WorldWideScience

Sample records for assess carbon mitigation

  1. Induced seismicity and carbon storage: Risk assessment and mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    White, Joshua A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Foxall, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bachmann, Corinne [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chiaramonte, Laura [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Daley, Thomas M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-01-28

    Geologic carbon storage (GCS) is widely recognized as an important strategy to reduce atmospheric carbon dioxide (CO2) emissions. Like all technologies, however, sequestration projects create a number of potential environmental and safety hazards that must be addressed. These include earthquakes—from microseismicity to large, damaging events—that can be triggered by altering pore-pressure conditions in the subsurface. To date, measured seismicity due to CO2 injection has been limited to a few modest events, but the hazard exists and must be considered. There are important similarities between CO2 injection and fluid injection from other applications that have induced significant events—e.g. geothermal systems, waste-fluid injection, hydrocarbon extraction, and others. There are also important distinctions among these technologies that should be considered in a discussion of seismic hazard. This report focuses on strategies for assessing and mitigating risk during each phase of a CO2 storage project. Four key risks related to fault reactivation and induced seismicity were considered. Induced slip on faults could potentially lead to: (1) infrastructure damage, (2) a public nuisance, (3) brine-contaminated drinking water, and (4) CO2-contaminated drinking water. These scenarios lead to different types of damage—to property, to drinking water quality, or to the public welfare. Given these four risks, this report focuses on strategies for assessing (and altering) their likelihoods of occurrence and the damage that may result. This report begins with an overview of the basic physical mechanisms behind induced seismicity. This science basis—and its gaps—is crucial because it forms the foundation for risk assessment and mitigation. Available techniques for characterizing and monitoring seismic behavior are also described. Again, this technical basis—and its limitations—must be factored into the risk

  2. Metrics to assess the mitigation of global warming by carbon capture and storage in the ocean and in geological reservoirs

    OpenAIRE

    Haugan, Peter Mosby; Joos, Fortunat

    2004-01-01

    Different metrics to assess mitigation of global warming by carbon capture and storage are discussed. The climatic impact of capturing 30% of the anthropogenic carbon emission and its storage in the ocean or in geological reservoir are evaluated for different stabilization scenarios using a reduced-form carbon cycle-climate model. The accumulated Global Warming Avoided (GWA) remains, after a ramp-up during the first ~50 years, in the range of 15 to 30% over the next millennium for de...

  3. Using the Lashof Accounting Methodology to Assess Carbon Mitigation Projects Using LCA: Ethanol Biofuel as a Case Study

    DEFF Research Database (Denmark)

    Courchesne, Alexandre; Becaert, Valerie; Rosenbaum, Ralph K.

    2010-01-01

    As governments elaborate strategies to counter climate change, there is a need to compare the different options available on an environmental basis. This study proposes a life cycle assessment (LCA) framework integrating the Lashof Mg-year accounting methodology that allows the assessment...... of carbon mitigation projects. It calculates the cumulative radiative forcing caused by GHG emission within a predetermined time frame. Basically, the developed framework uses the Mg-year as a functional unit and isolates impacts related to the climate mitigation function with system expansion. The proposed...... study reveals that the system expansion scenario and the efficiency at reducing carbon emissions of the carbon mitigation project are critical factors having significant impact on results. Also, framework proves to be useful at treating land-use change emission as they are considered through...

  4. Carbon credit supply potential beyond 2012. A bottom-up assessment of mitigation options

    Energy Technology Data Exchange (ETDEWEB)

    Bakker, S.J.A.; Bole, T. [ECN Policy Studies, Petten (Netherlands); Arvanitakis, A.G. [PointCarbon, Oslo (Norway); Van de Brug, E.; Doets, C.E.M.; Gilbert, A. [Ecofys, Utrecht (Netherlands)

    2007-11-15

    In the context of climate change mitigation commitments and post-2012 negotiations questions have arisen around the potential and dynamics of the carbon market beyond 2012. This study focuses on gaining insight in the supply side of carbon credits after 2012 by studying potential and costs of greenhouse gas reduction options in the Clean Development Mechanism (CDM) and other flexible mechanisms. An elaborate analysis of future demand for credits is outside the scope of this report. It is concluded that the potential for greenhouse gas reduction options in non-Annex I countries in 2020 is likely to be large. This study has also made clear that the extent to which this potential can be harnessed by the CDM strongly depends on future eligibility decisions, notably for avoided deforestation, the application of the additionality criterion, and to a lesser extent the success of programmatic CDM and the adoption rate of technologies. Compared to this market potential, demand for carbon credits could be in the same order of magnitude, depending on the post-2012 negotiations and domestic reductions in countries with commitments. In addition to CDM, Joint Implementation projects in Russia and Ukraine and banked and new Assigned Amount Units may play a significant role in post-2012 carbon markets.

  5. Carbon mitigation with biomass: An engineering, economic and policy assessment of opportunities and implications

    Science.gov (United States)

    Rhodes, James S., III

    2007-12-01

    Industrial bio-energy systems provide diverse opportunities for abating anthropogenic greenhouse gas ("GHG") emissions and for advancing other important policy objectives. The confluence of potential contributions to important social, economic, and environmental policy objectives with very real challenges to deployment creates rich opportunities for study. In particular, the analyses developed in this thesis aim to increase understanding of how industrial bio-energy may be applied to abate GHG emissions in prospective energy markets, the relative merits of alternate bio-energy systems, the extent to which public support for developing such systems is justified, and the public policy instruments that may be capable of providing such support. This objective is advanced through analysis of specific industrial bio-energy technologies, in the form of bottom-up engineering-economic analyses, to determine their economic performance relative to other mitigation options. These bottom-up analyses are used to inform parameter definitions in two higher-level stochastic models that explicitly account for uncertainty in key model parameters, including capital costs, operating and maintenance costs, and fuel costs. One of these models is used to develop supply curves for electricity generation and carbon mitigation from biomass-coal cofire in the U.S. The other is used to characterize the performance of multiple bio-energy systems in the context of a competitive market for low-carbon energy products. The results indicate that industrial bio-energy systems are capable of making a variety of potentially important contributions under scenarios that value anthropogenic GHG emissions. In the near term, cofire of available biomass in existing coal fired power plants has the potential to provide substantial emissions reductions at reasonable costs. Carbon prices between 30 and 70 per ton carbon could induce reductions in U.S. carbon emissions by 100 to 225 megatons carbon ("Mt

  6. Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms

    NARCIS (Netherlands)

    Warnecke, C.; Wartmann, S.; Hoehne, N.E.; Blok, K.

    2014-01-01

    The current project-based carbon market mechanisms such as the Clean Development Mechanism (CDM) and the Joint Implementation (JI) do not have a direct impact on global greenhouse gas emission levels, because they only replace or offset emissions. Nor do they contribute to host country¿s national

  7. Beyond pure offsetting: Assessing options to generate Net-Mitigation-Effects in carbon market mechanisms

    NARCIS (Netherlands)

    Warnecke, C.; Wartmann, S.; Hohne, N.; Blok, Kornelis|info:eu-repo/dai/nl/07170275X

    2014-01-01

    The current project-based carbon market mechanisms such as the Clean Development Mechanism (CDM) and the Joint Implementation (JI) do not have a direct impact on global greenhouse gas emission levels, because they only replace or offset emissions. Nor do they contribute to host country׳s national

  8. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model.

    Science.gov (United States)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-14

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  9. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model

    Science.gov (United States)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-01

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  10. Silk industry and carbon footprint mitigation

    Science.gov (United States)

    Giacomin, A. M.; Garcia, J. B., Jr.; Zonatti, W. F.; Silva-Santos, M. C.; Laktim, M. C.; Baruque-Ramos, J.

    2017-10-01

    Currently there is a concern with issues related to sustainability and more conscious consumption habits. The carbon footprint measures the total amount of greenhouse gas (GHG) emissions produced directly and indirectly by human activities and is usually expressed in tonnes of carbon dioxide (CO2) equivalents. The present study takes into account data collected in scientific literature regarding the carbon footprint, garments produced with silk fiber and the role of mulberry as a CO2 mitigation tool. There is an indication of a positive correlation between silk garments and carbon footprint mitigation when computed the cultivation of mulberry trees in this calculation. A field of them mitigates CO2 equivalents in a proportion of 735 times the weight of the produced silk fiber by the mulberry cultivated area. At the same time, additional researches are needed in order to identify and evaluate methods to advertise this positive correlation in order to contribute to a more sustainable fashion industry.

  11. Risk mitigation strategies and policy implications for carbon dioxide ...

    African Journals Online (AJOL)

    USER

    Risk mitigation strategies and policy implications for carbon dioxide (CO2) emission in ... 1National Centre for Technology Management (NACETEM), Federal Ministry of Science and Technology,. Obafemi Awolowo University ..... needs assessment report under project: climate change enabling activity (Phase II). Republic of ...

  12. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bandana Devi

    2013-05-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as a major sink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied under different plantation forest ecosystems comprising of eight different tree species: Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnusnitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57±48.99tha-1 and below ground (42.47±10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera(118.37±1.49 tha-1 and minimum (36.50±9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86±10.34 tha-1 in Alnus nitida, and minimum (170.83±20.60 tha-1 in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79±2.0 tha-1. Carbon sequestration (7.91±3.4 tha-1 and CO2 mitigation potential (29.09±12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions for sustainable management of fragile hilly ecosystem.

  13. Carbon allocation, sequestration and carbon dioxide mitigation under plantation forests of north western Himalaya, India

    Directory of Open Access Journals (Sweden)

    Bandana Devi

    2013-07-01

    Full Text Available The organic carbon and soils of the world comprise bulk of the terrestrial carbon and serve as amajorsink and source of atmospheric carbon. Increasing atmospheric concentrations of green house gases may be mitigated by increasing carbon sequestration in vegetation and soil. The study attempted to estimate biomass production and carbon sequestration potential of different plantation ecosystems in north western Himalaya, India. Biomass, carbon density of biomass, soil, detritus, carbon sequestration and CO2 mitigation potential were studied underdifferent plantation forest ecosystems comprising of eight different tree species viz. Quercus leucotrichophora, Pinus roxburghii, Acacia catechu, Acacia mollissima, Albizia procera, Alnus nitida, Eucalyptus tereticornis and Ulmus villosa. Above (185.57 ą 48.99 tha-1 and below ground (42.47 ą 10.38 tha-1 biomass was maximum in Ulmus villosa. The vegetation carbon density was maxium in Albizia procera (118.37 ą 1.49 tha-1 and minimum (36.50 ą 9.87 tha-1 in Acacia catechu. Soil carbon density was maximum (219.86ą 10.34 tha-1 in Alnus nitida, and minimum (170.83ą 20.60 tha-1in Pinus roxburghii. Detritus was higher in Pinus roxburghii (6.79 ą 2.0 tha-1. Carbon sequestration (7.91ą 3.4 tha-1 and CO2 mitigation potential (29.09 ą 12.78 tha-1 was maximum in Ulmus villosa. Pearson correlation matrix revealed significant positive relationship of ecosystem carbon with plantation biomass, soil carbon and CO2 mitigation potential. With the emerging threat of climate change, such assessment of forest and soil carbon inventory would allow to devise best land management and policy decisions forsustainable management of fragile hilly ecosystem. 

  14. Mitigation assessment results and priorities in China

    Energy Technology Data Exchange (ETDEWEB)

    Wu Zongxin; Wei Zhihong [Tsinghua Univ., Beijing (China)

    1996-12-31

    In this paper energy related CO2 emission projections of China by 2030 are given. CO2 mitigation potential and technology options in main fields of energy conservation and energy substitution are analyzed. CO2 reduction costs of main mitigation technologies are estimated and the AHP approach is used for helping assessment of priority technologies.

  15. Essays on the Economics of Forestry-Based Carbon Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Benitez-Ponce, P.C.

    2005-07-01

    This thesis is a collection of articles that deal with the economics of carbon sequestration in forests. It pays special attention to the comparison of forestry alternatives for carbon sequestration, carbon supply curves at regional and global levels and the impact of risk on payments for ecosystem services. Case-studies in Ecuador and Latin America contribute to a better understanding of these issues. Policy implications of this research are: (1) Natural regeneration of secondary forests is a cost-efficient activity for carbon sequestration in the humid tropics and should be included as part of the Clean Development Mechanism of the Kyoto Protocol. (2) Country-risk is a relevant factor to be considered in climate change mitigation assessments. When accounting for country risk - associated with political, economic and financial risks - the potential carbon sequestration at a global level is reduced by more than half. (3) Potential carbon sequestration through afforestation ranges from 5% to 25% of the emission reduction targets of different policy scenarios for stabilization of atmospheric greenhouse gas concentrations, and therefore is relevant in a global context. (4) Farm-level decisions are influenced by risks associated to price and yield volatility of land-use alternatives. Efficient conservation policies that aim at enhancing carbon sequestration, biodiversity and other environmental services should look at both net revenues and risks. Combining payments for conservation with risk-hedging strategies is a policy option to be considered by conservation agencies worldwide.

  16. Carbon sequestration to mitigate climate change

    Science.gov (United States)

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  17. Mitigating climate change by minimising the carbon footprint and ...

    African Journals Online (AJOL)

    Mitigating climate change by minimising the carbon footprint and embodied energy of construction materials: A comparative analysis of three South African Bus ... This article investigates the role that architecture can play in mitigating climate change by comparing the environmental impact of construction material use in two ...

  18. Assessing the Feasibility of Global Long-Term Mitigation Scenarios

    Directory of Open Access Journals (Sweden)

    Ajay Gambhir

    2017-01-01

    Full Text Available This study explores the critical notion of how feasible it is to achieve long-term mitigation goals to limit global temperature change. It uses a model inter-comparison of three integrated assessment models (TIAM-Grantham, MESSAGE-GLOBIOM and WITCH harmonized for socio-economic growth drivers using one of the new shared socio-economic pathways (SSP2, to analyse multiple mitigation scenarios aimed at different temperature changes in 2100, in order to assess the model outputs against a range of indicators developed so as to systematically compare the feasibility across scenarios. These indicators include mitigation costs and carbon prices, rates of emissions reductions and energy efficiency improvements, rates of deployment of key low-carbon technologies, reliance on negative emissions, and stranding of power generation assets. The results highlight how much more challenging the 2 °C goal is, when compared to the 2.5–4 °C goals, across virtually all measures of feasibility. Any delay in mitigation or limitation in technology options also renders the 2 °C goal much less feasible across the economic and technical dimensions explored. Finally, a sensitivity analysis indicates that aiming for less than 2 °C is even less plausible, with significantly higher mitigation costs and faster carbon price increases, significantly faster decarbonization and zero-carbon technology deployment rates, earlier occurrence of very significant carbon capture and earlier onset of global net negative emissions. Such a systematic analysis allows a more in-depth consideration of what realistic level of long-term temperature changes can be achieved and what adaptation strategies are therefore required.

  19. Cross-sectoral assessment of mitigation options

    DEFF Research Database (Denmark)

    Halsnæs, K.

    1997-01-01

    The paper addresses the relationship between national economic and social development objectives and climate change mitigation, with national studies for Tanzania and Zimbabwe as the starting point. The main activities driving GHG emissions in these countries are evaluated in order to identify key...... options and polity areas where there may be synergistic effects between climate change mitigation and national development objectives, The country study for Tanzania has identified forestry and land use activities and the agricultural sectors as some of the main drivers in the future growth of greenhouse...... emission sources and gases. The paper reports the result of the integrated assessment of CO2 and CH4 reduction options for energy, agriculture, forestry and waste management for Zimbabwe, This leads up to a final discussion on methodological issues involved in cross-sectoral mitigation assessment. (C) 1997...

  20. Climate change mitigation by carbon stocking

    DEFF Research Database (Denmark)

    Lykke, Anne Mette; Barfod, Anders S.; Svendsen, Gert Tinggaard

    2009-01-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa...... primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potentials to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking...

  1. Bioenergy and climate change mitigation: an assessment

    DEFF Research Database (Denmark)

    Creutzig, Felix; Ravindranath, N. H.; Berndes, Göran

    2015-01-01

    -scale deployment (>200 EJ), together with BECCS, could help to keep global warming below 2° degrees of preindustrial levels; but such high deployment of land-intensive bioenergy feedstocks could also lead to detrimental climate effects, negatively impact ecosystems, biodiversity and livelihoods. The integration......Bioenergy deployment offers significant potential for climate change mitigation, but also carries considerable risks. In this review, we bring together perspectives of various communities involved in the research and regulation of bioenergy deployment in the context of climate change mitigation......: Land-use and energy experts, land-use and integrated assessment modelers, human geographers, ecosystem researchers, climate scientists and two different strands of life-cycle assessment experts. We summarize technological options, outline the state-of-the-art knowledge on various climate effects...

  2. Governing Carbon Mitigation and Climate Change within Local Councils: A Case Study of Adelaide, South Australia

    Directory of Open Access Journals (Sweden)

    Heather Zeppel

    2012-08-01

    Full Text Available There is growing concern about climate change impacts on local government areas. In Australia, the federal carbon tax (from 1 July 2012 will also increase costs for local councils. This paper evaluates what carbon mitigation (i.e. energy, water, and waste management actions have been implemented by metropolitan Adelaide councils (n=14 and why (or why not. A survey of environmental officers profiled carbon mitigation actions, emissions auditing, and motives for emissions reduction by Adelaide councils. The main reasons for adopting carbon actions were a climate change plan, climate leadership, and cost savings. Internal council governance of climate change actions was also evaluated. A climate governance framework based on adaptive management, communication, and reflective practice (Nursey-Bray 2010 was applied to assess climate mitigation by Adelaide councils.

  3. Carbon dioxide utilisation of Dunaliella tertiolecta for carbon bio-mitigation in a semicontinuous photobioreactor.

    Science.gov (United States)

    Farrelly, Damien J; Brennan, Liam; Everard, Colm D; McDonnell, Kevin P

    2014-04-01

    Bio-fixation of carbon dioxide (CO2) by microalgae has been recognised as an attractive approach to offset anthropogenic emissions. Biological carbon mitigation is the process whereby autotrophic organisms, such as microalgae, convert CO2 into organic carbon and O2 through photosynthesis; this process through respiration produces biomass. In this study Dunaliella tertiolecta was cultivated in a semicontinuous culture to investigate the carbon mitigation rate of the system. The algae were produced in 1.2-L Roux bottles with a working volume of 1 L while semicontinuous production commenced on day 4 of cultivation when the carbon mitigation rate was found to be at a maximum for D. tertiolecta. The reduction in CO2 between input and output gases was monitored to predict carbon fixation rates while biomass production and microalgal carbon content are used to calculate the actual carbon mitigation potential of D. tertiolecta. A renewal rate of 45 % of flask volume was utilised to maintain the culture in exponential growth with an average daily productivity of 0.07 g L(-1) day(-1). The results showed that 0.74 g L(-1) of biomass could be achieved after 7 days of semicontinuous production while a total carbon mitigation of 0.37 g L(-1) was achieved. This represented an increase of 0.18 g L(-1) in carbon mitigation rate compared to batch production of D. tertiolecta over the same cultivation period.

  4. Mitigation of Global Warming with Focus on Personal Carbon Allowances

    DEFF Research Database (Denmark)

    Meyer, Niels I

    2008-01-01

    The mitigation of global warming requires new efficient systems and methods. The paper presents a new proposal called personal carbon allowances with caps on the CO2 emission from household heating and electricity and on emission from transport in private cars and in personal air flights. Results...

  5. CARBON DIOXIDE MITIGATION THROUGH CONTROLLED PHOTOSYNTHESIS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-10-01

    This research was undertaken to meet the need for a robust portfolio of carbon management options to ensure continued use of coal in electrical power generation. In response to this need, the Ohio Coal Research Center at Ohio University developed a novel technique to control the emissions of CO{sub 2} from fossil-fired power plants by growing organisms capable of converting CO{sub 2} to complex sugars through the process of photosynthesis. Once harvested, the organisms could be used in the production of fertilizer, as a biomass fuel, or fermented to produce alcohols. In this work, a mesophilic organism, Nostoc 86-3, was examined with respect to the use of thermophilic algae to recycle CO{sub 2} from scrubbed stack gases. The organisms were grown on stationary surfaces to facilitate algal stability and promote light distribution. The testing done throughout the year examined properties of CO{sub 2} concentration, temperature, light intensity, and light duration on process viability and the growth of the Nostoc. The results indicate that the Nostoc species is suitable only in a temperature range below 125 F, which may be practical given flue gas cooling. Further, results indicate that high lighting levels are not suitable for this organism, as bleaching occurs and growth rates are inhibited. Similarly, the organisms do not respond well to extended lighting durations, requiring a significant (greater than eight hour) dark cycle on a consistent basis. Other results indicate a relative insensitivity to CO{sub 2} levels between 7-12% and CO levels as high as 800 ppm. Other significant results alluded to previously, relate to the development of the overall process. Two processes developed during the year offer tremendous potential to enhance process viability. First, integration of solar collection and distribution technology from Oak Ridge laboratories could provide a significant space savings and enhanced use of solar energy. Second, the use of translating slug flow

  6. Enhancing the Global Carbon Sink: A Key Mitigation Strategy

    Science.gov (United States)

    Torn, M. S.

    2016-12-01

    Earth's terrestrial ecosystems absorb about one-third of all anthropogenic CO2 emissions from the atmosphere each year, greatly reducing the climate forcing those emissions would otherwise cause. This puts the size of the terrestrial carbon sink on par with the most aggressive climate mitigation measures proposed. Moreover, the land sink has been keeping pace with rising emissions and has roughly doubled over the past 40 years. But there is a fundamental lack of understanding of why the sink has been increasing and what its future trajectory could be. In developing climate mitigation strategies, governments have a very limited scientific basis for projecting the contributions of their domestic sinks, and yet at least 117 of the 160 COP21 signatories stated they will use the land sink in their Nationally Defined Contribution (NDC). Given its potentially critical role in reducing net emissions and the importance of UNFCCC land sinks in future mitigation scenarios, a first-principles understanding of the dynamics of the land sink is needed. For expansion of the sink, new approaches and ecologically-sound technologies are needed. Carefully conceived terrestrial carbon sequestration could have multiple environmental benefits, but a massive expansion of land carbon sinks using conventional approaches could place excessive demands on the world's land, water, and fertilizer nutrients. Meanwhile, rapid climatic change threatens to undermine or reverse the sink in many ecosystems. We need approaches to protect the large sinks that are currently assumed useful for climate mitigation. Thus we highlight the need for a new research agenda aimed at predicting, protecting, and enhancing the global carbon sink. Key aspects of this agenda include building a predictive capability founded on observations, theory and models, and developing ecological approaches and technologies that are sustainable and scalable, and potentially provide co-benefits such as healthier soils, more

  7. Modeling Timber Supply, Fuel-Wood, and Atmospheric Carbon Mitigation

    OpenAIRE

    Lyon, Kenneth S.

    2004-01-01

    There is general agreement that global warming is occurring and that the main contributor to this probably is the buildup of green house gasses, GHG, in the atmosphere. Two main contributors are the utilization of fossil fuels and the deforestation of many regions of the world. This paper examines a number of current issues related to mitigating the global warming problem through forestry. We use discrete time optimal control to model a simplified carbon cycle. The burning of fossil fuels inc...

  8. Comprehensive mitigation assessment process (COMAP) - Description and instruction manual

    OpenAIRE

    Makundi, Willy; Sathaye, Jayant

    2001-01-01

    In order to prepare policies and plans to reduce GHG emissions, national policy-makers need information on the costs and benefits of different mitigation options in addition to their carbon implications. Policy-makers must weigh the costs, benefits, and impacts of climate change mitigation and adaptation options, in the face of competition for limited resources. The policy goal for mitigation options in the land use sector is to identify which mix of options is likely to best achieve the...

  9. The theory-practice gap of black carbon mitigation technologies in rural China

    Science.gov (United States)

    Zhang, Weishi; Li, Aitong; Xu, Yuan; Liu, Junfeng

    2018-02-01

    Black carbon mitigation has received increasing attention for its potential contribution to both climate change mitigation and air pollution control. Although different bottom-up models concerned with unit mitigation costs of various technologies allow the assessment of alternative policies for optimized cost-effectiveness, the lack of adequate data often forced many reluctant explicit and implicit assumptions that deviate away from actual situations of rural residential energy consumption in developing countries, where most black carbon emissions occur. To gauge the theory-practice gap in black carbon mitigation - the unit cost differences that lie between what is estimated in the theory and what is practically achieved on the ground - this study conducted an extensive field survey and analysis of nine mitigation technologies in rural China, covering both northern and southern regions with different residential energy consumption patterns. With a special focus on two temporal characteristics of those technologies - lifetimes and annual utilization rates, this study quantitatively measured the unit cost gaps and explain the technical as well as sociopolitical mechanisms behind. Structural and behavioral barriers, which have affected the technologies' performance, are discussed together with policy implications to narrow those gaps.

  10. Sustainable Biofuel Contributions to Carbon Mitigation and Energy Independence

    Directory of Open Access Journals (Sweden)

    Phillip Steele

    2011-10-01

    Full Text Available The growing interest in US biofuels has been motivated by two primary national policy goals, (1 to reduce carbon emissions and (2 to achieve energy independence. However, the current low cost of fossil fuels is a key barrier to investments in woody biofuel production capacity. The effectiveness of wood derived biofuels must consider not only the feedstock competition with low cost fossil fuels but also the wide range of wood products uses that displace different fossil intensive products. Alternative uses of wood result in substantially different unit processes and carbon impacts over product life cycles. We developed life cycle data for new bioprocessing and feedstock collection models in order to make life cycle comparisons of effectiveness when biofuels displace gasoline and wood products displace fossil intensive building materials. Wood products and biofuels can be joint products from the same forestland. Substantial differences in effectiveness measures are revealed as well as difficulties in valuing tradeoffs between carbon mitigation and energy independence.

  11. Mitigating wildfire carbon loss in managed northern peatlands through restoration

    Science.gov (United States)

    Granath, Gustaf; Moore, Paul A.; Lukenbach, Maxwell C.; Waddington, James M.

    2016-06-01

    Northern peatlands can emit large amounts of carbon and harmful smoke pollution during a wildfire. Of particular concern are drained and mined peatlands, where management practices destabilize an array of ecohydrological feedbacks, moss traits and peat properties that moderate water and carbon losses in natural peatlands. Our results demonstrate that drained and mined peatlands in Canada and northern Europe can experience catastrophic deep burns (>200 t C ha-1 emitted) under current weather conditions. Furthermore, climate change will cause greater water losses in these peatlands and subject even deeper peat layers to wildfire combustion. However, the rewetting of drained peatlands and the restoration of mined peatlands can effectively lower the risk of these deep burns, especially if a new peat moss layer successfully establishes and raises peat moisture content. We argue that restoration efforts are a necessary measure to mitigate the risk of carbon loss in managed peatlands under climate change.

  12. 77 FR 26292 - Risk Evaluation and Mitigation Strategy Assessments: Social Science Methodologies to Assess Goals...

    Science.gov (United States)

    2012-05-03

    ... Mitigation Strategy Assessments: Social Science Methodologies to Assess Goals Related to Knowledge.'' The... an issue paper entitled ``Risk Evaluation and Mitigation Strategy Assessments: Social Science...' knowledge about drugs' risks; (2) share current FDA experience regarding social science assessments of...

  13. Enhancing the Ocean's Role in Carbon Dioxide Mitigation

    Science.gov (United States)

    Rau, G. H.

    2007-12-01

    Fossil fuels will likely remain the world's primary energy source for the foreseeable future. Practical, cost- effective, and safe means of significantly reducing fossil energy's CO2 footprint are therefore needed in order to avoid potentially catastrophic climate and environmental impacts. While considerable R&D effort is being invested in fossil fuel CO2 capture and storage above and below ground, the use of Earth's biggest single CO2 absorber and reservoir, the ocean, remains largely unexplored. For example, the US Department of Energy, lead agency in carbon management, has abandoned all ocean carbon research. This is risky and unwise because it forces global CO2 mitigation efforts to focus on only 30% of the earth's surface, ignoring most of the CO2 storage capacity of the planet. In addition to ocean storage of molecular CO2 that is captured from point sources on land, a variety of enhancements to natural marine biotic or abiotic CO2 uptake and sequestration have been proposed. These include increasing the chemical CO2 absorption of the ocean though the addition of alkalinity, or the addition of micro- or macro-nutrients to enhance photosynthetic CO2 uptake and storage. Potentially less impactful schemes include reacting CO2 with wet limestone to form calcium bicarbonate for subsequent ocean storage, or harvesting agricultural residue for long-term sequestration in anoxic ocean sediments. In many instances the cost/benefit of these approaches appear to be quite favorable, but further evaluation is needed, while additional ideas for ocean-based mitigation should be solicited. It is becoming clear that no one mitigation strategy will single-handedly stabilize atmospheric CO2, and the best strategies may ultimately bear little resemblance to those currently favored. Therefore, at this early stage we should not a priori ignore 70% of the earth's surface and a major component of the planet's carbon cycle in addressing the CO2 problem.

  14. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    Directory of Open Access Journals (Sweden)

    K. Engström

    2017-09-01

    Full Text Available Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate–economy model, a socio-economic land use model and an ecosystem model. We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs. Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road. For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  15. Impacts of climate mitigation strategies in the energy sector on global land use and carbon balance

    Science.gov (United States)

    Engström, Kerstin; Lindeskog, Mats; Olin, Stefan; Hassler, John; Smith, Benjamin

    2017-09-01

    Reducing greenhouse gas emissions to limit damage to the global economy climate-change-induced and secure the livelihoods of future generations requires ambitious mitigation strategies. The introduction of a global carbon tax on fossil fuels is tested here as a mitigation strategy to reduce atmospheric CO2 concentrations and radiative forcing. Taxation of fossil fuels potentially leads to changed composition of energy sources, including a larger relative contribution from bioenergy. Further, the introduction of a mitigation strategy reduces climate-change-induced damage to the global economy, and thus can indirectly affect consumption patterns and investments in agricultural technologies and yield enhancement. Here we assess the implications of changes in bioenergy demand as well as the indirectly caused changes in consumption and crop yields for global and national cropland area and terrestrial biosphere carbon balance. We apply a novel integrated assessment modelling framework, combining three previously published models (a climate-economy model, a socio-economic land use model and an ecosystem model). We develop reference and mitigation scenarios based on the narratives and key elements of the shared socio-economic pathways (SSPs). Taking emissions from the land use sector into account, we find that the introduction of a global carbon tax on the fossil fuel sector is an effective mitigation strategy only for scenarios with low population development and strong sustainability criteria (SSP1 Taking the green road). For scenarios with high population growth, low technological development and bioenergy production the high demand for cropland causes the terrestrial biosphere to switch from being a carbon sink to a source by the end of the 21st century.

  16. Environmental Responses to Carbon Mitigation through Geological Storage

    Energy Technology Data Exchange (ETDEWEB)

    Cunningham, Alfred [Montana State Univ., Bozeman, MT (United States); Bromenshenk, Jerry [Montana State Univ., Bozeman, MT (United States)

    2013-08-30

    In summary, this DOE EPSCoR project is contributing to the study of carbon mitigation through geological storage. Both deep and shallow subsurface research needs are being addressed through research directed at improved understanding of environmental responses associated with large scale injection of CO2 into geologic formations. The research plan has two interrelated research objectives. Objective 1: Determine the influence of CO2-related injection of fluids on pore structure, material properties, and microbial activity in rock cores from potential geological carbon sequestration sites. Objective 2: Determine the Effects of CO2 leakage on shallow subsurface ecosystems (microbial and plant) using field experiments from an outdoor field testing facility.

  17. Global and regional ocean carbon uptake and climate change: sensitivity to a substantial mitigation scenario

    Energy Technology Data Exchange (ETDEWEB)

    Vichi, Marcello; Masina, Simona; Navarra, Antonio [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Manzini, Elisa [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy); Max Planck Institute for Meteorology, Hamburg (Germany); Fogli, Pier Giuseppe [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Alessandri, Andrea [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); ENEA, Rome (Italy); Patara, Lavinia [Centro Euro-Mediterraneo per i Cambiamenti Climatici (CMCC), Bologna (Italy); Leibniz Institute of Marine Sciences (IFM-GEOMAR), Kiel (Germany); Scoccimarro, Enrico [Istituto Nazionale di Geofisica e Vulcanologia, Bologna (Italy)

    2011-11-15

    Under future scenarios of business-as-usual emissions, the ocean storage of anthropogenic carbon is anticipated to decrease because of ocean chemistry constraints and positive feedbacks in the carbon-climate dynamics, whereas it is still unknown how the oceanic carbon cycle will respond to more substantial mitigation scenarios. To evaluate the natural system response to prescribed atmospheric ''target'' concentrations and assess the response of the ocean carbon pool to these values, 2 centennial projection simulations have been performed with an Earth System Model that includes a fully coupled carbon cycle, forced in one case with a mitigation scenario and the other with the SRES A1B scenario. End of century ocean uptake with the mitigation scenario is projected to return to the same magnitude of carbon fluxes as simulated in 1960 in the Pacific Ocean and to lower values in the Atlantic. With A1B, the major ocean basins are instead projected to decrease the capacity for carbon uptake globally as found with simpler carbon cycle models, while at the regional level the response is contrasting. The model indicates that the equatorial Pacific may increase the carbon uptake rates in both scenarios, owing to enhancement of the biological carbon pump evidenced by an increase in Net Community Production (NCP) following changes in the subsurface equatorial circulation and enhanced iron availability from extratropical regions. NCP is a proxy of the bulk organic carbon made available to the higher trophic levels and potentially exportable from the surface layers. The model results indicate that, besides the localized increase in the equatorial Pacific, the NCP of lower trophic levels in the northern Pacific and Atlantic oceans is projected to be halved with respect to the current climate under a substantial mitigation scenario at the end of the twenty-first century. It is thus suggested that changes due to cumulative carbon emissions up to present and the

  18. Outcome-based Carbon Sequestration Resource Assessment

    Science.gov (United States)

    Sundquist, E. T.; Jain, A. K.

    2015-12-01

    Opportunities for carbon sequestration are an important consideration in developing policies to manage the mass balance of atmospheric carbon dioxide (CO2). Assessments of potential carbon sequestration, like other resource assessments, should be widely accepted within the scientific community and broadly applicable to public needs over a range of spatial and temporal scales. The essential public concern regarding all forms of carbon sequestration is their effectiveness in offsetting CO2 emissions. But the diverse forms and mechanisms of potential sequestration are reflected in diverse assessment methodologies that are very difficult for decision-makers to compare and apply to comprehensive carbon management. For example, assessments of potential geologic sequestration are focused on total capacities derived from probabilistic analyses of rock strata, while assessments of potential biologic sequestration are focused on annual rates calculated using biogeochemical models. Non-specialists cannot readily compare and apply such dissimilar estimates of carbon storage. To address these problems, assessment methodologies should not only tabulate rates and capacities of carbon storage, but also enable comparison of the time-dependent effects of various sequestration activities on the mitigation of increasing atmospheric CO2. This outcome-based approach requires consideration of the sustainability of the assessed carbon storage, as well as the response of carbon-cycle feedbacks. Global models can be used to compare atmospheric CO2 trajectories implied by alternative global sequestration strategies, but such simulations may not be accessible or useful in many decision settings. Simplified assessment metrics, such as ratios using impulse response functions, show some promise in providing comparisons of CO2 mitigation that are broadly useful while minimizing sensitivity to differences in global models and emissions scenarios. Continued improvements will require close

  19. How conservation agriculture can mitigate greenhouse gas emissions and enhance soil carbon storage in croplands

    Science.gov (United States)

    Conservation agriculture can mitigate greenhouse gas (GHG) emissions from agriculture by enhancing soil carbon sequestration, improving soil quality, N-use efficiency and water use efficiencies, and reducing fuel consumption. Management practices that increase carbon inputs and while reducing carbo...

  20. Evaluation of long carbon fiber reinforced concrete to mitigate earthquake damage of infrastructure components.

    Science.gov (United States)

    2013-06-01

    The proposed study involves investigating long carbon fiber reinforced concrete as a method of mitigating earthquake damage to : bridges and other infrastructure components. Long carbon fiber reinforced concrete has demonstrated significant resistanc...

  1. Assessing CO2 Mitigation Options Utilizing Detailed Electricity Characteristics and Including Renewable Generation

    Science.gov (United States)

    Bensaida, K.; Alie, Colin; Elkamel, A.; Almansoori, A.

    2017-08-01

    This paper presents a novel techno-economic optimization model for assessing the effectiveness of CO2 mitigation options for the electricity generation sub-sector that includes renewable energy generation. The optimization problem was formulated as a MINLP model using the GAMS modeling system. The model seeks the minimization of the power generation costs under CO2 emission constraints by dispatching power from low CO2 emission-intensity units. The model considers the detailed operation of the electricity system to effectively assess the performance of GHG mitigation strategies and integrates load balancing, carbon capture and carbon taxes as methods for reducing CO2 emissions. Two case studies are discussed to analyze the benefits and challenges of the CO2 reduction methods in the electricity system. The proposed mitigations options would not only benefit the environment, but they will as well improve the marginal cost of producing energy which represents an advantage for stakeholders.

  2. Barriers to Mitigate Carbon Footprint in a Selected Academic Institution in Bacoor City, Cavite, Philippines

    Science.gov (United States)

    Adanza, Jonathan R.

    2016-01-01

    Carbon footprint is an environmental menace that needs to be addressed at once. Various mitigating measures were proposed and yet manifestations of its proliferation are very much observable. This study seeks to determine primarily the barriers of non-adherence to identified measures to mitigate carbon footprint in the environment. Using the mixed…

  3. Assessing the resources and mitigation potential of European forests

    Science.gov (United States)

    Hasenauer, Hubert; Neumann, Mathias; Moreno, Adam; Running, Steve

    2017-04-01

    Today 40 % of the European land area is covered with forests managed for the provision of ecosystem services including timber production. Forests store large amounts of carbon and are the main resource for the growing demand of a bio-based economy. They are also a major source for biodiversity. Thus a consistent pan-European gridded data set on the state of forest resources is essential for researchers, policy makers and conservationists to study and understand the European forests for the global carbon cycle independent of political boundaries. The purpose of this study is to use existing European data to develop a consistent pan-European data set for Net Primary Production (NPP), live tree carbon per hectare, volume per hectare, mean tree height and mean tree age by integrating remotely sensed satellite data and harmonized NFI data from 13 different European countries. We provide new NPP estimates using the MOD17 algorithm by collating a newly down-scaled daily climate dataset across Europe. By consolidating these two independent productivity data sources (top down satellite versus bottom up terrestrial forest NFI data) for assessing forest resources in Europe, we are able to detect and quantify forest management impacts. We produce a pan-European map for each of the five key variables on a 0.133° grid representing the time period 2000-2010. The results show distinct differences in the carbon storage of European forests due to biophysical limits and regional historic drivers in forest management, which directly affect the carbon mitigation option of European forests. We use this data to assess the state of forest resources across Europe showing that mountainous regions have the highest carbon and volume per hectare values, central Europe has the tallest mean tree heights and Austria and Northern Scandinavia have the oldest mean tree ages. Cross-validation of the data indicates that the error varies by forest characteristic but shows negligible biases for all. We

  4. Carbon uptake by mature Amazon forests has mitigated Amazon nations' carbon emissions.

    Science.gov (United States)

    Phillips, Oliver L; Brienen, Roel J W

    2017-12-01

    Several independent lines of evidence suggest that Amazon forests have provided a significant carbon sink service, and also that the Amazon carbon sink in intact, mature forests may now be threatened as a result of different processes. There has however been no work done to quantify non-land-use-change forest carbon fluxes on a national basis within Amazonia, or to place these national fluxes and their possible changes in the context of the major anthropogenic carbon fluxes in the region. Here we present a first attempt to interpret results from ground-based monitoring of mature forest carbon fluxes in a biogeographically, politically, and temporally differentiated way. Specifically, using results from a large long-term network of forest plots, we estimate the Amazon biomass carbon balance over the last three decades for the different regions and nine nations of Amazonia, and evaluate the magnitude and trajectory of these differentiated balances in relation to major national anthropogenic carbon emissions. The sink of carbon into mature forests has been remarkably geographically ubiquitous across Amazonia, being substantial and persistent in each of the five biogeographic regions within Amazonia. Between 1980 and 2010, it has more than mitigated the fossil fuel emissions of every single national economy, except that of Venezuela. For most nations (Bolivia, Colombia, Ecuador, French Guiana, Guyana, Peru, Suriname) the sink has probably additionally mitigated all anthropogenic carbon emissions due to Amazon deforestation and other land use change. While the sink has weakened in some regions since 2000, our analysis suggests that Amazon nations which are able to conserve large areas of natural and semi-natural landscape still contribute globally-significant carbon sequestration. Mature forests across all of Amazonia have contributed significantly to mitigating climate change for decades. Yet Amazon nations have not directly benefited from providing this global scale

  5. Hellsgate Winter Range : Wildlife Mitigation Project. Preliminary Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-01-01

    The Bonneville Power Administration proposes funding the Hellsgate Winter Range Wildlife Mitigation Project in cooperation with the Colville Convederated Tribes and Bureau of Indian Affairs. This Preliminary Environmental Assessment examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. The Propose action is intended to meet the need for mitigation of wildlife and wild life habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  6. Integration of Regional Mitigation Assessment and Conservation Planning

    Directory of Open Access Journals (Sweden)

    James H. Thorne

    2009-06-01

    Full Text Available Government agencies that develop infrastructure such as roads, waterworks, and energy delivery often impact natural ecosystems, but they also have unique opportunities to contribute to the conservation of regional natural resources through compensatory mitigation. Infrastructure development requires a planning, funding, and implementation cycle that can frequently take a decade or longer, but biological mitigation is often planned and implemented late in this process, in a project-by-project piecemeal manner. By adopting early regional mitigation needs assessment and planning for habitat-level impacts from multiple infrastructure projects, agencies could secure time needed to proactively integrate these obligations into regional conservation objectives. Such practice can be financially and ecologically beneficial due to economies of scale, and because earlier mitigation implementation means potentially developable critical parcels may still be available for conservation. Here, we compare the integration of regional conservation designs, termed greenprints, with early multi-project mitigation assessment for two areas in California, USA. The expected spatial extent of habitat impacts and associated mitigation requirements from multiple projects were identified for each area. We used the reserve-selection algorithm MARXAN to identify a regional greenprint for each site and to seek mitigation solutions through parcel acquisition that would contribute to the greenprint, as well as meet agency obligations. The two areas differed in the amount of input data available, the types of conservation objectives identified, and local land-management capacity. They are representative of the range of conditions that conservation practitioners may encounter, so contrasting the two illustrates how regional advanced mitigation can be generalized for use in a wide variety of settings. Environmental organizations can benefit from this approach because it provides a

  7. Optimization of carbon mitigation paths in the power sector of Shenzhen, China

    Science.gov (United States)

    Li, Xin; Hu, Guangxiao; Duan, Ying; Ji, Junping

    2017-08-01

    This paper studied the carbon mitigation paths of the power sector in Shenzhen, China from a supply-side perspective. We investigated the carbon mitigation potentials and investments of seventeen mitigation technologies in the power sector, and employed a linear programming method to optimize the mitigation paths. The results show that: 1) The total carbon mitigation potential is 5.95 MtCO2 in 2020 in which the adjustment of power supply structure, technical improvements of existing coal- and gas-fired power plant account for 87.5%,6.5% and 6.0%, respectively. 2) In the optimal path, the avoided carbon dioxide to meet the local government’s mitigation goal in power sector is 1.26 MtCO2.The adjustment of power supply structure and technical improvement of the coal-fired power plants are the driving factors of carbon mitigation, with contributions to total carbon mitigation are 72.6% and 27.4%, respectively.

  8. Biojet fuels and emissions mitigation in aviation: An integrated assessment modeling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wise, Marshall; Muratori, Matteo; Kyle, Page

    2017-05-01

    Although the aviation sector is a relatively small contributor to total greenhouse gas emissions, it is a fast-growing, fossil fuel-intensive transportation mode. Because aviation is a mode for which liquid fuels currently have no practical substitute, biofuels are gaining attention as a promising cleaner alternative. In this paper, we use the GCAM integrated assessment model to develop scenarios that explore the potential impact of biojet fuels for use in aviation in the context of broader climate change mitigation. We show that a carbon price would have a significant impact on the aviation sector. In the absence of alternatives to jet fuel from petroleum, mitigation potential is limited and would be at the expense of aviation service demand growth. However, mitigation efforts through the increased use of biojet fuels show potential to reduce the carbon intensity of aviation, and may not have a significant impact on carbon mitigation and bioenergy use in the rest of the energy system. The potential of biofuel to decarbonize air transport is significantly enhanced when carbon dioxide capture and storage (CCS) is used in the conversion process to produce jet fuels from biomass feedstock.

  9. Optimal bioenergy power generation for climate change mitigation with or without carbon sequestration

    Science.gov (United States)

    Woolf, Dominic; Lehmann, Johannes; Lee, David R.

    2016-10-01

    Restricting global warming below 2 °C to avoid catastrophic climate change will require atmospheric carbon dioxide removal (CDR). Current integrated assessment models (IAMs) and Intergovernmental Panel on Climate Change scenarios assume that CDR within the energy sector would be delivered using bioenergy with carbon capture and storage (BECCS). Although bioenergy-biochar systems (BEBCS) can also deliver CDR, they are not included in any IPCC scenario. Here we show that despite BECCS offering twice the carbon sequestration and bioenergy per unit biomass, BEBCS may allow earlier deployment of CDR at lower carbon prices when long-term improvements in soil fertility offset biochar production costs. At carbon prices above $1,000 Mg-1 C, BECCS is most frequently (P>0.45, calculated as the fraction of Monte Carlo simulations in which BECCS is the most cost effective) the most economic biomass technology for climate-change mitigation. At carbon prices below $1,000 Mg-1 C, BEBCS is the most cost-effective technology only where biochar significantly improves agricultural yields, with pure bioenergy systems being otherwise preferred.

  10. Land-use and carbon cycle responses to moderate climate change: implications for land-based mitigation?

    Science.gov (United States)

    Humpenöder, Florian; Popp, Alexander; Stevanovic, Miodrag; Müller, Christoph; Bodirsky, Benjamin Leon; Bonsch, Markus; Dietrich, Jan Philipp; Lotze-Campen, Hermann; Weindl, Isabelle; Biewald, Anne; Rolinski, Susanne

    2015-06-02

    Climate change has impacts on agricultural yields, which could alter cropland requirements and hence deforestation rates. Thus, land-use responses to climate change might influence terrestrial carbon stocks. Moreover, climate change could alter the carbon storage capacity of the terrestrial biosphere and hence the land-based mitigation potential. We use a global spatially explicit economic land-use optimization model to (a) estimate the mitigation potential of a climate policy that provides economic incentives for carbon stock conservation and enhancement, (b) simulate land-use and carbon cycle responses to moderate climate change (RCP2.6), and (c) investigate the combined effects throughout the 21st century. The climate policy immediately stops deforestation and strongly increases afforestation, resulting in a global mitigation potential of 191 GtC in 2100. Climate change increases terrestrial carbon stocks not only directly through enhanced carbon sequestration (62 GtC by 2100) but also indirectly through less deforestation due to higher crop yields (16 GtC by 2100). However, such beneficial climate impacts increase the potential of the climate policy only marginally, as the potential is already large under static climatic conditions. In the broader picture, this study highlights the importance of land-use dynamics for modeling carbon cycle responses to climate change in integrated assessment modeling.

  11. Assessing and Mitigating Risks in Computer Systems

    OpenAIRE

    Netland, Lars-Helge

    2008-01-01

    When it comes to non-trivial networked computer systems, bulletproof security is very hard to achieve. Over a system's lifetime new security risks are likely to emerge from e.g. newly discovered classes of vulnerabilities or the arrival of new threat agents. Given the dynamic environment in which computer systems are deployed, continuous evaluations and adjustments are wiser than one-shot e orts for perfection. Security risk management focuses on assessing and treating security...

  12. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects.

    Science.gov (United States)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-02-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa). We also examined whether the proposed activities or expected outcomes allowed for potential contributions to the two goals. Despite the separation between the two goals in international and national institutions, 37% of the PDDs explicitly mentioned a contribution to the other objective, although only half of those substantiated it. In addition, most adaptation (90%) and all mitigation PDDs could potentially report a contribution to at least partially to the other goal. Some adaptation project developers were interested in mitigation for the prospect of carbon funding, whereas mitigation project developers integrated adaptation to achieve greater long-term sustainability or to attain CCB certification. International and national institutions can provide incentives for projects to harness synergies and avoid trade-offs between adaptation and mitigation.

  13. Focus on cumulative emissions, global carbon budgets and the implications for climate mitigation targets

    Science.gov (United States)

    Damon Matthews, H.; Zickfeld, Kirsten; Knutti, Reto; Allen, Myles R.

    2018-01-01

    The Environmental Research Letters focus issue on ‘Cumulative Emissions, Global Carbon Budgets and the Implications for Climate Mitigation Targets’ was launched in 2015 to highlight the emerging science of the climate response to cumulative emissions, and how this can inform efforts to decrease emissions fast enough to avoid dangerous climate impacts. The 22 research articles published represent a fantastic snapshot of the state-or-the-art in this field, covering both the science and policy aspects of cumulative emissions and carbon budget research. In this Review and Synthesis, we summarize the findings published in this focus issue, outline some suggestions for ongoing research needs, and present our assessment of the implications of this research for ongoing efforts to meet the goals of the Paris climate agreement.

  14. Climate change mitigation: comparative assessment of Malaysian and ASEAN scenarios.

    Science.gov (United States)

    Rasiah, Rajah; Ahmed, Adeel; Al-Amin, Abul Quasem; Chenayah, Santha

    2017-01-01

    This paper analyses empirically the optimal climate change mitigation policy of Malaysia with the business as usual scenario of ASEAN to compare their environmental and economic consequences over the period 2010-2110. A downscaling empirical dynamic model is constructed using a dual multidisciplinary framework combining economic, earth science, and ecological variables to analyse the long-run consequences. The model takes account of climatic variables, including carbon cycle, carbon emission, climatic damage, carbon control, carbon concentration, and temperature. The results indicate that without optimal climate policy and action, the cumulative cost of climate damage for Malaysia and ASEAN as a whole over the period 2010-2110 would be MYR40.1 trillion and MYR151.0 trillion, respectively. Under the optimal policy, the cumulative cost of climatic damage for Malaysia would fall to MYR5.3 trillion over the 100 years. Also, the additional economic output of Malaysia will rise from MYR2.1 billion in 2010 to MYR3.6 billion in 2050 and MYR5.5 billion in 2110 under the optimal climate change mitigation scenario. The additional economic output for ASEAN would fall from MYR8.1 billion in 2010 to MYR3.2 billion in 2050 before rising again slightly to MYR4.7 billion in 2110 in the business as usual ASEAN scenario.

  15. Integrative Assessment of Mitigation, Impacts, and Adaptation to Climate Change

    OpenAIRE

    Nakicenovic, N.; Nordhaus, W.D.; Richels, R.; Toth, F.L.

    1994-01-01

    This volume presents the proceedings of the second international workshop held at IIASA in October 1993 assessing the current state of integrated assessments. Numerous models and less formalized approaches analyze anthropogenic sources of greenhouse gas emissions, their concentrations in the atmosphere, the resulting climate forcing, impacts of the induced climate change on the economy and other human activities, as well as possible mitigation and adaptation strategies. Studies that include a...

  16. Does “Greening” of Neotropical Cities Considerably Mitigate Carbon Dioxide Emissions? The Case of Medellin, Colombia

    Directory of Open Access Journals (Sweden)

    Carley C. Reynolds

    2017-05-01

    Full Text Available Cities throughout the world are advocating highly promoted tree plantings as a climate change mitigation measure. Assessing the carbon offsets associated with urban trees relative to other climate change policies is vital for sustainable development, planning, and solving environmental and socio-economic problems, but is difficult in developing countries. We estimated and assessed carbon dioxide (CO2 storage, sequestration, and emission offsets by public trees in the Medellin Metropolitan Area, Colombia, as a viable Nature-Based Solution for the Neotropics. While previous studies have discussed nature-based solutions and explored urban tree carbon dynamics in high income countries, few have been conducted in tropical cities in low-middle income countries, particularly within South America. We used a public tree inventory for the Metropolitan Area of the Aburrá Valley and an available urban forest functional model, i-Tree Streets, calibrated for Colombia’s context. We found that CO2 offsets from public trees were not as effective as cable cars or landfills. However, if available planting spaces are considered, carbon offsets become more competitive with cable cars and other air quality and socio-economic co-benefits are also provided. The use of carbon estimation models and the development of relevant carbon accounting protocols in Neotropical cities are also discussed. Our nature-based solution approach can be used to better guide management of urban forests to mitigate climate change and carbon offset accounting in tropical cities lacking available information.

  17. Mitigation and adaptation cost assessment: Concepts, methods and appropriate use

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The present report on mitigation and adaptation costs addresses the complex issue of identifying synergies and tradeoffs between national priorities and mitigation policies, an issue that requires the integration of various disciplines so as to provide a comprehensive overview of future development trends, available technologies and economic policies. Further, the report suggests a new conceptual framework for treating the social aspects in assessing mitigation and adaptation costs in climate change studies. The impacts of certain sustainability indicators such as employment and poverty reduction on mitigation costing are also discussed in the report. Among the topics to be considered by over 120 distinguished international experts, are the elements of costing methodologies at both the micro and macro levels. Special effort will be made to include the impacts of such parameters as income, equity, poverty, employment and trade. Hence, the contents of this report are highly relevant to the authors of the Third Working Group in the development of the TAR. The report contains a chapter on Special Issues and Problems Related to Cost Assessment for Developing Countries. This chapter will provide valuable background in the further development of these concepts in the TAR because it is an area that has not received due attention in previous work. (au)

  18. Carbon Emissions Decomposition and Environmental Mitigation Policy Recommendations for Sustainable Development in Shandong Province

    Directory of Open Access Journals (Sweden)

    Changjian Wang

    2014-11-01

    Full Text Available Provincial carbon emissions research is necessary for China to realize emissions reduction targets. Two-level decomposition model based on the Kaya identity was applied to uncover the main driving forces for the energy related carbon emissions in Shandong province from 1995 to 2011, an important energy base in China. Coal consumption is still the biggest contributor to the increased carbon emissions in Shandong. Decomposition results show that the affluence effect is the most important contributors to the carbon emissions increments. The energy intensity effect is the dominant factor in curbing carbon emissions. The emission coefficient effect plays an important negative but relatively minor effect on carbon emissions. Based on the local realities, a series of environment-friendly mitigation policies are raised by fully considering all of these influencing factors. Sustainable mitigation policies will pay more attention to the low-carbon economic development along with the significant energy intensity reduction in Shangdong province.

  19. Comprehensive mitigation assessment process (COMAP) - Description and instruction manual

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy; Sathaye, Jayant

    2001-11-09

    In order to prepare policies and plans to reduce GHG emissions, national policy-makers need information on the costs and benefits of different mitigation options in addition to their carbon implications. Policy-makers must weigh the costs, benefits, and impacts of climate change mitigation and adaptation options, in the face of competition for limited resources. The policy goal for mitigation options in the land use sector is to identify which mix of options is likely to best achieve the desired forestry service and production objectives at the least cost, while attempting to maximize economic and social benefits, and minimize negative environmental and social impacts. Improved national-level cost estimates of response options in the land use sector can be generated by estimating the costs and benefits of different forest management practices appropriate for specific country conditions which can be undertaken within the constraint of land availability and its opportunity cost. These co st and land use estimates can be combined to develop cost curves, which would assist policy-makers in constructing policies and programs to implement forest responses.

  20. Assessing climate change mitigation technology interventions by international institutions

    DEFF Research Database (Denmark)

    de Coninck, Heleen; Puig, Daniel

    2015-01-01

    intergovernmental agencies have set up specific programmes to supportthe diffusion of climate mitigation technologies. Using a simplified technological innovationsystem-based framework, this paper aims to systematically review these programmes, with thedual aim of assessing their collective success in promoting...... technological innovation, andidentifying opportunities for the newly formed UNFCCC Technology Mechanism. We concludethat, while all programmes reviewed have promoted technology transfer, they have givenlimited attention to innovation capabilities with users, government and universities. Functionsthat could...

  1. Carbon mitigation potential and costs of forestry options in Brazil, China, India, Indonesia, Mexico, the Philippines and Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, J.; Makundi, W.; Andrasko, K.; Boer, R.; Ravindranath, N.; Sudha, P.; Rao, S.; Lasco, R.; Pulhin, F.; Masera, O.; Ceron, A.; Ordonez, J.; Deying, X.; Zhang, X.; Zuomin, S.

    2001-01-01

    This paper summarizes studies of carbon (C) mitigation potential and costs of about 40 forestry options in seven developing countries. Each study uses the same methodological approach - Comprehensive Mitigation Assessment Process (COMAP) - to estimate the above parameters between 2000 and 2030. The approach requires the projection of baseline and mitigation land-use scenarios. Coupled with data on a per ha basis on C sequestration or avoidance, and costs and benefits, it allows the estimation of monetary benefit per Mg C, and the total costs and carbon potential. The results show that about half (3.0 Pg C) the cumulative mitigation potential of 6.2 Petagram (Pg) C between 2000 and 2030 in the seven countries (about 200 x 106 Mg C yr-1) could be achieved at a negative cost and the remainder at costs ranging up to $100 Mg C-1. About 5 Pg C could be achieved, at a cost less than $20 per Mg C. Negative cost potential indicates that non-carbon revenue is sufficient to offset direct costs of these options. The achievable potential is likely to be smaller, however, due to market, institutional, and sociocultural barriers that can delay or prevent the implementation of the analyzed options.

  2. Mitigating climate change by minimising the carbon footprint and ...

    African Journals Online (AJOL)

    1. Introduction. The adverse effects of global warming are evident worldwide, especially in the urban environment. Climate change, coupled with rapid urbanisation, population growth and the increasing threat of resource depletion, requires that architects employ new strategies to mitigate and resolve these problems (Fay, ...

  3. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives.

    Science.gov (United States)

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO 3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.

  4. Efficient and sustainable deployment of bioenergy with carbon capture and storage in mitigation pathways

    Science.gov (United States)

    Kato, E.; Moriyama, R.; Kurosawa, A.

    2016-12-01

    Bioenergy with Carbon Capture and Storage (BECCS) is a key component of mitigation strategies in future socio-economic scenarios that aim to keep mean global temperature rise well below 2°C above pre-industrial, which would require net negative carbon emissions at the end of the 21st century. Also, in the Paris agreement from COP21, it is denoted "a balance between anthropogenic emissions by sources and removals by sinks of greenhouse gases in the second half of this century" which could require large scale deployment of negative emissions technologies later in this century. Because of the additional requirement for land, developing sustainable low-carbon scenarios requires careful consideration of the land-use implications of large-scale BECCS. In this study, we present possible development strategies of low carbon scenarios that consider interaction of economically efficient deployment of bioenergy and/or BECCS technologies, biophysical limit of bioenergy productivity, and food production. In the evaluations, detailed bioenergy representations, including bioenergy feedstocks and conversion technologies with and without CCS, are implemented in an integrated assessment model GRAPE. Also, to overcome a general discrepancy about yield development between 'top-down' integrate assessment models and 'bottom-up' estimates, we applied yields changes of food and bioenergy crops consistent with process-based biophysical models; PRYSBI-2 (Process-Based Regional-Scale Yield Simulator with Bayesian Inference) for food crops, and SWAT (Soil and Water Assessment Tool) for bioenergy crops in changing climate conditions. Using the framework, economically viable strategy for implementing sustainable BECCS are evaluated.

  5. Mitigation of Global Warming with Focus on Personal Carbon Allowances

    DEFF Research Database (Denmark)

    The paper discusses a novel approach to address the carbon challenge by making it personal. Just as commodities like food and petrol are rationed at times of scarcity, carbon, in principle, can also be rationed, say, on a per capita basis. This, of course, raises serious equity issues since prese...

  6. Essays on the economics of forestry-based carbon mitigation

    NARCIS (Netherlands)

    Benítez-Ponce, P.C.

    2005-01-01

    Keywords:climate change, carbon costs, afforestation, risk, secondary forests, conservation payments, ecosystem services

    This thesis is a collection of articles that deal with the economics of carbon sequestration in forests. It pays

  7. Carbon cycle observations: gaps threaten climate mitigation policies

    Science.gov (United States)

    Richard Birdsey; Nick Bates; MIke Behrenfeld; Kenneth Davis; Scott C. Doney; Richard Feely; Dennis Hansell; Linda Heath; et al.

    2009-01-01

    Successful management of carbon dioxide (CO2) requires robust and sustained carbon cycle observations. Yet key elements of a national observation network are lacking or at risk. A U.S. National Research Council review of the U.S. Climate Change Science Program earlier this year highlighted the critical need for a U.S. climate observing system to...

  8. Can carbon in bioenergy crops mitigate global climate change?

    Science.gov (United States)

    Different forms of carbon cycle continuously through several pools in natural and managed ecosystems and spheres. Carbon’s recent "commodification," as a negative environmental externality, rendered it a "scarce" and "tradable" element. Although the carbon supply in nature is not limited, energy is ...

  9. Can heterotrophic uptake of dissolved organic carbon and zooplankton mitigate carbon budget deficits in annually bleached corals?

    Science.gov (United States)

    Levas, Stephen; Grottoli, Andréa G.; Schoepf, Verena; Aschaffenburg, Matthew; Baumann, Justin; Bauer, James E.; Warner, Mark E.

    2016-06-01

    Annual coral bleaching events due to increasing sea surface temperatures are predicted to occur globally by the mid-century and as early as 2025 in the Caribbean, and severely impact coral reefs. We hypothesize that heterotrophic carbon (C) in the form of zooplankton and dissolved organic carbon (DOC) is a significant source of C to bleached corals. Thus, the ability to utilize multiple pools of fixed carbon and/or increase the amount of fixed carbon acquired from one or more pools of fixed carbon (defined here as heterotrophic plasticity) could underlie coral acclimatization and persistence under future ocean-warming scenarios. Here, three species of Caribbean coral— Porites divaricata, P. astreoides, and Orbicella faveolata—were experimentally bleached for 2.5 weeks in two successive years and allowed to recover in the field. Zooplankton feeding was assessed after single and repeat bleaching, while DOC fluxes and the contribution of DOC to the total C budget were determined after single bleaching, 11 months on the reef, and repeat bleaching. Zooplankton was a large C source for P. astreoides, but only following single bleaching. DOC was a source of C for single-bleached corals and accounted for 11-36 % of daily metabolic demand (CHARDOC), but represented a net loss of C in repeat-bleached corals. In repeat-bleached corals, DOC loss exacerbated the negative C budgets in all three species. Thus, the capacity for heterotrophic plasticity in corals is compromised under annual bleaching, and heterotrophic uptake of DOC and zooplankton does not mitigate C budget deficits in annually bleached corals. Overall, these findings suggest that some Caribbean corals may be more susceptible to repeat bleaching than to single bleaching due to a lack of heterotrophic plasticity, and coral persistence under increasing bleaching frequency may ultimately depend on other factors such as energy reserves and symbiont shuffling.

  10. NAMAs and the carbon market. Nationally appropriate mitigation actions of developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Holm Olsen, K.; Fenhann, J.; Hinostroza, M.

    2009-07-01

    The role of carbon markets in scaling up mitigation actions in developing countries in the post-2012 climate regime is the topic of Perspectives 2009: NAMAs and the Carbon Market - Nationally Appropriate Mitigation Actions of Developing Countries. The eight papers presented explore how mitigation actions in developing countries, in the context of sustainable development, may be supported by technology, finance and capacity development in a measurable, reportable and verifiable manner. Key issues discussed are the pros and cons of market and non-market mechanisms in raising private and public finance, and the appropriate governance structures at the international and national levels. The aim of this publication is to present possible answers to these questions, with a specific focus on the role of existing and emerging carbon markets to finance NAMAs. (LN)

  11. Land-Based Mitigation Strategies under the Mid-Term Carbon Reduction Targets in Indonesia

    Directory of Open Access Journals (Sweden)

    Tomoko Hasegawa

    2016-12-01

    Full Text Available We investigated the key mitigation options for achieving the mid-term target for carbon emission reduction in Indonesia. A computable general equilibrium model coupled with a land-based mitigation technology model was used to evaluate specific mitigation options within the whole economic framework. The results revealed three primary findings: (1 If no climate policy were implemented, Indonesia’s total greenhouse gas emissions would reach 3.0 GtCO2eq by 2030; (2 To reduce carbon emissions to meet the latest Intended Nationally-Determined Contributions (INDC target, ~58% of total reductions should come from the agriculture, forestry and other land use sectors by implementing forest protection, afforestation and plantation efforts; (3 A higher carbon price in 2020 suggests that meeting the 2020 target would be economically challenging, whereas the INDC target for 2030 would be more economically realistic in Indonesia.

  12. Estimating urban trees and carbon stock potentials for mitigating climate change in Lagos: Case of Ikeja Government Reserved Area (GRA)

    Science.gov (United States)

    Elias, P. O.; Faderin, A.

    2014-12-01

    Urban trees are a component of the urban infrastructure which offers diverse services including environmental, aesthetic and economic. The accumulation of carbon in the atmosphere resulting from the indiscriminate distribution of human populations and urban activities with the unsustainable consumption of natural resources contributes to global environmental change especially in coastal cities like Lagos. Carbon stocks and sequestration by urban trees are increasingly recognized to play significant roles for mitigating climate change. This paper focuses on the estimation of carbon stock and sequestration through biomass estimation and quantification in Ikeja GRA, Lagos. Ikeja possesses a characteristic feature as a microcosm of Lagos due to the wide range of land uses. A canopy assessment of tree population was carried out using itree canopy software. A GPS survey was used to collect an inventory of all trees showing their location, spatial distribution and other attributes. The analysis of the carbon storage and sequestration potential of both actual and potential tree planting sites involved biomass estimations from tree allometry equations. Trees were identified at species level and measurements of their dendrometric values were recorded and integrated into the GIS database to estimate biomass of trees and carbon storage. The trees in the study area were estimated to have a biomass of 441.9 mg and carbon storage of 221.395 kg/tree. By considering the potential tree planting sites the estimated carbon stored increased to 11,352.73 kg. Carbon sequestration value in the study area was found to be 1.6790 tonnes for the existing trees and 40.707 tonnes for the potential tree planting sites (PTPS). The estimation of carbon storage and sequestration values of trees are important incentives for carbon accounting/footprints and monitoring of climate change mitigation which has implications for evaluation and monitoring of urban ecosystem.

  13. Aquarius Radiometer RFI Detection, Mitigation, and Impact Assessment

    Science.gov (United States)

    Ruf, Christopher; Chen, David; Le Vine, David; de Matthaeis, Paolo; Piepmeier, Jeffrey

    2012-01-01

    The Aquarius/SAC-D satellite was launched on 10 June 2011 into a sun-synchronous polar orbit and the Aquarius microwave radiometers [1] became operational on 25 August 2011. Since that time, it has been measuring brightness temperatures at 1.4 GHz with vertical, horizontal and 3rd Stokes polarizations . Beginning well before the launch, there has been the concern that Radio Frequency Interference (RFI) could have an appreciable presence. This concern was initiated by, among other things, its prevalence in both early [2] and more recent [3,4] aircraft field experiments using 1.4 GHz radiometers, as well as by the strong RFI environment encountered during the recent ESA SMOS mission, also at 1.4 GHz [5]. As a result, a number of methods for RFI detection and mitigation have been developed and tested. One in particular, "glitch detection" and "pulse blanking" mitigation has been adapted for use by Aquarius [6, 7]. The early on-orbit performance of the Aquarius RFI detection and mitigation algorithm is presented here, together with an assessment of the global RFI environment at 1.4 GHz which can be derived from the Aquarius results.

  14. Assessing the Potential of Climate Change Mitigation Actions in Three Different City Types in Finland

    Directory of Open Access Journals (Sweden)

    Seppo Junnila

    2012-07-01

    Full Text Available As the effects of global warming have become more evident, ambitious short-term greenhouse gas emission reduction targets have been set in recent years. Many cities worldwide have adopted an active approach to climate change mitigation, but policy makers are not always knowledgeable of the true effects of their planned mitigation action. The purpose of this paper is to evaluate the effectiveness of different mitigation strategies in achieving low-carbon urban communities. The assessment is conducted via means of consumption based hybrid life-cycle assessment, which allows the reduction potential to be analyzed from the perspective of an individual resident of the urban community. The assessed actions represent strategies that are both adopted by the case cities and possible to implement with current best practices in Finland. The four assessed actions comprise: (1 dense urban structure with less private driving; (2 the use of energy production based on renewable sources; (3 new low-energy residential construction; and (4 improving the energy efficiency of existing buildings. The findings show that the effectiveness depends greatly on the type of city, although in absolute terms the most significant reduction potential lies with lowering the fossil fuel dependence of the local energy production.

  15. Mitigating irreversible capacity losses from carbon agents via surface modification

    Science.gov (United States)

    Molina Piper, Daniela; Son, Seoung-Bum; Travis, Jonathan J.; Lee, Younghee; Han, Sang Sub; Kim, Seul Cham; Oh, Kyu Hwan; George, Steven M.; Lee, Se-Hee; Ban, Chunmei

    2015-02-01

    Greatly improved cycling performance has been demonstrated with conformally coated lithium-ion electrodes by atomic layer deposition (ALD) and molecular layer deposition (MLD) techniques. This paper reports the impact of coating on the electrode additives towards mitigating undesired parasitic reactions during cycling. The ALD and MLD coatings with conformality and atomic scale thickness control effectively stabilize the surface of the electrode components, and the current collector, resulting in the increase of coulombic efficiency throughout cycling. The organic fragment integrated into the recently developed MLD process allows the coating to possess excellent mechanical properties and enhanced ionic conductivity, which significantly reduces cell polarizations throughout cycling. This work validates the importance of ALD and MLD as surface modifiers and further demonstrates their versatility and compatibility with lithium-ion battery technology.

  16. Underground coal gasification with integrated carbon dioxide mitigation supports Bulgaria's low carbon energy supply

    Science.gov (United States)

    Nakaten, Natalie; Kempka, Thomas; Azzam, Rafig

    2013-04-01

    plants can be economically substituted by low carbon based technologies. Furthermore, the integrated annual load management notably contributes to innovative process integration becoming economic in an energy system affected by low efficiency and flexibility. Further limiting flexibility, the geographic location of this innovative low carbon energy production technology strictly depends on geological boundary conditions, namely the presence of exploitable coal resources, and availability of energy transport networks to supply potential end users with the product. Hereby, feeding upgraded synthesis gas directly into the Bulgarian gas pipeline network avoiding its conversion into electricity is an alternative approach with relevant economic potentials. For that purpose, the proximity and availability of these transport networks as well as the demand of end users are validated by the integrated energy system model. Coupling our techno-economic process model to an energy system-modelling framework allows the determination of the future economical potentials and the limitations for the implementation of a low carbon energy production technology into the Bulgarian energy system. The obtained results show that the Bulgarian energy system can significantly benefit from the integration of underground coal gasification considering carbon dioxide mitigation technologies potentially initiating a continuous substitution of imported fuels by domestic coal resources.

  17. Assessment of GHG mitigation technology measures in Ukraine

    Energy Technology Data Exchange (ETDEWEB)

    Raptsoun, N.; Parasiouk, N.

    1996-12-31

    In June 1992 the representatives of 176 countries including Ukraine met in Rio de Janeiro at the UN Conference to coordinate its efforts in protecting and guarding the environment. Signature of the UN Framework Convention on Climate Change by around 150 countries indicates that climate change is potentially a major threat to the world`s environment and economic development. The project {open_quotes}Country Study on Climate Change in Ukraine{close_quotes} coordinated by the Agency for Rational Energy Use and Ecology (ARENIA-ECO) and supported by the US Country Studies Program Support for Climate Change Studies. The aim of the project is to make the information related to climate change in Ukraine available for the world community by using the potential of Ukrainian research institutes for further concerted actions to solve the problem of climate change on the global scale. The project consists of four elements: (1) the development of the GHG Inventory in Ukraine; (2) assessments of ecosystems-vulnerability to climate change and adaptation options; and (3) mitigation options analysis; (4) public education and outreach activities. This paper contains the main results of the third element for the energy and non-energy sectors. Main tasks of the third element were: (1) to select, test and describe or develop the methodology for mitigation options assessment; (2) to analyze the main sources of GHG emissions in Ukraine; (3) to give the macro economic analysis of Ukrainian development and the development of main economical sectors industry, energy, transport, residential, forestry and agriculture; (4) to forecast GHG emissions for different scenarios of the economic development; and (5) to analyze the main measures to mitigate climate change.

  18. Can Thermally Sprayed Aluminum (TSA) Mitigate Corrosion of Carbon Steel in Carbon Capture and Storage (CCS) Environments?

    Science.gov (United States)

    Paul, S.; Syrek-Gerstenkorn, B.

    2017-01-01

    Transport of CO2 for carbon capture and storage (CCS) uses low-cost carbon steel pipelines owing to their negligible corrosion rates in dry CO2. However, in the presence of liquid water, CO2 forms corrosive carbonic acid. In order to mitigate wet CO2 corrosion, use of expensive corrosion-resistant alloys is recommended; however, the increased cost makes such selection economically unfeasible; hence, new corrosion mitigation methods are sought. One such method is the use of thermally sprayed aluminum (TSA), which has been used to mitigate corrosion of carbon steel in seawater, but there are concerns regarding its suitability in CO2-containing solutions. A 30-day test was carried out during which carbon steel specimens arc-sprayed with aluminum were immersed in deionized water at ambient temperature bubbled with 0.1 MPa CO2. The acidity (pH) and potential were continuously monitored, and the amount of dissolved Al3+ ions was measured after completion of the test. Some dissolution of TSA occurred in the test solution leading to nominal loss in coating thickness. Potential measurements revealed that polarity reversal occurs during the initial stages of exposure which could lead to preferential dissolution of carbon steel in the case of coating damage. Thus, one needs to be careful while using TSA in CCS environments.

  19. Linking Mitigation and Adaptation in Carbon Forestry Projects: Evidence from Belize

    DEFF Research Database (Denmark)

    Kongsager, Rico; Corbera, Esteve

    2015-01-01

    Committed action to deal with climate change requires reducing greenhouse gas emissions, i.e., mitigation, as well as dealing with its ensuing consequences, i.e., adaptation. To date, most policies and projects have promoted mitigation and adaptation separately, and they have very rarely considered...... and lack of rigorous enforcement. We then conclude that the integration of mitigation and adaptation in Belize’s carbon forestry projects remains a laudable but elusive goal. Consequently, we request climate change donors to refrain from providing support to narrowly designed projects and we urge them...... integrating these two objectives. In this article, we develop a multi-dimensional framework to explore the extent to which climate mitigation forestry projects bring adaptation concerns into their design and implementation phases, using three Belizean projects as case-study material. We demonstrate...

  20. Renewable and low-carbon energies as mitigation options of climate change for China

    NARCIS (Netherlands)

    Urban, F.; Benders, R. M. J.; Moll, H. C.

    This article discusses how renewable and low-carbon energies can serve as mitigation options of climate change in China's power sector. Our study is based on scenarios developed in PowerPlan, a bottom-up model simulating a countries' power sector and its emissions. We first adjusted the model to

  1. Hellsgate Winter Range : Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1995-03-01

    Bonneville Power Administration (BPA) proposes to fund the Hellsgate Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Colville Confederated Tribes and the Bureau of Indian Affairs (BIA). The proposed action would allow the sponsors to secure property and conduct wildlife management activities within the boundaries of the Colville Indian Reservation. This Final Environmental Assessment (EA) examines the potential environmental effects of acquiring and managing property for wildlife and wildlife habitat within a large project area. This area consists of several separated land parcels, of which 2,000 hectares (4,943 acres) have been purchased by BPA and an additional 4,640 hectares (11,466 acres) have been identified by the Colville Confederated Tribes for inclusion in the Project. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat that was adversely affected by the construction of Grand Coulee and Chief Joseph Dams and their reservoirs.

  2. Blue Creek Winter Range : Wildlife Mitigation Project : Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; United States. Bureau of Indian Affairs; Spokane Tribe of the Spokane Reservation, Washington

    1994-11-01

    Bonneville Power Administration (BPA) proposes to fund that portion of the Washington Wildlife Agreement pertaining to the Blue Creek Winter Range Wildlife Mitigation Project (Project) in a cooperative effort with the Spokane Tribe, Upper Columbia United Tribes, and the Bureau of Indian Affairs (BIA). If fully implemented, the proposed action would allow the sponsors to protect and enhance 2,631 habitat units of big game winter range and riparian shrub habitat on 2,185 hectares (5,400 acres) of Spokane Tribal trust lands, and to conduct long term wildlife management activities within the Spokane Indian Reservation project area. This Final Environmental Assessment (EA) examines the potential environmental effects of securing land and conducting wildlife habitat enhancement and long term management activities within the boundaries of the Spokane Indian Reservation. Four proposed activities (habitat protection, habitat enhancement, operation and maintenance, and monitoring and evaluation) are analyzed. The proposed action is intended to meet the need for mitigation of wildlife and wildlife habitat adversely affected by the construction of Grand Coulee Dam and its reservoir.

  3. Analysis of carbon mitigation policies. Feed-in tariffs, energy and carbon price interactions and competitive distortions on carbon markets

    Energy Technology Data Exchange (ETDEWEB)

    Reichenbach, Johanna

    2011-07-19

    I study several policy instruments for carbon mitigation with a focus on subsidies for renewable energies, emission taxes and emission allowances. In Chapter 1, I analyze the optimal design and the welfare implications of two policies consisting of an emission tax for conventional fossil-fuel utilities combined with a subsidy for the producers of renewable energy equipment and an emission tax combined with a feed-in tariff for renewable electricity. In Chapter 2 I study the empirical interrelationships between European emission allowance prices and prices for electricity, hard coal and natural gas with an application to portfolio allocation. In Chapters 3 and 4, I discuss several policy-related issues of emissions trading, in particular the potential for market manipulations by firms holding a dominant position in the emission market, the output market or both, and competitive distortions and leakage due to unequal emission regulations across industries, sectors, regions, or countries. (orig.)

  4. Spatially explicit estimates of forest carbon emissions, mitigation costs and REDD+ opportunities in Indonesia

    Science.gov (United States)

    Graham, Victoria; Laurance, Susan G.; Grech, Alana; Venter, Oscar

    2017-04-01

    Carbon emissions from the conversion and degradation of tropical forests contribute to anthropogenic climate change. Implementing programs to reduce emissions from tropical forest loss in Southeast Asia are perceived to be expensive due to high opportunity costs of avoided deforestation. However, these costs are not representative of all REDD+ opportunities as they are typically based on average costs across large land areas and are primarily for reducing deforestation from oil palm or pulp concessions. As mitigation costs and carbon benefits can vary according to site characteristics, spatially-explicit information should be used to assess cost-effectiveness and to guide the allocation of scarce REDD+ resources. We analyzed the cost-effectiveness of the following REDD+ strategies in Indonesia, one of the world’s largest sources of carbon emissions from deforestation: halting additional deforestation in protected areas, timber and oil palm concessions, reforesting degraded land and employing reduced-impact logging techniques in logging concessions. We discover that when spatial variation in costs and benefits is considered, low-cost options emerged even for the two most expensive strategies: protecting forests from conversion to oil palm and timber plantations. To achieve a low emissions reduction target of 25%, we suggest funding should target deforestation in protected areas, and oil palm and timber concessions to maximize emissions reductions at the lowest cumulative cost. Low-cost opportunities for reducing emissions from oil palm are where concessions have been granted on deep peat deposits or unproductive land. To achieve a high emissions reduction target of 75%, funding is allocated across all strategies, emphasizing that no single strategy can reduce emissions cost-effectively across all of Indonesia. These findings demonstrate that by using a spatially-targeted approach to identify high priority locations for reducing emissions from deforestation and

  5. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2013-01-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline underlying socioeconomic assumptions, water scarcity declines under a UCT mitigation policy while increases with a FFICT mitigation scenario by the year 2095 with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food, energy, and land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  6. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.

    2013-03-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  7. Exploring Opportunities for Promoting Synergies between Climate Change Adaptation and Mitigation in Forest Carbon Initiatives

    Directory of Open Access Journals (Sweden)

    Eugene L. Chia

    2016-01-01

    Full Text Available There is growing interest in designing and implementing climate change mitigation and adaptation (M + A in synergy in the forest and land use sectors. However, there is limited knowledge on how the planning and promotion of synergies between M + A can be operationalized in the current efforts to mitigate climate change through forest carbon. This paper contributes to fill this knowledge gap by exploring ways of planning and promoting M + A synergy outcomes in forest carbon initiatives. It examines eight guidelines that are widely used in designing and implementing forest carbon initiatives. Four guiding principles with a number of criteria that are relevant for planning synergy outcomes in forest carbon activities are proposed. The guidelines for developing forest carbon initiatives need to demonstrate that (1 the health of forest ecosystems is maintained or enhanced; (2 the adaptive capacity of forest-dependent communities is ensured; (3 carbon and adaptation benefits are monitored and verified; and (4 adaptation outcomes are anticipated and planned in forest carbon initiatives. The forest carbon project development guidelines can encourage the integration of adaptation in forest carbon initiatives. However, their current efforts guiding projects and programs to deliver biodiversity and environmental benefits, ecosystem services, and socioeconomic benefits are not considered explicitly as efforts towards enhancing adaptation. An approach for incentivizing and motivating project developers, guideline setters, and offset buyers is imperative in order to enable existing guidelines to make clear contributions to adaptation goals. We highlight and discuss potential ways of incentivizing and motivating the explicit planning and promotion of adaptation outcomes in forest carbon initiatives.

  8. Decomposition of energy-related carbon emissions in Xinjiang and relative mitigation policy recommendations

    Science.gov (United States)

    Wang, Changjian; Zhang, Xiaolei; Wang, Fei; Lei, Jun; Zhang, Li

    2015-03-01

    Regional carbon emissions research is necessary and helpful for China in realizing reduction targets. The LMDI I (Logarithmic Mean Divisia Index I) technique based on an extended Kaya identity was conducted to uncover the main five driving forces for energy-related carbon emissions in Xinjiang, an important energy base in China. Decomposition results show that the affluence effect and the population effect are the two most important contributors to increased carbon emissions. The energy intensity effect had a positive influence on carbon emissions during the pre-reform period, and then became the dominant factor in curbing carbon emissions after 1978. The renewable energy penetration effect and the emission coefficient effect showed important negative but relatively minor effects on carbon emissions. Based on the local realities, a comprehensive suite of mitigation policies are raised by considering all of these influencing factors. Mitigation policies will need to significantly reduce energy intensity and pay more attention to the regional economic development path. Fossil fuel substitution should be considered seriously. Renewable energy should be increased in the energy mix. All of these policy recommendations, if implemented by the central and local government, should make great contributions to energy saving and emission reduction in Xinjiang.

  9. Improving Carbon Mitigation Potential through Grassland Ecosystem Restoration under Climatic Change in Northeastern Tibetan Plateau

    Directory of Open Access Journals (Sweden)

    Lin Huang

    2014-01-01

    Full Text Available To protect the water tower’s ecosystem environment and conserve biodiversity, China has been implementing a huge payment program for ecosystem services in the three rivers source region. We explored here the dynamics of grassland degradation and restoration from 1990 to 2012 and its relationships with climate mitigation in the TRSR to provide a definite answer as to the forcing and response of grassland degradation and restoration to climate change. Then we estimated its potential of climate mitigation benefits to address the question of whether ecological restoration could be effective in reversing the decline of ecosystem carbon mitigation service. The trend of average annual temperature and precipitation observed by meteorological stations were approximately increased. Compared before and after 2004, the area of grassland degradation was increased slightly. However, nearly one-third of degraded grassland showed improvement, and the grassland vegetation coverage showed significant increase. Comparing current grassland vegetation coverage with healthy vegetation cover with the same grass type, nearly half of the area still needs to further restore vegetation cover. The grassland degradation resulted in significant carbon emissions, but the restoration to its healthy status has been estimated to be technical mitigation potential.

  10. Assessment of China’s Mitigation Targets in an Effort-Sharing Framework

    Directory of Open Access Journals (Sweden)

    Xunzhang Pan

    2017-06-01

    Full Text Available Nationally Determined Contributions (NDCs are a core component for post-2020 global climate agreements to achieve the 2 °C goal in addressing climate change. In the NDC, China has declared to lower carbon intensity by 60–65% from the 2005 level by 2030 and achieve the peak of CO2 emissions around 2030. In the context of the 2 °C goal, this study assesses China’s CO2 mitigation targets in the NDC using fair ranges of emissions allowances as calculated from an effort-sharing framework based on six equity principles (and cost-effectiveness. Results show that understanding the fairness of China’s NDC would rely heavily on selected equity principles. If the 65% target is implemented, China’s NDC would position within full ranges of emissions allowances and align with responsibility–capacity–need based on comparisons in 2030, and with responsibility–capacity–need and equal cumulative per capita emissions based on comparisons during 2011–2030. Implications of the NDC on China’s long-term CO2 mitigation targets beyond 2030 are also explored, which indicate that China’s energy system would need to realize carbon neutrality by 2070s at the latest in the scenarios in this study.

  11. Integrated Modeling and Assessment of Climate Change Mitigation in North America: Lessons learned from Mexico

    Science.gov (United States)

    Olguin-Alvarez, M. I.; Kurz, W. A.; Wayson, C.; Birdsey, R.; Richardson, K.; Angeles, G.; Vargas, B.; Corral, J.; Magnan, M.; Fellows, M.; Morken, S.; Maldonado, V.; Mascorro, V.; Meneses, C.; Galicia, G.; Serrano, E.

    2016-12-01

    The Government of Mexico has recently designed a system of measurement, reporting and verification (MRV) to account for the emissions and removals of greenhouse gases (GHG) associated with the country's forest sector. This system reports national-scale GHG emissions based on the "stock-difference" approach combining information from two sets of measurements from the national forest inventory and remote sensing data. However, consistent with the commitments made by the country to the United Nations Framework Convention on Climate Change (UNFCCC), the MRV system must strive to reduce, as far as practicable, the uncertainties associated with national estimates on GHG fluxes. Since 2012, the Mexican government through its National Forestry Commission, with support from the North America Commission of Environmental Cooperation, the Forest Services of Canada and USA, the SilvaCarbon Program and research institutes in Mexico, has made progress towards the use of carbon dynamics models ("gain-loss" approach) to reduce uncertainty of the GHG estimates in strategic landscapes. In Mexico, most of the forests are under social tenure where management includes a wide array of activities (e.g. selective harvesting, firewood collection). Altering these diverse management activities (REDD+ strategies as well as harvested wood products), can augment their mitigation potential. Here we present the main steps conducted to compile and integrate information from forest inventories, remote sensing, disturbance data and ecosystem carbon transfers to generate inputs required to calibrate these models and validate their outputs. The analyses are supported by the use of the CBM-CFS3 model with the appropriate modification of the model parameters and input data according to the 2006 guidelines of the Intergovernmental Panel on Climate Change (IPCC) for preparing Tier 3-GHG inventories. The ultimate goal of this tri-national effort is to show how the data and tools developed for carbon

  12. Assessing climate change mitigation technology interventions by international institutions

    OpenAIRE

    de Coninck, Heleen; Puig, Daniel

    2015-01-01

    Accelerating the international use of climate mitigation technologies is key if effortsto curb climate change are to succeed, especially in developing countries, where weakdomestic technological innovation systems constrain the uptake of climate change mitigationtechnologies. Several intergovernmental agencies have set up specific programmes to supportthe diffusion of climate mitigation technologies. Using a simplified technological innovationsystem-based framework, this paper aims to systema...

  13. The potential of U.S. cropland to sequester carbon and mitigate the greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Lal, R.; Kimble, J.M.; Follett, R.F.; Cole, C.V. [eds.

    1999-11-01

    The book describes the greenhouse processes and global trends in emissions as well as the three principal components of anthropogenic global warming potential; presents data on US emissions and agriculture`s related role; examines the soil organic carbon (SOC) pool in soils of the US and its loss due to cultivation; provides a reference for the magnitude of carbon sequestration potential; analyzes the primary processes governing greenhouse gas emission from the pedosphere; establishes a link between SOC content and soil quality; and outlines strategies for mitigating emissions from US cropland.

  14. Willow Creek Wildlife Mitigation Project. Final Environmental Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    Today`s notice announces BPA`s proposal to fund land acquisition or acquisition of a conservation easement and a wildlife management plan to protect and enhance wildlife habitat at the Willow Creek Natural Area in Eugene, Oregon. This action would provide partial mitigation for wildlife and wildlife habitat lost by the development of Federal hydroelectric projects in the Willamette River Basin. The project is consistent with BPA`s obligations under provisions of the Pacific Northwest Electric Power Planning and Conservation Act of 1980 as outlined by the Northwest Power Planning Council`s 1994 Columbia River Basin Fish and Wildlife Program. BPA has prepared an environmental assessment (DOE/EA-1023) evaluating the proposed project. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment, within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an environmental impact statement (EIS) is not required and BPA is issuing this FONSI.

  15. Strengthening Carbon Sinks in Urban Soils to Mitigate and Adapt to Climate Change (Invited)

    Science.gov (United States)

    Lorenz, K.

    2010-12-01

    long industrial history and devastations during World War II. In most surface soils in Stuttgart, however, OM was dominated by plant litter derived compounds but in one urban soil anthropogenic OM and black carbon (BC) dominated soil organic carbon (SOC) as indicated by bloch decay solid-state 13C nuclear magnetic resonance (NMR) spectroscopy. Artifacts such as municipal solid waste, construction waste, and fragments of charcoal, coal and glass were also found in urban forest soil profiles to 1-m depth in Columbus, OH. To this depth, about 150 Mg SOC ha-1 were stored and, thus, more than in urban forest soils of Baltimore, MD, and New York City, NY. However, the contribution of litter derived vs. artifact derived OM compounds such as BC has not been assessed for urban soils in the U.S.. In summary, studies on biogeochemical cycles in urban ecosystems must include the entire soil profile as anthropogenic activities may create Technosols with properties not encountered in soils of natural ecosystems. As urban ecosystems are major sources of atmospheric carbon dioxide (CO2), Technosols may be tailor-made to imitate natural soils with high SOC pools and long carbon mean residence times. Thus, the C sink in urban soils must be strengthened to mitigate and adapt urban ecosystems to abrupt climate change.

  16. The potential contribution to climate change mitigation from temporary carbon storage in biomaterials

    DEFF Research Database (Denmark)

    Jørgensen, Susanne Vedel; Hauschild, Michael Zwicky; Nielsen, Per H.

    2015-01-01

    While lasting mitigation solutions are needed to avoid climate change in the long term, temporary solutions may play a positive role in terms of avoiding certain climatic target levels, for preventing the crossing of critical and perhaps irreversible climatic tipping points. While the potential v...... to the long-term climate change impacts given by the global warming potential which does not account for temporary aspects like benefits from non-permanent storage in terms of avoiding a critical climatic target level.......While lasting mitigation solutions are needed to avoid climate change in the long term, temporary solutions may play a positive role in terms of avoiding certain climatic target levels, for preventing the crossing of critical and perhaps irreversible climatic tipping points. While the potential...... value of temporary carbon storage in terms of climate change mitigation has been widely discussed, this has not yet been directly coupled to avoiding climatic target levels representing predicted climatic tipping points. This paper provides recommendations on how to model temporary carbon storage...

  17. An Interdisciplinary Module on Regulating Carbon Emissions to Mitigate Climate Change

    Science.gov (United States)

    Penny, S.; Sethi, G.; Smyth, R.; Leibensperger, E. M.; Gervich, C.; Batur, P.

    2016-12-01

    The dynamics of the unfolding carbon regulatory process presents a unique and timely opportunity to teach students about the grand challenge brought by climate change and the importance of systems thinking and interdisciplinary problem solving. In this poster, we summarize our recently developed 4-week activity-based class module "Regulating Carbon Emissions to Mitigate Climate Change," which we have developed as part of the InTeGrate ("Interdisciplinary Teaching about Earth for a Sustainable Future") program. These materials are suitable for introductory non-majors, environmental sciences majors, and political science majors, and we have formally piloted in each of these settings. This module is truly interdisciplinary and spans topics such as the Supreme Court ruling in Massachusetts v. EPA, costs and benefits of carbon abatement, and climate sensitivity. We discuss the unique challenges (and rewards!) that we experienced teaching materials entirely outside one's expertise.

  18. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining

  19. Tree species diversity mitigates disturbance impacts on the forest carbon cycle.

    Science.gov (United States)

    Pedro, Mariana Silva; Rammer, Werner; Seidl, Rupert

    2015-03-01

    Biodiversity fosters the functioning and stability of forest ecosystems and, consequently, the provision of crucial ecosystem services that support human well-being and quality of life. In particular, it has been suggested that tree species diversity buffers ecosystems against the impacts of disturbances, a relationship known as the "insurance hypothesis". Natural disturbances have increased across Europe in recent decades and climate change is expected to amplify the frequency and severity of disturbance events. In this context, mitigating disturbance impacts and increasing the resilience of forest ecosystems is of growing importance. We have tested how tree species diversity modulates the impact of disturbance on net primary production and the total carbon stored in living biomass for a temperate forest landscape in Central Europe. Using the simulation model iLand to study the effect of different disturbance regimes on landscapes with varying levels of tree species richness, we found that increasing diversity generally reduces the disturbance impact on carbon storage and uptake, but that this effect weakens or even reverses with successional development. Our simulations indicate a clear positive relationship between diversity and resilience, with more diverse systems experiencing lower disturbance-induced variability in their trajectories of ecosystem functioning. We found that positive effects of tree species diversity are mainly driven by an increase in functional diversity and a modulation of traits related to recolonization and resource usage. The results of our study suggest that increasing tree species diversity could mitigate the effects of intensifying disturbance regimes on ecosystem functioning and improve the robustness of forest carbon storage and the role of forests in climate change mitigation.

  20. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru.

    Science.gov (United States)

    Vázquez-Rowe, Ian; Larrea-Gallegos, Gustavo; Villanueva-Rey, Pedro; Gilardino, Alessandro

    2017-01-01

    Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI). Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin). In contrast, there appears to be a strong, positive correlation between GHG emissions and social expenditure or academic

  1. Climate change mitigation opportunities based on carbon footprint estimates of dietary patterns in Peru.

    Directory of Open Access Journals (Sweden)

    Ian Vázquez-Rowe

    Full Text Available Food consumption accounts for an important proportion of the world GHG emissions per capita. Previous studies have delved into the nature of dietary patterns, showing that GHG reductions can be achieved in diets if certain foods are consumed rather than other, more GHG intensive products. For instance, vegetarian and low-meat diets have proved to be less carbon intensive than diets that are based on ruminant meat. These environmental patterns, increasingly analyzed in developed nations, are yet to be assessed in countries liked Peru where food purchase represents a relatively high percentage of the average household expenditure, ranging from 38% to 51% of the same. Therefore, food consumption can be identified as a potential way to reduce GHG emissions in Peru. However, the Peruvian government lacks a specific strategy to mitigate emissions in this sector, despite the recent ratification of the Paris Accord. In view of this, the main objective of this study is to analyze the environmental impacts of a set of 47 Peruvian food diet profiles, including geographical and socioeconomic scenarios. In order to do this, Life Cycle Assessment was used as the methodological framework to obtain the overall impacts of the components in the dietary patterns observed and primary data linked to the composition of diets were collected from the Peruvian National Institute for Statistics (INEI. Life cycle inventories for the different products that are part of the Peruvian diet were obtained from a set of previous scientific articles and reports regarding food production. Results were computed using the IPCC 2013 assessment method to estimate GHG emissions. Despite variations in GHG emissions from a geographical perspective, no significant differences were observed between cities located in the three Peruvian natural regions (i.e., coast, Andes and Amazon basin. In contrast, there appears to be a strong, positive correlation between GHG emissions and social

  2. Meteorological Hazard Assessment and Risk Mitigation in Rwanda.

    Science.gov (United States)

    Nduwayezu, Emmanuel; Jaboyedoff, Michel; Bugnon, Pierre-Charles; Nsengiyumva, Jean-Baptiste; Horton, Pascal; Derron, Marc-Henri

    2015-04-01

    Between 10 and 13 April 2012, heavy rains hit sectors adjacent to the Vulcanoes National Park (Musanze District in the Northern Province and Nyabihu and Rubavu Districts in the Western Province of RWANDA), causing floods that affected about 11,000 persons. Flooding caused deaths and injuries among the affected population, and extensive damage to houses and properties. 348 houses were destroyed and 446 were partially damaged or have been underwater for several days. Families were forced to leave their flooded homes and seek temporal accommodation with their neighbors, often in overcrowded places. Along the West-northern border of RWANDA, Virunga mountain range consists of 6 major volcanoes. Mount Karisimbi is the highest volcano at 4507m. The oldest mountain is mount Sabyinyo which rises 3634m. The hydraulic network in Musanze District is formed by temporary torrents and permanent watercourses. Torrents surge during strong storms, and are provoked by water coming downhill from the volcanoes, some 20 km away. This area is periodically affected by flooding and landslides because of heavy rain (Rwanda has 2 rainy seasons from February to April and from September to November each year in general and 2 dry seasons) striking the Volcano National Park. Rain water creates big water channels (in already known torrents or new ones) that impact communities, agricultural soils and crop yields. This project aims at identifying hazardous and risky areas by producing susceptibility maps for floods, debris flow and landslides over this sector. Susceptibility maps are being drawn using field observations, during and after the 2012 events, and an empirical model of propagation for regional susceptibility assessments of debris flows (Flow-R). Input data are 10m and 30m resolution DEMs, satellite images, hydrographic network, and some information on geological substratum and soil occupation. Combining susceptibility maps with infrastructures, houses and population density maps will be

  3. Urban flood risk mitigation: from vulnerability assessment to resilient city

    Science.gov (United States)

    Serre, D.; Barroca, B.

    2009-04-01

    Urban flood risk mitigation: from vulnerability assessment to resilient city Bruno Barroca1, Damien Serre2 1Laboratory of Urban Engineering, Environment and Building (L G U E H) - Université de Marne-la-Vallée - Pôle Ville, 5, Bd Descartes - Bâtiment Lavoisier - 77454 Marne la Vallée Cedex 2 - France 2City of Paris Engineering School, Construction - Environment Department, 15 rue Fénelon, 75010 Paris, France In France, as in Europe and more generally throughout the world, river floods have been increasing in frequency and severity over the last ten years, and there are more instances of rivers bursting their banks, aggravating the impact of the flooding of areas supposedly protected by flood defenses. Despite efforts made to well maintain the flood defense assets, we often observe flood defense failures leading to finally increase flood risk in protected area during major flood events. Furthermore, flood forecasting models, although they benefit continuous improvements, remain partly inaccurate due to uncertainties populated all along data calculation processes. These circumstances obliged stakeholders and the scientific communities to manage flood risk by integrating new concepts like stakes management, vulnerability assessments and more recently urban resilience development. Definitively, the goal is to reduce flood risk by managing of course flood defenses and improving flood forecasting models, but also stakes and vulnerability of flooded areas to achieve urban resilience face to flood events. Vulnerability to flood is essentially concentrated in urban areas. Assessing vulnerability of a city is very difficult. Indeed, urban area is a complex system composed by a sum of technical sub-systems as complex as the urban area itself. Assessing city vulnerability consists in talking into account each sub system vulnerability and integrating all direct and indirect impacts generally depending from city shape and city spatial organization. At this time, although

  4. Investigating the Feasibility of Utilizing Carbon Nanotube Fibers for Spacesuit Dust Mitigation

    Science.gov (United States)

    Manyapu, Kavya K.; de Leon, Pablo; Peltz, Leora; Tsentalovich, Dmitri; Gaier, James R.; Calle, Carlos; Mackey, Paul

    2016-01-01

    Historical data from the Apollo missions has compelled NASA to identify dust mitigation of spacesuits and other components as a critical path prior to sending humans on potential future lunar exploration missions. Several studies thus far have proposed passive and active countermeasures to address this challenge. However, these technologies have been primarily developed and proven for rigid surfaces such as solar cells and thermal radiators. Integration of these technologies for spacesuit dust mitigation has remained an open challenge due to the complexity of suit design. Current research investigates novel methods to enhance integration of the Electrodynamic Dust Shield (EDS) concept for spacesuits. We leverage previously proven EDS concept developed by NASA for rigid surfaces and apply new techniques to integrate the technology into spacesuits to mitigate dust contamination. The study specifically examines the feasibility of utilizing Carbon Nanotube (CNT) yarns manufactured by Rice University as electrodes in spacesuit material. Proof of concept testing was conducted at NASA Kennedy Space Center using lunar regolith simulant to understand the feasibility of the proposed techniques for spacesuit application. Results from the experiments are detailed in this paper. Potential challenges of applying this technology for spacesuits are also identified.

  5. Regional climate change mitigation with crops: context and assessment.

    Science.gov (United States)

    Singarayer, J S; Davies-Barnard, T

    2012-09-13

    The intention of this review is to place crop albedo biogeoengineering in the wider picture of climate manipulation. Crop biogeoengineering is considered within the context of the long-term modification of the land surface for agriculture over several thousand years. Biogeoengineering is also critiqued in relation to other geoengineering schemes in terms of mitigation power and adherence to social principles for geoengineering. Although its impact is small and regional, crop biogeoengineering could be a useful and inexpensive component of an ensemble of geoengineering schemes to provide temperature mitigation. The method should not detrimentally affect food security and there may even be positive impacts on crop productivity, although more laboratory and field research is required in this area to understand the underlying mechanisms.

  6. Urban cross-sector actions for carbon mitigation with local health co-benefits in China

    Science.gov (United States)

    Ramaswami, Anu; Tong, Kangkang; Fang, Andrew; Lal, Raj M.; Nagpure, Ajay Singh; Li, Yang; Yu, Huajun; Jiang, Daqian; Russell, Armistead G.; Shi, Lei; Chertow, Marian; Wang, Yangjun; Wang, Shuxiao

    2017-10-01

    Cities offer unique strategies to reduce fossil fuel use through the exchange of energy and materials across homes, businesses, infrastructure and industries co-located in urban areas. However, the large-scale impact of such strategies has not been quantified. Using new models and data sets representing 637 Chinese cities, we find that such cross-sectoral strategies--enabled by compact urban design and circular economy policies--contribute an additional 15%-36% to national CO2 mitigation, compared to conventional single-sector strategies. As a co-benefit, ~25,500 to ~57,500 deaths annually are avoided from air pollution reduction. The benefits are highly variable across cities, ranging from <1%-37% for CO2 emission reduction and <1%-47% for avoided premature deaths. These results, using multi-scale, multi-sector physical systems modelling, identify cities with high carbon and health co-benefit potential and show that urban-industrial symbiosis is a significant carbon mitigation strategy, achievable with a combination of existing and advanced technologies in diverse city types.

  7. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation).

    Science.gov (United States)

    Bogner, Jean; Pipatti, Riitta; Hashimoto, Seiji; Diaz, Cristobal; Mareckova, Katarina; Diaz, Luis; Kjeldsen, Peter; Monni, Suvi; Faaij, Andre; Gao, Qingxian; Zhang, Tianzhu; Ahmed, Mohammed Abdelrafie; Sutamihardja, R T M; Gregory, Robert

    2008-02-01

    Greenhouse gas (GHG) emissions from post-consumer waste and wastewater are a small contributor (about 3%) to total global anthropogenic GHG emissions. Emissions for 2004-2005 totalled 1.4 Gt CO2-eq year(-1) relative to total emissions from all sectors of 49 Gt CO2-eq year(-1) [including carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and F-gases normalized according to their 100-year global warming potentials (GWP)]. The CH4 from landfills and wastewater collectively accounted for about 90% of waste sector emissions, or about 18% of global anthropogenic methane emissions (which were about 14% of the global total in 2004). Wastewater N2O and CO2 from the incineration of waste containing fossil carbon (plastics; synthetic textiles) are minor sources. Due to the wide range of mature technologies that can mitigate GHG emissions from waste and provide public health, environmental protection, and sustainable development co-benefits, existing waste management practices can provide effective mitigation of GHG emissions from this sector. Current mitigation technologies include landfill gas recovery, improved landfill practices, and engineered wastewater management. In addition, significant GHG generation is avoided through controlled composting, state-of-the-art incineration, and expanded sanitation coverage. Reduced waste generation and the exploitation of energy from waste (landfill gas, incineration, anaerobic digester biogas) produce an indirect reduction of GHG emissions through the conservation of raw materials, improved energy and resource efficiency, and fossil fuel avoidance. Flexible strategies and financial incentives can expand waste management options to achieve GHG mitigation goals; local technology decisions are influenced by a variety of factors such as waste quantity and characteristics, cost and financing issues, infrastructure requirements including available land area, collection and transport considerations, and regulatory constraints

  8. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Science.gov (United States)

    Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson

    2017-04-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.

  9. Engaging western landowners in climate change mitigation: a guide to carbon-oriented forest and range management and carbon market opportunities

    Science.gov (United States)

    David D. Diaz; Susan Charnley; Hannah. Gosnell

    2009-01-01

    There are opportunities for forest owners and ranchers to participate in emerging carbon markets and contribute to climate change mitigation through carbon oriented forest and range management activities. These activities often promote sutainable forestry and ranching and broader conservation goals while having the potential to provide a new income stream for...

  10. Mining-related environmental impacts of carbon mitigation; Coal-based carbon capture and sequestration and wind-enabling transmission expansion

    Energy Technology Data Exchange (ETDEWEB)

    Grubert, Emily

    2010-09-15

    Carbon mitigation can occur by preventing generation of greenhouse gases or by preventing emissions from entering the atmosphere. Accordingly, increasing the use of wind energy or carbon capture and storage (CCS) at coal-fired power plants could reduce carbon emissions. This work compares the direct mining impacts of increased coal demand associated with CCS with those of increased aluminum demand for expanding transmission systems to enable wind power incorporation. Aluminum needs for expanded transmission probably represent a one-time need for about 1.5% of Jamaica's annual bauxite production, while CCS coal needs for the same mitigation could almost double US coal demand.

  11. The limits to global-warming mitigation by terrestrial carbon removal

    Science.gov (United States)

    Boysen, Lena R.; Lucht, Wolfgang; Gerten, Dieter; Heck, Vera; Lenton, Timothy M.; Schellnhuber, Hans Joachim

    2017-05-01

    Massive near-term greenhouse gas emissions reduction is a precondition for staying "well below 2°C" global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature "overshoot" in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to "repair" delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5°C or even 4.5°C above pre-industrial level. Our results show that those tCDR measures are unable to counteract "business-as-usual" emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires >1.1 Gha of the most productive agricultural areas or the elimination of >50% of natural forests. In addition, >100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160-190 GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2°C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade-offs with society and the biosphere, we conclude that large-scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable "supporting actor" for strong mitigation if sustainable schemes are established immediately.

  12. Soil Organic Carbon assessment on two different forest management

    Science.gov (United States)

    Fernández Minguillón, Alex; Sauras Yera, Teresa; Vallejo Calzada, Ramón

    2017-04-01

    Soil Organic Carbon assessment on two different forest management. A.F. Minguillón1, T. Sauras1, V.R: Vallejo1. 1 Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universidad de Barcelona, Avenida Diagonal 643, 03080 Barcelona, Spain. Soils from arid and semiarid zones are characterized by a low organic matter content from scarce plant biomass and it has been proposed that these soils have a big capacity to carbon sequestration. According to IPCC ARS WG2 (2014) report and WG3 draft, increase carbon storage in terrestrial ecosystems has been identified such a potential tool for mitigation and adaptation to climate change. In ecological restoration context improve carbon sequestration is considered a management option with multiple benefits (win-win-win). Our work aims to analyze how the recently developed restoration techniques contributed to increases in terrestial ecosystem carbon storage. Two restoration techniques carried out in the last years have been evaluated. The study was carried out in 6 localities in Valencian Community (E Spain) and organic horizons of two different restoration techniques were evaluated; slash brush and thinning Aleppo pine stands. For each technique, carbon stock and its physical and chemical stability has been analysed. Preliminary results point out restoration zones acts as carbon sink due to (1) the relevant necromass input produced by slash brush increases C stock on the topsoil ;(2) Thinning increase carbon accumulation in vegetation.

  13. Addressing Climate Change Mitigation and Adaptation Together: A Global Assessment of Agriculture and Forestry Projects

    DEFF Research Database (Denmark)

    Kongsager, Rico; Locatelli, Bruno; Chazarin, Florie

    2016-01-01

    Adaptation and mitigation share the ultimate purpose of reducing climate change impacts. However, they tend to be considered separately in projects and policies because of their different objectives and scales. Agriculture and forestry are related to both adaptation and mitigation: they contribute...... to greenhouse gas emissions and removals, are vulnerable to climate variations, and form part of adaptive strategies for rural livelihoods. We assessed how climate change project design documents (PDDs) considered a joint contribution to adaptation and mitigation in forestry and agriculture in the tropics......, by analyzing 201 PDDs from adaptation funds, mitigation instruments, and project standards [e.g., climate community and biodiversity (CCB)]. We analyzed whether PDDs established for one goal reported an explicit contribution to the other (i.e., whether mitigation PDDs contributed to adaptation and vice versa...

  14. A guide to potential soil carbon sequestration; land-use management for mitigation of greenhouse gas emissions

    Science.gov (United States)

    Markewich, H.W.; Buell, G.R.

    2001-01-01

    Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.

  15. Carbon mitigation, patient choice and cost reduction--triple bottom line optimisation for health care planning.

    Science.gov (United States)

    Duane, B; Taylor, T; Stahl-Timmins, W; Hyland, J; Mackie, P; Pollard, A

    2014-10-01

    Health services must provide safe, affordable clinical care whilst meeting efficiency, environmental and social targets. These targets include achieving reduced greenhouse gas emissions. A care pathway approach based on a decision-support tool can simultaneously reconfigure health services, improve productivity and reduce carbon emissions. Probabilistic modelling using secondary data analysis. Estimates of carbon emitted by a health service drew on a previous carbon accounting study which integrated bottom-up assessment of carbon emissions with top-down analysis of indirect emissions by Duane et al. (2012).(1) Using human resource information, estimates were applied in a decision-support model to measure the carbon footprint and service provision of theoretical scenarios. Using this model, sites with less than 60% utilisation were theoretically reconfigured to reduce carbon emissions and improve service provision. Clinic utilisation rates improved from 50% to 78%. Human resource savings were identified which could be re-directed towards improving patient care. Patient travel for health care was halved resulting in significant savings in carbon emissions. The proposed model is an effective health care service analysis tool, ensuring optimal utilisation of health care sites and human resources with the lowest carbon footprint. Copyright © 2014 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  16. Aquarius RFI Detection and Mitigation Algorithm: Assessment and Examples

    Science.gov (United States)

    Le Vine, David M.; De Matthaeis, P.; Ruf, Christopher S.; Chen, D. D.

    2013-01-01

    Aquarius is an L-band radiometer system designed to map sea surface salinity from space. This is a sensitive measurement, and protection from radio frequency interference (RFI) is important for success. An initial look at the performance of the Aquarius RFI detection and mitigation algorithm is reported together with examples of the global distribution of RFI at the L-band. To protect against RFI, Aquarius employs rapid sampling (10 ms) and a "glitch" detection algorithm that looks for outliers among the samples. Samples identified as RFI are removed, and the remainder is averaged to produce an RFI-free signal for the salinity retrieval algorithm. The RFI detection algorithm appears to work well over the ocean with modest rates for false alarms (5%) and missed detection. The global distribution of RFI coincides well with population centers and is consistent with observations reported by the Soil Moisture and Ocean Salinity mission.

  17. National-level infrastructure and economic effects of switchgrass cofiring with coal in existing power plants for carbon mitigation.

    Science.gov (United States)

    Morrow, William R; Griffin, W Michael; Matthews, H Scott

    2008-05-15

    We update a previously presented Linear Programming (LP) methodology for estimating state level costs for reducing CO2 emissions from existing coal-fired power plants by cofiring switchgrass, a biomass energy crop, and coal. This paper presents national level results of applying the methodology to the entire portion of the United States in which switchgrass could be grown without irrigation. We present incremental switchgrass and coal cofiring carbon cost of mitigation curves along with a presentation of regionally specific cofiring economics and policy issues. The results show that cofiring 189 million dry short tons of switchgrass with coal in the existing U.S. coal-fired electricity generation fleet can mitigate approximately 256 million short tons of carbon-dioxide (CO2) per year, representing a 9% reduction of 2005 electricity sector CO2 emissions. Total marginal costs, including capital, labor, feedstock, and transportation, range from $20 to $86/ton CO2 mitigated,with average costs ranging from $20 to $45/ton. If some existing power plants upgrade to boilers designed for combusting switchgrass, an additional 54 million tons of switchgrass can be cofired. In this case, total marginal costs range from $26 to $100/ton CO2 mitigated, with average costs ranging from $20 to $60/ton. Costs for states east of the Mississippi River are largely unaffected by boiler replacement; Atlantic seaboard states represent the lowest cofiring cost of carbon mitigation. The central plains states west of the Mississippi River are most affected by the boiler replacement option and, in general, go from one of the lowest cofiring cost of carbon mitigation regions to the highest. We explain the variation in transportation expenses and highlight regional cost of mitigation variations as transportation overwhelms other cofiring costs.

  18. Metal Hydrides, MOFs, and Carbon Composites as Space Radiation Shielding Mitigators

    Science.gov (United States)

    Atwell, William; Rojdev, Kristina; Liang, Daniel; Hill, Matthew

    2014-01-01

    Recently, metal hydrides and MOFs (Metal-Organic Framework/microporous organic polymer composites - for their hydrogen and methane storage capabilities) have been studied with applications in fuel cell technology. We have investigated a dual-use of these materials and carbon composites (CNT-HDPE) to include space radiation shielding mitigation. In this paper we present the results of a detailed study where we have analyzed 64 materials. We used the Band fit spectra for the combined 19-24 October 1989 solar proton events as the input source term radiation environment. These computational analyses were performed with the NASA high energy particle transport/dose code HZETRN. Through this analysis we have identified several of the materials that have excellent radiation shielding properties and the details of this analysis will be discussed further in the paper.

  19. Meeting the Demand for Biofuels: Impact on Land Use and Carbon Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Khanna, Madhu; Jain, Atul; Onal, Hayri; Scheffran, Jurgen; Chen, Xiaoguang; Erickson, Matt; Huang, Haixiao; Kang, Seungmo.

    2011-08-14

    The purpose of this research was to develop an integrated, interdisciplinary framework to investigate the implications of large scale production of biofuels for land use, crop production, farm income and greenhouse gases. In particular, we examine the mix of feedstocks that would be viable for biofuel production and the spatial allocation of land required for producing these feedstocks at various gasoline and carbon emission prices as well as biofuel subsidy levels. The implication of interactions between energy policy that seeks energy independence from foreign oil and climate policy that seeks to mitigate greenhouse gas emissions for the optimal mix of biofuels and land use will also be investigated. This project contributes to the ELSI research goals of sustainable biofuel production while balancing competing demands for land and developing policy approaches needed to support biofuel production in a cost-effective and environmentally friendly manner.

  20. Geological storage of captured carbon dioxide as a large-scale carbon mitigation option

    Science.gov (United States)

    Celia, Michael A.

    2017-05-01

    Carbon capture and storage (CCS), involves capture of CO2 emissions from power plants and other large stationary sources and subsequent injection of the captured CO2 into deep geological formations. This is the only technology currently available that allows continued use of fossil fuels while simultaneously reducing emissions of CO2 to the atmosphere. Although the subsurface injection and subsequent migration of large amounts of CO2 involve a number of challenges, many decades of research in the earth sciences, focused on fluid movement in porous rocks, provides a strong foundation on which to analyze the system. These analyses indicate that environmental risks associated with large CO2 injections appear to be manageable.

  1. Key issues and options in accounting for carbon sequestration and temporary storage in life cycle assessment and carbon footprinting

    DEFF Research Database (Denmark)

    Brandao, Miguel; Levasseur, Annie; Kirschbaum, Miko U. F.

    2013-01-01

    footprinting (CF) are increasingly popular tools for the environmental assessment of products, that take into account their entire life cycle. There have been significant efforts to develop robust methods to account for the benefits, if any, of sequestration and temporary storage and release of biogenic carbon......Purpose: Biological sequestration can increase the carbon stocks of non-atmospheric reservoirs (e.g. land and landbased products). Since this contained carbon is sequestered from, and retained outside, the atmosphere for a period of time, the concentration of CO2 in the atmosphere is temporarily...... reduced and some radiative forcing is avoided. Carbon removal from the atmosphere and storage in the biosphere or anthroposphere, therefore, has the potential to mitigate climate change, even if the carbon storage and associated benefits might be temporary. Life cycle assessment (LCA) and carbon...

  2. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  3. Do Kenya's climate change mitigation ambitions necessitate large-scale renewable energy deployment and dedicated low-carbon energy policy?

    NARCIS (Netherlands)

    Dalla Longa, F.; van der Zwaan, B.

    2017-01-01

    In this paper Kenya's climate change mitigation ambitions are analysed from an energy system perspective, with a focus on the role of renewable and other low-carbon energy technologies. At COP-21 in 2015 in Paris, Kenya has committed to a `nationally determined contribution' of reducing domestic

  4. [Preliminary assessment of the potential of biochar technology in mitigating the greenhouse effect in China].

    Science.gov (United States)

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-06-01

    The production of biochar by pyrolysis and its application to soil can sequester the CO2 which was absorbed by plants from atmosphere into soil, in addition it can also bring multiple benefits for agriculture production. On the basis of the available potential survey of the biomass residues from agriculture and forestry section, life cycle assessment was employed to quantify the potential of biochar technology in mitigation of greenhouse gases in our country. The results showed: In China, the amount of available biomass resource was 6.04 x 10(8) t every year and its net greenhouse effect potential was 5.32 x 10(8) t CO(2e) (CO(2e): CO2 equivalent), which was equivalent to 0.88 t CO(2e) for every ton biomass. The greatest of contributor to the total potential was plant carbon sequestration in soil as the form of biochar which accounts for 73.94%, followed by production of renewable energy and its percentage was 23.85%. In summary, production of biochar from agriculture and forestry biomass residues had a significant potential for our country to struggle with the pressure of greenhouse gas emission.

  5. ASSESSMENT OF CO2 EMISSION MITIGATION FOR A BRAZILIAN OIL REFINERY

    Directory of Open Access Journals (Sweden)

    W. N. Chan

    Full Text Available Abstract Currently the oil refining sector is responsible for approximately 5% of the total Brazilian energy related CO2 emissions. Possibilities to reduce CO2 emissions and related costs at the largest Brazilian refinery have been estimated. The abatement costs related to energy saving options are negative, meaning that feasibility exists without specific income due to emission reductions. The assessment shows that short-term mitigation options, i.e., fuel substitution and energy efficiency measures, could reduce CO2 emissions by 6% of the total current refinery emissions. It is further shown that carbon capture and storage offers the greatest potential for more significant emission reductions in the longer term (up to 43%, but costs in the range of 64 to162 US$/t CO2, depending on the CO2 emission source (regenerators of FCC units or hydrogen production units and the CO2 capture technology considered (oxyfuel combustion or post-combustion. Effects of uncertainties in key parameters on abatement costs are also evaluated via sensitivity analysis.

  6. Personalized Assessment as a Means to Mitigate Plagiarism

    Science.gov (United States)

    Manoharan, Sathiamoorthy

    2017-01-01

    Although every educational institution has a code of academic honesty, they still encounter incidents of plagiarism. These are difficult and time-consuming to detect and deal with. This paper explores the use of personalized assessments with the goal of reducing incidents of plagiarism, proposing a personalized assessment software framework…

  7. Mitigating the greenhouse gas balance of ruminant production systems through carbon sequestration in grasslands.

    Science.gov (United States)

    Soussana, J F; Tallec, T; Blanfort, V

    2010-03-01

    Soil carbon sequestration (enhanced sinks) is the mechanism responsible for most of the greenhouse gas (GHG) mitigation potential in the agriculture sector. Carbon sequestration in grasslands can be determined directly by measuring changes in soil organic carbon (SOC) stocks and indirectly by measuring the net balance of C fluxes. A literature search shows that grassland C sequestration reaches on average 5 ± 30 g C/m2 per year according to inventories of SOC stocks and -231 and 77 g C/m2 per year for drained organic and mineral soils, respectively, according to C flux balance. Off-site C sequestration occurs whenever more manure C is produced by than returned to a grassland plot. The sum of on- and off-site C sequestration reaches 129, 98 and 71 g C/m2 per year for grazed, cut and mixed European grasslands on mineral soils, respectively, however with high uncertainty. A range of management practices reduce C losses and increase C sequestration: (i) avoiding soil tillage and the conversion of grasslands to arable use, (ii) moderately intensifying nutrient-poor permanent grasslands, (iii) using light grazing instead of heavy grazing, (iv) increasing the duration of grass leys; (v) converting grass leys to grass-legume mixtures or to permanent grasslands. With nine European sites, direct emissions of N2O from soil and of CH4 from enteric fermentation at grazing, expressed in CO2 equivalents, compensated 10% and 34% of the on-site grassland C sequestration, respectively. Digestion inside the barn of the harvested herbage leads to further emissions of CH4 and N2O by the production systems, which were estimated at 130 g CO2 equivalents/m2 per year. The net balance of on- and off-site C sequestration, CH4 and N2O emissions reached 38 g CO2 equivalents/m2 per year, indicating a non-significant net sink activity. This net balance was, however, negative for intensively managed cut sites indicating a source to the atmosphere. In conclusion, this review confirms that

  8. Renewable Energy Production from Waste to Mitigate Climate Change and Counteract Soil Degradation - A Spatial Explicit Assessment for Japan

    Science.gov (United States)

    Kraxner, Florian; Yoshikawa, Kunio; Leduc, Sylvain; Fuss, Sabine; Aoki, Kentaro; Yamagata, Yoshiki

    2014-05-01

    Waste production from urban areas is growing faster than urbanization itself, while at the same time urban areas are increasingly contributing substantial emissions causing climate change. Estimates indicate for urban residents a per capita solid waste (MSW) production of 1.2 kg per day, subject to further increase to 1.5 kg beyond 2025. Waste water and sewage production is estimated at about 260 liters per capita and day, also at increasing rates. Based on these figures, waste - including e.g. MSW, sewage and animal manure - can generally be assumed as a renewable resource with varying organic components and quantity. This paper demonstrates how new and innovative technologies in the field of Waste-to-Green Products can help in various ways not only to reduce costs for waste treatment, reduce the pressure on largely overloaded dump sites, and reduce also the effect of toxic materials at the landfill site and by that i.e. protect the groundwater. Moreover, Waste-to-Green Products can contribute actively to mitigating climate change through fossil fuel substitution and carbon sequestration while at the same time counteracting negative land use effects from other types of renewable energy and feedstock production through substitution. At the same time, the co-production and recycling of fertilizing elements and biochar can substantially counteract soil degradation and improve the soil organic carbon content of different land use types. The overall objective of this paper is to assess the total climate change mitigation potential of MSW, sewage and animal manure for Japan. A techno-economic approach is used to inform the policy discussion on the suitability of this substantial and sustainable mitigation option. We examine the spatial explicit technical mitigation potential from e.g. energy substitution and carbon sequestration through biochar in rural and urban Japan. For this exercise, processed information on respective Japanese waste production, energy demand

  9. Assessment of management to mitigate anthropogenic effects on large whales.

    Science.gov (United States)

    Van der Hoop, Julie M; Moore, Michael J; Barco, Susan G; Cole, Timothy V N; Daoust, Pierre-Yves; Henry, Allison G; McAlpine, Donald F; McLellan, William A; Wimmer, Tonya; Solow, Andrew R

    2013-02-01

    United States and Canadian governments have responded to legal requirements to reduce human-induced whale mortality via vessel strikes and entanglement in fishing gear by implementing a suite of regulatory actions. We analyzed the spatial and temporal patterns of mortality of large whales in the Northwest Atlantic (23.5°N to 48.0°N), 1970 through 2009, in the context of management changes. We used a multinomial logistic model fitted by maximum likelihood to detect trends in cause-specific mortalities with time. We compared the number of human-caused mortalities with U.S. federally established levels of potential biological removal (i.e., species-specific sustainable human-caused mortality). From 1970 through 2009, 1762 mortalities (all known) and serious injuries (likely fatal) involved 8 species of large whales. We determined cause of death for 43% of all mortalities; of those, 67% (502) resulted from human interactions. Entanglement in fishing gear was the primary cause of death across all species (n = 323), followed by natural causes (n = 248) and vessel strikes (n = 171). Established sustainable levels of mortality were consistently exceeded in 2 species by up to 650%. Probabilities of entanglement and vessel-strike mortality increased significantly from 1990 through 2009. There was no significant change in the local intensity of all or vessel-strike mortalities before and after 2003, the year after which numerous mitigation efforts were enacted. So far, regulatory efforts have not reduced the lethal effects of human activities to large whales on a population-range basis, although we do not exclude the possibility of success of targeted measures for specific local habitats that were not within the resolution of our analyses. It is unclear how shortfalls in management design or compliance relate to our findings. Analyses such as the one we conducted are crucial in critically evaluating wildlife-management decisions. The results of these analyses can provide

  10. Linking Physical Climate Research and Economic Assessments of Mitigation Policies

    Science.gov (United States)

    Stainforth, David; Calel, Raphael

    2017-04-01

    Evaluating climate change policies requires economic assessments which balance the costs and benefits of climate action. A certain class of Integrated Assessment Models (IAMS) are widely used for this type of analysis; DICE, PAGE and FUND are three of the most influential. In the economics community there has been much discussion and debate about the economic assumptions implemented within these models. Two aspects in particular have gained much attention: i) the costs of damages resulting from climate change - the so-called damage function, and ii) the choice of discount rate applied to future costs and benefits. There has, however, been rather little attention given to the consequences of the choices made in the physical climate models within these IAMS. Here we discuss the practical aspects of the implementation of the physical models in these IAMS, as well as the implications of choices made in these physical science components for economic assessments[1]. We present a simple breakdown of how these IAMS differently represent the climate system as a consequence of differing underlying physical models, different parametric assumptions (for parameters representing, for instance, feedbacks and ocean heat uptake) and different numerical approaches to solving the models. We present the physical and economic consequences of these differences and reflect on how we might better incorporate the latest physical science understanding in economic models of this type. [1] Calel, R. and Stainforth D.A., "On the Physics of Three Integrated Assessment Models", Bulletin of the American Meteorological Society, in press.

  11. Wastewater Irrigation and Health: Assessing and Mitigating Risk in ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    18 déc. 2009 ... This book represents the best modern innovative thinking on the topic and symbolizes an important turning point in the history of wastewater use in irrigation ... It presents the state-of-the-art on quantitative risk assessment and low-cost options for health risk reduction, from treatment to on-farm and off-farm ...

  12. One carbon cycle: Impacts of model integration, ecosystem process detail, model resolution, and initialization data, on projections of future climate mitigation strategies

    Science.gov (United States)

    Fisk, J.; Hurtt, G. C.; le page, Y.; Patel, P. L.; Chini, L. P.; Sahajpal, R.; Dubayah, R.; Thomson, A. M.; Edmonds, J.; Janetos, A. C.

    2013-12-01

    Integrated assessment models (IAMs) simulate the interactions between human and natural systems at a global scale, representing a broad suite of phenomena across the global economy, energy system, land-use, and carbon cycling. Most proposed climate mitigation strategies rely on maintaining or enhancing the terrestrial carbon sink as a substantial contribution to restrain the concentration of greenhouse gases in the atmosphere, however most IAMs rely on simplified regional representations of terrestrial carbon dynamics. Our research aims to reduce uncertainties associated with forest modeling within integrated assessments, and to quantify the impacts of climate change on forest growth and productivity for integrated assessments of terrestrial carbon management. We developed the new Integrated Ecosystem Demography (iED) to increase terrestrial ecosystem process detail, resolution, and the utilization of remote sensing in integrated assessments. iED brings together state-of-the-art models of human society (GCAM), spatial land-use patterns (GLM) and terrestrial ecosystems (ED) in a fully coupled framework. The major innovative feature of iED is a consistent, process-based representation of ecosystem dynamics and carbon cycle throughout the human, terrestrial, land-use, and atmospheric components. One of the most challenging aspects of ecosystem modeling is to provide accurate initialization of land surface conditions to reflect non-equilibrium conditions, i.e., the actual successional state of the forest. As all plants in ED have an explicit height, it is one of the few ecosystem models that can be initialized directly with vegetation height data. Previous work has demonstrated that ecosystem model resolution and initialization data quality have a large effect on flux predictions at continental scales. Here we use a factorial modeling experiment to quantify the impacts of model integration, process detail, model resolution, and initialization data on projections of

  13. Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel.

    Science.gov (United States)

    Li, Y; Zhang, P; Cai, W; Rosenblatt, J S; Raad, I I; Xu, D; Gu, T

    2016-02-01

    Microbiologically influenced corrosion (MIC), also known as biocorrosion, is caused by corrosive biofilms. MIC is a growing problem, especially in the oil and gas industry. Among various corrosive microbes, sulfate reducing bacteria (SRB) are often the leading culprit. Biofilm mitigation is the key to MIC mitigation. Biocide applications against biofilms promote resistance over time. Thus, it is imperative to develop new biodegradable and cost-effective biocides for large-scale field applications. Using the corrosive Desulfovibrio vulgaris (an SRB) biofilm as a model biofilm, this work demonstrated that a cocktail of glyceryl trinitrate (GTN) and caprylic acid (CA) was very effective for biofilm prevention and mitigation of established biofilms on C1018 carbon steel coupons. The most probable number sessile cell count data and confocal laser scanning microscope biofilm images proved that the biocide cocktail of 25 ppm (w/w) GTN + 0.1% (w/w) CA successfully prevented the D. vulgaris biofilm establishment on C1018 carbon steel coupons while 100 ppm GTN + 0.1% CA effectively mitigated pre-established D. vulgaris biofilms on C1018 carbon steel coupons. In both cases, the cocktails were able to reduce the sessile cell count from 10(6) cells/cm(2) to an undetectable level.

  14. State-level infrastructure and economic effects of switchgrass cofiring with coal in existing power plants for carbon mitigation.

    Science.gov (United States)

    Morrow, William R; Griffin, W Michael; Matthews, H Scott

    2007-10-01

    This paper presents a linear programming (LP) methodology for estimating the cost of reducing a state's coal-fired power plant carbon dioxide emissions by cofiring switchgrass and coal. LP modeling allows interplay between regionally specific switchgrass production forecasts, coal plant locations, and individual coal plant historic performance data to determine an allocation of switchgrass minimizing cost or maximizing carbon reduction. The LP methodology is applied to two states, Pennsylvania (PA) and Iowa (IA), and results are presented with a discussion of modeling assumptions, techniques, and carbon mitigation policy implications. The LP methodology estimates that, in PA, 4.9 million tons of CO2/year could be mitigated at an average cost of less than $34/ton of CO2 and that, in IA, 7 million tons of CO2/year could be mitigated at an average Cost of Mitigation of $27/ton of CO2. Because the factors determining the cofiring costs vary so much between the two states, results suggest that cofiring costs will also vary considerably between different U.S. regions. A national level analysis could suggest a lowest-cost cofiring region. This paper presents techniques and assumptions that can simplify biomass energy policy analysis with little effect on analysis conclusions.

  15. Landslide hazard assessment and mitigation measures in Philippine geothermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Leynes, R.D.; Pioquinto, W.P.C.; Caranto, J.A. [PNOC Energy Development Corporation, Fort Bonifacio (Philippines)

    2005-04-01

    Simple, yet reliable, field criteria have been developed and are being used to qualitatively assess slope instability and slope failure potential in Philippine geothermal fields. Based on a hazard assessment classification of slopes along corridor facilities, sites for implementation of engineering measures are selected. Two case studies are presented. In Mindanao field, the ''very high-risk'' classification of an area resulted in the installation of pipe shelters, which subsequently shielded a section of a pipeline from landslides. Follow-up monitoring is also conducted using cheap, locally fabricated tools, such as surface extensometers. This is being done in Leyte field, where a landslide has threatened a transmission line tower. (author)

  16. Assessment of Management to Mitigate Anthropogenic Effects on Large Whales

    Science.gov (United States)

    Van Der Hoop, Julie M; Moore, Michael J; Barco, Susan G; Cole, Timothy VN; Daoust, Pierre-Yves; Henry, Allison G; McAlpine, Donald F; McLellan, William A; Wimmer, Tonya; Solow, Andrew R

    2013-01-01

    Abstract United States and Canadian governments have responded to legal requirements to reduce human-induced whale mortality via vessel strikes and entanglement in fishing gear by implementing a suite of regulatory actions. We analyzed the spatial and temporal patterns of mortality of large whales in the Northwest Atlantic (23.5°N to 48.0°N), 1970 through 2009, in the context of management changes. We used a multinomial logistic model fitted by maximum likelihood to detect trends in cause-specific mortalities with time. We compared the number of human-caused mortalities with U.S. federally established levels of potential biological removal (i.e., species-specific sustainable human-caused mortality). From 1970 through 2009, 1762 mortalities (all known) and serious injuries (likely fatal) involved 8 species of large whales. We determined cause of death for 43% of all mortalities; of those, 67% (502) resulted from human interactions. Entanglement in fishing gear was the primary cause of death across all species (n = 323), followed by natural causes (n = 248) and vessel strikes (n = 171). Established sustainable levels of mortality were consistently exceeded in 2 species by up to 650%. Probabilities of entanglement and vessel-strike mortality increased significantly from 1990 through 2009. There was no significant change in the local intensity of all or vessel-strike mortalities before and after 2003, the year after which numerous mitigation efforts were enacted. So far, regulatory efforts have not reduced the lethal effects of human activities to large whales on a population-range basis, although we do not exclude the possibility of success of targeted measures for specific local habitats that were not within the resolution of our analyses. It is unclear how shortfalls in management design or compliance relate to our findings. Analyses such as the one we conducted are crucial in critically evaluating wildlife-management decisions. The results of these analyses can

  17. Low-carbon agriculture in South America to mitigate global climate change and advance food security.

    Science.gov (United States)

    Sá, João Carlos de Moraes; Lal, Rattan; Cerri, Carlos Clemente; Lorenz, Klaus; Hungria, Mariangela; de Faccio Carvalho, Paulo Cesar

    2017-01-01

    The worldwide historical carbon (C) losses due to Land Use and Land-Use Change between 1870 and 2014 are estimated at 148 Pg C (1 Pg=1billionton). South America is chosen for this study because its soils contain 10.3% (160 Pg C to 1-m depth) of the soil organic carbon stock of the world soils, it is home to 5.7% (0.419 billion people) of the world population, and accounts for 8.6% of the world food (491milliontons) and 21.0% of meat production (355milliontons of cattle and buffalo). The annual C emissions from fossil fuel combustion and cement production in South America represent only 2.5% (0.25 Pg C) of the total global emissions (9.8 Pg C). However, South America contributes 31.3% (0.34 Pg C) of global annual greenhouse gas emissions (1.1 Pg C) through Land Use and Land Use Change. The potential of South America as a terrestrial C sink for mitigating climate change with adoption of Low-Carbon Agriculture (LCA) strategies based on scenario analysis method is 8.24 Pg C between 2016 and 2050. The annual C offset for 2016 to 2020, 2021 to 2035, and 2036 to 2050 is estimated at 0.08, 0.25, and 0.28 Pg C, respectively, equivalent to offsetting 7.5, 22.2 and 25.2% of the global annual greenhouse gas emissions by Land Use and Land Use Change for each period. Emission offset for LCA activities is estimated at 31.0% by restoration of degraded pasturelands, 25.6% by integrated crop-livestock-forestry-systems, 24.3% by no-till cropping systems, 12.8% by planted commercial forest and forestation, 4.2% by biological N fixation and 2.0% by recycling the industrial organic wastes. The ecosystem carbon payback time for historical C losses from South America through LCA strategies may be 56 to 188years, and the adoption of LCA can also increase food and meat production by 615Mton or 17.6Mtonyear -1 and 56Mton or 1.6Mtonyear -1 , respectively, between 2016 and 2050. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. On the Assessment of the CO2 Mitigation Potential of Woody Biomass

    Directory of Open Access Journals (Sweden)

    Víctor Codina Gironès

    2018-01-01

    Full Text Available Woody biomass, a renewable energy resource, accumulates solar energy in form of carbon hydrates produced from atmospheric CO2 and H2O. It is, therefore, a means of CO2 mitigation for society as long as the biogenic carbon released to the atmosphere when delivering its energy content by oxidation can be accumulated again during growth of new woody biomass. Even when considering the complete life cycle, usually, only a small amount of fossil CO2 is emitted. However, woody biomass availability is limited by land requirement and, therefore, it is important to maximize its CO2 mitigation potential in the energy system. In this study, we consider woody biomass not only as a source of renewable energy but also as a source of carbon for seasonal storage of solar electricity. A first analysis is carried out based on the mitigation effect of woody biomass usage pathways, which is the avoided fossil CO2 emissions obtained by using one unit of woody biomass to provide energy services, as alternative to fossil fuels. Results show that woody biomass usage pathways can achieve up to 9.55 times the mitigation effect obtained through combustion of woody biomass, which is taken as a reference. Applying energy system modeling and multi-objective optimization techniques, the role of woody biomass technological choices in the energy transition is then analyzed at a country scale. The analysis is applied to Switzerland, demonstrating that the use of woody biomass in gasification–methanation systems, coupled with electrolysers and combined with an intensive deployment of PV panels and efficient technologies, could reduce the natural gas imports to zero. Electrolysers are used to boost synthetic natural gas production by hydrogen injection into the methanation reaction. The hydrogen used is produced when there is excess of solar electricity. The efficient technologies, such as heat pumps and battery electric vehicles, allow increasing the overall efficiency of the

  19. Comparative assessment of Japan's long-term carbon budget under different effort-sharing principles

    NARCIS (Netherlands)

    Kuramochi, Takeshi; Asuka, Jusen; Fekete, Hanna; Tamura, Kentaro; Höhne, Niklas

    2016-01-01

    This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2 °C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay

  20. Using Online Tools to Assess Public Responses to Climate Change Mitigation Policies in Japan

    Directory of Open Access Journals (Sweden)

    Nophea Sasaki

    2011-04-01

    Full Text Available As a member of the Annex 1 countries to the Kyoto Protocol of the United Nations Framework Convention on Climate Change, Japan is committed to reducing 6% of the greenhouse gas emissions. In order to achieve this commitment, Japan has undertaken several major mitigation measures, one of which is the domestic measure that includes ecologically friendly lifestyle programs, utilizing natural energy, participating in local environmental activities, and amending environmental laws. Mitigation policies could be achieved if public responses were strong. As the internet has increasingly become an online platform for sharing environmental information, public responses to the need for reducing greenhouse gas emissions may be assessed using available online tools. We used Google Insights for Search, Google AdWords Keyword Tool, and Google Timeline View to assess public responses in Japan based on the interest shown for five search terms that define global climate change and its mitigation policies. Data on online search interests from January 04, 2004 to July 18, 2010 were analyzed according to locations and categories. Our study suggests that the search interests for the five chosen search terms dramatically increased, especially when new mitigation policies were introduced or when climate change related events were organized. Such a rapid increase indicates that the Japanese public strongly responds to climate change mitigation policies.

  1. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total

  2. Low Secondary Electron Yield Carbon Coatings for Electron Cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Taborelli, Mauro

    2011-01-01

    In order to upgrade the Large Hadron Collider (LHC) performance to be oriented towards higher energies and higher intensities in the future, a series of improvements of the existing LHC injectors is planned to take place over the next few years. Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the machines of the CERN complex. Electron cloud phenomena in beam pipes are based on electron multiplication and can be sufficiently suppressed if the Secondary Electron Yield (SEY) of the surface of the beam pipes is lower than unity. The goal of this work is to find and study a thin film coating with reliably low initial Secondary Electron Yield (SEY), which does not require bake-out or conditioning in situ with photons, is robust again air exposure and can easily be applied in the beam pipes of accelerators. In this work, amorphous carbon (a-C) thin films have been prepared by DC magnetron sputtering for electron cloud mitigation and antimultipactor applicatio...

  3. Acting Globally: Potential Carbon Emissions Mitigation Impacts from an International Standards and Labelling Program

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A; Letschert, Virginie E.; de la Rue du Can, Stephane; Egan, Christine

    2009-05-29

    This paper presents an analysis of the potential impacts of an international initiative designed to support and promote the development and implementation of appliances standards and labelling programs throughout the world. As part of previous research efforts, LBNL developed the Bottom Up Energy Analysis System (BUENAS), an analysis framework that estimates impact potentials of energy efficiency policies on a global scale. In this paper, we apply this framework to an initiative that would result in the successful implementation of programs focused on high priority regions and product types, thus evaluating the potential impacts of such an initiative in terms of electricity savings and carbon mitigation in 2030. In order to model the likely parameters of such a program, we limit impacts to a five year period starting in 2009, but assume that the first 5 years of a program will result in implementation of 'best practice' minimum efficiency performance standards by 2014. The 'high priority' regions considered are: Brazil, China, the European Union,India, Mexico and the United States. The products considered are: refrigerators, air conditioners, lighting (both fluorescent and incandescent), standby power (for consumer electronics) and televisions in the residential sector, and air conditioning and lighting in commercial buildings. In 2020, these regions and enduses account for about 37percent of global residential electricity and 29percent of electricity in commercial buildings. We find that 850Mt of CO2 could be saved in buildings by 2030 compared to the baseline forecast.

  4. Carbon value dynamics for France: A key driver to support mitigation pledges at country scale

    Energy Technology Data Exchange (ETDEWEB)

    Assoumou, Edi, E-mail: edi.assoumou@mines-paristech.fr [Centre for Applied Mathematics, MINES ParisTech (France); Maizi, Nadia [Centre for Applied Mathematics, MINES ParisTech (France)

    2011-07-15

    The climate agenda in France and several other countries is a complex combination of unilateral commitments with regional and international objectives. When analyzing national policies, the findings of worldwide analyses are of limited accuracy and the large aggregates on which they are built level out most local specificities and inertia. Specific assessments are hence needed. This paper quantifies the dynamic evolution of carbon values for French climate and energy policy. Its time dependency over successive periods and the effects of setting intermediate targets are evaluated using a long-term optimization model. Addressing critical issues for France, we produce consistent energy, emissions and carbon value estimates with a 5-year time step. Our results are situated above the upper range of carbon value estimates of world models with an overlapping zone. We show that the official policy guideline value is only consistent with an optimistic combination of assumptions. The central estimates are 4 times greater than the guideline carbon value for 2050 and up to 14 times greater in 2020 because of short-term inertia that are costly to move. We also find that with intermediate objectives, the carbon value's dynamic is more than a simple upward curve and that its variability is itself time dependent. - Highlights: > We quantify the dynamic evolution of carbon values for France. > We use a long-term optimization energy model from the MARKAL family. > We compute consistent energy balances for different climate and energy policy. > We show that the official guideline is only consistent with optimistic assumptions. > The dynamic is not a simple upward curve and influencing parameters are analyzed.

  5. Remote sensing assessment of carbon storage by urban forest

    Science.gov (United States)

    Kanniah, K. D.; Muhamad, N.; Kang, C. S.

    2014-02-01

    Urban forests play a crucial role in mitigating global warming by absorbing excessive CO2 emissions due to transportation, industry and house hold activities in the urban environment. In this study we have assessed the role of trees in an urban forest, (Mutiara Rini) located within the Iskandar Development region in south Johor, Malaysia. We first estimated the above ground biomass/carbon stock of the trees using allometric equations and biometric data (diameter at breast height of trees) collected in the field. We used remotely sensed vegetation indices (VI) to develop an empirical relationship between VI and carbon stock. We used five different VIs derived from a very high resolution World View-2 satellite data. Results show that model by [1] and Normalized Difference Vegetation Index are correlated well (R2 = 0.72) via a power model. We applied the model to the entire study area to obtain carbon stock of urban forest. The average carbon stock in the urban forest (mostly consisting of Dipterocarp species) is ~70 t C ha-1. Results of this study can be used by the Iskandar Regional Development Authority to better manage vegetation in the urban environment to establish a low carbon city in this region.

  6. Tools to aid post-wildfire assessment and erosion-mitigation treatment decisions

    Science.gov (United States)

    Peter R. Robichaud; Louise E. Ashmun

    2013-01-01

    A considerable investment in post-fire research over the past decade has improved our understanding of wildfire effects on soil, hydrology, erosion and erosion-mitigation treatment effectiveness. Using this new knowledge, we have developed several tools to assist land managers with post-wildfire assessment and treatment decisions, such as prediction models, research...

  7. Integrating biorefinery and farm biogeochemical cycles offsets fossil energy and mitigates soil carbon losses.

    Science.gov (United States)

    Adler, Paul R; Mitchell, James G; Pourhashem, Ghasideh; Spatari, Sabrina; Del Grosso, Stephen J; Parton, William J

    2015-06-01

    Crop residues are potentially significant sources of feedstock for biofuel production in the United States. However, there are concerns with maintaining the environmental functions of these residues while also serving as a feedstock for biofuel production. Maintaining soil organic carbon (SOC) along with its functional benefits is considered a greater constraint than maintaining soil erosion losses to an acceptable level. We used the biogeochemical model DayCent to evaluate the effect of residue removal, corn stover, and wheat and barley straw in three diverse locations in the USA. We evaluated residue removal with and without N replacement, along with application of a high-lignin fermentation byproduct (HLFB), the residue by-product comprised of lignin and small quantities of nutrients from cellulosic ethanol production. SOC always decreased with residue harvest, but the decrease was greater in colder climates when expressed on a life cycle basis. The effect of residue harvest on soil N2O emissions varied with N addition and climate. With N addition, N2O emissions always increased, but the increase was greater in colder climates. Without N addition, N2O emissions increased in Iowa, but decreased in Maryland and North Carolina with crop residue harvest. Although SOC was lower with residue harvest when HLFB was used for power production instead of being applied to land, the avoidance of fossil fuel emissions to the atmosphere by utilizing the cellulose and hemicellulose fractions of crop residue to produce ethanol (offsets) reduced the overall greenhouse gas (GHG) emissions because most of this residue carbon would normally be lost during microbial respiration. Losses of SOC and reduced N mineralization could both be mitigated with the application of HLFB to the land. Therefore, by returning the high-lignin fraction of crop residue to the land after production of ethanol at the biorefinery, soil carbon levels could be maintained along with the functional benefit of

  8. Global assessment of technological innovation for climate change adaptation and mitigation in developing world.

    Science.gov (United States)

    Adenle, Ademola A; Azadi, Hossein; Arbiol, Joseph

    2015-09-15

    Concerns about mitigating and adapting to climate change resulted in renewing the incentive for agricultural research investments and developing further innovation priorities around the world particularly in developing countries. In the near future, development of new agricultural measures and proper diffusion of technologies will greatly influence the ability of farmers in adaptation and mitigation to climate change. Using bibliometric approaches through output of academic journal publications and patent-based data, we assess the impact of research and development (R&D) for new and existing technologies within the context of climate change mitigation and adaptation. We show that many developing countries invest limited resources for R&D in relevant technologies that have great potential for mitigation and adaption in agricultural production. We also discuss constraints including weak infrastructure, limited research capacity, lack of credit facilities and technology transfer that may hinder the application of innovation in tackling the challenges of climate change. A range of policy measures is also suggested to overcome identified constraints and to ensure that potentials of innovation for climate change mitigation and adaptation are realized. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. U.S. Postal Service radon assessment and mitigation program. Progress report, September 1993--November 1994

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, L.E.; Petty, J.L. Jr.

    1994-12-31

    In 1992, the US Postal Service (USPS) entered into an Interagency Agreement with the Department of Energy (DOE) whereby DOE would provide technical assistance in support of the USPS Radon Assessment and Mitigation Program. To aid in this effort, DOE tasked the Hazardous Waste Remedial Actions Program (HAZWRAP), which is managed by Martin Marietta Energy Systems, Inc., for DOE under contract AC05-84OR21400. Since that time, HAZWRAP has developed and finalized the sampling protocol, mitigation diagnostic protocol, and the quality assurance and quality control procedures. These procedures were validated during the Protocol Validation (1992-1993) and Pilot Study (1993-1994) phases of the program. To date, HAZWRAP has performed approximately 16,000 radon measurements in 250 USPS buildings. Mitigation diagnostics have been performed in 27 buildings. Thus far, 13% of the measurements have been above the Environmental Protection Agency action level of 4 pCi/L. This report summarizes the pilot program radon testing data and mitigation diagnostic data for 22 sites and contains recommendations for mitigation diagnostics.

  10. Research and Development of a DNDC Online Model for Farmland Carbon Sequestration and GHG Emissions Mitigation in China

    Directory of Open Access Journals (Sweden)

    Zaidi Jiang

    2017-12-01

    Full Text Available Appropriate agricultural practices for carbon sequestration and emission mitigation have a significant influence on global climate change. However, various agricultural practices on farmland carbon sequestration usually have a major impact on greenhouse gas (GHG emissions. It is very important to accurately quantify the effect of agricultural practices. This study developed a platform—the Denitrification Decomposition (DNDC online model—for simulating and evaluating the agricultural carbon sequestration and emission mitigation based on the scientific process of the DNDC model, which is widely used in the simulation of soil carbon and nitrogen dynamics. After testing the adaptability of the platform on two sampling fields, it turned out that the simulated values matched the measured values well for crop yields and GHG emissions. We used the platform to estimate the effect of three carbon sequestration practices in a sampling field: nitrogen fertilization reduction, straw residue and midseason drainage. The results indicated the following: (1 moderate decrement of the nitrogen fertilization in the sampling field was able to decrease the N2O emission while maintaining the paddy rice yield; (2 ground straw residue had almost no influence on paddy rice yield, but the CH4 emission and the surface SOC concentration increased along with the quantity of the straw residue; (3 compared to continuous flooding, midseason drainage would not decrease the paddy rice yield and could lead to a drop in CH4 emission. Thus, this study established the DNDC online model, which is able to serve as a reference and support for the study and evaluation of the effects of agricultural practices on agricultural carbon sequestration and GHG emissions mitigation in China.

  11. Evaluating the demand for carbon sequestration in olive grove soils as a strategy toward mitigating climate change.

    Science.gov (United States)

    Rodríguez-Entrena, Macario; Barreiro-Hurlé, Jesús; Gómez-Limón, José A; Espinosa-Goded, María; Castro-Rodríguez, Juan

    2012-12-15

    In this paper we present an estimate of the economic value of carbon sequestration in olive grove soils derived from the implementation of different agricultural management systems. Carbon sequestration is considered jointly with other environmental co-benefits, such as enhanced erosion prevention and increased biodiversity. The estimates have been obtained using choice experiments and show that there is a significant demand from society for these environmental services. From a policy perspective, an agri-environmental scheme that delivers the highest level of each environmental service would be valued by society at 121 Euros per hectare. If we focus on carbon sequestration, each ton of CO(2) would be valued at 17 Euros. These results show that there is scope to include agricultural soil carbon sequestration in climate change mitigation strategies and to provide guidance for setting payments for agri-environmental schemes promoting soil management changes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. The impacts of U.S. withdrawal from the Paris Agreement on the carbon emission space and mitigation cost of China, EU, and Japan under the constraints of the global carbon emission space

    Directory of Open Access Journals (Sweden)

    Han-Cheng Dai

    2017-12-01

    Full Text Available Based on the Computable General Equilibrium (CGE model and scenario analysis, the impacts of the U.S. withdrawal from the Paris Agreement on the carbon emission space and mitigation cost in China, European Union (EU, and Japan are assessed under Nationally Determined Contributions (NDCs and 2 °C scenarios due to the changed emission pathway of the U.S. The results show that, under the condition of constant global cumulative carbon emissions and a fixed burden-sharing scheme among countries, the failure of the U.S. to honor its NDC commitment to different degrees will increase the U.S. carbon emission space and decrease its mitigation cost. However, the carbon emission space of other parties, including China, EU, and Japan, will be reduced and their mitigation costs will be increased. In 2030, under the 2 °C target, the carbon price will increase by 4.4–14.6 US$ t−1 in China, by 9.7–35.4 US$ t−1 in the EU, and by 16.0–53.5 US$ t−1 in Japan. In addition, China, EU, and Japan will incur additional Gross Domestic Production (GDP loss. Under the 2 °C target, the GDP loss of China would increase by US$22.0–71.1 billion (equivalent to 16.4–53.1 US$ per capita, the EU's GDP loss would increase by US$9.4–32.1 billion (equivalent to 20.7–71.1 US$ per capita, and Japan's GDP loss will increase by US$4.1–13.5 billion (equivalent to 34.3–111.6 US$ per capita.

  13. Dissolved organic carbon interferences in UV nitrate measurements and possible mitigation methods

    Science.gov (United States)

    Thomas, R. G.; Foster, C. R.; Cohen, M. J.; Martin, J. B.; Delfino, J. J.

    2010-12-01

    Nitrate can be the limiting nutrient in many aquatic ecosystems and has been implicated in the degradation of surface and ground water quality. Understanding its fate and transport requires measurements at high temporal resolution in situ for extended periods of time to observe a range of natural and anthropogenic inputs. These measurements are most efficiently made by in situ sensors, preferably without chemical manipulation. The development of in situ ultraviolet spectrometers with high spectral resolution (0.8 nm) and short response time (1 s) have provided the ability to make in situ measurements of nitrate concentration by measuring its absorbance in the UV wavelengths (200nm-400nm). Like many other regions, springs in Florida have shown increasing nitrate levels in recent years. Because many spring runs in Florida ultimately enter highly colored rivers with high humic DOC content, UV nitrate analyzers cannot operate according to specifications under such light limiting conditions and can result in erroneous or even unattainable readings. Here we present an analysis of interferences caused by dissolved organic carbon (DOC) on the measured nitrate concentration by the Satlantic SUNA (Submersible Ultraviolet Nitrate Analyzer). Dissolved organic carbon absorption of UV irradiation is well documented in the literature and the results of this study clearly demonstrate that high DOC concentrations impact in situ sensor nitrate concentration measurements. Interferences caused by DOC were estimated through bench tests of natural water collected from the upper reaches of the Santa Fe River (USGS Monitoring Station 2322700) and found to have DOC concentration of approximately 50 mg/L and N03 concentration of 0.04 mg/L. The SUNA was operated in a continuous sample mode (about 1 sample per second) to measure nitrate concentrations in this water that was diluted to DOC concentrations of 2.5, 5.0, 10.0, and 12.5 mg/L DOC and nitrate concentrations of 0.05, 0.10, 0.20, 0

  14. Assess/Mitigate Risk through the Use of Computer-Aided Software Engineering (CASE) Tools

    Science.gov (United States)

    Aguilar, Michael L.

    2013-01-01

    The NASA Engineering and Safety Center (NESC) was requested to perform an independent assessment of the mitigation of the Constellation Program (CxP) Risk 4421 through the use of computer-aided software engineering (CASE) tools. With the cancellation of the CxP, the assessment goals were modified to capture lessons learned and best practices in the use of CASE tools. The assessment goal was to prepare the next program for the use of these CASE tools. The outcome of the assessment is contained in this document.

  15. Carbon Capture: A Technology Assessment

    Science.gov (United States)

    2013-10-21

    Cumberland, MD) Coal-fired power plant 2000 8 MW Amine (Lummus) 0.05 Outside the United States Soda Ash Botswana Sua Pan Plant ( Botswana ) Coal...flue gases is the IMC Global soda ash plant in California. Here, the mineral trona is mined locally and combined with CO2 to produce sodium carbonate...of Mines in 1961.107 Pilot-scale tests were performed in the mid-1960s and by 1973 the process saw industrial use for sulfur removal at a refinery in

  16. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme.

    Science.gov (United States)

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO2 eq saving per GL of water produced by the plant.

  17. Carbon footprint assessment of Western Australian Groundwater Recycling Scheme

    Science.gov (United States)

    Simms, Andrew; Hamilton, Stacey; Biswas, Wahidul K.

    2017-04-01

    This research has determined the carbon footprint or the carbon dioxide equivalent (CO2 eq) of potable water production from a groundwater recycling scheme, consisting of the Beenyup wastewater treatment plant, the Beenyup groundwater replenishment trial plant and the Wanneroo groundwater treatment plant in Western Australia, using a life cycle assessment approach. It was found that the scheme produces 1300 tonnes of CO2 eq per gigalitre (GL) of water produced, which is 933 tonnes of CO2 eq higher than the desalination plant at Binningup in Western Australia powered by 100% renewable energy generated electricity. A Monte Carlo Simulation uncertainty analysis calculated a Coefficient of Variation value of 5.4%, thus confirming the accuracy of the simulation. Electricity input accounts for 83% of the carbon dioxide equivalent produced during the production of potable water. The chosen mitigation strategy was to consider the use of renewable energy to generate electricity for carbon intensive groundwater replenishment trial plant. Depending on the local situation, a maximum of 93% and a minimum of 21% greenhouse gas saving from electricity use can be attained at groundwater replenishment trial plant by replacing grid electricity with renewable electricity. In addition, the consideration of vibrational separation (V-Sep) that helps reduce wastes generation and chemical use resulted in a 4.03 tonne of CO2 eq saving per GL of water produced by the plant.

  18. GHGT-11 - Integrated Carbon Risk Assessment (ICARAS)

    NARCIS (Netherlands)

    Wollenweber, J.; Busby, D.; Wessel-Berg, D.; Nepveu, M.; Bossie Codreanu, D.; Grimstad, A-A.; Sijacic, D.; Maurand, N.; Lothe, A.; Wahl, F.; Polak, S.; Boot, H.; Grøver, A.; Wildenborg, T.

    2013-01-01

    In this paper an integrated workflow is described for risk assessment within CCS. IFPEN, SINTEF and TNO joined forces to define a comprehensive and transparent risk assessment methodology. The tools developed in these institutes are thereby integrated. The workflow can be applied to proposed carbon

  19. Assessing transformational change potential: the case of the Tunisian cement Nationally Appropriate Mitigation Action (NAMA)

    DEFF Research Database (Denmark)

    Boodoo, Zyaad; Olsen, Karen Holm

    2018-01-01

    contributions (NDCs). However, there is still a scarcity of empirical studies on how transformational change policies and actions are designed and supported in practice. This article addresses such a gap in knowledge by combining theoretical insights from the multi-level perspective and transitions management......To effectively address the root causes of carbon lock-in across developing countries, Nationally Appropriate Mitigation Actions (NAMAs) with transformational change characteristics are being supported by donors and finance mechanisms as a means to achieve ambitious nationally determined...... literature to examine a donor-supported cement sector NAMA in Tunisia developed during 2012–2013. A narrative is constructed to analyse the adequacy of the NAMA design to promote structural shifts towards low carbon development in the cement sector. Data collection is based on semi-structured interviews...

  20. ASSESSMENT OF HOUSEHOLD CARBON FOOTPRINT REDUCTION POTENTIALS

    Energy Technology Data Exchange (ETDEWEB)

    Kramer, Klaas Jan; Homan, Greg; Brown, Rich; Worrell, Ernst; Masanet, Eric

    2009-04-15

    The term ?household carbon footprint? refers to the total annual carbon emissions associated with household consumption of energy, goods, and services. In this project, Lawrence Berkeley National Laboratory developed a carbon footprint modeling framework that characterizes the key underlying technologies and processes that contribute to household carbon footprints in California and the United States. The approach breaks down the carbon footprint by 35 different household fuel end uses and 32 different supply chain fuel end uses. This level of end use detail allows energy and policy analysts to better understand the underlying technologies and processes contributing to the carbon footprint of California households. The modeling framework was applied to estimate the annual home energy and supply chain carbon footprints of a prototypical California household. A preliminary assessment of parameter uncertainty associated with key model input data was also conducted. To illustrate the policy-relevance of this modeling framework, a case study was conducted that analyzed the achievable carbon footprint reductions associated with the adoption of energy efficient household and supply chain technologies.

  1. Assessment of potential greenhouse gas mitigation from changes to crop root mass and architecture

    Energy Technology Data Exchange (ETDEWEB)

    Paustian, Keith [Booz Allen Hamiltion Inc., McLean, VA (United States); Campbell, Nell [Booz Allen Hamiltion Inc., McLean, VA (United States); Dorich, Chris [Booz Allen Hamiltion Inc., McLean, VA (United States); Marx, Ernest [Booz Allen Hamiltion Inc., McLean, VA (United States); Swan, Amy [Booz Allen Hamiltion Inc., McLean, VA (United States)

    2016-01-29

    Reducing (and eventually reversing) the increase in greenhouse gases (GHGs) in the atmosphere due to human activities, and thus reducing the extent and severity of anthropogenic climate change, is one of the great challenges facing humanity. While most of the man-caused increase in GHGs has been due to fossil fuel use, land use (including agriculture) currently accounts for about 25% of total GHG emissions and thus there is a need to include emission reductions from the land use sector as part of an effective climate change mitigation strategy. In addition, analyses included in the recent IPCC 5th Climate Change Assessment report suggests that it may not be possible to achieve large enough emissions reductions in the energy, transport and industrial sectors alone to stabilize GHG concentrations at a level commensurate with a less than 2°C global average temperature increase, without the help of a substantial CO2 sink (i.e., atmospheric CO2 removal) from the land use sector. One of the potential carbon sinks that could contribute to this goal is increasing C storage in soil organic matter on managed lands. This report details a preliminary scoping analysis, to assess the potential agricultural area in the US – where appropriate soil, climate and land use conditions exist – to determine the land area on which ‘improved root phenotype’ crops could be deployed and to evaluate the potential long-term soil C storage, given a set of ‘bounding scenarios’ of increased crop root input and/or rooting depth for major crop species (e.g., row crops (corn, sorghum, soybeans), small grains (wheat, barley, oats), and hay and pasture perennial forages). The enhanced root phenotype scenarios assumed 25, 50 and 100% increase in total root C inputs, in combination with five levels of modifying crop root distributions (i.e., no change and four scenarios with increasing downward shift in root distributions). We also analyzed impacts of greater root

  2. Wenchuan Earthquake Surface Fault Rupture and Disaster: A Lesson on Seismic Hazard Assessment and Mitigation

    Directory of Open Access Journals (Sweden)

    Yi Du

    2012-01-01

    Full Text Available The Ms 8.0 Wenchuan earthquake occurred along the Longmenshan Faults in China and was a great disaster. Most of the damage and casualties during the quake were concentrated along surface rupture zones: the 240-km-long Beichuan-Yingxiu Fault and the 70-km-long Jiangyou-Guanxian Fault. Although the Longmenshan Faults are well known and studied, the surface Fault ruptures were not considered in mitigation planning, and the associated ground-motion hazard was therefore underestimated. Not considering Fault rupture and underestimating ground-motion hazard contributed to the disastrous effects of the earthquake. The lesson from the Wenchuan earthquake disaster is that the fault rupture hazard must be assessed and considered in mitigation. Furthermore, the deterministic approach is more appropriate for fault rupture hazard assessment than the probabilistic approach.

  3. U.S. ARMY CORPS OF ENGINEERS: Scientific Panel’s Assessment of Fish and Wildlife Mitigation Guidance

    Science.gov (United States)

    2002-05-01

    continuing evolution to a function-based approach to mitigation; 10 • is a positive step toward helping assess and quantify the amount of mitigation that is...construction initiated 1 Tropicana & Flamingo Washes Nevada Flood Control Yes Yes 100 100 2 Big Sioux River and Skunk Creek South Dakota Flood Control Yes

  4. Greenhouse Gas Mitigation of Rural Household Biogas Systems in China: A Life Cycle Assessment

    Directory of Open Access Journals (Sweden)

    Jun Hou

    2017-02-01

    Full Text Available Rural household biogas (RHB systems are at a crossroads in China, yet there has been a lack of holistic evaluation of their energy and climate (greenhouse gas mitigation efficiency under typical operating conditions. We combined data from monitoring projects and questionnaire surveys across hundreds of households from two typical Chinese villages within a consequential life cycle assessment (LCA framework to assess net GHG (greenhouse gas mitigation by RHB systems operated in different contexts. We modelled biogas production, measured biogas losses and used survey data from biogas and non-biogas households to derive empirical RHB system substitution rates for energy and fertilizers. Our results indicate that poorly designed and operated RHB systems in northern regions of China may in fact increase farm household GHG emissions by an average of 2668 kg CO2-eq· year−1, compared with a net mitigation effect of 6336 kg CO2-eq per household and year in southern regions. Manure treatment (104 and 8513 kg CO2-eq mitigation and biogas leakage (-533 and -2489 kg CO2-eq emission are the two most important factors affecting net GHG mitigation by RHB systems in northern and southern China, respectively. In contrast, construction (−173 and −305 kg CO2-eq emission, energy substitution (−522 emission and 653 kg·CO2-eq mitigation and nutrient substitution (−1544 and −37 kg CO2-eq emission made small contributions across the studied systems. In fact, survey data indicated that biogas households had higher energy and fertilizer use, implying no net substitution effect. Low biogas yields in the cold northern climate and poor maintenance services were cited as major reasons for RHB abandonment by farmers. We conclude that the design and management of RHB systems needs to be revised and better adapted to local climate (e.g., digester insulation and household energy demand (biogas storage and micro power generators to avoid discharge of unburned biogas

  5. Optimum cooling of data centers application of risk assessment and mitigation techniques

    CERN Document Server

    Dai, Jun; Das, Diganta; Pecht, Michael G

    2014-01-01

    This book provides data center designers and operators with methods by which to assess and mitigate the risks associated with utilization of optimum cooling solutions. The goal is to provide readers with sufficient knowledge to implement measures such as free air cooling or direct liquid immersion cooling properly, or combination of existing and emerging cooling technologies in data centers, base stations, and server farms. This book also: Discusses various telecommunication infrastructures, with an emphasis on data centers and base stations Covers the most commonly known energy and power management techniques, as well as emerging cooling solutions for data centers Describes the risks to the electronic equipment fitted in these installations and the methods of risk mitigation Devotes  a particular focus to an up-to-date review of the emerging cooling methods (such as free air cooling and direct liquid immersion cooling) and tools and best practices for designers, technology developers, installation operators...

  6. Simulation of Long-Term Carbon and Nitrogen Dynamics in Grassland-Based Dairy Farming Systems to Evaluate Mitigation Strategies for Nutrient Losses.

    Science.gov (United States)

    Shah, Ghulam Abbas; Groot, Jeroen C J; Shah, Ghulam Mustafa; Lantinga, Egbert A

    2013-01-01

    Many measures have been proposed to mitigate gaseous emissions and other nutrient losses from agroecosystems, which can have large detrimental effects for the quality of soils, water and air, and contribute to eutrophication and global warming. Due to complexities in farm management, biological interactions and emission measurements, most experiments focus on analysis of short-term effects of isolated mitigation practices. Here we present a model that allows simulating long-term effects at the whole-farm level of combined measures related to grassland management, animal housing and manure handling after excretion, during storage and after field application. The model describes the dynamics of pools of organic carbon and nitrogen (N), and of inorganic N, as affected by farm management in grassland-based dairy systems. We assessed the long-term effects of delayed grass mowing, housing type (cubicle and sloping floor barns, resulting in production of slurry and solid cattle manure, respectively), manure additives, contrasting manure storage methods and irrigation after application of covered manure. Simulations demonstrated that individually applied practices often result in compensatory loss pathways. For instance, methods to reduce ammonia emissions during storage like roofing or covering of manure led to larger losses through ammonia volatilization, nitrate leaching or denitrification after application, unless extra measures like irrigation were used. A strategy of combined management practices of delayed mowing and fertilization with solid cattle manure that is treated with zeolite, stored under an impermeable sheet and irrigated after application was effective to increase soil carbon stocks, increase feed self-sufficiency and reduce losses by ammonia volatilization and soil N losses. Although long-term datasets (>25 years) of farm nutrient dynamics and loss flows are not available to validate the model, the model is firmly based on knowledge of processes and

  7. Simulation of Long-Term Carbon and Nitrogen Dynamics in Grassland-Based Dairy Farming Systems to Evaluate Mitigation Strategies for Nutrient Losses.

    Directory of Open Access Journals (Sweden)

    Ghulam Abbas Shah

    Full Text Available Many measures have been proposed to mitigate gaseous emissions and other nutrient losses from agroecosystems, which can have large detrimental effects for the quality of soils, water and air, and contribute to eutrophication and global warming. Due to complexities in farm management, biological interactions and emission measurements, most experiments focus on analysis of short-term effects of isolated mitigation practices. Here we present a model that allows simulating long-term effects at the whole-farm level of combined measures related to grassland management, animal housing and manure handling after excretion, during storage and after field application. The model describes the dynamics of pools of organic carbon and nitrogen (N, and of inorganic N, as affected by farm management in grassland-based dairy systems. We assessed the long-term effects of delayed grass mowing, housing type (cubicle and sloping floor barns, resulting in production of slurry and solid cattle manure, respectively, manure additives, contrasting manure storage methods and irrigation after application of covered manure. Simulations demonstrated that individually applied practices often result in compensatory loss pathways. For instance, methods to reduce ammonia emissions during storage like roofing or covering of manure led to larger losses through ammonia volatilization, nitrate leaching or denitrification after application, unless extra measures like irrigation were used. A strategy of combined management practices of delayed mowing and fertilization with solid cattle manure that is treated with zeolite, stored under an impermeable sheet and irrigated after application was effective to increase soil carbon stocks, increase feed self-sufficiency and reduce losses by ammonia volatilization and soil N losses. Although long-term datasets (>25 years of farm nutrient dynamics and loss flows are not available to validate the model, the model is firmly based on knowledge of

  8. An Integrated Assessment of Water Scarcity Effects on Energy and Land Use Decisions and Mitigation Policies

    Science.gov (United States)

    Hejazi, M. I.; Kim, S. H.; Liu, L.; Liu, Y.; Calvin, K. V.; Leon, C.; Edmonds, J.; Kyle, P.; Patel, P.; Wise, M. A.; Davies, E. G.

    2015-12-01

    Water is essential for the world's food supply, for energy production, including bioenergy and hydroelectric power, and for power system cooling. Water is already scarce in many regions and could present a critical constraint as society attempts simultaneously to mitigate climate forcing and adapt to climate change, and to provide food for an increasing population. We use the Global Change Assessment Model (GCAM), where interactions between population, economic growth, energy, land and water resources interact simultaneously in a dynamically evolving system, to investigate how water scarcity affects energy and land use decisions as well as mitigation policies. In GCAM, competing claims on water resources from all claimants—energy, land, and economy—are reconciled with water resource availability—from renewable water, non-renewable groundwater sources and desalinated water—across 235 major river basins. Limits to hydrologic systems have significant effects on energy and land use induced emissions via constraints on decisions of their use. We explore these effects and how they evolve under climate change mitigation policies, which can significantly alter land use patterns, both by limiting land use change emissions and by increasing bioenergy production. The study also explores the mitigation scenarios in the context of the shared socioeconomic pathways (SSPs). We find that previous estimates of global water withdrawal projections are overestimated, as our simulations show that it is more economical in some basins to alter agricultural and energy activities rather than utilize non-renewable groundwater or desalinated water. This study highlights the fact that water is a binding factor in agriculture, energy and land use decisions in integrated assessment models (IAMs), and stresses the crucial role of water in regulating agricultural commodities trade and land-use and energy decisions.

  9. Development and application of the EPIC model for carbon cycle, greenhouse-gas mitigation, and biofuel studies

    Energy Technology Data Exchange (ETDEWEB)

    Izaurralde, Roberto C.; Mcgill, William B.; Williams, J.R.

    2012-06-01

    This chapter provides a comprehensive review of the EPIC model in relation to carbon cycle, greenhouse-gas mitigation, and biofuel applications. From its original capabilities and purpose (i.e., quantify the impacts or erosion on soil productivity), the EPIC model has evolved into a comprehensive terrestrial ecosystem model for simulating with more or less process-level detail many ecosystem processes such as weather, hydrology, plant growth and development, carbon cycle (including erosion), nutrient cycling, greenhouse-gas emissions, and the most complete set of manipulations that can be implemented on a parcel of land (e.g. tillage, harvest, fertilization, irrigation, drainage, liming, burning, pesticide application). The chapter also provides details and examples of the latest efforts in model development such as the coupled carbon-nitrogen model, a microbial denitrification model with feedback to the carbon decomposition model, updates on calculation of ecosystem carbon balances, and carbon emissions from fossil fuels. The chapter has included examples of applications of the EPIC model in soil carbon sequestration, net ecosystem carbon balance, and biofuel studies. Finally, the chapter provides the reader with an update on upcoming improvements in EPIC such as the additions of modules for simulating biochar amendments, sorption of soluble C in subsoil horizons, nitrification including the release of N2O, and the formation and consumption of methane in soils. Completion of these model development activities will render an EPIC model with one of the most complete representation of biogeochemical processes and capable of simulating the dynamic feedback of soils to climate and management in terms not only of transient processes (e.g., soil water content, heterotrophic respiration, N2O emissions) but also of fundamental soil properties (e.g. soil depth, soil organic matter, soil bulk density, water limits).

  10. Temporary storage of carbon in the biosphere does have value for climate change mitigation: a response to the paper by Miko Kirschbaum

    NARCIS (Netherlands)

    Dornburg, V.|info:eu-repo/dai/nl/189955007; Marland, G.

    2008-01-01

    Kirschbaum (Mitig Adapt Strat Glob Change 11:1151–1164, 2006) explores the climatic impact over time of temporarily sequestering carbon from the atmosphere. He concludes that temporary storage of carbon in the terrestrial biosphere “achieves effectively no climate-change mitigation”. His strongly

  11. Washington Wildlife Mitigation Projects : Final Programmatic Environmental Assessment and Finding of No Significant Impact.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration; Washington (State). Dept. of Fish and Wildlife.

    1996-08-01

    Bonneville Power Administration (BPA) proposes to fund the portion of the Washington Wildlife Mitigation Agreement (Agreement) pertaining to wildlife habitat mitigation projects to be undertaken in a cooperative effort with the Washington Department of Fish and Wildlife (WDFW). This Agreement serves to establish a monetary budget funded by BPA for projects proposed by Washington Wildlife Coalition members and approved by BPA to protect, mitigate, and improve wildlife and/or wildlife habitat within the State of Washington that has been affected by the construction of Federal dams along the Columbia River. This Environmental Assessment examines the potential environmental effects of acquiring and/or improving wildlife habitat within five different project areas. These project areas are located throughout Grant County and in parts of Okanogan, Douglas, Adams, Franklin, Kittias, Yakima, and Benton Counties. The multiple projects would involve varying combinations of five proposed site-specific activities (habitat improvement, operation and maintenance, monitoring and evaluation, access and recreation management, and cultural resource management). All required Federal, State, and tribal coordination, permits and/or approvals would be obtained prior to ground-disturbing activities.

  12. Assessing the Impact of Active Land Management in Mitigating Wildfire Threat to Source Water Supply Quality

    Science.gov (United States)

    Bladon, K. D.; Silins, U.; Emelko, M. B.; Flannigan, M.; Dupont, D.; Robinne, F.; Wang, X.; Parisien, M. A.; Stone, M.; Thompson, D. K.; Tymstra, C.; Schroeder, D.; Kienzle, S. W.; Anderson, A.

    2014-12-01

    The vast majority of surface water supplies in Alberta originates in forested regions of the province, and supports approximately 94 municipal utilities, 208 communities, and 67% of the provincial population. These surface water supplies are highly vulnerable to contamination inputs and changing water conditions associated with wildfires. A provincial scale risk analysis framework is being used to investigate the magnitude and likelihood of wildfire occurrence in source water regions to evaluate the potential for altered water quality and quantity. The initial analysis identified which forested regions and which municipal drinking water treatment facilities are most at risk from wildfire. The efficacy of several current and potential landscape treatments to mitigate wildfire threats, along with the likely outcome of these treatments on mitigation of potential impacts of wildfire to drinking water treatment, are being modeled. A Monte Carlo modeling approach incorporating wildfire regime characteristics is used to simulate the ignition and growth of wildfires and generate outcome distributions for the different mitigation strategies. Cumulative changes in water quality at large river basin scales are being modeled and linked to water treatment impacts with the Soil and Water Assessment Tool (SWAT). A critical foundation of this approach is the close interaction of a large, trans-disciplinary team of researchers capable of integrating highly diverse issues of landscape wildfire dynamics, cross-scale water supply issues, and their linkage to downstream risks to drinking water treatment engineering.

  13. Assessment of cleaner electricity generation technologies for net CO{sub 2} mitigation in Thailand

    Energy Technology Data Exchange (ETDEWEB)

    Limmeechokchai, B.; Suksuntornsiri, P. [Thammasat University, Pathum Thani (Thailand)

    2007-02-15

    The choice of electricity generation technologies not only directly affects the amount of CO{sub 2} emission from the power sector, but also indirectly affects the economy-wide CO{sub 2} emission. It is because electricity is the basic requirement of economic sectors and final consumption within the economy. In Thailand, although the power development plan (PDP) has been planned for the committed capacity to meet the future electricity demand, there are some undecided electricity generation technologies that will be studied for technological options. The economy-wide CO{sub 2} mitigations between selecting cleaner power generation options instead of pulverized coal-thermal technology of the undecided capacity are assessed by energy input-output analysis (IOA). The decomposition of IOA presents the fuel-mix effect, input structural effect, and final demand effect by the change in technology of the undecided capacity. The cleaner technologies include biomass power generation, hydroelectricity and integrated gasification combined cycle (IGCC). Results of the analyses show that if the conventional pulverized coal technology is selected in the undecided capacity, the economy-wide CO{sub 2} emission would be increased from 223 million ton in 2006 to 406 million ton in 2016. Renewable technology presents better mitigation option for replacement of conventional pulverized coal technology than the cleaner coal technology. The major contributor of CO{sub 2} mitigation in cleaner coal technology is the fuel mix effect due to higher conversion efficiency.

  14. External Cooling of the BWR Mark I and II Drywell Head as a Potential Accident Mitigation Measure – Scoping Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-08-01

    This report documents a scoping assessment of a potential accident mitigation action applicable to the US fleet of boiling water reactors with Mark I and II containments. The mitigation action is to externally flood the primary containment vessel drywell head using portable pumps or other means. A scoping assessment of the potential benefits of this mitigation action was conducted focusing on the ability to (1) passively remove heat from containment, (2) prevent or delay leakage through the drywell head seal (due to high temperatures and/or pressure), and (3) scrub radionuclide releases if the drywell head seal leaks.

  15. Simultaneous Assessment of Acidogenesis-Mitigation and Specific Bacterial Growth-Inhibition by Dentifrices.

    Directory of Open Access Journals (Sweden)

    Sarah Forbes

    Full Text Available Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD; sodium fluoride (FD; stannous fluoride and zinc lactate (SFD1; or stannous fluoride, zinc lactate and stannous chloride (SFD2. Minimum inhibitory concentrations (MIC were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC, a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices.

  16. Simultaneous Assessment of Acidogenesis-Mitigation and Specific Bacterial Growth-Inhibition by Dentifrices

    Science.gov (United States)

    Forbes, Sarah; Latimer, Joe; Sreenivasan, Prem K.; McBain, Andrew J.

    2016-01-01

    Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD); sodium fluoride (FD); stannous fluoride and zinc lactate (SFD1); or stannous fluoride, zinc lactate and stannous chloride (SFD2). Minimum inhibitory concentrations (MIC) were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC) were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC) was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC), a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC) under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC) was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices. PMID:26882309

  17. Assessing NEO hazard mitigation in terms of astrodynamics and propulsion systems requirements.

    Science.gov (United States)

    Remo, John L

    2004-05-01

    Uncertainties associated with assessing valid near-Earth object (NEO) threats and carrying out interception missions place unique and stringent burdens on designing mission architecture, astrodynamics, and spacecraft propulsion systems. A prime uncertainty is associated with the meaning of NEO orbit predictability regarding Earth impact. Analyses of past NEO orbits and impact probabilities indicate uncertainties in determining if a projected NEO threat will actually materialize within a given time frame. Other uncertainties regard estimated mass, composition, and structural integrity of the NEO body. At issue is if one can reliably estimate a NEO threat and its magnitude. Parameters that determine NEO deflection requirements within various time frames, including the terminal orbital pass before impact, and necessary energy payloads, are quantitatively discussed. Propulsion system requirements for extending space capabilities to rapidly interact with NEOs at ranges of up to about 1 AU (astronomical unit) from Earth are outlined. Such missions, without gravitational boosts, are deemed critical for a practical and effective response to mitigation. If an impact threat is confirmed on an immediate orbital pass, the option for interactive reconnaissance, and interception, and subsequent NEO orbit deflection must be promptly carried out. There also must be an option to abort the mitigation mission if the NEO is subsequently found not to be Earth threatening. These options require optimal decision latitude and operational possibilities for NEO threat removal while minimizing alarm. Acting too far in advance of the projected impact could induce perturbations that ultimately exacerbate the threat. Given the dilemmas, uncertainties, and limited options associated with timely NEO mitigation within a decision making framework, currently available propulsion technologies that appear most viable to carry out a NEO interception/mitigation mission within the greatest margin of

  18. Mitigation of adverse effects on competitiveness and leakage of unilateral EU climate policy: An assessment of policy instruments

    NARCIS (Netherlands)

    Antimiani, A.; Costantini, V.; Kuik, O.J.; Paglialunga, E.

    2016-01-01

    The European Union (EU) has developed a strategy to mitigate climate change by cutting greenhouse gas (GHG) emissions and fostering low carbon technologies. However, the risk of implementing unilateral policies is that distortive effects are generated at the global scale affecting world energy

  19. Assessment of indirect losses and costs of emergency for project planning of alpine hazard mitigation

    Science.gov (United States)

    Amenda, Lisa; Pfurtscheller, Clemens

    2013-04-01

    By virtue of augmented settling in hazardous areas and increased asset values, natural disasters such as floods, landslides and rockfalls cause high economic losses in Alpine lateral valleys. Especially in small municipalities, indirect losses, mainly stemming from a breakdown of transport networks, and costs of emergency can reach critical levels. A quantification of these losses is necessary to estimate the worthiness of mitigation measures, to determine the appropriate level of disaster assistance and to improve risk management strategies. There are comprehensive approaches available for assessing direct losses. However, indirect losses and costs of emergency are widely not assessed and the empirical basis for estimating these costs is weak. To address the resulting uncertainties of project appraisals, a standardized methodology has been developed dealing with issues of local economic effects and emergency efforts needed. In our approach, the cost-benefit-analysis for technical mitigation of the Austrian Torrent and Avalanche Control (TAC) will be optimized and extended using the 2005-debris flow as a design event, which struggled a small town in the upper Inn valley in southwest Tyrol (Austria). Thereby, 84 buildings were affected, 430 people were evacuated and due to this, the TAC implemented protection measures for 3.75 million Euros. Upgrading the method of the TAC and analyzing to what extent the cost-benefit-ratio is about to change, is one of the main objectives of this study. For estimating short-run indirect effects and costs of emergency on the local level, data was collected via questionnaires, field mapping, guided interviews, as well as intense literature research. According to this, up-to-date calculation methods were evolved and the cost-benefit-analysis of TAC was recalculated with these new-implemented results. The cost-benefit-ratio will be more precise and specific and hence, the decision, which mitigation alternative will be carried out

  20. The Value of End-Use Energy Efficiency in Mitigation of U.S. Carbon Emissions

    Energy Technology Data Exchange (ETDEWEB)

    Kyle, G. Page; Smith, Steven J.; Clarke, Leon E.; Kim, Son H.; Wise, Marshall A.

    2007-11-27

    This report documents a scenario analysis exploring the value of advanced technologies in the U.S. buildings, industrial, and transportation sectors in stabilizing atmospheric greenhouse gas concentrations. The analysis was conducted by staff members of Pacific Northwest National Laboratory (PNNL), working at the Joint Global Change Research Institute (JGCRI) in support of the strategic planning process of the U.S. Department of Energy (U.S. DOE) Office of Energy Efficiency and Renewable Energy (EERE). The conceptual framework for the analysis is an integration of detailed buildings, industrial, and transportation modules into MiniCAM, a global integrated assessment model. The analysis is based on three technology scenarios, which differ in their assumed rates of deployment of new or presently available energy-saving technologies in the end-use sectors. These technology scenarios are explored with no carbon policy, and under two CO2 stabilization policies, in which an economic price on carbon is applied such that emissions follow prescribed trajectories leading to long-term stabilization of CO2 at roughly 450 and 550 parts per million by volume (ppmv). The costs of meeting the emissions targets prescribed by these policies are examined, and compared between technology scenarios. Relative to the reference technology scenario, advanced technologies in all three sectors reduce costs by 50% and 85% for the 450 and 550 ppmv policies, respectively. The 450 ppmv policy is more stringent and imposes higher costs than the 550 ppmv policy; as a result, the magnitude of the economic value of energy efficiency is four times greater for the 450 ppmv policy than the 550 ppmv policy. While they substantially reduce the costs of meeting emissions requirements, advanced end-use technologies do not lead to greenhouse gas stabilization without a carbon policy. This is due mostly to the effects of increasing service demands over time, the high consumption of fossil fuels in the

  1. A large-scale field assessment of carbon stocks in human-modified tropical forests.

    Science.gov (United States)

    Berenguer, Erika; Ferreira, Joice; Gardner, Toby Alan; Aragão, Luiz Eduardo Oliveira Cruz; De Camargo, Plínio Barbosa; Cerri, Carlos Eduardo; Durigan, Mariana; Cosme De Oliveira Junior, Raimundo; Vieira, Ima Célia Guimarães; Barlow, Jos

    2014-12-01

    Tropical rainforests store enormous amounts of carbon, the protection of which represents a vital component of efforts to mitigate global climate change. Currently, tropical forest conservation, science, policies, and climate mitigation actions focus predominantly on reducing carbon emissions from deforestation alone. However, every year vast areas of the humid tropics are disturbed by selective logging, understory fires, and habitat fragmentation. There is an urgent need to understand the effect of such disturbances on carbon stocks, and how stocks in disturbed forests compare to those found in undisturbed primary forests as well as in regenerating secondary forests. Here, we present the results of the largest field study to date on the impacts of human disturbances on above and belowground carbon stocks in tropical forests. Live vegetation, the largest carbon pool, was extremely sensitive to disturbance: forests that experienced both selective logging and understory fires stored, on average, 40% less aboveground carbon than undisturbed forests and were structurally similar to secondary forests. Edge effects also played an important role in explaining variability in aboveground carbon stocks of disturbed forests. Results indicate a potential rapid recovery of the dead wood and litter carbon pools, while soil stocks (0-30 cm) appeared to be resistant to the effects of logging and fire. Carbon loss and subsequent emissions due to human disturbances remain largely unaccounted for in greenhouse gas inventories, but by comparing our estimates of depleted carbon stocks in disturbed forests with Brazilian government assessments of the total forest area annually disturbed in the Amazon, we show that these emissions could represent up to 40% of the carbon loss from deforestation in the region. We conclude that conservation programs aiming to ensure the long-term permanence of forest carbon stocks, such as REDD+, will remain limited in their success unless they effectively

  2. Climate change mitigation by carbon stock - the case of semi-arid West Africa

    Science.gov (United States)

    Lykke, A. M.; Barfod, A. S.; Tinggaard Svendsen, G.; Greve, M.; Svenning, J.-C.

    2009-11-01

    Semi-arid West Africa has not been integrated into the afforestation/reforestation (AR) carbon market. Most projects implemented under the Clean Development Mechanism (CDM) have focused on carbon emission reductions from industry and energy consumption, whereas only few (only one in West Africa) have been certified for AR carbon sequestration. A proposed mechanism, Reducing Emissions from Deforestation and Degradation (REDD) to be discussed under COP15 aims to reduce emissions by conserving already existing forests. REDD has high potential for carbon stocking at low costs, but focuses primarily on rain forest countries and excludes semi-arid West Africa from the preliminary setup. African savannas have potential to store carbon in the present situation with degrading ecosystems and relatively low revenues from crops and cattle, especially if it is possible to combine carbon stocking with promotion of secondary crops such as food resources and traditional medicines harvested on a sustainable basis. Methods for modelling and mapping of potential carbon biomass are being developed, but are still in a preliminary state. Although economic benefits from the sale of carbon credits are likely to be limited, carbon stocking is an interesting option if additional benefits are considered such as improved food security and protection of biodiversity.

  3. An approach to include soil carbon changes in life cycle assessments

    DEFF Research Database (Denmark)

    Petersen, Bjorn Molt; Knudsen, Marie Trydeman; Hermansen, John Erik

    2013-01-01

    Globally, soil carbon sequestration is expected to hold a major potential to mitigate agricultural greenhouse gas emissions. However, the majority of life cycle assessments (LCA) of agricultural products have not included possible changes in soil carbon sequestration. In the present study, a method...... production in China. The suggested approach considers the time of the soil CO2 emissions for the LCA by including the Bern Carbon Cycle Model. Time perspectives of 20,100 and 200 years are used and a soil depth of 0-100 cm is considered. The application of the suggested method showed that the results were...... to estimate carbon sequestration to be included in LCA is suggested and applied to two examples where the inclusion of carbon sequestration is especially relevant: 1) Bioenergy: removal of straw from a Danish soil for energy purposes and 2) Organic versus conventional farming: comparative study of soybean...

  4. A Method to Assess the Potential Effects of Air Pollution Mitigation on Healthcare Costs

    Directory of Open Access Journals (Sweden)

    Bjørn Sætterstrøm

    2012-01-01

    Full Text Available Objective. The aim of this study was to develop a method to assess the potential effects of air pollution mitigation on healthcare costs and to apply this method to assess the potential savings related to a reduction in fine particle matter in Denmark. Methods. The effects of air pollution on health were used to identify “exposed” individuals (i.e., cases. Coronary heart disease, stroke, chronic obstructive pulmonary disease, and lung cancer were considered to be associated with air pollution. We used propensity score matching, two-part estimation, and Lin’s method to estimate healthcare costs. Subsequently, we multiplied the number of saved cases due to mitigation with the healthcare costs to arrive to an expression for healthcare cost savings. Results. The potential cost saving in the healthcare system arising from a modelled reduction in air pollution was estimated at €0.1–2.6 million per 100,000 inhabitants for the four diseases. Conclusion. We have illustrated an application of a method to assess the potential changes in healthcare costs due to a reduction in air pollution. The method relies on a large volume of administrative data and combines a number of established methods for epidemiological analysis.

  5. Assessment and mitigation of power quality problems for PUSPATI TRIGA Reactor (RTP)

    Science.gov (United States)

    Zakaria, Mohd Fazli; Ramachandaramurthy, Vigna K.

    2017-01-01

    An electrical power systems are exposed to different types of power quality disturbances. Investigation and monitoring of power quality are necessary to maintain accurate operation of sensitive equipment especially for nuclear installations. This paper will discuss the power quality problems observed at the electrical sources of PUSPATI TRIGA Reactor (RTP). Assessment of power quality requires the identification of any anomalous behavior on a power system, which adversely affects the normal operation of electrical or electronic equipment. A power quality assessment involves gathering data resources; analyzing the data (with reference to power quality standards) then, if problems exist, recommendation of mitigation techniques must be considered. Field power quality data is collected by power quality recorder and analyzed with reference to power quality standards. Normally the electrical power is supplied to the RTP via two sources in order to keep a good reliability where each of them is designed to carry the full load. The assessment of power quality during reactor operation was performed for both electrical sources. There were several disturbances such as voltage harmonics and flicker that exceeded the thresholds. To reduce these disturbances, mitigation techniques have been proposed, such as to install passive harmonic filters to reduce harmonic distortion, dynamic voltage restorer (DVR) to reduce voltage disturbances and isolate all sensitive and critical loads.

  6. Assessing fire impacts on the carbon stability of fire-tolerant forests.

    Science.gov (United States)

    Bennett, Lauren T; Bruce, Matthew J; Machunter, Josephine; Kohout, Michele; Krishnaraj, Saravanan Jangammanaidu; Aponte, Cristina

    2017-12-01

    . Decreased live tree carbon and increased reliance on younger cohorts for carbon recovery after high-severity wildfire could increase vulnerabilities to imminent fires, leading to decisions about interventions to maintain the productivity of some stands. Our multi-indicator assessment also highlights the importance of considering all carbon pools, particularly pyrogenic reservoirs like soils, when evaluating the potential for prescribed fire regimes to mitigate the carbon costs of wildfires in fire-prone landscapes. © 2017 by the Ecological Society of America.

  7. Assessing existing drought monitoring and forecasting capacities, mitigation and adaptation practices in Africa

    Science.gov (United States)

    Nyabeze, W. R.; Dlamini, L.; Lahlou, O.; Imani, Y.; Alaoui, S. B.; Vermooten, J. S. A.

    2012-04-01

    Drought is one of the major natural hazards in many parts of the world, including Africa and some regions in Europe. Drought events have resulted in extensive damages to livelihoods, environment and economy. In 2011, a consortium consisting of 19 organisations from both Africa and Europe started a project (DEWFORA) aimed at developing a framework for the provision of early warning and response through drought impact mitigation for Africa. This framework covers the whole chain from monitoring and vulnerability assessment to forecasting, warning, response and knowledge dissemination. This paper presents the first results of the capacity assessment of drought monitoring and forecasting systems in Africa, the existing institutional frameworks and drought mitigation and adaptation practices. Its focus is particularly on the historical drought mitigation and adaptation actions identified in the North Africa - Maghreb Region (Morocco, Algeria and Tunisia) and in the Southern Africa - Limpopo Basin. This is based on an extensive review of historical drought experiences. From the 1920's to 2009, the study identified 37 drought seasons in the North African - Maghreb Region and 33 drought seasons in the Southern Africa - Limpopo Basin. Existing literature tends to capture the spatial extent of drought at national and administrative scale in great detail. This is driven by the need to map drought impacts (food shortage, communities affected) in order to inform drought relief efforts (short-term drought mitigation measures). However, the mapping of drought at catchment scale (hydrological unit), required for longer-term measures, is not well documented. At regional level, both in North Africa and Southern Africa, two organisations are involved in drought monitoring and forecasting, while at national level 22 organisations are involved in North Africa and 37 in Southern Africa. Regarding drought related mitigation actions, the inventory shows that the most common actions

  8. Special Issue On Estimation Of Baselines And Leakage In CarbonMitigation Forestry Projects

    Energy Technology Data Exchange (ETDEWEB)

    Sathaye, Jayant A.; Andrasko, Kenneth

    2006-06-01

    There is a growing acceptance that the environmentalbenefits of forests extend beyond traditional ecological benefits andinclude the mitigation of climate change. Interest in forestry mitigationactivities has led to the inclusion of forestry practices at the projectlevel in international agreements. Climate change activities place newdemands on participating institutions to set baselines, establishadditionality, determine leakage, ensure permanence, and monitor andverify a project's greenhouse gas benefits. These issues are common toboth forestry and other types of mitigation projects. They demandempirical evidence to establish conditions under which such projects canprovide sustained long term global benefits. This Special Issue reportson papers that experiment with a range of approaches based on empiricalevidence for the setting of baselines and estimation of leakage inprojects in developing Asia and Latin America.

  9. Life cycle impacts of forest management and wood utilization on carbon mitigation : knowns and unknowns

    Science.gov (United States)

    Bruce Lippke; Elaine Oneil; Rob Harrison; Kenneth Skog; Leif Gustavsson; Roger Sathre

    2011-01-01

    This review on research on life cycle carbon accounting examines the complexities in accounting for carbon emissions given the many different ways that wood is used. Recent objectives to increase the use of renewable fuels have raised policy questions, with respect to the sustainability of managing our forests as well as the impacts of how best to use wood from our...

  10. Carbon Capture and Sequestration: A Regulatory Gap Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln Davies; Kirsten Uchitel; John Ruple; Heather Tanana

    2012-04-30

    Though a potentially significant climate change mitigation strategy, carbon capture and sequestration (CCS) remains mired in demonstration and development rather than proceeding to full-scale commercialization. Prior studies have suggested numerous reasons for this stagnation. This Report seeks to empirically assess those claims. Using an anonymous opinion survey completed by over 200 individuals involved in CCS, it concludes that there are four primary barriers to CCS commercialization: (1) cost, (2) lack of a carbon price, (3) liability risks, and (4) lack of a comprehensive regulatory regime. These results largely confirm previous work. They also, however, expose a key barrier that prior studies have overlooked: the need for comprehensive, rather than piecemeal, CCS regulation. The survey data clearly show that the CCS community sees this as one of the most needed incentives for CCS deployment. The community also has a relatively clear idea of what that regulation should entail: a cooperative federalism approach that directly addresses liability concerns and that generally does not upset traditional lines of federal-state authority.

  11. The Volcanic Hazards Assessment Support System for the Online Hazard Assessment and Risk Mitigation of Quaternary Volcanoes in the World

    Directory of Open Access Journals (Sweden)

    Shinji Takarada

    2017-12-01

    Full Text Available Volcanic hazards assessment tools are essential for risk mitigation of volcanic activities. A number of offline volcanic hazard assessment tools have been provided, but in most cases, they require relatively complex installation procedure and usage. This situation causes limited usage of volcanic hazard assessment tools among volcanologists and volcanic hazards communities. In addition, volcanic eruption chronology and detailed database of each volcano in the world are essential key information for volcanic hazard assessment, but most of them are isolated and not connected to and with each other. The Volcanic Hazard Assessment Support System aims to implement a user-friendly, WebGIS-based, open-access online system for potential hazards assessment and risk-mitigation of Quaternary volcanoes in the world. The users can get up-to-date information such as eruption chronology and geophysical monitoring data of a specific volcano using the direct link system to major volcano databases on the system. Currently, the system provides 3 simple, powerful and notable deterministic modeling simulation codes of volcanic processes, such as Energy Cone, Titan2D and Tephra2. The system provides deterministic tools because probabilistic assessment tools are normally much more computationally demanding. By using the volcano hazard assessment system, the area that would be affected by volcanic eruptions in any location near the volcano can be estimated using numerical simulations. The system is being implemented using the ASTER Global DEM covering 2790 Quaternary volcanoes in the world. The system can be used to evaluate volcanic hazards and move this toward risk-potential by overlaying the estimated distribution of volcanic gravity flows or tephra falls on major roads, houses and evacuation areas using the GIS-enabled systems. The system is developed for all users in the world who need volcanic hazards assessment tools.

  12. Identification and assessment of BWR in-vessel severe accident mitigation strategies

    Energy Technology Data Exchange (ETDEWEB)

    Hodge, S.A.; Cleveland, J.C.; Kress, T.S.; Petek, M. [Oak Ridge National Lab., TN (United States)

    1992-10-01

    This report provides the results of work carried out in support of the US Nuclear Regulatory Commission Accident Management Research Program to develop a technical basis for evaluating the effectiveness and feasibility of current and proposed strategies for boiling water reactor (BWR) severe accident management. First, the findings of an assessment of the current status of accident management strategies for the mitigation of in-vessel events for BWR severe accident sequences are described. This includes a review of the BWR Owners` Group Emergency Procedure Guidelines (EPGSs) to determine the extent to which they currently address the characteristic events of an unmitigated severe accident and to provide the basis for recommendations for enhancement of accident management procedures. Second, where considered necessary, new candidate accident management strategies are proposed for mitigation of the late-phase (after core damage has occurred) events. Finally, recommendations are made for consideration of additional strategies where warranted, and two of the four candidate strategies identified by this effort are assessed in detail: (1) preparation of a boron solution for reactor vessel refill should control blade damage occur during a period of temporary core dryout and (2) containment flooding to maintain the core debris within the reactor vessel if the injection systems cannot be restored.

  13. A methodology for the sustainability assessment of arsenic mitigation technology for drinking water.

    Science.gov (United States)

    Etmannski, T R; Darton, R C

    2014-08-01

    In this paper we show how the process analysis method (PAM) can be applied to assess the sustainability of options to mitigate arsenic in drinking water in rural India. Stakeholder perspectives, gathered from a fieldwork survey of 933 households in West Bengal in 2012 played a significant role in this assessment. This research found that the 'most important' issues as specified by the technology users are cost, trust, distance from their home to the clean water source (an indicator of convenience), and understanding the health effects of arsenic. We show that utilisation of a technology is related to levels of trust and confidence in a community, making use of a composite trust-confidence indicator. Measures to improve trust between community and organisers of mitigation projects, and to raise confidence in technology and also in fair costing, would help to promote successful deployment of appropriate technology. Attitudes to cost revealed in the surveys are related to the low value placed on arsenic-free water, as also found by other investigators, consistent with a lack of public awareness about the arsenic problem. It is suggested that increased awareness might change attitudes to arsenic-rich waste and its disposal protocols. This waste is often currently discarded in an uncontrolled manner in the local environment, giving rise to the possibility of point-source recontamination. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Mitigating Climate Change at the Carbon Water Nexus: A Call to Action for the Environmental Engineering Community.

    Science.gov (United States)

    Clarens, Andres F; Peters, Catherine A

    2016-10-01

    Environmental engineers have played a critical role in improving human and ecosystem health over the past several decades. These contributions have focused on providing clean water and air as well as managing waste streams and remediating polluted sites. As environmental problems have become more global in scale and more deeply entrenched in sociotechnical systems, the discipline of environmental engineering must grow to be ready to respond to the challenges of the coming decades. Here we make the case that environmental engineers should play a leadership role in the development of climate change mitigation technologies at the carbon-water nexus (CWN). Climate change, driven largely by unfettered emissions of fossil carbon into the atmosphere, is a far-reaching and enormously complex environmental risk with the potential to negatively affect food security, human health, infrastructure, and other systems. Solving this problem will require a massive mobilization of existing and innovative new technology. The environmental engineering community is uniquely positioned to do pioneering work at the CWN using a skillset that has been honed, solving related problems. The focus of this special issue, on "The science and innovation of emerging subsurface energy technologies," provides one example domain within which environmental engineers and related disciplines are beginning to make important contributions at the CWN. In this article, we define the CWN and describe how environmental engineers can bring their considerable expertise to bear in this area. Then we review some of the topics that appear in this special issue, for example, mitigating the impacts of hydraulic fracturing and geologic carbon storage, and we provide perspective on emergent research directions, for example, enhanced geothermal energy, energy storage in sedimentary formations, and others.

  15. Climate change mitigation studies in Sri Lanka

    Energy Technology Data Exchange (ETDEWEB)

    Wickramaratne, Rupa [Ministry of Forestry and Environment, GEF/UNDP Enabling Activity Project (Sri Lanka)

    1998-12-01

    In Sri Lanka, Climate Change Mitigation Studies have received low priority and have been limited to an ADB-sponsored preliminary study followed by an initial assessment of some mitigation options in the energy and agricultural sectors, with technical assistance from the US Country Studies Program. The major focus was on options of the mitigation of carbon dioxide emissions from the energy sector. Owing to funding constraints, only the potential for reduction of carbon dioxide emissions resulting from the various mitigation options were quantified; analysis of monetary costs and benefits or policy/programs for adoption of the options were not undertaken. For the non-energy sector, a very limited study on mitigation of methane emissions from rice fields was carried out. (au)

  16. Sustainability Impact Assessment of two forest-based bioenergy production systems related to mitigation and adaption to Climate Change

    Science.gov (United States)

    Gartzia-Bengoetxea, Nahia; Arias-González, Ander; Tuomasjukka, Diana

    2016-04-01

    New forest management strategies are necessary to resist and adapt to Climate Change (CC) and to maintain ecosystem functions such as forest productivity, water storage and biomass production. The increased use of forest-based biomass for energy generation as well as the application of combustion or pyrolysis co-products such as ash or biochar back into forest soils is being suggested as a CC mitigation and adaptation strategy while trying to fulfil the targets of both: (i) Europe 2020 growth strategy in relation to CC and energy sustainability and (ii) EU Action Plan for the Circular Economy. The energy stored in harvested biomass can be released through combustion and used for energy generation to enable national energy security (reduced oil dependence) and the substitution of fossil fuel by renewable biomass can decrease the emission of greenhouse gases.In the end, the wood-ash produced in the process can return to the forest soil to replace the nutrients exported by harvesting. Another way to use biomass in this green circular framework is to pyrolyse it. Pyrolysis of the biomass produce a carbon-rich product (biochar) that can increase carbon sequestration in the soils and liquid and gas co-products of biomass pyrolysis can be used for energy generation or other fuel use thereby offsetting fossil fuel consumption and so avoiding greenhouse gas emissions. Both biomass based energy systems differ in the amount of energy produced, in the co-product (biochar or wood ash) returned to the field, and in societal impacts they have. The Tool for Sustainability Impact Assessment (ToSIA) was used for modelling both energy production systems. ToSIA integrates several different methods, and allows a quantification and objective comparison of economic, environmental and social impacts in a sustainability impact assessment for different decision alternatives/scenarios. We will interpret the results in order to support the bioenergy planning in temperate forests under the

  17. Assessment of Risk Evaluation and Mitigation Strategies in Oncology: Summary of the Oncology Risk Evaluation and Mitigation Strategies Workshop

    Science.gov (United States)

    Frame, James N.; Jacobson, Joseph O.; Vogel, Wendy H.; Griffith, Niesha; Wariabharaj, Darshan; Garg, Rekha; Zon, Robin; Stephens, Cyntha L.; Bialecki, Alison M.; Bruinooge, Suanna S.; Allen, Steven L.

    2013-01-01

    To address oncology community stakeholder concerns regarding implementation of the Risk Evaluation and Mitigation Strategies (REMS) program, ASCO sponsored a workshop to gather REMS experiences from representatives of professional societies, patient organizations, pharmaceutical companies, and the US Food and Drug Administration (FDA). Stakeholder presentations and topical panel discussions addressed REMS program development, implementation processes, and practice experiences, as well as oncology drug safety processes. A draft REMS decision tool prepared by the ASCO REMS Steering Committee was presented for group discussion with facilitated, goal-oriented feedback. The workshop identified several unintended consequences resulting from current oncology REMS: (1) the release of personal health information to drug sponsors as a condition for gaining access to a needed drug; (2) risk information that is not tailored—and therefore not accessible—to all literacy levels; (3) exclusive focus on drug risk, thereby affecting patient-provider treatment discussion; (4) REMS elements that do not consider existing, widely practiced oncology safety standards, professional training, and experience; and (5) administrative burdens that divert the health care team from direct patient care activities and, in some cases, could limit patient access to important therapies. Increased provider and professional society participation should form the basis of ongoing and future REMS standardization discussions with the FDA to work toward overall improvement of risk communication. PMID:23814522

  18. Geologic Carbon Sequestration: Mitigating Climate Change by Injecting CO2 Underground (LBNL Summer Lecture Series)

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M [LBNL Earth Sciences Division

    2009-07-21

    Summer Lecture Series 2009: Climate change provides strong motivation to reduce CO2 emissions from the burning of fossil fuels. Carbon dioxide capture and storage involves the capture, compression, and transport of CO2 to geologically favorable areas, where its injected into porous rock more than one kilometer underground for permanent storage. Oldenburg, who heads Berkeley Labs Geologic Carbon Sequestration Program, will focus on the challenges, opportunities, and research needs of this innovative technology.

  19. The influence of hazard models on GIS-based regional risk assessments and mitigation policies

    Science.gov (United States)

    Bernknopf, R.L.; Rabinovici, S.J.M.; Wood, N.J.; Dinitz, L.B.

    2006-01-01

    Geographic information systems (GIS) are important tools for understanding and communicating the spatial distribution of risks associated with natural hazards in regional economies. We present a GIS-based decision support system (DSS) for assessing community vulnerability to natural hazards and evaluating potential mitigation policy outcomes. The Land Use Portfolio Modeler (LUPM) integrates earth science and socioeconomic information to predict the economic impacts of loss-reduction strategies. However, the potential use of such systems in decision making may be limited when multiple but conflicting interpretations of the hazard are available. To explore this problem, we conduct a policy comparison using the LUPM to test the sensitivity of three available assessments of earthquake-induced lateral-spread ground failure susceptibility in a coastal California community. We find that the uncertainty regarding the interpretation of the science inputs can influence the development and implementation of natural hazard management policies. Copyright ?? 2006 Inderscience Enterprises Ltd.

  20. Combination of Assessment Indicators for Policy Support on Water Scarcity and Pollution Mitigation

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2016-05-01

    Full Text Available Given increasing concern about seeking solutions to water scarcity and pollution (WSP, this paper is intent on developing significant assessment indicators as decision variables for providing reference for policy proposals on the mitigation of WSP. An indicator package consisting of footprints of freshwater consumption (FC and water pollutant discharge (WPD, virtual contents of freshwater and water pollutants, and inter-sectoral linkages in terms of industrial production, FC and WPD has been newly set up based on an extended input-output model. These indicators allow to provide specific and well-structured analysis on FC, WPD and the economy as well as their implicated interrelationships. The Source Region of Liao River located in northeastern China was selected as an empirical study area to apply the indicator package. The results indicate that farming and production of electricity industries are major contributors to FC; farming and breeding industries, and households are major contributors to WPD. The study area exports a large amount of net virtual total nitrogen, total phosphorus and chemical oxygen demand (29.01 × 103 t, 4.66 × 103 t, 60.38 × 103 t, respectively. Farming and breeding industries are the sectors whose production could be constrained to contribute to mitigating WSP without excessive negative impacts on the economy. Two categories of policies have been proposed to mitigate WSP based on the analysis of the indicator package. One is to introduce direct water pollutant treatment and water-saving policies to the target sectors; the other is to adjust industrial structure. The integrated indicator package developed and the methodology presented are expected to provide policy researchers and decision makers with references for more sound water management.

  1. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies

    Directory of Open Access Journals (Sweden)

    Hoang Minh Giang

    2013-11-01

    Full Text Available Current household solid waste treatment practices in most cities in Vietnam caused a great amount of direct greenhouse gas (GHG emissions. Available solid waste treatment technologies should be seriously taken  into consideration as a wedge of GHG mitigation in waste sector base on presently Vietnamese economic conditions. This study aim to evaluate the potential amount of GHG mitigation from current domestic solid waste treatment technologies in Vietnam including landfills and composting from various management scenarios. In oder to use Tier 2 model of IPCC 2006 for GHG estimation from landfills, an analysis on current household solid waste management system of the city was obtained by using material flow analysis approach. A case study in Hanoi, the capital city of Vietnam was carried out in this research. As a result, there was a reduced of over 70% of the amount of CH4 emissions and  up to 53% of total GHG saving (CO2-eq from avoiding organic waste to landfill. In addition, applying an energy recovery from LFG system to available landfills would lead to aproximately 75% of GHG saved compare to current emission of waste sector.Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16Citation: Giang, H.M.,Luong, N.D., and Huong, L.T.M.2013. Assessment of potential greenhouse gas mitigation of available household solid waste treatment technologies. . Waste Technology 1(1:6-9. Doi: http://dx.doi.org/10.12777/wastech.1.1.10-16

  2. Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation, 2007-2008 Annual Report.

    Energy Technology Data Exchange (ETDEWEB)

    Merz, Norm [Kootenai Tribe of Idaho

    2009-02-18

    The overarching goals of the 'Kootenai River Floodplain Ecosystem Operational Loss Assessment, Protection, Mitigation and Rehabilitation' Project (BPA Project No.2002-011-00) are to: (1) assess abiotic and biotic factors (i.e., geomorphologic, hydrological, aquatic and riparian/floodplain communities) in determining a definitive composition of ecological integrity, (2) develop strategies to assess and mitigate losses of ecosystem functions, and (3) produce a regional operational loss assessment framework. To produce a scientifically defensible, repeatable, and complete assessment tool, KTOI assembled a team of top scientists in the fields of hydrology, hydraulics, ornithology, entomology, statistics, and river ecology, among other expertise. This advisory team is known as the Research Design and Review Team (RDRT). The RDRT scientists drive the review, selection, and adaptive management of the research designs to evaluate the ecologic functions lost due to the operation of federal hydropower facilities. The unique nature of this project (scientific team, newest/best science, adaptive management, assessment of ecological functions, etc.) has been to work in a dynamic RDRT process. In addition to being multidisciplinary, this model KTOI project provides a stark contrast to the sometimes inflexible process (review, re-review, budgets, etc.) of the Columbia River Basin Fish and Wildlife Program. The project RDRT is assembled annually, with subgroups meeting as needed throughout the year to address project issues, analyses, review, and interpretation. Activities of RDRT coordinated and directed the selection of research and assessment methodologies appropriate for the Kootenai River Watershed and potential for regional application in the Columbia River Basin. The entire RDRT continues to meet annually to update and discuss project progress. RDRT Subcontractors work in smaller groups throughout the year to meet project objectives. Determining the extent to

  3. POLYTETRAFLUOROETHYLENE-RICH POLYPHENLENESULFIDE BLEND TOP COATINGS FOR MITIGATING CORROSION OF CARBON STEEL IN 300 DEGREE CELCIUS BRINE.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.; JUNG, D.

    2006-06-01

    We evaluated usefulness of a coating system consisting of an underlying polyphenylenesulfide (PPS) layer and top polytetrafluoroethylene (PTFE)-blended PPS layer as low friction, water repellent, anti-corrosion barrier film for carbon steel steam separators in geothermal power plants. The experiments were designed to obtain information on kinetic coefficient of friction, surface free energy, hydrothermal oxidation, alteration of molecular structure, thermal stability, and corrosion protection of the coating after immersing the coated carbon steel coupons for up to 35 days in CO{sub 2}-laden brine at 300 C. The superficial layer of the assembled coating was occupied by PTFE self-segregated from PPS during the melt-flowing process of this blend polymer; it conferred an outstanding slipperiness and water repellent properties because of its low friction and surface free energy. However, PTFE underwent hydrothermal oxidation in hot brine, transforming its molecular structure into an alkylated polyfluorocarboxylate salt complex linked to Na. Although such molecular transformation increased the friction and surface free energy, and also impaired the thermal stability of PTFE, the top PTFE-rich PPS layer significantly contributed to preventing the permeation of moisture and corrosive electrolytes through the coating film, so mitigating the corrosion of carbon steel.

  4. The use of scenarios as the basis for combined assessment of climate change mitigation and adaptation

    NARCIS (Netherlands)

    van Vuuren, D.P.|info:eu-repo/dai/nl/11522016X; Isaac, M.; Kundzewicz, Z.W.; Arnell, N.; Barker, T.; Criqui, P.; Berkhout, F.; Hilderink, H.; Hinkel, J.; Hof, Andries|info:eu-repo/dai/nl/240412397; Kitous, A.; Kram, T.; Mechler, R.; Scrieciu, S.

    2011-01-01

    Scenarios are used to explore the consequences of different adaptation and mitigation strategies under uncertainty. In this paper, two scenarios are used to explore developments with (1) no mitigation leading to an increase of global mean temperature of 4 °C by 2100 and (2) an ambitious mitigation

  5. Transdisciplinarity Within the North American Climate Change Mitigation Research Community, Specifically the Carbon Dioxide Capture, Transportation, Utilization and Storage Community

    Science.gov (United States)

    Carpenter, Steven Michael

    This research investigates the existence of and potential challenges to the development of a transdisciplinary approach to the climate change mitigation technology research focusing on carbon dioxide capture, utilization, and storage (CCUS) in North America. The unprecedented challenge of global climate change is one that invites a transdisciplinary approach. The challenge of climate change mitigation requires an understanding of multiple disciplines, as well as the role that complexity, post-normal or post-modern science, and uncertainty play in combining these various disciplines. This research followed the general discourse of transdisciplinarity as described by Klein (2014) and Augsburg (2016) which describe it as using transcendence, problem solving, and transgression to address wicked, complex societal problems, and as taught by California School of Transdisciplinarity, where the research focuses on sustainability in the age of post-normal science (Funtowicz & Ravetz, 1993). Through the use of electronic surveys and semi-structured interviews, members of the North American climate change mitigation research community shared their views and understanding of transdisciplinarity (Kvale & Brinkmann, 2009). The data indicate that much of the research currently being conducted by members of the North American CCUS research community is in fact transdisciplinary. What is most intriguing is the manner in which researchers arrived at their current understanding of transdisciplinarity, which is in many cases without any foreknowledge or use of the term transdisciplinary. The data reveals that in many cases the researchers now understand that this transdisciplinary approach is borne out of personal beliefs or emotion, social or societal aspects, their educational process, the way in which they communicate, and in most cases, the CCUS research itself, that require this transdisciplinary approach, but had never thought about giving it a name or understanding its origin or

  6. Designing photobioreactors based on living cells immobilized in silica gel for carbon dioxide mitigation.

    Science.gov (United States)

    Rooke, Joanna C; Léonard, Alexandre; Meunier, Christophe F; Su, Bao-Lian

    2011-09-19

    Atmospheric carbon dioxide levels have been rising since the industrial revolution, with the most dramatic increase occurring since the end of World War II. Carbon dioxide is widely regarded as one of the major factors contributing to the greenhouse effect, which is of major concern in today's society because it leads to global warming. Photosynthesis is Nature's tool for combating elevated carbon dioxide levels. In essence, photosynthesis allows a cell to harvest solar energy and convert it into chemical energy through the assimilation of carbon dioxide and water. Therefore photosynthesis is regarded as an ideal way to harness the abundance of solar energy that reaches Earth and convert anthropologically generated carbon dioxide into useful carbohydrates, providing a much more sustainable energy source. This Minireview aims to tackle the idea of immobilizing photosynthetic unicellular organisms within inert silica frameworks, providing protection both to the fragile cells and to the external ecosystem, and to use this resultant living hybrid material in a photobioreactor. The viability and activity of various unicellular organisms are summarized alongside design issues of a photobioreactor based on living hybrid materials. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Assessment and mitigation of the environmental burdens to air from land applied food-based digestate.

    Science.gov (United States)

    Tiwary, A; Williams, I D; Pant, D C; Kishore, V V N

    2015-08-01

    Anaerobic digestion (AD) of putrescible urban waste for energy recovery has seen rapid growth over recent years. In order to ascertain its systems scale sustainability, however, determination of the environmental fate of the large volume of digestate generated during the process is indispensable. This paper evaluates the environmental burdens to air associated with land applied food-based digestate in terms of primary pollutants (ammonia, nitrogen dioxide) and greenhouse gases (methane and nitrous oxide). The assessments have been made in two stages - first, the emissions from surface application of food-based digestate are quantified for the business as usual (BAU). In the next step, environmental burden minimisation potentials for the following three mitigation measures are estimated - mixed waste digestate (MWD), soil-incorporated digestate (SID), and post-methanated digestate (PMD). Overall, the mitigation scenarios demonstrated considerable NH3, CH4 and N2O burden minimisation potentials, with positive implications for both climate change and urban pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Multidisciplinary assessment of pesticide mitigation in soil amended with vermicomposted agroindustrial wastes

    Energy Technology Data Exchange (ETDEWEB)

    Castillo, Jean Manuel, E-mail: jeanmanuel.castillo04@gmail.com [Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas (EEZ-CSIC), C/Profesor Albareda 1, 18008 Granada (Spain); Beguet, Jérèmie; Martin-Laurent, Fabrice [French National Institute for Agricultural Research—INRA, UMR 1347 Agroécologie, 17 rue Sully, B P 86510, 21065 Dijon Cedex (France); Romero, Esperanza [Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Cientificas (EEZ-CSIC), C/Profesor Albareda 1, 18008 Granada (Spain)

    2016-03-05

    Highlights: • The genetic structure of soil bacterial community was transiently affected by diuron. • Soil amended with vermicompost regulated diuron persistence in soil. • puhB abundance increased after bacterial-community pre-exposure to diuron. • O-Vermicompost mitigated diuron fate by improving microbial activity. - Abstract: Soil organic amendment affects biotic and abiotic processes that control the fate of pesticides, but the treatment history of the soil is also relevant. These processes were assessed in a multidisciplinary study with the aim of optimizing pesticide mitigation in soils. Soil microcosms pre-treated (E2) or not with diuron (E1) were amended with either winery (W) or olive waste (O) vermicomposts. Herbicide dissipation followed a double first-order model in E1 microcosms, but a single first-order model in E2. Also, diuron persistence was longer in E1 than in E2 (E1-DT{sub 50} > 200 day{sup −1}, E2-DT{sub 50} < 16 day{sup −1}). The genetic structure of the bacterial community was modified by both diuron exposure and amendment. O-vermicompost increased enzymatic activities in both experiments, but diuron-degrading genetic potential (puhB) was quantified only in E2 microcosms in accordance with reduced diuron persistence. Therefore, O-vermicompost addition favoured the proliferation of diuron degraders, increasing the soil diuron-depuration capability.

  9. Human Mars EDL Pathfinder Study: Assessment of Technology Development Gaps and Mitigations

    Science.gov (United States)

    Lillard, Randolph; Olejniczak, Joe; Polsgrove, Tara; Cianciolo, Alice Dwyer; Munk, Michelle; Whetsel, Charles; Drake, Bret

    2017-01-01

    This paper presents the results of a NASA initiated Agency-wide assessment to better characterize the risks and potential mitigation approaches associated with landing human class Entry, Descent, and Landing (EDL) systems on Mars. Due to the criticality and long-lead nature of advancing EDL techniques, it is necessary to determine an appropriate strategy to improve the capability to land large payloads. A key focus of this study was to understand the key EDL risks and with a focus on determining what "must" be tested at Mars. This process identified the various risks and potential risk mitigation strategies along with the key near term technology development efforts required and in what environment those technology demonstrations were best suited. The study identified key risks along with advantages to each entry technology. In addition, it was identified that provided the EDL concept of operations (con ops) minimized large scale transition events, there was no technology requirement for a Mars pre-cursor demonstration. Instead, NASA should take a direct path to a human-scale lander.

  10. A systematic review of financial and economic assessments of bovine viral diarrhea virus (BVDV) prevention and mitigation activities worldwide.

    Science.gov (United States)

    Pinior, Beate; Firth, Clair L; Richter, Veronika; Lebl, Karin; Trauffler, Martine; Dzieciol, Monika; Hutter, Sabine E; Burgstaller, Johann; Obritzhauser, Walter; Winter, Petra; Käsbohrer, Annemarie

    2017-02-01

    Infection with bovine viral diarrhea virus (BVDV) results in major economic losses either directly through decreased productive performance in cattle herds or indirectly, such as through expenses for control programs. The aim of this systematic review was to review financial and/or economic assessment studies of prevention and/or mitigation activities of BVDV at national, regional and farm level worldwide. Once all predefined criteria had been met, 35 articles were included for this systematic review. Studies were analyzed with particular focus on the type of financially and/or economically-assessed prevention and/or mitigation activities. Due to the wide range of possible prevention and/or mitigation activities, these activities were grouped into five categories: i) control and/or eradication programs, ii) monitoring or surveillance, iii) prevention, iv) vaccination and v) individual culling, control and testing strategies. Additionally, the studies were analyzed according to economically-related variables such as efficiency, costs or benefits of prevention and/or mitigation activities, the applied financial and/or economic and statistical methods, the payers of prevention and/or mitigation activities, the assessed production systems, and the countries for which such evaluations are available. Financial and/or economic assessments performed in Europe were dominated by those from the United Kingdom, which assessed mostly vaccination strategies, and Norway which primarily carried out assessments in the area of control and eradication programs; whereas among non-European countries the United States carried out the majority of financial and/or economic assessments in the area of individual culling, control and testing. More than half of all studies provided an efficiency calculation of prevention and/or mitigation activities and demonstrated whether the inherent costs of implemented activities were or were not justified. The dairy sector was three times more likely to

  11. Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment in an aerobic bioreactor packed with carbon fibers.

    Science.gov (United States)

    Yamashita, Takahiro; Yamamoto-Ikemoto, Ryoko; Yokoyama, Hiroshi; Kawahara, Hirofumi; Ogino, Akifumi; Osada, Takashi

    2015-03-01

    Mitigation of nitrous oxide (N2 O) emission from swine wastewater treatment was demonstrated in an aerobic bioreactor packed with carbon fibers (CF reactor). The CF reactor had a demonstrated advantage in mitigating N2 O emission and avoiding NOx (NO3  + NO2 ) accumulation. The N2 O emission factor was 0.0003 g N2 O-N/gTN-load in the CF bioreactor compared to 0.03 gN2 O-N/gTN-load in an activated sludge reactor (AS reactor). N2 O and CH4 emissions from the CF reactor were 42 g-CO2 eq/m(3) /day, while those from the AS reactor were 725 g-CO2 eq/m(3) /day. The dissolved inorganic nitrogen (DIN) in the CF reactor removed an average of 156 mg/L of the NH4 -N, and accumulated an average of 14 mg/L of the NO3 -N. In contrast, the DIN in the AS reactor removed an average 144 mg/L of the NH4 -N and accumulated an average 183 mg/L of the NO3 -N. NO2 -N was almost undetectable in both reactors. © 2014 Japanese Society of Animal Science.

  12. Implementation of Carbon Thin Film Coatings in the Super Proton Synchrotron (SPS) for Electron Cloud Mitigation

    CERN Document Server

    Costa Pinto, P; Basso, T; Edwards, P; Mensi, M; Sublet, A; Taborelli, M

    2014-01-01

    Low Secondary Electron Yield (SEY) carbon thin films eradicate electron multipacting in accelerator beam pipes. Two magnetic cells of the SPS were coated with such material and installed. In total more than forty vacuum vessels and magnet interconnections were treated. The feasibility of the coating process was validated. The performance of the carbon thin film will be tested with LHC nominal beams after the end of the long shutdown 1. Particular attention will be drawn to the long term behaviour. This paper presents the sputtering techniques used to coat the different components; their characterization (SEY measurements on coupons, RF multipacting tests and pump down curves); and the technology to etch the carbon film in case of a faulty coating. The strategy to coat the entire SPS will also be described.

  13. Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation

    Science.gov (United States)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2015-01-01

    Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.

  14. Do carbon offsets work? The role of forest management in greenhouse gas mitigation

    Science.gov (United States)

    Marie Oliver; Jeremy Fried

    2013-01-01

    As forest carbon offset projects become more popular, professional foresters are providing their expertise to support them. But when several members of the Society of American Foresters questioned the science and assumptions used to design the projects, the organization decided to convene a task force to examine whether these projects can provide the intended climate...

  15. Enhanced mitigation of para-chlorophenol using stratified activated carbon adsorption columns.

    Science.gov (United States)

    Sze, Michael Fan Fu; McKay, Gordon

    2012-03-01

    The adsorptive removal of toxic para-chlorophenol using activated carbon adsorption columns is a proven effective engineering process. This paper examined the possibility to stratify an adsorbent bed into layers, in order to enhance the adsorption process performance in terms of increased column service time and adsorbent bed saturation. Four different types of fixed-bed adsorption columns are used and compared under the same operating conditions, but with the variation of column geometry and activated carbon particle size stratification. The Type 3 column - a cylindrical column with particle stratification packing, is found to be the most efficient choice, as the extent of column service time and adsorbent bed saturation are the largest. This could eventually decrease the frequency of adsorbent replacement/regeneration and hence reduce the operating cost of the fixed-bed adsorption process. The Homogeneous Surface Diffusion Model (HSDM) was applied successfully to describe the dynamic adsorption of para-chlorophenol onto Filtrasorb 400 (F400) activated carbon in different types of columns. The Redlich-Peterson isotherm model equation, an experimentally derived external mass transfer correlation and a constant surface diffusivity are used in the HSDM. The optimised surface diffusivity of para-chlorophenol is found to be 1.20E-8 cm(2)/s, which is in good agreement with other phenolics/F400 carbon diffusing systems in literature. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Integrating biorefinery and farm biogeochemical cycles offsets fossil energy and mitigates soil carbon losses

    Science.gov (United States)

    Crop residues are potentially significant sources of feedstock for biofuel production in the US. However there are concerns with maintaining the environmental functions of these residues while also serving as a feedstock for biofuel production. Maintaining soil organic carbon (SOC) along with its fu...

  17. Planning hydrological restoration of peatlands in Indonesia to mitigate carbon dioxide emissions

    NARCIS (Netherlands)

    Jaenicke, J.; Wösten, H.; Budiman, A.; Siegert, F.

    2010-01-01

    Extensive degradation of Indonesian peatlands by deforestation, drainage and recurrent fires causes release of huge amounts of peat soil carbon to the atmosphere. Construction of drainage canals is associated with conversion to other land uses, especially plantations of oil palm and pulpwood trees,

  18. Reduced tillage and cover crops as a strategy for mitigating atmospheric CO2 increase through soil organic carbon sequestration in dry Mediterranean agroecosystems.

    Science.gov (United States)

    Almagro, María; Garcia-Franco, Noelia; de Vente, Joris; Boix-Fayos, Carolina; Díaz-Pereira, Elvira; Martínez-Mena, María

    2016-04-01

    The implementation of sustainable land management (SLM) practices in semiarid Mediterranean agroecosystems can be beneficial to maintain or enhance levels of soil organic carbon and mitigate current atmospheric CO2 increase. In this study, we assess the effects of different tillage treatments (conventional tillage (CT), reduced tillage (RT), reduced tillage combined with green manure (RTG), and no tillage (NT)) on soil CO2 efflux, aggregation and organic carbon stabilization in two semiarid organic rainfed almond (Prunus dulcis Mill., var. Ferragnes) orchards located in SE Spain Soil CO2 efflux, temperature and moisture were measured monthly between May 2012 and December 2014 (site 1), and between February 2013 and December 2014 (site 2). In site 1, soil CO2 efflux rates were also measured immediately following winter and spring tillage operations. Aboveground biomass inputs were estimated at the end of the growing season in each tillage treatment. Soil samples (0-15 cm) were collected in the rows between the trees (n=4) in October 2012. Four aggregate size classes were distinguished by sieving (large and small macroaggregates, free microaggregates, and free silt plus clay fraction), and the microaggregates occluded within macroaggregates (SMm) were isolated. Soil CO2efflux rates in all tillage treatments varied significantly during the year, following changes during the autumn, winter and early spring, or changes in soil moisture during late spring and summer. Repeated measures analyses of variance revealed that there were no significant differences in soil CO2 efflux between tillage treatments throughout the study period at both sites. Average annual values of C lost by soil respiration were slightly but not significantly higher under RT and RTG treatments (492 g C-CO2 m-2 yr-1) than under NT treatment (405 g C-CO2 m-2 yr-1) in site 1, while slightly but not significantly lower values were observed under RT and RTG treatments (468 and 439 g C-CO2 m-2 yr-1

  19. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    NARCIS (Netherlands)

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Aleluia Reis, Lara; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.

    2016-01-01

    We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We

  20. HySEA model verification for Tohoku 2011 Tsunami. Application for mitigation tsunami assessment

    Science.gov (United States)

    Macias, Jorge; González-Vida, José Manuel; García, Javier; Castro, Manuel; Ortega, Sergio; de la Asunción, Marc

    2015-04-01

    In many aspects Tohoku-Oki 2011 mega tsunami has changed our perception of tsunami risk. The tsunami-HySEA model is used to numerically simulate this event and observed data will we used to verify the model results. Three nested meshes of enhanced resolution (4 arc-min, 32 arc-sec and 2 arc-sec) will be used by the numerical model. The propagation mesh covers all Pacific Ocean with more of 7 million cells. An intermediate mesh with 5 millions cells contains the Japanese archipelago and, finally, two finer meshes, with nearly 8 and 6 millions cells, cover Iwate and Miyagi Prefectures at Tohoku region, the most devastated areas hit by the tsunami. The presentation will focus on the impact of the tsunami wave in these two areas and comparisons with observed data will be performed. DART buoys time series, inundation area and observed runup is used to assess model performance. The arrival time of the leading flooding wave at the vicinity of the Senday airport, as recorded by video cameras, is also used as verification data for the model. After this tsunami, control forests as well as breakwaters has been discussed as suitable mitigation infrastructures. As particular case, we will analyse the evolution of the tsunami in the area around the Sendai airport (Miyagi Prefecture) and its impact on the airport. A second simulation has been performed, assuming the existence of a coastal barrier protecting the area. The role of this barrier in modifying tsunami wave evolution and mitigating flooding effects on the airport area are discussed. The protection effect of the breakwaters near Kamaishi (Iwate Prefecture) is also assessed. The numerical model shows how these structures, although did not provide a full protection to tsunami waves, they helped to largely mitigate its effects in the area. Acknowledgements. This research has been partially supported by the Junta de Andalucía research project TESELA (P11-RNM7069), the Spanish Government Research project DAIFLUID (MTM2012

  1. Structural Risk Assessment and Mitigation for Low- to Mid-Rise Residential Buildings in China

    Directory of Open Access Journals (Sweden)

    Kasim A. Korkmaz

    2017-07-01

    Full Text Available China has experienced major earthquakes recently. The 2014 Ludian earthquake struck Ludian County, Yunnan, (Mw = 6.1 on 3 August, 2014. On April 20th 2013, Ya’an earthquake (Mw = 6.9, on April 14th 2010, Qinghai earthquake (Mw = 7.1, on July 9th 2009, Yunnan earthquake (Mw = 6.0, and on May 12th 2008, Sichuan earthquake (Mw = 7.9 struck China. Among these disasters, the most devastating, the Sichuan earthquake, resulted in the collapse of 5 million buildings and damage to more than 21 million. Human loss was also high with over 60,000 people dead, 360,000 injured, and more than 14 million people displaced. South-west China lies in an area that is prone to earthquakes. In 1970, a magnitude 7.7 earthquake in Yunnan with 15,000 lost. This study presents a detailed risk assessment for a structural risk assessment and mitigation for low- to mid-rise residential buildings for China. The risk assessment, through seismic hazard assessment approaches, evaluates the impact of the disasters for integrated structural health monitoring. Among the results of the investigation, relations and links between safety and risk are defined.

  2. Geoethical issues in long-term assessment of geohazards and related mitigation policies

    Science.gov (United States)

    Tinti, Stefano; Armigliato, Alberto

    2015-04-01

    Long-term assessment of large-impact and relatively (or very) infrequent geohazards like earthquakes, tsunamis and volcanic eruptions is nowadays a common practice for geoscientists and many groups have been and are involved in producing global and regional hazard maps in response of an increasing demand of the society. Though the societal needs are the basic motivations for such studies, often this aspect is not pondered enough and a lack of communication between geoscientists and the society might be a serious limit to the effective exploitation of the hazard assessment products and to the development of adequate mitigation policies. This paper is an analysis of the role of geoscientists in the process of the production of long-term assessments of dangerous natural phenomena (such as mapping of seismic, tsunami and volcanic hazards), with special emphasis given to the role of communicators and disseminators (with respect to the general public, to authorities, to restricted specialized audiences…), but also of providers of active support to the planners who should be given key elements for making decision. Geoethics imposes geoscientists to take clear and full responsibilities on the products resulting from their assessments, but also to be aware that these products are valuable insofar they are scientifically sound, known, understandable, and utilizable by a wide universe of users.

  3. 75 FR 4815 - Integrated Science Assessment for Carbon Monoxide

    Science.gov (United States)

    2010-01-29

    ... AGENCY Integrated Science Assessment for Carbon Monoxide AGENCY: Environmental Protection Agency (EPA... availability of a final document titled, ``Integrated Science Assessment for Carbon Monoxide'' (EPA/600/R-09... standards (NAAQS) for carbon monoxide. DATES: The document will be available on January 29, 2010. ADDRESSES...

  4. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    Science.gov (United States)

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Aleluia Reis, Lara; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.

    2016-12-01

    We present a model comparison study that combines multiple integrated assessment models with a reduced-form global air quality model to assess the potential co-benefits of global climate mitigation policies in relation to the World Health Organization (WHO) goals on air quality and health. We include in our assessment, a range of alternative assumptions on the implementation of current and planned pollution control policies. The resulting air pollution emission ranges significantly extend those in the Representative Concentration Pathways. Climate mitigation policies complement current efforts on air pollution control through technology and fuel transformations in the energy system. A combination of stringent policies on air pollution control and climate change mitigation results in 40% of the global population exposed to PM levels below the WHO air quality guideline; with the largest improvements estimated for India, China, and Middle East. Our results stress the importance of integrated multisector policy approaches to achieve the Sustainable Development Goals.

  5. Carbon farming in hot, dry coastal areas: an option for climate change mitigation

    Science.gov (United States)

    Becker, K.; Wulfmeyer, V.; Berger, T.; Gebel, J.; Münch, W.

    2013-07-01

    We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas - if established in hot, dry coastal areas around the world - could capture 17-25 t of carbon dioxide per hectare per year from the atmosphere (over a 20 yr period). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to have a significant impact on atmospheric CO2 levels at least for several decades. In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42-63 EUR per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface-atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level. In such areas, plant growth and CO2 storage could continue until permanent woodland or forest had been established. In other areas, salinization of the soil may limit plant growth to 2-3 decades whereupon irrigation could be ceased and the captured carbon stored as woody biomass.

  6. Mitigating greenhouse gases: the importance of land base interactions between forests, agriculture, and residential development in the face of changes in bioenergy and carbon prices

    Science.gov (United States)

    Ralph Alig; Greg Latta; Darius Adams; Bruce. McCarl

    2009-01-01

    The forest sector can contribute to atmospheric greenhouse gas reduction, while also providing other environmental, economic, and social benefits. Policy tools for climate change mitigation include carbon-related payment programs as well as laws and programs to impede the loss of agricultural and forest lands to development. Policy makers will base their expectations...

  7. Carbon storage versus fossil fuel substitution: a climate change mitigation option for two different land use categories based on short and long rotation forestry in India

    NARCIS (Netherlands)

    Kaul, M.; Mohren, G.M.J.; Dadhwal, V.K.

    2010-01-01

    Short rotation bioenergy crops for energy production are considered an effective means to mitigate the greenhouse effect, mainly due to their ability to substitute fossil fuels. Alternatively, carbon can be sequestered and stored in the living biomass. This paper compares the two land use categories

  8. An assessment of potential hydrologic and ecologic impacts of constructing mitigation wetlands, Rifle, Colorado, UMTRA project sites

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-04-01

    This-assessment examines the consequences and risks that could result from the proposed construction of mitigation wetlands at the New and Old Rifle Uranium Mill Tailings Remedial Action (UMTRA) Project sites near Rifle, Colorado. Remediation of surface contamination at those sites is now under way. Preexisting wetlands at or near the Old and New Rifle sites have been cleaned up, resulting in the loss of 0.7 and 10.5 wetland acres (ac) (0.28 and 4.2 hectares [ha]) respectively. Another 9.9 ac (4.0 ha) of wetlands are in the area of windblown contamination west of the New Rifle site. The US Army Corps of Engineers (USACE) has jurisdiction over the remediated wetlands. Before remedial action began, and before any wetlands were eliminated, the USACE issued a Section 404 Permit that included a mitigation plan for the wetlands to be lost. The mitigation plan calls for 34.2 ac (1 3.8 ha) of wetlands to be constructed at the south end and to the west of the New Rifle site. The mitigation wetlands would be constructed over and in the contaminated alluvial aquifer at the New Rifle site. As a result of the hydrologic characteristics of this aquifer, contaminated ground water would be expected to enter the environment through the proposed wetlands. A preliminary assessment was therefore required to assess any potential ecological risks associated with constructing the mitigation wetlands at the proposed location.

  9. A comparative assessment of the financial costs and carbon benefits of REDD+ strategies in Southeast Asia

    Science.gov (United States)

    Graham, Victoria; Laurance, Susan G.; Grech, Alana; McGregor, Andrew; Venter, Oscar

    2016-11-01

    REDD+ holds potential for mitigating emissions from tropical forest loss by providing financial incentives for carbon stored in forests, but its economic viability is under scrutiny. The primary narrative raised in the literature is that REDD+ will be of limited utility for reducing forest carbon loss in Southeast Asia, while the level of finance committed falls short of profits from alternative land-use activities in the region, including large-scale timber and oil palm operations. Here we assess the financial costs and carbon benefits of various REDD+ strategies deployed in the region. We find the cost of reducing emissions ranges from 9 to 75 per tonne of avoided carbon emissions. The strategies focused on reducing forest degradation and promoting forest regrowth are the most cost-effective ways of reducing emissions and used in over 60% of REDD+ projects. By comparing the financial costs and carbon benefits of a broader range of strategies than previously assessed, we highlight the variation between different strategies and draw attention to opportunities where REDD+ can achieve maximum carbon benefits cost-effectively. These findings have broad policy implications for Southeast Asia. Until carbon finance escalates, emissions reductions can be maximized from reforestation, reduced-impact logging and investing in improved management of protected areas. Targeting cost-efficient opportunities for REDD+ is important to improve the efficiency of national REDD+ policy, which in-turn fosters greater financial and political support for the scheme.

  10. Peru mitigation assessment of greenhouse gases: Sector -- Energy. Peru climate change country study; Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-08-01

    The aim of this study is to determine the Inventory and propose Greenhouse Gases Mitigation alternatives in order to face the future development of the country in a clean environmental setting without delaying the development process required to improve Peruvian standard of living. The main idea of this executive abstract is to show concisely the results of the Greenhouse Gases Mitigation for Peru in the period 1990--2015. The studies about mitigation for the Energy Sector are shown in this summary.

  11. Assessment, prevention and mitigation of landslide hazard in the Lesser Himalaya of Himachal Pradesh

    Directory of Open Access Journals (Sweden)

    Patra Punyatoya

    2015-09-01

    Full Text Available Landslides are destructive geological processes that have globally caused deaths and destruction to property worth billion dollars. Landslide occurrences are widespread and prolific in India covering more than 15 per cent of the total area. These are mostly concentrated in the Himalayan belt, parts of Meghalaya Plateau, Nilgiri Hills, Western and Eastern Ghats. The slope failure in the hilly terrain is due to geological processes and events. The frequency and magnitude of slope failure also increased due to anthropogenic activities such as road construction, deforestation and urban expansion. Keeping all these problems in mind research focuses on the Lesser Himalaya of Himachal Himalaya as it falls under very high risk zone in case of landslides and comprise of three objectives. They are: a to analyse the spatial pattern of landslides in the Lesser Himalaya, b to assess the causes of landslides vulnerability in the study region and c to suggests some preventive measures to mitigate landslides. In this work an attempt has been made to collect data on landslides incidences and damage from the secondary sources like Geological Survey of India, Building Material and Technology Promotion council from Ministry of Urban Affairs. The methodologies adopted for data analysis are simple tabulations, bar diagrams, statistical and mapping techniques to represent the Landslide vulnerability of the Lesser Himalaya. The analysis of the study reveals that there is increase in the number of landslides. The spatial pattern of landslide shows linear patterns, viz. along roads, rivers or lineaments/ faults. Besides, heavy rainfall, floods and earthquakes enhance the vulnerability condition. The landslides may be part and parcel of the Himalayan landscape, but they can be mitigated by some suitable measures. Few methods of landslide prevention in the study region have been suggested.

  12. Mitigation of atmospheric carbon emissions through increased energy efficiency versus increased non-carbon energy sources: A trade study using a simplified {open_quotes}market-free{close_quotes} exogenously driven model

    Energy Technology Data Exchange (ETDEWEB)

    Krakowski, R.A.

    1997-08-24

    A simplified model of global, long-term energy use is described and used to make a `top-level` comparison of two generic approaches for mitigating atmospheric carbon emissions: (a) those based on increased energy efficiency; and (b) those based on increased use of reduced- or non-carbon fuels. As approximate as is the model, first-order estimates of and trade offs between increasing non-carbon generation capacities (e.g., supply-side solutions) versus energy-use efficiency (e.g., demand-side solutions) to stem atmospheric carbon accumulations can be useful in guiding more elaborate models. At the level of this analysis, both the costs of abatement and the costs of damage can be large, with the formation of benefit-to-cost ratios as a means of assessment being limited by uncertainties associated with relating given climatic responses to greenhouse warming to aggregate damage cost, as well as uncertainties associated with procedures used for multi-generation discounting of both abatement and damage costs. In view of uncertainties associated with both supply-side and demand-side approaches, as well as the estimation of greenhouse-warming responses per se, a combination of solutions seems prudent. Key findings are: (a) the relative insensitivity of the benefit-to-cost ratio adopted in this study to supply-side versus demand-side approaches to abating atmospheric carbon-dioxide emissions; (b) the extreme sensitivity of damage costs, abatement costs, and the related benefit-to-cost ratios to the combination of discounting procedure and the (time) concavity of the function used to relate global temperature rise to damage costs; and (c) no matter the discounting procedure and/or functional relationship between average temperature rise and a damage cost, a goal of increased per-capita gross world product at minimum damage suggests action now rather than delay.

  13. Tsunami prevention and mitigation necessities and options derived from tsunami risk assessment in Indonesia

    Science.gov (United States)

    Post, J.; Zosseder, K.; Wegscheider, S.; Steinmetz, T.; Mück, M.; Strunz, G.; Riedlinger, T.; Anwar, H. Z.; Birkmann, J.; Gebert, N.

    2009-04-01

    Risk and vulnerability assessment is an important component of an effective End-to-End Tsunami Early Warning System and therefore contributes significantly to disaster risk reduction. Risk assessment is a key strategy to implement and design adequate disaster prevention and mitigation measures. The knowledge about expected tsunami hazard impacts, exposed elements, their susceptibility, coping and adaptation mechanisms is a precondition for the development of people-centred warning structures, local specific response and recovery policy planning. The developed risk assessment and its components reflect the disaster management cycle (disaster time line) and cover the early warning as well as the emergency response phase. Consequently the components hazard assessment, exposure (e.g. how many people/ critical facilities are affected?), susceptibility (e.g. are the people able to receive a tsunami warning?), coping capacity (are the people able to evacuate in time?) and recovery (are the people able to restore their livelihoods?) are addressed and quantified. Thereby the risk assessment encompasses three steps: (i) identifying the nature, location, intensity and probability of potential tsunami threats (hazard assessment); (ii) determining the existence and degree of exposure and susceptibility to those threats; and (iii) identifying the coping capacities and resources available to address or manage these threats. The paper presents results of the research work, which is conducted in the framework of the GITEWS project and the Joint Indonesian-German Working Group on Risk Modelling and Vulnerability Assessment. The assessment methodology applied follows a people-centred approach to deliver relevant risk and vulnerability information for the purposes of early warning and disaster management. The analyses are considering the entire coastal areas of Sumatra, Java and Bali facing the Sunda trench. Selected results and products like risk maps, guidelines, decision support

  14. Design of advanced fibrous based material systems to meet the critical challenges in water quality and carbon dioxide mitigation

    Science.gov (United States)

    Nangmenyi, Gordon

    Water purification and global warming mitigation represent two of the major challenges in the 21st century. The research presented in this dissertation will describe the development of advanced fibrous systems that exhibit excellent performance in addressing the issues of water disinfection, carbon dioxide capture, and natural organic matter (NOM) removal from water. Total eradication of E. coli was achieved with fiberglass impregnated with either silver (FG-Ag), iron oxide (Fe2O3 ) modified with Ag (FG-F2O3/Ag) or copper oxide (CuO) modified with Ag (FG-CuO/Ag). The Ag modified oligodynamic nanoparticle impregnated fiberglass displayed excellent kinetic inactivation performance with extended capacity at a much lower amount of nanoparticle loading. The results support their immediate applicability in the field from a utility and cost perspective. The polyethyleneimine coated glass fibers (PEFA) for CO2 removal displayed high capacity for CO2 adsorption, up to 440 mg-CO 2/g while providing a mechanically durable and recyclable system for CO2 capture. The system offers the potential for CO2 utilization from the adsorbed CO2 from a power plant or closed environment (submarine, space shuttles or control rooms). Aminated polyacrylonitrile activated carbon fibers (N-ACF) coated on a non-woven fiberglass mat, displayed the ability to remove NOM more efficiently than granulated activated carbon or ion exchange beads at concentrations below 50 mg/L. Electrostatic attraction was found to be the dominant mechanism of NOM adsorption for the N-ACF.

  15. Climate Change Mitigation Technologies: the Siemens Roadmap to Carbon Capture and Storage

    Energy Technology Data Exchange (ETDEWEB)

    Voges, K.

    2007-07-01

    A full range of technology options will have to be deployed until 2025 to get the global CO{sub 2} emissions on a 550 ppm stabilization track. The focus of the paper will be on Carbon Capture and Storage (CCS) as an indispensable part of a carbon constrained energy infrastructure. In CCS our main long term focus is clearly on coal based processes. For Greenfield applications Siemens is prioritizing IGCC based pre-combustion capture. Post-combustion capture is pursued for steam power plant retrofit. (a) IGCC with pre-combustion capture: A first F-class based demonstration plant could be available until 2014. The roadmap addresses gasifier scale up, hydrogen burner and turbine development and integration issues. Beyond that a bundle of further efficiency improvement measures will further enhance efficiency and economic competitiveness. (b) Post-combustion capture: The development aims at optimizing existing solvents or developing new ones and integrating the complete unit with its mass and heat interchange system into the power plant. (c) CO{sub 2} Compressors: For efficiency and operating flexibility reasons Siemens Power Generation prefers gear-type compressors instead of single shaft compressors. The improvement of maintainability and the reduced number of stages or corrosion protection are issues addressed in current R and D activities. (auth)

  16. Mitigation of corrosion attack on carbon steel coated cermet alloy in different anion contents

    Science.gov (United States)

    Khalid, Muhamad Azrin Mohd; Ismail, Azzura

    2017-12-01

    This research study evaluated the corrosion mechanism attack on carbon steel coated with cermet alloys (WC-9% Ni) in seawater at different sulphate-to-chloride ratios. The four different sulphate-to-chloride ratios were synthesised with the same seawater salinity of 3.5 % and same pH of real seawater. The corrosion tests involved immersion and electrochemical tests. The immersion test is used to determine the cermet coating ability to withstand the corrosion attack based on different ratios of anions present in the seawater at different periods of immersion. The corrosion attack was characterized by optical and Scanning Electron Microscopy (SEM). The aggressive anions present in the seawater influenced the corrosion attack on the cermet coating. For immersion test, results revealed that increasing sulphate more than chloride, increased the weight loss of cermets. The electrochemistry analysis showed that the passive layer forms on cermet coating prevented the material from further corrosion attack. However, due to its porosity, the passive layer collapsed and exposed the material for other corrosion reaction. For electrochemical test, the result shows that the solution with sulphate-to-chloride ratio of 0.14 (real seawater) has the highest corrosion current and Open Circuit Potential (OCP) compared to other solutions (different sulphate-to-chloride ratio). In conclusion, sulfate and chloride show their competition to attack the cermet coating on carbon steel and the higher the amount of chloride present in seawater, the higher the corrosion rate and pits formed on the cermet coating.

  17. HYDROTHERMALLY SELF-ADVANCING HYBRID COATINGS FOR MITIGATING CORROSION OF CARBON STEEL.

    Energy Technology Data Exchange (ETDEWEB)

    SUGAMA, T.

    2006-11-22

    Hydrothermally self-advancing hybrid coatings were prepared by blending two starting materials, water-borne styrene acrylic latex (SAL) as the matrix and calcium aluminate cement (CAC) as the hydraulic filler, and then their usefulness was evaluated as the room temperature curable anti-corrosion coatings for carbon steel in CO{sub 2}-laden geothermal environments at 250 C. The following two major factors supported the self-improving mechanisms of the coating during its exposure in an autoclave: First was the formation of a high temperature stable polymer structure of Ca-complexed carboxylate groups containing SAL (Ca-CCG-SAL) due to hydrothermal reactions between SAL and CAC; second was the growth with continuing exposure time of crystalline calcite and boehmite phases coexisting with Ca-CCG-SAL. These two factors promoted the conversion of the porous microstructure in the non-autoclaved coating into a densified one after 7 days exposure. The densified microstructure not only considerably reduced the conductivity of corrosive ionic electrolytes through the coatings' layers, but also contributed to the excellent adherence of the coating to underlying steel' s surface that, in turn, retarded the cathodic oxygen reduction reaction at the corrosion site of steel. Such characteristics including the minimum uptake of corrosive electrolytes by the coating and the retardation of the cathodic corrosion reaction played an important role in inhibiting the corrosion of carbon steel in geothermal environments.

  18. Performance of Carbon Coatings for Mitigation of Electron Cloud in the SPS

    CERN Document Server

    Yin Vallgren, C; Costa Pinto, P; Neupert, H; Rumolo, G; Shaposhnikova, E; Taborelli, M; Kato, S

    2011-01-01

    Amorphous carbon (a-C) coatings have been tested in electron cloud monitors (ECM) in the Super Proton Synchrotron (SPS) and have shown for LHC type beams a reduction of the electron cloud current by a factor 104 compared to stainless steel (StSt). This performance has been maintained for more than 3 years under SPS operation conditions. Secondary electron yield (SEY) laboratory data confirm that after more than 1 year of SPS operation, the coating maintains a SEY below 1.0. The compatibility of coexisting StSt and a-C surfaces has been studied in an ECM having coated and uncoated areas. The results show no degradation of the properties of the a-C areas. The performance of diamond like carbon (DLC) coating has also been studied. DLC shows a less effective reduction of the EC current than a-C, but conditioning is faster than for StSt. Three a-C coated dipoles were inserted in the SPS. However, even with no EC detected, the dynamic pressure rise is similar to the one observed in the StSt reference dipoles. Measu...

  19. Effect of powdered activated carbon (PAC) and cationic polymer on biofouling mitigation in hybrid MBRs.

    Science.gov (United States)

    Jamal Khan, S; Visvanathan, C; Jegatheesan, V

    2012-06-01

    In this study, the influence of powdered activated carbon (PAC) and cationic polymer (MPE50) was investigated on the fouling propensity in hybrid MBRs. Three laboratory scale MBRs were operated simultaneously including MBR(Control), MBR(PAC), and MBR(Polymer). Optimum dosages of PAC and polymer to the MBR(PAC) and MBR(Polymer), respectively were determined using jar tests. It was found that the MBR(PAC) exhibited low fouling tendency and prolonged filtration as compared to the other MBRs. Improved filtration in MBR(PAC) was attributed to the flocculation and adsorption phenomena. The effective stability of the biomass by PAC in the form of biological activated carbon (BAC) was verified by the increase in mean particle size. The BAC aided sludge layer exhibited porous cake structure resulting in the prolong filtration. However, both the membrane hybrid systems revealed effective adsorption of organic matter by 40% reduction in the soluble EPS concentration. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Composting, anaerobic digestion and biochar production in Ghana. Environmental-economic assessment in the context of voluntary carbon markets.

    Science.gov (United States)

    Galgani, Pietro; van der Voet, Ester; Korevaar, Gijsbert

    2014-12-01

    In some areas of Sub-Saharan Africa appropriate organic waste management technology could address development issues such as soil degradation, unemployment and energy scarcity, while at the same time reducing emissions of greenhouse gases. This paper investigates the role that carbon markets could have in facilitating the implementation of composting, anaerobic digestion and biochar production, in the city of Tamale, in the North of Ghana. Through a life cycle assessment of implementation scenarios for low-tech, small scale variants of the above mentioned three technologies, the potential contribution they could give to climate change mitigation was assessed. Furthermore an economic assessment was carried out to study their viability and the impact thereon of accessing carbon markets. It was found that substantial climate benefits can be achieved by avoiding landfilling of organic waste, producing electricity and substituting the use of chemical fertilizer. Biochar production could result in a net carbon sequestration. These technologies were however found not to be economically viable without external subsidies, and access to carbon markets at the considered carbon price of 7 EUR/ton of carbon would not change the situation significantly. Carbon markets could help the realization of the considered composting and anaerobic digestion systems only if the carbon price will rise above 75-84 EUR/t of carbon (respectively for anaerobic digestion and composting). Biochar production could achieve large climate benefits and, if approved as a land based climate mitigation mechanism in carbon markets, it would become economically viable at the lower carbon price of 30 EUR/t of carbon. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. An economic assessment of low carbon vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Summerton, P. [Cambridge Econometrics CE, Cambridge (United Kingdom); Harrison, P. [European Climate Foundation ECF, Brussels (Belgium)] (eds.)

    2013-03-15

    The study aimed to analyse the economic impacts of decarbonizing light duty vehicles. As part of the study, the impacts of the European Commissions proposed 2020 CO2 regulation for cars and vans have been assessed. The analysis showed that a shift to low-carbon vehicles would increase spending on vehicle technology, therefore generating positive direct employment impacts, but potentially adding 1,000-1,100 euro to the capital cost of the average new car in 2020. However, these additional technology costs would be offset by fuel savings of around 400 euro per year, indicating an effective break-even point for drivers of approximately three years. At the EU level, the cost of running and maintaining the European car fleet would become 33-35 billion euro lower each year than in a 'do nothing scenario' by 2030, leading to positive economic impacts including indirect employment gains. Data on the cost of low carbon vehicle technologies has largely been sourced from the auto industry itself, with the study supported by a core working group including Nissan, GE, the European Association of Automotive Suppliers (CLEPA), and the European Storage Battery Manufacturers Association (Eurobat). Fuel price projections for the study were based on the IEA's World Energy Outlook, while technical modelling was carried out using the transport policy scoping tool SULTAN (developed by Ricardo-AEA for the European Commission) and the Road Vehicle Cost and Efficiency Calculation Framework, also developed by Ricardo-AEA. Macro-economic modelling was done using the E3ME model, which has previously been used for several European Commission and EU government impact assessments. This report focuses on efficient use of fossil fuels in internal combustion- and hybrid electric vehicles. It will be followed by a second report, which will focus on further reducing the use of fossil fuels by also substituting them with domestically produced energy carriers, such as electricity and

  2. Assessing Risk and Driving Risk Mitigation for First-of-a-Kind Advanced Reactors

    Energy Technology Data Exchange (ETDEWEB)

    John W. Collins

    2011-09-01

    Planning and decision making amidst programmatic and technological risks represent significant challenges for projects. This presentation addresses the four step risk-assessment process needed to determine clear path forward to mature needed technology and design, license, and construct advanced nuclear power plants, which have never been built before, including Small Modular Reactors. This four step process has been carefully applied to the Next Generation Nuclear Plant. STEP 1 - Risk Identification Risks are identified, collected, and categorized as technical risks, programmatic risks, and project risks, each of which result in cost and schedule impacts if realized. These include risks arising from the use of technologies not previously demonstrated in a relevant application. These risks include normal and accident scenarios which the SMR could experience including events that cause the disablement of engineered safety features (typically documented in Phenomena Identification Ranking Tables (PIRT) as produced with the Nuclear Regulatory Commission) and design needs which must be addressed to further detail the design. Product - Project Risk Register contained in a database with sorting, presentation, rollup, risk work off functionality similar to the NGNP Risk Management System . STEP 2 - Risk Quantification The risks contained in the risk register are then scored for probability of occurrence and severity of consequence, if realized. Here the scoring methodology is established and the basis for the scoring is well documented. Product - Quantified project risk register with documented basis for scoring. STEP 3 - Risk Handling Strategy Risks are mitigated by applying a systematic approach to maturing the technology through Research and Development, modeling, test, and design. A Technology Readiness Assessment is performed to determine baseline Technology Readiness Levels (TRL). Tasks needed to mature the technology are developed and documented in a roadmap

  3. Evaluating ecological and economic benefits of a low-carbon industrial park based on millennium ecosystem assessment framework.

    Science.gov (United States)

    Chen, Bin; He, Guoxuan; Yang, Jin; Zhang, Jieru; Su, Meirong; Qi, Jing

    2012-01-01

    The Millennium Ecosystem Assessment (MA) framework was modified with a special focus on ecosystem service values. A case study of a typical low-carbon industrial park in Beijing was conducted to assess the ecological and economic benefits. The total economic value of this industrial park per year is estimated to be 1.37 × 10(8) RMB yuan, where the accommodating and social cultural services are the largest two contributors. Due to the construction of small grasslands or green roofs, considerable environmental regulation services are also provided by the park. However, compared with an ecoindustrial park, carbon mitigation is the most prominent service for the low-carbon industrial park. It can be concluded that low-carbon industrial park construction is an efficacious way to achieve coordinated development of society, economy, and environment, and a promising approach to achieving energy saving and carbon reduction.

  4. Low Secondary Electron Yield Carbon Coatings for Electron-cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Calatroni, Sergio; Chiggiato, Paolo; Costa Pinto, Pedro; Marques, Hugo; Neupert, Holger; Taborelli, Mauro; Vollenberg, Wilhelmus; Wevers, Ivo; Yaqub, Kashif

    2010-01-01

    Electron-cloud is one of the main limitations for particle accelerators with positively charged beams of high intensity and short bunch spacing, as the SPS at CERN. The Secondary Electron Yield (SEY) of the inner surface of the vacuum chamber is the main parameter governing the phenomenon. The effect could be eliminated by coating the vacuum chambers with a material of low SEY, which does not require bake-out and is robust against air exposure. For such a purpose amorphous carbon (a-C) coatings were produced by magnetron sputtering of graphite targets. They exhibit maximum SEY between 0.95 and 1.05 after air transfer to the measuring instrument. After 1 month of air exposure the SEY rises by 10 - 20 % of the initial values. Storage in desiccator or by packaging in Al foil makes this increase negligible. The coatings have a similar X-ray photoelectron spectroscopy (XPS) C1s spectrum for a large set of deposition parameters and exhibit an enlarged linewidth compared to HOPG graphite. The static outgassing witho...

  5. Mitigation of air pollution and carbon footprint by energy conservation through CFLs: a case study.

    Science.gov (United States)

    Wath, Sushant B; Majumdar, Deepanjan

    2011-01-01

    Electricity consumption of compact fluorescent lamps (CFLs) is low, making them a useful tool for minimizing the rapidly increasing demand of electrical energy in India. The present study aims to project the likely electricity conservation in a scenario of complete replacement of existing Fluorescent Tubes (FTs) by CFLs at CSIR-NEERI (National Environmental Engineering Research Institute) visa vis the financial repercussions and indirect reduction in emissions of greenhouse gases, e.g. CO2, N2O, CH4 and other air pollutants, e.g. SO2, NO, suspended particulate matter (SPM), black carbon (BC) and mercury (Hg) from coal fired thermal power plants. The calculations show that the Institute could save around 122850 kWh of electricity per annum, thereby saving approximately INR 859950/(USD 18453.86) towards electricity cost per annum and would be able to minimize 44579.08 kg of CO2-C equivalent (over 100 year time horizon), 909 kg SO2, 982.8 kg NO, 9.8 kg of BC, 368.5 kg SPM, 18.4 kg PM10 and 0.0024 kg Hg emissions per annum from a coal fired thermal power plant by conserving electricity at the institute level.

  6. Burlington Bottoms Wildlife Mitigation Project. Final Environmental Assessment/Management Plan and Finding of No Significant Impact.

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-01

    Bonneville Power Administration (BPA) proposes to fund wildlife management and enhancement activities for the Burlington bottoms wetlands mitigation site. Acquired by BPA in 1991, wildlife habitat at Burlington bottoms would contribute toward the goal of mitigation for wildlife losses and inundation of wildlife habitat due to the construction of Federal dams in the lower Columbia and Willamette River Basins. Target wildlife species identified for mitigation purposes are yellow warbler, great blue heron, black-capped chickadee, red-tailed hawk, valley quail, spotted sandpiper, wood duck, and beaver. The Draft Management Plan/Environmental Assessment (EA) describes alternatives for managing the Burlington Bottoms area, and evaluates the potential environmental impacts of the alternatives. Included in the Draft Management Plan/EA is an implementation schedule, and a monitoring and evaluation program, both of which are subject to further review pending determination of final ownership of the Burlington Bottoms property.

  7. Risk Mitigation Measures: An Important Aspect of the Environmental Risk Assessment of Pharmaceuticals

    Directory of Open Access Journals (Sweden)

    Markus Liebig

    2014-01-01

    Full Text Available Within EU marketing authorization procedures of human and veterinary medicinal products (HMP and VMP, an environmental risk assessment (ERA has to be performed. In the event that an unacceptable environmental risk is identified, risk mitigation measures (RMM shall be applied in order to reduce environmental exposure to the pharmaceutical. Within the authorization procedures of HMP, no RMM have been applied so far, except for specific precautions for the disposal of the unused medicinal product or waste materials. For VMP, a limited number of RMM do exist. The aim of this study was to develop consistent and efficient RMM. Therefore, existing RMM were compiled from a summary of product characteristics of authorized pharmaceuticals, and new RMM were developed and evaluated. Based on the results, appropriate RMM were applied within the authorization procedures of medicinal products. For HMP, except for the existing precautions for disposal, no further reasonable measures could be developed. For VMP, two specific precautions for disposal and 17 specific precautions for use in animals were proposed as RMM.

  8. Public Review Draft: A Method for Assessing Carbon Stocks, Carbon Sequestration, and Greenhouse-Gas Fluxes in Ecosystems of the United States Under Present Conditions and Future Scenarios

    Science.gov (United States)

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2010-01-01

    The Energy Independence and Security Act of 2007 (EISA), Section 712, authorizes the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation's ecosystems focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, shrub and grasslands; and aquatic ecosystems, such as rivers, lakes, and estuaries), (2) an estimation of annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities), and (3) an evaluation of the effects of controlling processes, such as climate change, land use and land cover, and wildlfires. The purpose of this draft methodology for public review is to propose a technical plan to conduct the assessment. Within the methodology, the concepts of ecosystems, carbon pools, and GHG fluxes used for the assessment follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess future potential conditions based on a set of projected scenarios. The scenario framework is constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report Emission Scenarios (SRES), along with initial reference land-use and land-cover (LULC) and land-management scenarios. An additional three LULC and land-management mitigation scenarios will be constructed for each

  9. Chapter 5. Assessing the Need for High Impact Technology Research, Development & Deployment for Mitigating Climate Change

    Directory of Open Access Journals (Sweden)

    David Auston

    2016-12-01

    Full Text Available Technology is a centrally important component of all strategies to mitigate climate change. As such, it encompasses a multi-dimensional space that is far too large to be fully addressed in this brief chapter. Consequently, we have elected to focus on a subset of topics that we believe have the potential for substantial impact. As researchers, we have also narrowed our focus to address applied research, development and deployment issues and omit basic research topics that have a longer-term impact. This handful of topics also omits technologies that we deem to be relatively mature, such as solar photovoltaics and wind turbines, even though we acknowledge that additional research could further reduce costs and enhance performance. These and other mature technologies such as transportation are discussed in Chapter 6. This report and the related Summit Conference are an outgrowth of the University of California President’s Carbon Neutrality Initiative, and consequently we are strongly motivated by the special demands of this ambitious goal, as we are also motivated by the corresponding goals for the State of California, the nation and the world. The unique feature of the UC Carbon Neutrality Initiative is the quest to achieve zero greenhouse gas emissions by 2025 at all ten 10 campuses. It should be emphasized that a zero emission target is enormously demanding and requires careful strategic planning to arrive at a mix of technologies, policies, and behavioral measures, as well as highly effective communication – all of which are far more challenging than reducing emissions by some 40% or even 80%. Each campus has a unique set of requirements based on its current energy and emissions. Factors such as a local climate, dependence on cogeneration, access to wholesale electricity markets, and whether a medical school is included shape the specific challenges of the campuses, each of which is a “living laboratory” setting a model for others to

  10. Earth sciences, GIS and geomatics for natural hazards assessment and risks mitigation: a civil protection perspective

    Science.gov (United States)

    Perotti, Luigi; Conte, Riccardo; Lanfranco, Massimo; Perrone, Gianluigi; Giardino, Marco; Ratto, Sara

    2010-05-01

    Geo-information and remote sensing are proper tools to enhance functional strategies for increasing awareness on natural hazards and risks and for supporting research and operational activities devoted to disaster reduction. An improved Earth Sciences knowledge coupled with Geomatics advanced technologies has been developed by the joint research group and applied by the ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action) centre, within its partnership with the UN World Food Programme (WFP) with the goal of reducing human, social, economic and environmental losses due to natural hazards and related disasters. By cooperating with local and regional authorities (Municipalities, Centro Funzionale of the Aosta Valley, Civil Protection Agency of Regione Piemonte), data on natural hazards and risks have been collected, compared to national and global data, then interpreted for helping communities and civil protection agencies of sensitive mountain regions to make strategic choices and decisions to better mitigation and adaption measures. To enhance the application of GIS and Remote-sensing technologies for geothematic mapping of geological and geomorphological risks of mountain territories of Europe and Developing Countries, research activities led to the collection and evaluation of data from scientific literature and historical technical archives, for the definition of predisposing/triggering factors and evolutionary processes of natural instability phenomena (landslides, floods, storms, …) and for the design and implementation of early-warning and early-impact systems. Geodatabases, Remote Sensing and Mobile-GIS applications were developed to perform analysis of : 1) large climate-related disaster (Hurricane Mitch, Central America), by the application of remote sensing techniques, either for early warning or mitigation measures at the national and international scale; 2) distribution of slope instabilities at the regional scale (Aosta

  11. Ecosystem carbon stock influenced by plantation practice: implications for planting forests as a measure of climate change mitigation.

    Directory of Open Access Journals (Sweden)

    Chengzhang Liao

    Full Text Available Uncertainties remain in the potential of forest plantations to sequestrate carbon (C. We synthesized 86 experimental studies with paired-site design, using a meta-analysis approach, to quantify the differences in ecosystem C pools between plantations and their corresponding adjacent primary and secondary forests (natural forests. Totaled ecosystem C stock in plant and soil pools was 284 Mg C ha(-1 in natural forests and decreased by 28% in plantations. In comparison with natural forests, plantations decreased aboveground net primary production, litterfall, and rate of soil respiration by 11, 34, and 32%, respectively. Fine root biomass, soil C concentration, and soil microbial C concentration decreased respectively by 66, 32, and 29% in plantations relative to natural forests. Soil available N, P and K concentrations were lower by 22, 20 and 26%, respectively, in plantations than in natural forests. The general pattern of decreased ecosystem C pools did not change between two different groups in relation to various factors: stand age ( or = 25 years, stand types (broadleaved vs. coniferous and deciduous vs. evergreen, tree species origin (native vs. exotic of plantations, land-use history (afforestation vs. reforestation and site preparation for plantations (unburnt vs. burnt, and study regions (tropic vs. temperate. The pattern also held true across geographic regions. Our findings argued against the replacement of natural forests by the plantations as a measure of climate change mitigation.

  12. Impact assessment of the carbon reduction strategy for transport, low carbon transport : a greener future

    Science.gov (United States)

    2009-07-01

    This is an impact assessment for the Carbon Reduction Strategy for Transport (DfT, 2009), Low Carbon Transport: A Greener Future, which is part of the UK Governments wider UK Low Carbon Transition Plan (DECC, 2009), Britains path to ta...

  13. Assessment and Mitigation of PM pollution in the border regions of Austria and Slovenia

    Science.gov (United States)

    Uhrner, Ulrich; Reifeltshammer, Rafael; Lackner, Bettina; Forkel, Renate; Sturm, Peter

    2017-04-01

    Many cities, towns and regions located at the southern fringe of the Alps face remarkably high PM levels particularly during the winter period. The project PMinter aimed 1) to analyse the air quality in S-Styria, S-Carinthia and N-Slovenia, 2) to evaluate local and regional measures to develop effective air quality management plans and finally 3) to support a sustainable improvement of air quality in the project region. Using wood for residential heating is very popular in Austria and in Slovenia. To assess the contribution from wood smoke to the total PM burden and the impact of regional and large scale transport as well as the impact of secondary aerosols were major goals of PMinter. Due to the complex terrain air quality and exposure assessment is challenging. To resolve sources which are located in valleys and basins, emissions were computed or processed on 1 km x 1 km resolution for the entire program area. A new combined model approach was developed and tested successfully using a state-of-the-art CTM (WRF/Chem) on the regional scale and the Lagrangian particle model GRAL on the local scale. A detailed analysis and comparisons with measurements and regional/local scale scenario simulations were carried out. Residential heating using wood was identified as the major source and PM component dominant on the "local scale" ( 10 km), secondary inorganic aerosol was the dominant PM component on the regional scale ( 10 km - 150 km) and above. Various mitigation scenarios for PM were computed. A "local" scenario where individual heating facilities using solid fuels were replaced by district heating and a regional scenario with 35% reduced ammonia emissions from agriculture proved to be most effective.

  14. The 3D Elevation Program—Landslide recognition, hazard assessment, and mitigation support

    Science.gov (United States)

    Lukas, Vicki; Carswell, Jr., William J.

    2017-01-27

    The U.S. Geological Survey (USGS) Landslide Hazards Program conducts landslide hazard assessments, pursues landslide investigations and forecasts, provides technical assistance to respond to landslide emergencies, and engages in outreach. All of these activities benefit from the availability of high-resolution, three-dimensional (3D) elevation information in the form of light detection and ranging (lidar) data and interferometric synthetic aperture radar (IfSAR) data. Research on landslide processes addresses critical questions of where and when landslides are likely to occur as well as their size, speed, and effects. This understanding informs the development of methods and tools for hazard assessment and situational awareness used to guide efforts to avoid or mitigate landslide impacts. Such research is essential for the USGS to provide improved information on landslide potential associated with severe storms, earthquakes, volcanic activity, coastal wave erosion, and wildfire burn areas.Decisionmakers in government and the private sector increasingly depend on information the USGS provides before, during, and following disasters so that communities can live, work, travel, and build safely. The USGS 3D Elevation Program (3DEP) provides the programmatic infrastructure to generate and supply lidar-derived superior terrain data to address landslide applications and a wide range of other urgent needs nationwide. By providing data to users, 3DEP reduces users’ costs and risks and allows them to concentrate on their mission objectives. 3DEP includes (1) data acquisition partnerships that leverage funding, (2) contracts with experienced private mapping firms, (3) technical expertise, lidar data standards, and specifications, and (4) most important, public access to high-quality 3D elevation data.

  15. Carbon-Carbon Recuperators in Closed-Brayton-Cycle Nuclear Space Power Systems: A Feasibility Assessment

    Science.gov (United States)

    Barrett, Michael J.; Johnson, Paul K.

    2004-01-01

    The feasibility of using carbon-carbon recuperators in closed-Brayton-cycle (CBC) nuclear space power conversion systems (PCS) was assessed. Recuperator performance expectations were forecast based on projected thermodynamic cycle state values for a planetary mission. Resulting thermal performance, mass and volume for a plate-fin carbon-carbon recuperator were estimated and quantitatively compared with values for a conventional offset-strip-fin metallic design. Material compatibility issues regarding carbon-carbon surfaces exposed to the working fluid in the CBC PCS were also discussed.

  16. Industrial fouling: problem characterization, economic assessment, and review of prevention, mitigation, and accommodation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Garrett-Price, B.A.; Smith, S.A.; Watts, R.L.

    1984-02-01

    A comprehensive overview of heat exchanger fouling in the manufacturing industries is provided. Specifically, this overview addresses: the characteristics of industrial fouling problems; the mitigation and accommodation techniques currently used by industry; and the types and magnitude of costs associated with industrial fouling. A detailed review of the fouling problems, costs and mitigation techniques is provided for the food, textile, pulp and paper, chemical, petroleum, cement, glass and primary metals industries.

  17. Evaluating Mitigation Effort: Tools and Institutions for Assessing Nationally Determined Contributions

    OpenAIRE

    Aldy, Joseph Edgar

    2015-01-01

    The emerging pledge and review approach to international climate policy provides countries with substantial discretion in how they craft their intended emission mitigation contributions. The resulting heterogeneity in mitigation pledges places significant demands for a well-functioning transparency and review mechanism. In particular, the specific forms of intended contributions necessitate economic analysis in order to estimate the aggregate effects of these contributions as well as to permi...

  18. Using Online Tools to Assess Public Responses to Climate Change Mitigation Policies in Japan

    OpenAIRE

    Chay, Sengtha; Sasaki, Nophea

    2011-01-01

    As a member of the Annex 1 countries to the Kyoto Protocol of the United Nations Framework Convention on Climate Change, Japan is committed to reducing 6% of the greenhouse gas emissions. In order to achieve this commitment, Japan has undertaken several major mitigation measures, one of which is the domestic measure that includes ecologically friendly lifestyle programs, utilizing natural energy, participating in local environmental activities, and amending environmental laws. Mitigation poli...

  19. The contribution of sectoral climate change mitigation options to national targets: a quantitative assessment of dairy production in Kenya

    Science.gov (United States)

    Brandt, Patric; Herold, Martin; Rufino, Mariana C.

    2018-03-01

    Reducing greenhouse gas (GHG) emissions from agriculture has become a critical target in national climate change policies. More than 80% of the countries in Sub-Saharan Africa (SSA) refer to the reduction of agricultural emissions, including livestock, in their nationally determined contribution (NDC) to mitigate climate change. The livestock sector in Kenya contributes largely to the gross domestic product and to GHG emissions from the land use sector. The government has recently pledged in its NDC to curb total GHG emissions by 30% by 2030. Quantifying and linking the mitigation potential of farm practices to national targets is required to support realistically the implementation of NDCs. Improvements in feed and manure management represent promising mitigation options for dairy production. This study aimed (i) to assess mitigation and food production benefits of feed and manure management scenarios, including land use changes covering Kenya’s entire dairy production region and (ii) to analyse the contribution of these practices to national targets on milk production and mitigation, and their biophysical feasibility given the availability of arable land. The results indicate that improving forage quality by increasing the use of Napier grass and supplementing dairy concentrates supports Kenya’s NDC target, reduces emission intensities by 26%–31%, partially achieves the national milk productivity target for 2030 by 38%–41%, and shows high feasibility given the availability of arable land. Covering manure heaps may reduce emissions from manure management by 68%. In contrast, including maize silage in cattle diets would not reduce emission intensities due to the risk of ten-fold higher emissions from the conversion of land required to grow additional maize. The shortage of arable land may render the implementation of these improved feed practices largely infeasible. This assessment provides the first quantitative estimates of the potential of feed

  20. Assessing Carbon Dioxide Emissions from Energy Use at a University

    Science.gov (United States)

    Riddell, William; Bhatia, Krishan Kumar; Parisi, Matthew; Foote, Jessica; Imperatore, John, III

    2009-01-01

    Purpose: The purpose of this paper is to assess the carbon dioxide emissions associated with electric, HVAC, and hot water use from a US university. Design/methodology/approach: First, the total on-campus electrical, natural gas and oil consumption for an entire year was assessed. For each category of energy use, the carbon associated with…

  1. Do forests best mitigate CO2emissions to the atmosphere by setting them aside for maximization of carbon storage or by management for fossil fuel substitution?

    Science.gov (United States)

    Taeroe, Anders; Mustapha, Walid Fayez; Stupak, Inge; Raulund-Rasmussen, Karsten

    2017-07-15

    Forests' potential to mitigate carbon emissions to the atmosphere is heavily debated and a key question is if forests left unmanaged to store carbon in biomass and soil provide larger carbon emission reductions than forests kept under forest management for production of wood that can substitute fossil fuels and fossil fuel intensive materials. We defined a modelling framework for calculation of the carbon pools and fluxes along the forest energy and wood product supply chains over 200 years for three forest management alternatives (FMA): 1) a traditionally managed European beech forest, as a business-as-usual case, 2) an energy poplar plantation, and 3) a set-aside forest left unmanaged for long-term storage of carbon. We calculated the cumulative net carbon emissions (CCE) and carbon parity times (CPT) of the managed forests relative to the unmanaged forest. Energy poplar generally had the lowest CCE when using coal as the reference fossil fuel. With natural gas as the reference fossil fuel, the CCE of the business-as-usual and the energy poplar was nearly equal, with the unmanaged forest having the highest CCE after 40 years. CPTs ranged from 0 to 156 years, depending on the applied model assumptions. CCE and CPT were especially sensitive to the reference fossil fuel, material alternatives to wood, forest growth rates for the three FMAs, and energy conversion efficiencies. Assumptions about the long-term steady-state levels of carbon stored in the unmanaged forest had a limited effect on CCE after 200 years. Analyses also showed that CPT was not a robust measure for ranking of carbon mitigation benefits. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Assessing the pulmonary toxicity of single-walled carbon nanohorns

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Rachel M [ORNL; Voy, Brynn H [ORNL; Glass-Mattie, Dana F [ORNL; Mahurin, Shannon Mark [ORNL; Saxton, Arnold [University of Tennessee, Knoxville (UTK); Donnel, Robert L. [University of Tennessee, Knoxville (UTK); Cheng, Mengdawn [ORNL

    2007-01-01

    Previous studies have suggested that single-walled carbon nanotubes (SWCNTs) may be pose a pulmonary hazard. We investigated the pulmonary toxicity of single-walled carbon nanohorns (SWCNHs), a relatively new carbon-based nanomaterial that is structurally similar to SWCNTs. Mice were exposed to 30 g of surfactant-suspended SWCNHs by pharyngeal aspiration and sacrificed 24 hours or 7 days post exposure. Total and differential cell counts and cytokine analysis of bronchoalveolar lavage fluid demonstrated a mild inflammatory response which was mitigated by day 7 post exposure. Whole lung microarray analysis demonstrated that SWCNH-exposure did not lead to robust changes in gene expression. Finally, histological analysis showed no evidence of granuloma formation or fibrosis following SWCNH aspiration. These combined results suggest that SWCNH is a relatively innocuous nanomaterial when delivered to mice in vivo using aspiration as a delivery mechanism.

  3. Assessing the pulmonary toxicity of single-walled carbon nanohorns

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, Rachel M [ORNL; Voy, Brynn H [ORNL; Glass-Mattie, Dana F [ORNL; Mahurin, Shannon Mark [ORNL; Saxton, Arnold [University of Tennessee, Knoxville (UTK); Donnel, Robert L. [University of Tennessee, Knoxville (UTK); Cheng, Mengdawn [ORNL

    2007-01-01

    Previous studies have suggested that single-walled carbon nanotubes (SWCNTs) may pose a pulmonary hazard. We investigated the pulmonary toxicity of single-walled carbon nanohorns (SWCNHs), a relatively new carbon-based nanomaterial that is structurally similar to SWCNTs. Mice were exposed to 30 {micro}g of surfactant-suspended SWCNHs or an equal volume of vehicle control by pharyngeal aspiration and sacrificed 24 hours or 7 days post-exposure. Total and differential cell counts and cytokine analysis of bronchoalveolar lavage fluid demonstrated a mild inflammatory response which was mitigated by day 7 post-exposure. Whole lung microarray analysis demonstrated that SWCNH-exposure did not lead to robust changes in gene expression. Finally, histological analysis showed no evidence of granuloma formation or fibrosis following SWCNH aspiration. These combined results suggest that SWCNH is a relatively innocuous nanomaterial when delivered to mice in vivo using aspiration as a delivery mechanism.

  4. Economic efficiency assessment of greenhouse gases mitigation for agriculture; Analyse af omkostningseffektiviteten ved drivhusgasreducerende tiltag i relation til landbruget

    Energy Technology Data Exchange (ETDEWEB)

    Dubgaard, A.; Moeller Laugesen, F.; Staehl, E.E.; Bang, J.R.; Schou, E.; Jacobsen, Brian H.; Oerum, J.E.; Dejgaerd Jensen, J.

    2013-08-15

    The report contains the contributions by the Institute of Food and Resource Economics (IFRO) to a Danish Government appraisal of greenhouse gas (GHG) reduction measures. The policy goal is a 40 per cent reduction in total Danish GHG emissions by 2020 compared to 1990. The GHGs analysed in the present study include emissions of CO{sub 2}, nitrous oxide and methane plus soil carbon sequestration. The purpose of the study is to identify GHG mitigation measures related to agriculture which can deliver cost-effective contributions to the targeted reduction in GHG emissions in Denmark. A total of 21 GHG mitigation measures are included in the assessment. The stipulated implementation period is 2013 to 2020. The cost calculations have a time horizon equal to 30 years, i.e. from 2013 to 2042. The GHG reduction potential, expressed in CO{sub 2} equivalents (CO{sub 2}-eq), is calculated as the sum of the effect on the emission of CO{sub 2} (with and without changes in soil carbon), methane and nitrous oxide. The 21 mitigation measures are listed below (figures in brackets show the assumed implementation potential): 1. Biogas from livestock manure/slurry (10 % of total slurry production) 2. Biogas from slurry and maize (10 % of total slurry production) 3. Biogas from organic clover 4. Additional fat in diet for dairy cows (80% of conventional dairy cow stock and 20 % of organic dairy cow stock) 5. Additional concentrated feed in diet for other cattle (25 % of cattle stock under 2 years of age) 6. Prolonged lactation period for dairy cows (10 % of dairy cow stock) 7. Acidification of slurry (10 % of total slurry production) 8. Covers on slurry containers (40 % of total slurry production) 9. Cooling of pig slurry (10 % of pig slurry) 10. Nitrification inhibitors in nitrate fertilisers (100 % of chemical fertilisers with nitrogen) 11. Increased nitrogen utilization requirement for degassed slurry in nitrogen quota system (50 % of total slurry production) 12. Increased nitrogen

  5. Assessing ocean alkalinity for carbon sequestration

    Science.gov (United States)

    Renforth, Phil; Henderson, Gideon

    2017-09-01

    Over the coming century humanity may need to find reservoirs to store several trillions of tons of carbon dioxide (CO2) emitted from fossil fuel combustion, which would otherwise cause dangerous climate change if it were left in the atmosphere. Carbon storage in the ocean as bicarbonate ions (by increasing ocean alkalinity) has received very little attention. Yet recent work suggests sufficient capacity to sequester copious quantities of CO2. It may be possible to sequester hundreds of billions to trillions of tons of C without surpassing postindustrial average carbonate saturation states in the surface ocean. When globally distributed, the impact of elevated alkalinity is potentially small and may help ameliorate the effects of ocean acidification. However, the local impact around addition sites may be more acute but is specific to the mineral and technology. The alkalinity of the ocean increases naturally because of rock weathering in which >1.5 mol of carbon are removed from the atmosphere for every mole of magnesium or calcium dissolved from silicate minerals (e.g., wollastonite, olivine, and anorthite) and 0.5 mol for carbonate minerals (e.g., calcite and dolomite). These processes are responsible for naturally sequestering 0.5 billion tons of CO2 per year. Alkalinity is reduced in the ocean through carbonate mineral precipitation, which is almost exclusively formed from biological activity. Most of the previous work on the biological response to changes in carbonate chemistry have focused on acidifying conditions. More research is required to understand carbonate precipitation at elevated alkalinity to constrain the longevity of carbon storage. A range of technologies have been proposed to increase ocean alkalinity (accelerated weathering of limestone, enhanced weathering, electrochemical promoted weathering, and ocean liming), the cost of which may be comparable to alternative carbon sequestration proposals (e.g., $20-100 tCO2-1). There are still many

  6. Assessing the IADC Space Debris Mitigation Guidelines: A Case for Ontology-based Data Management

    Science.gov (United States)

    Walls, R.; Gaylor, D.; Reddy, V.; Furfaro, R.; Jah, M.

    2016-09-01

    As the population of man-made debris orbiting the Earth increases, so does the risk of damaging collisions. The Inter-Agency Space Debris Coordination Committee (IADC) has issued space debris mitigation guidelines including a key recommendation that before mission's end, spacecraft should move far enough from GEO so as not to be an operational hazard to other objects in active missions. It can be extremely difficult to determine if a spacecraft or operator is in compliance with this guideline, as it requires prediction of future actions based upon many data types. Furthermore, there has been no comprehensive assessment of the adequacy or validity of the IADC recommendations. The EU strives for a Code of Conduct in space, the United Nations-Committee On Peaceful Uses of Outer Space (UN-COPUOS) strives for guidelines to ensure the Long Term Sustainability of Space Activities (LTSSA), the FAA is concerned with Space Traffic Management (STM), etc. If rules, policies, guidelines, and laws are put in place, how can any entity know who and what is adhering to them, when we don't even know how to quantify and assess behavior of space objects? The University of Arizona aims to address this salient issue. As part of its new Space Object Behavioral Sciences (SOBS) initiative, the University of Arizona is developing an ontology-based system to support integration, use, and sharing of space domain data. As a first use-case, we will test the system's ability to assess compliance with the IADC recommendation to move beyond GEO at the end of a mission as well as the adequacy and validity of recommendations. We describe the relevant data types gathered for this use-case, present a prototype ontology, and outline methods for combining semantic analysis with astrodynamics modeling. Without loss of generality, we present this method as an approach that will form the foundation of SOBS and be used to address pressing challenges in Space Situational Awareness (SSA), Orbital Safety

  7. A framework for the case-specific assessment of Green Infrastructure in mitigating urban flood hazards

    Science.gov (United States)

    Schubert, Jochen E.; Burns, Matthew J.; Fletcher, Tim D.; Sanders, Brett F.

    2017-10-01

    This research outlines a framework for the case-specific assessment of Green Infrastructure (GI) performance in mitigating flood hazard in small urban catchments. The urban hydrologic modeling tool (MUSIC) is coupled with a fine resolution 2D hydrodynamic model (BreZo) to test to what extent retrofitting an urban watershed with GI, rainwater tanks and infiltration trenches in particular, can propagate flood management benefits downstream and support intuitive flood hazard maps useful for communicating and planning with communities. The hydrologic and hydraulic models are calibrated based on current catchment conditions, then modified to represent alternative GI scenarios including a complete lack of GI versus a full implementation of GI. Flow in the hydrologic/hydraulic models is forced using a range of synthetic rainfall events with annual exceedance probabilities (AEPs) between 1-63% and durations from 10 min to 24 h. Flood hazard benefits mapped by the framework include maximum flood depths and extents, flow intensity (m2/s), flood duration, and critical storm duration leading to maximum flood conditions. Application of the system to the Little Stringybark Creek (LSC) catchment shows that across the range of AEPs tested and for storm durations equal or less than 3 h, presently implemented GI reduces downstream flooded area on average by 29%, while a full implementation of GI would reduce downstream flooded area on average by 91%. A full implementation of GI could also lower maximum flow intensities by 83% on average, reducing the drowning hazard posed by urban streams and improving the potential for access by emergency responders. For storm durations longer than 3 h, a full implementation of GI lacks the capacity to retain the resulting rainfall depths and only reduces flooded area by 8% and flow intensity by 5.5%.

  8. Integrated Tsunami Data Supports Forecast, Warning, Research, Hazard Assessment, and Mitigation (Invited)

    Science.gov (United States)

    Dunbar, P. K.; Stroker, K. J.

    2009-12-01

    With nearly 230,000 fatalities, the 26 December 2004 Indian Ocean tsunami was the deadliest tsunami in history, illustrating the importance of developing basinwide warning systems. Key to creating these systems is easy access to quality-controlled, verified data on past tsunamis. It is essential that warning centers, emergency managers, and modelers can determine if and when similar events have occurred. Following the 2004 tsunami, the National Oceanic and Atmospheric Administration’s (NOAA) National Geophysical Data Center (NGDC) began examining all aspects of the tsunami data archive to help answer questions regarding the frequency and severity of past tsunamis. Historical databases span insufficient time to reveal a region’s full tsunami hazard, so a global database of citations to articles on tsunami deposits was added to the archive. NGDC further expanded the archive to include high-resolution tide gauge data, deep-ocean sensor data, and digital elevation models used for propagation and inundation modeling. NGDC continuously reviews the data for accuracy, making modifications as new information is obtained. These added databases allow NGDC to provide the tsunami data necessary for warning guidance, hazard assessments, and mitigation efforts. NGDC is also at the forefront of standards-based Web delivery of integrated science data through a variety of tools, from Web-form interfaces to interactive maps. The majority of the data in the tsunami archive are discoverable online. Scientists, journalists, educators, planners, and emergency managers are among the many users of these public domain data, which may be used without restriction provided that users cite data sources.

  9. Toward a Better Assessment of Biochar-Nitrous Oxide Mitigation Potential at the Field Scale.

    Science.gov (United States)

    Verhoeven, Elizabeth; Pereira, Engil; Decock, Charlotte; Suddick, Emma; Angst, Teri; Six, Johan

    2017-03-01

    Through meta-analysis, we synthesize results from field studies on the effect of biochar application on NO emissions and crop yield. We aimed to better constrain the effect of biochar on NO emissions under field conditions, identify significant predictor variables, assess potential synergies and tradeoffs between NO mitigation and yield, and discuss knowledge gaps. The response ratios for yield and NO emissions were weighted by one of two functions: (i) the inverse of the pooled variance or (ii) the inverse of number of observations per field site. Significant emission reductions were observed when weighting by the inverse of the pooled variance (-18.1 to -7.1%) but not when weighting by the number of observations per site (-17.1 to +0.8%), thus revealing a bias in the existing data by sites with more observations. Mean yield increased by 1.7 to 13.8%. Our study shows yield benefits but no robust evidence for NO emission reductions by biochar under field conditions. When weighted by the inverse of the number of observations per site, NO emission reductions were not significantly affected by cropping system, biochar properties of feedstock, pyrolysis temperature, surface area, pH, ash content, application rate, or site characteristics of N rate, N form, or soil pH. Uneven coverage in the range of these predictor variables likely underlies the failure to detect effects. We discuss the need for future biochar field studies to investigate effects of fertilizer N form, sustained and biologically relevant changes in soil moisture, multiple biochars per site, and time since biochar application. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  10. Assessment of Soil Organic Carbon Stock of Temperate Coniferous Forests in Northern Kashmir

    Directory of Open Access Journals (Sweden)

    Davood A. Dar

    2015-02-01

    Full Text Available  Soil organic carbon (SOC estimation in temperate forests of the Himalaya is important to estimate their contribution to regional, national and global carbon stocks. Physico chemical properties of soil were quantified to assess soil organic carbon density (SOC and SOC CO2 mitigation density at two soil depths (0-10 and 10-20 cms under temperate forest in the Northern region of Kashmir Himalayas India. The results indicate that conductance, moisture content, organic carbon and organic matter were significantly higher while as pH and bulk density were lower at Gulmarg forest site. SOC % was ranging from 2.31± 0.96 at Gulmarg meadow site to 2.31 ± 0.26 in Gulmarg forest site. SOC stocks in these temperate forests were from 36.39 ±15.40 to 50.09 ± 15.51 Mg C ha-1. The present study reveals that natural vegetation is the main contributor of soil quality as it maintained the soil organic carbon stock. In addition, organic matter is an important indicator of soil quality and environmental parameters such as soil moisture and soil biological activity change soil carbon sequestration potential in temperate forest ecosystems.DOI: http://dx.doi.org/10.3126/ije.v4i1.12186International Journal of Environment Volume-4, Issue-1, Dec-Feb 2014/15; page: 161-178

  11. Assessing carbon footprints of dairy production systems

    Science.gov (United States)

    The farm-gate carbon footprint of milk quantifies the net greenhouse gas emissions of a dairy production system. Published values vary widely depending upon farm management practices and the calculation method used. Standard procedures for calculating the carbon footprint of milk are now established...

  12. Assessment of Weld Overlays for Mitigating Primary Water Stress Corrosion Cracking at Nickel Alloy Butt Welds in Piping Systems Approved for Leak-Before-Break

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Edward J.; Anderson, Michael T.

    2012-08-01

    This TLR provides an assessment of weld overlays as a mitigation strategy for PWSCC, and includes an assessment of the WOL-related inspection requirements of Code Case N-770-1, as conditioned in §50.55a.

  13. Assessment of Brine Management for Geologic Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Breunig, Hanna M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Birkholzer, Jens T. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Borgia, Andrea [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Price, Phillip N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division; McKone, Thomas E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Environmental Energy Technologies Division

    2013-06-13

    Geologic carbon sequestration (GCS) is the injection of carbon dioxide (CO2), typically captured from stationary emission sources, into deep geologic formations to prevent its entry into the atmosphere. Active pilot facilities run by regional United States (US) carbon sequestration partnerships inject on the order of one million metric tonnes (mt) CO2 annually while the US electric power sector emits over 2000 million mt-CO2 annually. GCS is likely to play an increasing role in US carbon mitigation initiatives, but scaling up GCS poses several challenges. Injecting CO2 into sedimentary basins raises fluid pressure in the pore space, which is typically already occupied by naturally occurring, or native, brine. The resulting elevated pore pressures increase the likelihood of induced seismicity, of brine or CO2 escaping into potable groundwater resources, and of CO2 escaping into the atmosphere. Brine extraction is one method for pressure management, in which brine in the injection formation is brought to the surface through extraction wells. Removal of the brine makes room for the CO2 and decreases pressurization. Although the technology required for brine extraction is mature, this form of pressure management will only be applicable if there are cost-­effective and sustainable methods of disposing of the extracted brine. Brine extraction, treatment, and disposal may increase the already substantial capital, energy, and water demands of Carbon dioxide Capture and Sequestration (CCS). But, regionally specific brine management strategies may be able to treat the extracted water as a source of revenue, energy, and water to subsidize CCS costs, while minimizing environmental impacts. By this approach, value from the extracted water would be recovered before disposing of any resulting byproducts. Until a price is placed on carbon, we expect that utilities and other CO2 sources will be

  14. Wetland mitigation banking for the oil and gas industry: Assessment, conclusions, and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Wilkey, P.L.; Sundell, R.C.; Bailey, K.A.; Hayes, D.C.

    1994-01-01

    Wetland mitigation banks are already in existence in the United States, and the number is increasing. To date, most of these banks have been created and operated for mitigation of impacts arising from highway or commercial development and have not been associated with the oil and gas industry. Argonne National Laboratory evaluated the positive and negative aspects of wetland mitigation banking for the oil and gas industry by examining banks already created for other uses by federal, state, and private entities. Specific issues addressed in this study include (1) the economic, ecological, and technical effectiveness of existing banks; (2) the changing nature of local, state, and federal jurisdiction; and (3) the unique regulatory and jurisdictional problems affecting bank developments associated with the oil and gas industry.

  15. Assessment of farm soil, biochar, compost and weathered pine mulch to mitigate methane emissions.

    Science.gov (United States)

    Syed, Rashad; Saggar, Surinder; Tate, Kevin; Rehm, Bernd H A

    2016-11-01

    Previous studies have demonstrated the effective utility of volcanic pumice soil to mitigate both high and low levels of methane (CH4) emissions through the activity of both γ-proteobacterial (type I) and α-proteobacterial (type II) aerobic methanotrophs. However, the limited availability of volcanic pumice soil necessitates the assessment of other farm soils and potentially suitable, economical and widely available biofilter materials. The potential biofilter materials, viz. farm soil (isolated from a dairy farm effluent pond bank area), pine biochar, garden waste compost and weathered pine bark mulch, were inoculated with a small amount of volcanic pumice soil. Simultaneously, a similar set-up of potential biofilter materials without inoculum was studied to understand the effect of the inoculum on the ability of these materials to oxidise CH4 and their effect on methanotroph growth and activity. These materials were incubated at 25 °C with periodic feeding of CH4, and flasks were aerated with air (O2) to support methanotroph growth and activity by maintaining aerobic conditions. The efficiency of CH4 removal was monitored over 6 months. All materials supported the growth and activity of methanotrophs. However, the efficiency of CH4 removal by all the materials tested fluctuated between no or low removal (0-40 %) and high removal phases (>90 %), indicating biological disturbances rather than physico-chemical changes. Among all the treatments, CH4 removal was consistently high (>80 %) in the inoculated farm soil and inoculated biochar, and these were more resilient to changes in the methanotroph community. The CH4 removal from inoculated farm soil and inoculated biochar was further enhanced (up to 99 %) by the addition of a nutrient solution. Our results showed that (i) farm soil and biochar can be used as a biofilter material by inoculating with an active methanotroph community, (ii) an abundant population of α-proteobacterial methanotrophs is essential

  16. Assessing and mitigating risks of engineering programs with lean management techniques

    DEFF Research Database (Denmark)

    Fritz, A.; Oehmen, Josef; Rebentisch, E.

    2014-01-01

    This paper investigates the use of lean management techniques as a risk mitigation approach for large-scale engineering programs. The key research questions are how lean best practices with the highest risk mitigation potential are identified, how the most relevant lean best practices...... by the Project Management Institute (PMI), that both include Risk Management as a focal activity [MSP 2011, PMI 2013]....... the construction of a new airport, highway or bridge, or combine elements of both technology and infrastructure. The benefits they deliver are therefore immense and sometimes even groundbreaking, defining new levels of capabilities. But their sheer size and the built-in complexity also manifest themselves...

  17. Assessing net carbon sequestration on urban and community forests of northern New England, USA

    Science.gov (United States)

    Daolan Zheng; Mark J. Ducey; Linda S. Heath

    2013-01-01

    Urban and community forests play an important role in the overall carbon budget of the USA. Accurately quantifying carbon sequestration by these forests can provide insight for strategic planning to mitigate greenhouse gas effects on climate change. This study provides a new methodology to estimate net forest carbon sequestration (FCS) in urban and community lands of...

  18. Global Air Quality and Health Co-benefits of Mitigating Near-term Climate Change Through Methane and Black Carbon Emission Controls

    Science.gov (United States)

    Anenberg, Susan C.; Schwartz, Joel; Shindell, Drew Todd; Amann, Markus; Faluvegi, Gregory S.; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Dingenen, Rita Van; Vignati, Elisabetta; hide

    2012-01-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM2.5 and ozone using two composition-climate models, and calculated associated changes in premature PM2.5- and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM2.5 and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM2.5 relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.

  19. Greenhouse gas mitigation in animal production: towards an integrated life cycle sustainability assessment.

    NARCIS (Netherlands)

    Boer, de I.J.M.; Cederberg, C.; Eady, S.; Gollnow, S.; Kristensen, T.; Macleod, M.; Meul, M.; Nemecek, T.; Phong, L.T.; Thoma, G.; Werf, H.M.G.; Williams, A.G.; Zonderland-Thomassen, M.A.

    2011-01-01

    The animal food chain contributes significantly to emission of greenhouse gases (GHGs). We explored studies that addressed options to mitigate GHG emissions in the animal production chain and concluded that most studies focused on production systems in developed countries and on a single GHG. They

  20. Assessment of possible solid-phase phosphate sorbents to mitigate eutrophication

    NARCIS (Netherlands)

    Mucci, Maíra; Maliaka, Valentini; Noyma, Natalia Pessoa; Marinho, Marcelo Manzi; Lürling, Miquel

    2018-01-01

    Managing eutrophication remains a challenge to water managers. Currently, the manipulation of biogeochemical processes (i.e., geo-engineering) by using phosphorus-adsorptive techniques has been recognized as an appropriate tool to manage the problem. The first step in finding potential mitigating

  1. High-speed rail aerodynamic assessment and mitigation report : final report.

    Science.gov (United States)

    2015-12-01

    This report advances the current state of knowledge, as well as shared understanding and evaluation of present procedures used to : mitigate the impacts effects from high-speed trains (HST) operating at speeds between 110 mph and 250 mph. This work g...

  2. Experimental assessment of the insertion loss of an underwater noise mitigation screen for marine pile driving

    NARCIS (Netherlands)

    Jansen, H.W.; Jong, C.A.F. de; Jung, B.

    2012-01-01

    Because of the concern about potential effects on marine pile driving, the industry is developing silent marine pile driving concepts. One of the new concepts, which has been engineered by IHC Hydrohammer in the Netherlands, is the application of a steel Noise Mitigation Screen (NMS) around the pile

  3. Broadening the Appeal of Marginal Abatement Cost Curves: Capturing Both Carbon Mitigation and Development Benefits of Clean Energy Technologies; Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Cowlin, S.; Cochran, J.; Cox, S.; Davison, C.; van der Gaast, Y.

    2012-08-01

    Low emission development strategies (LEDS) articulate policies and implementation plans that enable countries to advance sustainable, climate-resilient development and private sector growth while significantly reducing the greenhouse gas (GHG) emissions traditionally associated with economic growth. In creating a LEDS, policy makers often have access to information on abatement potential and costs for clean energy technologies, but there is a scarcity of economy-wide approaches for evaluating and presenting information on other dimensions of importance to development, such as human welfare, poverty alleviation, and energy security. To address this shortcoming, this paper proposes a new tool for communicating development benefits to policy makers as part of a LEDS process. The purpose of this tool is two-fold: 1. Communicate development benefits associated with each clean energy-related intervention; 2. Facilitate decision-making on which combination of interventions best contributes to development goals. To pilot this tool, the authors created a visual using data on developmental impacts identified through the Technology Needs Assessment (TNA) project in Montenegro. The visual will then be revised to reflect new data established through the TNA that provides information on cost, GHG mitigation, as well as the range and magnitude of developmental impacts.

  4. Electricity from fossil fuels without CO2 emissions: assessing the costs of carbon dioxide capture and sequestration in U.S. electricity markets.

    Science.gov (United States)

    Johnson, T L; Keith, D W

    2001-10-01

    The decoupling of fossil-fueled electricity production from atmospheric CO2 emissions via CO2 capture and sequestration (CCS) is increasingly regarded as an important means of mitigating climate change at a reasonable cost. Engineering analyses of CO2 mitigation typically compare the cost of electricity for a base generation technology to that for a similar plant with CO2 capture and then compute the carbon emissions mitigated per unit of cost. It can be hard to interpret mitigation cost estimates from this plant-level approach when a consistent base technology cannot be identified. In addition, neither engineering analyses nor general equilibrium models can capture the economics of plant dispatch. A realistic assessment of the costs of carbon sequestration as an emissions abatement strategy in the electric sector therefore requires a systems-level analysis. We discuss various frameworks for computing mitigation costs and introduce a simplified model of electric sector planning. Results from a "bottom-up" engineering-economic analysis for a representative U.S. North American Electric Reliability Council (NERC) region illustrate how the penetration of CCS technologies and the dispatch of generating units vary with the price of carbon emissions and thereby determine the relationship between mitigation cost and emissions reduction.

  5. Composting, anaerobic digestion and biochar production in Ghana. Environmental–economic assessment in the context of voluntary carbon markets

    Energy Technology Data Exchange (ETDEWEB)

    Galgani, Pietro, E-mail: p.galgani@hotmail.com [Department of Industrial Ecology, Institute of Environmental Sciences, Leiden University, Van Steenis gebouw, Einsteinweg 2, 2333CC Leiden (Netherlands); Voet, Ester van der [Department of Industrial Ecology, Institute of Environmental Sciences, Leiden University, Van Steenis gebouw, Einsteinweg 2, 2333CC Leiden (Netherlands); Korevaar, Gijsbert [Department of Energy and Industry, Faculty of Technology, Policy, and Management, Delft University of Technology, Jaffalaan 5, 2628 BX Delft (Netherlands)

    2014-12-15

    Highlights: • Economic–environmental assessment of combining composting with biogas and biochar in Ghana. • These technologies can save greenhouse gas emissions for up to 0.57 t CO{sub 2} eq/t of waste treated. • Labor intensive, small-scale organic waste management is not viable without financial support. • Carbon markets would make these technologies viable with carbon prices in the range of 30–84 EUR/t. - Abstract: In some areas of Sub-Saharan Africa appropriate organic waste management technology could address development issues such as soil degradation, unemployment and energy scarcity, while at the same time reducing emissions of greenhouse gases. This paper investigates the role that carbon markets could have in facilitating the implementation of composting, anaerobic digestion and biochar production, in the city of Tamale, in the North of Ghana. Through a life cycle assessment of implementation scenarios for low-tech, small scale variants of the above mentioned three technologies, the potential contribution they could give to climate change mitigation was assessed. Furthermore an economic assessment was carried out to study their viability and the impact thereon of accessing carbon markets. It was found that substantial climate benefits can be achieved by avoiding landfilling of organic waste, producing electricity and substituting the use of chemical fertilizer. Biochar production could result in a net carbon sequestration. These technologies were however found not to be economically viable without external subsidies, and access to carbon markets at the considered carbon price of 7 EUR/ton of carbon would not change the situation significantly. Carbon markets could help the realization of the considered composting and anaerobic digestion systems only if the carbon price will rise above 75–84 EUR/t of carbon (respectively for anaerobic digestion and composting). Biochar production could achieve large climate benefits and, if approved as a land

  6. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment.

    Science.gov (United States)

    Rahman, Khondokar M; Melville, Lynsey; Fulford, David; Huq, Sm Imamul

    2017-10-01

    Calculations towards determining the greenhouse gas mitigation capacity of a small-scale biogas plant (3.2 m 3 plant) using cow dung in Bangladesh are presented. A general life cycle assessment was used, evaluating key parameters (biogas, methane, construction materials and feedstock demands) to determine the net environmental impact. The global warming potential saving through the use of biogas as a cooking fuel is reduced from 0.40 kg CO 2 equivalent to 0.064 kg CO 2 equivalent per kilogram of dung. Biomethane used for cooking can contribute towards mitigation of global warming. Prior to utilisation of the global warming potential of methane (from 3.2 m 3 biogas plant), the global warming potential is 13 t of carbon dioxide equivalent. This reduced to 2 t as a result of complete combustion of methane. The global warming potential saving of a bioenergy plant across a 20-year life cycle is 217 t of carbon dioxide equivalent, which is 11 t per year. The global warming potential of the resultant digestate is zero and from construction materials is less than 1% of total global warming potential. When the biogas is used as a fuel for cooking, the global warming potential will reduce by 83% compare with the traditional wood biomass cooking system. The total 80 MJ of energy that can be produced from a 3.2 m 3 anaerobic digestion plant would replace 1.9 t of fuel wood or 632 kg of kerosene currently used annually in Bangladesh. The digestate can also be used as a nutrient rich fertiliser substituting more costly inorganic fertilisers, with no global warming potential impact.

  7. Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies.

    Science.gov (United States)

    Quam, Vivian G M; Rocklöv, Joacim; Quam, Mikkel B M; Lucas, Rebekah A I

    2017-04-27

    This is the first structured review to identify and summarize research on lifestyle choices that improve health and have the greatest potential to mitigate climate change. Two literature searches were conducted on: (1) active transport health co-benefits, and (2) dietary health co-benefits. Articles needed to quantify both greenhouse gas emissions and health or nutrition outcomes resulting from active transport or diet changes. A data extraction tool (PRISMA) was created for article selection and evaluation. A rubric was devised to assess the biases, limitations and uncertainties of included articles. For active transport 790 articles were retrieved, nine meeting the inclusion criteria. For diet 2524 articles were retrieved, 23 meeting the inclusion criteria. A total of 31 articles were reviewed and assessed using the rubric, as one article met the inclusion criteria for both active transport and diet co-benefits. Methods used to estimate the effect of diet or active transport modification vary greatly precluding meta-analysis. The scale of impact on health and greenhouse gas emissions (GHGE) outcomes depends predominately on the aggressiveness of the diet or active transport scenario modelled, versus the modelling technique. Effective mitigation policies, infrastructure that supports active transport and low GHGE food delivery, plus community engagement are integral in achieving optimal health and GHGE outcomes. Variation in culture, nutritional and health status, plus geographic density will determine which mitigation scenario(s) best suit individual communities.

  8. Assessing Greenhouse Gas Emissions and Health Co-Benefits: A Structured Review of Lifestyle-Related Climate Change Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Vivian G. M. Quam

    2017-04-01

    Full Text Available This is the first structured review to identify and summarize research on lifestyle choices that improve health and have the greatest potential to mitigate climate change. Two literature searches were conducted on: (1 active transport health co-benefits, and (2 dietary health co-benefits. Articles needed to quantify both greenhouse gas emissions and health or nutrition outcomes resulting from active transport or diet changes. A data extraction tool (PRISMA was created for article selection and evaluation. A rubric was devised to assess the biases, limitations and uncertainties of included articles. For active transport 790 articles were retrieved, nine meeting the inclusion criteria. For diet 2524 articles were retrieved, 23 meeting the inclusion criteria. A total of 31 articles were reviewed and assessed using the rubric, as one article met the inclusion criteria for both active transport and diet co-benefits. Methods used to estimate the effect of diet or active transport modification vary greatly precluding meta-analysis. The scale of impact on health and greenhouse gas emissions (GHGE outcomes depends predominately on the aggressiveness of the diet or active transport scenario modelled, versus the modelling technique. Effective mitigation policies, infrastructure that supports active transport and low GHGE food delivery, plus community engagement are integral in achieving optimal health and GHGE outcomes. Variation in culture, nutritional and health status, plus geographic density will determine which mitigation scenario(s best suit individual communities.

  9. Stray light assessment and mitigation for the DESI front-end optical system

    Science.gov (United States)

    Miller, Timothy N.; Lampton, Michael; Besuner, Robert W.; Sholl, Michael J.; Liang, Ming; Ellis, Scott

    2016-08-01

    The Dark Energy Spectroscopic Instrument (DESI) is under construction to measure the expansion history of the Universe, using the Baryon Acoustic Oscillation technique and the growth of structure using redshift-space distortions (RSD). The spectra of 40 million galaxies over 14000 square degrees will be measured during the life of the experiment. A new prime focus corrector for the KPNO Mayall telescope will deliver light to 5000 fiber optic positioners. The fibers in turn feed ten broad-band spectrographs. We will describe modeling and mitigation of stray light within the front end of DESI, consisting of the Mayall telescope and the corrector assembly. This includes the creation of a stray light model, quantitative analysis of the unwanted light at the corrector focal surface, identification of the main scattering sources, and a description of mitigation strategies to remove the sources.

  10. Quantifying Terrestrial Ecosystem Carbon Stocks for Future GHG Mitigation, Sustainable Land-Use Planning and Adaptation to Climate Change in Quebec, Canada.

    Science.gov (United States)

    Garneau, M.; van Bellen, S.

    2016-12-01

    Based on various databases, carbon stocks of terrestrial ecosystems in the boreal and arctic biomes of Quebec were quantified as part of an evaluation of their capacity to mitigate anthropogenic greenhouse gas (GHG) emissions and estimate their vulnerability with respect to recent climate change and land use changes. The results of this project are contributing to the establishment of the Strategy for Climate Change Adaptation as well as the 2013-2020 Climate Change Action Plan of the Quebec Ministry of Environment, which aim to adapt the Quebec society to the effects of climate change and the reduction of GHG emissions. The total carbon stock of the soils of the forest and peatland ecosystems of Quebec was quantified at 18.00 Gt C or 66.0 Gt CO2-equivalent, of which 95% corresponds to the boreal and arctic regions. The mean carbon mass per unit area (kg C m-2) of peatlands is about nine times higher than that of forests, with values of 100,0 kg C m-2 for peatlands and 10,9 kg C m-2 for forest stands. In 2013, total anthropogenic emissions in Quebec were quantified at 82.6 Mt CO2-equivalent (Environment Canada, 2015), or 1.25‰ of the total Quebec ecosystem carbon stock. The total stock thus represents the equivalent of about 800 years of anthropogenic emissions at the current rate, divided between 478 years for peatlands and 321 years for forest soils. Future GHG mitigation policies and sustainable land-use planning should be supported by scientific data on terrestrial ecosystems carbon stocks. An increase in investments in peatland, wetland and forest conservation, management and rehabilitation may contribute to limit greenhouse gas emissions. It is therefore essential, that, following the objectives of multiple international organisations, the management of terrestrial carbon stocks becomes part of the national engagement to reduce GHG emissions.

  11. Forest inventories for carbon change assessments

    NARCIS (Netherlands)

    Mohren, G.M.J.; Hasenauer, H.; Köhl, M.; Nabuurs, G.J.

    2012-01-01

    We give a general overview of forest inventory developments and their potential to estimate forest carbon budgets and GHG emissions. Forest inventories mostly focus on timber resources, but can be extended to cover other forest characteristics, such as forest biomass. From forest biomass, ecosystem

  12. Greenhouse Gas Mitigation Options in ISEEM Global Energy Model: 2010-2050 Scenario Analysis for Least-Cost Carbon Reduction in Iron and Steel Sector

    Energy Technology Data Exchange (ETDEWEB)

    Karali, Nihan; Xu, Tengfang; Sathaye, Jayant

    2013-12-01

    The goal of the modeling work carried out in this project was to quantify long-term scenarios for the future emission reduction potentials in the iron and steel sector. The main focus of the project is to examine the impacts of carbon reduction options in the U.S. iron and steel sector under a set of selected scenarios. In order to advance the understanding of carbon emission reduction potential on the national and global scales, and to evaluate the regional impacts of potential U.S. mitigation strategies (e.g., commodity and carbon trading), we also included and examined the carbon reduction scenarios in China’s and India’s iron and steel sectors in this project. For this purpose, a new bottom-up energy modeling framework, the Industrial Sector Energy Efficiency Modeling (ISEEM), (Karali et al. 2012) was used to provide detailed annual projections starting from 2010 through 2050. We used the ISEEM modeling framework to carry out detailed analysis, on a country-by-country basis, for the U.S., China’s, and India’s iron and steel sectors. The ISEEM model applicable to iron and steel section, called ISEEM-IS, is developed to estimate and evaluate carbon emissions scenarios under several alternative mitigation options - including policies (e.g., carbon caps), commodity trading, and carbon trading. The projections will help us to better understand emission reduction potentials with technological and economic implications. The database for input of ISEEM-IS model consists of data and information compiled from various resources such as World Steel Association (WSA), the U.S. Geological Survey (USGS), China Steel Year Books, India Bureau of Mines (IBM), Energy Information Administration (EIA), and recent LBNL studies on bottom-up techno-economic analysis of energy efficiency measures in the iron and steel sector of the U.S., China, and India, including long-term steel production in China. In the ISEEM-IS model, production technology and manufacturing details are

  13. Chapter 5. Assessing the Need for High Impact Technology Research, Development & Deployment for Mitigating Climate Change

    OpenAIRE

    David Auston; Scott Samuelsen; Jack Brouwer; Steven DenBaars; William Glassley; Bryan Jenkins; Per Petersen; Venkat Srinivasan

    2016-01-01

    Technology is a centrally important component of all strategies to mitigate climate change. As such, it encompasses a multi-dimensional space that is far too large to be fully addressed in this brief chapter. Consequently, we have elected to focus on a subset of topics that we believe have the potential for substantial impact. As researchers, we have also narrowed our focus to address applied research, development and deployment issues and omit basic research topics that have a longer-term im...

  14. Rio Soliette (haiti): AN International Initiative for Flood-Hazard Assessment and Mitigation

    Science.gov (United States)

    Gandolfi, S.; Castellarin, A.; Barbarella, M.; Brath, A.; Domeneghetti, A.; Brandimarte, L.; Di Baldassarre, G.

    2013-01-01

    Natural catastrophic events are one of most critical aspects for health and economy all around the world. However, the impact in a poor region can impact more dramatically than in others countries. Isla Hispaniola (Haiti and the Dominican Republic), one of the poorest regions of the planet, has repeatedly been hit by catastrophic natural disasters that caused incalculable human and economic losses. After the catastrophic flood event occurred in the basin of River Soliette on May 24th, 2004, the General Direction for Development and Cooperation of the Italian Department of Foreign Affairs funded an international cooperation initiative (ICI) coordinated by the University of Bologna, that involved Haitian and Dominican institutions.Main purpose of the ICI was hydrological and hydraulic analysis of the May 2004 flood event aimed at formulating a suitable and affordable flood risk mitigation plan, consisting of structural and non-structural measures. In this contest, a topographic survey was necessary to realize the hydrological model and to improve the knowledge in some areas candidates to be site for mitigation measures.To overcome the difficulties arising from the narrowness of funds, surveyors and limited time available for the survey, only GPS technique have been used, both for framing aspects (using PPP approach), and for geometrical survey of the river by means of river cross-sections and detailed surveys in two areas (RTK technique). This allowed us to reconstruct both the river geometry and the DTM's of two expansion areas (useful for design hydraulic solutions for mitigate flood-hazard risk).

  15. Assessment of Dissolved Oxygen Mitigation at Hydropower Dams Using an Integrated Hydrodynamic/Water Quality/Fish Growth Model

    Energy Technology Data Exchange (ETDEWEB)

    Bevelhimer, Mark S [ORNL; Coutant, Charles C [ORNL

    2006-07-01

    Dissolved oxygen (DO) in rivers is a common environmental problem associated with hydropower projects. Approximately 40% of all FERC-licensed projects have requirements to monitor and/or mitigate downstream DO conditions. Most forms of mitigation for increasing DO in dam tailwaters are fairly expensive. One area of research of the Department of Energy's Hydropower Program is the development of advanced turbines that improve downstream water quality and have other environmental benefits. There is great interest in being able to predict the benefits of these modifications prior to committing to the cost of new equipment. In the case of turbine replacement or modification, there is a need for methods that allow us to accurately extrapolate the benefits derived from one or two turbines with better design to the replacement or modification of all turbines at a site. The main objective of our study was to demonstrate a modeling approach that integrates the effects of flow and water quality dynamics with fish bioenergetics to predict DO mitigation effectiveness over long river segments downstream of hydropower dams. We were particularly interested in demonstrating the incremental value of including a fish growth model as a measure of biological response. The models applied are a suite of tools (RMS4 modeling system) originally developed by the Tennessee Valley Authority for simulating hydrodynamics (ADYN model), water quality (RQUAL model), and fish growth (FISH model) as influenced by DO, temperature, and available food base. We parameterized a model for a 26-mile reach of the Caney Fork River (Tennessee) below Center Hill Dam to assess how improvements in DO at the dam discharge would affect water quality and fish growth throughout the river. We simulated different types of mitigation (i.e., at the turbine and in the reservoir forebay) and different levels of improvement. The model application successfully demonstrates how a modeling approach like this one can be

  16. Mitigation options in forestry, land-use change and biomass burning in Africa

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, Willy R.L. [Univ. of California, Lawrence Berkeley National Lab. (United States)

    1998-10-01

    Mitigation options to reduce greenhouse gas emissions and sequester carbon in land use sectors are described in some detail. The paper highlights those options in the forestry sector, which are more relevant to different parts of Africa. It briefly outlines a bottom-up methodological framework for comprehensively assessing mitigation options in land use sectors. This method emphasizes the application of end-use demand projections to construct baseline and mitigation scenarios and explicitly addresses the carbon storage potential on land an in wood products, as well as use of wood to substitute for fossil fuels. Cost-effectiveness indicators for ranking mitigation options are proposed, including those which account for non-carbon monetary benefits such as those derived from forest products, as well as opportunity cost of pursuing specific mitigation option. The paper finally surveys the likely policies, barriers and incentives to implement such mitigation options in African countries. (au) 13 refs.

  17. Effects of Low-Carbon Technologies and End-Use Electrification on Energy-Related Greenhouse Gases Mitigation in China by 2050

    Directory of Open Access Journals (Sweden)

    Zheng Guo

    2015-07-01

    Full Text Available Greenhouse gas emissions in China have been increasing in line with its energy consumption and economic growth. Major means for energy-related greenhouse gases mitigation in the foreseeable future are transition to less carbon intensive energy supplies and structural changes in energy consumption. In this paper, a bottom-up model is built to examine typical projected scenarios for energy supply and demand, with which trends of energy-related carbon dioxide emissions by 2050 can be analyzed. Results show that low-carbon technologies remain essential contributors to reducing emissions and altering emissions trends up to 2050. By pushing the limit of current practicality, emissions reduction can reach 20 to 28 percent and the advent of carbon peaking could shift from 2040 to 2030. In addition, the effect of electrification at end-use sectors is studied. Results show that electrifying transport could reduce emissions and bring the advent of carbon peaking forward, but the effect is less significant compared with low-carbon technologies. Moreover, it implies the importance of decarbonizing power supply before electrifying end-use sectors.

  18. Catastrophic debris flows transformed from landslides in volcanic terrains : mobility, hazard assessment and mitigation strategies

    Science.gov (United States)

    Scott, Kevin M.; Macias, Jose Luis; Naranjo, Jose Antonio; Rodriguez, Sergio; McGeehin, John P.

    2001-01-01

    Communities in lowlands near volcanoes are vulnerable to significant volcanic flow hazards in addition to those associated directly with eruptions. The largest such risk is from debris flows beginning as volcanic landslides, with the potential to travel over 100 kilometers. Stratovolcanic edifices commonly are hydrothermal aquifers composed of unstable, altered rock forming steep slopes at high altitudes, and the terrain surrounding them is commonly mantled by readily mobilized, weathered airfall and ashflow deposits. We propose that volcano hazard assessments integrate the potential for unanticipated debris flows with, at active volcanoes, the greater but more predictable potential of magmatically triggered flows. This proposal reinforces the already powerful arguments for minimizing populations in potential flow pathways below both active and selected inactive volcanoes. It also addresses the potential for volcano flank collapse to occur with instability early in a magmatic episode, as well as the 'false-alarm problem'-the difficulty in evacuating the potential paths of these large mobile flows. Debris flows that transform from volcanic landslides, characterized by cohesive (muddy) deposits, create risk comparable to that of their syneruptive counterparts of snow and ice-melt origin, which yield noncohesive (granular) deposits, because: (1) Volcano collapses and the failures of airfall- and ashflow-mantled slopes commonly yield highly mobile debris flows as well as debris avalanches with limited runout potential. Runout potential of debris flows may increase several fold as their volumes enlarge beyond volcanoes through bulking (entrainment) of sediment. Through this mechanism, the runouts of even relatively small collapses at Cascade Range volcanoes, in the range of 0.1 to 0.2 cubic kilometers, can extend to populated lowlands. (2) Collapse is caused by a variety of triggers: tectonic and volcanic earthquakes, gravitational failure, hydrovolcanism, and

  19. Model-Based Mitigation of Availability Risks

    NARCIS (Netherlands)

    Zambon, Emmanuele; Bolzoni, D.; Etalle, Sandro; Salvato, Marco

    2007-01-01

    The assessment and mitigation of risks related to the availability of the IT infrastructure is becoming increasingly important in modern organizations. Unfortunately, present standards for Risk Assessment and Mitigation show limitations when evaluating and mitigating availability risks. This is due

  20. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems

    KAUST Repository

    Lovelock, Catherine E.

    2017-05-15

    "Blue carbon" ecosystems, which include tidal marshes, mangrove forests, and seagrass meadows, have large stocks of organic carbon (C) in their soils. These carbon stocks are vulnerable to decomposition and - if degraded - can be released to the atmosphere in the form of CO. We present a framework to help assess the relative risk of CO emissions from degraded soils, thereby supporting inclusion of soil C into blue carbon projects and establishing a means to prioritize management for their carbon values. Assessing the risk of CO emissions after various kinds of disturbances can be accomplished through knowledge of both the size of the soil C stock at a site and the likelihood that the soil C will decompose to CO.

  1. Blast Mitigation Seat Analysis - Assessment of the Effect of Personal Protective Equipment on the 5th Percentile Female Anthropomorphic Test Devices Performance in Drop Tower Evaluations (Briefing Charts)

    Science.gov (United States)

    2015-08-01

    U.S. ARMY TANK AUTOMOTIVE RESEARCH, DEVELOPMENT AND ENGINEERING CENTER Blast Mitigation Seat Analysis – Assessment of the Effect of Personal...AND SUBTITLE Blast Mitigation Seat Analysis - Assessment of the Effect of Personal Protective Equipment on the 5th Percentile Female Anthropomorphic...UNCLASSIFIED UNCLASSIFIED • Baseline drop tower data collected from Anthropomorphic Test Devices (ATDs) seated in 12 models of Commercial Off-The-Shelf

  2. RIO SOLIETTE (HAITI: AN INTERNATIONAL INITIATIVE FOR FLOOD-HAZARD ASSESSMENT AND MITIGATION

    Directory of Open Access Journals (Sweden)

    S. Gandolfi

    2014-01-01

    Full Text Available Natural catastrophic events are one of most critical aspects for health and economy all around the world. However, the impact in a poor region can impact more dramatically than in others countries. Isla Hispaniola (Haiti and the Dominican Republic, one of the poorest regions of the planet, has repeatedly been hit by catastrophic natural disasters that caused incalculable human and economic losses. After the catastrophic flood event occurred in the basin of River Soliette on May 24th, 2004, the General Direction for Development and Cooperation of the Italian Department of Foreign Affairs funded an international cooperation initiative (ICI coordinated by the University of Bologna, that involved Haitian and Dominican institutions.Main purpose of the ICI was hydrological and hydraulic analysis of the May 2004 flood event aimed at formulating a suitable and affordable flood risk mitigation plan, consisting of structural and non-structural measures. In this contest, a topographic survey was necessary to realize the hydrological model and to improve the knowledge in some areas candidates to be site for mitigation measures.To overcome the difficulties arising from the narrowness of funds, surveyors and limited time available for the survey, only GPS technique have been used, both for framing aspects (using PPP approach, and for geometrical survey of the river by means of river cross-sections and detailed surveys in two areas (RTK technique. This allowed us to reconstruct both the river geometry and the DTM’s of two expansion areas (useful for design hydraulic solutions for mitigate flood-hazard risk.

  3. Assessing the costs of hazard mitigation through landscape interventions in the urban structure

    Science.gov (United States)

    Bostenaru-Dan, Maria; Aldea Mendes, Diana; Panagopoulos, Thomas

    2014-05-01

    In this paper we look at an issue rarely approached, the economic efficiency of natural hazard risk mitigation. The urban scale at which a natural hazard can impact leads to the importance of urban planning strategy in risk management. However, usually natural, engineering, and social sciences deal with it, and the role of architecture and urban planning is neglected. Climate change can lead to risks related to increased floods, desertification, sea level rise among others. Reducing the sealed surfaces in cities through green spaces in the crowded centres can mitigate them, and can be foreseen in restructuration plans in presence or absence of disasters. For this purpose we reviewed the role of green spaces and community centres such as churches in games, which can build the core for restructuration efforts, as also field and archive studies show. We look at the way ICT can contribute to organize the information from the building survey to economic computations in direct modeling or through games. The roles of game theory, agent based modeling and networks and urban public policies in designing decision systems for risk management are discussed. Games rules are at the same time supported by our field and archive studies, as well as research by design. Also we take into consideration at a rare element, which is the role of landscape planning, through the inclusion of green elements in reconstruction after the natural and man-made disasters, or in restructuration efforts to mitigate climate change. Apart of existing old city tissue also landscape can be endangered by speculation and therefore it is vital to highlight its high economic value, also in this particular case. As ICOMOS highlights for the 2014 congress, heritage and landscape are two sides of the same coin. Landscape can become or be connected to a community centre, the first being necessary for building a settlement, the second raising its value, or can build connections between landmarks in urban routes

  4. Wenchuan Earthquake Surface Fault Rupture and Disaster: A Lesson on Seismic Hazard Assessment and Mitigation

    OpenAIRE

    Yi Du; Furen Xie; Zhenming Wang

    2012-01-01

    The M s 8.0 Wenchuan earthquake occurred along the Longmenshan Faults in China and was a great disaster. Most of the damage and casualties during the quake were concentrated along surface rupture zones: the 240-km-long Beichuan-Yingxiu Fault and the 70-km-long Jiangyou-Guanxian Fault. Although the Longmenshan Faults are well known and studied, the surface Fault ruptures were not considered in mitigation planning, and the associated ground-motion hazard was therefore underestimated. Not consid...

  5. A multicriteria decision analysis model and risk assessment framework for carbon capture and storage.

    Science.gov (United States)

    Humphries Choptiany, John Michael; Pelot, Ronald

    2014-09-01

    Multicriteria decision analysis (MCDA) has been applied to various energy problems to incorporate a variety of qualitative and quantitative criteria, usually spanning environmental, social, engineering, and economic fields. MCDA and associated methods such as life-cycle assessments and cost-benefit analysis can also include risk analysis to address uncertainties in criteria estimates. One technology now being assessed to help mitigate climate change is carbon capture and storage (CCS). CCS is a new process that captures CO2 emissions from fossil-fueled power plants and injects them into geological reservoirs for storage. It presents a unique challenge to decisionmakers (DMs) due to its technical complexity, range of environmental, social, and economic impacts, variety of stakeholders, and long time spans. The authors have developed a risk assessment model using a MCDA approach for CCS decisions such as selecting between CO2 storage locations and choosing among different mitigation actions for reducing risks. The model includes uncertainty measures for several factors, utility curve representations of all variables, Monte Carlo simulation, and sensitivity analysis. This article uses a CCS scenario example to demonstrate the development and application of the model based on data derived from published articles and publicly available sources. The model allows high-level DMs to better understand project risks and the tradeoffs inherent in modern, complex energy decisions. © 2014 Society for Risk Analysis.

  6. Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds

    Science.gov (United States)

    Bower, Keith; Choularton, Tom; Latham, John; Sahraei, Jalil; Salter, Stephen

    2006-11-01

    cooling sufficient to compensate, globally, for the warming resulting from a doubling of the atmospheric carbon dioxide concentration. Our calculations provide quantitative support for the physical viability of the mitigation scheme and offer new insights into its technological requirements.

  7. Environmental Assessment and Finding of No Significant Impact: Implementation of the Wetland Mitigation Bank Program at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    1999-04-28

    The Department of Energy (DOE) has prepared an environmental assessment (EA) (DOE/EA-1205) for the proposed implementation of a wetland mitigation bank program at the Savannah River Site (SRS), located near Aiken, South Carolina. Based on the analyses in the EA, DOE has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act of 1969 (NEPA). Therefore, the preparation of an environmental impact statement (EIS) is not required, and DOE is issuing this Finding of No Significant Impact (FONSI) and Floodplain Statement of Findings.

  8. Harnessing the climate mitigation, conservation and poverty alleviation potential of seagrasses: prospects for developing blue carbon initiatives and payment for ecosystem service programmes

    Directory of Open Access Journals (Sweden)

    Adam Peter Hejnowicz

    2015-06-01

    Full Text Available Seagrass ecosystems provide numerous ecosystem services that support coastal communities around the world. They sustain abundant marine life as well as commercial and artisanal fisheries, and help protect shorelines from coastal erosion. Additionally, seagrass meadows are a globally significant sink for carbon and represent a key ecosystem for combating climate change. However, seagrass habitats are suffering rapid global decline. Despite recognition of the importance of ‘Blue Carbon’, no functioning seagrass restoration or conservation projects supported by carbon finance currently operate, and the policies and frameworks to achieve this have not been developed. Yet, seagrass ecosystems could play a central role in addessing important international research questions regarding the natural mechanisms through which the ocean and the seabed can mitigate climate change, and how ecosystem structure links to service provision. The relative inattention that seagrass ecosystems have received represents both a serious oversight and a major missed opportunity. In this paper we review the prospects of further inclusion of seagrass ecosystems in climate policy frameworks, with a particular focus on carbon storage and sequestration, as well as the potential for developing payment for ecosystem service (PES schemes that are complementary to carbon management. Prospects for the inclusion of seagrass Blue Carbon in regulatory compliance markets are currently limited; yet despite the risks the voluntary carbon sector offers the most immediately attractive avenue for the development of carbon credits. Given the array of ecosystem services seagrass ecosystems provide the most viable route to combat climate change, ensure seagrass conservation and improve livelihoods may be to complement any carbon payments with seagrass PES schemes based on the provision of additional ecosystem services.

  9. A Regionally-Specific Assessment of the Carbon Abatement Potential of Biochar

    Science.gov (United States)

    Birch, G.; Field, J.; Keske, C.; DeFoort, M.; Cotrufo, M.

    2012-12-01

    Biochar, the solid carbon-rich co-product of certain bioenergy conversion technologies, is receiving a great deal of attention as a strategy for sequestering carbon in soils and improving the performance of agricultural systems. Several studies have attempted to quantify the lifecycle carbon abatement potential of biochar systems, considering emissions associated with feedstock provisioning and processing, energy co-production, agronomic system impacts (yield increases and nitrous oxide emission suppression), and the recalcitrance of biochar in soil, as well as accounting for the carbon abatement value of using the char as a fuel that is foregone when it is used as a soil amendment instead. These assessments typically focus on biochar production in advanced, efficient slow pyrolysis systems, despite the fact that much biochar is currently produced through small-scale carbonization or gasification systems that lack energy recovery or even emission control capability. Here, a mechanistic biochar system assessment model is presented, capable of estimating system carbon abatement value and profitability for different feedstocks, conversion technologies and temperatures, and application into different agricultural soils. The variation of biochar recalcitrance in soil as a function of production temperature is considered, and agricultural impacts are assessed in the context of biochar's liming value, an effect that is straightforward to quantify and that has often been implicated in observed crop yield increases or nitrous oxide emission reductions. The analysis is rigorous in that tradeoffs between biochar production quantity and quality are endogenized, but conservative in that other potential agronomic benefits of biochar (e.g. improved soil water holding capacity) are not considered. This model is applied to a case study of bioenergy and biochar co-production in northern Colorado using beetle-killed pine wood and slash as a feedstock. Preliminary results suggest that

  10. The asteroid and comet impact hazard: risk assessment and mitigation options.

    Science.gov (United States)

    Gritzner, Christian; Dürfeld, Kai; Kasper, Jan; Fasoulas, Stefanos

    2006-08-01

    The impact of extraterrestrial matter onto Earth is a continuous process. On average, some 50,000 tons of dust are delivered to our planet every year. While objects smaller than about 30 m mainly disintegrate in the Earth's atmosphere, larger ones can penetrate through it and cause damage on the ground. When an object of hundreds of meters in diameter impacts an ocean, a tsunami is created that can devastate coastal cities. Further, if a km-sized object hit the Earth it would cause a global catastrophe due to the transport of enormous amounts of dust and vapour into the atmosphere resulting in a change in the Earth's climate. This article gives an overview of the near-Earth asteroid and comet (near-Earth object-NEO) impact hazard and the NEO search programmes which are gathering important data on these objects. It also points out options for impact hazard mitigation by using deflection systems. It further discusses the critical constraints for NEO deflection strategies and systems as well as mitigation and evacuation costs and benefits. Recommendations are given for future activities to solve the NEO impact hazard problem.

  11. Assessment of the acrylamide intake of the Belgian population and the effect of mitigation strategies.

    Science.gov (United States)

    Claeys, W; Baert, K; Mestdagh, F; Vercammen, J; Daenens, P; De Meulenaer, B; Maghuin-Rogister, G; Huyghebaert, A

    2010-09-01

    The acrylamide (AA) intake of the Belgian consumer was calculated based on AA monitoring data of the Belgian Federal Agency for the Safety of the Food Chain (FASFC) and consumption data of the Belgian food consumption survey coordinated by the Scientific Institute for Public Health (3214 participants of 15 years or older). The average AA exposure, calculated probabilistically, was 0.4 microg kg(-1) body weight (bw) day(-1) (P97.5 = 1.6 microg kg(-1) bw day(-1)), the main contributors to the average intake being chips (23%), coffee (19%), biscuits (13%), and bread (12%). Additionally, the impact of a number of AA mitigation scenarios was evaluated (German minimization concept, scenarios for mitigation from the literature, signal values), which is an important issue for public health as well as for policy-makers. Specific actions in cooperation with the food industry to reduce the AA content of foods seems to be a more efficient strategy than mere implementation of signal values. Considering that an important share of the AA intake is due to prepared meals, the catering industry as well as consumers need to be better informed on the various possibilities for keeping the AA content of meals as low as possible.

  12. From Source to Sink: Carbon Sequestration and Greenhouse Gas Mitigation Potential of Using Composted Manure and Food Waste on California's Rangelands

    Science.gov (United States)

    Vergara, S.; Silver, W. L.

    2016-12-01

    That anthropogenic climate change is irreversible, except in the case of sustained net removal of CO2 from the atmosphere, compels the scientific community to search for terrestrial carbon sinks. The soil is a promising sink: it currently stores more carbon than do the atmosphere and the vegetation combined, and most managed lands are degraded with respect to carbon. The application of compost to rangelands has been shown to enhance carbon uptake by soils, and the production of compost avoids greenhouse gas (GHG) emissions from waste management. Though these two mitigation pathways have been well studied, emissions from the composting process - which should be quantified in order to estimate the net carbon sequestration achieved by applying compost to rangelands - have not. We present a novel approach to quantifying emissions from composting, which we have deployed in Marin County, CA: a micrometerological mass balance set up, using a system of gas and wind towers surrounding a series of composting windrow piles. Real-time greenhouse gas emissions (CO2, N2O, CH4) from the composting waste are measured by a laser spectrometer, and a system of sensors measure conditions within the pile, to identify biogeochemical drivers of those emissions. Understanding these drivers improves our knowledge of the processes governing the production of short-lived climate pollutants, and provides guidance to municipalities and states seeking to minimize their greenhouse gas emissions.

  13. Assessment of human thermal comfort and mitigation measures in different urban climatotopes

    Science.gov (United States)

    Müller, N.; Kuttler, W.

    2012-04-01

    This study analyses thermal comfort in the model city of Oberhausen as an example for the densely populated metropolitan region Ruhr, Germany. As thermal loads increase due to climate change negative impacts especially for city dwellers will arise. Therefore mitigation strategies should be developed and considered in urban planning today to prevent future thermal stress. The method consists of the combination of in-situ measurements and numerical model simulations. So in a first step the actual thermal situation is determined and then possible mitigation strategies are derived. A measuring network was installed in eight climatotopes for a one year period recording air temperature, relative humidity, wind speed and wind direction. Based on these parameters the human thermal comfort in terms of physiological equivalent temperature (PET) was calculated by RayMan Pro software. Thus the human comfort of different climatotopes was determined. Heat stress in different land uses varies, so excess thermal loads in urban areas could be detected. Based on the measuring results mitigation strategies were developed, such as increasing areas with high evaporation capacity (green areas and water bodies). These strategies were implemented as different plan scenarios in the microscale urban climate model ENVI-met. The best measure should be identified by comparing the range and effect of these scenarios. Simulations were run in three of the eight climatotopes (city center, suburban and open land site) to analyse the effectiveness of the mitigation strategies in several land use structures. These cover the range of values of all eight climatotopes and therefore provide representative results. In the model area of 21 ha total, the modified section in the different plan scenarios was 1 ha. Thus the effect of small-scale changes could be analysed. Such areas can arise due to population decline and structural changes and hold conversion potential. Emphasis was also laid on analysing the

  14. Participatory Forest Carbon Assessment and REDD+: Learning from Tanzania

    Directory of Open Access Journals (Sweden)

    Kusaga Mukama

    2012-01-01

    Full Text Available Research initiatives and practical experiences have demonstrated that forest-related data collected by local communities can play an essential role in the development of national REDD+ programs and its' measurement, reporting, verification (MRV systems. In Tanzania, the national REDD+ Strategy aims to reward local communities participating in forest management under Participatory Forest Management (PFM. Accessing carbon finances requires among other things, accurate measurements of carbon stock changes through conventional forest inventories, something which is rarely done in PFM forests due to its high cost and limited resources. The main objective of this paper is to discuss experiences of Participatory Forest Carbon Assessment (PFCA in Tanzania. The study revealed that villagers who participated in PFCA were able to perform most steps for carbon assessment in the field. A key challenge in future is how to finance PFCA and ensure the technical capacity at local level.

  15. AgMIP 1.5°C Assessment: Mitigation and Adaptation at Coordinated Global and Regional Scales

    Science.gov (United States)

    Rosenzweig, C.

    2016-12-01

    The AgMIP 1.5°C Coordinated Global and Regional Integrated Assessments of Climate Change and Food Security (AgMIP 1.5 CGRA) is linking site-based crop and livestock models with similar models run on global grids, and then links these biophysical components with economics models and nutrition metrics at regional and global scales. The AgMIP 1.5 CGRA assessment brings together experts in climate, crop, livestock, economics, nutrition, and food security to define the 1.5°C Protocols and guide the process throughout the assessment. Scenarios are designed to consistently combine elements of intertwined storylines of future society including socioeconomic development (Shared Socioeconomic Pathways), greenhouse gas concentrations (Representative Concentration Pathways), and specific pathways of agricultural sector development (Representative Agricultural Pathways). Shared Climate Policy Assumptions will be extended to provide additional agricultural detail on mitigation and adaptation strategies. The multi-model, multi-disciplinary, multi-scale integrated assessment framework is using scenarios of economic development, adaptation, mitigation, food policy, and food security. These coordinated assessments are grounded in the expertise of AgMIP partners around the world, leading to more consistent results and messages for stakeholders, policymakers, and the scientific community. The early inclusion of nutrition and food security experts has helped to ensure that assessment outputs include important metrics upon which investment and policy decisions may be based. The CGRA builds upon existing AgMIP research groups (e.g., the AgMIP Wheat Team and the AgMIP Global Gridded Crop Modeling Initiative; GGCMI) and regional programs (e.g., AgMIP Regional Teams in Sub-Saharan Africa and South Asia), with new protocols for cross-scale and cross-disciplinary linkages to ensure the propagation of expert judgment and consistent assumptions.

  16. Quantifying carbon mitigation wedges in U.S. cities: near-term strategy analysis and critical review.

    Science.gov (United States)

    Ramaswami, Anu; Bernard, Meghan; Chavez, Abel; Hillman, Tim; Whitaker, Michael; Thomas, Gregg; Marshall, Matthew

    2012-04-03

    A case study of Denver, Colorado explores the roles of three social actors-individual users, infrastructure designer-operators, and policy actors-in near-term greenhouse gas (GHG) mitigation in U.S. cities. Energy efficiency, renewable energy, urban design, price- and behavioral-feedback strategies are evaluated across buildings-facilities, transportation, and materials/waste sectors in cities, comparing voluntary versus regulatory action configurations. GHG mitigation impact depends upon strategy effectiveness per unit, as well as societal participation rates in various action-configurations. Greatest impact occurs with regulations addressing the vast existing buildings stock in cities, followed by voluntary behavior change in electricity use/purchases, technology shifts (e.g., to teleconferencing), and green-energy purchases among individual users. A portfolio mix of voluntary and regulatory actions can yield a best-case maximum of ~1% GHG mitigation annually in buildings and transportation sectors, combined. Relying solely on voluntary actions reduces mitigation rates more than five-fold. A portfolio analysis of climate action plans in 55 U.S. cities reveals predominance of voluntary outreach programs that have low societal participation rates and hence low GHG impact, while innovative higher-impact behavioral, technological, and policy/regulatory strategies are under-utilized. Less than half the cities capitalize on cross-scale linkages with higher-impact state-scale policies. Interdisciplinary field research can help address the mis-match in plans, actions, and outcomes.

  17. Toxicity Assessment of Carbon Nanomaterials in Zebrafish during Development

    Directory of Open Access Journals (Sweden)

    Marta d’Amora

    2017-11-01

    Full Text Available Carbon nanomaterials (CNMs are increasingly employed in nanomedicine as carriers for intracellular transport of drugs, imaging probes, and therapeutics agents, thanks to their unique optical and physicochemical properties. However, a better understanding about the effects of CNMs on a vertebrate model at the whole animal level is required. In this study, we compare the toxicity of oxidized carbon nano-onions (oxi-CNOs, oxidized carbon nano-horns (oxi-CNHs and graphene oxide (GO in zebrafish (Danio rerio. We evaluate the possible effects of these nanomaterials on zebrafish development by assessing different end-points and exposure periods.

  18. Promotion of renewable energy to mitigate impact of heavy use of carbon energy on society and climate change in Central Sub-Saharan Africa remote areas.

    Science.gov (United States)

    Kenfack, Joseph; Bignom, Blaise

    2015-04-01

    Sub-Saharan Africa owns important renewable energy potential and is still heavily using carbon energy. This is having a negative impact on the climate and on the environment. Given the local cost of carbon energy, the purchase power of people, the availability and the reserve of carbon energy in the area, this resource is being heavily used. This practice is harmful to the climate and is also resulting on poor effort to promote renewable energy in remote areas. The important renewable energy potential is still suffering from poor development. The purpose of this paper is among other things aiming at showing the rate of carbon energy use and its potential impact on climate and environment. We will also ensure that the renewable energy resources of Central Sub-Saharan Africa are known and are subject to be used optimally to help mitigate climate change. After showing some negative impacts of carbon energy used in the area, the work also suggests actions to promote and sustain the development of renewable energy. Based on the knowledge of the Central African energy sector, this paper will identify actions for reduce access to carbon energy and improved access to sustainable, friendly, affordable energy services to users as well as a significant improvement of energy infrastructure and the promotion of energy efficiency. We will show all type of carbon energy used, the potential for solar, biomass and hydro while showing where available the level of development. After a swot analysis of the situation, identified obstacles for the promotion of clean energy will be targeted. Finally, suggestions will be made to help the region develop a vision aiming at developing good clean energy policy to increase the status of renewable energy and better contribute to fight against climate change. Cameroon case study will be examined as illustration. Analysis will be made from data collected in the field. |End Text|

  19. Geographic diversification of carbon risk - a methodology for assessing carbon investments using eddy correlation measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hultman, N.E. [Georgetown University, Washington, DC (United States). Intercultural Center

    2006-02-15

    In the context of the international market for greenhouse gas emissions, I examine applications of portfolio theory for investment decisions regarding biological carbon sequestration projects. Using ecosystem-scale eddy correlation carbon flux measurements, I show how to determine how much financial risk of carbon is diversifiable. This method allows a quantitative assessment of the potential for geographical diversification of carbon sink investments. In a case study of six ecosystems in the temperate Northern hemisphere, a significant benefit from diversification is demonstrated even among sites that seem to have broadly similar characteristics. This benefit derives in part from differences in ecosystem response to varying weather conditions and differences in ecosystem type, both of which affect the sites' covariances. In providing a quantitative common language for scientific and corporate uncertainties, the concept of carbon financial risk provides an opportunity for expanding communication between these elements essential to successful climate policy. (author)

  20. Assessment and Mitigation of Diagnostic-Generated Electromagnetic Interference at the National Ignition Facility

    Energy Technology Data Exchange (ETDEWEB)

    Brown, C G; Ayers, M J; Felker, B; Ferguson, W; Holder, J P; Nagel, S R; Piston, K W; Simanovskaia, N; Throop, A L; Chung, M; Hilsabeck, T

    2012-04-20

    Electromagnetic interference (EMI) is an ever-present challenge at laser facilities such as the National Ignition Facility (NIF). The major source of EMI at such facilities is laser-target interaction that can generate intense electromagnetic fields within, and outside of, the laser target chamber. In addition, the diagnostics themselves can be a source of EMI, even interfering with themselves. In this paper we describe EMI generated by ARIANE and DIXI, present measurements, and discuss effects of the diagnostic-generated EMI on ARIANE's CCD and on a PMT nearby DIXI. Finally we present some of the efforts we have made to mitigate the effects of diagnostic-generated EMI on NIF diagnostics.

  1. Assessment of the mitigation options in the energy system in Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Christov, C.; Vassilev, C.; Simenova, K. [and others

    1996-12-31

    Bulgaria signed the Framework Convention on Climate Change at the UNCEP in Rio in June 1992. The parliament ratified the Convention in March 1995. In compliance with the commitments arising under the Convention, Bulgaria elaborates climate change polity. The underlying principles in this policy are Bulgaria to joint the international efforts towards solving climate change problems to the extent that is adequate to both the possibilities of national economy and the options to attract foreign investments. All policies and measures implemented should be as cost-effective as possible. The Bulgarian GHG emission profile reveals the energy sector as the most significant emission source and also as an area where the great potential for GHG emissions reduction exists. This potential could be achieved in many cases by relatively low cost or even no-cost options. Mitigation analysis incorporates options in energy demand and energy supply within the period 1992-2020.

  2. Assessment and Mitigation of the Proton-Proton Collision Debris Impact on the FCC Triplet

    CERN Document Server

    Besana, Maria Ilaria; Fartoukh, Stephane; Martin, Roman; Tomás, Rogelio

    2016-01-01

    The Future Circular hadron Collider (FCC-hh), which is designed to operate at a centre-of-mass energy of 100 TeV and to deliver ambitious targets in terms of both instantaneous and integrated luminosity, poses extreme challenges in terms of machine protection during operation and with respect to long-term damages. Energy deposition studies are a crucial ingredient for its design. One of the relevant radiation sources are collision debris particles, which de- posit their energy in the interaction region elements and in particular in the superconducting magnet coils of the final focus triplet quadrupoles, to be protected from the risk of quenching and deterioration. In this contribution, the collision debris will be characterised and expectations obtained with FLUKA will be presented, including magnet lifetime considerations. New techniques including crossing angle gymnastics for peak dose deposition mitigation (as recently introduced in the framework of the LHC operation), will be discussed.

  3. Assessing and mitigating of bottom trawling. Final BENTHIS project Report (Benthic Ecosystem Fisheries Impact Study)

    DEFF Research Database (Denmark)

    Rijnsdorp, Adriaan D; Eigaard, Ole Ritzau; Kenny, Andrew

    2017-01-01

    (high impact). Additional fishing in these core grounds have only a small impact. In the peripheral areas where fishing intensity is low, additional fishing will have a much larger impact. Hence, shifting trawling activities from the core fishing grounds to the peripheral areas will increase the overall...... to reduce the bycatch and bottom contact in the beam trawl fishery for brown shrimps. Sea trials to replace bottom trawls with pots were inconclusive. Results suggest that creels may offer an alternative for small Nephrops fishers in the Kattegat. In waters off Greece, the catch rates were very low. Sea...... studies carried out in BENTHIS revealed the critical success factors for implementing technological innovations to mitigate trawling impact. While economic investment theory predict that economic profitability should lead to investment in innovative gears, it appeared that many other factors play a role...

  4. Methane Emissions from Reservoirs: Assessing the Magnitude and Developing Mitigation Approaches

    Science.gov (United States)

    Although methane can be emitted from a number of natural sources, it is the second most important greenhouse gas emitted from human-related activities and has a heat trapping capacity 34 times greater than that of carbon dioxide on a 100 year time scale. The U.S. Greenhouse Gas I...

  5. Life cycle costing of a milk producing farm – cost assessment of environmental impact mitigation strategies

    Science.gov (United States)

    Agriculture is a significant contributor to greenhouse gases (GHG). A study by the University of Arkansas showed that 70% of the carbon footprint of milk occurs before the farm gate. The goal of this study was to add costs to the GHG study to determine the impact of the farm milk production system o...

  6. Global air quality and health co-benefits of mitigating near-term climate change through methane and black carbon emission controls.

    Science.gov (United States)

    Anenberg, Susan C; Schwartz, Joel; Shindell, Drew; Amann, Markus; Faluvegi, Greg; Klimont, Zbigniew; Janssens-Maenhout, Greet; Pozzoli, Luca; Van Dingenen, Rita; Vignati, Elisabetta; Emberson, Lisa; Muller, Nicholas Z; West, J Jason; Williams, Martin; Demkine, Volodymyr; Hicks, W Kevin; Kuylenstierna, Johan; Raes, Frank; Ramanathan, Veerabhadran

    2012-06-01

    Tropospheric ozone and black carbon (BC), a component of fine particulate matter (PM ≤ 2.5 µm in aerodynamic diameter; PM(2.5)), are associated with premature mortality and they disrupt global and regional climate. We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. We simulated the impacts of mitigation measures on outdoor concentrations of PM(2.5) and ozone using two composition-climate models, and calculated associated changes in premature PM(2.5)- and ozone-related deaths using epidemiologically derived concentration-response functions. We estimated that, for PM(2.5) and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM(2.5) relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are

  7. Extreme Drought, Fire and Harvest Impacts on Pacific Northwest Forests, and the Effects of Future Climate and Mitigation Measures on the Carbon Balance

    Science.gov (United States)

    Law, B. E.; Hudiburg, T. W.; Luyssaert, S.; Coops, N.

    2012-12-01

    Climate change is affecting the odds of extreme weather events, including increased frequency of drought events. Under past and current climate and land management conditions in the Pacific Northwest, natural (drought, fire) and anthropogenic (harvest) disturbances interact across landscapes to affect the carbon balance of forests. Biomass and productivity are high (Hudiburg et al. 2009, 2011), harvest and wildfire are the major disturbances, and harvest removals dominate the net ecosystem carbon balance. We used AmeriFlux observations, inventories, remote sensing data, and models to understand current and future effects on forest distributions and the carbon balance, and the effects of mitigation measures. The region is divided into the mild coastal climate and inland continental conditions with colder winters and drier forests in the rain shadow of the Cascade Mountains. In semi-arid ponderosa pine forests of the East Cascades ecoregion, NEP was reduced by ~44% during a series of extreme drought years compared with a seven year average, consistent with western region average impacts, and there were carry-over effects the following year. Reduction in GPP was proportionately larger than reduction in ecosystem respiration during drought. In the mild climate of the Coast Range, Douglas-fir NEP was reduced ~40% in a single drought year, but recovered quickly in subsequent 'normal' years. Douglas-fir tends to be very plastic and can take up carbon during the winter months when temperature is above freezing, but this isn't seen in ponderosa pine due to colder winter temperatures. Model projections of impacts of future climate on PNW forests suggest larger changes in the eastern dry part of the region, while predicted impacts on Coast Range forests are more variable. Modeling and observations suggest the Pacific Ocean may moderate climate and buffer the coastal forests. With projected increases in extreme drought events, particularly where dry systems are expected to

  8. A method for assessing carbon stocks, carbon sequestration, and greenhouse-gas fluxes in ecosystems of the United States under present conditions and future scenarios

    Science.gov (United States)

    Bergamaschi, Brian A.; Bernknopf, Richard; Clow, David; Dye, Dennis; Faulkner, Stephen; Forney, William; Gleason, Robert; Hawbaker, Todd; Liu, Jinxun; Liu, Shu-Guang; Prisley, Stephen; Reed, Bradley; Reeves, Matthew; Rollins, Matthew; Sleeter, Benjamin; Sohl, Terry; Stackpoole, Sarah; Stehman, Stephen; Striegl, Robert G.; Wein, Anne; Zhu, Zhi-Liang; Zhu, Zhi-Liang

    2010-01-01

    he Energy Independence and Security Act of 2007 (EISA), Section 712, mandates the U.S. Department of the Interior to develop a methodology and conduct an assessment of the Nation’s ecosystems, focusing on carbon stocks, carbon sequestration, and emissions of three greenhouse gases (GHGs): carbon dioxide, methane, and nitrous oxide. The major requirements include (1) an assessment of all ecosystems (terrestrial systems, such as forests, croplands, wetlands, grasslands/shrublands; and aquatic ecosystems, such as rivers, lakes, and estuaries); (2) an estimate of the annual potential capacities of ecosystems to increase carbon sequestration and reduce net GHG emissions in the context of mitigation strategies (including management and restoration activities); and (3) an evaluation of the effects of controlling processes, such as climate change, land-use and land-cover change, and disturbances such as wildfires.The concepts of ecosystems, carbon pools, and GHG fluxes follow conventional definitions in use by major national and international assessment or inventory efforts. In order to estimate current ecosystem carbon stocks and GHG fluxes and to understand the potential capacity and effects of mitigation strategies, the method will use two time periods for the assessment: 2001 through 2010, which establishes a current ecosystem carbon and GHG baseline and will be used to validate the models; and 2011 through 2050, which will be used to assess potential capacities based on a set of scenarios. The scenario framework will be constructed using storylines of the Intergovernmental Panel on Climate Change (IPCC) Special Report on Emission Scenarios (SRES), along with both reference and enhanced land-use and land-cover (LULC) and land-management parameters. Additional LULC and land-management mitigation scenarios will be constructed for each storyline to increase carbon sequestration and reduce GHG fluxes in ecosystems. Input from regional experts and stakeholders will be

  9. Acceleration-based methodology to assess the blast mitigation performance of explosive ordnance disposal helmets

    Science.gov (United States)

    Dionne, J. P.; Levine, J.; Makris, A.

    2017-07-01

    To design the next generation of blast mitigation helmets that offer increasing levels of protection against explosive devices, manufacturers must be able to rely on appropriate test methodologies and human surrogates that will differentiate the performance level of various helmet solutions and ensure user safety. Ideally, such test methodologies and associated injury thresholds should be based on widely accepted injury criteria relevant within the context of blast. Unfortunately, even though significant research has taken place over the last decade in the area of blast neurotrauma, there currently exists no agreement in terms of injury mechanisms for blast-induced traumatic brain injury. In absence of such widely accepted test methods and injury criteria, the current study presents a specific blast test methodology focusing on explosive ordnance disposal protective equipment, involving the readily available Hybrid III mannequin, initially developed for the automotive industry. The unlikely applicability of the associated brain injury criteria (based on both linear and rotational head acceleration) is discussed in the context of blast. Test results encompassing a large number of blast configurations and personal protective equipment are presented, emphasizing the possibility to develop useful correlations between blast parameters, such as the scaled distance, and mannequin engineering measurements (head acceleration). Suggestions are put forward for a practical standardized blast testing methodology taking into account limitations in the applicability of acceleration-based injury criteria as well as the inherent variability in blast testing results.

  10. Chronic in vivo stability assessment of carbon fiber microelectrode arrays.

    Science.gov (United States)

    Patel, Paras R; Zhang, Huanan; Robbins, Matthew T; Nofar, Justin B; Marshall, Shaun P; Kobylarek, Michael J; Kozai, Takashi D Y; Kotov, Nicholas A; Chestek, Cynthia A

    2016-12-01

    Individual carbon fiber microelectrodes can record unit activity in both acute and semi-chronic (∼1 month) implants. Additionally, new methods have been developed to insert a 16 channel array of carbon fiber microelectrodes. Before assessing the in vivo long-term viability of these arrays, accelerated soak tests were carried out to determine the most stable site coating material. Next, a multi-animal, multi-month, chronic implantation study was carried out with carbon fiber microelectrode arrays and silicon electrodes. Carbon fibers were first functionalized with one of two different formulations of PEDOT and subjected to accelerated aging in a heated water bath. After determining the best PEDOT formula to use, carbon fiber arrays were chronically implanted in rat motor cortex. Some rodents were also implanted with a single silicon electrode, while others received both. At the end of the study a subset of animals were perfused and the brain tissue sliced. Tissue sections were stained for astrocytes, microglia, and neurons. The local reactive responses were assessed using qualitative and quantitative methods. Electrophysiology recordings showed the carbon fibers detecting unit activity for at least 3 months with average amplitudes of ∼200 μV. Histology analysis showed the carbon fiber arrays with a minimal to non-existent glial scarring response with no adverse effects on neuronal density. Silicon electrodes showed large glial scarring that impacted neuronal counts. This study has validated the use of carbon fiber microelectrode arrays as a chronic neural recording technology. These electrodes have demonstrated the ability to detect single units with high amplitude over 3 months, and show the potential to record for even longer periods. In addition, the minimal reactive response should hold stable indefinitely, as any response by the immune system may reach a steady state after 12 weeks.

  11. Assessment of methods for organic and inorganic carbon quantification in carbonate-containing Mediterranean soils

    Science.gov (United States)

    Apesteguia, Marcos; Virto, Iñigo; Plante, Alain

    2014-05-01

    Quantification of soil organic matter (SOM) stocks and fluxes continues to be an important endeavor in assessments of soil quality, and more broadly in assessments of ecosystem functioning. The quantification of SOM in alkaline, carbonate-containing soils, such as those found in Mediterranean areas, is complicated by the need to differentiate between organic carbon (OC) and inorganic carbon (IC), which continues to present methodological challenges. Acidification is frequently used to eliminate carbonates prior to soil OC quantification, but when performed in the liquid phase, can promote the dissolution and loss of a portion of the OC. Acid fumigation (AF) is increasingly preferred for carbonate removal, but its effectiveness is difficult to assess using conventional elemental and isotopic analyses. In addition, the potential effects of AF on SOM are not well characterized. The objective of the current study was to apply a multi-method approach to determine the efficacy of carbonate removal by AF and its effects on the residual SOM. We selected a set of 24 surface agricultural soils representing a large range of textures, SOM contents and presumed carbonate contents. For each soil, OC was determined using wet combustion (Walkley-Black) and IC was determined using the calcimeter method. Samples were then subjected to elemental (total C) and isotopic (δ13C) analyses by dry combustion using a Costech autoanalyzer coupled to a Thermo Finnigan Delta Plus isotope ratio mass spectrometer (IRMS) before and after AF. IC was equated to total C determined after fumigation, and OC was estimated as the different in total C before and after AF. Samples were also subjected to ramped oxidation using a Netzsch STA109 PC Luxx thermal analyzer coupled to a LICOR 820A infrared gas analyzer (IRGA). Quantification of OC was performed using evolved gas analysis of CO2 (CO2-EGA) in the exothermic region 200-500° C associated with organic matter combustion. IC was quantified by CO2-EGA

  12. Analyzing environmental and structural charactersitics of concrete for carbon mitigation and climate adaptation in urban areas: A case study in Rajkot, India

    Science.gov (United States)

    Solis, Andrea Valdez

    Increasing temperatures, varying rain events accompanied with flooding or droughts coupled with increasing water demands, and decreasing air quality are just some examples of stresses that urban systems face with the onset of climate change and rapid urbanization. Literature suggests that greenhouse gases are a leading cause of climate change and are of a result of anthropogenic activities such as infrastructure development. Infrastructure development is heavily dependent on the production of concrete. Yet, concrete can contribute up to 7% of total CO29 emissions globally from cement manufacturing alone. The goal of this dissertation was to evaluate current concrete technologies that could contribute to carbon mitigation and climate adaptation in cities. The objectives used to reach the goal of the study included (1) applying a material flow and life cycle analysis (MFA-LCA) to determine the environmental impacts of pervious and high volume fly ash (HVFA) concrete compared to ordinary portland cement (OPC) concrete in a developing country; (2) performing a comparative assessment of pervious concrete mixture designs for structural and environmental benefits across the U.S. and India; and (3) Determining structural and durability benefits from HVFA concrete mixtures when subjected to extreme hot weather conditions (a likely element of climate change). The study revealed that cities have a choice in reducing emissions, improving stormwater issues, and developing infrastructure that can sustain higher temperatures. Pervious and HVFA concrete mixtures reduce emissions by 21% and 47%, respectively, compared to OPC mixtures. A pervious concrete demonstration in Rajkot, India showed improvements in water quality (i.e. lower levels of nitrogen by as much as 68% from initial readings), and a reduction in material costs by 25%. HVFA and OPC concrete mixtures maintained compressive strengths above a design strength of 27.6 MPa (4000 psi), achieved low to moderate permeability

  13. Implementing REDD+ at the local level: Assessing the key enablers for credible mitigation and sustainable livelihood outcomes.

    Science.gov (United States)

    Atela, Joanes O; Minang, Peter A; Quinn, Claire H; Duguma, Lalisa A

    2015-07-01

    Achieving cost-effective mitigation and sustainable livelihoods through reducing emissions from deforestation and forest degradation (REDD+) depends heavily on the local context within which REDD+ projects are implemented. Studies have focused on how REDD+ can benefit or harm local people, with little attention paid to how people, their assets and institutions can promote or impede REDD+. This paper examines the key local assets necessary for REDD+ to protect forests and support local livelihoods based on evidence from a globally-linked REDD+ project in Kenya. Household interviews (n = 100), focus group discussions (n = 6) and in-depth interviews with government (n = 8) and project stakeholders (n = 14) were undertaken to rank and explain how local assets interact with the project's efforts to protect forests, and the role of State institutions in shaping project-asset interactions. Locally, pro-poor assets such as land tenure and water access had most influence on the project's ability to protect forests. Inclusion of communal forests as part of the REDD+ project entitled local poor peasant farmers to participate in and benefit from the project and so dissuaded them from using protected forests for charcoal production. Water access determined agricultural productivity and intensity of forest use for livelihoods and coping. Even though carbon revenues were distributed equally between social groups and support directed to pro-poor livelihood initiatives, efforts were impeded by State decisions on land that interfered with communal approaches to forest conservation, by strict carbon standards that limited trade-offs between livelihoods and forest protection and by fluctuating carbon prices and buyers that limited funds needed for project operations and local livelihoods. Equitable and pro-poor benefit sharing are necessary but not sufficient for effective REDD+ implementation unless national institutions are reformed and global carbon pricing harmonized

  14. Comment on "Carbon farming in hot, dry coastal areas: an option for climate change mitigation" by Becker et al. (2013)

    Science.gov (United States)

    Heimann, M.

    2014-01-01

    Becker et al. (2013) argue that an afforestation of 0.73 × 109 ha with Jatropha curcas plants would generate an additional terrestrial carbon sink of 4.3 PgC yr-1, enough to stabilise the atmospheric mixing ratio of carbon dioxide (CO2) at current levels. However, this is not consistent with the dynamics of the global carbon cycle. Using a well-established global carbon cycle model, the effect of adding such a hypothetical sink leads to a reduction of atmospheric CO2 levels in the year 2030 by 25 ppm compared to a reference scenario. However, the stabilisation of the atmospheric CO2 concentration requires a much larger additional sink or corresponding reduction of anthropogenic emissions.

  15. Making the Handoff from Earthquake Hazard Assessments to Effective Mitigation Measures (Invited)

    Science.gov (United States)

    Applegate, D.

    2010-12-01

    This year has witnessed a barrage of large earthquakes worldwide with the resulting damages ranging from inconsequential to truly catastrophic. We cannot predict when earthquakes will strike, but we can build communities that are resilient to strong shaking as well as to secondary hazards such as landslides and liquefaction. The contrasting impacts of the magnitude-7 earthquake that struck Haiti in January and the magnitude-8.8 event that struck Chile in April underscore the difference that mitigation and preparedness can make. In both cases, millions of people were exposed to severe shaking, but deaths in Chile were measured in the hundreds rather than the hundreds of thousands that perished in Haiti. Numerous factors contributed to these disparate outcomes, but the most significant is the presence of strong building codes in Chile and their total absence in Haiti. The financial cost of the Chilean earthquake still represents an unacceptably high percentage of that nation’s gross domestic product, a reminder that life safety is the paramount, but not the only, goal of disaster risk reduction measures. For building codes to be effective, both in terms of lives saved and economic cost, they need to reflect the hazard as accurately as possible. As one of four federal agencies that make up the congressionally mandated National Earthquake Hazards Reduction Program (NEHRP), the U.S. Geological Survey (USGS) develops national seismic hazard maps that form the basis for seismic provisions in model building codes through the Federal Emergency Management Agency and private-sector practitioners. This cooperation is central to NEHRP, which both fosters earthquake research and establishes pathways to translate research results into implementation measures. That translation depends on the ability of hazard-focused scientists to interact and develop mutual trust with risk-focused engineers and planners. Strengthening that interaction is an opportunity for the next generation

  16. Assessment of GHG mitigation and CDM technology in urban transport sector of Chandigarh, India.

    Science.gov (United States)

    Bhargava, Nitin; Gurjar, Bhola Ram; Mor, Suman; Ravindra, Khaiwal

    2017-10-16

    The increase in number of vehicles in metropolitan cities has resulted in increase of greenhouse gas (GHG) emissions in urban environment. In this study, emission load of GHGs (CO, N2O, CO2) from Chandigarh road transport sector has been estimated using Vehicular Air Pollution Inventory (VAPI) model, which uses emission factors prevalent in Indian cities. Contribution of 2-wheelers (2-w), 3-wheelers (3-w), cars, buses, and heavy commercial vehicles (HCVs) to CO, N2O, CO2, and total GHG emissions was calculated. Potential for GHG mitigation through clean development mechanism (CDM) in transport sector of Chandigarh under two scenarios, i.e., business as usual (BAU) and best estimate scenario (BES) using VAPI model, has been explored. A major contribution of GHG load (~ 50%) in Chandigarh was from four-wheelers until 2011; however, it shows a declining trend after 2011 until 2020. The estimated GHG emission from motor vehicles in Chandigarh has increased more than two times from 1065 Gg in 2005 to 2486 Gg by 2011 and is expected to increase to 4014 Gg by 2020 under BAU scenario. Under BES scenario, 30% of private transport has been transformed to public transport; GHG load was possibly reduced by 520 Gg. An increase of 173 Gg in GHGs load is projected from additional scenario (ADS) in Chandigarh city if all the diesel buses are transformed to CNG buses by 2020. Current study also offers potential for other cities to plan better GHG reduction strategies in transport sector to reduce their climate change impacts.

  17. Air quality assessment of carbon monoxide, nitrogen dioxide and ...

    African Journals Online (AJOL)

    Air quality in urban areas is a cause of concern because of increased industrial activities that contribute to large quantities of emissions. The study assess levels and variations of carbon monoxide (CO), nitrogen dioxide (NO2) and sulfur dioxide (SO2) in Blantyre, Malawi using a stationary environmental monitoring station ...

  18. Assessment of carbon monoxide values in smokers: a comparison of carbon monoxide in expired air and carboxyhaemoglobin in arterial blood

    DEFF Research Database (Denmark)

    Andersson, Mette F; Møller, Ann M

    2010-01-01

    Smoking increases perioperative complications. Carbon monoxide concentrations can estimate patients' smoking status and might be relevant in preoperative risk assessment. In smokers, we compared measurements of carbon monoxide in expired air (COexp) with measurements of carboxyhaemoglobin (COHb...

  19. Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high value tomatoes

    OpenAIRE

    Maria J. Sánchez-González; Maria C. Sánchez-Guerrero; Evangelina Medrano; Manuel E. Porras; Esteban J. Baeza; Pilar Lorenzo

    2016-01-01

    The present study was conducted to determine the mitigating influence of greenhouse CO2 enrichment on the negative effects of salinity in Mediterranean conditions. Hybrid Raf (cv. Delizia) tomato plants were exposed to two salinity levels of the nutrient solution (5 and 7 dS/m) obtained by adding NaCl, and two CO2 concentrations (350 and 800 μmol/mol) in which CO2 enrichment was applied during the daytime according to a strategy linked to ventilation. Increasing water salinity negatively affe...

  20. Aerosol optical depth thresholds as a tool to assess diffuse radiation fertilization of the land carbon uptake in China

    Science.gov (United States)

    Yue, Xu; Unger, Nadine

    2017-01-01

    China suffers from frequent haze pollution episodes that alter the surface solar radiation and influence regional carbon uptake by the land biosphere. Here, we apply combined vegetation and radiation modeling and multiple observational datasets to assess the radiative effects of aerosol pollution in China on the regional land carbon uptake for the 2009-2011 period. First, we assess the inherent sensitivity of China's land biosphere to aerosol pollution by defining and calculating two thresholds of aerosol optical depth (AOD) at 550 nm, (i) AODt1, resulting in the maximum net primary productivity (NPP), and (ii) AODt2, such that if local AOD relative to the regional thresholds. Stringent aerosol pollution reductions motivated by public health concerns, especially in the North China Plain and the southwest, will help protect land ecosystem functioning in China and mitigate long-term global warming.

  1. The Neurovestibular Challenges of Astronauts and Balance Patients: Some Past Countermeasures and Two Alternative Approaches to Elicitation, Assessment and Mitigation.

    Science.gov (United States)

    Lawson, Ben D; Rupert, Angus H; McGrath, Braden J

    2016-01-01

    Astronauts and vestibular patients face analogous challenges to orientation function due to adaptive exogenous (weightlessness-induced) or endogenous (pathology-induced) alterations in the processing of acceleration stimuli. Given some neurovestibular similarities between these challenges, both affected groups may benefit from shared research approaches and adaptation measurement/improvement strategies. This article reviews various past strategies and introduces two plausible ground-based approaches, the first of which is a method for eliciting and assessing vestibular adaptation-induced imbalance. Second, we review a strategy for mitigating imbalance associated with vestibular pathology and fostering readaptation. In discussing the first strategy (for imbalance assessment), we review a pilot study wherein imbalance was elicited (among healthy subjects) via an adaptive challenge that caused a temporary/reversible disruption. The surrogate vestibular deficit was caused by a brief period of movement-induced adaptation to an altered (rotating) gravitoinertial frame of reference. This elicited adaptation and caused imbalance when head movements were made after reentry into the normal (non-rotating) frame of reference. We also review a strategy for fall mitigation, viz., a prototype tactile sway feedback device for aiding balance/recovery after disruptions caused by vestibular pathology. We introduce the device and review a preliminary exploration of its effectiveness in aiding clinical balance rehabilitation (discussing the implications for healthy astronauts). Both strategies reviewed in this article represent cross-disciplinary research spin-offs: the ground-based vestibular challenge and tactile cueing display were derived from aeromedical research to benefit military aviators suffering from flight simulator-relevant aftereffects or inflight spatial disorientation, respectively. These strategies merit further evaluation using clinical and astronaut populations.

  2. The neurovestibular challenges of astronauts and balance patients: some past countermeasures and two alternative approaches to elicitation, assessment and mitigation

    Directory of Open Access Journals (Sweden)

    Ben Lawson

    2016-11-01

    Full Text Available Astronauts and vestibular patients face analogous challenges to orientation function due to adaptive exogenous (weightlessness-induced or endogenous (pathology-induced alterations in the processing of acceleration stimuli. Given some neurovestibular similarities between these challenges, both affected groups may benefit from shared research approaches and adaptation measurement/improvement strategies. This paper reviews various past strategies and introduces two plausible ground-based approaches, the first of which is a method for eliciting and assessing vestibular adaptation-induced imbalance. Second, we review a strategy for mitigating imbalance associated with vestibular pathology and fostering readaptation. In discussing the first strategy (for imbalance assessment, we review a pilot study wherein imbalance was elicited (among healthy subjects via an adaptive challenge that caused a temporary/reversible disruption. The surrogate vestibular deficit was caused by a brief period of movement-induced adaptation to an altered (rotating gravitoinertial frame of reference. This elicited adaptation and caused imbalance when head movements were made after reentry into the normal (non-rotating frame of reference. We also review a strategy for fall mitigation, viz., a prototype tactile sway feedback device for aiding balance/recovery after disruptions caused by vestibular pathology. We introduce the device and review a preliminary exploration of its effectiveness in aiding clinical balance rehabilitation (discussing the implications for healthy astronauts. Both strategies reviewed in this paper represent cross-disciplinary research spin-offs: the ground-based vestibular challenge and tactile cueing display were derived from aeromedical research to benefit military aviators suffering from flight simulator-relevant aftereffects or inflight spatial disorientation, respectively. These strategies merit further evaluation using clinical and astronaut

  3. Wildlife Habitat Assessment and Mitigation for the Rocky Mountain Arsenal : A Critique

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — This report, prepared by the Colorado Department of Health, critiques the U.S. Fish and Wildlife Service's impact assessment program from 1992. The final portions of...

  4. Climate mitigation in the least carbon emitting countries. Dilemmas of Co-benefits in Cambodia and Laos

    Energy Technology Data Exchange (ETDEWEB)

    Luukkanen, J., Email: jyrki.luukkanen@utu.fi; Kakonen, M.; Karhumaa, K. [and others

    2013-09-01

    Development has entered a time where it cannot be thought of without reference to climate change. While historically development in the industrialized countries has to a great extent been driven by a fossil fuel based economy, this option is no longer seen as viable for developing countries, which are expected to pursue different pathways of development. At the same time, the impacts of a changing climate affect the poorest countries and populations disproportionately, and multilateral policy declarations signed by most countries underline that there must be an effort to prevent and mitigate this. The effects of climate change onto development policies and practice is also reflected in donor countries' change in perception. Donor countries have begun increasingly integrating climate change objectives into development cooperation programmes and official development assistance (ODA). While significant in terms of discontinuing support to fossil fuels and attempting to increase resilience, this trend also brings into the fore new dilemmas. The main dilemma which emerges - and is explored further in this book - is when development cooperation finance is used in the least developed countries for projects and policies which are principally oriented towards climate change mitigation.

  5. Regional danger assessment of Debris flow and its engineering mitigation practice in Sichuan-Tibet highway

    Science.gov (United States)

    Su, Pengcheng; Sun, Zhengchao; li, Yong

    2017-04-01

    Luding-Kangding highway cross the eastern edge of Qinghai-Tibet Plateau where belong to the most deep canyon area of plateau and mountains in western Sichuan with high mountain and steep slope. This area belongs to the intersection among Xianshuihe, Longmenshan and Anninghe fault zones which are best known in Sichuan province. In the region, seismic intensity is with high frequency and strength, new tectonic movement is strong, rock is cracked, there are much loose solid materials. Debris flow disaster is well developed under the multiple effects of the earthquake, strong rainfall and human activity which poses a great threat to the local people's life and property security. So this paper chooses Kangding and LuDing as the study area to do the debris flow hazard assessment through the in-depth analysis of development characteristics and formation mechanism of debris flow. Which can provide important evidence for local disaster assessment and early warning forecast. It also has the important scientific significance and practical value to safeguard the people's life and property safety and the security implementation of the national major project. In this article, occurrence mechanism of debris flow disasters in the study area is explored, factor of evaluation with high impact to debris flow hazards is identified, the database of initial evaluation factors is made by the evaluation unit of basin. The factors with high impact to hazards occurrence are selected by using the stepwise regression method of logistic regression model, at the same time the factors with low impact are eliminated, then the hazard evaluation factor system of debris flow is determined in the study area. Then every factors of evaluation factor system are quantified, and the weights of all evaluation factors are determined by using the analysis of stepwise regression. The debris flows hazard assessment and regionalization of all the whole study area are achieved eventually after establishing the

  6. Air pollution co-benefits of low carbon policies in road transport: a sub-national assessment for India

    Science.gov (United States)

    Mittal, Shivika; Hanaoka, Tatsuya; Shukla, Priyadarshi R.; Masui, Toshihiko

    2015-08-01

    This letter assesses low carbon scenarios for India at the subnational level in the passenger road transport sector. We estimate the future passenger mobility demand and assess the impact of carbon mitigation policies using the Asia-Pacific Integrated Assessment/Enduse models. This letter focuses on the transitions of energy and emissions of passenger transport in India in alternate scenarios i.e. the business-as-usual scenario and a low carbon scenario that aligns to the 2 °C temperature stabilization target agreed under the global climate change negotiations. The modelling results show that passenger mobility demand will rise in all sub-national regions of India in the coming few decades. However, the volume and modal structure will vary across regions. Modelling assessment results show that aligning global low carbon policies with local policies has potential to deliver significant air quality co-benefits. This analysis provides insights into the comparative dynamics of environmental policymaking at sub-national levels.

  7. Mitigation: Decarbonization unique to cities

    Science.gov (United States)

    Ibrahim, Nadine

    2017-10-01

    Strategies that reduce fossil-fuel use can achieve both global carbon mitigation and local health-protection goals. Now research shows the dual benefits of compact urban design and circular economy policies in Chinese cities.

  8. The Role Of Urban Forestry In Mitigating Climate Change And ...

    African Journals Online (AJOL)

    The possibility of global climate change, due to increasing levels of CO2 concentrations is one of the key environmental concerns today, and the role of terrestrial vegetation management has received attention as a means of mitigating carbon emissions and climate change. In this study tree dimensions and assessment of ...

  9. Bounding the Role of Black Carbon in the Climate System: a Scientific Assessment

    Science.gov (United States)

    Bond, T. C.; Doherty, S. J.; Fahey, D. W.; Forster, P. M.; Bernsten, T.; DeAngelo, B. J.; Flanner, M. G.; Ghan, S.; Karcher, B.; Koch, D.; hide

    2013-01-01

    and warm the climate. We estimate that black carbon, with a total climate forcing of +1.1 W/sq m, is the second most important human emission in terms of its climate forcing in the present-day atmosphere; only carbon dioxide is estimated to have a greater forcing. Sources that emit black carbon also emit other short-lived species that may either cool or warm climate. Climate forcings from co-emitted species are estimated and used in the framework described herein. When the principal effects of short-lived co-emissions, including cooling agents such as sulfur dioxide, are included in net forcing, energy-related sources (fossil fuel and biofuel) have an industrial-era climate forcing of +0.22 (0.50 to +1.08) W/sq m during the first year after emission. For a few of these sources, such as diesel engines and possibly residential biofuels, warming is strong enough that eliminating all short-lived emissions from these sources would reduce net climate forcing (i.e., produce cooling). When open burning emissions, which emit high levels of organic matter, are included in the total, the best estimate of net industrial-era climate forcing by all short-lived species from black-carbon-rich sources becomes slightly negative (0.06 W/sq m with 90% uncertainty bounds of 1.45 to +1.29 W/sq m). The uncertainties in net climate forcing from black-carbon-rich sources are substantial, largely due to lack of knowledge about cloud interactions with both black carbon and co-emitted organic carbon. In prioritizing potential black-carbon mitigation actions, non-science factors, such as technical feasibility, costs, policy design, and implementation feasibility play important roles. The major sources of black carbon are presently in different stages with regard to the feasibility for near-term mitigation. This assessment, by evaluating the large number and complexity of the associated physical and radiative processes in black-carbon climate forcing, sets a baseline from which to improve future

  10. Groundwater Engineering in an Environmentally Sensitive Urban Area: Assessment, Landuse Change/Infrastructure Impacts and Mitigation Measures

    Directory of Open Access Journals (Sweden)

    Yohannes Yihdego

    2017-07-01

    Full Text Available A rise in the shallow unconfined groundwater at a site in Australia is causing water logging of the underground facility in the affected area. Realizing this problem, a study was conducted to identify the source of water that is causing the rise and to develop an implementation and operation plan of the mitigation (dewatering system. Modelling was undertaken using MODFLOW-SURFACT code, within the framework of Visual MODFLOW, to assess the spatial and temporal groundwater level at the site. The study undertaken incorporates compilation and assessment of available data, including a list of factual information reviewed, development of a conceptual groundwater model for the site and modelling of the pre and post development conditions. The outcomes of the assessment indicate water level rises due to the construction of the embankment are likely less than 0.12 m and changes in land, such as affected area burial, may change aquifer characteristics more significantly than the embankment. It is concluded that the elevated groundwater levels in the affected area are most likely a result of above average rainfall since 2007 and long term cumulative land use changes. The embankment construction is just one of many land use changes that have occurred both within and surrounding the affected area and likely only a minor contributor to the elevated water levels. Greater contribution may be attributed to re-direction of the natural flow paths the railway culvert weir reducing the overland flow gradient and ongoing changes (burial within the affected area and including the embankment. The model findings gives answers on what factors may be/are causing/contributing to, the higher than usual groundwater levels in the study area. A combination of drainage and/or pumping (dewatering system is suggested as a solution to overcome the problem of rising groundwater levels at the site. Further, the model output can aid in assessing mitigation options, including

  11. Potential phosphorus eutrophication mitigation strategy: Biochar carbon composition, thermal stability and pH influence phosphorus sorption

    Science.gov (United States)

    L.W. Ngatia; Y.P. Hsieh; D. Nemours; R. Fu; R.W. Taylor

    2017-01-01

    Phosphorus (P) eutrophication is a major pollution problem globally, with unprecedented amount of P emanating from agricultural sources. But little is known about the optimization of soil-biochar P sorption capacity. The study objective was to determine how biochar feedstocks and pyrolysis conditions influences carbon (C) thermal stability, C composition and pH and in...

  12. Species and media effects on soil carbon dynamics in the landscape: opportunities for climate change mitigation from urban landscape plantings

    Science.gov (United States)

    Most scientists now agree that climate change is occurring as a direct result of human activities. Agricultural production has been shown to be a major emitter of greenhouse gas (GHG) emissions; however, horticulture production is unique in that it also has the potential to serve as a major carbon (...

  13. Carbon Emission Mitigation Potentials of Different Policy Scenarios and Their Effects on International Aviation in the Korean Context

    Directory of Open Access Journals (Sweden)

    Sungwook Yoon

    2016-11-01

    Full Text Available The objective of this study is to seek better policy options for greenhouse gas (GHG emission reduction in Korea’s international aviation industry by analyzing economic efficiency and environmental effectiveness with a system dynamics (SD model. Accordingly, we measured airlines sales and CO2 emission reductions to evaluate economic efficiency and environmental effectiveness, respectively, for various policies. The results show that the average carbon emission reduction rates of four policies compared to the business-as-usual (BAU scenario between 2015 and 2030 are 4.00% (Voluntary Agreement, 7.25% (Emission Trading System or ETS-30,000, 8.33% (Carbon Tax or CT-37,500, and 8.48% (Emission Charge System or EC-30,000. The average rate of decrease in airline sales compared to BAU for the ETS policy is 0.1% at 2030. Our results show that the ETS approach is the most efficient of all the analyzed CO2 reduction policies in economic terms, while the EC approach is the best policy to reduce GHG emissions. This study provides a foundation for devising effective response measures pertaining to GHG reduction and supports decision making on carbon tax and carbon credit pricing.

  14. The implications of carbon dioxide and methane exchange for the heavy mitigation RCP2.6 scenario under two metrics

    NARCIS (Netherlands)

    Huntingford, Chris; Lowe, Jason A.; Howarth, Nicholas; Bowerman, Niel H.A.; Gohar, Laila K.; Otto, Alexander; Lee, David S.; Smith, Stephen M.; den Elzen, Michel G.J.; van Vuuren, Detlef P.; Millar, Richard J.; Allen, Myles R.

    2015-01-01

    Greenhouse gas emissions associated with Representative Concentration Pathway RCP2.6 could limit global warming to around or below a 2°C increase since pre-industrial times. However this scenario implies very large and rapid reductions in both carbon dioxide (CO2) and non-CO2 emissions, and suggests

  15. Pileup Mitigation

    CERN Document Server

    Roloff, Jennifer; The ATLAS collaboration

    2017-01-01

    Simultaneous proton-proton collisions, or pileup, at the LHC has a significant impact on jet reconstruction, requiring the use of advanced pileup mitigation techniques. Pileup mitigation may occur at several stages of the reconstruction process, and ATLAS uses a combination of schemes, including constituent reconstruction methods, constituent-level pileup-mitigation techniques, and jet-level pileup-mitigation algorithms. This talk describes the two constituent-reconstruction methods for jets used on ATLAS: TopoClustering and Particle Flow. This talk also has a first look at the performance of several constituent-level pileup mitigation techniques on ATLAS, including Constituent Subtraction, Voronoi Subtraction, SoftKiller, and the Cluster Vertex Fraction. Finally, other developments in tagging pileup jets is discussed, such as the forward jet vertex tagger (fJVT), which uses jet shapes and topological information to tag jets.

  16. Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high value tomatoes

    Directory of Open Access Journals (Sweden)

    Maria J. Sánchez-González

    2016-06-01

    Full Text Available The present study was conducted to determine the mitigating influence of greenhouse CO2 enrichment on the negative effects of salinity in Mediterranean conditions. Hybrid Raf (cv. Delizia tomato plants were exposed to two salinity levels of the nutrient solution (5 and 7 dS/m obtained by adding NaCl, and two CO2 concentrations (350 and 800 μmol/mol in which CO2 enrichment was applied during the daytime according to a strategy linked to ventilation. Increasing water salinity negatively affected the leaf area index (LAI, the specific leaf area (SLA, the water use efficiency (WUE, the radiation use efficiency (RUE and dry weight (DW accumulation resulting in lower marketable yield. The high salinity treatment (7 dS/m increased fruit firmness (N, total soluble solids content (SSC and titratable acidity (TA, whereas pH was reduced in the three ripening stages: mature green/breaker (G, turning (T, and pink/light red (P. Also, the increase in electrical conductivity of the nutrient solution led to a general change in intensity of the sensory characteristics of tomato fruits. On the other hand, CO2 enrichment did not affect LAI although SLA was reduced. RUE and DW accumulation were increased resulting in higher marketable yield, through positive effects on fruit number and their average weight. WUE was enhanced by CO2 supply mainly through increased growth and yield. Physical-chemical quality parameters such as fruit firmness, TA and pH were not affected by CO2 enrichment whereas SSC was enhanced. Greenhouse CO2 enrichment did mitigate the negative effect of saline conditions on productivity without compromising organoleptic and sensory fruit quality.

  17. Carbon dioxide enrichment: a technique to mitigate the negative effects of salinity on the productivity of high value tomatoes

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez-González, M. J.; Sánchez-Guerrero, M.C.; Medrano, E.; Porras, M.E.; Baeza, E.J.; Lorenzo, P.

    2016-11-01

    The present study was conducted to determine the mitigating influence of greenhouse CO2 enrichment on the negative effects of salinity in Mediterranean conditions. Hybrid Raf (cv. Delizia) tomato plants were exposed to two salinity levels of the nutrient solution (5 and 7 dS/m) obtained by adding NaCl, and two CO2 concentrations (350 and 800 μmol/mol) in which CO2 enrichment was applied during the daytime according to a strategy linked to ventilation. Increasing water salinity negatively affected the leaf area index (LAI), the specific leaf area (SLA), the water use efficiency (WUE), the radiation use efficiency (RUE) and dry weight (DW) accumulation resulting in lower marketable yield. The high salinity treatment (7 dS/m) increased fruit firmness (N), total soluble solids content (SSC) and titratable acidity (TA), whereas pH was reduced in the three ripening stages: mature green/breaker (G), turning (T), and pink/light red (P). Also, the increase in electrical conductivity of the nutrient solution led to a general change in intensity of the sensory characteristics of tomato fruits. On the other hand, CO2 enrichment did not affect LAI although SLA was reduced. RUE and DW accumulation were increased resulting in higher marketable yield, through positive effects on fruit number and their average weight. WUE was enhanced by CO2 supply mainly through increased growth and yield. Physical-chemical quality parameters such as fruit firmness, TA and pH were not affected by CO2 enrichment whereas SSC was enhanced. Greenhouse CO2 enrichment did mitigate the negative effect of saline conditions on productivity without compromising organoleptic and sensory fruit quality. (Author)

  18. Bike Helmets and Black Riders: Experiential Approaches to Helping Students Understand Natural Hazard Assessment and Mitigation Issues

    Science.gov (United States)

    Stein, S. A.; Kley, J.; Hindle, D.; Friedrich, A. M.

    2014-12-01

    Defending society against natural hazards is a high-stakes game of chance against nature, involving tough decisions. How should a developing nation allocate its budget between building schools for towns without ones or making existing schools earthquake-resistant? Does it make more sense to build levees to protect against floods, or to prevent development in the areas at risk? Would more lives be saved by making hospitals earthquake-resistant, or using the funds for patient care? These topics are challenging because they are far from normal experience, in that they involve rare events and large sums. To help students in natural hazard classes conceptualize them, we pose tough and thought-provoking questions about complex issues involved and explore them together via lectures, videos, field trips, and in-class and homework questions. We discuss analogous examples from the students' experiences, drawing on a new book "Playing Against Nature, Integrating Science and Economics to Mitigate Natural Hazards in an Uncertain World". Asking whether they wear bicycle helmets and why or why not shows the cultural perception of risk. Individual students' responses vary, and the overall results vary dramatically between the US, UK, and Germany. Challenges in hazard assessment in an uncertain world are illustrated by asking German students whether they buy a ticket on public transportation - accepting a known cost - or "ride black" - not paying but risking a heavy fine if caught. We explore the challenge of balancing mitigation costs and benefits via the question "If you were a student in Los Angeles, how much more would you pay in rent each month to live in an earthquake-safe building?" Students learn that interdisciplinary thinking is needed, and that due to both uncertainties and sociocultural factors, no unique or right strategies exist for a particular community, much the less all communities. However, we can seek robust policies that give sensible results given

  19. L-Band Digital Aeronautical Communications System Engineering - Initial Safety and Security Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract NNC05CA85C, Task 7: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed L-band (960 to 1164 MHz) terrestrial en route communications system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents a preliminary safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the L-band communication system after the technology is chosen and system rollout timing is determined. The security risk analysis resulted in identifying main security threats to the proposed system as well as noting additional threats recommended for a future security analysis conducted at a later stage in the system development process. The document discusses various security controls, including those suggested in the COCR Version 2.0.

  20. Urban forests and pollution mitigation: analyzing ecosystem services and disservices.

    Science.gov (United States)

    Escobedo, Francisco J; Kroeger, Timm; Wagner, John E

    2011-01-01

    The purpose of this paper is to integrate the concepts of ecosystem services and disservices when assessing the efficacy of using urban forests for mitigating pollution. A brief review of the literature identifies some pollution mitigation ecosystem services provided by urban forests. Existing ecosystem services definitions and typologies from the economics and ecological literature are adapted and applied to urban forest management and the concepts of ecosystem disservices from natural and semi-natural systems are discussed. Examples of the urban forest ecosystem services of air quality and carbon dioxide sequestration are used to illustrate issues associated with assessing their efficacy in mitigating urban pollution. Development of urban forest management alternatives that mitigate pollution should consider scale, contexts, heterogeneity, management intensities and other social and economic co-benefits, tradeoffs, and costs affecting stakeholders and urban sustainability goals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. Assessment of Stone Columns as a Mitigation Technique of Liquefaction-Induced Effects during Italian Earthquakes (May 2012

    Directory of Open Access Journals (Sweden)

    Davide Forcellini

    2014-01-01

    Full Text Available Soil liquefaction has been observed worldwide during recent major earthquakes with induced effects responsible for much of the damage, disruption of function, and considerable replacement expenses for structures. The phenomenon has not been documented in recent time with such damage in Italian context before the recent Emilia-Romagna Earthquake (May 2012. The main lateral spreading and vertical deformations affected the stability of many buildings and impacted social life inducing valuable lessons on liquefaction risk assessment and remediation. This paper aims first of all to reproduce soil response to liquefaction-induced lateral effects and thus to evaluate stone column mitigation technique effectiveness by gradually increasing the extension of remediation, in order to achieve a satisfactory lower level of permanent deformations. The study is based on the use of a FE computational interface able to analyse the earthquake-induced three-dimensional pore pressure generation adopting one of the most credited nonlinear theories in order to assess realistically the displacements connected to lateral spreading.

  2. Assessment of stone columns as a mitigation technique of liquefaction-induced effects during Italian earthquakes (May 2012).

    Science.gov (United States)

    Forcellini, Davide; Tarantino, Angelo Marcello

    2014-01-01

    Soil liquefaction has been observed worldwide during recent major earthquakes with induced effects responsible for much of the damage, disruption of function, and considerable replacement expenses for structures. The phenomenon has not been documented in recent time with such damage in Italian context before the recent Emilia-Romagna Earthquake (May 2012). The main lateral spreading and vertical deformations affected the stability of many buildings and impacted social life inducing valuable lessons on liquefaction risk assessment and remediation. This paper aims first of all to reproduce soil response to liquefaction-induced lateral effects and thus to evaluate stone column mitigation technique effectiveness by gradually increasing the extension of remediation, in order to achieve a satisfactory lower level of permanent deformations. The study is based on the use of a FE computational interface able to analyse the earthquake-induced three-dimensional pore pressure generation adopting one of the most credited nonlinear theories in order to assess realistically the displacements connected to lateral spreading.

  3. Assessment Of Carbon Leakage In Multiple Carbon-Sink Projects: ACase Study In Jambi Province, Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Boer, Rizaldi; Wasrin, Upik R.; Hendri, Perdinan; Dasanto,Bambang D.; Makundi, Willy; Hero, Julius; Ridwan, M.; Masripatin, Nur

    2007-06-01

    Rehabilitation of degraded forest land throughimplementation of carbon sink projects can increase terrestrial carbonstock. However, carbon emissions outside the project boundary, which iscommonly referred to as leakage, may reduce or negate the sequestrationbenefits. This study assessed leakage from carbon sink projects thatcould potentially be implemented in the study area comprised of elevensub-districts in the Batanghari District, Jambi Province, Sumatra,Indonesia. The study estimates the probability of a given land use/coverbeing converted into other uses/cover, by applying a logit model. Thepredictor variables were: proximity to the center of the land use area,distance to transportation channel (road or river), area of agriculturalland, unemployment (number of job seekers), job opportunities, populationdensity and income. Leakage was estimated by analyzing with and withoutcarbon sink projects scenarios. Most of the predictors were estimated asbeing significant in their contribution to land use cover change. Theresults of the analysis show that leakage in the study area can be largeenough to more than offset the project's carbon sequestration benefitsduring the period 2002-2012. However, leakage results are very sensitiveto changes of carbon density of the land uses in the study area. Byreducing C-density of lowland and hill forest by about 10 percent for thebaseline scenario, the leakage becomes positive. Further data collectionand refinement is therefore required. Nevertheless, this study hasdemonstrated that regional analysis is a useful approach to assessleakage.

  4. Assessing soil carbon stocks under pastures through orbital remote sensing

    Directory of Open Access Journals (Sweden)

    Gabor Gyula Julius Szakács

    2011-10-01

    Full Text Available The growing demand of world food and energy supply increases the threat of global warming due to higher greenhouse gas emissions by agricultural activity. Therefore, it is widely admitted that agriculture must establish a new paradigm in terms of environmental sustainability that incorporate techniques for mitigation of greenhouse gas emissions. This article addresses to the scientific demand to estimate in a fast and inexpensive manner current and potential soil organic carbon (SOC stocks in degraded pastures, using remote sensing techniques. Four pastures on sandy soils under Brazilian Cerrado vegetation in São Paulo state were chosen due to their SOC sequestration potential, which was characterized for the soil depth 0-50 cm. Subsequently, a linear regression analysis was performed between SOC and Leaf Area Index (LAI measured in the field (LAIfield and derived by satellite (LAIsatellite as well as SOC and pasture reflectance in six spectra from 450 nm - 2350 nm, using the Enhanced Thematic Mapper (ETM+ sensor of satellite Landsat 7. A high correlation between SOC and LAIfield (R² = 0.9804 and LAIsatellite (R² = 0.9812 was verified. The suitability of satellite derived LAI for SOC determination leads to the assumption, that orbital remote sensing is a very promising SOC estimation technique from regional to global scale.

  5. Development Impact Assessment Highlights Co-benefits of GHG Mitigation Actions

    Energy Technology Data Exchange (ETDEWEB)

    2016-06-01

    This EC-LEDS document describes the Development Impact Assessment (DIA) process that explores interactions between development goals and the low emission development strategies. DIA aims to support informed decision-making by considering how policies and programs intended to meet one goal may impact other development priorities. Enhancing Capacity for Low Emission Development Strategies (EC-LEDS) is a flagship U.S. government-led effort that assists countries in developing and implementing LEDS. The program enhances partner country efforts by providing targeting technical assistance and building a shared global knowledge base on LEDS. is a flagship U.S. government-led effort that assists countries in developing and implementing LEDS. The program enhances partner country efforts by providing targeting technical assistance and building a shared global knowledge base on LEDS.

  6. Application of Probabilistic Risk Assessment in Establishing Perchlorate and Goitrogen Risk Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Douglas Crawford-Brown

    2015-08-01

    Full Text Available This paper applies probabilistic risk assessment in quantifying risks from cumulative and aggregate risk pathways for selected goitrogens in water and food. Results show that the percentages of individuals with a Hazard Index (HI value above 1 ranges between 30% and 50% both with and without serum half-life correction when a traditional regulatory assessment approach based on establishment of a No Observed Effects Level (NOEL is used. When an exposure-response curve is instead used and a threshold of 50% inhibition is assumed, 1.1% or less of the population exceeds an HI value of 1 with no serum half-life correction, rising to as high as 11% when serum half-life correction is applied. If 0% to 5% threshold for iodide uptake inhibition is assumed for production of adverse effects, the percentage of the population with an HI above 1 is 46.2% or less with no serum half-life correction, and 47.2% or less when serum half-life correction is applied. The probabilistic analysis shows that while there are exposed groups for whom perchlorate exposures are the primary cause of individuals having HI values above 1, these constitute significantly less than 1% of the population. Instead, the potential risk from exposure to goitrogens is dominated by nitrates without serum half-life correction and thiocyanates with serum half-life correction, suggesting public health protection is better accomplished by a focus on these and other goitrogens expect in highly limited cases where waterborne perchlorate is at unusually high concentrations.

  7. Estimating on Management Practices (Tillage and Flooding) Effects for Assessing Methane Mitigation from Rice-paddy Soil: On Modeling Approach

    Science.gov (United States)

    Hwang, W.; Hyun, S.; MIN, H.; Kim, J. G.; Cho, K.

    2016-12-01

    Methane is a potent greenhouse gas that is over 25 times greater than carbon dioxide, and rice-paddy soil represents one of the largest artificial source of methane emission. Changes in management practices (tillage depth, flooding method, cultivation time, etc.) has a significant effect on methane emission. In this study, the process based model (DNDC; DeNitrification and DeComposition) was used to estimate methane emission according to alterations management practices (tillage and flooding) of rice cultivation for the entire South Korea paddy soil (1km2 scale grid cell). Simulations of the DNDC model were performed under four tillage depths (no-till, 5 cm, 10 cm and 20 cm) and two flooding methods (conventional and marginal). For operating DNDC model, basic input parameters (daily climate data, soil pH, soil organic matter contents, soil bulk density and soil clay contents) were obtained from domestic national organizations (Korea meteorological administration and rural development administration). Simulating period to investigate changes of management practices was 2001 to 2015. The simulation results of tillage depths for the 2015 annual methane emission of each depth decreased in the following order: 20 cm > 10 cm > 5 cm > no-till, as expected. However, the grain yield of rice was not significantly different among 20 cm, 10 cm, and 5 cm. For the flooding method, the conventional method had five times greater methane emission than the marginal method. However, the grain yield of rice was also lower under the marginal method. The differences in annual methane emission pertaining to tillage depths and flooding methods were consistent on a national scale. Further research should target to find the best management practices to mitigate methane emission while maintaining the grain yield.

  8. South Fork Snake River/Palisades Wildlife Mitigation Project: Environmental assessment

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    BPA proposes to fund the implementation of the South Fork Snake River Programmatic Management Plan to compensate for losses of wildlife and wildlife habitat due to hydroelectric development at Palisades Dam. The Idaho Department of Fish and Game drafted the plan, which was completed in May 1993. This plan recommends land and conservation easement acquisition and wildlife habitat enhancement measures. These measures would be implemented on selected lands along the South Fork of the Snake River between Palisades Dam and the confluence with the Henry`s Fork, and on portions of the Henry`s Fork located in Bonneville, Madison, and Jefferson Counties, Idaho. BPA has prepared an Environmental Assessment evaluating the proposed project. The EA also incorporates by reference the analyses in the South Fork Snake River Activity/Operations Plan and EA prepared jointly in 1991 by the Bureau of Land Management and the Forest Service. Based on the analysis in the EA, BPA has determined that the proposed action is not a major Federal action significantly affecting the quality of the human environment within the meaning of the National Environmental Policy Act (NEPA) of 1969. Therefore, the preparation of an Environmental Impact Statement (EIS) is not required and BPA is issuing this FONSI.

  9. Health and Safety Assessment in Lakhra Coal Mines and Its Mitigation Measures

    Directory of Open Access Journals (Sweden)

    Sallahuddin Panhwar

    2017-04-01

    Full Text Available The coal mine excavation, transportation and coal cutting process are involved in hazards and risks that can result in fatalities, injuries and diseases, if these are not properly managed. This study has been undertaken for assessment of the safety and health issues amongst the mines workers. Convenience sampling technique was exercised upon 97 mine workers and interviewed with the help of set questionnaire. Personnel protection to workplace environment was monitored by using physical observation and scientific analysis. All parameters were measured against national and international protocols pertaining to labor law at coal mines. It has been determined that very high risk was persisting while mine excavation, coal cutting and transportation processes. Previous record of last five years was suggesting that 04 deaths happened due to roof fall, 03 fatalities occurred through suffocation by inhaling toxic gases, one causality happened via rope haulage pulley, and also one death due to stone fall down from mine shaft. 121 workers injured in different kinds of accidents within five years. It has been learnt from in-depth analysis that maximum of health risk and subsequent health damages are triggering due to lack of awareness, non-compliance of labor as well as mines laws. Thus, it is recommended that government should not allow coal mining contractors and companies, those which are failing in compliance with the suggested standards.

  10. SU-F-T-424: Mitigation of Increased Surface Dose When Treating Through A Carbon Fiber Couch Top

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, E; Misgina, F [University of Kentucky, Lexington, KY (United States)

    2016-06-15

    Purpose: To study the effect of the Varian carbon fiber couch top on surface dose for patients being treated using single PA beams in the supine position and to identify simple methods for surface dose reduction. Methods: Measurements of surface dose were obtained in Solid Water phantoms using both a parallel plate ionization chamber (PTW Advanced Markus) and EBT2 Radiochromic films for both 6 and 10MV photons. All measurements were referenced to a depth considered a typical for PA Spine fields. Techniques used to reduce the surface dose included introducing an air standoff using Styrofoam sheets to suspend the phantom surface above the couch top and by adding a thin high Z scattering foil on the table surface. Surface doses were evaluated for typical field sizes, standoff heights, and various scattering materials. Comparisons were made to the surface dose obtainable when treating through a Varian Mylar covered tennis racket style couch top. Results: Dependence on typical spine field sizes was relatively minor. Dependence on air gap was much more significant. Surface doses decreased exponentially with increases in air standoff distance. Surface doses were reduced by approximately 50% for an air gap of 10cm and 40% for a 15cm air gap. Surface doses were reduced by an additional 15% by the addition of a 1mm Tin scattering foil. Conclusion: Using simple techniques, it is possible to reduce the surface dose when treating single PA fields through the Varian carbon fiber couch top. Surface doses can be reduced to levels observed when treating though transparent Mylar tops by adding about 15 cm of air gap. Further reductions are possible by adding thin scattering foils, such as Tin or Lead, on the couch surface. This is a low cost approach to reduce surface dose when using the Varian carbon fiber couch top.

  11. Direct electrolytic dissolution of silicate minerals for air CO2 mitigation and carbon-negative H2 production

    Science.gov (United States)

    Rau, Greg H.; Carroll, Susan A.; Bourcier, William L.; Singleton, Michael J.; Smith, Megan M.; Aines, Roger D.

    2013-01-01

    We experimentally demonstrate the direct coupling of silicate mineral dissolution with saline water electrolysis and H2 production to effect significant air CO2 absorption, chemical conversion, and storage in solution. In particular, we observed as much as a 105-fold increase in OH− concentration (pH increase of up to 5.3 units) relative to experimental controls following the electrolysis of 0.25 M Na2SO4 solutions when the anode was encased in powdered silicate mineral, either wollastonite or an ultramafic mineral. After electrolysis, full equilibration of the alkalized solution with air led to a significant pH reduction and as much as a 45-fold increase in dissolved inorganic carbon concentration. This demonstrated significant spontaneous air CO2 capture, chemical conversion, and storage as a bicarbonate, predominantly as NaHCO3. The excess OH− initially formed in these experiments apparently resulted via neutralization of the anolyte acid, H2SO4, by reaction with the base mineral silicate at the anode, producing mineral sulfate and silica. This allowed the NaOH, normally generated at the cathode, to go unneutralized and to accumulate in the bulk electrolyte, ultimately reacting with atmospheric CO2 to form dissolved bicarbonate. Using nongrid or nonpeak renewable electricity, optimized systems at large scale might allow relatively high-capacity, energy-efficient (production of carbon-negative H2. Furthermore, when added to the ocean, the produced hydroxide and/or (bi)carbonate could be useful in reducing sea-to-air CO2 emissions and in neutralizing or offsetting the effects of ongoing ocean acidification. PMID:23729814

  12. An Assessment of Long-Term Compliance with Performance Standards in Compensatory Mitigation Wetlands

    Science.gov (United States)

    Van den Bosch, Kyle; Matthews, Jeffrey W.

    2017-04-01

    Under the US Clean Water Act, wetland restoration is used to compensate for adverse impacts to wetlands. Following construction, compensation wetlands are monitored for approximately 5 years to determine if they comply with project-specific performance standards. Once a compensation site complies with performance standards, it is assumed that the site will continue to meet standards indefinitely. However, there have been few assessments of long-term compliance. We surveyed, in 2012, 30 compensation sites 8-20 years after restoration to determine whether projects continued to meet performance standards. Additionally, we compared floristic quality of compensation sites to the quality of adjacent natural wetlands to determine whether wetland condition in compensation sites could be predicted based on the condition of nearby wetlands. Compensation sites met, on average, 65% of standards during the final year of monitoring and 53% of standards in 2012, a significant decrease in compliance. Although forested wetlands often failed to meet standards for planted tree survival, the temporal decrease in compliance was driven by increasing dominance by invasive plants in emergent wetlands. The presumption of continued compliance with performance standards after a 5-year monitoring period was not supported. Wetlands restored near better quality natural wetlands achieved and maintained greater floristic quality, suggesting that landscape context was an important determinant of long-term restoration outcomes. Based on our findings, we recommend that compensation wetlands should be monitored for longer time periods, and we suggest that nearby or adjacent natural wetlands provide good examples of reasonably achievable restoration outcomes in a particular landscape.

  13. An Assessment of Long-Term Compliance with Performance Standards in Compensatory Mitigation Wetlands.

    Science.gov (United States)

    Van den Bosch, Kyle; Matthews, Jeffrey W

    2017-04-01

    Under the US Clean Water Act, wetland restoration is used to compensate for adverse impacts to wetlands. Following construction, compensation wetlands are monitored for approximately 5 years to determine if they comply with project-specific performance standards. Once a compensation site complies with performance standards, it is assumed that the site will continue to meet standards indefinitely. However, there have been few assessments of long-term compliance. We surveyed, in 2012, 30 compensation sites 8-20 years after restoration to determine whether projects continued to meet performance standards. Additionally, we compared floristic quality of compensation sites to the quality of adjacent natural wetlands to determine whether wetland condition in compensation sites could be predicted based on the condition of nearby wetlands. Compensation sites met, on average, 65% of standards during the final year of monitoring and 53% of standards in 2012, a significant decrease in compliance. Although forested wetlands often failed to meet standards for planted tree survival, the temporal decrease in compliance was driven by increasing dominance by invasive plants in emergent wetlands. The presumption of continued compliance with performance standards after a 5-year monitoring period was not supported. Wetlands restored near better quality natural wetlands achieved and maintained greater floristic quality, suggesting that landscape context was an important determinant of long-term restoration outcomes. Based on our findings, we recommend that compensation wetlands should be monitored for longer time periods, and we suggest that nearby or adjacent natural wetlands provide good examples of reasonably achievable restoration outcomes in a particular landscape.

  14. Ecological assessment of an algaecidal naphthoquinone derivate for the mitigation of Stephanodiscus within a mesocosm.

    Science.gov (United States)

    Joo, Jae-Hyoung; Kuang, Zhen; Wang, Pengbin; Park, Bum Soo; Patidar, Shailesh Kumar; Han, Myung-Soo

    2017-10-01

    The novel eco-friendly algaecidal naphthoquinone derivate was used to control harmful algal bloom causing species Stephanodiscus and, its effect was assessed on other undesired and non-targeted microbial communities. We conducted a mesocosm experiment to investigate the effects of this novel algaecide on native microbial communities rearing in water collected from Nakdonggang River. Upon treatment of the mesocosm with the naphthoquinone derivate the concentration of Chl-a decreased from 20.4 μg L -1 to 9.5 μg L -1 after 2 days. The turbidity has also shown decrement (exhibited 15.5 NTU on the 7th day). The concentrations of DOC and phosphate in the treatment were slightly higher than those in the control due to the decomposition of dead Stephanodiscus, whereas the DO and pH in the treated condition were slightly lower than those in the control; which was due to increment of organic acids and higher degradation activity. Results showed that bacterial abundance were not significantly different but community composition were slightly different as revealed by NGS (Next generation sequencing). The variation in HNF (Heterotrophic nanoflagellates) revealed that the bacterial community composition changed following the change in bacterial abundance. During the treatment, the abundance of Stephanodiscus was significantly reduced by more than 80% after 6 days, and the abundance of ciliates and the dominant species, Halteria grandinella, had shown marked decline. The abundance of zooplankton sharply decreased to 5 ind. L -1 on the 8th day but increased again by the end of the study period. The Shannon-Wiener diversity index of phytoplankton, ciliates and zooplankton in the treated mesocosm increased significantly after 4, 7 and 8 days, respectively. The marked changes in the ecosystem structure were observed in treatment compare to control. However, the beneficial microalgal populations were not affected which indicated possibility of restoration of treated ecosystem

  15. Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies.

    Science.gov (United States)

    Hertwich, Edgar G; Gibon, Thomas; Bouman, Evert A; Arvesen, Anders; Suh, Sangwon; Heath, Garvin A; Bergesen, Joseph D; Ramirez, Andrea; Vega, Mabel I; Shi, Lei

    2015-05-19

    Decarbonization of electricity generation can support climate-change mitigation and presents an opportunity to address pollution resulting from fossil-fuel combustion. Generally, renewable technologies require higher initial investments in infrastructure than fossil-based power systems. To assess the tradeoffs of increased up-front emissions and reduced operational emissions, we present, to our knowledge, the first global, integrated life-cycle assessment (LCA) of long-term, wide-scale implementation of electricity generation from renewable sources (i.e., photovoltaic and solar thermal, wind, and hydropower) and of carbon dioxide capture and storage for fossil power generation. We compare emissions causing particulate matter exposure, freshwater ecotoxicity, freshwater eutrophication, and climate change for the climate-change-mitigation (BLUE Map) and business-as-usual (Baseline) scenarios of the International Energy Agency up to 2050. We use a vintage stock model to conduct an LCA of newly installed capacity year-by-year for each region, thus accounting for changes in the energy mix used to manufacture future power plants. Under the Baseline scenario, emissions of air and water pollutants more than double whereas the low-carbon technologies introduced in the BLUE Map scenario allow a doubling of electricity supply while stabilizing or even reducing pollution. Material requirements per unit generation for low-carbon technologies can be higher than for conventional fossil generation: 11-40 times more copper for photovoltaic systems and 6-14 times more iron for wind power plants. However, only two years of current global copper and one year of iron production will suffice to build a low-carbon energy system capable of supplying the world's electricity needs in 2050.

  16. Nickel-based anode with water storage capability to mitigate carbon deposition for direct ethanol solid oxide fuel cells.

    Science.gov (United States)

    Wang, Wei; Su, Chao; Ran, Ran; Zhao, Bote; Shao, Zongping; Tade, Moses O; Liu, Shaomin

    2014-06-01

    The potential to use ethanol as a fuel places solid oxide fuel cells (SOFCs) as a sustainable technology for clean energy delivery because of the renewable features of ethanol versus hydrogen. In this work, we developed a new class of anode catalyst exemplified by Ni+BaZr0.4Ce0.4Y0.2O3 (Ni+BZCY) with a water storage capability to overcome the persistent problem of carbon deposition. Ni+BZCY performed very well in catalytic efficiency, water storage capability and coking resistance tests. A stable and high power output was well maintained with a peak power density of 750 mW cm(-2) at 750 °C. The SOFC with the new robust anode performed for seven days without any sign of performance decay, whereas SOFCs with conventional anodes failed in less than 2 h because of significant carbon deposition. Our findings indicate the potential applications of these water storage cermets as catalysts in hydrocarbon reforming and as anodes for SOFCs that operate directly on hydrocarbons. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Air born soil pollution assessment and mitigation in the south of ukraine

    Science.gov (United States)

    Titarenko, Olga; Kharytonov, Mykola; Moschner, Christin; Khlopova, Valentina M.

    2016-04-01

    Atmospheric emissions made by mining and metallurgy industry account for 54 % of total air pollutions of the Dnipropetrovsk Region. As it has been shown previously, the range of pollutants depends on the number and types of the industrial enterprises located within the each urban area. In Dnipropetrovsk and surrounding cities the dominant emissions come from the waste of metallurgical and chemical industries, which is heavily developed in this area. The multipollution exposure assessment was made for the several cities in Dnipropetrovsk industrial region in the south of Ukraine. In this connection the monitoring of atmospheric air pollution in the environment of the Dnepropetrovsk megalopolis area was carried out in several industrial cities: Dnipropetrovsk, Dneprodzerzhynsk, Kryvyy Ryg and Pavlograd with use of the network of stationary monitoring stations at the Dnepropetrovsk Regional Center of Hydrometeorology. The initial evaluation of technogenic atmospheric pollution with toxic substances was performed with due to the limit values of so-called maximum permissible concentrations (MPC) for harmful emissions in the atmosphere as set out in the Ukrainian Air Quality Standards. The main sources of air pollution in industrial cities are stationary. Meantime increasing road transport is a growing source of pollution. The maximum excess of MPC content of NO2 in the atmosphere of the cities has reached twice. Over the last 5 years in the atmosphere of industrial cities in the region there was an increased level of nitrogen dioxide (excess of MPC in 1, 5-2, 5 times). Number of inorganic aerosols (nitrogen dioxide, sulfur dioxide and other) has an effect of summation. In the presence of diffuse sources are superimposed individual emissions and formed the total torch actually located over the whole of the industrial agglomeration. Spatial structure of such a torch is very complicated, instant concentrations of impurities at various points in the city are substantially

  18. Rethinking forest carbon assessments to account for policy institutions

    Science.gov (United States)

    Macintosh, Andrew; Keith, Heather; Lindenmayer, David

    2015-10-01

    There has been extensive debate about whether the sustainable use of forests (forest management aimed at producing a sustainable yield of timber or other products) results in superior climate outcomes to conservation (maintenance or enhancement of conservation values without commercial harvesting). Most of the relevant research has relied on consequential life-cycle assessment (LCA), with the results tending to show that sustainable use has lower net greenhouse-gas (GHG) emissions than conservation in the long term. However, the literature cautions that results are sensitive to forest- and market-related contextual factors: the carbon density of the forests, silvicultural and wood processing practices, and the extent to which wood products and forest bioenergy displace carbon-intensive alternatives. Depending on these issues, conservation can be better for the climate than sustainable use. Policy institutions are another key contextual factor but, so far, they have largely been ignored. Using a case study on the Southern Forestry Region (SFR) of New South Wales (NSW), Australia, we show how policy institutions can affect the assessed outcomes from alternative forest management strategies. Our results highlight the need for greater attention to be paid to policy institutions in forest carbon research.

  19. Comprehensive assessments of measures mitigating heat island phenomena in urban areas; Heat shinku wo riyoshita daikibo reibo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Mizuno, T.; Yamamoto, S.; Yoshikado, H.; Kondo, H.; Kaneho, N.; Saegusa, N.; Inaba, A. [National Institute for Resources and Environment, Tsukuba (Japan); Inoue, M. [New Energy and Industrial Technology Development Organization, Tokyo, (Japan)

    1997-02-01

    This paper describes the assessment method of measures mitigating heat island phenomena in urban areas. The heat island phenomena were classified into meso-scale with 100 km-scale, block-scale with several km-scale, and building-scale with 100 m-scale. Urban thermal environment simulation model was developed in response to each scale. For the development, regional data using aircraft and artificial satellite observations, surface observation and thermal environment observation at Shinjuku new central city of Tokyo, and artificial waste heat actual survey data in the southern Kanto district were utilized. Results of the urban thermal environment simulation were introduced as an application of this model. Temperature distributions of the heat island in the Kanto district were simulated with considering urban conditions near Tokyo and without considering it. Daily changes of wall surfaces of high buildings and road surface were calculated. Increase in the air temperature in the back stream of building roofs with increased temperature was determined. 4 figs.

  20. Policy applications of a highly resolved spatial and temporal onroad carbon dioxide emissions data product for the U.S.: Analyses and their implications for mitigation

    Science.gov (United States)

    Mendoza Lebrun, Daniel

    of CO2 emissions at a highly resolved level. Such a study would improve fossil fuel flux products by enhancing measurement accuracy and prompt location-specific mitigation policy. The carbon cycle science and policymaking communities are both poised to benefit greatly from the development of a highly resolved spatiotemporal emissions product.

  1. On the application of NiO nanoparticles to mitigate in situ asphaltene deposition in carbonate porous matrix

    Science.gov (United States)

    Hashemi, Seyed Iman; Fazelabdolabadi, Babak; Moradi, Siyamak; Rashidi, Ali Morad; Shahrabadi, Abbas; Bagherzadeh, Hadi

    2016-01-01

    Prevention of asphaltene formation in reservoir rocks can result in resolving a severe long-lasting issue in petroleum production. The present research addresses the issue in the context of exploring the potential effect of nickel oxide (NiO) nanoparticles in destabilizing asphaltene deposition in porous media, in the presence of carbon dioxide. To ensure proper distribution within the system and to retain future field-scale applicability, the NiO nanoparticles were exposed to the in situ oil via injection gas stream, in which they had been uniformly dispersed using polydimethylsiloxane (PDMS). The experimental results, established under miscible CO2 state, indicate a considerable improvement in permeability/porosity reduction of core, as well as less asphaltene accumulation in porous media and increased oil recovery factor after applying NiO nanoparticles.

  2. Implications of Different Worldviews to Assess Soil Organic Carbon Change

    Science.gov (United States)

    Grunwald, S.

    2012-04-01

    Profound shifts have occurred over the last three centuries in which human actions have become the main driver to global environmental change. In this new epoch, the Anthropocene, human-driven changes such as climate and land use change, are pushing the Earth system well outside of its normal operating range causing severe and abrupt environmental change. Changes in land use management and land cover are intricately linked to the carbon cycle, but our knowledge on its spatially and temporally explicit impact on carbon dynamics across different scales is still poorly understood. To elucidate on the magnitude of change in soil organic carbon (SOC) due to human-induced stressors different philosophical worldviews may be considered including (i) empiricism - direct measurements of properties and processes at micro, site-specific or field scales; (ii) metaphysics and ontology - conceptual models to assess soil change (e.g., STEP-AWBH); (iii) epistemology - indirect approaches (e.g., meta-analysis or spectral informed prediction models); (iv) reductionism - e.g., carbon flux measurements; (iv) determinism - mechanistic simulation models and biogeochemical investigations (e.g., Century or DNDC); (v) holism - national or global soil databases and aggregate maps; or (vi) integral - fusing individual, social, economic, cultural and empirical perspectives. The strengths and limitations of each of these philosophical approaches are demonstrated using case examples from Florida and U.S.A. The sensitivity to assess SOC change and uncertainty, backcasting and forecasting ability, scaling potential across space and time domains, and limitations and constraints of different worldviews are discussed.

  3. Carbon stocks estimates for French forests. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Dupouey J.L.

    2000-01-01

    Full Text Available This paper gives a short description of the data and methods used for inventorying the carbon stocks in the biomass and soil pools in metropolitan French forests. The data concerning the biomass pools are measured by the French National Forest Inventory (NFI while data necessary to estimate the soil carbon pools are obtained from the 16 x 16 km soil inventory of the International Cooperative Programme on Assessment and Monitoring of Air Pollution Effects on Forests in the UN/ECE. Some of the problems raised by the implementation of the Kyoto protocol articles 3.3 and 3.4 in France are discussed and a preliminary estimate of the changes in relevant carbon storage is given.

  4. Participatory assessment of soil erosion severity and performance of mitigation measures using stakeholder workshops in Koga catchment, Ethiopia.

    Science.gov (United States)

    Jemberu, Walle; Baartman, Jantiene E M; Fleskens, Luuk; Ritsema, Coen J

    2018-02-01

    Farmers possess a wealth of knowledge regarding soil erosion and soil and water conservation (SWC), and there is a great demand to access it. However, there has been little effort to systematically document farmers' experiences and perceptions of SWC measures. Sustainable Land Management (SLM) has largely evolved through local traditional practices rather than adoption based on scientific evidence. This research aimed to assess soil erosion and performance of different SWC measures from the farmers' perspective by documenting their perceptions and experiences in Koga catchment, Ethiopia. To this aim, workshops were organised in three sub-catchments differing in slopes and SWC measures. Workshops included group discussions and field monitoring of erosion indicators and systematically describing the status of soil erosion, soil fertility and yield to assess the performance of SWC measures. Results show that farmers are aware of the harmful effects of ongoing soil erosion and of the impacts of mitigation measures on their farms. Sheet erosion was found to be the most widespread form of erosion while rill damage was critical on plots cultivated to cereals on steep slopes. The average rill erosion rates were 24.2 and 47.3 t/ha/y in treated and untreated farmlands, respectively. SWC reduced rill erosion on average by more than 48%. However, the impacts of SWC measures varied significantly between sub-watersheds, and farmers believed that SWC measures did not prevent erosion completely. Comparatively, graded stone-faced soil bunds revealed maximum desired impacts and were most appreciated by farmers, whereas level bunds caused water logging. Most traditional ditches were highly graded and begun incising and affected production of cereals. Despite the semi-quantitative nature of the methodology, using farmers' perceptions and experiences to document land degradation and the impacts of SWC measures is crucial as they are the daily users of the land and therefore directly

  5. Environmental Assessment : Implementation of federal mitigation requirements for changes in sewage treatment discharges within the Truckee-Carson watershed

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The U.S. Fish and Wildlife Service proposes to implement mitigation plans for two sewage effluent disposal systems in the Truckee-Carson watersheds. Implementation...

  6. Client-Focused Security Assessment of mHealth Apps and Recommended Practices to Prevent or Mitigate Transport Security Issues.

    Science.gov (United States)

    Müthing, Jannis; Jäschke, Thomas; Friedrich, Christoph M

    2017-10-18

    Mobile health (mHealth) apps show a growing importance for patients and health care professionals. Apps in this category are diverse. Some display important information (ie, drug interactions), whereas others help patients to keep track of their health. However, insufficient transport security can lead to confidentiality issues for patients and medical professionals, as well as safety issues regarding data integrity. mHealth apps should therefore deploy intensified vigilance to protect their data and integrity. This paper analyzes the state of security in mHealth apps. The objectives of this study were as follows: (1) identification of relevant transport issues in mHealth apps, (2) development of a platform for test purposes, and (3) recommendation of practices to mitigate them. Security characteristics relevant to the transport security of mHealth apps were assessed, presented, and discussed. These characteristics were used in the development of a prototypical platform facilitating streamlined tests of apps. For the tests, six lists of the 10 most downloaded free apps from three countries and two stores were selected. As some apps were part of these top 10 lists in more than one country, 53 unique apps were tested. Out of the 53 apps tested from three European App Stores for Android and iOS, 21/53 (40%) showed critical results. All 21 apps failed to guarantee the integrity of data displayed. A total of 18 apps leaked private data or were observable in a way that compromised confidentiality between apps and their servers; 17 apps used unprotected connections; and two apps failed to validate certificates correctly. None of the apps tested utilized certificate pinning. Many apps employed analytics or ad providers, undermining user privacy. The tests show that many mHealth apps do not apply sufficient transport security measures. The most common security issue was the use of any kind of unprotected connection. Some apps used secure connections only for selected tasks

  7. Assessment of the Aerosol Generation and Toxicity of Carbon Nanotubes

    Directory of Open Access Journals (Sweden)

    Patrick T. O'Shaughnessy

    2014-06-01

    Full Text Available Current interest in the pulmonary toxicity of carbon nanotubes (CNTs has resulted in a need for an aerosol generation system that is capable of consistently producing a CNT aerosol at a desired concentration level. This two-part study was designed to: (1 assess the properties of a commercially-available aerosol generator when producing an aerosol from a purchased powder supply of double-walled carbon nanotubes (DWCNTs; and (2 assess the pulmonary sub-acute toxicity of DWCNTs in a murine model during a 5-day (4 h/day whole-body exposure. The aerosol generator, consisting of a novel dustfeed mechanism and venturi ejector was determined to be capable of producing a DWCNT consistently over a 4 h exposure period at an average level of 10.8 mg/m3. The count median diameter was 121 nm with a geometric standard deviation of 2.04. The estimated deposited dose was 32 µg/mouse. The total number of cells in bronchoalveolar lavage (BAL fluid was significantly (p < 0.01 increased in exposed mice compared to controls. Similarly, macrophages in BAL fluid were significantly elevated in exposed mice, but not neutrophils. All animals exposed to CNT and euthanized immediately after exposure had changes in the lung tissues showing acute inflammation and injury; however these pathological changes resolved two weeks after the exposure.

  8. Increasing the Confidence of African Carbon Cycle Assessments

    Science.gov (United States)

    Ardö, Jonas

    2016-04-01

    Scarcity of in situ measurements of greenhouse gas (GHG) fluxes hamper calibration and validation of assessments of carbon budgets in Africa. It limits essential studies of ecosystem function and ecosystem processes. The wide range reported net primary production (NPP) and gross primary production (GPP) for continental African is partly a function of the uncertainty originating from this data scarcity. GPP estimates, based on vegetation models and remote sensing based models, range from ~17 to ~40 Pg C yr-1 and NPP estimates roughly range from ~7 to ~20 Pg C yr-1 for continental Africa. According to the MOD17 product does Africa contribute about 23 % of the global GPP and about 25 % of the global NPP. These percentages have recently increased slightly. Differences in modeled carbon use efficiency (i.e. the NPP/GPP ratio) further enhance the uncertainty caused by low spatial resolution driver data sets when deriving NPP from GPP. Current substantial uncertainty in vegetation productivity estimates for Africa (both magnitudes and carbon use efficiency) may be reduced by increased abundance and availability of in situ collected field data including meteorology, radiation, spectral properties, GHG fluxes as well as long term ecological field experiments. Current measurements of GHGs fluxes in Africa are sparse and lacking impressive coordination. The European Fluxes Database Cluster includes ~24 African sites with carbon flux data, most of them with a small amount of data in short time series. Large and diverse biomes such as the evergreen broad leafed forest are under-represented whereas savannas are slightly better represented. USA for example, with 171 flux site listed in FLUXNET has a flux site density of 17 sites per million km2, whereas Africa has density of 0.8 sites per million km2. Increased and coordinated collection of data on fluxes of GHGs, ecosystem properties and processes, both through advanced micro meteorological measurements and through cost

  9. A system of systems assessment of the mitigation of surge and nuisance flooding under present and future conditions

    Science.gov (United States)

    Hagen, S. C.; Bilskie, M. V.; Collini, R.; DeLorme, D.; Medeiros, S. C.; Morris, J. T.; Passeri, D. L.; Yoskowitz, D.

    2016-12-01

    Extensive transdisciplinary efforts since 2010 in the northern Gulf of Mexico (MS, AL, and the FL panhandle) have resulted in a capability to model the coastal dynamics of sea level rise and assess hydrodynamic and ecological impacts at the coastal land margin [1-7]. The establishment of this paradigm shift (i.e., beyond "bathtub" approaches) was made possible, in no small part, by directly involving coastal resource managers at the initial stages and throughout the project process. Potential deleterious effects of sea level rise (SLR) to barrier islands, shorelines, dunes, marshes, etc., are now better understood. The paradigm shift, input from coastal resource managers and future conditions provide a rationale to evaluate and quantify the ability of Natural and Nature-based Feature (NNBF) approaches to mitigate the present and future effects of surge and nuisance flooding. This presentation will describe how we are employing a system of systems approach to assess NNBFs under present and future conditions. Passeri, D.L. et al. "The dynamic effects of sea level rise on low-gradient coastal landscapes: a review." Earth's Future, 3, 159-181, 2015. Morris, J.T. et al. "Contributions of organic and inorganic matter to sediment volume and accretion in tidal wetlands at steady state," Earth's Future, Vol. 4(4), pp. 110-121, 2016. Hovenga, P.A. et al. "The response of runoff and sediment loading in the Apalachicola River, Florida to climate and land use land cover change." Earth's Future, Vol. 4(5), pp. 124-142. 2016. Plant, N.G. et al. "Coupling centennial-scale shoreline change to sea-level rise and coastal morphology in the Gulf of Mexico using a Bayesian network." Earth's Future, Vol. 4(5), pp. 143-158. 2016. Passeri, D.L. et al. "Tidal Hydrodynamics under Future Sea Level Rise and Coastal Morphology in the Northern Gulf of Mexico." Earth's Future, Vol. 4(5), pp. 159-176. 2016. Bilskie, M.V. et al. "Dynamic simulation and numerical analysis of hurricane storm surge

  10. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Reis, Lara Aleluia; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.

    2016-12-01

    The recent International Panel on Climate change (IPCC) report identifies significant co-benefits from climate policies on near-term ambient air pollution and related human health outcomes [1]. This is increasingly relevant for policy making as the health impacts of air pollution are a major global concern- the Global Burden of Disease (GBD) study identifies outdoor air pollution as the sixth major cause of death globally [2]. Integrated assessment models (IAMs) are an effective tool to evaluate future air pollution outcomes across a wide range of assumptions on socio-economic development and policy regimes. The Representative Concentration Pathways (RCPs) [3] were the first set of long-term global scenarios developed across multiple integrated assessment models that provided detailed estimates of a number of air pollutants until 2100. However these scenarios were primarily designed to cover a defined range of radiative forcing outcomes and thus did not specifically focus on the interactions of long-term climate goals on near-term air pollution impacts. More recently, [4] used the RCP4.5 scenario to evaluate the co-benefits of global GHG reductions on air quality and human health in 2030. [5-7] have further examined the interactions of more diverse pollution control regimes with climate policies. This paper extends the listed studies in a number of ways. Firstly it uses multiple IAMs to look into the co-benefits of a global climate policy for ambient air pollution under harmonized assumptions on near-term air pollution control. Multi-model frameworks have been extensively used in the analysis of climate change mitigation pathways, and the structural uncertainties regarding the underlying mechanisms (see for example [8-10]. This is to our knowledge the first time that a multi-model evaluation has been specifically designed and applied to analyze the co-benefits of climate change policy on ambient air quality, thus enabling a better understanding of at a detailed

  11. Quantification of mitigation potentials of agricultural practices for Europe

    Science.gov (United States)

    Lesschen, J. P.; Kuikman, P. J.; Smith, P.; Schils, R. L.; Oudendag, D.

    2009-04-01

    Agriculture has a significant impact on climate, with a commonly estimated contribution of 9% of total greenhouse gases (GHG) emissions. Besides, agriculture is the main source of nitrous oxide and methane emissions to the atmosphere. On the other hand, there is a large potential for climate change mitigation in agriculture through carbon sequestration into soils. Within the framework of the PICCMAT project (Policy Incentives for Climate Change Mitigation Agricultural Techniques) we quantified the mitigation potential of 11 agricultural practices at regional level for the EU. The focus was on smaller-scale measures towards optimised land management that can be widely applied at individual farm level and which can have a positive climate change mitigating effect and be beneficial to soil conditions, e.g. cover crops and reduced tillage. The mitigation potentials were assessed with the MITERRA-Europe model, a deterministic and static N cycling model which calculates N emissions on an annual basis, using N emission factors and N leaching fractions. For the PICCMAT project the model was extended with a soil carbon module, to assess changes in soil organic carbon according to the IPCC Tier1 approach. The amount of soil organic carbon (SOC) is calculated by multiplying the soil reference carbon content, which depends on soil type and climate, by coefficients for land use, land management and input of organic matter. By adapting these coefficients changes in SOC as result of the measures were simulated. We considered both the extent of agricultural area across Europe on which a measure could realistically be applied (potential level of implementation), and the current level of implementation that has already been achieved . The results showed that zero tillage has the highest mitigation potential, followed by adding legumes, reduced tillage, residue management, rotation species, and catch crops. Optimising fertiliser application and fertiliser type are the measures with

  12. Safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-101-SY: Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Lentsch, J.W., Westinghouse Hanford

    1996-05-16

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101, which is located within the Hanford Site, Richland, Washington. The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  13. A safety assessment for proposed pump mixing operations to mitigate episodic gas releases in tank 241-SY-101: Hanford Site,Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Lentsch, J.W.

    1996-07-01

    This safety assessment addresses each of the elements required for the proposed action to remove a slurry distributor and to install, operate, and remove a mixing pump in Tank 241-SY-101,which is located within the Hanford Site, Richland, Washington.The proposed action is required as part of an ongoing evaluation of various mitigation concepts developed to eliminate episodic gas releases that result in hydrogen concentrations in the tank dome space that exceed the lower flammability limit.

  14. Assessing District-Heating Sustainability. Case Studies of CO{sub 2} Mitigation Strategies and Environmental Cost Accounting

    Energy Technology Data Exchange (ETDEWEB)

    Fahlen, Elsa

    2012-11-01

    District heating (DH) may play an important role in achieving the EU goal of a secure, competitive and sustainable energy supply. Integrated energy solutions based on technologies, such as biomass gasification for transport fuel, electricity and heat production and heat-driven absorption cooling, create new optimisation possibilities through the linkage between heat, power, cooling and transport fuel markets which may reduce the global warming contribution of the energy sector. With increasing focus on climate change impacts of greenhouse gas emissions, the environmental effects of other air pollutants should not be neglected. To achieve both a competitive and a sustainable energy supply, it is necessary to integrate environmental considerations into economic policies. Through accounting for external costs of air pollution in energy system modelling and analysis, sustainability aspects may be integrated into DH assessments. The aim of this thesis is to develop, apply and evaluate methodologies for assessing conventional and new technology solutions in a DH system; the assessments are made from a DH perspective with respect to two factors - cost-effectiveness and environmental impacts - which are either assessed separately or integrated through external cost accounting. Various CO{sub 2} mitigation strategies are evaluated with regard to the robustness of the DH system in meeting future developments of energy market prices and policies. The studies are performed using a systems approach by using the simulating DH supply model MARTES as applied to the DH system Sweden. This thesis concludes that the integration of biomass gasification technology and absorption cooling technology in DH systems has the potential for cost-effective CO{sub 2} emission reduction, in line with other EU goals to increase the share of renewable sources in energy use and to increase energy efficiency. Accounting for external costs of not only climate change but also other environmental

  15. Assessing carbon stocks and modelling win-win scenarios of carbon sequestration through land-use changes

    Energy Technology Data Exchange (ETDEWEB)

    Ponce-Hernandez, R.; Koohafkan, P.; Antoine, J. (eds.)

    2004-07-01

    This publication presents a methodology and software tools for assessing carbon stocks and modelling scenarios of carbon sequestration that were developed and tested in pilot field studies in Mexico and Cuba. The models and tools enable the analysis of land use change scenarios in order to identify in a given area (watershed or district) land use alternatives and land management practices that simultaneously maximize food production, maximize soil carbon sequestration, maximize biodiversity conservation and minimize land degradation. The objective is to develop and implement 'win-win' options that satisfy the multiple goals of farmers, land users and other stakeholders in relation to food security, carbon sequestration, biodiversity and land conservation.

  16. Carbon Capture and Storage (CCS): Risk assessment focused on marine bacteria.

    Science.gov (United States)

    Borrero-Santiago, A R; DelValls, T A; Riba, I

    2016-09-01

    Carbon capture and storage (CCS) is one of the options to mitigate the negative effects of the climate change. However, this strategy may have associated some risks such as CO2 leakages due to an escape from the reservoir. In this context, marine bacteria have been underestimated. In order to figure out the gaps and the lack of knowledge, this work summarizes different studies related to the potential effects on the marine bacteria associated with an acidification caused by a CO2 leak from CSS. An improved integrated model for risk assessment is suggested as a tool based on the rapid responses of bacterial community. Moreover, this contribution proposes a strategy for laboratory protocols using Pseudomona stanieri (CECT7202) as a case of study and analyzes the response of the strain under different CO2 conditions. Results showed significant differences (p≤0.05) under six diluted enriched medium and differences about the days in the exponential growth phase. Dilution 1:10 (Marine Broth 2216 with seawater) was selected as an appropriate growth medium for CO2 toxicity test in batch cultures. This work provide an essential and a complete tool to understand and develop a management strategy to improve future works related to possible effects produced by potential CO2 leaks. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Discrete Fracture Network Models for Risk Assessment of Carbon Sequestration in Coal

    Energy Technology Data Exchange (ETDEWEB)

    Jack Pashin; Guohai Jin; Chunmiao Zheng; Song Chen; Marcella McIntyre

    2008-07-01

    near an injection well have potential to divert a large percentage of an injected CO{sub 2} stream away from a target coal seam. However, the strata-bound nature of Pottsville fracture systems is a natural factor that mitigates the risk of long-range leakage and surface seepage. Flow models indicate that cross-formational flow in strata-bound joint networks is low and is dissipated by about an order of magnitude at each successive bedding contact. These models help confirm that strata-bound joint networks are self-compartmentalizing and that the thick successions of interbedded shale and sandstone separating the Pottsville coal zones are confining units that protect shallow aquifers from injection operations at reservoir depth. DFN models are powerful tools for the simulation and analysis of fracture networks and can play an important role in the assessment of risks associated with carbon sequestration and enhanced coalbed methane recovery. Importantly, the stochastic nature DFN models dictates that they cannot be used to precisely reproduce reservoir conditions in a specific field area. Rather, these models are most useful for simulating the fundamental geometric and statistical properties of fracture networks. Because the specifics of fracture architecture in a given area can be uncertain, multiple realizations of DFN models and DFN-based flow models can help define variability that may be encountered during field operations. Using this type of approach, modelers can inform the risk assessment process by characterizing the types and variability of fracture architecture that may exist in geologic carbon sinks containing natural fractures.

  18. Simulation and Assessment of Whole Life-Cycle Carbon Emission Flows from Different Residential Structures

    Directory of Open Access Journals (Sweden)

    Rikun Wen

    2016-08-01

    Full Text Available To explore the differences in carbon emissions over the whole life-cycle of different building structures, the published calculated carbon emissions from residential buildings in China and abroad were normalized. Embodied carbon emission flows, operations stage carbon emission flows, demolition and reclamation stage carbon emission flows and total life-cycle carbon emission flows from concrete, steel, and wood structures were obtained. This study is based on the theory of the social cost of carbon, with an adequately demonstrated social cost of carbon and social discount rate. Taking into consideration both static and dynamic situations and using a social discount rate of 3.5%, the total life-cycle carbon emission flows, absolute carbon emission and building carbon costs were calculated and assessed. The results indicated that concrete structures had the highest embodied carbon emission flows and negative carbon emission flows in the waste and reclamation stage. Wood structures that started the life-cycle with stored carbon had the lowest carbon emission flows in the operations stage and relatively high negative carbon emission flows in the reclamation stage. Wood structures present the smallest carbon footprints for residential buildings.

  19. Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment

    NARCIS (Netherlands)

    Yong, Y.; Velthof, G.L.; Oenema, O.

    2015-01-01

    Livestock manure contributes considerably to global emissions of ammonia (NH3) and greenhouse gases (GHG), especially methane (CH4) and nitrous oxide (N2O). Various measures have been developed to mitigate these emissions, but most of these focus on one specific gas and/or emission source. Here, we

  20. Implications of climate change mitigation for sustainable development

    Science.gov (United States)

    Jakob, Michael; Steckel, Jan Christoph

    2016-10-01

    Evaluating the trade-offs between the risks related to climate change, climate change mitigation as well as co-benefits requires an integrated scenarios approach to sustainable development. We outline a conceptual multi-objective framework to assess climate policies that takes into account climate impacts, mitigation costs, water and food availability, technological risks of nuclear energy and carbon capture and sequestration as well as co-benefits of reducing local air pollution and increasing energy security. This framework is then employed as an example to different climate change mitigation scenarios generated with integrated assessment models. Even though some scenarios encompass considerable challenges for sustainability, no scenario performs better or worse than others in all dimensions, pointing to trade-offs between different dimensions of sustainable development. For this reason, we argue that these trade-offs need to be evaluated in a process of public deliberation that includes all relevant social actors.

  1. Wildlife Impact Assessment and Summary of Previous Mitigation Related to Hydroelectric Projects in Montana, Volume One, Libby Dam Project, Operator, U.S. Army Corps of Engineers.

    Energy Technology Data Exchange (ETDEWEB)

    Yde, Chris A.

    1984-10-01

    This assessment addresses the impacts to the wildlife populations and wildlife habitats due to the Libby Dam project on the Kootenai River and previous mitigation of these losses. The current assessment documents the best available information concerning the impacts to the wildlife populations inhabiting the project area prior to construction of the dam and creation of the reservoir. Many of the impacts reported in this assessment differ from those contained in the earlier document compiled by the Fish and Wildlife Service; however, this document is a thorough compilation of the available data (habitat and wildlife) and, though conservative, attempts to realistically assess the impacts related to the Libby Dam project. Where appropriate the impacts resulting from highway construction and railroad relocation were included in the assessment. This was consistent with the previous assessments.

  2. Reactive Molecular Simulation of the Damage Mitigation Efficacy of POSS-, Graphene-, and Carbon Nanotube-Loaded Polyimide Coatings Exposed to Atomic Oxygen Bombardment.

    Science.gov (United States)

    Rahmani, Farzin; Nouranian, Sasan; Li, Xiaobing; Al-Ostaz, Ahmed

    2017-04-12

    Reactive molecular dynamics simulation was employed to compare the damage mitigation efficacy of pristine and polyimide (PI)-grafted polyoctahedral silsesquioxane (POSS), graphene (Gr), and carbon nanotubes (CNTs) in a PI matrix exposed to atomic oxygen (AO) bombardment. The concentration of POSS and the orientation of Gr and CNT nanoparticles were further investigated. Overall, the mass loss, erosion yield, surface damage, AO penetration depth, and temperature evolution are lower for the PI systems with randomly oriented CNTs and Gr or PI-grafted POSS compared to those of the pristine POSS or aligned CNT and Gr systems at the same nanoparticle concentration. On the basis of experimental early degradation data (before the onset of nanoparticle damage), the amount of exposed PI, which has the highest erosion yield of all material components, on the material surface is the most important parameter affecting the erosion yield of the hybrid material. Our data indicate that the PI systems with randomly oriented Gr and CNT nanoparticles have the lowest amount of exposed PI on the material surface; therefore, a lower erosion yield is obtained for these systems compared to that of the PI systems with aligned Gr and CNT nanoparticles. However, the PI/grafted-POSS system has a significantly lower erosion yield than that of the PI systems with aligned Gr and CNT nanoparticles, again due to a lower amount of exposed PI on the surface. When comparing the PI systems loaded with PI-grafted POSS versus pristine POSS at low and high nanoparticle concentrations, our data indicate that grafting the POSS and increasing the POSS concentration lower the erosion yield by a factor of about 4 and 1.5, respectively. The former is attributed to a better dispersion of PI-grafted POSS versus that of the pristine POSS in the PI matrix, as determined by the radial distribution function.

  3. Rapid Carbon Assessment Project: Data Summary and Availability

    Science.gov (United States)

    Wills, Skye; Loecke, Terry; Roecker, Stephen; Beaudette, Dylan; Libohova, Zamir; Monger, Curtis; Lindbo, David

    2017-04-01

    The Rapid Carbon Assessment (RaCA) project was undertaken to estimate regional soil organic carbon (SOC) stocks across the conterminous United States (CONUS) as a one-time event. Sample locations were selected randomly using the NRI (National Resource Inventory) sampling framework covering all areas in CONUS with SSURGO certified maps as of Dec 2012. Within each of 17 regions, sites were selected by a combination of soil and land use/cover groups (LUGR). At each of more than 6,000 sites five pedons were described and sampled to a depth of 100cm (one central and 4 satellites 30m in each cardinal direction). There were 144,833 samples described from 32,084 pedons at 6, 017 sites. A combination of measurement and modeled bulk density was used for all samples. A visible near-infrared (VNIR) spectrophotometer was used to scan each sample for prediction of soil carbon contents. The samples of each central pedon were analyzed by the Kellogg Soil Survey Laboratory for combustion carbon and calcimeter inorganic carbon. SOC stocks were calculated for each pedon using a standard fixed depth technique to depths of 5, 30 and 100cm. Pedon SOC stocks were transformed to better approach normality before LUGR, regional and land use/cover summaries were calculated. The values reported are geometric means. A detailed spatial map can be produced using LUGR mean assignment to correlated pixels. LUGR values range from 1 to 3,000 Mg ha-1. While some artifacts are visible due to the stratified nature of sampling and extrapolation, the predictions are generally smooth and highlight some distinct geomorphic features including the sandhills in the Great Plains in the central US, mountainous regions in the West and coastal wetlands in the East. Regional averages range from 46 Mg ha-1 in the desert Southwest to 182 Mg ha-1 in the Northeast. Regional trends correlate to climate variables such as precipitation and potential evapotranspiration. While land use/cover classes vary in mean values

  4. The GEFSOC soil carbon modeling system: a tool for conducting regional-scale soil carbon inventories and assessing the impacts of land use change on soil carbon

    NARCIS (Netherlands)

    Easter, M.; Paustian, K.; Killian, K.; Williams, S.; Feng, T.; Al-Adamat, R.; Batjes, N.H.; Bernoux, M.; Bhattacharyya, T.; Cerri, C.C.; Cerri, C.E.P.; Coleman, K.; Falloon, P.; Feller, C.; Gicheru, P.; Kamoni, P.; Milne, E.; Pal, D.K.; Powlson, D.; Rawajfih, Z.; Sessay, M.; Wokabi, S.

    2007-01-01

    The GEFSOC soil carbon modelling system was built to provide interdisciplinary teams of scientists, natural resource managers and policy analysts (who have the appropriate computing skills) with the necessary tools to conduct regional-scale soil carbon (C) inventories. It allows users to assess the

  5. Ocean-Based Alkalinity Enhancement: Mitigation Potential, Side Effects and the Fate of Added Alkalinity Assessed in an Earth System Model

    Science.gov (United States)

    Gonzalez, M. F.; Ilyina, T.

    2014-12-01

    Artificial ocean alkalinization (AOA) has been proposed as a mean to mitigate climate change and ocean acidification. Whilst the mitigation potential of this geo-engineering technology may sound promising, it poses environmental risks. Within the Priority Program "Climate Engineering" of the German Science Foundation (DFG), we investigate the mitigation potential of AOA to reduce atmospheric CO2 and counteract the consequences of ocean acidification. We are particularly interested in the residence time of the added alkalinity at the ocean surface because it must stay in the upper ocean in order to increase the oceanic CO2 uptake. The mitigation potential, risks and the unintended consequences of this geo-engineering method are also exhaustively studied. These questions are tackled through the analysis of different alkalinity enhancement scenarios in the state-of-the-art Earth system model of the Max Planck Institute for Meteorology (MPI-ESM) in a configuration based on the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Model scenarios are designed so that AOA is performed to keep the atmospheric CO2 concentrations similar to values of the stabilization scenario RCP4.5, while fossil fuel CO2 emissions follow the pathway of the high-CO2 scenario RCP8.5. Alkalinity is added globally into the upper 12 meters of the ocean in different seasons and years. We found that on the time scale of relevance (i.e. from years to decades), season and location are key aspects to take into account in the implementation of AOA. This is because of inhomogeneous vertical mixing of added alkalinity due to the mixed layer depth which is established by the season. We also show that the rate of addition greatly determines impact and outcome of this geo-engineering method. Changes driven by the implementation of this method in the ocean biogeochemistry are also discussed. For instance, the associated changes in the carbon cycle, marine oxygen levels, saturation state of

  6. Environmental impact assessment of structural flood mitigation measures by a rapid impact assessment matrix (RIAM) technique: a case study in Metro Manila, Philippines.

    Science.gov (United States)

    Gilbuena, Romeo; Kawamura, Akira; Medina, Reynaldo; Amaguchi, Hideo; Nakagawa, Naoko; Bui, Duong Du

    2013-07-01

    In recent decades, the practice of environmental impact assessment (EIA) in the planning processes of infrastructure projects has created significant awareness on the benefits of environmentally sound and sustainable urban development around the world. In the highly urbanized megacities in the Philippines, like Metro Manila, high priority is given by the national government to structural flood mitigation measures (SFMM) due to the persistently high frequency of flood-related disasters, which are exacerbated by the on-going effects of climate change. EIA thus, should be carefully and effectively executed to maximize the potential benefits of the SFMM. The common practice of EIA in the Philippines is generally qualitative and lacks clear methodology in evaluating multi-criteria systems. Thus, this study proposes the use of the rapid impact assessment matrix (RIAM) technique to provide a method that would systematically and quantitatively evaluate the socio-economic and environmental impacts of planned SFMM in Metro Manila. The RIAM technique was slightly modified to fit the requirements of this study. The scale of impact was determined for each perceived impact, and based on the results, the planned SFMM for Metro Manila will likely bring significant benefits; however, significant negative impacts may also likely occur. The proposed modifications were found to be highly compatible with RIAM, and the results of the RIAM analysis provided a clear view of the impacts associated with the implementation of SFMM projects. This may prove to be valuable in the practice of EIA in the Philippines. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    Science.gov (United States)

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  8. Assessment of channel changes, model of historical floods, and effects of backwater on flood stage, and flood mitigation alternatives for the Wichita River at Wichita Falls, Texas

    Science.gov (United States)

    Winters, Karl E.; Baldys, Stanley

    2011-01-01

    In cooperation with the City of Wichita Falls, the U.S. Geological Survey assessed channel changes on the Wichita River at Wichita Falls, Texas, and modeled historical floods to investigate possible causes and potential mitigation alternatives to higher flood stages in recent (2007 and 2008) floods. Extreme flooding occurred on the Wichita River on June 30, 2007, inundating 167 homes in Wichita Falls. Although a record flood stage was reached in June 2007, the peak discharge was much less than some historical floods at Wichita Falls. Streamflow and stage data from two gages on the Wichita River and one on Holliday Creek were used to assess the interaction of the two streams. Changes in the Wichita River channel were evaluated using historical aerial and ground photography, comparison of recent and historical cross sections, and comparison of channel roughness coefficients with those from earlier studies. The floods of 2007 and 2008 were modeled using a one-dimensional step-backwater model. Calibrated channel roughness was larger for the 2007 flood compared to the 2008 flood, and the 2007 flood peaked about 4 feet higher than the 2008 flood. Calibration of the 1941 flood yielded a channel roughness coefficient (Manning's n) of 0.030, which represents a fairly clean natural channel. The step-backwater model was also used to evaluate the following potential mitigation alternatives: (1) increasing the capacity of the bypass channel near River Road in Wichita Falls, Texas; (2) removal of obstructions near the Scott Avenue and Martin Luther King Junior Boulevard bridges in Wichita Falls, Texas; (3) widening of aggraded channel banks in the reach between Martin Luther King Junior Boulevard and River Road; and (4) reducing channel bank and overbank roughness. Reductions in water-surface elevations ranged from 0.1 foot to as much as 3.0 feet for the different mitigation alternatives. The effects of implementing a combination of different flood-mitigation alternatives were

  9. Assessing the quality of soil carbon using mid-infrared spectroscopy

    Science.gov (United States)

    With an increasing focus on carbon sequestration in soils to help offset anthropogenic greenhouse gas emissions, there is a growing need for standardized methods of assessing the quality (i.e., residence time) of soil organic carbon. Information on soil carbon quality is critica...

  10. An assessment of uncertainty in forest carbon budget projections

    Science.gov (United States)

    Linda S. Heath; James E. Smith

    2000-01-01

    Estimates of uncertainty are presented for projections of forest carbon inventory and average annual net carbon flux on private timberland in the US using the model FORCARB. Uncertainty in carbon inventory was approximately ±9% (2000 million metric tons) of the estimated median in the year 2000, rising to 11% (2800 million metric tons) in projection year 2040...

  11. Assessment of the sea-ice carbon pump

    DEFF Research Database (Denmark)

    Grimm, R.; Notz, D.; Glud, Ronnie N.

    2016-01-01

    It has been suggested that geochemical processes related to sea-ice growth and melt might be important for the polar carbon cycle via the so called sea-ice carbon pump (SICP). The SICP affects the air-sea CO2 exchange by influencing the composition of dissolved inorganic carbon (DIC) and total...

  12. Assessing the Relationship Between Hazard Mitigation Plan Quality and Rural Status in a Cohort of 57 Counties from 3 States in the Southeastern U.S.

    Directory of Open Access Journals (Sweden)

    David Salvesen

    2012-08-01

    Full Text Available Rural counties face unique challenges with regard to disaster vulnerability and resilience. We compared the quality of hazard mitigation plans (HMPs completed in accordance with provisions of the Disaster Mitigation Act of 2000 from 21 urban and 36 rural counties in three southeastern states. HMPs were content analyzed to calculate a score for six principles of plan quality. Generalized linear models were used to assess how the mean number of items within each of the six principles was related to urban status, adjusting for total county population and state-level differences. Adjusted mean ratios were higher in urban areas for goals, fact base, policies and participation. Rural areas performed better than urban counterparts in both implementation and monitoring and inter-organizational coordination. Our results suggest that there are important differences in hazard mitigation plan quality between urban and rural counties. Future research should explore characteristics of urban and rural counties that explain the observed differences, and whether such differences can help explain the inequalities in response and recovery to disasters between urban and rural counties.

  13. Environmental assessment of amine-based carbon capture Scenario modelling with life cycle assessment (LCA)

    Energy Technology Data Exchange (ETDEWEB)

    Brekke, Andreas; Askham, Cecilia; Modahl, Ingunn Saur; Vold, Bjoern Ivar; Johnsen, Fredrik Moltu

    2012-07-01

    This report contains a first attempt at introducing the environmental impacts associated with amines and derivatives in a life cycle assessment (LCA) of gas power production with carbon capture and comparing these with other environmental impacts associated with the production system. The report aims to identify data gaps and methodological challenges connected both to modelling toxicity of amines and derivatives and weighting of environmental impacts. A scenario based modelling exercise was performed on a theoretical gas power plant with carbon capture, where emission levels of nitrosamines were varied between zero (gas power without CCS) to a worst case level (outside the probable range of actual carbon capture facilities). Because of extensive research and development in the areas of solvents and emissions from carbon capture facilities in the latter years, data used in the exercise may be outdated and results should therefore not be taken at face value.The results from the exercise showed: According to UseTox, emissions of nitrosamines are less important than emissions of formaldehyde with regard to toxicity related to operation of (i.e. both inputs to and outputs from) a carbon capture facility. If characterisation factors for emissions of metals are included, these outweigh all other toxic emissions in the study. None of the most recent weighting methods in LCA include characterisation factors for nitrosamines, and these are therefore not part of the environmental ranking.These results shows that the EDecIDe project has an important role to play in developing LCA methodology useful for assessing the environmental performance of amine based carbon capture in particular and CCS in general. The EDecIDe project will examine the toxicity models used in LCA in more detail, specifically UseTox. The applicability of the LCA compartment models and site specificity issues for a Norwegian/Arctic situation will be explored. This applies to the environmental compartments

  14. Modeling skin temperature to assess the effect of air velocity to mitigate heat stress among growing pigs

    DEFF Research Database (Denmark)

    Bjerg, Bjarne Schmidt; Pedersen, Poul; Morsing, Svend

    to the skin and from the skin to the surroundings. The latter is modelled as the united resistance for convection, radiation and evaporation. The model considers that the thermal heat load affects the tissue resistance, the body temperature and the evaporation from the skin, which is managed by modeling...... temperature model to generated data for determining the potential effect of air velocity to mitigate heat stress among growing pigs housed in warm environment. The model calculates the skin temperature as function of body temperature, air temperature and the resistances for heat transfer from the body...

  15. A Review of Urban Low-carbon Traffic Assessment

    Science.gov (United States)

    Chen, Jing; Yao, Jingjing

    2017-12-01

    Transportation not only promote social and economic development, but also improve people’s living standards, but its high energy consumption and high pollution brought a series of energy and environmental problems. In order to reduce the impact on the environment, countries are developing low-carbon transport as part of the socio-economic development mentioned on the agenda. On the basis of understanding the background and connotation of low-carbon transportation, this paper reviews and collates the evaluation index system and evaluation method of urban low-carbon transportation, which is used to provide reference for urban low-carbon transportation research.

  16. Assessment of potential carbon dioxide reductions due to biomass-coal cofiring in the United States.

    Science.gov (United States)

    Robinson, A L; Rhodes, J S; Keith, D W

    2003-11-15

    Cofiring biomass with coal in existing power plants offers a relatively inexpensive and efficient option for increasing near-term biomass energy utilization. Potential benefits include reduced emissions of carbon dioxide, sulfur, and nitrogen oxides and development of biomass energy markets. To understand the economics of this strategy, we develop a model to calculate electricity and pollutant mitigation costs with explicit characterization of uncertainty in fuel and technology costs and variability in fuel properties. The model is first used to evaluate the plant-level economics of cofiring as a function of biomass cost. It is then integrated with state-specific coal consumption and biomass supply estimates to develop national supply curves for cofire electricity and carbon mitigation. A delivered cost of biomass below 15 dollars per ton is required for cofire to be competitive with existing coal-based generation. Except at low biomass prices (less than 15 dollars per ton), cofiring is unlikely to be competitive for NOx or SOx control, but it can provide comparatively inexpensive control of CO2 emissions: we estimate that emissions reductions of 100 Mt-CO2/year (a 5% reduction in electric-sector emissions) can be achieved at 25 +/- 20 dollars/tC. The 2-3 year time horizon for deployment--compared with 10-20 years for other CO2 mitigation options--makes cofiring particularly attractive.

  17. Report of the Joint IPCC WG 2 and 3 expert meeting on the integration of adaptation, mitigation and sustainable development into the 4. IPCC assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The objectives for this meeting at Reunion Island were: - To feed new views from outside the climate change literature into the assessment of Working Group II (WG II) and WG III concerning the strongly interrelated area of adaptation, mitigation and sustainable development. - to dove-tail zero-order draft texts of WG II and WG III (by the authors) with a view to ensuring that the treatment of Adaptation and Mitigation (AM) and Sustainable Development (SD) issues in both assessments is: 'Consistent, Complementary, Concise and Complete' ('4 Cs'). Furthermore, it was decided that the deliverable should be: - Recommendations for the writing team of WG II fourth Assessment Report (AR4) for incorporation of AM and SD issues in their First Order Draft (following their 2. Lead Author meeting in Cairns, 14-17 March 2005); - Recommendations for the writing team of WG III for incorporation in their Zero-order Draft (ZOD, to be completed 11 March 2005) The programme of the meeting was developed by the TSUs of WG II and III under the responsibility of the co-chairs of WG II and III. Day 1 the programme was devoted to a series of key note speakers, covering both potential user views as well as relevant new perspectives on the handling of AM and SD issues. These areas have not been fully addressed in the IPCC assessment work to date. The invited experts elaborated on 'new science areas' or 'new literatures' that inform parts of the AR4. The morning programme of Day 1 also contained an opening session featuring several ministers of Environment of neighbouring Small Island States, a representative of the European Parliament, and government officials from both the French Republic and Reunion Island. Day 2 and 3 were used for working sessions between authors on the integration of adaptation, mitigation and sustainable development into the contributions of Working Groups II and III of the AR4. The full programme is attached to the document. The

  18. Assessment of a novel overflow-type electrochemical membrane bioreactor (EMBR) for wastewater treatment, energy recovery and membrane fouling mitigation.

    Science.gov (United States)

    Zhou, Guowang; Zhou, Yuhong; Zhou, Guoqiang; Lu, Lian; Wan, Xiankai; Shi, Huixiang

    2015-11-01

    A novel overflow-type electrochemical membrane bioreactor (EMBR) without ion exchange membrane, was developed for wastewater treatment and utilized electricity recovered by microbial fuel cell (MFC) for membrane fouling mitigation in membrane bioreactor (MBR). The maximum power density of 629mW/m(3) or 7.18mW/m(2) was obtained. The removal efficiencies of chemical oxygen demand, ammonia nitrogen and total nitrogen under appropriate ranges of hydraulic retention times (16.9-8.5h) were 92.6±5.4%, 96.5±2.8% and 73.9±9.7%, respectively. Sequencing showed electrochemically active bacteria Lactococcus, Bacillus and Saprospiraceae_uncultured were abundant in the biofilm. Compared with a conventional MBR, five significant effects of the MFC integration on the sludge properties, including particle zeta potential decrease, particle size distribution macroaggregation, soluble microbial products and extracellular polymeric substances reduction and SMPP/SMPC ratio increase, were achieved in this system, leading to membrane fouling mitigation. This system shows great promise for practical wastewater treatment application. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Assessing Water and Carbon Footprints for Green Water Resource Management

    Science.gov (United States)

    This slide presentation will focus on the following points: (1) Water footprint and carbon footprint are two criteria evaluating the greenness in urban development, (2) Two cases are examined and presented: water footprints in energy productions and carbon footprints in water ...

  20. Assessment of the Efficacy of Some Carbonate Minerals as ...

    African Journals Online (AJOL)

    The efficacy of some carbonate minerals (marble, limestone and dolomite) as energizers in pack-caburisation of mild steel has been compared with that of barium carbonate. Mild steel samples were pack-carburised for suitable lengths of time at 9000C in carburising compounds containing charcoal plus varying amounts ...

  1. Utilizing Forest Inventory and Analysis Data, Remote Sensing, and Ecosystem Models for National Forest System Carbon Assessments

    Science.gov (United States)

    Alexa J. Dugan; Richard A. Birdsey; Sean P. Healey; Christopher Woodall; Fangmin Zhang; Jing M. Chen; Alexander Hernandez; James B. McCarter

    2015-01-01

    Forested lands, representing the largest terrestrial carbon sink in the United States, offset 16% of total U.S. carbon dioxide emissions through carbon sequestration. Meanwhile, this carbon sink is threatened by deforestation, climate change and natural disturbances. As a result, U.S. Forest Service policies require that National Forests assess baseline carbon stocks...

  2. Approach to assessment of management impacts on agricultural-soil carbon

    Energy Technology Data Exchange (ETDEWEB)

    Barnwell, T.O.; Jackson, R.B.; Elliott, E.T.; Burke, I.C.; Cole, C.V.

    1992-01-01

    Agroecosystems contain about 12% of the terrestrial soil carbon and play an important role in the global carbon cycle. The authors describe a project to evaluate the degree to which management practices can affect soil carbon in agroecosystems. The objectives of the project are to determine whether agricultural systems can be managed to conserve and sequester carbon and thereby reduce the accumulation of carbon dioxide in the atmosphere, and to provide reference datasets and methodologies for agricultural assessments. (Copyright (c) 1992 Kluwer Academic Publishers.)

  3. Cytotoxicity Assessment of Some Carbon Nanotubes and Related Carbon Nanoparticle Aggregates and the Implications for Anthropogenic Carbon Nanotube Aggregates in the Environment

    Directory of Open Access Journals (Sweden)

    J. Venzor

    2005-04-01

    Full Text Available Nanotechnology and nanomaterials have become the new frontier world-wide over the past few years and prospects for the production and novel uses of large quantities of carbon nanotubes in particular are becoming an increasing reality. Correspondingly, the potential health risks for these and other nanoparticulate materials have been of considerable concern. Toxicological studies, while sparse, have been concerned with virtually uncharacterized, single wall carbon nanotubes, and the conclusions have been conflicting and uncertain. In this research we performed viability assays on a murine lung macrophage cell line to assess the comparative cytotoxicity of commercial, single wall carbon nanotubes (ropes and two different multiwall carbon nanotube samples; utilizing chrysotile asbestos nanotubes and black carbon nanoaggregates as toxicity standards. These nanotube materials were completely characterized by transmission electron microscopy and observed to be aggregates ranging from 1 to 2 μm in mean diameter, with closed ends. The cytotoxicity data indicated a strong concentration relationship and toxicity for all the carbon nanotube materials relative to the asbestos nanotubes and black carbon. A commercial multiwall carbon nanotube aggregate exhibiting this significant cell response was observed to be identical in structure to multiwall carbon nanotube aggregates demonstrated to be ubiquitous in the environment, and especially in indoor environments, where natural gas or propane cooking stoves exist. Correspondingly, preliminary epidemiological data, although sparse, indicate a correlation between asthma incidence or classification, and exposure to gas stoves. These results suggest a number of novel epidemiological and etiological avenues for asthma triggers and related respiratory or other environmental health effects, especially since indoor number concentrations for multiwall carbon nanotube aggregates is at least 10 times the outdoor

  4. Twelve metropolitan carbon footprints. A preliminary comparative global assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K. [Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Brown, Marilyn A. [School of Public Policy, Georgia Institute of Technology, Atlanta, Georgia (United States)

    2010-09-15

    A dearth of available data on carbon emissions and comparative analysis between metropolitan areas make it difficult to confirm or refute best practices and policies. To help provide benchmarks and expand our understanding of urban centers and climate change, this article offers a preliminary comparison of the carbon footprints of 12 metropolitan areas. It does this by examining emissions related to vehicles, energy used in buildings, industry, agriculture, and waste. The carbon emissions from these sources - discussed here as the metro area's partial carbon footprint - provide a foundation for identifying the pricing, land use, help metropolitan areas throughout the world respond to climate change. The article begins by exploring a sample of the existing literature on urban morphology and climate change and explaining the methodology used to calculate each area's carbon footprint. The article then depicts the specific carbon footprints for Beijing, Jakarta, London, Los Angeles, Manila, Mexico City, New Delhi, New York, Sao Paulo, Seoul, Singapore, and Tokyo and compares these to respective national averages. It concludes by offering suggestions for how city planners and policymakers can reduce the carbon footprint of these and possibly other large urban areas. (author)

  5. Twelve metropolitan carbon footprints: A preliminary comparative global assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sovacool, Benjamin K., E-mail: bsovacool@nus.edu.s [Lee Kuan Yew School of Public Policy, National University of Singapore (Singapore); Brown, Marilyn A., E-mail: Marilyn.Brown@pubpolicy.gatech.ed [School of Public Policy, Georgia Institute of Technology, Atlanta, Georgia (United States)

    2010-09-15

    A dearth of available data on carbon emissions and comparative analysis between metropolitan areas make it difficult to confirm or refute best practices and policies. To help provide benchmarks and expand our understanding of urban centers and climate change, this article offers a preliminary comparison of the carbon footprints of 12 metropolitan areas. It does this by examining emissions related to vehicles, energy used in buildings, industry, agriculture, and waste. The carbon emissions from these sources-discussed here as the metro area's partial carbon footprint-provide a foundation for identifying the pricing, land use, help metropolitan areas throughout the world respond to climate change. The article begins by exploring a sample of the existing literature on urban morphology and climate change and explaining the methodology used to calculate each area's carbon footprint. The article then depicts the specific carbon footprints for Beijing, Jakarta, London, Los Angeles, Manila, Mexico City, New Delhi, New York, Sao Paulo, Seoul, Singapore, and Tokyo and compares these to respective national averages. It concludes by offering suggestions for how city planners and policymakers can reduce the carbon footprint of these and possibly other large urban areas.

  6. Mitigating and adapting to climate change: multi-functional and multi-scale assessment of green urban infrastructure.

    Science.gov (United States)

    Demuzere, M; Orru, K; Heidrich, O; Olazabal, E; Geneletti, D; Orru, H; Bhave, A G; Mittal, N; Feliu, E; Faehnle, M

    2014-12-15

    In order to develop climate resilient urban areas and reduce emissions, several opportunities exist starting from conscious planning and design of green (and blue) spaces in these landscapes. Green urban infrastructure has been regarded as beneficial, e.g. by balancing water flows, providing thermal comfort. This article explores the existing evidence on the contribution of green spaces to climate change mitigation and adaptation services. We suggest a framework of ecosystem services for systematizing the evidence on the provision of bio-physical benefits (e.g. CO2 sequestration) as well as social and psychological benefits (e.g. improved health) that enable coping with (adaptation) or reducing the adverse effects (mitigation) of climate change. The multi-functional and multi-scale nature of green urban infrastructure complicates the categorization of services and benefits, since in reality the interactions between various benefits are manifold and appear on different scales. We will show the relevance of the benefits from green urban infrastructures on three spatial scales (i.e. city, neighborhood and site specific scales). We will further report on co-benefits and trade-offs between the various services indicating that a benefit could in turn be detrimental in relation to other functions. The manuscript identifies avenues for further research on the role of green urban infrastructure, in different types of cities, climates and social contexts. Our systematic understanding of the bio-physical and social processes defining various services allows targeting stressors that may hamper the provision of green urban infrastructure services in individual behavior as well as in wider planning and environmental management in urban areas. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Assessing recent smoking status by measuring exhaled carbon monoxide levels.

    Directory of Open Access Journals (Sweden)

    AnnSofi Sandberg

    Full Text Available BACKGROUND: Cigarette smoke causes both acute and chronic changes of the immune system. Excluding recent smoking is therefore important in clinical studies with chronic inflammation as primary focus. In this context, it is common to ask the study subjects to refrain from smoking within a certain time frame prior to sampling. The duration of the smoking cessation is typically from midnight the evening before, i.e. 8 hours from sampling. As it has been shown that a proportion of current smokers underestimates or denies smoking, objective assessment of recent smoking status is of great importance. Our aim was to extend the use of exhaled carbon monoxide (CO(breath, a well-established method for separating smokers from non-smokers, to assessment of recent smoking status. METHODS AND FINDINGS: The time course of CO(breath decline was investigated by hourly measurements during one day on non-symptomatic smokers and non-smokers (6+7, as well as by measurements on three separate occasions on non-smokers (n = 29, smokers with normal lung function (n = 38 and smokers with chronic obstructive pulmonary disease (n = 19 participating in a clinical study. We used regression analysis to model the decay, and receiver operator characteristics analysis for evaluation of model performance. The decline was described as a mono-exponential decay (r(2 = 0.7 with a half-life of 4.5 hours. CO decline rate depends on initial CO levels, and by necessity a generic cut-off is therefore crude as initial CO(breath varies a lot between individuals. However, a cut-off level of 12 ppm could classify recent smokers from smokers having refrained from smoking during the past 8 hours with a specificity of 94% and a sensitivity of 90%. CONCLUSIONS: We hereby describe a method for classifying recent smokers from smokers having refrained from smoking for >8 hours that is easy to implement in a clinical setting.

  8. Black carbon cookstove emissions: A field assessment of 19 stove/fuel combinations

    Science.gov (United States)

    Garland, Charity; Delapena, Samantha; Prasad, Rajendra; L'Orange, Christian; Alexander, Donee; Johnson, Michael

    2017-11-01

    Black carbon (BC) emissions from household cookstoves consuming solid fuel produce approximately 25 percent of total anthropogenic BC emissions. The short atmospheric lifetime of BC means that reducing BC emissions would result in a faster climate response than mitigating CO2 and other long-lived greenhouse gases. This study presents the results of optical BC measurements of two new cookstove emissions field assessments and 17 archived cookstove datasets. BC was determined from attenuation of 880 nm light, which is strongly absorbed by BC, and linearly related between 1 and 125 attenuation units. A relationship was experimentally determined correlating BC mass deposition on quartz filters determined via thermal optical analysis (TOA) and on PTFE and quartz filters using transmissometry, yielding an attenuation cross-section (σATN) for both filter media types. σATN relates TOA measurements to optical measurements on PTFE and quartz (σATN(PTFE) = 13.7 cm-2 μg, R2 = 0.87, σATN(Quartz) = 15.6 cm-2 μg, R2 = 0.87). These filter-specific σATN, optical measurements of archived filters were used to determine BC emission factors and the fraction of particulate matter (PM) in the form of black carbon (BC/PM). The 19 stoves measured fell into five stove classes; simple wood, rocket, advanced biomass, simple charcoal, and advanced charcoal. Advanced biomass stoves include forced- and natural-draft gasifiers which use wood or biomass pellets as fuel. Of these classes, the simple wood and rocket stoves demonstrated the highest median BC emission factors, ranging from 0.051 to 0.14 g MJ-1. The lowest BC emission factors were seen in charcoal stoves, which corresponds to the generally low PM emission factors observed during charcoal combustion, ranging from 0.0084 to 0.014 g MJ-1. The advanced biomass stoves generally showed an improvement in BC emissions factors compared to simple wood and rocket stoves, ranging from 0.0031 to 0.071 g MJ-1. BC/PM ratios were highest for the

  9. International Assessment of Carbon Nanotube Manufacturing and Applications

    National Research Council Canada - National Science Library

    Eklund, Peter; Ajayan, Pulickel; Blackmon, Robert; Hart, A. J; Kong, Jing; Pradhan, Bhabendra; Rao, Apparao; Rinzler, Andrew

    2007-01-01

    This WTEC study focuses on the manufacturing and applications of carbon nanotubes "CNTs" to identify recent progress in understanding the commercial potential of CNTs as viewed by academic, industrial...

  10. International Assessment of Carbon Nanotube Manufacturing and Applications

    Science.gov (United States)

    2007-06-01

    in Japan. Similarly, nanotubes (SWCNTs and MWCNTs) have been added to ceramic materials (e.g., alumina ) to enhance the fracture toughness of the...ICMR was built around Eklund’s work to mass- produce nanopowders produced by CO2 laser pyrolysis. ICMR moved to Silicon Valley two years later and...nanotube secondary battery using carbon nanotubes (Korea) • Method of synthesizing carbon nanotubes in the multistage bipolar alumina mould and

  11. Carbon Management Brochure - Assessing and managing business responses to climate change

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-08-16

    The Carbon Management Programme, developed by the Carbon Trust and trialled with 50 leading companies, provides a systematic approach to managing the risks and realising the opportunities that climate change presents. In 2003-2004, the Carbon Trust successfully piloted the Carbon Management Programme with 50 leading UK companies including sixteen of the FTSE 100. The following sectors were represented: manufacturing, retail, finance, property and construction and food and drink. Alcan, Tesco, Pfizer, Royal Bank of Scotland, the companies that took part. For Scottish and Newcastle operational efficiency and reductions in cost base are vital to maintain competitive advantage. Moreover, as a branded goods company, Scottish and Newcastle has taken a leading position on its commitment to CSR and climate change mitigation. Carbon Management is a key part of this and has become a leading issue for investors, consumers and regulators. Scottish Courage undertook the Carbon Management Programme to explore further energy-efficiency potential, to seek CSR opportunities and to pilot ideas for potential international roll-out. The programme identified a wide range of opportunities and led to a plan to deliver annual energy cost savings of 15% as well as 13,000 tonnes of carbon emission reductions. The programme helped HBOS to understand the commercial implications of carbon issues on company activities, products, and services. It clarified the risk of climate change associated with property, lending and insurance portfolios; identified new product and service opportunities and facilitated internal engagement and raised the profile of Carbon Management issues within the company. The programme also highlighted opportunities for reputation and brand enhancement. For the Boots Group Carbon Management activities were aligned with corporate objectives for CSR, energy and transport. Site surveys were used to identify a list of specific carbon abatement projects. From this a 5-10 year

  12. Comparative Environmental Life Cycle Assessment of Alternative Uses of Wastewater Carbon Content

    DEFF Research Database (Denmark)

    Kroghsbo, Nena; Nicolaisen, Janna; Wenzel, Henrik

    the environmental priorities between biogas and PHA formation from the carbon content of the sludge. Further, the elimination of the primary settling with the aim of using the carbon content of the wastewater for enhanced nitrogen removal in the activated sludge process was studied. This comparison allows...... for assessing the environmental priorities between using the carbon for nutrient removal through denitrification and energy production/recovery through biogas or PHA. The preliminary results and conclusions of the study will be presented....

  13. Mitigating the Dangers of a Single Story: Creating Large-Scale Writing Assessments Aligned With Sociocultural Theory

    National Research Council Canada - National Science Library

    Behizadeh, Nadia

    2014-01-01

    The dangers of a single story in current U.S. large-scale writing assessment are that assessment practice does not align with theory and this practice has negative effects on instruction and students...

  14. Simulation of long-term carbon and nitrogen dynamics in grassland-based dairy farming systems to evaluate mitigation strategies for nutrient losses

    NARCIS (Netherlands)

    Shah, G.A.; Groot, J.C.J.; Shah, G.M.; Lantinga, E.A.

    2013-01-01

    Many measures have been proposed to mitigate gaseous emissions and other nutrient losses from agroecosystems, which can have large detrimental effects for the quality of soils, water and air, and contribute to eutrophication and global warming. Due to complexities in farm management, biological

  15. Toward an integrated monitoring framework to assess the effects of tropical forest degradation and recovery on carbon stocks and biodiversity

    Science.gov (United States)

    Mercedes M. C. Bustamante; Iris Roitman; T. Mitchell Aide; Ane Alencar; Liana O. Anderson; Luiz Aragao; Gregory P. Asner; Jos Barlow; Erika Berenguer; Jeffrey Chambers; Marcos H. Costa; Thierry Fanin; Laerte G. Ferreira; Joice Ferreira; Michael Keller; William E. Magnusson; Lucia Morales-Barquero; Douglas Morton; Jean P. H. B. Ometto; Michael Palace; Carlos A. Peres; Divino Silverio; Susan Trumbore; Ima C. G. Vieira

    2015-01-01

    Tropical forests harbor a significant portion of global biodiversity and are a critical component of the climate system. Reducing deforestation and forest degradation contributes to global climate-change mitigation efforts, yet emissions and removals from forest dynamics are still poorly quantified. We reviewed the main challenges to estimate changes in carbon stocks...

  16. Assessing the Health and Performance Risks of Carbon Dioxide Exposures

    Science.gov (United States)

    James, John T.; Meyers, V. E.; Alexander, D.

    2010-01-01

    Carbon dioxide (CO2) is an anthropogenic gas that accumulates in spacecraft to much higher levels than earth-normal levels. Controlling concentrations of this gas to acceptable levels to ensure crew health and optimal performance demands major commitment of resources. NASA has many decades of experience monitoring and controlling CO2, yet we are uncertain of the levels at which subtle performance decrements develop. There is limited evidence from ground-based studies that visual disturbances can occur during brief exposures and visual changes have been noted in spaceflight crews. These changes may be due to CO2 alone or in combination with other known spaceflight factors such as increased intracranial pressure due to fluid shifts. Discerning the comparative contribution of each to performance decrements is an urgent issue if we hope to optimize astronaut performance aboard the ISS. Long-term, we must know the appropriate control levels for exploration-class missions to ensure that crewmembers can remain cooperative and productive in a highly stressful environment. Furthermore, we must know the magnitude of interindividual variability in susceptibility to the adverse effects of CO2 so that the most tolerant crewmembers can be identified. Ground-based studies have been conducted for many years to set exposure limits for submariners; however, these studies are typically limited and incompletely reported. Nonetheless, NASA, in cooperation with the National Research Council, has set exposure limits for astronauts using this limited database. These studies do not consider the interactions of spaceflight-induced fluid shifts and CO2 exposures. In an attempt to discern whether CO2 levels affect the incidence of headache and visual disturbances in astronauts we performed a retrospective study comparing average CO2 levels and the prevalence of headache and visual disturbances. Our goal is to narrow gaps in the risk profile for in-flight CO2 exposures. Such studies can

  17. The assessment of mangrove biomass and carbon in West Africa: a spatially explicit analytical framework

    Science.gov (United States)

    Wenwu Tang; Wenpeng Feng; Meijuan Jia; Jiyang Shi; Huifang Zuo; Carl C. Trettin

    2015-01-01

    Mangrove forests are highly productive and have large carbon sinks while also providing numerous goods and ecosystem services. However, effective management and conservation of the mangrove forests are often dependent on spatially explicit assessments of the resource. Given the remote and highly dispersed nature of mangroves, estimation of biomass and carbon...

  18. Product carbon footprint assessment supporting the green supply chain construction in household appliance manufacturers

    Science.gov (United States)

    Chen, Jianhua; Sun, Liang; Guo, Huiting

    2017-11-01

    Supply chain carbon emission is one of the factors considered in the green supply chain management. A method was designed to support the green supply chain measures based on the carbon footprint assessment for products. A research for 3 typical household appliances carbon footprint assessment was conducted to explore using product carbon footprint assessment method to guide the green supply chain management of the manufacturers. The result could reflect the differences directions on green supply chain management of manufacturers of washing machine, air conditioner and microwave, respectively That is, the washing machine manufacturer should pay attention to the low carbon activities in upstream suppliers in highest priority, and also the promotion of product energy efficiency. The air conditioner manufacturer should pay attention to the product energy efficiency increasing in highest priority, and the improvement of refrigerant to decrease its GWP. And the microwave manufacture could only focus on the energy efficiency increasing because it contributes most of the carbon emission to its carbon footprint. Besides, the representativeness of product and the applicability of the method were also discussed. As the manufacturer could master the technical information on raw material and components of its products to conduct the product carbon footprint assessment, this method could help the manufacturer to identify the effective green supply chain measures in the preliminary stage.

  19. Comprehensive assessments of measures mitigating heat island phenomena in urban areas; Heat shinku wo riyoshita daikibo reibo system no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Ishitani, H.; Yamada, K.; Yamaji, K.; Matsuhashi, T.; Iizuka, E.; Suzuki, T.; Genchi, H.; Komiyama, H. [The University of Tokyo, Tokyo (Japan)

    1997-02-01

    This paper describes actual condition and measures against heat island (HI) phenomena in large urban areas with buildings. Tokyo was selected as a model. To extract typical pattern of daily change of air temperature, statistic analysis was conducted using the existing air temperature data at 100 points in and near the city of Tokyo. As a result, five patterns were obtained, i.e., central city, sea/land water affecting zone, thickly settled suburbs, garden city, and countryside. Each one point was selected in each pattern, to measure the underground temperature. It was found that the effect of HI can be easily evaluated from the underground temperature. It was suggested that the HI effect in the central city is estimated to be around 3.6 {degree}C. The measures mitigating HI were divided into the thermal balance improvement in the whole district and the temperature improvement of living space by homogenization or inhomogenization. Energy conservation was investigated for improving the thermal balance which can be practically conducted. According to the measures, it was found that the air temperature in the central city can be decreased by about 0.5 {degree}C at maximum. 3 figs., 1 tab.

  20. The PESERA-DESMICE modelling framework for spatial assessment of the physical impact and economic viability of land degradation mitigation technologies

    Directory of Open Access Journals (Sweden)

    Luuk eFleskens

    2016-04-01

    Full Text Available This paper presents the PESERA-DESMICE integrated model developed in the EU FP6 DESIRE project. PESERA-DESMICE combines a process-based erosion prediction model extended with process descriptions to evaluate the effects of measures to mitigate land degradation, and a spatially-explicit economic evaluation model to evaluate the financial viability of these measures. The model operates on a grid-basis and is capable of addressing degradation problems due to wind and water erosion, grazing and fire. It can evaluate the effects of improved management strategies such as maintaining soil cover, retention of crop residues, irrigation, water harvesting, terracing and strip cropping. These management strategies introduce controls to various parameters slowing down degradation processes. The paper first describes how the physical impact of the various management strategies is assessed. It then continues to evaluate the applicability limitations of the various mitigation options, and to inventory the spatial variation in the investment and maintenance costs involved for each of a series of technologies that are deemed relevant in a given study area. The physical effects of the implementation of the management strategies relative to the situation without mitigation are subsequently valuated in monetary terms. The model pays particular attention to the spatial variation in the costs and benefits involved as a function of environmental conditions and distance to markets. All costs and benefits are added to a cash flow and a discount rate is applied. This allows a cost-benefit analysis to be performed over a comparative planning period based on the economic lifetime of the technologies being evaluated. It is assumed that land users will only potentially implement technologies if they are financially viable. After this framework has been set-up, various analyses can be made, including the effect of policy options on the potential uptake of mitigation measures

  1. Carbon Footprint of Inbound Tourism to Iceland: A Consumption-Based Life-Cycle Assessment including Direct and Indirect Emissions

    Directory of Open Access Journals (Sweden)

    Hannah Sharp

    2016-11-01

    Full Text Available The greenhouse gas (GHG emissions caused by tourism have been studied from several perspectives, but few studies exist that include all direct and indirect emissions, particularly those from aviation. In this study, an input/output-based hybrid life-cycle assessment (LCA method is developed to assess the consumption-based carbon footprint of the average tourist including direct and indirect emissions. The total inbound tourism-related GHG emissions are also calculated within a certain region. As a demonstration of the method, the full carbon footprint of an average tourist is assessed as well as the total GHG emissions induced by tourism to Iceland over the period of 2010–2015, with the presented approach applicable in other contexts as well. Iceland provides an interesting case due to three features: (1 the tourism sector in Iceland is the fastest-growing industry in the country with an annual growth rate of over 20% over the past five years; (2 almost all tourists arrive by air; and (3 the country has an almost emissions-free energy industry and an import-dominated economy, which emphasise the role of the indirect emissions. According to the assessment, the carbon footprint for the average tourist is 1.35 tons of CO2-eq, but ranges from 1.1 to 3.2 tons of CO2-eq depending on the distance travelled by air. Furthermore, this footprint is increasing due to the rise in average flight distances travelled to reach the country. The total GHG emissions caused by tourism in Iceland have tripled from approximately 600,000 tons of CO2-eq in 2010 to 1,800,000 tons in 2015. Aviation accounts for 50%–82% of this impact (depending on the flight distance underlining the importance of air travel, especially as tourism-related aviation is forecasted to grow significantly in the near future. From a method perspective, the carbon footprinting application presented in the study would seem to provide an efficient way to study both the direct and indirect

  2. Towards an integrated scientific approach for carbon accounting in forestry. COST E21 Workshop. Contribution of forests and forestry to mitigate greenhouse effects. Joensuu (Finland. 28-30 Sep 2000

    Directory of Open Access Journals (Sweden)

    Karjalainen T.

    2000-01-01

    Full Text Available In the COST E21-Action ""Contribution of Forests and Forestry to Mitigate Greenhouse Effects"", emphasis is put on the quantification of carbon storage in the forest ecosystems and on the understanding of linkages between human activities and climate change, particularly the role of forests and forestry. COST E21 integrates natural, socio-economic as well as methodological aspects relevant for reporting under the unitéd Nations Framework Convention on Climate Change and the Kyoto Protocol, as well as decision-making at the European level in the context of carbon mitigation in forest ecosystems. This Action is a pioneering attempt to co-ordinate research: to exchange experience and knowledge towards standardised greenhouse gas inventory accounting for forests over Europe. It will match, within four years (1999-2003, both scientific and political agendas. This paper gives a background presentation of the COST E21-Action, its work plan and its clearing house. It finally gives the outline of country specific information to the COST E21 as presented in this issue in a standard format.

  3. Assessment of Emerging Regional Air Quality (AQ) and Greenhouse Gas (GHG) Impacts and Potential Mitigation Strategies in U.S. Energy Sectors

    Science.gov (United States)

    Kinnon, Michael Mac

    The current domestic reliance on high-emitting fossil fuels for energy needs is the key driver of U.S. greenhouse gas (GHG) and pollutant emissions driving both climate change and regional air quality (AQ) concerns. Moving forward, emission sources in U.S. energy sectors will be subjected to changes driven by numerous phenomena, including technology evolution, environmental impacts, sustainability goals, and socioeconomic factors. This evolution will directly affect emissions source-related impacts on regional AQ that effective emissions control strategies must account for, including relative source contributions. Though previous studies have evaluated the emissions and AQ impacts of different sectors, technologies and fuels, most previous studies have assessed emissions impacts only without using advanced atmospheric models to accurately account for both spatial and temporal emissions perturbations and atmospheric chemistry and transport. In addition, few previous studies have considered the integration of multiple technologies and fuels in different U.S. regions.. Finally, most studies do not project emissions several decades into the future to assess what sources should be targeted with priority over time. These aspects are critical for understanding how both emissions sources and potential mitigation strategies impact the formation and fate of primary and secondary pollutants, including ground-level ozone and particulate matter concentrations. Therefore, this work utilizes a set of modeling tools to project and then to spatially and temporally resolve emissions as input into a 3-D Eulerian AQ model to assess how sources of emissions contribute to future atmospheric pollutant burdens. Further, analyses of the potential impacts of alternative energy strategies contained in potential mitigation strategies are conducted for priority targets to develop an understanding of how to maximize AQ benefits and avoid unforeseen deleterious tradeoffs between GHG reduction

  4. Predicting carbon benefits from climate-smart agriculture: High-resolution carbon mapping and uncertainty assessment in El Salvador.

    Science.gov (United States)

    Kearney, Sean Patrick; Coops, Nicholas C; Chan, Kai M A; Fonte, Steven J; Siles, Pablo; Smukler, Sean M

    2017-11-01

    Agroforestry management in smallholder agriculture can provide climate change mitigation and adaptation benefits and has been promoted as 'climate-smart agriculture' (CSA), yet has generally been left out of international and voluntary carbon (C) mitigation agreements. A key reason for this omission is the cost and uncertainty of monitoring C at the farm scale in heterogeneous smallholder landscapes. A largely overlooked alternative is to monitor C at more aggregated scales and develop C contracts with groups of land owners, community organizations or C aggregators working across entire landscapes (e.g., watersheds, communities, municipalities, etc.). In this study we use a 100-km 2 agricultural area in El Salvador to demonstrate how high-spatial resolution optical satellite imagery can be used to map aboveground woody biomass (AGWB) C at the landscape scale with very low uncertainty (95% probability of a deviation of less than 1%). Uncertainty of AGWB-C estimates remained low (agricultural lands in the study area, and that utilizing AGWB-C maps to target denuded areas could increase C gains per unit area by 46%. The potential value of C credits under a plausible adoption scenario would range from $38,270 to $354,000 yr -1 for the study area, or about $13 to $124 ha -1  yr -1 , depending on C prices. Considering farm sizes in smallholder landscapes rarely exceed 1-2 ha, relying solely on direct C payments to farmers may not lead to widespread CSA adoption, especially if farm-scale monitoring is required. Instead, landscape-scale approaches to C contracting, supported by satellite-based monitoring methods such as ours, could be a key strategy to reduce costs and uncertainty of C monitoring in heterogeneous smallholder landscapes, thereby incentivizing more widespread CSA adoption. Copyright © 2017. Published by Elsevier Ltd.

  5. Carbon nanotube ecotoxicity in amphibians: assessment of multiwalled carbon nanotubes and comparison with double-walled carbon nanotubes.

    Science.gov (United States)

    Mouchet, Florence; Landois, Perine; Puech, Pascal; Pinelli, Eric; Flahaut, Emmanuel; Gauthier, Laury

    2010-08-01

    The potential impact of industrial multiwalled carbon nanotubes (MWNTs) was investigated under normalized laboratory conditions according to the International Standard micronucleus assay ISO 21427-1 for 12 days of half-static exposure to 0.1, 1, 10 and 50 mg/l of MWNTs in water. Three different end points were carried out for 12 days of exposure: mortality, growth inhibition and micronuclei induction in erythrocytes of the circulating blood of larvae. Raman spectroscopy analysis was used to study the presence of carbon nanotubes in the biological samples. Considering the high diversity of carbon nanotubes according to their different characteristics, MWNTs were analyzed in Xenopus larvae, comparatively to double-walled carbon nanotubes used in a previous study in similar conditions. Growth inhibition in larvae exposed to 50 mg/l of MWNTs was evidenced; however, no genetoxicity (micronucleus assay) was noticed, at any concentration. Carbon nanotube localization in the larvae leads to different possible hypothesis of mechanisms explaining toxicity in Xenopus.

  6. Soil organic carbon assessments in cropping systems using isotopic techniques

    Science.gov (United States)

    Martín De Dios Herrero, Juan; Cruz Colazo, Juan; Guzman, María Laura; Saenz, Claudio; Sager, Ricardo; Sakadevan, Karuppan

    2016-04-01

    Introduction of improved farming practices are important to address the challenges of agricultural production, food security, climate change and resource use efficiency. The integration of livestock with crops provides many benefits including: (1) resource conservation, (2) ecosystem services, (3) soil quality improvements, and (4) risk reduction through diversification of enterprises. Integrated crop livestock systems (ICLS) with the combination of no-tillage and pastures are useful practices to enhance soil organic carbon (SOC) compared with continuous cropping systems (CCS). In this study, the SOC and its fractions in two cropping systems namely (1) ICLS, and (2) CCS were evaluated in Southern Santa Fe Province in Argentina, and the use of delta carbon-13 technique and soil physical fractionation were evaluated to identify sources of SOC in these systems. Two farms inside the same soil cartographic unit and landscape position in the region were compared. The ICLS farm produces lucerne (Medicago sativa Merrill) and oat (Avena sativa L.) grazed by cattle alternatively with grain summer crops sequence of soybean (Glicine max L.) and corn (Zea mays L.), and the farm under continuous cropping system (CCS) produces soybean and corn in a continuous sequence. The soil in the area is predominantly a Typic Hapludoll. Soil samples from 0-5 and 0-20 cm depths (n=4) after the harvest of grain crops were collected in each system and analyzed for total organic carbon (SOC, 0-2000 μm), particulate organic carbon (POC, 50-100 μm) and mineral organic carbon (MOC, <50 μm). Delta carbon-13 was determined by isotopic ratio mass spectrometry. In addition, a site with natural vegetation (reference site, REF) was also sampled for delta carbon-13 determination. ANOVA and Tukey statistical analysis were carried out for all data. The SOC was higher in ICLS than in CCS at both depths (20.8 vs 17.7 g kg-1 for 0-5 cm and 16.1 vs 12.7 g kg-1 at 0-20 cm, respectively, P<0.05). MOC was

  7. A socio-economic study along with impact assessment for laterite based technology demonstration for arsenic mitigation.

    Science.gov (United States)

    Mondal, Sourav; Roy, Anirban; Mukherjee, Raka; Mondal, Mrinmoy; Karmakar, Sankha; Chatterjee, Somak; Mukherjee, Munmun; Bhattacharjee, Saikat; De, Sirshendu

    2017-04-01

    Arsenic contamination mitigation technologies have been adsorption-based, but the most widely-used and traditionally available adsorbents suffered inherent limitations, including cost infeasibility and problems associated with regeneration and disposal of the spent adsorbent. The present technology is based on indigenously developed activated laterite prepared from the naturally and abundantly available material, and can hence easily be scaled up for community usage and large scale implementation. The total arsenic removal capacity is 32.5mg/g, which is the highest among all naturally occurring arsenic adsorbents. A major issue in earlier adsorbents was that during regeneration, the adsorbed arsenic would be released back into the environment (leaching), and would eventually contaminate the groundwater again. But the adsorbent in this filter does not require regeneration during its five-year lifespan and does not leach upon disposal. An attempt is made to test and demonstrate the practical implementation of the technology - its effectiveness and viability in three community (primary schools - one in Malda and two in north 24 Parganas, West Bengal, India) and 20 household filters, catering to over 5000 people in different areas of West Bengal exposed to high arsenic contamination of groundwater (ranging from 0.05 to 0.5mg/l). The work also focuses on the social impact of the real life technological solution on the lives on the affected people in the worst hit arsenic affected communities, perhaps the greatest public health risk emergency of the decade. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Assessment and mitigation of errors associated with a large-scale field investigation of methane emissions from the Marcellus Shale

    Science.gov (United States)

    Caulton, D.; Golston, L.; Li, Q.; Bou-Zeid, E.; Pan, D.; Lane, H.; Lu, J.; Fitts, J. P.; Zondlo, M. A.

    2015-12-01

    Recent work suggests the distribution of methane emissions from fracking operations is a skewed distributed with a small percentage of emitters contributing a large proportion of the total emissions. In order to provide a statistically robust distributions of emitters and determine the presence of super-emitters, errors in current techniques need to be constrained and mitigated. The Marcellus shale, the most productive natural gas shale field in the United States, has received less intense focus for well-level emissions and is here investigated to provide the distribution of methane emissions. In July of 2015 approximately 250 unique well pads were sampled using the Princeton Atmospheric Chemistry Mobile Acquisition Node (PAC-MAN). This mobile lab includes a Garmin GPS unit, Vaisala weather station (WTX520), LICOR 7700 CH4 open path sensor and LICOR 7500 CO2/H2O open path sensor. Sampling sites were preselected based on wind direction, sampling distance and elevation grade. All sites were sampled during low boundary layer conditions (600-1000 and 1800-2200 local time). The majority of sites were sampled 1-3 times while selected test sites were sampled multiple times or resampled several times during the day. For selected sites a sampling tower was constructed consisting of a Metek uSonic-3 Class A sonic anemometer, and an additional LICOR 7700 and 7500. Data were recorded for at least one hour at these sites. A robust study and inter-comparison of different methodologies will be presented. The Gaussian plume model will be used to calculate fluxes for all sites and compare results from test sites with multiple passes. Tower data is used to provide constraints on the Gaussian plume model. Additionally, Large Eddy Simulation (LES) modeling will be used to calculate emissions from the tower sites. Alternative techniques will also be discussed. Results from these techniques will be compared to identify best practices and provide robust error estimates.

  9. Rapid forest carbon assessments of oceanic islands: a case study of the Hawaiian archipelago

    Directory of Open Access Journals (Sweden)

    Gregory P. Asner

    2016-01-01

    Full Text Available Abstract Background Spatially explicit forest carbon (C monitoring aids conservation and climate change mitigation efforts, yet few approaches have been developed specifically for the highly heterogeneous landscapes of oceanic island chains that continue to undergo rapid and extensive forest C change. We developed an approach for rapid mapping of aboveground C density (ACD; units = Mg or metric tons C ha−1 on islands at a spatial resolution of 30 m (0.09 ha using a combination of cost-effective airborne LiDAR data and full-coverage satellite data. We used the approach to map forest ACD across the main Hawaiian Islands, comparing C stocks within and among islands, in protected and unprotected areas, and among forests dominated by native and invasive species. Results Total forest aboveground C stock of the Hawaiian Islands was 36 Tg, and ACD distributions were extremely heterogeneous both within and across islands. Remotely sensed ACD was validated against U.S. Forest Service FIA plot inventory data (R2 = 0.67; RMSE = 30.4 Mg C ha−1. Geospatial analyses indicated the critical importance of forest type and canopy cover as predictors of mapped ACD patterns. Protection status was a strong determinant of forest C stock and density, but we found complex environmentally mediated responses of forest ACD to alien plant invasion. Conclusions A combination of one-time airborne LiDAR data acquisition and satellite monitoring provides effective forest C mapping in the highly heterogeneous landscapes of the Hawaiian Islands. Our statistical approach yielded key insights into the drivers of ACD variation, and also makes possible future assessments of C storage change, derived on a repeat basis from free satellite data, without the need for additional LiDAR data. Changes in C stocks and densities of oceanic islands can thus be continually assessed in the face of rapid environmental changes such as biological invasions, drought, fire and land use

  10. Rapid forest carbon assessments of oceanic islands: a case study of the Hawaiian archipelago.

    Science.gov (United States)

    Asner, Gregory P; Sousan, Sinan; Knapp, David E; Selmants, Paul C; Martin, Roberta E; Hughes, R Flint; Giardina, Christian P

    2016-12-01

    Spatially explicit forest carbon (C) monitoring aids conservation and climate change mitigation efforts, yet few approaches have been developed specifically for the highly heterogeneous landscapes of oceanic island chains that continue to undergo rapid and extensive forest C change. We developed an approach for rapid mapping of aboveground C density (ACD; units = Mg or metric tons C ha-1) on islands at a spatial resolution of 30 m (0.09 ha) using a combination of cost-effective airborne LiDAR data and full-coverage satellite data. We used the approach to map forest ACD across the main Hawaiian Islands, comparing C stocks within and among islands, in protected and unprotected areas, and among forests dominated by native and invasive species. Total forest aboveground C stock of the Hawaiian Islands was 36 Tg, and ACD distributions were extremely heterogeneous both within and across islands. Remotely sensed ACD was validated against U.S. Forest Service FIA plot inventory data (R2 = 0.67; RMSE = 30.4 Mg C ha-1). Geospatial analyses indicated the critical importance of forest type and canopy cover as predictors of mapped ACD patterns. Protection status was a strong determinant of forest C stock and density, but we found complex environmentally mediated responses of forest ACD to alien plant invasion. A combination of one-time airborne LiDAR data acquisition and satellite monitoring provides effective forest C mapping in the highly heterogeneous landscapes of the Hawaiian Islands. Our statistical approach yielded key insights into the drivers of ACD variation, and also makes possible future assessments of C storage change, derived on a repeat basis from free satellite data, without the need for additional LiDAR data. Changes in C stocks and densities of oceanic islands can thus be continually assessed in the face of rapid environmental changes such as biological invasions, drought, fire and land use. Such forest monitoring information can be used to promote

  11. Assessment and Comparison of New and Old Carbon Filters for ...

    African Journals Online (AJOL)

    Coca-Cola's water quality criteria for carbonated beverage process water include an absence of chlorine residual and total trihalomethanes (THMs) below the local drinking water standard or, in the absence of a local standard, the WHO standard is used. Presence of chlorine residual in feed water used for production of ...

  12. Assessment and Comparison of New and Old Carbon Filters for ...

    African Journals Online (AJOL)

    Bheema

    ABSTRACT. Coca-Cola's water quality criteria for carbonated beverage process water include an absence of chlorine residual and total trihalomethanes (THMs) below the local drinking water standard or, in the absence of a local standard, the WHO standard is used. Presence of chlorine residual in feed water used for ...

  13. Assessment of low carbon energy technologies: fossil fuels and CCS

    NARCIS (Netherlands)

    Ramirez, C.A.; Bakshi, B.; Gibon, T.; Hertwich, E.

    2013-01-01

    This paper presents results that are part of a larger effort driven by the International Resource Panel of the United Nations Environment Program. The reports aims to identify and, when possible, quantify the trade-offs, benefits, and risks of low carbon energy technologies. In order to provide a

  14. Indoor human exposure to size-fractionated aerosols during the 2015 Southeast Asian smoke haze and assessment of exposure mitigation strategies

    Science.gov (United States)

    Sharma, Ruchi; Balasubramanian, Rajasekhar

    2017-11-01

    The 2015 smoke haze episode was one of the most severe and prolonged transboundary air pollution events ever seen in Southeast Asia (SEA), affecting the air quality of several countries within the region including Indonesia, Malaysia and Singapore. The 24 h mean outdoor PM2.5 (particulate matter (PM) with aerodynamic diameter ≤ 2.5 μm) concentrations ranged from 72–157 μg m‑3 in Singapore during this episode, exceeding the WHO 24 h mean PM2.5 guidelines (25 μg m‑3) several times over. The smoke haze episode not only affected ambient air quality, but also indoor air quality due to the migration of PM of different sizes from the outdoor to the indoor environment. Despite the frequent occurrence of smoke haze episodes over the years, their potential health impacts on indoor building occupants remain largely unknown in SEA due to the lack of systematic investigations and observational data. The current work was carried out in Singapore to assess human exposure to size-resolved PM during the 2015 smoke haze episode, and to evaluate the effectiveness of exposure mitigation measures in smoke-haze-impacted naturally ventilated indoor environments. The potential health risks associated with exposure to PM2.5 were assessed based on the concentrations of redox active particulate-bound trace elements, which are known to be harmful to human health, with and without exposure mitigation. Overall, it was observed that human health exposure to PM2.5 and its carcinogenic chemical components was reduced substantially by 62% (p < 0.05) while using an air cleaner. However, extremely small hazardous particles were only partially removed by the air cleaner and remain a matter of concern for public health.

  15. Health assessment and risk mitigation of railroad networks exposed to natural hazards using commercial remote sensing and spatial information technologies.

    Science.gov (United States)

    2017-05-31

    The overarching goal of this project was to integrate data from commercial remote sensing and spatial information (CRS&SI) technologies to create a novel data-driven decision making framework that empowers the railroad industry to monitor, assess, an...

  16. Global Tree Cover and Biomass Carbon on Agricultural Land

    NARCIS (Netherlands)

    Zomer, Robert J.; Neufeldt, Henry; Xu, Jianchu; Ahrends, Antje; Bossio, Deborah; Trabucco, Antonio; Noordwijk, Van Meine; Wang, Mingcheng

    2016-01-01

    Agroforestry systems and tree cover on agricultural land make an important contribution to climate change mitigation, but are not systematically accounted for in either global carbon budgets or national carbon accounting. This paper assesses the role of trees on agricultural land and their

  17. Perspectives in the use of carbon dioxide

    Directory of Open Access Journals (Sweden)

    Aresta Michele

    1999-01-01

    Full Text Available The mitigation of carbon dioxide is one of the scientific and technological challenges of the 2000s. Among the technologies that are under assessment, the recovery of carbon dioxide from power plants or industrial flue gases plays a strategic role. Recovered carbon dioxide can be either disposed in natural fields or used. The availability of large amounts of carbon dioxide may open new routes to its utilisation in biological, chemical and innovative technological processes. In this paper, the potential of carbon dioxide utilisation in the short-, medium-term is reviewed.

  18. Assessment of carbon nanoparticle exposure on murine macrophage function

    Science.gov (United States)

    Suro-Maldonado, Raquel M.

    There is growing concern about the potential cytotoxicity of nanoparticles. Exposure to respirable ultrafine particles (2.5uM) can adversely affect human health and have been implicated with episodes of increased respiratory diseases such as asthma and allergies. Nanoparticles are of particular interest because of their ability to penetrate into the lung and potentially elicit health effects triggering immune responses. Nanoparticles are structures and devises with length scales in the 1 to 100-nanometer range. Black carbon (BC) nanoparticles have been observed to be products of combustion, especially flame combustion and multi-walled carbon nanotubes (MWCNT) have been shown to be found in both indoor and outdoor air. Furthermore, asbestos, which have been known to cause mesothelioma as well as lung cancer, have been shown to be structurally identical to MWCNTs. The aims of these studies were to examine the effects of carbon nanoparticles on murine macrophage function and clearance mechanisms. Macrophages are immune cells that function as the first line of defense against invading pathogens and are likely to be amongst the first cells affected by nanoparticles. Our research focused on two manufactured nanoparticles, MWCNT and BC. The two were tested against murine-derived macrophages in a chronic contact model. We hypothesized that long-term chronic exposure to carbon nanoparticles would decrease macrophages ability to effectively respond to immunological challenge. Production of nitric oxide (NO), tumor necrosis factor alpha (TNF-alpha), cell surface macrophage; activation markers, reactive oxygen species formation (ROS), and antigen processing and presentation were examined in response to lipopolysaccharide (LPS) following a 144hr exposure to the particulates. Data demonstrated an increase in TNF-alpha, and NO production; a decrease in phagocytosis and antigen processing and presentation; and a decrease in the expression levels of cell surface macrophage

  19. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Science.gov (United States)

    Berenguer, Erika; Gardner, Toby A; Ferreira, Joice; Aragão, Luiz E O C; Camargo, Plínio B; Cerri, Carlos E; Durigan, Mariana; Oliveira Junior, Raimundo C; Vieira, Ima C G; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  20. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests

    Science.gov (United States)

    Berenguer, Erika; Gardner, Toby A.; Ferreira, Joice; Aragão, Luiz E. O. C.; Camargo, Plínio B.; Cerri, Carlos E.; Durigan, Mariana; Oliveira Junior, Raimundo C.; Vieira, Ima C. G.; Barlow, Jos

    2015-01-01

    Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil) in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH), which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85) whether an area is relatively carbon-rich or carbon-poor—an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human-modified forests

  1. Developing Cost-Effective Field Assessments of Carbon Stocks in Human-Modified Tropical Forests.

    Directory of Open Access Journals (Sweden)

    Erika Berenguer

    Full Text Available Across the tropics, there is a growing financial investment in activities that aim to reduce emissions from deforestation and forest degradation, such as REDD+. However, most tropical countries lack on-the-ground capacity to conduct reliable and replicable assessments of forest carbon stocks, undermining their ability to secure long-term carbon finance for forest conservation programs. Clear guidance on how to reduce the monetary and time costs of field assessments of forest carbon can help tropical countries to overcome this capacity gap. Here we provide such guidance for cost-effective one-off field assessments of forest carbon stocks. We sampled a total of eight components from four different carbon pools (i.e. aboveground, dead wood, litter and soil in 224 study plots distributed across two regions of eastern Amazon. For each component we estimated survey costs, contribution to total forest carbon stocks and sensitivity to disturbance. Sampling costs varied thirty-one-fold between the most expensive component, soil, and the least, leaf litter. Large live stems (≥10 cm DBH, which represented only 15% of the overall sampling costs, was by far the most important component to be assessed, as it stores the largest amount of carbon and is highly sensitive to disturbance. If large stems are not taxonomically identified, costs can be reduced by a further 51%, while incurring an error in aboveground carbon estimates of only 5% in primary forests, but 31% in secondary forests. For rapid assessments, necessary to help prioritize locations for carbon- conservation activities, sampling of stems ≥20cm DBH without taxonomic identification can predict with confidence (R2 = 0.85 whether an area is relatively carbon-rich or carbon-poor-an approach that is 74% cheaper than sampling and identifying all the stems ≥10cm DBH. We use these results to evaluate the reliability of forest carbon stock estimates provided by the IPCC and FAO when applied to human

  2. Production of carbon molecular sieves from illinois coals. An assessment

    Science.gov (United States)

    Lizzio, Anthony A.; Rostam-Abadi, Massoud

    1991-01-01

    Chars were produced from an Illinois No. 2 bituminous coal under various pyrolysis and activation conditions and tested for their molecular sieve properties. The amount of N2 compared to the amount of CO2 adsorbed by each char was used as a preliminary indicator of its molecular sieve properties. This relatively simple, but apparently useful test was confirmed by successfully characterizing the well-known molecular sieve properties of a commercial zeolite and molecular sieve carbon. In addition, coal chars having relatively high surface areas (800-1800 m2/g) were produced and tested for their molecular sieving capabilities. These carbon materials, which have high adsorption capacities and relatively narrow pore size distributions, should be ideal candidates for the commercial production of CMS.

  3. Electromagnetic configurable architectures for assessment of Carbon Fiber Reinforced Plastics

    Directory of Open Access Journals (Sweden)

    Steigmann Rozina

    2017-01-01

    Full Text Available Carbon Fiber Reinforced Plastics are used in most wide domains due their low density, lack of mechanical fatigue phenomena and high strength–to weight ratio. From electromagnetic point of view, Carbon Fiber Reinforced Plastics structure represents an inhomogeneous structure of electric conductive fibers embedded into a dielectric material, thus an electromagnetic configurable architecture can be used to evaluate above mentioned defects. The paper proposes a special sensor, send receiver type and the obtaining of electromagnetic image by post-processing each coil signals in each point of scanning, using a sub-encoding image reconstruction algorithm and super-resolution procedures. The layout of fibers can be detected interrogating only diagonal reception coils.

  4. Assessing carbon dynamics in natural and perturbed boreal aquatic systems

    Science.gov (United States)

    Ouellet, Alexandre; Lalonde, Karine; Plouhinec, Jean-Baptiste; Soumis, Nicolas; Lucotte, Marc; GéLinas, Yves

    2012-09-01

    Most natural freshwater lakes are net greenhouse gas (GHG) emitters. Compared to natural systems, human perturbations such as watershed wood harvesting and long-term reservoir impoundment lead to profound alterations of biogeochemical processes involved in the aquatic cycle of carbon (C). We exploited these anthropogenic alterations to describe the C dynamics in five lakes and two reservoirs from the boreal forest through the analysis of dissolved carbon dioxide (CO2), methane (CH4), oxygen (O2), and organic carbon (DOC), as well as total nitrogen and phosphorus. Dissolved and particulate organic matter, forest soil/litter and leachates, as well as dissolved inorganic carbon were analyzed for elemental and stable isotopic compositions (atomic C:N ratios, δ13Corg, δ13Cinorg and δ15Ntot). We found links between the export of terrestrial organic matter (OM) to these systems and the dissolved CO2 and O2 concentrations in the water column, as well as CO2 fluxes to the atmosphere. All systems were GHG emitters, with greater emissions measured for systems with larger inputs of terrestrial OM. The differences in CO2 concentrations and fluxes appear controlled by bacterial activity in the water column and the sediment. Although we clearly observed differences in the aquatic C cycle between natural and perturbed systems, more work on a larger number of water bodies and encompassing all four seasons should be undertaken to better understand the controls, rates, and spatial as well as temporal variability of GHG emissions, and to make quantitatively meaningful comparisons of GHG emissions (and other key variables) from natural and perturbed systems.

  5. Sedimentary Carbon Stocks: A National Assessment of Scotland's Fjords.

    Science.gov (United States)

    Smeaton, Craig; Austin, William; Davies, Althea; Howe, John

    2017-04-01

    Coastal sediments have been shown to be globally significant repositories for carbon (C) with an estimated 126.2 Tg of C being buried annually (Duarte et al. 2005). Though it is clear these areas are important for the long-term storage of C the actual quantity of C held within coastal sediment remains largely unaccounted for. The first step to understanding the role the coastal ocean plays in the global C cycle is to quantify the C held within these coastal sediments. Of the different coastal environment fjords have been shown to be hotspots for C burial with approximately 11 % of the annual global marine carbon sequestration occurring within fjordic environments (Smith et al. 2015). Through the development of a joint geophysical and geochemical methodology we estimated that the sediment in a mid-latitude fjord holds 26.9 ± 0.5 Mt of C (Smeaton et al., 2016), with these results suggesting that Scottish mid-latitude fjords could be a significant unaccounted store of C equivalent to their terrestrial counterparts (i.e. peatlands). Through the application of the joint geophysical and geochemical methodology developed by Smeaton et al (2016) to a number of other mid-latitude fjords, we will create detailed estimations of the sedimentary C stored at these individual sites. Using these detailed C stock estimations in conjunction with upscaling techniques we will establish the first national estimation of fjordic sedimentary C stocks. The data produced will allow for the sedimentary C stocks to be compared to other national C stocks, such as the Scottish peatlands (Chapman et al. 2009) and forestry (Forestry Commission, 2016). Alongside quantifying this large unaccounted for store of C in the coastal ocean this work also lays foundations for future work to understand the role of the coastal ocean in the global C cycle. Duarte, C. M., Middelburg, J. J., and Caraco, N.: Major role of marine vegetation on the oceanic carbon cycle, Biogeosciences, 2, 1-8, doi:10.5194/bg-2

  6. Quantitative assessment of the differential impacts of arbuscular and ectomycorrhiza on soil carbon cycling.

    Science.gov (United States)

    Soudzilovskaia, Nadejda A; van der Heijden, Marcel G A; Cornelissen, Johannes H C; Makarov, Mikhail I; Onipchenko, Vladimir G; Maslov, Mikhail N; Akhmetzhanova, Asem A; van Bodegom, Peter M

    2015-10-01

    A significant fraction of carbon stored in the Earth's soil moves through arbuscular mycorrhiza (AM) and ectomycorrhiza (EM). The impacts of AM and EM on the soil carbon budget are poorly understood. We propose a method to quantify the mycorrhizal contribution to carbon cycling, explicitly accounting for the abundance of plant-associated and extraradical mycorrhizal mycelium. We discuss the need to acquire additional data to use our method, and present our new global database holding information on plant species-by-site intensity of root colonization by mycorrhizas. We demonstrate that the degree of mycorrhizal fungal colonization has globally consistent patterns across plant species. This suggests that the level of plant species-specific root colonization can be used as a plant trait. To exemplify our method, we assessed the differential impacts of AM : EM ratio and EM shrub encroachment on carbon stocks in sub-arctic tundra. AM and EM affect tundra carbon stocks at different magnitudes, and via partly distinct dominant pathways: via extraradical mycelium (both EM and AM) and via mycorrhizal impacts on above- and belowground biomass carbon (mostly AM). Our method provides a powerful tool for the quantitative assessment of mycorrhizal impact on local and global carbon cycling processes, paving the way towards an improved understanding of the role of mycorrhizas in the Earth's carbon cycle. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  7. Carbon footprint assessment for a local branded pure milk product: a lifecycle based approach

    Directory of Open Access Journals (Sweden)

    Rui ZHAO

    Full Text Available Abstract This paper provides a simplified life cycle based assessment for a local branded pure milk product, to measure its related carbon footprint, including production of raw milk, dairy processing, transportation of milk product and disposal of packaging waste. The results show that the total carbon footprint of the pure milk is 1120g CO2/L. The production of raw milk is identified as the major contributor to the carbon footprint. This contribution has amounted to 843 g of CO2 per liter of pure milk, accounted for 75.27% of the total carbon footprint. The carbon footprint of product transportation is 38 g of CO2 per liter, which accounts for 3.39% of the total. The carbon footprint related to the dairy processing and disposal of waste packaging is 173 g of CO2 per liter and 66 g of CO2 per liter, accounting for 15.45% and 5.89% of the total, respectively. The carbon footprint assessment intends to help dairy enterprises identify the intensive sectors of carbon emissions, and provides insight into improvement of product environmental performances.

  8. Handbook of Climate Change Mitigation

    CERN Document Server

    Seiner, John; Suzuki, Toshio; Lackner, Maximilian

    2012-01-01

    There is a mounting consensus that human behavior is changing the global climate and its consequence could be catastrophic. Reducing the 24 billion metric tons of carbon dioxide emissions from stationary and mobile sources is a gigantic task involving both technological challenges and monumental financial and societal costs. The pursuit of sustainable energy resources, environment, and economy has become a complex issue of global scale that affects the daily life of every citizen of the world. The present mitigation activities range from energy conservation, carbon-neutral energy conversions, carbon advanced combustion process that produce no greenhouse gases and that enable carbon capture and sequestion, to other advanced technologies. From its causes and impacts to its solutions, the issues surrounding climate change involve multidisciplinary science and technology. This handbook will provide a single source of this information. The book will be divided into the following sections: Scientific Evidence of Cl...

  9. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    Science.gov (United States)

    John B Kim; Erwan Monier; Brent Sohngen; G Stephen Pitts; Ray Drapek; James McFarland; Sara Ohrel; Jefferson Cole

    2016-01-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a...

  10. C-Band Airport Surface Communications System Engineering-Initial High-Level Safety Risk Assessment and Mitigation

    Science.gov (United States)

    Zelkin, Natalie; Henriksen, Stephen

    2011-01-01

    This document is being provided as part of ITT's NASA Glenn Research Center Aerospace Communication Systems Technical Support (ACSTS) contract: "New ATM Requirements--Future Communications, C-Band and L-Band Communications Standard Development." ITT has completed a safety hazard analysis providing a preliminary safety assessment for the proposed C-band (5091- to 5150-MHz) airport surface communication system. The assessment was performed following the guidelines outlined in the Federal Aviation Administration Safety Risk Management Guidance for System Acquisitions document. The safety analysis did not identify any hazards with an unacceptable risk, though a number of hazards with a medium risk were documented. This effort represents an initial high-level safety hazard analysis and notes the triggers for risk reassessment. A detailed safety hazards analysis is recommended as a follow-on activity to assess particular components of the C-band communication system after the profile is finalized and system rollout timing is determined. A security risk assessment has been performed by NASA as a parallel activity. While safety analysis is concerned with a prevention of accidental errors and failures, the security threat analysis focuses on deliberate attacks. Both processes identify the events that affect operation of the system; and from a safety perspective the security threats may present safety risks.

  11. Assessing economic impacts of China’s water pollution mitigation measures through a dynamic computable general equilibrium analysis.

    NARCIS (Netherlands)

    Qin, Changbo; Qin, Changbo; Bressers, Johannes T.A.; Su, Zhongbo; Jia, Yangwen; wang, Hao

    2011-01-01

    In this letter, we apply an extended environmental dynamic computable general equilibrium model to assess the economic consequences of implementing a total emission control policy. On the basis of emission levels in 2007, we simulate different emission reduction scenarios, ranging from 20 to 50%

  12. The Potential of Brazil's Forest Sector for Mitigating Global Warming under the Kyoto Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Fearnside, Philip M. [Instituto Nacional de Pesquisas da Amazonia INPA, Av. Andre Araujo, 1756, C.P. 478, 69011-970 Manaus-Amazonas (Brazil)

    2001-07-01

    Activities in Brazil's forest sector have substantial potential for mitigating global warming as well as additional environmental and other benefits. Silvicultural plantations of different types, reduced impact logging, and deforestation avoidance all have potential mitigation roles. The magnitude of the annual emission from recent rates of deforestation in Amazonia presents an opportunity for carbon (C) benefits through reducing current rates of deforestation. Measures related to Amazonian deforestation have greater potential carbon benefits than do options such as plantation silviculture, but much depends on how benefits are calculated. Procedures are needed for assessing the environmental and social impacts of Clean Development Mechanism (CDM) projects. 55 refs.

  13. Quantitative assessment of carbon sequestration reduction induced by disturbance