Sample records for assembly thermo hydraulic

  1. Influence of Bypass on Thermo-Hydraulics of VVER 440 Fuel Assembly

    Directory of Open Access Journals (Sweden)

    Jakubec Jakub


    Full Text Available The paper deals with CFD modelling and simulation of coolant flow within the nuclear reactor VVER 440 fuel assembly. The influence of coolant flow in bypass on the temperature distribution at the outlet of the fuel assembly and pressure drop was investigated. Only steady-state analyses were performed. Boundary conditions are based on operating conditions. ANSYS CFX is chosen as the main CFD software tool, where all analyses are performed.

  2. Quench characterization and thermo hydraulic analysis of SST-1 TF magnet busbar

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.N., E-mail: [Institute for Plasma Research, Gandhinagar (India); Pradhan, S. [Institute for Plasma Research, Gandhinagar (India); Duchateau, J.L. [CEA Cadarache, 13108 St Paul lez Durance Cedex (France); Khristi, Y.; Prasad, U.; Doshi, K.; Varmora, P.; Tanna, V.L.; Patel, D.; Panchal, A. [Institute for Plasma Research, Gandhinagar (India)


    Highlights: • Details of SST-1 TF busbar quench detection. • Simulation of slow propagating normal zone. • Thermo hydraulic analyses of TF busbar in current feeder system. - Abstract: Toroidal field (TF) magnet system of steady-state superconducting tokamak-1 (SST-1) has 16 superconducting coils. TF coils are cooled with forced flow supercritical helium at 0.4 MPa, at 4.5 K and operate at nominal current of 10,000 A. Prior to TF magnet system assembly in SST-1 tokamak, each TF coil was tested individually in a test cryostat. During these tests, TF coil was connected to a pair of conventional helium vapor cooled current leads. The connecting busbar was made from the same base cable-in-conduit-conductor (CICC) of SST-1 superconducting magnet system. Quenches experimentally observed in the busbar sections of the single coil test setups have been analyzed in this paper. A steady state thermo hydraulic analysis of TF magnet busbar in actual SST-1 tokamak assembly has been done. The experimental observations of quench and results of relevant thermo hydraulic analyses have been used to predict the safe operation regime of TF magnet system busbar during actual SST-1 tokamak operational scenarios.

  3. Thermo-hydraulic analysis of the windowless target system

    Energy Technology Data Exchange (ETDEWEB)

    Bianchi, Fosco [ENEA, Via Martiri di Monte Sole 4, 40129 Bologna (Italy)], E-mail:; Ferri, Roberta [SIET, Via Nino Bixio 27, 29100 Piacenza (Italy); Moreau, Vincent [CRS4, Polaris Edificio 1 CP25, 09010 Pula (Canada) (Italy)


    The target system, whose function is to supply an external neutron source to a subcritical core in order to sustain the neutron chain reaction, is the most critical part of an ADS being subject to severe thermo-mechanical loading and material damage due to accelerator protons and fission neutrons. In order to reduce the material damage and to increase the life of the target system a windowless option was chosen in the framework of the European PDS-XADS project as reference configuration for the experimental ADS cooled by lead-bismuth eutectic alloy. This document deals with the results of the thermo-hydraulic analysis performed with STAR-CD and RELAP5 codes to assess the behaviour of the windowless target system during off-normal operating conditions. It also reports a description of modifications properly implemented in the codes for studying this kind of plant. The windowless target system shows a satisfactory thermo-hydraulic behaviour for the analysed accidents, except for the loss of both pumps without proton beam shut-off and for the beam trips lasting more than 1 s.

  4. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    De Paepe, M. [Department of Flow, Heat and Combustion Mechanics, Ghent University, Ghent (Belgium); Janssens, A. [Department of Architecture and Urbanism, Ghent University, Ghent (Belgium)


    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  5. Thermo-hydraulic design of earth-air heat exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Paepe, M. de [Ghent University (Belgium). Department of Flow, Heat and Combustion Mechanics; Janssens, A. [Ghent University (Belgium). Department of Architecture and Urbanism


    Earth-air heat exchangers, also called ground tube heat exchangers, are an interesting technique to reduce energy consumption in a building. They can cool or heat the ventilation air, using cold or heat accumulated in the soil. Several papers have been published in which a design method is described. Most of them are based on a discretisation of the one-dimensional heat transfer problem in the tube. Three-dimensional complex models, solving conduction and moisture transport in the soil are also found. These methods are of high complexity and often not ready for use by designers. In this paper, a one-dimensional analytical method is used to analyse the influence of the design parameters of the heat exchanger on the thermo-hydraulic performance. A relation is derived for the specific pressure drop, linking thermal effectiveness with pressure drop of the air inside the tube. The relation is used to formulate a design method which can be used to determine the characteristic dimensions of the earth-air heat exchanger in such a way that optimal thermal effectiveness is reached with acceptable pressure loss. The choice of the characteristic dimensions, becomes thus independent of the soil and climatological conditions. This allows designers to choose the earth-air heat exchanger configuration with the best performance. (author)

  6. A Thermo-Hydraulic Tool for Automatic Virtual Hazop Evaluation

    Directory of Open Access Journals (Sweden)

    Pugi L.


    Full Text Available Development of complex lubrication systems in the Oil&Gas industry has reached high levels of competitiveness in terms of requested performances and reliability. In particular, the use of HazOp (acronym of Hazard and Operability analysis represents a decisive factor to evaluate safety and reliability of plants. The HazOp analysis is a structured and systematic examination of a planned or existing operation in order to identify and evaluate problems that may represent risks to personnel or equipment. In particular, P&ID schemes (acronym of Piping and Instrument Diagram according to regulation in force ISO 14617 are used to evaluate the design of the plant in order to increase its safety and reliability in different operating conditions. The use of a simulation tool can drastically increase speed, efficiency and reliability of the design process. In this work, a tool, called TTH lib (acronym of Transient Thermal Hydraulic Library for the 1-D simulation of thermal hydraulic plants is presented. The proposed tool is applied to the analysis of safety relevant components of compressor and pumping units, such as lubrication circuits. Opposed to the known commercial products, TTH lib has been customized in order to ease simulation of complex interactions with digital logic components and plant controllers including their sensors and measurement systems. In particular, the proposed tool is optimized for fixed step execution and fast prototyping of Real Time code both for testing and production purposes. TTH lib can be used as a standard SimScape-Simulink library of components optimized and specifically designed in accordance with the P&ID definitions. Finally, an automatic code generation procedure has been developed, so TTH simulation models can be directly assembled from the P&ID schemes and technical documentation including detailed informations of sensor and measurement system.

  7. Assembly, growth and nonlinear thermo-optical properties of nitropeptides. (United States)

    Bera, Santu; Ambast, Deepak K S; Pal, Bipul; Haldar, Debasish


    The molecular self-assembly, growth and nonlinear thermo-optical properties of three synthetic aromatic–aliphatic hybrid nitropeptides have been investigated. The X-ray crystallography of nitropeptide 2 containing a glutamic acid moiety shows that the peptide adopts a dimeric structure using intermolecular hydrogen bonding as well as face to face π–π stacking interactions. Moreover, nitropeptide 2 exhibits nonlocal nonlinear optical properties. When a Gaussian laser beam passes through nitropeptide 2, the peptide shows several concentric rings due to spatial self-phase modulation (SSPM). However, the homologous peptide 1 containing an aspartic acid moiety and peptide 3 containing an achiral α-aminoisobutyric acid (Aib) moiety adopt sheet-like structures and have no self-phase modulation effect. The report describes the thermo-optical properties consistent with assumption and calculation and is promising for their applications in nonlinear optical modulation devices.

  8. Neutronics and thermo-hydraulic design of supercritical-water cooled solid breeder TBM

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jie; Wu, Yingwei, E-mail:; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng


    Highlights: • A supercritical-water cooled solid breeder test blanket module (SWCB TBM) was designed. • The neutronics calculations show that the tritium breeding ratio (TBR) of SWCB TBM is 1.17. • The outlet temperature of SWCB TBM can reach as high as 500 °C. • Both thermal stress and deformation of the SWCB TBM design are within safety limits. - Abstract: In this paper, the supercritical-water cooled solid breeder test blanket module (SWCB TBM), using the supercritical water as the coolant, Li{sub 4}SiO{sub 4} lithium ceramic pebbles as a breeder, and beryllium pebbles as a neutron multiplier, was designed and analyzed for ITER. The results of neutronics, thermo-hydraulic and thermo-mechanical analysis are presented for the SWCB TBM. Neutronics calculations show that the proposed TBM has high tritium breeding ratio and power density. The tritium breeding ratio (TBR) of the proposed design is 1.17, which is greater than that of 1.15 required for tritium self-sufficiency. The thermo-hydraulic calculation proved that the TBM components can be effectively cooled to the allowable temperature with the temperature of outlet reaching 500 °C. According to thermo-mechanics calculation results, the first wall with the width of 17 mm is safe and the deformation of first wall is far below the limited value. All the results showed that the current TBM design was reasonable under the ITER normal condition.

  9. Experimental study of the coupled thermo-hydraulic-neutronic stability of a natural circulation HPLWR

    Energy Technology Data Exchange (ETDEWEB)

    T' Joen, C., E-mail: [Delft University of Technology, Department Radiation, Radionuclides and Reactors, Mekelweg 15, 2629 JB Delft (Netherlands); Ghent University, Department of Flow, Heat and Combustion Mechanics, Sint-Pietersnieuwstraat 41, 9000 Gent (Belgium); Rohde, M. [Delft University of Technology, Department Radiation, Radionuclides and Reactors, Mekelweg 15, 2629 JB Delft (Netherlands)


    Highlights: Black-Right-Pointing-Pointer No pure thermo-hydraulic instabilities were recorded. Black-Right-Pointing-Pointer A large unstable zone was found for the coupled thermo-hydraulic-neutronic mode. Black-Right-Pointing-Pointer The instabilities are similar to the type I instabilities of boiling systems. Black-Right-Pointing-Pointer The low power stability threshold crosses the equivalent reference line h{sub out} = h{sub pc}. - Abstract: The HPLWR (high performance light water reactor) is the European concept design for a SCWR (supercritical water reactor). This unique reactor design consists of a three pass core with intermediate mixing plena. As the supercritical water passes through the core, it experiences a significant density reduction. This large change in density could be used as the driving force for natural circulation of the coolant, adding an inherent safety feature to this concept design. The idea of natural circulation has been explored in the past for boiling water reactors (BWR). From those studies, it is known that the different feedback mechanisms can trigger flow instabilities. These can be purely thermo-hydraulic (driven by the friction - mass flow rate or gravity - mass flow rate feedback of the system), or they can be coupled thermo-hydraulic-neutronic (driven by the coupling between friction, mass flow rate and power production). The goal of this study is to explore the stability of a natural circulation HPLWR considering the thermo-hydraulic-neutronic feedback. This was done through a unique experimental facility, DeLight, which is a scaled model of the HPLWR using Freon R23 as a scaling fluid. An artificial neutronic feedback was incorporated into the system based on the average measured density. To model the heat transfer dynamics in the rods, a simple first order model was used with a fixed time constant of 6 s. The results include the measurements of the varying decay ratio (DR) and frequency over a wide range of operating

  10. Response of Compacted Bentonites to Thermal and Thermo-Hydraulic Loadings at High Temperatures

    Directory of Open Access Journals (Sweden)

    Snehasis Tripathy


    Full Text Available The final disposal of high-level nuclear waste in many countries is preferred to be in deep geological repositories. Compacted bentonites are proposed for use as the buffer surrounding the waste canisters which may be subjected to both thermal and hydraulic loadings. A significant increase in the temperature is anticipated within the buffer, particularly during the early phase of the repository lifetime. In this study, several non-isothermal and non-isothermal hydraulic tests were carried on compacted MX80 bentonite. Compacted bentonite specimens (water content = 15.2%, dry density = 1.65 Mg/m3 were subjected to a temperature of either 85 or 150 °C at one end, whereas the temperature at the opposite end was maintained at 25 °C. During the non-isothermal hydraulic tests, water was supplied from the opposite end of the heat source. The temperature and relative humidity were monitored along predetermined depths of the specimens. The profiles of water content, dry density, and degree of saturation were established after termination of the tests. The test results showed that thermal gradients caused redistribution of the water content, whereas thermo-hydraulic gradients caused both redistribution and an increase in the water content within compacted bentonites, both leading to development of axial stress of various magnitudes. The applied water injection pressures (5 and 600 kPa and temperature gradients appeared to have very minimal impact on the magnitude of axial stress developed. The thickness of thermal insulation layer surrounding the testing devices was found to influence the temperature and relative humidity profiles thereby impacting the redistribution of water content within compacted bentonites. Under the influence of both the applied thermal and thermo-hydraulic gradients, the dry density of the bentonite specimens increased near the heat source, whereas it decreased at the opposite end. The test results emphasized the influence of

  11. A novel thermo-hydraulic coupling model to investigate the crater formation in electrical discharge machining (United States)

    Tang, Jiajing; Yang, Xiaodong


    A novel thermo-hydraulic coupling model was proposed in this study to investigate the crater formation in electrical discharge machining (EDM). The temperature distribution of workpiece materials was included, and the crater formation process was explained from the perspective of hydrodynamic characteristics of the molten region. To better track the morphology of the crater and the movement of debris, the level-set method was introduced in this study. Simulation results showed that the crater appears shortly after the ignition of the discharge, and the molten material is removed by vaporizing in the initial stage, then by splashing at the following time. The driving force for the detachment of debris in the splashing removal stage comes from the extremely large pressure difference in the upper part of the molten region, and the morphology of the crater is also influenced by the shearing flow of molten material. It was found that the removal ratio of molten material is only about 7.63% under the studied conditions, leaving most to form the re-solidification layer on the surface of the crater. The size of the crater reaches the maximum at the end of discharge duration then experiences a slight reduction because of the reflux of molten material after the discharge. The results of single pulse discharge experiments showed that the morphologies and sizes between the simulation crater and actual crater are good at agreement, verifying the feasibility of the proposed thermo-hydraulic coupling model in explaining the mechanisms of crater formation in EDM.

  12. Related research with thermo hydraulics safety by means of Trace code; Investigaciones relacionadas con seguridad termohidraulica con el codigo TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro V, F. J.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, UP - Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico); Rodriguez H, A.; Gomez T, A. M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Sanchez E, V. H.; Jager, W., E-mail: [Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz I, D-76344 Eggenstein - Leopoldshafen (Germany)


    In this article the results of the design of a pressure vessel of a BWR/5 similar to the type of Laguna Verde NPP are presented, using the Trace code. A thermo hydraulics Vessel component capable of simulating the behavior of fluids and heat transfer that occurs within the reactor vessel was created. The Vessel component consists of a three-dimensional cylinder divided into 19 axial sections, 4 azimuthal sections and two concentric radial rings. The inner ring is used to contain the core and the central part of the reactor, while the outer ring is used as a down comer. Axial an azimuthal divisions were made with the intention that the dimensions of the internal components, heights and orientation of the external connections match the reference values of a reactor BWR/5 type. In the model internal components as, fuel assemblies, steam separators, jet pumps, guide tubes, etc. are included and main external connections as, steam lines, feed-water or penetrations of the recirculation system. The model presents significant simplifications because the object is to keep symmetry between each azimuthal section of the vessel. In most internal components lack a detailed description of the geometry and initial values of temperature, pressure, fluid velocity, etc. given that it only considered the most representative data, however with these simulations are obtained acceptable results in important parameters such as the total flow through the core, the pressure in the vessel, percentage of vacuums fraction, pressure drop in the core and the steam separators. (Author)

  13. Preliminary Thermo-hydraulic Core Design Analysis of Korea Advanced Nuclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Lee, Jeong Ik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)


    {sub th} power and electricity generation with 100 kW{sub th} idle power. Consequently, KANUTER has the characteristics of a compact and lightweight system, excellent propellant efficiency, bimodal capability, and mission versatility as indicated in the reference design parameters. This thermo-hydraulic design analysis was carried out to estimate the optimum FWT of the unique SLHC fuel design in the core and thereby the maximum rocket performance. The FWT affects the mechanical strength of the SLHC fuel assembly as well as the thermo-hydraulic capability mainly depending on the heat transfer area of fuel. The thicker fuel wafer is mechanically strong with low pressure drop, while the thinner fuel wafer is thermally robust with less mechanical strength and higher shear stress in the core.

  14. Optimum control parameters and long-term productivity of geothermal reservoirs using coupled thermo-hydraulic process modelling


    Aliyu, Musa D.; Chen, Hua-Peng


    Knowing the long-term performance of geothermal energy extraction is crucial to decision-makers and reservoir engineers for optimal management and sustainable utilisation. This article presents a three dimensional, numerical model of coupled thermo-hydraulic processes, in a deep heterogeneous geothermal reservoir overlain and underlain by impermeable layers, with discrete fracture. The finite element method is employed in modelling the reservoir, after conducting a verification study to test ...

  15. Application of hydraulically assembled shaft coupling hubs to large agitators

    Energy Technology Data Exchange (ETDEWEB)

    Murray, W.E.; Anderson, T.D. [Bechtel National, Inc., Aiken, SC (United States); Bethmann, H.K. [Westinghouse Savannah River Co., Aiken, SC (United States)


    This paper describes the basis for and implementation of hydraulically assembled shaft coupling hubs for large tank-mounted agitators. This modification to the original design was intended to minimize maintenance personnel exposure to ionizing radiation and also provide for disassembly capability without damage to shafts or hubs. In addition to realizing these objectives, test confirmed that the modified couplings reduced agitator shaft end runouts approximately 65%, thereby reducing bearing loads and increasing service life, a significant enhancement for a nuclear facility. 5 refs.

  16. Influence of the Lubricant Thermo-Piezo-Viscous Property on Hydrostatic Bearings in Oil Hydraulics

    DEFF Research Database (Denmark)

    Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.


    In fluid power machinery hydrostatic bearings are frequently used, and a first approximation approach to design is determination of a balance ratio by analytical calculations of the hydrostatic presure force. Usually this is performed assuming that the thermo-piezo-viscous property can be neglect...... that design engineers need to understand the thermodynamics of hydrostatic bearings, when using the conventional simple analytical approach, neglecting thermo-piezo-viscosity, in hydrostatic pressure force calculations.......In fluid power machinery hydrostatic bearings are frequently used, and a first approximation approach to design is determination of a balance ratio by analytical calculations of the hydrostatic presure force. Usually this is performed assuming that the thermo-piezo-viscous property can be neglected...... adds to the discrepancy of such simple design approach. In this paper the hydrostatic pressure force calculation is reviewed in terms of thermohydrodynamic (THD) lubrication theory, and simple analytical approximations of the hydrostatic pressure force, incorporating the piezo-viscous and thermo...

  17. Coupled hydro-thermo-mechanical modeling of hydraulic fracturing in quasi-brittle rocks using BPM-DEM

    Directory of Open Access Journals (Sweden)

    Ingrid Tomac


    Full Text Available This paper presents an improved understanding of coupled hydro-thermo-mechanical (HTM hydraulic fracturing of quasi-brittle rock using the bonded particle model (BPM within the discrete element method (DEM. BPM has been recently extended by the authors to account for coupled convective–conductive heat flow and transport, and to enable full hydro-thermal fluid–solid coupled modeling. The application of the work is on enhanced geothermal systems (EGSs, and hydraulic fracturing of hot dry rock (HDR is studied in terms of the impact of temperature difference between rock and a flowing fracturing fluid. Micro-mechanical investigation of temperature and fracturing fluid effects on hydraulic fracturing damage in rocks is presented. It was found that fracture is shorter with pronounced secondary microcracking along the main fracture for the case when the convective–conductive thermal heat exchange is considered. First, the convection heat exchange during low-viscosity fluid infiltration in permeable rock around the wellbore causes significant rock cooling, where a finger-like fluid infiltration was observed. Second, fluid infiltration inhibits pressure rise during pumping and delays fracture initiation and propagation. Additionally, thermal damage occurs in the whole area around the wellbore due to rock cooling and cold fluid infiltration. The size of a damaged area around the wellbore increases with decreasing fluid dynamic viscosity. Fluid and rock compressibility ratio was found to have significant effect on the fracture propagation velocity.

  18. Thermo-Hydraulic Analyses Associated with the Design of JT-60SA TF Coils Development and Validation of the Tacos/texto Tool (United States)

    Lacroix, B.; Portafaix, C.; Hertout, P.; Nicollet, S.; Zani, L.; Barabaschi, P.; Villari, R.


    In the framework of the JT-60SA project, TF coils design activities have led to the development of TEXTO (Thermo-hydraulic EXtended TOol), a dedicated simulation tool centred on the GANDALF code for calculating the temperature margin (ΔTma) central criterion. From a first version providing conservative results, this tool has been upgraded to a pseudo 3D model by integrating a 1D thermo-hydraulic approach in ANSYS, leading to an additional and independent module named TACOS (Thermo-hydraulic Ansys COmputation Semi 3D). By providing He temperature in conductors, TACOS is well adapted for evaluating the impact of TF coils design choices in the framework of cost and feasibility optimization. TACOS also provides more accurate values of transverse heat flux from case to conductors, which can then be injected into TEXTO and allow the calculation of the temperature margin, thanks to the functionalities of GANDALF. Several validation calculations have been performed for the reference operation scenario, by comparison with GANDALF for validating the simplified thermo-hydraulic method of TACOS and by comparison with VINCENTA for an overall validation of the TACOS/TEXTO tool. Results have shown a good consistency between the different models, with a conductor temperature dispersion around 0.05 K in the critical zone.

  19. The Numerical Nuclear Reactor for High-Fidelity Integrated Simulation of Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S.; Ju, H. G.; Jeon, T. H. and others


    A comprehensive high fidelity reactor core modeling capability has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. High fidelity was accomplished by integrating highly refined solution modules for the coupled neutronic, thermal-hydraulic, and thermo-mechanical phenomena. Each solution module employs methods and models that are formulated faithfully to the first-principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are whole-core neutron transport solution, ultra-fine-mesh computational fluid dynamics/heat transfer solution, and finite-element-based thermo-mechanics solution, all obtained with explicit (fuel pin cell level) heterogeneous representations of the components of the core. The vast computational problem resulting from such highly refined modeling is solved on massively parallel computers, and serves as the 'numerical nuclear reactor'. Relaxation of modeling parameters were also pursued to make problems run on clusters of workstations and PCs for smaller scale applications as well.

  20. Thermal hydraulic tests for developing two-phase thermo-siphon loop of CARR-CNS (United States)

    Du, Shejiao; Bi, Qincheng; Chen, Tingkuan; Feng, Quanke


    The China Institute of Atomic Energy (CIAE) is now constructing the China Advanced Research Reactor (CARR: 60 MW), and designing the cold neutron source (CNS) with a two-phase hydrogen thermo-siphon loop consisting of a condenser, a single-moderator transfer tube and a cylindrical annulus moderator cell. The mockup tests reported here were carried out on a full-scale loop using Freon-113 as the working fluid in order to validate the self-regulating characteristics of the loop, with a void fraction less than 20% in the liquid of the moderator cell and requirements for establishing the condition under which the inner shell of the cell has only vapor and the outer shell liquid. During these mockup tests, the density ratio of liquid to vapor and the vapor volumetric evaporation rate due to heat load were kept the same as those in normal operation of the CARR-CNS. The results show that the loop has the required self-regulating characteristics and the inner shell of the moderator cell contains only vapor, the outer shell liquid. The local void fractions in the liquid increase with an increase in loop pressure under the condition of a constant vapor volumetric evaporation rate.

  1. Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System. (United States)

    Nemś, Magdalena; Nemś, Artur; Kasperski, Jacek; Pomorski, Michał


    This article presents the results of a study into a packed bed filled with ceramic bricks. The designed storage installation is supposed to become part of a heating system installed in a single-family house and eventually to be integrated with a concentrated solar collector adapted to climate conditions in Poland. The system's working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater. Designing a packed bed of sufficient parameters first required a mathematical model to be constructed and heat exchange to be analyzed, since heat accumulation is a complex process influenced by a number of material properties. The cases discussed in the literature are based on differing assumptions and different formulas are used in calculations. This article offers a comparison of various mathematical models and of system operating parameters obtained from these models. The primary focus is on the Nusselt number. Furthermore, in the article, the thermo-hydraulic efficiency of the investigated packed bed is presented. This part is based on a relationship used in solar air collectors with internal storage.

  2. Capabilities needed for the next generation of thermo-hydraulic codes for use in real time applications

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, S.A.


    The real-time reactor simulation field is currently at a crossroads in terms of the capability to perform real-time analysis using the most sophisticated computer codes. Current generation safety analysis codes are being modified to replace simplified codes that were specifically designed to meet the competing requirement for real-time applications. The next generation of thermo-hydraulic codes will need to have included in their specifications the specific requirement for use in a real-time environment. Use of the codes in real-time applications imposes much stricter requirements on robustness, reliability and repeatability than do design and analysis applications. In addition, the need for code use by a variety of users is a critical issue for real-time users, trainers and emergency planners who currently use real-time simulation, and PRA practitioners who will increasingly use real-time simulation for evaluating PRA success criteria in near real-time to validate PRA results for specific configurations and plant system unavailabilities.

  3. Using statistical sensitivities for adaptation of a best-estimate thermo-hydraulic simulation model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X.J., E-mail: [School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Dong Chuan Road 800, Shanghai 200240 (China); Kerner, A. [Institute for Energy Economy and Application Technology, Technical University of Munich, Walther-Meissner-Str. 2, 85748 Garching (Germany); Schaefer, A. [ISaR Institute for Safety and Reliability at Technical University of Munich, Walther-Meissner-Str. 2, 85748 Garching (Germany)


    On-line adaptation of best-estimate simulations of NPP behaviour to time-dependent measurement data can be used to insure that simulations performed in parallel to plant operation develop synchronously with the real plant behaviour even over extended periods of time. This opens a range of applications including operator support in non-standard-situations, improving diagnostics and validation of measurements in real plants or experimental facilities. A number of adaptation methods have been proposed and successfully applied to control problems. However, these methods are difficult to be applied to best-estimate thermal-hydraulic codes, such as TRACE and ATHLET, with their large nonlinear differential equation systems and sophisticated time integration techniques. This paper presents techniques to use statistical sensitivity measures to overcome those problems by reducing the number of parameters subject to adaptation. It describes how to identify the most significant parameters for adaptation and how this information can be used by combining: -decomposition techniques splitting the system into a small set of component parts with clearly defined interfaces where boundary conditions can be derived from the measurement data, -filtering techniques to insure that the time frame for adaptation is meaningful, -numerical sensitivities to find minimal error conditions. The suitability of combining those techniques is shown by application to an adaptive simulation of the PKL experiment.

  4. Experimental Study of Thermo-hydraulic Characteristics of Surfaces with In-line Dimple Arrangement

    Directory of Open Access Journals (Sweden)

    S. A. Burtsev


    Full Text Available The paper presents a conducted experimental study of the heat exchange intensification on the surfaces covered with a regular vortex-generating relief that is an in-line array of the shallow hemispherical dimples. Using 12 configuration options with the Reynolds numbers in the range of (0.2-7.0 106 as an example, it analyses how a longitudinal and cross step of the in-line dimple array (density dimples effects on the processes of heat exchange intensification and resistance.The monocomponent strain-gauge balance allows us to define a value of the resistance coefficient by direct weighing of models (located in parallel in a flow of "relief" and smooth "reference" ones being under study. Distribution fields of heat – transfer factor are determined by recording a cooling process of the surface of studied models having high spatial and temporary resolution. All researches were conducted with one-shot data record of these thermal and hydraulic measurements for the smooth (reference surfaces and the studied surfaces covered with a regular vortex-generating relief (dimples. The error of determined parameters was no more than ±5%.The oil-sooty method allows us to visualize flow around a regular relief and obtain a flow pattern for 12 options of dimples configuration. The analysis has been carried out and a compliance of the flow patterns with the field of heat-transfer factors has been obtained.It has been found that for the in-line configuration a Reynolds analogy factor for most models is nonlinearly dependent on the Reynolds number. The friction intensification, at first, falls (to some Reynolds number and, further, starts increasing, tending to the friction intensification value with self-similarity flow around. Thus with increasing Reynolds number, the heattransfer factor intensification falls (more slowly than resistance intensification.

  5. Development and application of an innovative tool to automate the process of results extraction from the thermo-hydraulic simulator Olga

    Directory of Open Access Journals (Sweden)

    Francesco Carducci


    Full Text Available This paper presents the development and application of an innovative code to extract in an automated way data from the thermo-hydraulic simulator Olga. The results show that the tool can significantly reduce the time needed for the data extraction procedure and increase the reliability of results due to the fact that there is no more the need of the human operator. Moreover, during the data extraction phase, the Olga code is available for running different simulations allowing to optimize the use of this resource.

  6. Experimental study of thermo-hydraulic characteristics of natural circulation loop at water and FC-72 boiling under atmospheric pressure (United States)

    Kaban’kov, O. N.; Sukomel, L. A.; Zubov, N. O.; Yagov, V. V.


    The results of experimental study of thermo and hydraulic characteristics of flow boiling of water and FC-72 in natural circulation loop under atmospheric pressure are presented. The experimental data have been obtained in the range of wall heat flux densities (6 – 70) kW/m2 for water and (4.6 – 30) kW/m2 for FC-72. These two liquids differ substantially in thermophysical properties so it makes it possible to extend the range of reduced pressures almost for an order of magnitude without changing the technical parameters of experimental setup. An additional information for the analysis of flow pattern influence on onset of instability and unstable circulation mechanism have been obtained as the result. The flow up tube of the loop had inner diameter 9.1 mm and consisted of two section – heated one 98 diameters length (that is 65 % of total tube length) and upper adiabatic section with length 48 diameters. Different circulation regimes were realized in experiments: mixed regimes with single phase and boiling zones in the heated part of the tube and boiling regimes along the full length of the heated section. The experimental data on circulation velocity (flow rate) and wall temperature distributions (including pulsating components of temperature and velocity) are presented in dependence on wall heat flux density and liquid subcooling at the inlet to the heated zone. At water experiments autooscillating regimes of boiling flows were observed within the whole range of inlet liquid subcoolings up to saturation temperature and at all wall heat flux densities from lowest one (10 kW/m2) to somewhat upper limiting value of 64 kW/m2. At higher heat fluxes the two-phase boiling flow was stable not only in saturation inlet liquid temperature but also at low subcoolings. In FC-72 experiments the flow was stable at all realized heat flux densities within the range of inlet liquid subcoolings (2 – 20) °C.

  7. Analysis Thermo-hydraulic of trajectories related to procedures for operation of Emergency (POE). Application to the loss of a train of the DTH; Analisis termohidraulico de trayectorias vinculadas a Procedimientos de Operacion de emergencia (POE). Aplicacion a la perdida de un tren de RHR

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Saez, F.; Martorell Alsina, S.; Carlos Alberola, A.; Villanueva Lopez, J. F.; Martorell Aygues, P.


    This work explores different possible sequences at the loss of a train of the DTH when the plant is lowering power. The study of the different possible trajectories has been done through the collapse tool and study thermo-hydraulic each of these paths is done by the code TRACE Thermo-hydraulic.

  8. The InterFrost benchmark of Thermo-Hydraulic codes for cold regions hydrology - first inter-comparison results (United States)

    Grenier, Christophe; Roux, Nicolas; Anbergen, Hauke; Collier, Nathaniel; Costard, Francois; Ferrry, Michel; Frampton, Andrew; Frederick, Jennifer; Holmen, Johan; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Orgogozo, Laurent; Rivière, Agnès; Rühaak, Wolfram; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik


    The impacts of climate change in boreal regions has received considerable attention recently due to the warming trends that have been experienced in recent decades and are expected to intensify in the future. Large portions of these regions, corresponding to permafrost areas, are covered by water bodies (lakes, rivers) that interact with the surrounding permafrost. For example, the thermal state of the surrounding soil influences the energy and water budget of the surface water bodies. Also, these water bodies generate taliks (unfrozen zones below) that disturb the thermal regimes of permafrost and may play a key role in the context of climate change. Recent field studies and modeling exercises indicate that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is required to understand and model the past and future evolution of landscapes, rivers, lakes and associated groundwater systems in a changing climate. However, there is presently a paucity of 3D numerical studies of permafrost thaw and associated hydrological changes, and the lack of study can be partly attributed to the difficulty in verifying multi-dimensional results produced by numerical models. Numerical approaches can only be validated against analytical solutions for a purely thermic 1D equation with phase change (e.g. Neumann, Lunardini). When it comes to the coupled TH system (coupling two highly non-linear equations), the only possible approach is to compare the results from different codes to provided test cases and/or to have controlled experiments for validation. Such inter-code comparisons can propel discussions to try to improve code performances. A benchmark exercise was initialized in 2014 with a kick-off meeting in Paris in November. Participants from USA, Canada, Germany, Sweden and France convened, representing altogether 13 simulation codes. The benchmark exercises consist of several test cases inspired by existing literature (e.g. McKenzie et al., 2007) as well as new ones. They

  9. Modifications in Compacted MX-80 Bentonite Due to Thermo-Hydraulic Treatment; Modificaciones en la Bentonita MX-80 Compactada Sometida a Tratamiento Termo-Hidraulico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Espina, R.; Villar, M. V.


    The thermo-hydraulic tests reproduce the thermal and hydraulic conditions to which bentonite is subjected in the engineered barrier of a deep geological repository of radioactive waste. The results of thermo-hydraulic test TBT1500, which was running for approximately 1500 days, are presented. This is a continuation to the Technical Report Ciemat 1199, which presented results of test TBT500, performed under similar conditions but with duration of 500 days. In both tests the MX-80 bentonite was used with initial density and water content similar to those of the large-scale test TBT. The bentonite column was heated at the bottom at 140 degree centigrade and hydrated on top with deionized water. At the end of the test a sharp water content gradient was observed along the column, as well as an inverse dry density gradient. Hydration modified also the bentonite microstructure. Besides, an overall decrease of the smectite content with respect to the initial value took place, especially in the most hydrated areas where the percentage of interest ratified illite increased and in the longer test. On the other hand, the content of cristobalite, feldspars and calcite increased. Smectite dissolution processes (probably colloidal) occurred, particularly in the more hydrated areas and in the longer test. Due to the dissolution of low-solubility species and to the loss of exchangeable positions in the smectite, the content of soluble salts in the pore water increased with respect to the original one, especially in the longer test. The solubilized ions were transported; sodium, calcium, magnesium and sulphate having a similar mobility, which was in turn lower than that of potassium and chloride. The cationic exchange complex was also modified. (Author)

  10. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)


    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  11. Development of a thermal-hydraulic analysis code for annular fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vishnoi, A.K.; Chandraker, D.K.; Vijayan, P.K. [Bhabha Atomic Reseach Centre (BARC), Mumbai, Maharashtra (India)


    In this work a detailed study of the annular fuel has been carried out. A thermal hydraulics code, ANUFAN (Annular Fuel Analysis), based on the bundle average method, capable of modeling both internally and externally cooled annular fuel pins is developed. Code predictions have been compared with calculations from Korea Atomic Energy Research Institute (KAERI) and MIT. Heat transfer fraction difference between ANUFAN and RELAP was found about 1.7%. Analysis of a 54 - fuel rod assembly is carried out with 36 and 45 numbers of annular fuel pins keeping the same channel size and bundle power as of the solid fuel assembly. Fuel pin maximum temperature of the annular fuel is found much less than the solid fuel. MCHFR value for annular fuel is found much higher compared to that of the solid fuel of 54 - fuel rod assembly. The full paper covers the details of the computer code, the analysis carried out and the results obtained. (orig.)

  12. Thermo-hydraulic modelling of the South East Gas Pipeline System - an integrated model; Modelagem termo-hidraulica do Sistema de Gasodutos do Sudeste : um modelo integrado

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Neto, Armando M.; Santos, Arnaldo M.; Mercon, Eduardo G. [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil)


    This paper presents the development of an integrated simulation model, for the numerical calculation of thermal-hydraulic behaviors in the Brazilian southeast onshore gas pipeline flow system, remotely operated by TRANSPETRO's Gas Pipeline Control Centre (CCG). In its final application, this model is supposed to provide simulated results at the closer range to reality, in order to improve gas pipeline simulation studies and evaluations for the system in question. Considering the fact that numerical thermo-hydraulic simulation becomes the CCG's most important tool to analyze the boundary conditions to adjust the mentioned gas flow system, this paper seeks and takes aim to the optimization of the following prime attributions of a gas pipeline control centre: verification of system behaviors, face to some unit maintenance stop or procedure, programmed or not, or to some new gas outlet or inlet connection to the system; daily operational compatibility analysis between programmed and realized gas volumes; gas technical expedition and delivery analysis. Finally, all this work was idealized and carried out within the one-phase flow domain (dry gas) (author)

  13. Biodegradable lubricants-studies on thermo-oxidation of metal-working and hydraulic fluids by differential scanning calorimetry (DSC)

    Energy Technology Data Exchange (ETDEWEB)

    Zeman, A.; Sprengel, A.; Niedermeier, D.; Spaeth, M. [Universitaet der Bundeswehr Muenchen, Neubiberg (Germany)


    In continuation of our study of the thermal-oxidative degradation of lubricants using PDSC, we investigated the biodegradable metal-working and hydraulic fluids that are available on the European market. Isothermal onset times of oxidation were measured at different sample temperatures and plotted against the reciprocal temperatures, giving straight ageing lines which were used to differentiate between the thermal-oxidative stabilities of the oils. The stabilities of metal-working oils and hydraulic fluids vary over a wide range. Synthetic ester oils are more stable than vegetable-based fluids; however, our work demonstrates that the latter can be improved by selected antioxidants to yield equal or even better thermal-oxidative stabilities. Measurements conducted on steel surfaces show a strong catalytic influence compared to an inert aluminium (Al{sub 2}O{sub 3}) surface for both fluids. We also investigated the stabilities of laboratory-aged hydraulic fluids (ASTM-D-2893). The results, by PDSC alone or in combination with conventional oxidation tests, show that the ageing behaviour of biodegradable lubricants can be assessed effectively. Commercial products are by no means of equal quality in this respect. In our opinion, single PDSC measurement could offer many advantages over the conventional oxidation tests used, such as the Baader test (DIN 51554) or the Rancimat test. Typical results for commercial products based on rapeseed oil and synthetic esters are presented

  14. Thermo - hydraulic analysis of a cryogenic jet: application to helium recovery following resistive transitions in the LHC

    CERN Document Server

    Chorowski, M; Konopka, G


    A resistive transition (quench) of the LHC sector magnets will be followed by cold helium venting to a quench buffer volume of 2000 m3 at ambient temperature. The volume will be composed of eight medium-pressure (2 MPa) gas storage tanks made of carbon steel, which constrains the temperature of the wall to be higher than -50 oC (223 K). Possible spot cooling intensity and thermo-mechanical stresses in the tank wall following helium injection have been analysed previously and the aim of the present study is experimental verification of basic assumptions concerning cryogenic jet parameters and heat transfer between jet crown and tank wall. For this purpose jet diameter, velocity profile and convective heat transfer between jet and steel plate have been measured. A simple jet model description based on momentum conservation has been proposed. Then, the lowest possible temperature of the tank wall which may occur has been assessed.

  15. Thermal Hydraulic Computational Fluid Dynamics Simulations and Experimental Investigation of Deformed Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Mays, Brian [AREVA Federal Services, Lynchburg, VA (United States); Jackson, R. Brian [TerraPower, Bellevue, WA (United States)


    The project, Toward a Longer Life Core: Thermal Hydraulic CFD Simulations and Experimental Investigation of Deformed Fuel Assemblies, DOE Project code DE-NE0008321, was a verification and validation project for flow and heat transfer through wire wrapped simulated liquid metal fuel assemblies that included both experiments and computational fluid dynamics simulations of those experiments. This project was a two year collaboration between AREVA, TerraPower, Argonne National Laboratory and Texas A&M University. Experiments were performed by AREVA and Texas A&M University. Numerical simulations of these experiments were performed by TerraPower and Argonne National Lab. Project management was performed by AREVA Federal Services. The first of a kind project resulted in the production of both local point temperature measurements and local flow mixing experiment data paired with numerical simulation benchmarking of the experiments. The project experiments included the largest wire-wrapped pin assembly Mass Index of Refraction (MIR) experiment in the world, the first known wire-wrapped assembly experiment with deformed duct geometries and the largest numerical simulations ever produced for wire-wrapped bundles.

  16. A new coupling of the 3D thermal-hydraulic code THYC and the thermo-mechanical code CYRANO3 for PWR calculations

    Energy Technology Data Exchange (ETDEWEB)

    Marguet, S.D. [Electricite de France (EDF), 92 - Clamart (France)


    Among all parameters, the fuel temperature has a significant influence on the reactivity of the core, because of the Doppler effect on cross-sections. Most neutronic codes use a straightforward method to calculate an average fuel temperature used in their specific feed-back models. For instance, EDF`s neutronic code COCCINELLE uses the Rowland`s formula using the temperatures of the center and the surface of the pellet. COCCINELLE is coupled to the 3D thermal-hydraulic code THYC with calculates TDoppler with is standard thermal model. In order to improve the accuracy of such calculations, we have developed the coupling of our two latest codes in thermal-hydraulics (THYC) and thermo-mechanics (CYRANO3). THYC calculates two-phase flows in pipes or rod bundles and is used for transient calculations such as steam-line break, boron dilution accidents, DNB predictions, steam generator and condenser studies. CYRANO3 calculates most of the phenomena that take place in the fuel such as: 1) heat transfer induced by nuclear power; 2) thermal expansion of the fuel and the cladding; 3) release of gaseous fission`s products; 4) mechanical interaction between the pellet and the cladding. These two codes are now qualified in their own field and the coupling, using Parallel Virtual Machine (PVM) libraries customized in an home-made-easy-to-use package called CALCIUM, has been validated on `low` configurations (no thermal expansion, constant thermal characteristics) and used on accidental transients such as rod ejection and loss of coolant accident. (K.A.) 7 refs.

  17. Layer-by-Layer Assembly of Biopolyelectrolytes onto Thermo/pH-Responsive Micro/Nano-Gels

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual


    Full Text Available This review deals with the layer-by-layer (LbL assembly of polyelectrolyte multilayers of biopolymers, polypeptides (i.e., poly-l-lysine/poly-l-glutamic acid and polysaccharides (i.e., chitosan/dextran sulphate/sodium alginate, onto thermo- and/or pH-responsive micro- and nano-gels such as those based on synthetic poly(N-isopropylacrylamide (PNIPAM and poly(acrylic acid (PAA or biodegradable hyaluronic acid (HA and dextran-hydroxyethyl methacrylate (DEX-HEMA. The synthesis of the ensembles and their characterization by way of various techniques is described. The morphology, hydrodynamic size, surface charge density, bilayer thickness, stability over time and mechanical properties of the systems are discussed. Further, the mechanisms of interaction between biopolymers and gels are analysed. Results demonstrate that the structure and properties of biocompatible multilayer films can be finely tuned by confinement onto stimuli-responsive gels, which thus provides new perspectives for biomedical applications, particularly in the controlled release of biomolecules, bio-sensors, gene delivery, tissue engineering and storage.

  18. Fault Reactivation Can Generate Hydraulic Short Circuits in Underground Coal Gasification—New Insights from Regional-Scale Thermo-Mechanical 3D Modeling

    Directory of Open Access Journals (Sweden)

    Christopher Otto


    Full Text Available Underground coal gasification (UCG has the potential to increase worldwide coal reserves by utilization of coal deposits not mineable by conventional methods. This involves combusting coal in situ to produce a synthesis gas, applicable for electricity generation and chemical feedstock production. Three-dimensional (3D thermo-mechanical models already significantly contribute to UCG design by process optimization and mitigation of the environmental footprint. We developed the first 3D UCG model based on real structural geological data to investigate the impacts of using isothermal and non-isothermal simulations, two different pillar widths and four varying regional stress regimes on the spatial changes in temperature and permeability, ground surface subsidence and fault reactivation. Our simulation results demonstrate that non-isothermal processes have to be considered in these assessments due to thermally-induced stresses. Furthermore, we demonstrate that permeability increase is limited to the close reactor vicinity, although the presence of previously undetected faults can introduce formation of hydraulic short circuits between single UCG channels over large distances. This requires particular consideration of potentially present sub-seismic faults in the exploration and site selection stages, since the required pillar widths may be easily underestimated in presence of faults with different orientations with respect to the regional stress regime.

  19. Implementation of the optimization for the methodology of the neutronic calculation and thermo-hydraulic in IEA-R1 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Stefani, Giovanni Laranjo de; Conti, Thadeu das Neves; Fedorenko, Giuliana G.; Castro, Vinicius A.; Maio, Mireia F., E-mail: gstefani@ipen.b, E-mail: tnconti@ipen.b, E-mail: g.fedorenko@ipen.b, E-mail: vcastro@ipen.b, E-mail: mfmaio@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Santos, Thiago Augusto dos, E-mail: tsantos@ipen.b [Universidade de Sao Paulo (IFUSP), Sao Paulo, SP (Brazil). Inst. de Fisica


    This work objective was to create a manager program that would automate the programs and computer codes in use for neutronic calculation and thermo-hydraulic in IEA-R1 reactor thus making the process for calculation of safety parameters and for configuration change up to 98% faster than that used in the reactor today. This process was tested in combination with the reactor operators and is being implemented by the quality department. The main codes and programs involved in the calculations of configuration change are Leopard, Hammier-Technion, Twodb, Citation and Cobra. Calculations of delayed neutron and criticality coefficients given in the process of safety parameters calculation are given by the Hammer-Technion and Citation in a process that involves about eleven repetitions so that it meets all the necessary conditions (such different temperatures of the moderator and fuel). The results are entirely consistent with the expected and absolutely the same as those given by manual process. Thus the work shows its reliability as well the advantage of saving time, once a process that could take up to four hours was turned in one that takes around five minutes when done in a home computer. Much of this advantage is due to the fact that were created subprograms to treat the output of each program used and transform them into the input of the other programs, removing from it the intermediate essential data for this to occur, thus avoiding also a possible human error by handling the various data supplied. (author)

  20. Development of an extended thermo-hydraulic simulation tool for fusion magnet design study - Application to the initial versions of JT-60SA TF coils layout (United States)

    Nicollet, S.; Lacroix, B.; Zani, L.; Hertout, P.; Portafaix, Ch.; Villari, R.


    In the framework of the EU participation to JT-60SA project [1], a dedicated simulation tool named after Thermo-hydraulic EXtended Tool (TEXTO) was developed at CEA between 2006 and 2007 in order to address in a reliable way the calculation of the magnet conductor temperature increase and temperature margins in different operating conditions. The simulation process is based on three different codes, addressing each specific aspects (MCNP for the 3D nuclear heat calculation, TRAPS for magnetic field, ANSYS for 2D transverse thermal contribution of coil casing), which finally stand as input for the well established code GANDALF (with transient helium properties). Both steady-state operating and disruption transient regimes can be studied with this process and a first application is performed on the basis of the design and operating conditions available at this time on JT-60SA TF magnets, i.e. the first version of the different design stages. The complete analysis is shown together with the associated proposals for the TF conductor layout that could be derived from these studies.

  1. Thermal–hydraulic numerical simulation of fuel sub-assembly using a dedicated meshing tool

    Energy Technology Data Exchange (ETDEWEB)

    Cadiou, Thierry, E-mail:; Saxena, Aakanksha


    As the CEA is involved in the pre-conceptual design phase of a Sodium-cooled Fast Reactor (SFR), the thermal–hydraulics modeling of sodium flow in the reactor core is a key scientific subject, not only due to the innovations proposed for the core design but also for the cost and the difficulties encountered to carry out experiments with sodium. Taking advantage of the progress made in numerical simulation and associated computational time, the sodium flow in a fuel pin sub-assembly is characterized in this work. The fuel pin sub-assembly is composed of 217 fuel pins, each wrapped by spacer wire, and surrounded by a hexagonal tube. In order to overcome the main limitation on the required number of mesh cells for modeling such a complex geometry, an original meshing tool, developed for this purpose, was necessary and is presented in this paper. This approach reveals to be of great help for modeling the sodium flow. Indeed, the pressure drop in the rod bundle is firstly evaluated. In addition, the local effects (at the scale of fuel pin) and global effects (at the scale of fuel pin bundle) for sodium velocity and temperature gradients for the alleged homogenization made by the spacer wire on the sodium flow are examined and clarified. Taking into account these results, the optimization of the fuel bundle geometry can be considered in order to homogenize the outlet temperature distribution in nominal condition. Lastly, the definition and the analysis of experiments on sub-assembly to be carried out in future experimental CEA platform, will also take advantage of this approach.

  2. Linking Populus euphratica hydraulic redistribution to diversity assembly in the arid desert zone of Xinjiang, China.

    Directory of Open Access Journals (Sweden)

    Xiao-Dong Yang

    Full Text Available The hydraulic redistribution (HR of deep-rooted plants significantly improves the survival of shallow-rooted shrubs and herbs in arid deserts, which subsequently maintain species diversity. This study was conducted in the Ebinur desert located in the western margin of the Gurbantonggut Desert. Isotope tracing, community investigation and comparison analysis were employed to validate the HR of Populus euphratica and to explore its effects on species richness and abundance. The results showed that, P. euphratica has HR. Shrubs and herbs that grew under the P. euphratica canopy (under community: UC showed better growth than the ones growing outside (Outside community: OC, exhibiting significantly higher species richness and abundance in UC than OC (p<0.05 along the plant growing season. Species richness and abundance were significantly logarithmically correlated with the P. euphratica crown area in UC (R² = 0.51 and 0.84, p<0.001. In conclusion, P. euphratica HR significantly ameliorates the water conditions of the shallow soil, which then influences the diversity assembly in arid desert communities.

  3. Geophysical investigation and monitoring of thermo-hydraulic conditions of closed talik and icing of the Kuuguluk River at Salluit, northern Quebec, Canada (United States)

    Fortier, R.; Lemieux, J. M.; Molson, J. W. H.; Therrien, R.; Ouellet, M.


    The Inuit community of Salluit in northern Quebec, Canada, is located in the continuous permafrost zone characterized by a mean annual air temperature (MAAT) of -8.0 °C over the period from 1981 to 2010. In such cold environment, it is challenging to find a sustainable supply of water. A well drilled in fractured bedrock and located in a closed talik underneath the Kuuguluk River is used as a source of drinking water by the municipality of Salluit. To verify the lateral extent of the closed talik beneath the floodplain of Kuuguluk River, a geophysical investigation using ground penetrating radar (GPR) profiling and capacitively-coupled electrical resistivity tomography (ERT) was undertaken in spring 2011. Moreover, a mooring with water level and temperature dataloggers in the river was installed over the 2015-2016 period to assess the thermo-hydraulic conditions of the river bed. The icing which forms each year in the floodplain of Kuuguluk River was used in spring 2011 as a bridge to cross over the river and move along the geophysical equipment. Three thaw bulbs in the ice-rich permafrost of the floodplain were inferred from low resistivity anomalies in the model of electrical resistivity. The largest bulb is about 40 m wide and 14 m thick. According to the mooring results, the mean annual temperature of the river bed (MATRB) was 1.4 °C in 2015-2016 while the MAAT was -7.1 °C. This MATRB above 0 °C is due to the heat storage of running surface water in the river bed and the suprapermafrost water flow in the closed talik. River bed temperature below 0 °C and as low as -3 °C from October 10th 2015 to November 20th 2015 and from January 23rd to April 17th 2016 were recorded. The spring freshet occurred on June 24th2016. Outside these periods, the river bed temperature stayed remarkably stable at 0.05 °C in winter time. While the water level in the Kuuguluk River varies from 0.4 to 1.0 m in summer time following the precipitation events, the water pressure can

  4. Coupled neutronics/thermal-hydraulics analysis of a high-performance light-water reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Waata, C.L.


    The use of water at supercritical pressure as coolant and moderator introduces a challenge in the design of a High-Performance Light-Water Reactor (HPLWR) fuel assembly. At supercritical pressure condition (P=25 MPa), the thermal-hydraulics behaviour of water differs strongly from that at sub-critical pressure due to a rapid variation of the thermal-physical properties across the pseudo-critical line. Due of the strong link between the water (moderation) and the neutron spectrum and subsequently the power distribution, a coupling of neutronics and thermal-hydraulics has become a necessity for reactor concepts operating at supercritical pressure condition. The effect of neutron moderation on the local parameters of thermal-hydraulics and vice-verse in a fuel assembly has to be considered for an accurate design analysis. In this study, the Monte Carlo N-Particle code (MCNP) and the sub-channel code STAFAS (Sub-channel Thermal-hydraulics Analysis of a Fuel Assembly under Supercritical conditions) have been coupled for the design analysis of a fuel assembly with supercritical water as coolant and moderator. Both codes are well known for complex geometry modelling. The MCNP code is used for neutronics analyses and for the prediction of power profiles of individual fuel rods. The sub-channel code STAFAS for the thermal-hydraulics analyses takes into account the coolant properties beyond the critical point as well as separate moderator channels. The coupling procedure is realized automatically. MCNP calculates the power distribution in each fuel rod, which is then transferred into STAFAS to obtain the corresponding thermal-hydraulic conditions in each sub-channel. The new thermal-hydraulic conditions are used to generate a new input deck for the next MCNP calculation. This procedure is repeated until a converged state is achieved. The coupled code system was tested on a proposed fuel assembly design of a HPLWR. An under-relaxation was introduced to achieve convergence

  5. Parametric study of the stability properties of a thermo hydraulic channel coupled to punctual kinetics; Estudio parametrico de las propiedades de estabilidad de un canal termohidraulico acoplado a cinetica puntual

    Energy Technology Data Exchange (ETDEWEB)

    Cecenas F, M.; Campos G, R.M. [Instituto de Investigaciones Electricas, Reforma 113, Col. Palmira, Temixco, Morelos (Mexico)]. e-mail:


    The reason of decay is the indicator of stability usually used in the literature to evaluate stability of boiling water reactors, however, in the operation of this type of reactors is considered the length of boiling like an auxiliary parameter for the evaluation of stability. In this work its are studied the variation of these two indicators when modifying a given an operation parameter in a model of a thermo hydraulic channel coupled to punctual kinetics, maintaining all the other input constant variables. The parameters selected for study are the axial profile of power, the subcooling, the flow of coolant and the thermal power. The study is supplemented by means of real data of plant using the one Benchmark of Ringhals, and the results for the case of the ratio of decay its are compared with the decay reasons obtained by means of autoregression models of the local instrumentation of neutron flux. (Author)

  6. Modeling and Parameter Identification of the Vibration Characteristics of Armature Assembly in a Torque Motor of Hydraulic Servo Valves under Electromagnetic Excitations

    Directory of Open Access Journals (Sweden)

    Jinghui Peng


    Full Text Available The resonance of the armature assembly is the main problem leading to the fatigue of the spring pipe in a torque motor of hydraulic servo valves, which can cause the failure of servo valves. To predict the vibration characteristics of the armature assembly, this paper focuses on the mathematical modeling of the vibration characteristics of armature assembly in a hydraulic servo valve and the identification of parameters in the models. To build models more accurately, the effect of the magnetic spring is taken into account. Vibration modal analysis is performed to obtain the mode shapes and natural frequencies, which are necessary to implement the identification of damping ratios in the mathematical models. Based on the mathematical models for the vibration characteristics, the harmonic responses of the armature assembly are analyzed using the finite element method and measured under electromagnetic excitations. The simulation results agree well with the experimental studies.

  7. Thermo-reversible morphology and conductivity of a conjugated polymer network embedded in polymeric self-assembly (United States)

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; Li, Yunchao; Hong, Kunlun; Sumpter, Bobby G.; Ohl, Michael; Paranthaman, Mariappan Parans; Smith, Gregory S.; Do, Changwoo

    Self-assembly of block copolymers provides opportunities to create nano hybrid materials, utilizing self-assembled micro-domains with a variety of morphology and periodic architectures as templates for functional nano-fillers. Here we report new progress towards the fabrication of a thermally responsive conducting polymer self-assembly made from a water-soluble poly(thiophene) derivative with short PEO side chains and Pluronic L62 solution in water. The structural and electrical properties of conjugated polymer-embedded nanostructures were investigated by combining SANS, SAXS, CGMD simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporating them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellar-to-lamellar phase transition defines the embedded conjugated polymer network. The conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. The research was sponsored by the Scientific User Facilities Division, Office of BES, U.S. DOE and Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC.

  8. Linking Populus euphratica hydraulic redistribution to diversity assembly in the arid desert zone of Xinjiang, China. (United States)

    Yang, Xiao-Dong; Zhang, Xue-Ni; Lv, Guang-Hui; Ali, Arshad


    The hydraulic redistribution (HR) of deep-rooted plants significantly improves the survival of shallow-rooted shrubs and herbs in arid deserts, which subsequently maintain species diversity. This study was conducted in the Ebinur desert located in the western margin of the Gurbantonggut Desert. Isotope tracing, community investigation and comparison analysis were employed to validate the HR of Populus euphratica and to explore its effects on species richness and abundance. The results showed that, P. euphratica has HR. Shrubs and herbs that grew under the P. euphratica canopy (under community: UC) showed better growth than the ones growing outside (Outside community: OC), exhibiting significantly higher species richness and abundance in UC than OC (pdesert communities.

  9. One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin-(P(MEO2MA- co-PEGMA))21 copolymers (United States)

    Wei, Lulu; Lu, Beibei; Li, Lei; Wu, Jianning; Liu, Zhiyong; Guo, Xuhong


    A novel β-cyclodextrin-poly(2-(2-methoxyethoxy)ethyl methacrylate)- co-poly(ethylene glycol) methacrylate (abbreviated as: β-CD-(P(MEO2MA- co-PEGMA))21) was prepared by using the one-step strategy, and then the star-shaped copolymers were used in the atom transfer radical polymerization (ATRP). The structure of star-shaped β-CD-(P(MEO2MA- co-PEGMA))21 copolymers were studied by FTIR, 1H NMR and gel permeation chromatography (GPC). The star-shaped copolymers could self-assembled into micelles in aqueous solution owing to the outer amphiphilic β-CD as a core and the hydrophilic P(MEO2MA- co-PEGMA) segments as a shell. These thermo-responsive starshaped copolymers micelles exhibited lower critical solution temperature (LCST) in water, which could be finely tuned by changing the feed ratio of MEO2MA to PEGMA. The LCST of star-shaped β-CD-(P(MEO2MA- co-PEGMA))21 copolymer micelles were increased from 35°C to 58°C with the increasing content of PEGMA. The results were investigated by DLS and TEM. When the temperature was higher than corresponding LCSTs, the micelles started to associate and form spherical nanoparticles. Therefore, β-CD-(P(MEO2MA- co-PEGMA))21 star-shaped copolymer micelles could be potentially applied in nano-carrier, nano-reactor, smart materials and biomedical fields.

  10. Thermal-hydraulic study of the LBE-cooled fuel assembly in the MYRRHA reactor: Experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Pacio, J., E-mail: [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Wetzel, T. [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies (IKET), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Doolaard, H.; Roelofs, F. [Nuclear Research and Consultancy Group (NRG), Westerduinweg 3, 1755 ZG Petten (Netherlands); Van Tichelen, K. [Belgian Nuclear Reseach Center (SCK-CEN), Boeretang 200, Mol (Belgium)


    Heavy liquid metals (HLMs), such as lead-bismuth eutectic (LBE) and pure lead are prominent candidate coolants for many advanced systems based on fast neutrons. In particular, LBE is used in the first-of-its-kind MYRRHA fast reactor, to be built in Mol (Belgium), which can be operated either in critical mode or as a sub-critical accelerator-driven system. With a strong focus on safety, key thermal-hydraulic aspects of these systems, such as the proper cooling of fuel assemblies, must be assessed. Considering the complex geometry and low Prandtl number of LBE (Pr ∼ 0.025), this flow scenario is challenging for the models used in Computational Fluid Dynamics (CFD), e.g. for relating the turbulent transport of momentum and heat. Thus, reliable experimental data for the relevant scenario are needed for validation. In this general context, this topic is studied both experimentally and numerically in the framework of the European FP7 project SEARCH (2011–2015). An experimental campaign, including a 19-rod bundle with wire spacers, cooled by LBE is undertaken at KIT. With prototypical geometry and operating conditions, it is intended to evaluate the validity of current empirical correlations for the MYRRHA conditions and, at the same time, to provide validation data for the CFD simulations performed at NRG. The results of one benchmarking case are presented in this work. Moreover, this validated approach is then used for simulating a complete MYRRHA fuel assembly (127 rods).

  11. Hydraulic Actuators with Autonomous Hydraulic Supply for the Mainline Aircrafts

    Directory of Open Access Journals (Sweden)

    I. S. Shumilov


    pipelines, as well as their increasing reliability. It is also possible, in addition, in addition to increase reliability of the remained pipelines, having applied the last developments, e.g. introduction of one-piece connections (thermo-mechanical ones, high-strength steels for pipelines with σв˃85 кг/мм 2 σ to increase control of residual assembly tension, and so on;- to eliminate essentially all the shortcomings of hydraulic actuators, which constrain their introduction in aircraft industry;- to simplify essentially steering drive structures and designs, which allow to apply the tried and tested components and principles;- to simplify essentially a solution for cooling of working liquid;- to simplify essentially a solution for the steering drive configuration in a zone of control vanes;- to simplify essentially a solution for meeting requirements for dynamic rigidity and dynamic sensitivity of hydraulic actuators;- to simplify essentially a solution for the aircraft fire safety, etc.

  12. Phenomenology involved in self-pressurized, natural circulation, low thermo-dynamic quality, nuclear reactors: The thermal-hydraulics of the CAREM-25 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marcel, C.P., E-mail: [Instituto Balseiro, 8400 S. C de Bariloche (Argentina); Centro Atomico Bariloche, CNEA, Bustillo 9500, 8400 S. C. de Bariloche (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Furci, H.F.; Delmastro, D.F. [Instituto Balseiro, 8400 S. C de Bariloche (Argentina); Centro Atomico Bariloche, CNEA, Bustillo 9500, 8400 S. C. de Bariloche (Argentina); Masson, V.P. [Centro Atomico Bariloche, CNEA, Bustillo 9500, 8400 S. C. de Bariloche (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)


    Highlights: Black-Right-Pointing-Pointer Low quality, natural circulation, and self-pressurized nuclear reactors are modeled analytically. Black-Right-Pointing-Pointer The feedbacks resulting from the interplay of the acting phenomena are analyzed. Black-Right-Pointing-Pointer By decreasing the nuclear power the core inlet enthalpy increases. Black-Right-Pointing-Pointer The mass flow has to be regulated to set it within a certain range in order. - Abstract: The interwoven phenomena involved in a prototypical self-pressurized natural circulation, low thermo-dynamical quality nuclear reactor such as CAREM-25 are analytically presented. These phenomena present many differences with traditional light water nuclear power plants. The dependence between mass flow and core inlet enthalpy on generated power is found. The need of tuning the mass flow rate in accordance to the design value is found to be important in order to keep the thermal margin and the heat transfer coefficients in the steam generators. The influence of condensation in structures or walls in the upper dome on the two-phase boundary is also studied. The dynamic consequences of all these results are therefore discussed. A numerical code is then used to verify the aforementioned findings and to test the validity of the modeling approximations. From the results it is clear that the way the phenomena interact causes the resulting dynamics in CAREM-25 to be substantially different from that existing in reactors such as PWRs, BWRs and also natural circulation BWRs. It is thus clear that the combination of different effects makes CAREM-25 behavior impossible to be extrapolated from existing knowledge and accumulated experience.

  13. Thermal-Hydraulic Effect of Pattern of Wire-wrap Spacer in 19-pin Rod Bundle for SFR Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Yeong Shin; Bang, In Cheol [UNIST, Ulsan (Korea, Republic of); Park, Seong Dae [KAERI, Daejeon (Korea, Republic of)


    As sodium-cooled fast reactor (SFR) has been considered the most promising reactor type for future and prototype gen-IV SFR has been developed actively in Korea, thermal-hydraulic aspects of the SFR fuel assembly have the important role for the reactor safety analysis. In PGSFR fuel assembly, 271 pins of fuel rods are tightly packed in triangular array inside hexagonal duct, and wire is wound helically per each fuel rod with regular pattern to assure the gap between rods and prevent the collision, which is called wire-wrapped spacer. Due to helical shape of the wire-wrapped spacer, flow inside duct can have stronger turbulent characteristics and thermal mixing effect. However, many studies showed the possible wake from swirl flow inside subchannel, which cause local hot spot. To prevent the wake flow and improve thermal mixing, new pattern of wire wrap spacer was suggested. To evaluate the effect of wire wrap spacer pattern, CFD analysis was performed for 19-pin rod bundle with comparison of conventional and U-pattern wire wrap spacer. To prevent the wake due to same direction of swirl flow, 7-rod unit pattern of wire spacer, which are arranged to have different rotational direction of wire with adjacent rods and center rod without wire wrap was proposed. From simulation results, swirl flow across gap conflicts its rotation direction causing wake flow from the regular pattern of the conventional one, which generates local hot spot near cladding. With U-pattern of wire wrap spacer, heat transfer in subchannel can be enhanced with evenly distributed cross flow without compensating pressure loss. From the results, the pattern of wire wrap spacer can influence the both heat transfer characteristics and pressure drop, with flow structures generated by wire wrap spacer.

  14. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric Richard; Durbin, Samuel G


    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower-power assemblies. Specifically, this program provided data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.

  15. The axial power distribution validation of the SCWR fuel assembly with coupled neutronics-thermal hydraulics method

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xi [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Xiao, Zejun, E-mail: [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China); Yan, Xiao; Li, Yongliang; Huang, Yanping [CNNC Key Laboratory on Nuclear Reactor Thermal Hydraulics Technology, Nuclear Power Institute of China, Chengdu 610041 (China)


    Highlights: ► CFX and MCNP codes are suitable to calculate the axial power profile of the FA. ► The partition method in the calculation will affect the final result. ► The density feedback has little effect on the axial power profile of CSR1000 FA. -- Abstract: SCWR (super critical water reactor) is one of the IV generation nuclear reactors in the world. In a typical SCWR the water enters the reactor from the cold leg with a temperature of 280 °C and then leaves the core with a temperature of 500 °C. Due to the sharp change in temperature, there is a huge density change of the water along the axial direction of the fuel assembly (FA), which will affect the moderating power of the water. So the axial power distribution of the SCWR FA could be different from the traditional PWR FA.In this paper, it is the first time that the thermal hydraulics code CFX and neutronics code MCNP are used to analyze the axial power distribution of the SCWR FA. First, the factors in the coupled method which could affect the result are analyzed such as the initialization value or the partition method especially in the MCNP code. Then the axial power distribution of the Europe HPLWR FA is obtained by the coupled method with the two codes and the result is compared with that obtained by Waata and Reiss. There is a good agreement among the three kinds of results. At last, this method is used to calculate the axial power distribution of the Chinese SCWR (CSR1000) FA. It is found the axial power profile of the CSR1000 FA is not so sensitive to the change of the moderator density.

  16. Lateral hydraulic forces calculation on PWR fuel assemblies with computational fluid dynamics codes; Calculo de fuerzas laterales hidraulicas en elementos combustibles tipo PWR con codigos de dinamica de fluidos coputacional

    Energy Technology Data Exchange (ETDEWEB)

    Corpa Masa, R.; Jimenez Varas, G.; Moreno Garcia, B.


    To be able to simulate the behavior of nuclear fuel under operating conditions, it is required to include all the representative loads, including the lateral hydraulic forces which were not included traditionally because of the difficulty of calculating them in a reliable way. Thanks to the advance in CFD codes, now it is possible to assess them. This study calculates the local lateral hydraulic forces, caused by the contraction and expansion of the flow due to the bow of the surrounding fuel assemblies, on of fuel assembly under typical operating conditions from a three loop Westinghouse PWR reactor. (Author)

  17. Connected analysis nuclear-thermo-hydraulic of parallel channels of a BWR reactor using distributed computation; Analisis acoplado nuclear-termohidraulico de canales paralelos de un reactor BWR empleando computacion distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Campos Gonzalez, Rina Margarita


    This work consists of the integration of three models previously developed which are described widely in Literature: model of the thermo-hydraulic channel, model of the modal neutronic and the model of the recirculation bows. The tool used for this connection of models is the PVM system, Parallel Virtual Machine that allowed paralleling the model by means of the concept of distributed computation. The purpose of making this connection of models is the one of obtaining a more complete tool than better represents the real configuration and the phenomenology of the nucleus of a BWR reactor, thus obtaining better results. In addition to maintaining the flexibility to improve the resulting model at any time, since the very complex or sophisticated models are difficult to improve being impossible to modify the equations they use and can include variables that are not of primary importance in the tackled problem or that mask relations among variables due to the excess of results. Also maintaining the flexibility for adding component of models or systems of the BWR reactor, all of this following the modeling needs. The Swedish Ringhals power plant was chosen to characterize the resulting connected model for counting on a Stability Benchmark that offers the opportunity to count on real plant data. Besides that in case 9 of cycle 14 of this Benchamark oscillations outside phase appeared, which are from great interest because the detection systems that register the average of the power of the nucleus do not detect them. Additionally in this work the model of the recirculation bows as an independent module is obtained in an individual way, since this model belongs to another work and works connected to the reactor vessel. The model of the recirculation bows is able to model several transients of interest, as it is shown in the Appendix A of this work, among which are found the tripping of recirculation pumps or the transference at low or high velocity of them. The scope of the

  18. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore Supra

    Energy Technology Data Exchange (ETDEWEB)

    Lipa, M.; Blanchet, J. [Association Euratom-CEA Cadarache, 13 - Saint-Paul-lez-Durance (France). Dept. de Recherches sur la Fusion Controlee; Cellier, F. [Framatome, Centre Technique, 71 - Saint Marcel (France)


    Full text of publication follows: Tore supra (TS) has used from the beginning of operation in 1989 actively cooled plasma facing components. Since the operation and baking temperature of all in vessel components has been defined to be up to 230 deg. C at 40 bars, a special water chemistry of the cooling water plant was suggested in order to avoid eventual water leaks due to corrosion (general corrosion, galvanic corrosion, stress corrosion, etc.) at relative high temperatures and pressures in tubes, pipes, bellows, water boxes, coils, etc. From the beginning of TS operation, in vessel components (e.g. wall protection panels, limiters, ergodic divertor coils, neutralisers and diagnostics) represented a unique combination of metals in the hydraulic circuit mainly such as stainless steel, Inconel, CuCrZr, Nickel and Copper. These different materials were joined together by welding (St to St, Inconel to Inconel, CuCrZr to CuCrZr and CuCrZr to St-St via a Ni sleeve adapter), brazing (St-St to Cu and Cu-LSTP), friction (CuCrZr and Cu to St-St), explosion (CuCrZr to St-St) and memory metal junction (Cryo-fit to Cu - only test sample). Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralized water with adjustment of the pH value to about 9.0/ 7.0 (25 deg. C/ 200 deg. C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 deg. C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal

  19. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore supra

    Energy Technology Data Exchange (ETDEWEB)

    Lipa, M. [CEA/DSM/DRFC Centre de Cadarache, 13 - Saint-Paul lez Durance (France); Blanchet, J.; Cellier, F. [Framatome, 71 - Saint Marcel (France). Centre Technique


    Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralised water with adjustment of the pH value to about 9.0/7.0 (25 C/200 C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal combinations survived the test campaign without stress corrosion cracking, with the exception of the memory metal junction (creep in Cu) and the bellows made of St-St 316L and Inconel 625 while 316 Ti bellows survived. In contrary to the vacuum brazed Cu-LSTP to St-St samples, some of flame brazed Cu to St-St samples failed either in the braze joint or in the copper structure itself. For comparison, a spot weld of an inflated 316L panel sample, filled voluntary with a caustic solution of pH 11.5 (25 C), failed after 90 h of testing (intergranular cracking at the spot weld), while an identical sample containing AVT water of pH 9.0 (25 C) survived without damage. The results of these tests, performed during 1986 and 1997, have never been published and therefore are presented more in detail in this paper since corrosion in hydraulic circuits is also an issue of ITER. Up to day, the TS cooling water plant operates with an above mentioned water treatment and no water leaks have been detected on in-vessel components originating from water corrosion at high temperature and high pressure. (orig.)

  20. Development of improved thermal hydraulics and fuel performance technology; development of turbulence model for flow analysis in nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Joo, W. K.; Kong, D. W.; Park, H. Z. [Yonsei University, Seoul (Korea)


    The flow through a nuclear rod bundle with mixing vanes are very complex and required a suitable turbulence model to be predicted accurately. Subchannel flow in a nuclear bundle having vanes to mix flow appears complex turbulent flow. Objective of this study is to develop turbulence model which can predict complex flow. Also, the module will be produced, which can implement the developed turbulence model in the CFX code. The selected turbulence models are k-epsilon model, non-linear k-epsilon model, Reynolds stress model and modified Reynolds stress model to test their performance in the prediction of the flow in nuclear assembly. These models are tested for a 2-D backwise step flow, square duct flow, rod bundle flow and subchannel flow using CFX. The modules, which can implement Reynolds stress model and non-linear k-epsilon odel in CFX code, are produced. The advantages and disadvantages for these turbulence models are described and the limitation of implementation of non-linear model in CFX code is discussed. The results obtained from the research would give a help for the development of turbulence model which can accurately predict the flow through the rod bundles with mixing vanes. 18 refs., 37 figs., 8 tabs. (Author)

  1. Silicon microchannel cooling panel for NA62 Giga-Tracker, proposal G.Nuessle : a first thermo-hydraulic layout attempt for use with monophase, liquid C6F14 circulation

    CERN Document Server

    Wertelaers, P


    In this proposal, where the hydraulic regime (laminar) of the liquid (monophase) is simple, analytical recipes can be worked out. They show clearly the scaling laws in the relation from coolant pressure budget to panel temperature chart. If the line length is irreducible, then the individual channels cannot become arbitrarily small, even if, then, there can be many to take the total thermal load. The reason is that the "capacitive" component would explode. Apart from showing this, the Note also discusses cross-coupling effects between adjacent U-shaped channels.

  2. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong


    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  3. Surface enhanced thermo lithography

    KAUST Repository

    Coluccio, Maria Laura


    We used electroless deposition to fabricate clusters of silver nanoparticles (NPs) on a silicon substrate. These clusters are plasmonics devices that induce giant electromagnetic (EM) field increments. When those EM field are absorbed by the metal NPs clusters generate, in turn, severe temperature increases. Here, we used the laser radiation of a conventional Raman set-up to transfer geometrical patterns from a template of metal NPs clusters into a layer of thermo sensitive Polyphthalaldehyde (PPA) polymer. Temperature profile on the devices depends on specific arrangements of silver nanoparticles. In plane temperature variations may be controlled with (i) high nano-meter spatial precision and (ii) single Kelvin temperature resolution on varying the shape, size and spacing of metal nanostructures. This scheme can be used to generate strongly localized heat amplifications for applications in nanotechnology, surface enhanced thermo-lithography (SETL), biology and medicine (for space resolved cell ablation and treatment), nano-chemistry.

  4. Basic hydraulics

    CERN Document Server

    Smith, P D


    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  5. Hydraulic Structures (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  6. Thermo-hydraulic performance enhancement of solar air heater ...

    African Journals Online (AJOL)

    DR OKE

    sources of energy. Solar energy has a potential to fulfill the energy requirements of all human made systems provided technologies are developed to tap the potential of solar energy (Chamoli, 2013). Considerable efforts are being made to develop technologies to tap the great potential of solar energy. Air is generally used ...

  7. Combined Thermo-Hydraulic Analysis of a Cryogenic Jet

    CERN Document Server

    Chorowski, M


    A cryogenic jet is a phenomenon encountered in different fields like some technological processes and cryosurgery. It may also be a result of cryogenic equipment rupture or a cryogen discharge from the cryostats following resistive transition in superconducting magnets. Heat exchange between a cold jet and a warm steel element (e.g. a buffer tank wall or a transfer line vacuum vessel wall) may result in an excessive localisation of thermal strains and stresses. The objective of the analysis is to get a combined (analytical and experimental) one-dimensional model of a cryogenic jet that will enable estimation of heat transfer intensity between the jet and steel plate with a suitable accuracy for engineering applications. The jet diameter can only be determined experimentally. The mean velocity profile can be calculated from the fact that the total flux of momentum along the jet axis is conserved. The proposed model allows deriving the jet crown area with respect to the distance from the vent and the mean veloc...

  8. Thermo-hydraulic performance enhancement of solar air heater ...

    African Journals Online (AJOL)

    The present paper studies the thermal performance of solar air heater which is artificially roughened by providing multiple arcs with gap shaped roughness element. As thermal efficiency of smooth collector is quite low, hence there is a need to augment heat transfer from the absorbing surface. The experimentation has ...

  9. Thermo-hydraulic performance enhancement of solar air heater ...

    African Journals Online (AJOL)

    DR OKE

    The present paper studies the thermal performance of solar air heater which is artificially roughened by providing multiple arcs with gap shaped ... Keywords: Solar air heater; Nusselt number; thermal efficiency; multiple arcs with gap; roughened .... The glass wool was used as insulation inside wooden panel to reduce.

  10. Thermo-electric valve (United States)

    Chamberland, R. R.; Stanland, A. J.


    A thermo-electric valve is described for scuttling floating devices comprising, a cylindrical sleeve affixed to and passing through a bulkhead separating a pressurized medium on one side from a lower pressure space on the other side, a piston moveably mounted within the sleeve bore and exposed to the pressurized medium having a portion thereof blocking the sleeve bore, an O-ring sealing the gap between the piston head and the sleeve bore, a fully compressed spring pressing against the piston, a rigid dielectric washer and a low power resistor holding the piston against the spring. In operation a low current is passed through the resistor, disintegrating it and releasing the spring's stored energy. This actuates the valve by expelling the piston which allows the pressurized fluid or gas to enter the lower pressure space.

  11. Integrated hydraulic cooler and return rail in camless cylinder head

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig D [Clawson, MI; Neal, Timothy L [Ortonville, MI; Swain, Jeff L [Flushing, MI; Raimao, Miguel A [Colorado Springs, CO


    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  12. Development of improved thermal hydraulics and fuel performance technology; development of turbulence model and simulation code for flow analysis in nuclear fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Myung, H. K.; Yang, S. Y.; Kim, B. H.; Song, J. H.; Oh, J. Z. [Kookmin University, Seoul (Korea)


    The flow through a nuclear rod bundle with mixing vanes is very complex and so required a suitable turbulence model for its accurate prediction. Subchannel flow in a nuclear bundle having vanes to mix flow appears complex turbulent flow. Objective of this study is to investigate performance of prediction about turbulence model contained in STAR-CD code and to develop suitable turbulence model which can predict complex flow in nuclear assembly. For several nonlinear {kappa}-{epsilon} turbulence models, their performance were investigated in the prediction of the flow in nuclear fuel assembly, and also their problems were discussed in detail. The results obtained from the present research would give a help for the development of turbulence model which can accurately predict the flow through the rod bundles with mixing vanes. 19 refs., 32 figs., 3 tabs. (Author)

  13. The R&D PERFROI Project on Thermal Mechanical and Thermal Hydraulics Behaviors of a Fuel Rod Assembly during a Loss of Coolant Accident

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, G. [Institut de Radioprotection et de Surete Nucleaire, Cadarache (France); Dominguez, C. [Institut de Radioprotection et de Surete Nucleaire, Cadarache (France); Durville, B. [Institut de Radioprotection et de Surete Nucleaire, Cadarache (France); Carnemolla, S. [Institut de Radioprotection et de Surete Nucleaire, Cadarache (France); Campello, D. [Institut National des Sciences Appliques, Lyon (France); Tardiff, N. [Institut National des Sciences Appliques, Lyon (France); Gradeck, M. [Univ. de Lorraine, Nancy, France. LEMTA


    The safety principle in case of a LOCA is to preserve the short and long term coolability of the core. The associated safety requirements are to ensure the resistance of the fuel rods upon quench and post-quench loads and to maintain a coolable geometry in the core. An R&D program has been launched by IRSN with the support of EDF, to perform both experimental and modeling activities in the frame of the LOCA transient, on technical issues such as: - flow blockage within a fuel rods bundle and its potential impact on coolability, - fuel fragment relocation in the ballooned areas: its potential impact on cladding PCT (Peak Cladding Temperature) and on the maximum oxidation rate, - potential loss of cladding integrity upon quench and post-quench loads. The PERFROI project (2014-2019) focusing on the first above issue, is structured in two axes: 1. axis 1: thermal mechanical behavior of deformation and rupture of cladding taking into account the contact between fuel rods; specific research at LaMCoS laboratory focus on the hydrogen behavior in cladding alloys and its impact on the mechanical behavior of the rod; and, 2. axis 2: thermal hydraulics study of a partially blocked region of the core (ballooned area taking into account the fuel relocation with local over power), during cooling phase by water injection; More detailed activities foreseen in collaboration with LEMTA laboratory will focus on the characterization of two phase flows with heat transfer in deformed structures.

  14. Development of a thermal-hydraulic code for reflood analysis in a PWR experimental loop

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Sabrina P.; Mesquita, Amir Z.; Rezende, Hugo C., E-mail:, E-mail: amir@cdtn.brm, E-mail:, E-mail: [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Palma, Daniel A.P., E-mail: [Comissão Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)


    A process of fundamental importance in the event of Loss of Coolant Accident (LOCA) in Pressurized Water nuclear Reactors (PWR) is the reflood of the core or rewetting of nuclear fuels. The Nuclear Technology Development Center (CDTN) has been developing since the 70’s programs to allow Brazil to become independent in the field of reactor safety analysis. To that end, in the 80’s was designed, assembled and commissioned one Rewetting Test Facility (ITR in Portuguese). This facility aims to investigate the phenomena involved in the thermal hydraulic reflood phase of a Loss of Coolant Accident in a PWR nuclear reactor. This work aim is the analysis of physical and mathematical models governing the rewetting phenomenon, and the development a thermo-hydraulic simulation code of a representative experimental circuit of the PWR reactors core cooling channels. It was possible to elaborate and develop a code called REWET. The results obtained with REWET were compared with the experimental results of the ITR, and with the results of the Hydroflut code, that was the old program previously used. An analysis was made of the evolution of the wall temperature of the test section as well as the evolution of the front for two typical tests using the two codes calculation, and experimental results. The result simulated by REWET code for the rewetting time also came closer to the experimental results more than those calculated by Hydroflut code. (author)


    Jordan, K.C.


    The conversion of heat energy into electrical energy by a small compact device is descrtbed. Where the heat energy is supplied by a radioactive material and thermopIIes convert the heat to electrical energy. The particular battery construction includes two insulating discs with conductive rods disposed between them to form a circular cage. In the center of the cage is disposed a cup in which the sealed radioactive source is located. Each thermopile is formed by connecting wires from two adjacent rods to a potnt on an annular ring fastened to the outside of the cup, the ring having insulation on its surface to prevent electrica1 contact with the thermopiles. One advantage of this battery construction is that the radioactive source may be inserted after the device is fabricated, reducing the radiation hazard to personnel assembling the battery.

  16. Thermo-super-hydrophobic effect (United States)

    Floryan, Jerzy M.


    Super-hydrophobic effect involves capture of gas bubbles in pores of solid wall. These bubbles separate moving liquid from the solid surface resulting in a substantial reduction of shear drag experienced by the liquid. The super-hydrophobic effect requires presence of two phases and thus drag reduction can be accomplished only for liquids. Thermo-super-hydrophobic effect takes advantage of the localized heating to create separation bubbles and thus can work with single phase flow systems. Analysis of a simple model problem shows that this effect is very strong in the case of small Re flows such as those found in micro-channels and can reduce pressure drop down to 50% of the reference value if the heating pattern as well as the heating intensity are suitable chosen. The thermo-super-hydrophobic effect becomes marginal when Re increases above a certain critical value.

  17. Hydraulically controlled discrete sampling from open boreholes (United States)

    Harte, Philip T.


    Groundwater sampling from open boreholes in fractured-rock aquifers is particularly challenging because of mixing and dilution of fluid within the borehole from multiple fractures. This note presents an alternative to traditional sampling in open boreholes with packer assemblies. The alternative system called ZONFLO (zonal flow) is based on hydraulic control of borehole flow conditions. Fluid from discrete fractures zones are hydraulically isolated allowing for the collection of representative samples. In rough-faced open boreholes and formations with less competent rock, hydraulic containment may offer an attractive alternative to physical containment with packers. Preliminary test results indicate a discrete zone can be effectively hydraulically isolated from other zones within a borehole for the purpose of groundwater sampling using this new method.

  18. Design of a hydraulic bending machine (United States)

    Steven G. Hankel; Marshall Begel


    To keep pace with customer demands while phasing out old and unserviceable test equipment, the staff of the Engineering Mechanics Laboratory (EML) at the USDA Forest Service, Forest Products Laboratory, designed and assembled a hydraulic bending test machine. The EML built this machine to test dimension lumber, nominal 2 in. thick and up to 12 in. deep, at spans up to...

  19. Hydraulic Hybrid Vehicles (United States)

    EPA and the United Parcel Service (UPS) have developed a hydraulic hybrid delivery vehicle to explore and demonstrate the environmental benefits of the hydraulic hybrid for urban pick-up and delivery fleets.


    Directory of Open Access Journals (Sweden)

    M. V. Drapaliuk


    Full Text Available In the paper main points of technology of semi-dry forming of the ferroconcrete articles of hydraulic engineering purposes are presented. The semi-dry forming of the modified concrete mixes enables to avoid the heat treatment of articles due to the activation effect development and the thermos soaking during 75 min.

  1. Thermo-osmosis in Membrane Systems: A Review (United States)

    Barragán, V. María; Kjelstrup, Signe


    We give a first review of experimental results for a phenomenon little explored in the literature, namely thermal osmosis or thermo-osmosis. Such systems are now getting increased attention because of their ability to use waste heat for separation purposes. We show that this volume transport of a solution or a pure liquid caused by a temperature difference across a membrane can be understood as a property of the membrane system, i. e. the membrane with its adjacent solutions. We present experimental values found in the literature of thermo-osmotic coefficients of neutral and hydrophobic as well as charged and hydrophilic membranes, with water and other permeant fluids as well as electrolyte solutions. We propose that the coefficient can be qualitatively explained by a formula that contains the entropy of adsorption of permeant into the membrane, the hydraulic permeability, and a factor that depends on the interface resistance to heat transfer. A variation in the entropy of adsorption with hydrophobic/hydrophilic membranes and structure breaking/structure making cations could then explain the sign of the permeant flux. Systematic experiments in the field are lacking and we propose an experimental program to mend this situation.

  2. Thermo-hydrodynamic lubrication in hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique


    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.

  3. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...... a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....

  4. Thermo-mechanical design of the extraction grids for RF negative ion source at HUST

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Chen; Liu, Kaifeng, E-mail:; Li, Dong; Mei, Zhiyuan; Zhang, Zhe; Chen, Dezhi


    Highlights: • An extraction system with cooling channels has been designed for HUST negative ion source. • Corresponding heat loads onto three grids has been used in thermo-mechanical analysis. • The analysis results could be very useful for driving the engineering design. - Abstract: Huazhong University of Science and Technology (HUST) is developing a small radio frequency negative ion source experimental setup to promote research on neutral beam injection ion sources. The extraction system for the negative ion source is the key component to obtain the negative ions. The extraction system is composed of three grids: the plasma grid, the extraction grid and the grounded grid. Each grid is impacted by different heat loads. As the grids have to fulfil specific requirements regarding ion extraction, beam optics, and thermo-mechanical issues, grid cooling systems have been included for ensuring reliable operation. This paper focuses on the thermo-hydraulic and thermo-mechanical design of the grids. Finite element calculations have been carried out to analyse the temperature and deformation of the grids under heat loads using the fluid dynamics code CFX. Based on these results, the cooling circuit design and cooling parameters are optimised to satisfy the grid requirements.

  5. Molecular Simulation of Thermo-osmotic Slip. (United States)

    Ganti, Raman; Liu, Yawei; Frenkel, Daan


    Thermo-osmotic slip-the flow induced by a thermal gradient along a surface-is a well-known phenomenon, but curiously there is a lack of robust molecular-simulation techniques to predict its magnitude. Here, we compare three different molecular-simulation techniques to compute the thermo-osmotic slip at a simple solid-fluid interface. Although we do not expect the different approaches to be in perfect agreement, we find that the differences are barely significant for a range of different physical conditions, suggesting that practical molecular simulations of thermo-osmotic slip are feasible.

  6. Thermally Actuated Hydraulic Pumps (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi


    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  7. Analysis of the Thermo-Viscous Effect on Friction and Energy Dissipation in Oil Lubricated Interfaces

    DEFF Research Database (Denmark)

    Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.


    on an asymptotic approximation of the laminar lubrication thermal field at low reduced Peclet and Brinkman number, where viscosity is included as a function of temperature. The asymptotic series is truncated at first order and used to derive an expression of the viscous friction on a sliding surface. This reveal...... an influence from the surface temperature gradient on the viscous friction, which id not revealed when applying classical isothermal analysis. The significance of the thermo-viscous effect on friction and energy dissipation is analyzed analytically in order to provide a qualitative insight to the relation...... investigations, due to computational effort, whereby analytical research in loss mechanisms still have certain advantages. In this paper, the thermo-viscous effect of a lubricant is included in an analytical study of the friction and energy dissipation of oil hydraulic thin-films. This analytical study is based...

  8. Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials


    XU, L.; Ye, Wei-min; Chen, Bao; Chen, Yong-Gui; Cui, Yu-Jun


    Bentonite-sand mixture has been proposed as engineered barriers for high-level waste disposal in many countries. For investigation of the thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture, swelling pressure, hydraulic thermal conductivity tests were conducted in this paper. Results show that addition of sand will increase the thermal conductivity of the mixture. However, depending on the dry density water content of the specimen, the increasing rate of thermal condu...

  9. Thermo-plasmonics of Irradiated Metallic Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan

    Thermo-plasmonics is an emerging field in photonics which aims at harnessing the kinetic energy of light to generate nanoscopic sources of heat. Localized surface plasmons (LSP) supported by metallic nanostructures greatly enhance the interactions of light with the structure. By engineering...... the size, morphology and composition of metallic nanostructures, the absorption of light can be maximized, resulting in a substantial temperature elevation in a nanoscopic volume. Applications of these nanoscopic sources of heat can be found in various contexts including localized cancer therapy, drug...... delivery, nano-surgeries and thermo-transportations. Apart from generating well-controlled temperature increase in functional thermo-plasmonic devices, thermo-plasmonics can also be used in understanding complex phenomena in thermodynamics by creating drastic temperature gradients which are not accessible...

  10. Hydraulic Structures : Locks

    NARCIS (Netherlands)

    Molenaar, W.F.

    These lecture notes on locks are part of the study material belonging to the course 'Hydraulic Structures 1' (code CT3330), part of the Bachelor of Science and the Master of Science, the Hydraulic Engineering track, for civil engineering students at Delft University of Technology. Many of the

  11. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong


    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  12. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E


    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  13. Integration of Flex Nozzle System and Electro Hydraulic Actuators to Solid Rocket Motors (United States)

    Nayani, Kishore Nath; Bajaj, Dinesh Kumar


    A rocket motor assembly comprised of solid rocket motor and flex nozzle system. Integration of flex nozzle system and hydraulic actuators to the solid rocket motors are done after transportation to the required place where integration occurred. The flex nozzle system is integrated to the rocket motor in horizontal condition and the electro hydraulic actuators are assembled to the flex nozzle systems. The electro hydraulic actuators are connected to the hydraulic power pack to operate the actuators. The nozzle-motor critical interface are insulation diametrical compression, inhibition resin-28, insulation facial compression, shaft seal `O' ring compression and face seal `O' ring compression.

  14. Analysis of the three dimensional core kinetics NESTLE code coupling with the advanced thermo-hydraulic code systems, RELAP5/SCDAPSIM and its application to the Laguna Verde Central reactor; Analisis para el acoplamiento del codigo NESTLE para la cinetica tridimensional del nucleo al codigo avanzado de sistemas termo-hidraulicos, RELAP5/SCDAPSIM y su aplicacion al reactor de la CNLV

    Energy Technology Data Exchange (ETDEWEB)

    Salazar C, J.H.; Nunez C, A. [CNSNS, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D.F. (Mexico); Chavez M, C. [UNAM, Facultad de Ingenieria, DEPFI Campus Morelos (Mexico)]. E-mail:


    The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)

  15. A thermo-mechanical stress prediction model for contemporary planar sodium sulfur (NaS) cells (United States)

    Jung, Keeyoung; Colker, Jeffrey P.; Cao, Yuzhe; Kim, Goun; Park, Yoon-Cheol; Kim, Chang-Soo


    We introduce a comprehensive finite-element analysis (FEA) computational model to accurately predict the thermo-mechanical stresses at heterogeneous joints and components of large-size sodium sulfur (NaS) cells during thermal cycling. Quantification of the thermo-mechanical stress is important because the accumulation of stress during cell assembly and/or operation is one of the critical issues in developing practical planar NaS cells. The computational model is developed based on relevant experimental assembly and operation conditions to predict the detailed stress field of a state-of-the-art planar NaS cell. Prior to the freeze-and-thaw thermal cycle simulation, residual stresses generated from the actual high temperature cell assembly procedures are calculated and implemented into the subsequent model. The calculation results show that large stresses are developed on the outer surface of the insulating header and the solid electrolyte, where component fracture is frequently observed in the experimental cell fabrication process. The impacts of the coefficients of thermal expansion (CTE) of glass materials and the thicknesses of cell container on the stress accumulation are also evaluated to improve the cell manufacturing procedure and to guide the material choices for enhanced thermo-mechanical stability of large-size NaS cells.

  16. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn


    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  17. FEMA DFIRM Hydraulic Structures (United States)

    Minnesota Department of Natural Resources — This layer and accompanying attribute table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the...


    Directory of Open Access Journals (Sweden)

    I.A. Gorlach


    Full Text Available

    ENGLISH ABSTRACT: Quality of surface preparation of components and structures for further painting and/or coating is important in many fields of engineering. One of the most widely used methods of surface preparation is abrasive blasting. In the last few years, a new method for surface preparation has evolved, namely thermo-abrasive blasting. This technique utilises a high enthalpy thermal jet, generated by the thermo-abrasive blasting gun, to propel abrasive particles. Thermo-abrasive blasting has a number of advantages over conventional abrasive blasting, which were assessed during trials. This paper describes a progress in the applications of thermo-abrasive blasting as well as future potentials for South African industry. The performance data and economic comparison of conventional and thermo-abrasive blasting are also presented in this paper.

    AFRIKAANSE OPSOMMING: Die gehalte van voorbereiding van komponent- en struktuuroppervlaktes is oral belangrik in ingenieurswesetoepassings. Wat vrywel tot die hede dikwels gebruik was, is straalskuring. Onlangs het 'n nuwe metode tot stand gekom naamlik termostraalskuring. Die metode maak gebruik van 'n hoë entalpie termostaat om skuurmiddel aan te dryf. Die nuwe metode besit sekere voordele in vergelyking met tradisionele straalskuring. Praktykbevestiging is hiervan met toetse verkry. Hierdie stuk bespreek ook die praktyktoepassings van termostraalskuring en die gepaardgaande voordele vir die Suid-Afrikaanse nywerheid. Toepassingsdata en ekomiese vergelyking van konvensionele- en termostraalskuring word ook behandel.

  19. Thermo-hydro-mechanical modeling and analysis of cement-based energy storages for small-scale dwellings (United States)

    Hailemariam, Henok; Wuttke, Frank


    One of the common technologies for balancing the energy demand and supply in district heating, domestic hot water production, thermal power plants and thermal process industries in general is thermal energy storage. Thermal energy storage, in particular sensible heat storage as compared to latent heat storage and thermo-chemical storage, has recently gained much interest in the renewable energy storage sector due to its comparatively low cost and technical development. Sensible heat storages work on the principle of storing thermal energy by raising or lowering the temperature of liquid (commonly water) or solid media, and do not involve material phase change or conversion of thermal energy by chemical reactions or adsorption processes as in latent heat and thermo-chemical storages, respectively. In this study, the coupled thermo-hydro-mechanical behaviour of a cement-based thermal energy storage system for domestic applications has been modeled in both saturated as well as unsaturated conditions using the Finite Element method along with an extensive experimental analysis program for parameter detection. For this purpose, a prototype model is used with three well-known thermal energy storage materials, and the temperature and heat distribution of the system were investigated under specific thermo-hydro-mechanical conditions. Thermal energy samples with controlled water to solids ratio and stored in water for up to 28 days were used for the experimental program. The determination of parameters included: thermal conductivity, specific heat capacity and linear coefficient of thermal expansion (CTE) using a transient line-source measurement technique as well as a steady-state thermal conductivity and expansion meter; mechanical strength parameters such as uni-axial strength, young's modulus of elasticity, poisson's ratio and shear parameters using uniaxial, oedometer and triaxial tests; and hydraulic properties such as hydraulic permeability or conductivity under

  20. On nonlinear thermo-electro-elasticity (United States)

    Mehnert, Markus; Hossain, Mokarram; Steinmann, Paul


    Electro-active polymers (EAPs) for large actuations are nowadays well-known and promising candidates for producing sensors, actuators and generators. In general, polymeric materials are sensitive to differential temperature histories. During experimental characterizations of EAPs under electro-mechanically coupled loads, it is difficult to maintain constant temperature not only because of an external differential temperature history but also because of the changes in internal temperature caused by the application of high electric loads. In this contribution, a thermo-electro-mechanically coupled constitutive framework is proposed based on the total energy approach. Departing from relevant laws of thermodynamics, thermodynamically consistent constitutive equations are formulated. To demonstrate the performance of the proposed thermo-electro-mechanically coupled framework, a frequently used non-homogeneous boundary-value problem, i.e. the extension and inflation of a cylindrical tube, is solved analytically. The results illustrate the influence of various thermo-electro-mechanical couplings.

  1. Thermo-elektrische materialen : Peltier energy harvesting

    NARCIS (Netherlands)

    Beurden, K.M.M. (Karin); Goselink, E.A. (Erik)


    Thermo-elektrische materialen zijn al sinds de 19e eeuw bekend. In 1834 ontdekte de Franse natuurkundige Jean Peltier dat er warmte wordt getransporteerd van de overgang tussen twee metalen wanneer er een elektrische stroom vloeit door het grensvlak. Het grote voordeel van Peltier elementen is dat

  2. Hydraulics and pneumatics

    CERN Document Server

    Parr, Andrew


    Nearly all industrial processes require objects to be moved, manipulated or subjected to some sort of force. This is frequently accomplished by means of electrical equipment (such as motors or solenoids), or via devices driven by air (pneumatics) or liquids (hydraulics).This book has been written by a process control engineer as a guide to the operation of hydraulic and pneumatic systems for all engineers and technicians who wish to have an insight into the components and operation of such a system.This second edition has been fully updated to include all recent developments su

  3. A physiologically-based plant hydraulics scheme for ESMs: impacts of hydraulic trait variability for tropical forests under drought (United States)

    Christoffersen, B. O.; Xu, C.; Fisher, R.; Fyllas, N.; Gloor, M.; Fauset, S.; Galbraith, D.; Koven, C.; Knox, R. G.; Kueppers, L. M.; Chambers, J. Q.; Meir, P.; McDowell, N. G.


    A major challenge of Earth System Models (ESMs) is to capture the diversity of individual-level responses to changes in water availability. Yet, decades of research in plant physiological ecology have given us a means to quantify central tendencies and variances of plant hydraulic traits. If ESMs possessed the relevant hydrodynamic process structure, these traits could be incorporated into improved predictions of community- and ecosystem-level processes such as tree mortality. We present a model of plant hydraulics in which all parameters are biologically-interpretable and measurable traits, such as turgor loss point πtlp, bulk elastic modulus ɛ, hydraulic capacitance Cft, xylem hydraulic conductivity ks,max, water potential at 50 % loss of conductivity for both xylem (P50,x) and stomata (P50,gs). We applied this scheme to tropical forests by incorporating it into both an individual-based model `Trait Forest Simulator' (TFS) and the `Functionally Assembled Terrestrial Ecosystem Simulator' (FATES; derived from CLM(ED)), and explore the consequences of variability in plant hydraulic traits on simulated leaf water potential, a potentially powerful predictor of tree mortality. We show that, independent of the difference between P50,gs and P50,x, or the hydraulic safety margin (HSM), diversity in hydraulic traits can increase or decrease whole-ecosystem resistance to hydraulic failure, and thus ecosystem-level responses to drought. Key uncertainties remaining concern how coordination and trade-offs in hydraulic traits are parameterized. We conclude that inclusion of such a physiologically-based plant hydraulics scheme in ESMs will greatly improve the capability of ESMs to predict functional trait filtering within ecosystems in responding to environmental change.

  4. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A


    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  5. Hydraulic Analyses, Rains County, Texas (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  7. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik


    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  8. Water Treatment Technology - Hydraulics. (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  9. A novel reversible thermo-swelling hydrogel

    Directory of Open Access Journals (Sweden)


    Full Text Available A novel reversible thermo-swelling gel was prepared from poly(vinyl alcohol-trimellitate (PVA-T by crosslinking with ethylene glycol diglycidyl ether (EGDGE. Only in the presence of sulfate anion, this polymer gel showed a significant and reversible swelling behavior with increasing the temperature from 5 to 40°C, and vice versa, probably due to the scission and formation of the inter- and/or intramolecular hydrogen-bondings (HBs between the carboxyls on the side groups. The involvement of inter- and/or intramolecular HBs for the thermo-swelling behavior was also suggested by a significant dependence on HCl concentration of the swelling degree. In addition, the swelling reversibility and reproducibility were confirmed via the temperature jump between 5 and 40°C, well satisfying for a candidate as a thermosensitive material.

  10. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Jean-Baptiste [Calstart Incorporated, Pasadena, CA (United States)


    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  11. Hydraulically actuated artificial muscles (United States)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.


    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  12. Engine including hydraulically actuated valvetrain and method of valve overlap control (United States)

    Cowgill, Joel [White Lake, MI


    An exhaust valve control method may include displacing an exhaust valve in communication with the combustion chamber of an engine to an open position using a hydraulic exhaust valve actuation system and returning the exhaust valve to a closed position using the hydraulic exhaust valve actuation assembly. During closing, the exhaust valve may be displaced for a first duration from the open position to an intermediate closing position at a first velocity by operating the hydraulic exhaust valve actuation assembly in a first mode. The exhaust valve may be displaced for a second duration greater than the first duration from the intermediate closing position to a fully closed position at a second velocity at least eighty percent less than the first velocity by operating the hydraulic exhaust valve actuation assembly in a second mode.

  13. Remotely Adjustable Hydraulic Pump (United States)

    Kouns, H. H.; Gardner, L. D.


    Outlet pressure adjusted to match varying loads. Electrohydraulic servo has positioned sleeve in leftmost position, adjusting outlet pressure to maximum value. Sleeve in equilibrium position, with control land covering control port. For lowest pressure setting, sleeve shifted toward right by increased pressure on sleeve shoulder from servovalve. Pump used in aircraft and robots, where hydraulic actuators repeatedly turned on and off, changing pump load frequently and over wide range.

  14. The hydraulic windmill (United States)

    Browing, J. A.


    An hydraulic windmill is described. It pumps pressurized oil from rotor shaft level to the ground where a motor generator produces electricity. Alternatively, the useful output may be heat. Rotor speed is governed by a flow valve. Over pressure, the result of high wind velocity, rotates the tail to move the rotor blades out-of-the-wind. Loss of oil pressure causes a brake to close as well as to swing the tail to its maximum distance from the rotor plane.

  15. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz


    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  16. Numerical and Experimental Investigation on a Thermo-Photovoltaic Module for Higher Efficiency Energy Generation (United States)

    Karami-Lakeh, Hossein; Hosseini-Abardeh, Reza; Kaatuzian, Hassan


    One major problem of solar cells is the decrease in efficiency due to an increase in temperature when operating under constant irradiation of solar energy. The combination of solar cell and a thermoelectric generator is one of the methods proposed to solve this problem. In this paper, the performance of thermo-photovoltaic system is studied experimentally as well as through numerical simulation. In the experimental part, design, manufacture and test of a novel thermo-photovoltaic system assembly are presented. Results of the assembled system showed that with reduction of one degree (Centigrade) in the temperature of solar cell under investigation, and about 0.2 % increase in the efficiency will be obtained in comparison with given efficiency at that specified temperature. The solar cell in a hybrid-assembled system under two cooling conditions (air cooling and water cooling) obtained an efficiency of 8 % and 9.5 %, respectively, while the efficiency of a single cell under the same radiation condition was 6 %. In numerical simulation part, photo-thermoelectric performance of system was analyzed. Two methods for evaluation of thermoelectric performance were used: average properties and finite element method. Results of simulation also demonstrate an increase in solar cell efficiency in the combined system in comparison with that of the single cell configuration.

  17. An investigation on thermo-hydraulic performance of a flat-plate channel with pyramidal protrusions

    NARCIS (Netherlands)

    Ebrahimi, Amin; Naranjani, Benyamin


    In this study, a flat-plate channel configured with pyramidal protrusions are numerically analysed for the first time. Simulations of laminar single-phase fluid flow and heat transfer characteristics are developed using a finite-volume approach under steady-state condition. Pure water is selected

  18. Thermo-hydraulics of the Peruvian accretionarycomplex at 12°S (United States)

    Kukowski, Nina; Pecher, Ingo


    Coupled heat and fluid transport at the Peruvian convergent margin at 12°S wasstudied with finite element modelling. Structural information was available from two seismicreflection lines. Heat production in the oceanic plate, the metamorphic basement, and sedimentswas estimated from literature. Porosity, permeability, and thermal conductivity for the modelswere partly available from Ocean Drilling Program (ODP) Leg 112; otherwise we used empiricalrelations. Our models accounted for a possible permeability anisotropy. The decollement was bestmodelled as a highly permeable zone (10 -13 m 2). Permeabilities of thePeruvian accretionary wedge adopted from the model calculations fall within the range of 2 to7×10 -16 m 2 at the ocean bottom to a few 10 -18 m 2 at the base and need to be anisotropic. Fluid expulsion at the sea floor decreases graduallywith distance from the deformation front and is structure controlled. Small scale variations of heatflux reflected by fluctuations of BSR depths across major faults could be modelled assuming highpermeability in the faults which allow for efficient advective transport along those faults. The models were constrained by the thermal gradient obtained from the depth of bottomsimulating reflectors (BSRs) at the lower slope and some conventional measurements. We foundthat significant frictional heating is required to explain the observed strong landward increase ofheat flux. This is consistent with results from sandbox modelling which predict strong basalfriction at this margin. A significantly higher heat source is needed to match the observed thermalgradient in the southern line.

  19. On the application of reynolds theory to thermo-piezo-viscous lubrication in oil hydraulics

    DEFF Research Database (Denmark)

    Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.


    The efficiency of fluid power motors and pumps is a subject to research, which has generated numerous publications during the last three decades. The main incentives for this research are optimization of reliability and efficiency through the study of loss and wear mechanisms, which are very...... difficult to study experimentally, whereby modeling and simulation are necessary. A common approach to theoretical investigation of the pressure generated in the lubricated joints is the use of Reynolds equation, in which the oil viscosity is modelled with dependency of both pressure and temperature...

  20. Deep geothermal systems interpreted by coupled thermo-hydraulic-mechanical-chemical numerical modeling (United States)

    Peters, Max; Lesueur, Martin; Held, Sebastian; Poulet, Thomas; Veveakis, Manolis; Regenauer-Lieb, Klaus; Kohl, Thomas


    The dynamic response of the geothermal reservoirs of Soultz-sous-Forêts (NE France) and a new site in Iceland are theoretically studied upon fluid injection and production. Since the Soultz case can be considered the most comprehensive project in the area of enhanced geothermal systems (EGS), it is tailored for the testing of forward modeling techniques that aim at the characterization of fluid dynamics and mechanical properties in any deeply-seated fractured cystalline reservoir [e.g. Held et al., 2014]. We present multi-physics finite element models using the recently developed framework MOOSE ( that implicitly consider fully-coupled feedback mechanisms of fluid-rock interaction at depth where EGS are located (depth > 5 km), i.e. the effects of dissipative strain softening on chemical reactions and reactive transport [Poulet et al., 2016]. In a first suite of numerical experiments, we show that an accurate simulation of propagation fronts allows studying coupled fluid and heat transport, following preferred pathways, and the transport time of the geothermal fluid between injection and production wells, which is in good agreement with tracer experiments performed inside the natural reservoir. Based on induced seismicity experiments and related damage along boreholes, we concern with borehole instabilities resulting from pore pressure variations and (a)seismic creep in a second series of simulations. To this end, we account for volumetric and deviatoric components, following the approach of Veveakis et al. (2016), and discuss the mechanisms triggering slow earthquakes in the stimulated reservoirs. Our study will allow applying concepts of unconventional geomechanics, which were previously reviewed on a theoretical basis [Regenauer-Lieb et al., 2015], to substantial engineering problems of deep geothermal reservoirs in the future. REFERENCES Held, S., Genter, A., Kohl, T., Kölbel, T., Sausse, J. and Schoenball, M. (2014). Economic evaluation of geothermal reservoir performance through modeling the complexity of the operating EGS in Soultz-sous-Forêts. Geothermics, 51, 270-280, doi:10.1016/j.geothermics.2014.01.016 Poulet, T., Paesold, M. and Veveakis, M. (2016). Multi-Physics Modelling of Fault Mechanics Using REDBACK: A Parallel Open-Source Simulator for Tightly Coupled Problems. Rock Mechanics and Rock Engineering, doi:10.1007/s00603-016-0927-y Regenauer-Lieb, K., Bunger, A., Chua, H. T., et al., 2015. Deep Geothermal: The 'Moon Landing' Mission in the Unconventional Energy and Minerals Space. Journal of Earth Science, 26(1): 2-10, doi:10.1007/s12583-015-0515-1 Veveakis, M., Alevizos, S., Poulet, T. (2016). Episodic Tremor and Slip (ETS) as a chaotic Multiphysics spring. Physics of the Earth and Planetary Interiors, in press, doi:10.1016/j.pepi.2016.10.002

  1. A thermo-hydraulic analysis of the superconducting proposal for the TF magnet system of FAST

    Energy Technology Data Exchange (ETDEWEB)

    Polli, G.M., E-mail: [EURATOM-ENEA, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, Rome (Italy); Corte, A. della; Di Zenobio, A.; Muzzi, L.; Reccia, L.; Turtu, S.; Brolatti, G.; Crisanti, F.; Cucchiaro, A.; Pizzuto, A.; Villari, R. [EURATOM-ENEA, C.R. Frascati, Via E. Fermi, 45, IT-00044 Frascati, Rome (Italy)


    FAST (Fusion Advanced Studies Torus), the Italian proposal of a satellite facility to ITER, is a compact tokamak (R{sub 0} = 1.82 m, a = 0.64 m, triangularity {delta} = 0.4) able to investigate non linear dynamics effects of {alpha}-particle behavior in burning plasmas and to test technical solutions for the first wall/divertor directly relevant for ITER and DEMO. Currently, ENEA is investigating the feasibility of a superconducting solution for the magnet system. This paper focuses on the analysis of the TF magnets thermal behavior. In particular, utilizing only the room available in the resistive design and referring to one of the most severe scenario envisaged for FAST, the minimum temperature margin in the coil has been calculated for a thermal load distribution on winding and cable jacket due to nuclear heating only.

  2. Effects of thermo-plasmonics on laser-induced backside wet etching of silicate glass (United States)

    Tsvetkov, M. Yu; Yusupov, V. I.; Minaev, N. V.; Timashev, P. S.; Golant, K. M.; Bagratashvili, V. N.


    The thermo-plasmonic effect (heat deposition via absorption of laser light by metal nanoparticles) is applied to substantially enhance the effectiveness and controllability of the microstructure formation by laser-induced backside wet etching (LIBWE). Experiments were carried out with silicate glass plates using a pulsed 527 nm wavelength laser and an aqueous solution of AgNO3 as a precursor of the Ag nanoparticles. Mechanisms of such thermo-plasmonic LIBWE (TP-LIBWE) versions are considered. They involve: laser-induced photo-thermal reducing of silver (Ag) and self-assembling of Ag nanoparticles in water and the water/glass interface; fast laser-induced overheating of a water and glass surface through the thermo-plasmonic effect; formation of highly reactive supercritical water that causes glass etching and crater formation; generation of steam-gas bubbles in a liquid. It is significant that the emergence of the Marangoni convection results in bubble retention in the focal point at the interface and the accumulation of nanoparticles on the surface of the laser-induced crater, as this facilitates the movement of the bubbles with captured Ag particles from the fluid volume in the crater region, and accelerates the formation of the area of strong ‘surface absorption’ of laser energy. All these mechanisms provide a highly efficient and reproducible process for laser microstructure formation on the surface of glass using a novel TP-LIBWE technique.

  3. Hydraulic System Design of Hydraulic Actuators for Large Butterfly Valves

    Directory of Open Access Journals (Sweden)

    Ye HUANG


    Full Text Available Hydraulic control systems of butterfly valves are presently valve-controlled and pump-controlled. Valve-controlled hydraulic systems have serious power loss and generate much heat during throttling. Pump-controlled hydraulic systems have no overflow or throttling losses but are limited in the speed adjustment of the variable-displacement pump, generate much noise, pollute the environment, and have motor power that does not match load requirements, resulting in low efficiency under light loads and wearing of the variable-displacement pump. To overcome these shortcomings, this article designs a closed hydraulic control system in which an AC servo motor drives a quantitative pump that controls a spiral swinging hydraulic cylinder, and analyzes and calculates the structure and parameters of a spiral swinging hydraulic cylinder. The hydraulic system adjusts the servo motor’s speed according to the requirements of the control system, and the motor power matches the power provided to components, thus eliminating the throttling loss of hydraulic circuits. The system is compact, produces a large output force, provides stable transmission, has a quick response, and is suitable as a hydraulic control system of a large butterfly valve.

  4. Thermo Techno Modern Analytical Equipment for Research and Industrial Laboratories

    Directory of Open Access Journals (Sweden)

    Khokhlov, S.V.


    Full Text Available A brief overview of some models of Thermo Techno analytical equipment and possible areas of their application is given. Thermo Techno Company was created in 2000 as a part of representative office of international corporation Thermo Fisher Scientific — world leader in manufacturing analytical equipments. Thermo Techno is a unique company in its integrated approach in solving the problems of the user, which includes a series of steps: setting the analytical task, selection of effective analysis methods, sample delivery and preparation as well as data transmitting and archiving.

  5. Influence of intermediate valence states of cerium on thermo-e. m. f. of Ce-Ni intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Lutsiv, R.V.; Koterlin, M.D.; Babich, O.I. (L' vovskij Gosudarstvennyj Univ. (Ukrainian SSR))


    The temperature dependences of the thermo-e. m. f. coefficient of compounds of the Ce-Ni(CeNi, CeNi/sub 2/, CeNi,L3, Ce/sub 2/Ni/sub 7/ and CeNi/sub 5/) system in the intermediate valence state are investigated, as well as a series of analogous compounds with La. on the basis of estimates of splitting ( of the Ce/sup 3 +/ 4f-level in the crystal field it is shown that the abovesaid compounds realize condition approximately GITAHsub(f) (GITAsub(f)=hybride width of 4f-level), and thermo-e. m. f. anomalies are especially sensitive to parameters of the Ce valence instability. Possibilities of the existing theoretical models for describing thermo-e. m. f. in such systems are discussed.

  6. A Thermoelastic Hydraulic Fracture Design Tool for Geothermal Reservoir Development

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad Ghassemi


    Geothermal energy is recovered by circulating water through heat exchange areas within a hot rock mass. Geothermal reservoir rock masses generally consist of igneous and metamorphic rocks that have low matrix permeability. Therefore, cracks and fractures play a significant role in extraction of geothermal energy by providing the major pathways for fluid flow and heat exchange. Thus, knowledge of conditions leading to formation of fractures and fracture networks is of paramount importance. Furthermore, in the absence of natural fractures or adequate connectivity, artificial fracture are created in the reservoir using hydraulic fracturing. At times, the practice aims to create a number of parallel fractures connecting a pair of wells. Multiple fractures are preferred because of the large size necessary when using only a single fracture. Although the basic idea is rather simple, hydraulic fracturing is a complex process involving interactions of high pressure fluid injections with a stressed hot rock mass, mechanical interaction of induced fractures with existing natural fractures, and the spatial and temporal variations of in-situ stress. As a result it is necessary to develop tools that can be used to study these interactions as an integral part of a comprehensive approach to geothermal reservoir development, particularly enhanced geothermal systems. In response to this need we have set out to develop advanced thermo-mechanical models for design of artificial fractures and rock fracture research in geothermal reservoirs. These models consider the significant hydraulic and thermo-mechanical processes and their interaction with the in-situ stress state. Wellbore failure and fracture initiation is studied using a model that fully couples poro-mechanical and thermo-mechanical effects. The fracture propagation model is based on a complex variable and regular displacement discontinuity formulations. In the complex variable approach the displacement discontinuities are

  7. Introduction to thermo-fluids systems design

    CERN Document Server

    Garcia McDonald, André


    A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone i

  8. Thermo-diffusion in inertially confined plasmas

    CERN Document Server

    Kagan, Grigory


    In a plasma of multiple ion species, thermodynamic forces such as pressure and temperature gradients can drive ion species separation via inter-species diffusion. Unlike its neutral mix counterpart, plasma thermo-diffusion is found comparable to, or even much larger than, baro-diffusion. It is shown that such a strong effect is due to the long-range nature of the Coulomb potential, as opposed to short-range interactions in neutral gases. A special composition of the tritium and 3He fuel is identified to have vanishing net diffusion during adiabatic compression, and hence provides an experimental test in which yield degradation is minimized during ICF implosions.

  9. Thermo-Physical Properties of Selected Inconel

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.


    Full Text Available The paper brings results of examinations of main thermo-physical properties of selected Inconel alloys, i.e. their heat diffusivity, thermal conductivity and heat capacity, measured in wide temperature range of 20 – 900 oC. Themathematical relationships of the above properties vs. temperature were obtained for the IN 100 and IN 713C alloys. These data can be used when modelling the IN alloys solidification processes aimed at obtaining required structure and properties as well as when designing optimal work temperature parameters.

  10. Thermo Scientific Ozone Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)


    The primary measurement output from the Thermo Scientific Ozone Analyzer is the concentration of the analyte (O3) reported at 1-s resolution in units of ppbv in ambient air. Note that because of internal pneumatic switching limitations the instrument only makes an independent measurement every 4 seconds. Thus, the same concentration number is repeated roughly 4 times at the uniform, monotonic 1-s time base used in the AOS systems. Accompanying instrument outputs include sample temperatures, flows, chamber pressure, lamp intensities and a multiplicity of housekeeping information. There is also a field for operator comments made at any time while data is being collected.

  11. Fluid Power/Basic Hydraulics. Instructor's Guide. (United States)

    Stanbery, Richard

    This guide is designed to assist industrial vocational instructors in teaching a course on fluid power and basic hydraulics. Covered in the unit on the basics of fluid power and hydraulics are the following topics: the fundamentals of fluid power and hydraulics, basic hydraulic circuits, and servicing a hydraulic jack. The second unit, consisting…

  12. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif


    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  13. A numerical model of hydro-thermo-mechanical coupling in a fractured rock mass

    Energy Technology Data Exchange (ETDEWEB)

    Bower, Kathleen Marie [Univ. of New Mexico, Albuquerque, NM (United States)


    Coupled hydro-thermo-mechanical codes with the ability to model fractured materials are used for predicting groundwater flow behavior in fractured aquifers containing thermal sources. The potential applications of such a code include the analysis of groundwater behavior within a geothermal reservoir. The capability of modeling hydro-thermo systems with a dual porosity, fracture flow model has been previously developed in the finite element code, FEHM. FEHM has been modified to include stress coupling with the dual porosity feature. FEHM has been further developed to implicitly couple the dependence of fracture hydraulic conductivity on effective stress within two dimensional, saturated aquifers containing fracture systems. The cubic law for flow between parallel plates was used to model fracture permeability. The Bartin-Bandis relationship was used to determine the fracture aperture within the cubic law. The code used a Newton Raphson iteration to implicitly solve for six unknowns at each node. Results from a model of heat flow from a reservoir to the moving fluid in a single fracture compared well with analytic results. Results of a model showing the increase in fracture flow due to a single fracture opening under fluid pressure compared well with analytic results. A hot dry rock, geothermal reservoir was modeled with realistic time steps indicating that the modified FEHM code does successfully model coupled flow problems with no convergence problems.

  14. Thermo-diffusional radon waves in soils

    Energy Technology Data Exchange (ETDEWEB)

    Minkin, Leonid, E-mail: [Portland Community College, 12000 SW 49th Ave, Portland, OR 97219 (United States); Shapovalov, Alexander S. [Saratov State University, 83 Astrakhanskay Street, Saratov 410012 (Russian Federation)


    A new theoretical framework for diurnal and seasonal oscillations of the concentration of radon in soil and open air is proposed. The theory is based on the existing temperature waves in soils and thermo-diffusional gas flux in porous media. As soil is a non-isothermal porous medium, usually possessing a large fraction of microscopic pores belonging to Knudsen's free molecular field, a thermo-diffusional gas flow in soil has to arise. The radon mass transfer equation in soil for sinusoidal temperature oscillations at the soil–atmosphere boundary is solved, which reveals that radon concentration behaves as a damped harmonic wave. The amplitude of radon concentration oscillations and phase shift between radon concentration oscillations and soil temperature depend on the radon diffusion coefficient in soil, rate of radon production, soil thermal conductivity, average soil temperature, decay constant, and heat of radon transfer. Primarily numerical calculations are presented and comparisons with experimental data are shown. - Highlights: • Temperature oscillations in atmosphere generate radon waves in soil. • Radon flux in atmosphere is a harmonic function of time. • Radon concentration waves in soil have the same frequency as the temperature waves.

  15. Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)


    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. BNL has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  16. Performance of Harshaw 6600 thermo-luminescence dosimeter (TLD)

    African Journals Online (AJOL)

    Performance of Harshaw 6600 thermo-luminescence dosimeter (TLD) system for personal monitoring. ... Fading of 19 % of thermo-luminescence (TL) readout was observed in 90 days when TLD chips were stored at room temperature (~ 27º C). The TL sensitivities of chips in three holder types were close to that for Cs-137 ...

  17. Thermal Analysis of a TREAT Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, Dionissios [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, Arthur E. [Argonne National Lab. (ANL), Argonne, IL (United States)


    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  18. Hydraulic rams; a comparative investigation

    NARCIS (Netherlands)

    Tacke, J.H.P.M.


    A mathematical model describing the essential features of hydraulic ram operation is developed in order to clarify the possibilities and limitations of the ram relative to its site and its adjustments. The model distinguishes three different periods in the pumping cycle of the hydraulic ram:

  19. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    , and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study......The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers...

  20. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria


    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies...... and plays an important role in processing the information generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence assembly programs. We describe the basic principles of computational assembly along with the main concerns, such as repetitive sequences...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at:

  1. Good vibrations. [Hydraulic turbines

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, P.


    The latest developments in the Voith Turbine Control and Automation System (VTLS), which couples digital control technology to hydropower plant equipment, are described. Prominent among these is the vibration diagnostics module for hydraulic turbines. It provides machine-specific diagnostic logic for a vibration monitoring and analysis system. Of the two other VTLS modules described, the operation module optimizes the control of a power plant with three or more turbines by considering the individual properties of each in turn, recommending which should be run, and how, in order to partition the load for a required power output. The cavitation module is a diagnostic system which enables the limits of operation of the turbines to be extended to bands just outside those determined by cavitation calculations. (3 figures). (UK)

  2. Novel ionic polymeric hydraulic actuators (United States)

    Shahinpoor, Mohsen; Kim, Kwang J.


    It is now well recognized that a strip of ionic polymer- metal composite (IPMC) exhibits a spontaneous bending capability under the influence of an electric potential. A key observation is the appearance and disappearance of water on the expansion and contraction surfaces of the strip, respectively. Such water appearing/disappearing activities occur near the permeable metal electrodes. The imposition of en elctric field causes the mobile cations that are conjugated to the polymeric anions to undergo electrophoretic dynamic migration that can result in local deformation of the material. Such an electrophoretic behavior of the IPMC causes the water to leak out of the permeable electroded boundary so as to lower the actuation performance. This situation is similar to a leaking hydraulic actuator (hydraulic jack), which has the highest force density notwithstanding the compressor unit weight. Herein, a new category of actuators as ionic polymeric hydraulic actuators (IPHA's) is defined. The IPMC is a good example of such ionic polymeric hydraulic actuators. The advantage of ionic polymeric hydraulic actuators is their potential to generate substantially high force densities, theoretically better than current hydraulic actuators. Based upon this ionic polymer hydraulic actuator concept, a certain manufacturing technique was developed to increase the force density of the conventional IPMC's by a factor of two (100% improvement in force). This technology and associated experimental results are presented in this paper.

  3. Hydraulic conductivity of compacted zeolites. (United States)

    Oren, A Hakan; Ozdamar, Tuğçe


    Hydraulic conductivities of compacted zeolites were investigated as a function of compaction water content and zeolite particle size. Initially, the compaction characteristics of zeolites were determined. The compaction test results showed that maximum dry unit weight (γ(dmax)) of fine zeolite was greater than that of granular zeolites. The γ(dmax) of compacted zeolites was between 1.01 and 1.17 Mg m(-3) and optimum water content (w(opt)) was between 38% and 53%. Regardless of zeolite particle size, compacted zeolites had low γ(dmax) and high w(opt) when compared with compacted natural soils. Then, hydraulic conductivity tests were run on compacted zeolites. The hydraulic conductivity values were within the range of 2.0 × 10(-3) cm s(-1) to 1.1 × 10(-7) cm s(-1). Hydraulic conductivity of all compacted zeolites decreased almost 50 times as the water content increased. It is noteworthy that hydraulic conductivity of compacted zeolite was strongly dependent on the zeolite particle size. The hydraulic conductivity decreased almost three orders of magnitude up to 39% fine content; then, it remained almost unchanged beyond 39%. Only one report was found in the literature on the hydraulic conductivity of compacted zeolite, which is in agreement with the findings of this study.

  4. Electrokinetic high pressure hydraulic system (United States)

    Paul, Phillip H.; Rakestraw, David J.


    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  5. Thermo-mechanical ratcheting in jointed rock masses

    KAUST Repository

    Pasten, C.


    Thermo-mechanical coupling takes place in jointed rock masses subjected to large thermal oscillations. Examples range from exposed surfaces under daily and seasonal thermal fluctuations to subsurface rock masses affected by engineered systems such as geothermal operations. Experimental, numerical and analytical results show that thermo-mechanical coupling can lead to wedging and ratcheting mechanisms that result in deformation accumulation when the rock mass is subjected to a biased static-force condition. Analytical and numerical models help in identifying the parameter domain where thermo-mechanical ratcheting can take place.

  6. Thermo-cleavable polymers: Materials with enhanced photochemical stability

    DEFF Research Database (Denmark)

    Manceau, Matthieu; Petersen, Martin Helgesen; Krebs, Frederik C


    Photochemical stability of three thermo-cleavable polymers was investigated as thin films under atmospheric conditions. A significant increase in lifetime was observed once the side-chain was cleaved emphasizing the detrimental effect of solubilizing groups on the photochemical stability of conju......Photochemical stability of three thermo-cleavable polymers was investigated as thin films under atmospheric conditions. A significant increase in lifetime was observed once the side-chain was cleaved emphasizing the detrimental effect of solubilizing groups on the photochemical stability...... of conjugated polymers. In addition to their ease of processing, thermo-cleavable polymers thus also offer a greater intrinsic stability under illumination....


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...


    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  9. The Process of Hydraulic Fracturing (United States)

    Hydraulic fracturing, know as fracking or hydrofracking, produces fractures in a rock formation by pumping fluids (water, proppant, and chemical additives) at high pressure down a wellbore. These fractures stimulate the flow of natural gas or oil.

  10. Hydraulic rams; a comparative investigation


    Tacke, J.H.P.M.


    A mathematical model describing the essential features of hydraulic ram operation is developed in order to clarify the possibilities and limitations of the ram relative to its site and its adjustments. The model distinguishes three different periods in the pumping cycle of the hydraulic ram: acceleration - retardation - recoil. Making use of the theory of unsteady flow in pipelines. for each period the relation between velocity and time is derived for the water in the drive pipe of the hydrau...

  11. Heat transfer and friction characteristics of rotor-assembled strand heat exchanger studied by uniform design experiment

    Directory of Open Access Journals (Sweden)

    Yan Wei


    Full Text Available The uniform distribution and experimental design is employed to study the thermo-hydraulic characteristics of a heat exchanger, which consists of the rotor-assembled strands mounted in circular smooth tubes. The uniform distribution and experimental design parameters include multiple rotor parameters such as rotor diameters, rotor lead, and height of blade, with the aim of studying their influence on the PEC, that is, ( ( Nu z / Nu g / ( f g / f z 1 / 3 , which stands for the heat transfer and friction characteristics. The best matching schemes of rotor-assembled strand, which significantly improves PEC to 2.01, are given by the regression analysis of uniform distribution and experimental design table. The single-factor experiments are performed to compare a tube installed with different kinds of rotor-assembled strands with a smooth tube without any strands when the Reynolds number changes between 20,000 and 60,000. The experimental result is in good agreement with the result obtained by the regression analysis of uniform distribution and experimental design. It is shown that the rotor diameters play important role in the heat transfer, and the optimal PEC value is obtained under the case that the rotor diameter is 21 mm. The rotor lead also contributes to the improvement of heat transfer and its optimal value is 700 mm in this study. The Nusselt number, friction factor and PEC increase with the increase in blade height. It shows that the uniform distribution and experimental design is an efficient method to find out the optimal parameters.

  12. Reservoir Stimulation Experiments at the Grimsel Test Site: Stress Measurements using Hydraulic fracturing, Hydraulic Tests on Pre-existing Fractures and Overcoring (United States)

    Doetsch, J.; Gischig, V.; Amann, F.; Madonna, C.; Jalali, M.; Valley, B.; Evans, K. F.


    A decameter-scale in-situ hydraulic stimulation and circulation experiment has been planned in the Deep Underground rock Laboratory (DUG Lab) at the Grimsel Test Site, Switzerland. The general objective of this experiment is to improve our understanding of the pressure, temperature and stress changes in the rock mass due to hydraulic stimulation. In this context, the main goal is to investigate the effect of hydro-shearing on the local stress variation as well as transient and permanent permeability changes with comprehensive thermo-hydro-mechanical (THM) and acoustic emission monitoring. This experiment is designed such that stimulation processes are recorded in a dataset that is unique in THM coupled processes and induced seismicity research. In preparation to the hydro-shearing experiments, the experimental rock volume has been studied in detail using geological tunnel mapping, optical televiewer in existing boreholes, hydraulic tests, geophysical imaging and review of the extensive literature on experiments at the Grimsel Test Site. The geophysical investigations include reflection and transmission ground penetrating radar (GPR) and seismic measurements between the tunnels to image shear zones and reveal heterogeneity of the rock mass. The orientation and magnitude of the principal stresses of the rock volume and its surroundings has been analyzed using hydraulic fracturing, hydraulic tests on pre-existing fractures and overcoring. The hydraulic fracturing tests for stress measurements were monitored using a 32-channel acoustic emission monitoring system and a regional seismic monitoring network. Here, we present the results of the pre-investigations and stress measurements, and give an outlook for the hydro-shearing experiments planned for spring 2016.

  13. Thermo-msf-parser: an open source Java library to parse and visualize Thermo Proteome Discoverer msf files. (United States)

    Colaert, Niklaas; Barsnes, Harald; Vaudel, Marc; Helsens, Kenny; Timmerman, Evy; Sickmann, Albert; Gevaert, Kris; Martens, Lennart


    The Thermo Proteome Discoverer program integrates both peptide identification and quantification into a single workflow for peptide-centric proteomics. Furthermore, its close integration with Thermo mass spectrometers has made it increasingly popular in the field. Here, we present a Java library to parse the msf files that constitute the output of Proteome Discoverer. The parser is also implemented as a graphical user interface allowing convenient access to the information found in the msf files, and in Rover, a program to analyze and validate quantitative proteomics information. All code, binaries, and documentation is freely available at

  14. Dimensional Changes of Collagen: with thermo mechanical stress

    Indian Academy of Sciences (India)

    Thermo gram of collagen displays multiples of heat inducted transitions and relaxation of collagen fibers exhibit multiple processes. Multiplicity of pressure and temperature induced processes offers special attributes for the use of collagen as a biomaterial.

  15. Thermo-mechanically coupled deformation with the finite difference method (United States)

    Duretz, Thibault; Raess, Ludovic; Podladchikov, Yury; Schmalholz, Stefan


    Numerous geological observations are the result of thermo-mechanical processes. In particular, tectonic processes such as ductile shear localization can be induced by the intrinsic coupling that exists between deformation, energy and rheology. In order to study these processes, we have designed two-dimensional implicit and explicit finite difference models. These models take into account a temperature-dependent power-law rheology as well as diffusion, advection, and conversion of mechanical work into heat. For implicit models, different non-linear solving strategies were implemented (implicit/explicit thermo-mechanical coupling, Picard/Newton linearisations). We model thermo-mechanically activated shear localization in lower crustal conditions using these different numerical methods. We show that all methods capture the thermo-mechanical instability and exhibit similar temporal evolution. We perform quantitative comparisons with specifically designed tests (conservation of energy, analytical solution, scaling law). For implicit approaches, we discuss the treatment of thermo-mechanical coupling (implicit/explicit) and the impact of the imposed accuracy (tolerance) of the non-linear solvers. We compare the accuracy of the explicit method with the one of the implicit methods. Numerical algorithms based on explicit methods to study thermo-mechanical shear localisation are attractive because they are easy to program and very comprehensible.

  16. Portable thermo-photovoltaic power source (United States)

    Zuppero, Anthony C.; Krawetz, Barton; Barklund, C. Rodger; Seifert, Gary D.


    A miniature thermo-photovoltaic (TPV) device for generation of electrical power for use in portable electronic devices. A TPV power source is constructed to provide a heat source chemical reactor capable of using various fuels, such as liquid hydrocarbons, including but not limited to propane, LPG, butane, alcohols, oils and diesel fuels to generate a source of photons. A reflector dish guides misdirected photon energy from the photon source toward a photovoltaic array. A thin transparent protector sheet is disposed between the photon source and the array to reflect back thermal energy that cannot be converted to electricity, and protect the array from thermal damage. A microlens disposed between the protector sheet and the array further focuses the tailored band of photon energy from the photon source onto an array of photovoltaic cells, whereby the photon energy is converted to electrical power. A heat recuperator removes thermal energy from reactor chamber exhaust gases, preferably using mini- or micro-bellows to force air and fuel past the exhaust gases, and uses the energy to preheat the fuel and oxidant before it reaches the reactor, increasing system efficiency. Mini- or micro-bellows force ambient air through the system both to supply oxidant and to provide cooling. Finally, an insulator, which is preferably a super insulator, is disposed around the TPV power source to reduce fuel consumption, and to keep the TPV power source cool to the touch so it can be used in hand-held devices.

  17. Thermo-mechanical characterization of silicone foams

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, Partha [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Nickolaus A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cady, Carl M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Matthew W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compression for ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperatures

  18. Effects of temperature and thermally-induced microstructure change on hydraulic conductivity of Boom Clay

    Directory of Open Access Journals (Sweden)

    W.Z. Chen


    Full Text Available Boom Clay is one of the potential host rocks for deep geological disposal of high-level radioactive nuclear waste in Belgium. In order to investigate the mechanism of hydraulic conductivity variation under complex thermo-mechanical coupling conditions and to better understand the thermo-hydro-mechanical (THM coupling behaviour of Boom Clay, a series of permeability tests using temperature-controlled triaxial cell has been carried out on the Boom Clay samples taken from Belgian underground research laboratory (URL HADES. Due to its sedimentary nature, Boom Clay presents across-anisotropy with respect to its sub-horizontal bedding plane. Direct measurements of the vertical (Kv and horizontal (Kh hydraulic conductivities show that the hydraulic conductivity at 80 °C is about 2.4 times larger than that at room temperature (23 °C, and the hydraulic conductivity variation with temperature is basically reversible during heating–cooling cycle. The anisotropic property of Boom Clay is studied by scanning electron microscope (SEM tests, which highlight the transversely isotropic characteristics of intact Boom Clay. It is shown that the sub-horizontal bedding feature accounts for the horizontal permeability higher than the vertical one. The measured increment in hydraulic conductivity with temperature is lower than the calculated one when merely considering the changes in water kinematic viscosity and density with temperature. The nuclear magnetic resonance (NMR tests have also been carried out to investigate the impact of microstructure variation on the THM properties of clay. The results show that heating under unconstrained boundary condition will produce larger size of pores and weaken the microstructure. The discrepancy between the hydraulic conductivity experimentally measured and predicted (considering water viscosity and density changes with temperature can be attributed to the microstructural weakening effect on the thermal volume change

  19. Mid-sized omnidirectional robot with hydraulic drive and steering (United States)

    Wood, Carl G.; Perry, Trent; Cook, Douglas; Maxfield, Russell; Davidson, Morgan E.


    Through funding from the US Army-Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program, Utah State University's (USU) Center for Self-Organizing and Intelligent Systems (CSOIS) has developed the T-series of omni-directional robots based on the USU omni-directional vehicle (ODV) technology. The ODV provides independent computer control of steering and drive in a single wheel assembly. By putting multiple omni-directional (OD) wheels on a chassis, a vehicle is capable of uncoupled translational and rotational motion. Previous robots in the series, the T1, T2, T3, ODIS, ODIS-T, and ODIS-S have all used OD wheels based on electric motors. The T4 weighs approximately 1400 lbs and features a 4-wheel drive wheel configuration. Each wheel assembly consists of a hydraulic drive motor and a hydraulic steering motor. A gasoline engine is used to power both the hydraulic and electrical systems. The paper presents an overview of the mechanical design of the vehicle as well as potential uses of this technology in fielded systems.

  20. Whole core pin-by-pin coupled neutronic-thermal-hydraulic steady state and transient calculations using COBAYA3 code

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Herrero, J. J.; Cuervo, D.; Aragones, J. M., E-mail: jimenez@din.upm.e [Universidad Politecnica de Madrid, Departamento de Ingenieria Nuclear, Jose Gutierrez Abascal No. 2, 28006 Madrid (Spain)


    Nowadays coupled 3-dimensional neutron kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic model. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fuel design safety margins, because it is in the local scale, where we can search the hottest pellet or the maximum heat flux. The Polytechnic University of Madrid advanced multi-scale neutron-kinetics and thermal-hydraulics methodologies being implemented in COBAYA3 include domain decomposition by alternate core dissections for the local 3-dimensional fine-mesh scale problems (pin cells/subchannels) and an analytical nodal diffusion solver for the coarse mesh scale coupled with the thermal-hydraulic using a model of one channel per assembly or per quarter of assembly. In this work, we address the domain decomposition by the alternate core dissections methodology applied to solve coupled 3-dimensional neutronic-thermal-hydraulic problems at the fine-mesh scale. The neutronic-thermal-hydraulic coupling at the cell-subchannel scale allows the treatment of the effects of the detailed thermal-hydraulic feedbacks on cross-sections, thus resulting in better estimates of the local safety margins at the pin level. (Author)

  1. Selective perceptions of hydraulic fracturing. (United States)

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R


    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider.

  2. Birth of a hydraulic jump (United States)

    Duchesne, Alexis; Bohr, Tomas; Andersen, Anders


    The hydraulic jump, i.e., the sharp transition between a supercritical and a subcritical free-surface flow, has been extensively studied in the past centuries. However, ever since Leonardo da Vinci asked it for the first time, an important question has been left unanswered: How does a hydraulic jump form? We present an experimental and theoretical study of the formation of stationary hydraulic jumps in centimeter wide channels. Two starting situations are considered: The channel is, respectively, empty or filled with liquid, the liquid level being fixed by the wetting properties and the boundary conditions. We then change the flow-rate abruptly from zero to a constant value. In an empty channel, we observe the formation of a stationary hydraulic jump in a two-stage process: First, the channel fills by the advancing liquid front, which undergoes a transition from supercritical to subcritical at some position in the channel. Later the influence of the downstream boundary conditions makes the jump move slowly upstream to its final position. In the pre-filled channel, the hydraulic jump forms at the injector edge and then moves downstream to its final position.

  3. Electrokinetic high pressure hydraulic system (United States)

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.


    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  4. Complex Fluids and Hydraulic Fracturing. (United States)

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H


    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process.

  5. Hydraulic properties of ladle slags

    Directory of Open Access Journals (Sweden)

    J. Vlček


    Full Text Available The article presents results of examining of hydraulic properties of ladle slags formed during production of steel. The studied ladle slags were subjected to different cooling mode from the molten state. Based on the ability of the slag react with the water was assessed their hydraulic activity. The hydraulic properties are caused by the presence of minerals dicalcium silicate, tricalcium aluminate, mayenite, brownmillerite and dicalcium ferite. The emergence of required hydrating phases in the ladle slags is conditioned by a sufficient CaO content and their cooling rate. The contact the slag with water during processing and their ageing has a negative effect. The experiment has shown that the phase transformation of the mineral dicalcium silicate which occurs during cooling of the ladle slags cause their volume instability.

  6. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.


    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  7. Heat generation and nanoscale thermal transport in thermo-magnetic genetic cellular stimulation (United States)

    Munshi, Rahul; Castellanos-Rubio, Idoia; Pralle, Arnd

    Magnetic nanoparticles act as heat sources, when exposed to alternating magnetic fields, creating steep temperature gradients around them. We studied the capabilities of various geometrical distribution of such particles to be efficient transducers for stimulating cellular signaling, upon magnetic field application. We tagged synthesized core-shell nanoparticles with fluorescent dye molecules and attached them via membrane proteins, effectively creating a sheet of particles, wrapped around the cellular membrane. Exploiting the thermo-sensitivity of fluorescent proteins, we systematically studied temporal evolution of temperature gradients with magnetic fields, by monitoring fluorescence intensity changes on the particles confined to particular geometrical arrangements, on cells as well as in fabricated polymer matrices. We also studied the impact of magnetic dipolar interactions on heat generation in tightly packed self-assemblies, like particle chains in magnetotactic bacteria. Lastly, we show how nanoparticles can be targeted with specificity to deep brain neurons to evoke remotely stimulated behavioral changes in awake mice.

  8. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E


    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  9. Method for hydraulically fracturing strata

    Energy Technology Data Exchange (ETDEWEB)

    Petryashin, L.F.; Zheltoukhov, V.V.


    The proposed method for the hydraulic fracture of strata involves the input of ground magnesium and an inert substance in the bore hole, the latter being pumped under pressure into the strata. In order to improve the quality of the fracture, crystallized chloroacetic acid is used. This acid, prior to its injection into the bore hole, is mixed with the magnesium and starch. This method allows hydraulic fracturing to be conducted in a simpler, more economical, more effective manner as well as in intervals.

  10. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin


    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  11. Integrating hydraulic equivalent sections into a hydraulic geometry study (United States)

    Jia, Yanhong; Yi, Yujun; Li, Zhiwei; Wang, Zhaoyin; Zheng, Xiangmin


    Hydraulic geometry (HG) is an important geomorphic concept that has played an indispensable role in hydrological analyses, physical studies of streams, ecosystem and aquatic habitat studies, and sedimentology research. More than 60 years after Leopold and Maddock (1953) first introduced the concept of HG, researchers have still not uncovered the physical principles underlying HG behavior. One impediment is the complexity of the natural river cross section. The current study presents a new way to simplify the cross section, namely, the hydraulic equivalent section, which is generalized from the cross section in the "gradually varied flow of an alluvial river" (GVFAR) and features hydrodynamic properties and bed-building laws similar to those of the GVFAR. Energy balance was used to derive the stage Z-discharge Q relationship in the GVFAR. The GVFAR in the Songhua River and the Yangtze River were selected as examples. The data, including measured discharge, river width, water stage, water depth, wet area, and cross section, were collected from the hydrological yearbooks of typical hydrological stations on the Songhua River and the Yangtze River from 1955 to 1987. The relationships between stage Z-discharge Q and cross-sectional area A-stage Z at various stations were analyzed, and "at-a-station hydraulic geometry" (AHG) relationships were obtained in power-law forms. Based on derived results and observational data analysis, the Z-Q and Z-A relationships of AHG were similar to rectangular weir flows, thus the cross section of the GVFAR was generalized as a compound rectangular, hydraulic equivalent cross section. As to bed-building characteristics, the bankfull discharge method and the stage-discharge-relation method were used to calculate the dominant variables of the alluvial river. This hydraulic equivalent section has the same Z-Q relation, Z-A relation, dominant discharge, dominant river width, and dominant water depth as the cross section in the GVFAR. With the

  12. Development of coupled neutronics/thermal-hydraulics test case for HPLWR (United States)

    Pham, P.; Gamtsemlidze, I. D.; Bahdanovich, R. B.; Nikonov, S. P.; Smirnov, A. D.


    The High-Performance Light Water Reactor (HPLWR) is the European concept of a supercritical water reactor (SCWR) which is one of the most promising and innovative designs of the Generation IV nuclear reactor concepts. The thermal-hydraulics behavior of supercritical water is significantly different from water at sub-critical pressure because of the difference in the specific heat value. Coupled analysis of HPLWR assembly neutronics and thermal-hydraulics has become important because of the strong influence of the water density on the neutron spectrum and power distribution. Programs MCU (Monte-Carlo Universal) and ATHLET (Analysis of Thermal-hydraulics of Leaks and Transients) were used for better estimation of power and temperature distribution in HPLWR assembly.

  13. Thermo-cryogenic controls of fracture kinematics in permafrost rockwalls (United States)

    Draebing, D.; Krautblatter, M.; Hoffmann, T.


    Thermo-cryogenic processes prepare and trigger rockfalls and rockslides in alpine environments. Temporal occurrence, controls, and applied stresses of Thermo-cryogenic processes on rock masses are poorly understood. This paper reports annual crackmeter measurements with 3 h resolution across perennially ice-filled fractures in an unstable rock permafrost crestline. Thermo-cryogenic processes are controlled by snow cover onset and duration. Thermal changes in snow-free periods control expansion and contraction coincident temperature gradients on a daily to seasonal scale. We can show how snow cover promotes sustained temperatures from -9 to -1°C and boosts ice segregation-related fracture opening up to 1 cm in 8 months. During snowmelt, meltwater induces ice erosion and ice relaxation, which occur in the freeze-thaw window close to the thawing point. We hypothesize that Thermo-cryogenic processes and their cyclic repetition can lead to Thermo-cryogenic fatigue preparing rock slope failure and can control type and location of rockfalls in a changing climate.

  14. Theory and modeling of cylindrical thermo-acoustic transduction

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Lihong, E-mail: [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China); Lim, C.W. [Department of Architecture and Civil Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiushao; Geng, Daxing [School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, Jiangxi (China)


    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media. - Highlights: • Theory and modeling both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed. • The modeling is verified by comparing with the published experimental data. • Acoustic response characteristics of cylindrical thermo-acoustic transductions are predicted by the proposed model.

  15. Robust Force Control of a 6-Link Electro-Hydraulic Manipulator (United States)

    Ahn, Kyoungkwan; Yokota, Shinichi

    Uninterrupted power supply has become indispensable during the maintenance task of active electric power lines as a result of today's highly information-oriented society and increasing demand of electric utilities. This maintenance task has the risk of electric shock and the danger of falling from high place. Therefore it is necessary to realize an autonomous robot system using electro-hydraulic manipulator because hydraulic manipulators have the advantage of electric insulation and power/mass density. Meanwhile an electro-hydraulic manipulator using hydraulic actuators has many nonlinear elements, and its parameter fluctuations are greater than those of an electrically driven manipulator. So it is relatively difficult to realize not only stable contact work but also accurate force control for the autonomous assembly tasks using hydraulic manipulators. In this paper, the robust force control of a 6-link electro-hydraulic manipulator system used in the real maintenance task of active electic line is examined in detail. A nominal model for the system is obtained from experimental frequency responses of the system, and the deviation of the manipulator system from the nominal model is derived by a multiplicative uncertainty. Robust disturbance observers for force control are designed using this information in an H∞ framework, and implemented on the two different setups. Experimental results show that highly robust force tracking by a 6-link electro-hydraulic manipulator could be achieved even if the stiffness of environment and the shape of wall change.

  16. A Hydraulic Blowdown Servo System For Launch Vehicle (United States)

    Chen, Anping; Deng, Tao


    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  17. Hydraulics submission for Middlesex County, NJ (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating base flood elevation for a flood insurance...

  18. DCS Hydraulics Submittal, Butler County, Alabama, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  19. DCS Hydraulics Submittal, Covington County, Alabama, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  20. DCS Hydraulics Submittal, Bullock County, Alabama, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  1. Hydraulic fracturing system and method

    Energy Technology Data Exchange (ETDEWEB)

    Ciezobka, Jordan; Maity, Debotyam


    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  2. Design of hydraulic recuperation unit (United States)

    Jandourek, Pavel; Habán, Vladimír; Hudec, Martin; Dobšáková, Lenka; Štefan, David


    This article deals with design and measurement of hydraulic recuperation unit. Recuperation unit consist of radial turbine and axial pump, which are coupled on the same shaft. Speed of shaft with impellers are 6000 1/min. For economic reasons, is design of recuperation unit performed using commercially manufactured propellers.

  3. Tree Hydraulics: How Sap Rises (United States)

    Denny, Mark


    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  4. Hydraulic fracturing system and method (United States)

    Ciezobka, Jordan; Salehi, Iraj


    A hydraulic fracturing system and method for enhancing effective permeability of earth formations to increase hydrocarbon production, enhance operation efficiency by reducing fluid entry friction due to tortuosity and perforation, and to open perforations that are either unopened or not effective using traditional techniques, by varying a pump rate and/or a flow rate to a wellbore.

  5. Sample preparation for thermo-gravimetric determination and thermo-gravimetric characterization of refuse derived fuel. (United States)

    Robinson, T; Bronson, B; Gogolek, P; Mehrani, P


    Thermo-gravimetric analysis (TGA) is a useful method for characterizing fuels. In the past it has been applied to the study of refuse derived fuel (RDF) and related materials. However, the heterogeneity of RDF makes the preparation of small representative samples very difficult and this difficulty has limited the effectiveness of TGA for characterization of RDF. A TGA method was applied to a variety of materials prepared from a commercially available RDF using a variety of procedures. Applicability of TGA method to the determination of the renewable content of RDF was considered. Cryogenic ball milling was found to be an effective means of preparing RDF samples for TGA. When combined with an effective sample preparation, TGA could be used as an alternative method for assessing the renewable content of RDF. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  6. Coupled thermo-hydro-mechanical experiment at Kamaishi mine. Technical note 15-99-02. Experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Chijimatsu, Masakazu; Sugita, Yutaka; Fujita, Tomoo [Tokai Works, Waste Management and Fuel Cycle Research Center, Waste Isolation Research Division, Barrier Performance Group, Japan Nuclear Cycle Development Inst., Tokai, Ibaraki (Japan); Amemiya, Kiyoshi [Hazama Corp., Tokyo (Japan)


    It is an important part of the near field performance assessment of nuclear waste disposal to evaluate coupled thermo-hydro-mechanical (T-H-M) phenomena, e.g., thermal effects on groundwater flow through rock matrix and water seepage into the buffer material, the generation of swelling pressure of the buffer material, and thermal stresses potentially affecting porosity and fracture apertures of the rock. An in-situ T-H-M experiment named Engineered Barrier Experiment' has been conducted at the Kamaishi Mine, of which host rock is granodiorite, in order to establish conceptual models of the coupled T-H-M processes and to build confidence in mathematical and computer codes. In 1995, fourteen boreholes were excavated in order to install the various sensors. After the hydraulic tests, mechanical tests were carried out to obtain the rock properties. After that, a test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. During the excavation, the change of pore pressure, displacement and temperature of rock mass were measured. In 1996, the buffer material and heater were set up in the test pit, and then coupled thermo-hydro-mechanical test was started. The duration of heating phase was 250 days and that of cooling phase was 180 days. The heater surface was controlled to be 100degC during heating phase. Measurement was carried out by a number of sensors installed in both buffer and rock mass during the test. The field experiment leads to a better understanding of the behavior of the coupled thermo-hydro-mechanical phenomena in the near field. (author)

  7. Hydraulic characterization of " Furcraea andina (United States)

    Rivera-Velasquez, M. F.; Fallico, C.; Molinari, A.; Santillan, P.; Salazar, M.


    The present level of pollution, increasingly involving groundwaters, constitutes a serious risk for environment and human health. Therefore the remediation of saturated and unsaturated soils, removing pollutant materials through innovative and economic bio-remediation techniques is more frequently required. Recent studies on natural fiber development have shown the effectiveness of these fibers for removal of some heavy metals, due to the lignin content in the natural fibers which plays an important role in the adsorption of metal cations (Lee et al., 2004; Troisi et al., 2008; C. Fallico, 2010). In the context of remediation techniques for unsaturated and/or saturated zone, an experimental approach for the hydraulic characterization of the "Furcraea andina" (i.e., Cabuya Blanca) fiber was carried out. This fiber is native to Andean regions and grows easily in wild or cultivated form in the valleys and hillsides of Colombia, Ecuador, and Peru. Fibers of "Furcraea andina" were characterized by experimental tests to determine their hydraulic conductivity or permeability and porosity in order to use this medium for bioremediation of contaminated aquifer exploiting the physical, chemical and microbial capacity of natural fiber in heavy metal adsorption. To evaluate empirically the hydraulic conductivity, laboratory tests were carried out at constant head specifically on the fibers manually extracted. For these tests we used a flow cell (used as permeameter), containing the "Furcraea andina" fibers to be characterized, suitably connected by a tygon pipe to a Marriott's bottle, which had a plastic tube that allow the adjustment of the hydraulic head for different tests to a constant value. By this experiment it was also possible to identify relationships that enable the estimation of permeability as a function of density, i.e. of the compaction degree of the fibers. Our study was carried out for three values of hydraulic head (H), namely 10, 18, and 25 cm and for each

  8. Athermalization of resonant optical devices via thermo-mechanical feedback (United States)

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.


    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  9. Hygro-Thermo-Mechanical Analysis of a Reactor Vessel

    Directory of Open Access Journals (Sweden)

    Jaroslav Kruis


    Full Text Available Determining the durability of a reactor vessel requires a hygro-thermo-mechanical analysis of the vessel throughout its service life. Damage, prestress losses, distribution of heat and moisture and some other quantities are needed for a durability assessment. A coupled analysis was performed on a two-level model because of the huge demands on computer hardware. This paper deals with a hygro-thermo-mechanical analysis of a reactor vessel made of prestressed concrete with a steel inner liner. The reactor vessel is located in Temelín, Czech Republic.

  10. On localization modes in coupled thermo-hydro-mechanical problems (United States)

    Benallal, Ahmed


    A perturbation approach is used to study localization phenomena in saturated porous media when thermo-mechanical loadings and thermo-hydro-mechanical couplings are fully taken into account. We show that various types of localization modes are possible depending on the constitutive behavior and loading conditions. Examination of the associated conditions in the light of the classical band approach reveals that the differences between these modes lie in their structure which may involve jumps in different variables (beside the velocity gradient) such as the gradients of heat and fluid fluxes, the temperature and the pressure rates. To cite this article: A. Benallal, C. R. Mecanique 333 (2005).

  11. Hydraulic fracturing - an attempt of DEM simulation (United States)

    Kosmala, Alicja; Foltyn, Natalia; Klejment, Piotr; Dębski, Wojciech


    Hydraulic fracturing is a technique widely used in oil, gas and unconventional reservoirs exploitation in order to enable the oil/gas to flow more easily and enhance the production. It relays on pumping into a rock a special fluid under a high pressure which creates a set of microcracks which enhance porosity of the reservoir rock. In this research, attempt of simulation of such hydrofracturing process using the Discrete Element Method approach is presented. The basic assumption of this approach is that the rock can be represented as an assembly of discrete particles cemented into a rigid sample (Potyondy 2004). An existence of voids among particles simulates then a pore system which can be filled out by fracturing fluid, numerically represented by much smaller particles. Following this microscopic point of view and its numerical representation by DEM method we present primary results of numerical analysis of hydrofracturing phenomena, using the ESyS-Particle Software. In particular, we consider what is happening in distinct vicinity of the border between rock sample and fracking particles, how cracks are creating and evolving by breaking bonds between particles, how acoustic/seismic energy is releasing and so on. D.O. Potyondy, P.A. Cundall. A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41 (2004), pp. 1329-1364.

  12. Plane waves in a rotating generalized thermo-elastic solid with voids ...

    African Journals Online (AJOL)

    Propagation of plane waves in a rotating thermo-elastic solid with voids has been studied. The theory for thermo-elastic materials with voids developed by Iesan in the context of thermo- elastic theory of Lord and Shulman has been employed for mathematical treatment. It has been found that there exist one transverse wave ...

  13. Regional-scale geomechanical impact assessment of underground coal gasification by coupled 3D thermo-mechanical modeling (United States)

    Otto, Christopher; Kempka, Thomas; Kapusta, Krzysztof; Stańczyk, Krzysztof


    Underground coal gasification (UCG) has the potential to increase the world-wide coal reserves by utilization of coal deposits not mineable by conventional methods. The UCG process involves combusting coal in situ to produce a high-calorific synthesis gas, which can be applied for electricity generation or chemical feedstock production. Apart from its high economic potentials, UCG may induce site-specific environmental impacts such as fault reactivation, induced seismicity and ground subsidence, potentially inducing groundwater pollution. Changes overburden hydraulic conductivity resulting from thermo-mechanical effects may introduce migration pathways for UCG contaminants. Due to the financial efforts associated with UCG field trials, numerical modeling has been an important methodology to study coupled processes considering UCG performance. Almost all previous UCG studies applied 1D or 2D models for that purpose, that do not allow to predict the performance of a commercial-scale UCG operation. Considering our previous findings, demonstrating that far-field models can be run at a higher computational efficiency by using temperature-independent thermo-mechanical parameters, representative coupled simulations based on complex 3D regional-scale models were employed in the present study. For that purpose, a coupled thermo-mechanical 3D model has been developed to investigate the environmental impacts of UCG based on a regional-scale of the Polish Wieczorek mine located in the Upper Silesian Coal Basin. The model size is 10 km × 10 km × 5 km with ten dipping lithological layers, a double fault and 25 UCG reactors. Six different numerical simulation scenarios were investigated, considering the transpressive stress regime present in that part of the Upper Silesian Coal Basin. Our simulation results demonstrate that the minimum distance between the UCG reactors is about the six-fold of the coal seam thickness to avoid hydraulic communication between the single UCG

  14. Controls of Hydraulic Wind Turbine


    Zhang Yin; Kong Xiangdong; Hao Li; Ai Chao


    In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system ca...

  15. Hydraulic rams, a consumer guide


    de Jong, P.


    This report is the result of a project, called "comparative tests on commercial and newly designed waterrams", carried out by the Delft University of Technology and the Foundation of Dutch Volunteers in Rwanda. The aim of this project was twofold: - to test new, and cheap (i.e. locally constructable and maintainable) types of hydraulic rams, - to compare several commercial types, in order to make a "consumers guide" for developing countries. At the Laboratory of Fluid Mechanics of the Delft U...

  16. General Assembly

    CERN Multimedia

    Staff Association


    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  17. The Rijke Tube–A Thermo-acoustic Device

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 8; Issue 1. The Rijke Tube – A Thermo-acoustic Device. Shekhar M Sarpotdar N Ananthkrishnan S D Sharma. General Article Volume 8 Issue 1 January 2003 pp 59-71. Fulltext. Click here to view fulltext PDF. Permanent link:

  18. Influence of thermo-mechanical processing on microstructure ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 38; Issue 1. Influence of thermo-mechanical processing on microstructure, mechanical properties and corrosion behavior of a new metastable -titanium biomedical alloy. Mohsin Talib Mohammed Zahid A Khan M Geetha Arshad N Siddiquee Prabhash Mishra. Volume ...

  19. Effect of Blend Ratio on Thermo-Physical and Sensory ...

    African Journals Online (AJOL)

    Thermo-physical properties of bread made from wheat, cassava and soybean blends were investigated. During investigation, the organoleptic acceptance of the composite wheat, cassava and soy bread was determined. All the blend ratios were exposed to equal heating rate during baking at set temperature of 230oC. The ...

  20. Strengthening of Aluminum Alloy 2219 by Thermo-mechanical Treatment (United States)

    Li, Xifeng; Lei, Kun; Song, Peng; Liu, Xinqin; Zhang, Fei; Li, Jianfei; Chen, Jun


    Strengthening of aluminum alloy 2219 by thermo-mechanical treatment has been compared with artificial aging. Three simple deformation modes including pre-stretching, compression, and rolling have been used in thermo-mechanical treatment. The tensile strength, elongation, fracture feature, and precipitated phase have been investigated. The results show that the strengthening effect of thermo-mechanical treatment is better than the one of artificial aging. Especially, the yield strength significantly increases with a small decrease of elongation. When the specimen is pre-stretched to 8.0%, the yield strength reaches 385.0 MPa and increases by 22.2% in comparison to the one obtained in aging condition. The maximum tensile strength of 472.4 MPa is achieved with 4.0% thickness reduction by compression. The fracture morphology reveals locally ductile and brittle failure mechanism, while the coarse second-phase particles distribute on the fracture surface. The intermediate phases θ″ or θ' orthogonally precipitate in the matrix after thermo-mechanical treatment. As compared to artificial aging, the cold plastic deformation increases distribution homogeneity and the volume fraction of θ'' or θ' precipitates. These result in a better strengthening effect.

  1. Thermo-feasibility optimization of multiple feed rate multicomponent ...

    African Journals Online (AJOL)

    Simulation was of a multicomponent distisllation system was carried out and the stage-by-stage system exergy analysis was carried out. Multiple feed rate base cases sensitivity results gave the most adequate and feasible thermo-exergetic rate profiles, efficiency ranges and destruction at the depropanizer and debutanizer.

  2. Thermo-chemical sequestration of naphthalene using Borassus ...

    African Journals Online (AJOL)



    Nov 30, 2016 ... characterization thoroughly suggests the efficacy of B. flabellifer shell to efficiently sequester naphthalene from aqueous solution. Key words: Naphthalene, Borassus flabellifer, thermo-chemical, activated carbon, adsorption. ..... Nickel treatment in the Electroplating effluent with Activated carbon prepared ...

  3. Probabilistic thermo-chemical analysis of a pultruded composite rod

    NARCIS (Netherlands)

    Baran, Ismet; Tutum, Cem C.; Hattel, Jesper H.


    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation

  4. Ruthenium (II)-bipyridyl with extended -system: Improved thermo ...

    Indian Academy of Sciences (India)

    Ruthenium(II)- bipyridyl with extended -system: Improved thermo-stable sensitizer for efficient and long-term durable dye sensitized solar cells ... The Density Functional Theory (DFT) and Time-Dependent DFT excited state calculations of the new sensitizer show that the first three HOMOs have t2g character with sizeable ...

  5. Thermo-aerobic bacteria from geothermal springs in Saudi Arabia ...

    African Journals Online (AJOL)

    Fifteen isolates of thermo-aerobic bacteria were found. Bacillus cereus, B. licheniformis, B. thermoamylovorans, Pseudomonas sp., Pseudomonas aeruginosa and Enterobacter sp. were dominant in hot springs. Genetic relatedness indicated that eleven Bacillus spp. grouped together formed several clusters within one main ...

  6. Moroccan rock phosphate solubilization during a thermo-anaerobic ...

    African Journals Online (AJOL)

    In order to investigate the presence of thermo-tolerant rock phosphate (RP) solubilizing anaerobic microbes during the fermentation process, we used grassland as sole organic substrate to evaluate the RP solubilization process under anaerobic thermophilic conditions. The result shows a significant decrease of pH from ...

  7. Computing in Hydraulic Engineering Education (United States)

    Duan, J. G.


    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  8. Data Collecting and Processing System and Hydraulic Control System of Hydraulic Support Model Test

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU


    Full Text Available Hydraulic support is an important equipment of mechanization caving coal in modernization coal mine. Hydraulic support must pass national strength test before it quantity production and use. Hydraulic support model test based on similarity theory is a new effective hydraulic support design and test method. The test information such as displacement, stress, strain and so on can be generalized to hydraulic support prototype, which can prompt hydraulic support design. In order to satisfy the need of hydraulic support model test, the data collecting and processing system of hydraulic support model test was established, relative software was programmed, the tress computation software of practical measurement data of hydraulic support model test was programmed, which provide practical and convenient research method for hydraulic support model test. By the data collecting and processing system software of hydraulic support model test and related software, user can realize the function such as data collecting, real time display, saving, analysis and processing to strain signals. The construction of load equipment and hydraulic control system of hydraulic support model test provides a practical and convenient research way for hydraulic support model test.

  9. Hydraulic Redistribution: A Modeling Perspective (United States)

    Daly, E.; Verma, P.; Loheide, S. P., III


    Roots play a key role in the soil water balance. They extract and transport water for transpiration, which usually represents the most important soil water loss in vegetated areas, and can redistribute soil water, thereby increasing transpiration rates and enhancing root nutrient uptake. We present here a two-dimensional model capable of describing two key aspects of root water uptake: root water compensation and hydraulic redistribution. Root water compensation is the ability of root systems to respond to the reduction of water uptake from areas of the soil with low soil water potential by increasing the water uptake from the roots in soil parts with higher water potential. Hydraulic redistribution is a passive transfer of water through the root system from areas of the soil with greater water potential to areas with lower water potential. Both mechanisms are driven by gradients of water potential in the soil and the roots. The inclusion of root water compensation and hydraulic redistribution in models can be achieved by describing root water uptake as a function of the difference in water potential between soil and root xylem. We use a model comprising the Richards equation for the water flow in variably saturated soils and the Darcy's equation for the water flow in the xylem. The two equations are coupled via a sink term, which is assumed to be proportional to the difference between soil and xylem water potentials. The model is applied in two case studies to describe vertical and horizontal hydraulic redistribution and the interaction between vegetation with different root depths. In the case of horizontal redistribution, the model is used to reproduce the fluxes of water across the root system of a tree subjected to uneven irrigation. This example can be extended to situations when only part of the root system has access to water, such as vegetation near creeks, trees at the edge of forests, and street trees in urban areas. The second case is inspired by recent

  10. Thermo-mechanical induced deformation simulation studies for metal gaskets for UHV application (United States)

    Kumar, B. Ramesh; Purohit, S.


    In vacuum technology, metal gasket seals are extensively employed to achieve a UHV with reduced contamination considering the pressure and temperature variations as it performs a static seal between two stationary members of a mechanical assembly. The optimum sealing is attained over the balancing of the forces effective, which are function of temperature, governs the surface deformation for the metal gasket seal follows into degradation in the leak tightness at elevated temperatures. The prime component exerting the most deformation force over metal gasket seals, gasket seating force is a constant value generated by the bolting of the stationary members of a mechanical assembly. The paper address to metal gasket seals, copper and aluminum, behavior under thermo-mechanical load is analyzed (simulation), with ANSYS platform, workbench. The major concern is to investigate the typical deformation behavior as a function of thermal variation, baking/ cooling. For copper and Aluminum gasket seals, 16mm to 250mm internal diameter, exposed to pre-established gasket seating force under wide temperatures range. The deformation, average and the deformation range, observed to move in a very specific manner and runs to a wide range for a given material and size. The data reported here deserves to be substantial enough to establish the prediction of thermal behavior of metal gasket seals for standardization.

  11. Experimental Study of Hydraulic Control Rod Drive Mechanism for Passive IN-core Cooling System of Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Kim, In Guk; Kim, Kyung Mo; Jeong, Yeong Shin; Bang, In Cheol [KAERI, Daejeon (Korea, Republic of)


    CAREM 25 (27 MWe safety systems using hydraulic control rod drives (CRD) studied critical issues that were rod drops with interrupted flow [3]. Hydraulic control rod drive suggested fast shutdown condition using a large gap between piston and cylinder in order to fast drop of neutron absorbing rods. A Passive IN-core Cooling system (PINCs) was suggested for safety enhancement of pressurized water reactors (PWR), small modular reactor (SMR), sodium fast reactor (SFR) in UNIST. PINCs consist of hydraulic control rod drive mechanism (Hydraulic CRDM) and hybrid control rod assembly with heat pipe combined with control rod. The schematic diagram of the hydraulic CRDM for PINCs is shown in Fig. 1. The experimental results show the steady state and transient behavior of the upper cylinder at a low pressure and low temperature. The influence of the working fluid temperature and cylinder mass are investigated. Finally, the heat removal between evaporator section and condenser section is compared with or without the hybrid control rod. Heat removal test of the hybrid heat pipe with hydraulic CRDM system showed the heat transfer coefficient of the bundle hybrid control rod and its effect on evaporator pool. The preliminary test both hydraulic CRDM and heat removal system was conducted, which showed the possibility of the in-core hydraulic drive system for application of PINCs.

  12. A Hydraulic Stress Measurement System for Deep Borehole Investigations (United States)

    Ask, Maria; Ask, Daniel; Cornet, Francois; Nilsson, Tommy


    Luleå University of Technology (LTU) is developing and building a wire-line system for hydraulic rock stress measurements, with funding from the Swedish Research Council and Luleå University of Technology. In this project, LTU is collaborating with University of Strasbourg and Geosigma AB. The stress state influences drilling and drillability, as well as rock mass stability and permeability. Therefore, knowledge about the state of in-situ stress (stress magnitudes, and orientations) and its spatial variation with depth is essential for many underground rock engineering projects, for example for underground storage of hazardous material (e.g. nuclear waste, carbon dioxide), deep geothermal exploration, and underground infrastructure (e.g. tunneling, hydropower dams). The system is designed to conduct hydraulic stress testing in slim boreholes. There are three types of test methods: (1) hydraulic fracturing, (2) sleeve fracturing and (3) hydraulic testing of pre-existing fractures. These are robust methods for determining in situ stresses from boreholes. Integration of the three methods allows determination of the three-dimensional stress tensor and its spatial variation with depth in a scientific unambiguously way. The stress system is composed of a downhole and a surface unit. The downhole unit consists of hydraulic fracturing equipment (straddle packers and downhole imaging tool) and their associated data acquisition systems. The testing system is state of the art in several aspects including: (1) Large depth range (3 km), (2) Ability to test three borehole dimensions (N=76 mm, H=96 mm, and P=122 mm), (3) Resistivity imager maps the orientation of tested fracture; (4) Highly stiff and resistive to corrosion downhole testing equipment; and (5) Very detailed control on the injection flow rate and cumulative volume is obtained by a hydraulic injection pump with variable piston rate, and a highly sensitive flow-meter. At EGU General Assembly 2017, we would like to

  13. Assembling consumption

    DEFF Research Database (Denmark)

    Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies...... the investigative tools offered by assemblage theory, actor-network theory and non-representational theory. Clear theoretical explanation and methodological innovation, alongside empirical applications of these emerging frameworks will offer readers new and refreshing perspectives on consumer culture and market...... societies. This is an essential reading for both seasoned scholars and advanced students of markets, economies and social forms of consumption....

  14. General Assembly

    CERN Multimedia

    Staff Association


    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : 1- Adoption de l’ordre du jour. 2- Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. 3- Présentation et approbation du rapport d’activités 2014. 4- Présentation et approbation du rapport financier 2014. 5- Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. 6- Programme 2015. 7- Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. 8- Pas de modifications aux Statuts de l'Association du personnel proposée. 9- Élections des membres de la Commission é...

  15. General assembly

    CERN Multimedia

    Staff Association


    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. Présentation et approbation du rapport d’activités 2014. Présentation et approbation du rapport financier 2014. Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. Programme 2015. Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. Pas de modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commission électorale. &am...

  16. General Assembly

    CERN Multimedia

    Staff Association


    Mardi 5 avril à 11 h 00 BE Auditorium Meyrin (6-2-024) Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 mai 2015. Présentation et approbation du rapport d’activités 2015. Présentation et approbation du rapport financier 2015. Présentation et approbation du rapport des vérificateurs aux comptes pour 2015. Programme de travail 2016. Présentation et approbation du projet de budget 2016 Approbation du taux de cotisation pour 2017. Modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commissio...

  17. General Assembly

    CERN Multimedia

    Staff Association


    Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 avril 2016. Présentation et approbation du rapport d’activités 2016. Présentation et approbation du rapport financier 2016. Présentation et approbation du rapport des vérificateurs aux comptes pour 2016. Programme de travail 2017. Présentation et approbation du projet de budget 2017 Approbation du taux de cotisation pour 2018. Modifications aux Statuts de l'Association du personnel proposées. Élections des membres de la Commission électorale. Élections des vérifica...

  18. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin T [ORNL; Hamilton, Steven P [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Pugmire, Dave [ORNL; Dilts, Gary [Los Alamos National Laboratory (LANL); Banfield, James E [ORNL


    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  19. Rapid Hydraulic Assessment for Stream Restoration (United States)


    governing equations are often used in conjunction with each other to define the flow characteristics of a given hydraulic phenomenon. The energy equation...Approved for public release; distribution is unlimited. ERDC TN-EMRRP-SR-48 February 2016 Rapid Hydraulic Assessment for Stream Restoration...account the hydraulic conditions of the stream being restored. This is true whether the project involves a few feet of bank stabilization or several

  20. Hydraulics of IDEal Drip Irrigation Systems


    Thompson, Evan J


    The hydraulics of IDEal drip irrigation system components were analyzed under controlled laboratory conditions and the results can be applied to the design of IDEal systems. The hydraulic loss coefficient for the lateral-submain connector valves was determined based on laboratory measurements. It was found that the hydraulic loss due to friction in the lay-flat laterals can be accurately estimated with standard friction loss equations using a smaller effective diameter based on the wall thi...

  1. Database for hydraulically conductive fractures

    Energy Technology Data Exchange (ETDEWEB)

    Tammisto, E.; Palmen, J.; Ahokas, H. (Poeyry Environment Oy, Vantaa (Finland))


    Posiva flow logging (PFL) with a 0.5 m test interval and made in 10 cm steps can be used for the determination of the depth of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging, PFL provides possibilities to detect individual conductive fractures. In this report, the results of PFL are combined with fracture data on drillholes OL-KR1 - OL-KR40, OL-KR15B - KR20B, OL-KR22B - KR23B, OL-KR25B, OL-KR27B, OL-KR29B, OL-KR31B, OLKR33B, OL-KR37B and OL-KR39B - KR40B and pilot holes OL-PH1 and ONK-PH2 - ONK-PH7. The conductive fractures were first recognised from PFL data and digital drillhole images and then the fractures from the core logging that correspond to the ones picked from the digital drillhole images were identified. The conductive fractures were primarily recognised in the images based on the openness of fractures or a visible flow in the image. In most of the cases, no tails of flow were seen in the image. In these cases the conductive fractures were recognised in the image based on the openness of fractures and a matching depth. On the basis of the results hydraulically conductive fractures/zones could in most cases be distinguished in the drillhole wall images. An important phase in the work is the calibration of the depth of the image and flow logging with the sample length. Hydraulic conductivity is clearly higher in the upper part of the bedrock in the depth range 0-150 m below sea level than deeper in the bedrock. The frequency of hydraulically conductive fractures (T > 10-10-10-9 m2/s) in depth range 0-150 m varies between 0.06 and 0.78 fractures/metre of sample length. Deeper in the rock conductive fractures are less frequent, but often occur in groups of a few fractures. About 10% of the conductive fractures are within HZ-structures and 6% within BFZ-structures. 3% of the conductive fractures are within HZ- and BFZ-structures. (orig.)

  2. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole


    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...... concepts, ranging from a one-to-one copy of the electrical drive (electrical drives replaced by hydraulic dittos), to floating suspension systems mounted on hydraulic cylinders. Rough calculations of size and consequences of the different systems are presented ending up with the final concept for further...

  3. Sensitivity analysis for thermo-hydraulics model of a Westinghouse type PWR. Verification of the simulation results

    Energy Technology Data Exchange (ETDEWEB)

    Farahani, Aref Zarnooshe [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Nuclear Engineering, Science and Research Branch; Yousefpour, Faramarz [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of); Hoseyni, Seyed Mohsen [Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Dept. of Basic Sciences; Islamic Azad Univ., Tehran (Iran, Islamic Republic of). Young Researchers and Elite Club


    Development of a steady-state model is the first step in nuclear safety analysis. The developed model should be qualitatively analyzed first, then a sensitivity analysis is required on the number of nodes for models of different systems to ensure the reliability of the obtained results. This contribution aims to show through sensitivity analysis, the independence of modeling results to the number of nodes in a qualified MELCOR model for a Westinghouse type pressurized power plant. For this purpose, and to minimize user error, the nuclear analysis software, SNAP, is employed. Different sensitivity cases were developed by modification of the existing model and refinement of the nodes for the simulated systems including steam generators, reactor coolant system and also reactor core and its connecting flow paths. By comparing the obtained results to those of the original model no significant difference is observed which is indicative of the model independence to the finer nodes.

  4. Thermo-Hydraulic Analysis of Heat Storage Filled with the Ceramic Bricks Dedicated to the Solar Air Heating System

    National Research Council Canada - National Science Library

    Magdalena Nemś; Artur Nemś; Jacek Kasperski; Michał Pomorski


    ... to climate conditions in Poland. The system’s working medium is air. The investigated temperature ranges and air volume flow rates in the ceramic bed were dictated by the planned integration with a solar air heater...


    Directory of Open Access Journals (Sweden)

    Kristina GORSETA


    Full Text Available Numerous positive properties of glass ionomer cements including biocompatibility, bioactivity, releasing of fluoride and good adhesion to hard dental tissue even under wet conditions and easy of handling are reasons for their wide use in paediatric and restorative dentistry. Their biggest drawbacks are the weaker mechanical properties. An important step forward in improving GIC’s features is thermo-curing with the dental polymerization unit during setting of the material. Due to their slow setting characteristics the GIC is vulnerable to early exposure to moisture. After thermo curing, cements retain all the benefits of GIC with developed better mechanical properties, improved marginal adaptation, increased microhardness and shear bond strength. Adding external energy through thermocuring or ultrasound during the setting of conventional GIC is crucial to achieve faster and better initial mechanical properties. Further clinical studies are needed to confirm these findings.

  6. Thermo-fluid behaviour of periodic cellular metals

    CERN Document Server

    Lu, Tian Jian; Wen, Ting


    Thermo-Fluid Behaviour of Periodic Cellular Metals introduces the study of coupled thermo-fluid behaviour of cellular metals with periodic structure in response to thermal loads, which is an interdisciplinary research area that requires a concurrent-engineering approach.  The book, for the first time, systematically adopts experimental, numerical, and analytical approaches, presents the fluid flow and heat transfer in periodic cellular metals under forced convection conditions, aiming to establish structure-property relationships for tailoring material structures to achieve properties and performance levels that are customized for defined multifunctional applications. The book, as a textbook and reference book, is intended for both academic and industrial people, including graduate students, researchers and engineers. Dr. Tian Jian Lu is a professor at the School of Aerospace, Xi’an Jiaotong University, Xi’an, China. Dr. Feng Xu is a professor at the Key Laboratory of Biomedical Information Engineering o...

  7. Thermo-Elastic Finite Element Analyses of Annular Nuclear Fuels (United States)

    Kwon, Y. D.; Kwon, S. B.; Rho, K. T.; Kim, M. S.; Song, H. J.

    In this study, we tried to examine the pros and cons of the annular type of fuel concerning mainly with the temperatures and stresses of pellet and cladding. The inner and outer gaps between pellet and cladding may play an important role on the temperature distribution and stress distribution of fuel system. Thus, we tested several inner and outer gap cases, and we evaluated the effect of gaps on fuel systems. We conducted thermo-elastic-plastic-creep analyses using an in-house thermo-elastic-plastic-creep finite element program that adopted the 'effective-stress-function' algorithm. Most analyses were conducted until the gaps disappeared; however, certain analyses lasted for 1582 days, after which the fuels were replaced. Further study on the optimal gaps sizes for annular nuclear fuel systems is still required.

  8. Thermo-responsive poly(ionic liquid) hydrogel microfluidic valves


    Tudor, Alexandru; Saez, Janire; Florea, Larisa; Benito-Lopez, Fernando; Diamond, Dermot


    Several phosphonium ionic liquid monomers have been shown to possess a lower critical solution temperature [1][2]. This property was kept when the monomers were used to synthesize both linear and crosslinked polymers, thus making them suitable materials for the synthesis of stimuli-responsive hydrogels [2]. Herein, we present the synthesis of a thermo-responsive tributylhexyl phosphonium 3-sulfopropyl acrylate (PSPA) crosslinked PIL, followed by its inclusion in a microfluidic device to be us...


    Directory of Open Access Journals (Sweden)

    Y. V. Mastinovky


    Full Text Available Modern electrical machines and devices, power generation facilities operate under complex unsteady magnetothermoelastic loads. Development of new insulating and damping coatings structures, shielding used in various electrical equipment requires new mathematical models and calculation methods for engineering practice. In this paper we consider a two-layer structure consisting of two piecewise-homogeneous non-ferromagnetic materials, one or both of which are electro-conductive. Volume forces action caused by the electromagnetic field and thermo-mechanical impact on the structure boundary is simulated. The original system of equations to solve the problem under study includes Maxwell equations and the generalized Ohm’s law for the determination of the electromagnetic field, the Duhamel-Neumann law – for the elastic field and the generalized Fourier heat equation – for the temperature field. These equations form a closed system and are the fundamental equations of magneto-thermo-elasticity. It is assumed that the speed of heat propagation is finite, and the magnetic field is constant. Assumptions are introduced to simplify the coupled system of thermo-elastic equations. The problem is solved numerically in a one-dimensional formulation applying the method of characteristics. Coupling conditions and method of calculation of unknown quantities in the nodal points of the grid area at the interface between layers are indicated. The proposed method of numerical and analytical solutions of problems under consideration allows, without making significant changes in the design scheme, to conduct numerical experiments. Setting up various geometric and thermo-physical parameters, it is possible to identify areas prone to damages under specified loads

  10. Thermo-Optical Properties of Colloids Enhanced by Gold Nanoparticles (United States)

    Aleali, Hoda; Sarkhosh, Leila; Eslamifar, Mina; Karimzadeh, Rouhollah; Mansour, Nastaran


    This work presents a study on the thermo-optical properties of colloidal gold nanoparticles (AuNPs) under a low power laser irradiation at 532 nm. Samples of various gold volume fractions, ranging from 2.5×10-4 to 19.5×10-4%, are synthesized by nanosecond pulsed laser ablation of a pure gold plate in the distilled water. The formation of the AuNPs has been evidenced by optical absorption spectra and transmission electron microscopy. We investigate the effect of the gold nanoparticle concentration on thermo-optical properties of the colloids using the Z-scan technique. The nonlinear optical measurements exhibit a very large nonlinear refraction close to the surface plasmon resonance frequency of the nanoparticles. Our results reveal that the heat diffusion in the colloids is due to nonlocal thermal process. As the gold concentration increases, the temperature change within and around gold nanoparticles greatly enlarges the thermo-optic and thermal nonlinear refractive index coefficients of the samples. This work suggests that thermal nonlinear refraction will play an important role in development of photonic applications involving metal nanoparticles colloids.

  11. Thermo-optical modulation of ultrasonic surface waves for NDE. (United States)

    Yan, Zhongyu; Nagy, Peter B


    The well-known thermo-elastic effect of laser irradiation can be exploited to produce strong localized stresses when an expanded, long pulse, low-intensity laser beam is used to irradiate the specimen. These stresses will produce a parametric modulation of the received ultrasonic signals, that is somewhat similar to the acousto-elastic effect often used in nonlinear ultrasonic studies. It is shown in this paper that otherwise hidden small cracks in fatigue-damaged aluminum and titanium specimens can be readily detected by exploiting this optically induced thermo-elastic modulation during ultrasonic surface wave inspection since they are susceptible to crack closure and therefore exhibit strong parametric modulation. The temporal and spatial variations of the ultrasonic signals due to laser irradiation were evaluated numerically and experimentally. Based on these results, the direct temperature modulation of the ultrasonic velocity can be separated from the thermo-elastic stress modulation present only in cracked specimens. It was found that this method can be used to selectively increase the sensitivity of ultrasonic flaw detection to small fatigue cracks by more than one order of magnitude.


    Directory of Open Access Journals (Sweden)

    Teodor Eugen Man


    Full Text Available This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seeing that this constructive solution is more robust, reliable and with improved energyperformance versus the laboratory prototype. The experimental research which was made at 1:1 scale proved theirgood function over time. Another example is the hydraulic hammer (hydraulic pump that uses low-head energy topump water, with a global efficiency of about 10 - 50%. Currently, the new situation of private ownership of landprovides conditions for new pumping microstations to be made where irrigation is necessary and optimal hydrauliclocations exist.

  13. Thermo-hydro-mechanical behaviour of Boom clay; Comportement thermo-hydro-mecanique de l'argile de Boom

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T


    This thesis studied the thermo-hydro-mechanical properties of Boom clay, which was chosen to be the host material for the radioactive waste disposal in Mol, Belgium. Firstly, the research was concentrated on the soil water retention properties and the hydro-mechanical coupling by carrying out axial compression tests with suction monitoring. The results obtained permitted elaborating a rational experimental procedure for triaxial tests. Secondly, the systems for high pressure triaxial test at controlled temperature were developed to carry out compression, heating, and shearing tests at different temperatures. The obtained results showed clear visco-elasto-plastic behaviour of the soil. This behaviour was modelled by extending the thermo-elasto-plastic model of Cui et al. (2000) to creep effect. (author)

  14. Hydraulic sealing due to pressure solution contact zone growth in siliciclastic rock fractures (United States)

    Lang, P. S.; Paluszny, A.; Zimmerman, R. W.


    Thermo-hydro-mechanical-chemical simulations at the pore scale are conducted to study the hydraulic sealing of siliciclastic rock fractures as contact zones grow driven by pressure dissolution. The evolving fluid-saturated three-dimensional pore space of the fracture results from the elastic contact between self-affine, randomly rough surfaces in response to the effective confining pressure. A diffusion-reaction equation controls pressure solution over contact zones as a function of their emergent geometry and stress variations. Results show that three coupled processes govern the evolution of the fracture's hydraulic properties: (1) the dissolution-driven convergence of the opposing fracture walls acts to compact the pore space; (2) the growth of contact zones reduces the elastic compression of the pore space; and (3) the growth of contact zones leads to flow channeling and the presence of stagnant zones in the flow field. The dominant early time compaction mechanism is the elastic compression of the fracture void space, but this eventually becomes overshadowed by the irreversible process of pressure dissolution. Growing contact zones isolate void space and cause an increasing disproportion between average and hydraulic aperture. This results in the loss of hydraulic conductivity when the mean aperture is a third of its initial value and the contact ratio approaches the characteristic value of one half. Convergence rates depend on small-wavelength roughness initially and on long-wavelength roughness in the late time. The assumption of a characteristic roughness length scale, therefore, leads to a characteristic time scale with an underestimation of dissolution rates before and an overestimation thereafter.

  15. Hydraulic fracturing with distinct element method

    NARCIS (Netherlands)

    Pruiksma, J.P.; Bezuijen, A.


    In this report, hydraulic fracturing is investigated using the distinct element code PFC2D from Itasca. Special routines were written to be able to model hydraulic fracturing. These include adding fluid flow to PFC2D and updating the fluid flow domains when fractures appear. A brief description of

  16. Determination of saturated and unsaturated hydraulic conductivity ...

    African Journals Online (AJOL)

    The estimation of hydraulic conductivity indicates how fluids flow through a substance and thus determine the water balance in the soil profile. In determining the saturated and unsaturated hydraulic conductivity of soil, five plots of 5.0 x 4.0 m were prepared with a PVC access tube installed in each plot. The plots were ...

  17. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard


    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  18. Hydraulic fracturing near domestic groundwater wells. (United States)

    Jasechko, Scott; Perrone, Debra


    Hydraulic fracturing operations are generating considerable discussion about their potential to contaminate aquifers tapped by domestic groundwater wells. Groundwater wells located closer to hydraulically fractured wells are more likely to be exposed to contaminants derived from on-site spills and well-bore failures, should they occur. Nevertheless, the proximity of hydraulic fracturing operations to domestic groundwater wells is unknown. Here, we analyze the distance between domestic groundwater wells (public and self-supply) constructed between 2000 and 2014 and hydraulically fractured wells stimulated in 2014 in 14 states. We show that 37% of all recorded hydraulically fractured wells stimulated during 2014 exist within 2 km of at least one recently constructed (2000-2014) domestic groundwater well. Furthermore, we identify 11 counties where most ([Formula: see text]50%) recorded domestic groundwater wells exist within 2 km of one or more hydraulically fractured wells stimulated during 2014. Our findings suggest that understanding how frequently hydraulic fracturing operations impact groundwater quality is of widespread importance to drinking water safety in many areas where hydraulic fracturing is common. We also identify 236 counties where most recorded domestic groundwater wells exist within 2 km of one or more recorded oil and gas wells producing during 2014. Our analysis identifies hotspots where both conventional and unconventional oil and gas wells frequently exist near recorded domestic groundwater wells that may be targeted for further water-quality monitoring.

  19. Development of MCATHAS system of coupled neutronics/thermal-hydraulics in supercritical water reactor

    Energy Technology Data Exchange (ETDEWEB)

    An, P.; Yao, D. [Science and Tech. on Reactor System Design Tech. Laboratory, Chengdu (China)


    The MCATHAS system of coupled neutronics/Thermal-hydraulics in supercritical water reactor is described, which considers the mutual influence between the obvious axial and radial evolution of material temperature, water density and the relative power distribution. This system can obtain the main neutronics and thermal parameters along with burn-up. MCATHAS system is parallel processing coupling. The MCNP code is used for neutronics analysis with the continuous cross section library at any temperature calculated by interpolation algorithm; The sub-channel code ATHAS is for thermal-hydraulics analysis and the ORIGEN Code for burn-up calculation. We validate the code with the assembly of HPLWR and analyze the assembly SCLWR- H. (author)

  20. Deterministic and Monte Carlo transport models with thermal-hydraulic feedback

    Energy Technology Data Exchange (ETDEWEB)

    Seubert, A.; Langenbuch, S.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)


    This paper gives an overview of recent developments concerning deterministic transport and Monte Carlo methods with thermal-hydraulic feedback. The timedependent 3D discrete ordinates transport code TORT-TD allows pin-by-pin analyses of transients using few energy groups and anisotropic scattering by solving the timedependent transport equation using the unconditionally stable implicit method. To account for thermal-hydraulic feedback, TORT-TD has been coupled with the system code ATHLET. Applications to, e.g., a control rod ejection in a 2 x 2 PWR fuel assembly arrangement demonstrate the applicability of the coupled code TORT-TD/ATHLET for test cases. For Monte Carlo steady-state calculations with nuclear point data and thermalhydraulic feedback, MCNP has been prepared to incorporate thermal-hydraulic parameters. As test case has been chosen the uncontrolled steady state of the 2 x 2 PWR fuel assembly arrangement for which the thermal-hydraulic parameter distribution has been obtained from a preceding coupled TORT-TD/ATHLET analysis. The result demonstrates the applicability of MCNP to problems with spatial distributions of thermal-fluiddynamic parameters. The comparison with MCNP results confirms that the accuracy of deterministic transport calculations with pin-wise homogenised few-group cross sections is comparable to Monte Carlo simulations. The presented cases are considered as a pre-stage of performing calculations of larger configurations like a quarter core which is in preparation. (orig.)

  1. Issues of a Computer-Aided Design of Hydraulic Jacks (United States)

    Averchenkov, V. I.; Averchenkov, A. V.; Kolyakinand, V. V.; Orekhov, O. D.


    The article deals with the issues of a computer-aided design of hydraulic equipment, namely hydraulic jacks. Design principles of the hydraulic jack CAD system are described. In addition, the possibilities for the system improvement and expansion are considered.

  2. Investigation of Surface Pre-Treatment Methods for Wafer-Level Cu-Cu Thermo-Compression Bonding

    Directory of Open Access Journals (Sweden)

    Koki Tanaka


    Full Text Available To increase the yield of the wafer-level Cu-Cu thermo-compression bonding method, certain surface pre-treatment methods for Cu are studied which can be exposed to the atmosphere before bonding. To inhibit re-oxidation under atmospheric conditions, the reduced pure Cu surface is treated by H2/Ar plasma, NH3 plasma and thiol solution, respectively, and is covered by Cu hydride, Cu nitride and a self-assembled monolayer (SAM accordingly. A pair of the treated wafers is then bonded by the thermo-compression bonding method, and evaluated by the tensile test. Results show that the bond strengths of the wafers treated by NH3 plasma and SAM are not sufficient due to the remaining surface protection layers such as Cu nitride and SAMs resulting from the pre-treatment. In contrast, the H2/Ar plasma–treated wafer showed the same strength as the one with formic acid vapor treatment, even when exposed to the atmosphere for 30 min. In the thermal desorption spectroscopy (TDS measurement of the H2/Ar plasma–treated Cu sample, the total number of the detected H2 was 3.1 times more than the citric acid–treated one. Results of the TDS measurement indicate that the modified Cu surface is terminated by chemisorbed hydrogen atoms, which leads to high bonding strength.

  3. Evaluation of hydraulic properties in fractured rockmass

    Energy Technology Data Exchange (ETDEWEB)

    Lee, E. Y.; Jang, G. M. [Korea Nuclear Environment Technology Institute, Taejon (Korea, Republic of)


    Borehole packer test and fracture survey using borehole acoustic scanning method was performed in order to evaluate hydraulic characteristics of Tuff distributed in northern Yeosu area. Total of 303 fractures were detected and then orientation, aperture size of each fracture are analyzed. Only 12 % of detected fractures were identified as open fractures and others were filled with minerals such as calcite. This indicates that the hydraulic property of rockmass is influenced by fillings as well as aperture size. Mean of hydraulic conductivity of rockmass based on stochastic continuum theory was 5x 10{sup -9}m/s and it was coincident with harmonic mean. Anisotropy of hydraulic conductivity was analyzed by fracture network modeling interpretation. The result showed that horizontal and vertical components conductivity values were nearly same, therefore it might be concluded that the rockmass was hydraulically isotropic.

  4. HANARO thermal hydraulic accident analysis

    Energy Technology Data Exchange (ETDEWEB)

    Park, Chul; Kim, Heon Il; Lee, Bo Yook; Lee, Sang Yong [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    For the safety assessment of HANARO, accident analyses for the anticipated operational transients, accident scenarios and limiting accident scenarios were conducted. To do this, the commercial nuclear reactor system code. RELAP5/MOD2 was modified to RELAP5/KMRR; the thermal hydraulic correlations and the heat exchanger model was changed to incorporate HANARO characteristics. This report summarizes the RELAP/KMRR calculation results and the subchannel analyses results based on the RELAP/KMRR results. During the calculation, major concern was placed on the integrity of the fuel. For all the scenarios, the important accident analysis parameters, i.e., fuel centerline temperatures and the minimum critical heat flux ratio(MCHFR), satisfied safe design limits. It was verified, therefore, that the HANARO was safely designed. 21 tabs., 89 figs., 39 refs. (Author) .new.

  5. Autoerotic fatalities with power hydraulics. (United States)

    O'Halloran, R L; Dietz, P E


    We report two cases in which men used the hydraulic shovels on tractors to suspend themselves for masochistic sexual stimulation. One man developed a romantic attachment to a tractor, even giving it a name and writing poetry in its honor. He died accidentally while intentionally asphyxiating himself through suspension by the neck, leaving clues that he enjoyed perceptual distortions during asphyxiation. The other man engaged in sexual bondage and transvestic fetishism, but did not purposely asphyxiate himself. He died when accidentally pinned to the ground under a shovel after intentionally suspending himself by the ankles. We compare these cases with other autoerotic fatalities involving perceptual distortion, cross-dressing, machinery, and postural asphyxiation by chest compression.

  6. On hydraulics of capillary tubes

    Directory of Open Access Journals (Sweden)

    N.G. Aloyan


    Full Text Available The article considers the laws of motion of water in the capillary tubes, taken as a model for flowing well, on the analogical net count device. For capillary tube the lower limit value of flow rate is empirically determined above which the total hydraulic resistance of the capillary is practically constant. The specificity of the phenomenon is that the regime of motion, by a Reynolds number, for a given flow rate still remains laminar. This circumstance can perplex the specialists, so the author invites them to the scientific debate on the subject of study. Obviously, to identify the resulting puzzle it is necessary to conduct a series of experiments using capillaries of different lengths and diameters and with different values of overpressure. The article states that in tubes with very small diameter the preliminary magnitude of capillary rise of water in the presence of flow plays no role and can be neglected.

  7. What Controls Thermo-osmosis? Molecular Simulations Show the Critical Role of Interfacial Hydrodynamics (United States)

    Fu, Li; Merabia, Samy; Joly, Laurent


    Thermo-osmotic and related thermophoretic phenomena can be found in many situations from biology to colloid science, but the underlying molecular mechanisms remain largely unexplored. Using molecular dynamics simulations, we measure the thermo-osmosis coefficient by both mechanocaloric and thermo-osmotic routes, for different solid-liquid interfacial energies. The simulations reveal, in particular, the crucial role of nanoscale interfacial hydrodynamics. For nonwetting surfaces, thermo-osmotic transport is largely amplified by hydrodynamic slip at the interface. For wetting surfaces, the position of the hydrodynamic shear plane plays a key role in determining the amplitude and sign of the thermo-osmosis coefficient. Finally, we measure a giant thermo-osmotic response of the water-graphene interface, which we relate to the very low interfacial friction displayed by this system. These results open new perspectives for the design of efficient functional interfaces for, e.g., waste-heat harvesting.

  8. A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator


    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan


    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the pro...

  9. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine


    Ye HUANG; JiBao QI


    The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors ar...

  10. Coupled neutronics - thermal-hydraulics programs for SCWRS

    Energy Technology Data Exchange (ETDEWEB)

    Reiss, T. [Institute of Nuclear Techniques, Budapest University of Technology and Economics, Muegyetem rkp. 9., 1111 Budapest (Hungary)


    The Supercritical Water Cooled Reactor (SCWR) was chosen as one of the Generation IV reactors by GIF. At the moment, a number of concepts - thermal as well as fast ones - exist. The reference parameters for a thermal SCWR have been taken from the European High Performance Light Water Reactor (HPLWR). Since the pressure is higher than the critical pressure (22.1 MPa) there is no change in the phase of the water in the core. On the other hand, due to the significant changes in the physical properties of water at supercritical pressure, the system is susceptible to local temperature, density and power oscillations. This inclination is increased by the pseudo-critical transformation of the water used as coolant. Thus, for modelling a system of this type coupled neutronics - thermal-hydraulics programs are required. Such a program system has been developed with the following main features: great modularity which allows for easy modifications, thus several SCWR concepts can be studied; detailed assembly calculations (with MCNP) and full-core analysis (with SCALE) are supported; the differential equations of xenon poisoning are implemented to study xenon oscillations. The program system was used to examine the assembly of the HPLWR, to design the assembly and the core of the Simplified Supercritical Water Cooled Reactor (SSCWR) and to model xenon oscillations in SCWRs. (authors)

  11. Printable Hydraulics: A Method for Fabricating Robots by 3D Co-Printing Solids and Liquids


    MacCurdy, Robert; Katzschmann, Robert Kevin; Kim, Youbin; Rus, Daniela L.


    This paper introduces a novel technique for fabricating functional robots using 3D printers. Simultaneously depositing photopolymers and a non-curing liquid allows complex, pre-filled fluidic channels to be fabricated. This new printing capability enables complex hydraulically actuated robots and robotic components to be automatically built, with no assembly required. The technique is showcased by printing linear bellows actuators, gear pumps, soft grippers and a hexapod robot, using a commer...

  12. Independent Orbiter Assessment (IOA): Analysis of the hydraulics/water spray boiler subsystem (United States)

    Duval, J. D.; Davidson, W. R.; Parkman, William E.


    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. The IOA approach features a top-down analysis of the hardware to determine failure modes, criticality, and potential critical items (PCIs). To preserve independence, this analysis was accomplished without reliance upon the results contained within the NASA FMEA/CIL documentation. This report documents the independent analysis results for the Orbiter Hydraulics/Water Spray Boiler Subsystem. The hydraulic system provides hydraulic power to gimbal the main engines, actuate the main engine propellant control valves, move the aerodynamic flight control surfaces, lower the landing gear, apply wheel brakes, steer the nosewheel, and dampen the external tank (ET) separation. Each hydraulic system has an associated water spray boiler which is used to cool the hydraulic fluid and APU lubricating oil. The IOA analysis process utilized available HYD/WSB hardware drawings, schematics and documents for defining hardware assemblies, components, and hardware items. Each level of hardware was evaluated and analyzed for possible failure modes and effects. Criticality was assigned based upon the severity of the effect for each failure mode. Of the 430 failure modes analyzed, 166 were determined to be PCIs.

  13. Choroidal neovascular membrane associated with choroidal osteoma (CO treated with trans-pupillary thermo therapy.

    Directory of Open Access Journals (Sweden)

    Sharma Sumita


    Full Text Available Choroidal neovascular membrane, a known complication of choroidal osteoma causing visual loss when located subfoveally, can be successfully treated with transpupillary thermo therapy.

  14. Water hydraulic actuators for ITER maintenance devices

    Energy Technology Data Exchange (ETDEWEB)

    Siuko, Mikko E-mail:; Pitkaeaho, M.; Raneda, A.; Poutanen, J.; Tammisto, J.; Palmer, J.; Vilenius, M


    The characteristic advantages of hydraulics (high power density, simple construction and reliability) together with the characteristics of water as the pressure medium (fire and environmentally safe, chemically neutral, not activated nor affected by radiation) are highlighted in critical applications such as remote handling operations in international thermonuclear experimental reactor (ITER). However, lack of commercial selection of water hydraulic components, common design expertise and known application experiences prevents wide use of water hydraulics. Since 1994, IHA has designed and manufactured water hydraulic tools for ITER divertor maintenance and experiences have been good. Therefore, IHA is developing water hydraulic component selection to be applied in coming systems where water hydraulics is foreseen to provide an advantage. Aim of the still on going project is to develop a set of components like power units, control components and actuators. By that way designers are able to apply water hydraulics where advantageous. In the paper the component types, their design and characteristics and results obtained so far are presented.

  15. Rotating hydraulic adjustment in a parabolic channel (United States)

    Helfrich, K.


    Rotating hydraulics forms the basis of our interpretation of flows through oceanic straits and abyssal passages. These theories are used to predict overflow transport and characteristics of hydraulic features such as jumps. However, details of the transient hydraulic adjustment and the properties of hydraulic jumps and bores have been explored only for unrealistic rectangular cross-section channel geometry. Here the classic problem of upstream influence due to the introduction of an obstacle is extended to a rotating channel with parabolic cross-section. The critical obstacle height for upstream influence as a function of Froude number is found under the assumptions of single-layer (reduced-gravity) semi-geostrophic flow with uniform potential vorticity. The theoretical development is supplemented with two-dimensional numerical simulations of the transient adjustment to hydraulically controlled states. The numerical results reveal novel features including upstream propagating disturbances that consist of both a localized shock-like feature and non-local rarefaction upstream of the shock. The non-locality poses an impediment for the development of a shock-joining theory. Downstream hydraulic jumps from super to subcritical flow occur as both depth and width transitions. However, the lateral expansions in a parabolic channel are not as abrupt as their rectangular channel counterparts. This may help explain the lack of oceanic observations of abrupt hydraulic jumps downstream of abyssal sills.

  16. Controlled Chemical Patterns with ThermoChemical NanoLithography (TCNL) (United States)

    Carroll, Keith; Giordano, Anthony; Wang, Debin; Kodali, Vamsi; King, W. P.; Marder, S. R.; Riedo, E.; Curtis, J. E.


    Many research areas, both fundamental and applied, rely upon the ability to organize non-trivial assemblies of molecules on surfaces. In this work, we introduce a significant extension of ThermoChemical NanoLithography (TCNL), a high throughput chemical patterning technique that uses temperature-driven chemical reactions localized near the tip of a thermal cantilever. By combining a chemical kinetics based model with experiments, we have developed a protocol for varying the concentration of surface bound molecules. The result is an unprecedented ability to fabricate extremely complex patterns comprised of varying chemical concentrations, as demonstrated by sinusoidal patterns of amine groups with varying pitches (˜5-15 μm) and the replication of Leonardo da Vinci's Mona Lisa with dimensions of ˜30 x 40 μm^2. Programmed control of the chemical reaction rate should have widespread applications for a technique which has already been shown to nanopattern various substrates including graphene nanowires, piezoelectric crystals, and optoelectronic materials.

  17. Ground source thermo-pumps for individual residential houses; Les thermopompes a capteur enterres dans les residences individuelles

    Energy Technology Data Exchange (ETDEWEB)

    Ossant, G. [Societe Syrec (France)


    The main principles, performances and constraints of the various types of ground source thermo-pumps for individual houses, i.e. ground/ground thermo-pumps, glycol water/water thermo-pumps and ground/water thermo-pumps are reviewed, and their energy consumptions are discussed. The design and operating conditions of a reverse ground source thermo-pump (Syrec) for space heating and air conditioning through a hot and cold floor system and a Syrec ground source thermo-pump for water heating, are presented

  18. Thermo-mechanical behavior of epoxy shape memory polymer foams (United States)

    Di Prima, M. A.; Lesniewski, M.; Gall, K.; McDowell, D. L.; Sanderson, T.; Campbell, D.


    Shape memory polymer foams have significant potential in biomedical and aerospace applications, but their thermo-mechanical behavior under relevant deformation conditions is not well understood. In this paper we examine the thermo-mechanical behavior of epoxy shape memory polymer foams with an average relative density of nearly 20%. These foams are deformed under conditions of varying stress, strain, and temperature. The glass transition temperature of the foam was measured to be approximately 90 °C and compression and tensile tests were performed at temperatures ranging from 25 to 125 °C. Various shape recovery tests were used to measure recovery properties under different thermo-mechanical conditions. Tensile strain to failure was measured as a function of temperature to probe the maximum recovery limits of the foam in both temperature and strain space. Compression tests were performed to examine compressibility of the material as a function of temperature; these foams can be compacted as much as 80% and still experience full strain recovery over multiple cycles. Furthermore, both tensile strain to failure tests and cyclic compression recovery tests revealed that deforming at a temperature of 80 °C maximizes macroscopic strain recovery. Deformation temperatures above or below this optimal value lead to lower failure strains in tension and the accumulation of non-recoverable strains in cyclic compression. Micro-computed tomography (micro-CT) scans of the foam at various compressed states were used to understand foam deformation mechanisms. The micro-CT studies revealed the bending, buckling, and collapse of cells with increasing compression, consistent with results from published numerical simulations.

  19. Thermal and thermo-mechanical simulation of laser assisted machining (United States)

    Germain, G.; Dal Santo, P.; Lebrun, J. L.; Bellett, D.; Robert, P.


    Laser Assisted Machining (LAM) improves the machinability of materials by locally heating the workpiece just prior to cutting. The heat input is provided by a high power laser focused several millimeters in front of the cutting tool. Experimental investigations have confirmed that the cutting force can be decreased, by as much as 40%, for various materials (tool steel, titanium alloys and nickel alloys). The laser heat input is essentially superficial and results in non-uniform temperature profiles within the depth of the workpiece. The temperature field in the cutting zone is therefore influenced by many parameters. In order to understand the effect of the laser on chip formation and on the temperature fields in the different deformation zones, thermo-mechanical simulation were undertaken. A thermo-mechanical model for chip formation with and without the laser was also undertaken for different cutting parameters. Experimental tests for the orthogonal cutting of 42CrMo4 steel were used to validate the simulation via the prediction of the cutting force with and without the laser. The thermo-mechanical model then allowed us to highlight the differences in the temperature fields in the cutting zone with and without the laser. In particular, it was shown that for LAM the auto-heating of the material in the primary shear zone is less important and that the friction between the tool and chip also generates less heat. The temperature fields allow us to explain the reduction in the cutting force and the resulting residual stress fields in the workpiece.

  20. Hydraulic fracturing of rock-fill dam

    Directory of Open Access Journals (Sweden)

    Jun-Jie WANG


    Full Text Available The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing was suggested,from which mechanisms of hydraulic fracturing in the core of rock-fill damwere discussed. The results indicated that factors such as angle betweencrack surface and direction of principal stress, local stress state at thecrack, and fracture toughness KIC of core soil may largely affect theinduction of hydraulic fracturing and the mode of the propagation of thecrack.The condition in which hydraulic fracturing in core of earth-rock fill dam maybe induced, the mechanism by which the reason of hydraulic fracturing canbe explained, and the failure criterion by which the occurrence of hydraulicfracturing can be determined, were investigated. The condition dependson material properties such as, cracks in the core and low permeability ofcore soil, and “water wedging” action in cracks. An unsaturated core soiland fast impounding are the prerequisites for the formation of “waterwedging” action. The mechanism of hydraulic fracturing can be explainedby fracture mechanics. The crack propagation induced by water pressuremay follow any of mode I, mode II and mixed mode I-II. Based on testingresults of a core soil, a new criterion for hydraulic fracturing

  1. Mechanisms of hydraulic fracturing in cohesive soil

    Directory of Open Access Journals (Sweden)

    Jun-jie Wang


    Full Text Available Hydraulic fracturing in the soil core of earth-rockfill dams is a common problem affecting the safety of the dams. Based on fracture tests, a new criterion for hydraulic fracturing in cohesive soil was suggested. Using this criterion, the mechanisms of hydraulic fracturing in cubic soil specimens were investigated. The results indicate that the propagation of the crack in a cubic specimen under water pressure occurs in a mixed mode I-II if the crack face is not perpendicular to any of the principal stresses, and the crack most likely to propagate is the one that is perpendicular to the minor principal stress and propagates in mode I.

  2. Hydraulic Fracturing and the Environment (United States)

    Ayatollahy Tafti, T.; Aminzadeh, F.; Jafarpour, B.; de Barros, F.


    In this presentation, we highlight two key environmental concerns of hydraulic fracturing (HF), namely induced seismicity and groundwater contamination (GC). We examine the induced seismicity (IS) associated with different subsurface fluid injection and production (SFIP) operations and the key operational parameters of SFIP impacting it. In addition we review the key potential sources for possible water contamination. Both in the case of IS and GC we propose modeling and data analysis methods to quantify the risk factors to be used for monitoring and risk reduction. SFIP include presents a risk in hydraulic fracturing, waste water injection, enhanced oil recovery as well as geothermal energy operations. Although a recent report (NRC 2012) documents that HF is not responsible for most of the induced seismicities, we primarily focus on HF here. We look into vaious operational parameters such as volume and rate of water injection, the direction of the well versus the natural fracture network, the depth of the target and the local stress field and fault system, as well as other geological features. The latter would determine the potential for triggering tectonic related events by small induced seismicity events. We provide the building blocks for IS risk assessment and monitoring. The system we propose will involve adequate layers of complexity based on mapped seismic attributes as well as results from ANN and probabilistic predictive modeling workflows. This leads to a set of guidelines which further defines 'safe operating conditions' and 'safe operating zones' which will be a valuable reference for future SFIP operations. We also illustrate how HF can lead to groundwater aquifer contamination. The source of aquifer contamination can be the hydrocarbon gas or the chemicals used in the injected liquid in the formation. We explore possible pathways of contamination within and discuss the likelihood of contamination from each source. Many of the chemical compounds used

  3. Prediction of thermo-physical properties of liquid formulated products

    DEFF Research Database (Denmark)

    Mattei, Michele; Conte, Elisa; Kontogeorgis, Georgios


    The objective of this chapter is to give an overview of the models, methods and tools that may be used for the estimation of liquid formulated products. First a classification of the products is given and the thermo-physical properties needed to represent their functions are listed. For each...... property, a collection of the available models are presented according to the property type and the model type. It should be noted, however, that the property models considered or highlighted in this chapter are only examples and are not necessarily the best and most accurate for the corresponding property....

  4. Thermo-Gas Dynamics of Hydrogen Combustion and Explosion

    CERN Document Server

    Gelfand, Boris E; Medvedev, Sergey P; Khomik, Sergey V


    The potential of hydrogen as an important future energy source has generated fresh interest in the study of hydrogenous gas mixtures. Indeed, both its high caloricity and reactivity are unique properties, the latter underscoring safety considerations when handling such mixtures.   The present monograph is devoted to the various aspects of hydrogen combustion and explosion processes. In addition to theoretical and phenomenological considerations, this work also collates the results of many experiments from less well known sources. The text reviews the literature in this respect, thereby providing valuable information about the thermo-gas-dynamical parameters of combustion processes for selected experimental settings in a range of scientific and industrial applications.


    Directory of Open Access Journals (Sweden)

    Eliza Truszkiewicz


    Full Text Available The investigated material - laminate is intended as a substrate for small electronic components, electrodes and printed circuits, which are processed onto the laminate prior to thermoforming. The placement of the electronic components and the connecting circuits must be carefully designed to prevent damage during the thermoforming. The thermo-viscoelastic behavior of a polymer laminate film was characterized by mechanical measurements to obtain data for material modeling. The strain was measured using digital image correlation. The film is anisotropic and is able to deform to strains up to 60%.

  6. Electro-thermo-mechanical model for bulk acoustic wave resonators. (United States)

    Rocas, Eduard; Collado, Carlos; Mateu, Jordi; Orloff, Nathan D; Aigner, Robert; Booth, James C


    We present the electro-thermo-mechanical constitutive relations, expanded up to the third order, for a BAW resonator. The relations obtained are implemented into a circuit model, which is validated with extensive linear and nonlinear measurements. The mathematical analysis, along with the modeling, allows us to identify the dominant terms, which are the material temperature derivatives and two intrinsic nonlinear terms, and explain, for the first time, all observable effects in a BAW resonator by use of a unified physical description. Moreover, the terms that are responsible for the second-harmonic generation and the frequency shift with dc voltage are shown to be the same.

  7. A Green-Naghdi approach for thermo-electroelasticity (United States)

    Montanaro, A.


    The constitutive relations of piezoelectric ceramics are essentially nonlinear since the so-called piezoelectric moduli depend on the induced strains. Pioneering papers in these topics dealt mainly with the isothermal case. In view of applications, however, thermal effects have to be taken into account in connection with thermo-electric behaviors. Here we briefly compare continuum theories for nonlinear thermoelettroelasticity. In particular we describe an extension of Green-Naghdi thermoelasticity theory for an electrically polarizable and finitely deformable heat conducting elastic continuumn, which interacts with the electric field. In this theory, unlike other, thermal waves propagate at a finite speed.

  8. Preparation of thermo-responsive graft copolymer by using a novel macro-RAFT agent and its application for drug delivery

    Energy Technology Data Exchange (ETDEWEB)

    Song, Cunfeng; Yu, Shirong [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Liu, Cheng; Deng, Yuanming; Xu, Yiting [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China); Chen, Xiaoling, E-mail: [Department of Endodontics, Xiamen Stomatology Hospital, Teaching Hospital of Fujian Medical University, Xiamen 361003 (China); Dai, Lizong, E-mail: [Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005 (China); Fujian Provincial Key Laboratory of Fire Retardant Materials, Xiamen University, Xiamen 361005 (China)


    A methodology to prepare thermo-responsive graft copolymer by using a novel macro-RAFT agent was proposed. The macro-RAFT agent with pendant dithioester (ZC(S)SR) was facilely prepared via the combination of RAFT polymerization and esterification reaction. By means of ZC(S)SR-initiated RAFT polymerization, the thermo-responsive graft copolymer consisting of poly(methyl methacrylate-co-hydroxylethyl methacrylate) (P(MMA-co-HEMA)) backbone and hydrophilic poly(N-isopropylacrylamide) (PNIPAAm) side chains was constructed through the “grafting from” approach. The chemical compositions and molecular weight distributions of the synthesized polymers were respectively characterized by {sup 1}H nuclear magnetic resonance ({sup 1}H NMR) and gel permeation chromatography (GPC). Self-assembly behavior of the amphiphilic graft copolymers (P(MMA-co-HEMA)-g-PNIPAAm) was studied by transmission electron microscopy (TEM), dynamic light scattering (DLS) and spectrofluorimeter. The critical micelle concentration (CMC) value was 0.052 mg mL{sup −1}. These micelles have thermo-responsibility and a low critical solution temperature (LCST) of 33.5 °C. Further investigation indicated that the guest molecule release property of these micelles, which can be well described by a first-order kinetic model, was significantly affected by temperature. Besides, the micelles exhibited excellent biocompatibility and cellular uptake property. Hence, these micelles are considered to have potential application in controlled drug delivery. - Highlights: • A novel macro-RAFT agent with ZC(S)SR was used for preparing graft copolymer. • P(MMA-co-HEMA)-g-PNIPAAm was successful prepared via the “grafting from” approach. • Thermo-responsibility of the P(MMA-co-HEMA)-g-PNIPAAm micelles was investigated. • The drug release behavior of the P(MMA-co-HEMA)-g-PNIPAAm micelles was studied. • These micelles exhibited excellent biocompatibility and cellular uptake property.

  9. Bos taurus genome assembly. (United States)

    Liu, Yue; Qin, Xiang; Song, Xing-Zhi Henry; Jiang, Huaiyang; Shen, Yufeng; Durbin, K James; Lien, Sigbjørn; Kent, Matthew Peter; Sodeland, Marte; Ren, Yanru; Zhang, Lan; Sodergren, Erica; Havlak, Paul; Worley, Kim C; Weinstock, George M; Gibbs, Richard A


    We present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS) only assembly used for many other animal genomes including the rhesus macaque. The assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information.Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5%) of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly. The biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.

  10. Bos taurus genome assembly

    Directory of Open Access Journals (Sweden)

    Sodergren Erica


    Full Text Available Abstract Background We present here the assembly of the bovine genome. The assembly method combines the BAC plus WGS local assembly used for the rat and sea urchin with the whole genome shotgun (WGS only assembly used for many other animal genomes including the rhesus macaque. Results The assembly process consisted of multiple phases: First, BACs were assembled with BAC generated sequence, then subsequently in combination with the individual overlapping WGS reads. Different assembly parameters were tested to separately optimize the performance for each BAC assembly of the BAC and WGS reads. In parallel, a second assembly was produced using only the WGS sequences and a global whole genome assembly method. The two assemblies were combined to create a more complete genome representation that retained the high quality BAC-based local assembly information, but with gaps between BACs filled in with the WGS-only assembly. Finally, the entire assembly was placed on chromosomes using the available map information. Over 90% of the assembly is now placed on chromosomes. The estimated genome size is 2.87 Gb which represents a high degree of completeness, with 95% of the available EST sequences found in assembled contigs. The quality of the assembly was evaluated by comparison to 73 finished BACs, where the draft assembly covers between 92.5 and 100% (average 98.5% of the finished BACs. The assembly contigs and scaffolds align linearly to the finished BACs, suggesting that misassemblies are rare. Genotyping and genetic mapping of 17,482 SNPs revealed that more than 99.2% were correctly positioned within the Btau_4.0 assembly, confirming the accuracy of the assembly. Conclusion The biological analysis of this bovine genome assembly is being published, and the sequence data is available to support future bovine research.

  11. APT target/blanket design and thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Cappiello, M.; Pitcher, E.; Pasamehmetoglu, K.


    The Accelerator Production of Tritium (APT) Target/Blanket (T/B) system is comprised of an assembly of tritium producing modules supported by control, heat removal, shielding and retargeting systems. The T/B assembly produces tritium using a high-energy proton beam, a tungsten/lead spallation neutron source and {sup 3}He gas as the tritium producing feedstock. For the nominal production mode, protons are accelerated to an energy of 1030 MeV at a current of 100 mA and are directed onto the T/B assembly. The protons are expanded using a raster/expansion system to illuminate a 0.19m by 1.9m beam spot on the front face of a centrally located tungsten neutron source. A surrounding lead blanket produces additional neutrons from scattered high-energy particles. The tungsten neutron source consists of nested, Inconel-718 clad tungsten cylinders assembled in horizontal Inconel-718 tubes. Each tube contains up to 6 cylinders with annular flow channel gaps of 0.102 cm. These horizontal tubes are manifolded into larger diameter vertical inlet and outlet pipes, which provide coolant. The horizontal and vertical tubes make up a structure similar to that of rungs on a ladder. The entire tungsten neutron source consists of 11 such ladders separated into two modules, one containing five ladders and the other six. Ladders are separated by a 0.3 m void region to increase nucleon leakage. The peak thermal-hydraulic conditions in the tungsten neutron source occur in the second ladder from the front. Because tungsten neutron source design has a significant number of parallel flow channels, the limiting thermal-hydraulic parameter is the onset of significant void (OSV) rather than critical heat flux (CHF). A blanket region surrounds the tungsten neutron source. The lateral blanket region is approximately 120 cm thick and 400 cm high. Blanket material consists of lead, {sup 3}He gas, aluminum, and light-water coolant. The blanket region is subdivided into rows based on the local power

  12. Thermohydraulics of a horizontal diphasic flow of superfluid helium; Thermo-hydraulique d'un ecoulement horizontal d'helium superfluide diphasique

    Energy Technology Data Exchange (ETDEWEB)

    Perraud, S


    This study aims at characterizing helium two phase flows, and to identify the dependence of their characteristics on various thermo-hydraulic parameters: vapour velocity, liquid height, vapour density, specificities of superfluidity. Both the engineer and the physicist's points of view are taken into consideration: the first one in terms of optimization of a particular cooling scheme based on a two-phase flow, and these second one in terms of more fundamental atomization-related questions. It has been shown that for velocities around 3 to 4 m/s, the liquid phase that was initially stratified undergoes an atomization through the presence of a drop haze carried by the vapor phase.This happens for superfluid helium as well as for normal helium without main differences on atomization.

  13. Study on Characteristics of Hydraulic Servo System for Force Control of Hydraulic Robots

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyo-gon; Han, Changsoo [Hanyang University, Seoul (Korea, Republic of); Lee, Jong-won [Korea University of Science and Technology, Seoul (Korea, Republic of); Park, Sangdeok [Korea Institute of Industrial Technology, Seoul (Korea, Republic of)


    Because a hydraulic actuator has high power and force densities, this allows the weight of the robot's limbs to be reduced. This allows for good dynamic characteristics and high energy efficiency. Thus, hydraulic actuators are used in some exoskeleton robots and quadrupedal robots that require high torque. Force control is useful for robot compliance with a user or environment. However, force control of a hydraulic robot is difficult because a hydraulic servo system is highly nonlinear from a control perspective. In this study, a nonlinear model was used to develop a simulation program for a hydraulic servo system consisting of a servo valve, transmission lines, and a cylinder. The problems and considerations with regard to the force control performance for a hydraulic servo system were investigated. A force control method using the nonlinear model was proposed, and its effect was evaluated with the simulation program.

  14. Parker Hybrid Hydraulic Drivetrain Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Raymond [Parker-Hannifin Corporation, Cleveland, OH (United States); Howland, James [Parker-Hannifin Corporation, Cleveland, OH (United States); Venkiteswaran, Prasad [National Energy Technology Lab. (NETL), Morgantown, WV (United States)


    This report examines the benefits of Parker Hannifin hydraulic hybrid brake energy recovery systems used in commercial applications for vocational purposes. A detailed background on the problem statement being addressed as well as the solution set specific for parcel delivery will be provided. Objectives of the demonstration performed in high start & stop applications included opportunities in fuel usage reduction, emissions reduction, vehicle productivity, and vehicle maintenance. Completed findings during the demonstration period and parallel investigations with NREL, CALSTART, along with a literature review will be provided herein on this research area. Lastly, results identified in the study by third parties validated the savings potential in fuel reduction of on average of 19% to 52% over the baseline in terms of mpg (Lammert, 2014, p11), Parker data for parcel delivery vehicles in the field parallels this at a range of 35% - 50%, emissions reduction of 17.4% lower CO2 per mile and 30.4% lower NOx per mile (Gallo, 2014, p15), with maintenance improvement in the areas of brake and starter replacement, while leaving room for further study in the area of productivity in terms of specific metrics that can be applied and studied.

  15. Hydraulic fracturing chemicals and fluids technology

    CERN Document Server

    Fink, Johannes


    When classifying fracturing fluids and their additives, it is important that production, operation, and completion engineers understand which chemical should be utilized in different well environments. A user's guide to the many chemicals and chemical additives used in hydraulic fracturing operations, Hydraulic Fracturing Chemicals and Fluids Technology provides an easy-to-use manual to create fluid formulations that will meet project-specific needs while protecting the environment and the life of the well. Fink creates a concise and comprehensive reference that enables the engineer to logically select and use the appropriate chemicals on any hydraulic fracturing job. The first book devoted entirely to hydraulic fracturing chemicals, Fink eliminates the guesswork so the engineer can select the best chemicals needed on the job while providing the best protection for the well, workers and environment. Pinpoints the specific compounds used in any given fracturing operation Provides a systematic approach to class...

  16. Toxicity Assessment for EPA's Hydraulic Fracturing Study (United States)

    U.S. Environmental Protection Agency — This dataset contains data used to develop multiple manuscripts on the toxicity of chemicals associated with the hydraulic fracturing industry. These manuscripts...

  17. Transputer Control of Hydraulic Actuators and Robots

    DEFF Research Database (Denmark)

    Conrad, Finn


    Results from a Danish mechatronics research program entitled IMCIA - Intelligent Control and Intelligent Actuators. The objective is development of intelligent actuators for intelligent motion control. A mechatronics test facility with a transputer controlled hydraulic robot suiteable for real...


    The Hydrological Simulation Program - FORTRAN (HSPF) is a comprehensive watershed model, which employs depth-area-volume-flow relationships known as hydraulic function table (FTABLE) to represent stream channel cross-sections and reservoirs. An accurate FTABLE determination for a...

  19. A low order adaptive control scheme for hydraulic servo systems

    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Pedersen, Henrik Clemmensen; Bech, Michael Møller


    This paper deals with high-performance position control of hydraulics servo systems in general. The hydraulic servo system used is a two link robotic manipulator actuated by two hydraulic servo cylinders. A non-linear model of the hydraulic system and a Newton-Euler based model of the mechanical...

  20. Scaling behaviour of pressure-driven micro-hydraulic systems

    NARCIS (Netherlands)

    Tas, Niels Roelof; Lammerink, Theodorus S.J.; Berenschot, Johan W.; Elwenspoek, Michael Curt; van den Berg, Albert


    This paper presents a lumped network approach for the modelling and design of micro-hydraulic systems. A hydraulic oscillator has been built consisting of hydraulic resistors, capacitors and transistors (pressure controlled valves). The scaling of micro-hydraulic networks consisting of linear

  1. PLC Based Hydraulic Auto Ladle System


    Amogh Tayade; Anuja Chitre


    In this paper we have implemented a PLC based Hydraulic Auto Ladle System for Casting Department of Victory Precisions Pvt. Ltd. Chakan, Pune. This project work presents the study and design of PLC based Hydraulic Auto Ladle System. Aluminium pouring is the key process in Casting and Forging industry. Different products are manufactured by the company for automobile sector using aluminium. Programmable Logic Controller (PLC) is used for the automation of pouring process. Au...


    DEFF Research Database (Denmark)

    Andersen, Torben Ole; Hansen, Michael Rygaard; Pedersen, Henrik C.


    Generally most hydraulic systems are intrensically non-linear, why applying linear control techniques typically results in conservatively dimensioned controllers to obtain stable performance. Non-linear control techniques have the potential of overcoming these problems, and in this paper the focu...... is on developing and applying several different feedback linearisation (FL) controllers to the individual servo actuators in a hydraulically driven servo robot to evaluate and compare their possiblities and limitations. This is done based on both simulation and experimental results....

  3. Data Analytics of Hydraulic Fracturing Data

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jovan Yang [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Viswanathan, Hari [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Hyman, Jeffery [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Middleton, Richard [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)


    These are a set of slides on the data analytics of hydraulic fracturing data. The conclusions from this research are the following: they proposed a permeability evolution as a new mechanism to explain hydraulic fracturing trends; they created a model to include this mechanism and it showed promising results; the paper from this research is ready for submission; they devised a way to identify and sort refractures in order to study their effects, and this paper is currently being written.

  4. Newnes electronics assembly handbook

    CERN Document Server

    Brindley, Keith


    Newnes Electronics Assembly Handbook: Techniques, Standards and Quality Assurance focuses on the aspects of electronic assembling. The handbook first looks at the printed circuit board (PCB). Base materials, basic mechanical properties, cleaning of assemblies, design, and PCB manufacturing processes are then explained. The text also discusses surface mounted assemblies and packaging of electromechanical assemblies, as well as the soldering process. Requirements for the soldering process; solderability and protective coatings; cleaning of PCBs; and mass solder/component reflow soldering are des

  5. Detailed measurements and modelling of thermo active components using a room size test facility

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend


    measurements in an office sized test facility with thermo active ceiling and floor as well as modelling of similar conditions in a computer program designed for analysis of building integrated heating and cooling systems. A method for characterizing the cooling capacity of thermo active components is described...

  6. Effects of thermo-chemical pre-treatment on anaerobic biodegradability and hydrolysis of lignocellulosic biomass

    NARCIS (Netherlands)

    Fernandes, T.; Klaasse Bos, G.J.; Zeeman, G.; Sanders, J.P.M.; Lier, van J.B.


    The effects of different thermo-chemical pre-treatment methods were determined on the biodegradability and hydrolysis rate of lignocellulosic biomass. Three plant species, hay, straw and bracken were thermo-chemically pre-treated with calcium hydroxide, ammonium carbonate and maleic acid. After

  7. Enhanced pathway efficiency of Saccharomyces cerevisiae by introducing thermo-tolerant devices. (United States)

    Liu, Yueqin; Zhang, Genli; Sun, Huan; Sun, Xiangying; Jiang, Nisi; Rasool, Aamir; Lin, Zhanglin; Li, Chun


    In this study, thermo-tolerant devices consisting of heat shock genes from thermophiles were designed and introduced into Saccharomyces cerevisiae for improving its thermo-tolerance. Among ten engineered thermo-tolerant yeasts, T.te-TTE2469, T.te-GroS2 and T.te-IbpA displayed over 25% increased cell density and 1.5-4-fold cell viability compared with the control. Physiological characteristics of thermo-tolerant strains revealed that better cell wall integrity, higher trehalose content and enhanced metabolic energy were preserved by thermo-tolerant devices. Engineered thermo-tolerant strain was used to investigate the impact of thermo-tolerant device on pathway efficiency by introducing β-amyrin synthesis pathway, showed 28.1% increased β-amyrin titer, 28-35°C broadened growth temperature range and 72h shortened fermentation period. The results indicated that implanting heat shock proteins from thermophiles to S. cerevisiae would be an efficient approach to improve its thermo-tolerance. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. 75 FR 62423 - Barnstead Thermolyne Corporation, a Subsidiary of Thermo Fisher Scientific, Including On-Site... (United States)


    ... engaged in activities related to the production of scientific laboratory equipment. New information shows...] Barnstead Thermolyne Corporation, a Subsidiary of Thermo Fisher Scientific, Including On-Site Leased Workers... subsidiary of Thermo Fisher Scientific, including on- site leased workers from Sedona Staffing, Dubuque, Iowa...

  9. Diagrammatic theory of effective hydraulic conductivity (United States)

    Hristopulos, Dionissios T.; Christakos, George


    This work presents a stochastic diagrammatic theory for the calculation of the effective hydraulic conductivity of heterogeneous media. The theory is based on the mean-flux series expansion of a log-normal hydraulic conductivity medium in terms of diagrammatic representations and leads to certain general results for the effective hydraulic conductivity of three-dimensional media. A selective summation technique is used to improve low-order perturbation analysis by evaluating an infinite set of diagrammatic terms with a specific topological structure that dominates the perturbation series. For stochastically isotropic media the selective summation yeilds the anticipated exponential expression for the effective hydraulic conductivity. This expression is extended to stochastically anisotropic media. It is also shown that in the case of non homogeneous media the uniform effective hydraulic conductivity is replaced by a non-local tensor kernel, for which general diagrammatic expressions are obtained. The non-local kernel leads to the standard exponential behavior for the effective hydraulic conductivity at the homogeneous limit.

  10. Tilt assembly for tracking solar collector assembly (United States)

    Almy, Charles; Peurach, John; Sandler, Reuben


    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  11. Thermo-hydrodynamic and inductive modelling of a glass melt elaborated in cold inductive crucible; Modelisation numerique thermo-hydrodynamique et inductive d'une fonte verriere elaboree en creuset froid inductif

    Energy Technology Data Exchange (ETDEWEB)

    Sauvage, E


    Within the context of a search for a new vitrification process for nuclear wastes with a replacement of the presently used metallic pot by an inductive cold crucible, this research thesis deals with the numerical modelling of this technology. After having recalled the interest of nuclear waste vitrification, this report presents the new process based on the use of a cold crucible, describing principles and objectives of this method, and the characteristic physical phenomena associated with the flow and the thermodynamics of the glassy melt in such a crucible. It also recalls and comments the existing works on modelling. The main objective of this research is then to demonstrate the feasibility of 3D thermo-hydraulic and inductive simulations. He describes and analyses the glass physical properties (electrical properties, viscosity, thermal properties), the electromagnetic, hydrodynamic and thermal phenomena. He presents in detail the bubbling mixing modelling, reports 3D induction and fluid mechanical coupling calculations, and specific thermal investigations (radiating transfers, thermal limit conditions)


    Directory of Open Access Journals (Sweden)

    M.G. Pantelyat


    Full Text Available Purpose. To develop an effective approach for the numerical solution of transient thermo-contact problems and present a typical example of its utilization regarding devices working on the principle of thermoelasticity produced by induction heating and specific technological processes intended for assembly and disassembly of systems containing shrink fits. Methodology. A finite element technique for solution of 2D multiphysics (electromagnetic, thermal and structural problems is developed, taking into account temperature dependences of material properties and continuous variations of the contact surfaces. Modeling of the contact interaction between two parts is based on the concept of a special contact finite element having no thickness. The functional for the temperature problem is supplemented with components corresponding to the thermal conductivity of this contact layer. The heat generated due to mutual sliding of both parts can also be taken into account, but the heat capacity (specific heat of the contact layer is neglected. Using a special 1D 4-node finite elements a system of equations for the description of the thermo-contact problem is obtained. Originality. Relatively simple analytical formulae for calculation of the contact thermal resistances occurring in specific parts of electrical machines are known. The paper offers an alternative approach for the numerical solution of transient thermo-contact problems based on the concept of a special 1D contact finite element having no thickness. Results. The presented technique is applied for the computer simulation of assembly and disassembly of a shrink fit using induction heating. Conclusions regarding the choice of technological modes are made. Comparative computations for drills made from hard alloy and alloyed tool steel are carried out.

  13. Comparative study of methods to estimate hydraulic parameters in the hydraulically undisturbed Opalinus Clay (Switzerland)

    Energy Technology Data Exchange (ETDEWEB)

    Yu, C.; Matray, J.-M. [Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, (France); Yu, C.; Gonçalvès, J. [Aix Marseille Université UMR 6635 CEREGE Technopôle Environnement Arbois-Méditerranée Aix-en-Provence, Cedex 4 (France); and others


    The deep borehole (DB) experiment gave the opportunity to acquire hydraulic parameters in a hydraulically undisturbed zone of the Opalinus Clay at the Mont Terri rock laboratory (Switzerland). Three methods were used to estimate hydraulic conductivity and specific storage values of the Opalinus Clay formation and its bounding formations through the 248 m deep borehole BDB-1: application of a Poiseuille-type law involving petrophysical measurements, spectral analysis of pressure time series and in situ hydraulic tests. The hydraulic conductivity range in the Opalinus Clay given by the first method is 2 × 10{sup -14}-6 × 10{sup -13} m s{sup -1} for a cementation factor ranging between 2 and 3. These results show low vertical variability whereas in situ hydraulic tests suggest higher values up to 7 × 10{sup -12} m s{sup -1}. Core analysis provides economical estimates of the homogeneous matrix hydraulic properties but do not account for heterogeneities at larger scale such as potential tectonic conductive features. Specific storage values obtained by spectral analysis are consistent and in the order of 10{sup -6} m{sup -1}, while formulations using phase shift and gain between pore pressure signals were found to be inappropriate to evaluate hydraulic conductivity in the Opalinus Clay. The values obtained are globally in good agreement with the ones obtained previously at the rock laboratory. (authors)

  14. Autonomous electrochromic assembly

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Lanning, Bruce Roy; Stowell, Jr., Michael Wayne


    This disclosure describes system and methods for creating an autonomous electrochromic assembly, and systems and methods for use of the autonomous electrochromic assembly in combination with a window. Embodiments described herein include an electrochromic assembly that has an electrochromic device, an energy storage device, an energy collection device, and an electrochromic controller device. These devices may be combined into a unitary electrochromic insert assembly. The electrochromic assembly may have the capability of generating power sufficient to operate and control an electrochromic device. This control may occur through the application of a voltage to an electrochromic device to change its opacity state. The electrochromic assembly may be used in combination with a window.

  15. Firearm trigger assembly (United States)

    Crandall, David L.; Watson, Richard W.


    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  16. Measurement of water activity from shales through thermo hygrometer

    Energy Technology Data Exchange (ETDEWEB)

    Rabe, Claudio [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Engenharia Civil. Grupo de Tecnologia e Engenharia de Petroleo (GTEP)


    This paper presents a campaign of lab tests to obtain the water activity from shales and its pore fluid originated from offshore and onshore basin. The results of water activity from shales indicate that the values rang from 0.754 to 0.923 and for the pore fluid are between 0.987 and 0.940. The results show that the water activity of interstitial water can be obtained in 6 days and the rock in 10 days using the thermo hygrometer used. The degree of saturation, water content, kind and tenor of expansible and hydratable clay mineral, total and interconnected porosity, salinity of interstitial fluid and the capillary pressure of shale samples affected the results of water activity. (author)

  17. Study of a Piezo-Thermo-Elastic Materials Console

    Directory of Open Access Journals (Sweden)

    hamza madjid berrabah


    Full Text Available In the first part of this work, analytical expressions were determined for the stresses through the thickness of a composite beam submitted to electrical excitation. In the second part of this study we are interested in the theory of elasticity, which is used to obtain exact solutions of piezo-thermo-elastic consoles gradually coupled evaluated under different loads. These solutions are used to identify the piezoelectric parameter and thermal coefficients of the materials. In addition, numerical results are obtained for the analysis of the loaded console by two different types of loading. In this study we show also that changing the linear thermal parameters of the material does not affect the distribution of the stress and the induction of the beam. However it affetcs the components of the deformation, electric field, the displacement and the electric potential of the console.

  18. Investigation of Thermo-regulating Properties of Multilayer Textile Package

    Directory of Open Access Journals (Sweden)

    Julija Baltušnikaitė


    Full Text Available Thermal comfort of a clothing system is one of the important goals of the developer that require an engineering approach. In this research work a thermo-regulating textile packages were developed and a wearing comfort of protective clothing consisting from those packages was improved. The microcapsules were added on the fabric surface using pad-dry-cure method. The thermal properties and stabilities were measured using differential scanning calorimetry. The results suggest that higher values of thermal resistance were obtained after incorporation of fabric, coated by PCMs, into inert layer of multilayer textile package. DOI:

  19. A conjugate thermo-electric model for a composite medium.

    Directory of Open Access Journals (Sweden)

    Oscar Chávez

    Full Text Available Electrical transmission signals have been used for decades to characterize the internal structure of composite materials. We theoretically analyze the transmission of an electrical signal through a composite material which consists of two phases with different chemical compositions. We assume that the temperature of the biphasic system increases as a result of Joule heating and its electrical resistivity varies linearly with temperature; this last consideration leads to simultaneously study the electrical and thermal effects. We propose a nonlinear conjugate thermo-electric model, which is solved numerically to obtain the current density and temperature profiles for each phase. We study the effect of frequency, resistivities and thermal conductivities on the current density and temperature. We validate the prediction of the model with comparisons with experimental data obtained from rock characterization tests.

  20. Vibration Isolation for Parallel Hydraulic Hybrid Vehicles

    Directory of Open Access Journals (Sweden)

    The M. Nguyen


    Full Text Available In recent decades, several types of hybrid vehicles have been developed in order to improve the fuel economy and to reduce the pollution. Hybrid electric vehicles (HEV have shown a significant improvement in fuel efficiency for small and medium-sized passenger vehicles and SUVs. HEV has several limitations when applied to heavy vehicles; one is that larger vehicles demand more power, which requires significantly larger battery capacities. As an alternative solution, hydraulic hybrid technology has been found effective for heavy duty vehicle because of its high power density. The mechanical batteries used in hydraulic hybrid vehicles (HHV can be charged and discharged remarkably faster than chemical batteries. This feature is essential for heavy vehicle hybridization. One of the main problems that should be solved for the successful commercialization of HHV is the excessive noise and vibration involving with the hydraulic systems. This study focuses on using magnetorheological (MR technology to reduce the noise and vibration transmissibility from the hydraulic system to the vehicle body. In order to study the noise and vibration of HHV, a hydraulic hybrid subsystem in parallel design is analyzed. This research shows that the MR elements play an important role in reducing the transmitted noise and vibration to the vehicle body. Additionally, locations and orientations of the isolation system also affect the efficiency of the noise and vibration mitigation. In simulations, a skyhook control algorithm is used to achieve the highest possible effectiveness of the MR isolation system.

  1. A Transversely Isotropic Thermo-mechanical Framework for Oil Shale (United States)

    Semnani, S. J.; White, J. A.; Borja, R. I.


    The present study provides a thermo-mechanical framework for modeling the temperature dependent behavior of oil shale. As a result of heating, oil shale undergoes phase transformations, during which organic matter is converted to petroleum products, e.g. light oil, heavy oil, bitumen, and coke. The change in the constituents and microstructure of shale at high temperatures dramatically alters its mechanical behavior e.g. plastic deformations and strength, as demonstrated by triaxial tests conducted at multiple temperatures [1,2]. Accordingly, the present model formulates the effects of changes in the chemical constituents due to thermal loading. It is well known that due to the layered structure of shale its mechanical properties in the direction parallel to the bedding planes is significantly different from its properties in the perpendicular direction. Although isotropic models simplify the modeling process, they fail to accurately describe the mechanical behavior of these rocks. Therefore, many researchers have studied the anisotropic behavior of rocks, including shale [3]. The current study presents a framework to incorporate the effects of transverse isotropy within a thermo-mechanical formulation. The proposed constitutive model can be readily applied to existing finite element codes to predict the behavior of oil shale in applications such as in-situ retorting process and stability assessment in petroleum reservoirs. [1] Masri, M. et al."Experimental Study of the Thermomechanical Behavior of the Petroleum Reservoir." SPE Eastern Regional/AAPG Eastern Section Joint Meeting. Society of Petroleum Engineers, 2008. [2] Xu, B. et al. "Thermal impact on shale deformation/failure behaviors---laboratory studies." 45th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association, 2011. [3] Crook, AJL et al. "Development of an orthotropic 3D elastoplastic material model for shale." SPE/ISRM Rock Mechanics Conference. Society of Petroleum Engineers

  2. A pH- and thermo-responsive poly(amino acid)-based drug delivery system. (United States)

    Liu, Na; Li, Bingqiang; Gong, Chu; Liu, Yuan; Wang, Yanming; Wu, Guolin


    A pH- and thermo-responsive poly(amino acid)-based amphiphilic copolymer was developed, functioning as a tumour targeting drug delivery system with good biocompatibility and biodegradability. To provide multi-stimuli sensitivity characteristics to the poly(amino acid)s, the polyaspartamide scaffold has been functionalized with N,N-diisopropylamide groups via aminolysis reaction of polysuccinimide. PEG chains have also been chemically grafted to the poly(amino acid) backbone through acid-labile hydrazone linkages, providing a removable shield for the poly(amino acid) based nanoparticles. Furthermore, doxorubicin was chemically linked to the copolymer chain via hydrazone bonds, acting as the hydrophobic moiety to drive the polymeric self-assembly. Free doxorubicin molecules could be encapsulated into the self-assembled nanoparticles via hydrophobic interactions and molecular π-π stacking. The results obtained show that the drug release can be triggered by the temperature with a significantly increased release being observed under acidic conditions. The cytotoxicity behaviour of the copolymers and drug-loaded nanoparticles was investigated in vitro at varying pH values and different temperatures. In doing so, superior characteristics concerning compatibility and anti-cancer activity could be observed. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Soil Structure and Saturated Hydraulic Conductivity (United States)

    Houskova, B.; Nagy, V.

    The role of soil structure on saturated hydraulic conductivity changes is studied in plough layers of texturally different soils. Three localities in western part of Slovakia in Zitny ostrov (Corn Island) were under investigation: locality Kalinkovo with light Calcaric Fluvisol (FAO 1970), Macov with medium heavy Calcari-mollic Fluvisol and Jurova with heavy Calcari-mollic Fluvisol. Soil structure was determined in dry as well as wet state and in size of macro and micro aggregates. Saturated hydraulic conductivity was measured by the help of double ring method. During the period of ring filling the soil surface was protected against aggregates damage by falling water drops. Spatial and temporal variability of studied parameters was evaluated. Cultivated crops were ensilage maize at medium heavy and heavy soil and colza at light soil. Textural composition of soil and actual water content at the beginning of measurement are one of major factor affecting aggregate stability and consequently also saturated hydraulic conductivity.


    Directory of Open Access Journals (Sweden)

    Mustafa GÖLCÜ


    Full Text Available Important developments in industrial hydraulic technologies extended their application areas including big power transmission systems. Efficient and powerful systems have been developed using sensitive control units. However, it is necessary to provide safe operating working conditions since some systems can not work properly in some situations. For instance, lack of the fluid in the system or leakage of the fluid from the system may cause serious damage in the circuit. When the pressure reaches the high levels, instantaneous shock strokes may also occur. Hydraulic accumulators are used to prevent such kind of problems. In this study, types of accumulators used in hydraulic circuits are introduced and necessary formulas for selection of the accumulators are presented with an example. The usage of accumulators in different circuits is shown with figures.

  5. Experimental study of thermo-mechanical behavior of SiC composite tubing under high temperature gradient using solid surrogate

    Energy Technology Data Exchange (ETDEWEB)

    Alva, Luis; Shapovalov, Kirill [University of South Carolina, Mechanical Engineering Department (United States); Jacobsen, George M.; Back, Christina A. [General Atomics (United States); Huang, Xinyu, E-mail: [University of South Carolina, Mechanical Engineering Department (United States)


    Nuclear grade silicon carbide fiber (SiC{sub f}) reinforced silicon carbide matrix (SiC{sub m}) composite is a promising candidate material for accident tolerance fuel (ATF) cladding. A major challenge is ensuring the mechanical robustness of the ceramic cladding under accident conditions. In this work the high temperature mechanical response of a SiC{sub f}–SiC{sub m} composite tubing is studied using a novel thermo-mechanical test method. A solid surrogate tube is placed within and bonded to the SiC{sub f}–SiC{sub m} sample tube using a ceramic adhesive. The bonded tube pair is heated from the center using a ceramic glower. During testing, the outer surface temperature of the SiC sample tube rises up to 1274 K, and a steep temperature gradient develops through the thickness of the tube pair. Due to CTE mismatch and the temperature gradient, the solid surrogate tube induces high tensile stress in the SiC sample. During testing, 3D digital image correlation (DIC) method is used to map the strains on the outer surface of the SiC-composite, and acoustic emissions (AE) are monitored to detect the onset and progress of material damage. The thermo-mechanical behavior of SiC-composite sample is compared with that of monolithic SiC samples. Finite element models are developed to estimate stress–strain distribution within the tube assembly. Model predicted surface strain matches the measured surface strain using the DIC method. AE activities indicated a progressive damage process for SiC{sub f}–SiC{sub m} composite samples. For the composites tested in this study, the threshold mechanical hoop strain for matrix micro-cracking to initiate in SiC{sub f}–SiC{sub m} sample is found to be ∼300 microstrain.

  6. Promoting water hydraulics in Malaysia: A green educational approach (United States)

    Yusof, Ahmad Anas; Zaili, Zarin Syukri; Hassan, Siti Nor Habibah; Tuan, Tee Boon; Saadun, Mohd Noor Asril; Ibrahim, Mohd Qadafie


    In promoting water hydraulics in Malaysia, this paper presents research development of water hydraulics educational training system for secondary and tertiary levels in Malaysia. Water hydraulics trainer with robotic attachment has been studied in order to promote the usefulness of such educational tools in promoting sustainability and green technology in the country. The trainer is being developed in order to allow constructive curriculum development and continuous marketing research for the effectiveness and usefulness of using water in hydraulic power trainer. The research on water-based hydraulic trainer is now possible with the current development in water hydraulics technology.

  7. Self-potential observations during hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Jeffrey R.; Glaser, Steven D.


    The self-potential (SP) response during hydraulic fracturing of intact Sierra granite was investigated in the laboratory. Excellent correlation of pressure drop and SP suggests that the SP response is created primarily by electrokinetic coupling. For low pressures, the variation of SP with pressure drop is linear, indicating a constant coupling coefficient (Cc) of -200 mV/MPa. However for pressure drops >2 MPa, the magnitude of the Cc increases by 80% in an exponential trend. This increasing Cc is related to increasing permeability at high pore pressures caused by dilatancy of micro-cracks, and is explained by a decrease in the hydraulic tortuosity. Resistivity measurements reveal a decrease of 2% prior to hydraulic fracturing and a decrease of {approx}35% after fracturing. An asymmetric spatial SP response created by injectate diffusion into dilatant zones is observed prior to hydraulic fracturing, and in most cases this SP variation revealed the impending crack geometry seconds before failure. At rupture, injectate rushes into the new fracture area where the zeta potential is different than in the rock porosity, and an anomalous SP spike is observed. After fracturing, the spatial SP distribution reveals the direction of fracture propagation. Finally, during tensile cracking in a point load device with no water flow, a SP spike is observed that is caused by contact electrification. However, the time constant of this event is much less than that for transients observed during hydraulic fracturing, suggesting that SP created solely from material fracture does not contribute to the SP response during hydraulic fracturing.

  8. Sensor mount assemblies and sensor assemblies (United States)

    Miller, David H [Redondo Beach, CA


    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  9. A low cost apparatus for measuring the xylem hydraulic conductance in plants

    Directory of Open Access Journals (Sweden)

    Luciano Pereira


    Full Text Available Plant yield and resistance to drought are directly related to the efficiency of the xylem hydraulic conductance and the ability of this system to avoid interrupting the flow of water. In this paper we described in detail the assembling of an apparatus proposed by TYREE et al. (2002, and its calibration, as well as low cost adaptations that make the equipment accessible for everyone working in this research area. The apparatus allows measuring the conductance in parts of roots or shoots (root ramifications or branches, or in the whole system, in the case of small plants or seedlings. The apparatus can also be used to measure the reduction of conductance by embolism of the xylem vessels. Data on the hydraulic conductance of eucalyptus seedlings obtained here and other reports in the literature confirm the applicability of the apparatus in physiological studies on the relationship between productivity and water stress.

  10. Proposal to negotiate an amendment to an existing contract for hydraulic presses

    CERN Document Server


    This document concerns the proposal to negotiate an amendment to an existing contract for three hydraulic presses for the assembly and welding of the LHC superconducting dipole magnets. For the reasons explained in this document, the Finance Committee is invited to agree to the negotiation of an amendment to the contract for hydraulic presses with the consortium CTE SISTEMI (IT) - CARPENTERIA S. ANTONIO (IT) for technical modifications to the presses installed at the premises of the dipole manufacturers for an amount exceeding the previously approved amount by 1 105 357 euros (1 635 929 Swiss francs), bringing the total contract amount to 7 581 709 euros (11 220 929 Swiss francs). The amounts in euros have been calculated using the present rate of exchange. The firm has indicated the following distribution by country of the amendment value: CAN - 58%, IT - 21%, US - 17%, FR - 4%.

  11. Plug & Play Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard


    Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city...... district. The case study considers a novel approach to the design of district heating systems in which the diameter of the pipes used in the system is reduced in order to reduce the heat losses in the system, thereby making it profitable to provide district heating to areas with low energy demands. The new...

  12. Mineral resource of the month: hydraulic cement (United States)

    van Oss, Hendrik G.


    Hydraulic cements are the binders in concrete and most mortars and stuccos. Concrete, particularly the reinforced variety, is the most versatile of all construction materials, and most of the hydraulic cement produced worldwide is portland cement or similar cements that have portland cement as a basis, such as blended cements and masonry cements. Cement typically makes up less than 15 percent of the concrete mix; most of the rest is aggregates. Not counting the weight of reinforcing media, 1 ton of cement will typically yield about 8 tons of concrete.

  13. Fish oil for use as hydraulic oil

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, T.E. [Maine Univ., Orono, ME (United States). Dept. of Bio-Resource Engineering; Bimbo, A.P. [Zapata Protein, Inc., Reedville, VA (United States). Menhaden Oil Refinery


    A study initiated to find a non-toxic environmentally friendly fluid suitable for use in hydraulic systems, such as in marine and food processing operations, has resulted in a fish-oil-based fluid that appears promising. This paper describes the fluid testing and laboratory and field system tests used to evaluate the fish oil with additive packages. The fish oil with non-toxic additives was endurance tested for durability in complete hydraulic systems in the laboratory and introduced into a commercial system. The results indicate that the oil functioned very well in the systems and the components were compatible with the oil, giving no degradation, wear or performance problems. (author)


    Directory of Open Access Journals (Sweden)

    I. Pimonov


    Full Text Available An important problem of increasing the efficiency of building machinery due to timely determination of hudrounits technical state at mechanization centers is considered in the given article. Quality indicators of hydraulic actuator operation on the basis of the established connection between the structural and diagnostic parameters of hydrounits are considered. The quantitative connection between the standard and the developed system of hydrounits technical state standards determination is established. Application of this method will significantly simplify diagnosing the elements of a hydraulic actuator at mechanization centers under stationary conditions.

  15. Hydraulic efficiency of a Rushton turbine impeller (United States)

    Chara, Z.; Kysela, B.; Fort, I.


    Based on CFD simulations hydraulic efficiency of a standard Rushton turbine impeller in a baffled tank was determined at a Reynolds number of ReM=33330. Instantaneous values of pressure and velocity components were used to draw up the macroscopic balance of the mechanical energy. It was shown that the hydraulic efficiency of the Rushton turbine impeller (energy dissipated in a bulk volume) is about 57%. Using this result we estimated a length scale in a non-dimensional equation of kinetic energy dissipation rate in the bulk volume as L=D/2.62.

  16. Advanced Hydraulic Studies on Enhancing Particle Removal

    DEFF Research Database (Denmark)

    He, Cheng

    The removal of suspended solids and attached pollutants is one of the main treatment processes in wastewater treatment. This thesis presents studies on the hydraulic conditions of various particle removal facilities for possible ways to increase their treatment capacity and performance by utilizing...... clarifier. The inlet zone of an existing rectangular storm water clarifier was redesigned to improve the fluid flow conditions and reduce the hydraulic head loss in order to remove the lamellar plates and adapt the clarifier to the needs of high-rate clarification of storm water with flocculant addition...

  17. Multimodel Robust Control for Hydraulic Turbine

    Directory of Open Access Journals (Sweden)

    Jakub Osuský


    Full Text Available The paper deals with the multimodel and robust control system design and their combination based on M-Δ structure. Controller design will be done in the frequency domain with nominal performance specified by phase margin. Hydraulic turbine model is analyzed as system with unstructured uncertainty, and robust stability condition is included in controller design. Multimodel and robust control approaches are presented in detail on hydraulic turbine model. Control design approaches are compared and used for derivation of new approaches which combine advantages of both.

  18. Thermal-hydraulics verification of a coarse-mesh OpenFOAM-based solver for a Sodium Fast Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bonet López, M.


    Recently, in the Institute Swiss Paul Scherrer Institut, is has developed a platform Multiphysics, based in OpenFOAM, that is capable of performing an analysis multidimensional of a reactor nuclear. One of the main objectives of this project is to verify the part of the code responsible for the Thermo-hydraulic analysis of the reactor. To carry out simulations this part of the code uses the approximation of thick mesh based on the equations of a porous medium. Therefore, the other objective is demonstrate that this method is applicable to the analysis of a reactor nuclear fast of sodium, focusing is in his capacity of predict the transfer of heat between a subset and the space vacuum between subsets of the core of the reactor. (Author)

  19. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike


    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  20. Hydraulic pitch control system for wind turbines: Advanced modeling and verification of an hydraulic accumulator

    DEFF Research Database (Denmark)

    Irizar, Victor; Andreasen, Casper Schousboe


    and capability of providing enough energy to rotate the blades is affected by thermal processes due to the compression and decompression of the gas chamber. This paper presents an in depth study of the thermodynamical processes involved in an hydraulic accumulator during operation, and how they affect the energy......Hydraulic pitch systems provide robust and reliable control of power and speed of modern wind turbines. During emergency stops, where the pitch of the blades has to be taken to a full stop position to avoid over speed situations, hydraulic accumulators play a crucial role. Their efficiency...

  1. Braking energy efficiently. Design of self-strengthing electro-hydraulic brake; Energieeffizient bremsen. Auslegung der Selbstverstaerkenden Elektro-Hydraulischen Bremse

    Energy Technology Data Exchange (ETDEWEB)

    Ewald, Julian; Liermann, Matthias; Murrenhoff, Hubertus [RWTH Aachen (Germany). Inst. fuer fluidtechnische Antriebe und Steuerungen


    Part of the project ''intelligent, Integrated mono-wheel-drivebrake-module'', sponsored by the German Research Foundation DFG at RWTH Aachen University is the research on a hydraulic brake with minimized energy consumption. The paper describes the boundary conditions for the development of the integrated brake. Based on the depiction of the new brake principle of self-energizing hydraulic brake, the technical solutions to fulfil the train-specific demands are visualized. To ensure a low consumption of the hydraulic energy gained from the retardation force, leakage-free ABS seat valves are used in the implemented concept. The measurement results from a first prototype verify the effect of hydraulic self-energisation. A second prototype is currently assembled at IFAS. It can be used together with both automotive and train brake discs. (orig./GL)

  2. Mauve assembly metrics. (United States)

    Darling, Aaron E; Tritt, Andrew; Eisen, Jonathan A; Facciotti, Marc T


    High-throughput DNA sequencing technologies have spurred the development of numerous novel methods for genome assembly. With few exceptions, these algorithms are heuristic and require one or more parameters to be manually set by the user. One approach to parameter tuning involves assembling data from an organism with an available high-quality reference genome, and measuring assembly accuracy using some metrics. We developed a system to measure assembly quality under several scoring metrics, and to compare assembly quality across a variety of assemblers, sequence data types, and parameter choices. When used in conjunction with training data such as a high-quality reference genome and sequence reads from the same organism, our program can be used to manually identify an optimal sequencing and assembly strategy for de novo sequencing of related organisms. GPL source code and a usage tutorial is at Supplementary data is available at Bioinformatics online.


    Directory of Open Access Journals (Sweden)



    Full Text Available The early low-cost, wood burning Thermo-Acoustic Engine (TAE known as Demo2.0-build-1 was developed by SCORE™ at the UK Centre and was capable of achieving 22.7 Watts of electricity. This prototype was limited to an operating temperature of about 300oC and due to excessive leaks could not operate continuously above ambient pressure. To absorb a thermal heat input of 4.4 kW from the burning wood so as to fulfil the required acoustic power, the Hot Heat Exchanger (HHX requires heating to the highest possible temperature. Therefore, a corrugated stainless steel plate HHX design that maximises heating surface area was adopted to the current Demo2 TAE design. In addition, the system is often pressurised to achieve higher acoustic intensity. Rigorous sealing of the system at high temperature is also required. A Demo2.1 TAE design based on the Demo2 TAE design and its prototype which is developed recently by the SCORE™ Centre in Malaysia was successfully constructed and well integrated with the stove. During the early construction and assembly process, fabrication difficulties and serious leak problems around the HHX’s edges were found when the apparatus operated at high temperatures. This is because the uneven geometrical HHX (convolution profile makes it difficult and relatively costly to be sealed. The Demo2.1 TAE is focused on the sealing efficiency and effective manufacturing cost by meantime to allow further modification variation. The design was made to adopt the local manufacturing technologies and materials available or easy to access in Malaysia. It also aims to minimise the parasitic heat losses to lower the system onset temperature. By removing the Linear Alternator and Tuning Volume from the system, preliminary measurements shown that the apparatus was oscillating at the frequency of 70 Hz. A much lower onset temperature was observed at around 144oC for the new configuration when the apparatus was oscillating at approximately 200 Pa

  4. A Direct Method of Hydraulic Conductivity Structure Identification for Subsurface Transport Modeling (United States)

    Zhang, Y.; Jiao, J.


    Solute transport in aquifers is strongly influenced by the spatial distribution of subsurface hydraulic conductivity (K), while limited drilling in data-sparse environments typically results in lack of data characterizing both the K and the in-situ fluid flow boundary conditions (BC). To characterize such environments, we present an efficient direct inverse method to simultaneously identify aquifer K pattern, its values, and the flow field. The method ensures fluid flow continuity using local approximate solutions of the governing equation conditioned to limited hydraulic measurements, while physics of the flow is enforced making the inverse problem well-posed. A single system of equations is assembled and solved, from which parameters and BC can be simultaneously estimated. For problems with irregular and regular K distributions, inversion is demonstrated for different measurement types, quality, and quantity. When measurement error is increased, the estimated K pattern is largely insensitive to the error, although the inverted flow field suffers greater inaccuracy. Local conductivity and Darcy flux measurements are found to have similar information content, although subtle differences exist in the inverted flow fields when long-term contaminant release is simulated. Local conductivity measurements lead to better identification of conductivity pattern, values, and the hydraulic head field; Darcy flux measurements lead to more accurate estimation of the velocity field and thus improved transport predictions. Overall, the velocity fields estimated based on the hydraulic data can lead to reasonable predictions of contaminant migration and breakthrough under unknown aquifer BC. We further argue that the goal of pattern inversion is to recover a sufficient level of detail to make transport prediction approximately accurate. Depending on the desired accuracy, fine-scale heterogeneity can be recovered only at increased characterization cost. Future work will (1) evaluate

  5. Thermo-electric oxidization of iron in lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Falk, Matthias


    Lithium niobate crystals (LiNbO{sub 3}) are a promising material for nonlinear-optical applications like frequency conversion to generate visible light, e.g., in laser displays, but their achievable output power is greatly limited by the ''optical damage'', i.e., light-induced refractive-index changes caused by excitation of electrons from iron impurities and the subsequent retrapping in unilluminated areas of the crystal. The resulting space-charge fields modify the refractive indices due to the electro-optic effect. By this ''photorefractive effect'' the phase-matching condition, i.e., the avoidance of destructive interference between light generated at different crystal positions due to the dispersion of the fundamental wave and the converted wave, is disturbed critically above a certain light intensity threshold. The influence of annealing treatments conducted in the presence of an externally applied electric field (''thermo-electric oxidization'') on the valence state of iron impurities and thereby on the optical damage is investigated. It is observed that for highly iron-doped LiNbO{sub 3} crystals this treatment leads to a nearly complete oxidization from Fe{sup 2+} to Fe{sup 3+} indicated by the disappearance of the absorption caused by Fe{sup 2+}. During the treatment an absorption front forms that moves through the crystal. The absorption in the visible as well as the electrical conductivity are decreased by up to five orders of magnitude due to this novel treatment. The ratio of the Fe{sup 2+} concentration to the total iron concentration - a measure for the strength of the oxidization - is in the order of 10{sup -6} for oxidized crystals whereas it is about 10{sup -1} for untreated samples. Birefringence changes are observed at the absorption front that are explained by the removal of hydrogen and lithium ions from the crystal that compensate for the charges of the also removed electrons from

  6. Mechatronic Hydraulic Drive with Regulator, Based on Artificial Neural Network (United States)

    Burennikov, Y.; Kozlov, L.; Pyliavets, V.; Piontkevych, O.


    Mechatronic hydraulic drives, based on variable pump, proportional hydraulics and controllers find wide application in technological machines and testing equipment. Mechatronic hydraulic drives provide necessary parameters of actuating elements motion with the possibility of their correction in case of external loads change. This enables to improve the quality of working operations, increase the capacity of machines. The scheme of mechatronic hydraulic drive, based on the pump, hydraulic cylinder, proportional valve with electrohydraulic control and programmable controller is suggested. Algorithm for the control of mechatronic hydraulic drive to provide necessary pressure change law in hydraulic cylinder is developed. For the realization of control algorithm in the controller artificial neural networks are used. Mathematical model of mechatronic hydraulic drive, enabling to create the training base for adjustment of artificial neural networks of the regulator is developed.

  7. Analysis of INDOT current hydraulic policies : [technical summary]. (United States)


    Hydraulic design often tends to be on a conservative side for safety reasons. Hydraulic structures are typically oversized with the goal being reduced future maintenance costs, and to reduce the risk of property owner complaints. This approach leads ...

  8. DCS Hydraulics Submittal, Valencia County, New Mexico, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  9. DCS Hydraulics Submittal, Otero County, New Mexico, USA (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  10. 23 CFR 650.111 - Location hydraulic studies. (United States)


    ... BRIDGES, STRUCTURES, AND HYDRAULICS Location and Hydraulic Design of Encroachments on Flood Plains § 650... base flood-plain development: (1) The risks associated with implementation of the action, (2) The...

  11. Chapter 12. Pure Tap Water Hydraulic Systems and Applications

    DEFF Research Database (Denmark)

    Conrad, Finn; Adelstorp, Anders


    Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications.......Presentation of developed a modern pure tap water hydraulic components (Nessie), systems and industrial applications....

  12. [The recent development of hydraulic tongs for claws]. (United States)

    Meermann, A


    A report is given concerning new hydraulic-driven claw tongs (relatively expensive, moderate portability, and satisfying handiness), which, by dint of its hydraulic cutting-force, relieves practitioners or claw-clipping personnel when treating and trimming cattle claws.

  13. Radiation thermo-chemical models of protoplanetary disks I. Hydrostatic disk structure and inner rim

    NARCIS (Netherlands)

    Woitke, P.; Kamp, I.; Thi, W. -F.

    Context. Emission lines from protoplanetary disks originate mainly in the irradiated surface layers, where the gas is generally warmer than the dust. Therefore, interpreting emission lines requires detailed thermo-chemical models, which are essential to converting line observations into

  14. Enhanced anaerobic digestion of corn stover by thermo-chemical pretreatment

    National Research Council Canada - National Science Library

    Wang Fang; Niu Weisheng; Zhang Andong; Yi Weiming


      In order to solve the problem of lignocellulose degraded speedily and efficiently in anaerobic digestion, the thermo-chemical pretreatment was applied to enhance biogas production from corn stover...

  15. Thermo-Plasmonics for Localized Graphitization and Welding of Polymeric Nanofibers

    Directory of Open Access Journals (Sweden)

    Ahnaf Usman Zillohu


    Full Text Available There is a growing interest in modulating the temperature under the illumination of light. As a heat source, metal nanoparticles (NPs have played an important role to pave the way for a new branch of plasmonics, i.e., thermo-plasmonics. While thermo-plasmonics have been well established in photo-thermal therapy, it has received comparatively less attention in materials science and chemistry. Here, we demonstrate the first proof of concept experiment of local chemistry and graphitization of metalized polymeric nanofibers through thermo-plasmonic effect. In particular, by tuning the plasmonic absorption of the nanohybrid through a change in the thickness of the deposited silver film on the fibers, the thermo-plasmonic effect can be adjusted in such a way that high enough temperature is generated enabling local welding and graphitization of the polymeric nanofibers.

  16. Modeling of thermo-electric battery’s calculation of hydrocarbons recuperation system

    Directory of Open Access Journals (Sweden)

    S. V. Boichenko


    Full Text Available With the maintainability to insure effective work of breathing valve of new generation authors developed thermal model expectation of a design thermo-electric battery, which in some measure of approach describes process of fuel condensation

  17. Data for effects of lanthanum complex on the thermo-oxidative aging of natural rubber

    Directory of Open Access Journals (Sweden)

    Wei Zheng


    Full Text Available Novel mixed antioxidants composed of antioxidant IPPD and lanthanum (La complex were added as a filler to form natural rubber (NR composites. By mechanical testing, Fourier transform infrared spectroscopy with attenuated total reflectance (FTIR-ATR and thermogravimetric analysis (TGA, a string of data, including the mechanical properties, the variation of internal groups and the thermal and thermo-oxidative decompositions of NR, was presented in this data article. The data accompanying its research article [1] studied the thermo-oxidative aging properties of NR in detail. The density function theoretical (DFT calculations were also used as an assistant to study the thermo-oxidative aging mechanism of NR. The data revealed that this new rare-earth antioxidant could indeed enhance the thermo-oxidative aging resistance of NR, which is associated with its different function mechanism from that of the pure antioxidant IPPD.

  18. A coupled hygro-thermo-mechanical model for concrete subjected to variable environmental conditions

    National Research Council Canada - National Science Library

    Gasch, Tobias; Malm, Richard; Ansell, Anders


    .... Variations of these fields must therefore be included implicitly in an analysis. This paper presents a coupled hygro-thermo-mechanical model for hardened concrete based on the framework of the Microprestress-Solidification theory...

  19. Emulsion for hydraulically breaking the gas layer

    Energy Technology Data Exchange (ETDEWEB)

    Matveev, D.F.; Kendis, M.Sh.; Polkovnichenko, I.T.; Yaroshenko, N.A.; Zhadanova, K.M.


    Acid monoesters and diesters of alkyl phosphates based on primary fatty alcohols of the C /sub 12/ -C /sub 16/ fraction are added as emulsifiers to an emulsion for hydraulically breaking the gas layer with a view to increasing its thermal stability. The components have the following ratio: hydrocarbon mixture, 9.8-20.6%; acid monoesters and diesters, 0.3-0.6%; aqueous fraction, 25.7-38.8%, and sand, 40-60%. In preparing the composition, the emulsifier is dissolved in a hydrocarbon liquid at 50/sup 0/C. Then, an aqueous phase is gradually added while stirring at a rate of 8,000-10,000 revolutions per minute for 30 min. Afterwards, sand is added. Tests of the mixtures for hydraulic breakage have been carried out in the laboratory by the KTs-5 consistometer. The plastic viscosity of the emulsions were determined in the absence of sand by the Reotest-2 device. The mixture which is proposed has heightened (up to 130/sup 0/C) thermal stability as compared with the known one (diesel fuel, water, ethanolamide of free fatty acids): the emulsions in a mixture with sand decompose at 70/sup 0/C. The high thermal stability of the mixture makes it possible to use hydraulic breakage in a wider range. The gas yield of the borehole doubles as a result of hydraulically breaking the productive layer by the given mixture.

  20. Hydraulic brake-system for a bicycle

    NARCIS (Netherlands)

    Van Frankenhuyzen, J.


    The invention relates to a hydraulic brake system for a bicycle which may or may not be provided with an auxiliary motor, comprising a brake disc and brake claws cooperating with the brake disc, as well as fluid-containing channels (4,6) that extend between an operating organ (1) and the brake

  1. Hydraulic urethral dilatation after optical internal urethrotomy ...

    African Journals Online (AJOL)

    Objectives: To determine the rate of early recurrence of urethral stricture in the first six months in patients who perform hydraulic urethral dilatation(HUD) after optical internal urethrotomy (OIU) and compare the early recurrence Fate in patients who perform HUD after OIU with the recurrence rates in patients reported in the ...

  2. Adaptive Sliding Mode Control for Hydraulic Drives

    DEFF Research Database (Denmark)

    Schmidt, Lasse; Andersen, Torben Ole; Pedersen, Henrik C.


    This paper presents a new adaptive sliding mode controller generally applicable for position tracking control of electro-hydraulic valve-cylinder drives (VCD’s). The proposed control scheme requires limited knowledge on system parameters, and employs only piston- and valve spool position feedback...

  3. investigation of relationships between geoelectric and hydraulic ...

    African Journals Online (AJOL)

    Timothy Ademakinwa

    flow and electrical current, are though different in principle, and are governed by different physical laws, have an obvious analogy. This is because the physical conditions (tortuosity and porosity) that control the electric current flow (and electrical resistivity) also control the lateral flow of the water (hydraulic conductivity) in ...

  4. Towards Autonomous Control of Hydraulic Actuator Systems

    DEFF Research Database (Denmark)

    Hansen, Poul Erik; Conrad, Finn


    Presentation of new developed control algorithms to increase autonomy and intelligence of hydraulic control systems. A refinement of relaytuning method is used to determine the control parameters of a lag/lead controller and a poleplacement controller. Further, a fail-safe function is developed...... to hinder surges and mechanical fractures. Experimental results verify the performance of the controllers....

  5. Xylem Hydraulics: Rising Up and Higher!

    Indian Academy of Sciences (India)

    IAS Admin

    cavitation fatigue may reduce cavitation resistance. Besides mechanical injury, herbivory and ... therefore, increased conduit length would reduce the number of wall-crossings and the hydraulic resistance to flow .... some role in limiting tree height, and if global warming is a real threat causing temperatures to shoot and ...

  6. Quantitative flow visualization using the hydraulic analogy

    Energy Technology Data Exchange (ETDEWEB)

    Rani, S.L.; Wooldridge, M.S. [Texas A and M Univ., College Station, TX (United States). Dept. of Mechanical Engineering


    The current work describes the development of a non-intrusive optical method for the quantitative determination of water heights along a hydraulic jump in shooting water flows on a water table. The technique involves optically superimposing a series of alternating dark and clear fringes on the water flow. It is proposed that the fringe deviations seen under a hydraulic jump can be simulated using a series of optical prisms oriented along the direction of the hydraulic jump. The height of each prism gives the local maximum water height at the fringe location. Three types of theoretical prism configurations (isosceles flat-topped prism, scalene flat-topped prism and rounded-topped prism models) have been studied for two flow systems: shooting flow around a wedge and around a cylinder. Equations relating the physical characteristics of the deviated fringes to the height of the theoretical prism and hence the local water height are presented. The variation in water height along a hydraulic jump for flow around a wedge obtained using the optical technique has been compared with heights obtained using a depth gauge. The results were in good agreement for the range of Froude numbers studied (Fr=1.9-3.6). The rounded-topped prism model led to the best agreement with the physical measurements, within 11% throughout the range of conditions studied. The uncertainty associated with the water height determination using the optical technique is {+-}10%. (orig.)

  7. Separation and pattern formation in hydraulic jumps

    DEFF Research Database (Denmark)

    Bohr, Tomas; Ellegaard, C.; Hansen, A. Espe


    We present theory and experiments on the circular hydraulic jump in the stationary regime. The theory can handle the situation in which the fluid flows over an edge far away from the jump. In the experiments the external height is controlled, and a series of transitions in the flow structure appe...

  8. Hydraulic response in flooded stream networks (United States)

    Åkesson, Anna; Wörman, Anders; Bottacin-Busolin, Andrea


    Average water travel times through a stream network were determined as a function of stage (discharge) and stream network properties. Contrary to most previous studies on the topic, the present work allowed for streamflow velocities to vary spatially (for most of the analyses) as well as temporally. The results show that different stream network mechanisms and properties interact in a complex and stage-dependent manner, implying that the relative importance of the different hydraulic properties varies in space and over time. Theoretical reasoning, based on the central temporal moments derived from the kinematic-diffusive wave equation in a semi-2-D formulation including the effects of flooded cross sections, shows that the hydraulic properties in contrast to the geomorphological properties will become increasingly important as the discharge increases, stressing the importance of accurately describing the hydraulic mechanisms within stream networks. Using the physically based, stage-dependent response function as a parameterization basis for the streamflow routing routine (a linear reservoir) of a hydrological model, discharge predictions were shown to improve in two Swedish catchments, compared with a conventional, statistically based parameterization scheme. Predictions improved for a wide range of modeled scenarios, for the entire discharge series as well as for peak flow conditions. The foremost novelty of the study lies in that the physically based response function for a streamflow routing routine has successfully been determined independent of calibration, i.e., entirely through process-based hydraulic stream network modeling.

  9. Modeling hydraulic resistance of floodplain vegetation

    NARCIS (Netherlands)

    Huthoff, Freek


    In this thesis, methods are investigated that describe the impact of vegetation on a flow field, and their potential for application in river-reach hydraulic computational models. This field of research is of great importance to river flood studies, as vegetation-covered foodplains commonly become


    Hydraulic fracturing is a physical process that creates fractures in silty clay soil to enhance its permeability. The technology, developed by the Risk Reduction Engineering Laboratory (RREL) and the University of Cincinnati, creates sand-filled horizontal fractures up to 1 in. i...

  11. The use of asphalt in hydraulic engineering

    NARCIS (Netherlands)

    Van de Velde, P.A.; Ebbens, E.H.; Van Herpen, J.A.


    Asphalt products have been used in the Netherlands in hydraulic engineering for a long time on a large scale, especially after the great disaster in 1953 when a large part of western Holland was flooded by the sea. After the disaster a great number of dikes had to be repaired very quickly and this

  12. Development of Effective Algorithm for Coupled Thermal-Hydraulics – Neutron-Kinetics Analysis of Reactivity Transient


    Peltonen, Joanna


    Analyses of nuclear reactor safety have increasingly required coupling of full three dimensional neutron kinetics (NK) core models with system transient thermal-hydraulics (TH) codes. To produce results within a reasonable computing time, the coupled codes use different spatial description of the reactor core. The TH code uses few, typically 5 to 20 TH channels, which represent the core. The NK code uses explicit node for each fuel assembly. Therefore, a spatial mapping of coarse grid TH and ...

  13. Intelligent Materials Used in Hydraulic, Fuel, and Rudder Control Systems of Aircrafts

    Directory of Open Access Journals (Sweden)

    D. B. Chernov


    Full Text Available The device is really intelligent, only if it is capable to respond to changing external conditions. The devices, which "feel" the external environment and can change their characteristics, have many advantages compared to the conventional devices: they are more efficient, wear out more slowly, and have lower operating costs.The scope of smart products is truly infinite. Alloys with memory effect also apply to intellectual content. Natural piezoelectric crystals such as silicon dioxide (intellectual material have been known for over a hundred years. They have greater stiffness and can be used at high operating frequencies. Due to the direct piezoelectric effect, they have been successfully used as a strain gage. Later came artificial ceramic piezoelectric materials; they are used as mechanical transducers. Thus, an inverse piezoelectric effect is usually used. It consists in the change of dimensions when an electric field is applied. Control of intellectual structure can be provided by heat fluxes, electromagnetic, hydraulic or piezoelectric forces and through application of electro-rheological, and magneto-rheological fluids. The article examines the intellectual materials and technologies that are already in place or will find its application in aviation hydraulic and fuel systems and control systems of rudders (CSR of aircrafts in the near future.The paper considers in detail the shape memory effect alloys (SMEA as "intelligent" materials. Actuators made from SMEA have a number of advantages: high working power; large recoverable deformation; different types of strain (tensile, compressive, bending and torsional; most specific value of the work per unit mass. All the SMEA advantages may be well used for the so-called thermo-mechanical connections (TMС of pipelines where SMEA drawbacks in this application, practically, do not affect the quality of TMC. In aircraft engineering the TMC were first used in hydraulic systems of the aircraft TU204

  14. Artificial phototropism based on a photo-thermo-responsive hydrogel (United States)

    Gopalakrishna, Hamsini

    Solar energy is leading in renewable energy sources and the aspects surrounding the efforts to harvest light are gaining importance. One such aspect is increasing the light absorption, where heliotropism comes into play. Heliotropism, the ability to track the sun across the sky, can be integrated with solar cells for more efficient photon collection and other optoelectronic systems. Inspired by plants, which optimize incident sunlight in nature, several researchers have made artificial heliotropic and phototropic systems. This project aims to design, synthesize and characterize a material system and evaluate its application in a phototropic system. A gold nanoparticle (Au NP) incorporated poly(N-isopropylacrylamide) (PNIPAAm) hydrogel was synthesized as a photo-thermo-responsive material in our phototropic system. The Au NPs generate heat from the incident via plasmonic resonance to induce a volume phase change of the thermo-responsive hydrogel PNIPAAm. PNIPAAm shrinks or swells at temperature above or below 32°C. Upon irradiation, the Au NP-PNIPAAm micropillar actuates, specifically bending toward the incident light and precisely following the varying incident angle. Swelling ratio tests, bending angle tests with a static incident light and bending tests with varying angles were carried out on hydrogel samples with varying Au NP concentrations. Swelling ratios ranging from 1.45 to 2.9 were recorded for pure hydrogel samples and samples with very low Au NP concentrations. Swelling ratios of 2.41 and 3.37 were calculated for samples with low and high concentrations of Au NPs, respectively. A bending of up to 88° was observed in Au NP-hydrogel pillars with a low Au NP concentration with a 90° incident angle. The light tracking performance was assessed by the slope of the pillar Bending angle (response angle) vs. Incident light angle plot. A slope of 1 indicates ideal tracking with top of the pillar being normal to the incident light, maximizing the photon

  15. Reversible thermo-pneumatic valves on centrifugal microfluidic platforms. (United States)

    Aeinehvand, Mohammad Mahdi; Ibrahim, Fatimah; Harun, Sulaiman Wadi; Kazemzadeh, Amin; Rothan, Hussin A; Yusof, Rohana; Madou, Marc


    Centrifugal microfluidic systems utilize a conventional spindle motor to automate parallel biochemical assays on a single microfluidic disk. The integration of complex, sequential microfluidic procedures on these platforms relies on robust valving techniques that allow for the precise control and manipulation of fluid flow. The ability of valves to consistently return to their former conditions after each actuation plays a significant role in the real-time manipulation of fluidic operations. In this paper, we introduce an active valving technique that operates based on the deflection of a latex film with the potential for real-time flow manipulation in a wide range of operational spinning speeds. The reversible thermo-pneumatic valve (RTPV) seals or reopens an inlet when a trapped air volume is heated or cooled, respectively. The RTPV is a gas-impermeable valve composed of an air chamber enclosed by a latex membrane and a specially designed liquid transition chamber that enables the efficient usage of the applied thermal energy. Inputting thermo-pneumatic (TP) energy into the air chamber deflects the membrane into the liquid transition chamber against an inlet, sealing it and thus preventing fluid flow. From this point, a centrifugal pressure higher than the induced TP pressure in the air chamber reopens the fluid pathway. The behaviour of this newly introduced reversible valving system on a microfluidic disk is studied experimentally and theoretically over a range of rotational frequencies from 700 RPM to 2500 RPM. Furthermore, adding a physical component (e.g., a hemispherical rubber element) to induce initial flow resistance shifts the operational range of rotational frequencies of the RTPV to more than 6000 RPM. An analytical solution for the cooling of a heated RTPV on a spinning disk is also presented, which highlights the need for the future development of time-programmable RTPVs. Moreover, the reversibility and gas impermeability of the RTPV in the

  16. Hydraulic Bureaucracy in a Modern Hydraulic Society – Strategic Group Formation in the Mekong Delta, Vietnam

    Directory of Open Access Journals (Sweden)

    Hans-Dieter Evers


    Among these strategic groups, the hydraulic bureaucracy and hydraulic construction business are the most crucial in terms of the specific role they play in the hydraulic landscape of the Mekong delta. Both groups exert considerable influence on water resources management and strive for the same resources, namely public funds (including Overseas Development Aid that is directed to hydraulic infrastructure development. This paper illustrates how both groups have emerged due to the growing need for water resources management in the delta and how they have set up alliances for mutually sharing resources in the long run. Furthermore, it is shown how both groups have adapted their resource-oriented strategies and actions to respond to the changes in the economic and political environment in Vietnam’s recent history.

  17. Power Management in Mobile Hydraulic Applications - An Approach for Designing Hydraulic Power Supply Systems

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen


    Throughout the last three decades energy consumption has become one of the primary design aspects in hydraulic systems, especially for mobile hydraulic systems, as power and cooling capacity here is at limited disposal. Considering the energy usage, this is dependent on component efficiency...... in a project to develop rules and methods for designing and controlling mobile hydraulic systems in the most energy efficient way, when also considering the operational aspects of the system. The paper first describes the thoughts and ideas behind the project and then focus on an automated approach to design...... the hydraulic power supply in the most energy efficient way, when considering a number of load situations. Finally an example of the approach is shown to prove its validity.}...

  18. Review of Well Operator Files for Hydraulically Fractured Oil and Gas Production Wells: Hydraulic Fracturing Operations (United States)

    EPA conducted a survey of oil and gas production wells hydraulically fractured by nine oil and gas service companies in the United States during 2009 and 2010. This is the second well file review report.

  19. Evaluation of data worth of hydraulic head and temperature in estimating hydraulic conductivities (United States)

    Ju, L.; Zhang, J.; Zeng, L.


    Hydraulic head and temperature have been extensively used in the inverse modeling for hyporheic exchange. It is of interest to compare the data worth (DW) of these measurements in estimating hydraulic conductivity. In this study, based on the relative entropy, we conducted a fully Bayesian DW analysis for these two types of measurements. Then, sandbox experiments were implemented to validate the numerical DW analysis results. A Bayesian estimation method, i.e., the Markov Chain Monte Carlo (MCMC) method, was employed to estimate the hydraulic conductivity field based on the single or both types of measurements. Our findings show that, with the typical in-situ observing error level, DW of the hydraulic head measurements is the lowest, while the combination of both measurements gives the highest DW value. This work is the first work of fully Bayesian DW analysis for hyporheic exchange, which has important applications in the optimal design of data-collection strategy for hyporheic studies.

  20. Analysis of Innovative Design of Energy Efficient Hydraulic Actuators


    M Osman Abdalla


    Hydraulic cylinder actuators are used extensively in industrial, construction and agricultural works. The small sized outlet ports of the cylinders resist the flow of discharged oil; and as a result the piston motion is slowed down. This causes a lot of heat generation and energy loss within the actuators. The study investigates and analyzes the possibilities of reducing the hydraulic resistance and increasing efficiency of the hydraulic actuator. Conventional hydraulic cylinders are simulate...

  1. Decentralized energy-saving hydraulic concepts for mobile working machines


    Lodewyks, Johann; Zurbrügg, Pascal


    The high price of batteries in working machines with electric drives offer a potential for investment in energy-saving hydraulic systems. The decentralized power network opens up new approaches for hydraulic- and hybrid circuits. In addition, the regeneration of energy can be used at any point of the machine. For the example of an excavator arm drive with a double cylinder two compact hydraulic circuits are presented, which relieve a central hydraulic system.

  2. Temporal variability in soil hydraulic properties under drip irrigation


    Mubarak, I.; Mailhol, J.C.; Angulo-Jaramillo, R.; Ruelle, P.; P. Boivin; M. R. Khaledian


    Predicting soil hydraulic properties and understanding their temporal variability during the irrigated cropping season are required to mitigate agro-environmental risks. This paper reports field measurements of soil hydraulic properties under two drip irrigation treatments, full (FT) and limited (LT). The objective was to identify the temporal variability of the hydraulic properties of field soil under high-frequency water application during a maize cropping season. Soil hydraulics were chara...

  3. Review of fluid and control technology of hydraulic wind turbines (United States)

    Cai, Maolin; Wang, Yixuan; Jiao, Zongxia; Shi, Yan


    This study examines the development of the fluid and control technology of hydraulic wind turbines. The current state of hydraulic wind turbines as a new technology is described, and its basic fluid model and typical control method are expounded by comparing various study results. Finally, the advantages of hydraulic wind turbines are enumerated. Hydraulic wind turbines are expected to become the main development direction of wind turbines.

  4. Pack of Applied Programs for Complex Analysis of Thermo-Compressors

    Directory of Open Access Journals (Sweden)

    S. V. Zditovetskaya


    Full Text Available The paper proposes a pack of applied programs intended for conjugate calculation of cycle parameters with heat exchangers of thermo-compressor loop and a calculation of irreversible losses in the loop binding including non-stationary operational  mode is added to the pack.The paper contains investigations of thermo-compressor operation in the system of forced and exhaust ventilation for reduction of heat consumption by a heater in the cold season of the year

  5. GaN-on-diamond electronic device reliability: Mechanical and thermo-mechanical integrity

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Dong [Center for Device Thermography and Reliability, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Interface Analysis Center, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Sun, Huarui; Pomeroy, James W.; Kuball, Martin, E-mail: [Center for Device Thermography and Reliability, H.H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL (United Kingdom); Francis, Daniel; Faili, Firooz; Twitchen, Daniel J. [Element-Six Technologies, Santa Clara, California 95054 (United States)


    The mechanical and thermo-mechanical integrity of GaN-on-diamond wafers used for ultra-high power microwave electronic devices was studied using a micro-pillar based in situ mechanical testing approach combined with an optical investigation of the stress and heat transfer across interfaces. We find the GaN/diamond interface to be thermo-mechanically stable, illustrating the potential for this material for reliable GaN electronic devices.

  6. Finite Element Modeling of Thermo Creep Processes Using Runge-Kutta Method


    Yu. I. Dimitrienko; E. A. Gubareva; Yu. V. Yurin


    Thermo creep deformations for most heat-resistant alloys, as a rule, nonlinearly depend on stresses and are practically non- reversible. Therefore, to calculate the properties of these materials the theory of plastic flow is most widely used. Finite-element computations of a stress-strain state of structures with account of thermo creep deformations up to now are performed using main commercial software, including ANSYS package. However, in most cases to solve nonlinear creep equations, one s...

  7. Influence of energy dissipation on plane harmonic waves through a piezo-thermo-elastic medium (United States)

    Atwa, Sarhan Y.; Nazeer, M.; Adnan, J.; Rehman, Nadia


    The concept of thermo-elasticity proposed by Green and Naghdi is employed to study the plane harmonic waves through a piezo-electric thermo-elastic medium. An analytical technique of normal modes is adopted to find the exact solution of the problem. The theoretical results obtained are represented graphically for the particular material. It is found that energy dissipation reduces the amplitude of waves propagating through the medium. The results fully agree with physical interpretation of the problem.

  8. Aircraft icing and thermo-mechanical expulsion de-icing technology




    The topic of this thesis is Aircraft Icing and Aircraft Icing and Thermo-Mechanical Expulsion De-icing Technology. The main objectives are to investigate aircraft icing meteorology and effects on aircraft, ice protection systems and thermo-mechanical expulsion de-icing technology. Initially, the research project focuses on aircraft icing meteorology, ice accumulation and icing effects on flight safety. A basic understanding of aircraft icing is explained, including icing conditions and par...

  9. Entwicklung von numerischen Methoden zur Berechnung von thermo-akustischen Wechselwirkungen in Gasturbinen-Brennkammern


    Reichling, Gilles


    The occurrence of thermo-acoustic instabilities in gas tubine combustion chambers can cause mechanical damage to the combustor system, up to the point of mechanical failure. This work aims to enable the calculation of thermo-acoustic interactions in gas turbine combustor systems through the development of a numerical scheme capable of computing time-dependent compressible reactive flows. Besides Mach numbers close to the subsonic limit, they may become very small in regions with high tem...

  10. Thermo-mechanical response and fatigue behavior of shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Kusagawa, Masaki; Asada, Yasuhide; Nakamura, Toshiya [Tokyo Univ. (Japan). Dept. of Mechanical Engineering


    Mechanical, thermo-mechanical and fatigue behaviors of Ni-Ti-Nb shape memory alloy (SMA) have been studied to prepare material data for a design purpose. Presented are testing devices, testing procedure and test results of monotonic tensile, recovery of inelastic deformation due to post heating (thermo-mechanical recovery) and fatigue for future use of the SMA as a structural material of nuclear incore structures. (orig.)

  11. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements


    Wei Zhou; Chuqiao Feng; Xinghong Liu; Shuhua Liu; Chao Zhang(Brookhaven National Lab); Wei Yuan


    This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE) analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC) in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on th...

  12. Assimilation of temperature and hydraulic gradients for quantifying the spatial variability of streambed hydraulics (United States)

    Huang, Xiang; Andrews, Charles B.; Liu, Jie; Yao, Yingying; Liu, Chuankun; Tyler, Scott W.; Selker, John S.; Zheng, Chunmiao


    Understanding the spatial and temporal characteristics of water flux into or out of shallow aquifers is imperative for water resources management and eco-environmental conservation. In this study, the spatial variability in the vertical specific fluxes and hydraulic conductivities in a streambed were evaluated by integrating distributed temperature sensing (DTS) data and vertical hydraulic gradients into an ensemble Kalman filter (EnKF) and smoother (EnKS) and an empirical thermal-mixing model. The formulation of the EnKF/EnKS assimilation scheme is based on a discretized 1D advection-conduction equation of heat transfer in the streambed. We first systematically tested a synthetic case and performed quantitative and statistical analyses to evaluate the performance of the assimilation schemes. Then a real-world case was evaluated to calculate assimilated specific flux. An initial estimate of the spatial distributions of the vertical hydraulic gradients was obtained from an empirical thermal-mixing model under steady-state conditions using a constant vertical hydraulic conductivity. Then, this initial estimate was updated by repeatedly dividing the assimilated specific flux by estimates of the vertical hydraulic gradients to obtain a refined spatial distribution of vertical hydraulic gradients and vertical hydraulic conductivities. Our results indicate that optimal parameters can be derived with fewer iterations but greater simulation effort using the EnKS compared with the EnKF. For the field application in a stream segment of the Heihe River Basin in northwest China, the average vertical hydraulic conductivities in the streambed varied over three orders of magnitude (5 × 10-1 to 5 × 102 m/d). The specific fluxes ranged from near zero (qz fish spawning and other wildlife incubation, regional flow and hyporheic solute transport models in the Heihe River Basin, as well as in other similar hydrologic settings.

  13. Hydraulic power take-off for wave energy systems

    DEFF Research Database (Denmark)

    Christensen, Georg Kronborg


    Investigation and laboratory experiments with a hydraulic power conversion system for converting forces from a 2.5m diamter float to extract energy from seawaves. The test rig consists of a hydraulic wave simulator and a hydraulic point absorber. The absorber converts the incomming forces...

  14. 7 CFR 2902.10 - Mobile equipment hydraulic fluids. (United States)


    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Mobile equipment hydraulic fluids. 2902.10 Section 2902.10 Agriculture Regulations of the Department of Agriculture (Continued) OFFICE OF ENERGY POLICY... PROCUREMENT Designated Items § 2902.10 Mobile equipment hydraulic fluids. (a) Definition. Hydraulic fluids...

  15. Development of an injectable pseudo-bone thermo-gel for application in small bone fractures. (United States)

    Kondiah, Pariksha J; Choonara, Yahya E; Kondiah, Pierre P D; Kumar, Pradeep; Marimuthu, Thashree; du Toit, Lisa C; Pillay, Viness


    A pseudo-bone thermo-gel was synthesized and evaluated for its physicochemical, mechanical and rheological properties, with its application to treat small bone fractures. The pseudo-bone thermo-gel was proven to have thermo-responsive properties, behaving as a solution in temperatures below 25°C, and forming a gelling technology when maintained at physiological conditions. Poly propylene fumerate (PPF), Pluronic F127 and PEG-PCL-PEG were strategically blended, obtaining a thermo-responsive delivery system, to mimic the mechanical properties of bone with sufficient matrix hardness and resilience. A Biopharmaceutics Classification System (BCS) class II drug, simvastatin, was loaded in the pseudo-bone thermo-gel, selected for its bone healing properties. In vitro release analysis was undertaken on a series of experimental formulations, with the ideal formulations obtaining its maximum controlled drug release profile up to 14days. Ex vivo studies were undertaken on an induced 4mm diameter butterfly-fractured osteoporotic human clavicle bone samples. X-ray, ultrasound as well as textural analysis, undertaken on the fractured bones before and after treatment displayed significant bone filling, matrix hardening and matrix resilience properties. These characteristics of the pseudo-bone thermo-gel thus proved significant potential for application in small bone fractures. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Thermo economical optimization of sugar plants with environmental constraints

    Energy Technology Data Exchange (ETDEWEB)

    Colombo, Mauricio; Mele, Fernando Daniel; Hernandez, Maria Rosa [Universidad Nacional de Tucuman (UNT), Tucuman (Argentina). Facultad de Ciencias Exactas y Tecnologia], Email:; Gatica, Jorge [Cleveland State University (CSU), Cleveland, OH (United States). Dept. of Chemical and Biomedical Engineering], Email:; Silveira, Jose Luz [Universidade Estadual Paulista (FEG/UNESP), Guaratingueta, SP (Brazil). Faculdade de Engenharia. Dept. de Energia], Email:


    This paper highlights the need for analysis and optimization techniques which can be applied to new energy systems and include considerations for environmental issues. These techniques have proven indispensable in dealing with the constrained optimization problem of finite natural resources and growing demands of energy. Within this framework, thermo economical optimization has gradually been brought to the forefront as a powerful tool in assisting the decision-making process. This work uses the technique of Life Cycle Analysis (LCA) as a means to include environmental indexes in the optimization process. While most of the environmental approaches formulate the optimization problem aiming to reduce residue generation without assessing the impact of this reduction on related processes, LCA considers environmental issues as an integral part of the optimization problem. A sugar cane processing plant located in Tucuman (Argentina) is selected as a case study. This example serves to highlight the importance of formulating solutions that ensure an efficient use of a common fuel to meet useful heat, shaft power, and electricity demands. (author)

  17. A coupled thermo-mechanical model of friction stir welding

    Directory of Open Access Journals (Sweden)

    Veljić Darko M.


    Full Text Available A coupled thermo-mechanical model was developed to study the temperature fields, the plunge force and the plastic deformations of Al alloy 2024-T351 under different rotating speed: 350, 400 and 450 rpm, during the friction stir welding (FSW process. Three-dimensional FE model has been developed in ABAQUS/Explicit using the arbitrary Lagrangian-Eulerian formulation, the Johnson-Cook material law and the Coulomb’s Law of friction. Numerical results indicate that the maximum temperature in the FSW process is lower than the melting point of the welding material. The temperature filed is approximately symmetrical along the welding line. A lower plastic strain region can be found near the welding tool in the trailing side on the bottom surface. With increasing rotation speed, the low plastic strain region is reduced. When the rotational speed is increased, the plunge force can be reduced. Regions with high equivalent plastic strains are observed which correspond to the nugget and the flow arm.

  18. A thermo-elastoplastic model for soft rocks considering structure (United States)

    He, Zuoyue; Zhang, Sheng; Teng, Jidong; Xiong, Yonglin


    In the fields of nuclear waste geological deposit, geothermy and deep mining, the effects of temperature on the mechanical behaviors of soft rocks cannot be neglected. Experimental data in the literature also showed that the structure of soft rocks cannot be ignored. Based on the superloading yield surface and the concept of temperature-deduced equivalent stress, a thermo-elastoplastic model for soft rocks is proposed considering the structure. Compared to the superloading yield surface, only one parameter is added, i.e. the linear thermal expansion coefficient. The predicted results and the comparisons with experimental data in the literature show that the proposed model is capable of simultaneously describing heat increase and heat decrease of soft rocks. A stronger initial structure leads to a greater strength of the soft rocks. Heat increase and heat decrease can be converted between each other due to the change of the initial structure of soft rocks. Furthermore, regardless of the heat increase or heat decrease, a larger linear thermal expansion coefficient or a greater temperature always leads to a much rapider degradation of the structure. The degradation trend will be more obvious for the coupled greater values of linear thermal expansion coefficient and temperature. Lastly, compared to heat decrease, the structure will degrade more easily in the case of heat increase.

  19. Optimization of thermo-chemical hydrolysis of kitchen wastes. (United States)

    Vavouraki, Aikaterini Ioannis; Angelis, Evangelos Michael; Kornaros, Michael


    Municipal Solid Wastes (MSWs) in Greece consist mainly of fermentable organic material such as food scraps (∼50%) and paper residuals (∼20%). The aim of this work was to study the thermo-chemical pretreatment of the kitchen waste (KW) fraction of MSW focusing on biotechnological exploitation of pretreated wastes for biofuel production. A representative sample of municipal food residues was derived by combining weighted amounts of each individual type of residue recognized in daily samples obtained from the University of Patras' students restaurant located at the Students Residence Hall (Greece). Chemical pretreatment experiments of the representative KW sample were performed using several types of chemical solutions (i.e. H2SO4, HCl, NaOH, H2SO3) of different solute concentration (0.7%, 1.5%, 3%) at three temperatures (50, 75, 120°C) and a range of residence times (30-120min). Optimized results proved that chemical pretreatment of KW, using either 1.12% HCl for 94min or 1.17% HCl for 86min (at 100°C), increased soluble sugars concentration by 120% compared to untreated KW. The increase of soluble sugars was mainly attributed to the mono-sugars glucose and fructose. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Thermo-economic performance of inclined solar water distillation systems

    Directory of Open Access Journals (Sweden)

    Agboola Phillips O.


    Full Text Available This study investigates the thermo-economic performance of different configurations of inclined solar water desalination for parameters such as daily production, efficiency, system cost and distilled water production cost. The four different configurations considered for this study are as follows; 1. Inclined solar water distillation with bare absorber plate (IISWD with daily production of 5.46 kg/m2 day and daily efficiency of 48.3%. 2. Inclined solar water distillation with wick on absorber plate (IISWDW with daily production of 6.41kg/m2 day and daily efficiency 50.3%. 3. Inclined solar water distillation with wire mesh on absorber plate (IISWDWM with daily production n of 3.03 kg/m2 day and daily efficiency 32.6%. 4. Inclined solar water distillation with bare absorber plate (ISWD. (Control System with daily production of 3.25 kg/m2 day and daily efficiency of 40.1%. The systems potable water cost price ranges from 0.03 $/L for IISWDW to 0.06$/L for IISWDWM System. All the systems are economically and technically feasible as a solar distillation system for potable water in Northern Cyprus. The price of potable water from water vendors/hawkers ranges from 0.11-0.16 $/L. It is more economically viable to have the rooftop inclined solar water desalination system than procuring potable water from vendors.`

  1. Thermo-mechanical characterization of ceramic pebbles for breeding blanket

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, Rosa, E-mail:; Aquaro, Donato; Scaletti, Luca


    Highlights: • Experimental activities to characterize the Li{sub 4}SiO{sub 4}. • Compression tests of pebbles. • Experimental evaluation of thermal conductivity of pebbles bed at different temperatures. • Experimental test with/without compression load. - Abstract: An open issue for fusion power reactor is to design a suitable breeding blanket capable to produce the necessary quantity of the tritium and to transfer the energy of the nuclear fusion reaction to the coolant. The envisaged solution called Helium-Cooled Pebble Bed (HCPB) breeding blanket foresees the use of lithium orthosilicate (Li{sub 4}SiO{sub 4}) or lithium metatitanate (Li{sub 2}TiO{sub 3}) pebble beds. The thermal mechanical properties of the candidate pebble bed materials are presently extensively investigated because they are critical for the feasibility and performances of the numerous conceptual designs which use a solid breeder. This study is aimed at the investigation of mechanical properties of the lithium orthosilicate and at the characterization of the main chemical, physical and thermo-mechanical properties taking into account the production technology. In doing that at the Department of Civil and Industrial Engineering (DICI) of the University of Pisa adequate experiments were carried out. The obtained results may contribute to characterize the material of the pebbles and to optimize the design of the envisaged fusion breeding blankets.

  2. Thermo-hydro-mechanical coupling of largely transformed media (United States)

    Karrech, A.; Poulet, T.; Regenauer-Lieb, K.


    Coupling of multi-physics problems is gaining momentum and attracting the interest of many researchers because of its potential in explaining challenging issues in geothermal industry, mineral deposition processes, waste and gas storage etc. It benefited tremendously from a long history of developments in terms of thermodynamics of systems in equilibrium. Yet, most of the existing literature is limited to infinitesimal transformations of materials (see and references in there). The few models that included finite strain considered classical corotational rates which are known to produce unstable hyperbolic or oscillatory responses especially in shear zones. They also ignored large changes in temperature. The close to equilibrium approaches proved to be viable for engineering design especially in stable porous media, but they are certainly limited in assessing risks and predicting the responses of materials undergoing events of large magnitudes. In this paper, we propose a new formulation which includes logarithmic strain measures and co-rotational rates overcoming the unstable responses in shear zones. It also allows for large temperature variations and includes feedbacks which explicitly track the rate of irreversible entropy production. This fully coupled framework for thermo-hydro-mechanical porous media required the development of a finite element model based on the Galerkin weighting method . The numerical approach includes Newton-Raphson iterative procedures to account for the coupling terms as well as the hyperelasto-plastic response. It also uses the reversible/irreversible split algorithm developed to describe permanent deformation in finite strain.

  3. A thermo-fluid analysis in magnetic hyperthermia (United States)

    Iordana, Astefanoaei; Ioan, Dumitru; Alexandra, Stancu; Horia, Chiriac


    In the last years, hyperthermia induced by the heating of magnetic nanoparticles (MNPs) in an alternating magnetic field received considerable attention in cancer therapy. The thermal effects could be automatically controlled by using MNPs with selective magnetic absorption properties. In this paper, we analyze the temperature field determined by the heating of MNPs, injected in a malignant tissue, subjected to an alternating magnetic field. The main parameters which have a strong influence on temperature field are analyzed. The temperature evolution within healthy and tumor tissues are analyzed by finite element method (FEM) simulations in a thermo-fluid model. The cooling effect produced by blood flow in blood vessels from the tumor is considered. A thermal analysis is conducted under different distributions of MNP injection sites. The interdependence between the optimum dose of the nanoparticles and various types of tumors is investigated in order to understand their thermal effect on hyperthermia therapy. The control of the temperature field in the tumor and healthy tissues is an important step in the healing treatment.

  4. Standardization of Thermo-Fluid Modeling in Modelica.Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Rudiger; Casella, Francesco; Sielemann, Michael; Proelss, Katrin; Otter, Martin; Wetter, Michael


    This article discusses the Modelica.Fluid library that has been included in the Modelica Standard Library 3.1. Modelica.Fluid provides interfaces and basic components for the device-oriented modeling of onedimensional thermo-fluid flow in networks containing vessels, pipes, fluid machines, valves and fittings. A unique feature of Modelica.Fluid is that the component equations and the media models as well as pressure loss and heat transfer correlations are decoupled from each other. All components are implemented such that they can be used for media from the Modelica.Media library. This means that an incompressible or compressible medium, a single or a multiple substance medium with one or more phases might be used with one and the same model as long as the modeling assumptions made hold. Furthermore, trace substances are supported. Modeling assumptions can be configured globally in an outer System object. This covers in particular the initialization, uni- or bi-directional flow, and dynamic or steady-state formulation of mass, energy, and momentum balance. All assumptions can be locally refined for every component. While Modelica.Fluid contains a reasonable set of component models, the goal of the library is not to provide a comprehensive set of models, but rather to provide interfaces and best practices for the treatment of issues such as connector design and implementation of energy, mass and momentum balances. Applications from various domains are presented.

  5. Micron-gap ThermoPhotoVoltaics (MTPV) (United States)

    DiMatteo, R.; Greiff, P.; Seltzer, D.; Meulenberg, D.; Brown, E.; Carlen, E.; Kaiser, K.; Finberg, S.; Nguyen, H.; Azarkevich, J.; Baldasaro, P.; Beausang, J.; Danielson, L.; Dashiell, M.; DePoy, D.; Ehsani, H.; Topper, W.; Rahner, K.; Siergiej, R.


    This paper discusses advances made in the field of Micron-gap ThermoPhotoVoltaics (MTPV). Initial modeling has shown that MTPV may enable significant performance improvements relative to conventional far field TPV. These performance improvements include up to a 10× increase in power density, 30% to 35% fractional increase in conversion efficiency, or alternatively, reduced radiator temperature requirements to as low as 550°C. Recent experimental efforts aimed at supporting these predictions have successfully demonstrated that early current and voltage enhancements could be done repeatedly and at higher temperatures. More importantly, these efforts indicated that no unknown energy transfer process occurs reducing the potential utility of MTPV. Progress has been made by running tests with at least one of the following characteristics relative to the MTPV results reported in 2001: • Tests at over twice the temperature (900°C). • Tests at 50% smaller gaps (0.12 μm) • Tests with emitter areas from 4 to 100 times larger (16 mm2 to 4 cm2). • Tests with over 20× reduction in parasitic spacer heat flow. Remaining fundamental challenges to realizing these improvements relative to the recent breakthroughs in conventional far field TPV include reengineering the photovoltaic (PV) diode, filter, and emitter system for MTPV and engineering devices and systems that can achieve submicron vacuum gaps between surfaces with large temperature differences.

  6. Micron-gap ThermoPhotoVoltaics (MTPV)

    Energy Technology Data Exchange (ETDEWEB)

    R DiMatteo; P Greiff; D Seltzer; D Meaulenberg; E Brown; E Carlen; K Kaiser; S Finberg; H Ngyyen; J Azarkevich; P Baldasaro; J Beausang; L Danielson; M Dashiell; D DePoy; H Ehsani; W Topper; K Rahner; R Siergiej


    This paper discusses advances made in the field of Micron-gap ThermoPhotoVoltaics (MTPV). Initial modeling has shown that MTPV may enable significant performance improvements relative to conventional far field TPV. These performance improvements include up to a 10x increase in power density, 30% to 35% fractional increase in conversion efficiency, or alternatively, reduced radiator temperature requirements to as low as 550 C. Recent experimental efforts aimed at supporting these predictions have successfully demonstrated that early current and voltage enhancements could be done repeatedly and at higher temperatures. More importantly, these efforts indicated that no unknown energy transfer process occurs reducing the potential utility of MTPV. Progress has been made by running tests with at least one of the following characteristics relative to the MTPV results reported in 2001: Tests at over twice the temperature (900 C); Tests at 50% smaller gaps (0.12 {micro}m); Tests with emitter areas from 4 to 100 times larger (16 mm{sup 2} to 4 cm{sup 2}); and Tests with over 20x reduction in parasitic spacer heat flow. Remaining fundamental challenges to realizing these improvements relative to the recent breakthroughs in conventional far field TPV include reengineering the photovoltaic (PV) diode, filter, and emitter system for MTPV and engineering devices and systems that can achieve submicron vacuum gaps between surfaces with large temperature differences.

  7. Characterization of sprays for thermo-stabilized pneumatic nebulizer. (United States)

    Ochowiak, M; Doligalski, M; Broniarz-Press, L; Matuszak, M; Gościniak, A


    The research presents the nebulizer spray chamber temperature controller responsible for controlling temperature of aerosol produced as a result of nebulizing process. The motivation to make an attempt to improve modern pneumatic devices was the shortage of this kind of apparatuses on the market allowing the production of thermos aerosol. A designed temperature controlling system for pneumatic nebulizers aims at increasing and stabilizing temperature of produced aerosols and increasing aerosol therapy safety. The system is intended for producing aerosol in the process of pneumatic nebulization with the temperature similar to that of the human body. Experiments that were carried out confirmed good performance of the device. It was proved that with the increase of temperature the amount of big droplets fall and the entire spectrum of the droplet diameter moves towards smaller droplet diameter values. Reduction of liquid viscosity related to the increase of temperature leads to the reduction of droplet diameter and, as a result, the reduction of the Sauter mean diameter value. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Thermo-Mechanical Fatigue Crack Growth of RR1000

    Directory of Open Access Journals (Sweden)

    Christopher John Pretty


    Full Text Available Non-isothermal conditions during flight cycles have long led to the requirement for thermo-mechanical fatigue (TMF evaluation of aerospace materials. However, the increased temperatures within the gas turbine engine have meant that the requirements for TMF testing now extend to disc alloys along with blade materials. As such, fatigue crack growth rates are required to be evaluated under non-isothermal conditions along with the development of a detailed understanding of related failure mechanisms. In the current work, a TMF crack growth testing method has been developed utilising induction heating and direct current potential drop techniques for polycrystalline nickel-based superalloys, such as RR1000. Results have shown that in-phase (IP testing produces accelerated crack growth rates compared with out-of-phase (OOP due to increased temperature at peak stress and therefore increased time dependent crack growth. The ordering of the crack growth rates is supported by detailed fractographic analysis which shows intergranular crack growth in IP test specimens, and transgranular crack growth in 90° OOP and 180° OOP tests. Isothermal tests have also been carried out for comparison of crack growth rates at the point of peak stress in the TMF cycles.

  9. Characterize the hydraulic behaviour of grate inlet in urban drainage to prevent the urban's flooding (United States)

    Tellez Alvarez, Jackson David; Gomez, Manuel; Russo, Beniamino; Redondo, Jose M.


    image velocimetry to measure surface flow velocities has been developed and validated with the experiments assays with the grate inlets [3 - 4]. Indeed, the Methodology carried out can become a useful tools to understand the hydraulics behavior of the flow approaching the inlet where the traditional measuring equipment have serious problems and limitations [5 - 6]. References [1] Gómez, M., Macchione, F. and Russo, B. (2006). Inlet systems and risk criteria associated to street runoff application to urban drainage catchments. 27 Corso di aggiornamiento in techniche per la difesa dall'inquinamento. [2] Russo, B., Gómez, M., & Tellez, J. (2013). Methodology to Estimate the Hydraulic Efficiency of Nontested Continuous Transverse Grates. Journal of Irrigation and Drainage Engineering, 139(10), 864-871. doi:10.1061/(ASCE)IR.1943-4774.0000625 [3] DigiFlow. User Guide. (2012), (June). [4] Vila, T., Tellez, J., Sanchez, J.M., Sotillos, L., Diez, M., and Redondo, J.M. (2014). Diffusion in fractal wakes and convective thermoelectric flows. Geophysical Research Abstracts - EGU General Assembly 2014. [5] Tellez, J., Gómez, M., Russo, B. and Redondo, J.M. (2014). A simple technique to measuring surface flow velocity to analyze the behavior of fields velocities in hydraulics engineer applications. Geophysical Research Abstracts - EGU General Assembly 2015. [6] Tellez, J., Gómez, M. and Russo, B. (2015). Técnica para la obtención del campo de velocidad del flujo superficial en proximidad de rejas de alcantarillado. IV Jornadas de Ingeniería del Agua. La precipitación y los procesos erosivos.

  10. ex vivo DNA assembly

    Directory of Open Access Journals (Sweden)

    Adam B Fisher


    Full Text Available Even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. Advances in cloning techniques have resulted in powerful in vitro and in vivo assembly of DNA. However, monetary and time costs have limited these approaches. Here, we report an ex vivo DNA assembly method that uses cellular lysates derived from a commonly used laboratory strain of Escherichia coli for joining double-stranded DNA with short end homologies embedded within inexpensive primers. This method concurrently shortens the time and decreases costs associated with current DNA assembly methods.

  11. Target Assembly Facility (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  12. Composite turbine bucket assembly (United States)

    Liotta, Gary Charles; Garcia-Crespo, Andres


    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.


    Human Engineering Inst., Cleveland, OH.


  14. Hydraulic Limits on Maximum Plant Transpiration (United States)

    Manzoni, S.; Vico, G.; Katul, G. G.; Palmroth, S.; Jackson, R. B.; Porporato, A. M.


    Photosynthesis occurs at the expense of water losses through transpiration. As a consequence of this basic carbon-water interaction at the leaf level, plant growth and ecosystem carbon exchanges are tightly coupled to transpiration. In this contribution, the hydraulic constraints that limit transpiration rates under well-watered conditions are examined across plant functional types and climates. The potential water flow through plants is proportional to both xylem hydraulic conductivity (which depends on plant carbon economy) and the difference in water potential between the soil and the atmosphere (the driving force that pulls water from the soil). Differently from previous works, we study how this potential flux changes with the amplitude of the driving force (i.e., we focus on xylem properties and not on stomatal regulation). Xylem hydraulic conductivity decreases as the driving force increases due to cavitation of the tissues. As a result of this negative feedback, more negative leaf (and xylem) water potentials would provide a stronger driving force for water transport, while at the same time limiting xylem hydraulic conductivity due to cavitation. Here, the leaf water potential value that allows an optimum balance between driving force and xylem conductivity is quantified, thus defining the maximum transpiration rate that can be sustained by the soil-to-leaf hydraulic system. To apply the proposed framework at the global scale, a novel database of xylem conductivity and cavitation vulnerability across plant types and biomes is developed. Conductivity and water potential at 50% cavitation are shown to be complementary (in particular between angiosperms and conifers), suggesting a tradeoff between transport efficiency and hydraulic safety. Plants from warmer and drier biomes tend to achieve larger maximum transpiration than plants growing in environments with lower atmospheric water demand. The predicted maximum transpiration and the corresponding leaf water

  15. Hydraulics and pneumatics a technician's and engineer's guide

    CERN Document Server

    Parr, Andrew


    Hydraulics and Pneumatics: A Technician's and Engineer's Guide provides an introduction to the components and operation of a hydraulic or pneumatic system. This book discusses the main advantages and disadvantages of pneumatic or hydraulic systems.Organized into eight chapters, this book begins with an overview of industrial prime movers. This text then examines the three different types of positive displacement pump used in hydraulic systems, namely, gear pumps, vane pumps, and piston pumps. Other chapters consider the pressure in a hydraulic system, which can be quickly and easily controlled

  16. Sensitivity of hydrodynamic parameters' distributions in VVER-1000 reactor pressure vessel (RPV) with respect to uncertainty of the local hydraulic resistance coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Pasichnyk, I.; Velkov, K. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany); Nikonov, S. [NRC ' ' Kurchatov Institute' ' , Moscow (Russian Federation)


    The paper presents an uncertainty and sensitivity (U and S) study of the VVER-1000 reactor hydraulic properties. It is based on the OECD/NEA coolant transient Benchmark (K-3) on measured data at Kalinin-3 Nuclear Power Plant (NPP). The novelty of the work consists of taking into consideration all hydraulic uncertainty parameters used in the modeling of the reactor pressure vessel (RPV) internals. A detailed parallel channel ATHLET model of the RPV is developed. It consists of ca. 26 600 control volumes most of them connected with junctions for cross flows. The specific geometry of the gap between upper part of the baffle and upper part of fuel assembly and also a fuel assembly head is taken explicitly into account The influence of the input parameters on the sensitivity and uncertainty of the RPV outlet and inlet temperatures and mass flows as well assembly-wise mass flow and coolant temperature axial distributions is shown.

  17. Development of fuel performance and thermal hydraulic technology

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Youn Ho; Song, K. N.; Kim, H. K. and others


    Space grid in LWR fuel assembly is a key structural component to support fuel rods and to enhance heat transfer from fuel rod to the coolant. Therefore, the original spacer grid has been developed. In addition, new phenomena in fuel behavior occurs at the high burnup, so that models to analyze those new phenomena were developed. Results of this project can be summarized as follows. - Seven different spacer grid candidates have been invented and submitted for domestic and US patents. Spacer grid test specimen(3x3 array and 5x5 array) were fabricated for each candidate and the mechanical tests were performed. - Basic technologies in the mechanical and thermal hydraulic behavior in the spacer grid development are studied and relevant test facilities were established - Fuel performance analysis models and programs were developed for the high burnup pellet and cladding, and fuel performance data base were compiled - Procedures of fuel characterization and in-/out of-pile tests were prepared - Conceptual design of fuel rod for integral PWR was carried out. (author)

  18. A novel energy recovery system for parallel hybrid hydraulic excavator. (United States)

    Li, Wei; Cao, Baoyu; Zhu, Zhencai; Chen, Guoan


    Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  19. A Novel Energy Recovery System for Parallel Hybrid Hydraulic Excavator

    Directory of Open Access Journals (Sweden)

    Wei Li


    Full Text Available Hydraulic excavator energy saving is important to relieve source shortage and protect environment. This paper mainly discusses the energy saving for the hybrid hydraulic excavator. By analyzing the excess energy of three hydraulic cylinders in the conventional hydraulic excavator, a new boom potential energy recovery system is proposed. The mathematical models of the main components including boom cylinder, hydraulic motor, and hydraulic accumulator are built. The natural frequency of the proposed energy recovery system is calculated based on the mathematical models. Meanwhile, the simulation models of the proposed system and a conventional energy recovery system are built by AMESim software. The results show that the proposed system is more effective than the conventional energy saving system. At last, the main components of the proposed energy recovery system including accumulator and hydraulic motor are analyzed for improving the energy recovery efficiency. The measures to improve the energy recovery efficiency of the proposed system are presented.

  20. Thermal Hydraulic Design of PWT Accelerating Structures

    CERN Document Server

    Yu, David; Chen Ping; Lundquist, Martin; Luo, Yan


    Microwave power losses on the surfaces of accelerating structures will transform to heat which will deform the structures if it is not removed in time. Thermal hydraulic design of the disk and cooling rods of a Plane Wave Transformer (PWT) structure is presented. Experiments to measure the hydraulic (pressure vs flow rate) and cooling (heat removed vs flow rate) properties of the PWT disk are performed, and results compared with simulations using Mathcad models and the COSMOSM code. Both experimental and simulation results showed that the heat deposited on the structure could be removed effectively using specially designed water-cooling circuits and the temperature of the structure could be controlled within the range required.

  1. Thermal-hydraulic analysis of nuclear reactors

    CERN Document Server

    Zohuri, Bahman


    This text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play.  Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors. This book also: Provides extensive coverage of thermal hydraulics with thermodynamics in nuclear reactors, beginning with fundamental ...

  2. Modeling, Optimization & Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Tahavori, Maryamsadat


    in water network is pressure management. By reducing the pressure in the water network, the leakage can be reduced significantly. Also it reduces the amount of energy consumption in water networks. The primary purpose of this work is to develop control algorithms for pressure control in water supply....... The nonlinear network model is derived based on the circuit theory. A suitable projection is used to reduce the state vector and to express the model in standard state-space form. Then, the controllability of nonlinear nonaffine hydraulic networks is studied. The Lie algebra-based controllability matrix is used...... to solve nonlinear optimal control problems. In the water supply system model, the hydraulic resistance of the valve is estimated by real data and it is considered to be a disturbance. The disturbance in our system is updated every 24 hours based on the amount of water usage by consumers every day. Model...

  3. Hydraulic Aspects of Vegetation Maintanence in Streams

    DEFF Research Database (Denmark)

    Larsen, Torben; Vestergaard, Kristian


    This paper describes the importance of the underwater vegetation on Danish streams and some of the consequences of vegetation maintenance. the influence of the weed on the hydraulic conditions is studied through experiments in a smaller stream and the effect of cutting channels through the weed...... is measured. A method for predicting the Manning's n as a function of the discharge conditions is suggested, and also a working hypothesis for predictions of the effect of channel cutting is presented....

  4. The Hydraulic Ram (Or Impulse) Pump (United States)

    Mills, Allan


    The hydraulic impulse pump utilizes a fraction of the momentum of a flowing stream to lift a small portion of that water to a higher level. There it may be accumulated in an elevated cistern to provide sufficient water for several families, for the pump works 24 h a day with no additional source of energy. The operation of the pump is described,…

  5. Control Reconfigurability of Bilinear Hydraulic Drive Systems

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza; Tahavori, Maryamsadat


    The objective of the methods within the framework of the plug and play process control and particularly fault tolerant control is to establish control techniques which guarantee a certain performance through control reconfiguration at the occurrence of the faults or changes. These methods cannot ......-based analogous counterpart, which has been previously proposed for the linear processes. The control reconfigurability is calculated for the bilinear models of an electro-hydraulic drive to show its relevance to redundant actuating capabilities in the models....

  6. Application of hydraulic circuit in mechatronic systems

    Directory of Open Access Journals (Sweden)

    Michal Tropp


    Full Text Available This paper focuses on the calculations of basic variables of the hydrostatic circuits in the mechatronic systems. These calculations are important for machines used for forming materials by means of great forces, e.g. hydraulic press. Due to differences in equipment design, lack of a universal method of calculation is noticeable. It is necessary to determine the coefficients required for the calculations in an experimental way.

  7. Predicting channel bed topography in hydraulic falls (United States)

    Tam, Alexander; Yu, Zheng; Kelso, Richard M.; Binder, Benjamin J.


    We consider inverse methods for predicting the channel bed topography in experiments of hydraulic falls. Nonlinear solutions and weakly nonlinear approximations from Euler-based models are compared to experimental observations. Accurate predictions are obtained for the maximum height of the topography and its constant horizontal level far downstream using the nonlinear method. The weakly nonlinear approximation is shown only to be a good predictor of the maximum height of the topography. The error in the inverse predictions is examined and discussed.

  8. The hydraulic ram (or impulse) pump (United States)

    Mills, Allan


    The hydraulic impulse pump utilizes a fraction of the momentum of a flowing stream to lift a small portion of that water to a higher level. There it may be accumulated in an elevated cistern to provide sufficient water for several families, for the pump works 24 h a day with no additional source of energy. The operation of the pump is described, along with a working demonstration model constructed from plastic waste pipe and fittings.

  9. Extending reference assembly models

    DEFF Research Database (Denmark)

    Church, Deanna M.; Schneider, Valerie A.; Steinberg, Karyn Meltz


    The human genome reference assembly is crucial for aligning and analyzing sequence data, and for genome annotation, among other roles. However, the models and analysis assumptions that underlie the current assembly need revising to fully represent human sequence diversity. Improved analysis tools...... and updated data reporting formats are also required....

  10. Thermo-Catalytic Reforming of municipal solid waste. (United States)

    Ouadi, Miloud; Jaeger, Nils; Greenhalf, Charles; Santos, Joao; Conti, Roberto; Hornung, Andreas


    Municipal Solid Waste (MSW) refers to a heterogeneous mixture composed of plastics, paper, metal, food and other miscellaneous items. Local authorities commonly dispose of this waste by either landfill or incineration which are both unsustainable practices. Disposing of organic wastes via these routes is also becoming increasingly expensive due to rising landfill taxes and transport costs. The Thermo-Catalytic Reforming (TCR®) process, is a proposed valorisation route to transform organic wastes and residues, such as MSW, into sustainable energy vectors including (H2 rich synthesis gas, liquid bio-oil and solid char). The aim herein, was to investigate the conversion of the organic fraction of MSW into fuels and chemicals utilising the TCR technology in a 2kg/h continuous pilot scale reactor. Findings show that MSW was successfully processed with the TCR after carrying out a feedstock pre-treatment step. Approximately, 25wt.% of the feedstock was converted into phase separated liquids, composed of 19wt.% aqueous phase and 6wt.% organic phase bio-oil. The analysis of the bio-oil fraction revealed physical and chemical fuel properties, higher heating value (HHV) of 38MJ/kg, oxygen content diesel when blended at a volume ratio of 50:50. The mass balance closure was 44wt.% synthesis gas, with a H2 content of 36vol% and HHV of 17.23MJ/Nm3, and 31 wt.% char with a HHV of 17MJ/kg. The production of high quantities of H2 gas and highly de-oxygenated organic liquids makes downstream hydrogen separation and subsequent hydro-deoxygenation of the produced bio-oil a promising upgrading step to achieve drop-in transportation fuels from MSW. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Solutal-thermo-diffusion convection in a vibrating rectangular cavity

    Energy Technology Data Exchange (ETDEWEB)

    Chacha, M. [UAE University, Department of Mechanical Engineering, PO Box 17555, AD, Al Ain (United Arab Emirates); Saghir, M.Z. [Ryerson University, Department of Mechanical Engineering, 350 Victoria Street, ON, M5B 2K3, Toronto (Canada)


    Diffusion-dominated experiments on-board the International Space Station and other free-flying platforms are affected by the convective flow due to the residual acceleration field and/or to the oscillatory accelerations (g-jitters) caused by several external sources. We are interested in investigating these effects on the solutal-thermo-diffusion for a binary fluid mixture. We considered a rectangular rigid cavity filled with methane (20%) and normal butane (80%), subject to a temperature difference on its lateral walls and radiation heat transfer on the horizontal walls. The full transient Navier-Stokes equations, accounting for a unique mode of oscillatory acceleration, coupled with the mass and heat transfer formulations and the equation of state of the fluid were solved numerically using the control volume technique. The species transport equation accounts for varying diffusion coefficients with the temperature and the fluid composition and their effect is analysed as compared to that of their average constant values. Results revealed that convection is enhanced and temperature and species profiles distortion from purely diffusive (zero-gravity) condition increases in a buoyancy-destabilizing configuration. The numerical study shows that by elimination both the residual gravity and the g-jitter levels are essential to achieve nearly purely diffusive conditions when their direction is orthogonal to that of the temperature gradient. For the configuration investigated, the g-jitter is found to reduce compositional variation. When quasi-steady state conditions are attained, thermal and compositional quantities fluctuate following a mode whose fundamental (primary) frequency is equal to that of the initially imposed vibration. (authors)

  12. Design of a Resistively Heated Thermal Hydraulic Simulator for Nuclear Rocket Reactor Cores (United States)

    Litchford, Ron J.; Foote, John P.; Ramachandran, Narayanan; Wang, Ten-See; Anghaie, Samim


    A preliminary design study is presented for a non-nuclear test facility which uses ohmic heating to replicate the thermal hydraulic characteristics of solid core nuclear reactor fuel element passages. The basis for this testing capability is a recently commissioned nuclear thermal rocket environments simulator, which uses a high-power, multi-gas, wall-stabilized constricted arc-heater to produce high-temperature pressurized hydrogen flows representative of reactor core environments, excepting radiation effects. Initially, the baseline test fixture for this non-nuclear environments simulator was configured for long duration hot hydrogen exposure of small cylindrical material specimens as a low cost means of evaluating material compatibility. It became evident, however, that additional functionality enhancements were needed to permit a critical examination of thermal hydraulic effects in fuel element passages. Thus, a design configuration was conceived whereby a short tubular material specimen, representing a fuel element passage segment, is surrounded by a backside resistive tungsten heater element and mounted within a self-contained module that inserts directly into the baseline test fixture assembly. With this configuration, it becomes possible to create an inward directed radial thermal gradient within the tubular material specimen such that the wall-to-gas heat flux characteristics of a typical fuel element passage are effectively simulated. The results of a preliminary engineering study for this innovative concept are fully summarized, including high-fidelity multi-physics thermal hydraulic simulations and detailed design features.

  13. Mechanics and direction of hydraulic fracturing

    Energy Technology Data Exchange (ETDEWEB)

    Daneshy, A.A.


    Use of the in situ principal stresses greatly simplifies the problems of hydraulic fracturing. For one thing, it reduces the number of stresses to 3, thus simplifying the mathematics. Besides, this choice is in harmony with laboratory observations of fracture propagation perpendicular to the least principal stress. In addition to underground stresses, hydraulic stress is also influenced by the mechanical properties of the formation rock. In this discussion, it is assumed that the formation to be fractured is isotropic, homogeneous, and brittle-elastic. The initiation of hydraulic fractures is synonymous with the rupture of rock adjacent to the borehole wall. This rupture can occur only if the induced stresses exceed the strength of the formation. During fracturing treatments, fracture initiation is identified by a sudden drop in borehole fluid pressure accompanied by an increase in the injection rate. Continued injection of fluid after fracture initiation will result in its extension. The fracture will propagate in such a way that it will require the least possible amount of energy for its extension.

  14. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu


    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  15. Mechanisms of Virus Assembly (United States)

    Perlmutter, Jason D.; Hagan, Michael F.


    Viruses are nanoscale entities containing a nucleic acid genome encased in a protein shell called a capsid, and in some cases surrounded by a lipid bilayer membrane. This review summarizes the physics that govern the processes by which capsids assembles within their host cells and in vitro. We describe the thermodynamics and kinetics for assembly of protein subunits into icosahedral capsid shells, and how these are modified in cases where the capsid assembles around a nucleic acid or on a lipid bilayer. We present experimental and theoretical techniques that have been used to characterize capsid assembly, and we highlight aspects of virus assembly which are likely to receive significant attention in the near future. PMID:25532951

  16. Modeling Viral Capsid Assembly (United States)


    I present a review of the theoretical and computational methodologies that have been used to model the assembly of viral capsids. I discuss the capabilities and limitations of approaches ranging from equilibrium continuum theories to molecular dynamics simulations, and I give an overview of some of the important conclusions about virus assembly that have resulted from these modeling efforts. Topics include the assembly of empty viral shells, assembly around single-stranded nucleic acids to form viral particles, and assembly around synthetic polymers or charged nanoparticles for nanotechnology or biomedical applications. I present some examples in which modeling efforts have promoted experimental breakthroughs, as well as directions in which the connection between modeling and experiment can be strengthened. PMID:25663722

  17. Determining the Conditions for the Hydraulic Impacts Emergence at Hydraulic Systems

    Directory of Open Access Journals (Sweden)

    Mazurenko A.S.


    Full Text Available This research aim is to develop a method for modeling the conditions for the critical hydrau-lic impacts emergence on thermal and nuclear power plants’ pipeline systems pressure pumps depart-ing from the general provisions of the heat and hydrodynamic instability theory. On the developed method basis, the conditions giving rise to the reliability-critical hydraulic impacts emergence on pumps for the thermal and nuclear power plants’ typical pipeline system have been determined. With the flow characteristic minimum allowable (critical sensitivity, the flow velocity fluctuations ampli-tude reaches critical values at which the pumps working elements’ failure occurs. The critical hydrau-lic impacts emergence corresponds to the transition of the vibrational heat-hydrodynamic instability into an aperiodic one. As research revealed, a highly promising approach as to the preventing the criti-cal hydraulic impacts related to the foreground use of pumps having the most sensitive consumption (at supply network performance (while other technical characteristics corresponding to that parame-ter. The research novelty refers to the suggested method elaborated by the authors’ team, which, in contrast to traditional approaches, is efficient in determining the pump hydraulic impact occurrence conditions when the vibrational heat-hydrodynamic instability transition to the aperiodic instability.

  18. Assembly: a resource for assembled genomes at NCBI (United States)

    Kitts, Paul A.; Church, Deanna M.; Thibaud-Nissen, Françoise; Choi, Jinna; Hem, Vichet; Sapojnikov, Victor; Smith, Robert G.; Tatusova, Tatiana; Xiang, Charlie; Zherikov, Andrey; DiCuccio, Michael; Murphy, Terence D.; Pruitt, Kim D.; Kimchi, Avi


    The NCBI Assembly database ( provides stable accessioning and data tracking for genome assembly data. The model underlying the database can accommodate a range of assembly structures, including sets of unordered contig or scaffold sequences, bacterial genomes consisting of a single complete chromosome, or complex structures such as a human genome with modeled allelic variation. The database provides an assembly accession and version to unambiguously identify the set of sequences that make up a particular version of an assembly, and tracks changes to updated genome assemblies. The Assembly database reports metadata such as assembly names, simple statistical reports of the assembly (number of contigs and scaffolds, contiguity metrics such as contig N50, total sequence length and total gap length) as well as the assembly update history. The Assembly database also tracks the relationship between an assembly submitted to the International Nucleotide Sequence Database Consortium (INSDC) and the assembly represented in the NCBI RefSeq project. Users can find assemblies of interest by querying the Assembly Resource directly or by browsing available assemblies for a particular organism. Links in the Assembly Resource allow users to easily download sequence and annotations for current versions of genome assemblies from the NCBI genomes FTP site. PMID:26578580

  19. Numerical analysis of thermo-hydro-mechanical (THM) processes in the clay based material

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xuerui


    Clay formations are investigated worldwide as potential host rock for the deep geological disposal of high-level radioactive waste (HLW). Usually bentonite is preferred as the buffer and backfill material in the disposal system. In the disposal of HLW, heat emission is one of the most important issues as it can generate a series of complex thermo-hydro-mechanical (THM) processes in the surrounding materials and thus change the material properties. In the context of safety assessment, it is important to understand the thermally induced THM interactions and the associated change in material properties. In this work, the thermally induced coupled THM behaviours in the clay host rock and in the bentonite buffer as well as the corresponding coupling effects among the relevant material properties are numerically analysed. A coupled non-isothermal Richards flow mechanical model and a non-isothermal multiphase flow model were developed based on the scientific computer codes OpenGeoSys (OGS). Heat transfer in the porous media is governed by thermal conduction and advective flow of the pore fluids. Within the hydraulic processes, evaporation, vapour diffusion, and the unsaturated flow field are considered. Darcy's law is used to describe the advective flux of gas and liquid phases. The relative permeability of each phase is considered. The elastic deformation process is modelled by the generalized Hooke's law complemented with additional strain caused by swelling/shrinkage behaviour and by temperature change. In this study, special attention has been paid to the analysis of the thermally induced changes in material properties. The strong mechanical and hydraulic anisotropic properties of clay rock are described by a transversely isotropic mechanical model and by a transversely isotropic permeability tensor, respectively. The thermal anisotropy is described by adoption of the bedding-orientation-dependent thermal conductivity. The dependency of the thermal

  20. FEBEX II Project Final report on thermo-hydro-mechanical laboratory tests

    Energy Technology Data Exchange (ETDEWEB)

    Lloret, A.; Romero, E.; Villar, M. V.


    The results of the thermo-hydro-mechanical (THM) study of the FEBEX bentonite performed during FEBEX II are presented. The laboratory test program continued in part with the works carried out during FEBEX I, particularly in activities related to tests aimed to the calibration of the models, the acquisition of parameters by back-analysis and the improvement of the knowledge on the behaviour of expansive clays. But the program has also included tests on new areas: investigations about the influence of the microstructure changes in bentonite, of temperature and of the solute concentration on the behaviour of clay. Besides, several tests were proposed in order to understand the unexpected behaviour observed in the mock-up test, towards the end of year 2. Temperature effects on water retention curves in confined and unconfined conditions were determined, and swelling pressure, hydraulic conductivity and swelling and consolidation strains as a function of temperature were successfully measured. Different experimental techniques and equipments were developed to study thermal induced changes under partially saturated states, covering a wide range of suctions. FEBEX bentonite remains suitable as a sealing material in HLW repositories (from the hydro- mechanical point of view) for temperatures of up to 80 C, as it keeps its high water retention capacity, low permeability and self-healing ability. The extrapolation of results points out to the preservation of properties for at least up to 100 C. Mercury intrusion porosimetry and environmental scanning electron microscopy provided promising results in order to characterise the bentonite microstructure and to give information about the mechanisms influencing pore size distribution changes on high active clays. The use of digital imaging techniques allowed verifying that at micro-scale level, where chemical phenomena prevail, strains are almost reversible as it is considered in the two-level elasto-plastic models. The swelling

  1. Synthesis and evaluation of thermo-rheological behaviour and ionotropic crosslinking of new gellan gum-alkyl derivatives. (United States)

    Agnello, Stefano; Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Giammona, Gaetano


    This paper reports the synthesis and the physicochemical characterization of two series of gellan gum (GG) derivatives functionalized with alkyl chains with different number of carbon, from 8 to 18. In particular, low molecular weight gellan gum samples with 52.6 or 96.7 kDa, respectively, were functionalized with octylamine (C 8 ), dodecylamine (C 12 ) and octadecylamine (C 18 ) by using bis(4-nitrophenyl) carbonate (4-NPBC) as a coupling agent. Thermo-rheological and ionotropic crosslinking properties of these gellan gum-alkyl derivatives were evaluated and related to the degree of derivatization in alkyl chains. Results suggested as length and degree of derivatization differently influenced coil-to-helix gelation mechanism of GG derivatives, ionotropic crosslinking, and strength of crosslinked hydrogels obtained in CaCl 2 0.102 M and NaCl 0.15 M. Statement of hypothesis: The insertion of alkyl chains on the gellan gum backbone interferes with coil-to-helix transition mechanism and allows the production of hydrophobically assembled hydrogels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Flexible parallel implicit modelling of coupled thermal-hydraulic-mechanical processes in fractured rocks (United States)

    Cacace, Mauro; Jacquey, Antoine B.


    Theory and numerical implementation describing groundwater flow and the transport of heat and solute mass in fully saturated fractured rocks with elasto-plastic mechanical feedbacks are developed. In our formulation, fractures are considered as being of lower dimension than the hosting deformable porous rock and we consider their hydraulic and mechanical apertures as scaling parameters to ensure continuous exchange of fluid mass and energy within the fracture-solid matrix system. The coupled system of equations is implemented in a new simulator code that makes use of a Galerkin finite-element technique. The code builds on a flexible, object-oriented numerical framework (MOOSE, Multiphysics Object Oriented Simulation Environment) which provides an extensive scalable parallel and implicit coupling to solve for the multiphysics problem. The governing equations of groundwater flow, heat and mass transport, and rock deformation are solved in a weak sense (either by classical Newton-Raphson or by free Jacobian inexact Newton-Krylow schemes) on an underlying unstructured mesh. Nonlinear feedbacks among the active processes are enforced by considering evolving fluid and rock properties depending on the thermo-hydro-mechanical state of the system and the local structure, i.e. degree of connectivity, of the fracture system. A suite of applications is presented to illustrate the flexibility and capability of the new simulator to address problems of increasing complexity and occurring at different spatial (from centimetres to tens of kilometres) and temporal scales (from minutes to hundreds of years).

  3. A review on improving thermal-hydraulic performance of fin-and-tube heat exchangers (United States)

    Nickolas, N.; Moorthy, P.; Oumer, A. N.; Ishak, M.


    Fin-and-tube heat exchangers are one of the most common type of heat exchangers that are normally used in sectors that require small size and light weight but high heat transfer capabilities. Compact fin-and-tube heat exchangers experiences high convective thermal resistance at the air-side due to the thermo-physical properties of air. Thus, the purpose of this paper is to provide an overview of research works that are relevant to improving thermalhydraulic performance at the air-side of fin-and-tube heat exchangers. This paper covers a variety of parameters such as tube parameters like tube arrangement, tube shapes and tube inclination angles; extended surfaces such as different shapes of fins and different parameters of vortex generators like attack angles, shapes and locations. Overall, for most modifications there was increment in heat transfer but accompanied with a pressure drop penalty. However, this varies for different combinations of parameters thus this review is to help understand how every mentioned parameters influences the thermal-hydraulic performance.

  4. The Metabolic Basis of Pollen Thermo-Tolerance: Perspectives for Breeding

    Directory of Open Access Journals (Sweden)

    Marine J. Paupière


    Full Text Available Crop production is highly sensitive to elevated temperatures. A rise of a few degrees above the optimum growing temperature can lead to a dramatic yield loss. A predicted increase of 1–3 degrees in the twenty first century urges breeders to develop thermo-tolerant crops which are tolerant to high temperatures. Breeding for thermo-tolerance is a challenge due to the low heritability of this trait. A better understanding of heat stress tolerance and the development of reliable methods to phenotype thermo-tolerance are key factors for a successful breeding approach. Plant reproduction is the most temperature-sensitive process in the plant life cycle. More precisely, pollen quality is strongly affected by heat stress conditions. High temperature leads to a decrease of pollen viability which is directly correlated with a loss of fruit production. The reduction in pollen viability is associated with changes in the level and composition of several (groups of metabolites, which play an important role in pollen development, for example by contributing to pollen nutrition or by providing protection to environmental stresses. This review aims to underline the importance of maintaining metabolite homeostasis during pollen development, in order to produce mature and fertile pollen under high temperature. The review will give an overview of the current state of the art on the role of various pollen metabolites in pollen homeostasis and thermo-tolerance. Their possible use as metabolic markers to assist breeding programs for plant thermo-tolerance will be discussed.

  5. Finite Element Modeling of Thermo Creep Processes Using Runge-Kutta Method

    Directory of Open Access Journals (Sweden)

    Yu. I. Dimitrienko


    Full Text Available Thermo creep deformations for most heat-resistant alloys, as a rule, nonlinearly depend on stresses and are practically non- reversible. Therefore, to calculate the properties of these materials the theory of plastic flow is most widely used. Finite-element computations of a stress-strain state of structures with account of thermo creep deformations up to now are performed using main commercial software, including ANSYS package. However, in most cases to solve nonlinear creep equations, one should apply explicit or implicit methods based on the Euler method of approximation of time-derivatives. The Euler method is sufficiently efficient in terms of random access memory in computations, however this method is cumbersome in computation time and does not always provide a required accuracy for creep deformation computations.The paper offers a finite-element algorithm to solve a three-dimensional problem of thermo creep based on the Runge-Kutta finite-difference schemes of different orders with respect to time. It shows a numerical test example to solve the problem on the thermo creep of a beam under tensile loading. The computed results demonstrate that using the Runge-Kutta method with increasing accuracy order allows us to obtain a more accurate solution (with increasing accuracy order by 1 a relative error decreases, approximately, by an order too. The developed algorithm proves to be efficient enough and can be recommended for solving the more complicated problems of thermo creep of structures.

  6. Thermal Analysis of Braille Formed by Using Screen Printing and Inks with Thermo Powder

    Directory of Open Access Journals (Sweden)

    Svіtlana HAVENKO


    Full Text Available In order to improve the integration of blind people into society, suitable conditions should be provided for them. The expansion of Braille (BR use could serve the purpose. Depending on the materials used for Braille, it can be formed or printed in different ways: embossing, screen printing, thermoforming, digital printing. The aim of this research is to determine the effect of thermal properties of screen printing inks and inks with thermo-powder on the qualitative parameters of Braille. Screen printing inks and inks with thermo-powder were chosen for the research. Carrying out the qualitative analysis of printouts with Braille, the thermal stability was evaluated by analyzing the thermograms obtained with derivatograph Q-1500. This paper presents the findings of the thermogravimetric (TG, differential thermogravimetric (DTG and differential thermal analysis (DTA of printouts printed on paperboard Plike and using traditional screen printing inks and screen printing inks with thermo-powder. Based on the testing findings it is determined that thermal stability of printouts printed with thermo-powder ink is higher than printed with screen printing inks. It is determined that the appropriate temperature range of screen printing inks with thermo-powder drying is 98 ºC – 198 ºC because in this case better relief of Braille dots is obtained.DOI:

  7. Enhanced Thermo-Optical Switching of Paraffin-Wax Composite Spots under Laser Heating. (United States)

    Said, Asmaa; Salah, Abeer; Fattah, Gamal Abdel


    Thermo-optical switches are of particular significance in communications networks where increasingly high switching speeds are required. Phase change materials (PCMs), in particular those based on paraffin wax, provide wealth of exciting applications with unusual thermally-induced switching properties, only limited by paraffin's rather low thermal conductivity. In this paper, the use of different carbon fillers as thermal conductivity enhancers for paraffin has been investigated, and a novel structure based on spot of paraffin wax as a thermo-optic switch is presented. Thermo-optical switching parameters are enhanced with the addition of graphite and graphene, due to the extreme thermal conductivity of the carbon fillers. Differential Scanning Calorimetry (DSC) and Scanning electron microscope (SEM) are performed on paraffin wax composites, and specific heat capacities are calculated based on DSC measurements. Thermo-optical switching based on transmission is measured as a function of the host concentration under conventional electric heating and laser heating of paraffin-carbon fillers composites. Further enhancements in thermo-optical switching parameters are studied under Nd:YAG laser heating. This novel structure can be used in future networks with huge bandwidth requirements and electric noise free remote aerial laser switching applications.

  8. Hydrodynamic evaluation of a hydraulic clarifier through hydraulic behaviour indicators and simplified flow models

    Directory of Open Access Journals (Sweden)

    Paola Patiño


    Full Text Available Hydrodynamic phenomena take place within water treatment plants associated with physical, operational and environmental factors which can affect the water quality. This study evaluated a hydraulic clarifier’s hydrodynamic pattern using sludge recirculation through continuous tracer test leading to determining hydraulic behaviour indicators and simplified flow models. The clarifier had dual flow with a predominantly complete mixture during the hours in which higher temperatures were reported for affluent water compared to those reported inside the reactor, causing the formation of density currents promoting mixing in the reactor and increased turbidity in the effluent. The hydraulic indicators and the Wolf-Resnick model had higher sensitivity to the influence of temperature on reactor hydrodynamics.

  9. Self assembled structures for 3D integration (United States)

    Rao, Madhav

    Three dimensional (3D) micro-scale structures attached to a silicon substrate have various applications in microelectronics. However, formation of 3D structures using conventional micro-fabrication techniques are not efficient and require precise control of processing parameters. Self assembly is a method for creating 3D structures that takes advantage of surface area minimization phenomena. Solder based self assembly (SBSA), the subject of this dissertation, uses solder as a facilitator in the formation of 3D structures from 2D patterns. Etching a sacrificial layer underneath a portion of the 2D pattern allows the solder reflow step to pull those areas out of the substrate plane resulting in a folded 3D structure. Initial studies using the SBSA method demonstrated low yields in the formation of five different polyhedra. The failures in folding were primarily attributed to nonuniform solder deposition on the underlying metal pads. The dip soldering method was analyzed and subsequently refined. A modified dip soldering process provided improved yield among the polyhedra. Solder bridging referred as joining of solder deposited on different metal patterns in an entity influenced the folding mechanism. In general, design parameters such as small gap-spacings and thick metal pads were found to favor solder bridging for all patterns studied. Two types of soldering: face and edge soldering were analyzed. Face soldering refers to the application of solder on the entire metal face. Edge soldering indicates application of solder only on the edges of the metal face. Mechanical grinding showed that face soldered SBSA structures were void free and robust in nature. In addition, the face soldered 3D structures provide a consistent heat resistant solder standoff height that serve as attachments in the integration of dissimilar electronic technologies. Face soldered 3D structures were developed on the underlying conducting channel to determine the thermo-electric reliability of

  10. Review of Hydraulic Fracturing for Preconditioning in Cave Mining (United States)

    He, Q.; Suorineni, F. T.; Oh, J.


    Hydraulic fracturing has been used in cave mining for preconditioning the orebody following its successful application in the oil and gas industries. In this paper, the state of the art of hydraulic fracturing as a preconditioning method in cave mining is presented. Procedures are provided on how to implement prescribed hydraulic fracturing by which effective preconditioning can be realized in any in situ stress condition. Preconditioning is effective in cave mining when an additional fracture set is introduced into the rock mass. Previous studies on cave mining hydraulic fracturing focused on field applications, hydraulic fracture growth measurement and the interaction between hydraulic fractures and natural fractures. The review in this paper reveals that the orientation of the current cave mining hydraulic fractures is dictated by and is perpendicular to the minimum in situ stress orientation. In some geotechnical conditions, these orientation-uncontrollable hydraulic fractures have limited preconditioning efficiency because they do not necessarily result in reduced fragmentation sizes and a blocky orebody through the introduction of an additional fracture set. This implies that if the minimum in situ stress orientation is vertical and favors the creation of horizontal hydraulic fractures, in a rock mass that is already dominated by horizontal joints, no additional fracture set is added to that rock mass to increase its blockiness to enable it cave. Therefore, two approaches that have the potential to create orientation-controllable hydraulic fractures in cave mining with the potential to introduce additional fracture set as desired are proposed to fill this gap. These approaches take advantage of directional hydraulic fracturing and the stress shadow effect, which can re-orientate the hydraulic fracture propagation trajectory against its theoretical predicted direction. Proppants are suggested to be introduced into the cave mining industry to enhance the

  11. Dynamic Nanoparticles Assemblies (United States)



    CONSPECTUS Importance Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple sizes of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously formed superstructures containing more than two inorganic nanoscale particles that display ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the ‘bottom-up’ fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Classification Superstructures of NPs (and those held together by similar intrinsic forces) are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable superstructures with a nearly constant number same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation and/or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of a molecule from atoms. Finer classification of NP assemblies in accord with established conventions

  12. Dynamic nanoparticle assemblies. (United States)

    Wang, Libing; Xu, Liguang; Kuang, Hua; Xu, Chuanlai; Kotov, Nicholas A


    Although nanoparticle (NP) assemblies are at the beginning of their development, their unique geometrical shapes and media-responsive optical, electronic, and magnetic properties have attracted significant interest. Nanoscale assembly bridges multiple levels of hierarchy of materials: individual nanoparticles, discrete molecule-like or virus-like nanoscale agglomerates, microscale devices, and macroscale materials. The capacity to self-assemble can greatly facilitate the integration of nanotechnology with other technologies and, in particular, with microscale fabrication. In this Account, we describe developments in the emerging field of dynamic NP assemblies, which are spontaneously form superstructures containing more than two inorganic nanoscale particles that display the ability to change their geometrical, physical, chemical, and other attributes. In many ways, dynamic assemblies can represent a bottleneck in the "bottom-up" fabrication of NP-based devices because they can produce a much greater variety of assemblies, but they also provide a convenient tool for variation of geometries and dimensions of nanoparticle assemblies. Superstructures of NPs (and those held together by similar intrinsic forces)are classified into two groups: Class 1 where media and external fields can alter shape, conformation, and order of stable super structures with a nearly constant number of NPs or Class 2 where the total number of NPs changes, while the organizational motif in the final superstructure remains the same. The future development of successful dynamic assemblies requires understanding the equilibrium in dynamic NP systems. The dynamic nature of Class 1 assemblies is associated with the equilibrium between different conformations of a superstructure and is comparable to the isomerization in classical chemistry. Class 2 assemblies involve the formation or breakage of linkages between the NPs, which is analogous to the classical chemical equilibrium for the formation of

  13. Numerical research on the neutronic/thermal-hydraulic/mechanical coupling characteristics of the optimized helium cooled solid breeder blanket for CFETR

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Shijie; Zhang, Dalin, E-mail:; Cheng, Jie; Tian, Wenxi; Su, G.H.


    As one of the candidate tritium breeding blankets for Chinese Fusion Engineering Test Reactor (CFETR), a conceptual structure of the helium cooled solid breeder blanket has recently been proposed. The neutronic, thermal-hydraulic and mechanical characteristics of the blanket directly affect its tritium breeding and safety performance. Therefore, neutronic/thermal-hydraulic/mechanical coupling analyses are of vital importance for a reliable blanket design. In this work, first, three-dimensional neutronics analysis and optimization of the typical outboard equatorial blanket module (No. 12) were performed for the comprehensive optimal scheme. Then, thermal and fluid dynamic analyses of the scheme under both normal and critical conditions were performed and coupled with the previous neutronic calculation results. With thermal-hydraulic boundaries, thermo-mechanical analyses of the structure materials under normal, critical and blanket over-pressurization conditions were carried out. In addition, several parametric sensitivity studies were also conducted to investigate the influences of the main parameters on the blanket temperature distributions. In this paper, the coupled analyses verify the reasonability of the optimized conceptual design preliminarily and can provide an important reference for the further analysis and optimization design of the CFETR helium cooled solid breeder blanket.

  14. Geodynamic modelling of low-buoyancy thermo-chemical plumes (United States)

    Dannberg, Juliane; Sobolev, Stephan


    The Earth's biggest magmatic events that form Large Igneous Provinces are believed to originate from massive melting when hot mantle plumes rising from the lowermost mantle reach the base of the lithosphere. Classical models of thermal mantle plumes predict a flattening of the plume head to a disk-like structure, a kilometer-scale surface uplift just before the initiation of LIPs and thin plume tails. However, there are seismic observations and paleo-topography data that are difficult to explain with this classical approach. Here, using numerical models, we show that the issue can be resolved if major mantle plumes are thermo-chemical rather than purely thermal. It has been suggested a long time ago that subducted oceanic crust could be recycled by mantle plumes; and based on geochemical data, they may contain up to 15-20% of this recycled material in the form of dense eclogite, which drastically decreases their buoyancy and makes it depth-dependent. We perform numerical experiments in a 3D spherical shell geometry to investigate the dynamics of the plume ascent, the interaction between plume- and plate-driven flow and the dynamics of melting in a plume head. For this purpose, we use the finite-element code ASPECT, which allows for complex temperature-, pressure- and composition-dependent material properties. Moreover, our models incorporate phase transitions (including melting) with the accompanying rheological and density changes, Clapeyron slopes and latent heat effects for both peridotite and eclogite, mantle compressibility and a strong temperature- and depth-dependent viscosity. We demonstrate that despite their low buoyancy, such plumes can rise through the whole mantle causing only negligible surface uplift. Conditions for this ascent are high plume volume and moderate lower mantle subadiabaticity. While high plume buoyancy results in plumes directly advancing to the base of the lithosphere, plumes with slightly lower buoyancy pond in a depth of 300-400 km

  15. Derivation of site-specific relationships between hydraulic parameters and p-wave velocities based on hydraulic and seismic tomography

    Energy Technology Data Exchange (ETDEWEB)

    Brauchler, R.; Doetsch, J.; Dietrich, P.; Sauter, M.


    In this study, hydraulic and seismic tomographic measurements were used to derive a site-specific relationship between the geophysical parameter p-wave velocity and the hydraulic parameters, diffusivity and specific storage. Our field study includes diffusivity tomograms derived from hydraulic travel time tomography, specific storage tomograms, derived from hydraulic attenuation tomography, and p-wave velocity tomograms, derived from seismic tomography. The tomographic inversion was performed in all three cases with the SIRT (Simultaneous Iterative Reconstruction Technique) algorithm, using a ray tracing technique with curved trajectories. The experimental set-up was designed such that the p-wave velocity tomogram overlaps the hydraulic tomograms by half. The experiments were performed at a wellcharacterized sand and gravel aquifer, located in the Leine River valley near Göttingen, Germany. Access to the shallow subsurface was provided by direct-push technology. The high spatial resolution of hydraulic and seismic tomography was exploited to derive representative site-specific relationships between the hydraulic and geophysical parameters, based on the area where geophysical and hydraulic tests were performed. The transformation of the p-wave velocities into hydraulic properties was undertaken using a k-means cluster analysis. Results demonstrate that the combination of hydraulic and geophysical tomographic data is a promising approach to improve hydrogeophysical site characterization.

  16. Thermo-hydro-geochemical modelling of the bentonite buffer. LOT A2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Salas, Joaquin; Arcos, David (Amphos 21 Consulting S.L., Barcelona (Spain))


    The Swedish Nuclear Fuel and waste management company (SKB) is conducting a series of long term buffer material (LOT) tests at the Aespoe Hard Rock Laboratory (HRL) to test the behaviour of the bentonite buffer under conditions similar to those expected in a KBS-3 deep geological repository for high level nuclear waste (HLNW). In the present work a numerical model is developed to simulate (i) the thermo-hydraulic, (ii) transport and (iii) geochemical processes that have been observed in the LOT A2 test parcel. The LOT A2 test lasted approximately 6 years, and consists of a 4 m long vertical borehole drilled in diorite rock, from the ground of the Aespoe HRL tunnel. The borehole is composed of a central heater, maintained at 130 deg C in the lower 2 m of the borehole, a copper tube surrounding the heater and a 100 mm thick ring of pre-compacted Wyoming MX-80 bentonite around the copper tube /Karnland et al. 2009/. The numerical model developed here is a 1D axis-symmetric model that simulates the water saturation of the bentonite under a constant thermal gradient; the transport of solutes; and, the geochemical reactions observed in the bentonite blocks. Two cases have been modelled, one considering the highest temperature reached by the bentonite (at 3 m depth in the borehole, where temperatures of 130 and 85 deg C have been recorded near the copper tube and near the granitic host rock, respectively) and the other case assuming a constant temperature of 25 deg C, representing the upper part of borehole, where the bentonite has not been heated. In the LOT A2 test, the initial partially saturated bentonite becomes progressively water saturated, due to the injection of Aespoe granitic groundwater at granite - bentonite interface. The transport of solutes during the bentonite water saturation stage is believed to be controlled by water uptake from the surrounding groundwater to the wetting front and, additionally, in the case of heated bentonite, by a cyclic evaporation

  17. Shape memory behavior of epoxy-based model materials: Tailoring approaches and thermo-mechanical modeling (United States)

    Pandini, Stefano; Avanzini, Andrea; Battini, Davide; Berardi, Mario; Baldi, Francesco; Bignotti, Fabio


    A series of structurally related epoxy resins were prepared as model systems for the investigation of the shape memory response, with the aim to assess the possibility of tailoring their thermo-mechanical response and conveniently describing their strain evolution under triggering stimuli with a simple thermoviscoelastic model. The resins formulation was varied in order to obtain systems with controlled glass transition temperature and crosslink density. The shape memory response was investigated by means of properly designed thermo-mechanical cycles, which allowed to measure both the ability to fully recover the applied strain and to exert a stress on a confining medium. The results were also compared with the predictions obtained by finite element simulations of the thermo-mechanical cycle by the employ of a model whose parameters were implemented from classical DMA analysis.

  18. Novel thermo-responsive fucose binding ligands for glycoprotein purification by affinity precipitation. (United States)

    Arnold, Lindsay; Chen, Rachel


    Novel thermo-responsive affinity sugar binders were developed by fusing a bacterial fucose lectin with a thermo-responsive polypeptide. These designer affinity ligand fusions were produced using an Escherichia coli system capable of extracellular secretion of recombinant proteins and were isolated with a high recovery yield (95%) directly from growth medium by Inverse Temperature Cycling (ITC). With horse radish peroxidase (HRP) as a model protein, we demonstrate here that the designer thermo-responsive ligands are capable of interacting with glycans on a glycoprotein, a property that was used to develop a novel affinity precipitation method for glycoprotein purification. The method, requiring only simple process steps, affords full recovery of a target glycoprotein, and is effective at a target glycoprotein concentration as low as 1.4 pM in the presence of large amounts of contaminants. By developing other sugar binders in the similar fashion, the method should be highly useful for glycoprotein purification and detection.

  19. Enhanced lipid production in thermo-tolerant mutants of Chlorella pyrenoidosa NCIM 2738. (United States)

    Sachdeva, Neha; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Tuli, Deepak Kumar


    The present study aimed to develop thermo-tolerant mutants of Chlorella pyrenoidosa NCIM 2738 for high lipids production. For this, ethyl methane sulfonate was used, which generated two effective thermo-tolerant mutants, M18 and M24 of Chlorella pyrenoidosa NCIM 2738, capable of surviving at temperature up to 47°C and showing improved lipid and biomass yields. They showed 59.62% and 50.75% increase, respectively in lipid content compared to wild type at 30°C, which could not grow at temperature above 35°C. The novelty of this study lied in incorporation of PAM Flurometry with mutagenesis to generate thermo-tolerant mutants of C. pyrenoidosa and investigating the reasons for increased yields of mutants at cellular and photosynthetic levels with the aim to use them for commercial biodiesel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Effects of Microstructural Variability on Thermo-Mechanical Properties of a Woven Ceramic Matrix Composite (United States)

    Goldsmith, Marlana B.; Sankar, Bhavani V.; Haftka, Raphael T.; Goldberg, Robert K.


    The objectives of this paper include identifying important architectural parameters that describe the SiC/SiC five-harness satin weave composite and characterizing the statistical distributions and correlations of those parameters from photomicrographs of various cross sections. In addition, realistic artificial cross sections of a 2D representative volume element (RVE) are generated reflecting the variability found in the photomicrographs, which are used to determine the effects of architectural variability on the thermo-mechanical properties. Lastly, preliminary information is obtained on the sensitivity of thermo-mechanical properties to architectural variations. Finite element analysis is used in combination with a response surface and it is shown that the present method is effective in determining the effects of architectural variability on thermo-mechanical properties.

  1. Contrastive Numerical Investigations on Thermo-Structural Behaviors in Mass Concrete with Various Cements

    Directory of Open Access Journals (Sweden)

    Wei Zhou


    Full Text Available This work is a contrastive investigation of numerical simulations to improve the comprehension of thermo-structural coupled phenomena of mass concrete structures during construction. The finite element (FE analysis of thermo-structural behaviors is used to investigate the applicability of supersulfated cement (SSC in mass concrete structures. A multi-scale framework based on a homogenization scheme is adopted in the parameter studies to describe the nonlinear concrete behaviors. Based on the experimental data of hydration heat evolution rate and quantity of SSC and fly ash Portland cement, the hydration properties of various cements are studied. Simulations are run on a concrete dam section with a conventional method and a chemo-thermo-mechanical coupled method. The results show that SSC is more suitable for mass concrete structures from the standpoint of temperature control and crack prevention.

  2. Pressure drop measurement for flow-measuring dummy fuel assemblies in HANARO core

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Taek; Chung, Heung June [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    In order to characterize the flow distribution of HANARO core, flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies) were to be used in the HANARO commissioning. To do this instrumented dummy fuel assemblies were developed and the calibration tests were conducted in the thermal-hydraulic laboratory. Through this experiment the correlations for 6 instrumented dummy fuel assemblies were derived. The measured total pressure drop for the 36-element dummy fuel assembly was 211 kPa, which meets the design requirement, 209 kPa {+-} 5%. The form loss coefficients for the spacers were re-evaluated and the new correlation was obtained. 7 tabs., 13 figs., 2 refs. (Author).

  3. Soil hydraulic properties near saturation, an improved conductivity model

    DEFF Research Database (Denmark)

    Børgesen, Christen Duus; Jacobsen, Ole Hørbye; Hansen, Søren


    The hydraulic properties near saturation can change dramatically due to the presence of macropores that are usually difficult to handle in traditional pore size models. The purpose of this study is to establish a data set on hydraulic conductivity near saturation, test the predictive capability...... of commonly used hydraulic conductivity models and give suggestions for improved models. Water retention and near saturated and saturated hydraulic conductivity were measured for a variety of 81 top and subsoils. The hydraulic conductivity models by van Genuchten [van Genuchten, 1980. A closed-form equation...... for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898.] (vGM) and Brooks and Corey, modified by Jarvis [Jarvis, 1991. MACRO—A Model of Water Movement and Solute Transport in Macroporous Soils. Swedish University of Agricultural Sciences. Department of Soil Sciences...

  4. Microtubule Self- Assembly (United States)

    Jho, Yongseok; Choi, M. C.; Farago, O.; Kim, Mahnwon; Pincus, P. A.


    Microtubules are important structural elements for neurons. Microtubles are cylindrical pipes that are self-assembled from tubulin dimers, These structures are intimately related to the neuron transport system. Abnormal microtubule disintegration contributes to neuro-disease. For several decades, experimentalists investigated the structure of the microtubules using TEM and Cryo-EM. However, the detailed structure at a molecular level remain incompletely understood. . In this presentation, we report numerically studies of the self-assembly process using a toy model for tubulin dimers. We investigate the nature of the interactions which are essential to stabilize such the cylindrical assembly of protofilaments. We use Monte Carlo simulations to suggest the pathways for assembly and disassembly of the microtubules.

  5. Flexseal Insulator Test Assembly (United States)

    Buchanan, Eric


    Small-scale version of solid-fuel rocket motor flexseal nozzle bearing assembly instrumented and tested in compression-testing fixture simulating conditions during rocket motor operation described in report.

  6. Hydrophilic magnetic nanoclusters with thermo-responsive properties and their drug controlled release

    Energy Technology Data Exchange (ETDEWEB)

    Meerod, Siraprapa [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Rutnakornpituk, Boonjira; Wichai, Uthai [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand (Thailand); Rutnakornpituk, Metha, E-mail: [Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Naresuan University, Phitsanulok 65000 (Thailand); Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000 Thailand (Thailand)


    Synthesis and drug controlled release properties of thermo-responsive magnetic nanoclusters grafted with poly(N-isopropylacrylamide) (poly(NIPAAm)) and poly(NIPAAm-co-poly(ethylene glycol) methyl ether methacrylate) (PEGMA) copolymers were described. These magnetic nanoclusters were synthesized via an in situ radical polymerization in the presence of acrylamide-grafted magnetic nanoparticles (MNPs). Poly(NIPAAm) provided thermo-responsive properties, while PEGMA played a role in good water dispersibility to the nanoclusters. The ratios of PEGMA to NIPAAm in the (co)polymerization in the presence of the MNPs were fine-tuned such that the nanoclusters with good water dispersibility, good magnetic sensitivity and thermo responsiveness were obtained. The size of the nanoclusters was in the range of 50–100 nm in diameter with about 100–200 particles/cluster. The nanoclusters were well dispersible in water at room temperature and can be suddenly agglomerated when temperature was increased beyond the lower critical solution temperature (LCST) (32 °C). The release behavior of an indomethacin model drug from the nanoclusters was also investigated. These novel magnetic nanoclusters with good dispersibility in water and reversible thermo-responsive properties might be good candidates for the targeting drug controlled release applications. - Highlights: • Nanoclusters with good water dispersibility and magnetic response were prepared. • They were grafted with thermo-responsive poly(NIPAAm) and/or poly(PEGMA). • Poly(NIPAAm) provided thermo-responsive properties to the nanoclusters. • Poly(PEGMA) provided good water dispersibilityto the nanoclusters. • Accelerated and controllable releases of a drug from the nanoclusters were shown.

  7. The time-dependent 3D discrete ordinates code TORT-TD with thermal-hydraulic feedback by ATHLET models

    Energy Technology Data Exchange (ETDEWEB)

    Seubert, A.; Velkov, K.; Langenbuch, S. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Forschungsinstitute, D-85748 Garching (Germany)


    This paper describes the time-dependent 3D discrete ordinates transport code TORT-TD. Thermal-hydraulic feedback is considered by coupling TORT-TD with the thermal-hydraulics system code ATHLET. The coupled code TORT-TD/ATHLET allows 3D pin-by-pin analyses of transients in few energy groups and anisotropic scattering by solving the time-dependent transport equation using the unconditionally stable implicit method. The nuclear cross sections are interpolated between pre-calculated table values of fuel temperature, moderator density and boron concentration. For verification of the implementation, selected test cases have been calculated by TORT-TD/ATHLET. They include a control rod ejection transient in a small PWR fuel assembly arrangement and a local boron concentration change in a single PWR fuel assembly. In the latter, special attention has been paid to study the influence of the thermal-hydraulic feedback modelling in ATHLET. The results obtained for a control rod ejection accident in a PWR quarter core demonstrate the applicability of TORT-TD/ATHLET. (authors)

  8. Monitoring hydraulic stimulation using telluric sounding (United States)

    Rees, Nigel; Heinson, Graham; Conway, Dennis


    The telluric sounding (TS) method is introduced as a potential tool for monitoring hydraulic fracturing at depth. The advantage of this technique is that it requires only the measurement of electric fields, which are cheap and easy when compared with magnetotelluric measurements. Additionally, the transfer function between electric fields from two locations is essentially the identity matrix for a 1D Earth no matter what the vertical structure. Therefore, changes in the earth resulting from the introduction of conductive bodies underneath one of these sites can be associated with deviations away from the identity matrix, with static shift appearing as a galvanic multiplier at all periods. Singular value decomposition and eigenvalue analysis can reduce the complexity of the resulting telluric distortion matrix to simpler parameters that can be visualised in the form of Mohr circles. This technique would be useful in constraining the lateral extent of resistivity changes. We test the viability of utilising the TS method for monitoring on both a synthetic dataset and for a hydraulic stimulation of an enhanced geothermal system case study conducted in Paralana, South Australia. The synthetic data example shows small but consistent changes in the transfer functions associated with hydraulic stimulation, with grids of Mohr circles introduced as a useful diagnostic tool for visualising the extent of fluid movement. The Paralana electric field data were relatively noisy and affected by the dead band making the analysis of transfer functions difficult. However, changes in the order of 5% were observed from 5 s to longer periods. We conclude that deep monitoring using the TS method is marginal at depths in the order of 4 km and that in order to have meaningful interpretations, electric field data need to be of a high quality with low levels of site noise.[Figure not available: see fulltext.

  9. Linking soil hydraulic properties to structure indicators : experiments and modelling


    Weynants, Mélanie


    Soil hydraulic properties are needed for modelling below-ground water flow and solute movements. They are very variable in space and time and across scales and their characterisation is tedious. Pedotransfer functions (PTF) are tools developed to predict hydraulic properties from more readily available information. This thesis provides PTF predicting the parameters of a closed-form model of the soil hydraulic conductivity and moisture retention curves based on the soil texture, bulk density a...

  10. Hydraulics national laboratory; Laboratoire national d`hydraulique

    Energy Technology Data Exchange (ETDEWEB)

    Chabard, J.P.


    The hydraulics national laboratory is a department of the service of applications of electric power and environment from the direction of studies and researches of Electricite de France. It has to solve the EDF problems concerning the fluids mechanics and hydraulics. Problems in PWR type reactors, fossil fuel power plants, circulating fluidized bed power plants, hydroelectric power plants relative to fluid mechanics and hydraulics studied and solved in 1995 are explained in this report. (N.C.)

  11. Hydro Turbine and Governor Modelling: Electric - Hydraulic Interaction


    Lucero Tenorio, Luz Alexandra


    This Master s Thesis work deals with the development of improved hydro turbine models for the evaluation of a hydraulic power generating system performance in response to small disturbances in power system analysis tool. These improved models must be able to reflect the possible interaction between the hydraulic system and power system in the computer simulations of a power plant equipped with Francis turbines.The accuracy of a Hydraulic Power Generating System is studied by means of analysis...

  12. Comparative Analysis of CTF and Trace Thermal-Hydraulic Codes Using OECD/NRC PSBT Benchmark Void Distribution Database

    Directory of Open Access Journals (Sweden)

    M. Avramova


    Full Text Available The international OECD/NRC PSBT benchmark has been established to provide a test bed for assessing the capabilities of thermal-hydraulic codes and to encourage advancement in the analysis of fluid flow in rod bundles. The benchmark was based on one of the most valuable databases identified for the thermal-hydraulics modeling developed by NUPEC, Japan. The database includes void fraction and departure from nucleate boiling measurements in a representative PWR fuel assembly. On behalf of the benchmark team, PSU in collaboration with US NRC has performed supporting calculations using the PSU in-house advanced thermal-hydraulic subchannel code CTF and the US NRC system code TRACE. CTF is a version of COBRA-TF whose models have been continuously improved and validated by the RDFMG group at PSU. TRACE is a reactor systems code developed by US NRC to analyze transient and steady-state thermal-hydraulic behavior in LWRs and it has been designed to perform best-estimate analyses of LOCA, operational transients, and other accident scenarios in PWRs and BWRs. The paper presents CTF and TRACE models for the PSBT void distribution exercises. Code-to-code and code-to-data comparisons are provided along with a discussion of the void generation and void distribution models available in the two codes.

  13. Assembling Sustainable Territories

    DEFF Research Database (Denmark)

    Vandergeest, Peter; Ponte, Stefano; Bush, Simon


    The authors show how certification assembles ‘sustainable’ territories through a complex layering of regulatory authority in which both government and nongovernment entities claim rule-making authority, sometimes working together, sometimes in parallel, sometimes competitively. It is argued...... dynamic in assembling sustainable territories, and that certification always involves state agencies in determining how the key elements that comprise it are defined. Whereas some state agencies have been suspicious of sustainability certification, others have embraced it or even used it to extend...

  14. Etude thermo-aeraulique d'une piscine interieure (United States)

    Guerfala, Nasreddine

    Les grands espaces fermés (amphithéâtres, supermarchés, gymnases et piscines) jouent un rôle essentiel dans l'économie et la société canadienne mais n'assurent pas nécessairement le confort thermique et la bonne qualité de l'air intérieur. En outre, leur consommation énergétique demeure très élevée. Plus spécifiquement, les piscines intérieures présentent certaines particularités telles qu'une humidité relative élevée, une température contrôlée de l'eau et une condensation possible sur les parois ce qui rend la tâche d'assurer le confort des baigneurs encore plus difficile. Rares sont les études réalisées pour ce type de bâtiment malgré l'existence de pistes d'optimisation de la consommation énergétique et l'amélioration de la qualité d'air intérieur. Dans cette optique, ce mémoire présente une étude thermo-aéraulique réalisée sur la piscine intérieure de l'Université Bishop's (Sherbrooke, Canada). La simulation numérique a été effectuée en utilisant le logiciel TRNSYS. L'approche adoptée pour la modélisation est la méthode zonale qui découpe l'espace de travail étudié en plusieurs zones fictives tout en calculant les caractéristiques thermo-aérauliques (température, pression, nombre de changement d'air par heure). D'autre part, une validation expérimentale en situations réelles est mise en œuvre au sein de cette piscine moyennant un dispositif expérimental spécifique. Ce dernier a été conçu spécialement pour s'adapter aux caractéristiques du milieu (hauteur du bâtiment, présence de l'eau et forte humidité) afin de mesurer la température, la pression et la vitesse de l'air dans plusieurs endroits significatifs de la piscine. Cette étude développe un outil de calcul capable de prédire les températures de différentes zones thermiques et des surfaces de l'enveloppe du bâtiment d'une part et de calculer le débit massique de l'air entre les zones ainsi que le nombre de changement d'air par

  15. Multiphase flow models for hydraulic fracturing technology (United States)

    Osiptsov, Andrei A.


    The technology of hydraulic fracturing of a hydrocarbon-bearing formation is based on pumping a fluid with particles into a well to create fractures in porous medium. After the end of pumping, the fractures filled with closely packed proppant particles create highly conductive channels for hydrocarbon flow from far-field reservoir to the well to surface. The design of the hydraulic fracturing treatment is carried out with a simulator. Those simulators are based on mathematical models, which need to be accurate and close to physical reality. The entire process of fracture placement and flowback/cleanup can be conventionally split into the following four stages: (i) quasi-steady state effectively single-phase suspension flow down the wellbore, (ii) particle transport in an open vertical fracture, (iii) displacement of fracturing fluid by hydrocarbons from the closed fracture filled with a random close pack of proppant particles, and, finally, (iv) highly transient gas-liquid flow in a well during cleanup. The stage (i) is relatively well described by the existing hydralics models, while the models for the other three stages of the process need revisiting and considerable improvement, which was the focus of the author’s research presented in this review paper. For stage (ii), we consider the derivation of a multi-fluid model for suspension flow in a narrow vertical hydraulic fracture at moderate Re on the scale of fracture height and length and also the migration of particles across the flow on the scale of fracture width. At the stage of fracture cleanaup (iii), a novel multi-continua model for suspension filtration is developed. To provide closure relationships for permeability of proppant packings to be used in this model, a 3D direct numerical simulation of single phase flow is carried out using the lattice-Boltzmann method. For wellbore cleanup (iv), we present a combined 1D model for highly-transient gas-liquid flow based on the combination of multi-fluid and

  16. Hydraulic characteristics of HANARO fuel bundles

    Energy Technology Data Exchange (ETDEWEB)

    Cho, S.; Chung, H. J.; Chun, S. Y.; Yang, S. K.; Chung, M. K. [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)


    This paper presents the hydraulic characteristics measured by using LDV (Laser Doppler Velocimetry) in subchannels of HANARO, KAERI research reactor, fuel bundle. The fuel bundle consists of 18 axially finned rods with 3 spacer grids, which are arranged in cylindrical configuration. The effects of the spacer grids on the turbulent flow were investigated by the experimental results. Pressure drops for each component of the fuel bundle were measured, and the friction factors of fuel bundle and loss coefficients for the spacer grids were estimated from the measured pressure drops. Implications regarding the turbulent thermal mixing were discussed. Vibration test results measured by using laser vibrometer were presented. 9 refs., 12 figs. (Author)

  17. Database for Hydraulically Conductive Fractures. Update 2010

    Energy Technology Data Exchange (ETDEWEB)

    Tammisto, E.; Palmen, J. (Poeyry Finland Oy, Espoo (Finland))


    Posiva flow logging (PFL) with 0.5 m test interval and made in 10 cm steps can be used for exact depth determination of hydraulically conductive fractures. Together with drillhole wall images and fracture data from core logging PFL provides possibilities to detect single conductive fractures. In this report, the results of PFL are combined to the fracture data in drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OLKR53B and pilot holes ONK-PH11 - ONK-PH13. The results are used mainly in development of hydroDFN- models. The conductive fractures were first recognised from the PFL data and digital drillhole images and then the fractures from the core logging corresponding to the ones picked from the digital drillhole images were identified. The conductive fractures were recognised from the images primarily based on openness of fractures or a visible flow in the image. In most of the cases of measured flow, no tails of flow were seen in the image. In these cases, the conductive fractures were recognised from the image based on openness of fractures and a matching depth. According to the results the hydraulically conductive fractures/zones can be distinguished from the drillhole wall images in most cases. An important phase in the work is to calibrate the depth of the image and the flow logging with the sample length. The hydraulic conductivity is clearly higher in the upper part of the bedrock in the depth range 0-150 m below sea level than deeper in the bedrock. The frequency of hydraulically conductive fractures detected in flow logging (T > 10 -10-10-9 m2/s) in depth range 0-150 m varies from 0.07 to 0.84 fractures/meter of sample length. Deeper in the rock the conductive fractures are less frequent, but occur often in groups of few fractures. In drillholes OL-KR49 .. OL-KR53, OL-KR50B, OL-KR52B and OL-KR53B about 8.5 % of all fractures and 4.4 % of the conductive fractures are within HZ-structures. (orig.)

  18. Hydraulic Power Plant Machine Dynamic Diagnosis

    Directory of Open Access Journals (Sweden)

    Hans Günther Poll


    Full Text Available A method how to perform an entire structural and hydraulic diagnosis of prototype Francis power machines is presented and discussed in this report. Machine diagnosis of Francis units consists on a proper evaluation of acquired mechanical, thermal and hydraulic data obtained in different operating conditions of several rotary and non rotary machine components. Many different physical quantities of a Francis machine such as pressure, strains, vibration related data, water flow, air flow, position of regulating devices and displacements are measured in a synchronized way so that a relation of cause an effect can be developed for each operating condition and help one to understand all phenomena that are involved with such kind of machine. This amount of data needs to be adequately post processed in order to allow correct interpretation of the machine dynamics and finally these data must be compared with the expected calculated data not only to fine tuning the calculation methods but also to accomplish fully understanding of the influence of the water passages on such machines. The way how the power plant owner has to operate its Francis machines, many times also determined by a central dispatcher, has a high influence on the fatigue life time of the machine components. The diagnostic method presented in this report helps one to understand the importance of adequate operation to allow a low maintenance cost for the entire power plant. The method how to acquire these quantities is discussed in details together with the importance of correct sensor balancing, calibration and adequate correlation with the physical quantities. Typical results of the dynamic machine behavior, with adequate interpretation, obtained in recent measurement campaigns of some important hydraulic turbines were presented. The paper highlights the investigation focus of the hydraulic machine behavior and how to tailor the measurement strategy to accomplish all goals. Finally some

  19. Mercury Thermal Hydraulic Loop (MTHL) Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Felde, David K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Crye, Jason Michael [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Wendel, Mark W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Yoder, Jr, Graydon L. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Farquharson, George [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jallouk, Philip A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); McFee, Marshall T. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Pointer, William David [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Ruggles, Art E. [Univ. of Tennessee, Knoxville, TN (United States); Carbajo, Juan J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)


    The Spallation Neutron Source (SNS) is a high-power linear accelerator built at Oak Ridge National Laboratory (ORNL) which incorporates the use of a flowing liquid mercury target. The Mercury Thermal Hydraulic Loop (MTHL) was constructed to investigate and verify the heat transfer characteristics of liquid mercury in a rectangular channel. This report provides a compilation of previously reported results from the water-cooled and electrically heated straight and curved test sections that simulate the geometry of the window cooling channel in the target nose region.

  20. Analyses of hydraulic performance of velocity caps

    DEFF Research Database (Denmark)

    Christensen, Erik Damgaard; Degn Eskesen, Mark Chr.; Buhrkall, Jeppe


    The hydraulic performance of a velocity cap has been investigated. Velocity caps are often used in connection with offshore intakes. CFD (computational fluid dynamics) examined the flow through the cap openings and further down into the intake pipes. This was combined with dimension analyses...... in order to analyse the effect of different layouts on the flow characteristics. In particular, flow configurations going all the way through the structure were revealed. A couple of suggestions to minimize the risk for flow through have been tested....

  1. Trends in Design of Water Hydraulics

    DEFF Research Database (Denmark)

    Conrad, Finn


    The paper presents and discusses a R&D-view on trends in development and best practise in design of both low-pressure and high-pressure tap water hydraulic components and systems for motion control as well as open-ended solutions various industrial applications. The focus is on the advantages using...... characteristics are presented and the trends in industrial applications and need for future are discussed....... ordinary tap water and the range of application areas are illustrated with examples, in particular within the food processing industry, humidification operations, water mist systems for fire fighting, high water pressure cleaners, water moisturising systems for wood processing, lumber drying process...

  2. Power management in hydraulically actuated mobile equipment

    DEFF Research Database (Denmark)

    Pedersen, Henrik Clemmensen; Andersen, Torben Ole; Hansen, Michael Rygaard


    model of a backhoe loader is first presented. Based on this model and the dynamic properties of the system, a generally applicable power management algorithm is developed based on an optimization procedure, which takes into account the dynamics of the system and different modes of operation......The focus of the current paper is on the control of hydraulic systems when utilizing the advances that electronic control may bring with regard to power management, prioritized flow sharing and anti-stall, arising from being able to control both pump, valves and engine electronically. A simple...

  3. Percolation Theory and Modern Hydraulic Fracturing (United States)

    Norris, J. Q.; Turcotte, D. L.; Rundle, J. B.


    During the past few years, we have been developing a percolation model for fracking. This model provides a powerful tool for understanding the growth and properties of the complex fracture networks generated during a modern high volume hydraulic fracture stimulations of tight shale reservoirs. The model can also be used to understand the interaction between the growing fracture network and natural reservoir features such as joint sets and faults. Additionally, the model produces a power-law distribution of bursts which can easily be compared to observed microseismicity.

  4. A New Type of Hydraulic Muscle

    Directory of Open Access Journals (Sweden)

    Nitai Drimer


    Full Text Available This paper presents the invention and development of a new fundamental type of hydraulic actuator, aimed at delivering better actuation efficiency. This actuator is a flexible tube, composed of two different materials, which deflects while applying inner pressure. This concept is simple to produce, and allows adaptation of the deflected shape by the design parameters (radius, wall thickness, geometry, etc.. Among other applications, it is mostly suitable for the activation of fins of nature-like marine robots. Theoretical formulation, production of prototypes and actuation experiments are presented, as well as material hysteresis research and an application example.



    Yevgeniy M. Sgibnev; Nikolay V. Nikonorov; Alexander I. Ignatiev; Dmitry S. Starodubov


    Subject of Study.The paper deals with novel research of ion exchange duration influence on spectral-luminescent properties of silver clusters formed in photo-thermo-refractive glass. Method. Photo-thermo-refractive matrix glass based on Na2O–Al2O3–ZnO–SiO2–F (% mol.) system doped with 0,002% mol. of Sb2O3 was synthesized for further research. Silver ions were introduced with low temperature ion exchange method. The glass samples were immersed in the mixture of sodium and silver nitrates 5AgNO...

  6. An Explicit Approach Toward Modeling Thermo-Coupled Deformation Behaviors of SMPs

    Directory of Open Access Journals (Sweden)

    Hao Li


    Full Text Available A new elastoplastic J 2 -flow models with thermal effects is proposed toward simulating thermo-coupled finite deformation behaviors of shape memory polymers. In this new model, an elastic potential evolving with development of plastic flow is incorporated to characterize the stress-softening effect at unloading and, moreover, thermo-induced plastic flow is introduced to represent the strain recovery effect at heating. It is shown that any given test data for both effects may be accurately simulated by means of direct and explicit procedures. Numerical examples for model predictions compare well with test data in literature.

  7. Rheological model for sol-gel phase transition of thermo-aged heavy oil fractions

    Directory of Open Access Journals (Sweden)

    Xiomara Andrea Vargas Arenas


    Full Text Available A power-law rheological model is proposed in this paper: G’’ (ω ∼ ωn and G’ (ω ~ ωn. It represents the increased connectivity between thermo-aged asphalt molecules in a rheo-reactor as one of the applications of systematic rheology. The results confirmed a sol-gel phase transition tendency for aged asphalt in the experimental frequency window at temperatures below 40°C. Such pattern could have been related to the structuring effect arising from the thermo-oxidative asphalt aging process during continuous agitation which has been suitably described by the micellar model of asphalt.

  8. Case-study of thermo active building systems in Japanese climate

    DEFF Research Database (Denmark)

    Li, Rongling; Yoshidomi, Togo; Ooka, Ryozo


    Thermo active building systems (TABS) have been applied in office buildings as a promising energy efficient solution in many European countries. The utilization of building thermal mass helps to provide high quality thermal environments with less energy consumption. However, the concept of TABS...... is entirely new in Japan. This paper introduces and evaluates TABS under Tokyo weather conditions to clarify the potential of use TABS in Japan. Cooling capacity of thermo active building systems used in an office building was evaluated by means of dynamic simulations. Two central rooms of the office were...

  9. Entwurf und Simulation von Makromodellen zur transienten Simulation von thermo-elektrischen Kopplungen in einem Netzwerksimulator


    Schacht, Ralph Karl Benjamin


    In der vorliegenden Arbeit wird eine Methode vorgestellt, welche die Beschreibung und Si-mulation von thermo-elektrischen Kopplungen während des Design-Prozesses mittels Mak-romodellierung unterstützt. Das Makromodell ist für den Einsatz in dem Schaltungssimulator PSpice zugeschnitten. Es ermöglicht die rechenzeiteffiziente transiente Simulation zwischen thermo-elektrisch gekoppelten Komponenten eines komplexen Mikrosystems. Im Rahmen dieser Arbeit wurde zunächst eine für die Problemstellung ...

  10. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn


    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  11. Polyester textile functionalisation through incorporation of pH/thermo-responsive microgels. Part I: Microgel preparation and characterisation

    NARCIS (Netherlands)

    Glampedaki, P.; Kraegel, J.; Petzold, G.; Dutschk, Victoria; Miller, R.; Warmoeskerken, Marinus


    The present study aims at investigating the properties of pH/thermo-responsive polyelectrolyte microgels intended for surface functionalisation of textiles. Microgels were prepared to have their pH/thermo-responsiveness expressed within the physiological pH and temperature range. They consisted of

  12. Draft genome sequence of Ureibacillus thermosphaericus strain thermo-BF, isolated from Ramsar hot springs in Iran. (United States)

    Abbasalizadeh, Saeed; Salehi Jouzani, Gholamreza; Motamedi Juibari, Mehraneh; Azarbaijani, Reza; Parsa Yeganeh, Laleh; Ahmad Raji, Mana; Mardi, Mohsen; Salekdeh, Ghasem Hosseini


    Ureibacillus thermosphaericus strain Thermo-BF is an aerobic, thermophilic bacillus which has been characterized to biosynthesize gold nanoparticles. Here we present the draft genome sequence of Ureibacillus thermosphaericus strain Thermo-BF which consists of a 2,864,162-bp chromosome. This is the first report of a shotgun sequenced draft genome of a species in the Ureibacillus genus.

  13. 21 CFR 177.2280 - 4,4′-Isopropyl-idenedi-phenol-epichloro-hydrin thermo-setting epoxy resins. (United States)


    ... thermo-setting epoxy resins. 177.2280 Section 177.2280 Food and Drugs FOOD AND DRUG ADMINISTRATION...,4′-Isopropyl-idenedi-phenol-epichloro-hydrin thermo-setting epoxy resins. 4,4′-Isopropylidenediphenol-epichlo-rohydrin thermosetting epoxy resins may be safely used as articles or components of...

  14. Study on properties and testing methods of thermo-responsive cementing system for well cementing in heavy oil thermal recovery (United States)

    Li, Lianjiang


    In this paper, thermo-responsive cement slurry system were being developed, the properties of conventional cement slurry, compressive strength high temperature of cement sheath, mechanical properties of cement sheath and thermal properties of cement sheath were being tested. Results were being used and simulated by Well-Life Software, Thermo-responsive cement slurry system can meet the requirements of heavy oil thermal recovery production. Mechanical and thermal properties of thermo-responsive cement sheath were being tested. Tensile fracture energy of the thermo-responsive cement sheath is larger than conventional cement. The heat absorption capacity of conventional cement sheath is larger than that of thermo-responsive cement sheath, this means more heat is needed for the unit mass once increasing 1.0 °C, which also indicates that thermo-responsive cement own good heat insulating and preservation effects. The heat conductivity coefficient and thermal expansion coefficient of thermo-responsive cement is less than and conventional cement, this means that thermo-responsive cement have good heat preservation and insulation effects with good thermal expansion stabilities.

  15. Hydraulic Fracturing and Drinking Water Resources: Update on EPA Hydraulic Fracturing Study (United States)

    Natural gas plays a key role in our nation's energy future and the process known as hydraulic fracturing (HF) is one way of accessing that resource. Over the past few years, several key technical, economic, and energy developments have spurred increased use of HF for gas extracti...

  16. Development of A Hydraulic Drive for a novel Diesel-Hydraulic system for Large commercial Vehicles

    DEFF Research Database (Denmark)

    Stecki, J. S.; Conrad, Finn; Matheson, P.


    The objectives and results of the research project Hybrid Diesel-Hydraulic System for Large commercial vehicles, e.g. urban freight delivery, buses or garbage trucks. The paper presents and discusses the research and development of the system, modelling approach and results from preliminary...... performance tests on a 10 ton vehicle....

  17. Experimental study of the hydraulic jump in a hydraulic jump in a ...

    African Journals Online (AJOL)

    The hydraulic jump in a sloped rectangular channel is theoretically and experimentally examined. The study aims to determine the effect of the channel's slope on the sequent depth ratio of the jump. A theoretical relation is proposed for the inflow Froude number as function of the sequent depth ratio and the channel slope.

  18. Strategies for Creating Prescribed Hydraulic Fractures in Cave Mining (United States)

    He, Q.; Suorineni, F. T.; Oh, J.


    The cave mining method was traditionally applied to massive low-grade, weak orebodies at shallow depths (less than 500 m) that favour cave propagation under gravity. Currently, this method is being applied to stronger orebodies and is taking place at depths of up to 2000 m below the surface. To ensure continuous cave propagation, preconditioning of the orebody is essential in this latter caving environment to improve rock mass caveability and to decrease fragmentation sizes. Hydraulic fracturing was initiated in the oil industry and is now being used in the cave mining industry as a preconditioning method and for stalled caves reactivation. A limitation of conventional hydraulic fracturing in the cave mining industry is that the hydraulic fracture orientation is uncontrollable and is dictated by the minimum in situ stress orientation. The preconditioning effectiveness of orientation-uncontrollable hydraulic fractures is limited in some geotechnical conditions, and the concept of creating orientation-controllable hydraulic fractures, here termed prescribed hydraulic fractures, is proposed to fill this gap. In this paper, the feasibility of the proposed approaches to creating prescribed hydraulic fractures is presented based on previous studies and numerical modelling. The numerical modelling code reliability in simulating the hydraulic fracture propagation and reorientation process was validated by comparing with laboratory results in the reported literature. In addition, the sensitivity of the prescribed hydraulic fracturing to the in situ stress condition and rock mass properties is examined.

  19. Hydraulic adjustments underlying drought resistance of Pinus halepensis

    National Research Council Canada - National Science Library

    Klein, Tamir; Cohen, Shabtai; Yakir, Dan; Tognetti, Roberto


    .... Our objective was to investigate under controlled conditions the hydraulic adjustments underlying the observed ability of Pinus halepensis to survive seasonal drought under semi-arid conditions...

  20. Predictive Maintenance of Hydraulic Lifts through Lubricating Oil Analysis

    Directory of Open Access Journals (Sweden)

    Stamatios S. Kalligeros


    Full Text Available This article examines the possibility of measuring lift maintenance through analysis of used hydraulic oil. Hydraulic oils have proved to be a reliable indicator for the maintenance performed on elevators. It has also been proved that the end users or the maintenance personnel do not always conform to the instructions of the elevators’ hydraulic machine manufacturer. Furthermore, by examining the proportion of the metals, an estimation of the corrosion and the wear resistance of the joined moving parts can be observed. Additionally, the presence of chlorine and calcium in hydraulic oils demonstrates their function in a highly corrosive environment.

  1. Applying Switched Reluctance Motor to Oil Hydraulic Pump Use (United States)

    Yamai, Hiroyuki; Sawada, Yuzo; Ohyama, Kazunobu

    Hydraulic pump units are widely used to operate hydraulic actuators. In a typical machine shop, conventional constant speed hydraulic pump units consume more than 20% of the total electric power necessary to operate CNC machine tools. Most of that energy are wasted to run the axial piston pump at idle. This paper describes a variable speed hydraulic pump unit using a switched reluctance motor (SRM), which saves energy drastically. SRM was selected as the most suitable motor for this application. Design and control strategy of this motor are described. Application examples to machine tools shows the effectiveness of the new hybrid pump system in saving energy and in reducing acoustic noise.

  2. Optimization of hydraulic turbine governor parameters based on WPA (United States)

    Gao, Chunyang; Yu, Xiangyang; Zhu, Yong; Feng, Baohao


    The parameters of hydraulic turbine governor directly affect the dynamic characteristics of the hydraulic unit, thus affecting the regulation capacity and the power quality of power grid. The governor of conventional hydropower unit is mainly PID governor with three adjustable parameters, which are difficult to set up. In order to optimize the hydraulic turbine governor, this paper proposes wolf pack algorithm (WPA) for intelligent tuning since the good global optimization capability of WPA. Compared with the traditional optimization method and PSO algorithm, the results show that the PID controller designed by WPA achieves a dynamic quality of hydraulic system and inhibits overshoot.

  3. Validation of simulated flow direction and hydraulic gradients with hydraulic head observations using open source GIS (United States)

    Vandersteen, Katrijn; Rogiers, Bart; Gedeon, Matej


    It is recommended to check hydraulic gradients and flow directions predicted by a groundwater flow model that is calibrated solely with hydraulic head observations. It has been demonstrated in literature that substantial errors can be made when the model is not calibrated on these state variables. Therefore, in this work, we perform a validation of a steady-state groundwater flow model, representing part of the Neogene aquifer (60 km2) in Belgium. This model was developed and calibrated solely on groundwater head measurements, in the framework of the environmental impact assessment of the near surface repository for low- and intermediate-level short-lived waste, realized by ONDRAF/NIRAS at Dessel, Belgium. Horizontal flow directions, horizontal and vertical gradients for the entire area of the groundwater model were estimated from measurements at shallow monitoring wells within the groundwater flow model domain, and compared to the flow directions and vertical gradients predicted by the model. For obtaining horizontal flow directions and gradients, triangulation of groundwater levels was performed for combinations of three neighboring hydraulic head observations in the same hydrogeological layer within the model. The simulated equivalents at the same monitoring wells were used to repeat the same methodology, and calculate flow direction components. This analysis was performed in SAGA GIS and was visualized through QGIS. Comparison of the flow directions and flow gradients obtained from measurements and simulations gives an indication on the model performance. The calculations were performed for three sandy hydrogeological units used in the model. A similar procedure was performed for the vertical hydraulic head gradients, where any combination of two hydraulic head observations at the same location but at different levels within the aquifer were used to validate the vertical gradients predicted by the model. Besides model validation on average hydraulic heads, the

  4. Human Assisted Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)



    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  5. Drainage hydraulics of permeable friction courses (United States)

    Charbeneau, Randall J.; Barrett, Michael E.


    This paper describes solutions to the hydraulic equations that govern flow in permeable friction courses (PFC). PFC is a layer of porous asphalt approximately 50 mm thick that is placed as an overlay on top of an existing conventional concrete or asphalt road surface to help control splash and hydroplaning, reduce noise, and enhance quality of storm water runoff. The primary objective of this manuscript is to present an analytical system of equations that can be used in design and analysis of PFC systems. The primary assumptions used in this analysis are that the flow can be modeled as one-dimensional, steady state Darcy-type flow and that slopes are sufficiently small so that the Dupuit-Forchheimer assumptions apply. Solutions are derived for cases where storm water drainage is confined to the PFC bed and for conditions where the PFC drainage capacity is exceeded and ponded sheet flow occurs across the pavement surface. The mathematical solutions provide the drainage characteristics (depth and residence time) as a function of rainfall intensity, PFC hydraulic conductivity, pavement slope, and maximum drainage path length.

  6. Automated hydraulic tensor for Total Knee Arthroplasty. (United States)

    Marmignon, C; Leimnei, A; Lavallée, S; Cinquin, P


    To obtain a long lifespan of knee prosthesis, it is necessary to restore the alignment of the lower limb. In some cases of severe arthrosis, the ligament envelope of the joint may be deformed, inducing an asymmetric laxity once the lower limb is realigned. Because there is not yet unanimity regarding how to optimally measure or implement soft tissue balance, we provide a means to acquire a variety of measurements. In traditional surgery, the surgeon sometimes uses a "tensor", which acts like a forceps. This system was redesigned, instrumented, actuated, and integrated into a navigation system for orthopaedic surgery. Improving the perception of the surgeon, it helps him to address the ligament balancing problem. Our first prototype has been tested on sawbones before being validated in an experiment on two cadavers. In our first attempt, the surgeon was able to assess soft tissue balance but judged the device not powerful enough, which led us to develop a new more powerful hydraulic system. In this paper, we present our approach and the first results of the new hydraulic tensor which is currently in an integration process. Copyright 2005 John Wiley & Sons, Ltd.

  7. Thermal Hydraulic Tests for Reactor Core Safety

    Energy Technology Data Exchange (ETDEWEB)

    Moon, S. K.; Baek, W. P.; Chun, S. Y. (and others)


    The main objectives of the present project are to resolve the current issues of reactor core thermal hydraulics, to develop an advanced measurement and analytical techniques, and to perform reactor core safety verification tests. 6x6 reflood experiments, various heat transfer experiments using Freon, and experiments on the spacer grids effects on the post-dryout are carried out using spacer grids developed in Korea in order to resolve the current issues of the reactor core thermal hydraulics. In order to develop a reflood heat transfer model, the detailed reflood phenomena are visualized and measured using round tube and 2x2 rod bundle. A detailed turbulent mixing phenomenon for subchannels is measured using advanced measurement techniques such as LDV and PIV. MARS and MATRA codes developed in Korea are assessed, verified and improved using the obtained experimental data. Finally, a systematic quality assurance program and experimental data generation system has been constructed in order to increase the reliability of the experimental data.

  8. Chemical Degradation of Polyacrylamide during Hydraulic Fracturing. (United States)

    Xiong, Boya; Miller, Zachary; Roman-White, Selina; Tasker, Travis L; Farina, Benjamin; Piechowicz, Bethany; Joshi, Prachi; Zhu, Liang; Gorski, Christopher A; Burgos, William D; Zydney, Andrew L; Kumar, Manish


    Polyacrylamide (PAM) based friction reducers are a primary ingredient of slickwater hydraulic fracturing fluids. Little is known regarding the fate of these polymers under downhole conditions, which could have important environmental impacts including strategies for reuse or treatment of flowback water. The objective of this study was to evaluate the chemical degradation of high molecular weight PAM, including the effects of shale, oxygen, temperature, pressure, and salinity. Data were obtained with a slickwater fracturing fluid exposed to both a shale sample collected from a Marcellus shale outcrop and to Marcellus core samples at high pressures/temperatures (HPT) simulating downhole conditions. Based on size exclusion chromatography analyses, the peak molecular weight of the PAM was reduced by two orders of magnitude, from roughly 10 MDa to 200 kDa under typical HPT fracturing conditions. The rate of degradation was independent of pressure and salinity but increased significantly at high temperatures and in the presence of oxygen dissolved in fracturing fluid. Results were consistent with a free radical chain scission mechanism, supported by measurements of sub-μM hydroxyl radical concentrations. The shale sample adsorbed some PAM (~35%), but importantly it catalyzed the chemical degradation of PAM, likely due to dissolution of Fe2+ at low pH. These results provide the first evidence of radical-induced degradation of PAM under HPT hydraulic fracturing conditions without additional oxidative breaker.

  9. [Hydraulic fracturing - a hazard for drinking water?]. (United States)

    Ewers, U; Gordalla, B; Frimmel, F


    Hydraulic fracturing (fracking) is a technique used to release and promote the extraction of natural gas (including shale gas, tight gas, and coal bed methane) from deep natural gas deposits. Among the German public there is great concern with regard to the potential environmental impacts of fracking including the contamination of ground water, the most important source of drinking water in Germany. In the present article the risks of ground water contamination through fracking are discussed. Due to the present safety requirements and the obligatory geological and hydrogeological scrutiny of the underground, which has to be performed prior to fracking, the risk of ground water contamination by fracking can be regarded as very low. The toxicity of chemical additives of fracking fluids is discussed. It is recommended that in the future environmental impact assessment and approval of fracs should be performed by the mining authorities in close cooperation with the water authorities. Furthermore, it is recommended that hydraulic fracturing in the future should be accompanied by obligatory ground water monitoring. © Georg Thieme Verlag KG Stuttgart · New York.

  10. Stability study of MMC tubes and advanced assemblies for telescope structures (United States)

    Nivet-Lutz, Martine; Pommatau, Gilles


    This paper presents new advances concerning the development of an Aluminum Matrix Composite for dimensionally stable satellite structures. Feasibility of thermally stable thin-walled tubes have been acquired through microstructure observation and Coefficient of Thermal Expansion measurement. In order to fit the thermo-mechanical stability domain of tubes on specifications, 3 thermal cycles have been tested, regarding to relaxation of internal stress and changes in macroscopic thermo-mechanical properties. Experimental expansion curves and microstructure observation show that thermal treatments permitts such a good fitting. For a better understanding of physical internal phenomena, internal stress has been measured by neutron diffraction on tube samples after each thermal treatment. Results show a significant decrease of stress due to cycling in cold temperature. In order to decrease the absolute value of CTE of assemblies, a new concept of thermo-mechanical stable linkage has been developped, which consists in a common alumlinum infiltration of superposed carbon preforms. Structural bonding, which usually affects stability properties and impose surface treatments and polymerization, can so be avoided. The study has been achieved through CNES (Centre National d'Etudes Spatiales) and French Ministry of Defense (DGA) supports.

  11. Thermo-Hydro-Mechanical Characterisation of the Bentonite of a Simulated HLW Repository after Five Years Operation ( In Situ Test of the FEBEX Project)

    Energy Technology Data Exchange (ETDEWEB)

    Villar, M. V.


    After five years of operation, heater 1 of the FEBEX experimental at the Grimsel Test Sites was switched off in February 2002. Following cooling of the system, the bentonite barrier was dismantled and the heater extracted. During dismantling many bentonite samples were taken. Several determinations were carried out in these samples with the aim of: (1) characterise the actual state of the bentonite and (2) determine the possible changes in its properties occurred during the experiment. The results of the thermo-hydro-mechanical characterisation performed at CIEMAT are reported and analysed. The distribution of water content and dry density of the bentonite in vertical sections presents axial symmetry. The construction gaps of the barrier have been filled by the expansion of the bentonite. The water retention capacity, the hydraulic conductivity and the swelling capacity of the samples from Grimsel have not irreversible changed. The pre consolidation pressure of the Grimsel samples has decreased due to the microstructural changes associated to the volume increase experienced during hydration. The thermal conductivity is higher for the bentonite blocks of the external ring of the barrier. (Author)

  12. Photovoltaic self-assembly.

    Energy Technology Data Exchange (ETDEWEB)

    Lavin, Judith; Kemp, Richard Alan; Stewart, Constantine A.


    This late-start LDRD was focused on the application of chemical principles of self-assembly on the ordering and placement of photovoltaic cells in a module. The drive for this chemical-based self-assembly stems from the escalating prices in the 'pick-and-place' technology currently used in the MEMS industries as the size of chips decreases. The chemical self-assembly principles are well-known on a molecular scale in other material science systems but to date had not been applied to the assembly of cells in a photovoltaic array or module. We explored several types of chemical-based self-assembly techniques, including gold-thiol interactions, liquid polymer binding, and hydrophobic-hydrophilic interactions designed to array both Si and GaAs PV chips onto a substrate. Additional research was focused on the modification of PV cells in an effort to gain control over the facial directionality of the cells in a solvent-based environment. Despite being a small footprint research project worked on for only a short time, the technical results and scientific accomplishments were significant and could prove to be enabling technology in the disruptive advancement of the microelectronic photovoltaics industry.

  13. RETRACTED — Preparation of helical biphenyl polyurethane and its low power consumption thermo-optic switch (United States)

    Wang, Qing; Qiu, Fengxian; Yang, Dongya; Cao, Guorong; Guan, Yijun; Shen, Qiang; Zhuang, Lin; Cao, Zhijuan; Ye, Feiyan


    Azo chromophore molecule (NDPD) and helical biphenyl polyurethane (HBPU) were prepared. The chemical structures of NDPD and HBPU were characterized by FTIR and UV-vis spectroscopy. The measurements of refractive index, thermo-optic coefficient (dn/dT), transmission loss, refractive index dispersions and Sellmeyer coefficients of HBPU were measured using ATR technique, CCD digital imaging devices and Sellmeyer equation. The results showed that HBPU would be useful for the design of high performance digital optical switch. The prepared HBPU was utilized as core material to propose a Y-branch thermo-optic switch, which was based on thermo-optic effect of HBPU at the infrared communication wavelength of 1.55 μm. With branching angle of 0.143° and the finite difference beam propagation method (FD-BPM), the polymeric thermo-optic switch was simulated. The simulation results indicated that the device has a low switching power of 1.68 mW and a switching response time of 7.0 ms.

  14. 3-D electromagnetic and thermo-mechanical simulation of a RF cavity

    CERN Document Server

    Launay, F


    A 3-D thermo-mechanical study of the edge of entrance blade of IPHI's RFQ was conducted by means of I-DEAS code. The aim is to compare the temperatures reached, the constraints, and the deformations calculated on the basis of RF power density stored on the blade obtained by means of two different electromagnetic computational codes, SOPRANO and MAFIA.

  15. Studies on thermo-optic property of chitosan–alizarin yellow GG ...

    Indian Academy of Sciences (India)

    The obtained results of chitosan derivative are expected to be useful for optical switching and optical waveguide areas for devices of biomedical applications. Keywords. Thermo-optic property; SHG; chitosan–alizarin complex; biomedical; applications. 1. Introduction. Polymer-based azomaterials have drawn great attention ...

  16. Efficient thermo-optically controlled Mach-Zhender interferometers using dielectric-loaded plasmonic waveguides

    DEFF Research Database (Denmark)

    Gosciniak, J.; Markey, L.; Dereux, A.


    Compact fiber-coupled dielectric-loaded plasmonic Mach-Zehnder interferometers operating at telecom wavelengths and controlled via the thermo-optic effect are reported. Two fabricated structures with Cytop substrate and a ridge made of PMMA or a cycloaliphatic acrylate polymer (CAP) were considered...

  17. Thermo-mechanical loading response of hardened and tempered iron-carbon based alloys

    NARCIS (Netherlands)

    Morra, P.V.


    The mechanisms causing long term changes of materials at mild operating conditions, i.e. relatively low temperatures and loads, has not received as much attention as that for high temperature operating conditions because small strains are involved. Nevertheless the thermo-mechanical loading response

  18. Effects of dispersion techniques of carbon nanofibers on the thermo-physical properties of epoxy nanocomposites



    Effects of dispersion techniques of carbon nanofibers on the thermo-physical properties of epoxy nanocomposites correspondance: Corresponding author. (Prolongo, S.G.) (Prolongo, S.G.) Dpt. Ciencia e Ingenieria de Materiales. ESCET. Universidad Rey Juan Carlos. c/ Tulipan s/n 28933 Mostoles (Madrid)--> - SPAIN (Prolongo, S.G.) Dpt. Ciencia e Ingenieria de Materiales. ESCET. Universidad Rey Juan Carlos. c/ Tu...

  19. Submicrosecond rearrangeable nonblocking silicon-on-insulator thermo-optic 4x4 switch matrix. (United States)

    Li, Yuntao; Yu, Jinzhong; Chen, Shaowu; Li, Yanping; Chen, Yuanyuan


    A rearrangeable nonblocking silicon-on-insulator-based thermo-optic 4x4 switch matrix is designed and fabricated. A spot-size converter is integrated to reduce the insertion loss, and a new driving circuit is designed to improve the response speed. The insertion loss is less than 10 dB, and the response time is 950 ns.

  20. Thermo Active Building Systems(TABS) - Performance in practice and possibilities for optimization

    DEFF Research Database (Denmark)

    Kolarik, Jakub

    The project “Thermo Active Building Systems (TABS) – Performance in practice and possibilities for optimization” was carried out at DTU Byg in the period form 1.9.2012 until 31.12.2014. The aim of the project was to conduct field measurements in modern office buildings equipped with TABS systems ....... The project was financed by Bjarne Saxhof foundation....