WorldWideScience

Sample records for assembly thermo hydraulic

  1. Assembly thermo hydraulic model ASHYMO improvement for VERONA in-core monitoring system

    International Nuclear Information System (INIS)

    Developments performed lately at Paks NPP - such as power up rate, application of fuel assemblies with increased pin pitch or containing burnable poison - caused power distributions within the assemblies differing significantly from the present ones. In-core measurements and preliminary calculations pointed that our codes modelling the coolant flow in the assemblies are not sufficient accurate and can not describe the processes detailed enough. This paper describes the caused problems and their nature and after that their solution by applying a new appropriate sub channel and thermocouple model. Both of them are simple and fast enough to be built in the online core monitoring system but yet they serve sufficient accurate results. (authors)

  2. Assembly thermo hydraulic model ASHYMO improvement for VERONA in-core monitoring system

    International Nuclear Information System (INIS)

    Developments performed lately at Paks NPP - such as power up rate, application of fuel assemblies with increased pin pitch or containing burnable poison - caused power distributions within the assemblies differing significantly from the present ones. In-core measurements and preliminary calculations pointed that our codes modelling the coolant flow in the assemblies are not sufficient accurate and can not describe the processes detailed enough. This paper describes the caused problems and their nature and after that their solution by applying a new appropriate sub channel and thermocouple model. Both of them are simple and fast enough to be built in the online core monitoring system but yet they serve sufficient accurate results. (Authors)

  3. Thermo-Hydraulic Modelling of Buffer and Backfill

    International Nuclear Information System (INIS)

    The temporal evolution of saturation, liquid pressure and temperature in the components of the engineered barrier system was studied using numerical methods. A set of laboratory tests was conducted to calibrate the parameters employed in the models. The modelling consisted of thermal, hydraulic and thermo-hydraulic analysis in which the significant thermo-hydraulic processes, parameters and features were identified. CODEBRIGHT was used for the finite element modelling and supplementary calculations were conducted with analytical methods. The main objective in this report is to improve understanding of the thermo-hydraulic processes and material properties that affect buffer behaviour in the Olkiluoto repository and to determine the parametric requirements of models for the accurate prediction of this behaviour. The analyses consisted of evaluating the influence of initial canister temperature and gaps in the buffer, and the role played by fractures and the rock mass located between fractures in supplying water for buffer and backfill saturation. In the thermo-hydraulic analysis, the primary processes examined were the effects of buffer drying near the canister on temperature evolution and the manner in which heat flow affects the buffer saturation process. Uncertainties in parameters and variations in the boundary conditions, modelling geometry and thermo-hydraulic phenomena were assessed with a sensitivity analysis. The material parameters, constitutive models, and assumptions made were carefully selected for all the modelling cases. The reference parameters selected for the simulations were compared and evaluated against laboratory measurements. The modelling results highlight the importance of understanding groundwater flow through the rock mass and from fractures in the rock in order to achieve reliable predictions regarding buffer saturation, since saturation times could range from a few years to tens of thousands of years depending on the hydrogeological

  4. Thermo-hydraulic and structural analysis for finger-based concept of ITER blanket first wall

    International Nuclear Information System (INIS)

    The blanket first wall is one of the main plasma facing components in ITER tokamak. The finger-typed first wall was proposed through the current design progress by ITER organization. In this concept, each first wall module is composed of a beam and twenty fingers. The main function of the first wall is to remove efficiently the high heat flux loading from the fusion plasma during its operation. Therefore, the thermal and structural performance should be investigated for the proposed finger-based design concept of first wall. The various case studies were performed for a unit finger model considering different loading conditions. The finite element model was made for a half of a module using symmetric boundary conditions to reduce the computational effort. The thermo-hydraulic analysis was performed to obtain the pressure drop and temperature profiles. Then the structural analysis was carried out using the maximum temperature distribution obtained in thermo-hydraulic analysis. Finally, the transient thermo-hydraulic analysis was performed for the generic first wall module to obtain the temperature evolution history considering cyclic heat flux loading with nuclear heating. After that, the thermo-mechanical analysis was performed at the time step when the maximum temperature gradient was occurred. Also, the stress analysis was performed for the component with a finger and a beam to check the residual stress of the component after thermal shrinkage assembly.

  5. Quench characterization and thermo hydraulic analysis of SST-1 TF magnet busbar

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, A.N., E-mail: ansharma@ipr.res.in [Institute for Plasma Research, Gandhinagar (India); Pradhan, S. [Institute for Plasma Research, Gandhinagar (India); Duchateau, J.L. [CEA Cadarache, 13108 St Paul lez Durance Cedex (France); Khristi, Y.; Prasad, U.; Doshi, K.; Varmora, P.; Tanna, V.L.; Patel, D.; Panchal, A. [Institute for Plasma Research, Gandhinagar (India)

    2015-01-15

    Highlights: • Details of SST-1 TF busbar quench detection. • Simulation of slow propagating normal zone. • Thermo hydraulic analyses of TF busbar in current feeder system. - Abstract: Toroidal field (TF) magnet system of steady-state superconducting tokamak-1 (SST-1) has 16 superconducting coils. TF coils are cooled with forced flow supercritical helium at 0.4 MPa, at 4.5 K and operate at nominal current of 10,000 A. Prior to TF magnet system assembly in SST-1 tokamak, each TF coil was tested individually in a test cryostat. During these tests, TF coil was connected to a pair of conventional helium vapor cooled current leads. The connecting busbar was made from the same base cable-in-conduit-conductor (CICC) of SST-1 superconducting magnet system. Quenches experimentally observed in the busbar sections of the single coil test setups have been analyzed in this paper. A steady state thermo hydraulic analysis of TF magnet busbar in actual SST-1 tokamak assembly has been done. The experimental observations of quench and results of relevant thermo hydraulic analyses have been used to predict the safe operation regime of TF magnet system busbar during actual SST-1 tokamak operational scenarios.

  6. Thermo-hydraulic analysis for SCWR during power-raising phase of startup

    International Nuclear Information System (INIS)

    The study of thermal characteristics during startup is one of the most important aspects for safety analysis of supercritical water-cooled reactor (SCWR). According to the given sliding pressure mode of SCWR, thermal analysis on temperature-raising phase and power-raising phase of startup are carried out. Considering the radial heterogeneity of power distribution,thermal characteristics for different assemblies during startup are also put forward. The results show that,during temperature-raising phase with core power increased only, the temperature of moderator, coolant and fuel cladding in inner assemblies are increased with little amplitude. During power-raising phase with core power and feed-water flow rate increased, the coolant temperature keeps unchanged, but the moderator temperature is decreased. With a greater variation of power, fuel cladding temperature shows a greater increase. Furthermore, considering the uneven distribution of radial power, thermo-hydraulic characteristics with uneven cladding temperature distribution shows a certain horizontal heterogeneity for different fuel assemblies, which becomes serious as flow rate and power increase. By adjusting flow rate distribution in different fuel assemblies or changing power setting during startup, the cladding temperature difference could be effectively reduced, which provides a certain reference for startup optimization of SCWR. (authors)

  7. A Thermo-Hydraulic Tool for Automatic Virtual Hazop Evaluation

    Directory of Open Access Journals (Sweden)

    Pugi L.

    2014-12-01

    Full Text Available Development of complex lubrication systems in the Oil&Gas industry has reached high levels of competitiveness in terms of requested performances and reliability. In particular, the use of HazOp (acronym of Hazard and Operability analysis represents a decisive factor to evaluate safety and reliability of plants. The HazOp analysis is a structured and systematic examination of a planned or existing operation in order to identify and evaluate problems that may represent risks to personnel or equipment. In particular, P&ID schemes (acronym of Piping and Instrument Diagram according to regulation in force ISO 14617 are used to evaluate the design of the plant in order to increase its safety and reliability in different operating conditions. The use of a simulation tool can drastically increase speed, efficiency and reliability of the design process. In this work, a tool, called TTH lib (acronym of Transient Thermal Hydraulic Library for the 1-D simulation of thermal hydraulic plants is presented. The proposed tool is applied to the analysis of safety relevant components of compressor and pumping units, such as lubrication circuits. Opposed to the known commercial products, TTH lib has been customized in order to ease simulation of complex interactions with digital logic components and plant controllers including their sensors and measurement systems. In particular, the proposed tool is optimized for fixed step execution and fast prototyping of Real Time code both for testing and production purposes. TTH lib can be used as a standard SimScape-Simulink library of components optimized and specifically designed in accordance with the P&ID definitions. Finally, an automatic code generation procedure has been developed, so TTH simulation models can be directly assembled from the P&ID schemes and technical documentation including detailed informations of sensor and measurement system.

  8. Progress in investigations on thermo-hydraulic characteristics of ship nuclear reactors under ocean conditions

    International Nuclear Information System (INIS)

    The thermo-hydraulic characteristics of ship nuclear reactors are very important to the safety and reliability of ship voyage under the ocean conditions. Therefore, many countries have carried out plentiful investigations. This paper is based on some Asia open literature of investigations on thermo-hydraulic characteristics of ship nuclear reactors under the ocean conditions, reviews and sums up those main progresses such as the method, contents and typical results in this field, analyzes their insufficiency, and puts forward advices on the future investigation based on the known research findings. (authors)

  9. On the application of reynolds theory to thermo-piezo-viscous lubrication in oil hydraulics

    DEFF Research Database (Denmark)

    Johansen, Per; Roemer, Daniel Beck; Andersen, Torben O.;

    2015-01-01

    this paper the derivation of Reynolds equation from the continuum assumption is reviewed and it is shown that the validity of Reynolds theory based pressure field solutions in oil hydraulic thermo-piezo-viscous lubrication models are subject to maximum bounds on the pressure and temperature field...

  10. Related research with thermo hydraulics safety by means of Trace code

    International Nuclear Information System (INIS)

    In this article the results of the design of a pressure vessel of a BWR/5 similar to the type of Laguna Verde NPP are presented, using the Trace code. A thermo hydraulics Vessel component capable of simulating the behavior of fluids and heat transfer that occurs within the reactor vessel was created. The Vessel component consists of a three-dimensional cylinder divided into 19 axial sections, 4 azimuthal sections and two concentric radial rings. The inner ring is used to contain the core and the central part of the reactor, while the outer ring is used as a down comer. Axial an azimuthal divisions were made with the intention that the dimensions of the internal components, heights and orientation of the external connections match the reference values of a reactor BWR/5 type. In the model internal components as, fuel assemblies, steam separators, jet pumps, guide tubes, etc. are included and main external connections as, steam lines, feed-water or penetrations of the recirculation system. The model presents significant simplifications because the object is to keep symmetry between each azimuthal section of the vessel. In most internal components lack a detailed description of the geometry and initial values of temperature, pressure, fluid velocity, etc. given that it only considered the most representative data, however with these simulations are obtained acceptable results in important parameters such as the total flow through the core, the pressure in the vessel, percentage of vacuums fraction, pressure drop in the core and the steam separators. (Author)

  11. Thermo-hydraulic simulations of the experimental fast reactor core

    International Nuclear Information System (INIS)

    A study of the core and performance of metallic fuel of the experimental fast reactor, from the thermal-hydraulic point of view, was carried out employing the COBRA IV-I code. The good safety characteristics of this reactor and the feasibility of using metallic fuel in experimental fast reactor were demonstrated. (Author)

  12. Neutron-kinetic and thermo-hydraulic uncertainties in the study of Kalinin-3 benchmark

    International Nuclear Information System (INIS)

    The effects of nuclear data covariance on important reactor parameters are investigated. The analyses are performed on the base of the OECD/NEA coolant transient Benchmark (K-3) on measured data at Kalinin-3 Nuclear Power Plant (NPP). For this purpose the GRS uncertainty and sensitivity software package XSUSA is applied to propagate uncertainties in nuclear data libraries to the full core coupled transient calculations. Moreover, based on the previous thermo-hydraulic studies a set of most important thermo-hydraulic parameters is chosen and added to the uncertain input vector. A statistically representative set of coupled ATHLET PARCS code steady state calculations is analyzed and both integral and local output quantities are compared with the measurements available in the benchmark. The work is a step forward in establishing a ''best-estimate calculations in combination with performing uncertainty analysis'' methodology for coupled full core calculations.

  13. Neutron-kinetic and thermo-hydraulic uncertainties in the study of Kalinin-3 benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Pasichnyk, Ihor; Zwermann, Winfried; Velkov, Kiril [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH, Garching (Germany); Nikonov, Sergey [All-Russain Research Institute for NPP Operation (VNIIAES), Moscow (Russian Federation)

    2015-09-15

    The effects of nuclear data covariance on important reactor parameters are investigated. The analyses are performed on the base of the OECD/NEA coolant transient Benchmark (K-3) on measured data at Kalinin-3 Nuclear Power Plant (NPP). For this purpose the GRS uncertainty and sensitivity software package XSUSA is applied to propagate uncertainties in nuclear data libraries to the full core coupled transient calculations. Moreover, based on the previous thermo-hydraulic studies a set of most important thermo-hydraulic parameters is chosen and added to the uncertain input vector. A statistically representative set of coupled ATHLET PARCS code steady state calculations is analyzed and both integral and local output quantities are compared with the measurements available in the benchmark. The work is a step forward in establishing a ''best-estimate calculations in combination with performing uncertainty analysis'' methodology for coupled full core calculations.

  14. Neutronics and thermo-hydraulic design of supercritical-water cooled solid breeder TBM

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jie; Wu, Yingwei, E-mail: wyw810@mail.xjtu.edu.cn; Tian, Wenxi; Su, Guanghui; Qiu, Suizheng

    2015-03-15

    Highlights: • A supercritical-water cooled solid breeder test blanket module (SWCB TBM) was designed. • The neutronics calculations show that the tritium breeding ratio (TBR) of SWCB TBM is 1.17. • The outlet temperature of SWCB TBM can reach as high as 500 °C. • Both thermal stress and deformation of the SWCB TBM design are within safety limits. - Abstract: In this paper, the supercritical-water cooled solid breeder test blanket module (SWCB TBM), using the supercritical water as the coolant, Li{sub 4}SiO{sub 4} lithium ceramic pebbles as a breeder, and beryllium pebbles as a neutron multiplier, was designed and analyzed for ITER. The results of neutronics, thermo-hydraulic and thermo-mechanical analysis are presented for the SWCB TBM. Neutronics calculations show that the proposed TBM has high tritium breeding ratio and power density. The tritium breeding ratio (TBR) of the proposed design is 1.17, which is greater than that of 1.15 required for tritium self-sufficiency. The thermo-hydraulic calculation proved that the TBM components can be effectively cooled to the allowable temperature with the temperature of outlet reaching 500 °C. According to thermo-mechanics calculation results, the first wall with the width of 17 mm is safe and the deformation of first wall is far below the limited value. All the results showed that the current TBM design was reasonable under the ITER normal condition.

  15. Neutronics and thermo-hydraulic design of supercritical-water cooled solid breeder TBM

    International Nuclear Information System (INIS)

    Highlights: • A supercritical-water cooled solid breeder test blanket module (SWCB TBM) was designed. • The neutronics calculations show that the tritium breeding ratio (TBR) of SWCB TBM is 1.17. • The outlet temperature of SWCB TBM can reach as high as 500 °C. • Both thermal stress and deformation of the SWCB TBM design are within safety limits. - Abstract: In this paper, the supercritical-water cooled solid breeder test blanket module (SWCB TBM), using the supercritical water as the coolant, Li4SiO4 lithium ceramic pebbles as a breeder, and beryllium pebbles as a neutron multiplier, was designed and analyzed for ITER. The results of neutronics, thermo-hydraulic and thermo-mechanical analysis are presented for the SWCB TBM. Neutronics calculations show that the proposed TBM has high tritium breeding ratio and power density. The tritium breeding ratio (TBR) of the proposed design is 1.17, which is greater than that of 1.15 required for tritium self-sufficiency. The thermo-hydraulic calculation proved that the TBM components can be effectively cooled to the allowable temperature with the temperature of outlet reaching 500 °C. According to thermo-mechanics calculation results, the first wall with the width of 17 mm is safe and the deformation of first wall is far below the limited value. All the results showed that the current TBM design was reasonable under the ITER normal condition

  16. Study on thermo-hydraulic behavior during reflood phase of a PWR-LOCA

    International Nuclear Information System (INIS)

    This paper describes thermo-hydraulic behavior during the reflood phase in a postulated large-break loss-of-coolant accident (LOCA) of a PWR. In order to better predict the reflood transient in a nuclear safety analysis specific analytical models have been developed for, saturated film boiling heat transfer in inverted slung flow, the effect of grid spacers on core thermo-hydraulics, overall system thermo-hydraulic behavior, and the thermal response similarity between nuclear fuel rods and simulated rods. A heat transfer correlation has been newly developed for saturated film boiling based on a 4 x 4-rod experiment conducted at JAERI. The correlation provides a good agreement with existing experiments except in the vicinity of grid spacer locations. An analytical model has then been developed addressing the effect of grid spacers. The thermo-hydraulic behavior near the grid spacers was found to be predicted well with this model by considering the breakup of droplets in dispersed flow and water accumulation above the grid spacers in inverted slung flow. A system analysis code has been developed which couples the one-dimensional core and multi-loop primary system component models. It provides fairly good agreement with system behavior obtained in a large-scale integral reflood experiment with active primary system components. An analytical model for the radial temperature distribution in a rod has been developed and verified with data from existing experiments. It was found that a nuclear fuel rod has a lower cladding temperature and an earlier quench time than an electrically heated rod in a typical reflood condition. (author)

  17. Thermo hydraulics of a steam boiler forced circulation

    International Nuclear Information System (INIS)

    In order to minimize the dryout at the steam boiler furnace in the Thermal Power Plant Kolubara B, designed are inner rifled wall tubes. This type of tubes, with many spiral grooves cut into the bore, prevents film boiling and enables the nucleate boiling be still maintained under the condition of vapour quality being app. 1. To verify the choice of the rifled tubes instead of the cheaper, smooth tubes type being justified, analyzed is the change of the actual and critical vapour quality with the furnace height, under uniform and non-uniform heat flu through evaporator walls. Furthermore, made are hydraulic calculations for various steam boiler loads, in case of both rifled and smooth tubes types, with the purpose to check the rifles influence to pressure drop increase in comparison with the smooth tubes. Also, checked is the selection of the circulation pump. Key words: evaporator, forced circulation, rifled tubes, critical vapour quality, pressure drop

  18. Numerical study of the thermo-hydraulic behavior for the Candu type fuel channel

    International Nuclear Information System (INIS)

    Candu type reactors use fuel channel in a horizontal lattice. The fuel bundles are positioned in two Zircaloy tubes: the pressure tube surrounded by calandria tube. Inside the pressure tube the coolant heavy water flows. The coolant reaches high temperatures and pressures. Due to irregular neutron spatial distribution, the fuel channel stress differs from one channel to other. In one improbable event of severe accident, the fuel channel behaves differently according to its normal function history. Over the years, there have been many research projects trying to analyze thermal hydraulic performance of the design and to add some operational improvements in order to achieve an efficient thermal hydraulic distribution. This paper discusses the thermo hydraulic behavior (influence of the temperature and velocity distribution) of the most solicited channel, simulated with Fluent 6.X. Code. Moreover it will be commented the results obtained using different models and mesh applied. (authors)

  19. Technique of analysis and error detection for thermo-hydraulic system data

    International Nuclear Information System (INIS)

    Statistical techniques based on estimation theory were developed for the analysis of steady-state data from thermo-hydraulic systems, which could be either experimental loops or operating power plants. The method seeks to resolve errors in the component heat balances which describe the system, to obtain system parameter estimates which are more accurate than the raw data, and to flag possible faulty sensors. Sample results are given for the analysis of test data from the Sodium Loop Safety Faciltiy (SLSF) P3 experiment

  20. Analysis Thermo-hydraulic of trajectories related to procedures for operation of Emergency (POE). Application to the loss of a train of the DTH

    International Nuclear Information System (INIS)

    This work explores different possible sequences at the loss of a train of the DTH when the plant is lowering power. The study of the different possible trajectories has been done through the collapse tool and study thermo-hydraulic each of these paths is done by the code TRACE Thermo-hydraulic.

  1. Preliminary thermal hydraulic analysis of hyper fuel assembly using Matra

    International Nuclear Information System (INIS)

    Sub-channel analysis of HYPER fuel assembly was performed using MATRA which is a subchannel analysis code developed by KAERI based on COBRA-IV-I. The MATRA code was considered for comparison between codes and assessing the capability of overcoming the limitation of the SLTHEN code used in the previous works. Two types of single fuel assembly, i.e., average assembly and hot assembly were considered for the present work. The predicted peak cladding temperatures of the average and hot assemblies were 536,2 C and 653,8 C, respectively with the reference design parameters. The comparison of results obtained by two codes shows that there is a good agreement for the predicted thermal hydraulic behaviour. It is judged that MATRA as well as SLTHEN is a very useful tool for thermal hydraulic design of the HYPER core and MATRA can be used to make up for the limitation of SLTHEN. (author)

  2. Recent Development of the Inter-Assembly Flow Analysis Tools for SFR Core Thermal Hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. G.; Kim, E. K.; Lee, Y. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2007-07-01

    A typical SFR core is generally comprised of hundreds of hexagonal type ducted subassemblies. And these subassemblies have hundreds of fuel rods with a triangular channel arrangement forming a closed circuit by themselves without any flow path between them. Subchannel analysis is considered to be the most suitable method for the LMR subassembly analysis when considering the geometrical complexities and computational resources needs. MATRA-LMR was developed as an analysis code to predict flow and temperature fields in SFR subassemblies. In the SFR core, flow redistribution can be occurred in the inter-assembly region of the core. The hotter counter flow from the upper center region of the LMR core may have a significant effect on the thermo-mechanical integrity of the duct wall. This paper describes the recent development of the inter-assembly flow analysis tools for SFR core thermal hydraulics and shows a few calculation results.

  3. Thermo-hydraulic Quench Propagation at the LHC Superconducting Magnet String

    CERN Document Server

    Rodríguez-Mateos, F; Serio, L

    1998-01-01

    The superconducting magnets of the LHC are protected by heaters and cold by-pass diodes. If a magnet quenches, the heaters on this magnet are fired and the magnet chain is de-excited in about two minu tes by opening dump switches in parallel to a resistor. During the time required for the discharge, adjacent magnets might quench due to thermo-hydraulic propagation in the helium bath and/or heat con duction via the bus bar. The number of quenching magnets depends on the mechanisms for the propagation. In this paper we report on quench propagation experiments from a dipole magnet to an adjacent ma gnet. The mechanism for the propagation is hot helium gas expelled from the first quenching magnet. The propagation changes with the pressure opening settings of the quench relief valves.

  4. Parametric study of the stability properties of a thermo hydraulic channel coupled to punctual kinetics

    International Nuclear Information System (INIS)

    The reason of decay is the indicator of stability usually used in the literature to evaluate stability of boiling water reactors, however, in the operation of this type of reactors is considered the length of boiling like an auxiliary parameter for the evaluation of stability. In this work its are studied the variation of these two indicators when modifying a given an operation parameter in a model of a thermo hydraulic channel coupled to punctual kinetics, maintaining all the other input constant variables. The parameters selected for study are the axial profile of power, the subcooling, the flow of coolant and the thermal power. The study is supplemented by means of real data of plant using the one Benchmark of Ringhals, and the results for the case of the ratio of decay its are compared with the decay reasons obtained by means of autoregression models of the local instrumentation of neutron flux. (Author)

  5. Thermo-hydraulic test of the moderator cell of LH2 cold neutron source at BNC

    International Nuclear Information System (INIS)

    Complete text of publication follows. Thermo-hydraulic experiment was carried out in order to test the performance of the direct cooled liquid hydrogen moderator cell to be installed at the research reactor of the Budapest Neutron Center (BNC). Two electric heaters up to 300 W each imitated the nuclear heat release in the liquid hydrogen as well as in the construction material. The test moderator cell was also equipped with temperature gauges to measure the hydrogen temperature at different positions as well as the inlet and outlet temperature of cooling He gas. The hydrogen pressure in the connected buffer volume was also controlled. At 140 W expected total heat load the moderator cell was filled with liquid hydrogen within 4 hours. The heat load and hydrogen pressure characteristics of the moderator cell are also presented. (author)

  6. Fundamental study on thermo-hydraulic phenomena concerning passive safety of advanced marine reactor

    International Nuclear Information System (INIS)

    The objective of this study is to investigate the thermo-hydraulic behavior of a fluid region confined in a rectangular parallelepiped cavity equipped with a heater and a cooler. The motivation of this study is to clarify a thermal buffer effect for an innovative marine nuclear reactor to realize passive safety. In the present study, experiments were carried out with conditions of laminar convection. Temperature and flow behavior was visualized by the liquid-crystal suspension method, by which the temperature distribution in liquid can be observed as a colored map. Thermal plumes from the heater and the cooler, global natural circulation in the cavity and thermal stratification were observed as elements of the complicated phenomena. Using a code which solves the Navier-Stokes and energy equations, numerical simulations under steady and unsteady condition were carried out to predict the experimental results for two-dimensional, laminar situations, and a good agreement was obtained. (author)

  7. Full Scale Thermo-hydraulic Simulation of a Helium-Helium Printed Circuit Heat Exchanger

    International Nuclear Information System (INIS)

    In this paper, the thermo-hydraulic full scale simulation is performed to study the temperature distributions, thermal stress, pressure drop and outlet temperature in a Helium-Helium printed circuit heat exchanger (PCHE) in a VHTR simulate helium loop. The entire PCHE is composed of 40 stacks of rectangular shaped micro-channels for helium gas [type A] (inlet temperature, 400 .deg. C) and 40 stacks of semi-ellipse shaped micro-channels for helium [type B] (inlet temperature, 300 .deg. C). The experimental result is compared to that of computer simulation, COMSOL multi-physics software. The Helium-Helium PCHE is considered a prototype of the newly developed PCHE by Korea Atomic Energy Research Institute (KAERI). The full scale thermo-hydraulic simulation was successfully performed to obtain temperature distribution, pressure drop and thermal stress in 40 sets of flow channel stacks in a helium-helium printed circuit heat exchanger in a VHTR simulate helium loop. We obtained a quite similar temperature distribution with the 3D measured infrared temperature distribution. To our knowledge, this is the first full scale numerical study on the PCHE, which considers all microchannels, that the convection effect on the outside surfaces of the PCHE is applied. The very high-temperature reactor (VHTR) or high-temperature gas-cooled reactor(HTGR) is a fourth-generation nuclear power reactor that uses the ceramic coated fuel, TRISO, in which the fission gas does not leak even at temperatures higher than 1600 .deg. C. The VHTR necessarily requires an intermediate loop composed of a hot gas duct (HGD), an intermediate heat exchanger (IHX) and a process heat exchanger (PHE). The IHX is one of the important components of VHTR system because the IHX transfers the 950 .deg. C of high temperature massive heat to a hydrogen production plant or power conversion unit at high system pressure

  8. Related research with thermo hydraulics safety by means of Trace code; Investigaciones relacionadas con seguridad termohidraulica con el codigo TRACE

    Energy Technology Data Exchange (ETDEWEB)

    Chaparro V, F. J.; Del Valle G, E. [IPN, Escuela Superior de Fisica y Matematicas, UP - Adolfo Lopez Mateos, Edif. 9, 07738 Mexico D. F. (Mexico); Rodriguez H, A.; Gomez T, A. M. [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Sanchez E, V. H.; Jager, W., E-mail: evalle@esfm.ipn.mx [Karlsruhe Institute of Technology, Hermann-von-Helmholtz Platz I, D-76344 Eggenstein - Leopoldshafen (Germany)

    2014-10-15

    In this article the results of the design of a pressure vessel of a BWR/5 similar to the type of Laguna Verde NPP are presented, using the Trace code. A thermo hydraulics Vessel component capable of simulating the behavior of fluids and heat transfer that occurs within the reactor vessel was created. The Vessel component consists of a three-dimensional cylinder divided into 19 axial sections, 4 azimuthal sections and two concentric radial rings. The inner ring is used to contain the core and the central part of the reactor, while the outer ring is used as a down comer. Axial an azimuthal divisions were made with the intention that the dimensions of the internal components, heights and orientation of the external connections match the reference values of a reactor BWR/5 type. In the model internal components as, fuel assemblies, steam separators, jet pumps, guide tubes, etc. are included and main external connections as, steam lines, feed-water or penetrations of the recirculation system. The model presents significant simplifications because the object is to keep symmetry between each azimuthal section of the vessel. In most internal components lack a detailed description of the geometry and initial values of temperature, pressure, fluid velocity, etc. given that it only considered the most representative data, however with these simulations are obtained acceptable results in important parameters such as the total flow through the core, the pressure in the vessel, percentage of vacuums fraction, pressure drop in the core and the steam separators. (Author)

  9. Proving test on thermal-hydraulic performance of BWR fuel assemblies

    International Nuclear Information System (INIS)

    Nuclear Power Engineering Corporation (NUPEC) has conducted a proving test for thermal-hydraulic performance of BWR fuel (high-burnup 8 x 8, 9 x 9) assemblies entrusted by the Ministry of Economy, Trade and Industry (NUPEC-TH-B Project). The high-burnup 8 x 8 fuel (average fuel assembly discharge burnup: about 39.5 GWd/t), has been utilized from 1991. And the 9 x 9 fuel (average fuel assembly discharge burnup: about 45 GWd/t), has started to be used since 1999. There are two types (A-type and B-type) of fuel design in 9 x 9 fuel assembly. Using an electrically heated test assembly which simulated a BWR fuel bundle on full scale, flow induced vibration, pressure drop, critical power under steady state condition and post-boiling transition (post-BT) tests were carried out in an out-of pile test facility that can simulate the high pressure and high temperature conditions of BWRs. This paper completed the results of 9 x 9 fuel combined with the previously reported results of high-burnup 8 x 8 fuel. As a result of NUPEC-TH-B Project, the validity of the current BWR thermal-hydraulic design method was confirmed and the reliability of BWR thermo-hydraulic fuel performance was demonstrated. Based on the test data, a new correlation of the estimation of fuel rod vibration amplitude, new post-BT heat transfer and rewet correlations for the estimation of fuel rod surface temperature were developed. (author)

  10. Preliminary Thermo-hydraulic Core Design Analysis of Korea Advanced Nuclear Thermal Engine Rocket for Space Application

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seung Hyun; Lee, Jeong Ik; Chang, Soon Heung [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2014-05-15

    {sub th} power and electricity generation with 100 kW{sub th} idle power. Consequently, KANUTER has the characteristics of a compact and lightweight system, excellent propellant efficiency, bimodal capability, and mission versatility as indicated in the reference design parameters. This thermo-hydraulic design analysis was carried out to estimate the optimum FWT of the unique SLHC fuel design in the core and thereby the maximum rocket performance. The FWT affects the mechanical strength of the SLHC fuel assembly as well as the thermo-hydraulic capability mainly depending on the heat transfer area of fuel. The thicker fuel wafer is mechanically strong with low pressure drop, while the thinner fuel wafer is thermally robust with less mechanical strength and higher shear stress in the core.

  11. Preliminary Thermo-hydraulic Core Design Analysis of Korea Advanced Nuclear Thermal Engine Rocket for Space Application

    International Nuclear Information System (INIS)

    electricity generation with 100 kWth idle power. Consequently, KANUTER has the characteristics of a compact and lightweight system, excellent propellant efficiency, bimodal capability, and mission versatility as indicated in the reference design parameters. This thermo-hydraulic design analysis was carried out to estimate the optimum FWT of the unique SLHC fuel design in the core and thereby the maximum rocket performance. The FWT affects the mechanical strength of the SLHC fuel assembly as well as the thermo-hydraulic capability mainly depending on the heat transfer area of fuel. The thicker fuel wafer is mechanically strong with low pressure drop, while the thinner fuel wafer is thermally robust with less mechanical strength and higher shear stress in the core

  12. Hydraulic Experiment for Simulative Assemblies of Blanket Assembly and Np Transmutation Assembly of China Experimental Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    CHENG; Dao-xi; QI; Xiao-guang; ZHAI; Wei-ming; YANG; Bing; ZHOU; Ping

    2013-01-01

    The out-of reactor hydraulic experiment of fast reactor assembly is one of the important experiments in the process of the development of the fast reactor assembly.In this experiment,the size of the throttling element in the foot of the assembly is decided which is fit for the flow division in the reactor and the

  13. Modeling the prototype repository project: sensitivity analysis of thermo-hydraulic behavior

    International Nuclear Information System (INIS)

    general objective of the Prototype Repository Project is to demonstrate that the important processes taking place in the engineered barriers and the host rock are sufficiently well understood. A model for investigating the thermal evolution of the Prototype Repository was developed by Kristensson and Hoekmark (2007). More recently, hydraulic models for the repository have been in preparation as part of an EBS Task Force assignment initiated by SKB. The assignment was divided into three steps: First, the hydraulic evolution was evaluated for the pre-installation model containing only host rock with the excavated deposition tunnel and holes. Second, the buffer, backfill and plug were installed forming the post-installation hydraulic model, which also included relevant hydraulic events observed during the operational stage of the Prototype Repository experiment. The third step in the assignment will be to implement boundary conditions from the second, post-installation, step thermal and hydraulic models, into a single deposition hole model and as a final objective perform a complete THM analysis at this local scale. The work described here concentrates on investigating the hydraulic behavior of both the first step pre-installation model and the second step post-installation model through sensitivity analysis of the parameters and constitutive laws for the rock, buffer and backfill materials. Additionally, sensitivity analysis has been performed regarding the boundary conditions and some physical processes for the post-installation model, and the influence of changes in geometry with respect to nearby tunnels and model boundaries has been examined. A coupled thermo-hydraulic analysis for the post-installation stage has also been considered. The analyses have been performed with the finite element code Code-Bright. An example of the influence of rock intrinsic permeability on the deposition hole inflows and liquid pressure can be seen in Figure 1. Based on these analyses, key

  14. Hydraulic design and performance of a GCFR core assembly orifice

    International Nuclear Information System (INIS)

    The design and performance of a core assembly orifice for gas-cooled fast-breeder reactors (GCFRs) are studied in this report. Successful reactor operation relies on adequate cooling, among other things, and orificing is important to cooling. A simple, yet effective, graphical design method for estimating the loss coefficient of an orifice and its associated opening area is presented. A numerical example is also provided for demonstration of the method. The effect of the orifice configuration on orifice hydraulic performance is discussed. The design method stated above provides a first estimate toward an orifice design. Hydraulic experiments are required for verification of the design adequacy

  15. A study on thermo-hydraulic instability of boiling natural circulation loop with a chimney. 4. An analytical consideration of the stability and thermo-hydraulic characteristics in the chimney in high pressure

    International Nuclear Information System (INIS)

    Thermo-hydraulic instabilities of a boiling natural circulation loop with a chimney under high pressure were investigated using linear stability analysis. Drift-flux model was used for two-phase flow model. The instability regions as well as the thermo-hydraulic characteristics in the chimney such as wavy feature were examined, which were compared with the characteristics in low pressure. Instability could occur when exit quality was relatively low, which was the same manner as the characteristics in low pressure. In high-pressure, void was generated near channel exit, and void wave propagated in the chimney. In low pressure, steam was generated only near the chimney exit due to gravity induced flashing, and single-phase enthalpy wave, that is, temperature wave propagated in single-phase flow region. Though flow could be very stable in the high pressure and high power condition, the decay ratio of higher mode could be larger than that of lower mode. (author)

  16. Thermal-hydraulic calculation and test for irradiation target assembly

    International Nuclear Information System (INIS)

    In the paper, the geometry and mathematics model of the irradiation Target Assembly are built. COBRAIII C/MIT cod is used to calculate the flow rate and pressure drop curve of the irradiation Target Assembly, and the error of theoretic result and hydraulic test is 1.32%. The maximum temperatures on the surface and core of Irradiation Target Assembly are 66.6 degree C and 72.7 degree C, which are less than the design limited value. The MDNBR (minimum departure from nucleate boiling ratio) is also calculated in the paper, which is 5.72 and more than the design limited value. The calculation result has significance for the safety analysis of Irradiation Target Assembly. (authors)

  17. Thermo-hydraulic characteristics of ship propulsion reactor in the conditions of ship motions and safety assessment

    International Nuclear Information System (INIS)

    By inputting the experimental data, information and others on thermo-hydraulic characteristics of integrated ship propulsion reactor accumulated hitherto by the Ship Research Institute and some recent cooperation results into the nuclear ship engineering simulation system, it was conducted not only to contribute an improvement study on next ship reactor by executing general analysis and evaluation on motion characteristics under ship body motion conditions, safety at accidents, and others of the integrated ship reactor but also to investigate and prepare some measures to apply fundamental experiment results based on obtained here information to safety countermeasure of the nuclear ships. In 1997 fiscal year, on safety of the integrated ship propulsion reactor loading nuclear ship, by adding experimental data on unstable flow analysis and information on all around of the analysis to general data base fundamental program, development to intellectual data base program was intended; on effect of pulsation flow on thermo-hydraulic characteristics of ship propulsion reactor; after pulsation flow visualization experiment, experimental equipment was reconstructed into heat transfer type to conduct numerical analysis of pulsation flow by confirming validity of numerical analysis code under comparison with the visualization experiment results; and on thermo-hydraulic behavior in storage container at accident of active safety type ship propulsion reactor; a flashing vibration test using new apparatus finished on its higher pressurization at last fiscal year to examine effects of each parameter such as radius and length of exhausting nozzle and pool water temperature. (G.K.)

  18. Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Han, Kyu Hyun [Korea Institute of Nuclear Safety, 19, Guseong-dong, Yuseong-gu, Daejeon, 305-338 (Korea, Republic of)

    2008-07-01

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)

  19. Thermal Hydraulic Analysis Of Thorium-Based Annular Fuel Assemblies

    International Nuclear Information System (INIS)

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using AMAP combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and AMAP showed good agreements for the pressure drops at the internal sub-channels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner sub-channels of the seed pins, mass fluxes were high due to the grid form losses in the outer sub-channels. About 43% of the heat generated from the seed pin flowed into the inner sub-channel and the rest into the outer sub-channel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 deg. C. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that inter-channel mixing cannot occur in the inner sub-channels, temperatures and enthalpies were higher in the inner sub-channels. (author)

  20. Development of LILAC-meltpool for the thermo-hydraulic analysis of core melt relocated in a reactor vessel

    International Nuclear Information System (INIS)

    LILAC-meltpool has been developed to study thermo-hydraulic behavior of molten pool and thermal behavior of vessel wall during severe accident. To validate LILAC-meltpool code several two and three dimensional thermo-hydraulic problems were selected and solved. The benchmark problems have experimental results or verified numerical results. Through the validation it was found that LILAC-meltpool reproduces very accurate numerical results. Two-layered semicircular pool was solved to study thermal and hydraulic characteristics of pool stratification. The LAVA experiment using alumina/ferrite molten pool was calculated and compared with computed results. Cooling of alumina/ferrite two-layered pool was affected by stratification. In the numerical results temperature of vessel inner was highest at a location below the interface. Crust was developed from upper surface and lower outer surface, but in the area near the interface corium simulant existed as molten state for long time. LAVA-4 experiment was studied using gap-cooling model in LILAC-meltpool code. Temperature increase of LAVA vessel after alumina melt relocation was strongly dependent on gap formation mechanism. Calculated cooling rates of the vessel were very similar to experimental results. For LAVA experiments which do not have heat generation coolant penetrates easily into a gap and it is found that gap-cooling is very effective for cooling of vessel, but it is thought that coolant penetration could be limited near upper part of gap because of decay heat and high temperature of corium crust

  1. Thermal hydraulic evaluation of advanced wire-wrapped assemblies

    International Nuclear Information System (INIS)

    The thermal-hydraulic analyses presented in this report are based on application of the subchannel concept in association with the use of bulk parameters for coolant velocity and coolant temperature within a subchannel. The interactions between subchannels are due to turbulent interchange, pressure-induced diversion crossflow, directed sweeping crossflow induced by the helical wire wrap, and transverse thermal conduction. The FULMIX-II computer program was successfully developed to perform the steady-state temperature predictions for LMFBR fuel assemblies with the reference straight-start design and the advanced wire-wrap designs. Predicted steady-state temperature profiles are presented for a typical CRBRP 217-rod wire-wrapped assembly with the selected wire-wrap designs

  2. Thermo-hydro-mechanical simulation of a 3D fractured porous rock: preliminary study of coupled matrix-fracture hydraulics

    International Nuclear Information System (INIS)

    We present a problem involving the modeling of coupled flow and elastic strain in a 3D fractured porous rock, which requires prior homogenization (up-scaling) of the fractured medium into an equivalent Darcian anisotropic continuum. The governing equations form a system of PDE's (Partial Differential Equations) and, depending on the case being considered, this system may involve two different types of 'couplings' (in a real system, both couplings (1) and (2) generally take place): 1) Hydraulic coupling in a single (no exchange) or in a dual matrix-fracture continuum (exchange); 2) Thermo-Hydro-Mechanical interactions between fluid flow, pressure, elastic stress, strain, and temperature. We present here a preliminary model and simulation results with FEMLABR, for the hydraulic problem with anisotropic heterogeneous coefficients. The model is based on data collected at an instrumented granitic site (FEBEX project) for studying a hypothetical nuclear waste repository at the Grimsel Test Site in the Swiss Alps. (authors)

  3. Research on evaluation of thermo-hydraulic characteristics and safety of marine nuclear reactors under condition of hull motion

    International Nuclear Information System (INIS)

    It has been recognized that nuclear power plants can substitute for diesel engines as the main propulsion engines for merchant ships. It is necessary to steadily accumulate and foster the technologies and knowledges of marine reactors so as to deal with their necessity in future. In this research, the synthetic analysis and evaluation of the operational characteristics under the condition of hull motion and the safety at the time of accidents of one-body type marine reactor are carried out by using the nuclear powered ship engineering simulation system developed by Japan Atomic Energy Research Institute. The research on the safety of the nuclear powered ship, on which one-body type marine reactor is installed, the research on the effect that pulsating flow exerts to the thermo-hydraulic characteristics of marine reactor, and the research on the thermo-hydraulic behavior in containment vessel at the time of accidents in passive safety type marine reactor have been carried out. The outline of these researches and the activities in fiscal year 1995 are reported. The plan for hereafter to advance this research for contributing to the improvement of the marine reactors of next generation is discussed. (K.I.)

  4. Hydrogen and methane generation from large hydraulic plant: Thermo-economic multi-level time-dependent optimization

    International Nuclear Information System (INIS)

    Highlights: • We investigate H2 and CH4 production from very large hydraulic plant (14 GW). • We employ only “spilled energy”, not used by hydraulic plant, for H2 production. • We consider the integration with energy taken from the grid at different prices. • We consider hydrogen conversion in chemical reactors to produce methane. • We find plants optimal size using a time-dependent thermo-economic approach. - Abstract: This paper investigates hydrogen and methane generation from large hydraulic plant, using an original multilevel thermo-economic optimization approach developed by the authors. Hydrogen is produced by water electrolysis employing time-dependent hydraulic energy related to the water which is not normally used by the plant, known as “spilled water electricity”. Both the demand for spilled energy and the electrical grid load vary widely by time of year, therefore a time-dependent hour-by-hour one complete year analysis has been carried out, in order to define the optimal plant size. This time period analysis is necessary to take into account spilled energy and electrical load profiles variability during the year. The hydrogen generation plant is based on 1 MWe water electrolysers fuelled with the “spilled water electricity”, when available; in the remaining periods, in order to assure a regular H2 production, the energy is taken from the electrical grid, at higher cost. To perform the production plant size optimization, two hierarchical levels have been considered over a one year time period, in order to minimize capital and variable costs. After the optimization of the hydrogen production plant size, a further analysis is carried out, with a view to converting the produced H2 into methane in a chemical reactor, starting from H2 and CO2 which is obtained with CCS plants and/or carried by ships. For this plant, the optimal electrolysers and chemical reactors system size is defined. For both of the two solutions, thermo

  5. Thermo-triggerable self-assembly comprising cinnamoyl polymeric β cyclodextrin and cinnamoyl Pluronic F127.

    Science.gov (United States)

    Wang, Min Hui; Jeong, Jae Hyun; Kim, Jin-Chul

    2016-06-01

    Thermo-triggerable self-assembly was prepared by co-dissolving cinnamoyl Pluronic F127 (CinPlu) and cinnamoyl polymeric β cyclodextrin (CinPβCD) in an aqueous phase. On TEM photo, the CinPlu/CinPβCD self-assembly was 100-200nm in diameter. The specific loading of Nile red (NR) in the assembly was calculated to be 5.5% (wt NR/wt polymer), and the molar ratio of NR to βCD residue in the assembly was about 0.89:1. No significant release of NR from the assembly was observed at 10°C and 20°C. However, when the temperature was raised to 30°C, 40°C, 50°C, and 60°C, the cumulative release amount in 5min was 17%, 25%, 32%, and 52%, respectively. The specific loading of doxorubicin (DOX) in the assembly was about 6.8% (wt DOX/wt polymer) (corresponding to the molar ratio of DOX to βCD residue was about 0.41:1). The DOX release from the assembly was proportional to the temperature of release medium. NR and DOX were likely to be expelled out of the cavity of βCD residue by the interaction of the thermally hydrophobicized Pluronic F127 chain (molecular piston) and the cavity of βCD residue (cylinder). After 4h-incubation with KB cell, DOX loaded in CinPlu/CinPβCD self-assembly was found to be internalized into the cancer cell more than free DOX, observed on a confocal laser scanning microscope and a fluorescence activated cell sorter. CinPlu/CinPβCD self-assembly enhanced the in vitro anti-cancer activity of DOX against KB cell without increasing significantly the in vitro toxicity of DOX against Raw264.7 cell. PMID:26952358

  6. Thermo-hydraulic behaviour of Boom clay using a heating cell: an experimental study

    OpenAIRE

    Lima, A; Romero Morales, Enrique Edgar; Gens Solé, Antonio; Li, X. L.; Vaunat, Jean

    2012-01-01

    Boom clay formation is a potential host rock for geological disposal of high-level nuclear waste in Belgium. Heating pulse tests with controlled power supply and controlled hydraulic boundary conditions were performed under constant volume conditions to study the hydraulic impact of thermal loading on the clay. Selected test result s of intact borehole samples retrieved in horizontal direction are presented a nd discussed. The study focuses on the time evolution of temperature and po...

  7. Development of a three-dimensional thermo-hydraulic computer code for incompressible flows in complex geometries

    International Nuclear Information System (INIS)

    A three-dimensional thermo-hydraulic computer code is developed for simulation of incompressible flows in complex geometries. The computer code employs a body-fitted, non orthogonal grid system in order to efficiently handle the complex geometries encountered in many engineering applications. The finite volume method is used to discretize the governing equations and the convection term is treated by higher-order bounded schemes. The cell-centered, non staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is avoided by use of momentum interpolation practice. The computer code employs the SIMPLE algorithm for pressure and velocity coupling and the K-ε turbulence for turbulent calculation. The computer code has been tested through application to a variety of test problems and some results are presented in this paper

  8. Application of 'FLUENT' to describe thermo-hydraulic processes in experimental facilities which model severe accident development in nuclear reactor

    International Nuclear Information System (INIS)

    The work is aimed at reviewing the applicability of the 'FLUENT v6.2' up-to-date software system for modeling such thermo hydraulic processes as boiling/condensation and melting/solidification concurrently taking place in multicomponent systems. The work presents an example of calculation modeling of processes taking place in experiments performed by National Nuclear Center of the Republic of Kazakhstan for research into final stages of an accident in nuclear reactor. Results of experimental works are used for nuclear facilities safety justification. Application of 'FLUENT v6.2' software system enables to reproduce sequence of events taking place in experiments and to forecast their development that is necessary for design of experiments and for results analysis as well. (author)

  9. Sensitiveness Analysis of Neutronic Parameters Due to Uncertainty in Thermo-hydraulic parameters on CAREM-25 Reactor

    International Nuclear Information System (INIS)

    Some studies were done about the effect of the uncertainty in the values of several thermo-hydraulic parameters on the core behaviour of the CAREM-25 reactor.By using the chain codes CITVAP-THERMIT and the perturbation the reference states, it was found that concerning to the total power, the effects were not very important, but were much bigger for the pressure.Furthermore were hardly significant in the presence of any perturbation on the void fraction calculation and the fuel temperature.The reactivity and the power peaking factor had highly important changes in the case of the coolant flow.We conclude that the use of this procedure is adequate and useful to our purpose

  10. Thermo-hydraulic test of the moderator cell of liquid hydrogen cold neutron source for the Budapest research reactor

    International Nuclear Information System (INIS)

    Thermo-hydraulic experiment was carried out in order to test performance of the direct cooled liquid hydrogen moderator cell to be installed at the research reactor of the Budapest Neutron Center. Two electric hearers up to 300 W each imitated the nuclear heat release in the liquid hydrogen as well as in construction material. The test moderator cell was also equipped with temperature gauges to measure the hydrogen temperature at different positions as well as the inlet and outlet temperature of cooling he gas. The hydrogen pressure in the connected buffer volume was also controlled. At 140 w expected total heat load the moderator cell was filled with liquid hydrogen within 4 hours. The heat load and hydrogen pressure characteristics of the moderator cell are also presented. (author)

  11. The Numerical Nuclear Reactor for High-Fidelity Integrated Simulation of Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K. S.; Ju, H. G.; Jeon, T. H. and others

    2005-03-15

    A comprehensive high fidelity reactor core modeling capability has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. High fidelity was accomplished by integrating highly refined solution modules for the coupled neutronic, thermal-hydraulic, and thermo-mechanical phenomena. Each solution module employs methods and models that are formulated faithfully to the first-principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are whole-core neutron transport solution, ultra-fine-mesh computational fluid dynamics/heat transfer solution, and finite-element-based thermo-mechanics solution, all obtained with explicit (fuel pin cell level) heterogeneous representations of the components of the core. The vast computational problem resulting from such highly refined modeling is solved on massively parallel computers, and serves as the 'numerical nuclear reactor'. Relaxation of modeling parameters were also pursued to make problems run on clusters of workstations and PCs for smaller scale applications as well.

  12. The Numerical Nuclear Reactor for High-Fidelity Integrated Simulation of Neutronic, Thermal-Hydraulic, and Thermo-Mechanical Phenomena

    International Nuclear Information System (INIS)

    A comprehensive high fidelity reactor core modeling capability has been developed for detailed analysis of current and advanced reactor designs as part of a US-ROK collaborative I-NERI project. High fidelity was accomplished by integrating highly refined solution modules for the coupled neutronic, thermal-hydraulic, and thermo-mechanical phenomena. Each solution module employs methods and models that are formulated faithfully to the first-principles governing the physics, real geometry, and constituents. Specifically, the critical analysis elements that are incorporated in the coupled code capability are whole-core neutron transport solution, ultra-fine-mesh computational fluid dynamics/heat transfer solution, and finite-element-based thermo-mechanics solution, all obtained with explicit (fuel pin cell level) heterogeneous representations of the components of the core. The vast computational problem resulting from such highly refined modeling is solved on massively parallel computers, and serves as the 'numerical nuclear reactor'. Relaxation of modeling parameters were also pursued to make problems run on clusters of workstations and PCs for smaller scale applications as well

  13. Development and verification of a thermo-hydraulic simulation code for systems transient in 'Monju' (COPD code)

    International Nuclear Information System (INIS)

    Large system simulation codes are needed for design and safety analysis. A thermal-hydraulic simulation code for systems transient in ''Monju'' (COPD code) was developed and verified with experimental data from an experimental LMFBR ''Joyo'', 50 MWt steam generator test facility and scaled test sections of reactor vessel plenum. This paper summarizes numerical models of this code and their verifications with experimental data. Especially, a simplified analytical model to predict the transient behavior in a reactor vessel plenum is presented in detail, since this behavior has an important effect that must be taken into account in a plant thermal transient, while the reactor is tripped. The COPD is applied to design and safety analysis in ''Monju'' as follows ; (1) Safety analysis with regard to core cooling in anticipated incidents. (2) Plant thermo-hydraulic analysis for setting the design condition in thermal stress analysis and evaluation of components and pipings. (3) Control performance analysis on plant operation for design and evaluation of plant control system. Each of the above analyses requires different predictions of plant response to be analyzed. Therefore, appropriate models and input data are used in the design and evaluation according to the purpose of the analysis. This code was developed and verified under a contract with PNC. (author)

  14. Thermo-controlled rheology of electro-assembled polyanionic polysaccharide (alginate) and polycationic thermo-sensitive polymers.

    Science.gov (United States)

    Niang, Pape Momar; Huang, Zhiwei; Dulong, Virginie; Souguir, Zied; Le Cerf, Didier; Picton, Luc

    2016-03-30

    Several thermo-sensitive polyelectrolyte complexes were prepared by ionic self-association between an anionic polysaccharide (alginate) and a monocationic copolymer (polyether amine, Jeffamine®-M2005) with a 'Low Critical Solubility Temperature' (LCST). We show that electro-association must be established below the aggregation temperature of the free Jeffamine®, after which the organization of the system is controlled by the thermo-association of Jeffamine® that was previously electro-associated with the alginate. Evidence for this comes primarily from the rheology in the semi-dilute region. Electro- and thermo-associative behaviours are optimal at a pH corresponding to maximum ionization of both compounds (around pH 7). High ionic strength could prevent the electro-association. The reversibility of the transition is possible only at temperatures lower than the LCST of Jeffamine®. Similar behaviour has been obtained with carboxymethyl cellulose (CMC), which suggests that this behaviour can be observed using a range of anionic polyelectrolytes. In contrast, no specific properties have been found for pullulan, which is a neutral polysaccharide. PMID:26794948

  15. Computational analysis of thermo-hydraulic behavior of TRIGA research reactor

    International Nuclear Information System (INIS)

    Highlights: ► Key thermal hydraulic parameters of the 3 MW TRIGA Mark-II research reactor were investigated under steady-state conditions. ► The thermal hydraulic codes NCTRIGA, PARET and COOLOD-N2 were employed for investigation. ► The NCTRIGA, PARET and COOLOD-N2 model calculations were benchmarked through the TRIGA experimental and operational data. ► The result obtained in this investigation can be used for upgrading the current core configuration of the TRIGA reactor. -- Abstract: Key thermal hydraulic parameters of the 3 MW TRIGA Mark-II research reactor operating under steady-state conditions were investigated using the thermal hydraulic codes NCTRIGA, PARET and COOLOD-N2. Results of the neutronic analysis performed by 3-D Monte Carlo code MCNP4C were used in NCTRIGA and coupled output of neutronic analysis carried out by using 3-D diffusion code CITATION and 3-D Monte Carlo code MCNP4B2 were used in the PARET to study the steady-state thermal hydraulic behavior of the reactor. To benchmark the NCTRIGA, PARET and COOLOD-N2 models, data were obtained from different measurements executed by thermocouples in the instrumented fuel elements (C1 and D2) and the hottest fuel element (C4) during the steady-state operation both under forced and natural convection mode and compared with the calculation found to be quite consistent. The mass flow rates needed for input to PARET and COOLOD-N2 were taken from final safety analysis report (FSAR) for a downward forced coolant flow equivalent to 3500 gpm. For natural convection cooling of reactor, mass flow rate was generated using NCTRIGA code. The testing of the NCTRIGA, PARET and COOLOD-N2 model calculations through benchmarking the available TRIGA experimental and operational data showed that NCTRIGA, PARET and COOLOD-N2 codes can successfully be used to analyze the thermal hydraulic behavior of the reactor for the steady-state operation under both natural and forced convection mode of coolant flow to predict

  16. Thermo hydraulic analysis of the PBMR fuel handling and storage system / Philip Louis le Roux

    OpenAIRE

    Le Roux, Philip Louis

    2010-01-01

    The work done for this dissertation is based on actual thermo–hydraulic design work done during 2002 to 2006 on one of the subsystems of the Pebble Bed Modular Reactor (PBMR). The Pebble Bed Modular Reactor is a proved revolutionary small, compact and safe nuclear power plant. It operates on a direct closed Brayton cycle. One of the unique features of this concept is its ability to easily regulate the power output depending on the electricity demand. The PBMR fuel compris...

  17. Thermo-Hydraulic behaviour of dual-channel superconducting Cable-In-Conduit Conductors for ITER

    International Nuclear Information System (INIS)

    In an effort to optimise the cryogenics of large superconducting coils for fusion applications (ITER), dual channel Cable-In-Conduit Conductors (CICC) are designed with a central channel spiral to provide low hydraulic resistance and faster helium circulation. The qualitative and economic rationale of the conductor central channel is here justified to limit the superconductor temperature increase, but brings more complexity to the conductor cooling characteristics. The pressure drop of spirals is experimentally evaluated in nitrogen and water and an explicit hydraulic friction model is proposed. Temperatures in the cable must be quantified to guarantee superconductor margin during coil operation under heat disturbance and set adequate inlet temperature. Analytical one-dimensional thermal models, in steady state and in transient, allow to better understand the thermal coupling of CICC central and annular channels. The measurement of a heat transfer characteristic space and time constants provides cross-checking experimental estimations of the internal thermal homogenization. A simple explicit model of global inter-channel heat exchange coefficient is proposed. The risk of thermosyphon between the two channels is considered since vertical portions of fusion coils are subject to gravity. The new hydraulic model, heat exchange model and gravitational risk ratio allow the thermohydraulic improvement of CICC central spirals. (author)

  18. Use of sensitivity-information for the adaptive simulation of thermo-hydraulic system codes

    International Nuclear Information System (INIS)

    Within the scope of this thesis the development of methods for online-adaptation of dynamical plant simulations of a thermal-hydraulic system code to measurement data is depicted. The described approaches are mainly based on the use of sensitivity-information in different areas: statistical sensitivity measures are used for the identification of the parameters to be adapted and online-sensitivities for the parameter adjustment itself. For the parameter adjustment the method of a ''system-adapted heuristic adaptation with partial separation'' (SAHAT) was developed, which combines certain variants of parameter estimation and control with supporting procedures to solve the basic problems. The applicability of the methods is shown by adaptive simulations of a PKL-III experiment and by selected transients in a nuclear power plant. Finally the main perspectives for the application of a tracking simulator on a system code are identified.

  19. Parallelization of TWOPORFLOW, a Cartesian Grid based Two-phase Porous Media Code for Transient Thermo-hydraulic Simulations

    Science.gov (United States)

    Trost, Nico; Jiménez, Javier; Imke, Uwe; Sanchez, Victor

    2014-06-01

    TWOPORFLOW is a thermo-hydraulic code based on a porous media approach to simulate single- and two-phase flow including boiling. It is under development at the Institute for Neutron Physics and Reactor Technology (INR) at KIT. The code features a 3D transient solution of the mass, momentum and energy conservation equations for two inter-penetrating fluids with a semi-implicit continuous Eulerian type solver. The application domain of TWOPORFLOW includes the flow in standard porous media and in structured porous media such as micro-channels and cores of nuclear power plants. In the latter case, the fluid domain is coupled to a fuel rod model, describing the heat flow inside the solid structure. In this work, detailed profiling tools have been utilized to determine the optimization potential of TWOPORFLOW. As a result, bottle-necks were identified and reduced in the most feasible way, leading for instance to an optimization of the water-steam property computation. Furthermore, an OpenMP implementation addressing the routines in charge of inter-phase momentum-, energy- and mass-coupling delivered good performance together with a high scalability on shared memory architectures. In contrast to that, the approach for distributed memory systems was to solve sub-problems resulting by the decomposition of the initial Cartesian geometry. Thread communication for the sub-problem boundary updates was accomplished by the Message Passing Interface (MPI) standard.

  20. Effects on radial core power profile on core thermo-hydraulic behavior during reflood phase in PWR-LOCAs

    International Nuclear Information System (INIS)

    An investigation of the effects of the radial core power profile on the thermo-hydraulic behavior during the reflood phase in a PWR-LOCA has been conducted with the Slab Core Test Facility (SCTF). Since the power in an actual PWR is lower in the peripheral bundles than in the central bundles, the so called chimney effects due to radial core power profile are expected to improve the cooling of the higher power bundles. The SCTF simulates a full radius slab section of a PWR and therefore the effects of radial core power profile can be investigated. The revealed results of four forced-feed reflood tests in the SCTF are; (1) even with different radial core power profiles, flat distribution of the collapsed water level in the core are obtained for each test; (2) in the highest power bundle under the same total core power, steeper radial power profile gives higher heat transfer coefficient; and (3) redistribution of flow or cross flow between bundles is considered to be a major reason for the results described above. (author)

  1. Thermo-hydraulic experiments for the development of a system for identification and classification of transients (SICT)

    International Nuclear Information System (INIS)

    The safety of nuclear power plants has always been a concern when this technology is considered as an option for power generation. As a contribution to the improvement of its safety performance, a System for Identification and Classification of Transients (SICT) is being developed. This system is based in neural networks particularly Self-Organizing Maps and has as goal to assist the operation of nuclear plants. The development of this system has several phases and one of them is the demonstration of the capability of SICT to respond on time for transients being able to warn the operator. This demonstration will be achieved using experiments in a thermo-hydraulic facility - CT1 - in CDTN, having the SICT coupled to it. Before coupling the SICT with CT1 instrumentation it has to be trained to recognize different operational states possible in the installation. This training is performed using results of simulation of experiments with the RELAP5 code, in the same way as the SICT for the Nuclear Power Plant shall be preliminarily trained using results of simulations. This paper presents the description of such facility, with the coupled SICT, the carried out experiments, as well as, their simulations with RELAP5 and the overall performance of SICT. (author)

  2. Capabilities needed for the next generation of thermo-hydraulic codes for use in real time applications

    Energy Technology Data Exchange (ETDEWEB)

    Arndt, S.A.

    1997-07-01

    The real-time reactor simulation field is currently at a crossroads in terms of the capability to perform real-time analysis using the most sophisticated computer codes. Current generation safety analysis codes are being modified to replace simplified codes that were specifically designed to meet the competing requirement for real-time applications. The next generation of thermo-hydraulic codes will need to have included in their specifications the specific requirement for use in a real-time environment. Use of the codes in real-time applications imposes much stricter requirements on robustness, reliability and repeatability than do design and analysis applications. In addition, the need for code use by a variety of users is a critical issue for real-time users, trainers and emergency planners who currently use real-time simulation, and PRA practitioners who will increasingly use real-time simulation for evaluating PRA success criteria in near real-time to validate PRA results for specific configurations and plant system unavailabilities.

  3. Capabilities needed for the next generation of thermo-hydraulic codes for use in real time applications

    International Nuclear Information System (INIS)

    The real-time reactor simulation field is currently at a crossroads in terms of the capability to perform real-time analysis using the most sophisticated computer codes. Current generation safety analysis codes are being modified to replace simplified codes that were specifically designed to meet the competing requirement for real-time applications. The next generation of thermo-hydraulic codes will need to have included in their specifications the specific requirement for use in a real-time environment. Use of the codes in real-time applications imposes much stricter requirements on robustness, reliability and repeatability than do design and analysis applications. In addition, the need for code use by a variety of users is a critical issue for real-time users, trainers and emergency planners who currently use real-time simulation, and PRA practitioners who will increasingly use real-time simulation for evaluating PRA success criteria in near real-time to validate PRA results for specific configurations and plant system unavailabilities

  4. Neutronic and thermo-hydraulic analyses of a small, long-life HTGR for passive decay-heat removal

    International Nuclear Information System (INIS)

    Since the accident at Fukushima Daiichi Nuclear Power Plant in 2011, design concepts for nuclear reactors have been reconsidered with much greater emphasis placed upon passive systems for decay-heat removal. By considering this issue, the design parameter conditions for high temperature gas-cooled reactors (HTGRs) with passive safety features of decay-heat removal were obtained by residual-heat transfer calculation using equations for fundamental heat transfer mechanisms in our previous works. In the present study, the appropriate size of reactor core for a 100 MWt reactor operating at 1123 K of the initial core temperature was found using the conditions. Consequently, neutronics and thermo-hydraulic analyses for the proposed reactor core were performed and the proper optimizations to control the excess reactivity and flatten the change in power peaking factor during operation were done successfully. By the systematic method to decide the core design which satisfies the condition for passive decay-heat removal, a long-life small HTGR concept whose excess reactivity was small during the operation was shown. The small excess reactivity is a significant advantage from the view point of safety in reactivity accident. (author)

  5. Using statistical sensitivities for adaptation of a best-estimate thermo-hydraulic simulation model

    International Nuclear Information System (INIS)

    On-line adaptation of best-estimate simulations of NPP behaviour to time-dependent measurement data can be used to insure that simulations performed in parallel to plant operation develop synchronously with the real plant behaviour even over extended periods of time. This opens a range of applications including operator support in non-standard-situations, improving diagnostics and validation of measurements in real plants or experimental facilities. A number of adaptation methods have been proposed and successfully applied to control problems. However, these methods are difficult to be applied to best-estimate thermal-hydraulic codes, such as TRACE and ATHLET, with their large nonlinear differential equation systems and sophisticated time integration techniques. This paper presents techniques to use statistical sensitivity measures to overcome those problems by reducing the number of parameters subject to adaptation. It describes how to identify the most significant parameters for adaptation and how this information can be used by combining: -decomposition techniques splitting the system into a small set of component parts with clearly defined interfaces where boundary conditions can be derived from the measurement data, -filtering techniques to insure that the time frame for adaptation is meaningful, -numerical sensitivities to find minimal error conditions. The suitability of combining those techniques is shown by application to an adaptive simulation of the PKL experiment.

  6. Phenomenology and thermo-hydraulic stability of the CAREM-25 reactor: Evaluation of subcooled boiling effect

    International Nuclear Information System (INIS)

    In this article the phenomenology present in self/pressurized, integral, natural circulation, low thermodynamic quality nuclear reactors similar to CAREM-25 is investigated. In particular, analytical relations for the mass flow rate, the core mean enthalpy and the location of the two phase boundary are derived in terms of the so-called natural variables of the system: the nuclear power, the condensation power and the system pressure. In addition, some consequences of the flashing phenomenon in the reactor thermal-hydraulics are discussed emphasizing those affecting the reactor stability. The reactor stability performance was studied by using the HUARPE code which is a low diffusive code. The stability results obtained by neglecting the subcooled effect in the system are presented in the so-called the stability maps in which the results are presented for a wide range of conditions. The stability effect caused by the presence of subcooled boiling in the reactor core was also examined. In order to investigate such a consequence, the code was slightly modified such that the predicted vapor profile in the hot leg is similar to that estimated by RELAP system code at steady state conditions. The simple implemented algorithm allows varying a free parameter with which a broad number of cases can be studied. This is important since the subcooled boiling predictions generally have large uncertainties and therefore to cover a large number of situations is desired to derive confident conclusions. The results show the existence of vapor created by means of subcooled boiling enhances the system stability for a wide range of conditions. For this reason from this preliminary investigation, it is concluded neglecting the subcooled effect in CAREM-25 stability studies is a conservative criterion (author))

  7. Inter fuel-assembly thermal-hydraulics for the ELSY square open reactor core design

    International Nuclear Information System (INIS)

    The lead-cooled reactor is one of the six proposed innovative reactor types by the Generation IV International Forum (GIF). In Europe, the lead-cooled reactor design is known as the European Lead-cooled System (ELSY), which is a 600 MWe medium size fast reactor. The reference design of the ELSY core foresees square open (wrapper-less) fuel-assemblies with a staggered arrangement. In this design, the fuel rods in a fuel-assembly are separated by 3.4 mm. The gap between fuel rods of neighboring fuel-assemblies is 5.5 mm. In other words, the reference gap size between fuel-assemblies is larger than the gap between fuel rods within a fuel-assembly. This article discusses the involved inter fuel-assembly thermal-hydraulics between neighboring fuel-assemblies in the ELSY core. For this purpose as a starting point a validated Reynolds Averaged Navier Stokes (RANS)-based Computational Fluid Dynamics (CFD) approach is adopted. Moreover, bare fuel rods are considered in the present analyses that serve as a step towards inclusion of a spacer grid when its design is fixed. As the next step, the fuel-assemblies are numerically arranged with different gap sizes of 2.1 mm and 3.4 mm in order to analyze the influence of gap size on the inter fuel-assembly thermal-hydraulics. As a final step, analyses on the influence of different power levels of neighboring fuel-assemblies in the ELSY core are presented based on the reference ELSY core design. These inter-fuel assembly thermal hydraulic analyses lead to a conservative Nusselt number correlation for calculating maximum surface temperature of bare fuel rods that are located in the gap region between neighboring fuel-assemblies having different power levels. Such correlations, when implemented, will improve the applicability of system codes.

  8. Coupled neutronic thermo-hydraulic analysis of full PWR core with Monte-Carlo based BGCore system

    International Nuclear Information System (INIS)

    Highlights: → New thermal-hydraulic (TH) feedback module was integrated into the MCNP based depletion system BGCore. → A coupled neutronic-TH analysis of a full PWR core was performed with the upgraded BGCore system. → The BGCore results were verified against those of 3D nodal diffusion code DYN3D. → Very good agreement in major core operational parameters between the BGCore and DYN3D results was observed. - Abstract: BGCore reactor analysis system was recently developed at Ben-Gurion University for calculating in-core fuel composition and spent fuel emissions following discharge. It couples the Monte Carlo transport code MCNP with an independently developed burnup and decay module SARAF. Most of the existing MCNP based depletion codes (e.g. MOCUP, Monteburns, MCODE) tally directly the one-group fluxes and reaction rates in order to prepare one-group cross sections necessary for the fuel depletion analysis. BGCore, on the other hand, uses a multi-group (MG) approach for generation of one group cross-sections. This coupling approach significantly reduces the code execution time without compromising the accuracy of the results. Substantial reduction in the BGCore code execution time allows consideration of problems with much higher degree of complexity, such as introduction of thermal hydraulic (TH) feedback into the calculation scheme. Recently, a simplified TH feedback module, THERMO, was developed and integrated into the BGCore system. To demonstrate the capabilities of the upgraded BGCore system, a coupled neutronic TH analysis of a full PWR core was performed. The BGCore results were compared with those of the state of the art 3D deterministic nodal diffusion code DYN3D. Very good agreement in major core operational parameters including k-eff eigenvalue, axial and radial power profiles, and temperature distributions between the BGCore and DYN3D results was observed. This agreement confirms the consistency of the implementation of the TH feedback module

  9. Methods and programs of thermal hydraulic calculations of fast reactor fuel assemblies

    International Nuclear Information System (INIS)

    The methods and computer codes for calculating the velocity and temperature distributions in fast reactor fuel assemblies are described and analyzed. Three levels of thermal hydraulic analysis of fuel element bundles can be distinguished, viz.: analysis of local characteristics (finite element method, finite difference method), subchannel analysis (lumped parameter method), and analysis of characteristics averaged over volumes (porous body model). The possibilities of the existing computer codes and methods are demonstrated and conclusions regarding the future development of methods of and codes for thermal hydraulic analysis of fuel assemblies are presented. (author). 102 figs., 17 tabs., 256 refs

  10. Optimal thermo-hydraulic performance of solar air heater having chamfered rib-groove roughness on absorber plate

    Directory of Open Access Journals (Sweden)

    Apurba Layek

    2010-07-01

    Full Text Available The use of an artificial roughness on a surface is an effective technique to enhance the rate of heat transfer to fluid flow in the duct of solar air heater. However, the increase in thermal energy gain is always accompanied by increase in pumping power. This paper is concerned with optimization of roughness parameters of solar air heater based on effective efficiency criterion. Effective efficiency of a solar air heater having repeated transverse chamfered rib–groove roughness on one broad wall has been computed using the correlations for heat transfer and friction factor developed within the investigated range of operating and system parameters. Roughness parameters viz. relative roughness pitch P/e, relative groove position g/P, chamfer angle , relative roughness height e/Dh and flow Reynolds number Re, have a combined effect on the heat transfer as well as fluid friction. The thermo-hydraulic performance of an air heater in terms of effective efficiency is determined on the basis of actual thermal energy gain subtracted by the primary energy required to generate power needed for pumping air through the roughened duct. Based on energy transfer mechanism to the absorber plate, a mathematical model is developed to compute effective efficiency. The selection of the optimal values of the roughness parameters involves the comparison of the enhancement of thermal performance and the increase of pumping losses as a result of using roughness in the collector system with that of the system without roughness. The effective efficiency criterion is maximized and reasonably optimized designs of roughness are found.

  11. Hydraulics.

    Science.gov (United States)

    Decker, Robert L.; Kirby, Klane

    This curriculum guide contains a course in hydraulics to train entry-level workers for automotive mechanics and other fields that utilize hydraulics. The module contains 14 instructional units that cover the following topics: (1) introduction to hydraulics; (2) fundamentals of hydraulics; (3) reservoirs; (4) lines, fittings, and couplers; (5)…

  12. Out-of-pile Verifying Test for the Hydraulic Stability of the CARR Standard Fuel Assembly

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The CARR standard fuel element is a flat-plate-type assembly. A fuel plate consists of 0.6 mmthickness layer of uranium- silicon - aluminum fuel (U3Si2-Al) and 0.38 mm thickness of aluminumcladding. The fuel plates are attached to aluminum alloy side plates by a "roll swaging" technique. Thistype of fuel assembly is first used in China. The testing simulates the in-pile thermal-hydraulic operating conditions except for neutron

  13. Hydraulic Design of the CARA Fuel Assembly for Atucha-I

    International Nuclear Information System (INIS)

    In this paper a hydraulic model of the CARA fuel assembly within the Atucha I fuel channel is developed. Besides, a experimental test running in the CBP low pressure loop have been designed.This model is used for design purpose of the assembly system such as the whole channel pressure drop remains the same that it is at the present.It is observed that choosing the right thickness and hole surface of the assembly system, it is possible tune up the CARA pressure drop, releases the azimuth alignment condition on the fuel element neighbors

  14. Development and study of thermal-hydraulic code for spiral-space rods assembly

    International Nuclear Information System (INIS)

    Spiral-spacer fuel assembly usually adopts helical fins or wire wrap fuel elements. Compare with the tradition- al PWR fuel rods, spiral spacers make the thermal hydraulic phenomena in sub-channels very complicated. The paper preliminary studied the influence of the spiral spacer to the thermal-hydraulic performance, there is no suitable code to study these affect. A new code named CANAL/CMS was developed base on the VVER code. Using the new code, investigation has been carried out for the influence of the helical fins. Systemic study shows that the impact of the helical fins to the thermal hydraulic of the bundle is great; they improve the ability of the heat transfer of the fuel elements to a certain extent, and the pressure drop add little; the long helical spacer will reduce the pressure drop, but it is bad for CHF. (authors)

  15. The InterFrost benchmark of Thermo-Hydraulic codes for cold regions hydrology - first inter-comparison results

    Science.gov (United States)

    Grenier, Christophe; Roux, Nicolas; Anbergen, Hauke; Collier, Nathaniel; Costard, Francois; Ferrry, Michel; Frampton, Andrew; Frederick, Jennifer; Holmen, Johan; Jost, Anne; Kokh, Samuel; Kurylyk, Barret; McKenzie, Jeffrey; Molson, John; Orgogozo, Laurent; Rivière, Agnès; Rühaak, Wolfram; Selroos, Jan-Olof; Therrien, René; Vidstrand, Patrik

    2015-04-01

    The impacts of climate change in boreal regions has received considerable attention recently due to the warming trends that have been experienced in recent decades and are expected to intensify in the future. Large portions of these regions, corresponding to permafrost areas, are covered by water bodies (lakes, rivers) that interact with the surrounding permafrost. For example, the thermal state of the surrounding soil influences the energy and water budget of the surface water bodies. Also, these water bodies generate taliks (unfrozen zones below) that disturb the thermal regimes of permafrost and may play a key role in the context of climate change. Recent field studies and modeling exercises indicate that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is required to understand and model the past and future evolution of landscapes, rivers, lakes and associated groundwater systems in a changing climate. However, there is presently a paucity of 3D numerical studies of permafrost thaw and associated hydrological changes, and the lack of study can be partly attributed to the difficulty in verifying multi-dimensional results produced by numerical models. Numerical approaches can only be validated against analytical solutions for a purely thermic 1D equation with phase change (e.g. Neumann, Lunardini). When it comes to the coupled TH system (coupling two highly non-linear equations), the only possible approach is to compare the results from different codes to provided test cases and/or to have controlled experiments for validation. Such inter-code comparisons can propel discussions to try to improve code performances. A benchmark exercise was initialized in 2014 with a kick-off meeting in Paris in November. Participants from USA, Canada, Germany, Sweden and France convened, representing altogether 13 simulation codes. The benchmark exercises consist of several test cases inspired by existing literature (e.g. McKenzie et al., 2007) as well as new ones. They

  16. The InterFrost benchmark of Thermo-Hydraulic codes for cold regions hydrology - first inter-comparison phase results

    Science.gov (United States)

    Grenier, Christophe; Rühaak, Wolfram

    2016-04-01

    Climate change impacts in permafrost regions have received considerable attention recently due to the pronounced warming trends experienced in recent decades and which have been projected into the future. Large portions of these permafrost regions are characterized by surface water bodies (lakes, rivers) that interact with the surrounding permafrost often generating taliks (unfrozen zones) within the permafrost that allow for hydrologic interactions between the surface water bodies and underlying aquifers and thus influence the hydrologic response of a landscape to climate change. Recent field studies and modeling exercises indicate that a fully coupled 2D or 3D Thermo-Hydraulic (TH) approach is required to understand and model past and future evolution such units (Kurylyk et al. 2014). However, there is presently a paucity of 3D numerical studies of permafrost thaw and associated hydrological changes, which can be partly attributed to the difficulty in verifying multi-dimensional results produced by numerical models. A benchmark exercise was initialized at the end of 2014. Participants convened from USA, Canada, Europe, representing 13 simulation codes. The benchmark exercises consist of several test cases inspired by existing literature (e.g. McKenzie et al., 2007) as well as new ones (Kurylyk et al. 2014; Grenier et al. in prep.; Rühaak et al. 2015). They range from simpler, purely thermal 1D cases to more complex, coupled 2D TH cases (benchmarks TH1, TH2, and TH3). Some experimental cases conducted in a cold room complement the validation approach. A web site hosted by LSCE (Laboratoire des Sciences du Climat et de l'Environnement) is an interaction platform for the participants and hosts the test case databases at the following address: https://wiki.lsce.ipsl.fr/interfrost. The results of the first stage of the benchmark exercise will be presented. We will mainly focus on the inter-comparison of participant results for the coupled cases TH2 & TH3. Both cases

  17. Modifications in Compacted MX-80 Bentonite Due to Thermo-Hydraulic Treatment; Modificaciones en la Bentonita MX-80 Compactada Sometida a Tratamiento Termo-Hidraulico

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Espina, R.; Villar, M. V.

    2013-09-01

    The thermo-hydraulic tests reproduce the thermal and hydraulic conditions to which bentonite is subjected in the engineered barrier of a deep geological repository of radioactive waste. The results of thermo-hydraulic test TBT1500, which was running for approximately 1500 days, are presented. This is a continuation to the Technical Report Ciemat 1199, which presented results of test TBT500, performed under similar conditions but with duration of 500 days. In both tests the MX-80 bentonite was used with initial density and water content similar to those of the large-scale test TBT. The bentonite column was heated at the bottom at 140 degree centigrade and hydrated on top with deionized water. At the end of the test a sharp water content gradient was observed along the column, as well as an inverse dry density gradient. Hydration modified also the bentonite microstructure. Besides, an overall decrease of the smectite content with respect to the initial value took place, especially in the most hydrated areas where the percentage of interest ratified illite increased and in the longer test. On the other hand, the content of cristobalite, feldspars and calcite increased. Smectite dissolution processes (probably colloidal) occurred, particularly in the more hydrated areas and in the longer test. Due to the dissolution of low-solubility species and to the loss of exchangeable positions in the smectite, the content of soluble salts in the pore water increased with respect to the original one, especially in the longer test. The solubilized ions were transported; sodium, calcium, magnesium and sulphate having a similar mobility, which was in turn lower than that of potassium and chloride. The cationic exchange complex was also modified. (Author)

  18. Estimation of Porous Media Approach for Thermal Hydraulics of Nuclear Fuel Assembly

    International Nuclear Information System (INIS)

    In many CFD studies, porous media assumption has been often used for thermal hydraulics of nuclear fuel assembly, e.g., reactor core, storage cask, spent fuel pool and etc. and it could be applied extensively as shown in Fig. 1. However, the assumption could not predict the local phenomena in a subchannel or the mixing effect between subchannels and did not consider distribution of variables. This work validates the porous media approach in nuclear fuel assembly from two aspects, friction factor and averaged temperature and discusses about appropriate use of the porous media approach at the various fluid conditions. Commercial CFD code CFX 12.0 was used

  19. A Parametric Study on the Thermal Hydraulic Design for an Annular Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C. H.; Seo, K. W.; Chun, T. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2008-10-15

    Recently, MIT proposed an internally and externally cooled annular fuel for an advanced PWR which can endure a substantial power uprating. To apply this annular fuel in the conventional reactors such as OPR-1000, it is desirable to investigate its a structural compatibility for its reloading to operating PWR reactors of OPR-1000 as well as other compatibilities like the fuel to moderator ratio, amount of fissile material and coolant flow area. Conventional fuel assembly has a 16x16 solid rod array with four big guide tubes and one instrumentation tube. A 12x12 annular fuel assembly design which can meet the above compatibilities was proposed, which is structurally compatible with the existing internals of OPR-1000. Actually the advantage of an annular fuel comes from the fuel performance and thermal hydraulics. In the thermal hydraulic analysis, the mixing effect between the neighboring channels has to be carried out in a subchannel analysis. A subchannel analysis code, MATRA has been developed by KAERI. However, MATRA dose not have the capability to model both an internally and externally cooled annular fuel. A subchannel code, MATRA-AF which can be coupled to MATRA and can calculate the coolant flow distribution and heat transfer fraction in the internal and external subchannels has been developed. In this paper, the characteristics and the verification of the MATRA-AF are described. The effects of the thermal hydraulic parameters are estimated through a single fuel assembly.

  20. A Parametric Study on the Thermal Hydraulic Design for an Annular Fuel Assembly

    International Nuclear Information System (INIS)

    Recently, MIT proposed an internally and externally cooled annular fuel for an advanced PWR which can endure a substantial power uprating. To apply this annular fuel in the conventional reactors such as OPR-1000, it is desirable to investigate its a structural compatibility for its reloading to operating PWR reactors of OPR-1000 as well as other compatibilities like the fuel to moderator ratio, amount of fissile material and coolant flow area. Conventional fuel assembly has a 16x16 solid rod array with four big guide tubes and one instrumentation tube. A 12x12 annular fuel assembly design which can meet the above compatibilities was proposed, which is structurally compatible with the existing internals of OPR-1000. Actually the advantage of an annular fuel comes from the fuel performance and thermal hydraulics. In the thermal hydraulic analysis, the mixing effect between the neighboring channels has to be carried out in a subchannel analysis. A subchannel analysis code, MATRA has been developed by KAERI. However, MATRA dose not have the capability to model both an internally and externally cooled annular fuel. A subchannel code, MATRA-AF which can be coupled to MATRA and can calculate the coolant flow distribution and heat transfer fraction in the internal and external subchannels has been developed. In this paper, the characteristics and the verification of the MATRA-AF are described. The effects of the thermal hydraulic parameters are estimated through a single fuel assembly

  1. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki [Japan Atomic Energy Agency (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan); Hashimoto, Akihiko; Imai, Yasutomo [NDD Corporation (1-1-6 Jounan, Mito, Ibaraki 310-0803, Japan) (Japan); Ito, Masahiro [NESI Inc. (4002 Narita, O-arai, Ibaraki 311-1393, Japan) (Japan)

    2015-12-31

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  2. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    Science.gov (United States)

    Ohshima, Hiroyuki; Uwaba, Tomoyuki; Hashimoto, Akihiko; Imai, Yasutomo; Ito, Masahiro

    2015-12-01

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study.

  3. Development of numerical simulation system for thermal-hydraulic analysis in fuel assembly of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    A numerical simulation system, which consists of a deformation analysis program and three kinds of thermal-hydraulics analysis programs, is being developed in Japan Atomic Energy Agency in order to offer methodologies to clarify thermal-hydraulic phenomena in fuel assemblies of sodium-cooled fast reactors under various operating conditions. This paper gives the outline of the system and its applications to fuel assembly analyses as a validation study

  4. On thermo-mechanical issues induced by irradiation swelling inside the back-plate of the IFMIF target assembly

    International Nuclear Information System (INIS)

    Within the framework of the IFMIF R and D program and in close cooperation with ENEA-Brasimone, at the Department of Nuclear Engineering of the University of Palermo a research campaign has been launched to investigate the thermo-mechanical issues potentially induced by irradiation swelling in the threaded connections between frame and back-plate of IFMIF target assembly. The main aim of the research campaign has relied in the assessment of the maximum swelling-induced volumetric strain that may be accepted in order to allow screws to withstand thermo-mechanical stresses and work in safe conditions or to avoid unduly high unscrewing torques during back-plate remotely handled maintenance operations. A theoretical approach based on the Finite Element Method (FEM) has been followed and a quoted commercial code has been adopted to perform the study. Since swelling-induced volumetric strain distribution within back-plate has not yet been assessed, a parametric analysis has been carried out, assuming swelling-induced volumetric strains ranging from 0.001% to 0.1%. A realistic 3D FEM model of a portion of frame and back-plate pertaining to a single screw has been set-up and a realistic set of loads and boundary conditions has been imposed. The results obtained are presented and critically discussed.

  5. Fundamental study on thermo-hydraulics during start-up in natural circulation boiling water reactors. 3. Effects of system pressure on geysering and natural circulation oscillation

    International Nuclear Information System (INIS)

    The authors have been investigating the fundamentals of thermo-hydraulic instabilities which may appear during the start-up in natural circulation BWRs in order to understand their driving mechanisms and to examine the methods preventing their occurrence with an aim of establishing a rational start-up procedure and reactor configuration. In this paper, based on our proposed driving mechanisms of geysering and natural circulation oscillation, the effects of system pressure on their occurrences and features are investigated experimentally. It is made clear that an increase in the system pressure suppresses their occurrences. From the results, a consideration is drawn to understand the differences in the start-ups between thermal natural circulation boilers using fossil fuel and the Dodewaard reactor. Lastly, a rational start-up procedure to prevent their instabilities from occurring is recommended and a new idea of separator is proposed. (author)

  6. Validation of MATRA-h hydraulic model for HANARO fuel assembly

    International Nuclear Information System (INIS)

    A subchannel analysis computer code named MATRA-h is used to evaluate the thermal margin of HANARO core. The accurate prediction of subchannel velocity is very important for evaluation of thermal margin. The average subchannel velocities of 18 element fuel assembly were obtained from the results of velocity measurement test. To validate the adequacy of the hydraulic model, the code predictions were compared with the experimental results for the subchannel velocity distribution in 18 element fuel channel. The calculated subchannel velocity distributions in the central channels coincided with those of experiment, while the subchannel velocities in the outer channels were smaller. It is expected that the hydraulic model of MATRA-h gives conservative CHF values from the point of safety because CHF phenomena had been occurred in the outer fuel element in the bundle CHF test of AECL

  7. Thermal hydraulic analysis of thorium fuel assemblies loaded with annular seed pins

    International Nuclear Information System (INIS)

    Thermal hydraulic characteristics of thorium-based fuel assemblies loaded with annular seed pins have been analyzed using MATRAA combined with MATRA, and compared with those of the existing thorium-based assemblies. MATRA and MATRAA showed good agreements for the pressure drops at the internal subchannels. The pressure drop generally increased in the cases of the assemblies loaded with annular seed pins due to the larger wetted perimeter, but an exception existed. In the inner subchannels of the seed pins, mass fluxes were high due to the grid form losses in the outer subchannels. About 43% of the heat generated from the seed pin flowed into the inner subchannel and the rest into the outer subchannel, which implies the inner to outer wall heat flux ratio was approximately 1.2. The maximum temperatures of the annular seed pins were slightly above 500 qC. The MDNBRs of the assemblies loaded with annular seed pins were higher than those of the existing assemblies. Due to the fact that interchannel mixing cannot occur in the inner subchannels, temperatures and enthalpies were higher in the inner subchannels

  8. Thermo-hydraulic modelling of the South East Gas Pipeline System - an integrated model; Modelagem termo-hidraulica do Sistema de Gasodutos do Sudeste : um modelo integrado

    Energy Technology Data Exchange (ETDEWEB)

    Vianna Neto, Armando M.; Santos, Arnaldo M.; Mercon, Eduardo G. [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil)

    2003-07-01

    This paper presents the development of an integrated simulation model, for the numerical calculation of thermal-hydraulic behaviors in the Brazilian southeast onshore gas pipeline flow system, remotely operated by TRANSPETRO's Gas Pipeline Control Centre (CCG). In its final application, this model is supposed to provide simulated results at the closer range to reality, in order to improve gas pipeline simulation studies and evaluations for the system in question. Considering the fact that numerical thermo-hydraulic simulation becomes the CCG's most important tool to analyze the boundary conditions to adjust the mentioned gas flow system, this paper seeks and takes aim to the optimization of the following prime attributions of a gas pipeline control centre: verification of system behaviors, face to some unit maintenance stop or procedure, programmed or not, or to some new gas outlet or inlet connection to the system; daily operational compatibility analysis between programmed and realized gas volumes; gas technical expedition and delivery analysis. Finally, all this work was idealized and carried out within the one-phase flow domain (dry gas) (author)

  9. Simplified model for the thermo-hydraulic simulation of the hot channel of a PWR type nuclear reactor

    International Nuclear Information System (INIS)

    The present work deals with the thermal-hydraulic analysis of the hot channel of a standard PWR type reactor utilizing a simplified mathematical model that considers constant the water mass flux during single-phase flow and reduction of the flow when the steam quality is increasing in the channel (two-phase flow). The model has been applied to the Angra-1 reactor and it has proved satisfactory when compared to other ones. (author). 25 refs, 15 figs, 3 tabs

  10. Thermo - hydraulic analysis of a cryogenic jet: application to helium recovery following resistive transitions in the LHC

    CERN Document Server

    Chorowski, M; Konopka, G

    1999-01-01

    A resistive transition (quench) of the LHC sector magnets will be followed by cold helium venting to a quench buffer volume of 2000 m3 at ambient temperature. The volume will be composed of eight medium-pressure (2 MPa) gas storage tanks made of carbon steel, which constrains the temperature of the wall to be higher than -50 oC (223 K). Possible spot cooling intensity and thermo-mechanical stresses in the tank wall following helium injection have been analysed previously and the aim of the present study is experimental verification of basic assumptions concerning cryogenic jet parameters and heat transfer between jet crown and tank wall. For this purpose jet diameter, velocity profile and convective heat transfer between jet and steel plate have been measured. A simple jet model description based on momentum conservation has been proposed. Then, the lowest possible temperature of the tank wall which may occur has been assessed.

  11. The Effect Of Thermal Insulation Of An Apartment Building On The Thermo-Hydraulic Stability Of Its Heating System

    Directory of Open Access Journals (Sweden)

    Kurčová Mária

    2015-12-01

    Full Text Available The contribution aims to investigate the effect of the decreased thermal losses of an apartment building due to the thermal insulation of opaque external building constructions and the replacement of transparent constructions. It emphasizes the effect of the thermal characteristics of external constructions on the functionality of the existing heating system in the building and the related requirements for the renovation of the heating system in order to ensure the hydraulic stability of the system and the thermal comfort of the inhabitants.

  12. Layer-by-Layer Assembly of Biopolyelectrolytes onto Thermo/pH-Responsive Micro/Nano-Gels

    Directory of Open Access Journals (Sweden)

    Ana M. Díez-Pascual

    2014-11-01

    Full Text Available This review deals with the layer-by-layer (LbL assembly of polyelectrolyte multilayers of biopolymers, polypeptides (i.e., poly-l-lysine/poly-l-glutamic acid and polysaccharides (i.e., chitosan/dextran sulphate/sodium alginate, onto thermo- and/or pH-responsive micro- and nano-gels such as those based on synthetic poly(N-isopropylacrylamide (PNIPAM and poly(acrylic acid (PAA or biodegradable hyaluronic acid (HA and dextran-hydroxyethyl methacrylate (DEX-HEMA. The synthesis of the ensembles and their characterization by way of various techniques is described. The morphology, hydrodynamic size, surface charge density, bilayer thickness, stability over time and mechanical properties of the systems are discussed. Further, the mechanisms of interaction between biopolymers and gels are analysed. Results demonstrate that the structure and properties of biocompatible multilayer films can be finely tuned by confinement onto stimuli-responsive gels, which thus provides new perspectives for biomedical applications, particularly in the controlled release of biomolecules, bio-sensors, gene delivery, tissue engineering and storage.

  13. A new coupling of the 3D thermal-hydraulic code THYC and the thermo-mechanical code CYRANO3 for PWR calculations

    International Nuclear Information System (INIS)

    Among all parameters, the fuel temperature has a significant influence on the reactivity of the core, because of the Doppler effect on cross-sections. Most neutronic codes use a straightforward method to calculate an average fuel temperature used in their specific feed-back models. For instance, EDF's neutronic code COCCINELLE uses the Rowland's formula using the temperatures of the center and the surface of the pellet. COCCINELLE is coupled to the 3D thermal-hydraulic code THYC with calculates TDoppler with is standard thermal model. In order to improve the accuracy of such calculations, we have developed the coupling of our two latest codes in thermal-hydraulics (THYC) and thermo-mechanics (CYRANO3). THYC calculates two-phase flows in pipes or rod bundles and is used for transient calculations such as steam-line break, boron dilution accidents, DNB predictions, steam generator and condenser studies. CYRANO3 calculates most of the phenomena that take place in the fuel such as: 1) heat transfer induced by nuclear power; 2) thermal expansion of the fuel and the cladding; 3) release of gaseous fission's products; 4) mechanical interaction between the pellet and the cladding. These two codes are now qualified in their own field and the coupling, using Parallel Virtual Machine (PVM) libraries customized in an home-made-easy-to-use package called CALCIUM, has been validated on 'low' configurations (no thermal expansion, constant thermal characteristics) and used on accidental transients such as rod ejection and loss of coolant accident. (K.A.)

  14. Development of a model of a NSSS of the PWR reactor with thermo-hydraulic code GOTHIC; Desarrollo de un modelo del NSSS de un reactor PWR con el codigo termo-hidraulico GOTHIC

    Energy Technology Data Exchange (ETDEWEB)

    Gomez Garcia-Torano, I.; Jimenez, G.

    2013-07-01

    The Thermo-hydraulic code GOTHIC is often used in the nuclear industry for licensing transient analysis inside containment of generation II (PWR, BWR) plants as Gen III and III + (AP1000, ESBWR, APWR). After entering the mass and energy released to the containment, previously calculated by other codes (basis, TRACE), GOTHIC allows to calculate in detail the evolution of basic parameters in the containment.

  15. Coupled thermo-hydro-mechanical calculations of the water saturation phase of a KBS-3 deposition hole. Influence of hydraulic rock properties on the water saturation phase

    International Nuclear Information System (INIS)

    The wetting process in deposition holes designed according to the KBS-3-concept has been simulated with finite element calculations of the thermo-hydro-mechanical processes in the buffer, backfill and surrounding rock. The buffer material has been modelled according to the preliminary material models developed for swelling clay. The properties of the rock have been varied in order to investigate the influence of the rock properties and the hydraulic conditions on the wetting processes. In the modelling of the test holes the permeability of the rock matrix, the water supply from the backfill, the water pressure in the surrounding rock, the permeability of the disturbed zone around the deposition hole, the water retention properties of the rock, and the transmissivity of two fractures intersecting the deposition hole have been varied. The calculations indicate that the wetting takes about 5 years if the water pressure in the rock is high and if the permeability of the rock is so high that the properties of the bentonite determine the wetting rate. However, it may take considerably more than 30 years if the rock is very tight and the water pressure in the rock is low. The calculations also show that the influence of the rock structure is rather large except for the influence of the transmissivity T of the fractures, which turned out to be insignificant for the values used in the calculations

  16. Effects of radial core power profile on core thermo-hydraulic behavior during reflood phase in SCTF Core-I forced feed tests

    International Nuclear Information System (INIS)

    An investigation of the effects of the radial core power profile on the thermo-hydraulic behavior during the reflood phase of the large break LOCA of a PWR has been conducted with the Slab Core Test Facility (SCTF). Since the power in an actual PWR is lower in the peripheral bundles than in the central bundles, the so called chimney effect due to radial core power profile is expected to improve the cooling of the higher power bundles. The SCTF simulates a full radius slab section of a PWR and therefore the effects of radial core power profile can be investigated. The revealed results obtained from four forced-feed reflood tests (S1-01, S1-06, S1-08 and S1-11) in the SCTF Core-I are; (1) Two-dimensional flow in the core was induced by the radial power distribution. The direction of cross flow was from the central high power region to the peripheral low power region above the quench front and the direction was reversed below the quench front. (2) The heat transfer coefficient at the highest power bundle of the steep power profile test was higher than that of the flat power profile test under the same total core power condition. (author)

  17. Status of the IAEA coordinated research project on heat transfer behavior and thermo-hydraulics code testing for super critical water cooled reactors

    International Nuclear Information System (INIS)

    One of the key roles of the IAEA is to foster the collaboration among Member States on the development of advances in technology for advanced nuclear power plants. There is high international interest, both in developing and industrialized countries, in innovative supercritical water-cooled reactors (SCWRs), primarily because such concepts will achieve high thermal efficiencies (44-45%) and promise improved economic competitiveness utilizing and building upon the recent developments for highly efficient fossil power plants. The SCWR has been selected as one of the promising concepts for development by the Generation-IV International Forum. Following the advice of the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for LWRs and HWRs (the TWG-LWR and TWG-HWR), with the feedback from the Gen-IV SCWR Steering Committee, and in coordination with the OECD-NEA, IAEA has recently started a Coordinated Research Project (CRP) in the areas of heat transfer behaviour and testing of thermo-hydraulic computer methods for Supercritical Water-Cooled Reactors. The first Research Coordination Meeting (RCM) of the CRP was held at the IAEA Headquarters, in Vienna, Austria in July 2008. This paper summarizes the current status of the CRP, including the Integrated Research Plan and the general schedule for the CRP. (author)

  18. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    Science.gov (United States)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  19. The influence of ribbon holes on fuel assembly thermal hydraulic performance

    International Nuclear Information System (INIS)

    Two kinds of PWR space grids, structure mixing grid (MG) and mid span mixing grid (MSMG) exist in fuel assembly. There are spring, dimple, ribbon and mixing vanes in Structure mixing grid. The ribbon with hole or without hole will influence the fuel assembly thermal-hydraulic performance. Two 5×5 rod bundle with two space girds, one is structure mixing grid, another is mid span mixing grid are analyzed using CFD method. The two calculations are different in structure mixing grid, one with holes on ribbon, the other one without holes on ribbon. The fuel rods are heated. The whole meshes are about 20 million. The result shows that the ribbon with holes increases pressure loss in space grid area. The holes’ influence on temperature field and flow field are mainly observed at structure space grid downstream, near the mid span mixing grid. Though the ribbon with holes shows limit influence on temperature field, it makes the low pressure area appears around peripheral fuel rods, and the swirl near the ribbon somewhere disappear, thus bubbles are more possible to cluster near the peripheral fuel rods. For further research, two phase CFD could be used to analyze the bubble behaviors. (author)

  20. Development of whole core thermal-hydraulic analysis program ACT. 4. Simplified fuel assembly model and parallelization by MPI

    International Nuclear Information System (INIS)

    A whole core thermal-hydraulic analysis program ACT is being developed for the purpose of evaluating detailed in-core thermal hydraulic phenomena of fast reactors including the effect of the flow between wrapper-tube walls (inter-wrapper flow) under various reactor operation conditions. As appropriate boundary conditions in addition to a detailed modeling of the core are essential for accurate simulations of in-core thermal hydraulics, ACT consists of not only fuel assembly and inter-wrapper flow analysis modules but also a heat transport system analysis module that gives response of the plant dynamics to the core model. This report describes incorporation of a simplified model to the fuel assembly analysis module and program parallelization by a message passing method toward large-scale simulations. ACT has a fuel assembly analysis module which can simulate a whole fuel pin bundle in each fuel assembly of the core and, however, it may take much CPU time for a large-scale core simulation. Therefore, a simplified fuel assembly model that is thermal-hydraulically equivalent to the detailed one has been incorporated in order to save the simulation time and resources. This simplified model is applied to several parts of fuel assemblies in a core where the detailed simulation results are not required. With regard to the program parallelization, the calculation load and the data flow of ACT were analyzed and the optimum parallelization has been done including the improvement of the numerical simulation algorithm of ACT. Message Passing Interface (MPI) is applied to data communication between processes and synchronization in parallel calculations. Parallelized ACT was verified through a comparison simulation with the original one. In addition to the above works, input manuals of the core analysis module and the heat transport system analysis module have been prepared. (author)

  1. Thermo-hydraulic characteristics of serpentine tubing in the boilers of gas cooled reactors under condition of rapid and slow depressurization

    International Nuclear Information System (INIS)

    In nuclear reactors of the magnox or advanced gas cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accidents using two phase flow codes requires knowledge of the heat transfer behaviour of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear electric . The tests were carried out on the thermal hydraulics experimental research assembly (THERA) loop at manchester university. Depressurization from an initial pressure of 60 bar, with fluid subcooling of 5 k, 50 k, and 100 k was controlled by discharging the test section contents through suitably chosen orifices to produce blowdown to 10% of the initial pressure over a time scale of 30 s to 3600 s. pressures and temperatures in the serpentine were measured at average time intervals of approximately 1 s

  2. Thermal-Hydraulic Design of Mixed Transition Core for FCM Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Hyuk; Seo, K. W; Kim, S. J.; Park, J. P; Hwang, D. H. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, W. J [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    A fully ceramic micro-encapsulated(FCM) fuel based on the dispersed particle fuel concept was considered on the one of accident tolerant fuel(ATF). A mixed core is established using the FCM fuel in the existing LWR core where UO2 fuel pellet was loaded. In order to demonstrate the thermal-hydraulic compatibility of the FCM fuel in the existing LWR core, pin by pin analysis is performed for transition period from mixed core with FCM fuel and UO2 fuel to the FCM fuel only. Parallelized MATRA code using MPI is developed for pin by pin calculation. Pin by pin analysis on mixed transition core for FCM fuel and reference UO2 fuel was performed on a quarter core with 13310 subchannels in assistance with the parallel algorithm with MPI with 20 cores. The thermal margin for the pin by pin model was evaluated by employing a quarter-core power distribution data provided by MASTER code that is nodal code. The pin by pin model shows the feasibility of mixed transition core of FCM fuel assembly based on the MDNBR results.

  3. AREVA NP's advanced Thermal Hydraulic Methods for Reactor Core and Fuel Assembly Design

    International Nuclear Information System (INIS)

    The main objective of the Thermal Hydraulic (TH) analysis of reactor core and fuel assembly design is the determination of pressure loss and critical heat flux (CHF). Especially the description of the latter effect requires the modeling of a large variety of physical phenomena starting with single phase quantities like turbulence or fluid-wall friction, two phase quantities like void distributions, heat transfer between fuel rod and fluid and ultimately the CHF mechanism itself. Additional complexity is added by the fact that the relevant geometric scales which have to be resolved, cover a wide range from the length of the fuel assembly (∼ 4000 mm), over the typical dimensions of sub-channel cross sections and the vanes on the spacer grids (∼ 10 mm) down to the microscopic scales set by bubble sizes and boundary layers (mm to sub mm). Due to the above described situation the necessary TH quantities are often determined by measurements. The main advantage of this technique is that measurements are widely accepted and trusted if the geometry and flow conditions are sufficiently close to real reactor conditions. The main disadvantage of experiments is that they are expensive both with respect to time and money; especially in high pressure tests they give only limited access to the test object. Consequently there is a strong interest to develop computer codes with the goal of minimizing the need of experiments, and hence, speeding up and reducing costs of fuel assembly and core design. Today most of the design work is based on sub-channel codes, originally developed in the 70's; they provide an effective description of the TH in fuel assemblies by regarding the fuel assembly as a system of communicating channels (the volume enclosed by four fuel rods = one sub-channel). Further development of these codes is one main focus of AREVA NP's Thermal Hydraulic method and code development strategy. To focus the know-how and resources existing in the different regions of

  4. Fine-mesh deterministic modeling of PWR fuel assemblies: Proof-of-principle of coupled neutronic/thermal–hydraulic calculations

    International Nuclear Information System (INIS)

    Highlights: • We implemented a fine-mesh coupled neutronic/thermal–hydraulic tool. • A CFD approach is used together with the multi-group neutron diffusion approximation. • Temperature-dependent cross-sections are generated with a Monte Carlo method. • We applied the tool to a simplified PWR fuel assembly. • Discrepancies in multiplication factor are seen against radial coarse-mesh averaging. - Abstract: This paper investigates the feasibility of developing a fine mesh coupled neutronic/thermal–hydraulic solver within the same computing platform for selected fuel assemblies in nuclear cores. As a first step in this developmental work, a Pressurized Water Reactor at steady-state conditions was considered. The system being simulated has a finite axial size, but is infinite in the radial direction. The platform used for the modeling is based on the open source C++ library OpenFOAM. The thermal–hydraulics is solved using the built-in SIMPLE algorithm for the mass and momentum fields of the fluid, complemented by an equation for the temperature field applied simultaneously to all the regions (i.e. fluid and solid structures). For the neutronics, a two-group neutron diffusion-based solver was developed, with sets of macroscopic cross-sections generated by the Monte Carlo code SERPENT. The meshing of the system was created by the open source software SALOME. Successful convergence of the neutronic and thermal–hydraulic fields was achieved, thus bringing the solution of the coupled problem to an unprecedented level of details. Most importantly, the true interdependence of the different fields is automatically guaranteed at all scales. In addition, comparisons with a coarse-mesh radial averaging of the thermal–hydraulic variables show that a coarse-mesh fuel temperature identical for all fuel pins can lead to discrepancies of up to 0.5% in pin powers, and of several tens of pcm in multiplication factor

  5. A subchannel code for LMR core thermal hydraulic design and analysis with inter-assembly heat transfer

    International Nuclear Information System (INIS)

    The core design for liquid metal reactor (LMR) requires accurate prediction of the thermal hydraulic behaviors in the subassemblies and the core, to ensure that certain economic and safety considerations will be met. Many of these are related to fuel and cladding maximum temperatures and subassembly coolant outlet mixed mean temperatures, for both steady state and transient conditions. A detailed analysis code MATRA-LMR was developed for LMR core thermal hydraulic analysis, based on COBRA-IV-I and MATRA codes, which use a subchannel approach for calculating the enthalpy and flow distribution in nuclear fuel rod bundle elements. MATRA-LMR was used only for a single subassembly subchannel analysis. But it has been developed for the multi-assembly calculations with inter-assembly heat transfer modeling into the code. It will be extended for the multi-assembly whole core calculations for LMR core design and analysis. This paper summarizes the inter-assembly heat transfer development and some validation works. The validation of MATRA-LMR has been done by the benchmark analysis with the experimental data. The major calculation results of the conceptual design of the KALIMER core have been compared with MATRA-LMR, THI3D and SLTHEN codes. KALIMER, which is under design optimization study at KAERI, is a 150 MWe (392 MWt) pool-type sodium cooled prototype reactor. (author)

  6. Thermal-hydraulic calculations for a fuel assembly in a European Pressurized Reactor using the RELAP5 code

    Directory of Open Access Journals (Sweden)

    Skrzypek Maciej

    2015-09-01

    Full Text Available The main object of interest was a typical fuel assembly, which constitutes a core of the nuclear reactor. The aim of the paper is to describe the phenomena and calculate thermal-hydraulic characteristic parameters in the fuel assembly for a European Pressurized Reactor (EPR. To perform thermal-hydraulic calculations, the RELAP5 code was used. This code allows to simulate steady and transient states for reactor applications. It is also an appropriate calculation tool in the event of a loss-of-coolant accident in light water reactors. The fuel assembly model with nodalization in the RELAP5 (Reactor Excursion and Leak Analysis Program code was presented. The calculations of two steady states for the fuel assembly were performed: the nominal steady-state conditions and the coolant flow rate decreased to 60% of the nominal EPR flow rate. The calculation for one transient state for a linearly decreasing flow rate of coolant was simulated until a new level was stabilized and SCRAM occurred. To check the correctness of the obtained results, the authors compared them against the reactor technical documentation available in the bibliography. The obtained results concerning steady states nearly match the design data. The hypothetical transient showed the importance of the need for correct cooling in the reactor during occurrences exceeding normal operation. The performed analysis indicated consequences of the coolant flow rate limitations during the reactor operation.

  7. Thermal-hydraulic analysis of the I/IBB 7 research reactor fuel assemblies using the Cool-IRT Code

    International Nuclear Information System (INIS)

    The (I/IBB7) is a 10-MW light water cooled and moderated and berylium reflected research reactor. The reactor core is composed of three and four co centric square plate fuel assemblies. Since the reactor is of a pool type, the fuel assemblies are subjected to the same pressure drop resulting in non uniform flow distribution due to the different hydraulic resistance of the fuel assemblies. The form losses for the irregular flow regions were therefore determined so that the coolant velocities in the flow channels would be identical to those in the reference manual. The temperature distribution, in case of symmetric and asymmetric heat transfer, in the fuel element at different power levels and flow rates were calculated in order to asses the safety of the reactor operation at those conditions using the cool-irt code. The results were compared with those of the computer program which is used for the reactor monitoring system (ICSM)

  8. Description of Thermos reactor core

    International Nuclear Information System (INIS)

    A description is given of the 100 MWth Thermos reactor core (fuel, assembly, plates, casings, control rods) and its neutron thermohydraulic operation (steady state, transient state, fast stopping of a pump, primary circuit depressurization)

  9. Nupec thermal hydraulic test to evaluate post-DNB characteristics for PWR fuel assemblies (1. general test plan and results)

    International Nuclear Information System (INIS)

    In the present thermal hydraulic design of Pressurized Water Reactor (PWR), a departure from nucleate boiling (DNB) under anticipated transient conditions is not allowed. However, it is recognized that the DNB dose not cause a fuel rod failure immediately, and a suitable reactor trip can prevent the core from severe damages. If the fuel rod temperature under the post-DNB conditions can be accurately evaluated, the potentially existing margin in the present design method will be quantitatively assessed. To establish the heat transfer evaluation method on post-DNB event for PWR thermal hydraulic design, Nuclear Power Engineering Corporation (NUPEC) started a program, NUPEC Thermal Hydraulic Test to Evaluate Post-DNB Characteristics for PWR Fuel Assemblies (NUPEC-TH-P), in 1995 (hereinafter the year means fiscal year) under the sponsorship of Ministry of Economy, Trade and industry (METI). This program is now under going until 2001. This paper is to show the overall plan and the status of NUPEC-TH-P. (authors)

  10. Parametric study of the stability properties of a thermo hydraulic channel coupled to punctual kinetics; Estudio parametrico de las propiedades de estabilidad de un canal termohidraulico acoplado a cinetica puntual

    Energy Technology Data Exchange (ETDEWEB)

    Cecenas F, M.; Campos G, R.M. [Instituto de Investigaciones Electricas, Reforma 113, Col. Palmira, Temixco, Morelos (Mexico)]. e-mail: mcf@iie.org.mx

    2005-07-01

    The reason of decay is the indicator of stability usually used in the literature to evaluate stability of boiling water reactors, however, in the operation of this type of reactors is considered the length of boiling like an auxiliary parameter for the evaluation of stability. In this work its are studied the variation of these two indicators when modifying a given an operation parameter in a model of a thermo hydraulic channel coupled to punctual kinetics, maintaining all the other input constant variables. The parameters selected for study are the axial profile of power, the subcooling, the flow of coolant and the thermal power. The study is supplemented by means of real data of plant using the one Benchmark of Ringhals, and the results for the case of the ratio of decay its are compared with the decay reasons obtained by means of autoregression models of the local instrumentation of neutron flux. (Author)

  11. Lessons learned from the Febex in situ test: modifications at cation exchange positions by effect of a thermo-hydraulic gradient and the bentonite pore water

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Compacted bentonites are considered as a backfill and sealing material in most high-level radioactive waste disposal (HLW) concepts because of its physico-chemical properties. One of these properties arises from the electrical charge on the clay mineral surfaces, which affects the bentonite capacity for interacting with water and solutes. The total electrical charge distribution in clay particles is centred in two surface functional groups that give rise to different reactivities: a) aluminol and silanol edge surface hydroxyl groups, where the surface complexation processes occur; and 2) siloxane di-trigonal cavities or siloxane surfaces, where the exchange reactions take place. The excess of negative charge (CEC parameter) has important repercussions in degree of swelling, hydration, rheological properties, acid/base properties and adsorption/retention of cations in clays. In the last years, the accurate determination of the CEC and the concentration of cations at exchange positions have been one of the main problems tackled, and a lot of procedures and methods are found in the literature. This is because the CEC depends on the measurement conditions: pH, ionic strength, solid to liquid ratio, temperature and dielectric constant of the medium. The standard method by using NH4OAC 1 M at pH 7 and 25 C has a lot of drawbacks. For this reason, there are other methods based on: a) extracting solutions at pH 8.2 for limiting the dissolution of carbonates; b) organic solvents less polar than water limiting dissolution of sulfates also; and c) solutions with cations of high affinity (Cs, Co(NO3)63+ or Ag-Thiourea saturated in calcite). In the FEBEX project, different methods were used for analysing the CEC and cation concentration at exchange sites in different laboratory tests. These include tests with bentonite at as received or natural conditions and bentonite subjected to heating and hydration in thermo-hydraulic

  12. Recent trends in pH/thermo-responsive self-assembling hydrogels: from polyions to peptide-based polymeric gelators.

    Science.gov (United States)

    Chassenieux, Christophe; Tsitsilianis, Constantinos

    2016-02-01

    In this article, we highlight some recent developments in "smart" physical hydrogels achieved by self-assembling of block type macromolecules. More precisely we focus on two interesting types of gelators namely conventional ionic (or ionogenic) block copolymers and peptide-based polymers having as a common feature their responsiveness to pH and/or temperature which are the main triggers used for potential biomedical applications. Taking advantage of the immense skills of conventional block copolymer hydrogelators, namely macromolecular design, self-assembling mechanism, gel rheological properties, responsiveness to various triggers and innovative applications, the development of novel self-assembling gelators, integrating the new knowledge emerging from the peptide-based systems, opens new horizons towards bio-inspired technologies. PMID:26781351

  13. Thermo-reversible morphology and conductivity of a conjugated polymer network embedded in polymeric self-assembly

    Science.gov (United States)

    Han, Youngkyu; Carrillo, Jan-Michael Y.; Zhang, Zhe; Li, Yunchao; Hong, Kunlun; Sumpter, Bobby G.; Ohl, Michael; Paranthaman, Mariappan Parans; Smith, Gregory S.; Do, Changwoo

    Self-assembly of block copolymers provides opportunities to create nano hybrid materials, utilizing self-assembled micro-domains with a variety of morphology and periodic architectures as templates for functional nano-fillers. Here we report new progress towards the fabrication of a thermally responsive conducting polymer self-assembly made from a water-soluble poly(thiophene) derivative with short PEO side chains and Pluronic L62 solution in water. The structural and electrical properties of conjugated polymer-embedded nanostructures were investigated by combining SANS, SAXS, CGMD simulations, and impedance spectroscopy. The L62 solution template organizes the conjugated polymers by stably incorporating them into the hydrophilic domains thus inhibiting aggregation. The changing morphology of L62 during the micellar-to-lamellar phase transition defines the embedded conjugated polymer network. The conductivity is strongly coupled to the structural change of the templating L62 phase and exhibits thermally reversible behavior with no signs of quenching of the conductivity at high temperature. The research was sponsored by the Scientific User Facilities Division, Office of BES, U.S. DOE and Laboratory Directed Research and Development Program of ORNL, managed by UT-Battelle, LLC.

  14. A thermal-hydraulic test rig for advanced fast reactor fuel assemblies

    International Nuclear Information System (INIS)

    A new design of fast reactor fuel assemblies has been proposed in which the pins are supported in grids attached to the wrapper by flexible skirts. Coolant mixing is enhanced by the skirts diverting flow into the cluster of pins at each grid. There are insufficient empirical data available for the detailed design of the skirt or for the input to computer calculations of flow and heat transfer. A test rig to provide these data has been designed and built. (author)

  15. Computer simulation of thermal-hydraulics of MNSR fuel-channel assembly using LabView

    International Nuclear Information System (INIS)

    A LabView simulator of thermal hydraulics has been developed to demonstrate the temperature profile of coolant flow in the reactor core during normal operation. The simulator could equally be used for any transient behaviour of the reactor. Heat generation, transfer and the associated temperature profile in the fuel-channel elements viz: the coolant, cladding and fuel were studied and the corresponding analytical temperature equations in the axial and radial directions for the coolant, outer surface of the cladding, fuel surface and fuel center were obtained for the simulation using LabView. Tables of values for the equations were constructed by MATLAB and excel software programs. Plots of the equations with LabView were verified and validated with the graphs drawn by the MATLAB. In this thesis, an analysis of the effects of the coolant inlet temperature of 24.5°C and exit temperature of 70.0° on the temperature distribution in fuel-channel elements of the reactor core of cylindrical geometry was carried out. Other parameters, including the total fuel channel power, mass flow rate and convective heat transfer coefficient were varied to study the effects on the temperature profile. The analytical temperature equations in the fuel channel elements of the reactor core were obtained. MATLAB and Excel software were used to construct data for the equations. The plots by MATLAB were used to benchmark the LabVIEW simulation. Excellent agreement was obtained between the MATLAB plots and the LabView simulation results with an error margin of 0.001. The analysis of the results by comparing gradients of inlet temperature, total reactor channel power and mass flow indicated that inlet temperature gradient is one of the key parameters in determining the temperature profile in the MNSR core. (au)

  16. Phenomenology involved in self-pressurized, natural circulation, low thermo-dynamic quality, nuclear reactors: The thermal-hydraulics of the CAREM-25 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Marcel, C.P., E-mail: christian.marcel@cab.cnea.gov.ar [Instituto Balseiro, 8400 S. C de Bariloche (Argentina); Centro Atomico Bariloche, CNEA, Bustillo 9500, 8400 S. C. de Bariloche (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina); Furci, H.F.; Delmastro, D.F. [Instituto Balseiro, 8400 S. C de Bariloche (Argentina); Centro Atomico Bariloche, CNEA, Bustillo 9500, 8400 S. C. de Bariloche (Argentina); Masson, V.P. [Centro Atomico Bariloche, CNEA, Bustillo 9500, 8400 S. C. de Bariloche (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET) (Argentina)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Low quality, natural circulation, and self-pressurized nuclear reactors are modeled analytically. Black-Right-Pointing-Pointer The feedbacks resulting from the interplay of the acting phenomena are analyzed. Black-Right-Pointing-Pointer By decreasing the nuclear power the core inlet enthalpy increases. Black-Right-Pointing-Pointer The mass flow has to be regulated to set it within a certain range in order. - Abstract: The interwoven phenomena involved in a prototypical self-pressurized natural circulation, low thermo-dynamical quality nuclear reactor such as CAREM-25 are analytically presented. These phenomena present many differences with traditional light water nuclear power plants. The dependence between mass flow and core inlet enthalpy on generated power is found. The need of tuning the mass flow rate in accordance to the design value is found to be important in order to keep the thermal margin and the heat transfer coefficients in the steam generators. The influence of condensation in structures or walls in the upper dome on the two-phase boundary is also studied. The dynamic consequences of all these results are therefore discussed. A numerical code is then used to verify the aforementioned findings and to test the validity of the modeling approximations. From the results it is clear that the way the phenomena interact causes the resulting dynamics in CAREM-25 to be substantially different from that existing in reactors such as PWRs, BWRs and also natural circulation BWRs. It is thus clear that the combination of different effects makes CAREM-25 behavior impossible to be extrapolated from existing knowledge and accumulated experience.

  17. Characterization of thermal-hydraulic and ignition phenomena in prototypic, full-length boiling water reactor spent fuel pool assemblies after a complete loss-of-coolant accident.

    Energy Technology Data Exchange (ETDEWEB)

    Lindgren, Eric Richard [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Durbin, Samuel G [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2007-04-01

    The objective of this project was to provide basic thermal-hydraulic data associated with a SFP complete loss-of-coolant accident. The accident conditions of interest for the SFP were simulated in a full-scale prototypic fashion (electrically-heated, prototypic assemblies in a prototypic SFP rack) so that the experimental results closely represent actual fuel assembly responses. A major impetus for this work was to facilitate code validation (primarily MELCOR) and reduce questions associated with interpretation of the experimental results. It was necessary to simulate a cluster of assemblies to represent a higher decay (younger) assembly surrounded by older, lower power assemblies. Specifically, this program provided data and analysis confirming: (1) MELCOR modeling of inter-assembly radiant heat transfer, (2) flow resistance modeling and the natural convective flow induced in a fuel assembly as it heats up in air, (3) the potential for and nature of thermal transient (i.e., Zircaloy fire) propagation, and (4) mitigation strategies concerning fuel assembly management.

  18. Behaviour of MX-80 Bentonite at Unsaturated Conditions and under Thermo-Hydraulic Gradient - Work Performed by CIEMAT in the Context of the TB T Project - Behaviour of M X-80 Bentonite at Unsaturated Conditions and under Thermo-Hydraulic Gradient - Work Performed by CIEMAT in the Context of the TBT Project -

    International Nuclear Information System (INIS)

    This document reports the thermo-hydro-mechanical characterisation of the MX-80 bentonite performed at CIEMAT between 2004 and 2006 in the context of the Agreement CIEMAT/CIMNE 04/113. This Agreement took place in the framework of the Temperature Buffer Test (TBT) Project, Whose experimental part is going on at the underground research laboratory of Aspo (Sweden) and in which the MX-80 bentonite is used as sealing material in a large scale test. A methodology has been developed for the determination of retention curves at high temperature, what has allowed checking the decrease of the retention capacity of the bentonite with temperature. Infiltration and infiltration/heating tests have been carried out, some of them with simultaneous measurement of temperature and relative humidity. (Author) 9 refs

  19. Introducing and validating a new method for coupling neutronic and thermal-hydraulic calculations

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Nafiseh [Department of Nuclear Engineering, Faculty of Engineering, Azad Islamic University, Science and Research- Branch, Punak Square, Tehran (Iran, Islamic Republic of); Fadaei, Amir Hosein, E-mail: Fadaei_amir@aut.ac.i [Faculty of Nuclear Engineering and Physics, Amirkabir University of Technology (Tehran Polytechnique), Hafez Street, Tehran (Iran, Islamic Republic of); Rahgoshay, Mohammad [Department of Nuclear Engineering, Faculty of Engineering, Azad Islamic University, Science and Research- Branch, Punak Square, Tehran (Iran, Islamic Republic of); Fadaei, Mohammad Mehdi [Department of Electrical Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Punak Square, Tehran (Iran, Islamic Republic of); Kia, Shabnam [Department of Nuclear Engineering, Faculty of Engineering, Azad Islamic University, Science and Research- Branch, Punak Square, Tehran (Iran, Islamic Republic of)

    2010-11-15

    Research highlights: {yields} Reactor behavior affects from reciprocal effects between neutronic and thermo-hydraulic. {yields} Reliable reactor analysis requires coupling of neutronic and thermal-hydraulic calculation. {yields} Iterative process can be used to perform neutronic and thermal-hydraulic calculation. - Abstract: In this study, a new and innovative method is introduced for analyzing neutronic and thermal-hydraulic calculation. For this aim, VVR-S research reactor was selected, and the calculation procedure was performed for it. WIMS, CITATION and COBRA-EN codes were used for investigation. Calculation model consists of two sub-models: neutronic and thermo-hydraulic. The neutronic model uses WIMS and CITATION codes for neutronic simulation of the reactor core and calculating flux and power distribution over it. WIMS code simulates the fuel assemblies and CITATION models the core. The thermal-hydraulic model uses COBRA-EN code for performing the relative calculation. In this study, FORTRAN 90 program is used for linking two sub-models and performing the calculation. The proposed procedure is performed for VVR-S analysis and finally, the obtained results are compared with the experimental results that show good agreement with it.

  20. Introducing and validating a new method for coupling neutronic and thermal-hydraulic calculations

    International Nuclear Information System (INIS)

    Research highlights: → Reactor behavior affects from reciprocal effects between neutronic and thermo-hydraulic. → Reliable reactor analysis requires coupling of neutronic and thermal-hydraulic calculation. → Iterative process can be used to perform neutronic and thermal-hydraulic calculation. - Abstract: In this study, a new and innovative method is introduced for analyzing neutronic and thermal-hydraulic calculation. For this aim, VVR-S research reactor was selected, and the calculation procedure was performed for it. WIMS, CITATION and COBRA-EN codes were used for investigation. Calculation model consists of two sub-models: neutronic and thermo-hydraulic. The neutronic model uses WIMS and CITATION codes for neutronic simulation of the reactor core and calculating flux and power distribution over it. WIMS code simulates the fuel assemblies and CITATION models the core. The thermal-hydraulic model uses COBRA-EN code for performing the relative calculation. In this study, FORTRAN 90 program is used for linking two sub-models and performing the calculation. The proposed procedure is performed for VVR-S analysis and finally, the obtained results are compared with the experimental results that show good agreement with it.

  1. Thermal-Hydraulic Calculation for Simplified Fuel Assembly of Super Fast Reactor Using Two-Fluid Model Analysis Code ACE-3D

    International Nuclear Information System (INIS)

    To evaluate thermal hydraulic characteristics of a fuel assembly of supercritical water-cooled fast reactor (Super Fast Reactor), a simplified fuel assembly was analyzed with a three-dimensional two-fluid model analysis code ACE-3D which has been enhanced by Japan Atomic Energy Agency. In the ACE-3D code, the two-phase flow turbulent model based on the k-ε model were adopted. The analytical geometry simulates a 19-rod fuel assembly, which is a simplified geometry of the 271-rod fuel assembly and includes all three kinds of different subchannel types; (1): adjoining to the channel box, (2): next to type (1), and (3): located inside types (1) and (2). In this calculation, one-twelfth model is adopted as the computational domain taking advantage of symmetry. As the boundary conditions, mass velocity, inlet enthalpy and power per rod are to be the same as the steady state condition of the Super Fast Reactor. Cross-sectional local power distribution in the fuel assembly is set to be flat. Rod surface temperatures take peak values near the top of the rods. Maximum clad surface temperature (MCST) is observed at the position facing to the narrowest gap on the center rod near the outlet and the value is 902 K (629 deg. C). It was confirmed that the predicted MCST satisfies a thermal design criteria to ensure fuel and cladding integrity: the MCST should be less than 650 deg. C. (author)

  2. Cradle modification for hydraulic ram

    International Nuclear Information System (INIS)

    The analysis of the cradle hydraulic system considers stress, weld strength, and hydraulic forces required to lift and support the cradle/pump assembly. The stress and weld strength of the cradle modifications is evaluated to ensure that they meet the requirements of the American Institute for Steel Construction (AISC 1989). The hydraulic forces are evaluated to ensure that the hydraulic system is capable of rotating the cradle and pump assembly to the vertical position (between 70 degrees and 90 degrees)

  3. Novel thermo-responsive double-hydrophilic and hydrophobic MPEO-b-PEtOx-b-PCL triblock terpolymers: synthesis, characterization and self-assembly studies

    Czech Academy of Sciences Publication Activity Database

    Petrova, Svetlana; Venturini, Cristina Garcia; Jäger, Alessandro; Jäger, Eliezer; Černoch, Peter; Kereiche, S.; Kováčik, L.; Raška, I.; Štěpánek, Petr

    2015-01-01

    Roč. 59, 24 February (2015), s. 215-225. ISSN 0032-3861 R&D Projects: GA ČR GAP208/10/1600; GA MŠk(CZ) 7F14009 Institutional support: RVO:61389013 Keywords : MPEO-b-PEtOx-b-PCL triblock terpolymers * light-scattering * thermo-responsive nanoparticles Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.562, year: 2014

  4. Lateral hydraulic forces calculation on PWR fuel assemblies with computational fluid dynamics codes; Calculo de fuerzas laterales hidraulicas en elementos combustibles tipo PWR con codigos de dinamica de fluidos coputacional

    Energy Technology Data Exchange (ETDEWEB)

    Corpa Masa, R.; Jimenez Varas, G.; Moreno Garcia, B.

    2016-08-01

    To be able to simulate the behavior of nuclear fuel under operating conditions, it is required to include all the representative loads, including the lateral hydraulic forces which were not included traditionally because of the difficulty of calculating them in a reliable way. Thanks to the advance in CFD codes, now it is possible to assess them. This study calculates the local lateral hydraulic forces, caused by the contraction and expansion of the flow due to the bow of the surrounding fuel assemblies, on of fuel assembly under typical operating conditions from a three loop Westinghouse PWR reactor. (Author)

  5. Multi-resolution and multi-scale simulation of the thermal hydraulics in fast neutron reactor assemblies

    International Nuclear Information System (INIS)

    The present work is devoted to a multi-scale numerical simulation of an assembly of fast neutron reactor. In spite of the rapid growth of the computer power, the fine complete CFD of a such system remains out of reach in a context of research and development. After the determination of the thermalhydraulic behaviour of the assembly at the macroscopic scale, we propose to carry out a local reconstruction of the fine scale information. The complete approach will require a much lower CPU time than the CFD of the entire structure. The macro-scale description is obtained using either the volume averaging formalism in porous media, or an alternative modeling historically developed for the study of fast neutron reactor assemblies. It provides some information used as constraint of a down-scaling problem, through a penalization technique of the local conservation equations. This problem lean on the periodic nature of the structure by integrating periodic boundary conditions for the required microscale fields or their spatial deviation. After validating the methodologies on some model applications, we undertake to perform them on 'industrial' configurations which demonstrate the viability of this multi-scale approach. (author)

  6. Connected analysis nuclear-thermo-hydraulic of parallel channels of a BWR reactor using distributed computation; Analisis acoplado nuclear-termohidraulico de canales paralelos de un reactor BWR empleando computacion distribuida

    Energy Technology Data Exchange (ETDEWEB)

    Campos Gonzalez, Rina Margarita

    2007-07-15

    This work consists of the integration of three models previously developed which are described widely in Literature: model of the thermo-hydraulic channel, model of the modal neutronic and the model of the recirculation bows. The tool used for this connection of models is the PVM system, Parallel Virtual Machine that allowed paralleling the model by means of the concept of distributed computation. The purpose of making this connection of models is the one of obtaining a more complete tool than better represents the real configuration and the phenomenology of the nucleus of a BWR reactor, thus obtaining better results. In addition to maintaining the flexibility to improve the resulting model at any time, since the very complex or sophisticated models are difficult to improve being impossible to modify the equations they use and can include variables that are not of primary importance in the tackled problem or that mask relations among variables due to the excess of results. Also maintaining the flexibility for adding component of models or systems of the BWR reactor, all of this following the modeling needs. The Swedish Ringhals power plant was chosen to characterize the resulting connected model for counting on a Stability Benchmark that offers the opportunity to count on real plant data. Besides that in case 9 of cycle 14 of this Benchamark oscillations outside phase appeared, which are from great interest because the detection systems that register the average of the power of the nucleus do not detect them. Additionally in this work the model of the recirculation bows as an independent module is obtained in an individual way, since this model belongs to another work and works connected to the reactor vessel. The model of the recirculation bows is able to model several transients of interest, as it is shown in the Appendix A of this work, among which are found the tripping of recirculation pumps or the transference at low or high velocity of them. The scope of the

  7. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore Supra

    International Nuclear Information System (INIS)

    Full text of publication follows: Tore supra (TS) has used from the beginning of operation in 1989 actively cooled plasma facing components. Since the operation and baking temperature of all in vessel components has been defined to be up to 230 deg. C at 40 bars, a special water chemistry of the cooling water plant was suggested in order to avoid eventual water leaks due to corrosion (general corrosion, galvanic corrosion, stress corrosion, etc.) at relative high temperatures and pressures in tubes, pipes, bellows, water boxes, coils, etc. From the beginning of TS operation, in vessel components (e.g. wall protection panels, limiters, ergodic divertor coils, neutralisers and diagnostics) represented a unique combination of metals in the hydraulic circuit mainly such as stainless steel, Inconel, CuCrZr, Nickel and Copper. These different materials were joined together by welding (St to St, Inconel to Inconel, CuCrZr to CuCrZr and CuCrZr to St-St via a Ni sleeve adapter), brazing (St-St to Cu and Cu-LSTP), friction (CuCrZr and Cu to St-St), explosion (CuCrZr to St-St) and memory metal junction (Cryo-fit to Cu - only test sample). Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralized water with adjustment of the pH value to about 9.0/ 7.0 (25 deg. C/ 200 deg. C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 deg. C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal

  8. Results of water corrosion in static cell tests representing multi-metal assemblies in the hydraulic circuits of Tore supra

    International Nuclear Information System (INIS)

    Following experiences obtained with steam generator tubes of nuclear power plants, a cooling water quality of AVT (all volatile treatment) has been defined based on demineralised water with adjustment of the pH value to about 9.0/7.0 (25 C/200 C) by addiction of ammoniac, and hydrazine in order to absorb oxygen dissolved in water. At that time, a simplified water corrosion test program has been performed using static (no circulation) test cell samples made of above mentioned TS metal combinations. All test cell samples, prepared and filled with AVT water, were performed at 280 C and 65 bars in an autoclave during 3000 hours. The test cell water temperature has been chosen to be sufficient above the TS component working temperature, in order to accelerate an eventual corrosion process. Generally all above mentioned metal combinations survived the test campaign without stress corrosion cracking, with the exception of the memory metal junction (creep in Cu) and the bellows made of St-St 316L and Inconel 625 while 316 Ti bellows survived. In contrary to the vacuum brazed Cu-LSTP to St-St samples, some of flame brazed Cu to St-St samples failed either in the braze joint or in the copper structure itself. For comparison, a spot weld of an inflated 316L panel sample, filled voluntary with a caustic solution of pH 11.5 (25 C), failed after 90 h of testing (intergranular cracking at the spot weld), while an identical sample containing AVT water of pH 9.0 (25 C) survived without damage. The results of these tests, performed during 1986 and 1997, have never been published and therefore are presented more in detail in this paper since corrosion in hydraulic circuits is also an issue of ITER. Up to day, the TS cooling water plant operates with an above mentioned water treatment and no water leaks have been detected on in-vessel components originating from water corrosion at high temperature and high pressure. (orig.)

  9. Thermal hydraulics-I. 2. An Assessment of Existing Friction Factor Correlations for Wire-Wrapped Fuel Assemblies

    International Nuclear Information System (INIS)

    The main objective here is to perform a comparative study of six existing correlations that have been selected and to identify the best-performing correlations in a pressure drop analysis of a wire-wrapped fuel assembly. This is done by directly comparing the predicted values obtained by the selected existing correlations with the experimental data obtained in the present work and available existing data. For this purpose, a series of water experiments has been performed using a helical wire-wrapped 19-pin fuel assembly for various combinations of test parameters. Four different test sections that have different pitch-to-rod- diameter ratios (P/D) and wire-lead-length-to-rod-diameter ratios (H/D) have been fabricated. A total of 551 experimental data, 293 of the new and 258 of the existing data, were used in the present assessment of selected existing correlations. The specifications of four test sections of the 19-pin assembly are listed in Table I. Three flowmeters were installed to mea- sure the volumetric flow rate in the test loop, as shown in Fig. 1. Two rotameters were installed in parallel: one has a range of 8.3 litres per minute (lpm), and the other has a 37.8-lpm range. One magnetic flowmeter of 400.0-lpm capacity was installed in parallel with the rotameters to measure the high flow rate. Three different differential pressure transmitters (1.5, 7.5, and 185.0 kPa) were used to measure the pressure drop. One of the three transmitters was selected depending on the pressure range. The pressure drops were measured at the duct wall pressure taps. Upstream and downstream pressure taps were installed on four faces of the hexagonal duct wall. At each axial location, four pressure taps were connected to one tube to obtain an average value and minimize the disturbance from the wire-spacer orientation. The taps were installed 50 mm away from both ends of the rod to minimize the inlet and outlet disturbances. The distance between the upstream and the downstream

  10. Silicon microchannel cooling panel for NA62 Giga-Tracker, proposal G.Nuessle : a first thermo-hydraulic layout attempt for use with monophase, liquid C6F14 circulation

    CERN Document Server

    Wertelaers, P

    2010-01-01

    In this proposal, where the hydraulic regime (laminar) of the liquid (monophase) is simple, analytical recipes can be worked out. They show clearly the scaling laws in the relation from coolant pressure budget to panel temperature chart. If the line length is irreducible, then the individual channels cannot become arbitrarily small, even if, then, there can be many to take the total thermal load. The reason is that the "capacitive" component would explode. Apart from showing this, the Note also discusses cross-coupling effects between adjacent U-shaped channels.

  11. Analysis of the three dimensional core kinetics NESTLE code coupling with the advanced thermo-hydraulic code systems, RELAP5/SCDAPSIM and its application to the Laguna Verde Central reactor

    International Nuclear Information System (INIS)

    The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)

  12. Hydraulic structures

    CERN Document Server

    Chen, Sheng-Hong

    2015-01-01

    This book discusses in detail the planning, design, construction and management of hydraulic structures, covering dams, spillways, tunnels, cut slopes, sluices, water intake and measuring works, ship locks and lifts, as well as fish ways. Particular attention is paid to considerations concerning the environment, hydrology, geology and materials etc. in the planning and design of hydraulic projects. It also considers the type selection, profile configuration, stress/stability calibration and engineering countermeasures, flood releasing arrangements and scouring protection, operation and maintenance etc. for a variety of specific hydraulic structures. The book is primarily intended for engineers, undergraduate and graduate students in the field of civil and hydraulic engineering who are faced with the challenges of extending our understanding of hydraulic structures ranging from traditional to groundbreaking, as well as designing, constructing and managing safe, durable hydraulic structures that are economical ...

  13. HYDRAULIC SERVO

    Science.gov (United States)

    Wiegand, D.E.

    1962-05-01

    A hydraulic servo is designed in which a small pressure difference produced at two orifices by an electrically operated flapper arm in a constantly flowing hydraulic loop is hydraulically amplified by two constant flow pumps, two additional orifices, and three unconnected ball pistons. Two of the pistons are of one size and operate against the additional orifices, and the third piston is of a different size and operates between and against the first two pistons. (AEC)

  14. Report on alternative techniques to hydraulic fracturing for the exploration and exploitation of non conventional hydrocarbons - National Assembly No. 1581 / Senate No. 174

    International Nuclear Information System (INIS)

    Based on several hearings, and on missions in the USA and in Poland, this report addresses the issue of alternative techniques to hydraulic fracturing which appeared to be more advanced than hearings performed for a preliminary report had suggested. A first part outlines the necessity of fracturing the rock, and presents several possible modalities, proposes a detailed overview of alternative techniques to hydraulic fracturing used in the USA and in Poland. The second part outlines that coal gas is already an exploitable resource without rock fracturing; it discusses the possible perspectives thus associated for the old French coal-mining sites, outlines that this resource can be exploited without requiring hydraulic fracturing, and comments the first assessments. The third part addresses the possible management of risks associated with hydraulic fracturing: risks vary from one region to the other and therefore require further studies; the non-conventional hydrocarbon issue is addressed in different ways in the USA; the use of this technique must be controlled by public authorities. The next part outlines the need of an assessment of national resources before any assessment of the economic impact. The last part formulates several proposals for the future

  15. Experimental investigation of a representative PWR nuclear fuel assembly spacer grid

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Higor Fabiano Pereira de; Mesquita, Amir Zacarias; Navarro, Moyses A.; Mattos, Joao Roberto Loureiro de; Santos, Andre A. Campagnole dos, E-mail: higorfabiano@hotmail.com, E-mail: amir@cdtn.br, E-mail: moysesnavarro@yahoo.com.br, E-mail: jrmattos@cdtn.br, E-mail: aacs@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2015-07-01

    The spacer grids are important structures present in nuclear fuel assembly from Pressurized Water Reactors (PWR). They play an important structural role and also assist in heat removal through the assembly by promoting increased turbulence of the flow. However the presence of spacer grids in the fuel assembly causes a localized pressure drop. In this paper we present experimental results of the water flow velocity profiles for five heights from a spacer grid present in a 5 x 5 rod bundle. These velocity profiles were obtained using a LDV (Laser Doppler Velocimetry). The tests were conducted for Reynolds numbers ranging from 1.8 x 10{sup 4} to 5.4 x 10{sup 4}. This experimental research was carried out in thermo-hydraulics laboratory of Nuclear Technology Development Center - CDTN. This experimental research also assists in CFD - Computational Fluid Dynamics numerical analysis process which is also developed at CDTN. (author)

  16. Basic hydraulics

    CERN Document Server

    Smith, P D

    2013-01-01

    BASIC Hydraulics aims to help students both to become proficient in the BASIC programming language by actually using the language in an important field of engineering and to use computing as a means of mastering the subject of hydraulics. The book begins with a summary of the technique of computing in BASIC together with comments and listing of the main commands and statements. Subsequent chapters introduce the fundamental concepts and appropriate governing equations. Topics covered include principles of fluid mechanics; flow in pipes, pipe networks and open channels; hydraulic machinery;

  17. Hydraulic Structures

    Data.gov (United States)

    Department of Homeland Security — This table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the FIRM, channels containing the...

  18. Combined Thermo-Hydraulic Analysis of a Cryogenic Jet

    CERN Document Server

    Chorowski, M

    1999-01-01

    A cryogenic jet is a phenomenon encountered in different fields like some technological processes and cryosurgery. It may also be a result of cryogenic equipment rupture or a cryogen discharge from the cryostats following resistive transition in superconducting magnets. Heat exchange between a cold jet and a warm steel element (e.g. a buffer tank wall or a transfer line vacuum vessel wall) may result in an excessive localisation of thermal strains and stresses. The objective of the analysis is to get a combined (analytical and experimental) one-dimensional model of a cryogenic jet that will enable estimation of heat transfer intensity between the jet and steel plate with a suitable accuracy for engineering applications. The jet diameter can only be determined experimentally. The mean velocity profile can be calculated from the fact that the total flux of momentum along the jet axis is conserved. The proposed model allows deriving the jet crown area with respect to the distance from the vent and the mean veloc...

  19. Integrated hydraulic cooler and return rail in camless cylinder head

    Science.gov (United States)

    Marriott, Craig D.; Neal, Timothy L.; Swain, Jeff L.; Raimao, Miguel A.

    2011-12-13

    An engine assembly may include a cylinder head defining an engine coolant reservoir, a pressurized fluid supply, a valve actuation assembly, and a hydraulic fluid reservoir. The valve actuation assembly may be in fluid communication with the pressurized fluid supply and may include a valve member displaceable by a force applied by the pressurized fluid supply. The hydraulic fluid reservoir may be in fluid communication with the valve actuation assembly and in a heat exchange relation to the engine coolant reservoir.

  20. Nr 1115 National Assembly, Nr 640 Senate - Stage report on alternate techniques to hydraulic fracturing for the exploration and exploitation of non conventional hydrocarbons

    International Nuclear Information System (INIS)

    While noticing that these resources are more supposed that demonstrated, this report first addresses the potential of non conventional hydrocarbon resources: definition, forms and assessment. It presents the status and locations of such resources in France, and discusses how uncertainties can be reduced as far as gas shale and hydrocarbons are concerned (exploration drillings seem necessary). The second part proposes an overview of the various extraction techniques: technologies without fracturing, and hydraulic fracturing (description, recall of previous uses in France, technique management). The third part presents alternate techniques as research topics to be explored: stimulation by another pressurized fluid than water, or by other physical processes (electric arc, thermal process). Proposals are stated. The document also comprised a report of meeting of the scientific committee, a list of heard persons, and a feasibility study

  1. Wigner function of the thermo number states

    Institute of Scientific and Technical Information of China (English)

    Hu Li-Yun; Fan Hong-Yi

    2009-01-01

    Based on thermo field dynamics (TFD) and using the thermo Wigner operator in the thermo entangled state representation we derive the Wigner function of number states at finite temperature (named thermo number states). The figure of Wigner function shows that its shape gets smoothed as the temperature rises, implying that the quantum noise becomes larger.

  2. Fuel assemblies chemical cleaning

    International Nuclear Information System (INIS)

    NPP Paks found a thermal-hydraulic anomaly in the reactor core during cycle 14 that was caused by corrosion product deposits on fuel assemblies (FAs) that increased the hydraulic resistance of the FAs. Consequently, the coolant flow through the FAs was insufficient resulting in a temperature asymmetry inside the reactor core. Based on this fact NPP Paks performed differential pressure measurements of all fuel assemblies in order to determine the hydraulic resistance and subsequently the limit values for the hydraulic acceptance of FAs to be used. Based on the hydraulic investigations a total number of 170 FAs was selected for cleaning. The necessity for cleaning the FAs was explained by the fact that the FAs were subjected to a short term usage in the reactor core only maximum of 1,5 years and had still a capacity for additional 2 fuel cycles. (authors)

  3. A multiphase thermo-hydro-mechanical model for concrete at high temperatures : Finite element implementation and validation under LOCA load

    OpenAIRE

    DAL PONT, S; Durand, S; SCHREFLER, BA

    2007-01-01

    The aim of this paper is to study the thermo-hydraulic behavior of concrete subjected to severe loading conditions, such as those typical of nuclear waste storage structures and pressurized water reactors (PWR's) vessels in accidental conditions. The paper presents a coupled thermo-hydro-mechanical (THM) model for the description of concrete at high temperatures. The model is characterized by the presence of a deformable solid matrix (linearly elastic) filled with three fluid phases (liquid w...

  4. Thermo-luminescent dosimetry

    International Nuclear Information System (INIS)

    The development of paediatric radiology which began in the late 195O's has been characterised by the need to limit the dose of ionising radiation to which the child is subjected. The aim has been to keep radiation exposure as low as possible by the introduction of suitable techniques and by the development of new methods. It is therefore surprising that studies in dosimetry in the paediaytric age range have only been carried out in recent years. One reason for this may have been the fact that a suitable technique of measurement was not available at the time. The introduction of solid state dosimetry based on thermo-luminescence, first into radiotherapy (1968) and subsequently into radiodiagnosis, has made it possible to abandon the previously widely used ionisation chamber (1, 2, 3, 4, 6, 7, 10, 11, 12, 14, and 14). The purpose of the present paper is to indicate the suitability of this form of dose measurement for paediatric radiological purposes and to stimulate its application in this field. (orig.)

  5. 组合式半挂车特殊工况下的液压悬架性能研究%Performance Study on Hydraulic Suspension of Assembled Semi-trailer in Special Conditions

    Institute of Scientific and Technical Information of China (English)

    张晓亮; 于英; 龚晨俊

    2015-01-01

    For the research of assembled semi-trailer hydraulic suspension’s performance on a special conditions, a 1/4 vehicle dynamic model was developed. In the same time, Based on the a mathematic relationship between the force that the cylinder produced and the current which control the displacement of the spool, a PID controller for controlling the position of the cylinder was designed to meet the needs of stability when the semi-trailer travels on the slope road. The simulation model was built also by means of the software Matlab/simulink. The result indicated that the hydraulic suspension can ensure the levelness of its loading platform by adjusting its position when the semi-trailer travels on the slope road.%对组合式半挂车特殊工况下的液压悬架性能进行研究,建立车辆的1/4模型建立车辆的动力学模型,利用控制阀芯位移的电流与液压缸输出力之间的传递函数,设计出对阀控液压缸进行位置控制的PID控制器,以满足特殊工况下的车辆运行的稳定性。在Matlab/simulink仿真环境中建立相应的仿真模型。仿真结果表明:在特殊路面下液压悬架可以实现位置调节来适应路面情况,以保证载货平台的水平。

  6. Study of thermal hydraulic behavior of supercritical water flowing through fuel rod bundles

    International Nuclear Information System (INIS)

    Investigations on thermal-hydraulic behavior in Supercritical Water Reactor (SCWR) fuel assembly have obtained a significant attention in the international SCWR community because of its potential to obtain high thermal efficiency and compact design. Present work deals with CFD analysis to study the flow and heat transfer behavior of supercritical water in 4 metre long 7-pin fuel bundle using commercial CFD package ANSYS CFX for single phase steady state conditions. Considering the symmetric conditions, 1/12th part of the fuel rod bundle is taken as a domain of analysis. RNG K-epsilon model with scalable wall functions is used for modeling the turbulence behavior. Constant heat flux boundary condition is applied at the fuel rod surface. IAPWS equations of state are used to compute thermo-physical properties of supercritical water. Sharp variations in its thermo-physical properties (specific heat, density) are observed near the pseudo-critical temperature causing sharp change in heat transfer coefficient. The pseudo-critical point initially appears in the gaps among heated fuel rods, and then spreads radially outward reaching the adiabatic wall as the flow goes downstream. The enthalpy gain in the centre of the channel is much higher than that in the wall region. Non-uniformity in the circumferential distribution of surface temperature and heat transfer coefficient is observed which is in agreement with published literature. Heat transfer coefficient is high on the rod surface near the tight region and decreases as the distance between rod surfaces increases. (author)

  7. Simulation of Initial Assembly Stress for Aircraft Hydraulic Pipeline%飞机液压管道初始装配应力仿真

    Institute of Scientific and Technical Information of China (English)

    王晶; 陈果; 郑其辉; 罗云; 侯民利; 蒲柳

    2012-01-01

    Based on actual aircraft hydraulic pipeline as the research object,using Ansys to simulate initial installation of pipeline stress. Pipeline installation stress have three conditions, including stress is very large, installation stress is medium and installing stress is small, and then the three cases are discussed. When the pipeline installation stress is large, the pipeline will produce plastic deformation, leading to the elastic modulus change; when the pipeline installation stress medium, pipe is in the range of elastic deformation and the pipeline will produce very small deformation; when the pipeline installation stress is small,tubular and modulus of elasticity are not change. Through modal analysis,when the pipeline installation stress is very large and the installation stress is medium, each ordered inherent frequency of pipeline changed,when installing the stress is very small,the natural frequency of the pipe does not change. Through the analysis for simulation initial installation of pipeline stress, it will provide a theoretical basis for pipeline installation stress monitoring system.%以实际的飞机液压管道为研究对象,使用软件ANSYS对管道进行初始安装应力仿真.将管道的安装应力分为安装应力很大、中等和较小的情况进行讨论.当管道的安装应力很大时,管道产生塑性变形,局部弹性模量发生变化;当管道的安装应力中等时,管道处于弹性变形范围内,管道产生很微小的变形;当管道的安装应力较小时,管形和弹性模量均不变化.通过模态分析得出,当管道安装应力很大和安装应力中等的情况下,管道的各阶固有频率发生不同程度的变化,当安装应力很小时,管道的固有频率不发生变化.这一结论可以为构建管道安装应力监测系统提供理论依据.

  8. Thermal-hydraulics associated with nuclear education and research

    International Nuclear Information System (INIS)

    This article was the rerecording of the author's lecture at the fourth 'Future Energy Forum' (aiming at improving nuclear safety and economics) held in December 2010. The lecture focused on (1) importance of thermal hydraulics associated with nuclear education and research (critical heat flux, two-phase flow and multiphase flow), (2) emerging trend of maintenance engineering (fluid induced vibration, flow accelerated corrosion and stress corrosion cracks), (3) fostering sensible nuclear engineer with common engineering sense, (4) balanced curriculum of basics and advanced research, (5) computerized simulation and fluid mechanics, (6) crucial point of thermo hydraulics education (viscosity, flux, steam and power generation), (7) safety education and human resources development (indispensable technologies such as defence in depth) and (8) topics of thermo hydraulics research (vortices of curbed pipes and visualization of two-phase flow). (T. Tanaka)

  9. Thermo-osmosis coupled-flow characterization in clay-rocks: experiments and modeling

    Science.gov (United States)

    Tremosa, J.; Goncalves, J.; Matray, J.; Violette, S.

    2009-12-01

    Water flow in clay-rocks is not only driven by a hydraulic gradient but also by chemical, thermal or electrical gradients. It implies a re-evaluation of the Darcy law by considering all gradients occurring in the clay-rock and their associated coupling coefficients (e.g. the osmotic efficiency to link a chemical gradient to a water flow). The occurrence of such processes in clay-rocks is due to the low hydraulic conductivity of this media and because of electrical charges at the clay minerals surface. Here, we focused on the thermo-osmosis process, a water flow under a temperature gradient, which is poorly characterized in spite of its implications in nuclear waste storage in clay-rocks. A set of thermo-osmotic experiments was performed in an equipped borehole installed in a Toarcian compacted clay at the IRSN’s Underground Research Laboratory in the south of France. The water flow induced by a temperature gradient (from the hotter towards the colder zone) was reproduced by the help of a numerical model, including coupled-flow processes, mass conservation laws and hydro-thermo-mechanical changes (see Figure). A range of thermo-osmotic permeability (kT), between 6.10-12 and 2.10-10 m2.K-1.s-2, was obtained during the experiments depending on the temperature gradient and uncertainties on the model parameters. Values obtained for the Tournemire’s argillite are in the high range of thermo-osmotic permeabilities for argillaceous materials and suggest an effect of pore size on the thermo-osmotic permeability of a clay-rock (kT being higher with little pore size). Another dependence of thermo-osmotic permeability with temperature is observed, with kT decreasing when the temperature increases. These experiments and modeling indicate thermo-osmosis will have an influence on water flow in presence of a temperature gradient and this process is to consider in water flow studies in clay-rocks. Reference: Tremosa et al. Estimating thermo-osmotic coefficients in clay

  10. Extension of integrated neutronic and thermal-hydraulic analysis capabilities of the 'numerical nuclear reactor' software system for BWR applications

    Energy Technology Data Exchange (ETDEWEB)

    Weber, D.; Sofa, T.; Pointer, D.; Tentner, A.; Zhong, Z. [Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60439 (United States); Downar, T.; Thomas, J. [Purdue Univ., 1290 Nuclear Engineering Building, West Lafayette, IN 47907-1290 (United States); Lo, S.; Splawski, A. [CD-adapco, 200 Shepherds Bush Road, London W6 7NL (United Kingdom)

    2006-07-01

    The Numerical Nuclear Reactor is a software analysis system based on the integration of high fidelity models of neutronic, thermal-hydraulic and thermo-mechanical phenomena. Originally developed for pressurized water reactors (PWRs), the current version has been extended to treat neutronic and thermal-hydraulic issues in boiling water reactors (BWRs). The neutronic module is an extension of the DeCART whole core neutron transport code, which is capable of generating three-dimensional sub-pin level power distributions with the thermal feedback effect incorporated directly during the whole core calculation. The original cell based modular ray tracing scheme has been extended to an assembly modular ray tracing to address the complex geometry of a BWR. Thermal-hydraulic analyses are performed with computational fluid dynamics (CFD) solutions based on the STAR-CD code which has been extended to treat boiling two-phase flow, along with conjugate heat transfer, for expected BWR conditions. Verification and validation of the neutronics and thermal-hydraulics modules are described. Results of integrated calculations are illustrated. A review of the numerical performance on parallel computing system is also provided. (authors)

  11. Hydraulic manipulator

    International Nuclear Information System (INIS)

    Successful operation of nuclear plant is largely dependent on safe handling of radio-active material. In order to reduce this handling problem and minimise the exposure of radiation, various handling equipment and manipulators have been developed according to the requirements. Manufacture of nuclear fuel, which is the most important part of the nuclear industry, involves handling of uranium ingots weighing approximately 250 kg. This paper describes a specially designed hydraulic manipulator for handling of the ingots in a limited space. It was designed to grab and handle the ingots in any position. This has following drive motions: (1)gripping and releasing, (2)lifting and lowering (z-motion), (3)rotation about the horizontal axis (azimuth drive), (4)rotation about the job axis, and (5)rotation about the vertical axis. For horizontal motion (X and Y axis motion) this equipment is mounted on a motorised trolley, so that it can move inside the workshop. For all drives except the rotation about the job axis, hydraulic cylinders have been used with a battery operated power pack. Trolley drive is also given power from same battery. This paper describes the design aspects of this manipulator. (author). 4 figs

  12. GCFR thermal-hydraulic experiments

    International Nuclear Information System (INIS)

    The thermal-hydraulic experimental studies performed and planned for the Gas-Cooled Fast Reactor (GCFR) core assemblies are described. The experiments consist of basic studies performed to obtain correlations, and bundle experiments which provide input for code validation and design verification. These studies have been performed and are planned at European laboratories, US national laboratories, Universities in the US, and at General Atomic Company

  13. WWER-440 fuel cycles possibilities using modified fuel assemblies design

    International Nuclear Information System (INIS)

    A nearly equilibrium five-year cycle has been achieved at Dukovany NPP over the last years. This means that working fuel assemblies with an average enrichment of 4.25 w % (control assemblies) with an average enrichment of 3.82 w %) are normally loaded and reloaded for five years. Operation at uprated thermal power (105% of the original one, increase from 1375 MWt to 1444 MWt) is being prepared by use of working fuel assemblies with an average enrichment of 4.38 w % (control assemblies with an average enrichment of 4.25 w %). With the aim of fuel cycle economy improvement, the fuel residence time in the core has to be prolonged up to six years with one cycle duration time up to 18 months and preserving loadings with very low leakage. In order to achieve this goal, at least neutron-physical characteristics of fuel assemblies must be improved and such changes should be evaluated from other viewpoints. Some particular changes have already been analyzed earlier. Designs of new fuel assemblies with higher (and in the central part of a fuel assemblies the highest possible, i.e. 4.95 w %) enrichment with preserving low pin power non-uniformity are described in the presented paper. An fuel assemblies with an average enrichment of 4.66 w % (lower than originally evaluated) containing six fuel pins with 3.35 w % Gd2O3 content was selected in the end. Fuel pins have bigger pellet diameter, bigger pin pitch and thinner fuel assemblies shroud. A newly designed fuel assemblies was evaluated from the viewpoint of physics (pin power non-uniformity, criticality of fuel at transport and storage and determination of basic quantities for spent fuel storage purposes by ORIGEN code), thermo-hydraulics (comparison of subchannel output temperatures and the departure from nucleate boiling ratio - DNBR) and mechanical properties. The purpose of this study was to simulate an fuel assemblies subject to the loads during its six- year lifetime whereas normal working conditions were taken into

  14. The Thermos Saclay demonstration project

    International Nuclear Information System (INIS)

    In the Thermos/Saclay project, the following are being examined in succession: heating facilities existing at present at the Centre, new facilities planned, changes to be made in the existing facilities, diagram for fitting the reactor into the existing system, operating and regulating conditions under consideration, impact on the environment and administrative procedures

  15. Thermo-hydro-mechanical processes in fractured rock formations during glacial advance

    Science.gov (United States)

    Selvadurai, A. P. S.; Suvorov, A. P.; Selvadurai, P. A.

    2014-11-01

    The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach that takes into account thermo-poroelasticity of the intact geological formation and the presence of a system of sessile but hydraulically interacting fractures (fracture zones). The modeling considers coupled thermo-hydro-mechanical effects in both the intact rock and the fracture zones due to contact normal stresses and fluid pressure at the base of the advancing glacier. Computational modelling provides an assessment of the role of fractures that can modify the pore pressure generation within the entire rock mass.

  16. Thermo-hydro-mechanical processes in fractured rock formations during a glacial advance

    Science.gov (United States)

    Selvadurai, A. P. S.; Suvorov, A. P.; Selvadurai, P. A.

    2015-07-01

    The paper examines the coupled thermo-hydro-mechanical (THM) processes that develop in a fractured rock region within a fluid-saturated rock mass due to loads imposed by an advancing glacier. This scenario needs to be examined in order to assess the suitability of potential sites for the location of deep geologic repositories for the storage of high-level nuclear waste. The THM processes are examined using a computational multiphysics approach that takes into account thermo-poroelasticity of the intact geological formation and the presence of a system of sessile but hydraulically interacting fractures (fracture zones). The modelling considers coupled thermo-hydro-mechanical effects in both the intact rock and the fracture zones due to contact normal stresses and fluid pressure at the base of the advancing glacier. Computational modelling provides an assessment of the role of fractures in modifying the pore pressure generation within the entire rock mass.

  17. ThermoTRPs and Pain.

    Science.gov (United States)

    Laing, Robyn J; Dhaka, Ajay

    2016-04-01

    The ability of the body to perceive noxious stimuli lies in a heterogeneous group of primary somatosensory neurons termed nociceptors. The molecular receptors of noxious mechanical, temperature, or chemical stimuli are expressed in these neurons and have drawn considerable attention as possible targets for analgesic development to improve treatment for the millions who suffer from chronic pain conditions. A number of thermoTRPs, a subset of the transient receptor potential family of ion channels, are activated by a wide range on noxious stimuli. In this review, we review the function of these channels and examine the evidence that thermoTRPs play a vital role in acute, inflammatory and neuropathic nociception. PMID:25608689

  18. Riemannian thermo-statistics geometry

    OpenAIRE

    Velazquez, L.

    2010-01-01

    It is developed a Riemannian reformulation of classical statistical mechanics for systems in thermodynamic equilibrium, which arises as a natural extension of Ruppeiner geometry of thermodynamics. The present proposal leads to interpret entropy $\\mathcal{S}_{g}(I|\\theta)$ and all its associated thermo-statistical quantities as purely geometric notions derived from the Riemannian structure on the manifold of macroscopic observables $\\mathcal{M}_{\\theta}$ (existence of a distance $ds^{2}=g_{ij}...

  19. Study of thermal - hydraulic sensors signal fluctuations in PWR

    International Nuclear Information System (INIS)

    This thesis deals with signal fluctuations of thermal-hydraulic sensors in the main coolant primary of a pressurized water reactor. The aim of this work is to give a first response about the potentiality of use of these noise signals for the functionning monitoring. Two aspects have been studied: - the modelisation of temperature fluctuations of core thermocouples, by a Monte-Carlo method, gives the main characteristics of these signals and their domain of application. - the determination of eigenfrequency in the primary by an acoustic representation could permit the monitoring of local and global thermo-hydraulic conditions

  20. 钠冷快堆燃料组件热工水力特性数值模拟与分析%Numerical Simulation and Analysis on Thermal-hydraulic Behavior of Fuel Assembly for Sodium-cooled Fast Reactor

    Institute of Scientific and Technical Information of China (English)

    刘洋; 喻宏; 周志伟

    2014-01-01

    The thermal-hydraulic behavior of triangular arranged fuel bundle with wrapped wire spacer of fuel assembly for sodium-cooled fast reactor was investigated by employing CFD code CFX ,and the results were compared with subchannel analysis code SuperEnergy .Fuel bundles composed of 7,19 ,37 and 61 fuel rods were analyzed sepa-rately .The axial velocity ,cross flow mixing effect ,and temperature rise along axial direction for different subchannels of the fuel bundle were discussed ,and the effect of wrapped wire spacer was carefully investigated .The results show that the wrapped wire spacer plays an important role on the cross flow effect and axial velocity distribution as well as the temperature rise in different subchannels .Moreover ,with the increase of fuel rods ,the flow in fuel bundle becomes more complicated ,and the non-uniformity of the axial flow also shows a tendency to enhance .%利用CFD程序CFX ,分别对7、19、37、61根棒组成的三角形排列螺旋绕丝定位的钠冷快堆燃料组件棒束通道进行了热工水力特性的分析研究,并将结果与子通道程序SuperEnergy进行了对比验证。重点考察了棒束通道轴向流动分布、横向流交混效应及子通道轴向温升,分析了定位绕丝的影响。结果表明,绕丝对棒束通道的横向流交混效应、轴向流动分布及子通道温升有着重要影响,且随棒束的增多,通道内的流动趋向复杂化,轴向流动不均匀性有升高趋势。

  1. PROGRESS IN THERMO-ABRASIVE BLASTING SYSTEMS

    OpenAIRE

    I.A. Gorlach

    2012-01-01

    ENGLISH ABSTRACT: Quality of surface preparation of components and structures for further painting and/or coating is important in many fields of engineering. One of the most widely used methods of surface preparation is abrasive blasting. In the last few years, a new method for surface preparation has evolved, namely thermo-abrasive blasting. This technique utilises a high enthalpy thermal jet, generated by the thermo-abrasive blasting gun, to propel abrasive particles. Thermo-abrasi...

  2. KATHY: Framatome ANP's thermal hydraulic test loop

    International Nuclear Information System (INIS)

    The investigation of the thermal-hydraulic behavior of fuel assemblies (FA) under simulated reactor conditions will continue to be a key component of fuel assembly design and development work in the future. Today's fuel assemblies are highly complex. Optimum in-pile performance is only assured, if each and every component part is carefully matched to the others in the reactor core. Since, even today, it is a challenge to mathematically simulate with the necessary degree of accuracy the thermal-hydraulic processes occurring while reactor coolant is flowing through the fuel assemblies, experimental validation of empirical analyses is especially important. Additionally, data gained from the performance of thermal hydraulic tests under realistic reactor conditions are indispensable for the qualification and validation of codes and methods, which are used to estimate the extended operation limits of advanced boiling water reactor (BWR) and pressurized water reactor (PWR) FA. That's why the operation of a validated, state-of-the-art thermal-hydraulic test facility is an absolute must for Framatome ANP. Framatome ANP's Multi-Function Thermal-Hydraulic Test Loop KATHY in Germany (KArlstein Thermal HYdraulics) has been in operation since 1986. KATHY is continually being improved and expanded at great expense. KATHY is not only used for measuring the critical heat flux (CHF) of BWR and PWR FA, but also for 1 and 2-phase flow measurements, for void-, plant transient- and stability measurements. So far, more than 15,000 tests have successfully been conducted on numerous BWR and PWR bundle designs. (author)

  3. HYDRAULICS, LOUISA COUNTY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic analysis for estimating flood stages for a flood insurance study. It...

  4. KJRR-FAI Hydraulic Flow Testing Input Package

    Energy Technology Data Exchange (ETDEWEB)

    N.E. Woolstenhulme; R.B. Nielson; D.B. Chapman

    2013-12-01

    The INL, in cooperation with the KAERI via Cooperative Research And Development Agreement (CRADA), undertook an effort in the latter half of calendar year 2013 to produce a conceptual design for the KJRR-FAI campaign. The outcomes of this effort are documented in further detail elsewhere [5]. The KJRR-FAI was designed to be cooled by the ATR’s Primary Coolant System (PCS) with no provision for in-pile measurement or control of the hydraulic conditions in the irradiation assembly. The irradiation assembly was designed to achieve the target hydraulic conditions via engineered hydraulic losses in a throttling orifice at the outlet of the irradiation vehicle.

  5. Thermo Wigner operator in thermo field dynamics: its introduction and application

    Science.gov (United States)

    Fan, Hong-Yi; Jiang, Nian-Quan

    2008-10-01

    Because in thermo-field dynamics (TFD) the thermo-operator has a neat expression in the thermo-entangled state representation, we need to introduce the thermo-Wigner operator (THWO) in the same representation. We derive the THWO in a direct way, which brings much conveniece to calculating the Wigner functions of thermo states in TFD. We also discuss the condition for existence of a wavefunction corresponding to a given Wigner function in the context of TFD by using the explicit form of the THWO.

  6. VIRTUAL DESIGN OF A NEW TYPE OF HYDRAULIC SUPPORT

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Using virtual reality to design a new type of hydraulic support is discussed. That is how to make use of the virtual design to develop coal mining machine in practice. The advantages of virtual design are studied and the simple virtual reality system is built. The 3D parts and elements of hydraulic support are modeled with parametric design in CAD software, then exported to VR environment, in which the virtual hydraulic support is assembled, operated and tested. With the method, the errors and faults of design can be fined easily, many improvements are made and the new hydraulic support is developed successfully.

  7. Thermo-hydrodynamic lubrication in hydrodynamic bearings

    CERN Document Server

    Bonneau, Dominique; Souchet, Dominique

    2014-01-01

    This Series provides the necessary elements to the development and validation of numerical prediction models for hydrodynamic bearings. This book describes the thermo-hydrodynamic and the thermo-elasto-hydrodynamic lubrication. The algorithms are methodically detailed and each section is thoroughly illustrated.

  8. Applicability of deterministic and Monte Carlo neutron transport models coupled with thermo-fluiddynamics

    Energy Technology Data Exchange (ETDEWEB)

    Seubert, A.; Langenbuch, S.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Garching (Germany). Forschungsinstitute

    2007-07-01

    An overview is given of the recent progress at GRS concerning deterministic transport and Monte Carlo methods with thermal-hydraulic feedback. The development of the time-dependent 3D discrete ordinates transport code TORT-TD is described which has also been coupled with ATHLET. TORT-TD/ATHLET allows 3D pin-by-pin coupled analyses of transients using few energy groups and anisotropic scattering. As a step towards Monte Carlo steady-state calculations with nuclear point data and thermal-hydraulic feedback, MCNP has been prepared to incorporate thermal-hydraulic parameters. Results obtained for selected test cases demonstrate the applicability of deterministic and Monte Carlo neutron transport models coupled with thermo-fluiddynamics. (orig.)

  9. Thermal and hydraulic behaviour of CANDU cores under severe accident conditions

    International Nuclear Information System (INIS)

    This report summarizes the results of a study of the thermo-hydraulic behavior of CANDU cores under accident conditions more severe than those normally considered in the licensing process. A comprehensive description and complete results of the study are given in the main report

  10. AllianceTM, the fuel assembly on the threshold of the third millennium

    International Nuclear Information System (INIS)

    Nuclear energy competitiveness has become a major challenge of the end of this century. In order to respond, Framatome has developed a new nuclear fuel assembly for an enhanced utilisation of existing PWRs, and also for the future European Pressurized Reactor (EPR). This development is the result of a joint Framatome and Framatome Cogema Fuels (FCF) strategy to propose today a fuel product meeting their customer's future needs. ALLIANCE is a fuel assembly designed for assembly burnup of at least 70 GWd/t. This allows the utilities to consider modes of operation of their reactors which were not technically accessible until now. ALLIANCE is based on an in depth analysis of the market needs of Framatome and Fragema, and also of FCF. ALLIANCE benefits from Framatome long term commitment in a large R and D program, which has provided significant outcomes such as new alloys, new components and new fuel assembly concepts. This R and D program allows direct access to all the CEA expertise and facilities. As a result, ALLIANCE is a fuel assembly with unmatched and totally demonstrated performance. ALLIANCE takes also advantage of the extended operational experience available through all the reactors supplied with Framatome fuel: number of irradiated assemblies reactor types operational conditions - sometimes very demanding. Framatome major customers have been directly involved in the development of this assembly. All the available operational feedback has been taken into account at the early stages of the ALLIANCE design. The main features of the ALLIANCE assembly are: cladding tubes and an assembly structure in M5 alloy, a mono-metallic mixing grid with enhanced thermo-hydraulic performance, the possibility to add mid span mixing grids, the Monobloc guide tube, the Trapper bottom nozzle and a new structure designed for assembly burnups of at least 70 GW d/t. The first ALLIANCE assemblies will be loaded in 1999 in an EdF reactor. In 2000, ALLIANCE assemblies will be loaded

  11. Hydraulic modelling of the CARA Fuel element

    International Nuclear Information System (INIS)

    The CARA fuel element is been developing by the National Atomic Energy Commission for both Argentinean PHWRs. In order to keep the hydraulic restriction in their fuel channels, one of CARA's goals is to keep its similarity with both present fuel elements. In this paper is presented pressure drop test performed at a low-pressure facility (Reynolds numbers between 5x104 and 1,5x105) and rational base models for their spacer grid and rod assembly. Using these models, we could estimate the CARA hydraulic performance in reactor conditions that have shown to be satisfactory. (author)

  12. Fuel assembly

    International Nuclear Information System (INIS)

    The present invention concerns a fuel assembly of a BWR type reactor, and prevents aging change of flow rate of coolants leaked from a gap between a lower tie plate and a channel box. That is, in the fuel assembly, a great number of fuel rods and a plurality of water rods are bundled by a plurality of spacers, the upper and the lower ends thereof are supported by upper and lower tie plates, and they are contained in a channel box. Plate-like protrusions are disposed rotatably to the lower tie plate at a position corresponding to the lower end of the channel box. In addition, through holes are disposed on the side wall of the lower tie plate. With such a constitution, the protrusions rotate at a connection portion by hydraulic pressure of leaking coolants, and urge the channel box by the other end to control leakage of coolants. Further, since the through holes are disposed on the side wall of the lower tie plate, pressure difference is caused between the upper and the lower surfaces of the plate of the protrusion, to rotate the protrusions at the connection portion, and the other end of the protrusions presses the channel box to obtain the same effect. (I.S.)

  13. Modeling heat flow in a thermos

    Science.gov (United States)

    Karls, Michael A.; Scherschel, James E.

    2003-07-01

    One of the first mathematical models that students encounter is that of the cooling of a cup of coffee. A related, but more complicated, problem is how the temperature in a thermos full of ice-cold water changes as a function of both time and position in the thermos. We use the approach developed by Fourier for the heating of an insulated rod to establish a model for a thermos. We verify the model by comparing it to data recorded with a calculator-based laboratory.

  14. Thermo-sensitive intelligent track membrane

    International Nuclear Information System (INIS)

    Using N-isopropylacryl-amide (NIP AAm) thermo-sensitive function material as monomer and nuclear track microporous membrane (NTMM) as baseline material, a thermo-sensitive intelligent track membrane (TsITM) has been prepared by the over-oxidization and pre-irradiation grafting techniques. The TsITM can be used to make a micro-switch controlled by temperature and to adjust particle screening and osmosis. To obtain sub-micron responsive grafted track pores only a very thin thermo-sensitive layer is needed. The TsITM pores are capable of swelling and shrinking rapidly and respond more sensitively to temperature

  15. A multiphase thermo-hydro-mechanical model for concrete at high temperatures-Finite element implementation and validation under LOCA load

    International Nuclear Information System (INIS)

    The aim of this paper is to study the thermo-hydraulic behavior of concrete subjected to severe loading conditions, such as those typical of nuclear waste storage structures and pressurized water reactors (PWR's) vessels in accidental conditions. The paper presents a coupled thermo-hydro-mechanical (THM) model for the description of concrete at high temperatures. The model is characterized by the presence of a deformable solid matrix (linearly elastic) filled with three fluid phases (liquid water, vapour water and dry air) and has been implemented in a finite element code freely available for research purposes (CAST3M) developed by the French research center for nuclear energy (CEA). The code has been validated by means of some case tests and has been finally applied for the prediction of the thermo-hydraulic conditions in a concrete slab submitted to a loss-of-coolant accident (LOCA) load

  16. Thermo-hydro-mechanical modelling of buffer, synthesis report

    International Nuclear Information System (INIS)

    This study addresses analyses of coupled thermo-hydro-mechanical (THM) processes in a scheme considered for the spent nuclear fuel repository in Olkiluoto (Finland). The finite element code CODEBRIGHT is used to perform modelling calculations. The objective of the THM modelling was to study some fundamental design parameters. The time required to reach full saturation, the maximum temperature reached in the canister, the deformations in the buffer-backfill interface, the stress-deformation balance between the buffer and the backfill, the swelling pressure developed and the homogenization process development are critical variables. Because of the complexity of the THM processes developed, only a single deposition hole has been modelled with realistic boundary conditions which take into account the entire repository. A thermal calculation has been performed to adopt appropriate boundary conditions for a reduced domain. The modelling has been done under axisymmetric conditions. As a material model for the buffer bentonite and backfill soil, the Barcelona Basic Model (BBM) has been used. Simulation of laboratory tests conducted at B and Tech under supervision of Posiva has been carried out in order to determine the fundamental mechanical parameters for modelling the behaviour of MX-80 bentonite using the BBM model. The modelling process of the buffer-backfill interface is an essential part of tunnel backfill design. The calculations will aim to determine deformations in this intersection, the behaviour of which is important for the buffer swelling. The homogenization process is a key issue as well. Porosity evolution during the saturation process is evaluated in order to check if the final saturated density accomplishes the homogenization requirements. This report also describes the effect of the existence of an air-filled gap located between the canister and the bentonite block rings in thermo-hydro-mechanical behaviour of the future spent nuclear fuel repository in

  17. GENERAL: Wigner function of the thermo number states

    Science.gov (United States)

    Hu, Li-Yun; Fan, Hong-Yi

    2009-03-01

    Based on thermo field dynamics (TFD) and using the thermo Wigner operator in the thermo entangled state representation we derive the Wigner function of number states at finite temperature (named thermo number states). The figure of Wigner function shows that its shape gets smoothed as the temperature rises, implying that the quantum noise becomes larger.

  18. ERP-IV-A program for transient thermal-hydraulic analysis of PWR plant

    International Nuclear Information System (INIS)

    The author deal with the descriptions of physical model of transient process in PWR plant and the function of ERP-IV (ERR-IV Transient Thermo-Hydraulic Analysis Code). The code has been developed for safety analysis and design transient. The code is characterized by the multi-loop long-term, short term, wide-range plant simulation with the capability to analyze natural circulation condition. The description of ERP-IV includes following parts: reactor, primary coolant loops, pressurizer, steam generators, main steam system, turbine, feedwater system, steam dump, relive valves, and safety valves in secondary side, etc.. The code can use for accident analysis, such as loss of all A.C. power to power plant auxiliaries (a station blackout), loss of normal feedwater, loss of load, loss of condenser vacuum and other events causing a turbine trip, complete loss of forced reactor coolant flow, uncontrolled rod cluster control assembly bank withdrawal. It can also be used for accident analysis of the emergency and limiting conditions, such as feedwater line break and main steam line rupture. It can also be utilized as a tool for system design studies, component design, setpoint studies and design transition studies, etc

  19. Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Mørkholt, M.

    system and rotor shaft when utilizing the soft yaw drive concept compared to the original stiff yaw system. The physical demands of the hydraulic yaw system are furthermore examined for a life time of 20 years. Based on the extrapolated loads, the duty cycles show that it is possible to construct...... a hydraulic soft yaw system, which is able to reduce the loads on the wind turbine significantly. A full scale hydraulic yaw test rig is available for experiments and tests. The test rig is presented as well as the system schematics of the hydraulic yaw system....

  20. Thermally Actuated Hydraulic Pumps

    Science.gov (United States)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  1. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  2. Vibration of hydraulic machinery

    CERN Document Server

    Wu, Yulin; Liu, Shuhong; Dou, Hua-Shu; Qian, Zhongdong

    2013-01-01

    Vibration of Hydraulic Machinery deals with the vibration problem which has significant influence on the safety and reliable operation of hydraulic machinery. It provides new achievements and the latest developments in these areas, even in the basic areas of this subject. The present book covers the fundamentals of mechanical vibration and rotordynamics as well as their main numerical models and analysis methods for the vibration prediction. The mechanical and hydraulic excitations to the vibration are analyzed, and the pressure fluctuations induced by the unsteady turbulent flow is predicted in order to obtain the unsteady loads. This book also discusses the loads, constraint conditions and the elastic and damping characters of the mechanical system, the structure dynamic analysis, the rotor dynamic analysis and the system instability of hydraulic machines, including the illustration of monitoring system for the instability and the vibration in hydraulic units. All the problems are necessary for vibration pr...

  3. Handbook of hydraulic fluid technology

    CERN Document Server

    Totten, George E

    2011-01-01

    ""The Handbook of Hydraulic Fluid Technology"" serves as the foremost resource for designing hydraulic systems and for selecting hydraulic fluids used in engineering applications. Featuring new illustrations, data tables, as well as practical examples, this second edition is updated with essential information on the latest hydraulic fluids and testing methods. The detailed text facilitates unparalleled understanding of the total hydraulic system, including important hardware, fluid properties, and hydraulic lubricants. Written by worldwide experts, the book also offers a rigorous overview of h

  4. A thermo-mechanical stress prediction model for contemporary planar sodium sulfur (NaS) cells

    Science.gov (United States)

    Jung, Keeyoung; Colker, Jeffrey P.; Cao, Yuzhe; Kim, Goun; Park, Yoon-Cheol; Kim, Chang-Soo

    2016-08-01

    We introduce a comprehensive finite-element analysis (FEA) computational model to accurately predict the thermo-mechanical stresses at heterogeneous joints and components of large-size sodium sulfur (NaS) cells during thermal cycling. Quantification of the thermo-mechanical stress is important because the accumulation of stress during cell assembly and/or operation is one of the critical issues in developing practical planar NaS cells. The computational model is developed based on relevant experimental assembly and operation conditions to predict the detailed stress field of a state-of-the-art planar NaS cell. Prior to the freeze-and-thaw thermal cycle simulation, residual stresses generated from the actual high temperature cell assembly procedures are calculated and implemented into the subsequent model. The calculation results show that large stresses are developed on the outer surface of the insulating header and the solid electrolyte, where component fracture is frequently observed in the experimental cell fabrication process. The impacts of the coefficients of thermal expansion (CTE) of glass materials and the thicknesses of cell container on the stress accumulation are also evaluated to improve the cell manufacturing procedure and to guide the material choices for enhanced thermo-mechanical stability of large-size NaS cells.

  5. Analysis of the three dimensional core kinetics NESTLE code coupling with the advanced thermo-hydraulic code systems, RELAP5/SCDAPSIM and its application to the Laguna Verde Central reactor; Analisis para el acoplamiento del codigo NESTLE para la cinetica tridimensional del nucleo al codigo avanzado de sistemas termo-hidraulicos, RELAP5/SCDAPSIM y su aplicacion al reactor de la CNLV

    Energy Technology Data Exchange (ETDEWEB)

    Salazar C, J.H.; Nunez C, A. [CNSNS, Dr. Jose Ma. Barragan No. 779, Col. Narvarte, 03020 Mexico D.F. (Mexico); Chavez M, C. [UNAM, Facultad de Ingenieria, DEPFI Campus Morelos (Mexico)]. E-mail: hsalazar22@prodigy.net.mx

    2004-07-01

    The objective of the written present is to propose a methodology for the joining of the codes RELAP5/SCDAPSIM and NESTLE. The development of this joining will be carried out inside a doctoral program of Engineering in Energy with nuclear profile of the Ability of Engineering of the UNAM together with the National Commission of Nuclear Security and Safeguards (CNSNS). The general purpose of this type of developments, is to have tools that are implemented by multiple programs or codes such a that systems or models of the three-dimensional kinetics of the core can be simulated and those of the dynamics of the reactor (water heater-hydraulics). In the past, by limitations for the calculation of the complete answer of both systems, the developed models they were carried out for separate, putting a lot of emphasis in one but neglecting the other one. These methodologies, calls of better estimate, will be good to the nuclear industry to evaluate, with more high grades of detail, the designs of the nuclear power plant (for modifications to those already existent or for new concepts in the designs of advanced reactors), besides analysing events (transitory and have an accident), among other applications. The coupled system was applied to design studies and investigation of the Laguna Verde Nuclear power plant (CNLV). (Author)

  6. Analysis of unsaturated clayey materials hydration incorporating the effect of thermo-osmotic flow

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The hydraulic gradient is the main physical phenomenon influencing the movement of water in permeable porous media. It is, however, not the only one. Figure 1 presents the main kinds of flow that can occur in a porous media alongside with the corresponding gradient responsible for the movements. The word 'law' is generally used for the diagonal terms associated with the direct flow phenomena, and the name 'effect' is reserved to the non-diagonal ones, called also 'coupled processes'. Lippmann (1907) discovered and named the phenomenon of thermo-osmosis. He discovered it experimentally by separating a volume of water into two parts by means of a membrane. Different temperatures were held in the two regions of the system. The thermal gradient caused a flow of water through the membrane from the cold to the hot side. In permeable reservoirs, the non-diagonal coefficients are relatively small and negligible compared to the diagonal terms. That is the reason why the coupled processes are generally ignored when analyzing problems in aquifers. However, in non-isothermal problems involving low permeability media and/or low hydraulic gradients thermo-osmosis may play a more influential role. Srivastava and Avasthi (1975) and Horseman and McEwen (1996) showed that water flux due to thermo-osmosis can easily exceed Darcy flux in low permeability clays. The 'phenomenological coefficient' that links each flow with the corresponding driving gradient must be measured experimentally. Accounting for thermo-osmosis is assuming that the transport of heat may modify the transport of fluids. The counterpart phenomenon of thermo-osmosis is thermo-filtration, which reflects the influence of a pressure gradient on heat flow. Thermo-osmosis and thermo-filtration are generally formulated as reciprocal relations, so that the coupled conductivity terms related to each phenomenon are set equal. Thermo-osmotic effects have been studied in the

  7. FEMA DFIRM Hydraulic Structures

    Data.gov (United States)

    Minnesota Department of Natural Resources — This layer and accompanying attribute table is required whenever hydraulic structures are shown in the flood profile. It is also required if levees are shown on the...

  8. Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    The paper presents research results using IT-Tools for CAD and dynamic modelling, simulation, analysis, and design of water hydraulic actuators for motion control of machines, lifts, cranes and robots. Matlab/Simulink and CATIA are used as IT-Tools. The contributions include results from on......-going research projects on fluid power and mechatronics based on tap water hydraulic servovalves and linear servo actuators and rotary vane actuators for motion control and power transmission. Development and design a novel water hydraulic rotary vane actuator for robot manipulators. Proposed mathematical...... modelling, control and simulation of a water hydraulic rotary vane actuator applied to power and control a two-links manipulator and evaluate performance. The results include engineering design and test of the proposed simulation models compared with IHA Tampere University’s presentation of research...

  9. Electric hydraulic interaction

    OpenAIRE

    Helle, Ola Høydal

    2011-01-01

    The hydraulic models representing hydro turbines and conduit system found instandard model libraries of power system analysis tools are often simplied mod-els. Subsequently, important information about the dynamics of the hydraulicsystem may not be properly represented by such models, putatively resultingin insucient representation of the interaction between the electric system andhydraulic system.In this master thesis three dierent hydraulic models for hydro power plantsequipped with Francis...

  10. Submarine hydraulic control analysis

    OpenAIRE

    Bower, Michael J.

    1980-01-01

    Approved for public release; distribution unlimited A mathematical model was developed to include line effects in the submarine hydraulic system dynamic performance analysis. The project was undertaken in an effort to demonstrate the necessity of coupling the entire hydraulic power network for an accurate analysis of any of the subsystems rather than the current practice of treating a component loop as an isolated system. It was intended that the line model could be co...

  11. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.;

    2003-01-01

    This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...... for a parameter research study with emphasis on the requirements to the hitch control by use of hydraulic pressure compensated proportional control valve....

  12. Lead Test Assembly program

    International Nuclear Information System (INIS)

    Implementation of the new/alternative fuel requires addressing all aspects of the fuel assembly design basis (mechanical, fuel handling, thermal-hydraulic, nuclear design, chemistry, safety analysis and licensing and including mix core effects. The scope of the work is minimized by implementing a Lead Test Assembly (LTA) program with a limited number of assemblies (6 or more), using approved designed features, and placing the LTAs in a unlimited core power location. The topics discussed in the contribution include plant licensing basis and regulatory requirements, plant interface review, compatibility with resident fuel and reactor environment, safety analysis, and post radiation examination. It is concluded that the LTA program is a prudent means of introducing new core designs into existing cores. (P.A.)

  13. Hydro-methane and methanol combined production from hydroelectricity and biomass: Thermo-economic analysis in Paraguay

    International Nuclear Information System (INIS)

    Highlights: • We investigate H2/O2 production from large hydraulic plant by water electrolysis. • We produce methanol and hydro-methane from H2/O2 obtained. • We investigate two different configurations of the plant. • We perform a thermo-economic analysis for three scenarios in Paraguay. • We find plants optimal size using a time-dependent thermo-economic approach. - Abstract: A thermo-economic analysis regarding large scale hydro-methane and methanol production from renewable sources (biomass and renewable electricity) is performed. The study is carried out investigating hydrogen and oxygen generation by water electrolysis, mainly employing the hydraulic energy produced from the 14 GW Itaipu Binacional Plant, owned by Paraguay and Brazil. Oxygen is employed in biomass gasification to synthesize methanol; the significant amount of CO2 separated in the process is mixed with hydrogen produced by electrolysis in chemical reactors to produce hydro-methane. Hydro-methane is employed to supply natural gas vehicles in Paraguay, methanol is sold to Brazil, that is the largest consumer in South America. The analysis is performed employing time-dependent hydraulic energy related to the water that would normally not be used by the plant, named “spilled energy”, when available; in the remaining periods, electricity is acquired at higher cost by the national grid. For the different plant lay-outs, a thermo-economic analysis has been performed employing two different software, one for the design point and one for the time-dependent one entire year optimization, since spilled energy is strongly variable throughout the year. Optimal sizes for the generation plants have been determined, investigating the influence of electricity cost, size and plant configuration

  14. Thermo-hydro-mechanical modeling and analysis of cement-based energy storages for small-scale dwellings

    Science.gov (United States)

    Hailemariam, Henok; Wuttke, Frank

    2016-04-01

    One of the common technologies for balancing the energy demand and supply in district heating, domestic hot water production, thermal power plants and thermal process industries in general is thermal energy storage. Thermal energy storage, in particular sensible heat storage as compared to latent heat storage and thermo-chemical storage, has recently gained much interest in the renewable energy storage sector due to its comparatively low cost and technical development. Sensible heat storages work on the principle of storing thermal energy by raising or lowering the temperature of liquid (commonly water) or solid media, and do not involve material phase change or conversion of thermal energy by chemical reactions or adsorption processes as in latent heat and thermo-chemical storages, respectively. In this study, the coupled thermo-hydro-mechanical behaviour of a cement-based thermal energy storage system for domestic applications has been modeled in both saturated as well as unsaturated conditions using the Finite Element method along with an extensive experimental analysis program for parameter detection. For this purpose, a prototype model is used with three well-known thermal energy storage materials, and the temperature and heat distribution of the system were investigated under specific thermo-hydro-mechanical conditions. Thermal energy samples with controlled water to solids ratio and stored in water for up to 28 days were used for the experimental program. The determination of parameters included: thermal conductivity, specific heat capacity and linear coefficient of thermal expansion (CTE) using a transient line-source measurement technique as well as a steady-state thermal conductivity and expansion meter; mechanical strength parameters such as uni-axial strength, young's modulus of elasticity, poisson's ratio and shear parameters using uniaxial, oedometer and triaxial tests; and hydraulic properties such as hydraulic permeability or conductivity under

  15. Hydraulic nuts (HydraNuts) for reactor vessel tensioning

    International Nuclear Information System (INIS)

    The paper will present how the introduction of hydraulic nuts - HydraNuts, has reduced critical path times, dose exposure for workers and improved working safety conditions around the reactor vessel during tensioning or de-tensioning operations. It will focus upon detailing the advantages realized by utilities that have introduced the technology and providing examples of the improvements made to the process as well as discussing the engineering design change packages required to make the conversion to the new system. HydraNuts replace the traditional mechanical nut/stud tensioning equipment, combining the two functions into a single system, designed for easy installation and operation by one individual. The primary components of the HydraNut can be assembled without the need for external crane or hoist support and are designed so that each sub assembly can be fitted separately. Once all HydraNuts are fitted to the Rx vessel studs and are sitting on the main Rx vessel head flange, then a system of flexible hydraulic hoses is connected to them, forming a closed loop hydraulic harness, which will allow for simultaneous pressurization of all HydraNuts. Hydraulic pressure is obtained by the use of a hydraulic pumping unit and the resultant load generated in each HydraNut is transferred to the stud and main flange closure is obtained. While maintaining hydraulic pressure, a locking ring is rotated into place on the HydraNut assembly that will support the tensioned load mechanically when the hydraulic pressure is released from the hose harness assembly. The hose harness is removed and the HydraNut is now functioning as a mechanical nut retaining the tensioned load. The HydraNut system for Rx vessel applications was first introduced into a plant in the U.S. in October 2006 and based upon the benefits realized subsequent projects are under way within the Asian and U.S. operating fleet. (author)

  16. Thermo-mechanical analysis of RMP coil system for EAST tokamak

    International Nuclear Information System (INIS)

    Highlights: • Thermal design requirements for EAST RMP coils are summarized. • Cooling parameters based on both theoretical and numerical solutions are determined. • Compromise between thermal design and structural design is made on number of turns. • Thermo-mechanical calculations are made to validate its structural performance. - Abstract: Resonant magnetic perturbation (RMP) has been proved to be an efficient approach on edge localized modes (ELMs) control, resistive wall mode (RWM) control, and error field correction (EFC), RMP coil system under design in EAST tokamak will realize the above-mentioned multi-functions. This paper focuses on the thermo-mechanical analysis of EAST RMP coil system on the basis of sensitivity analysis, both normal and off-normal working conditions are considered. The most characteristic set of coil system is chosen with a complete modelling by means of three-dimensional (3D) finite element method, thermo-hydraulic and thermal-structural performances are investigated adequately, both locally and globally. The compromise is made between thermal performance and structural design requirements, and the results indicate that the optimized design is feasible and reasonable

  17. Thermo-mechanical analysis of RMP coil system for EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Songke, E-mail: wsongk@ipp.ac.cn; Ji, Xiang; Song, Yuntao; Zhang, Shanwen; Wang, Zhongwei; Sun, Youwen; Qi, Minzhong; Liu, Xufeng; Wang, Shengming; Yao, Damao

    2014-10-15

    Highlights: • Thermal design requirements for EAST RMP coils are summarized. • Cooling parameters based on both theoretical and numerical solutions are determined. • Compromise between thermal design and structural design is made on number of turns. • Thermo-mechanical calculations are made to validate its structural performance. - Abstract: Resonant magnetic perturbation (RMP) has been proved to be an efficient approach on edge localized modes (ELMs) control, resistive wall mode (RWM) control, and error field correction (EFC), RMP coil system under design in EAST tokamak will realize the above-mentioned multi-functions. This paper focuses on the thermo-mechanical analysis of EAST RMP coil system on the basis of sensitivity analysis, both normal and off-normal working conditions are considered. The most characteristic set of coil system is chosen with a complete modelling by means of three-dimensional (3D) finite element method, thermo-hydraulic and thermal-structural performances are investigated adequately, both locally and globally. The compromise is made between thermal performance and structural design requirements, and the results indicate that the optimized design is feasible and reasonable.

  18. Morphological Analysis of Forest Tractor Assemblies

    OpenAIRE

    Šušnjar, Marijan; Horvat, Dubravko; Kristić, Andrija; Pandur, Zdravko

    2008-01-01

    The results of this paper present the morphological analysis of nine different types of tractor assemblies used in forestry practice in timber forwarding from thinning operations of lowland forests. Among these tractor assemblies 4 types are older, equipped mechanical cranes. The remaining 5 tractor assemblies, manufactured more recently, are equipped with hydraulic cranes, and two of them are additionally equipped with double-drum winches. According to the research results, older tractor ass...

  19. Experimental study of the coupled thermo-hydraulic–neutronic stability of a natural circulation HPLWR

    International Nuclear Information System (INIS)

    Highlights: ► No pure thermo-hydraulic instabilities were recorded. ► A large unstable zone was found for the coupled thermo-hydraulic–neutronic mode. ► The instabilities are similar to the type I instabilities of boiling systems. ► The low power stability threshold crosses the equivalent reference line hout = hpc. - Abstract: The HPLWR (high performance light water reactor) is the European concept design for a SCWR (supercritical water reactor). This unique reactor design consists of a three pass core with intermediate mixing plena. As the supercritical water passes through the core, it experiences a significant density reduction. This large change in density could be used as the driving force for natural circulation of the coolant, adding an inherent safety feature to this concept design. The idea of natural circulation has been explored in the past for boiling water reactors (BWR). From those studies, it is known that the different feedback mechanisms can trigger flow instabilities. These can be purely thermo-hydraulic (driven by the friction – mass flow rate or gravity – mass flow rate feedback of the system), or they can be coupled thermo-hydraulic–neutronic (driven by the coupling between friction, mass flow rate and power production). The goal of this study is to explore the stability of a natural circulation HPLWR considering the thermo-hydraulic–neutronic feedback. This was done through a unique experimental facility, DeLight, which is a scaled model of the HPLWR using Freon R23 as a scaling fluid. An artificial neutronic feedback was incorporated into the system based on the average measured density. To model the heat transfer dynamics in the rods, a simple first order model was used with a fixed time constant of 6 s. The results include the measurements of the varying decay ratio (DR) and frequency over a wide range of operating conditions. A clear instability zone was found within the stability plane, which seems to be similar to that

  20. Modeling the effects of hydraulic stimulation on geothermal reservoirs

    Science.gov (United States)

    De Simone, Silvia; Vilarrasa, Victor; Carrera, Jesús; Alcolea, Andrés; Meier, Peter

    2013-04-01

    Geothermal energy represents a huge power source that can provide clean energy in potentially unlimited supply. When designing geothermal energy production from deep hot rocks, permeability is considered to control the economic efficiency of the heat extraction operations. In fact, a high permeability heat exchanger is required to achieve a cost-competitive power generation. The typical procedure entails intercepting naturally fractured rocks and enhancing their permeability by means of stimulation. Hydraulic stimulation is the most widely used method. It involves the massive injection of a large volume of water at high flow rates to increase the downhole pore pressure. This overpressure reduces the effective stresses, which tends to induce shearing along the fracture planes. In this way permeability is enhanced due to dilatancy, especially in the direction perpendicular to shear. These processes usually trigger microseismic events, which are sometimes of sufficient magnitude to be felt by the local population. This causes a negative impact on the local population and may compromise the continuation of the project. Hence, understanding the mechanisms triggering these induced micro-earthquakes is important to properly design and manage geothermal stimulation and operations so as to prevent them. We analyzed the thermo-hydro-mechanical response of a fractured deep rock mass subjected to hydraulic stimulation. Considering that seismicity is triggered when failure condition are reached, we studied the variation of the stress regime due to the hydraulic and thermal perturbations during fluid injection. Starting with a simplified model with constant permeability fault zones, more sophisticated schemes are considered to simulate the behavior of the discontinuity zones, including permeability variation associated to temperature, pressure and stress regime changes. Numerical simulations are performed using the finite element numerical code CODE_BRIGHT, which allows to solve

  1. Thermo-optic devices on polymer platform

    Science.gov (United States)

    Zhang, Ziyang; Keil, Norbert

    2016-03-01

    Optical polymers possess in general relatively high thermo-optic coefficients and at the same time low thermal conductivity, both of which make them attractive material candidates for realizing highly efficient thermally tunable devices. Over the years, various thermo-optic components have been demonstrated on polymer platform, covering (1) tunable reflectors and filters as part of a laser cavity, (2) variable optical attenuators (VOAs) as light amplitude regulators in e.g. a coherent receiver, and (3) thermo-optic switches (TOSs) allowing multi-flow control in the photonic integrated circuits (PICs). This work attempts to review the recent progress on the above mentioned three component branches, including linearly and differentially tunable filters, VOAs based on 1×1 multimode interference structure (MMI) and Mach-Zehnder interferometer (MZI), and 1×2 TOS based on waveguide Y-branch, driven by a pair of sidelong placed heater electrodes. These thermo-optic components can well be integrated into larger PICs: the dual-polarization switchable tunable laser and the colorless optical 90° hybrid are presented in the end as examples.

  2. Biomass thermo-conversion. Research trends

    International Nuclear Information System (INIS)

    In this paper is studied the state of the art in order to identify the main trends of the processes of thermo conversion of biomass into fuels and other chemicals. In Cuba, from total supply of biomass, wood is the 19% and sugar cane bagasse and straw the 80%, is why research in the country, should be directed primarily toward these. The methods for energy production from biomass can be group into two classes: thermo-chemical and biological conversion routes. The technology of thermo-chemical conversion includes three subclasses: pyrolysis, gasification, and direct liquefaction. Although pyrolysis is still under development, in the current energy scenario, has received special attention, because can convert directly biomass into solid, liquid and gaseous by thermal decomposition in absence of oxygen. The gasification of biomass is a thermal treatment, where great quantities of gaseous products and small quantities of char and ash are produced. In Cuba, studies of biomass thermo-conversion studies are limited to slow pyrolysis and gasification; but gas fuels, by biomass, are mainly obtained by digestion (biogas). (author)

  3. The thermos principle; Das Thermoskannen-Prinzip

    Energy Technology Data Exchange (ETDEWEB)

    Banse, Stephanie

    2011-12-14

    While Grandma's tea cozy kept the hot liquid warm for an afternoon, a thermos flask still contains residual heat the next morning. This principle is now used by manufacturers of buffer stores. There are now vacuum seasonal stores with low heat losses that will keep the energy of the summer sun for the winter season.

  4. Acoustic and Filtration Properties of Thermo-elastic porous medium: Biot's Equations of Thermo- Poroelasticity

    OpenAIRE

    Meirmanov, Anvarbek M.

    2006-01-01

    A linear system of differential equations describing a joint motion of thermo-elastic porous body and incompressible thermo-fluid occupying porous space is considered. Although the problem is linear, it is very hard to tackle due to the fact that its main differential equations involve non-smooth oscillatory coefficients, both big and small, under the differentiation operators. The rigorous justification is fulfilled for homogenization procedures as the dimensionless size of the pores tends t...

  5. Study of the Thermo-Mechanical Behavior of the CLIC Two-Beam Modules

    CERN Document Server

    Rossi, F; Riddone, G; Österberg, K; Kossyvakis, I; Gudkov, D; Samochkine, A

    2013-01-01

    The final luminosity target of the Compact LInear Collider (CLIC) imposes a micron-level stability requirement on the two-meter repetitive two-beam modules constituting the main linacs. Two-beam prototype modules are being assembled to extensively study their thermo-mechanical behaviour under different operation modes. The power dissipation occurring in the modules will be reproduced and the efficiency of the corresponding cooling systems validated. At the same time, the real environmental conditions present in the CLIC tunnel will be studied. Air conditioning and ventilation systems have been installed in the dedicated laboratory. The air temperature will be changed from 20 to 40°C, while the air flow rate will be varied up to 0.8 m/s. During all experimental tests, the alignment of the RF structures will be monitored to investigate the influence of power dissipation and air temperature on the overall thermo-mechanical behaviour. \

  6. Cavitation in Hydraulic Machinery

    Energy Technology Data Exchange (ETDEWEB)

    Kjeldsen, M.

    1996-11-01

    The main purpose of this doctoral thesis on cavitation in hydraulic machinery is to change focus towards the coupling of non-stationary flow phenomena and cavitation. It is argued that, in addition to turbulence, superimposed sound pressure fluctuations can have a major impact on cavitation and lead to particularly severe erosion. For the design of hydraulic devices this finding may indicate how to further limit the cavitation problems. Chapter 1 reviews cavitation in general in the context of hydraulic machinery, emphasizing the initial cavitation event and the role of the water quality. Chapter 2 discusses the existence of pressure fluctuations for situations common in such machinery. Chapter 3 on cavitation dynamics presents an algorithm for calculating the nucleation of a cavity cluster. Chapter 4 describes the equipment used in this work. 53 refs., 55 figs.,10 tabs.

  7. Modelling of Hydraulic Robot

    DEFF Research Database (Denmark)

    Madsen, Henrik; Zhou, Jianjun; Hansen, Lars Henrik

    1997-01-01

    This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application of the l......This paper describes a case study of identifying the physical model (or the grey box model) of a hydraulic test robot. The obtained model is intended to provide a basis for model-based control of the robot. The physical model is formulated in continuous time and is derived by application...

  8. HYDRAULIC SERVO CONTROL MECHANISM

    Science.gov (United States)

    Hussey, R.B.; Gottsche, M.J. Jr.

    1963-09-17

    A hydraulic servo control mechanism of compact construction and low fluid requirements is described. The mechanism consists of a main hydraulic piston, comprising the drive output, which is connected mechanically for feedback purposes to a servo control piston. A control sleeve having control slots for the system encloses the servo piston, which acts to cover or uncover the slots as a means of controlling the operation of the system. This operation permits only a small amount of fluid to regulate the operation of the mechanism, which, as a result, is compact and relatively light. This mechanism is particuiarly adaptable to the drive and control of control rods in nuclear reactors. (auth)

  9. Fire resistant hydraulic fluids

    Energy Technology Data Exchange (ETDEWEB)

    Deakin, P. (Croda Application Chemicals Ltd. (UK). Mining Sales and Service)

    The use of fire resistant fluids is now widespread and in certain applications, namely underground, mandatory within the coal mining industry. However, safety is a paramount objective in all industries and within the author's company which supplies and services other industries such as metal forming and automotive construction, greater emphasis is being placed on the use of fire resistant hydraulic fluids. Their involvement with development, manufacture and application is continually expanding. This document describes the various fire resistant hydraulic fluids and why they are used in particular applications. 1 tab.

  10. Hydraulic Arm Modeling via Matlab SimHydraulics

    Czech Academy of Sciences Publication Activity Database

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    Roč. 16, č. 4 (2009), s. 287-296. ISSN 1802-1484 Institutional research plan: CEZ:AV0Z20760514 Keywords : simulatin modeling * hydraulics * SimHydraulics Subject RIV: JD - Computer Applications, Robotics

  11. Hydraulic Arm Modeling via Matlab SimHydraulics

    OpenAIRE

    Věchet, Stanislav; Krejsa, Jiří

    2009-01-01

    System modeling is a vital tool for cost reduction and design process speed up in most engineering fields. The paper is focused on modeling of hydraulic arm as a part of intelligent prosthesis project, in the form of 2DOF open kinematic chain. The arm model combines mechanical, hydraulic and electric subsystems and uses Matlab as modeling tool. SimMechanics Matlab extension is used for mechanical part modeling, SimHydraulics toolbox is used for modeling of hydraulic circuit used for actuating...

  12. Electro Hydraulic Hitch Control

    DEFF Research Database (Denmark)

    Hansen, M. R.; Andersen, T. O.; Nielsen, B.;

    2003-01-01

    This paper present and discusses R&D results on electro hydraulic hitch control for off-road vehicle, in particular active damping of oscillation occuring on tractors. The research deals with analysis and control of the oscillations occuring on tractors which are design without any susspection...

  13. Water Treatment Technology - Hydraulics.

    Science.gov (United States)

    Ross-Harrington, Melinda; Kincaid, G. David

    One of twelve water treatment technology units, this student manual on hydraulics provides instructional materials for three competencies. (The twelve units are designed for a continuing education training course for public water supply operators.) The competencies focus on the following areas: head loss in pipes in series, function loss in…

  14. Dutchess Co, NY, Detailed Hydraulics

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  15. HYDRAULICS, COSHOCTON COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  16. Hydraulic Analyses, Rains County, Texas

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulics data includes spatial datasets and data tables necessary for documenting the hydraulic procedures for computing flood elevations for a flood insurance...

  17. HYDRAULICS, TUSCARAWAS COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  18. HYDRAULICS, PREBLE COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  19. HYDRAULICS, WARREN COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydraulic procedures for estimating flood discharges for a flood insurance...

  20. Thermo-Osmotic Flow in Thin Films

    Science.gov (United States)

    Bregulla, Andreas P.; Würger, Alois; Günther, Katrin; Mertig, Michael; Cichos, Frank

    2016-05-01

    We report on the first microscale observation of the velocity field imposed by a nonuniform heat content along the solid-liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations. From the measured slip velocity we deduce the thermo-osmotic coefficient for both bare glass and Pluronic F-127 covered surfaces. The value for Pluronic F-127 agrees well with Soret data for polyethylene glycol, whereas that for glass differs from literature values and indicates the complex boundary layer thermodynamics of glass-water interfaces.

  1. Thermo-osmotic flow in thin films

    CERN Document Server

    Bregulla, Andreas; Günther, Katrin; Mertig, Michael; Cichos, Frank

    2016-01-01

    We report on the first micro-scale observation of the velocity field imposed by a non-uniform heat content along the solid/liquid boundary. We determine both radial and vertical velocity components of this thermo-osmotic flow field by tracking single tracer nanoparticles. The measured flow profiles are compared to an approximate analytical theory and to numerical calculations. From the measured slip velocity we deduce the thermo-osmotic coefficient for both bare glass and Pluronic F-127 covered surfaces. The value for Pluronic F-127 agrees well with Soret data for polyethylene glycol, whereas that for glass differs from literature values and indicates the complex boundary layer thermodynamics of glass-water interfaces.

  2. A novel reversible thermo-swelling hydrogel

    Directory of Open Access Journals (Sweden)

    2010-07-01

    Full Text Available A novel reversible thermo-swelling gel was prepared from poly(vinyl alcohol-trimellitate (PVA-T by crosslinking with ethylene glycol diglycidyl ether (EGDGE. Only in the presence of sulfate anion, this polymer gel showed a significant and reversible swelling behavior with increasing the temperature from 5 to 40°C, and vice versa, probably due to the scission and formation of the inter- and/or intramolecular hydrogen-bondings (HBs between the carboxyls on the side groups. The involvement of inter- and/or intramolecular HBs for the thermo-swelling behavior was also suggested by a significant dependence on HCl concentration of the swelling degree. In addition, the swelling reversibility and reproducibility were confirmed via the temperature jump between 5 and 40°C, well satisfying for a candidate as a thermosensitive material.

  3. Thermo-diffusional radon waves in soils.

    Science.gov (United States)

    Minkin, Leonid; Shapovalov, Alexander S

    2016-09-15

    A new theoretical framework for diurnal and seasonal oscillations of the concentration of radon in soil and open air is proposed. The theory is based on the existing temperature waves in soils and thermo-diffusional gas flux in porous media. As soil is a non-isothermal porous medium, usually possessing a large fraction of microscopic pores belonging to Knudsen's free molecular field, a thermo-diffusional gas flow in soil has to arise. The radon mass transfer equation in soil for sinusoidal temperature oscillations at the soil-atmosphere boundary is solved, which reveals that radon concentration behaves as a damped harmonic wave. The amplitude of radon concentration oscillations and phase shift between radon concentration oscillations and soil temperature depend on the radon diffusion coefficient in soil, rate of radon production, soil thermal conductivity, average soil temperature, decay constant, and heat of radon transfer. Primarily numerical calculations are presented and comparisons with experimental data are shown. PMID:27155259

  4. Nonequilibrium statistical averages and thermo field dynamics

    International Nuclear Information System (INIS)

    An extension of thermo field dynamics is proposed, which permits the computation of nonequilibrium statistical averages. The Brownian motion of a quantum oscillator is treated as an example. In conclusion it is pointed out that the procedure proposed to computation of time-dependent statistical average gives the correct two-point Green function for the damped oscillator. A simple extension can be used to compute two-point Green functions of free particles

  5. The research of the evaluation system for the sealability of hydraulic supports and jacks' seals

    Institute of Scientific and Technical Information of China (English)

    ZHANG Xi; LIU Jie; WANG Zong-yong; LIU Hong-peng

    2011-01-01

    In order to enhance the sealing quality and assemble efficiency of hydraulic supports, the evaluation system for the sealability of the hydraulic support and jack's seals was established through the testing and experimenting technology in respects, such as seals' dimensions, reasonable amounts of compression, sealability, life, resistance to pressure, etc. Through life detecting test of the seal, found the longest life seal ring under the same conditions, and through the reciprocating test of the hydraulic support, found the most appropriate amount of interference between the groove and the seal ring, thus, to decrease the leakage and extend the life span of the hydraulic support.

  6. Etude expérimentale du comportement thermo-hydro-mécanique de l'argilite du Callovo-Oxfordien

    OpenAIRE

    Mohajerani, Mehrdokht

    2011-01-01

    During the different phases of the exothermic radioactive waste deep disposal (excavation, operation) and after permanent closure, the host rock is submitted to various coupled mechanical, hydraulic and thermal phenomena. Hence, a thorough investigation of the thermo-hydro-mechanical behaviour of the rock is necessary to complete existing data and to better understand and model the short and long term behaviour of the Callovo-Oxfordian (COx) clay formation in Bure (Meuse/Haute-Marne - M/HM), ...

  7. Hydraulic turbines and auxiliary equipment

    Energy Technology Data Exchange (ETDEWEB)

    Luo Gaorong [Organization of the United Nations, Beijing (China). International Centre of Small Hydroelectric Power Plants

    1995-07-01

    This document presents a general overview on hydraulic turbines and auxiliary equipment, emphasizing the turbine classification, in accordance with the different types of turbines, standard turbine series in China, turbine selection based on the basic data required for the preliminary design, general hill model curves, chart of turbine series and the arrangement of application for hydraulic turbines, hydraulic turbine testing, and speed regulating device.

  8. Thermo-Mechanical Modeling of Laser-Mig Hybrid Welding (lmhw)

    Science.gov (United States)

    Kounde, Ludovic; Engel, Thierry; Bergheau, Jean-Michel; Boisselier, Didier

    2011-01-01

    Hybrid welding is a combination of two different technologies such as laser (Nd: YAG, CO2…) and electric arc welding (MIG, MAG / TIG …) developed to assemble thick metal sheets (over 3 mm) in order to reduce the required laser power. As a matter of fact, hybrid welding is a lso used in the welding of thin materials to benefit from process, deep penetration and gap limit. But the thermo-mechanical behaviour of thin parts assembled by LMHW technology for railway cars production is far from being controlled the modeling and simulation contribute to the assessment of the causes and effects of the thermo mechanical behaviour in the assembled parts. In order to reproduce the morphology of melted and heat-affected zones, two analytic functions were combined to model the heat source of LMHW. On one hand, we applied a so-called "diaboloïd" (DB) which is a modified hyperboloid, based on experimental parameters and the analysis of the macrographs of the welds. On the other hand, we used a so-called "double ellipsoïd" (DE) which takes the MIG only contribution including the bead into account. The comparison between experimental result and numerical result shows a good agreement.

  9. Hydraulic Hybrid Parcel Delivery Truck Deployment, Testing & Demonstration

    Energy Technology Data Exchange (ETDEWEB)

    Gallo, Jean-Baptiste [Calstart Incorporated, Pasadena, CA (United States)

    2014-03-07

    Although hydraulic hybrid systems have shown promise over the last few years, commercial deployment of these systems has primarily been limited to Class 8 refuse trucks. In 2005, the Hybrid Truck Users Forum initiated the Parcel Delivery Working Group including the largest parcel delivery fleets in North America. The goal of the working group was to evaluate and accelerate commercialization of hydraulic hybrid technology for parcel delivery vehicles. FedEx Ground, Purolator and United Parcel Service (UPS) took delivery of the world’s first commercially available hydraulic hybrid parcel delivery trucks in early 2012. The vehicle chassis includes a Parker Hannifin hydraulic hybrid drive system, integrated and assembled by Freightliner Custom Chassis Corp., with a body installed by Morgan Olson. With funding from the U.S. Department of Energy, CALSTART and its project partners assessed the performance, reliability, maintainability and fleet acceptance of three pre-production Class 6 hydraulic hybrid parcel delivery vehicles using information and data from in-use data collection and on-road testing. This document reports on the deployment of these vehicles operated by FedEx Ground, Purolator and UPS. The results presented provide a comprehensive overview of the performance of commercial hydraulic hybrid vehicles in parcel delivery applications. This project also informs fleets and manufacturers on the overall performance of hydraulic hybrid vehicles, provides insights on how the technology can be both improved and more effectively used. The key findings and recommendations of this project fall into four major categories: -Performance, -Fleet deployment, -Maintenance, -Business case. Hydraulic hybrid technology is relatively new to the market, as commercial vehicles have been introduced only in the past few years in refuse and parcel delivery applications. Successful demonstration could pave the way for additional purchases of hydraulic hybrid vehicles throughout the

  10. Evaluation of IGBT thermo-sensitive electrical parameters under different dissipation conditions – Comparison with infrared measurements

    OpenAIRE

    Avenas, Yvan; Dupont, Laurent

    2012-01-01

    Junction temperature evaluation is a key parameter used to control a power module assembly. But measuring the junction temperature by thermo-sensitive electrical parameters (TSEPs) does not reveal the actual temperature of the semiconductor device. In this paper, a specific electronic board used to compare four common TSEPs of IGBT chips is presented. For this comparison, two dissipation modes are used: dissipation in active and saturation regions. In order to have referential measurements we...

  11. Thermo-mechanical design of the Plasma Driver Plate for the MITICA ion source

    International Nuclear Information System (INIS)

    In the framework of the activities for the development of the Neutral Beam Injector (NBI) for ITER, the detailed design of the Radio-Frequency (RF) negative ion source has been carried out. One of the most heated components of the RF source is the rear vertical plate, named Plasma Driver Plate (PDP), where the Back-Streaming positive Ions (BSI+) generated from stripping losses in the accelerator and back scattered on the plasma source impinge on. The heat loads that result are huge and concentrated, with first estimate of the power densities up to 60 MW/m2. The breakdowns that occur into the accelerator cause such heat loads to act cyclically, so that the PDP is thermo-mechanically fatigue loaded. Moreover, the surface of the PDP facing the plasma is functionally required to be temperature controlled and to be molybdenum or tungsten coated. The thermo-hydraulic design of the plate has been carried out considering active cooling with ultra-pure water. Different heat sink materials, hydraulic circuit layout and manufacturing processes have been considered. The heat exhaust has been optimized by changing the channels geometry, the path of the heat flux in the heat sink, the thickness of the plate and maximizing the Heat Transfer Coefficient. Such optimization has been carried out by utilizing 3D Finite Element (FE) models. Afterwards all the suitable mechanical (aging, structural monotonic and cyclic) verifications have been carried out post-processing the results of the thermo-mechanical 3D FE analyses in accordance to specific procedures for nuclear components exposed to high temperature. The effect of sputtering phenomenon due to the high energy BSI+ impinging on the plate has been considered and combined with fatigue damage for the mechanical verification of the PDP. Alternative solutions having molybdenum (or tungsten coatings) facing the plasma, aiming to reduce the sputtering rate and the consequent plasma pollution, have been evaluated and related 3D FE models

  12. Test investigation on hydraulic losses in the discharge passage of an axial-flow pump

    Institute of Scientific and Technical Information of China (English)

    QIU Baoyun; CAO Haihong; JIANG Wei; GAO Zhaohui; WANG Fei

    2007-01-01

    In a discharge passage with a guide blade dis- charge circulation and secondary flow because of bend pipe, the flow in a 1-channel discharge passage of an axial flow pump is a complicated spiral flow. For a 2-channel passage, the discharge in the left channel is bigger than that in the fight, and the passage hydraulic losses are abnormal. In this study, the section current energy of the passage is accurately mea- sured and determined with a 5-hole probe. The hydraulic loss characteristics are determined and analyzed. The methods deducing the hydraulic losses are investigated. The results indicate that the passage hydraulic losses are not proportional to the flow discharge. Compared with a circular pipe, the hydraulic losses of a divergent discharge passage are smaller and the pump assembly efficiency is 10%-30% higher. As for the 1-channel passage, the axial-flow pump outlet circulation is usually too big; the passage hydraulic losses are also big, but a small circulation can slightly reduce hydraulic losses. As for the 2-channel passage, discharges in the two channels are not equal and the hydraulic losses increase. The outlet guide blade with a small discharge circulation or without circulation could reduce discharge passage hydraulic losses and increase pump assembly efficiency by 6%-11%.

  13. Excavation effect on thermo hydro- mechanical behaviour of geological barrier

    International Nuclear Information System (INIS)

    Heat emitted by nuclear waste has great influences on mechanical and hydraulic properties of the surrounded media and also on the movement of water, vapour and air. Due to the complexity of the phenomena that might take place in a waste repository, an adequate understanding of the behaviour of the barriers is not an easy task. The difficulty of the task is increased by the fact that many effect s are coupled. In order to study these effects, series of coupled thermo-hydro-mechanical formulations are used. The first step in a theoretical development of a fully coupled thermo-hydro-mechanical model for an unsaturated soil, is choosing the adequate and independent variables which would be able to present all significant interaction effects among the different components involved in a coupled process in a deformable unsaturated porous medium with three phases (skeleton, water and air)under heating. The phase changes between liquid and gas, evaporation, condensation, induced moisture transfer under thermal and pore pressure gradients and the effects of moisture distribution on the heat flow are important aspects in non-deformable unsaturated porous media. If the deformation of porous media is considered, the coupling effects among deformation, moisture, and heat should be also regarded in addition to all above aspects. The governing equations are the equation of equilibrium and constitutive law for solid skeleton, mass conservation and fluid transfer for water and air, and Fourier law and conservation equation for energy. Due to the fact that water phase consists of liquid and vapour two sets of transfer equations are used for water phase: Philip and de Vries law for vapour and Darcy law for liquid. Darcy law is also used for air transfer. In the presented formulations, due to the fact that the medium is assumed to be deformable, the effects of deformation on the temperature and suction distribution in soil and the inverse effects must be included. In order to include

  14. Hydraulic manipulator research at ORNL

    International Nuclear Information System (INIS)

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL's flexible/prismatic test stand

  15. Hydraulic manipulator research at ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Kress, R.L.; Jansen, J.F. [Oak Ridge National Lab., TN (United States); Love, L.J. [Oak Ridge Inst. for Science and Education, TN (United States)

    1997-03-01

    Recently, task requirements have dictated that manipulator payload capacity increase to accommodate greater payloads, greater manipulator length, and larger environmental interaction forces. General tasks such as waste storage tank cleanup and facility dismantlement and decommissioning require manipulator life capacities in the range of hundreds of pounds rather than tens of pounds. To meet the increased payload capacities demanded by present-day tasks, manipulator designers have turned once again to hydraulics as a means of actuation. In order to successfully design, build, and deploy a new hydraulic manipulator (or subsystem), sophisticated modeling, analysis, and control experiments are usually needed. Oak Ridge National Laboratory (ORNL) has a history of projects that incorporate hydraulics technology, including mobile robots, teleoperated manipulators, and full-scale construction equipment. In addition, to support the development and deployment of new hydraulic manipulators, ORNL has outfitted a significant experimental laboratory and has developed the software capability for research into hydraulic manipulators, hydraulic actuators, hydraulic systems, modeling of hydraulic systems, and hydraulic controls. The purpose of this article is to describe the past hydraulic manipulator developments and current hydraulic manipulator research capabilities at ORNL. Included are example experimental results from ORNL`s flexible/prismatic test stand.

  16. A solid hydraulically amplified piezoelectric microvalve

    International Nuclear Information System (INIS)

    We report a piezoelectrically driven and hydraulically amplified axial polymer microvalve. The microvalve is normally open and is assembled primarily with stereolithographically fabricated polymer components. An incompressible elastomer is used as a solid hydraulic medium to convert the small axial displacement of a piezoelectric actuator into a large valve head stroke while maintaining a large blocking force. Also, the axial design of the microvalve enables densely packed valve arrays. One application of this microvalve is in pneumatic tactile displays, which operates against gas pressure up to approximately 90 kPa and switching speed between 1 and 200 Hz. The current valve design has a maximum static hydraulic amplification ratio of 5 at 30 V driving voltage and a maximum valve head stroke of 37 µm at 150 V. Under a 94.4 kPa differential pressure, the flow rate of the valve and the closing voltage measure are 785 mL min−1 and 150 V, respectively. The function of the microvalve as an on–off switch for a pneumatic microbubble tactile actuator is demonstrated

  17. Mechanics of Hydraulic Fractures

    Science.gov (United States)

    Detournay, Emmanuel

    2016-01-01

    Hydraulic fractures represent a particular class of tensile fractures that propagate in solid media under pre-existing compressive stresses as a result of internal pressurization by an injected viscous fluid. The main application of engineered hydraulic fractures is the stimulation of oil and gas wells to increase production. Several physical processes affect the propagation of these fractures, including the flow of viscous fluid, creation of solid surfaces, and leak-off of fracturing fluid. The interplay and the competition between these processes lead to multiple length scales and timescales in the system, which reveal the shifting influence of the far-field stress, viscous dissipation, fracture energy, and leak-off as the fracture propagates.

  18. Thermo-Hydraulic Optimisation of the EURISOL-DS MMW Hg target

    CERN Document Server

    M. Ashrafi-Nik

    The present document describes the thermal and the stress analysis of the final design of the EURISOL DS target. The preliminary design by Q. Prétet, R. Milenkovic and B. Smith was used as a starting point for further improvements to reduce stresses in the hull; the results of these computations are summarised in this document. All variants studied to attain the objective are documented using CFD to assess the effects of different flow configurations on the temperature distribution in the target liquid metal and structural analysis for determining the stresses and temperatures in the target structure.

  19. Development of data acquisition system for test circuit for the Thermo-Hydraulic Laboratory of CDTN

    International Nuclear Information System (INIS)

    The Circuit Water-Air (CWA), present in the Laboratorio de Termo-Hidraulica of the Centro de Desenvolvimento da Tecnologia Nuclear/Comissao Nacional de Energia Nuclear (CDTN / CNEN), has been used to evaluate devices present in nuclear fuel elements of a PWR (Pressurized Water Reactor). Currently, a segment of 5x5 beam simulators grids with spacer bars is being tested, serving one of the activities under the Project FUJB / FINEP / INB - 'Development of New Generation of Nuclear Fuel Element '. For the measurements of pressure drop along this beam, a system of data acquisition based on Basic language was created. Although this system is efficient and robust, their resources are very limited. Therefore, it was decided to use the software LabVIEW® implementing a more versatile and modern system. This article describes the new data acquisition system, and presents some results. The main parameters are monitored: temperature, density, dynamic viscosity, Reynolds number. The values of standard deviation, mean and uncertainty of an arbitrary channel are calculated. The system was installed and tested in the circuit under experimental conditions and showed satisfactory results.

  20. Pressurized thermal shock. Thermo-hydraulic conditions in the CNA-I reactor pressure vessel

    International Nuclear Information System (INIS)

    In this paper we analyze several reports issued by the Utility (Nucleo Electrica S.A.) and related to Reactor Pressure Vessel (RPV) phenomena in the CNA-I Nuclear Power Plant. These analyses are aimed at obtaining conclusions and establishing criteria ensuring the RPV integrity. Special attention was given to the effects ECCS cold-water injection at the RPV down-comer leading to pressurized thermal shock scenarios. The results deal with hypothetical primary system pipe breaks of different sizes, the inadvertent opening of the pressurizer safety valve, the double guillotine break of a live steam line in the containment and the inadvertent actuation pressurizer heaters. Modeling conditions were setup to represent experiments performed at the UPTF, under the hypothesis that they are representative of those that, hypothetically, may occur at the CNA-I. No system scaling analysis was performed, so this assertion and the inferred conclusions are no fully justified, at least in principle. The above mentioned studies, indicate that the RPV internal wall surface temperature will be nearly 40 degree. It was concluded that they allowed a better approximation of PTS phenomena in the RPV of the CNA-I. Special emphasis was made on the influence of the ECCS systems on the attained RPV wall temperature, particularly the low-pressure TJ water injection system. Some conservative hypothesis made, are discussed in this report. (author)

  1. Neutron and thermo - hydraulic model of a reactivity transient in a nuclear power plant fuel element

    International Nuclear Information System (INIS)

    A reactivity transient without reactor scram was modeled and calculated using analytical expressions for the space distributions of the temperature fields, combined with discrete numerical calculations for the time dependences of thermal power and temperatures. The transient analysis covered the time dependencies of reactivity, global thermal power, fuel heat flux and temperatures in fuel, cladding and cooling water. The model was implemented in Microsoft Office Excel, dividing the Excel file in several separated worksheets for input data, initial steady-state calculations, calculation of parameters non-depending on eigenvalues, eigenvalues determination, calculation of parameters depending on eigenvalues, transient calculation and graphical representation of intermediate and final results. The results show how the thermal power reaches a new equilibrium state due to the negative reactivity feedback derived from the fuel temperature increment. Nevertheless, the reactor mean power increases 40% during the first second and, in the hottest channel, the maximum fuel temperature goes to a significantly high value, slightly above 2100 deg C, after 8 seconds of transient. Consequently, the results confirm that certain degree of fuel damage could be expected in case of a reactor scram failure. Once the basic model has being established the scope of accidents for future analyses can be extended, modifying the nuclear power behavior (reactivity) during transient and the boundary conditions for coolant temperature. A more complex model is underway for an annular fuel element. (author)

  2. Towards empiricism-free large Eddy simulation for thermo-hydraulic problems

    International Nuclear Information System (INIS)

    A novel high-resolution Navier-Stokes method is proposed for modelling large-scale turbulent flows. The method is based on the non-oscillatory low-dissipative and low-dispersive CABARET scheme. Numerical results are provided for the classical backward-facing step problem and for the recent OECD/NEA-Vattenfall T-junction blind-test exercise. Unsteady heat transfer problems that are associated with turbulent non-isothermal flow mixing are very topical for the thermal fatigue of industrial power plant systems. Mathematical modelling of such problems remains very challenging because of the poorly understood large-scale turbulence phenomena. One popular approach for modeling this type of flows is Implicit Large Eddy Simulation (ILES). The Implicit LES approach doesn't have any explicit turbulence model and has to rely on (i) the ability of the numerical method to remove all scales smaller than the grid scale from the solution without affecting the resolved scales, in provision that (ii) the method's resolution is enough to capture all important dynamic scales. For the latter, the use of high-resolution robust numerical methods is thus essential. Hence, for the numerical method our choice is the Compact Accurately Boundary Adjusting High Resolution Technique (CABARET) scheme that has previously been applied for solving advection-dominated problems. In comparison with the standard finite-difference and finite-volume methods, in CABARET there is always an additional independent evolutionary variable, which gives the method the ability to preserve one more important property of the governing equations - the small phase and amplitude error. For solving Navier-Stokes equations with Reynolds numbers of 104, the method gives a very good convergence without any additional preconditioning down to Mach numbers as low as M∼0.05-0.1 In particular for the ILES modelling of a hydrodynamic instability and free jet a 257 x 257 grid using CABARET is able to produce results comparable to a conventional second-order method which would require at least 1025 x 1025 grid points. Here, the CABARET method is 30 times more efficient. The goal of the current paper is to further promote the ILES CABARET method for modelling of large-scale turbulent flows. We first consider the solution of the benchmark problem of turbulent flow over a backward facing step and then discuss the CABARAT application for the recent OECD/NEA-Vattenfall T-junction blind test. (authors)

  3. The Failure Effect of Primary Coolant Pump to Thermo-Hydraulic Characteristic of TRIGA 2000 Reactor

    International Nuclear Information System (INIS)

    Has been done analysis of transient, when TRIGA 2000 reactor loss of primary coolant flow because primary pump loss of electric power, so fail in function.The calculation using RELAP5/MOD32 computer code with reactor core is modeled in the form of different seven channels as representation of different seven areas in core with 116 fuels. This reactor model also considers position of tip of primary pipe of input tank which is below of core, form of lower part core geometry influencing direction and coolant flow rate into core, and existence of diffuser system. The result of calculation in condition of steady state is obtained initiation condition of steady state is reached after 2500 seconds from reactor starts operation on 2000 kW power. On steady state, the channel-3 cladding temperature (hottest) is 149.63℃, the coolant temperature outlet from the channel-3 (hottest) is 105.66℃ , reactor inlet temperature is 32.2℃, and reactor outlet temperature is 46.79℃. The primary coolant entering reactor with flow rate 59.64 kg/s, distributed to core 31.44 kg/s and to by-pass of core or by-pass of chimney 28.20 kg/s. The result of calculation transient is obtained, before scram occur the channel-3 cladding temperature (hottest) is 161.03℃ and the coolant temperature outlet from the channel-3 (hottest) is 117.66℃. In the reactor core is a natural circulation as well (from reactor core, to chimney, to by-pass of chimney, to by-pass of core and back to platform) which is cooling reactor core. Scram occur on 250 seconds after failure of the primary pump. Based on result of this study is known that, when transient condition is happened because primary pump failure, reactor is predicted to stays in safety margin. (author)

  4. Particle and thermo-hydraulic maldistribution of nanofluids in parallel microchannel systems

    CERN Document Server

    Maganti, Lakshmi Sirisha; sundararajan, T; Das, Sarit K

    2016-01-01

    Fluidic maldistribution in microscale multichannel devices requires deep understanding to achieve optimized flow and heat transfer characteristics. A thorough computational study has been performed to understand the concentration and thermohydraulic maldistribution of nanofluids in parallel microchannel systems using an Eulerian Lagrangian twin phase model. The study reveals that nanofluids cannot be treated as homogeneous single phase fluids in such complex flow domains and effective property models fail drastically to predict the performance parameters. To comprehend the distribution of the particulate phase, a novel concentration maldistribution factor has been proposed. It has been observed that distribution of particles need not essentially follow the flow pattern, leading to higher thermal performance than expected from homogeneous models. Particle maldistribution has been conclusively shown to be due to various migration and diffusive phenomena like Stokesian drag, Brownian motion, thermophoretic drift...

  5. Enhancement of Heat Transfer and Thermo-Hydraulic Performance Using Triangular Protrusions as Roughness Elements

    OpenAIRE

    Nagaraju, A; Prof. B.Uma Maheswar Gowd

    2015-01-01

    Solar heat has been thrust area of research to explore renewable energy utilisation for the past few decades. In solar air heaters artificial roughness is tried on the surface of the absorber plate by adding small roughness elements to enhance the heat transfer rate. In the present work triangular protrusion are provided to act as roughness elements over the surface of the aluminum absorber plate. The experimental study is carried out on the effect of change in apex angle of protr...

  6. Validity of the quasi-static assumption in transient thermo-hydraulic analysis of GCFR

    International Nuclear Information System (INIS)

    In reactor transient analysis, the friction factor and the heat transfer coefficient are assumed to be equal to the steady-state ones. Validity of this 'quasi-static assumption' is examined. The transient turbulent heat transfer in a circular tube is examined numerically and experimentally in step change of the pressure gradient or the heat input. Transient variations of the friction factor and the heat transfer coefficient are obtained. The times required for the flow velocity and the heat transfer coefficient to attain the steady-state values are studied. The steady state friction factor and the heat transfer coefficient are found to be applicable in transient analyses of GCFR. (auth.)

  7. Undular Hydraulic Jump

    Directory of Open Access Journals (Sweden)

    Oscar Castro-Orgaz

    2015-04-01

    Full Text Available The transition from subcritical to supercritical flow when the inflow Froude number Fo is close to unity appears in the form of steady state waves called undular hydraulic jump. The characterization of the undular hydraulic jump is complex due to the existence of a non-hydrostatic pressure distribution that invalidates the gradually-varied flow theory, and supercritical shock waves. The objective of this work is to present a mathematical model for the undular hydraulic jump obtained from an approximate integration of the Reynolds equations for turbulent flow assuming that the Reynolds number R is high. Simple analytical solutions are presented to reveal the physics of the theory, and a numerical model is used to integrate the complete equations. The limit of application of the theory is discussed using a wave breaking condition for the inception of a surface roller. The validity of the mathematical predictions is critically assessed using physical data, thereby revealing aspects on which more research is needed

  8. Results of laboratory and in-situ measurements for the description of coupled thermo-hydro-mechanical processes in clays

    International Nuclear Information System (INIS)

    The Heater Experiment at the Mont Terri Underground Laboratory aims at producing a validated model of thermo-hydro-mechanically (THM) coupled processes. The experiment consists of an engineered barrier system where in a vertical borehole, a heater is embedded in bentonite blocks, surrounded by the host rock, Opalinus Clay. The experimental programme comprises permanent monitoring before, during, and after the heating phase, complemented by geotechnical, hydraulic, and seismic in-situ measurements as well as laboratory analyses of mineralogical and rock mechanics properties. After the heating, the experiment was dismantled for further investigations. Major results of the experimental findings are outlined. (authors)

  9. Phase Operator and Phase State in Thermo Field Dynamics

    Science.gov (United States)

    Fan, Hong-Yi; Jiang, Nian-Quan

    We extend the Susskind-Glogower phase operator and phase state in quantum optics to thermo field dynamics (TFD). Based on the thermo entangled state representation, we introduce thermo excitation and de-excitation operators with which the phase operator and phase state in TFD can be constructed. The phase state treated as a limiting case of a new SU(1, 1) coherent states is also exhibited.

  10. Study on Thermo-Conductive Plastic Finned Tube Radiators

    Institute of Scientific and Technical Information of China (English)

    1997-01-01

    This paper discusses thermo-conductive plastic finned tube radiators used in water saving type power stations.First,the development of thermo-conductive plastics is introduced.Second,in order to determine the rational geometric dimensions of thermo-conductive plastic finned tubes,an objective function which takes the minimum volume of the consumed material for making finned tubes as an object is introduced.On the basis of the function,the economy comparison between thermo-conductive plastic finned tubes and metal finned tubes is conducted.

  11. A FINITE ELEMENT ANALYSIS OF HYDRAULIC CYLINDER OF LINEAR HYDRAULIC MOTOR FROM HORIZONTAL HYDRAULIC PRESS – 2 MN

    OpenAIRE

    ŢĂLU D.L.MIHAI; ŢĂLU D.L. ŞTEFAN

    2010-01-01

    This paper analyse through the finite element method (FEM) the hydraulic cylinder of linear hydraulic motor from horizontal Hydraulic Press – 2 MN. The analysis of the hydraulic cylinder of linear hydraulic motor from horizontal Hydraulic Press – 2 MN was made for determination of displacements and deformations. A three-dimensional model of the hydraulic cylinder with a complex geometry was generated based on the designed data. Finite element analysis was performed using COSMOSWorks software....

  12. Benchmark of SIMULATE5 thermal hydraulics against the Frigg and NUPEC full bundle test experiments

    International Nuclear Information System (INIS)

    SIMULATE5 is Studsvik Scandpower's next generation nodal code. The core portion of the thermal hydraulic models of PWR and BWRs are treated as essentially identical, with each assembly having an active channel and a number of parallel water channels. In addition, the BWR assembly may be divided into four radial sub-assemblies. For natural circulation reactors, the BWR thermal hydraulic model is capable of modeling an entire vessel loop: core, chimney, upper plenum, standpipes, steam separators, downcomer, recirculation pumps, and lower plenum. This paper presents results of the validation of the BWR thermal hydraulic model against: (1) pressure drop data measured in the Frigg and NUPEC test facilities; (2) void fraction distribution measured in the Frigg and NUPEC loops; (3) quarter-assembly void fraction measured in the NUPEC experiments and (4) natural and forced circulation flow measurements in the Frigg loop. (author)

  13. Thermo-diffusion in inertially confined plasmas

    CERN Document Server

    Kagan, Grigory

    2013-01-01

    In a plasma of multiple ion species, thermodynamic forces such as pressure and temperature gradients can drive ion species separation via inter-species diffusion. Unlike its neutral mix counterpart, plasma thermo-diffusion is found comparable to, or even much larger than, baro-diffusion. It is shown that such a strong effect is due to the long-range nature of the Coulomb potential, as opposed to short-range interactions in neutral gases. A special composition of the tritium and 3He fuel is identified to have vanishing net diffusion during adiabatic compression, and hence provides an experimental test in which yield degradation is minimized during ICF implosions.

  14. Thermo Scientific Ozone Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The primary measurement output from the Thermo Scientific Ozone Analyzer is the concentration of the analyte (O3) reported at 1-s resolution in units of ppbv in ambient air. Note that because of internal pneumatic switching limitations the instrument only makes an independent measurement every 4 seconds. Thus, the same concentration number is repeated roughly 4 times at the uniform, monotonic 1-s time base used in the AOS systems. Accompanying instrument outputs include sample temperatures, flows, chamber pressure, lamp intensities and a multiplicity of housekeeping information. There is also a field for operator comments made at any time while data is being collected.

  15. Understanding quantum entanglement by thermo field dynamics

    OpenAIRE

    Hashizume, Yoichiro; Suzuki, Masuo

    2013-01-01

    We propose a new method to understand quantum entanglement using the thermo field dynamics (TFD) described by a double Hilbert space. The entanglement states show a quantum-mechanically complicated behavior. Our new method using TFD makes it easy to understand the entanglement states, because the states in the tilde space in TFD play a role of tracer of the initial states. For our new treatment, we define an extended density matrix on the double Hilbert space. From this study, we make a gener...

  16. Introduction to thermo-fluids systems design

    CERN Document Server

    Garcia McDonald, André

    2012-01-01

    A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone i

  17. Thermo-Physical Properties of Selected Inconel

    Directory of Open Access Journals (Sweden)

    Krajewski P.K.

    2014-10-01

    Full Text Available The paper brings results of examinations of main thermo-physical properties of selected Inconel alloys, i.e. their heat diffusivity, thermal conductivity and heat capacity, measured in wide temperature range of 20 – 900 oC. Themathematical relationships of the above properties vs. temperature were obtained for the IN 100 and IN 713C alloys. These data can be used when modelling the IN alloys solidification processes aimed at obtaining required structure and properties as well as when designing optimal work temperature parameters.

  18. New tools for generation IV assemblies modelling

    International Nuclear Information System (INIS)

    Full text of publication follows: In the framework of the development of generation IV concepts, the need of new assembly modelling tools arises. These concepts present more geometrical and spectral heterogeneities (radially and axially). Moreover thermal-hydraulics and neutronics aspects are so closely related that coupled computations are necessary. That raises the need for more precise and flexible tools presenting 3D features. The 3D-coupling of the thermal-hydraulic code FLICA4 with the Monte-Carlo neutronics code TRIPOLI4 was developed in that frame. This new tool enables for the first time to obtain realistic axial and radial power profiles with real feedback effects in an assembly where thermal-hydraulics and neutronics effects are closely related. The BWR is the existing concept presenting the closest heterogeneous characteristics to the various new proposed concepts. This assembly design is thus chosen to compare this new tool, presenting real 3D characteristics, to the existing ones. For design studies, the evaluation of the assembly behavior, currently necessitate a depletion scheme using a 3D thermal-hydraulics assembly calculation coupled with a 1D axial neutronics deterministic calculation (or an axial power profile chosen as a function of the assembly averaged burn-up). The 3D neutronics code (CRONOS2) uses neutronic data built by 2D deterministic assembly calculations without feedback. These cross section libraries enable to take feedbacks into account via parameters such as fuel temperature, moderator density and temperature (history parameters such as void and control rod are not useful in design evaluation). Recently, the libraries build-up has been replaced by on line multi-2D deterministic assembly calculations performed by a cell code (APOLLO2). That avoids interpolation between pre-determined parameters in the cross-section data used by the 1D axial neutronics calculation and enable to give a radial power map to the 3D thermal-hydraulics

  19. Two phase flow modeling to analyze the operating parameters of thermo-siphon evaporators. Contributed Paper MS-09

    International Nuclear Information System (INIS)

    In this work, the Thermal-Hydraulic design calculation for a typical Thermo-siphon Evaporator (TSE) used in radiochemical plant with water as process fluid has been presented with detailed thermal-hydraulic behavior along the vertically heated tube of the heat exchanger. To analyze the effect of various operating parameters mainly wall-heat flux, mass flow rate and degree of sub-cooling on the performance of TSE in terms of vapor generation rate, pressure drop and turbulent intensity, two phase flow boiling phenomenon along the vertically heated tube has been modeled using available computational fluid dynamics (CFD) code. During the above analysis of studying the equivalent impact of degree of sub cooling, wall heat flux and mass flow rate on the performance, it was observed that degree of sub cooling impacts the most and mass flow rate the least. (author)

  20. Thermal Analysis of a TREAT Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Papadias, Dionissios [Argonne National Lab. (ANL), Argonne, IL (United States); Wright, Arthur E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-07-09

    The objective of this study was to explore options as to reduce peak cladding temperatures despite an increase in peak fuel temperatures. A 3D thermal-hydraulic model for a single TREAT fuel assembly was benchmarked to reproduce results obtained with previous thermal models developed for a TREAT HEU fuel assembly. In exercising this model, and variants thereof depending on the scope of analysis, various options were explored to reduce the peak cladding temperatures.

  1. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria;

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... plays an important role in processing the information generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence assembly programs. We describe the basic principles of computational assembly along with the main concerns, such as repetitive sequences...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  2. Sufficient conditions for Hadamard well-posedness of a coupled thermo-chemo-poroelastic system

    Directory of Open Access Journals (Sweden)

    Tetyana Malysheva

    2016-01-01

    Full Text Available This article addresses the well-posedness of a coupled parabolic-elliptic system modeling fully coupled thermal, chemical, hydraulic, and mechanical processes in porous formations that impact drilling and borehole stability. The underlying thermo-chemo-poroelastic model is a system of time-dependent parabolic equations describing thermal, solute, and fluid diffusions coupled with Navier-type elliptic equations that attempt to capture the elastic behavior of rock around a borehole. An existence and uniqueness theory for a corresponding initial-boundary value problem is an open problem in the field. We give sufficient conditions for the well-posedness in the sense of Hadamard of a weak solution to a fully coupled parabolic-elliptic initial-boundary value problem describing homogeneous and isotropic media.

  3. Limits of downstream hydraulic geometry

    Science.gov (United States)

    Wohl, Ellen

    2004-10-01

    Adjustments to flow width, depth, and velocity in response to changes in discharge are commonly characterized by using downstream hydraulic geometry relationships. The spatial limits of these relationships within a drainage basin have not been systematically quantified. Where the erosional resistance of the channel substrate is sufficiently large, hydraulic driving forces presumably will be unable to adjust channel form. Data sets from 10 mountain rivers in the United States, Panama, Nepal, and New Zealand are used in this study to explore the limits of downstream hydraulic geometry relationships. Where the ratio of stream power to sediment size (Ω/D84) exceeds 10,000 kg/s3, downstream hydraulic geometry is well developed; where the ratio falls below 10,000 kg/s3, downstream hydraulic geometry relationships are poorly developed. These limitations on downstream hydraulic geometry have important implications for channel engineering and simulations of landscape change.

  4. Hydraulic mining method

    Science.gov (United States)

    Huffman, Lester H.; Knoke, Gerald S.

    1985-08-20

    A method of hydraulically mining an underground pitched mineral vein comprising drilling a vertical borehole through the earth's lithosphere into the vein and drilling a slant borehole along the footwall of the vein to intersect the vertical borehole. Material is removed from the mineral vein by directing a high pressure water jet thereagainst. The resulting slurry of mineral fragments and water flows along the slant borehole into the lower end of the vertical borehole from where it is pumped upwardly through the vertical borehole to the surface.

  5. Experimental thermal hydraulic facility for simulating LOCA behaviour of pressurised heavy water power reactor

    International Nuclear Information System (INIS)

    Experimental thermal hydraulic facility being set up adjacent to R and D Centre at Tarapur is a 13 MW full-elevation scaled down facility having the key components of PHT System of Pressurised Heavy Water Reactor (PHWR). The objective of the facility is to study thermal hydraulic behaviour of PHT System of PHWR by simulating various transients and accidental scenarios, to conduct safety related and operational transient studies and validation of various thermal hydraulic computer codes developed for analysis. The design of thermal hydraulic facility is based on the process parameters of a large PHWR with respect to fluid mass flux, transit time, flow velocity, pressure, temperature and enthalpy in PHT System. Experiments would be conducted in the facility to gain an improved understanding of the thermal hydraulic behaviour of large size PHWR during loss of coolant accident scenarios with forced and natural thermo-siphoning circulation modes etc. The data collected from the experiments would be used in validating computer codes developed for safety analysis. The facility is extensively instrumented to measure parameters such as temperature, pressure, flow, level, void-fraction at key locations. This paper gives the design philosophy used for scaling, design of major components of primary and secondary circuit of Experimental Thermal Hydraulic Facility and details of simulated experiments to be carried out. (author)

  6. Hydraulic Modeling: Pipe Network Analysis

    OpenAIRE

    Datwyler, Trevor T.

    2012-01-01

    Water modeling is becoming an increasingly important part of hydraulic engineering. One application of hydraulic modeling is pipe network analysis. Using programmed algorithms to repeatedly solve continuity and energy equations, computer software can greatly reduce the amount of time required to analyze a closed conduit system. Such hydraulic models can become a valuable tool for cities to maintain their water systems and plan for future growth. The Utah Division of Drinking Water regulations...

  7. Thermo Scientific Sulfur Dioxide Analyzer Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Springston, S. R. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-03-01

    The Sulfur Dioxide Analyzer measures sulfur dioxide based on absorbance of UV light at one wavelength by SO2 molecules which then decay to a lower energy state by emitting UV light at a longer wavelength. Specifically, SO2 + hυ1 →SO2 *→SO2 + hυ2 The emitted light is proportional to the concentration of SO2 in the optical cell. External communication with the analyzer is available through an Ethernet port configured through the instrument network of the AOS systems. The Model 43i-TLE is part of the i-series of Thermo Scientific instruments. The i-series instruments are designed to interface with external computers through the proprietary Thermo Scientific iPort Software. However, this software is somewhat cumbersome and inflexible. BNL has written an interface program in National Instruments LabView that both controls the Model 43i-TLE Analyzer AND queries the unit for all measurement and housekeeping data. The LabView vi (the software program written by BNL) ingests all raw data from the instrument and outputs raw data files in a uniform data format similar to other instruments in the AOS and described more fully in Section 6.0 below.

  8. Thermo-optical Properties of Nanofluids

    International Nuclear Information System (INIS)

    In this work, we report thermo-optical properties of nanofluids. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy in SDS-water solution pumping at 532 nm with a 10 ns pulsed laser-Nd-YAG system. Nanoparticles obtained by laser ablation were stabilized in the time by surfactants (Sodium Dodecyl-Sulfate or SDS) in different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM). The plasmonic resonance bands in gold nanoparticles are responsible of the light optical absorption of this wavelength. The position of the absorption maximum and width band in the UV-Visible spectra is given by the morphological characteristics of these systems. The thermo-optical constant such as thermal diffusion, thermal conductivity and dn/dT are functions of nanoparticles sizes and dielectric constant of the media. The theoretical model existents do not describe completely this relations because is not possible separate the contributions due to nanoparticles size, factor form and dielectric constant. The thermal lens signal obtained is also dependent of nanoparticles sizes. This methodology can be used in order to evaluate nanofluids and characterizing nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors and other technological applications such as cooler system

  9. Thermo-optical Properties of Nanofluids

    Science.gov (United States)

    Ortega, Maria Alejandra; Rodriguez, Luis; Castillo, Jimmy; Fernández, Alberto; Echevarria, Lorenzo

    2008-04-01

    In this work, we report thermo-optical properties of nanofluids. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy in SDS-water solution pumping at 532 nm with a 10 ns pulsed laser-Nd-YAG system. Nanoparticles obtained by laser ablation were stabilized in the time by surfactants (Sodium Dodecyl-Sulfate or SDS) in different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM). The plasmonic resonance bands in gold nanoparticles are responsible of the light optical absorption of this wavelength. The position of the absorption maximum and width band in the UV-Visible spectra is given by the morphological characteristics of these systems. The thermo-optical constant such as thermal diffusion, thermal conductivity and dn/dT are functions of nanoparticles sizes and dielectric constant of the media. The theoretical model existents do not describe completely this relations because is not possible separate the contributions due to nanoparticles size, factor form and dielectric constant. The thermal lens signal obtained is also dependent of nanoparticles sizes. This methodology can be used in order to evaluate nanofluids and characterizing nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors and other technological applications such as cooler system.

  10. Thermo-hydrodynamical modelling of a flooded deep mine reservoir - Case of the Lorraine Coal Basin

    International Nuclear Information System (INIS)

    Since 2006, cessation of dewatering in Lorraine Coal Basin (France) led to the flooding of abandoned mines, resulting in a new hydrodynamic balance in the area. Recent researches concerning geothermal exploitation of flooded reservoirs raised new questions, which we propose to answer. Our work aimed to understand the thermos-hydrodynamic behaviour of mine water in a flooding or flooded system. Firstly, we synthesized the geographical, geological and hydrogeological contexts of the Lorraine Coal Basin, and we chose a specific area for our studies. Secondly, temperature and electric conductivity log profiles were measured in old pits of the Lorraine Coal Basin, giving a better understanding of the water behaviour at a deep mine shaft scale. We were able to build a thermos-hydrodynamic model and simulate water behaviour at this scale. Flow regime stability is also studied. Thirdly, a hydrodynamic spatialized meshed model was realized to study the hydrodynamic behaviour of a mine reservoir as a whole. Observed water-table rise was correctly reproduced: moreover, the model can be used in a predictive way after the flooding. Several tools were tested, improved or developed to ease the study of flooded reservoirs, as three-dimensional up-scaling of hydraulic conductivities and a coupled spatialized meshed model with a pipe network. (author)

  11. Computational thermo-fluid analysis of a disk brake

    Science.gov (United States)

    Takizawa, Kenji; Tezduyar, Tayfun E.; Kuraishi, Takashi; Tabata, Shinichiro; Takagi, Hirokazu

    2016-06-01

    We present computational thermo-fluid analysis of a disk brake, including thermo-fluid analysis of the flow around the brake and heat conduction analysis of the disk. The computational challenges include proper representation of the small-scale thermo-fluid behavior, high-resolution representation of the thermo-fluid boundary layers near the spinning solid surfaces, and bringing the heat transfer coefficient (HTC) calculated in the thermo-fluid analysis of the flow to the heat conduction analysis of the spinning disk. The disk brake model used in the analysis closely represents the actual configuration, and this adds to the computational challenges. The components of the method we have developed for computational analysis of the class of problems with these types of challenges include the Space-Time Variational Multiscale method for coupled incompressible flow and thermal transport, ST Slip Interface method for high-resolution representation of the thermo-fluid boundary layers near spinning solid surfaces, and a set of projection methods for different parts of the disk to bring the HTC calculated in the thermo-fluid analysis. With the HTC coming from the thermo-fluid analysis of the flow around the brake, we do the heat conduction analysis of the disk, from the start of the breaking until the disk spinning stops, demonstrating how the method developed works in computational analysis of this complex and challenging problem.

  12. Thermo-cleavable polymers: Materials with enhanced photochemical stability

    DEFF Research Database (Denmark)

    Manceau, Matthieu; Petersen, Martin Helgesen; Krebs, Frederik C

    2010-01-01

    Photochemical stability of three thermo-cleavable polymers was investigated as thin films under atmospheric conditions. A significant increase in lifetime was observed once the side-chain was cleaved emphasizing the detrimental effect of solubilizing groups on the photochemical stability of...... conjugated polymers. In addition to their ease of processing, thermo-cleavable polymers thus also offer a greater intrinsic stability under illumination....

  13. A Problem in the Generalised Theory of Thermo-Elasticity

    Directory of Open Access Journals (Sweden)

    D. Rama Murthy

    1978-01-01

    Full Text Available This paper deals with the dynamic treatment of a transient thermo elastic half space that is exposed to step temperature and velocity on its entire plane boundary and is constrained against transverse displacements, using generalized theory of thermo elasticity.

  14. Fluid flow test for KMRR fuel assemblies

    International Nuclear Information System (INIS)

    Hydraulic and velocity measurment tests were carried out for the KMRR fuel assembly. Two types of the KMRR fuel assembly are consist of longitudinally finned rods. Experimental data of the pressure drops and friction factors for the KMRR fuel assemlby were produced. The measurement technique for the turbulent flow structure in subchannels using the LDV was obtained. The measurement of the experimental constant of the thermal hydraulic analysis code was investigated. The results in this study are used as the basic data for the development of an analysis code. The measurement technique acquired in this study can be applied to the KMRR thermal hydraulic commissioning test and development of the domestic KMRR fuel fabrication. (Author)

  15. Applied hydraulic transients

    CERN Document Server

    Chaudhry, M Hanif

    2014-01-01

    This book covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. Strong emphasis is given to practical applications, including several case studies, problems of applied nature, and design criteria. This will help design engineers and introduce students to real-life projects. This book also: ·         Presents modern methods of analysis suitable for computer analysis, such as the method of characteristics, explicit and implicit finite-difference methods and matrix methods ·         Includes case studies of actual projects ·         Provides extensive and complete treatment of governed hydraulic turbines ·         Presents design charts, desi...

  16. Two Types of Test Assembly Checked and Accepted for CEFR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The detail design of two types of test assembly used in the simulating transportation, and themounting and hydraulic test were completed in 2002. This two types of test assembly are manufactured inshanghai No.1 machine tool works, and checked and accepted in March 2003. The former is used in the

  17. Hydraulic lifting device

    Science.gov (United States)

    Terrell, Kyle (Inventor)

    1990-01-01

    A piston and cylinder assembly is disclosed which is constructed of polyvinyl chloride that uses local water pressure to perform small lifting tasks. The chamber is either pressurized to extend the piston or depressurized to retract the piston. The present invention is best utilized for raising and lowering toilet seats.

  18. Hydraulics. FOS: Fundamentals of Service.

    Science.gov (United States)

    John Deere Co., Moline, IL.

    This manual on hydraulics is one of a series of power mechanics texts and visual aids for training in the servicing of agricultural and industrial machinery. Focus is on oil hydraulics. Materials provide basic information and illustrations for use by vocational students and teachers as well as shop servicemen and laymen. The twelve chapters focus…

  19. Model for Polygonal Hydraulic Jumps

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas

    2012-01-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a “roller” (separation eddy...

  20. Model for polygonal hydraulic jumps

    DEFF Research Database (Denmark)

    Martens, Erik Andreas; Watanabe, Shinya; Bohr, Tomas

    2012-01-01

    We propose a phenomenological model for the polygonal hydraulic jumps discovered by Ellegaard and co-workers [Nature (London) 392, 767 (1998); Nonlinearity 12, 1 (1999); Physica B 228, 1 (1996)], based on the known flow structure for the type-II hydraulic jumps with a "roller" (separation eddy...

  1. Tractor Hydraulics. A Teaching Reference.

    Science.gov (United States)

    American Association for Vocational Instructional Materials, Athens, GA.

    The manual was developed to help provide a better understanding of how and why hydraulic principles serve the purposes of weight reduction, increase of physical effort, and more precise control to machines of all types. The four components that are necessary to have a workable hydraulic system--a reservoir, a pump, a valve, and a motor (cylinder)…

  2. Hydraulic Stability of Accropode Armour

    DEFF Research Database (Denmark)

    Jensen, T.; Burcharth, H. F.; Frigaard, Peter

    The present report describes the hydraulic model tests of Accropode armour layers carried out at the Hydraulics Laboratory at Aalborg University from November 1995 through March 1996. The objective of the model tests was to investigate the hydraulic stability of Accropode armour layers......, and to assess the influence of core permeability on the hydraulic stability of Accropodes. Two structures were examined, one with a relatively permeable core and one with a relatively impermeable core. In November/December 1995, Ph.D.-student Marten Christensen carried out the model tests on the structure...... with permeable core (crushed granite with a gradation of 5-8 mm). The outcome of this study is described in "Hydraulic Stability of Single-Layer Dolos and Accropode Armour Layers" by Christensen & Burcharth (1995). In January/February 1996, Research Assistant Thomas Jensen carried out a similar study...

  3. Thermo-plasmonics of Irradiated Metallic Nanostructures

    DEFF Research Database (Denmark)

    Ma, Haiyan

    Thermo-plasmonics is an emerging field in photonics which aims at harnessing the kinetic energy of light to generate nanoscopic sources of heat. Localized surface plasmons (LSP) supported by metallic nanostructures greatly enhance the interactions of light with the structure. By engineering...... the size, morphology and composition of metallic nanostructures, the absorption of light can be maximized, resulting in a substantial temperature elevation in a nanoscopic volume. Applications of these nanoscopic sources of heat can be found in various contexts including localized cancer therapy, drug......-plasmonic simulations as well as the ImageJ program “Mosaic”, used for single particle tracking. Chapter 4 presents the experimental details of the lipid bilayer based temperature mapping technique based on a lipid bilayer containing fluorophores with a phase dependent partitioning. This assay allowed quantification...

  4. Understanding quantum entanglement by thermo field dynamics

    Science.gov (United States)

    Hashizume, Yoichiro; Suzuki, Masuo

    2013-09-01

    We propose a new method to understand quantum entanglement using the thermo field dynamics (TFD) described by a double Hilbert space. The entanglement states show a quantum-mechanically complicated behavior. Our new method using TFD makes it easy to understand the entanglement states, because the states in the tilde space in TFD play a role of tracer of the initial states. For our new treatment, we define an extended density matrix on the double Hilbert space. From this study, we make a general formulation of this extended density matrix and examine some simple cases using this formulation. Consequently, we have found that we can distinguish intrinsic quantum entanglement from the thermal fluctuations included in the definition of the ordinary quantum entanglement at finite temperatures. Through the above examination, our method using TFD can be applied not only to equilibrium states but also to non-equilibrium states. This is shown using some simple finite systems in the present paper.

  5. High temperature hydraulic seals

    Science.gov (United States)

    Williams, K. R.

    1993-05-01

    This program investigated and evaluated high temperature hydraulic sealing technology, including seals, fluids, and actuator materials. Test limits for fluid pressure and temperature were 8000 psi and 700 F respectively. The original plan to investigate CTFE fluid at 350 F as well as other fluids at higher temperatures was reduced in scope to include only the higher temperature investigation. Seals were obtained from 11 manufacturers. Design requirements including materials, dimensions, clearances, and tolerances were established and test modules were constructed from the detail designs which were produced. Nine piston seals and one rod seal were tested at temperatures ranging from -65 to +600 F and pressures to 6000 psi. Fluid performance under these conditions was evaluated. Details of this activity and results of the effort are summarized in this report.

  6. Equipment for hydraulic testing

    International Nuclear Information System (INIS)

    Hydraulic testing in boreholes is one major task of the hydrogeological program in the Stripa Project. A new testing equipment for this purpose was constructed. It consists of a downhole part and a surface part. The downhole part consists of two packers enclosing two test-sections when inflated; one between the packers and one between the bottom packer and the bottom of the borehole. A probe for downhole electronics is also included in the downhole equipment together with electrical cable and nylon tubing. In order to perform shut-in and pulse tests with high accuracy a surface controlled downhole valve was constructed. The surface equipment consists of the data acquisition system, transducer amplifier and surface gauges. In the report detailed descriptions of each component in the whole testing equipment are given. (Auth.)

  7. Amazon flood wave hydraulics

    Science.gov (United States)

    Trigg, Mark A.; Wilson, Matthew D.; Bates, Paul D.; Horritt, Matthew S.; Alsdorf, Douglas E.; Forsberg, Bruce R.; Vega, Maria C.

    2009-07-01

    SummaryA bathymetric survey of 575 km of the central Amazon River and one of its tributaries, the Purus, are combined with gauged data to characterise the Amazon flood wave, and for hydraulic modelling of the main channel for the period June 1995-March 1997 with the LISFLOOD-FP and HEC-RAS hydraulic models. Our investigations show that the Amazon flood wave is subcritical and diffusive in character and, due to shallow bed slopes, backwater conditions control significant reach lengths and are present for low and high water states. Comparison of the different models shows that it is necessary to include at least the diffusion term in any model, and the RMSE error in predicted water elevation at all cross sections introduced by ignoring the acceleration and advection terms is of the order of 0.02-0.03 m. The use of a wide rectangular channel approximation introduces an error of 0.10-0.15 m on the predicted water levels. Reducing the bathymetry to a simple bed slope and with mean cross section only, introduces an error in the order of 0.5 m. These results show that when compared to the mean annual amplitude of the Amazon flood wave of 11-12 m, water levels are relatively insensitive to the bathymetry of the channel model. The implication for remote sensing studies of the central Amazon channel, such as those proposed with the Surface Water and Ocean Topography mission (SWOT), is that even relatively crude assumptions regarding the channel bathymetry will be valid in order to derive discharge from water surface slope of the main channel, as long as the mean channel area is approximately correct.

  8. LMFBR blanket assembly heat transfer and hydraulic test data evaluation

    International Nuclear Information System (INIS)

    The USA Test Program for characterization of breeder reactor blanket T and H performance is providing a data base for improved confidence in the design tools employed. Pressure drop tests with wire wrapped rod bundles having a 1.08 triangular pitch to diameter ratio and 4 inch (10 cm) wire wrap lead using water, sodium and air have defined a smooth, continuous, single-valued friction factor versus Reynolds number correlation. This eliminates a possible source of flow instability. The rod bundle temperature rise profiles measured in the heat transfer tests using a prototypic blanket rod bundle agrees in magnitude and shape with the predictions of the marching type sub-channel codes currently employed in blanket subchannel analysis. The low flow test data demonstrates increasing buoyancy induced flows in the lower Reynolds number flow regime. This and the remaining test data will supply a base for calibration of the mixing momentum exchange and conduction factors employed in the subchannel analysis codes; which will contribute to the confidence of the blanket design predictions and reduce the uncertainties which are commonly expressed as hot channel/spot factors

  9. LMR thermal hydraulics calculations in the US

    International Nuclear Information System (INIS)

    A wide range of thermal hydraulics computer codes have been developed by various organizations in the US. These codes cover an extensive range of purposes from within-assembly-wise pin temperature calculations to plant wide transient analysis. The codes are used for static analysis, for analysis of protected anticipated transients, and for analysis of a wide range of unprotected transients for the more recent inherently safe LMR designs. Some of these codes are plant-specific codes with properties of a specific plant built into them. Other codes are more general and can be applied to a number of plants or designs. These codes, and the purposes for which they have been used, are described

  10. 接枝量对等离子体接枝聚异丙基丙烯酰胺开关的多孔膜的温度感应透过性的影响%Effect of Graft Yield on the Thermo-Responsive Permeability Through Porous Membranes with Plasma-Grafted Poly (N-isopropylacrylamide) Gates

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The effect of graft yield on both the thermo-responsive hydraulic permeability and the thermo-responsivediffusional permeability through porous membranes with plasma-grafted poly(N-isopropylacrylamide) (PNIPAM)gates was investigated. Both thermo-responsive flat membranes and core-shell microcapsule membranes with a widerange of graft yield of PNIPAM were prepared using a plasma-graft pore-filling polymerization method. The graftedPNIPAM was formed homogeneously throughout the entire thickness of both the flat polyethylene membranes andthe microcapsule polyamide membranes. Both the hydraulic permeability and the diffusional permeability wereheavily dependent on the PNIPAM graft yield. With increasing the graft yield, the hydraulic permeability (waterflux) decreases rapidly at 25℃ because of the decrease of the pore size; however, the water flux at 40℃ increasesfirstly to a peak because of the increase of hydrophobicity of the pore surface, and then decreases and finally tends tozero because of the pore size becoming smaller and smaller. For the diffusional permeability, the temperature showsdifferent effects on the diffusional permeability coefficients of solutes across the membranes. When the graft yieldwas low, the diffusional coefficient of solute across the membrane was higher at temperature above the lower criticalsolution temperature (LCST) than that below the LCST; however, when the graft yield was high, the diffusionalcoefficient was lower at temperature above the LCST than that below the LCST. It is very important to choose ordesign a proper graft yield of PNIPAM for obtaining a desired thermo-responsive "on/of" hydraulic or diffusionalpermeability.

  11. A Mathematical Model of the Thermo-Anemometric Flowmeter

    Directory of Open Access Journals (Sweden)

    Igor Korobiichuk

    2015-09-01

    Full Text Available A thermo-anemometric flowmeter design and the principles of its work are presented in the article. A mathematical model of the temperature field in a stream of biofuel is proposed. This model allows one to determine the fuel consumption with high accuracy. Numerical modeling of the heater heat balance in the fuel flow of a thermo-anemometric flowmeter is conducted and the results are analyzed. Methods for increasing the measurement speed and accuracy of a thermo-anemometric flowmeter are proposed.

  12. Thermo-mechanical ratcheting in jointed rock masses

    KAUST Repository

    Pasten, C.

    2015-09-01

    Thermo-mechanical coupling takes place in jointed rock masses subjected to large thermal oscillations. Examples range from exposed surfaces under daily and seasonal thermal fluctuations to subsurface rock masses affected by engineered systems such as geothermal operations. Experimental, numerical and analytical results show that thermo-mechanical coupling can lead to wedging and ratcheting mechanisms that result in deformation accumulation when the rock mass is subjected to a biased static-force condition. Analytical and numerical models help in identifying the parameter domain where thermo-mechanical ratcheting can take place.

  13. Pneumatic actuator with hydraulic control

    Science.gov (United States)

    Everett, Hobart R., Jr.

    1992-11-01

    The present invention provides a pneumatically powered actuator having hydraulic control for both locking and controlling the velocity of an output rod without any sponginess. The invention includes a double-acting pneumatic actuator having a bore, a piston slidably engaged within the bore, and a control rod connected to the piston. The double-acting pneumatic actuator is mounted to a frame. A first double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and a follower rod mounted to the piston is mounted to the frame such that the follower rod is fixedly connected to the control rod. The maximum translation of the piston within the bore of the first double-acting hydraulic actuator provides a volumetric displacement V1. The present invention also includes a second double-acting hydraulic actuator having a bore, a piston slidably engaged within the bore, and an output rod mounted to the piston. The maximum translation of the piston within the bore of the second double-acting hydraulic actuator provides a volumetric displacement V2, where V2=V1. A pair of fluid ports in each of the first and second double-acting hydraulic cylinders are operably connected by fluid conduits, one of which includes a valve circuit which may be used to control the velocity of the output rod or to lock the output rod in a static position by regulating the flow of hydraulic fluid between the double-acting cylinders.

  14. HERION hydraulics in turbine control

    Energy Technology Data Exchange (ETDEWEB)

    Weise, H.

    1978-01-01

    Recent findings in the hydraulic control of turbine functions by means of HERION valves, using the example of a pumped storage plant. Description and picture of the pumped storage power plant 'Rodund II' of the Vorarlberger Illwerke. Drawing and circuit diagram of the pump turbine. Practice of the NG 10 hydraulic magnetic multiway valves with electrical quitting of switching point for pilot control of relay valves in pump or turbine operation. Picture of the VOTH switch cabinet with integrated hydraulic control valves and location of the HEROIN control inside the switch cabinet.

  15. Hydraulic involute cam actuator

    Science.gov (United States)

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  16. Hydraulic fuel hold down

    International Nuclear Information System (INIS)

    A method of holding down fuel assemblies in pressurized water reactors is described which minimizes flow restrictions, compensates for variations in primary coolant flow, and provides a steam release path through the reactor in the event of a loss of coolant accident. A pressure vessel is divided by a seal plate structure into a high-pressure and a low-pressure plenum. A piston in sliding relationship with the seal has push rods attached which hold down the fuel asemblies of the core. (LL)

  17. Thermo-Reflectance Spectra of Eros: Unambiguous Detection of Olivine

    Science.gov (United States)

    Lucey, P. G.; Hinrichs, J. L.; Urquhart-Kelly, M.; Wellnitz, D.; Bell, J. F., III; Clark, B. E.

    2001-01-01

    Olivine is readily detected on 433 Eros using the new thermo-reflectance spectral technique applied to near-IR spectra obtained at Eros by the NEAR spacecraft. Additional information is contained in the original extended abstract.

  18. TRACE Analysis for Transient Thermal-hydraulics of A Heavy Liquid Metal Cooled System

    OpenAIRE

    Shao, Yiqiong

    2011-01-01

    Heavy liquid metal (HLM - lead or lead bismuth eutectic) is considered as a candidate coolant for next-generation fast reactor and accelerate-driven systems (ADS), due to its favorable chemical, thermo-physical and neutronic properties in comparison with sodium which has been used as coolant in fast breeder reactors (FBRs). To perform design-base-accident analysis for the HLM-cooled reactors, the well-known transient thermal-hydraulic analysis codes (e.g., RELAP5 and TRACE) are being applied ...

  19. HYDRAULICS, ATHENS COUNTY, OHIO, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  20. In-line hydraulic dashpot

    Science.gov (United States)

    Moody, Paul E.

    1992-10-01

    An in-line hydraulic dashpot is disclosed that effectively decelerates the piston of a power cylinder by controllably choking off the oil which is providing pressure to the piston. The in-line hydraulic dashpot of the invention includes a valve spool member movable between an open and closed position along a fluid flow path that supplies oil to the power cylinder. An actuator rod is cooperative with the valve spool member and the piston shaft of the power cylinder to move tile valve spool member between its open and closed positions. The in-line hydraulic dashpot eliminates the clashing of mechanical parts and therewith eliminates the noise that would otherwise be generated thereby. The in-line hydraulic dashpot of the present invention makes possible the adaptation of a fixed stroke power cylinder to applications that call for a variable stroke length.

  1. HYDRAULICS, MEADE COUNTY, KENTUCKY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  2. HYDRAULICS, SHELBY COUNTY, KENTUCKY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  3. HYDRAULICS, ROCKCASTLE COUNTY, KENTUCKY, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data include spatial datasets and data tables necessary for documenting the hydrologic procedures for estimating flood discharges for a flood insurance...

  4. HYDRAULICS, HAMPDEN COUNTY, MA, USA

    Data.gov (United States)

    Federal Emergency Management Agency, Department of Homeland Security — Hydraulic data in this submittal include spatial datasets and model outputs necessary for computation of the 1-percent flooding extent. The minimum requirement for...

  5. Hydraulic calculation of pressure pipes

    OpenAIRE

    Mikhalev, M. A.

    2012-01-01

    In the present time there is only one classic method for hydraulic calculation of pressure pipes. In it fluid flow velocity and pipeline diameter are considered as given values.The paper proposes a procedure for physical modeling and hydraulic calculation of pressure pipes, based on the theory of similarity. Methods for obtaining similarity criteria from combinations of similarity numbers were discussed. Similarity numbers and criteria and criteria equations were defined.

  6. Advanced Performance Hydraulic Wind Energy

    Science.gov (United States)

    Jones, Jack A.; Bruce, Allan; Lam, Adrienne S.

    2013-01-01

    The Jet Propulsion Laboratory, California Institute of Technology, has developed a novel advanced hydraulic wind energy design, which has up to 23% performance improvement over conventional wind turbine and conventional hydraulic wind energy systems with 5 m/sec winds. It also has significant cost advantages with levelized costs equal to coal (after carbon tax rebate). The design is equally applicable to tidal energy systems and has passed preliminary laboratory proof-of-performance tests, as funded by the Department of Energy.

  7. Is California's future hydraulically sustainable?

    OpenAIRE

    Richard E. Howitt

    2011-01-01

    The term “hydraulic society” describes the ancient cities and social systems that relied on irrigated agriculture, such as Egypt's Nile Valley. For 5,000 years, the annual cycle of floods replenished the Nile region's soil and nutrients, eliminating the need for complex canal systems such as those found in the Sumerian and Mesopotamian regions. California is the first hydraulic society that is rapidly developing into a postindustrial economy; this change will require the partial re-allocation...

  8. Andra thermodynamic database for performance assessment: ThermoChimie

    International Nuclear Information System (INIS)

    Highlights: • The thermodynamic database developed by Andra, ThermoChimie is presented here. • ThermoChimie is a complete, accurate and consistent TDB for performance assessment. • ThermoChimie is extracted into compatible formats with different geochemical codes. - Abstract: Thermodynamic data are an essential input for relevance of geochemical modeling and more particularly to assess the behavior of radionuclides and other pollutants in the performance assessment of a radioactive waste repository. ThermoChimie ( (http://www.thermochimie-tdb.com/)), the thermodynamic database developed by Andra, meets the requirements of completeness, accuracy and consistency for numerous radionuclides and chemotoxic elements and various major components of a geological repository: solid phases constitutive of the host-rock, bentonites, concretes, and corresponding secondary minerals with respect to their long term evolution. ThermoChimie developments are also dedicated to evaluating specific conditions of the near field of radioactive waste, in particular regarding temperature increase and release of organic ligands or soluble salts. ThermoChimie database is extracted into compatible formats with different geochemical codes, allowing an overall consistency between different models using it in support

  9. 14 CFR 23.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 23.1435 Section 23.1435... § 23.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each hydraulic system and its elements must withstand, without yielding, the structural loads expected...

  10. 46 CFR 28.405 - Hydraulic equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.405 Section 28.405 Shipping... Operate With More Than 16 Individuals on Board § 28.405 Hydraulic equipment. (a) Each hydraulic system... than four times the system maximum operating pressure. (c) Each hydraulic system must be equipped...

  11. 46 CFR 28.880 - Hydraulic equipment.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Hydraulic equipment. 28.880 Section 28.880 Shipping... INDUSTRY VESSELS Aleutian Trade Act Vessels § 28.880 Hydraulic equipment. (a) Each hydraulic system must be... times the system's maximum operating pressure. (c) Each hydraulic system must be equipped with at...

  12. 14 CFR 29.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 29.1435 Section 29.1435... STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Equipment Miscellaneous Equipment § 29.1435 Hydraulic systems. (a) Design. Each hydraulic system must be designed as follows: (1) Each element of the hydraulic system...

  13. Aero-Thermo-Dynamic Mass Analysis

    Science.gov (United States)

    Shiba, Kota; Yoshikawa, Genki

    2016-01-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis. PMID:27412335

  14. Aero-Thermo-Dynamic Mass Analysis

    Science.gov (United States)

    Shiba, Kota; Yoshikawa, Genki

    2016-07-01

    Each gas molecule has its own molecular weight, while such a microscopic characteristic is generally inaccessible, and thus, it is measured indirectly through e.g. ionization in conventional mass analysis. Here, we present a novel approach to the direct measurement of molecular weight through a nanoarchitectonic combination of aerodynamics, thermodynamics, and mechanics, transducing microscopic events into macroscopic phenomena. It is confirmed that this approach can provide molecular weight of virtually any gas or vaporizable liquid sample in real-time without ionization. Demonstrations through analytical calculations, numerical simulations, and experiments verify the validity and versatility of the novel mass analysis realized by a simple setup with a flexible object (e.g. with a bare cantilever and even with a business card) placed in a laminar jet. Owing to its unique and simple working principle, this aero-thermo-dynamic mass analysis (AMA) can be integrated into various analytical devices, production lines, and consumer mobile platforms, opening new chapters in aerodynamics, thermodynamics, mechanics, and mass analysis.

  15. Thermo-mechanical characterization of silicone foams

    Energy Technology Data Exchange (ETDEWEB)

    Rangaswamy, Partha [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Smith, Nickolaus A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Cady, Carl M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Lewis, Matthew W. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-10-01

    Cellular solids such as elastomeric foams are used in many structural applications to absorb and dissipate energy, due to their light weight (low density) and high energy absorption capability. In this paper we will discuss foams derived from S5370, a silicone foam formulation developed by Dow Corning. In the application presented, the foam is consolidated into a cushion component of constant thickness but variable density. A mechanical material model developed by Lewis (2013), predicts material response, in part, as a function of relative density. To determine the required parameters for this model we have obtained the mechanical response in compression for ambient, cold and hot temperatures. The variable density cushion provided samples sufficient samples so that the effect of sample initial density on the mechanical response could be studied. The mechanical response data showed extreme sensitivity to relative density. We also observed at strains corresponding to 1 MPa a linear relationship between strain and initial density for all temperatures. Samples taken from parts with a history of thermal cycling demonstrated a stiffening response that was a function of temperature, with the trend of more stiffness as temperature increased above ambient. This observation is in agreement with the entropic effects on the thermo-mechanical behavior of silicone polymers. In this study, we present the experimental methods necessary for the development of a material model, the testing protocol, analysis of test data, and a discussion of load (stress) and gap (strain) as a function of sample initial densities and temperatures

  16. Thermo-economic process model for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass

    Energy Technology Data Exchange (ETDEWEB)

    Gassner, Martin; Marechal, Francois [Industrial Energy Systems Laboratory, Ecole Polytechnique Federale de Lausanne Station postale 9, CH-1015 Lausanne (Switzerland)

    2009-11-15

    A detailed thermo-economic model considering different technological alternatives for thermochemical production of Synthetic Natural Gas (SNG) from lignocellulosic biomass is presented. First, candidate technology for processes based on biomass gasification and subsequent methanation is discussed and assembled in a general superstructure. Both energetic and economic models for biomass drying with air or steam, thermal pretreatment by torrefaction or pyrolysis, indirectly and directly heated gasification, methane synthesis and carbon dioxide removal by physical absorption, pressure swing adsorption and polymeric membranes are then developed. Performance computations for the different process steps and some exemplary technology scenarios of integrated plants are carried out, and overall energy and exergy efficiencies in the range of 69-76% and 63-69%, respectively, are assessed. For these scenarios, the production cost of SNG including the investment depreciation is estimated to 76-107 EUR MWh{sup -1}{sub SNG} for a plant capacity of 20 MW{sub th,biomass}, whereas 59-97 EUR MWh{sup -1}{sub SNG} might be reached at scales of 150 MW{sub th,biomass} and above. Based on this work, a future thermo-economic optimisation will allow for determining the most promising options for the polygeneration of fuel, power and heat. (author)

  17. Novel thermo-sensitive core-shell nanoparticles for targeted paclitaxel delivery

    International Nuclear Information System (INIS)

    Novel thermo-sensitive nanoparticles self-assembled from poly(N,N-diethylacrylamide- co-acrylamide)-block-poly(γ-benzyl L-glutamate) were designed for targeted drug delivery in localized hyperthermia. The lower critical solution temperature (LCST) of nanoparticles was adjusted to a level between physiological body temperature (37 deg. C) and that used in local hyperthermia (about 43 deg. C). The temperature-dependent performances of the core-shell nanoparticles were systemically studied by nuclear magnetic resonance (NMR), circular dichroism (CD), fluorescence spectroscopy, dynamic light scattering (DLS), and atom force microscopy (AFM). The mean diameter of the nanoparticles increased slightly from 110 to 129 nm when paclitaxel (PTX), a poorly water-soluble anti-tumor drug, was encapsulated. A stability study in bovine serum albumin (BSA) solution indicated that the PTX loaded nanoparticles may have a long circulation time under physiological environments as the LCST was above physiological body temperature and the shell remained hydrophilic at 37 deg.C. The PTX release profiles showed thermo-sensitive controlled behavior. The proliferation inhibiting activity of PTX loaded nanoparticles was evaluated against Hela cells in vitro, compared with Taxol (a formulation of paclitaxel dissolved in Cremophor EL and ethanol). The cytotoxicity of PTX loaded nanoparticles increased obviously when hyperthermia was performed. The nanoparticles synthesized here could be an ideal candidate for thermal triggered anti-tumor PTX delivery system.

  18. ASFRE: a computer code for single-phase subchannel thermal hydraulic analysis of LMFBR single subassembly

    International Nuclear Information System (INIS)

    The objectives of this work is to develop a computer code ASFRE which analyzes 3D-thermo-hydraulic behaviors of coolant and fuel pins in an LMFBR subassembly under accident conditions such as the local blockage, loss of flow and transient over power accident conditions. Analytical models, calculation procedures and sample calculations for typical experiments are described. The ASFRE code consists of two parts, namely coolant calculation part and fuel pin calculation. The coolant thermal-hydraulic analysis employs basically subchannel analysis approach and the program solves transient mass, momentum and energy conservation equations. The fuel pin thermal analysis program solves transient heat conduction equations by finite difference method in cylindrical coordinate system. Fuel temperature distribution and thermal expansion are calculated taking into account of intra/inter-pin-flux-depression and fuel restructuring. And wire wrap spacer effects for coolant behavior and heat loss through the wrapper tube are also simulated. (author)

  19. Mid-sized omnidirectional robot with hydraulic drive and steering

    Science.gov (United States)

    Wood, Carl G.; Perry, Trent; Cook, Douglas; Maxfield, Russell; Davidson, Morgan E.

    2003-09-01

    Through funding from the US Army-Tank-Automotive and Armaments Command's (TACOM) Intelligent Mobility Program, Utah State University's (USU) Center for Self-Organizing and Intelligent Systems (CSOIS) has developed the T-series of omni-directional robots based on the USU omni-directional vehicle (ODV) technology. The ODV provides independent computer control of steering and drive in a single wheel assembly. By putting multiple omni-directional (OD) wheels on a chassis, a vehicle is capable of uncoupled translational and rotational motion. Previous robots in the series, the T1, T2, T3, ODIS, ODIS-T, and ODIS-S have all used OD wheels based on electric motors. The T4 weighs approximately 1400 lbs and features a 4-wheel drive wheel configuration. Each wheel assembly consists of a hydraulic drive motor and a hydraulic steering motor. A gasoline engine is used to power both the hydraulic and electrical systems. The paper presents an overview of the mechanical design of the vehicle as well as potential uses of this technology in fielded systems.

  20. Hydraulic sealing of fractured argillaceous rocks

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The French National Radioactive Waste Management Agency (Andra) has chosen Callovo-Oxfordian (COx) clay-stone, an argillaceous formation in east of France, to sit the future deep geological disposal for intermediate and high level long-lived waste. Among the main reasons of this choice are the low water permeability (less than 10-19 m2) and the high retention properties of the formation towards radionuclides (RN) which ensure a strong confinement of the radioactive waste. Tunnel excavation will cause hydro-mechanical perturbations in the surrounding host rock and will induce a fractured zone localized around the underground openings. This zone where hydro-mechanical and geochemical modifications occur, could lead to significant change in flow and transport properties. Prediction of evolution for the Excavation damaged zone (EDZ) is very important in regards to long-term safety performances of the geological disposal. Observations performed at the main level of the underground research laboratory (-490 m) located in Bure, permitted to achieve an understanding of the fracture network structure and showed different kind of fractures. Those fractures which could be very conductive for some of them become less hydraulically active function of time and after water saturation occurs. Few studies report such sealing of fractures which is expected in argillaceous rocks due to combined effects of rock compression, backfill resistance, water saturation and clay swelling during the post-closure phase. Moreover, Andra has recently proposed an experimental program on these phenomena in partnership with different laboratories (GL Transfert de Gaz). The aim of the present study is to understand and quantify the sealing behaviour of fractures in Cox clay-stone through experimental investigations under relevant thermo-hydro-mechanical conditions. Therefore, laboratory tests were carried out on artificially-fractured cylindrical

  1. Facile synthesis and characterization of novel thermo-chromism cholesteryl-containing hydrogen-bonded liquid crystals

    Institute of Scientific and Technical Information of China (English)

    Wan Li He; Tao Liu; Zhou Yang; Dong Yu Zhao; Wei Huang; Hui Cao; Guo Jie Wang; Huai Yang

    2009-01-01

    Two series of novel cholesteryl-containing H-bonded liquid crystals were prepared through facile self-assembly between cholesteryl isonicotinate (proton acceptor) exhibiting a monotropic cholesteric phase, and the 4-alkoxy-benzoic acid or 4-alkoxy cinnamic acid (proton donor). It was found that the increase of the conjugate length as well as the terminal length can contribute to enhance the interaction of molecules and thus significantly influenced the thermal behaviors of H-bonded LCs. The cholesteric reflection spectra of the induced mesogenic complexes were located in the visible region with the color tuneable thermo-sensitivity, which could be used for display application.

  2. Hydraulic testing in crystalline rock

    International Nuclear Information System (INIS)

    Swedish Geolocical Company (SGAB) conducted and carried out single-hole hydraulic testing in borehole Fi 6 in the Finnsjoen area of central Sweden. The purpose was to make a comprehensive evaluation of different methods applicable in crystalline rocks and to recommend methods for use in current and scheduled investigations in a range of low hydraulic conductivity rocks. A total of eight different methods of testing were compared using the same equipment. This equipment was thoroughly tested as regards the elasticity of the packers and change in volume of the test section. The use of a hydraulically operated down-hole valve enabled all the tests to be conducted. Twelve different 3-m long sections were tested. The hydraulic conductivity calculated ranged from about 5x10-14 m/s to 1x10-6 m/s. The methods used were water injection under constant head and then at a constant rate-of-flow, each of which was followed by a pressure fall-off period. Water loss, pressure pulse, slug and drill stem tests were also performed. Interpretation was carried out using standard transient evaluation methods for flow in porous media. The methods used showed themselves to be best suited to specific conductivity ranges. Among the less time-consuming methods, water loss, slug and drill stem tests usually gave somewhat higher hydraulic conductivity values but still comparable to those obtained using the more time-consuming tests. These latter tests, however, provided supplementary information on hydraulic and physical properties and flow conditions, together with hydraulic conductivity values representing a larger volume of rock. (orig./HP)

  3. Whole core pin-by-pin coupled neutronic-thermal-hydraulic steady state and transient calculations using COBAYA3 code

    International Nuclear Information System (INIS)

    Nowadays coupled 3-dimensional neutron kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic model. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fuel design safety margins, because it is in the local scale, where we can search the hottest pellet or the maximum heat flux. The Polytechnic University of Madrid advanced multi-scale neutron-kinetics and thermal-hydraulics methodologies being implemented in COBAYA3 include domain decomposition by alternate core dissections for the local 3-dimensional fine-mesh scale problems (pin cells/subchannels) and an analytical nodal diffusion solver for the coarse mesh scale coupled with the thermal-hydraulic using a model of one channel per assembly or per quarter of assembly. In this work, we address the domain decomposition by the alternate core dissections methodology applied to solve coupled 3-dimensional neutronic-thermal-hydraulic problems at the fine-mesh scale. The neutronic-thermal-hydraulic coupling at the cell-subchannel scale allows the treatment of the effects of the detailed thermal-hydraulic feedbacks on cross-sections, thus resulting in better estimates of the local safety margins at the pin level. (Author)

  4. Fuel assembly

    International Nuclear Information System (INIS)

    Purpose: To improve the thermal and mechanical safety of fuel rods and structural components by making the local power coefficient of jointed fuel rods greater than that of other fuel rods in a fuel assembly. Constitution: In a fuel assembly comprising a plurality of fuel rods bundled by a spacer and held at the upper and the lower positions with tie plates for insertion into a channel, the degree of enrichment of uranium 235 for uranium dioxide fuel pellets charged in jointed fuel rods is adjusted such that the local power coefficient of the jointed fuel rods is made greater than that of the other fuel rods. In the case if the upper tie plate is moved upwardly by the extension of the jointed fuel rods, other fuel rods axially free from the upper tie plate receives no tension, whereby the safety of the fuel assembly can be improved. (Moriyama, K.)

  5. Thermo-Mechanical tests for the CLIC two-beam module study

    CERN Document Server

    Xydou, A; Riddone, G; Daskalaki, E

    2014-01-01

    The luminosity goal of CLIC requires micron level precision with respect to the alignment of the components on its two-meter long modules, composing the two main linacs. The power dissipated inside the module components introduces mechanical deformations affecting their alignment and therefore the resulting machine performance. Several two-beam prototype modules must be assembled to extensively measure their thermo-mechanical behavior under different operation modes. In parallel, the real environmental conditions present in the CLIC tunnel should be studied. The air conditioning and ventilation system providing specified air temperature and flow has been installed in the dedicated laboratory. The power dissipation occurring in the modules is being reproduced by the electrical heaters inserted inside the RF structure mock-ups and the quadrupoles. The efficiency of the cooling systems is being verified and the alignment of module components is monitored. The measurement results will be compared to finite elemen...

  6. Thermo-elastic induced phase noise in the LISA Pathfinder spacecraft

    CERN Document Server

    Gibert, Ferran; Karnesis, Nikolaos; Gesa, Lluís; Martín, Víctor; Mateos, Ignacio; Lobo, Alberto; Flatscher, Reinhold; Gerardi, Domenico; Burkhardt, Johannes; Guzmán, Felipe; Heinzel, Gerhard; Danzmann, Karsten

    2014-01-01

    During the On-Station Thermal Test campaign of the LISA Pathfinder the data and diagnostics subsystem was tested in nearly space conditions for the first time after integration in the satellite. The results showed the compliance of the temperature measurement system, obtaining temperature noise around $10^{-4}\\,{\\rm K}\\, {\\rm Hz}^{-1/2}$ in the frequency band of $1-30\\;{\\rm mHz}$. In addition, controlled injection of heat signals to the suspension struts anchoring the LISA Technology Package (LTP) Core Assembly to the satellite structure allowed to experimentally estimate for the first time the phase noise contribution through thermo-elastic distortion of the LTP interferometer, the satellite's main instrument. Such contribution was found to be at $10^{-12}\\,{\\rm m}\\, {\\rm Hz}^{-1/2}$, a factor of 30 below the measured noise at the lower end of the measurement bandwidth ($1\\,{\\rm mHz}$).

  7. Hydraulic lift-off issues for application of high performance annular fuels in pressurized water reactors

    International Nuclear Information System (INIS)

    Highlights: • Pin and assembly lift-off forces are compared between solid and annular fuel. • Annular fuel experiences much stronger uplift forces. • Much stronger hold-down forces are required by annular fuel assembly. • Engineering modifications for hold-down mechanisms are required by annular fuel. - Abstract: In the PWR core, the fuel assembly is firmly seated on the lower core plate during operation. However, if the hydraulic force exerted on the fuel assembly by coolant flow is too large and the fuel assembly is lifted-off from the lower core plate, the excessive vibration will cause fuel failure. Therefore, the hydraulic lift-off issue needs to be addressed when the advanced fuel assembly is developed. It has been shown that the advanced annular fuel design with internal cooling allows power uprating up to 50% while the peak temperature of the fuel can be reduced and the MDNBR can be maintained. However, if the coolant condition in the core is kept unchanged, increasing the core power by 50% requires the core flow rate also increase proportionally, which will give rise to the hydraulic lift-off, an important issue to be addressed. In this paper, taking the 17 × 17 solid fuel design as the reference, the hydraulic lift-off issue is investigated for proposed 12 × 12 and 13 × 13 annular fuel designs. Both the steady-state and start-up operating conditions are evaluated. It is found that the hydraulic lift-off indeed is an issue for annular fuel design which requires careful analysis. By comparison, the lift-off forces and hold-down forces required for the externally and internally cooled annular fuels (13 × 13 and 12 × 12 arrays) are several times larger than that of the referenced solid fuel (17 × 17 array). Therefore, the hold-down mechanism for annular fuel needs to be carefully designed

  8. Hydraulic gradients in rock aquifers

    International Nuclear Information System (INIS)

    This report deals with fractured rock as a host for deposits of hazardous waste. In this context the rock, with its fractures containing moving groundwater, is called the geological barrier. The desired properties of the geological barrier are low permeability to water, low hydraulic gradients and ability to retain matter dissolved in the water. The hydraulic gradient together with the permeability and the porosity determines the migration velocity. Mathematical modelling of the migration involves calculation of the water flow and the hydrodynamic dispersion of the contaminant. The porous medium approach can be used to calculate mean flow velocities and hydrodynamic dispersion of a large number of fractures are connected, which means that a large volume have to be considered. It is assumed that the porous medium approach can be applied, and a number of idealized examples are shown. It is assumed that the groundwater table is replenished by percolation at a constant rate. One-dimensional analytical calculations show that zero hydraulic gradients may exist at relatively large distance from the coast. Two-dimensional numerical calculations show that it may be possible to find areas with low hydraulic gradients and flow velocities within blocks surrounded by areas with high hydraulic conductivity. (au)

  9. Selective perceptions of hydraulic fracturing.

    Science.gov (United States)

    Sarge, Melanie A; VanDyke, Matthew S; King, Andy J; White, Shawna R

    2015-01-01

    Hydraulic fracturing (HF) is a focal topic in discussions about domestic energy production, yet the American public is largely unfamiliar and undecided about the practice. This study sheds light on how individuals may come to understand hydraulic fracturing as this unconventional production technology becomes more prominent in the United States. For the study, a thorough search of HF photographs was performed, and a systematic evaluation of 40 images using an online experimental design involving N = 250 participants was conducted. Key indicators of hydraulic fracturing support and beliefs were identified. Participants showed diversity in their support for the practice, with 47 percent expressing low support, 22 percent high support, and 31 percent undecided. Support for HF was positively associated with beliefs that hydraulic fracturing is primarily an economic issue and negatively associated with beliefs that it is an environmental issue. Level of support was also investigated as a perceptual filter that facilitates biased issue perceptions and affective evaluations of economic benefit and environmental cost frames presented in visual content of hydraulic fracturing. Results suggested an interactive relationship between visual framing and level of support, pointing to a substantial barrier to common understanding about the issue that strategic communicators should consider. PMID:26399946

  10. Hydraulic engine valve actuation system including independent feedback control

    Science.gov (United States)

    Marriott, Craig D

    2013-06-04

    A hydraulic valve actuation assembly may include a housing, a piston, a supply control valve, a closing control valve, and an opening control valve. The housing may define a first fluid chamber, a second fluid chamber, and a third fluid chamber. The piston may be axially secured to an engine valve and located within the first, second and third fluid chambers. The supply control valve may control a hydraulic fluid supply to the piston. The closing control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the second fluid chamber to the supply control valve. The opening control valve may be located between the supply control valve and the second fluid chamber and may control fluid flow from the supply control valve to the second fluid chamber.

  11. Thermal hydraulic calculations of the IRT-200 reactor with LEU IRT-4M, Sofia

    International Nuclear Information System (INIS)

    Neutronic calculations of the IRT-200 research reactor with fuel assemblies (FA) of the IRT-4M type, containing low enriched uranium (19.75 %), performed by the Institute for Nuclear Research and Nuclear Energy (INRNE) jointly with the RERTR Program at Argonne National Laboratory (ANL), confirmed justness of selection of its initial core configuration. On the base of neutronic calculation results thermal hydraulic calculations were done by PLTEMP code. Three possible operational regimes have been considered and for each one of them the margin coefficient of the water onset of nucleate boiling (ONB) on the fuel element surface for the maximum power density fuel assembly has been determined. The calculations have been carried out for the core water inlet temperature of 45 deg. C The thermal hydraulic calculations demonstrated satisfaction of thermal hydraulic safety margins requirements even at 1 MW power level. (author)

  12. Development of Computer Program for Whole Core Thermal-Hydraulic Analysis of Fast Reactors

    International Nuclear Information System (INIS)

    A whole core thermal-hydraulic analysis program ACT was developed for the purpose of evaluating detailed in-core thermal-hydraulic phenomena of sodium cooled fast reactors under various reactor operation conditions. ACT consists of four kinds of calculation modules, i.e., fuel-assembly, inter-wrapper gap (core barrel), upper plenum and heat transport system modules. The latter two modules give proper boundary conditions for the reactor core thermal-hydraulic analysis. These four modules are coupled with each other by using MPI and calculate simultaneously on a cluster workstation. ACT was applied to analyzing a sodium experiment performed at JNC, which simulated the natural circulation decay heat removal under PRACS and DRACS operation condition. In the experiment, not only inter-wrapper flows but also reverses flows in the fuel assemblies were observed. ACT succeeded in simulating such complicated phenomena. (authors)

  13. Complex Fluids and Hydraulic Fracturing.

    Science.gov (United States)

    Barbati, Alexander C; Desroches, Jean; Robisson, Agathe; McKinley, Gareth H

    2016-06-01

    Nearly 70 years old, hydraulic fracturing is a core technique for stimulating hydrocarbon production in a majority of oil and gas reservoirs. Complex fluids are implemented in nearly every step of the fracturing process, most significantly to generate and sustain fractures and transport and distribute proppant particles during and following fluid injection. An extremely wide range of complex fluids are used: naturally occurring polysaccharide and synthetic polymer solutions, aqueous physical and chemical gels, organic gels, micellar surfactant solutions, emulsions, and foams. These fluids are loaded over a wide range of concentrations with particles of varying sizes and aspect ratios and are subjected to extreme mechanical and environmental conditions. We describe the settings of hydraulic fracturing (framed by geology), fracturing mechanics and physics, and the critical role that non-Newtonian fluid dynamics and complex fluids play in the hydraulic fracturing process. PMID:27070765

  14. Hydraulic properties of ladle slags

    Directory of Open Access Journals (Sweden)

    J. Vlček

    2016-07-01

    Full Text Available The article presents results of examining of hydraulic properties of ladle slags formed during production of steel. The studied ladle slags were subjected to different cooling mode from the molten state. Based on the ability of the slag react with the water was assessed their hydraulic activity. The hydraulic properties are caused by the presence of minerals dicalcium silicate, tricalcium aluminate, mayenite, brownmillerite and dicalcium ferite. The emergence of required hydrating phases in the ladle slags is conditioned by a sufficient CaO content and their cooling rate. The contact the slag with water during processing and their ageing has a negative effect. The experiment has shown that the phase transformation of the mineral dicalcium silicate which occurs during cooling of the ladle slags cause their volume instability.

  15. Hydraulic resistance of biofilms

    KAUST Repository

    Dreszer, C.

    2013-02-01

    Biofilms may interfere with membrane performance in at least three ways: (i) increase of the transmembrane pressure drop, (ii) increase of feed channel (feed-concentrate) pressure drop, and (iii) increase of transmembrane passage. Given the relevance of biofouling, it is surprising how few data exist about the hydraulic resistance of biofilms that may affect the transmembrane pressure drop and membrane passage. In this study, biofilms were generated in a lab scale cross flow microfiltration system at two fluxes (20 and 100Lm-2h-1) and constant cross flow (0.1ms-1). As a nutrient source, acetate was added (1.0mgL-1 acetate C) besides a control without nutrient supply. A microfiltration (MF) membrane was chosen because the MF membrane resistance is very low compared to the expected biofilm resistance and, thus, biofilm resistance can be determined accurately. Transmembrane pressure drop was monitored. As biofilm parameters, thickness, total cell number, TOC, and extracellular polymeric substances (EPS) were determined, it was demonstrated that no internal membrane fouling occurred and that the fouling layer actually consisted of a grown biofilm and was not a filter cake of accumulated bacterial cells. At 20Lm-2h-1 flux with a nutrient dosage of 1mgL-1 acetate C, the resistance after 4 days reached a value of 6×1012m-1. At 100Lm-2h-1 flux under the same conditions, the resistance was 5×1013m-1. No correlation of biofilm resistance to biofilm thickness was found; Biofilms with similar thickness could have different resistance depending on the applied flux. The cell number in biofilms was between 4×107 and 5×108 cellscm-2. At this number, bacterial cells make up less than a half percent of the overall biofilm volume and therefore did not hamper the water flow through the biofilm significantly. A flux of 100Lm-2h-1 with nutrient supply caused higher cell numbers, more biomass, and higher biofilm resistance than a flux of 20Lm-2h-1. However, the biofilm thickness

  16. Soil hydraulic properties of topsoil along two elevation transects affected by soil erosion

    Czech Academy of Sciences Publication Activity Database

    Nikodem, A.; Kodešová, R.; Jakšík, O.; Jirků, V.; Fér, M.; Klement, A.; Žigová, Anna

    2013-01-01

    Roč. 15, - (2013). ISSN 1607-7962. [EGU General Assembly /10./. 07.04.2013-12.04.2013, Vienna] Institutional support: RVO:67985831 Keywords : topsoil * hydraulic properties * erosion processes Subject RIV: DF - Soil Science http://meetingorganizer.copernicus.org/EGU2013/EGU2013-7924.pdf

  17. Advantages of Oscillatory Hydraulic Tomography

    Science.gov (United States)

    Kitanidis, P. K.; Bakhos, T.; Cardiff, M. A.; Barrash, W.

    2012-12-01

    Characterizing the subsurface is significant for most hydrogeologic studies, such as those involving site remediation and groundwater resource explo¬ration. A variety of hydraulic and geophysical methods have been developed to estimate hydraulic conductivity and specific storage. Hydraulic methods based on the analysis of conventional pumping tests allow the estimation of conductivity and storage without need for approximate petrophysical relations, which is an advantage over most geophysical methods that first estimate other properties and then infer values of hydraulic parameters. However, hydraulic methods have the disadvantage that the head-change signal decays with distance from the pumping well and thus becomes difficult to separate from noise except in close proximity to the source. Oscillatory hydraulic tomography (OHT) is an emerging technology to im¬age the subsurface. This method utilizes the idea of imposing sinusoidally varying pressure or discharge signals at several points, collecting head observations at several other points, and then processing these data in a tomographic fashion to estimate conductivity and storage coefficients. After an overview of the methodology, including a description of the most important potential advantages and challenges associated with this approach, two key promising features of the approach will be discussed. First, the signal at an observation point is orthogonal to and thus can be separated from nuisance inputs like head fluctuation from production wells, evapotranspiration, irrigation, and changes in the level of adjacent streams. Second, although the signal amplitude may be weak, one can extract the phase and amplitude of the os¬cillatory signal by collecting measurements over a longer time, thus compensating for the effect of large distance through longer sampling period.

  18. Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition

    International Nuclear Information System (INIS)

    Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor

  19. Controls of Hydraulic Wind Turbine

    Directory of Open Access Journals (Sweden)

    Zhang Yin

    2016-01-01

    Full Text Available In this paper a hydraulic wind turbine generator system was proposed based on analysis the current wind turbines technologies. The construction and principles were introduced. The mathematical model was verified using MATLAB and AMsim. A displacement closed loop of swash plate of motor and a speed closed loop of generator were setup, a PID control is introduced to maintain a constant speed and fixed frequency at wind turbine generator. Simulation and experiment demonstrated that the system can connect grid to generate electric and enhance reliability. The control system demonstrates a high performance speed regulation and effectiveness. The results are great significant to design a new type hydraulic wind turbine system.

  20. Numerical simulation of hydraulic transients

    International Nuclear Information System (INIS)

    A numerical method suitable for the analysis of hydraulic transients in one-dimensional pipelines as well as some applications of the method are presented in this thesis. In the present method one-dimensional flow equations are solved in a characteristic form using a finite difference technique. A non-equilibrium two-phase flow model is used, which makes it possible to analyze the effect of vaporization. The motion of the pipe-wall, which is important in some types of hydraulic transients, can be taken into account approximately. The main application of the method has been the piping of nuclear reactors

  1. The MK III actively cooled duct liner for the JET neutral beam line: Thermo-mechanical performance and lifetime estimation

    International Nuclear Information System (INIS)

    This paper describes the analyses performed to investigate and validate the proposed design for the updated JET MKIII duct side liner, which will replace the present inertial cooled one in the frame of the EP2 neutral beam enhancement project. The thermal-hydraulic and thermo-mechanical performance of a duct liner's generic module, under various loading scenarios has been assessed. Due to difference in scale between a generic liner module length and the relevant load bearing section thickness (∼1.2 m against 4 mm) two different scale FE models have been assessed, the first ones to evaluate the overall reactions and displacements and the others to calculate concentrated stresses in the most loaded sections. Conformity to ITER design criteria has been verified for both monotonic and cyclic loads. The effects of fatigue have been considered and an operational life of 8.5 years is predicted for the liner

  2. Thermo-refrigerating machineries. Classification; Machines thermofrigorifiques. Classification

    Energy Technology Data Exchange (ETDEWEB)

    Duminil, M. [Association Francaise du Froid (AFF), 75 - Paris (France)

    2002-07-01

    Thermo-refrigerating systems transfer the heat extracted from a cold source towards a heat source and consume thermal energy from a third source. This article proposes a classification of thermo-refrigerating systems in three categories: the systems with a changing state working fluid (physical change of the refrigerant: dissociable systems, integrated systems (ejection systems, sorption systems); chemical change of the refrigerant), the systems where the working fluid stays in the same physical state (dissociable systems (Brayton, Siemens, Stirling and Ericsson cycles), integrated systems (Vuilleumier cycle systems, thermochemical systems)) and the other systems (Seebeck thermoelectric generator with Peltier effect modules). Dissociable thermo-refrigerating systems are made of the grouping of two separate thermal machines: a thermal engine and a mechanical-refrigerating machine. (J.S.)

  3. Theory and modeling of cylindrical thermo-acoustic transduction

    Science.gov (United States)

    Tong, Lihong; Lim, C. W.; Zhao, Xiushao; Geng, Daxing

    2016-06-01

    Models both for solid and thinfilm-solid cylindrical thermo-acoustic transductions are proposed and the corresponding acoustic pressure solutions are obtained. The acoustic pressure for an individual carbon nanotube (CNT) as a function of input power is investigated analytically and it is verified by comparing with the published experimental data. Further numerical analysis on the acoustic pressure response and characteristics for varying input frequency and distance are also examined both for solid and thinfilm-solid cylindrical thermo-acoustic transductions. Through detailed theoretical and numerical studies on the acoustic pressure solution for thinfilm-solid cylindrical transduction, it is concluded that a solid with smaller thermal conductivity favors to improve the acoustic performance. In general, the proposed models are applicable to a variety of cylindrical thermo-acoustic devices performing in different gaseous media.

  4. Athermalization of resonant optical devices via thermo-mechanical feedback

    Energy Technology Data Exchange (ETDEWEB)

    Rakich, Peter; Nielson, Gregory N.; Lentine, Anthony L.

    2016-01-19

    A passively athermal photonic system including a photonic circuit having a substrate and an optical cavity defined on the substrate, and passive temperature-responsive provisions for inducing strain in the optical cavity of the photonic circuit to compensate for a thermo-optic effect resulting from a temperature change in the optical cavity of the photonic circuit. Also disclosed is a method of passively compensating for a temperature dependent thermo-optic effect resulting on an optical cavity of a photonic circuit including the step of passively inducing strain in the optical cavity as a function of a temperature change of the optical cavity thereby producing an elasto-optic effect in the optical cavity to compensate for the thermo-optic effect resulting on an optical cavity due to the temperature change.

  5. Coupled thermo-hydro-mechanical experiment at Kamaishi mine. Technical note 15-99-02. Experimental results

    International Nuclear Information System (INIS)

    It is an important part of the near field performance assessment of nuclear waste disposal to evaluate coupled thermo-hydro-mechanical (T-H-M) phenomena, e.g., thermal effects on groundwater flow through rock matrix and water seepage into the buffer material, the generation of swelling pressure of the buffer material, and thermal stresses potentially affecting porosity and fracture apertures of the rock. An in-situ T-H-M experiment named Engineered Barrier Experiment' has been conducted at the Kamaishi Mine, of which host rock is granodiorite, in order to establish conceptual models of the coupled T-H-M processes and to build confidence in mathematical and computer codes. In 1995, fourteen boreholes were excavated in order to install the various sensors. After the hydraulic tests, mechanical tests were carried out to obtain the rock properties. After that, a test pit, 1.7 m in diameter and 5.0 m in depth, was excavated. During the excavation, the change of pore pressure, displacement and temperature of rock mass were measured. In 1996, the buffer material and heater were set up in the test pit, and then coupled thermo-hydro-mechanical test was started. The duration of heating phase was 250 days and that of cooling phase was 180 days. The heater surface was controlled to be 100degC during heating phase. Measurement was carried out by a number of sensors installed in both buffer and rock mass during the test. The field experiment leads to a better understanding of the behavior of the coupled thermo-hydro-mechanical phenomena in the near field. (author)

  6. A Hydraulic Blowdown Servo System For Launch Vehicle

    Science.gov (United States)

    Chen, Anping; Deng, Tao

    2016-07-01

    This paper introduced a hydraulic blowdown servo system developed for a solid launch vehicle of the family of Chinese Long March Vehicles. It's the thrust vector control (TVC) system for the first stage. This system is a cold gas blowdown hydraulic servo system and consist of gas vessel, hydraulic reservoir, servo actuator, digital control unit (DCU), electric explosion valve, and pressure regulator etc. A brief description of the main assemblies and characteristics follows. a) Gas vessel is a resin/carbon fiber composite over wrapped pressure vessel with a titanium liner, The volume of the vessel is about 30 liters. b) Hydraulic reservoir is a titanium alloy piston type reservoir with a magnetostrictive sensor as the fluid level indicator. The volume of the reservoir is about 30 liters. c) Servo actuator is a equal area linear piston actuator with a 2-stage low null leakage servo valve and a linear variable differential transducer (LVDT) feedback the piston position, Its stall force is about 120kN. d) Digital control unit (DCU) is a compact digital controller based on digital signal processor (DSP), and deployed dual redundant 1553B digital busses to communicate with the on board computer. e) Electric explosion valve is a normally closed valve to confine the high pressure helium gas. f) Pressure regulator is a spring-loaded poppet pressure valve, and regulates the gas pressure from about 60MPa to about 24MPa. g) The whole system is mounted in the aft skirt of the vehicle. h) This system delivers approximately 40kW hydraulic power, by contrast, the total mass is less than 190kg. the power mass ratio is about 0.21. Have finished the development and the system test. Bench and motor static firing tests verified that all of the performances have met the design requirements. This servo system is complaint to use of the solid launch vehicle.

  7. Factors affecting the thermo-hydro-mechanical response of clay in the safety assessment of nuclear waste repositories

    International Nuclear Information System (INIS)

    Decay heat due to waste disposal in a saturated clay medium causes the development of pore water overpressures. In this study, the effects of thermal pore pressure increase such as effective stress reduction, hydraulic gradient increase and possible yielding have been taken into account. Numerical computations assess the disturbance on the in situ stress field due to excavation of an isolated borehole under different assumptions on the drilling conditions. Thermo-mechanical response of clay over a zone about 1 metre wide around the borehole depends significantly on the excavation technique. This zone is characterized by development of plastic strains; under some drilling conditions yielding occurs with dilative strains, which are associated to fracturing of the clay. Outside this zone, thermo-mechanical response has been found as dependent mostly on the perturbation of the thermal field. Significant pore pressure increase and effective stress decrease develop over a zone 10 metre wide. This study has been developed for a specific type of clay and it aims to point out that analogous studies have to be undertaken for sites to be considered for waste emplacement

  8. Fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly is composed of a fuel bundle surrounded by a channel box. The fuel bundle comprises a large number of fuel rods and a water rod secured to upper and lower tie plate by way of a plurality of fuel spacers. Grooves (libretti) are formed in the direction along the flowing direction of coolants to at least one of the surface of the fuel rods, the inner surface of the channel box, the surface of the water rod and spacer constituting components. In this case, the lateral width of the libretto in the flowing direction is determined as the minimum thickness of the bottom layer of a layered flow determined by a coolant flow rate. With such a constitution, abrasion resistance relative to coolants is reduced to reduce the pressure loss of fuel assemblies. (I.N.)

  9. Thermoeconomic Diagnosis Theory Based on Thermo-Characterization

    Directory of Open Access Journals (Sweden)

    Victor Hugo Rangel-Hernandez

    2010-11-01

    Full Text Available In this paper, the axioms and procedures to define a thermoeconomic diagnosis theory, based on thermo-characterization, are presented herein. This theory can be applied for advanced energy systems. The thermo-characterization set for each component in a system a reference operating conditions in a three dimensional map (w, s, FR, and pre-evaluate all the effects when environmental variation, internal or control malfunction occurs (dw/dmalf, dw/dmalf. It should allow real-time monitoring in actual operating process, by determining matrix of malfunctions and its global thermoeconomic assessment. Results are validated with respect to an analytical simulator obtaining high accuracy.

  10. Thermo-Fluid Dynamics of Two-Phase Flow

    CERN Document Server

    Ishii, Mamrou

    2011-01-01

    "Thermo-fluid Dynamics of Two-Phase Flow, Second Edition" is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of part

  11. Physics of thermo-nuclear fusion and the ITER project

    International Nuclear Information System (INIS)

    This document gathers the slides of the 6 contributions to the workshop 'the physics of thermo-nuclear fusion and the ITER project': 1) the feasibility of magnetic confinement and the issue of heat recovery, 2) heating and current generation in tokamaks, 3) the physics of wall-plasma interaction, 4) recent results at JET, 5) inertial confinement and fast ignition, and 6) the technology of fusion machines based on magnetic confinement. This document presents the principles of thermo-nuclear fusion machines and gives a lot of technical information about JET, Tore-Supra and ITER

  12. Tree Hydraulics: How Sap Rises

    Science.gov (United States)

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown--a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by…

  13. Hydraulic Fracture Containment in Sand

    NARCIS (Netherlands)

    Dong, Y.

    2010-01-01

    The mechanism of hydraulic fracturing in soft, high permeability material is considered fundamentally different from that in hard, low permeability rock, where a tensile fracture is created and conventional linear elastic fracture mechanics (LEFM) applies. The fracturing and associated modeling work

  14. Hydraulic jumps in a channel

    DEFF Research Database (Denmark)

    Bonn, D.; Andersen, Anders Peter; Bohr, Tomas

    2009-01-01

    We present a study of hydraulic jumps with flow predominantly in one direction, created either by confining the flow to a narrow channel with parallel walls or by providing an inflow in the form of a narrow sheet. In the channel flow, we find a linear height profile upstream of the jump as expected...

  15. Hydraulic Properties of Unsaturated Soils

    Science.gov (United States)

    Many agrophysical applications require knowledge of the hydraulic properties of unsaturated soils. These properties reflect the ability of a soil to retain or transmit water and its dissolved constituents. The objective of this work was to develop an entry for the Encyclopedia of Agrophysics that w...

  16. CRITICALITY CURVES FOR PLUTONIUM HYDRAULIC FLUID MIXTURES

    Energy Technology Data Exchange (ETDEWEB)

    WITTEKIND WD

    2007-10-03

    This Calculation Note performs and documents MCNP criticality calculations for plutonium (100% {sup 239}Pu) hydraulic fluid mixtures. Spherical geometry was used for these generalized criticality safety calculations and three geometries of neutron reflection are: {sm_bullet}bare, {sm_bullet}1 inch of hydraulic fluid, or {sm_bullet}12 inches of hydraulic fluid. This document shows the critical volume and critical mass for various concentrations of plutonium in hydraulic fluid. Between 1 and 2 gallons of hydraulic fluid were discovered in the bottom of HA-23S. This HA-23S hydraulic fluid was reported by engineering to be Fyrquel 220. The hydraulic fluid in GLovebox HA-23S is Fyrquel 220 which contains phosphorus. Critical spherical geometry in air is calculated with 0 in., 1 in., or 12 inches hydraulic fluid reflection.

  17. HYDRAULIC CHARACTERISTICS OF ACTIVATED SLUDGE SECONDARY CLARIFIERS

    Science.gov (United States)

    This study documented the hydraulic characteristics of typical activated sludge clarifiers. Modifications to the clarifier structures were made in an attempt to improve clarifier hydraulic characteristics and performance. Innovative fluorometric dye tracer studies were used to ob...

  18. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  19. Whole Core Pin-by-Pin Coupled Neutronic-Thermal-hydraulic Steady state and Transient Calculations using COBAYA3 code

    OpenAIRE

    Jiménez Escalante, Javier; Herrero Carrascosa, José Javier; Cuervo Gómez, Diana; Aragonés Beltrán, José María

    2010-01-01

    Nowadays, coupled 3D neutron-kinetics and thermal-hydraulic core calculations are performed by applying a radial average channel approach using a meshing of one quarter of assembly in the best case. This approach does not take into account the subchannels effects due to the averaging of the physical fields and the loose of heterogeneity in the thermal-hydraulic modelization. Therefore the models do not have enough resolution to predict those subchannels effects which are important for the fue...

  20. Comparative Analysis of CTF and Trace Thermal-Hydraulic Codes Using OECD/NRC PSBT Benchmark Void Distribution Database

    OpenAIRE

    Avramova, M.; A. Velazquez-Lozada; Rubin, A.

    2013-01-01

    The international OECD/NRC PSBT benchmark has been established to provide a test bed for assessing the capabilities of thermal-hydraulic codes and to encourage advancement in the analysis of fluid flow in rod bundles. The benchmark was based on one of the most valuable databases identified for the thermal-hydraulics modeling developed by NUPEC, Japan. The database includes void fraction and departure from nucleate boiling measurements in a representative PWR fuel assembly. On behalf of the be...

  1. Hydraulic characterization of " Furcraea andina

    Science.gov (United States)

    Rivera-Velasquez, M. F.; Fallico, C.; Molinari, A.; Santillan, P.; Salazar, M.

    2012-04-01

    The present level of pollution, increasingly involving groundwaters, constitutes a serious risk for environment and human health. Therefore the remediation of saturated and unsaturated soils, removing pollutant materials through innovative and economic bio-remediation techniques is more frequently required. Recent studies on natural fiber development have shown the effectiveness of these fibers for removal of some heavy metals, due to the lignin content in the natural fibers which plays an important role in the adsorption of metal cations (Lee et al., 2004; Troisi et al., 2008; C. Fallico, 2010). In the context of remediation techniques for unsaturated and/or saturated zone, an experimental approach for the hydraulic characterization of the "Furcraea andina" (i.e., Cabuya Blanca) fiber was carried out. This fiber is native to Andean regions and grows easily in wild or cultivated form in the valleys and hillsides of Colombia, Ecuador, and Peru. Fibers of "Furcraea andina" were characterized by experimental tests to determine their hydraulic conductivity or permeability and porosity in order to use this medium for bioremediation of contaminated aquifer exploiting the physical, chemical and microbial capacity of natural fiber in heavy metal adsorption. To evaluate empirically the hydraulic conductivity, laboratory tests were carried out at constant head specifically on the fibers manually extracted. For these tests we used a flow cell (used as permeameter), containing the "Furcraea andina" fibers to be characterized, suitably connected by a tygon pipe to a Marriott's bottle, which had a plastic tube that allow the adjustment of the hydraulic head for different tests to a constant value. By this experiment it was also possible to identify relationships that enable the estimation of permeability as a function of density, i.e. of the compaction degree of the fibers. Our study was carried out for three values of hydraulic head (H), namely 10, 18, and 25 cm and for each

  2. Energy Efficient, Electric-Hydraulic Power Pack

    OpenAIRE

    Nyman, Johan; Rankka, Amy

    2015-01-01

    Along with increased oil prices and rising environmental issues, a demand for alternatives to combustion engine driven hydraulic applications has risen. In the field of mobile hydraulics, the hydraulic applications have traditionally been driven by the combustion engine of the vehicle on which they are mounted. By instead using a battery driven power pack the hydraulic application is able to operate without the engine running, saving fuel costs and reducing sound levels. In this thesis, the c...

  3. Hydraulic fracturing with distinct element method

    OpenAIRE

    Pruiksma, J.P.; Bezuijen, A.

    2002-01-01

    In this report, hydraulic fracturing is investigated using the distinct element code PFC2D from Itasca. Special routines were written to be able to model hydraulic fracturing. These include adding fluid flow to PFC2D and updating the fluid flow domains when fractures appear. A brief description of this implementation and the modelling of the hydraulic fracturing is given. After the set-up of the hydraulic fracturing simulations has been discussed, with all the main input parameters, several m...

  4. Hydraulic conductivity of rock fractures

    International Nuclear Information System (INIS)

    Yucca Mountain, Nevada contains numerous geological units that are highly fractured. A clear understanding of the hydraulic conductivity of fractures has been identified as an important scientific problem that must be addressed during the site characterization process. The problem of the flow of a single-phase fluid through a rough-walled rock fracture is discussed within the context of rigorous fluid mechanics. The derivation of the cubic law is given as the solution to the Navier-Stokes equations for flow between smooth, parallel plates, the only fracture geometry that is amenable to exact treatment. The various geometric and kinetic conditions that are necessary in order for the Navier-Stokes equations to be replaced by the more tractable lubrication or Hele-Shaw equations are studied and quantified. Various analytical and numerical results are reviewed pertaining to the problem of relating the effective hydraulic aperture to the statistics of the aperture distribution. These studies all lead to the conclusion that the effective hydraulic aperture is always less than the mean aperture, by a factor that depends on the ratio of the mean value of the aperture to its standard deviation. The tortuosity effect caused by regions where the rock walls are in contact with each other is studied using the Hele-Shaw equations, leading to a simple correction factor that depends on the area fraction occupied by the contact regions. Finally, the predicted hydraulic apertures are compared to measured values for eight data sets from the literature for which aperture and conductivity data were available on the same fracture. It is found that reasonably accurate predictions of hydraulic conductivity can be made based solely on the first two moments of the aperture distribution function, and the proportion of contact area. 68 refs

  5. 14 CFR 25.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 25.1435 Section 25.1435... STANDARDS: TRANSPORT CATEGORY AIRPLANES Equipment Miscellaneous Equipment § 25.1435 Hydraulic systems. (a) Element design. Each element of the hydraulic system must be designed to: (1) Withstand the proof...

  6. 14 CFR 27.1435 - Hydraulic systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Hydraulic systems. 27.1435 Section 27.1435... STANDARDS: NORMAL CATEGORY ROTORCRAFT Equipment Safety Equipment § 27.1435 Hydraulic systems. (a) Design. Each hydraulic system and its elements must withstand, without yielding, any structural loads...

  7. Application of a new thermo-mechanical model for the study of the nuclear waste disposal in clay rocks

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. One of the cornerstones of the nuclear waste disposal researches concerns the evolution of the damaged zone which can offer a preferential path for migration of radionuclide through modifications of its mechanical and hydraulic properties. Even if the thermo-mechanical behaviour of clays is well documented in the literature, the development of the damaged zone induced by an excavation with temperature is not well known. To investigate this problem, a new thermo-mechanical constitutive law has been implemented in the non-linear finite element code LAGAMINE developed at ULg (Universite de Liege) and has been used to model the PRACLAY experiment (Preliminary demonstration test for clay disposal of vitrified high level radioactive waste) at Mol URL (Underground Research Laboratory). Though several models are being to reproduce the different phenomena met when a thermal loading is applied to a clay specimen, the applications of such thermo-mechanical models to simulate large scale in-situ experiment are rare. Based on the work of Sultan a new thermo-mechanical constitutive law has been implemented in combination with a Cap model in the code LAGAMINE. The Cap model is a combination of a frictional criterion, a Cam-Clay model and a traction criterion. The influence of the temperature is considered through the thermo-mechanical law developed by Cui et al. (2000). This law permits to reproduce common features of the thermo-mechanical behaviour of clay, such as the decrease of the pre-consolidation pressure with temperature, the volume change, the thermal hardening, the transition between thermal dilation and thermal contraction for over-consolidated clays. These aspects are modelled with two curves in the (p',T) plane. The first one is related to the generation of the thermal volumetric plastic strains (TY curve (Thermal Yield)). The second one reproduces the decrease of the pre-consolidation pressure with the temperature

  8. Thermo-hydro-mechanical mode of canister retrieval test

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. The Canister Retrieval Tests (CRT) is a full scale in situ experiment performed by SKB at Aespoe Laboratory. The experiment involves placing a canister equipped with electrical heaters inside of a deposition hole bored in Aespoe diorite. The deposition hole is 8.55 metres deep and has a diameter of 1.76 metres. The space between canister and the hole is filled with a MX-80 bentonite buffer. The bentonite buffer was installed in form of blocks and rings of bentonite. At the top of the canister bentonite bricks occupy the volume between the canister top surface and the bottom surface of the plug. Due to the bentonite ring size there are two gaps; once between canister and buffer which was left empty and another one between buffer and rock that was filled with bentonite pellets. The top of the hole was sealed with a retaining plug composed of concrete and a steel plate. The plug was secured against heave caused by the swelling clay with nine cables anchored in the rock. An artificial pressurised saturation system was used because the supply of water from the rock was judged to be insufficient for saturating the buffer in a feasible time. A large number of instruments were installed to monitor the test as follows: - Canister - temperature and strain. - Rock mass - temperature and stress. - Retaining system - force and displacement. - Buffer - temperature, relative humidity, pore pressure and total pressure. After dismantling the tests the final dry density and water content of bentonite and pellets were measured. The comprehensive record of the Thermo-Hydro-Mechanical (THM) processes in the buffer give the possibility to investigate theoretical formulations and models, since the results of THM analyses can be checked against experimental data. As part of the European project THERESA, a 2-D axisymmetric model simulation of CRT bas been carried out. Some of the main objectives of this simulation are the study of the

  9. Impurity effect on thermo-emf of phonon entrainment in metals

    International Nuclear Information System (INIS)

    Impact of electrons inelastic scattering on impurities on thermo-emf entrainment in metals is studied. It is shown that by low temperatures such processes make the basic contribution in thermo-emf suppression by impurities introduction. Along with the impurities concentration the addition to the entrainment thermo-emf, caused by inelastic scattering processes contains the great multiplier QD/T

  10. Thermo-hydrodynamic and inductive modelling of a glass melt elaborated in cold inductive crucible

    International Nuclear Information System (INIS)

    Within the context of a search for a new vitrification process for nuclear wastes with a replacement of the presently used metallic pot by an inductive cold crucible, this research thesis deals with the numerical modelling of this technology. After having recalled the interest of nuclear waste vitrification, this report presents the new process based on the use of a cold crucible, describing principles and objectives of this method, and the characteristic physical phenomena associated with the flow and the thermodynamics of the glassy melt in such a crucible. It also recalls and comments the existing works on modelling. The main objective of this research is then to demonstrate the feasibility of 3D thermo-hydraulic and inductive simulations. He describes and analyses the glass physical properties (electrical properties, viscosity, thermal properties), the electromagnetic, hydrodynamic and thermal phenomena. He presents in detail the bubbling mixing modelling, reports 3D induction and fluid mechanical coupling calculations, and specific thermal investigations (radiating transfers, thermal limit conditions)

  11. Characterization of Aquifer Hydraulic Parameters: from Theis to Hydraulic Tomography

    OpenAIRE

    D'Oria, Marco

    2010-01-01

    Groundwater is in many parts of the world an important source of fresh water for several purpose such as domestic and industrial use and irrigation. Pollution and bad management of groundwater are only two of the problems that affect the aquifers around the world. Detailed information about the spatial distribution of hydraulic properties in subsurface are of crucial importance for a proper management of groundwater and for the prediction of the solutes transport in aquifer and therefore for ...

  12. Sensitivity analysis of hydraulic modeling for flood area hydraulic resistance

    OpenAIRE

    Moderc, Marjan

    2013-01-01

    In order to ensure flood safety of waterside areas, European Union has ratified the European flood directive in 2007. In it, production of flood risk maps is forseen as an important part of a flood risk reducing system, since this represents a very valuable document in the process of sustainable spatial planning. In the process of flood risk map production, irreplaceable role is played by one- and twodimensional hydraulic models. Collection and procession of reliable input data fo...

  13. A Physical Explanation for Tilde System in Thermo Field Dynamics

    OpenAIRE

    Mi, Dong; Song, He-Shan; An, Ying

    2001-01-01

    For a two-body quantum system, any pure state can be represented by a biorthogonal expression by means of Schmidt decomposition. Using this in the composite system which include a thermodynamic system and its surroundings, it is found that the tilde system in thermo field dynamics is just the surroundings of the real system.

  14. Measurement of the thermo-optical effect of integrated waveguides

    Science.gov (United States)

    Kremmel, Johannes; Lamprecht, Tobias; Michler, Markus

    2016-05-01

    Thermo-optical switches are widely used in integrated optics and various types of integrated optical structures have been reported in literature. These structures include, but are not limited to Mach-Zehnder-Interferometer (MZI) switches and digital optical switches. The thermo-optical effect depends on the refractive index, the polarizability and the density of a material. The polarizability effect can often be neglected and the change of refractive index is dominated by a density change due to the thermal expansion of the material. We report herein a new method to measure the thermo-optical effect of waveguides directly, using integrated MZIs fabricated in polymer waveguide technology. Common methods rely on macroscopic samples, but the properties can differ significantly for micro-structured waveguides. Using a floodlight halogen rod lamp and metal-shields, we realized a radiation heater with a trapezoidal-shaped heating pattern. While the heating occurred from the bottom side, a thermocouple was placed on top of the sample. By dynamically measuring the temperature and the corresponding output-power of the MZI, the temperature difference between constructive and destructive interference can be determined. Multiple measurements of different sample MZIs exhibit an average thermo-optical coefficient (TOC) of 1.6 ∗ 10-4 1/K .

  15. Buff Thermo°CoolTM Team On Top

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Andalusia 13-14 March:The Thermo°CoolTM sponsored Extreme Raid team celebrated their triumph over the fourth edition of the Adventure Raid Sierras Subbeticas.The team finished at 1st position after an exhausting race and a tough fighting against time and altitudes of above 1300 meters.Team members

  16. A Partial Cylindrical Thermo-Time Domain Reflectometry Sensor

    Science.gov (United States)

    Thermo-time domain reflectometry (T-TDR) sensors are multi-functional devices that can be used to measure soil thermal properties and water content. These sensors can also be used to obtain indirect estimates of bulk density, air-filled porosity and percent saturation. However, the small size of the...

  17. Probabilistic thermo-chemical analysis of a pultruded composite rod

    DEFF Research Database (Denmark)

    Baran, Ismet; Tutum, Cem Celal; Hattel, Jesper Henri

    2012-01-01

    In the present study the deterministic thermo-chemical pultrusion simulation of a composite rod taken from the literature [7] is used as a validation case. The predicted centerline temperature and cure degree profiles of the rod match well with those in the literature [7]. Following the validation...

  18. Partial exact controllability for the linear thermo-viscoelastic model

    Directory of Open Access Journals (Sweden)

    Wei-Jiu Liu

    1998-06-01

    Full Text Available The problem of partial exact controllability for linear thermo-viscoelasticity is considered. Using classical multiplier techniques, a boundary observability inequality is established under smallness restrictions on coupling parameters and relaxation functions. Then, via the Hilbert Uniqueness method, the result of partial exact controllability is obtained with Dirichlet boundary controls acting on a part of the boundary of a domain.

  19. On the simulation of thermo-mechanical forming processes

    NARCIS (Netherlands)

    Huetink, J.

    1986-01-01

    A formulation for elastic-plastic constitutive equations is given based on principles of continuum thermo-mechanics and thermodynamics. Energy dissipation and phase changes are included in the mathematical model. It is shown that kinematic hardening can be described properly for large deformations,

  20. Thermo effect of chemical reaction in irreversible electrochemical systems

    International Nuclear Information System (INIS)

    From first law of thermodynamics the expressions of statistical calculation of 'Fundamental' and 'Thermo-chemical' thermal effects are obtained. Besides, method of calculation of thermal effect of chemical reactions in non-equilibrium electro-chemical systems is accurately discussed. (author). 7 refs

  1. Strengthening of Aluminum Alloy 2219 by Thermo-mechanical Treatment

    Science.gov (United States)

    Li, Xifeng; Lei, Kun; Song, Peng; Liu, Xinqin; Zhang, Fei; Li, Jianfei; Chen, Jun

    2015-10-01

    Strengthening of aluminum alloy 2219 by thermo-mechanical treatment has been compared with artificial aging. Three simple deformation modes including pre-stretching, compression, and rolling have been used in thermo-mechanical treatment. The tensile strength, elongation, fracture feature, and precipitated phase have been investigated. The results show that the strengthening effect of thermo-mechanical treatment is better than the one of artificial aging. Especially, the yield strength significantly increases with a small decrease of elongation. When the specimen is pre-stretched to 8.0%, the yield strength reaches 385.0 MPa and increases by 22.2% in comparison to the one obtained in aging condition. The maximum tensile strength of 472.4 MPa is achieved with 4.0% thickness reduction by compression. The fracture morphology reveals locally ductile and brittle failure mechanism, while the coarse second-phase particles distribute on the fracture surface. The intermediate phases θ″ or θ' orthogonally precipitate in the matrix after thermo-mechanical treatment. As compared to artificial aging, the cold plastic deformation increases distribution homogeneity and the volume fraction of θ'' or θ' precipitates. These result in a better strengthening effect.

  2. Near-field NanoThermoMechanical memory

    International Nuclear Information System (INIS)

    In this letter, we introduce the concept of NanoThermoMechanical Memory. Unlike electronic memory, a NanoThermoMechanical memory device uses heat instead of electricity to record, store, and recover data. Memory function is achieved through the coupling of near-field thermal radiation and thermal expansion resulting in negative differential thermal resistance and thermal latching. Here, we demonstrate theoretically via numerical modeling the concept of near-field thermal radiation enabled negative differential thermal resistance that achieves bistable states. Design and implementation of a practical silicon based NanoThermoMechanical memory device are proposed along with a study of its dynamic response under write/read cycles. With more than 50% of the world's energy losses being in the form of heat along with the ever increasing need to develop computer technologies which can operate in harsh environments (e.g., very high temperatures), NanoThermoMechanical memory and logic devices may hold the answer

  3. Heater assembly

    International Nuclear Information System (INIS)

    An electrical resistance heater, installed in the H1 borehole, is used to thermally perturb the rock mass through a controlled heating and cooling cycle. Heater power levels are controlled by a Variac power transformer and are measured by wattmeters. Temperatures are measured by thermocouples on the borehole wall and on the heater assembly. Power and temperature values are recorded by the DAS described in Chapter 12. The heater assembly consists of a 3.55-m (11.6-ft) long by 20.3-cm (8-in.) O.D., Type 304 stainless steel pipe, containing a tubular hairpin heating element. The element has a heated length of 3 m (9.84 ft). The power rating of the element is 10 kW; however, we plan to operate the unit at a maximum power of only 3 kW. The heater is positioned with its midpoint directly below the axis of the P2 borehole, as shown in the borehole configuration diagram. This heater midpoint position corresponds to a distance of approximately 8.5 m (27.9 ft) from the H1 borehole collar. A schematic of the heater assembly in the borehole is shown. The distance from the borehole collar to the closest point on the assembly (the front end) is 6.5 m (21.3 ft). A high-temperature inflatable packer, used to seal the borehole for moisture collection, is positioned 50 cm (19.7 in.) ahead of the heater front end. The heater is supported and centralized within the borehole by two skids, fabricated from 25-mm (1-in.) O.D. stainless steel pipe. Thermocouples are installed at a number of locations in the H1 borehole. Four thermocouples that are attached to the heater skin monitor temperatures on the outer surface of the can, while three thermocouples that are held in place by rock sections monitor borehole wall temperatures beneath the heater. Temperatures are also monitored at the heater terminal and on the packer hardware

  4. Assembling consumption

    DEFF Research Database (Denmark)

    Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies the i...... societies. This is an essential reading for both seasoned scholars and advanced students of markets, economies and social forms of consumption....... the investigative tools offered by assemblage theory, actor-network theory and non-representational theory. Clear theoretical explanation and methodological innovation, alongside empirical applications of these emerging frameworks will offer readers new and refreshing perspectives on consumer culture and market...

  5. Synthesis of new thermo/pH sensitive drug delivery systems based on tragacanth gum polysaccharide.

    Science.gov (United States)

    Hemmati, Khadijeh; Ghaemy, Mousa

    2016-06-01

    In this study, new pH/temperature responsive graft copolymers were synthesized based on natural Tragacanth Gum (TG) carbohydrate and their controlled drug release was investigated. Amphiphilic alkyne terminated terpolymers (mPEG-PCL-PDMAEMA-CCH)s consist of methylated poly(ethyleneglycol) (mPEG), polycaprolactone (PCL), and poly(dimethylaminoethylmethacrylate) (PDMAEMA) were synthesized by using ring opening polymerization (ROP) and atom transfer radical polymerization (ATRP), and then were grafted onto azide-functionalized TG molecules by click chemistry. Different techniques such as FT-IR, (1)H NMR, gel permeation chromatography (GPC), thermo-gravimetrical analysis (TGA) and scanning electron microscopy (SEM) were used to verify the successful synthesis of graft copolymers (TG-g-PDMAEMA-PCL-mPEG)s. The graft copolymers self-assembled to single micelles in aqueous solution and upon pH changes further assembled into micellar aggregates. These micelles were used to prepare quercetin loaded nanocarriers by probe sonication method. Size and morphology of the nanocarriers were studied by dynamic light scattering (DLS) and SEM. The in vitro release behavior of quercetin from these micelles showed pH-dependence. The results showed that release profile of quercetin best followed the first order model. PMID:26955747

  6. Hydraulic design development of Xiluodu Francis turbine

    Science.gov (United States)

    Wang, Y. L.; Li, G. Y.; Shi, Q. H.; Wang, Z. N.

    2012-11-01

    Hydraulic optimization design with CFD (Computational Fluid Dynamics) method, hydraulic optimization measures and model test results in the hydraulic development of Xiluodu hydropower station by DFEM (Dongfang Electric Machinery) of DEC (Dongfang Electric Corporation) of China were analyzed in this paper. The hydraulic development conditions of turbine, selection of design parameter, comparison of geometric parameters and optimization measure of turbine flow components were expatiated. And the measures of improving turbine hydraulic performance and the results of model turbine acceptance experiment were discussed in details.

  7. Experimental study of thermo-hydro-mechanical behaviour of Callovo-Oxfordian Clay-stone

    International Nuclear Information System (INIS)

    During the different phases of the exothermic radioactive waste deep disposal (excavation, operation) and after permanent closure, the host rock is submitted to various coupled mechanical, hydraulic and thermal phenomena. Hence, a thorough investigation of the thermo-hydro-mechanical behaviour of the rock is necessary to complete existing data and to better understand and model the short and long term behaviour of the Callovo-Oxfordian (COx) clay formation in Bure (Meuse/Haute-Marne - M/HM), considered by ANDRA as a potential host rock in France.In this work, the compression - swelling behaviour of the COx Clay-stone was first investigated by carrying out a series of high-pressure oedometric tests. The results, interpreted in terms of coupling between damage and swelling, showed that the magnitude of swelling was linked to the density of the fissures created during compression. In a second step, the hydro-mechanical and thermo-hydro-mechanical behaviour of the saturated Clay-stone under a mean stress close to the in situ one were investigated by using two devices with short drainage path (10 mm), namely a isotropic cell and a newly designed hollow cylinder triaxial cell with local displacement measurements. These devices helped to solve two majors problems related to testing very low permeability materials: i) a satisfactory previous sample saturation (indicated by good Skempton values) and ii) satisfactory drainage conditions. Some typical constitutive parameters (Skempton and Biot's coefficients, drained and undrained compressibility coefficients) have been determined at ambient temperature through isotropic compression tests that also confirmed the transverse isotropy of the Clay-stone. The consistency of the obtained parameters has been checked in a saturated poro-elastic framework. Two aspects of the thermo-hydro-mechanical behaviour of the COx Clay-stone have then been investigated through different heating tests and through drained and undrained isotropic

  8. Coupled neutronics and thermal hydraulics analysis for PWR with MCNP5 and ATHLET

    Energy Technology Data Exchange (ETDEWEB)

    Bernnat, Wolfgang; Buck, Michael [Stuttgart Univ. (DE). Inst. fuer Kernenergetik und Energiesysteme (IKE); Pasichnyk, Ihor; Zwermann, Winfried [Gesellschaft fuer Anlagen- und Reaktorsicherheit mbH (GRS), Garching (Germany)

    2011-07-01

    The analysis of pin wise power distribution in LWR lattices under realistic thermal hydraulics conditions can be performed with coupled neutronics and thermal hydraulics codes. Due to today's availability of powerful parallel computer resources for the neutronics part Monte Carlo codes can be applied with the advantage that no homogenization and energy group approximations has to be used. Realistic operational conditions require that for all pins the material and temperature distributions must be taken into account. Using Monte Carlo codes like MCNP5 a very large number of input zones with different material composition or temperature must be specified. The corresponding thermal hydraulics data - moderator temperatures, densities and fuel temperatures - must be calculated by means of an appropriate thermal hydraulics code. This paper describes the coupling of MCNP5 with the system code ATHLET for the analysis of the detailed power distribution in a PWR. The PWR reactor model was simplified according to the stationary part of the Purdue benchmark. This means that the burnup of all assemblies is radially and axially constant and the temperature in an assembly varies only axially. The nuclide compositions of the different assemblies (UOX and MOX) for specified burnups were taken from the benchmark specification. (orig.)

  9. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    Mardi 5 avril à 11 h 00 BE Auditorium Meyrin (6-2-024) Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 mai 2015. Présentation et approbation du rapport d’activités 2015. Présentation et approbation du rapport financier 2015. Présentation et approbation du rapport des vérificateurs aux comptes pour 2015. Programme de travail 2016. Présentation et approbation du projet de budget 2016 Approbation du taux de cotisation pour 2017. Modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commissio...

  10. General Assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : 1- Adoption de l’ordre du jour. 2- Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. 3- Présentation et approbation du rapport d’activités 2014. 4- Présentation et approbation du rapport financier 2014. 5- Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. 6- Programme 2015. 7- Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. 8- Pas de modifications aux Statuts de l'Association du personnel proposée. 9- Élections des membres de la Commission é...

  11. General assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. Présentation et approbation du rapport d’activités 2014. Présentation et approbation du rapport financier 2014. Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. Programme 2015. Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. Pas de modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commission électorale. &am...

  12. Fuel assembly

    International Nuclear Information System (INIS)

    The cross section of a fuel assembly is divided to a first region containing corner portions at which channel fasteners are situated and a second region not containing corner portions. The average enrichment degree of plutonium in the first region is decreased than that of the second region, and the number of fuel rods containing burnable poisons is increased at the first region than that of the second region. In the first region of the fuel assembly, the effect of moderating neutrons is enhanced since the cross section of a moderator flow channel at the outer side of the channel box is large. Therefore, local power peaking is increased in the first region while it is decreased in the second region that opposes to a narrow gap. The average enrichment degree of plutonium in the first region is decreased and that in the second region is increased by so much, to flatten the power distribution. Then, the reduction of the reactivity worth of gadolinia, as burnable poisons, can be suppressed. (N.H.)

  13. Hatch assembly

    International Nuclear Information System (INIS)

    This patent describes a nuclear reactor installation including means defining a fuel handling area and means defining a containment area separated from the fuel handling area and including a refuelling cavity; the improvement comprising: (a) a fuel transfer tube connecting the refuelling cavity with the fuel handling area; the fuel transfer tube having a first end in the fuel handling area and a second end in the refueling cavity; (b) valve means for opening and closing the first end; and (c) a hatch assembly mounted on the second end; the hatch assembly including (1) a hatch ring affixed to the fuel transfer tube at the second end the hatch ring has an integral annular seat surrounded by the hatch ring and defines a hatch opening in the second end of the fuel transfer tube; (2) a hatch cover adapts to be positioned on the annular seat for covering the hatch opening; (3) latching units are supported on the hatch ring about the hatch opening, each latching unit

  14. Hydraulic fracture during epithelial stretching

    Science.gov (United States)

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-03-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate during stretch and compression manoeuvres. After pressure equilibration, cracks heal readily through actomyosin-dependent mechanisms. The observed phenomenology is captured by the theory of poroelasticity, which predicts the size and healing dynamics of epithelial cracks as a function of the stiffness, geometry and composition of the hydrogel substrate. Our findings demonstrate that epithelial integrity is determined in a tension-independent manner by the coupling between tissue stretching and matrix hydraulics.

  15. Thermal/hydraulic computer program

    International Nuclear Information System (INIS)

    This technical paper describes a user-friendly computer program designed to analyze fluid-piping systems. Both the thermal and the hydraulic aspects of the problem are addressed simultaneously in order to provide coupled solutions. The program was developed specifically for aerospace applications such as the waste-heat acquisition and transport loops on the Space Station; however, the code is general and could be applied readily to any fluid loop. The thermal portion of the program is an existing analyzer, Mini-MITAS. This PC version of the generalized thermal analyzer MITAS can handle up to 1000 nodes and uses the traditional RC network approach for solving the thermal portion of the problem. Since this type of thermal analyzer is well known in the thermal community (BETA, SINDA, CINDA, and MITAS), the emphasis in this paper is on the hydraulic portion of the program

  16. In-Pile Section(IPS) Inner Assembly Manufacturing Report

    International Nuclear Information System (INIS)

    The objective of this report is to present the manufacturing, assembling and testing process of IPS Inner Assembly used in Fuel Test Loop(FTL) pre-operation test. The majority of the manufactured components are test fuels, inner assembly structures and subsidiary tools that is needed during the assembly process. In addition, Mock-up test for the welding and brazing is included at this stage. Lower structure, such as test fuels, fuel carrier legs are assembled and following structures, such as fuel carrier stem in the middle structure, top flange in the top structure are assembled together each other. To Verify the Reactor Coolant Pressure Boundary(RCPB) function in IPS Inner Assembly helium leak test and hydraulic test is performed with its acceptance criteria. According to the ASME III code Authorized Nuclear Inspector(ANI) is required during the hydraulic test. As-built measurement and insulation resistance test are performed to the structures and instrumentations after the test process. All requirements are satisfied and the IPS Inner Assembly was loaded in HANARO IR-1 hole in September 25, 2009

  17. Thermo-hydro-mechanical behavior of argillite

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. Argillite is a very low permeability geo-material widely encountered: that is the reason why it is an excellent candidate for the storage of long-term nuclear waste depositories. This study focuses on argillites from Meuse-Haute-Marne (East of France) which forms a geological layer located approximately 400 m and 500 m depth. We know that this material is made up of a mixture of shale, quartz and calcite phases. The multi-scale definition of this material suggests the derivation of micro-mechanics reasonings in order to better account for the mechanisms occurring at the local (nano and micro-) scale and controlling the macroscopic mechanical behavior. In this work, up-scaling techniques are used in the context of thermo-hydro-mechanical couplings. The first step consists in clarifying the morphology of the microstructure at the relevant scales (particles arrangement, pore size distribution) and identifying the mechanisms that take place at those scales. These local informations provide the input data of micro-mechanics based models. Schematic picture of the microstructure where the argillite material behaves as a dual-porosity, with liquid in both micro-pores and interlayer space in between clay solid platelets, seems a reasonable starting point for this micro-mechanical modelling of clay. This allows us to link the physical phenomena (swelling clays) and the mechanical properties (elastic moduli, Poisson's ratio). At the pressure applied by the fluid on the solid platelets appears as the sum of the uniform pressure in the micro-pores and of a swelling overpressure depending on the distance between platelets and on the ion concentration in the micro-pores. The latter is proved to be responsible for a local elastic modulus of physical origin. This additional elastic component may strongly be influenced by both relative humidity and temperature. A first contribution of this study is to analysing this local elastic

  18. Structural design of neptunium-bearing assembly for transmutation research

    International Nuclear Information System (INIS)

    To study the irradiation performance of the long-life nuclide and to lay a foundation for the 'separation-transmutation' advanced fuel cycle technology, an experimental neptunium-bearing assembly is designed on the basis of the standard fuel assembly of CEFR. In this paper, design principles and structure of the experimental neptunium-bearing assembly are explained in detail. The design analysis and validation are briefly introduced. The design of the experimental assembly can meet the demand of irradiation test. Up to now, the out-of-pile hydraulic test is under way and the manufacture of the assembly is nearly completed. It is to be irradiated in the first row of stainless steel reflector assemblies for about 240 effective full power days. (authors)

  19. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    International Nuclear Information System (INIS)

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms, such as neutron flux distribution, coolant conditions and assembly mechanical stresses, of traditional (single-pin) nuclear fuel performance simulation. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. With this novel capability, AMPFuel was used to model an entire 1717 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics). A full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 160 billion degrees of freedom for 10 loading steps. The single radiation transport calculation required about 50% of the time required to solve the thermo-mechanics with a single loading step, which demonstrates that it is feasible to incorporate, in a single code, a high-fidelity radiation transport capability with a high-fidelity nuclear fuel thermo-mechanics capability and anticipate acceptable computational requirements. The

  20. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin T [ORNL; Hamilton, Steven P [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Pugmire, Dave [ORNL; Dilts, Gary [Los Alamos National Laboratory (LANL); Banfield, James E [ORNL

    2012-02-01

    The Advanced Multi-Physics (AMP) Nuclear Fuel Performance code (AMPFuel) is focused on predicting the temperature and strain within a nuclear fuel assembly to evaluate the performance and safety of existing and advanced nuclear fuel bundles within existing and advanced nuclear reactors. AMPFuel was extended to include an integrated nuclear fuel assembly capability for (one-way) coupled radiation transport and nuclear fuel assembly thermo-mechanics. This capability is the initial step toward incorporating an improved predictive nuclear fuel assembly modeling capability to accurately account for source-terms and boundary conditions of traditional (single-pin) nuclear fuel performance simulation, such as the neutron flux distribution, coolant conditions, and assembly mechanical stresses. A novel scheme is introduced for transferring the power distribution from the Scale/Denovo (Denovo) radiation transport code (structured, Cartesian mesh with smeared materials within each cell) to AMPFuel (unstructured, hexagonal mesh with a single material within each cell), allowing the use of a relatively coarse spatial mesh (10 million elements) for the radiation transport and a fine spatial mesh (3.3 billion elements) for thermo-mechanics with very little loss of accuracy. In addition, a new nuclear fuel-specific preconditioner was developed to account for the high aspect ratio of each fuel pin (12 feet axially, but 1 4 inches in diameter) with many individual fuel regions (pellets). With this novel capability, AMPFuel was used to model an entire 17 17 pressurized water reactor fuel assembly with many of the features resolved in three dimensions (for thermo-mechanics and/or neutronics), including the fuel, gap, and cladding of each of the 264 fuel pins; the 25 guide tubes; the top and bottom structural regions; and the upper and lower (neutron) reflector regions. The final, full assembly calculation was executed on Jaguar using 40,000 cores in under 10 hours to model over 162

  1. Hydraulic fracture during epithelial stretching

    OpenAIRE

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo Balaguer, Marino; Trepat Guixer, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells' cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here, we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate ...

  2. Hydraulic fracture during epithelial stretching

    OpenAIRE

    Casares, Laura; Vincent, Romaric; Zalvidea, Dobryna; Campillo, Noelia; Navajas, Daniel; Arroyo, Marino; Trepat, Xavier

    2015-01-01

    The origin of fracture in epithelial cell sheets subject to stretch is commonly attributed to excess tension in the cells’ cytoskeleton, in the plasma membrane, or in cell-cell contacts. Here we demonstrate that for a variety of synthetic and physiological hydrogel substrates the formation of epithelial cracks is caused by tissue stretching independently of epithelial tension. We show that the origin of the cracks is hydraulic; they result from a transient pressure build-up in the substrate d...

  3. Hydraulic rams, a consumer guide

    OpenAIRE

    P. de Jong

    1988-01-01

    This report is the result of a project, called "comparative tests on commercial and newly designed waterrams", carried out by the Delft University of Technology and the Foundation of Dutch Volunteers in Rwanda. The aim of this project was twofold: - to test new, and cheap (i.e. locally constructable and maintainable) types of hydraulic rams, - to compare several commercial types, in order to make a "consumers guide" for developing countries. At the Laboratory of Fluid Mechanics of the Delft U...

  4. RAP-3A Computer code for thermal and hydraulic calculations in steady state conditions for fuel element clusters

    International Nuclear Information System (INIS)

    The RAP-3A computer code is designed for calculating the main steady state thermo-hydraulic parameters of multirod fuel clusters with liquid metal cooling. The programme provides a double accuracy computation of temperatures and axial enthalpy distributions of pressure losses and axial heat flux distributions in fuel clusters before boiling conditions occur. Physical and mathematical models as well as a sample problem are presented. The code is written in FORTRAN-4 language and is running on a IBM-370/135 computer

  5. Thermo-mechanical tests on W7-X current lead flanges

    Energy Technology Data Exchange (ETDEWEB)

    Dhard, Chandra Prakash, E-mail: dhard@ipp.mpg.de; Rummel, Thomas; Zacharias, Daniel; Bykov, Victor; Moennich, Thomas; Buscher, Klaus-Peter

    2013-10-15

    Highlights: • There are significant mechanical loads on the cryostat and radial flanges for W7-X current leads. • These are due to evacuation of W7-X cryostat, cool-down of cold mass, electro-magnetic forces and self weight of leads. • The actual mechanical loads were reduced to simplify the experimental set-up. • The tests were carried out on mock-up flanges test assembly at ambient temperature and at 77 K. • The thermo-mechanical tests on W7-X current lead flanges validate the design and joints of these flanges to the leads. -- Abstract: Fourteen pieces of high temperature superconducting current leads (CL) arranged in seven pairs, will be installed on the outer vessel of Wendelstein 7-X (W7-X) stellarator. In order to support the CL, it is provided with two glass fiber reinforce plastic (GFRP) flanges, namely, the lower cryostat flange (CF) remaining at room temperature and upper radial flange (RF) at about 5 K. Both the flanges i.e. CF and RF experience high mechanical loads with respect to the CL, due to the evacuation of W7-X cryostat, cool-down of cold mass including the CL, electro-magnetic forces due to current and plasma operations and self weight of CL. In order to check the integrity of these flanges for such mechanical loads, thermo-mechanical tests were carried out on these flanges at room temperatures and at liquid nitrogen (LN2) temperatures. The details of test set-up, results and modeling are described in the paper.

  6. Thermo-mechanical tests on W7-X current lead flanges

    International Nuclear Information System (INIS)

    Highlights: • There are significant mechanical loads on the cryostat and radial flanges for W7-X current leads. • These are due to evacuation of W7-X cryostat, cool-down of cold mass, electro-magnetic forces and self weight of leads. • The actual mechanical loads were reduced to simplify the experimental set-up. • The tests were carried out on mock-up flanges test assembly at ambient temperature and at 77 K. • The thermo-mechanical tests on W7-X current lead flanges validate the design and joints of these flanges to the leads. -- Abstract: Fourteen pieces of high temperature superconducting current leads (CL) arranged in seven pairs, will be installed on the outer vessel of Wendelstein 7-X (W7-X) stellarator. In order to support the CL, it is provided with two glass fiber reinforce plastic (GFRP) flanges, namely, the lower cryostat flange (CF) remaining at room temperature and upper radial flange (RF) at about 5 K. Both the flanges i.e. CF and RF experience high mechanical loads with respect to the CL, due to the evacuation of W7-X cryostat, cool-down of cold mass including the CL, electro-magnetic forces due to current and plasma operations and self weight of CL. In order to check the integrity of these flanges for such mechanical loads, thermo-mechanical tests were carried out on these flanges at room temperatures and at liquid nitrogen (LN2) temperatures. The details of test set-up, results and modeling are described in the paper

  7. Thermo-economic optimization of an endoreversible four-heat-reservoir absorption-refrigerator

    International Nuclear Information System (INIS)

    Based on an endoreversible four-heat-reservoir absorption-refrigeration-cycle model, the optimal thermo-economic performance of an absorption-refrigerator is analyzed and optimized assuming a linear (Newtonian) heat-transfer law applies. The optimal relation between the thermo-economic criterion and the coefficient of performance (COP), the maximum thermo-economic criterion, and the COP and specific cooling load for the maximum thermo-economic criterion of the cycle are derived using finite-time thermodynamics. Moreover, the effects of the cycle parameters on the thermo-economic performance of the cycle are studied by numerical examples

  8. Computing in Hydraulic Engineering Education

    Science.gov (United States)

    Duan, J. G.

    2011-12-01

    Civil engineers, pioneers of our civilization, are rarely perceived as leaders and innovators in modern society because of retardations in technology innovation. This crisis has resulted in the decline of the prestige of civil engineering profession, reduction of federal funding on deteriorating infrastructures, and problems with attracting the most talented high-school students. Infusion of cutting-edge computer technology and stimulating creativity and innovation therefore are the critical challenge to civil engineering education. To better prepare our graduates to innovate, this paper discussed the adaption of problem-based collaborative learning technique and integration of civil engineering computing into a traditional civil engineering curriculum. Three interconnected courses: Open Channel Flow, Computational Hydraulics, and Sedimentation Engineering, were developed with emphasis on computational simulations. In Open Channel flow, the focuses are principles of free surface flow and the application of computational models. This prepares students to the 2nd course, Computational Hydraulics, that introduce the fundamental principles of computational hydraulics, including finite difference and finite element methods. This course complements the Open Channel Flow class to provide students with in-depth understandings of computational methods. The 3rd course, Sedimentation Engineering, covers the fundamentals of sediment transport and river engineering, so students can apply the knowledge and programming skills gained from previous courses to develop computational models for simulating sediment transport. These courses effectively equipped students with important skills and knowledge to complete thesis and dissertation research.

  9. Thermal-hydraulic characteristics and performance of 3D wavy channel based printed circuit heat exchanger

    International Nuclear Information System (INIS)

    CFD study is done here to propose an efficient PCHE (Printed Circuit Heat Exchanger) model; used as a recuperator in International Thermonuclear Experimental Reactor (ITER). 3D steady state conjugate heat-transfer numerical simulations are done; considering the variation of thermo-physical properties as a function of temperature. Helium is used as a working fluid and alloy 617 as solid substrate. The study is done for various angle of bend (θ = 0°(straight), 5°, 10° and 15°) and Reynolds number (Re = 350, 700, 1400 and 2100). Various types of flow patterns, within one wavy-section, are presented to analyze thermal-hydraulic characteristics. Thermal hydraulic performance parameters are presented for the various wavy-sections as well as within a section; and for the complete PCHE model. Heat transfer enhancement as compared to pressure penalty is higher for the wavy channel; and increases with increasing Re and θ. Wavy as compared to plane channel based PCHE is demonstrated here to give better thermal-hydraulic performance. A detailed characteristics as well as performance-parameters for thermal hydraulics in a 3D wavy channel based PCHE model − not found in the literature − is presented here. - Highlights: • Studied effect of Reynolds number and angle of bend. • Analyzed thermal-hydraulic characteristics, by various types of flow pat-terns. • Demonstrated an increase in local heat flux due to change in the flow-direction. • Demonstrated better performance of wavy as compared to plane channel based PCHE. • Proposed correlation for friction factor and Nusselt number

  10. Hydraulic Redistribution: A Modeling Perspective

    Science.gov (United States)

    Daly, E.; Verma, P.; Loheide, S. P., III

    2014-12-01

    Roots play a key role in the soil water balance. They extract and transport water for transpiration, which usually represents the most important soil water loss in vegetated areas, and can redistribute soil water, thereby increasing transpiration rates and enhancing root nutrient uptake. We present here a two-dimensional model capable of describing two key aspects of root water uptake: root water compensation and hydraulic redistribution. Root water compensation is the ability of root systems to respond to the reduction of water uptake from areas of the soil with low soil water potential by increasing the water uptake from the roots in soil parts with higher water potential. Hydraulic redistribution is a passive transfer of water through the root system from areas of the soil with greater water potential to areas with lower water potential. Both mechanisms are driven by gradients of water potential in the soil and the roots. The inclusion of root water compensation and hydraulic redistribution in models can be achieved by describing root water uptake as a function of the difference in water potential between soil and root xylem. We use a model comprising the Richards equation for the water flow in variably saturated soils and the Darcy's equation for the water flow in the xylem. The two equations are coupled via a sink term, which is assumed to be proportional to the difference between soil and xylem water potentials. The model is applied in two case studies to describe vertical and horizontal hydraulic redistribution and the interaction between vegetation with different root depths. In the case of horizontal redistribution, the model is used to reproduce the fluxes of water across the root system of a tree subjected to uneven irrigation. This example can be extended to situations when only part of the root system has access to water, such as vegetation near creeks, trees at the edge of forests, and street trees in urban areas. The second case is inspired by recent

  11. Fluid flow test for KMRR fuel assemblies

    International Nuclear Information System (INIS)

    The objective of this test program is to obtain the experimental data of pressure drop and subchannel flow distribution for the KMRR (Korea Multipurpose Research Reactor) fuel assembly, and to investigate mechanical integrity of the fuel assembly and flow tube in the test flow condition. The experimental data produced through this study are applicable to the KMRR fuel design and thermal-hydraulic analysis of the reactor. Pressure drop correlations for each types of fuels were developed which can be applicable over Reynolds number of 6x9x102∼8.0x104. Local velocity in the subchannels of the fuel assemblies was measured with laser doppler velocimeter system, and the velocitily distribution was also calculated with a computer program developed through this study. The experimental data are used as input for the core thermal margin analysis and safety analysis in steady/accident conditions of the KMRR. (Author)

  12. Thermal hydraulics and mechanics research on fusion blanket system

    International Nuclear Information System (INIS)

    In-vessel components such as Blanket and Divertor in a fusion reactor have a function of exhausting high heat and particle loads in order to maintain the structural soundness of the reactor. In the International Thermonuclear Experimental Reactor called ITER, build by ITER Organization under the framework of collaboration of seven parties including Japan, there are two kinds of blanket systems will be install. One is a shield blanket, which consists of a first wall (FW) and a block module shielding against neutron flux to a vacuum chamber and a superconducting magnet system. The other blanket system is called as a Test Blanket Module (TBM). TBM is a kind of prototype blanket for a fusion power plant and has functions of breeding of tritium (T) and extraction of energy from fusion plasma. TBM consists of FW and T-breeding / neutron (n)-multiplier zone. A concept of TBM developed by JAEA is water-cooled pebble-bed type, which means that FW and other structures are cooled by pressurized high temperature water and T-breeding / n-multiplier zone consists of multiple layers of pebble bed made of T-breeding and n-multiplier material. This paper describes the status of R and Ds on FW and pebble beds from the view of thermo-hydraulics and mechanics. (author)

  13. Thermal hydraulic design of the mercury target vessel

    International Nuclear Information System (INIS)

    Japan Atomic Energy Agency (JAEA) has completed the mercury target system as the pulsed spallation neutron source of J-PARC project, which has the highest level power of 1MW in the world. The basic design of the flow channel and structure of the mercury target vessel, which is the core of the neutron source, was carried out by JAEA, and the detail design, parts fabrication and assembling have been carried out by the vendor from 2003. Taking these fabrication designs and assembling conditions into consideration, the final performance evaluation of the mercury target vessel was carried out from the viewpoint of thermal hydraulics. The general thermal hydraulic analyses code, STAR-CD, was used, and the thermal hydraulic analyses were carried out for the mercury flow in the mercury vessel and the heavy water flow in the safety hull, taking the nuclear heating and the heat transportation into consideration. The analytical model was three dimensional. The total cell number of the mercury vessel and mercury was 1.78 x 106 and that of the safety hull was 2.39 x 106. The standard k-ε model and MARS were adopted as the basic combination of the turbulence model and the differential scheme, but other combinations, such as RNG k-ε model and UD were also used as a reference. Comparing these analytical results, it was confirmed that the mercury target vessel fulfills the design requirements such as the fluid inlet velocity, the maximum temperature of fluid, the maximum temperature of the vessel, the pressure drop of fluid, etc. The influence of the welding deformation of the mercury target vessel was also evaluated. Mercury flow and heavy water flow are affected a little, but they do not much extend the required condition, and the structural integrity was confirmed. (author)

  14. Fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly of a BWR type reactor comprises a rectangular parallelopiped channel box and fuel bundles contained in the channel box. The fuel bundle comprises an upper tie plate, a lower tie plate, a plurality of spacers a plurality of fuel rods and a water rod. In each fuel rod, the amount of fission products is reduced at upper and lower end regions of an effective fuel portion than that in other regions of the effective fuel region. In a portion of the fuel rods, fuel pellets containing burnable poisons are disposed at the upper and lower end regions. In addition, the upper and lower portions are constituted with natural uranium. Each of the upper and lower end regions is not greater than 15% of the effective fuel length. Since this can enhance reactivity control effect without worsening fuel economy, the control amount for excess reactivity upon long-term cycle operation can be increased. (I.N.)

  15. Thermo-poroelastic response of an argillaceous limestone

    Science.gov (United States)

    Selvadurai, Patrick; Najari, Meysam

    2016-04-01

    Argillaceous limestones are now being considered by many countries that intend to develop deep geologic storage facilities for siting both high-level and intermediate- to low-level nuclear fuel wastes. In deep geologic settings for high level nuclear wastes, the heating due to radioactive decay is transmitted through an engineered barrier, which consists of the waste container and an engineered geologic barrier, which consists of an encapsulating compacted bentonite. The heat transfer process therefore leads to heating of the rock mass where the temperature of the rock is substantially lower than the surface temperature of the waste container. This permits the use of mathematical theories of poroelastic media where phase transformations, involving conversion of water to a vapour form are absent. While the thermo-poroelastic responses of geologic media such as granite and porous tuff have been investigated in the literature, the investigation of thermo-poroelastic responses of argillaceous limestones is relatively new. Argillaceous limestones are considered to be suitable candidates for siting deep geologic repositories owing to the ability to accommodate stress states with generation of severe defects that can influence their transmissivity characteristics. Also the clay fraction in such rocks can contribute to long term healing type phenomena, which is a considerable advantage. This research presents the results of a laboratory investigation and computational modelling of the same that examines the applicability of the theory of thermo-poroelasticity, which extend Biot's classical theory of poroelasticity to include uncoupled heat conduction. The experimental configuration involves the boundary heating of a cylinder of the Cobourg Limestone from southern Ontario, Canada. The cylinder measuring 150 mm in diameter and 278 mm in length contains an axisymmetric fluid-filled cylindrical cavity measuring 26 mm in diameter and 139 mm in length. Thermo-poroelastic effects

  16. WATER ENERGY IN HYDROAMELIORATIVE SYSTEMS USING THE HYDRAULIC TRANSFORMER TYPE A. BARGLAZAN AND THE HYDRAULIC HAMMER (HYDRAULIC PUMP)

    OpenAIRE

    Teodor Eugen Man; Laura Constantinescu; Dima Attila Blenesi

    2010-01-01

    This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seein...

  17. Self-assembled microtubes and rhodamine 6G functionalized Raman-active gold microrods from 1-hydroxybenzotriazole

    Indian Academy of Sciences (India)

    Ravula Thirupathi; Erode N Prabhakaran

    2011-05-01

    1-Hydroxybenzotriazole spontaneously self-assembles to form hollow, linear microtubes initiated by controlled evaporation from water. The tube cavities act as thermo-labile micromoulds for the synthesis of linear gold microrods. Rhodamine 6G-labelled gold microrods, exhibiting surface enhanced resonance Raman activity, have been synthesized using the HOBT microtubes.

  18. Thermo-fluid behaviour of periodic cellular metals

    CERN Document Server

    Lu, Tian Jian; Wen, Ting

    2013-01-01

    Thermo-Fluid Behaviour of Periodic Cellular Metals introduces the study of coupled thermo-fluid behaviour of cellular metals with periodic structure in response to thermal loads, which is an interdisciplinary research area that requires a concurrent-engineering approach.  The book, for the first time, systematically adopts experimental, numerical, and analytical approaches, presents the fluid flow and heat transfer in periodic cellular metals under forced convection conditions, aiming to establish structure-property relationships for tailoring material structures to achieve properties and performance levels that are customized for defined multifunctional applications. The book, as a textbook and reference book, is intended for both academic and industrial people, including graduate students, researchers and engineers. Dr. Tian Jian Lu is a professor at the School of Aerospace, Xi’an Jiaotong University, Xi’an, China. Dr. Feng Xu is a professor at the Key Laboratory of Biomedical Information Engineering o...

  19. Thermo-hydro-mechanical behaviour of Boom clay

    International Nuclear Information System (INIS)

    This thesis studied the thermo-hydro-mechanical properties of Boom clay, which was chosen to be the host material for the radioactive waste disposal in Mol, Belgium. Firstly, the research was concentrated on the soil water retention properties and the hydro-mechanical coupling by carrying out axial compression tests with suction monitoring. The results obtained permitted elaborating a rational experimental procedure for triaxial tests. Secondly, the systems for high pressure triaxial test at controlled temperature were developed to carry out compression, heating, and shearing tests at different temperatures. The obtained results showed clear visco-elasto-plastic behaviour of the soil. This behaviour was modelled by extending the thermo-elasto-plastic model of Cui et al. (2000) to creep effect. (author)

  20. Temperature control of CMS Barrel ECAL (EB) : computational thermo-hydraulic model for dynamic behaviour, control aspects

    CERN Document Server

    Wertelaers, P

    2010-01-01

    The current design foresees a central heat exchanger followed by a controlled post heater, for all ECAL. We discuss the scheme and try to assess its performance, from a Barrel viewpoint. This is based on computational work. The coolant transfer pipes play an essential role in building a dynamical model. After some studies on the behaviour of the cooling circuit itself, a strong yet simple controller is proposed. Then, the system with feedback control is scrutinized, with emphasis on disturbance rejection. The most relevant disturbances are cooling ripple, pipe heat attack, and electronics’ switching.

  1. A Semi-implicit Numerical Scheme for a Two-dimensional, Three-field Thermo-Hydraulic Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moonkyu; Jeong, Jaejoon

    2007-07-15

    The behavior of two-phase flow is modeled, depending on the purpose, by either homogeneous model, drift flux model, or separated flow model, Among these model, in the separated flow model, the behavior of each flow phase is modeled by its own governing equation, together with the interphase models which describe the thermal and mechanical interactions between the phases involved. In this study, a semi-implicit numerical scheme for two-dimensional, transient, two-fluid, three-field is derived. The work is an extension to the previous study for the staggered, semi-implicit numerical scheme in one-dimensional geometry (KAERI/TR-3239/2006). The two-dimensional extension is performed by specifying a relevant governing equation set and applying the related finite differencing method. The procedure for employing the semi-implicit scheme is also described in detail. Verifications are performed for a 2-dimensional vertical plate for a single-phase and two-phase flows. The calculations verify the mass and energy conservations. The symmetric flow behavior, for the verification problem, also confirms the momentum conservation of the numerical scheme.

  2. Brittle fracture safety analysis of RPV based on progressive thermo hydraulic analysis; Sproedbruchsicherheitsnachweise von Reaktordruckbehaeltern auf Basis fortschrittlicher thermohydraulischer Analysen

    Energy Technology Data Exchange (ETDEWEB)

    Keim, E.; Hertlein, R. [AREVA NP GmbH (Germany); Ilg, U.; Koenig, G. [AREVA NP GmbH (Germany)]|[EnBW Kernkraft GmbH (Germany); Schlueter, N.; Widera, M. [RWE Power AG (Germany)

    2007-07-01

    The fundamentals of brittle fracture safety analysis of RPV in case of LCA are presented in the following steps: 1. Proof of flawlessness of the RPV and plating after production; 2. Crack postulate: Internal defect with defect depth x safety factor 2 according to non-destructive test and defect type a/2c = 1/6; 3. Exclusion of crack initiation with RT{sub NDT} concept and consideration of maximum load; 4.If necessary, crack arrest as a further barrier. This concept is applied to three types of nuclear power plant: a) KKE, KKPL2, GKN II; b) GKN I; c) Biblis A/B. The thermohydraulic and fracture-mechanical calculaitons and the subsequent safety assessment showed that brittle fracture of RPV in case of LCA can be excluded for all parts of the RPV and for all accident scenarios. (orig.)

  3. Influence of wire-coil inserts on the thermo-hydraulic performance of a flat-plate solar collector

    International Nuclear Information System (INIS)

    Enhancement techniques can be applied to flat-plate liquid solar collectors towards more compact and efficient designs. For the typical operating mass flow rates in flat-plate solar collectors, the most suitable technique is inserted devices. Based on previous studies from the authors, wire coils were selected for enhancing heat transfer. This type of inserted device provides better results in laminar, transitional and low turbulence fluid flow regimes. To test the enhanced solar collector and compare with a standard one, an experimental side-by-side solar collector test bed was designed and constructed. The testing set up was fully designed following the requirements of EN12975-2 and allow us to accomplish performance tests under the same operating conditions (mass flow rate, inlet fluid temperature and weather conditions). This work presents the thermal efficiency curves of a commercial and an enhanced solar collector, for the standardized mass flow rate per unit of absorber area of 0.02 kg/sm2 (in useful engineering units 144 kg/h for water as working fluid and 2 m2 flat-plate solar collector of absorber area). The enhanced collector was modified inserting spiral wire coils of dimensionless pitch p/D = 1 and wire-diameter e/D = 0.0717. The friction factor per tube has been computed from the overall pressure drop tests across the solar collectors. The thermal efficiency curves of both solar collectors, a standard and an enhanced collector, are presented. The enhanced solar collector increases the thermal efficiency by 15%. To account for the overall enhancement a modified performance evaluation criterion (R3m) is proposed. The maximum value encountered reaches 1.105 which represents an increase in useful power of 10.5% for the same pumping power consumption.

  4. Quantum electron transfer processes induced by thermo-coherent state

    Indian Academy of Sciences (India)

    Sumana Banerjee; Gautam Gangopadhyay

    2007-09-01

    When the reactant surface is not in a thermal equilibrium, but in a thermo-coherent state we have derived the rate and discussed about the quantum features of the rate. In the limit of very low and very high temperature the expressions are derived analytically and compared with the case of thermal distribution. We have investigated the dependence of temperature on the rate due to displacement, distortion of the harmonic potential energy surfaces of the reactant and product manifold.

  5. Dynamic evolution of damage in elastic-thermo-viscoplastic materials

    OpenAIRE

    Abdelbaki Merouani; Farid Messelmi

    2010-01-01

    We consider a mathematical model that describes the dynamic evolution of damage in elastic-thermo-viscoplastic materials with displacement-traction, and Neumann and Fourier boundary conditions. We derive a weak formulation of the system consisting of a motion equation, an energy equation, and an evolution damage inclusion. This system has an integro-differential variational equation for the displacement and the stress fields, and a variational inequality for the damage field. We prove ...

  6. Correct theory of thermo-EMF in unipolar semiconductors

    International Nuclear Information System (INIS)

    In studies of the thermo-emf in semiconductors, calculations are usually limited to the thermoelectric field and the conditions when no current flows along a temperature gradient. Moreover, in calculating the thermoelectric current, the electron-phonon drag needs to be considered which may cause the electron temperature to drop. This needs to be taken into account when calculations are done on thermoelectric field

  7. Thermo-physiological comfort modelling of fabrics and garments

    OpenAIRE

    Pezzin, Alberto

    2015-01-01

    Thermo-physiological comfort is a complex feeling affected by clothing, environment and physical activity of a human body. It is very important to understand the influence of the different variables, such as air temperature and humidity, fabric properties and heat and moisture produced from the human body, and their relationships in order to design new textile materials that can satisfy the always more strictly requirements of technical textile in terms of comfort behaviour. While environment...

  8. Dissipative Quantum Systems in ThermoField Dynamics

    CERN Document Server

    Tomazelli, J L

    2009-01-01

    We investigate a class of microscopic systems in interaction with a macroscopic system in thermal equilibrium, following the construction of Dalibard, Dupont-Roc and Cohen-Tannoudji (DDC). By considering self-adjoint operators as elements of Schwinger's Measurement Algebra (SMA), we construct statistical mean values of the relevant observables as matrix elements in a suitable operator basis, which correspond to the vacuum states of ThermoField Dynamics (TFD).

  9. Closed String Thermal Torus From Thermo Field Dynamics

    OpenAIRE

    Abdalla, M. C. B.; Gadelha, A. L.; Nedel, Daniel L.

    2004-01-01

    In this Letter a topological interpretation for the string thermal vacuum in the Thermo Field Dynamics (TFD) approach is given. As a consequence, the relationship between the Imaginary Time and TFD formalisms is achieved when both are used to study closed strings at finite temperature. The TFD approach starts by duplicating the system's degrees of freedom, defining an auxiliary (tilde) string. In order to lead the system to finite temperature a Bogoliubov transformation is implemented. We sho...

  10. Thermo-mechanical behaviour of a compacted swelling clay

    OpenAIRE

    TANG, Anh Minh; Cui, Yu-Jun; Barnel, Nathalie

    2008-01-01

    International audience Compacted unsaturated swelling clay is often considered as a possible buffer material for deep nuclear waste disposal. An isotropic cell permitting simultaneous control of suction, temperature and pressure was used to study the thermo-mechanical behaviour of this clay. Tests were performed at total suctions ranging from 9 to 110 MPa, temperature from 25 to 80 °C, isotropic pressure from 0.1 to 60 MPa. It was observed that heating at constant suction and pressure indu...

  11. STUDY OF TOPOLOGY OPTIMIZATION FOR THERMO-STRUCTURAL COUPLING FIELD

    Institute of Scientific and Technical Information of China (English)

    Zuo Kongtian; Qian Qin; Zhao Yudong; Chen Liping

    2005-01-01

    A number of critical problems of topology optimization concerning the thermostructural coupling field are studied at length. The governing equations and topology optimization model for the thermal-structural coupling field are derived, with an adjoint method for sensitivity analysis of the thermo-structural coupling field proposed. The optimization algorithm for coupling field topology optimization is investigated and a flowchart of coupling field topology optimization presented. The theory and algorithms are implemented and verified by two numerical examples.

  12. Thermo-mechanical properties of compressed rubber block

    Czech Academy of Sciences Publication Activity Database

    Pešek, Luděk; Půst, Ladislav; Šulc, Petr

    Besancon: Comité Francais pour la Promotion de la Science des Mécanismes et des Machines, 2007 - (Merlet, J.; Dahan, M.), s. 868-873 [IFToMM 2007 /12./. Besancon (FR), 17.06.2007-21.06.2007] R&D Projects: GA ČR GA101/05/2669 Institutional research plan: CEZ:AV0Z20760514 Keywords : vibrodamping elements * thermo-mechanic interaction * rubber Subject RIV: BI - Acoustics

  13. Equivalent thermo-mechanical parameters for perfect crystals

    OpenAIRE

    Kuzkin, V. A.; Krivtsov, A. M.

    2010-01-01

    Thermo-elastic behavior of perfect single crystal is considered. The crystal is represented as a set of interacting particles (atoms). The approach for determination of equivalent continuum values for the discrete system is proposed. Averaging of equations of particles' motion and long wave approximation are used in order to make link between the discrete system and equivalent continuum. Basic balance equations for equivalent continuum are derived from microscopic equations. Macroscopic value...

  14. Tree hydraulics: how sap rises

    Science.gov (United States)

    Denny, Mark

    2012-01-01

    Trees transport water from roots to crown—a height that can exceed 100 m. The physics of tree hydraulics can be conveyed with simple fluid dynamics based upon the Hagen-Poiseuille equation and Murray's law. Here the conduit structure is modelled as conical pipes and as branching pipes. The force required to lift sap is generated mostly by transpiration or capillary action; we investigate the effectiveness of both these forces for the two conduit architectures considered. The level of analysis is appropriate for undergraduates. The subject is of broad interest because it provides a naturally-occurring example of an unusual metastable state of matter: liquid under tension.

  15. Optimization of hydraulic turbine diffuser

    Science.gov (United States)

    Moravec, Prokop; Hliník, Juraj; Rudolf, Pavel

    2016-03-01

    Hydraulic turbine diffuser recovers pressure energy from residual kinetic energy on turbine runner outlet. Efficiency of this process is especially important for high specific speed turbines, where almost 50% of available head is utilized within diffuser. Magnitude of the coefficient of pressure recovery can be significantly influenced by designing its proper shape. Present paper focuses on mathematical shape optimization method coupled with CFD. First method is based on direct search Nelder-Mead algorithm, while the second method employs adjoint solver and morphing. Results obtained with both methods are discussed and their advantages/disadvantages summarized.

  16. Analysis of INDOT Current Hydraulic Policies

    OpenAIRE

    Merwade, Venkatesh; Kumar, Sanjiv

    2011-01-01

    Hydraulic design often tends to be on a conservative side for safety reasons. Hydraulic structures are typically oversized with the goal being reduced future maintenance costs, and to reduce the risk of property owner complaints. This approach leads to a conservative design with higher construction costs. Therefore, there is a need to quantify the cost-benefit aspect of this conservative approach. Accordingly, the overall objective of this project is to compare hydraulic design policies of In...

  17. Hydraulic Resistance due to Emergent Wetland Vegetation

    OpenAIRE

    Piercy, Candice Dawn

    2010-01-01

    Models to estimate hydraulic resistance due to vegetation in emergent wetlands are crucial to wetland design and management. Hydraulic models that consider vegetation rely on an accurate determination of a resistance parameter such as a friction factor or a bulk drag coefficient. At low Reynolds numbers typical of flows in wetlands, hydraulic resistance is orders of magnitude higher than fully turbulent flows and resistance parameters are functions of the flow regime as well as the vegetation...

  18. Implementing a Greener Hydraulic Fracturing in Scotland

    OpenAIRE

    Cano, Michele; Matthew, Anietie; Quinn, Brian

    2015-01-01

    International audience Abstract - The drive to implement unconventional gas drilling by means of hydraulic fracturing in United Kingdom (UK) has been a major issue of concern due to the potential environmental and health impacts. This paper is aimed at examining the following: what triggers the need for the unconventional gas; the process of unconventional gas through hydraulic fracturing method; the potential risks of hydraulic fracturing to the environment and to human health; key succes...

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Since the neutron flux distribution and the power distribution of a fuel assembly in which short fuel rods vary greatly in the vicinity of a boundary where the distribution of uranium amount is different, the reading value of local power range monitors, having the detectors positioned in the vicinity of the boundary is varied. Then in the present invention, the upper end of the effective axial length of fuel rod is so made as not approaching with the detection position of the local power range monitor in a reactor core. Further, the upper end of the effective axial length of fuel rods in a 4 x 4 fuel rod lattice positioned at the corner on the side of the local power range monitor is so made as not approaching the detection position of the local power range monitor. As a result, the change of the neutron flux distribution and power distribution in the vicinity of the position where the detector of the local power range monitor is situated can be extremely reduced. Accordingly, there is no scattering and fluctuation for the reading value by the local power range monitor, to improve the monitoring performance for thermal characteristics in the reactor core. (N.H.)

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Purpose: To reconstruct a BWR type reactor into a high conversion reactor with no substantial changes for the reactor inner structure such as control rod structure. Constitution: The horizontal cross sectional shape of a channel box is reformed into a square configuration and the arrangement of fuel rods is formed as a trigonal lattice-like configuration. As a method of improving the conversion ratio, there is considered to use a dense lattice by narrowing the distance between fuel rods and trigonal lattice arrangement for fuel rod is advantageous therefor. A square shape cross sectional configuration having equal length both in the lateral and longitudinal directions is suitable for the channel box as a guide upon movement of the control rod. Fuel rods can be arranged with no loss by the trigonal lattice configuration, by which it is possible to improve the neutron moderation, increase the reactor core reactivity and conduct effective fuel combustion. In this way, it is possible to attain the object by inserting the follower portion of the control rod at the earier half and extracting the same at the latter half during the operation period in the reactor core comprising fuel assemblies suitable to a high conversion BWR type reactor having average conversion ratio of about 0.8. (Kamimura, M.)

  1. Fuel assembly

    International Nuclear Information System (INIS)

    Fuel rods are arranged in a lattice-like structure by way of a plurality of spacers and the lower ends thereof are fixed to a lower tie plate for assembling a fuel rod bundle. The outer circumference is surrounded by a basket having a plurality of openings and the basket is surrounded by a channel box. The basket is connected to a handle at the upper end and to a lower tie plate at the lower end and, further, defined with a scraper at each of openings. Coolants flown from the lower tie plate to the channel box flow the channels between the channel box and the basket and a fuel rod bundle, uprise while forming a two-phase flow and flow out from the upper end of the channel box. Since no upper tie plate is present, pressure loss of coolants flow is reduced, and liquid membranes of coolants are peeled off by the scraper disposed at the opening of the basket, which contributes to the improvement of the limit power. In addition, fuel rods are inspected and cleaned easily. (N.H.)

  2. Fuel assembly

    International Nuclear Information System (INIS)

    The object of the present invention is to improve the hydrodynamic stability in the fuel channels of BWR type reactors and effectively utilize the coolant driving power corresponding to the reduction due to pressure loss. That is, in a fuel assembly having usual fuel rods and, in addition, water rods and short fuel rods, the structures of water rods, upper tie plates and the spacers are designed from a hydrodynamic point of view, to reduce the pressure loss. On the other hand, a lattice-like flow channel resistance member is disposed to a lower tie plate. The bundle flow rate is made uniform by the flow channel resistance member, and the pressure loss of the tie plate is increased by the reduction of the pressure loss by the arrangement of the short fuel rod and the reduction of the pressure loss described above. Since this increases the ratio of the single phase stream pressure loss in the total reactor core pressure loss, the hydrodynamic stability in the fuel channel is improved. (I.J.)

  3. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly construction for liquid metal cooled fast breeder reactors is described in which the sub-assemblies carry a smaller proportion of parasitic material than do conventional sub-assemblies. (U.K.)

  4. Thermal energy storage using thermo-chemical heat pump

    International Nuclear Information System (INIS)

    Highlights: ► Understanding of the performance of thermo chemical heat pump. ► Tool for storing thermal energy. ► Parameters that affect the amount of thermal stored energy. ► Lithium chloride has better effect on storing thermal energy. - Abstract: A theoretical study was performed to investigate the potential of storing thermal energy using a heat pump which is a thermo-chemical storage system consisting of water as sorbet, and sodium chloride as the sorbent. The effect of different parameters namely; the amount of vaporized water from the evaporator, the system initial temperature and the type of salt on the increase in temperature of the salt was investigated and hence on the performance of the thermo chemical heat pump. It was found that the performance of the heat pump improves with the initial system temperature, with the amount of water vaporized and with the water remaining in the system. Finally it was also found that lithium chloride salt has higher effect on the performance of the heat pump that of sodium chloride.

  5. Thermo-optical properties of gold nanoparticles in colloidal systems

    Science.gov (United States)

    Ortega, M. A.; Rodriguez, L.; Castillo, J.; Piscitelli, V.; Fernandez, A.; Echevarria, L.

    2008-10-01

    In this work, we report the thermo-optical properties of nanoparticles in colloidal suspensions. Spherical gold nanoparticles obtained by laser ablation in condensed media were characterized using thermal lens spectroscopy pumping at 532 nm with a 10 ns pulse laser-Nd-YAG system. The obtained nanoparticles were stabilized in the time by surfactants (sodium dodecyl sulfate or SDS) in water with different molar concentrations. The morphology and size of the gold nanoparticles were determined by transmission electron microscopy (TEM) and UV-visible techniques. The plasmonic resonance bands in gold nanoparticles are responsible for the light optical absorption, and the positions of the absorption maximum and bandwidth in the UV-visible spectra are given by the morphological characteristics of these systems. The thermo-optical constants such as thermal diffusion, thermal diffusivity, and (dn/dT) are functions of the nanoparticle sizes and the dielectric function of the media. For these reasons, the thermal lens (TL) signal is also dependent on nanoparticle sizes. An analysis of the TL signal of the nanoparticles reveals the existence of an inverse dependence between the thermo-optical functions and the size. This methodology can be used in order to evaluate these systems and characterize nanoparticles in different media. These results are expected to have an impact in bioimaging, biosensors, and other technological applications such as cooling systems.

  6. Thermo-ecological optimization of a solar collector

    International Nuclear Information System (INIS)

    The depletion of non-renewable natural exergy resources (the thermo-ecological cost) has been accepted as the objective function for thermo-ecological optimization. Its general formulation has been cited. A detailed form of the objective function has been formulated for a solar collector producing hot water for household needs. The following design parameters have been accepted as the decision variables: the collector area per unit of the heat demand, the diameter of collector pipes, the distance of the pipe axes in the collector plate. The design parameters of the internal installation (the pipes, the hot water receiver) have not been taken into account, because they are very individual. The accumulation ability of hot water comprising one day has been assumed. The objective function contains the following components: the thermo-ecological cost of copper plate, copper pipes, glass plate, steel box, thermal insulation, heat transfer liquid, electricity for driving the pump of liquid, fuel for the peak boiler. The duration curves of the flux of solar radiation and absorbed heat have been elaborated according to meteorological data and used in the calculations. The objective function for economic optimization may have a similar form, only the cost values would be different

  7. Concept Evaluation for Hydraulic Yaw System

    DEFF Research Database (Denmark)

    Stubkier, Søren; Pedersen, Henrik C.; Andersen, Torben Ole

    2013-01-01

    a suspension system on a car, leading the loads away from the turbine structure. However, to realize a soft hydraulic yaw system a new design concept must be found. As a part of the development of the new concept a preliminary concept evaluation has been conducted, evaluating seven different hydraulic yaw...... concepts, ranging from a one-to-one copy of the electrical drive (electrical drives replaced by hydraulic dittos), to floating suspension systems mounted on hydraulic cylinders. Rough calculations of size and consequences of the different systems are presented ending up with the final concept for further...

  8. Thermo-hydro-mechanical behaviour of Boom clay; Comportement thermo-hydro-mecanique de l'argile de Boom

    Energy Technology Data Exchange (ETDEWEB)

    Le, T.T

    2008-01-15

    This thesis studied the thermo-hydro-mechanical properties of Boom clay, which was chosen to be the host material for the radioactive waste disposal in Mol, Belgium. Firstly, the research was concentrated on the soil water retention properties and the hydro-mechanical coupling by carrying out axial compression tests with suction monitoring. The results obtained permitted elaborating a rational experimental procedure for triaxial tests. Secondly, the systems for high pressure triaxial test at controlled temperature were developed to carry out compression, heating, and shearing tests at different temperatures. The obtained results showed clear visco-elasto-plastic behaviour of the soil. This behaviour was modelled by extending the thermo-elasto-plastic model of Cui et al. (2000) to creep effect. (author)

  9. Helical coil thermal hydraulic model

    International Nuclear Information System (INIS)

    A model has been developed in Matlab environment for the thermal hydraulic analysis of helical coil and shell steam generators. The model considers the internal flow inside one helix and its associated control volume of water on the external side, both characterized by their inlet thermodynamic conditions and the characteristic geometry data. The model evaluates the behaviour of the thermal-hydraulic parameters of the two fluids, such as temperature, pressure, heat transfer coefficients, flow quality, void fraction and heat flux. The evaluation of the heat transfer coefficients as well as the pressure drops has been performed by means of the most validated literature correlations. The model has been applied to one of the steam generators of the IRIS modular reactor and a comparison has been performed with the RELAP5/Mod.3.3 code applied to an inclined straight pipe that has the same length and the same elevation change between inlet and outlet of the real helix. The predictions of the developed model and RELAP5/Mod.3.3 code are in fairly good agreement before the dryout region, while the dryout front inside the helical pipes is predicted at a lower distance from inlet by the model

  10. The research on control rod insertion of a boiling water reactor with water hydraulic drive

    International Nuclear Information System (INIS)

    This thesis reports on the hydraulic driving system, powered by an accumulator. This drive system is mainly used for the drive of control rods of nuclear reactors. In case of strong earthquakes, control rods are set in gaps between fuel assemblies to scram nuclear reactors. Characteristics of the system have not been analyzed. The analysis of this system is necessary in order to present the designs that are intended to be a variety of situations. So we developed the model of the hydraulic control rod driving system. The model that we have created is able to reproduce the actual driving. Also, there is a load on the system by an earthquake. This load is caused by the contact of the deformed fuel assembly and control rod. This load model is obtained by solving the equation of motion of the beam. (author)

  11. Sodium natural convection testing in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility

    International Nuclear Information System (INIS)

    A comparison is made between experimental data and analytical results for a single-phase natural convection test in an experimental sodium loop. The test was conducted in the Thermal-Hydraulic Out-of-Reactor Safety (THORS) facility, an engineering-scale high temperature sodium loop at the Oak Ridge National Laboratory (ORNL), used for thermal-hydraulic testing of simulated Liquid Metal Fast Breeder Reactor (LMFBR) subassemblies at normal and off-normal operating conditions. Electrical heating in the 19-pin assembly during the test was typical of decay heat levels. The test chosen for analysis in this paper was one of seven natural convection runs conducted in the facility. In this test the bypass line was open to simulate a parallel heated assembly and the test was begun with a pump coastdown from a small initial forced flow

  12. Thermal hydraulic calculations of the IRT-Sofia reactor with LEU fuel IRT-4M, Sofia

    International Nuclear Information System (INIS)

    The neutronic calculations of the IRT-Sofia research reactor with fuel assemblies (FA) of the IRT-4M type, containing low enriched uranium (19.75%), confirmed the justness of the selection of its initial core configuration. On the basis of the neutronic calculation results the thermal-hydraulic calculations were done by PLTEMP code. Three possible operational regimes have been considered. For each of them the margin coefficients of the water onset of the nucleate boiling (ONB) have been determined. An analysis has been made on the fuel element surface for the particular fuel assembly with maximum power density. The calculations have been accomplished for the core water inlet temperature of 450C. The results are in compliance with the thermal-hydraulic safety requirements. This is valid for all analyzed regimes

  13. Long term thermo-hydro-mechanical interaction behavior study of the saturated, discontinuous granitic rock mass around the radwaste repository using a steady state flow algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jhin Wung; Bae, Dae Suk; Kang, Chul Hyung; Choi, Jong Won [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2002-02-01

    The objective of the present study is to understand the long term (500 years) thermo-hydro-mechanical interaction behavior of the 500 m depth underground radwaste repository in the saturated, discontinuous granitic rock mass using a steady state flow algorithm. The numerical model includes a saturated granitic rock mass with joints around the repository and a 45 .deg. C fault passing through the tunnel roof-wall intersection, and a canister with PWR spent fuels surrounded by the compacted bentonite and mixed-bentonite. Barton-Bandis joint constitutive model from the UDEC code is used for the joints. For the hydraulic analysis, a steady state flow algorithm is used for the groundwater flow through the rock joints. For the thermal analysis, heat transfer is modeled as isotropic conduction and heat decays exponentially with time. The results show that the variations of the hydraulic aperture, hydraulic conductivity, normal stress, normal displacements, and shear displacements of the joints are high in the vicinity of the repository and stay fairly constant on the region away from the repository. 14 refs., 15 figs., 11 tabs. (Author)

  14. WATER ENERGY IN HYDROAMELIORATIVE SYSTEMS USING THE HYDRAULIC TRANSFORMER TYPE A. BARGLAZAN AND THE HYDRAULIC HAMMER (HYDRAULIC PUMP

    Directory of Open Access Journals (Sweden)

    Teodor Eugen Man

    2010-01-01

    Full Text Available This paper presents two examples of exploitation of water energy that can be used in the irrigation field. First of theseexamples is the hydraulic transformer type A. Barglazan used for irrigation, pumped water is taken directly from theriver’s well, using a hydraulic pump which simultaneously carried out a double transformation in this way: hydraulicenergy into mechanic energy and mechanical energy into hydraulic energy. Technology preparation and devices designwas done in record time, seeing that this constructive solution is more robust, reliable and with improved energyperformance versus the laboratory prototype. The experimental research which was made at 1:1 scale proved theirgood function over time. Another example is the hydraulic hammer (hydraulic pump that uses low-head energy topump water, with a global efficiency of about 10 - 50%. Currently, the new situation of private ownership of landprovides conditions for new pumping microstations to be made where irrigation is necessary and optimal hydrauliclocations exist.

  15. Deterministic and Monte Carlo transport models with thermal-hydraulic feedback

    Energy Technology Data Exchange (ETDEWEB)

    Seubert, A.; Langenbuch, S.; Velkov, K.; Zwermann, W. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Garching (Germany)

    2008-07-01

    This paper gives an overview of recent developments concerning deterministic transport and Monte Carlo methods with thermal-hydraulic feedback. The timedependent 3D discrete ordinates transport code TORT-TD allows pin-by-pin analyses of transients using few energy groups and anisotropic scattering by solving the timedependent transport equation using the unconditionally stable implicit method. To account for thermal-hydraulic feedback, TORT-TD has been coupled with the system code ATHLET. Applications to, e.g., a control rod ejection in a 2 x 2 PWR fuel assembly arrangement demonstrate the applicability of the coupled code TORT-TD/ATHLET for test cases. For Monte Carlo steady-state calculations with nuclear point data and thermalhydraulic feedback, MCNP has been prepared to incorporate thermal-hydraulic parameters. As test case has been chosen the uncontrolled steady state of the 2 x 2 PWR fuel assembly arrangement for which the thermal-hydraulic parameter distribution has been obtained from a preceding coupled TORT-TD/ATHLET analysis. The result demonstrates the applicability of MCNP to problems with spatial distributions of thermal-fluiddynamic parameters. The comparison with MCNP results confirms that the accuracy of deterministic transport calculations with pin-wise homogenised few-group cross sections is comparable to Monte Carlo simulations. The presented cases are considered as a pre-stage of performing calculations of larger configurations like a quarter core which is in preparation. (orig.)

  16. Deterministic and Monte Carlo transport models with thermal-hydraulic feedback

    International Nuclear Information System (INIS)

    This paper gives an overview of recent developments concerning deterministic transport and Monte Carlo methods with thermal-hydraulic feedback. The timedependent 3D discrete ordinates transport code TORT-TD allows pin-by-pin analyses of transients using few energy groups and anisotropic scattering by solving the timedependent transport equation using the unconditionally stable implicit method. To account for thermal-hydraulic feedback, TORT-TD has been coupled with the system code ATHLET. Applications to, e.g., a control rod ejection in a 2 x 2 PWR fuel assembly arrangement demonstrate the applicability of the coupled code TORT-TD/ATHLET for test cases. For Monte Carlo steady-state calculations with nuclear point data and thermalhydraulic feedback, MCNP has been prepared to incorporate thermal-hydraulic parameters. As test case has been chosen the uncontrolled steady state of the 2 x 2 PWR fuel assembly arrangement for which the thermal-hydraulic parameter distribution has been obtained from a preceding coupled TORT-TD/ATHLET analysis. The result demonstrates the applicability of MCNP to problems with spatial distributions of thermal-fluiddynamic parameters. The comparison with MCNP results confirms that the accuracy of deterministic transport calculations with pin-wise homogenised few-group cross sections is comparable to Monte Carlo simulations. The presented cases are considered as a pre-stage of performing calculations of larger configurations like a quarter core which is in preparation. (orig.)

  17. Steady state thermal-hydraulic analyses of the MITICA cooling circuits

    Energy Technology Data Exchange (ETDEWEB)

    Zaupa, M., E-mail: matteo.zaupa@igi.cnr.it [Università degli Studi di Padova, Via 8 Febbraio 2, Padova 35122 (Italy); Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy); Sartori, E.; Dalla Palma, M.; Fellin, F.; Marcuzzi, D.; Pavei, M.; Rizzolo, A. [Consorzio RFX, Corso Stati Uniti 4, Padova 35127 (Italy)

    2016-02-15

    Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m{sup 2}), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled.

  18. Model with Peach Bottom Turbine trip and thermal-Hydraulic code TRACE V5P3

    International Nuclear Information System (INIS)

    This work is the continuation of the work presented previously in the thirty-ninth meeting annual of the Spanish Nuclear society. The semi-automatic translation of the Thermo-hydraulic model TRAC-BF1 Peach Bottom Turbine Trip to TRACE was presented in such work. This article is intended to validate the model obtained in TRACE, why compare the model results result from the translation with the Benchmark results: NEA/OECD BWR Peach Bottom Turbine Trip (PBTT), in particular is of the extreme scenario 2 of exercise 3, in which there is SCRAM in the reactor. Among other data present in the (transitional) Benchmark , are: total power, axial profile of power, pressure Dome, total reactivity and its components. (Author)

  19. Steady state thermal-hydraulic analyses of the MITICA cooling circuits

    International Nuclear Information System (INIS)

    Megavolt ITER Injector Concept Advancement is the full scale prototype of the heating and current drive neutral beam injectors for ITER, to be built at Consorzio RFX (Padova). The engineering design of its components is challenging: the total heat loads they will be subjected to (expected between 2 and 19 MW), the high heat fluxes (up to 20 MW/m2), and the beam pulse duration up to 1 h, set demanding requirements for reliable active cooling circuits. In support of the design, the thermo-hydraulic behavior of each cooling circuit under steady state condition has been investigated by using one-dimensional models. The final results, obtained considering a number of optimizations for the cooling circuits, show that all the requirements in terms of flow rate, temperature, and pressure drop are properly fulfilled

  20. Influence of Thermal-hydraulic Model to Fuel Management Core Calculation

    International Nuclear Information System (INIS)

    The integration of neutronic, fuel rod and thermal-hydraulic calculations for both, steady-state core design type of the calculation and for transient and safety analyses, is used to improve the response of Nuclear Power Plants (NPP) both from the point of view of safe and economic plant operation. That process assumes improvement of current calculational tools and application of results acquired from operational experience. The objective of this paper is to explore influence of improved thermal-hydraulics core model to overall in-core fuel management parameters (reactivity, power distribution, burn-up distribution) and to take it into account in systematic way. New core thermal-hydraulics model based on codes COBRA III C and COBRA-EN was included within the PARCS depletion loop to calculate the behavior of representative fuel rods for each assembly. Modified code is called COBRA-VIP and exists as both standalone version and part of PARCS code. Some programming changes were necessary to make possible dual use of COBRA-VIP. Core fuel management calculation was performed for NPP Krsko cycle 23 to show influence of performed change to selected core parameters. The benefit of the described approach is that in addition to normal depletion calculation, the behavior of any fuel rod in each fuel assembly can be studied from thermal-hydraulics point of view. The average fuel rod per assembly can be used to improve TH feedback calculations and the limiting fuel rod per assembly can be used to perform DNBR or fuel centre line temperature calculation.(author)

  1. Dually pH/Reduction-Responsive Vesicles for Ultrahigh-Contrast Fluorescence Imaging and Thermo-Chemotherapy-Synergized Tumor Ablation.

    Science.gov (United States)

    Zhu, Aijun; Miao, Ke; Deng, Yibin; Ke, Hengte; He, Hui; Yang, Tao; Guo, Miao; Li, Yanli; Guo, Zhengqing; Wang, Yangyun; Yang, Xiangliang; Zhao, Youliang; Chen, Huabing

    2015-08-25

    Smart nanocarriers are of particular interest as nanoscale vehicles of imaging and therapeutic agents in the field of theranostics. Herein, we report dually pH/reduction-responsive terpolymeric vesicles with monodispersive size distribution, which are constructed by assembling acetal- and disulfide-functionalized star terpolymer with near-infrared cyanine dye and anticancer drug. The vesicular nanostructure exhibits multiple theranostic features including on-demand drug releases responding to pH/reduction stimuli, enhanced photothermal conversion efficiency of cyanine dye, and efficient drug translocation from lysosomes to cytoplasma, as well as preferable cellular uptakes and biodistribution. These multiple theranostic features result in ultrahigh-contrast fluorescence imaging and thermo-chemotherapy-synergized tumor ablation. The dually stimuli-responsive vesicles represent a versatile theranostic approach for enhanced cancer imaging and therapy. PMID:26181349

  2. Gravity-Driven Hydraulic Fractures

    Science.gov (United States)

    Germanovich, L. N.; Garagash, D.; Murdoch, L. C.; Robinowitz, M.

    2014-12-01

    This study is motived by a new method for disposing of nuclear waste by injecting it as a dense slurry into a hydraulic fracture that grows downward to great enough depth to permanently isolate the waste. Disposing of nuclear waste using gravity-driven hydraulic fractures is mechanically similar to the upward growth of dikes filled with low density magma. A fundamental question in both applications is how the injected fluid controls the propagation dynamics and fracture geometry (depth and breadth) in three dimensions. Analog experiments in gelatin [e.g., Heimpel and Olson, 1994; Taisne and Tait, 2009] show that fracture breadth (the short horizontal dimension) remains nearly stationary when the process in the fracture "head" (where breadth is controlled) is dominated by solid toughness, whereas viscous fluid dissipation is dominant in the fracture tail. We model propagation of the resulting gravity-driven (buoyant or sinking), finger-like fracture of stationary breadth with slowly varying opening along the crack length. The elastic response to fluid loading in a horizontal cross-section is local and can be treated similar to the classical Perkins-Kern-Nordgren (PKN) model of hydraulic fracturing. The propagation condition for a finger-like crack is based on balancing the global energy release rate due to a unit crack extension with the rock fracture toughness. It allows us to relate the net fluid pressure at the tip to the fracture breadth and rock toughness. Unlike the PKN fracture, where breadth is known a priori, the final breadth of a finger-like fracture is a result of processes in the fracture head. Because the head is much more open than the tail, viscous pressure drop in the head can be neglected leading to a 3D analog of Weertman's hydrostatic pulse. This requires relaxing the local elasticity assumption of the PKN model in the fracture head. As a result, we resolve the breadth, and then match the viscosity-dominated tail with the 3-D, toughness

  3. Modelling of thermo-hydro-mechanical couplings and damage of viscoplastic rocks in the context of radioactive waste storage

    International Nuclear Information System (INIS)

    Trying to develop a model taking into account the complex rheology of a geologic media characterized by visco-plasticity, damage and thermo-hydro-mechanical couplings is unusual in geotechnics. This is not the case for radioactive waste storage that presents specificities from several viewpoints. Indeed, the scales of time and space concerned by this type of storage are disproportionate to those of civil engineering works or mines. Another specificity of the radioactive waste storage lies in the coupled processes involved. No effect likely to compromise the long-term security of the storage could be ignored. For example this is the case of damage, a phenomenon which does not necessarily lead to a major change of the mechanical behavior of the works but can influence the permeability of the medium in relation with a migration of radionuclides. It can be conceived that this phenomenon finds all its importance in the context of the thermo-hydro-mechanical couplings of a waste storage with high activity. However, the interaction between the damage and the THM coupled processes was the object of very few research subject up to now. This. is even more true for viscoplastic media considered as ductile, and therefore, less prone to cracking than brittle media. It is exactly in this 'original' but difficult context that took place the research presented in this report. This study was dedicated to the analysis of the phenomena and the thermal, hydraulic and mechanical couplings occurring in the near and far field of a high activity radioactive waste storage. Two examples of geological media were considered in this report: the clayey rock of Callovo-Oxfordian, called ' Argilites de l'Est ', target rock of the ANDRA project to carry out a subterranean laboratory for the study of long life radioactive waste storage; and the salt rock of the. subterranean laboratory in the old salt mine of Asse in Germany. (author)

  4. Hydraulic sealing due to pressure solution contact zone growth in siliciclastic rock fractures

    Science.gov (United States)

    Lang, P. S.; Paluszny, A.; Zimmerman, R. W.

    2015-06-01

    Thermo-hydro-mechanical-chemical simulations at the pore scale are conducted to study the hydraulic sealing of siliciclastic rock fractures as contact zones grow driven by pressure dissolution. The evolving fluid-saturated three-dimensional pore space of the fracture results from the elastic contact between self-affine, randomly rough surfaces in response to the effective confining pressure. A diffusion-reaction equation controls pressure solution over contact zones as a function of their emergent geometry and stress variations. Results show that three coupled processes govern the evolution of the fracture's hydraulic properties: (1) the dissolution-driven convergence of the opposing fracture walls acts to compact the pore space; (2) the growth of contact zones reduces the elastic compression of the pore space; and (3) the growth of contact zones leads to flow channeling and the presence of stagnant zones in the flow field. The dominant early time compaction mechanism is the elastic compression of the fracture void space, but this eventually becomes overshadowed by the irreversible process of pressure dissolution. Growing contact zones isolate void space and cause an increasing disproportion between average and hydraulic aperture. This results in the loss of hydraulic conductivity when the mean aperture is a third of its initial value and the contact ratio approaches the characteristic value of one half. Convergence rates depend on small-wavelength roughness initially and on long-wavelength roughness in the late time. The assumption of a characteristic roughness length scale, therefore, leads to a characteristic time scale with an underestimation of dissolution rates before and an overestimation thereafter.

  5. EVALUATION OF THERMO-HYGRIC MICROCLIMATE PARAMETERS IN THE WORK ENVIRONMENT

    OpenAIRE

    Sokolová, Hana; Králiková, Ružena; Pešková, Alena

    2013-01-01

    Thermo-hygric microclimate evaluation and planning is important for improving quality of work environment and protecting employees’ health. The thermo-hygric microclimate objective evaluation is performed by measuring its physical parameters. It is a part of a comprehensive microclimate of internal environment. This article introduces elementary thermo-hygric parameters and their measurement and evaluation methods and informs about sources of their limit values. Human body emits its own metab...

  6. Free Vibration Analysis for Layered Shells Accounting of Variable Kinematic and Thermo-Mechanical Coupling

    OpenAIRE

    S. Brischetto; Carrera, E.

    2012-01-01

    The free vibration analysis of one-layered and two-layered metallic cylindrical shell panels is evaluated in this work. The free frequency values are investigated for both thermo-mechanical and pure mechanical problems. Thermo-mechanical frequencies are calculated by means of a fully coupled thermo-mechanical model where both the displacement and temperature are primary variables in the considered governing equations. Pure mechanical frequencies are obtained from a mechanical model where the ...

  7. Hydraulically powered dissimilar teleoperated system controller design

    International Nuclear Information System (INIS)

    This paper will address two issues associated with the implementation of a hydraulically powered dissimilar master-slave teleoperated system. These issues are the overall system control architecture and the design of robust hydraulic servo controllers for the position control problem. Finally, a discussion of overall system performance on an actual teleoperated system will be presented

  8. Uncertainty in hydraulic tests in fractured rock

    International Nuclear Information System (INIS)

    Interpretation of hydraulic tests in fractured rock has uncertainty because of the different hydraulic properties of a fractured rock to a porous medium. In this study, we reviewed several interesting phenomena which show uncertainty in a hydraulic test at a fractured rock and discussed their origins and the how they should be considered during site characterisation. Our results show that the estimated hydraulic parameters of a fractured rock from a hydraulic test are associated with uncertainty due to the changed aperture and non-linear groundwater flow during the test. Although the magnitude of these two uncertainties is site-dependent, the results suggest that it is recommended to conduct a hydraulic test with a little disturbance from the natural groundwater flow to consider their uncertainty. Other effects reported from laboratory and numerical experiments such as the trapping zone effect (Boutt, 2006) and the slip condition effect (Lee, 2014) can also introduce uncertainty to a hydraulic test, which should be evaluated in a field test. It is necessary to consider the way how to evaluate the uncertainty in the hydraulic property during the site characterisation and how to apply it to the safety assessment of a subsurface repository. (authors)

  9. Hydraulic fracturing with distinct element method

    NARCIS (Netherlands)

    Pruiksma, J.P.; Bezuijen, A.

    2002-01-01

    In this report, hydraulic fracturing is investigated using the distinct element code PFC2D from Itasca. Special routines were written to be able to model hydraulic fracturing. These include adding fluid flow to PFC2D and updating the fluid flow domains when fractures appear. A brief description of t

  10. Plug & Play Control of Hydraulic Networks

    DEFF Research Database (Denmark)

    Jensen, Tom Nørgaard

    2012-01-01

    Process Control research program, which the work presented here is a part of. An industrial case study involving a large-scale hydraulic network with non-linear dynamics is studied. The hydraulic network underlies a district heating system, which provides heating water to a number of end-users in a city...

  11. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid...

  12. Initiation of Hydraulic Fractures in Natural Sandstones

    NARCIS (Netherlands)

    Lhomme, T.P.Y.

    2005-01-01

    Hydraulic fracturing is a stimulation technique commonly used for the enhancement of hydrocarbon reservoir recovery. Controlling the initiation of a hydraulic fracture from the open-hole section of a well without zone isolation requires an in-depth understanding of the factors which have a decisive

  13. Trends in Design of Water Hydraulics

    DEFF Research Database (Denmark)

    Conrad, Finn

    2005-01-01

    and mobile machines and equipment that operate in environmentally sensitive surroundings. Today’s progress in water hydraulics includes electro-water hydraulic proportional valves and servovalves for design of motion control solutions for machines and robots. The remarkable property is that the components...

  14. Design of Pumps for Water Hydraulic Systems

    DEFF Research Database (Denmark)

    Klit, Peder; Olsen, Stefan; Bech, Thomas Nørgaard

    1999-01-01

    This paper considers the development of two pumps for water hydraulic applications. The pumps are based on two different working principles: The Vane-type pump and the Gear-type pump. Emphasis is put on the considerations that should be made to account for water as the hydraulic fluid.......KEYWORDS: water, pump, design, vane, gear....

  15. Thermo-mechanical behaviour of coolant channels for heavy water reactors under accident conditions

    International Nuclear Information System (INIS)

    The objective of nuclear safety research programme is to develop and verify computer models to accurately predict the behavior of reactor structural components under operating and off normal conditions. Indian Pressurised Heavy Water Reactors (PHWRs) are tube type of reactors. The coolant channel assemblies, being one of the most important components, need detailed analysis under all operating conditions as well as during postulated conditions of accidents for its thermo-mechanical behaviour. One of the postulated accident scenarios for heavy water moderated pressure tube type of reactors i.e. PHWRs is Loss Of Coolant Accident (LOCA) coincident with Loss Of Emergency Core Cooling System (LOECCS). In this case, even though the reactor is tripped, the decay heat may not be removed adequately due to low or no flow condition and inventory depletion of primary side. Since the emergency core cooling system is presumed to be not available, the cooling of the fuel pins and the coolant channel assembly depends on the moderator cooling system, which is assumed to be available. Moderator cooling system is a separate system in PHWRs. In PHWRs, the fuel assembly is surrounded by pressure tube, an annulus insulating environment and a concentric calandria tube. In this postulated accident scenario, a structural integrity evaluation has been carried out to assess the modes of deformation of pressure tube-calandria tube assembly in a tube type nuclear reactor. The loading of pressure and temperature causes the pressure tube to sag/balloon and come in contact with the outer cooler calandria tube. The resulting heat transfer could cool and thus control the deformation of the pressure tube thus introducing inter-dependency between thermal and mechanical contact behaviour. The amount of heat thus expelled significantly depends on the thermal contact conductance and the nature of contact between the two tubes. Deformation of pressure tube creates a heat removal path to the relatively

  16. On-chip single cell funneling operated by microfabricated thermo-responsive hydrogel layers

    International Nuclear Information System (INIS)

    We present a multilayer microfluidic system having a KrF excimer laser micro-patterned thermo-responsive poly-(N-isopropyl)-acrylamide (PNIPAAm) based hydrogel layer integrated as a freestanding component that operates as a temperature-triggered cell isolation actuator for single cell assays applications. When the system is assembled, the size of the laser machined micro-through-hole (entrance diameter is 150 μm, while exit hole diameter varies from 10 to 80 μm) can be reversibly modulated as a consequence of the polymer volumetric phase transition induced by heating the device above the critical temperature of 32 °C; as a result of the polymer water loss, the shrinkage of the layer caused the hole to homogeneously shrink, thus reducing its original size to about 40% in the polymer collapsed state. This actuation mechanism was exploited to trap a cellular sample in the shrunken exit hole on the top of the hydrogel layer by applying a negative pressure across the film when the system is brought to 37 °C. Subsequently, the funneling of the trapped cell took place through the orifice when the polymer’s natural relaxation at room temperature toward its initial state occurred; the functionality of the device was proved using optical microscopy to monitor MG63 cells as a model cell line during the funneling through the size-modulating structure. (paper)

  17. On-chip single cell funneling operated by microfabricated thermo-responsive hydrogel layers

    Science.gov (United States)

    Santaniello, Tommaso; Yan, Yunsong; Tocchio, Alessandro; Martello, Federico; Gassa, Federico; Webb, Patrick; Zhao, Weiwei; Tamplenizza, Margherita; Schulte, Carsten; Liu, Yang; Hutt, David; Milani, Paolo; Conway, Paul; Lenardi, Cristina

    2015-07-01

    We present a multilayer microfluidic system having a KrF excimer laser micro-patterned thermo-responsive poly-(N-isopropyl)-acrylamide (PNIPAAm) based hydrogel layer integrated as a freestanding component that operates as a temperature-triggered cell isolation actuator for single cell assays applications. When the system is assembled, the size of the laser machined micro-through-hole (entrance diameter is 150 μm, while exit hole diameter varies from 10 to 80 μm) can be reversibly modulated as a consequence of the polymer volumetric phase transition induced by heating the device above the critical temperature of 32 °C as a result of the polymer water loss, the shrinkage of the layer caused the hole to homogeneously shrink, thus reducing its original size to about 40% in the polymer collapsed state. This actuation mechanism was exploited to trap a cellular sample in the shrunken exit hole on the top of the hydrogel layer by applying a negative pressure across the film when the system is brought to 37 °C. Subsequently, the funneling of the trapped cell took place through the orifice when the polymer’s natural relaxation at room temperature toward its initial state occurred; the functionality of the device was proved using optical microscopy to monitor MG63 cells as a model cell line during the funneling through the size-modulating structure.

  18. Controlled Chemical Patterns with ThermoChemical NanoLithography (TCNL)

    Science.gov (United States)

    Carroll, Keith; Giordano, Anthony; Wang, Debin; Kodali, Vamsi; King, W. P.; Marder, S. R.; Riedo, E.; Curtis, J. E.

    2012-02-01

    Many research areas, both fundamental and applied, rely upon the ability to organize non-trivial assemblies of molecules on surfaces. In this work, we introduce a significant extension of ThermoChemical NanoLithography (TCNL), a high throughput chemical patterning technique that uses temperature-driven chemical reactions localized near the tip of a thermal cantilever. By combining a chemical kinetics based model with experiments, we have developed a protocol for varying the concentration of surface bound molecules. The result is an unprecedented ability to fabricate extremely complex patterns comprised of varying chemical concentrations, as demonstrated by sinusoidal patterns of amine groups with varying pitches (˜5-15 μm) and the replication of Leonardo da Vinci's Mona Lisa with dimensions of ˜30 x 40 μm^2. Programmed control of the chemical reaction rate should have widespread applications for a technique which has already been shown to nanopattern various substrates including graphene nanowires, piezoelectric crystals, and optoelectronic materials.

  19. Study on buffering characteristics of hydraulic absorber

    International Nuclear Information System (INIS)

    Control rod hydraulic drive mechanism (CRHDM) is a new type of in-vessel control rod drive technology. Hydraulic absorber is one of the key parts of control rod hydraulic drive line. It is used to buffer control rod when the rod scrams to prevent the cross-blades of control rod from deformation and damage. Based on the working process of the hydraulic absorber, a theoretical model of the buffering process was established. Calculation results of the theoretical model agree well with the experiment results. The trend of pressure change in absorber cylinder, the displacement and velocity of the piston and buffering force during the buffering process were obtained from the calculation results of the theoretical model. Then influence parameters about cushioning characteristics were analyzed, which laid foundation for optimal design of the hydraulic absorber. (authors)

  20. Evaluation of hydraulic properties in fractured rockmass

    International Nuclear Information System (INIS)

    Borehole packer test and fracture survey using borehole acoustic scanning method was performed in order to evaluate hydraulic characteristics of Tuff distributed in northern Yeosu area. Total of 303 fractures were detected and then orientation, aperture size of each fracture are analyzed. Only 12 % of detected fractures were identified as open fractures and others were filled with minerals such as calcite. This indicates that the hydraulic property of rockmass is influenced by fillings as well as aperture size. Mean of hydraulic conductivity of rockmass based on stochastic continuum theory was 5x 10-9m/s and it was coincident with harmonic mean. Anisotropy of hydraulic conductivity was analyzed by fracture network modeling interpretation. The result showed that horizontal and vertical components conductivity values were nearly same, therefore it might be concluded that the rockmass was hydraulically isotropic

  1. Modeling and Simulation of Hydraulic Engine Mounts

    Institute of Scientific and Technical Information of China (English)

    DUAN Shanzhong; Marshall McNea

    2012-01-01

    Hydraulic engine mounts are widely used in automotive powertrains for vibration isolation.A lumped mechanical parameter model is a traditional approach to model and simulate such mounts.This paper presents a dynamical model of a passive hydraulic engine mount with a double-chamber,an inertia track,a decoupler,and a plunger.The model is developed based on analogy between electrical systems and mechanical-hydraulic systems.The model is established to capture both low and high frequency dynatmic behaviors of the hydraulic mount.The model will be further used to find the approximate pulse responses of the mounts in terms of the force transmission and top chamber pressure.The close form solution from the simplifiod linear model may provide some insight into the highly nonlinear behavior of the mounts.Based on the model,computer simulation has been carried out to study dynamic performance of the hydraulic mount.

  2. Effect of Subsoil Compaction on Hydraulic Parameters

    DEFF Research Database (Denmark)

    Iversen, Bo Vangsø; Berisso, Feto Esimo; Schjønning, Per;

    effects of subsoil compaction on soil ecological services and functions) put forward the hypothesis that due to a decrease in the hydraulic conductivity in the soil matrix, compaction increases the frequency of preferential flow events in macropores and therefore increases the leaching of otherwise....... In the field the near-saturated hydraulic conductivity was measured with a tension infiltrometer in the same treatments at a depth of 30 cm. In the laboratory saturated and near-saturated hydraulic conductivity and the bulk density were measured as well. Also, macropores in the large soil cores were made...... that for the upper soil depth, a significant increase in bulk density was measured for the compacted treatment. For the lower depth differences were less pronounced. For the saturated hydraulic conductivity, the results indicated a decrease of the hydraulic conductivity for the compacted treatment for the upper...

  3. TRANSLATING AVAILABLE BASIC SOIL DATA INTO MISSING SOIL HYDRAULIC CHARACTERISTICS

    Science.gov (United States)

    Soil hydraulic pedotransfer functions transfer simple-to-measure soil survey information into soil hydraulic characteristics, that are otherwise costly to measure. Examples are presented of different equations describing hydraulic characteristics and of pedotransfer functions used to predict paramet...

  4. Issues of a Computer-Aided Design of Hydraulic Jacks

    Science.gov (United States)

    Averchenkov, V. I.; Averchenkov, A. V.; Kolyakinand, V. V.; Orekhov, O. D.

    2016-04-01

    The article deals with the issues of a computer-aided design of hydraulic equipment, namely hydraulic jacks. Design principles of the hydraulic jack CAD system are described. In addition, the possibilities for the system improvement and expansion are considered.

  5. Thermal hydraulic performance assessment of 18x18 solid fuel for the reactor power uprate

    Energy Technology Data Exchange (ETDEWEB)

    Shin, C. H.; Kim, H. I.; In, W. K.; Chun, T. H. [KAERI, Daejeon (Korea, Republic of)

    2009-07-01

    The thermal hydraulic analysis of the 18x18 solid fuel assembly has been carried out for the power uprate of OPR-1000. The suggested 18x18 solid fuel assembly has a structural compatibility for reloading to operating PWR reactors of OPR-1000. In the thermal hydraulic analysis, the mixing effect between the neighboring channels has to be carried out in a subchannel analysis. A subchannel analysis code, MATRA has been developed by KAERI. The main parameters for the thermal hydraulic design, such as a pressure drop and DNBR, and the maximum temperature in a fuel pellet have been estimated. The 18x18 solid fuel in the 120% power uprate showed an increased pressure drop and a similar DNBR behavior. The peak temperature in the fuel centerline, however, was slightly higher than that of the 16x16 solid fuel assembly for the normal operation condition. The peak temperature of a fuel pellet in the solid fuel should be seriously considered for increasing power density.

  6. Choroidal neovascular membrane associated with choroidal osteoma (CO treated with trans-pupillary thermo therapy.

    Directory of Open Access Journals (Sweden)

    Sharma Sumita

    2004-01-01

    Full Text Available Choroidal neovascular membrane, a known complication of choroidal osteoma causing visual loss when located subfoveally, can be successfully treated with transpupillary thermo therapy.

  7. Detailed measurements and modelling of thermo active components using a room size test facility

    DEFF Research Database (Denmark)

    Weitzmann, Peter; Svendsen, Svend

    This paper describes an investigation of thermo active components based on prefabricated hollow core concrete decks. Recent years have given an increased awareness of the use of thermo active components as an alternative to mechanical cooling systems in office buildings. The investigation covers...... measurements in an office sized test facility with thermo active ceiling and floor as well as modelling of similar conditions in a computer program designed for analysis of building integrated heating and cooling systems. A method for characterizing the cooling capacity of thermo active components is described...

  8. THE INFLUENCE OF WAVE PATTERNS AND FREQUENCY ON THERMO-ACOUSTIC COOLING EFFECT

    Directory of Open Access Journals (Sweden)

    CHEN BAIMAN

    2011-06-01

    Full Text Available With the increasing environmental challenges, the search for an environmentally benign cooling technology that has simple and robust architecture continues. Thermo-acoustic refrigeration seems to be a promising candidate to fulfil these requirements. In this study, a simple thermo-acoustic refrigeration system was fabricated and tested. The thermo-acoustic refrigerator consists of acoustic driver (loudspeaker, resonator, stack, vacuum system and testing system. The effect of wave patterns and frequency on thermo-acoustic cooling effect was studied. It was found that a square wave pattern would yield superior cooling effects compared to other wave patterns tested.

  9. DLC coatings for hydraulic applications

    Institute of Scientific and Technical Information of China (English)

    Luca NOBILI; Luca MAGAGNIN

    2009-01-01

    Replacement of lubricating oils with water or low-viscosity fluids is highly desirable in many industrial fields, on account of the environmental and economical advantages. Low lubricity of water might be insufficient for proper operation of hydraulic components, and diamond-like carbon(DLC) coatings are very attractive as solid lubricant films. A remote-plasma PACVD process was utilized to deposit hydrogenated DLC coatings (a-C:H) on different substrates. Microindentation measurements show that the coating hardness is around 35 GPa. Tribological behavior was evaluated by block-on-ring tests performed in water and water with alumina. The wear rate was calculated after measuring the wear volume by a laser profilemeter. Morphological and compositional analysis of the wear tracks reveal that coating failure may occur by abrasive wear or delamination, depending on the substrate properties. Hard and smooth substrates give the best results and dispersed alumina particles increase the wear rate.

  10. European liquid metal thermal-hydraulics R and D: present and future

    International Nuclear Information System (INIS)

    A large role is attributed in the future within the European Sustainable Nuclear Energy Technology Platform (SNE-TP) and especially the underlying European Sustainable Nuclear Industry Initiative (ESNII) to the application of fast reactors for sustainable nuclear energy production. Specifically, fast reactors are considered attractive because of their possibility to use natural resources efficiently and to reduce the volume and lifetime of nuclear waste. Currently four demonstration projects have a promising outlook in Europe, i.e. the ASTRID project in France, the MYRRHA project in Belgium, the ALFRED project developed in Europe and to be built in Romania, and the ELECTRA project in Sweden. Sodium and lead(-alloys) are envisaged as coolants for these reactors. Obviously, in the development of these reactors, thermal-hydraulics is recognized as a key challenge with emphasis on safety issues. This paper will discuss the present development status of liquid metal cooled reactor thermal-hydraulics as an outcome of the European 7. framework programme THINS (Thermal-Hydraulics for Innovative Nuclear Systems) project. The main project results with respect to liquid metal cooled reactors will be summarized, i.e. turbulence heat transfer model development, fuel assembly analysis, pool thermal-hydraulics, system behaviour, multi-phase physics, and multiscale thermal-hydraulics simulation. In conclusion, the main challenges for future developments will be indicated. Emphasis will be put on the important experimental and numerical challenges. (authors)

  11. Critical analysis of soil hydraulic conductivity determination using monoenergetic gamma radiation attenuation

    International Nuclear Information System (INIS)

    Three soil samples of different textures: LVA (red yellow latosol), LVE (dark red latosol) and LRd (dystrophic dark red latosol) were utilized for unsaturated hydraulic conductivity K(θ) measurements. Soil bulk densities and water contents during internal water drainage were measured by monoenergetic gamma radiation attenuation, using homogeneous soil columns assembled in the laboratory. The measurements were made with a collimated gamma beam of 0.003 m in diameter using a Nal(Tl) (3'' x 3 '') detector and a 137Cs gamma source of 74 X 108 Bq and 661.6 KeV. Soil columns were scanned with the gamma beam from 0.01 to 0.20 m depth, in 0.01m steps, for several soil water redistribution times. The results show a great variability of the unsaturated hydraulic conductivity relation K(θ), even though homogeneous soils were used. The variability among methods is significantly smaller in relation to variability in space. The assumption of unit hydraulic gradient during redistribution of soil water utilized in the methods of Hillel, Libardi and Sisson leads to hydraulic conductivity values that increase in depth. The exponential character of the K(θ) relationship, is responsible for the difficulty of estimating soil hydraulic conductivity, which is a consequence of small variations in the porous arrangement, even in samples supposed to be homogeneous. (author)

  12. Hydraulic Motor Driving Variable-Pitch System for Wind Turbine

    OpenAIRE

    Huang, Ye; JiBao QI

    2013-01-01

    The present hydraulic variable-pitch mechanism of wind turbine uses three hydraulic cylinders to drive three crank and connecting rod mechanisms respectively; the blades are moved with the cranks. The hydraulic variable-pitch mechanism has complex structure, occupies a lot of space and its maintenance is trouble. In order to make up for the shortcomings of hydraulic cylinder variable-pitch system, the present hydraulic variable-pitch mechanism should be changed as follows: hydraulic motors ar...

  13. An approach to optimize the design of hydraulic reservoirs

    OpenAIRE

    Wohlers, Alexander; Backes, Alexander; Schönfeld, Dirk

    2016-01-01

    Increasing demands regarding performance, safety and environmental compatibility of hydraulic mobile machines in combination with rising cost pressures create a growing need for specialized optimization of hydraulic systems; particularly with regard to hydraulic reservoirs. In addition to the secondary function of cooling the oil, two main functions of the hydraulic reservoir are oil storage and de-aeration of the hydraulic oil. While designing hydraulic reservoirs regarding oil storage is qu...

  14. Newnes electronics assembly handbook

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Newnes Electronics Assembly Handbook: Techniques, Standards and Quality Assurance focuses on the aspects of electronic assembling. The handbook first looks at the printed circuit board (PCB). Base materials, basic mechanical properties, cleaning of assemblies, design, and PCB manufacturing processes are then explained. The text also discusses surface mounted assemblies and packaging of electromechanical assemblies, as well as the soldering process. Requirements for the soldering process; solderability and protective coatings; cleaning of PCBs; and mass solder/component reflow soldering are des

  15. Inlet nozzle assembly

    Science.gov (United States)

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  16. Development of prediction method of void fraction distribution in fuel assemblies for use in safety analysis

    International Nuclear Information System (INIS)

    The establishment of code system for BWR safety analysis is now in progress at Institute of Nuclear Safety (INS), in order to predict the onset of boiling transition (BT) in nuclear fuel assemblies in any thermal-hydraulic condition without relying on the thermal-hydraulic characteristic data provided by licensee. The prediction method for void fraction distribution across cross section of BWR fuel assemblies has been developed based on multi-dimensional two-fluid model. Lift forces working on bubbles and void diffusion that can not be handled with one-dimensional analysis were considered. Comparisons between calculated results and experimental data obtained from thermal-hydraulic tests of PWR and BWR mock-up fuel assemblies showed good agreement. Lift force models have been empirical and further studies were needed, but the calculations showed the possibility of applying these models to multi-dimensional gas-liquid two-phase flow analysis. (author)

  17. Influence of osmotic processes on the excess-hydraulic head measured in the Toarcian/Domerian argillaceous formation of Tournemire

    International Nuclear Information System (INIS)

    In the framework of the studies dealing on ability to store radioactive wastes in argillaceous formations, signification of interstitial pressures is an important point to understand water and solutes transport. In very low permeability argillaceous formations, like those studied in the Callovo-Oxfordian of the Paris basin by ANDRA, pore pressure is frequently higher than the theoretical hydrostatic pressure or than the pressure in the surrounding aquifers. Such an overpressure is also measured in the Toarcian/Domerian argillaceous formation (k = 10-21m2), studied by the IRSN in the underground research laboratory of Tournemire (Aveyron, France). The hydraulic head profile has been specified in this manuscript and found to present a 30 ±10 m excess head. This excess-head can be due to compaction disequilibrium of the argillaceous formation, diagenetic evolution of the rock, tectonic compression, changes in hydrodynamic boundary conditions or osmotic processes. Amongst these potential causes, chemical osmosis and thermo-osmosis, a fluid flow under a chemical concentration and a temperature gradient, respectively, are expected to develop owing to the small pore size and the electrostatic interactions related to the charged surface of clay minerals. The goal of the work presented here was to study and quantify the contribution of each cause to the measured excess-head. Chemo-osmotic and thermo-osmotic permeabilities were obtained by experiments and using theoretical models. Theoretical models are based on the reproduction of the interactions occurring between the charged surface of clay minerals and pore solution and their up-scaling at the representative elementary volume macroscopic scale. Chemical osmosis phenomenon is related to anionic exclusion and the determination of the chemo-osmotic efficiency requires the resolution of an electrical interactions model. A triple-layer-model which considers diffuse layers overlapping was improved during this thesis to be

  18. Ground source thermo-pumps for individual residential houses; Les thermopompes a capteur enterres dans les residences individuelles

    Energy Technology Data Exchange (ETDEWEB)

    Ossant, G. [Societe Syrec (France)

    1997-12-31

    The main principles, performances and constraints of the various types of ground source thermo-pumps for individual houses, i.e. ground/ground thermo-pumps, glycol water/water thermo-pumps and ground/water thermo-pumps are reviewed, and their energy consumptions are discussed. The design and operating conditions of a reverse ground source thermo-pump (Syrec) for space heating and air conditioning through a hot and cold floor system and a Syrec ground source thermo-pump for water heating, are presented

  19. Thermo-mechanical behavior of epoxy shape memory polymer foams

    Science.gov (United States)

    Di Prima, M. A.; Lesniewski, M.; Gall, K.; McDowell, D. L.; Sanderson, T.; Campbell, D.

    2007-12-01

    Shape memory polymer foams have significant potential in biomedical and aerospace applications, but their thermo-mechanical behavior under relevant deformation conditions is not well understood. In this paper we examine the thermo-mechanical behavior of epoxy shape memory polymer foams with an average relative density of nearly 20%. These foams are deformed under conditions of varying stress, strain, and temperature. The glass transition temperature of the foam was measured to be approximately 90 °C and compression and tensile tests were performed at temperatures ranging from 25 to 125 °C. Various shape recovery tests were used to measure recovery properties under different thermo-mechanical conditions. Tensile strain to failure was measured as a function of temperature to probe the maximum recovery limits of the foam in both temperature and strain space. Compression tests were performed to examine compressibility of the material as a function of temperature; these foams can be compacted as much as 80% and still experience full strain recovery over multiple cycles. Furthermore, both tensile strain to failure tests and cyclic compression recovery tests revealed that deforming at a temperature of 80 °C maximizes macroscopic strain recovery. Deformation temperatures above or below this optimal value lead to lower failure strains in tension and the accumulation of non-recoverable strains in cyclic compression. Micro-computed tomography (micro-CT) scans of the foam at various compressed states were used to understand foam deformation mechanisms. The micro-CT studies revealed the bending, buckling, and collapse of cells with increasing compression, consistent with results from published numerical simulations.

  20. Tilt assembly for tracking solar collector assembly

    Science.gov (United States)

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.