

    International Nuclear Information System (INIS)

    In recent years, somatic considerations have been weighed more heavily than genetic risks in determining radiation standards, although the genetic risks cannot be ignored. Familiar generalizations about mutations may be that almost all mutants, chromosomal or point mutations, are harmful or at best neutral. At any one time, population is to some extent impaired by recurrent mutation. The extent of impairment depends on many things, but particularly it depends on the mutation rate. If population is at equilibrium, there is a standing number of mutant genes, determined by the balance between recurrent mutation and the elimination of mutants by selection and other factors. Doubling of mutation and halving of individual mutant damage have essentially the same effect. If a mutant reduces the Darwinian fitness of its bearer by 1%, it will affect on the average 100 individuals before it is eliminated. The data obtained from the experiments with Drosophila suggest that the ratio of mutants, whose homozygous effect is lethal to those whose effect is mild, is higher in radiation-induced mutants than in spontaneous ones. Chemically-induced mutants may be more like spontaneous mutants. All measures of congenital defects, morphology, survival, and sex-ratio have shown no difference between the children of exposed parents and those of control groups, as observed in the Hiroshima-Nagasaki studies. The heterozygous effects of recessive mutants, minor deleterious mutants and the expression of recessive condition spread out over a long time, and are diluted so that the impact on a single generation is very slight. (Yamashita, S.)

  15. Parallel declines in species and genetic diversity driven by anthropogenic disturbance: a multispecies approach in a French Atlantic dune system.

    Science.gov (United States)

    Frey, David; Arrigo, Nils; Granereau, Gilles; Sarr, Anouk; Felber, François; Kozlowski, Gregor

    2016-03-01

    Numerous studies assess the correlation between genetic and species diversities, but the processes underlying the observed patterns have only received limited attention. For instance, varying levels of habitat disturbance across a region may locally reduce both diversities due to extinctions, and increased genetic drift during population bottlenecks and founder events. We investigated the regional distribution of genetic and species diversities of a coastal sand dune plant community along 240 kilometers of coastline with the aim to test for a correlation between the two diversity levels. We further quantify and tease apart the respective contributions of natural and anthropogenic disturbance factors to the observed patterns. We detected significant positive correlation between both variables. We further revealed a negative impact of urbanization: Sites with a high amount of recreational infrastructure within 10 km coastline had significantly lowered genetic and species diversities. On the other hand, a measure of natural habitat disturbance had no effect. This study shows that parallel variation of genetic and species diversities across a region can be traced back to human landscape alteration, provides arguments for a more resolute dune protection, and may help to design priority conservation areas. PMID:26989439

  16. The DNA of coral reef biodiversity : predicting and protecting genetic diversity of reef assemblages

    OpenAIRE

    Selkoe, Kim; Gaggiotti, Oscar Eduardo; Treml, Eric; Wren, Johanna; Donovan, Marie; Consortium, Hawaii Reef Connectivity; Toonen, Robert

    2016-01-01

    O.E.G. was supported by the Marine Alliance for Science and Technology for Scotland (MASTS). Conservation of ecological communities requires deepening our understanding of genetic diversity patterns and drivers at community-wide scales. Here we use seascape genetic analysis of a diversity metric, allelic richness, for 47 reef species sampled across 13 Hawaiian Islands to empirically demonstrate that large reefs high in coral cover harbor the greatest genetic diversity on average. We found ...

  17. Genetic diversity and population structure of genes encoding vaccine candidate antigens of Plasmodium vivax

    Directory of Open Access Journals (Sweden)

    Chenet Stella M

    2012-03-01

    Full Text Available Abstract Background A major concern in malaria vaccine development is genetic polymorphisms typically observed among Plasmodium isolates in different geographical areas across the world. Highly polymorphic regions have been observed in Plasmodium falciparum and Plasmodium vivax antigenic surface proteins such as Circumsporozoite protein (CSP, Duffy-binding protein (DBP, Merozoite surface protein-1 (MSP-1, Apical membrane antigen-1 (AMA-1 and Thrombospondin related anonymous protein (TRAP. Methods Genetic variability was assessed in important polymorphic regions of various vaccine candidate antigens in P. vivax among 106 isolates from the Amazon Region of Loreto, Peru. In addition, genetic diversity determined in Peruvian isolates was compared to population studies from various geographical locations worldwide. Results The structured diversity found in P. vivax populations did not show a geographic pattern and haplotypes from all gene candidates were distributed worldwide. In addition, evidence of balancing selection was found in polymorphic regions of the trap, dbp and ama-1 genes. Conclusions It is important to have a good representation of the haplotypes circulating worldwide when implementing a vaccine, regardless of the geographic region of deployment since selective pressure plays an important role in structuring antigen diversity.

  18. Spatiotemporal Clustering of Mycobacterium tuberculosis Complex Genotypes in Florida: Genetic Diversity Segregated by Country of Birth

    Science.gov (United States)

    Séraphin, Marie Nancy; Lauzardo, Michael; Morris, J. Glenn; Blackburn, Jason K.

    2016-01-01

    Background Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). Although the MTBC is highly clonal, between-strain genetic diversity has been observed. In low TB incidence settings, immigration may facilitate the importation of MTBC strains with a potential to complicate TB control efforts. Methods We investigated the genetic diversity and spatiotemporal clustering of 2,510 MTBC strains isolated in Florida, United States, between 2009 and 2013 and genotyped using spoligotyping and 24-locus MIRU-VNTR. We mapped the genetic diversity to the centroid of patient residential zip codes using a geographic information system (GIS). We assessed transmission dynamics and the influence of immigration on genotype clustering using space-time permutation models adjusted for foreign-born population density and county-level HIV risk and multinomial models stratified by country of birth and timing of immigration in SaTScan. Principal Findings Among the 2,510 strains, 1,245 were reported among foreign-born persons; including 408 recent immigrants (immigrants are likely to impact TB control. Due to the monomorphic nature of available markers, whole genome sequencing is needed to conclusively delineate recent transmission events between U.S. and foreign-born persons. PMID:27093156

  19. Genetic diversity for sustainable rice blast management in China: adoption and impact

    NARCIS (Netherlands)

    Revilla-Molina, I.M.

    2009-01-01

    Keywords: Disease management, genetic diversity, rice interplanting, competition, resource complementarity, technical efficiency, production function, Magnaporthe grisea The experience on rice blast in Yunnan Province, China, is one of the most successful and widely publicized examples of genetic

  20. Italian Common Bean Landraces: History, Genetic Diversity and Seed Quality

    Directory of Open Access Journals (Sweden)

    Angela R. Piergiovanni

    2010-05-01

    Full Text Available The long tradition of common bean cultivation in Italy has allowed the evolution of many landraces adapted to restricted areas. Nowadays, in response to market demands, old landraces are gradually being replaced by improved cultivars. However, landraces still survive in marginal areas of several Italian regions. Most of them appear severely endangered with risk of extinction due to the advanced age of the farmers and the socio-cultural context where they are cultivated. The present contribution is an overview of the state of the art about the knowledge of Italian common bean germplasm, describing the most important and recent progresses made in its characterization, including genetic diversity and nutritional aspects.

  1. Genetic diversity and germplasm conservation of three minor Andean tuber crop species

    Directory of Open Access Journals (Sweden)

    Malice M.

    2009-01-01

    Full Text Available In traditional Andean agrosystems, three minor tuber crop species are of regional or local importance: oca (Oxalis tuberosa Molina, ulluco (Ullucus tuberosus Caldas and mashua (Tropaeolum tuberosum Ruiz and Pav.. Genetic diversity within these species is very large and could result from the high ecological and cultural variability that characterizes the Andean area. Nowadays, many anthropic or ecological factors cause the loss of diversity and contribute to genetic erosion. The development of conservation strategies for genetic resources of Andean tubers, in situ as well as ex situ, includes a better knowledge of diversity in addition to the study of Andean farming strategies linked to this genetic diversity.

  2. GENETIC DIVERSITY IN ACCESSIONS OF Stylosanthes spp. USING MORPHOAGRONOMIC DESCRIPTORS

    Directory of Open Access Journals (Sweden)

    RONALDO SIMÃO DE OLIVEIRA

    2016-01-01

    Full Text Available The great diversity of plants in the Brazilian Semiarid environment represents a vital natural resource for the human populations of these areas. Many of these plants have been subject to extractivism and among these, the species of the genus Stylosanthes , which have occurrence in this region, show great potential, however, studies on this topic are limited, and little is known about the existing variability among these plants. Therefore, further study is necessary, to facilitate the development of cultivars. This might reduce the scarcity of fodder supply in this region, but to commence a plant breeding programme, it is essential to identify genetic variability. Therefore, this study evaluated 25 accessions of Stylosanthes spp., to identify the most suitable candidates to be parents in a plant breeding programme for the semiarid region of the state of Bahia. Two experiments were carried out in different sites in an experimental design of randomized blocks with four replicates, with a spacing of 3.0 × 8.0 m. A large amount of genetic diversity was observed among accessions and the genotypes BGF 08 - 007, BGF 08 - 016, BGF 08 - 015 and BGF 08 - 021 were the most divergent in the overall evaluation. For the structuring of segregating populations, it is recommended to combine the genotypes BGF 08 - 016, BGF 08 - 015, BGF 08 - 007 and BGF 08 - 006, and for the interspecific crosses, a hybrid from the accession BGF - 024 with the accessions BGF 08 - 016 or BGF 08 - 015. This might generate superior individuals for mass descriptors, which are the most important for animal forage breeding.

  3. [Genetic Diversity of Vitis vinifera L. in Azerbaijan].

    Science.gov (United States)

    Salayeva, S J; Ojaghi, J M; Pashayeva, A N; Izzatullayeva, V I; Akhundova, E M; Akperov, Z I

    2016-04-01

    To examine the genetic diversity of Vitis vinifera L., growing in the Republic of Azerbaijan in the region near the Caspian Sea, nuclear genomes of 31 cultivated and 34 wild grapevine accessions were studied at population and individual levels using five ISSR primers. In total, 51 fragments were amplified, of which 45 were found to be polymorphic. A high level of polymorphism was revealed (the mean PPF and PIC values constituted 87.69% and 0.94, respectively). High values of the EMR, MI, and RP indices showed the effectiveness of the application of ISSR primers and the possibility of their use in further investigations in this direction. Cluster analysis based on Nei's genetic distance values showed that all genotypes could be grouped into seven main clusters. Furthermore, no differences between the wild and cultivated grape wine accessions were revealed. For instance, there was no distinct distribution of the accessions according to their geographical localization. On the basis of the PIC values, the group of cultivars from Absheron Peninsula--was distinguished by the highest polymorphism level (PIC = 0.36). Natural populations from the Guba and Shabran regions were characterized by a relatively low polymorphism level (PIC = 0.31 and PIC = 0.28, respectively); and a wild population from Nabran demonstrated the lowest polymorphism level (PIC = 0.25). The data obtained confirmed paleontological and historical data of different periods, provide the supposition that Azerbaijan is the center of diversity of V. vinifera L. In addition, our data indicate that Azerbaijan grape landraces originated from local wild forms. PMID:27529978

  4. Genetic diversity of Echinococcus granulosus in center of Iran.

    Science.gov (United States)

    Pestechian, Nader; Hosseini Safa, Ahmad; Tajedini, Mohammadhasan; Rostami-Nejad, Mohammad; Mousavi, Mohammad; Yousofi, Hosseinali; Haghjooy Javanmard, Shaghayegh

    2014-08-01

    Hydatid cyst caused by Echinococcus granulosus is one of the most important parasitic diseases around the world and many countries in Asia, including Iran, are involved with this infection. This disease can cause high mortality in humans as well as economic losses in livestock. To date, several molecular methods have been used to determine the genetic diversity of E. granulosus. So far, identification of E. granulosus using real-time PCR fluorescence-based quantitative assays has not been studied worldwide, also in Iran. Therefore, the aim of this study was to investigate the genetic diversity of E. granulosus from center of Iran using real-time PCR method. A total of 71 hydatid cysts were collected from infected sheep, goat, and cattle slaughtered in Isfahan, Iran during 2013. DNA was extracted from protoscolices and/or germinal layers from each individual cyst and used as template to amplify the mitochondrial cytochrome c oxidase subunit 1 gene (cox1) (420 bp). Five cattle isolates out of 71 isolates were sterile and excluded from further investigation. Overall, of 66 isolates, partial sequences of the cox1 gene of E. granulosus indicated the presence of genotypes G1 in 49 isolates (74.2%), G3 in 15 isolates (22.7%), and G6 in 2 isolates (3.0%) in infected intermediate hosts. Sixteen sequences of G1 genotype had microgenetic variants, and they were compared to the original sequence of cox1. However, isolates identified as G3 and G6 genotypes were completely consistent with original sequences. G1 genotype in livestock was the dominant genotype in Isfahan region, Iran.

  5. Genetic diversity of marine animals in China: a summary and prospectiveness

    OpenAIRE

    Zhaoxia Cui; Huan Zhang; Linsheng Song; Feng You

    2011-01-01

    Genetic diversity can reflect the origin and evolution of species. It can also inform the practices of genetic conservation, breeding and genetic improvement, even stabilization of marine ecosystem. In the past two decades, accumulating studies have focused on the genetic diversity of major marine fish and shellfish in China. Here we summarize the achievements of this area and its application to taxonomy, germplasm identification, phylogenetic evolutionary biology, analysis of population gene...

  6. Genetic diversity and phylogenetic relationship of Chinese cashmere goats based on microsatellite DNA markers

    OpenAIRE

    Ran Di; Xiaohong He; Jianlin Han; Weijun Guan; Yabin Pu; Qianjun Zhao; Baoling Fu; Yuehui Ma

    2007-01-01

    Genetic diversity of nine indigenous Chinese cashmere goat populations and one West African breed were investigated using 19 microsatellite DNA markers and fluorescence PCR. The aim was to investigate the status of the genetic resources of Chinese cashmere goats. Fourteen of the microsatellite loci were highly polymorphic and effective markers for analysis of genetic diversity and relationship among goat populations. Analysis of polymorphic information content and genetic heterozygosity showe...

  7. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic Diversity and Population Structure.

    Science.gov (United States)

    De Luca, Daniele; Catanese, Gaetano; Procaccini, Gabriele; Fiorito, Graziano

    2016-01-01

    The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective.

  8. Genetic diversity of Chinese summer soybean germplasm revealed by SSR markers

    Institute of Scientific and Technical Information of China (English)

    XIE Hua; GUAN Rongxia; CHANG Ruzhen; QIU Lijuan

    2005-01-01

    There are abundant soybean germplasm in China. In order to assess genetic diversity of Chinese summer soybean germplasm, 158 Chinese summer soybean accessions from the primary core collection of G. max were used to analyze genetic variation at 67 SSR loci. A total of 460 alleles were detected, in which 414 and 419 alleles occurred in the 80 Huanghuai and the 78 Southern summer accessions, respectively. The average number of alleles per locus was 6.9 for all the summer accessions, and 6.2 for both Huanghuai and Southern summer accessions. Marker diversity (D) per locus ranged from 0.414 to 0.905 with an average of 0.735 for all the summer accessions, from 0.387 to 0.886 with an average of 0.708 for the Huanghuai summer accessions, and from 0.189 to 0.884 with an average of 0.687 for the Southern summer accessions. The Huanghuai and Southern summer germplasm were different in the specific alleles, allelic-frequencies and pairwise genetic similarities. UPGMA cluster analysis based on the similarity data clearly separated the Huanghuai from Southern summer soybean accessions, suggesting that they were different gene pools. The results indicate that Chinese Huanghuai and Southern summer soybean germplasm can be used to enlarge genetic basis for developing elite summer soybean cultivars by exchanging their germplasm.

  9. Octopus vulgaris (Cuvier, 1797) in the Mediterranean Sea: Genetic Diversity and Population Structure.

    Science.gov (United States)

    De Luca, Daniele; Catanese, Gaetano; Procaccini, Gabriele; Fiorito, Graziano

    2016-01-01

    The common octopus, Octopus vulgaris Cuvier 1797, is a largely exploited cephalopod species in the Mediterranean Sea and the Atlantic Ocean, as well as along the coasts of Africa, Brazil and Japan, where its taxonomic identity is still debated. The assessment of its genetic structure is a pressing need to correctly manage the resource and to avoid overfishing and collapsing of local stocks. Here we analysed genetic variation and population structure of O. vulgaris using thirteen microsatellite loci in seven sampling localities from the Mediterranean Sea and one from the Atlantic Ocean. We also used a DNA barcoding approach by COI gene fragment to understand the phylogenetic relationships among the specimens here investigated and the ones whose sequences are available in literature. Our results reveal high levels of allelic richness and moderate heterozygosity in all samples investigated, and a pronounced differentiation of the Atlantic and Sicilian specimens. This latter aspect seems to support the isolation of the biota within the Strait of Messina. A certain degree of differentiation was detected among the other geographic samples within the Mediterranean Sea, which is more compatible with an island model than isolation by distance. The occurrence of null alleles affected more genetic diversity indices than population structure estimations. This study provides new insights about the genetic diversity and structure of O. vulgaris in the area of interest, which can be used as guidelines for a fisheries management perspective. PMID:26881847

  10. Genetic diversity of teak (Tectona grandis L.F. from different provenances using microsatellite markers

    Directory of Open Access Journals (Sweden)

    Berenice Kussumoto Alcântara

    2013-08-01

    Full Text Available Teak (Tectona grandis is one of the main timber species in the world with high economic value, famous for its beauty, strength and durability. The objective of this work was to characterize the genetic diversity of teak genotypes used in Brazilian plantations. Nine microsatellite primers were used to assess 60 teak genotypes, including 33 genotypes from seeds of plantations and 14 clones from Cáceres municipality, Mato Grosso State, Brazil, and 13 clones from Honduras, Malaysia, India, Indonesia, Ivory Coast and Solomon Islands. Two groups of genotypes were detected using the Bayesian Structure analysis: 80% were placed in group 1, represented by genotypes from Cáceres and one from Malaysia, and 20% allocated in group 2, composed of clones from India, Solomon Islands, Malaysia and Honduras and the clones from the Ivory Coast. Most of the genetic variability (73% was concentrated within groups according to AMOVA analysis. Genetic parameters were estimated for the two groups obtained in the analysis of Structure. Moderate genetic diversity was found, with 4.1 alleles per locus, on average, and an average heterozygosity of 0.329, which was lower than the expected heterozygosity (He = 0.492. Group 1 showed the lowest values for these parameters. Suggestions were made concerning the identification of contrasting genotypes to be used as parents in breeding programs.

  11. [Evaluation of genetic diversity and population structure of Bletilla striata based on SRAP markers].

    Science.gov (United States)

    Sun, Yu-long; Hou, Bei-wei; Geng, Li-xia; Niu, Zhi-tao; Yan, Wen-jin; Xue, Qing-yun; Ding, Xiao-yu

    2016-01-01

    Bletilla striata has been used as traditional Chinese medicine for several centuries. In recent years, the quality and quantity of wild B. striata plants have declined sharply due to habitat deterioration and human over-exploitation. Therefore, it is of great urgency to evaluate and protect B. striata wild plant resource. In this study, sequence-related amplified polymorphism (SRAP) markers were applied to assess the level and pattern of genetic diversity in twelve populations of B. striata. The results showed a high level of genetic diversity (PPB = 90.48%, H = 0.349 4, I = 0.509 6) and moderate genetic differentiation among populations (G(st) = 0.260 9). Based on the unweighted pair-group method with arithmetic average (UPGMA), twelve populations gathered in three clusters. The cluster 1 included four populations. There are Nanjing, Zhenjiang, Xuancheng and Hangzhou. The seven populations which come from Hubei Province, Hunan Province, Jiangxi Province and Guizhou Province belonged to the cluster 2. The cluster 3 only contained Wenshan population. Moreover, Mantel test revealed significant positive correlation between genetic distances and geographic distances (r = 0.632 9; P < 0.000 1). According to the results, we proposed a series of conservation consideration for B. striata. PMID:27405177

  12. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide

    Directory of Open Access Journals (Sweden)

    Joseph S. Lam

    2011-06-01

    Full Text Available Lipopolysccharide (LPS is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacteria-host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag. Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band, and the other a heteropolymer of three to five distinct (and often unique dideoxy sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band. Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host-pathogen interactions and the control/prevention of infection.

  13. Genetic diversity of Leishmania infantum field populations from Brazil

    Directory of Open Access Journals (Sweden)

    Marcela Segatto

    2012-02-01

    Full Text Available Leishmania infantum (syn. Leishmania chagasi is the etiological agent of visceral leishmaniasis (VL in Brazil. The epidemiology of VL is poorly understood. Therefore, a more detailed molecular characterization at an intraspecific level is certainly needed. Herein, three independent molecular methods, multilocus microsatellite typing (MLMT, random amplification of polymorphic DNA (RAPD and simple sequence repeats-polymerase chain reaction (SSR-PCR, were used to evaluate the genetic diversity of 53 L. infantum isolates from five different endemic areas in Brazil. Population structures were inferred by distance-based and Bayesian-based approaches. Eighteen very similar genotypes were detected by MLMT, most of them differed in only one locus and no correlation was found between MLMT profiles, geographical origin or the estimated population structure. However, complex profiles composed of 182 bands obtained by both RAPD and SSR-PCR assays gave different results. Unweighted pair group method with arithmetic mean trees built from these data revealed a high degree of homogeneity within isolates of L. infantum. Interestingly, despite this genetic homogeneity, most of the isolates clustered according to their geographical origin.

  14. Genetic diversity among sea otter isolates of Toxoplasma gondii

    Science.gov (United States)

    Sundar, N.; Cole, R.A.; Thomas, N.J.; Majumdar, D.; Dubey, J.P.; Su, C.

    2008-01-01

    Sea otters (Enhydra lutris) have been reported to become infected with Toxoplasma gondii and at times succumb to clinical disease. Here, we determined genotypes of 39 T. gondii isolates from 37 sea otters in two geographically distant locations (25 from California and 12 from Washington). Six genotypes were identified using 10 PCR-RFLP genetic markers including SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico, and by DNA sequencing of loci SAG1 and GRA6 in 13 isolates. Of these 39 isolates, 13 (33%) were clonal Type II which can be further divided into two groups at the locus Apico. Two of the 39 isolates had Type II alleles at all loci except a Type I allele at locus L358. One isolate had Type II alleles at all loci except the Type I alleles at loci L358 and Apico. One isolate had Type III alleles at all loci except Type II alleles at SAG2 and Apico. Two sea otter isolates had a mixed infection. Twenty-one (54%) isolates had an unique allele at SAG1 locus. Further genotyping or DNA sequence analysis for 18 of these 21 isolates at loci SAG1 and GRA6 revealed that there were two different genotypes, including the previously identified Type X (four isolates) and a new genotype named Type A (14 isolates). The results from this study suggest that the sea otter isolates are genetically diverse.

  15. Genetic diversity analysis of mitochondrial DNA control region in artificially propagated Chinese sucker Myxocyprinus asiaticus.

    Science.gov (United States)

    Wan, Yuan; Zhou, Chun-Hua; Ouyang, Shan; Huang, Xiao-Chen; Zhan, Yang; Zhou, Ping; Rong, Jun; Wu, Xiao-Ping

    2015-08-01

    The genetic diversity of the three major artificially propagated populations of Chinese sucker, an endangered freshwater fish species, was investigated using the sequences of mitochondrial DNA (mtDNA) control regions. Among the 89 individuals tested, 66 variable sites (7.26%) and 10 haplotypes were detected (Haplotype diversity Hd = 0.805, Nucleotide diversity π = 0.0287). In general, genetic diversity was lower in artificially propagated populations than in wild populations. This reduction in genetic diversity may be due to population bottlenecks, genetic drift and human selection. A stepping-stone pattern of gene flow was detected in the populations studied, showing much higher gene flow between neighbouring populations. To increase the genetic diversity, wild lineages should be introduced, and more lineages should be shared among artificially propagated populations.

  16. Genetic diversity analysis of mitochondrial DNA control region in artificially propagated Chinese sucker Myxocyprinus asiaticus.

    Science.gov (United States)

    Wan, Yuan; Zhou, Chun-Hua; Ouyang, Shan; Huang, Xiao-Chen; Zhan, Yang; Zhou, Ping; Rong, Jun; Wu, Xiao-Ping

    2015-08-01

    The genetic diversity of the three major artificially propagated populations of Chinese sucker, an endangered freshwater fish species, was investigated using the sequences of mitochondrial DNA (mtDNA) control regions. Among the 89 individuals tested, 66 variable sites (7.26%) and 10 haplotypes were detected (Haplotype diversity Hd = 0.805, Nucleotide diversity π = 0.0287). In general, genetic diversity was lower in artificially propagated populations than in wild populations. This reduction in genetic diversity may be due to population bottlenecks, genetic drift and human selection. A stepping-stone pattern of gene flow was detected in the populations studied, showing much higher gene flow between neighbouring populations. To increase the genetic diversity, wild lineages should be introduced, and more lineages should be shared among artificially propagated populations. PMID:24409897

  17. Genetic diversity and biogeography of red turpentine beetle Dendroctonus valens in its native and invasive regions

    Institute of Scientific and Technical Information of China (English)

    Yan-Wen Cai; Xin-Yue Cheng; Ru-Mei Xu; Dong-Hong Duan; Lawrence R. Kirkendall

    2008-01-01

    Sequences of 479 bp region of the mitochondrial COI gene were applied to detect population genetic diversity and structure of Dendroctonus valens populations. By comparing the genetic diversity between native and invasive populations, it was shown that the genetic diversity of Chinese populations was obviously lower than that of native populations with both indices of haplotype diversity and Nei's genetic diversity, suggesting genetic bottleneck occurred in the invasive process of D. valens, and was then followed by a relatively quick population buildup. According to phylogenetic analyses of haplotypes, we suggested that the origin of the Chinese population was from California, USA. Phylogenetic and network analysis of native populations of D. valens revealed strong genetic structure at two distinct spatial and temporal scales in North America. The main cause resulting in current biogeographic pattern was supposedly due to recycled glacial events. Meanwhile, a cryptic species might exist in the Mexican and Guatemalan populations.

  18. Safety assessment of genetically modified foods

    NARCIS (Netherlands)

    Kleter, G.A.; Noordam, M.Y.

    2016-01-01

    The cultivation of genetically modified (GM) crops has steadily increased since their introduction to the market in the mid-1990s. Before these crops can be grown and sold they have to obtain regulatory approval in many countries, the process of which includes a pre-market safety assessment. The foo

  19. Patterns of genetic diversity in the polymorphic ground snake (Sonora semiannulata).

    Science.gov (United States)

    Cox, Christian L; Chippindale, Paul T

    2014-08-01

    We evaluated the genetic diversity of a snake species with color polymorphism to understand the evolutionary processes that drive genetic structure across a large geographic region. Specifically, we analyzed genetic structure of the highly polymorphic ground snake, Sonora semiannulata, (1) among populations, (2) among color morphs (3) at regional and local spatial scales, using an amplified fragment length polymorphism dataset and multiple population genetic analyses, including FST-based and clustering analytical techniques. Based upon these methods, we found that there was moderate to low genetic structure among populations. However, this diversity was not associated with geographic locality at either spatial scale. Similarly, we found no evidence for genetic divergence among color morphs at either spatial scale. These results suggest that despite dramatic color polymorphism, this phenotypic diversity is not a major driver of genetic diversity within or among populations of ground snakes. We suggest that there are two mechanisms that could explain existing genetic diversity in ground snakes: recent range expansion from a genetically diverse founder population and current or recent gene flow among populations. Our findings have further implications for the types of color polymorphism that may generate genetic diversity in snakes.

  20. Impact of Mutation Type and Amplicon Characteristics on Genetic Diversity Measures Generated Using a High-Resolution Melting Diversity Assay

    OpenAIRE

    Cousins, Matthew M.; Donnell, Deborah; Eshleman, Susan H.

    2013-01-01

    We adapted high-resolution melting (HRM) technology to measure genetic diversity without sequencing. Diversity is measured as a single numeric HRM score. Herein, we determined the impact of mutation types and amplicon characteristics on HRM diversity scores. Plasmids were generated with single-base changes, insertions, and deletions. Different primer sets were used to vary the position of mutations within amplicons. Plasmids and plasmid mixtures were analyzed to determine the impact of mutati...

  1. Genetic Diversity Revealed by Single Nucleotide Polymorphism Markers in a Worldwide Germplasm Collection of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Ming-Cheng Luo

    2013-03-01

    Full Text Available Evaluation of genetic diversity and genetic structure in crops has important implications for plant breeding programs and the conservation of genetic resources. Newly developed single nucleotide polymorphism (SNP markers are effective in detecting genetic diversity. In the present study, a worldwide durum wheat collection consisting of 150 accessions was used. Genetic diversity and genetic structure were investigated using 946 polymorphic SNP markers covering the whole genome of tetraploid wheat. Genetic structure was greatly impacted by multiple factors, such as environmental conditions, breeding methods reflected by release periods of varieties, and gene flows via human activities. A loss of genetic diversity was observed from landraces and old cultivars to the modern cultivars released during periods of the Early Green Revolution, but an increase in cultivars released during the Post Green Revolution. Furthermore, a comparative analysis of genetic diversity among the 10 mega ecogeographical regions indicated that South America, North America, and Europe possessed the richest genetic variability, while the Middle East showed moderate levels of genetic diversity.

  2. Genetic diversity revealed by genomic-SSR and EST-SSR markers among common wheat, spelt and compactum

    Institute of Scientific and Technical Information of China (English)

    YANG Xinquan; LIU Peng; HAN Zongfu; NI Zhongfu; SUN Qixin

    2005-01-01

    In this study, two SSR molecular markers, named genomic-SSR and EST-SSR, are used to measure the genetic diversity among three hexaploid wheat populations, which include 28 common wheat ( Triticum aestivum L. ), 13 spelt ( Triticum spelta L. ),and 11 compactum ( Triticum compactum Host. ). The results show that common wheat has the highest genetic polymorphism, followed by spelt and then compactum. The mean genetic distance between the populations is higher than that within a population, and similar tendency is detected for individual genomes A, B and D. Therefore, spelt and compactum can be used as potential germplasms for wheat breeding, especially for enriching the genetic variation in genome D. As compared with spelt, the genetic diversity between common wheat and compactum is much smaller, indicating a closer consanguine relationship between these two species. Although the polymorphism revealed by EST-SSR is lower than that by genomic-SSR, it can effectively differentiate diverse genotypes as well. Together with our present results, it is concluded that EST-SSR marker is an ideal marker for assessing the genetic diversity in wheat. Meanwhile, the origin and evolution of hexaploid wheat is also analyzed and discussed.

  3. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China.

    Science.gov (United States)

    Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen

    2016-01-01

    Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China. PMID:26663614

  4. Noninvasive genetics provides insights into the population size and genetic diversity of an Amur tiger population in China.

    Science.gov (United States)

    Wang, Dan; Hu, Yibo; Ma, Tianxiao; Nie, Yonggang; Xie, Yan; Wei, Fuwen

    2016-01-01

    Understanding population size and genetic diversity is critical for effective conservation of endangered species. The Amur tiger (Panthera tigris altaica) is the largest felid and a flagship species for wildlife conservation. Due to habitat loss and human activities, available habitat and population size are continuously shrinking. However, little is known about the true population size and genetic diversity of wild tiger populations in China. In this study, we collected 55 fecal samples and 1 hair sample to investigate the population size and genetic diversity of wild Amur tigers in Hunchun National Nature Reserve, Jilin Province, China. From the samples, we determined that 23 fecal samples and 1 hair sample were from 7 Amur tigers: 2 males, 4 females and 1 individual of unknown sex. Interestingly, 2 fecal samples that were presumed to be from tigers were from Amur leopards, highlighting the significant advantages of noninvasive genetics over traditional methods in studying rare and elusive animals. Analyses from this sample suggested that the genetic diversity of wild Amur tigers is much lower than that of Bengal tigers, consistent with previous findings. Furthermore, the genetic diversity of this Hunchun population in China was lower than that of the adjoining subpopulation in southwest Primorye Russia, likely due to sampling bias. Considering the small population size and relatively low genetic diversity, it is urgent to protect this endangered local subpopulation in China.

  5. Assessing the welfare of genetically altered mice.

    Science.gov (United States)

    Wells, D J; Playle, L C; Enser, W E J; Flecknell, P A; Gardiner, M A; Holland, J; Howard, B R; Hubrecht, R; Humphreys, K R; Jackson, I J; Lane, N; Maconochie, M; Mason, G; Morton, D B; Raymond, R; Robinson, V; Smith, J A; Watt, N

    2006-04-01

    In 2003, under the auspices of the main UK funders of biological and biomedical research, a working group was established with a remit to review potential welfare issues for genetically altered (GA) mice, to summarize current practice, and to recommend contemporary best practice for welfare assessments. The working group has produced a report which makes practical recommendations for GA mouse welfare assessment and dissemination of welfare information between establishments using a 'mouse passport'. The report can be found at www.nc3rs.org.uk/GAmice and www.lal.org.uk/gaa and includes templates for the recommended welfare assessment scheme and the mouse passport. An overview is provided below.

  6. Risk assessment of Genetically Modified Organisms (GMOs)

    OpenAIRE

    Waigmann E; Paoletti C; Davies H; Perry J; Kärenlampi S; Kuiper H

    2012-01-01

    EFSA’s remit in the risk assessment of GMOs is very broad encompassing genetically modified plants, microorganisms and animals and assessing their safety for humans, animals and the environment. The legal frame for GMOs is set by Directive 2001/18/EC on their release into the environment, and Regulation (EC) No 1829/2003 on GM food and feed. The main focus of EFSA’s GMO Panel and GMO Unit lies in the evaluation of the scientific risk assessment of new applications for market authoris...

  7. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    NARCIS (Netherlands)

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors

  8. Use of SNP markers to conserve genome-wide genetic diversity in livestock

    NARCIS (Netherlands)

    Engelsma, K.A.

    2012-01-01

    Conservation of genetic diversity in livestock breeds is important since it is, both within and between breeds, under threat. The availability of large numbers of SNP markers has resulted in new opportunities to estimate genetic diversity in more detail, and to improve prioritization of animals for

  9. Is there a positive relationship between naturalness and genetic diversity in forest tree communities?

    Energy Technology Data Exchange (ETDEWEB)

    Wehenkel, C.; Corral-Rivas, J. J.; Castellanos-Bocaz, H. A.; Pinedo-Alvarez, A.

    2009-07-01

    Abstract The concepts of genetic diversity and naturalness are well known as measures of conservation values and as descriptors of state or condition. A lack of research evaluating the relationship between genetic diversity and naturalness in biological communities, along with the possible implications in terms of evolutionary aspects and conservation management, make this subject particularly important as regards forest tree communities.We therefore examined the following hypothesis: the genetic diversity of a central-European tree stand averaged over species increases with the naturalness of the stand, as defined by the Potential Natural Vegetation (PNV). The results obtained show that the hypothesis is unsustainable because differences between the averaged genetic diversities of the unnatural and semi-natural stand classes (69 cases) were mostly non-significant. Moreover in three cases, the average genetic diversity of unnatural stand classes was significantly higher than the average genetic diversity of the semi-natural stand classes. A significantly lower average genetic diversity of unnatural stand class was not detected in the statistical analysis. Thus, the naturalness of a tree species community, as inferred from PNV, does not serve as a straightforward indicator of ecological stability when the genetic diversity and the adaptability of tree species are unknown. (Author) 30 refs.

  10. Cryptosporidium within-host genetic diversity: systematic bibliographical search and narrative overview.

    Science.gov (United States)

    Grinberg, Alex; Widmer, Giovanni

    2016-07-01

    Knowledge of the within-host genetic diversity of a pathogen often has broad implications for disease management. Cryptosporidium protozoan parasites are among the most common causative agents of infectious diarrhoea. Current limitations of in vitro culture impose the use of uncultured isolates obtained directly from the hosts as operational units of Cryptosporidium genotyping. The validity of this practice is centred on the assumption of genetic homogeneity of the parasite within the host, and genetic studies often take little account of the within-host genetic diversity of Cryptosporidium. Yet, theory and experimental evidence contemplate genetic diversity of Cryptosporidium at the within-host scale, but this diversity is not easily identified by genotyping methods ill-suited for the resolution of DNA mixtures. We performed a systematic bibliographical search of the occurrence of within-host genetic diversity of Cryptosporidium parasites in epidemiological samples, between 2005 and 2015. Our results indicate that genetic diversity at the within-host scale, in the form of mixed species or intra-species diversity, has been identified in a large number (n=55) of epidemiological surveys of cryptosporidiosis in variable proportions, but has often been treated as a secondary finding and not analysed. As in malaria, there are indications that the scale of this diversity varies between geographical regions, perhaps depending on the prevailing transmission pathways. These results provide a significant knowledge base from which to draw alternative population genetic structure models, some of which are discussed in this paper. PMID:27021167

  11. Genetic Diversity Among Botulinum Neurotoxin Producing Clostridial Strains

    Energy Technology Data Exchange (ETDEWEB)

    Hill, K K; Smith, T J; Helma, C H; Ticknor, L O; Foley, B T; Svennson, R T; Brown, J L; Johnson, E A; Smith, L A; Okinaka, R T; Jackson, P J; Marks, J D

    2006-07-06

    Clostridium botulinum is a taxonomic designation for many diverse anaerobic spore forming rod-shaped bacteria which have the common property of producing botulinum neurotoxins (BoNTs). The BoNTs are exoneurotoxins that can cause severe paralysis and even death in humans and various other animal species. A collection of 174 C. botulinum strains were examined by amplified fragment length polymorphism (AFLP) analysis and by sequencing of the 16S rRNA gene and BoNT genes to examine genetic diversity within this species. This collection contained representatives of each of the seven different serotypes of botulinum neurotoxins (BoNT A-G). Analysis of the16S rRNA sequences confirmed earlier reports of at least four distinct genomic backgrounds (Groups I-IV) each of which has independently acquired one or more BoNT serotypes through horizontal gene transfer. AFLP analysis provided higher resolution, and can be used to further subdivide the four groups into sub-groups. Sequencing of the BoNT genes from serotypes A, B and E in multiple strains confirmed significant sequence variation within each serotype. Four distinct lineages within each of the BoNT A and B serotypes, and five distinct lineages of serotype E strains were identified. The nucleotide sequences of the seven serotypes of BoNT were compared and show varying degrees of interrelatedness and recombination as has been previously noted for the NTNH gene which is linked to BoNT. These analyses contribute to the understanding of the evolution and phylogeny within this species and assist in the development of improved diagnostics and therapeutics for treatment of botulism.

  12. Temporal estimates of genetic diversity in some Mytilus galloprovincialis populations impacted by the Prestige oil-spill

    Science.gov (United States)

    Lado-Insua, Tanya; Pérez, Montse; Diz, Angel P.; Presa, Pablo

    2011-04-01

    The sinking of the tanker Prestige in November 2002 off the coast of Galicia resulted in the release of about 60,000 tons of heavy oil. The oil-spill provoked a serious environmental impact in Spanish and French coasts, which biological consequences are still being assessed. In this study we address the temporal dynamics of genetic diversity in some mussel populations impacted by the oil-spill. Changes in genetic diversity can be measured in natural populations provided that serial samples are available from before (year 2000) and after (years 2003, 2005) the oil-spill. Analyses of seven microsatellites indicate a weak but significant increase of genetic variation after the spill. This phenomenon is interpreted herein in terms of a balance between a enhanced genome mutability on microsatellite variation and a low genetic drift due to toxicants and asphyxia although other stochastic phenomena cannot be ruled out. Per locus annotation showed that in spite of the allelic changes observed in the period 2000-2005, the final size of most allelic series remained quite alike to those of year 2000. Present genetic data suggest that the genotoxic impact of the Prestige spill did not compromise the genetic diversity of studied mussel populations, at least regarding the genetic markers analysed.

  13. Pulsed Field Gel Electrophoresis and Genetic Diversity in Mycobacterium tuberculosis

    Directory of Open Access Journals (Sweden)

    Mohammad Poyeede

    2013-07-01

    Full Text Available AbstractBackground and objective: Tuberculosis is a considerable public health problem due to its high risk of person-to-person transmission, morbidity, and mortality especially in developing countries. According to the World Health Organization there is the emergence of multi-drug resistant M. tuberculosis and the association of TB with HIV has led to TB being declared. Molecular genotyping methods are important in detecting the dominance of transmission or reinfection in a population. During one year study genotyping of 100 of M. tuberculosis (M.t. isolates from patients referred to Pasteur Institute of Iran were accomplished with PFGE method. Material and methods: After identification of M.t. isolates and performing of antibiotic susceptibility test using standard methods, Melted Incert agarose and lysozyme were mixed with bacterial suspension to prepare PFGE plaques. After lyses and washing process the plaques digested with XbaI restriction enzyme. Finally the digested DNA fragments on 1% agarose with PFGE method were stained with ethidium bromide and analyzed with GelcomparII software.Results: Dendrogram of genetic diversity among 100 M.t. isolates were obtained in comparison of molecular weight marker and revealed two common types. Pulsotype A with 71 isolates and just one MDR and pulsotype B included 29 isolates and 3 MDR cases. No correlation between antibiotypes and pulsotypes were observed.Conclusion: It is very important to know about the existence of any clonal expansion of special M.t. genotypes with resistant strains. Our research shows 3 MDR isolates into the low incidence pulsotype B which could be an alarm for more accurate MDR-TB surveillance program. Probably such observed limited polymorphism may be due to conservation of restriction sites of XbaI enzyme. In order to investigate the genetic relatedness of isolates using other restriction enzymes and different molecular typing methods simultaneously were recommended.

  14. Genetic diversity of Phytophthora infestans in the Northern Andean region

    Directory of Open Access Journals (Sweden)

    Grünwald Niklaus J

    2011-02-01

    Full Text Available Abstract Background Phytophthora infestans (Mont. de Bary, the causal agent of potato late blight, is responsible for tremendous crop losses worldwide. Countries in the northern part of the Andes dedicate a large proportion of the highlands to the production of potato, and more recently, solanaceous fruits such as cape gooseberry (Physalis peruviana and tree tomato (Solanum betaceum, all of which are hosts of this oomycete. In the Andean region, P. infestans populations have been well characterized in Ecuador and Peru, but are poorly understood in Colombia and Venezuela. To understand the P. infestans population structure in the Northern part of the Andes, four nuclear regions (ITS, Ras, β-tubulin and Avr3a and one mitochondrial (Cox1 region were analyzed in isolates of P. infestans sampled from different hosts in Colombia and Venezuela. Results Low genetic diversity was found within this sample of P. infestans isolates from crops within several regions of Colombia and Venezuela, revealing the presence of clonal populations of the pathogen in this region. We detected low frequency heterozygotes, and their distribution patterns might be a consequence of a high migration rate among populations with poor effective gene flow. Consistent genetic differentiation exists among isolates from different regions. Conclusions The results here suggest that in the Northern Andean region P. infestans is a clonal population with some within-clone variation. P. infestans populations in Venezuela reflect historic isolation that is being reinforced by a recent self-sufficiency of potato seeds. In summary, the P. infestans population is mainly shaped by migration and probably by the appearance of variants of key effectors such as Avr3a.

  15. Genetic Diversity in A Core Subset of Wild Barley Germplasm

    Directory of Open Access Journals (Sweden)

    Yong-Bi Fu

    2012-06-01

    Full Text Available Wild barley [Hordeum vulgare ssp. spontaneum (C. Koch Thell.] is a part of the primary gene pool with valuable sources of beneficial genes for barley improvement. This study attempted to develop a core subset of 269 accessions representing 16 countries from the Plant Gene Resources of Canada (PGRC collection of 3,782 accessions, and to characterize them using barley simple sequence repeat (SSR markers. Twenty-five informative primer pairs were applied to screen all samples and 359 alleles were detected over seven barley chromosomes. Analyses of the SSR data showed the effectiveness of the stratified sampling applied in capturing country-wise SSR variation. The frequencies of polymorphic alleles ranged from 0.004 to 0.708 and averaged 0.072. More than 24% or 7% SSR variation resided among accessions of 16 countries or two regions, respectively. Accessions from Israel and Jordan were genetically most diverse, while accessions from Lebanon and Greece were most differentiated. Four and five optimal clusters of accessions were obtained using STRUCTURE and BAPS programs and partitioned 16.3% and 20.3% SSR variations, respectively. The five optimal clusters varied in size from 15 to 104 and two clusters had only country-specific accessions. A genetic separation was detected between the accessions east and west of the Zagros Mountains only at the country, not the individual, level. These SSR patterns enhance our understanding of the wild barley gene pool, and are significant for conserving wild barley germplasm and exploring new sources of useful genes for barley improvement.

  16. Genetic structure and diversity of Oryza sativa L.in Guizhou, China

    Institute of Scientific and Technical Information of China (English)

    ZHANG DongLing; CAO YongSheng; WANG XiangKun; LI ZiChao; ZHANG HongLiang; WEI XingHua; QI YongWen; WANG MeiXing; SUN JunLi; DING Li; TANG ShengXiang; QIU Zong'En

    2007-01-01

    Preserving many kinds of rice resources and rich variations, Guizhou Province is one of the districts with the highest genetic diversity of cultivated rice (Oryza sativa L.) in China. In the current research, genetic diversity and structure of 537 accessions of cultivated rice from Guizhou were studied using 36 microsatellite markers and 39 phenotypic characters. The results showed that the model-based genetic structure was the same as genetic-distance-based one using SSRs but somewhat different from the documented classification (mainly based on phenotype) of two subspecies. The accessions being classified into indica by phenotype but japonica by genetic structure were much more than that being classified into japonica by phenotype but indica by genetic structure. Like Ding Ying's taxonomic system of cultivated rice, the subspecific differentiation was the most distinct differentiation within cultivated rice. But the differentiation within indica or japonica population was different: japonica presented clearer differentiation between soil-watery ecotypes than indica, and indica presented clearer differentiation between seasonal ecotypes than japonica. Cultivated rices in Guizhou revealed high genetic diversity at both DNA and phenotypic levels. Possessing the highest genetic diversity and all the necessary conditions as a center of genetic diversity, region Southwestern of Guizhou was suggested as the center of genetic diversity of O. sativa L. from Guizhou.

  17. Exploring Genetic Diversity in Plants Using High-Throughput Sequencing Techniques.

    Science.gov (United States)

    Onda, Yoshihiko; Mochida, Keiichi

    2016-08-01

    Food security has emerged as an urgent concern because of the rising world population. To meet the food demands of the near future, it is required to improve the productivity of various crops, not just of staple food crops. The genetic diversity among plant populations in a given species allows the plants to adapt to various environmental conditions. Such diversity could therefore yield valuable traits that could overcome the food-security challenges. To explore genetic diversity comprehensively and to rapidly identify useful genes and/or allele, advanced high-throughput sequencing techniques, also called next-generation sequencing (NGS) technologies, have been developed. These provide practical solutions to the challenges in crop genomics. Here, we review various sources of genetic diversity in plants, newly developed genetic diversity-mining tools synergized with NGS techniques, and related genetic approaches such as quantitative trait locus analysis and genome-wide association study. PMID:27499684

  18. Genetic diversity among wild and cultivated barley as revealed by RFLP

    DEFF Research Database (Denmark)

    Petersen, L.; Østergård, H.; Giese, H.

    1994-01-01

    Genetic variability of cultivated and wild barley, Hordeum vulgare ssp. vulgare and spontaneum, respectively, was assessed by RFLP analysis. The material consisted of 13 European varietes, single-plant offspring lines of eight land races from Ethiopia and Nepal, and five accessions of ssp....... spontaneum from Israel, Iran and Turkey. Seventeen out of twenty-one studied cDNA and gDNA probes distributed across all seven barley chromosomes revealed polymorphism when DNA was digested with one of four restriction enzymes. A tree based on genetic distances using frequencies of RFLP banding patterns...... an intermediate level. The proportion of gene diversity residing among,geographical groups (F-ST) varied from 0.19 to 0.94 (average 0.54) per RFLP pattern, indicating large diversification between geographical groups....

  19. Genetic diversity comparison of the DQA gene in European rabbit (Oryctolagus cuniculus) populations.

    Science.gov (United States)

    Magalhães, Vanessa; Abrantes, Joana; Munõz-Pajares, Antonio Jesús; Esteves, Pedro J

    2015-10-01

    The European rabbit (Oryctolagus cuniculus) natural populations within the species native region, the Iberian Peninsula, are considered a reservoir of genetic diversity. Indeed, the Iberia was a Pleistocene refuge to the species and currently two subspecies are found in the peninsula (Oryctolagus cuniculus cuniculus and Oryctolagus cuniculus algirus). The genes of the major histocompatibility complex (MHC) have been substantially studied in wild populations due to their exceptional variability, believed to be pathogen driven. They play an important function as part of the adaptive immune system affecting the individual fitness and population viability. In this study, the MHC variability was assessed by analysing the exon 2 of the DQA gene in several European rabbit populations from Portugal, Spain and France and in domestic breeds. Twenty-eight DQA alleles were detected, among which 18 are described for the first time. The Iberian rabbit populations are well differentiated from the French population and domestic breeds. The Iberian populations retained the higher allelic diversity with the domestic breeds harbouring the lowest; in contrast, the DQA nucleotide diversity was higher in the French population. Signatures of positive selection were detected in four codons which are putative peptide-binding sites and have been previously detected in other mammals. The evolutionary relationships showed instances of trans-species polymorphism. Overall, our results suggest that the DQA in European rabbits is evolving under selection and genetic drift. PMID:26307416

  20. Aquatic beetles of the alpine lakes: diversity, ecology and small-scale population genetics

    Directory of Open Access Journals (Sweden)

    Čiamporová-Zaovičová Z.

    2011-11-01

    Full Text Available In this study, we summarize water beetle fauna of the alpine lakes and ponds of the Tatra Mountains. The literature and recent data were used to assess species diversity. Out of around 95 studied alpine water bodies, beetles were found in 61. Altogether, 54 taxa from six families were identified. The different altitudinal zones and lake areas were compared with species richness and species incidence concerning the sites sampled. Besides faunistics, some ecological notes on Agabus bipustulatus are provided. The seasonal dynamics of this species is influenced by its life cycle. The larvae and adults comprised a regular part of the samples during the whole period of the study with a decrease in density from June to the late fall. During the summer and the early fall, fast growth of the larvae was observed. The adults reached their abundance peak in September–October. For the first time, analysis is provided of the genetic diversity of the macroinvertebrate species of the alpine lakes. We used a 345bp fragment of cytochrome b in two dytiscids, Agabus bipustulatus and A. guttatus. Seven and eight haplotypes were identified, respectively, with slightly different distribution patterns of genetic diversity across the study area in both species. A high proportion of the lakes was characterized by a single haplotype and the majority of the haplotypes were restricted to only one of the sampled valleys.

  1. Assessing genetic diversity of mitochondrial D-loop sequences of Squaliobarbus curriculus in Yangtze River and Pearl River%珠江和长江水系赤眼鳟D-loop基因序列遗传变异分析

    Institute of Scientific and Technical Information of China (English)

    杨慧荣; 赵会宏; 刘丽; 陈彦珍; 林权卓; 黄宏辉

    2012-01-01

    29 mitochondrial D-loop gene segments of Squaliobarbus curriculus from Yangtze River and Pearl River were amplified with PCR technique and sequenced. Analysis on D-loop of 599 bp showed that there were 24 unique sequences, 25 singleton, 39 parsim-info, 81 mutation sites in all, including 50 transition sites, 14 transversion sites and 17 insert/lacuna sites. The content of A +T (68.8%) was much more than that of C + G (31. 2%). The genetic diversities among the 5 water areas ranged from 0 to 6. 03%. Haplotypic diversity(H) was 0. 977 8, mean number of pairwise differences ( K + SD ) was 17. 271 0, nucleotide diversity (w) was 0. 029 7. FST values between WH and SS, XF, WZ populations, between YC and SS, XF, WZ populations showed significant genetic differences, and the one among all the other populations showed no strong genetic differences. Significant genetic differentiation among all five populations was found by analysis of molecular variance (AMOVA). According to the molecular phylogenetic tree constructed by NJ methods based on D-loop, the individuals of Yangtze River and Pearl River assembled in two branches respectively with high confidence. The obvious genetic differentiation was mainly attributed to the reproductive isolation caused by the geographical isolation between Yangtze River and Pearl River. But, for Yangtze River, the molecular phylogenetic tree was immingled because the intrapopulation and interpopulation genetic distances differed little. So it showed that there was no genetic differentiation in those from different water areas, which belonged to 'Yangtze population'. It was also the case with 'Pearl population'.%利用PCR技术扩增得到珠江和长江水系共29个赤眼鳟(Squaliobarbus curriculus)线粒体DNA D-loop基因片段,并测定其序列。对599 bp的D-loop基因序列进行分析,共检测到24个单倍型,25个单突变位点,39个简约信息位点。在81

  2. Genetic Diversity in Gorkhas: an Autosomal STR Study.

    Science.gov (United States)

    Preet, Kiran; Malhotra, Seema; Shrivastava, Pankaj; Jain, Toshi; Rawat, Shweta; Varte, L Robert; Singh, Sayar; Singh, Inderjeet; Sarkar, Soma

    2016-01-01

    Genotyping of highly polymorphic autosomal short tandem repeat (STR) markers is a potent tool for elucidating genetic diversity. In the present study, fifteen autosomal STR markers were analyzed in unrelated healthy male Gorkha individuals (n = 98) serving in the Indian Army by using AmpFlSTR Identifiler Plus PCR Amplification Kit. In total, 138 alleles were observed with corresponding allele frequencies ranging from 0.005 to 0.469. The studied loci were in Hardy-Weinberg Equilibrium (HWE). Heterozygosity ranged from 0.602 to 0.867. The most polymorphic locus was Fibrinogen Alpha (FGA) chain which was also the most discriminating locus as expected. Neighbor Joining (NJ) tree and principal component analysis (PCA) plot clustered the Gorkhas with those of Nepal and other Tibeto-Burman population while lowlander Indian population formed separate cluster substantiating the closeness of the Gorkhas with the Tibeto-Burman linguistic phyla. Furthermore, the dataset of STR markers obtained in the study presents a valuable information source of STR DNA profiles from personnel for usage in disaster victim identification in military exigencies and adds to the Indian database of military soldiers and military hospital repository. PMID:27580933

  3. Exhaustive search for conservation networks of populations representing genetic diversity.

    Science.gov (United States)

    Diniz-Filho, J A F; Diniz, J V B P L; Telles, M P C

    2016-01-01

    Conservation strategies routinely use optimization methods to identify the smallest number of units required to represent a set of features that need to be conserved, including biomes, species, and populations. In this study, we provide R scripts to facilitate exhaustive search for solutions that represent all of the alleles in networks with the smallest possible number of populations. The script also allows other variables to be added to describe the populations, thereby providing the basis for multi-objective optimization and the construction of Pareto curves by averaging the values in the solutions. We applied this algorithm to an empirical dataset that comprised 23 populations of Eugenia dysenterica, which is a tree species with a widespread distribution in the Cerrado biome. We observed that 15 populations would be necessary to represent all 249 alleles based on 11 microsatellite loci, and that the likelihood of representing all of the alleles with random networks is less than 0.0001. We selected the solution (from two with the smallest number of populations) obtained for the populations with a higher level of climatic stability as the best strategy for in situ conservation of genetic diversity of E. dysenterica. The scripts provided in this study are a simple and efficient alternative to more complex optimization methods, especially when the number of populations is relatively small (i.e., <25 populations). PMID:26909939

  4. Genetic diversity of Chlamydia among captive birds from central Argentina.

    Science.gov (United States)

    Frutos, María C; Monetti, Marina S; Vaulet, Lucia Gallo; Cadario, María E; Fermepin, Marcelo Rodríguez; Ré, Viviana E; Cuffini, Cecilia G

    2015-01-01

    To study the occurrence of Chlamydia spp. and their genetic diversity, we analysed 793 cloacal swabs from 12 avian orders, including 76 genera, obtained from 80 species of asymptomatic wild and captive birds that were examined with conventional nested polymerase chain reaction and quantitative polymerase chain reaction. Chlamydia spp. were not detected in wild birds; however, four species (Chlamydia psittaci, Chlamydia pecorum, Chlamydia pneumoniae and Chlamydia gallinacea) were identified among captive birds (Passeriformes, n = 20; Psittaciformes, n = 15; Rheiformes, n = 8; Falconiformes n = 2; Piciformes n = 2; Anseriformes n = 1; Galliformes n = 1; Strigiformes n = 1). Two pathogens (C. pneumoniae and C. pecorum) were identified simultaneously in samples obtained from captive birds. Based on nucleotide-sequence variations of the ompA gene, three C. psittaci-positive samples detected were grouped into a cluster with the genotype WC derived from mammalian hosts. A single positive sample was phylogenetically related to a new strain of C. gallinacea. This report contributes to our increasing understanding of the abundance of Chlamydia in the animal kingdom. PMID:25469538

  5. Genetic diversity among monoconidial and polyconidial isolates of Bipolaris sorokiniana.

    Science.gov (United States)

    Mann, Michele B; Minotto, Elisandra; Feltrin, Thaisa; Milagre, Luciana P; Spadari, Cristina; Van Der Sand, Sueli T

    2014-12-01

    Spot blotch caused by Bipolaris sorokiniana is a destructive disease of wheat in warm and humid wheat-growing regions of the world. This fungus shows a high genetic diversity and morphological and physiologic variability. In this study, 19 polysporic and 57 monosporic isolates of B. sorokiniana were characterized using universal rice primers-URP-PCR. The results obtained when the dendrogram was constructed with all the data produced with the amplification products showed very distinct clusters. However, the similarity among the isolates was low where 37 and 26.3 % of the monosporic and polysporic isolates, respectively, showed similarity above 70 %. All primers amplified multiple DNA fragments of polysporic as well as the monosporic isolates. Isolates fingerprints were constructed based on binary characters revealed by the three primers. An amplified fragment of approximately 750 bp was observed among 40 % of the isolates, when primer URP-1F was used. When primers URP-4R and URP-2R were used, a fragment of 450 and 400 bp was present in 31.5 and 29 % of the isolates, respectively. It was expected a higher similarity among the isolates since the monosporic cultures were originated from the polysporic. The dendrogram did not enable the separation of B. sorokiniana isolates by their geographic origin. This low correlation suggests that gene transfer may have occurred by parasexual combination in this fungus population. However, in spite of the research efforts for that end, it has not been possible to establish patterns that characterize the profile of B. sorokiniana.

  6. Genetic diversity of some chili (Capsicum annuum L. genotypes

    Directory of Open Access Journals (Sweden)

    M.J. Hasan

    2014-06-01

    Full Text Available A study on genetic diversity was conducted with 54 Chili (Capsicum annuum L. genotypes through Mohalanobis’s D2 and principal component analysis for twelve quantitative characters viz. plant height, number of secondary branch/plant, canopy breadth , days to first flowering, days to 50% flowering, fruits/plant, 5 fruits weight, fruit length, fruit diameter, seeds/fruit, 1000 seed weight and yield/plant were taken into consideration. Cluster analysis was used for grouping of 54 chili genotypes and the genotypes were fallen into seven clusters. Cluster II had maximum (13 and cluster III had the minimum number (1 of genotypes. The highest inter-cluster distance was observed between cluster I and III and the lowest between cluster II and VII. The characters yield/plant, canopy breadth, secondary branches/plant, plant height and seeds/fruit contributed most for divergence in the studied genotypes. Considering group distance, mean performance and variability the inter genotypic crosses between cluster I and cluster III, cluster III and cluster VI, cluster II and cluster III and cluster III and cluster VII may be suggested to use for future hybridization program.

  7. High Genetic Diversity in Geographically Remote Populations of Endemic and Widespread Coral Reef Angelfishes (genus: Centropyge)

    OpenAIRE

    Munday, Philip L.; Jones, Geoffrey P.; Hobbs, Jean-Paul A.; Lynne van Herwerden; Jerry, Dean R.

    2013-01-01

    In the terrestrial environment, endemic species and isolated populations of widespread species have the highest rates of extinction partly due to their low genetic diversity. To determine if this pattern holds in the marine environment, we examined genetic diversity in endemic coral reef angelfishes and isolated populations of widespread species. Specifically, this study tested the prediction that angelfish (genus: Centropyge) populations at Christmas and Cocos Islands have low genetic divers...

  8. GENETIC DIVERSITY AND POPULATION STRUCTURE OF WILD AND CULTIVATED BROWN SEA MUSTARD, UNDARIA PINNATIFIDA

    OpenAIRE

    Man, Kyu; Hong, Wook

    2002-01-01

    Enzyme electrophoresis was used to estimate genetic diversity and population structure of the wild and cultivated sea mustard, Undaria pinnatifida (Harvey) Suringar. Compared with other ecologically and economically significant brown seaweed, population structure of this species has not been studied. The objectives of this study were to estimate the levels of genetic diversity in the wild and cultivated populations and to describe the distribution of genetic variation within and among its pop...

  9. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes

    Science.gov (United States)

    Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle

    2016-01-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution. PMID:27304978

  10. Genetic Drift, Purifying Selection and Vector Genotype Shape Dengue Virus Intra-host Genetic Diversity in Mosquitoes.

    Science.gov (United States)

    Lequime, Sebastian; Fontaine, Albin; Ar Gouilh, Meriadeg; Moltini-Conclois, Isabelle; Lambrechts, Louis

    2016-06-01

    Due to their error-prone replication, RNA viruses typically exist as a diverse population of closely related genomes, which is considered critical for their fitness and adaptive potential. Intra-host demographic fluctuations that stochastically reduce the effective size of viral populations are a challenge to maintaining genetic diversity during systemic host infection. Arthropod-borne viruses (arboviruses) traverse several anatomical barriers during infection of their arthropod vectors that are believed to impose population bottlenecks. These anatomical barriers have been associated with both maintenance of arboviral genetic diversity and alteration of the variant repertoire. Whether these patterns result from stochastic sampling (genetic drift) rather than natural selection, and/or from the influence of vector genetic heterogeneity has not been elucidated. Here, we used deep sequencing of full-length viral genomes to monitor the intra-host evolution of a wild-type dengue virus isolate during infection of several mosquito genetic backgrounds. We estimated a bottleneck size ranging from 5 to 42 founding viral genomes at initial midgut infection, irrespective of mosquito genotype, resulting in stochastic reshuffling of the variant repertoire. The observed level of genetic diversity increased following initial midgut infection but significantly differed between mosquito genetic backgrounds despite a similar initial bottleneck size. Natural selection was predominantly negative (purifying) during viral population expansion. Taken together, our results indicate that dengue virus intra-host genetic diversity in the mosquito vector is shaped by genetic drift and purifying selection, and point to a novel role for vector genetic factors in the genetic breadth of virus populations during infection. Identifying the evolutionary forces acting on arboviral populations within their arthropod vector provides novel insights into arbovirus evolution.

  11. Genetic diversity studies in twenty accessions of hot pepper (Capsicum spp L.) in Ghana

    International Nuclear Information System (INIS)

    Twenty (20) accessions of hot pepper (Capsicum spp L.) were collected from eight geographical regions of Ghana for genetic diversity studies. The objective was to assess genetic relationship among them using phenotypic and molecular traits and to evaluate their elemental composition. A replicated field experiment was conducted to assess their genetic diversity based on 13 quantitative traits and 22 qualitative traits using the IBPGR descriptor list for Capsicum. Confirmation of their identities was done using 10 SSR markers. The accessions were also evaluated for macro, micro and trace elements in their fresh fruits using the Instrumental Neutron Activation Analysis (INAA). Five essential macro elements (Ca, Cl, K, Mg and Na), two micro elements (Al and Mn) and one trace element (Br) were detected by INAA. Results from the agromorphological study revealed that accession Wes 01 had the widest stem width, matured leaf width, high fruit set but late maturing. Nor 03 was early maturing and had high fruit set, but also possessed the highest number of seeds per fruit. Fruit weight, fruit width, fruit length and plant canopy width, recorded the highest variabilities with 66.191; 53.24; 49.32; and 32.42 coefficients of variation (CVs), respectively. Few traits such as plant canopy width, plant height, fruit length, mature leaf length and number of seeds per fruit contributed substantially to total genetic variance as revealed by the principal component analysis (PCA). A dendrogram generated using morphological traits grouped accessions into cultivated and wild genotypes of pepper and all the accessions were identified as separate entities with no duplications. Strong correlation was recorded between plant canopy width and plant height, mature leaf length and mature leaf width, and also fruit weight and fruit width and fruit length. Negative correlation was however, observed between fruit length and days to 50% fruiting and flowering. All three accessions from the Northern

  12. Assessing Extinction Risk: Integrating Genetic Information

    OpenAIRE

    Gary Vinyard; Jennifer Nielsen; C. Richard Tracy; Mary Peacock; Jason Dunham

    1999-01-01

    Risks of population extinction have been estimated using a variety of methods incorporating information from different spatial and temporal scales. We briefly consider how several broad classes of extinction risk assessments, including population viability analysis, incidence functions, and ranking methods integrate information on different temporal and spatial scales. In many circumstances, data from surveys of neutral genetic variability within, and among, populations can provide informatio...

  13. Annotation and genetic diversity of the chicken collagenous lectins.

    Science.gov (United States)

    Hamzić, Edin; Pinard-van der Laan, Marie-Hélène; Bed'Hom, Bertrand; Juul-Madsen, Helle Risdahl

    2015-06-01

    Collectins and ficolins are multimeric proteins present in various tissues and are actively involved in innate immune responses. In chickens, six different collagenous lectins have been characterized so far: mannose-binding lectin (MBL), surfactant protein A (SP-A), collectin 10 (COLEC10), collectin 11 (COLEC11), collectin 12 (COLEC12), lung lectin (LL) and one ficolin (FCN). However, the structural and functional features of the chicken collectins and ficolin are still not fully understood. Therefore, the aims of this study were: (i) to make an overview of the genetic structure and function of chicken collectins and the ficolin, (ii) to investigate the variation in the chicken collectins and the ficolin gene in different chicken populations, and (iii) to assess the presence of MBL gene variants in different chicken populations. We performed comparative genomic analysis using publically available data. The obtained results showed that collectins and ficolins have conserved protein sequences and gene structure across all vertebrate groups and this is especially notable for COLEC10, COLEC11 and COLEC12. For the purpose of studying the genetic variation, 179 animals from 14 populations were genotyped using 31 SNPs covering five genomic regions. The obtained results revealed low level of heterozygosity in the collagenous lectins except for the COLEC12 gene and the LL-SPA-MBL region compared to heterozygosity at neutral microsatellite markers. In addition, the MBL gene variants were assessed in different chicken populations based on the polymorphisms in the promoter region. We observed 10 previously identified MBL variants with A2/A8 and A4 as the most frequent alleles.

  14. Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops.

    Science.gov (United States)

    Bailleul, Diane; Ollier, Sébastien; Lecomte, Jane

    2016-01-01

    Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field). Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops.

  15. Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops.

    Directory of Open Access Journals (Sweden)

    Diane Bailleul

    Full Text Available Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field. Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops.

  16. Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops.

    Science.gov (United States)

    Bailleul, Diane; Ollier, Sébastien; Lecomte, Jane

    2016-01-01

    Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field). Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops. PMID:27359342

  17. Genetic Diversity of Oilseed Rape Fields and Feral Populations in the Context of Coexistence with GM Crops

    Science.gov (United States)

    Bailleul, Diane; Ollier, Sébastien; Lecomte, Jane

    2016-01-01

    Despite growing concern about transgenes escaping from fields, few studies have analysed the genetic diversity of crops in an agroecosystem over several years. Accurate information about the dynamics and relationship of the genetic diversity of crops in an agroecosystem is essential for risk assessment and policies concerning the containment of genetically modified crops and their coexistence with crops grown by conventional practices. Here, we analysed the genetic diversity of oilseed rape plants from fields and feral populations over 4 years in an agricultural landscape of 41 km2. We used exact compatibility and maximum likelihood assignment methods to assign these plants to cultivars. Even pure lines and hybrid cultivar seed lots contained several genotypes. The cultivar diversity in fields reflected the conventional view of agroecosystems quite well: that is, there was a succession of cultivars, some grown for longer than others because of their good performance, some used for one year and then abandoned, and others gradually adopted. Three types of field emerged: fields sown with a single cultivar, fields sown with two cultivars, and unassigned fields (too many cultivars or unassigned plants to reliably assign the field). Field plant diversity was higher than expected, indicating the persistence of cultivars that were grown for only one year. The cultivar composition of feral populations was similar to that of field plants, with an increasing number of cultivars each year. By using genetic tools, we found a link between the cultivars of field plants in a particular year and the cultivars of feral population plants in the following year. Feral populations on road verges were more diverse than those on path verges. All of these findings are discussed in terms of their consequences in the context of coexistence with genetically modified crops. PMID:27359342

  18. Risk Assessment of Genetically Modified Microorganisms

    DEFF Research Database (Denmark)

    Jacobsen, B. L.; Wilcks, Andrea

    2001-01-01

    the industry, national administration and research institutions were gathered to discuss which elements should be considered in a risk assessment of genetically modified microorganisms used as food or food ingredients. The existing EU and national regulations were presented, together with the experiences......The rapid development of recombinant DNA techniques for food organisms urges for an ongoing discussion on the risk assessment of both new as traditional use of microorganisms in food production. This report, supported by the Nordic Council of Ministers, is the result of a workshop where people from...

  19. Genetic Diversity of the Critically Endangered Thuja sutchuenensis Revealed by ISSR Markers and the Implications for Conservation

    Directory of Open Access Journals (Sweden)

    Zeping Jiang

    2013-07-01

    Full Text Available Thuja sutchuenensis Franch. is a critically endangered plant endemic to the North-East Chongqing, China. Genetic variation was studied to assess the distribution of genetic diversity within and among seven populations from the single remnant locations, using inter-simple sequence repeat (ISSR markers. A total of 15 primers generated 310 well defined bands, with an average of 20.7 bands per primer. The seven populations revealed a relatively high level of genetic diversity in the species. The percentage of polymorphic bands, Nei’s gene diversity and Shannon’s information index at the population and species level were 76.1%, 0.155, 0.252 and 100%, 0.165, 0.295, respectively. A low level of genetic differentiation among populations (GST = 0.102, in line with the results of Analyses of Molecular Variance (AMOVA, and a high level of gene flow (Nm = 4.407 were observed. Both the Unweighted Pair Group Method with Arithmatic Mean (UPGMA cluster analysis and Principal Coordinates Analysis (PCoA supported the grouping of all seven populations into two groups. In addition, Mantel test revealed no significant correlation between genetic and geographical distances (r = 0.329, p = 0.100. The low genetic differentiation among populations implies that the conservation efforts should aim to preserve all the extant populations of this endangered species.

  20. Genetic diversity and phylogenetic relationships between and within wild Pistacia species populations and implications for its conservation

    Institute of Scientific and Technical Information of China (English)

    Parvaneh Iranjo; Daryuoosh NabatiAhmadi; Karim Sorkheh; Hamid Rajabi Memeari; Sezai Ercisli

    2016-01-01

    Although cultivation and utilization of Pistacia are fully exploited, the evolutionary history of the Pistacia genus and the relationships among the species and acces-sions is still not well understood. The aim of this study was to analyze random amplified polymorphic DNA (RAPD) in a total of 50 accessions of wild pistachio species, which included five populations Pistacia vera, Pistacia khinjuk, Pistacia atlantica, Pistacia mutica, and Pistacia eurycarpa. High levels of genetic diversity were detected within wild pistachio accessions, as revealed by using the unweighted pair-group method with arithmetic averaging and supported via analysis of molecular variance. The objectives of this investigation were to estimate marker indices, polymorphic information contents (PICs), and genetic similarities (GS) for RAPD markers;assess the genetic diversity of Pistacia species, using GS estimated from RAPD fingerprints and molecular characterization;and facilitate the use of markers in inter-specific introgression and cultivar improvement. Out of the 149 polymerase chain reaction fragments that were scored, 146 (97.98%) were polymorphic. Genetic similarities ranged from 0.3 to 0.86%, marker indices ranged from 2.98 to 17.74%, and PICs ranged from 0.80 to 0.99%. Our results provided great molecular identification of all assayed genotypes, which have shown that there is large quantity of genetic diversity among the pistachio accessions. This finding might render striking information in breeding management strategies for genetic conservation and cultivar development.

  1. Estimating genetic diversity and sampling strategy for a wild soybean (Glycine soja) population based on different molecular markers

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhong; ZHAO Ru; GU Senchang; YAN Wen; CHENG Zhou; CHEN Muhong; LU Weifeng; WANG Shuhong; LU Baorong; LU Jun; ZHANG Fan; XIANG Rong; XIAO Shangbin; YAN Pin

    2006-01-01

    Genetic diversity is the basic and most important component of biodiversity. It is essential for the effective conservation and utilization of genetic resources to accurately estimate genetic diversity of the targeted species and populations. This paper reports analyses of genetic diversity of a wild soybean population using three molecular marker technologies (AFLP, ISSR and SSR), and computer simulation studies of randomly selected subsets with different sample size (5-90 individuals) drawn 50 times from a total of 100 wild soybean individuals. The variation patterns of genetic diversity indices, including expected heterozygosity (He), Shannon diversity index (/), and percentage of polymorphic loci (P), were analyzed to evaluate changes of genetic diversity associated with the increase of individuals in each subset. The results demonstrated that (1) values of genetic diversity indices of the same wild soybean population were considerably different when estimated by different molecular marker techniques; (2) genetic diversity indices obtained from subsets with different sample sizes also diverged considerably; (3) P values were relatively more reliable for comparing genetic diversity detected by different molecular marker techniques; and (4) different diversity indices reached 90% of the total genetic diversity of the soybean population quite differently in terms of the sample size (number of individuals) analyzed.When using the P value as a determinator, 30-40individuals could capture over 90% of the total genetic diversity of the wild soybean population. Results from this study provide a strong scientific basis for estimating genetic diversity and for strategic conservation of plant species.

  2. An introduction to the freshwater animal diversity assessment (FADA) project

    OpenAIRE

    Balian, E. V.; Segers, H.; Lévêque, Christian; Martens, K.

    2008-01-01

    The Freshwater Animal Diversity Assessment (FADA) project aims at compiling an overview of genus- and species-level diversity of animals in the continental, aquatic ecosystems of the world. It is a collective effort of 163 experts, and presents 59 articles treating the diversity and endemism of different animal taxa, ranging from microscopic worms to mammals, at global and regional scales. Given their structural importance, an article on macrophytes is also added. Here, we give an overview of...

  3. Old-growth Platycladus orientalis as a resource for reproductive capacity and genetic diversity.

    Directory of Open Access Journals (Sweden)

    Lin Zhu

    Full Text Available AIMS: Platycladus orientalis (Cupressaceae is an old-growth tree species which distributed in the imperial parks and ancient temples in Beijing, China. We aim to (1 examine the genetic diversity and reproductive traits of old-growth and young populations of P. orientalis to ascertain whether the older populations contain a higher genetic diversity, more private alleles and a higher reproductive output compared with younger populations; (2 determine the relationships between the age of the population and the genetic diversity and reproductive traits; and (3 determine whether the imperial parks and ancient temples played an important role in maintaining the reproductive capacity and genetic diversity of Platycladus orientalis. METHODS: Samples from seven young (younger than 100 yrs. and nine old-growth (older than 300 yrs. artificial populations were collected. For comparison, three young and two old-growth natural populations were also sampled. Nine microsatellite loci were used to analyze genetic diversity parameters. These parameters were calculated using FSTAT version 2.9.3 and GenAlex v 6.41. IMPORTANT FINDINGS: The old-growth artificial populations of P. orientalis have significantly higher genetic diversity than younger artificial populations and similar levels to those in extant natural populations. The imperial parks and ancient temples, which have protected these old-growth trees for centuries, have played an important role in maintaining the genetic diversity and reproductive capacity of this tree species.

  4. Research of Genetic Diversity in Seven Kobresia by AFLP in Tibetan Plateau

    Institute of Scientific and Technical Information of China (English)

    ZHENG Hong-mei; HU Tian-ming; WANG Quan-zhen; ZHANG Guo-yun; SONG Jiang-hu

    2009-01-01

    This work analyzed the genetic diversity of Kobresia accessions at the molecular level, and further obtained the necessary information for breeding and germplasm evaluation. Genomic DNA of Kobresia was amplified with four E+3 and M+3 primer combinations with AFLP (amplified fragment length polymorphism). AFLP analysis produced 164 scorable bands,of which 154 (93.96%) were polymorphic. The mean Nei's gene diversity index (H) was 0.2430, and the Shannon's information index (I) was 0.4012, indicating the abundant genetic diversity of Kobresia. The 11 Kobresia accessions from Tibetan Plateau, China, can be classified into five groups after cluster analysis based on the UPGMA (unweighted pair group method arithmetic average) method. In general, there was abundant genetic diversity among Kobresia accessions resources, and the genetic coefficient was unrelated to their geographic latitude. Natural habitats influenced genetic differentiation of Kobresia.

  5. Patterns of genetic and eco-geographical diversity in Spanish barleys.

    Science.gov (United States)

    Yahiaoui, S; Igartua, Ernesto; Moralejo, M; Ramsay, L; Molina-Cano, J L; Ciudad, F J; Lasa, J M; Gracia, M P; Casas, A M

    2008-01-01

    The pool of Western Mediterranean landraces has been under-utilised for barley breeding so far. The objectives of this study were to assess genetic diversity in a core collection of inbred lines derived from Spanish barley landraces to establish its relationship to barleys from other origins, and to correlate the distribution of diversity with geographical and climatic factors. To this end, 64 SSR were used to evaluate the polymorphism among 225 barley (Hordeum vulgare ssp. vulgare) genotypes, comprising two-row and six-row types. These included 159 landraces from the Spanish barley core collection (SBCC) plus 66 cultivars, mainly from European countries, as a reference set. Out of the 669 alleles generated, a large proportion of them were unique to the six-row Spanish barleys. An analysis of molecular variance revealed a clear genetic divergence between the six-row Spanish barleys and the reference cultivars, whereas this was not evident for the two-row barleys. A model-based clustering analysis identified an underlying population structure, consisting of four main populations for the whole genotype set, and suggested further possible subdivision within two of these populations. Most of the six-row Spanish landraces clustered into two groups that corresponded to geographic regions with contrasting environmental conditions. The existence of wide genetic diversity in Spanish germplasm, possibly related to adaptation to a broad range of environmental conditions, and its divergence from current European cultivars confirm its potential as a new resource for barley breeders, and make the SBCC a valuable tool for the study of adaptation in barley. PMID:18026712

  6. Sampling strategy for wild soybean (Glycine soja) populations based on their genetic diversity and fine-scale spatial genetic structure

    Institute of Scientific and Technical Information of China (English)

    ZHU Weiyue; ZHOU Taoying; ZHONG Ming; LU Baorong

    2007-01-01

    A total of 892 individuals sampled from a wild soybean population in a natural reserve near the Yellow River estuary located in Kenli of Shandong Province (China) were investigated.Seventeen SSR (simple sequence repeat) primer pairs from cultivated soybeans were used to estimate the genetic diversity of the population and its variation pattern versus changes of the sample size (sub-samples),in addition to investigating the fine-scale spatial genetic structure within the population.The results showed relatively high genetic diversity of the population with the mean value of allele number (A) being 2.88,expected heterozygosity (He) 0.431,Shannon diversity index (/) 0.699,and percentage of polymorphic loci (P) 100%.Sub-samples of different sizes (ten groups) were randomly drawn from the population and their genetic diversity was calculated by computer simulation.The regression model of the four diversity indexes with the change of sample sizes was computed.As a result,27-52 individuals can reach 95% of total genetic variability of the population.Spatial autocorrelation analysis revealed that the genetic patch size of this wild soybean population is about 18 m.The study provided a scientific basis for the sampling strategy of wild soybean populations.

  7. Genetic diversity of Prochilodus lineatus stocks using in the stocking program of Tietê River, Brazil

    Directory of Open Access Journals (Sweden)

    Ricardo Ribeiro

    2013-11-01

    Full Text Available Objective. Assess the genetic diversity in four brood stocks and one juvenile stock of curimba Prochilodus lineatus in a Hydropower plant in São Paulo - Brazil, using the Tietê River stocking program. Materials and methods. Five RAPD primers were used to amplify the extracted DNA from 150 fin-clip samples. Results. Fifty-nine fragments were polymorphic, 52 had frequencies with significant differences (p<0.05, 45 had low frequencies, 54 were excluded, and two were fixed fragments. High values for polymorphic fragments (71.19% to 91.53% and Shannon index (0.327 to 0.428 were observed. The genetic divergence values within each stock were greater than 50%. Most of the genetic variation was found within the groups through the AMOVA analysis, which was confirmed by the results of the identity and genetic distance. High ancestry levels (FST among the groups value indicated high and moderate genetic differentiation. The estimates of number of migrants by generation (Nm indicated low levels of gene flow. High and moderate genetic divergence between groups (0.58 to 0.83 was observed. Conclusions. The results indicate high variability within the stocks, and genetic differentiation among them. The fish stocks analyzed represent a large genetic base that will allow the fish technicians to release juveniles without genetic risks to wild populations present in the river. These genetic procedures may be used as models for other migratory species, including those threatened by extinction.

  8. An adaptive genetic algorithm with diversity-guided mutation and its global convergence property

    Institute of Scientific and Technical Information of China (English)

    李枚毅; 蔡自兴; 孙国荣

    2004-01-01

    An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of adaptive genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten.

  9. Complex spatial dynamics maintain northern leopard frog (Lithobates pipiens) genetic diversity in a temporally varying landscape

    Science.gov (United States)

    Mushet, David M.; Euliss, Ned H.; Chen, Yongjiu; Stockwell, Craig A.

    2013-01-01

    In contrast to most local amphibian populations, northeastern populations of the Northern Leopard Frog (Lithobates pipiens) have displayed uncharacteristically high levels of genetic diversity that have been attributed to large, stable populations. However, this widely distributed species also occurs in areas known for great climatic fluctuations that should be reflected in corresponding fluctuations in population sizes and reduced genetic diversity. To test our hypothesis that Northern Leopard Frog genetic diversity would be reduced in areas subjected to significant climate variability, we examined the genetic diversity of L. pipiens collected from 12 sites within the Prairie Pothole Region of North Dakota. Despite the region's fluctuating climate that includes periods of recurring drought and deluge, we found unexpectedly high levels of genetic diversity approaching that of northeastern populations. Further, genetic structure at a landscape scale was strikingly homogeneous; genetic differentiation estimates (Dest) averaged 0.10 (SD = 0.036) across the six microsatellite loci we studied, and two Bayesian assignment tests (STRUCTURE and BAPS) failed to reveal the development of significant population structure across the 68 km breadth of our study area. These results suggest that L. pipiens in the Prairie Pothole Region consists of a large, panmictic population capable of maintaining high genetic diversity in the face of marked climate variability.

  10. The diverse genetic switch of enterobacterial and marine telomere phages.

    Science.gov (United States)

    Hammerl, Jens A; Jäckel, Claudia; Funk, Eugenia; Pinnau, Sabrina; Mache, Christin; Hertwig, Stefan

    2016-01-01

    Temperate bacteriophages possess a genetic switch which regulates the lytic and lysogenic cycle. The genomes of the enterobacterial telomere phages N15, PY54 and ϕKO2 harbor a primary immunity region (immB) comprising genes for the prophage repressor, the lytic repressor and a putative antiterminator, similar to CI, Cro and Q of lambda, respectively. Moreover, N15 and ϕKO2 contain 3 related operator (OR) sites between cI and cro, while only one site (OR3) has been detected in PY54. Marine telomere phages possess a putative cI gene but not a cro-like gene. Instead, a gene is located at the position of cro, whose product shows some similarity to the PY54 ORF42 product, the function of which is unknown. We have determined the transcription start sites of the predicted repressor genes of N15, PY54, ϕKO2 and of the marine telomere phage VP58.5. The influence of the genes on phage propagation was analyzed in E. coli, Y. enterocolitica and V.parahaemolyticus. We show that the repressors and antiterminators of N15, ϕKO2 and PY54 exerted their predicted activities. However, while the proteins of both N15 and ϕKO2 affected lysis and lysogeny by N15, they did not affect PY54 propagation. On the other hand, the respective PY54 proteins exclusively influenced the propagation of this phage. The immB region of VP58.5 contains 2 genes that revealed prophage repressor activity, while a lytic repressor gene could not be identified. The results indicate an unexpected diversity of the growth regulation mechanisms in these temperate phages.

  11. Assessment of genetic diversity on a sample of cocoa accessions resistant to witches' broom disease based on RAPD and pedigree data Avaliação da diversidade genética em uma amostra de acessos de cacau resistentes à doença vassoura-de-bruxa, com base em dados de RAPD e pedigree

    Directory of Open Access Journals (Sweden)

    Ronaldo Carvalho dos Santos

    2005-01-01

    Full Text Available Genetic diversity in cocoa (Theobroma cacao L. has been assessed based on morphological and molecular markers for germplasm management and breeding purposes. Pedigree data is available in cocoa but it has not been used for assessing genetic relatedness. The geneitic diversity of 30 clonal cocoa accessions resistant to witche´ broom disease, from the CEPEC series, were studied on the basis of RAPD data and pedigree information. Twenty of these accessions descend from the TSA-644 clone, originated from a cross between the Upper Amazon germplasm called Scavina-6, the main source of resistance to witches' broom disease, and IMC-67. The ten remaining clones come from different sources including Amazon and Trinitario germplasm. RAPD data was collected using 16 primers and pedigree information was obtained from the International Cocoa Germplasm Database. Genetic similarities, genetic distances and coefficient of parentage were calculated using available software. Relatively low genetic diversity was observed in this germplasm set, probably because of great genetic relatedness amongst accessions studied and the poor representation of the germplasm. The TSA-644 descendants were more diverse than the other accessions used in the study. This might be due to the origin of the TSA clone, which was derived from highly divergent genotypes. Association between genetic similarities based on RAPD data and coefficient of parentage, based on pedigree data, was very low, probably due to the homogeneity of the breeding stocks and poor pedigree information. These findings are useful to cocoa breeders in planning crosses for the development of hybrid and clonal cultivars.A diversidade genética em cacau (Theobroma cacao L., embasada em dados morfológicos e em marcadores moleculares, tem sido avaliada com fins de manejo de germoplasma e uso no melhoramento genético. Dados de genealogia de cacau, embora disponíveis, não têm sido utilizados. Foi analisada a

  12. Genetic molecular diversity, production and resistance to witches’ broom in cacao clones

    Directory of Open Access Journals (Sweden)

    José Luis Pires

    2013-06-01

    Full Text Available The 32 cacao clones selected as being resistant following the witches’ broom epidemic and for having distinct productivitywere characterized according to their genetic diversity and were submitted to a new selection. These plants were assessed for eightyears at the Oceania Farm (FO in Itagibá, Bahia, Brazil. The 13 microsatellite primers generated an average of 11.7 amplicons perlocus, and based on them it was demonstrated that the 32 clones distribute themselves in groups apart from the nine clones used ascontrols. The 32 materials displayed significant differences in relation to the characters assessed in the field. Two criteria were formedfrom the classification of the most productive and resistant plants, and then used to select plants within the clusters. The selected plantsdisplayed potential for the cacao improvement program, that they have a high production and high resistance to witches’ broom.

  13. Population structure and genetic diversity of the perennial medicinal shrub Plumbago

    OpenAIRE

    Panda, Sayantan; Naik, Dhiraj; Kamble, Avinash

    2015-01-01

    Knowledge of the natural genetic variation and structure in a species is important for developing appropriate conservation strategies. As genetic diversity analysis among and within populations of Plumbago zeylanica remains unknown, we aimed (i) to examine the patterns and levels of morphological and genetic variability within/among populations and ascertain whether these variations are dependent on geographical conditions; and (ii) to evaluate genetic differentiation and population structure...

  14. Gene Flow and Genetic Diversity of a Broadcast-Spawning Coral in Northern Peripheral Populations

    OpenAIRE

    Yuichi Nakajima; Akira Nishikawa; Akira Iguchi; Kazuhiko Sakai

    2010-01-01

    Recently, reef-building coral populations have been decreasing worldwide due to various disturbances. Population genetic studies are helpful for estimating the genetic connectivity among populations of marine sessile organisms with metapopulation structures such as corals. Moreover, the relationship between latitude and genetic diversity is informative when evaluating the fragility of populations. In this study, using highly variable markers, we examined the population genetics of the broadca...

  15. Out of the bottleneck: the Diversity Outcross and Collaborative Cross mouse populations in behavioral genetics research.

    Science.gov (United States)

    Chesler, Elissa J

    2014-02-01

    The historical origins of classical laboratory mouse strains have led to a relatively limited range of genetic and phenotypic variation, particularly for the study of behavior. Many recent efforts have resulted in improved diversity and precision of mouse genetic resources for behavioral research, including the Collaborative Cross and Diversity Outcross population. These two populations, derived from an eight way cross of common and wild-derived strains, have high precision and allelic diversity. Behavioral variation in the population is expanded, both qualitatively and quantitatively. Variation that had once been canalized among the various inbred lines has been made amenable to genetic dissection. The genetic attributes of these complementary populations, along with advances in genetic and genomic technologies, makes a systems genetic analyses of behavior more readily tractable, enabling discovery of a greater range of neurobiological phenomena underlying behavioral variation.

  16. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake.

    Directory of Open Access Journals (Sweden)

    Leanne Faulks

    Full Text Available Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta and one introduced (brook charr, Salvelinus fontinalis, from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H'T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144 and brook charr (GIS = 0.129 although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species.

  17. Genetic diversity and population structure of different varieties of Morada Nova hair sheep from Brazil.

    Science.gov (United States)

    Ferreira, J S B; Paiva, S R; Silva, E C; McManus, C M; Caetano, A R; Façanha, D A E; de Sousa, M A N

    2014-01-01

    The aim of this study was to analyze genetic diversity and population structure among varieties of White (N = 40), Red (N = 32), and Black (N = 31) Morada Nova hair sheep from flocks in the northeastern Brazilian semiarid region. Fifteen nuclear microsatellite markers and two regions of mitochondrial DNA were used. The intra-population analysis demonstrated that the White variety had higher diversity, while the Red variety had the lowest values. The Bayesian analysis to assess the genetic population structure allowed differentiation between White, Red, and Black varieties, and revealed a tendency towards sub-structuring in the White variety flocks from the States of Ceará and Paraíba. The results of analyses of molecular variance showed that the greatest genetic structure was found when comparing flocks rather than varieties (8.59 vs 6.64% of the total variation, P Dtl, both the dendrogram analysis and the principal coordinate analysis showed the formation of two main groups: one composed of White and another of Black and Red individuals. Five and two haplotypes were found for the D-loop region and the ND5 gene, respectively. A haplotype unique to the Red variety was found in the D-loop region and a variety haplotype unique to the Black variety was found in the ND5 gene; however, these frequencies were low and therefore require further validation. These results support the existence of substantial differences between the Red and White varieties and should be used as separate genetic resources and to improve conservation programs.

  18. Genetic Diversity and Hybridisation between Native and Introduced Salmonidae Fishes in a Swedish Alpine Lake

    Science.gov (United States)

    Faulks, Leanne; Östman, Örjan

    2016-01-01

    Understanding the processes underlying diversification can aid in formulating appropriate conservation management plans that help maintain the evolutionary potential of taxa, particularly under human-induced activities and climate change. Here we assessed the microsatellite genetic diversity and structure of three salmonid species, two native (Arctic charr, Salvelinus alpinus and brown trout, Salmo trutta) and one introduced (brook charr, Salvelinus fontinalis), from an alpine lake in sub-arctic Sweden, Lake Ånn. The genetic diversity of the three species was similar and sufficiently high from a conservation genetics perspective: corrected total heterozygosity, H’T = 0.54, 0.66, 0.60 and allelic richness, AR = 4.93, 5.53 and 5.26 for Arctic charr, brown trout and brook charr, respectively. There were indications of elevated inbreeding coefficients in brown trout (GIS = 0.144) and brook charr (GIS = 0.129) although sibling relationships were likely a confounding factor, as a high proportion of siblings were observed in all species within and among sampling locations. Overall genetic structure differed between species, Fst = 0.01, 0.02 and 0.04 in Arctic charr, brown trout and brook charr respectively, and there was differentiation at only a few specific locations. There was clear evidence of hybridisation between the native Arctic charr and the introduced brook charr, with 6% of individuals being hybrids, all of which were sampled in tributary streams. The ecological and evolutionary consequences of the observed hybridisation are priorities for further research and the conservation of the evolutionary potential of native salmonid species. PMID:27032100

  19. Genetic diversity in Chinese modern wheat varieties revealed by microsatellite markers

    Institute of Scientific and Technical Information of China (English)

    HAO; Chenyang; WANG; Lanfen; ZHANG; Xueyong; YOU; Guangxia; DONG; Yushen; JIA; Jizeng; LIU; Xu; SHANG; Xunwu; LIU; Sancai; CAO; Yongsheng

    2006-01-01

    Genetic diversity of 1680 modern varieties in Chinese candidate core collections was analyzed at 78 SSR loci by fluorescence detection system. A total of 1336 alleles were detected, of which 1253 alleles could be annotated into 71 loci. For these 71 loci, the alleles ranged from 4 to 44 with an average of 17.6, and the PIC values changed from 0.19 to 0.89 with an average of 0.69. (1) In the three genomes of wheat, the average genetic richness was B>A>D, and the genetic diversity indexes were B>D>A. (2) Among the seven homoeologous groups, the average genetic richness was 2=7>3>4>6>5>1, and the genetic diversity indexes were 7>3>2>4>6>5>1. As a whole, group 7 possessed the highest genetic diversity, while groups 1 and 5 were the lowest. (3) In the 21 wheat chromosomes, 7A, 3B and 2D possessed much higher genetic diversity, while 2A, 1B, 4D, 5D and 1D were the lowest. (4) The highest average genetic diversity index existed in varieties bred in the 1950s, and then it declined continually. However, the change tendency of genetic diversity among decades was not greatly sharp. This was further illustrated by changes of the average genetic distance between varieties. In the 1950s it was the largest (0.731). Since the 1960s, it has decreased gradually (0.711, 0.706, 0.696, 0.695). The genetic base of modern varieties is becoming narrower and narrower. This should be given enough attention by breeders and policy makers.

  20. Environmental factors influence both abundance and genetic diversity in a widespread bird species.

    Science.gov (United States)

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-11-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations.

  1. Environmental factors influence both abundance and genetic diversity in a widespread bird species

    Science.gov (United States)

    Liu, Yang; Webber, Simone; Bowgen, Katharine; Schmaltz, Lucie; Bradley, Katharine; Halvarsson, Peter; Abdelgadir, Mohanad; Griesser, Michael

    2013-01-01

    Genetic diversity is one of the key evolutionary variables that correlate with population size, being of critical importance for population viability and the persistence of species. Genetic diversity can also have important ecological consequences within populations, and in turn, ecological factors may drive patterns of genetic diversity. However, the relationship between the genetic diversity of a population and how this interacts with ecological processes has so far only been investigated in a few studies. Here, we investigate the link between ecological factors, local population size, and allelic diversity, using a field study of a common bird species, the house sparrow (Passer domesticus). We studied sparrows outside the breeding season in a confined small valley dominated by dispersed farms and small-scale agriculture in southern France. Population surveys at 36 locations revealed that sparrows were more abundant in locations with high food availability. We then captured and genotyped 891 house sparrows at 10 microsatellite loci from a subset of these locations (N = 12). Population genetic analyses revealed weak genetic structure, where each locality represented a distinct substructure within the study area. We found that food availability was the main factor among others tested to influence the genetic structure between locations. These results suggest that ecological factors can have strong impacts on both population size per se and intrapopulation genetic variation even at a small scale. On a more general level, our data indicate that a patchy environment and low dispersal rate can result in fine-scale patterns of genetic diversity. Given the importance of genetic diversity for population viability, combining ecological and genetic data can help to identify factors limiting population size and determine the conservation potential of populations. PMID:24363897

  2. Hybrid origin of a cichlid population in Lake Malawi: implications for genetic variation and species diversity.

    Science.gov (United States)

    Smith, Peter F; Konings, Ad; Kornfield, Irv

    2003-09-01

    The importance of species recognition to taxonomic diversity among Lake Malawi cichlids has been frequently discussed. Hybridization - the apparent breakdown of species recognition - has been observed sporadically among cichlids and has been viewed as both a constructive and a destructive force with respect to species diversity. Here we provide genetic evidence of a natural hybrid cichlid population with a unique colour phenotype and elevated levels of genetic variation. We discuss the potential evolutionary consequences of interspecific hybridization in Lake Malawi cichlids and propose that the role of hybridization in generating both genetic variability and species diversity of Lake Malawi cichlids warrants further consideration. PMID:12919487

  3. Use of Population Genetics to Assess the Ecology, Evolution, and Population Structure of Coccidioides.

    Science.gov (United States)

    Teixeira, Marcus M; Barker, Bridget M

    2016-06-01

    During the past 20 years, a general picture of the genetic diversity and population structure of Coccidioides, the causal agent of coccidioidomycosis (Valley fever), has emerged. The genus consists of 2 genetically diverse species, C. immitis and C. posadasii, each of which contains 1 or more distinct populations with limited gene flow. Genotypic data indicate that C. immitis is divided into 2 subpopulations (central and southern California populations) and C. posadasii is divided into 3 subpopulations (Arizona, Mexico, and Texas/South America populations). However, admixture within and among these populations and the current paucity of environmental isolates limit our understanding of the population genetics of Coccidioides. We assessed population structure of Coccidioides in Arizona by analyzing 495 clinical and environmental isolates. Our findings confirm the population structure as previously described and indicate a finer scale population structure in Arizona. Environmental isolates appear to have higher genetic diversity than isolates from human patients. PMID:27191589

  4. Risk assessment of genetically modified crops for nutrition and health.

    Science.gov (United States)

    Magaña-Gómez, Javier A; de la Barca, Ana M Calderón

    2009-01-01

    The risk assessment of genetically modified (GM) crops for human nutrition and health has not been systematic. Evaluations for each GM crop or trait have been conducted using different feeding periods, animal models, and parameters. The most common result is that GM and conventional sources induce similar nutritional performance and growth in animals. However, adverse microscopic and molecular effects of some GM foods in different organs or tissues have been reported. Diversity among the methods and results of the risk assessments reflects the complexity of the subject. While there are currently no standardized methods to evaluate the safety of GM foods, attempts towards harmonization are on the way. More scientific effort is necessary in order to build confidence in the evaluation and acceptance of GM foods.

  5. Risk assessment of genetically modified crops for nutrition and health.

    Science.gov (United States)

    Magaña-Gómez, Javier A; de la Barca, Ana M Calderón

    2009-01-01

    The risk assessment of genetically modified (GM) crops for human nutrition and health has not been systematic. Evaluations for each GM crop or trait have been conducted using different feeding periods, animal models, and parameters. The most common result is that GM and conventional sources induce similar nutritional performance and growth in animals. However, adverse microscopic and molecular effects of some GM foods in different organs or tissues have been reported. Diversity among the methods and results of the risk assessments reflects the complexity of the subject. While there are currently no standardized methods to evaluate the safety of GM foods, attempts towards harmonization are on the way. More scientific effort is necessary in order to build confidence in the evaluation and acceptance of GM foods. PMID:19146501

  6. Levels of Biological Diversity: a Spatial Approach to Assessment Methods

    Directory of Open Access Journals (Sweden)

    ALEXANDRU-IONUŢ PETRIŞOR

    2008-01-01

    Full Text Available Biological diversity, interpreted as a variety of natural and man-dominated biological and ecological systems, plays an important role in assuring their stability and can be interpreted at different spatial scales, based on the hierarchical level of the system (biocoenose/ ecosystem, biome/complex of ecosystem, biosphere/ecosphere. Literature distinguishes six levels of biodiversity, namely alpha, beta, gamma, delta, epsilon, and omega. The current paper lists methodologies appropriate for assessing diversity at each of these levels, with a particular focus on regional diversity (gamma, delta, and epsilon diversities, i.e. CORINE land cover classification and the biogeographical regions of the European Union.

  7. Floristic inventory and diversity assessment - a critical review

    Directory of Open Access Journals (Sweden)

    S. Jayakumar

    2011-12-01

    Full Text Available Floristic inventory and diversity assessments are necessary to understand the present diversity status and conservation of forest biodiversity. Although, inventory and diversity studies are taken up at different levels all over the world by various research groups with available resources and to fill the gap in the biodiversity knowledge, there are variations in sampling methods/techniques, sample size, measurements taken in the field that hinder the compilation and comparison of results. This review discusses the problems and pitfalls in different sampling techniques, which are being followed in floristic inventory and diversity measurements.

  8. Extremely high genetic diversity in a single tumor points to prevalence of non-Darwinian cell evolution.

    Science.gov (United States)

    Ling, Shaoping; Hu, Zheng; Yang, Zuyu; Yang, Fang; Li, Yawei; Lin, Pei; Chen, Ke; Dong, Lili; Cao, Lihua; Tao, Yong; Hao, Lingtong; Chen, Qingjian; Gong, Qiang; Wu, Dafei; Li, Wenjie; Zhao, Wenming; Tian, Xiuyun; Hao, Chunyi; Hungate, Eric A; Catenacci, Daniel V T; Hudson, Richard R; Li, Wen-Hsiung; Lu, Xuemei; Wu, Chung-I

    2015-11-24

    The prevailing view that the evolution of cells in a tumor is driven by Darwinian selection has never been rigorously tested. Because selection greatly affects the level of intratumor genetic diversity, it is important to assess whether intratumor evolution follows the Darwinian or the non-Darwinian mode of evolution. To provide the statistical power, many regions in a single tumor need to be sampled and analyzed much more extensively than has been attempted in previous intratumor studies. Here, from a hepatocellular carcinoma (HCC) tumor, we evaluated multiregional samples from the tumor, using either whole-exome sequencing (WES) (n = 23 samples) or genotyping (n = 286) under both the infinite-site and infinite-allele models of population genetics. In addition to the many single-nucleotide variations (SNVs) present in all samples, there were 35 "polymorphic" SNVs among samples. High genetic diversity was evident as the 23 WES samples defined 20 unique cell clones. With all 286 samples genotyped, clonal diversity agreed well with the non-Darwinian model with no evidence of positive Darwinian selection. Under the non-Darwinian model, MALL (the number of coding region mutations in the entire tumor) was estimated to be greater than 100 million in this tumor. DNA sequences reveal local diversities in small patches of cells and validate the estimation. In contrast, the genetic diversity under a Darwinian model would generally be orders of magnitude smaller. Because the level of genetic diversity will have implications on therapeutic resistance, non-Darwinian evolution should be heeded in cancer treatments even for microscopic tumors.

  9. Genetic diversity measures of local European beef cattle breeds for conservation purposes

    Directory of Open Access Journals (Sweden)

    Pereira Albano

    2001-05-01

    Full Text Available Abstract This study was undertaken to determine the genetic structure, evolutionary relationships, and the genetic diversity among 18 local cattle breeds from Spain, Portugal, and France using 16 microsatellites. Heterozygosities, estimates of Fst, genetic distances, multivariate and diversity analyses, and assignment tests were performed. Heterozygosities ranged from 0.54 in the Pirenaica breed to 0.72 in the Barrosã breed. Seven percent of the total genetic variability can be attributed to differences among breeds (mean Fst = 0.07; P

  10. Genetic diversity and population structure of Plasmodium vivax isolates from Sudan, Madagascar, French Guiana and Armenia.

    Science.gov (United States)

    Menegon, Michela; Durand, Patrick; Menard, Didier; Legrand, Eric; Picot, Stéphane; Nour, Bakri; Davidyants, Vladimir; Santi, Flavia; Severini, Carlo

    2014-10-01

    Polymorphic genetic markers and especially microsatellite analysis can be used to investigate multiple aspects of the biology of Plasmodium species. In the current study, we characterized 7 polymorphic microsatellites in a total of 281 Plasmodium vivax isolates to determine the genetic diversity and population structure of P. vivax populations from Sudan, Madagascar, French Guiana, and Armenia. All four parasite populations were highly polymorphic with 3-32 alleles per locus. Mean genetic diversity values was 0.83, 0.79, 0.78 and 0.67 for Madagascar, French Guiana, Sudan, and Armenia, respectively. Significant genetic differentiation between all four populations was observed.

  11. Spatiotemporal Clustering of Mycobacterium tuberculosis Complex Genotypes in Florida: Genetic Diversity Segregated by Country of Birth.

    Directory of Open Access Journals (Sweden)

    Marie Nancy Séraphin

    Full Text Available Tuberculosis (TB is caused by members of the Mycobacterium tuberculosis complex (MTBC. Although the MTBC is highly clonal, between-strain genetic diversity has been observed. In low TB incidence settings, immigration may facilitate the importation of MTBC strains with a potential to complicate TB control efforts.We investigated the genetic diversity and spatiotemporal clustering of 2,510 MTBC strains isolated in Florida, United States, between 2009 and 2013 and genotyped using spoligotyping and 24-locus MIRU-VNTR. We mapped the genetic diversity to the centroid of patient residential zip codes using a geographic information system (GIS. We assessed transmission dynamics and the influence of immigration on genotype clustering using space-time permutation models adjusted for foreign-born population density and county-level HIV risk and multinomial models stratified by country of birth and timing of immigration in SaTScan.Among the 2,510 strains, 1,245 were reported among foreign-born persons; including 408 recent immigrants (<5 years. Strain allelic diversity (h ranged from low to medium in most locations and was most diverse in urban centers where foreign-born population density was also high. Overall, 21.5% of cases among U.S.-born persons and 4.6% among foreign-born persons clustered genotypically and spatiotemporally and involved strains of the Haarlem family. One Haarlem space-time cluster identified in the mostly rural northern region of Florida included US/Canada-born individuals incarcerated at the time of diagnosis; two clusters in the mostly urban southern region of Florida were composed predominantly of foreign-born persons. Both groups had HIV prevalence above twenty percent.Almost five percent of TB cases reported in Florida during 2009-2013 were potentially due to recent transmission. Improvements to TB screening practices among the prison population and recent immigrants are likely to impact TB control. Due to the monomorphic nature

  12. Species history masks the effects of human-induced range loss - unexpected genetic diversity in the endangered giant mayfly Palingenia longicauda

    OpenAIRE

    Miklós Bálint; Kristóf Málnás; Carsten Nowak; Jutta Geismar; Eva Váncsa; László Polyák; Szabolcs Lengyel; Peter Haase

    2012-01-01

    Freshwater biodiversity has declined dramatically in Europe in recent decades. Because of massive habitat pollution and morphological degradation of water bodies, many once widespread species persist in small fractions of their original range. These range contractions are generally believed to be accompanied by loss of intraspecific genetic diversity, due to the reduction of effective population sizes and the extinction of regional genetic lineages. We aimed to assess the loss of genetic dive...

  13. Genetic diversity and elite gene introgression reveal the japonica rice breeding in northern China

    Institute of Scientific and Technical Information of China (English)

    LIU Dan; WANG Jia-yu; WANG Xiao-xue; YANG Xian-li; SUN Jian; CHEN Wen-fu

    2015-01-01

    Abundant genetic diversity and rational population structure of germplasm beneift crop breeding greatly. To investigate genetic variation among geographical y diverse set of japonica germplasm, we analyzed 233 japonica rice cultivars col-lected from Liaoning, Jilin and Heilongjiang provinces of China, which were released from 1970 to 2011 by using 62 simple sequence repeat (SSR) markers and 8 functional gene tags related to yield. A total of 195 al eles (Na) were detected with an average of 3.61 per locus, indicating a low level of genetic diversity level among al individuals. The genetic diversity of the cultivars from Jilin Province was the highest among the three geographic distribution zones. Moreover, the genetic diversity was increased slightly with the released period of cultivars from 1970 to 2011. The analysis of molecular variance (AMOVA) revealed that genetic differentiation was more diverse within the populations than that among the populations. The neighbor-joining (NJ) tree indicated that cultivar clusters based on geographic distribution represented three independent groups, among which the cluster of cultivars from Heilongjiang is distinctly different to the cluster of cultivars from Liaoning. For the examined functional genes, two or three al elic variations for each were detected, except for IPA1 and GW2, and most of elite genes had been introgressed in modern japonica rice varieties. These results provide a valuable evaluation for genetic backgrounds of current japonica rice and wil be used directly for japonica rice breeding in future.

  14. Analysis of genetic diversity identified by amplified fragment length polymorphism marker in hybrid wheat.

    Science.gov (United States)

    Ejaz, M; Qidi, Z; Gaisheng, Z; Na, N; Huiyan, Z; Qunzhu, W

    2015-01-01

    Amplified fragment length polymorphism markers were used to assess genetic diversity in 10 male sterile wheat crop lines (hetero-cytoplasm with the same nucleus) in relation to a restorer wheat line. These male sterile lines were evaluated using 64 amplified fragment length polymorphism primer combinations, and 13 primers produced polymorphic bands, generating a total 682 fragments. Of the 682 fragments, 113 were polymorphic. The polymorphic information content and marker index values demonstrated the utility of the primer combinations used in the present study. Unweighted pair group method with arithmetic mean and principal coordinate analysis of the genotypic data revealed clustering of accessions based on genetic relationships, and accessions were separated into 2 groups with their restorer line. Jaccard's similarity coefficient values suggested good variability among the male sterile lines, indicating their utility in breeding programs. The fallouts of analysis of molecular variance showed large within-group population variation, accounting for 77% of variation, while among-group comparison accounted for 23% of the total molecular variation, which was statistically significant. The molecular diversity observed in this study will be useful for selecting appropriate accessions for plant improvement and hybridization through molecular-breeding approaches and for developing suitable conservation strategies. PMID:26345825

  15. Characterization of type and genetic diversity among soybean cyst nematode differentiators

    Directory of Open Access Journals (Sweden)

    Éder Matsuo

    2012-04-01

    Full Text Available The development of soybean cyst nematode, Heterodera glycines Ichinohe, resistant genotypes with high yields has been one of the objectives of soybean (Glycine max (L. Merrill breeding programs. The objective of this study was to characterize the pathotype of soybean cyst nematodes and analyze the genetic diversity of ten differentiator lines ('Lee 74', Peking, Pickett, PI 88788, PI 90763, PI 437654, PI 209332, PI 89772, PI 548316 and 'Hartwig'. Inoculum was obtained from plants cultivated in field soil in Viçosa, state of Minas Gerais, Brazil. Thirty-four days after inoculating each plant with 4,000 eggs, the number of females, female index, total number of eggs, number of eggs per female, reproduction factor, plant height, number of nodes, fresh and dry matter weights were assessed. The differential lines were first grouped with Scott-Knott test. Subsequently, the genetic diversity was evaluated using dendrograms, graphic analysis and the Tocher grouping method. The inoculum of H. glycines obtained from NBSGBP-UFV was characterized as HG Type 0. The differentiating lines were divergent, and PI 89772, PI 437654, 'Hartwig' and 'Peking' had the greatest potential for use in breeding programs.

  16. Application of restriction site amplified polymorphism (RSAP) to genetic diversity in Saccharina japonica

    Science.gov (United States)

    Zhao, Cui; Liu, Cui; Li, Wei; Chi, Shan; Feng, Rongfang; Liu, Tao

    2013-07-01

    Restriction site amplified polymorphism (RSAP) was used, for the first time, to analyze the genetic structure and diversity of four, mainly cultivated, varieties of the brown alga, Saccharina japonica. Eighty-eight samples from varieties " Rongfu ", " Fujian ", " Ailunwan " and " Shengchanzhong " were used for the genetic analyses. One hundred and ninety-eight bands were obtained using eight combinations of primers. One hundred and ninety-one (96.46%) were polymorphic bands. Nei's genetic diversity was 0.360, and the coefficient of genetic differentiation was 0.357. No inbreeding-type recession was found in the four brown alga varieties and the results of the " Ailunwan " variety using samples from 2 years showed that the variety was becoming less diverse during the selection inherent in the breeding program. Genetic diversity and cluster analyses results were consistent with these genetic relationships. The results show the RSAP method is suitable for genetic analysis. Continuous inbreeding and selection could reduce the genetic diversity effectively; therefore periodical supervision is required.

  17. Genetic diversity and structure of the threatened species Sinopodophyllum hexandrum (Royle) Ying.

    Science.gov (United States)

    Liu, W; Wang, J; Yin, D X; Yang, M; Wang, P; Han, Q S; Ma, Q Q; Liu, J J; Wang, J X

    2016-01-01

    Sinopodophyllum hexandrum is an important medicinal plant that has been listed as an endangered species, making the conservation of its genetic diversity a priority. Therefore, the genetic diversity and population structure of S. hexandrum was investigated through inter-simple sequence repeat analysis of eight natural populations. Eleven selected primers generated 141 discernible fragments. The percentage of polymorphic bands was 37.59% at the species level, and 7.66-24.32% at the population level. Genetic diversity of S. hexandrum was low within populations (average HE = 0.0366), but higher at the species level (HE = 0.0963). Clear structure and high genetic differentiation were detected between populations using unweighted pair groups mean arithmetic and principle coordinate analysis. Clustering approaches clustered the eight sampled populations into three major groups, and AMOVA confirmed there to be significant variation between populations (63.27%). Genetic differentiation may have arisen through limited gene flow (Nm = 0.3317) in this species. Isolation by distance among populations was determined by comparing genetic distance versus geographical distance using the Mantel test. The results revealed no correlation between spatial pattern and geographic location. Given the low within-population genetic diversity, high differentiation among populations, and the increasing anthropogenic pressure on this species, in situ conservation measures, in addition to sampling and ex situ preservation, are recommended to preserve S. hexandrum populations and to retain their genetic diversity. PMID:27323174

  18. Application of restriction site amplified polymorphism (RSAP) to genetic diversity in Saccharina japonica

    Institute of Scientific and Technical Information of China (English)

    ZHAO Cui; LIU Cui; LI Wei; CHI Shan; FENG Rongfang; LIU Tao

    2013-01-01

    Restriction site amplified polymorphism (RSAP) was used,for the first time,to analyze the genetic structure and diversity of four,mainly cultivated,varieties of the brown alga,Saccharinajaponica.Eighty-eight samples from varieties "Rongfu","Fujian","Ailunwan" and "Shengchanzhong" were used for the genetic analyses.One hundred and ninety-eight bands were obtained using eight combinations of primers.One hundred and ninety-one (96.46%) were polymorphic bands.Nei's genetic diversity was 0.360,and the coefficient of genetic differentiation was 0.357.No inbreeding-type recession was found in the four brown alga varieties and the results of the "Ailunwan" variety using samples from 2 years showed that the variety was becoming less diverse during the selection inherent in the breeding program.Genetic diversity and cluster analyses results were consistent with these genetic relationships.The results show the RSAP method is suitable for genetic analysis.Continuous inbreeding and selection could reduce the genetic diversity effectively; therefore periodical supervision is required.

  19. Safety assessment of genetically modified crops

    International Nuclear Information System (INIS)

    The development of genetically modified (GM) crops has prompted widespread debate regarding both human safety and environmental issues. Food crops produced by modern biotechnology using recombinant techniques usually differ from their conventional counterparts only in respect of one or a few desirable genes, as opposed to the use of traditional breeding methods which mix thousands of genes and require considerable efforts to select acceptable and robust hybrid offspring. The difficulties of applying traditional toxicological testing and risk assessment procedures to whole foods are discussed along with the evaluation strategies that are used for these new food products to ensure the safety of these products for the consumer

  20. Genetic diversity and relationship of chicory (Cichorium intybus L.) using sequence-related amplified polymorphism markers.

    Science.gov (United States)

    Liang, X Y; Zhang, X Q; Bai, S Q; Huang, L K; Luo, X M; Ji, Y; Jiang, L F

    2014-01-01

    Chicory is a crop with economically important roles and is cultivated worldwide. The genetic diversity and relationship of 80 accessions of chicories and endives were evaluated by sequence-related amplified polymorphism (SRAP) markers to provide a theoretical basis for future breeding programs in China. The polymorphic rate was 96.83%, and the average polymorphic information content was 0.323, suggesting the rich genetic diversity of chicory. The genetic diversity degree of chicory was higher (GS = 0.677) than that of endive (GS = 0.701). The accessions with the highest genetic diversity (effective number of alleles, NE = 1.609; Nei's genetic diversity, H = 0.372; Shannon information index, I = 0.556) were from Italy. The richest genetic diversity was revealed in a chicory line (NE = 1.478, H = 0.289, I = 0.443) among the 3 types (line, wild, and cultivar). The chicory genetic structure of 8 geographical groups showed that the genetic differentiation coefficient (GST) was 14.20% and the number of immigrants per generation (Nm) was 3.020. A GST of 6.80% and an Nm of 6.853 were obtained from different types. This observation suggests that these chicory lines, especially those from the Mediterranean region, have potential for providing rich genetic resources for further breeding programs, that the chicory genetic structure among different countries obviously differs with a certain amount of gene flow, and that SRAP markers could be applied to analyze genetic relationships and classifications of Cichorium intybus and C. endivia. PMID:25299087

  1. Potential of Start Codon Targeted (SCoT Markers to Estimate Genetic Diversity and Relationships among Chinese Elymus sibiricus Accessions

    Directory of Open Access Journals (Sweden)

    Junchao Zhang

    2015-04-01

    Full Text Available Elymus sibiricus as an important forage grass and gene pool for improving cereal crops, that is widely distributed in West and North China. Information on its genetic diversity and relationships is limited but necessary for germplasm collection, conservation and future breeding. Start Codon Targeted (SCoT markers were used for studying the genetic diversity and relationships among 53 E. sibiricus accessions from its primary distribution area in China. A total of 173 bands were generated from 16 SCoT primers, 159 bands of which were polymorphic with the percentage of polymorphic bands (PPB of 91.91%. Based upon population structure analysis five groups were formed. The cluster analysis separated the accessions into two major clusters and three sub-clusters, similar to results of principal coordinate analysis (PCoA. The molecular variance analysis (AMOVA showed that genetic variation was greater within geographical regions (50.99% than between them (49.01%. Furthermore, the study also suggested that collecting and evaluating E. sibiricus germplasm for major geographic regions and special environments broadens the available genetic base and illustrates the range of variation. The results of the present study showed that SCoT markers were efficient in assessing the genetic diversity among E. sibiricus accessions.

  2. Genetic diversity of Prochilodus lineatus stocks using in the stocking program of Tietê River, Brazil

    OpenAIRE

    Ricardo Ribeiro; Silvio C. Alves dos Santos; Maria Rodriguez-Rodriguez; Darci C. Fornari; Jayme Povh; Nelson Lopera-Barrero

    2013-01-01

    ABSTRACTObjective. Assess the genetic diversity in four brood stocks and one juvenile stock of curimba Prochilodus lineatus in a Hydropower plant in São Paulo - Brazil, using the Tietê River stocking program. Materials and methods. Five RAPD primers were used to amplify the extracted DNA from 150 fin-clip samples. Results. Fifty-nine fragments were polymorphic, 52 had frequencies with significant differences (p<0.05), 45 had low frequencies, 54 were excluded, and two were fixed fragments. ...

  3. Enterobacterial repetitive intergenic consensus (ERIC) PCR based genetic diversity of Xanthomonas spp. and its relation to xanthan production

    OpenAIRE

    Ezat Asgarani; Tahereh Ghashghaei; MohammadReza Soudi; Nayyereh Alimadadi

    2015-01-01

    Background and Objective: The genus Xanthomonas is composed of phytopathogenic bacterial species. In addition to causing crops diseases, most of the Xanthomonas species especially Xanthomonas campestris produce xanthan gum via an aerobic fermentation process. Xanthan gum is, an important exopolysaccharide from Xanthomonas campestris, mainlyused in the food, petroleum and other industries. the purpose of this study was assessment of relationship between genetic diversity and xanthan production...

  4. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    Science.gov (United States)

    Serrano, Magdalena; Calvo, Jorge H; Martínez, Marta; Marcos-Carcavilla, Ane; Cuevas, Javier; González, Carmen; Jurado, Juan J; de Tejada, Paloma Díez

    2009-01-01

    Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008) consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08) mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will facilitate the

  5. Microsatellite based genetic diversity and population structure of the endangered Spanish Guadarrama goat breed

    Directory of Open Access Journals (Sweden)

    Jurado Juan J

    2009-09-01

    Full Text Available Abstract Background Assessing genetic biodiversity and population structure of minor breeds through the information provided by neutral molecular markers, allows determination of their extinction risk and to design strategies for their management and conservation. Analysis of microsatellite loci is known to be highly informative in the reconstruction of the historical processes underlying the evolution and differentiation of animal populations. Guadarrama goat is a threatened Spanish breed which actual census (2008 consists of 3057 females and 203 males distributed in 22 populations more or less isolated. The aim of this work is to study the genetic status of this breed through the analysis of molecular data from 10 microsatellites typed in historic and actual live animals. Results The mean expected heterozygosity across loci within populations ranged from 0.62 to 0.77. Genetic differentiation measures were moderate, with a mean FST of 0.074, GST of 0.081 and RST of 0.085. Percentages of variation among and within populations were 7.5 and 92.5, respectively. Bayesian clustering analyses pointed out a population subdivision in 16 clusters, however, no correlation between geographical distances and genetic differences was found. Management factors such as the limited exchange of animals between farmers (estimated gene flow Nm = 3.08 mostly due to sanitary and social constraints could be the major causes affecting Guadarrama goat population subdivision. Conclusion Genetic diversity measures revealed a good status of biodiversity in the Guadarrama goat breed. Since diseases are the first cause affecting the census in this breed, population subdivision would be an advantage for its conservation. However, to maintain private alleles present at low frequencies in such small populations minimizing the inbreeding rate, it would necessitate some mating designs of animals carrying such alleles among populations. The systematic use of molecular markers will

  6. Analysis of dsDNA and RNA viromes in methanogenic digesters reveals novel viral genetic diversity.

    Science.gov (United States)

    Calusinska, Magdalena; Marynowska, Martyna; Goux, Xavier; Lentzen, Esther; Delfosse, Philippe

    2016-04-01

    Although viruses are not the key players of the anaerobic digestion process, they may affect the dynamics of bacterial and archaeal populations involved in biogas production. Until now viruses have received very little attention in this specific habitat; therefore, as a first step towards their characterization, we optimized a virus filtration protocol from anaerobic sludge. Afterwards, to assess dsDNA and RNA viral diversity in sludge samples from nine different reactors fed either with waste water, agricultural residues or solid municipal waste plus agro-food residues, we performed metagenomic analyses. As a result we showed that, while the dsDNA viromes (21 assigned families in total) were dominated by dsDNA phages of the order Caudovirales, RNA viruses (14 assigned families in total) were less diverse and were for the main part plant-infecting viruses. Interestingly, less than 2% of annotated contigs were assigned as putative human and animal pathogens. Our study greatly extends the existing view of viral genetic diversity in methanogenic reactors and shows that these viral assemblages are distinct not only among the reactor types but also from nearly 30 other environments already studied, including the human gut, fermented food, deep sea sediments and other aquatic habitats. PMID:26568175

  7. Global and local genetic diversity at two microsatellite loci in Plasmodium vivax parasites from Asia, Africa and South America

    DEFF Research Database (Denmark)

    Schousboe, Mette L; Ranjitkar, Samir; Rajakaruna, Rupika S;

    2014-01-01

    diversity are vital to the evaluation of drug and vaccine efficacy, tracking of P. vivax outbreaks, and assessing geographical differentiation between parasite populations. METHODS: The genetic diversity of eight P. vivax populations (n = 543) was investigated by using two microsatellites (MS), m1501 and m......3502, chosen because of their seven and eight base-pair (bp) repeat lengths, respectively. These were compared with published data of the same loci from six other P. vivax populations. RESULTS: In total, 1,440 P. vivax samples from 14 countries on three continents were compared. There was highest...

  8. Genetic diversity characterization of cassava cultivars (Manihot esculenta Crantz.: I RAPD markers

    Directory of Open Access Journals (Sweden)

    Colombo Carlos

    1998-01-01

    Full Text Available RAPD markers were used to investigate the genetic diversity of 31 Brazilian cassava clones. The results were compared with the genetic diversity revealed by botanical descriptors. Both sets of variates revealed identical relationships among the cultivars. Multivariate analysis of genetic similarities placed genotypes destinated for consumption "in nature" in one group, and cultivars useful for flour production in another. Brazil?s abundance of landraces presents a broad dispersion and is consequently an important resource of genetic variability. The botanical descriptors were not able to differentiate thirteen pairs of cultivars compared two-by-two, while only one was not differentiated by RAPD markers. These results showed the power of RAPD markers over botanical descriptors in studying genetic diversity, identifying duplicates, as well as validating, or improving a core collection. The latter is particularly important in this vegetatively propagated crop.

  9. On the Consequences of Purging and Linkage on Fitness and Genetic Diversity

    OpenAIRE

    Diego Bersabé; Armando Caballero; Andrés Pérez-Figueroa; Aurora García-Dorado

    2016-01-01

    Using computer simulation we explore the consequences of linkage on the inbreeding load of an equilibrium population, and on the efficiency of purging and the loss of genetic diversity after a reduction in population size. We find that linkage tends to cause increased inbreeding load due to the build up of coupling groups of (partially) recessive deleterious alleles. It also induces associative overdominance at neutral sites but rarely causes increased neutral genetic diversity in equilibrium...

  10. Genetic diversity among Salvia miltiorrhiza Bunge and related species inferred from nrDNA ITS sequences

    OpenAIRE

    ZHANG Li; Zhao, Hong-Xia; Fan, Xing; WANG, Meng; Ding, Chun-Bang; Yang, Rui-Wu

    2012-01-01

    To investigate the genetic diversity and phylogenetic relationships of Salvia miltiorrhiza and related species, we analyzed the nuclear ribosomal DNA internal transcribed spacer (ITS) region for 7 accessions of Salvia miltiorrhiza and another 23 samples from other taxa within the genus Salvia by maximum parsimony and Bayesian inference analyses. There were 257 variation sites amounting to 40.8% of the total base pairs. All of the data revealed abundant genetic diversity in the genus Salvia. T...

  11. Genetic diversity and population structure of the Guinea pig (Cavia porcellus, Rodentia, Caviidae) in Colombia

    OpenAIRE

    William Burgos-Paz; Mario Cerón-Muñoz; Carlos Solarte-Portilla

    2011-01-01

    The aim was to establish the genetic diversity and population structure of three guinea pig lines, from seven production zones located in Nariño, southwest Colombia. A total of 384 individuals were genotyped with six microsatellite markers. The measurement of intrapopulation diversity revealed allelic richness ranging from 3.0 to 6.56, and observed heterozygosity (Ho) from 0.33 to 0.60, with a deficit in heterozygous individuals. Although statistically significant (p < 0.05), genetic differen...

  12. Spatiotemporal Clustering of Mycobacterium tuberculosis Complex Genotypes in Florida: Genetic Diversity Segregated by Country of Birth

    OpenAIRE

    Marie Nancy Séraphin; Michael Lauzardo; Richard T Doggett; Jose Zabala; J. Glenn Morris; Blackburn, Jason K.

    2016-01-01

    Background Tuberculosis (TB) is caused by members of the Mycobacterium tuberculosis complex (MTBC). Although the MTBC is highly clonal, between-strain genetic diversity has been observed. In low TB incidence settings, immigration may facilitate the importation of MTBC strains with a potential to complicate TB control efforts. Methods We investigated the genetic diversity and spatiotemporal clustering of 2,510 MTBC strains isolated in Florida, United States, between 2009 and 2013 and genotyped...

  13. Genetic diversity of bats coronaviruses in the Atlantic Forest hotspot biome, Brazil.

    Science.gov (United States)

    Góes, Luiz Gustavo Bentim; Campos, Angélica Cristine de Almeida; Carvalho, Cristiano de; Ambar, Guilherme; Queiroz, Luzia Helena; Cruz-Neto, Ariovaldo Pereira; Munir, Muhammad; Durigon, Edison Luiz

    2016-10-01

    Bats are notorious reservoirs of genetically-diverse and high-profile pathogens, and are playing crucial roles in the emergence and re-emergence of viruses, both in human and in animals. In this report, we identified and characterized previously unknown and diverse genetic clusters of bat coronaviruses in the Atlantic Forest Biome, Brazil. These results highlight the virus richness of bats and their possible roles in the public health. PMID:27473780

  14. Genetic diversity and germplasm conservation of three minor Andean tuber crop species

    OpenAIRE

    Malice M.; Baudoin JP.

    2009-01-01

    In traditional Andean agrosystems, three minor tuber crop species are of regional or local importance: oca (Oxalis tuberosa Molina), ulluco (Ullucus tuberosus Caldas) and mashua (Tropaeolum tuberosum Ruiz and Pav.). Genetic diversity within these species is very large and could result from the high ecological and cultural variability that characterizes the Andean area. Nowadays, many anthropic or ecological factors cause the loss of diversity and contribute to genetic erosion. The development...

  15. Rapid anti-pathogen response in ant societies relies on high genetic diversity

    OpenAIRE

    Ugelvig, Line V.; Kronauer, Daniel J. C.; Schrempf, Alexandra; Heinze, Jürgen; Cremer, Sylvia

    2010-01-01

    Social organisms are constantly exposed to infectious agents via physical contact with conspecifics. While previous work has shown that disease susceptibility at the individual and group level is influenced by genetic diversity within and between group members, it remains poorly understood how group-level resistance to pathogens relates directly to individual physiology, defence behaviour and social interactions. We investigated the effects of high versus low genetic diversity on both the ind...

  16. Paradox of Genetic Diversity in the Case of Prionic Diseases in Sheep Breeds from Romania

    Directory of Open Access Journals (Sweden)

    Gheorghe Hrinca

    2016-05-01

    Full Text Available The main target of this debate is the revaluation of the biodiversity concept and especially of its significance in the animal husbandry field. The paper analyzes the genetic diversity at the determinant locus of scrapie (PrP in the sheep breeds from Romania: Palas Merino, Tsigai, Tsurcana, Botosani Karakul, Palas Meat Breed and Palas Milk Breed. The prionic genetic diversity (d has been quantified by means of informational energy (e. This study highlights the impact of increasing the genetic diversity from the PrP locus level on the health status of ovine species and especially on human food safety. The informational statistics processing shows that the resistance / susceptibility to scrapie is in relation to the degree of prionic genetic diversity. The limitation of genetic diversity by selecting the individuals possessing the ARR allele in both homozygous status and in combination with alleles ARQ, ARH AHQ confers to sheep herds certain levels of resistance to contamination with scrapie disease. Instead, promoting to reproduction also individuals possessing the VRQ allele in all possible genotypic combinations (including ARR allele increases genetic diversity but also has as effect increasing the susceptibility of sheep to prion disease onset. From the point of view of morbid phenomenon, the Botosani Karakul breed is clearly advantaged compared to all other indigenous sheep breeds from Romania. For methodological coherency in the interpretative context of this issue, the genetic diversity was analyzed in association with the heterozygosity degree of breeds and their Hardy-Weinberg genetic equilibrium at the PrP locus level. Finally, the paper refers to decisions that the improvers must take to achieve the genetic prophylaxis in the scrapie case taking into account the polymorphism degree of prion protein.

  17. High genetic diversity and population structure in the endangered Canarian endemic Ruta oreojasme (Rutaceae).

    Science.gov (United States)

    Meloni, Marilena; Reid, Andrea; Caujapé-Castells, Juli; Soto, Moisés; Fernández-Palacios, José María; Conti, Elena

    2015-10-01

    Insular species are expected to have low genetic diversity, for their populations are often small and isolated, and characterized by restricted gene flow and increased incidence of inbreeding. However, empirical results do not always match this expectation. For example, population genetic analyses of several Canarian endemics, based mainly on allozymes, show levels of genetic diversity exceptionally high for insular species. To investigate whether genetic variation in rare species endemic to Canary Islands is low, as predicted by theoretical expectations, or high, as documented in some previous studies, we analysed genetic diversity of the endangered Ruta oreojasme, a rare endemic of the island of Gran Canaria, using microsatellite markers, which are more variable than allozymes. Our analyses identified very high levels of genetic diversity (A = 7.625, P = 0.984, H o = 0.558, H e = 0.687) for R. oreojasme. Even though the distribution of the species is restricted to the South of Gran Canaria, only one population shows low genetic diversity, isolation and signs of a recent bottleneck/founder event. Some intrinsic characteristics of R. oreojasme (hermaphroditism, proterandry and polyploidy), the relative climatic stability of the Canarian archipelago during Quaternary glacials/interglacials, the size of most populations (thousands of individuals), its age, and the relative proximity of the archipelago to the mainland might have contributed to the high diversity that characterises this endemic. As expected, given the marked topographic complexity of Gran Canaria, we found marked genetic structure in R. oreojasme populations. Our results support the observation that Canarian endemics are characterised by unexpectedly high genetic diversity and provides important insights for potential applications to the conservation of R. oreojasme.

  18. Biofilm formation and genetic diversity of Salmonella isolates recovered from clinical, food, poultry and environmental sources.

    Science.gov (United States)

    Nair, Amruta; Rawool, Deepak B; Doijad, Swapnil; Poharkar, Krupali; Mohan, Vysakh; Barbuddhe, Sukhadeo B; Kolhe, Rahul; Kurkure, Nitin V; Kumar, Ashok; Malik, S V S; Balasaravanan, T

    2015-12-01

    In the present study, Salmonella isolates (n=40) recovered from clinical, food, poultry and environmental sources were characterized for serotype identification, genetic diversity and biofilm formation capability. Serotype identification using multiplex PCR assay revealed six isolates to be Salmonella Typhimurium, 14 as Salmonella Enteritidis, 11 as Salmonella Typhi, and the remaining nine isolates unidentified were considered as other Salmonella spp. Most of the Salmonella isolates (85%) produced biofilm on polystyrene surfaces as assessed by microtitre plate assay. About 67.5% isolates were weak biofilm producers and 17.5% were moderate biofilm producers. There was no significant difference in biofilm-forming ability among the Salmonella isolates recovered from different geographical regions or different sources. Among the genetic methods, Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR revealed greater discriminatory power (DI, 0.943) followed by pulsed field gel electrophoresis (PFGE) (DI, 0.899) and random amplification of polymorphic DNA (RAPD) PCR (DI, 0.873). However, composite analysis revealed the highest discrimination index (0.957). Greater discrimination of S. Typhimurium and S. Typhi was achieved using PFGE, while ERIC PCR was better for S. Enteritidis and other Salmonella serotypes. A strong positive correlation (r=0.992) was observed between biofilm formation trait and clustered Salmonella isolates in composite genetic analysis.

  19. Genetic diversity analysis of Croton antisyphiliticus Mart. using AFLP molecular markers.

    Science.gov (United States)

    Oliveira, T G; Pereira, A M S; Coppede, J S; França, S C; Ming, L C; Bertoni, B W

    2016-01-01

    Croton antisyphiliticus Mart. is a medicinal plant native to Cerrado vegetation in Brazil, and it is popularly used to treat urogenital tract infections. The objective of the present study was to assess the genetic variability of natural C. antisyphiliticus populations using AFLP molecular markers. Accessions were collected in the states of Minas Gerais, São Paulo, and Goiás. The genotyping of individuals was performed using a LI-COR® DNA Analyzer 4300. The variability within populations was found to be greater than the variability between them. The F(ST) value was 0.3830, which indicated that the populations were highly structured. A higher percentage of polymorphic loci (92.16%) and greater genetic diversity were found in the population accessions from Pratinha-MG. Gene flow was considered restricted (N(m) = 1.18), and there was no correlation between genetic and geographic distances. The populations of C. antisyphiliticus exhibited an island-model structure, which demonstrates the vulnerability of the species. PMID:26909989

  20. Phosphorylation networks regulating JNK activity in diverse genetic backgrounds

    DEFF Research Database (Denmark)

    Bakal, Chris; Linding, Rune; Llense, Flora;

    2008-01-01

    Cellular signaling networks have evolved to enable swift and accurate responses, even in the face of genetic or environmental perturbation. Thus, genetic screens may not identify all the genes that regulate different biological processes. Moreover, although classical screening approaches have suc...

  1. The loss of genetic diversity during captive breeding of the endangered sculpin, Trachidermus fasciatus, based on ISSR markers: implications for its conservation

    Institute of Scientific and Technical Information of China (English)

    BI Xiaoxiao; YANG Qiaoli; GAO Tianxiang; LI Chuangju

    2011-01-01

    Inter-simple sequence repeat (ISSR) markers were used to determine the genetic variation and genetic differentiation of cultured and wild populations of Trachidermus fasciatus,an endangered catadromous fish species in China.Six selected primers were used to amplify DNA samples from 85 individuals,and 353 loci were detected.Relatively low genetic diversity was detected in the cultured population (the percentage of polymorphic loci PPL=73.80%,Nei's gene diversity h=0.178 2,Shannon information index I=0.276 9).However,the genetic diversity at the species level was relatively high (PPL=91.78%; h=0.258 3,I=0.398 6).The UPGMA tree grouped together the genotypes almost according to their cultured and wild origin,showing distinct differences in genetic structure between wild and cultured populations.The pairwise Fst values confirmed significant genetic differentiation between wild and cultured samples.The cultivated population seems to be low in genetic diversity as a result of detrimental genetic effects in the captive population.The results suggest that ISSR markers are effective for rapid assessment of the degree of diversity of a population,thus giving important topical information relevant to preserving endangered species.

  2. Genetic diversity of Norway spruce [Picea abies (L. Karst.] in Romanian Carpathians

    Directory of Open Access Journals (Sweden)

    Raul Gheorghe Radu

    2014-07-01

    Full Text Available The genetic diversity of Romanian most important coniferous tree species, the Norway spruce, was estimated by means of allozyme markers. A total of 695 adult trees sampled from eleven populations grouped in six mountainous areas in the Romanian Carpathians were analyzed. In three metapopulations (Maramureş, Postăvar and Parâng, to evaluate the influence of altitudinal gradient on genetic diversity, samples were collected from populations located at high and low altitude. At other location (ApuseniMountains we compared the narrow-crown biotype (Picea abies var. columnaris and the pyramidal crown biotype (Picea abies var. pyramidalis and explored the genetic structure of peat bog ecotype. By analyzing 7 enzyme systems and 12 enzyme coding loci, a total of 38 allelic variants have been detected. The mean value of polymorphic loci for the six sites was 86.1%, ranging between 83.3% and 91.7% and the mean expected heterozygosity was 0.115, resulting in a moderate level of genetic diversity. The highest genetic diversity (He = 0.134 was found in the narrow-crown spruce population. Apuseni metapopulation showed the highest genetic diversity (He = 0.125, being the most valuable for conservation of genetic resources. The small value of fixation index (FST = 0.009 indicates a low genetic differentiation between the six sites and AMOVA test revealed a very high level of genetic diversity within population (99%. Comparative analysis of genetic parameters showed small differences between high and low altitude populations at each site, probably due to the neutral character of the markers analyzed and the effect of gene flow between gradiental populations.

  3. The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): implications for conservation.

    Science.gov (United States)

    Miller, Craig R; Waits, Lisette P

    2003-04-01

    Protein, mtDNA, and nuclear microsatellite DNA analyses have demonstrated that the Yellowstone grizzly bear has low levels of genetic variability compared with other Ursus arctos populations. Researchers have attributed this difference to inbreeding during a century of anthropogenic isolation and population size reduction. We test thi