WorldWideScience

Sample records for assembly requires distinct

  1. The Cell Cycle Timing of Centromeric Chromatin Assembly in Drosophila Meiosis Is Distinct from Mitosis Yet Requires CAL1 and CENP-C

    Science.gov (United States)

    Gorgescu, Walter; Tang, Jonathan; Costes, Sylvain V.; Karpen, Gary H.

    2012-01-01

    CENP-A (CID in flies) is the histone H3 variant essential for centromere specification, kinetochore formation, and chromosome segregation during cell division. Recent studies have elucidated major cell cycle mechanisms and factors critical for CENP-A incorporation in mitosis, predominantly in cultured cells. However, we do not understand the roles, regulation, and cell cycle timing of CENP-A assembly in somatic tissues in multicellular organisms and in meiosis, the specialized cell division cycle that gives rise to haploid gametes. Here we investigate the timing and requirements for CID assembly in mitotic tissues and male and female meiosis in Drosophila melanogaster, using fixed and live imaging combined with genetic approaches. We find that CID assembly initiates at late telophase and continues during G1 phase in somatic tissues in the organism, later than the metaphase assembly observed in cultured cells. Furthermore, CID assembly occurs at two distinct cell cycle phases during male meiosis: prophase of meiosis I and after exit from meiosis II, in spermatids. CID assembly in prophase I is also conserved in female meiosis. Interestingly, we observe a novel decrease in CID levels after the end of meiosis I and before meiosis II, which correlates temporally with changes in kinetochore organization and orientation. We also demonstrate that CID is retained on mature sperm despite the gross chromatin remodeling that occurs during protamine exchange. Finally, we show that the centromere proteins CAL1 and CENP-C are both required for CID assembly in meiosis and normal progression through spermatogenesis. We conclude that the cell cycle timing of CID assembly in meiosis is different from mitosis and that the efficient propagation of CID through meiotic divisions and on sperm is likely to be important for centromere specification in the developing zygote. PMID:23300382

  2. Design requirement on HYPER blanket fuel assembly

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, B. O.; Nam, C.; Ryu, W. S.; Lee, B. S.; Park, W. S.

    2000-07-01

    This document describes design requirements which are needed for designing the blanket assembly of the HYPER as design guidance. The blanket assembly of the HYPER consists of blanket fuel rods, mounting rail, spacer, upper nozzle with handling socket, bottom nozzle with mounting rail and skeleton structure. The blanket fuel rod consists of top end plug, bottom end plug with key way, blanket fuel slug, and cladding. In the assembly, the rods are in a triangular pitch array. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements for the blanket fuel assembly of the HYPER

  3. Assembly of the Arp5 (Actin-related Protein) Subunit Involved in Distinct INO80 Chromatin Remodeling Activities*

    Science.gov (United States)

    Yao, Wei; Beckwith, Sean L.; Zheng, Tina; Young, Thomas; Dinh, Van T.; Ranjan, Anand; Morrison, Ashby J.

    2015-01-01

    ATP-dependent chromatin remodeling, which repositions and restructures nucleosomes, is essential to all DNA-templated processes. The INO80 chromatin remodeling complex is an evolutionarily conserved complex involved in diverse cellular processes, including transcription, DNA repair, and replication. The functional diversity of the INO80 complex can, in part, be attributed to specialized activities of distinct subunits that compose the complex. Furthermore, structural analyses have identified biochemically discrete subunit modules that assemble along the Ino80 ATPase scaffold. Of particular interest is the Saccharomyces cerevisiae Arp5-Ies6 module located proximal to the Ino80 ATPase and the Rvb1-Rvb2 helicase module needed for INO80-mediated in vitro activity. In this study we demonstrate that the previously uncharacterized Ies2 subunit is required for Arp5-Ies6 association with the catalytic components of the INO80 complex. In addition, Arp5-Ies6 module assembly with the INO80 complex is dependent on distinct conserved domains within Arp5, Ies6, and Ino80, including the spacer region within the Ino80 ATPase domain. Arp5-Ies6 interacts with chromatin via assembly with the INO80 complex, as IES2 and INO80 deletion results in loss of Arp5-Ies6 chromatin association. Interestingly, ectopic addition of the wild-type Arp5-Ies6 module stimulates INO80-mediated ATP hydrolysis and nucleosome sliding in vitro. However, the addition of mutant Arp5 lacking unique insertion domains facilitates ATP hydrolysis in the absence of nucleosome sliding. Collectively, these results define the requirements of Arp5-Ies6 assembly, which are needed to couple ATP hydrolysis to productive nucleosome movement. PMID:26306040

  4. Distinct functional domains within the acidic cluster of tegument protein pp28 required for trafficking and cytoplasmic envelopment of human cytomegalovirus.

    Science.gov (United States)

    Seo, Jun-Young; Jeon, Hyejin; Hong, Sookyung; Britt, William J

    2016-10-01

    Human cytomegalovirus UL99-encoded tegument protein pp28 contains a 16 aa acidic cluster that is required for pp28 trafficking to the assembly compartment (AC) and the virus assembly. However, functional signals within the acidic cluster of pp28 remain undefined. Here, we demonstrated that an acidic cluster rather than specific sorting signals was required for trafficking to the AC. Recombinant viruses with chimeric pp28 proteins expressing non-native acidic clusters exhibited delayed viral growth kinetics and decreased production of infectious virus, indicating that the native acidic cluster of pp28 was essential for wild-type virus assembly. These results suggested that the acidic cluster of pp28 has distinct functional domains required for trafficking and for efficient virus assembly. The first half (aa 44-50) of the acidic cluster was sufficient for pp28 trafficking, whereas the native acidic cluster consisting of aa 51-59 was required for the assembly of wild-type levels of infectious virus.

  5. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A.

    Directory of Open Access Journals (Sweden)

    Margarita Zayas

    2016-01-01

    Full Text Available Hepatitis C virus (HCV nonstructural protein (NS5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI and two intrinsically disordered domains (DII and DIII interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2. We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core-RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i SC-dependent recruitment of replication complexes to core protein and (ii BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles.

  6. Design requirement on KALIMER blanket fuel assembly duct

    International Nuclear Information System (INIS)

    Hwang, Woan; Kang, H. Y.; Nam, C.; Kim, J. O.

    1998-03-01

    This document describes design requirements which are needed for designing the blanket fuel assembly duct of the KALIMER as design guidance. The blanket fuel assembly duct of the KALIMER consists of fuel rods, mounting rail, nosepiece, duct with pad, handling socket with pad. Blanket fuel rod consists of top end plug, bottom end plug with solid ferritic-martensitic steel rod and key way blanket fuel slug, cladding, and wire wrap. In the assembly, the rods are in a triangular pitch array, and the rod bundle is attached to the nosepiece with mounting rails. The bottom end of the assembly duct is formed by a long nosepiece which provides the lower restraint function and the paths for coolant inlet. This report contains functional requirements, performance and operational requirements, interfacing systems requirements, core restraint and interface requirements, design limits and strength requirements, system configuration and essential feature requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. (author). 20 refs., 4 figs

  7. Design requirement on KALIMER control rod assembly duct

    International Nuclear Information System (INIS)

    Hwang, W.; Kang, H. Y.; Nam, C.; Kim, J. O.; Kim, Y. J.

    1998-03-01

    This document establishes the design guidelines which are needs for designing the control rod assembly duct of the KALIMER as design requirements. it describes control rod assembly duct of the KALIMER and its requirements that includes functional requirements, performance requirements, interfacing systems, design limits and strength requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. The control rod system consists of three parts, which are drive mechanism, drive-line, and absorber bundle. This report deals with the absorber bundle and its outer duct only because the others are beyond the scope of fuel system design. The guidelines for design requirements intend to be used for an improved design of the control rod assembly duct of the KALIMER. (author). 19 refs

  8. Design requirement on KALIMER control rod assembly duct

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, W.; Kang, H. Y.; Nam, C.; Kim, J. O.; Kim, Y. J

    1998-03-01

    This document establishes the design guidelines which are needs for designing the control rod assembly duct of the KALIMER as design requirements. it describes control rod assembly duct of the KALIMER and its requirements that includes functional requirements, performance requirements, interfacing systems, design limits and strength requirements, seismic requirements, structural requirements, environmental requirements, reliability and safety requirements, standard and codes, QA programs, and other requirements. The control rod system consists of three parts, which are drive mechanism, drive-line, and absorber bundle. This report deals with the absorber bundle and its outer duct only because the others are beyond the scope of fuel system design. The guidelines for design requirements intend to be used for an improved design of the control rod assembly duct of the KALIMER. (author). 19 refs.

  9. Drosophila Ana1 is required for centrosome assembly and centriole elongation.

    Science.gov (United States)

    Saurya, Saroj; Roque, Hélio; Novak, Zsofia A; Wainman, Alan; Aydogan, Mustafa G; Volanakis, Adam; Sieber, Boris; Pinto, David Miguel Susano; Raff, Jordan W

    2016-07-01

    Centrioles organise centrosomes and cilia, and these organelles have an important role in many cell processes. In flies, the centriole protein Ana1 is required for the assembly of functional centrosomes and cilia. It has recently been shown that Cep135 (also known as Bld10) initially recruits Ana1 to newly formed centrioles, and that Ana1 then recruits Asl (known as Cep152 in mammals) to promote the conversion of these centrioles into centrosomes. Here, we show that ana1 mutants lack detectable centrosomes in vivo, that Ana1 is irreversibly incorporated into centrioles during their assembly and appears to play a more important role in maintaining Asl at centrioles than in initially recruiting Asl to centrioles. Unexpectedly, we also find that Ana1 promotes centriole elongation in a dose-dependent manner: centrioles are shorter when Ana1 dosage is reduced and are longer when Ana1 is overexpressed. This latter function of Ana1 appears to be distinct from its role in centrosome and cilium function, as a GFP-Ana1 fusion lacking the N-terminal 639 amino acids of the protein can support centrosome assembly and cilium function but cannot promote centriole over-elongation when overexpressed. © 2016. Published by The Company of Biologists Ltd.

  10. SP-100 nuclear assembly test: Test assembly functional requirements and system arrangement

    International Nuclear Information System (INIS)

    Fallas, T.T.; Gluck, R.; Motwani, K.; Clay, H.; O'Neill, G.

    1991-01-01

    This paper describes the functional requirements and the system that will be tested to validate the reactor, flight shield, and flight controller of the SP-100 Generic Flight System (GFS). The Nuclear Assembly Test (NAT) consists of the test article (SP-100 reactor with control devices and the flight shield) and its supporting systems. The NAT test assembly is being designed by GE. Westinghouse Hanford Company (WHC) is designing the test cell and vacuum vessel system that will contain the NAT test assembly (Renkey et al. 1989). Preliminary design reviews have been completed and the final design is under way

  11. Cytochrome oxidase assembly does not require catalytically active cytochrome C.

    Science.gov (United States)

    Barrientos, Antoni; Pierre, Danielle; Lee, Johnson; Tzagoloff, Alexander

    2003-03-14

    Cytochrome c oxidase (COX), the terminal enzyme of the mitochondrial respiratory chain, catalyzes the transfer of electrons from reduced cytochrome c to molecular oxygen. COX assembly requires the coming together of nuclear- and mitochondrial-encoded subunits and the assistance of a large number of nuclear gene products acting at different stages of maturation of the enzyme. In Saccharomyces cerevisiae, expression of cytochrome c, encoded by CYC1 and CYC7, is required not only for electron transfer but also for COX assembly through a still unknown mechanism. We have attempted to distinguish between a functional and structural requirement of cytochrome c in COX assembly. A cyc1/cyc7 double null mutant strain was transformed with the cyc1-166 mutant gene (Schweingruber, M. E., Stewart, J. W., and Sherman, F. (1979) J. Biol. Chem. 254, 4132-4143) that expresses stable but catalytically inactive iso-1-cytochrome c. The COX content of the cyc1/cyc7 double mutant strain harboring non-functional iso-1-cytochrome c has been characterized spectrally, functionally, and immunochemically. The results of these studies demonstrate that cytochrome c plays a structural rather than functional role in assembly of cytochrome c oxidase. In addition to its requirement for COX assembly, cytochrome c also affects turnover of the enzyme. Mutants containing wild type apocytochrome c in mitochondria lack COX, suggesting that only the folded and mature protein is able to promote COX assembly.

  12. Assembling Components using SysML with Non-Functional Requirements

    OpenAIRE

    Chouali , Samir; Hammad , Ahmed; Mountassir , Hassan

    2013-01-01

    International audience; Non-functional requirements of component based systems are important as their functional requirements, therefore they must be considered in components assembly. These properties are beforehand specified with SysML requirement diagram. We specify component based system architecture with SysML block definition diagram, and component behaviors with sequence diagrams. We propose to specify formally component interfaces with interface automata, obtained from requirement and...

  13. Covalent Tethering and Residues with Bulky Hydrophobic Side Chains Enable Self-Assembly of Distinct Amyloid Structures.

    Science.gov (United States)

    Ruiz, Jérémy; Boehringer, Régis; Grogg, Marcel; Raya, Jésus; Schirer, Alicia; Crucifix, Corinne; Hellwig, Petra; Schultz, Patrick; Torbeev, Vladimir

    2016-12-02

    Polymorphism is a common property of amyloid fibers that complicates their detailed structural and functional studies. Here we report experiments illustrating the chemical principles that enable the formation of amyloid polymorphs with distinct stoichiometric composition. Using appropriate covalent tethering we programmed self-assembly of a model peptide corresponding to the [20-41] fragment of human β2-microglobulin into fibers with either trimeric or dimeric amyloid cores. Using a set of biophysical and biochemical methods we demonstrated their distinct structural, morphological, and templating properties. Furthermore, we showed that supramolecular approaches in which the peptide is modified with bulky substituents can also be applied to modulate the formation of different fiber polymorphs. Such strategies, when applied to disease-related peptides and proteins, will greatly help in the evaluation of the biological properties of structurally distinct amyloids. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. ASF1 is required to load histones on the HIRA complex in preparation of paternal chromatin assembly at fertilization.

    Science.gov (United States)

    Horard, Béatrice; Sapey-Triomphe, Laure; Bonnefoy, Emilie; Loppin, Benjamin

    2018-05-11

    Anti-Silencing Factor 1 (ASF1) is a conserved H3-H4 histone chaperone involved in both Replication-Coupled and Replication-Independent (RI) nucleosome assembly pathways. At DNA replication forks, ASF1 plays an important role in regulating the supply of H3.1/2 and H4 to the CAF-1 chromatin assembly complex. ASF1 also provides H3.3-H4 dimers to HIRA and DAXX chaperones for RI nucleosome assembly. The early Drosophila embryo is an attractive system to study chromatin assembly in a developmental context. The formation of a diploid zygote begins with the unique, genome-wide RI assembly of paternal chromatin following sperm protamine eviction. Then, within the same cytoplasm, syncytial embryonic nuclei undergo a series of rapid, synchronous S and M phases to form the blastoderm embryo. Here, we have investigated the implication of ASF1 in these two distinct assembly processes. We show that depletion of the maternal pool of ASF1 with a specific shRNA induces a fully penetrant, maternal effect embryo lethal phenotype. Unexpectedly, despite the depletion of ASF1 protein to undetectable levels, we show that asf1 knocked-down (KD) embryos can develop to various stages, thus demonstrating that ASF1 is not absolutely required for the amplification of cleavage nuclei. Remarkably, we found that ASF1 is required for the formation of the male pronucleus, although ASF1 protein does not reside in the decondensing sperm nucleus. In asf1 KD embryos, HIRA localizes to the male nucleus but is only capable of limited and insufficient chromatin assembly. Finally, we show that the conserved HIRA B domain, which is involved in ASF1-HIRA interaction, is dispensable for female fertility. We conclude that ASF1 is critically required to load H3.3-H4 dimers on the HIRA complex prior to histone deposition on paternal DNA. This separation of tasks could optimize the rapid assembly of paternal chromatin within the gigantic volume of the egg cell. In contrast, ASF1 is surprisingly dispensable for the

  15. Centrioles: some self-assembly required.

    Science.gov (United States)

    Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F

    2008-12-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.

  16. A chemical-genetic strategy reveals distinct temporal requirements for SAD-1 kinase in neuronal polarization and synapse formation

    Directory of Open Access Journals (Sweden)

    Shokat Kevan M

    2008-09-01

    Full Text Available Abstract Background Neurons assemble into a functional network through a sequence of developmental processes including neuronal polarization and synapse formation. In Caenorhabditis elegans, the serine/threonine SAD-1 kinase is essential for proper neuronal polarity and synaptic organization. To determine if SAD-1 activity regulates the establishment or maintenance of these neuronal structures, we examined its temporal requirements using a chemical-genetic method that allows for selective and reversible inactivation of its kinase activity in vivo. Results We generated a PP1 analog-sensitive variant of SAD-1. Through temporal inhibition of SAD-1 kinase activity we show that its activity is required for the establishment of both neuronal polarity and synaptic organization. However, while SAD-1 activity is needed strictly when neurons are polarizing, the temporal requirement for SAD-1 is less stringent in synaptic organization, which can also be re-established during maintenance. Conclusion This study reports the first temporal analysis of a neural kinase activity using the chemical-genetic system. It reveals that neuronal polarity and synaptic organization have distinct temporal requirements for SAD-1.

  17. Characterization of Trichome-Expressed BAHD Acyltransferases in Petunia axillaris Reveals Distinct Acylsugar Assembly Mechanisms within the Solanaceae.

    Science.gov (United States)

    Nadakuduti, Satya Swathi; Uebler, Joseph B; Liu, Xiaoxiao; Jones, A Daniel; Barry, Cornelius S

    2017-09-01

    Acylsugars are synthesized in the glandular trichomes of the Solanaceae family and are implicated in protection against abiotic and biotic stress. Acylsugars are composed of either sucrose or glucose esterified with varying numbers of acyl chains of differing length. In tomato ( Solanum lycopersicum ), acylsugar assembly requires four acylsugar acyltransferases (ASATs) of the BAHD superfamily. Tomato ASATs catalyze the sequential esterification of acyl-coenzyme A thioesters to the R4, R3, R3', and R2 positions of sucrose, yielding a tetra-acylsucrose. Petunia spp. synthesize acylsugars that are structurally distinct from those of tomato. To explore the mechanisms underlying this chemical diversity, a Petunia axillaris transcriptome was mined for trichome preferentially expressed BAHDs. A combination of phylogenetic analyses, gene silencing, and biochemical analyses coupled with structural elucidation of metabolites revealed that acylsugar assembly is not conserved between tomato and petunia. In P. axillaris , tetra-acylsucrose assembly occurs through the action of four ASATs, which catalyze sequential addition of acyl groups to the R2, R4, R3, and R6 positions. Notably, in P. axillaris , PaxASAT1 and PaxASAT4 catalyze the acylation of the R2 and R6 positions of sucrose, respectively, and no clear orthologs exist in tomato. Similarly, petunia acylsugars lack an acyl group at the R3' position, and congruently, an ortholog of SlASAT3, which catalyzes acylation at the R3' position in tomato, is absent in P. axillaris Furthermore, where putative orthologous relationships of ASATs are predicted between tomato and petunia, these are not supported by biochemical assays. Overall, these data demonstrate the considerable evolutionary plasticity of acylsugar biosynthesis. © 2017 American Society of Plant Biologists. All Rights Reserved.

  18. Centrioles: Some Self-Assembly Required

    OpenAIRE

    Song, Mi Hye; Miliaras, Nicholas B.; Peel, Nina; O'Connell, Kevin F.

    2008-01-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also self-assemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a ...

  19. Characterization of Trichome-Expressed BAHD Acyltransferases in Petunia axillaris Reveals Distinct Acylsugar Assembly Mechanisms within the Solanaceae1[OPEN

    Science.gov (United States)

    Uebler, Joseph B.; Liu, Xiaoxiao

    2017-01-01

    Acylsugars are synthesized in the glandular trichomes of the Solanaceae family and are implicated in protection against abiotic and biotic stress. Acylsugars are composed of either sucrose or glucose esterified with varying numbers of acyl chains of differing length. In tomato (Solanum lycopersicum), acylsugar assembly requires four acylsugar acyltransferases (ASATs) of the BAHD superfamily. Tomato ASATs catalyze the sequential esterification of acyl-coenzyme A thioesters to the R4, R3, R3ʹ, and R2 positions of sucrose, yielding a tetra-acylsucrose. Petunia spp. synthesize acylsugars that are structurally distinct from those of tomato. To explore the mechanisms underlying this chemical diversity, a Petunia axillaris transcriptome was mined for trichome preferentially expressed BAHDs. A combination of phylogenetic analyses, gene silencing, and biochemical analyses coupled with structural elucidation of metabolites revealed that acylsugar assembly is not conserved between tomato and petunia. In P. axillaris, tetra-acylsucrose assembly occurs through the action of four ASATs, which catalyze sequential addition of acyl groups to the R2, R4, R3, and R6 positions. Notably, in P. axillaris, PaxASAT1 and PaxASAT4 catalyze the acylation of the R2 and R6 positions of sucrose, respectively, and no clear orthologs exist in tomato. Similarly, petunia acylsugars lack an acyl group at the R3ʹ position, and congruently, an ortholog of SlASAT3, which catalyzes acylation at the R3ʹ position in tomato, is absent in P. axillaris. Furthermore, where putative orthologous relationships of ASATs are predicted between tomato and petunia, these are not supported by biochemical assays. Overall, these data demonstrate the considerable evolutionary plasticity of acylsugar biosynthesis. PMID:28701351

  20. Nuclear localization of Schizosaccharomyces pombe Mcm2/Cdc19p requires MCM complex assembly.

    Science.gov (United States)

    Pasion, S G; Forsburg, S L

    1999-12-01

    The minichromosome maintenance (MCM) proteins MCM2-MCM7 are conserved eukaryotic replication factors that assemble in a heterohexameric complex. In fission yeast, these proteins are nuclear throughout the cell cycle. In studying the mechanism that regulates assembly of the MCM complex, we analyzed the cis and trans elements required for nuclear localization of a single subunit, Mcm2p. Mutation of any single mcm gene leads to redistribution of wild-type MCM subunits to the cytoplasm, and this redistribution depends on an active nuclear export system. We identified the nuclear localization signal sequences of Mcm2p and showed that these are required for nuclear targeting of other MCM subunits. In turn, Mcm2p must associate with other MCM proteins for its proper localization; nuclear localization of MCM proteins thus requires assembly of MCM proteins in a complex. We suggest that coupling complex assembly to nuclear targeting and retention ensures that only intact heterohexameric MCM complexes remain nuclear.

  1. Feline immunodeficiency virus envelope glycoproteins antagonize tetherin through a distinctive mechanism that requires virion incorporation.

    Science.gov (United States)

    Morrison, James H; Guevara, Rebekah B; Marcano, Adriana C; Saenz, Dyana T; Fadel, Hind J; Rogstad, Daniel K; Poeschla, Eric M

    2014-03-01

    also its Env protein, but the mechanism is distinctive. Unlike other tetherin antagonists, FIV Env cannot act in trans to rescue vpu-deficient HIV-1. It must be incorporated specifically into FIV virions to be active. Also unlike other retroviral antagonists, but similar to Ebola virus Env, it does not act by downregulating or degrading tetherin. FIV Env might exclude tetherin locally or direct assembly to tetherin-negative membrane domains. Other distinctive features are apparent, including evidence that this virus evolved an equilibrium in which tetherin is both restriction factor and cofactor, as FIV requires tetherin for optimal particle release.

  2. Rab1A is required for assembly of classical swine fever virus particle.

    Science.gov (United States)

    Lin, Jihui; Wang, Chengbao; Liang, Wulong; Zhang, Jing; Zhang, Longxiang; Lv, Huifang; Dong, Wang; Zhang, Yanming

    2018-01-15

    Rab1A belongs to the small Rab GTPase family and is involved in the lifecycle of numerous viruses. Here, knockdown of Rab1A inhibited CSFV growth. Further study revealed that Rab1A depletion decreased intracellular and extracellular CSFV titers, but did not affect intracellular virus genome copies and E2 protein expression within a virus lifecycle, which suggested that Rab1A is required for CSFV particle assembly rather than for genome replication or virion release. This was proofed by blocking the spread of virus using neutralizing antibodies, through which the negative effects of Rab1A knockdown on multi-cycle replication of CSFV were eliminated. Moreover, co-immunoprecipitation and confocal microscopy assays showed that Rab1A bound to CSFV NS5A protein, indicating that Rab1A and viral NS5A proteins may work cooperatively during CSFV particle assembly. In conclusion, this study demonstrated for the first time that Rab1A is required for CSFV particle assembly and binds to viral particle assembly-related NS5A protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Technical products for radiation shielding. Shield assembled from lead blocks for radiation protection. General technical requirements

    International Nuclear Information System (INIS)

    1981-01-01

    The object of this standard description is the general technological requirements of 50 and 100 mm thick radiation protection shields assembled from lead blocks. The standard contains the definitions, types, parameters and dimensions of shields, their technical and acceptance criteria with testing methods, tagging, packaging, transportation and storage requirements, producer's liability. Some illustrated assembling examples, preferred parameters and dosimetry methods for shield inspection are given. (R.P.)

  4. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function.

    Directory of Open Access Journals (Sweden)

    Arturo Diaz

    2015-03-01

    Full Text Available Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV RNA replication occurs on perinuclear endoplasmic reticulum (ER membranes in ~70 nm vesicular invaginations (spherules. BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance.

  5. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  6. EB1 is required for primary cilia assembly in fibroblasts

    DEFF Research Database (Denmark)

    Schrøder, Jacob M; Schneider, Linda; Christensen, Søren T

    2007-01-01

    EB1 is a small microtubule (MT)-binding protein that associates preferentially with MT plus ends and plays a role in regulating MT dynamics. EB1 also targets other MT-associated proteins to the plus end and thereby regulates interactions of MTs with the cell cortex, mitotic kinetochores, and diff...... that localization of EB1 at the centriole/basal body is required for primary cilia assembly in fibroblasts....

  7. Two distinct modes of RecA action are required for DNA polymerase V-catalyzed translesion synthesis.

    Science.gov (United States)

    Pham, Phuong; Seitz, Erica M; Saveliev, Sergei; Shen, Xuan; Woodgate, Roger; Cox, Michael M; Goodman, Myron F

    2002-08-20

    SOS mutagenesis in Escherichia coli requires DNA polymerase V (pol V) and RecA protein to copy damaged DNA templates. Here we show that two distinct biochemical modes for RecA protein are necessary for pol V-catalyzed translesion synthesis. One RecA mode is characterized by a strong stimulation in nucleotide incorporation either directly opposite a lesion or at undamaged template sites, but by the absence of lesion bypass. A separate RecA mode is necessary for translesion synthesis. The RecA1730 mutant protein, which was identified on the basis of its inability to promote pol V (UmuD'(2)C)-dependent UV-mutagenesis, appears proficient for the first mode of RecA action but is deficient in the second mode. Data are presented suggesting that the two RecA modes are "nonfilamentous". That is, contrary to current models for SOS mutagenesis, formation of a RecA nucleoprotein filament may not be required for copying damaged DNA templates. Instead, SOS mutagenesis occurs when pol V interacts with two RecA molecules, first at a 3' primer end, upstream of a template lesion, where RecA mode 1 stimulates pol V activity, and subsequently at a site immediately downstream of the lesion, where RecA mode 2 cocatalyzes lesion bypass. We posit that in vivo assembly of a RecA nucleoprotein filament may be required principally to target pol V to a site of DNA damage and to stabilize the pol V-RecA interaction at the lesion. However, it is only a RecA molecule located at the 3' filament tip, proximal to a damaged template base, that is directly responsible for translesion synthesis.

  8. Manufacturing requirements of reactor assembly components for PFBR (Paper No. 041)

    International Nuclear Information System (INIS)

    Murty, C.G.K.; Bhoje, S.B.

    1987-02-01

    This paper enumerates the requirements of 500 MWe Prototype Fast Breeder Reactor (PFBR) components and considering the present state of art of Indian industry an analysis is made on the challenges to be faced in manufacture highlighting the areas needing development. The large sizes and weights of the components coupled with the limitations on shop facilities and ODC transport, demand part of the fabrication to be done at shop and balance assembly work as well as certain assembly machining operations to be done at site work shop. The stringent geometrical tolerances coupled with extensive destructive and non-destructive examinations call for balanced and low heat input welding techniques and special inspection equipment like electronic co-ordinate determination system. The present paper deals with the specific manufacturing problems of the main reactor components. (author)

  9. Crystal Structure of Marburg Virus VP40 Reveals a Broad, Basic Patch for Matrix Assembly and a Requirement of the N-Terminal Domain for Immunosuppression.

    Science.gov (United States)

    Oda, Shun-Ichiro; Noda, Takeshi; Wijesinghe, Kaveesha J; Halfmann, Peter; Bornholdt, Zachary A; Abelson, Dafna M; Armbrust, Tammy; Stahelin, Robert V; Kawaoka, Yoshihiro; Saphire, Erica Ollmann

    2016-02-15

    Marburg virus (MARV), a member of the filovirus family, causes severe hemorrhagic fever with up to 90% lethality. MARV matrix protein VP40 is essential for assembly and release of newly copied viruses and also suppresses immune signaling in the infected cell. Here we report the crystal structure of MARV VP40. We found that MARV VP40 forms a dimer in solution, mediated by N-terminal domains, and that formation of this dimer is essential for budding of virus-like particles. We also found the N-terminal domain to be necessary and sufficient for immune antagonism. The C-terminal domains of MARV VP40 are dispensable for immunosuppression but are required for virus assembly. The C-terminal domains are only 16% identical to those of Ebola virus, differ in structure from those of Ebola virus, and form a distinct broad and flat cationic surface that likely interacts with the cell membrane during virus assembly. Marburg virus, a cousin of Ebola virus, causes severe hemorrhagic fever, with up to 90% lethality seen in recent outbreaks. Molecular structures and visual images of the proteins of Marburg virus are essential for the development of antiviral drugs. One key protein in the Marburg virus life cycle is VP40, which both assembles the virus and suppresses the immune system. Here we provide the molecular structure of Marburg virus VP40, illustrate differences from VP40 of Ebola virus, and reveal surfaces by which Marburg VP40 assembles progeny and suppresses immune function. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  10. Assembly Modulated by Particle Position and Shape: A New Concept in Self-Assembly

    DEFF Research Database (Denmark)

    Tavacoli, Joe W; Heuvingh, Julien; Du Roure, Olivia

    2017-01-01

    In this communication we outline how the bespoke arrangements and design of micron-sized superparamagnetic shapes provide levers to modulate their assembly under homogeneous magnetic fields. We label this new approach, 'assembly modulated by particle position and shape' (APPS). Specifically, using...... rectangular lattices of superparamagnetic micron-sized cuboids, we construct distinct microstructures by adjusting lattice pitch and angle of array with respect to a magnetic field. Broadly, we find two modes of assembly: (1) immediate 2D jamming of the cuboids as they rotate to align with the applied field...... (rotation-induced jamming) and (2) aggregation via translation after their full alignment (dipole-dipole assembly). The boundary between these two assembly pathways is independent on field strength being solely a function of the cuboid's dimensions, lattice pitch, and array angle with respect to field...

  11. Replicating centromeric chromatin: Spatial and temporal control of CENP-A assembly

    International Nuclear Information System (INIS)

    Nechemia-Arbely, Yael; Fachinetti, Daniele; Cleveland, Don W.

    2012-01-01

    The centromere is the fundamental unit for insuring chromosome inheritance. This complex region has a distinct type of chromatin in which histone H3 is replaced by a structurally different homologue identified in humans as CENP-A. In metazoans, specific DNA sequences are neither required nor sufficient for centromere identity. Rather, an epigenetic mark comprised of CENP-A containing chromatin is thought to be the major determinant of centromere identity. In this view, CENP-A deposition and chromatin assembly are fundamental processes for the maintenance of centromeric identity across mitotic and meiotic divisions. Several lines of evidence support CENP-A deposition in metazoans occurring at only one time in the cell cycle. Such cell cycle-dependent loading of CENP-A is found in divergent species from human to fission yeast, albeit with differences in the cell cycle point at which CENP-A is assembled. Cell cycle dependent CENP-A deposition requires multiple assembly factors for its deposition and maintenance. This review discusses the regulation of new CENP-A deposition and its relevance to centromere identity and inheritance.

  12. Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis.

    Science.gov (United States)

    Ma, Lu; Rebane, Aleksander A; Yang, Guangcan; Xi, Zhiqun; Kang, Yuhao; Gao, Ying; Zhang, Yongli

    2015-12-23

    Synaptic-soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) proteins couple their stage-wise folding/assembly to rapid exocytosis of neurotransmitters in a Munc18-1-dependent manner. The functions of the different assembly stages in exocytosis and the role of Munc18-1 in SNARE assembly are not well understood. Using optical tweezers, we observed four distinct stages of assembly in SNARE N-terminal, middle, C-terminal, and linker domains (or NTD, MD, CTD, and LD, respectively). We found that SNARE layer mutations differentially affect SNARE assembly. Comparison of their effects on SNARE assembly and on exocytosis reveals that NTD and CTD are responsible for vesicle docking and fusion, respectively, whereas MD regulates SNARE assembly and fusion. Munc18-1 initiates SNARE assembly and structures t-SNARE C-terminus independent of syntaxin N-terminal regulatory domain (NRD) and stabilizes the half-zippered SNARE complex dependent upon the NRD. Our observations demonstrate distinct functions of SNARE domains whose assembly is intimately chaperoned by Munc18-1.

  13. Spike protein assembly into the coronavirion: exploring the limits of its sequence requirements

    International Nuclear Information System (INIS)

    Bosch, Berend Jan; Haan, Cornelis A.M. de; Smits, Saskia L.; Rottier, Peter J.M.

    2005-01-01

    The coronavirus spike (S) protein, required for receptor binding and membrane fusion, is incorporated into the assembling virion by interactions with the viral membrane (M) protein. Earlier we showed that the ectodomain of the S protein is not involved in this process. Here we further defined the requirements of the S protein for virion incorporation. We show that the cytoplasmic domain, not the transmembrane domain, determines the association with the M protein and suffices to effect the incorporation into viral particles of chimeric spikes as well as of foreign viral glycoproteins. The essential sequence was mapped to the membrane-proximal region of the cytoplasmic domain, which is also known to be of critical importance for the fusion function of the S protein. Consistently, only short C-terminal truncations of the S protein were tolerated when introduced into the virus by targeted recombination. The important role of the about 38-residues cytoplasmic domain in the assembly of and membrane fusion by this approximately 1300 amino acids long protein is discussed

  14. Managing today's complex healthcare business enterprise: reflections on distinctive requirements of healthcare management education.

    Science.gov (United States)

    Welton, William E

    2004-01-01

    In early 2001, the community of educational programs offering master's-level education in healthcare management began an odyssey to modernize its approach to the organization and delivery of healthcare management education. The community recognized that cumulative long-term changes within healthcare management practice required a careful examination of healthcare management context and manpower requirements. This article suggests an evidence-based rationale for defining the distinctive elements of healthcare management, thus suggesting a basis for review and transformation of master's-level healthcare management curricula. It also suggests ways to modernize these curricula in a manner that recognizes the distinctiveness of the healthcare business enterprise as well as the changing management roles and careers within these complex organizations and systems. Through such efforts, the healthcare management master's-level education community would be better prepared to meet current and future challenges, to increase its relevance to the management practice community, and to allocate scarce faculty and program resources more effectively.

  15. National Ignition Facility subsystem design requirements final optics assembly subsystem SSDR 1.8.7

    International Nuclear Information System (INIS)

    Adams, C.

    1996-01-01

    This SSDR establishes the performance, design, development and test requirements for the Final Optic Assembly (FOA). The FOA (WBS 1.8.7) as part of the Target Experimental System (1.8) includes vacuum windows, frequency conversion crystals, focus lens, debris shields and supporting mechanical equipment

  16. The histone chaperone TAF-I/SET/INHAT is required for transcription in vitro of chromatin templates.

    Science.gov (United States)

    Gamble, Matthew J; Erdjument-Bromage, Hediye; Tempst, Paul; Freedman, Leonard P; Fisher, Robert P

    2005-01-01

    To uncover factors required for transcription by RNA polymerase II on chromatin, we fractionated a mammalian cell nuclear extract. We identified the histone chaperone TAF-I (also known as INHAT [inhibitor of histone acetyltransferase]), which was previously proposed to repress transcription, as a potent activator of chromatin transcription responsive to the vitamin D3 receptor or to Gal4-VP16. TAF-I associates with chromatin in vitro and can substitute for the related protein NAP-1 in assembling chromatin onto cloned DNA templates in cooperation with the remodeling enzyme ATP-dependent chromatin assembly factor (ACF). The chromatin assembly and transcriptional activation functions are distinct, however, and can be dissociated temporally. Efficient transcription of chromatin assembled with TAF-I still requires the presence of TAF-I during the polymerization reaction. Conversely, TAF-I cannot stimulate transcript elongation when added after the other factors necessary for assembly of a preinitiation complex on naked DNA. Thus, TAF-I is required to facilitate transcription at a step after chromatin assembly but before transcript elongation.

  17. Unknown Aspects of Self-Assembly of PbS Microscale Superstructures

    Science.gov (United States)

    Querejeta-Fernández, Ana; Hernández-Garrido, Juan C.; Yang, Hengxi; Zhou, Yunlong; Varela, Aurea; Parras, Marina; Calvino-Gámez, José J.; González-Calbet, Jose M.; Green, Peter F.; Kotov, Nicholas A.

    2012-01-01

    A lot of interesting and sophisticated examples of nanoparticle (NP) self-assembly (SA) are known. From both fundamental and technological standpoints this field requires advancements in three principle directions: a) understanding the mechanism and driving forces of three-dimensional (3D) SA with both nano- and micro-levels of organization; b) understanding of disassembly/deconstruction processes; and c) finding synthetic methods of assembly into continuous superstructures without insulating barriers. From this perspective, we investigated the formation of well-known star-like PbS superstructures and found a number of previously unknown or overlooked aspects that can advance the knowledge of NP self-assembly in these three directions. The primary one is that the formation of large seemingly monocrystalline PbS superstructures with multiple levels of octahedral symmetry can be explained only by SA of small octahedral NPs. We found five distinct periods in the formation PbS hyperbranched stars: 1) nucleation of early PbS NPs with an average diameter of 31 nm; 2) assembly into 100–500 nm octahedral mesocrystals; 3) assembly into 1000–2500 nm hyperbranched stars; 4) assembly and ionic recrystallization into six-arm rods accompanied by disappearance of fine nanoscale structure; 5) deconstruction into rods and cubooctahedral NPs. The switches in assembly patterns between the periods occur due to variable dominance of pattern–determining forces that include vander Waals and electrostatic (charge-charge, dipole-dipole, and polarization) interactions. The superstructure deconstruction is triggered by chemical changes in the deep eutectic solvent (DES) used as the media. PbS superstructures can be excellent models for fundamental studies of nanoscale organization and SA manufacturing of (opto)electronics and energy harvesting devices which require organization of PbS components at multiple scales. PMID:22515512

  18. Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.

    Science.gov (United States)

    An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao

    2017-07-25

    Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.

  19. Assembling large, complex environmental metagenomes

    Energy Technology Data Exchange (ETDEWEB)

    Howe, A. C. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Plant Soil and Microbial Sciences; Jansson, J. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Division; Malfatti, S. A. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tringe, S. G. [USDOE Joint Genome Institute (JGI), Walnut Creek, CA (United States); Tiedje, J. M. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Plant Soil and Microbial Sciences; Brown, C. T. [Michigan State Univ., East Lansing, MI (United States). Microbiology and Molecular Genetics, Computer Science and Engineering

    2012-12-28

    The large volumes of sequencing data required to sample complex environments deeply pose new challenges to sequence analysis approaches. De novo metagenomic assembly effectively reduces the total amount of data to be analyzed but requires significant computational resources. We apply two pre-assembly filtering approaches, digital normalization and partitioning, to make large metagenome assemblies more computationaly tractable. Using a human gut mock community dataset, we demonstrate that these methods result in assemblies nearly identical to assemblies from unprocessed data. We then assemble two large soil metagenomes from matched Iowa corn and native prairie soils. The predicted functional content and phylogenetic origin of the assembled contigs indicate significant taxonomic differences despite similar function. The assembly strategies presented are generic and can be extended to any metagenome; full source code is freely available under a BSD license.

  20. Default assembly of early adenovirus chromatin

    International Nuclear Information System (INIS)

    Spector, David J.

    2007-01-01

    In adenovirus particles, the viral nucleoprotein is organized into a highly compacted core structure. Upon delivery to the nucleus, the viral nucleoprotein is very likely to be remodeled to a form accessible to the transcription and replication machinery. Viral protein VII binds to intra-nuclear viral DNA, as do at least two cellular proteins, SET/TAF-Iβ and pp32, components of a chromatin assembly complex that is implicated in template remodeling. We showed previously that viral DNA-protein complexes released from infecting particles were sensitive to shearing after cross-linking with formaldehyde, presumably after transport of the genome into the nucleus. We report here the application of equilibrium-density gradient centrifugation to the analysis of the fate of these complexes. Most of the incoming protein VII was recovered in a form that was not cross-linked to viral DNA. This release of protein VII, as well as the binding of SET/TAF-Iβ and cellular transcription factors to the viral chromatin, did not require de novo viral gene expression. The distinct density profiles of viral DNA complexes containing protein VII, compared to those containing SET/TAF-Iβ or transcription factors, were consistent with the notion that the assembly of early viral chromatin requires both the association of SET/TAF-1β and the release of protein VII

  1. Preliminary High-Throughput Metagenome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Dusheyko, Serge; Furman, Craig; Pangilinan, Jasmyn; Shapiro, Harris; Tu, Hank

    2007-03-26

    Metagenome data sets present a qualitatively different assembly problem than traditional single-organism whole-genome shotgun (WGS) assembly. The unique aspects of such projects include the presence of a potentially large number of distinct organisms and their representation in the data set at widely different fractions. In addition, multiple closely related strains could be present, which would be difficult to assemble separately. Failure to take these issues into account can result in poor assemblies that either jumble together different strains or which fail to yield useful results. The DOE Joint Genome Institute has sequenced a number of metagenomic projects and plans to considerably increase this number in the coming year. As a result, the JGI has a need for high-throughput tools and techniques for handling metagenome projects. We present the techniques developed to handle metagenome assemblies in a high-throughput environment. This includes a streamlined assembly wrapper, based on the JGI?s in-house WGS assembler, Jazz. It also includes the selection of sensible defaults targeted for metagenome data sets, as well as quality control automation for cleaning up the raw results. While analysis is ongoing, we will discuss preliminary assessments of the quality of the assembly results (http://fames.jgi-psf.org).

  2. Integral nuclear fuel element assembly

    International Nuclear Information System (INIS)

    Schluderberg, D. C.

    1985-01-01

    An integral nuclear fuel element assembly utilizes longitudinally finned fuel pins. The continuous or interrupted fins of the fuel pins are brazed to fins of juxtaposed fuel pins or directly to the juxtaposed fuel pins or both. The integrally brazed fuel assembly is designed to satisfy the thermal and hydraulic requirements of a fuel assembly lattice having moderator to fuel atom ratios required to achieve high conversion and breeding ratios

  3. Fuel Assembly Damping Summary

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kanghee; Kang, Heungseok; Oh, Dongseok; Yoon, Kyungho; Kim, Hyungkyu; Kim, Jaeyong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping

  4. Newnes electronics assembly handbook

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Newnes Electronics Assembly Handbook: Techniques, Standards and Quality Assurance focuses on the aspects of electronic assembling. The handbook first looks at the printed circuit board (PCB). Base materials, basic mechanical properties, cleaning of assemblies, design, and PCB manufacturing processes are then explained. The text also discusses surface mounted assemblies and packaging of electromechanical assemblies, as well as the soldering process. Requirements for the soldering process; solderability and protective coatings; cleaning of PCBs; and mass solder/component reflow soldering are des

  5. SH3 Domains Differentially Stimulate Distinct Dynamin I Assembly Modes and G Domain Activity.

    Directory of Open Access Journals (Sweden)

    Sai Krishnan

    Full Text Available Dynamin I is a highly regulated GTPase enzyme enriched in nerve terminals which mediates vesicle fission during synaptic vesicle endocytosis. One regulatory mechanism involves its interactions with proteins containing Src homology 3 (SH3 domains. At least 30 SH3 domain-containing proteins bind dynamin at its proline-rich domain (PRD. Those that stimulate dynamin activity act by promoting its oligomerisation. We undertook a systematic parallel screening of 13 glutathione-S-transferase (GST-tagged endocytosis-related SH3 domains on dynamin binding, GTPase activity and oligomerisation. No correlation was found between dynamin binding and their potency to stimulate GTPase activity. There was limited correlation between the extent of their ability to stimulate dynamin activity and the level of oligomerisation, indicating an as yet uncharacterised allosteric coupling of the PRD and G domain. We examined the two variants, dynamin Iab and Ibb, which differ in the alternately splice middle domain α2 helix. They responded differently to the panel of SH3s, with the extent of stimulation between the splice variants varying greatly between the SH3s. This study reveals that SH3 binding can act as a heterotropic allosteric regulator of the G domain via the middle domain α2 helix, suggesting an involvement of this helix in communicating the PRD-mediated allostery. This indicates that SH3 binding both stabilises multiple conformations of the tetrameric building block of dynamin, and promotes assembly of dynamin-SH3 complexes with distinct rates of GTP hydrolysis.

  6. γ-Tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly.

    Science.gov (United States)

    Zhou, Qing; Li, Ziyin

    2015-11-01

    γ-Tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, gamma-tubulin complex protein (GCP)2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. © 2015 John Wiley & Sons Ltd.

  7. National Ignition Facility subsystem design requirements optics assembly building (OAB) SSDR 1.2.2.3

    International Nuclear Information System (INIS)

    Kempel, P.; Hands, J.

    1996-01-01

    This Subsystem Design Requirement (SSDR) document establishes the performance, design, and verification requirements 'for the conventional building systems and subsystems of the Optics Assembly Building (OAB). These building system requirements are associated with housing and supporting the operational flow of personnel and materials throughout the OAB for preparing and repairing optical and mechanical components used in the National Ignition Facility (NIF) Laser and Target Building (LTAB). This SSDR addresses the following subsystems associated with the OAB: * Structural systems for the building spaces and operational-support equipment and building- support equipment. * Architectural building features associated with housing the space, operational cleanliness, and functional operation of the facility. * Heating, Ventilating, and Air Conditioning (HVAC) systems for maintaining a clean and thermally stable ambient environment within the facility. * Plumbing systems that provide potable water and sanitary facilities for the occupants and stormwater drainage for transporting rainwater. * Fire Protection systems that guard against fire damage to the facility and its contents. * Material handling equipment for transferring optical assemblies and other materials within building areas and to the LTAB. * Mechanical process piping systems for liquids and gases that provide cooling, cleaning, and other service to optical and mechanical components. * Electrical power and grounding systems that provide service to the building and equipment, including lighting distribution and communications systems for the facilities. * Instrumentation and control systems that ensure the safe operation of conventional facilities systems, such as those listed above. Generic design criteria, such as siting data, seismic requirements, utility availability, and other information that contributes to the OAB design, are not addressed in this document

  8. Stable MCC binding to the APC/C is required for a functional spindle assembly checkpoint

    DEFF Research Database (Denmark)

    Hein, Jamin B; Nilsson, Jakob

    2014-01-01

    stably to the APC/C. Whether MCC formation per se is sufficient for a functional SAC or MCC association with the APC/C is required remains unclear. Here, we analyze the role of two conserved motifs in Cdc20, IR and C-Box, in binding of the MCC to the APC/C. Mutants in both motifs assemble the MCC....../C is critical for a functional SAC....

  9. X-Ray Assembler Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Federal regulations require that an assembler who installs one or more certified components of a diagnostic x-ray system submit a report of assembly. This database...

  10. hemingway is required for sperm flagella assembly and ciliary motility in Drosophila.

    Science.gov (United States)

    Soulavie, Fabien; Piepenbrock, David; Thomas, Joëlle; Vieillard, Jennifer; Duteyrat, Jean-Luc; Cortier, Elisabeth; Laurençon, Anne; Göpfert, Martin C; Durand, Bénédicte

    2014-04-01

    Cilia play major functions in physiology and development, and ciliary dysfunctions are responsible for several diseases in humans called ciliopathies. Cilia motility is required for cell and fluid propulsion in organisms. In humans, cilia motility deficiencies lead to primary ciliary dyskinesia, with upper-airways recurrent infections, left-right asymmetry perturbations, and fertility defects. In Drosophila, we identified hemingway (hmw) as a novel component required for motile cilia function. hmw encodes a 604-amino acid protein characterized by a highly conserved coiled-coil domain also found in the human orthologue, KIAA1430. We show that HMW is conserved in species with motile cilia and that, in Drosophila, hmw is expressed in ciliated sensory neurons and spermatozoa. We created hmw-knockout flies and found that they are hearing impaired and male sterile. hmw is implicated in the motility of ciliated auditory sensory neurons and, in the testis, is required for elongation and maintenance of sperm flagella. Because HMW is absent from mature flagella, we propose that HMW is not a structural component of the motile axoneme but is required for proper acquisition of motile properties. This identifies HMW as a novel, evolutionarily conserved component necessary for motile cilium function and flagella assembly.

  11. Salmonella Persistence in Tomatoes Requires a Distinct Set of Metabolic Functions Identified by Transposon Insertion Sequencing

    Science.gov (United States)

    Desai, Prerak; Porwollik, Steffen; Canals, Rocio; Perez, Daniel R.; Chu, Weiping; McClelland, Michael; Teplitski, Max

    2016-01-01

    ABSTRACT Human enteric pathogens, such as Salmonella spp. and verotoxigenic Escherichia coli, are increasingly recognized as causes of gastroenteritis outbreaks associated with the consumption of fruits and vegetables. Persistence in plants represents an important part of the life cycle of these pathogens. The identification of the full complement of Salmonella genes involved in the colonization of the model plant (tomato) was carried out using transposon insertion sequencing analysis. With this approach, 230,000 transposon insertions were screened in tomato pericarps to identify loci with reduction in fitness, followed by validation of the screen results using competition assays of the isogenic mutants against the wild type. A comparison with studies in animals revealed a distinct plant-associated set of genes, which only partially overlaps with the genes required to elicit disease in animals. De novo biosynthesis of amino acids was critical to persistence within tomatoes, while amino acid scavenging was prevalent in animal infections. Fitness reduction of the Salmonella amino acid synthesis mutants was generally more severe in the tomato rin mutant, which hyperaccumulates certain amino acids, suggesting that these nutrients remain unavailable to Salmonella spp. within plants. Salmonella lipopolysaccharide (LPS) was required for persistence in both animals and plants, exemplifying some shared pathogenesis-related mechanisms in animal and plant hosts. Similarly to phytopathogens, Salmonella spp. required biosynthesis of amino acids, LPS, and nucleotides to colonize tomatoes. Overall, however, it appears that while Salmonella shares some strategies with phytopathogens and taps into its animal virulence-related functions, colonization of tomatoes represents a distinct strategy, highlighting this pathogen's flexible metabolism. IMPORTANCE Outbreaks of gastroenteritis caused by human pathogens have been increasingly associated with foods of plant origin, with tomatoes

  12. The γ-tubulin complex in Trypanosoma brucei: molecular composition, subunit interdependence and requirement for axonemal central pair protein assembly

    Science.gov (United States)

    Zhou, Qing; Li, Ziyin

    2015-01-01

    The γ-tubulin complex constitutes a key component of the microtubule-organizing center and nucleates microtubule assembly. This complex differs in complexity in different organisms: the budding yeast contains the γ-tubulin small complex (γTuSC) composed of γ-tubulin, GCP2 and GCP3, whereas animals contain the γ-tubulin ring complex (γTuRC) composed of γTuSC and three additional proteins, GCP4, GCP5 and GCP6. In Trypanosoma brucei, the composition of the γ-tubulin complex remains elusive, and it is not known whether it also regulates assembly of the subpellicular microtubules and the spindle microtubules. Here we report that the γ-tubulin complex in T. brucei is composed of γ-tubulin and three GCP proteins, GCP2-GCP4, and is primarily localized in the basal body throughout the cell cycle. Depletion of GCP2 and GCP3, but not GCP4, disrupted the axonemal central pair microtubules, but not the subpellicular microtubules and the spindle microtubules. Furthermore, we showed that the γTuSC is required for assembly of two central pair proteins and that γTuSC subunits are mutually required for stability. Together, these results identified an unusual γ-tubulin complex in T. brucei, uncovered an essential role of γTuSC in central pair protein assembly, and demonstrated the interdependence of individual γTuSC components for maintaining a stable complex. PMID:26224545

  13. AutoAssemblyD: a graphical user interface system for several genome assemblers.

    Science.gov (United States)

    Veras, Adonney Allan de Oliveira; de Sá, Pablo Henrique Caracciolo Gomes; Azevedo, Vasco; Silva, Artur; Ramos, Rommel Thiago Jucá

    2013-01-01

    Next-generation sequencing technologies have increased the amount of biological data generated. Thus, bioinformatics has become important because new methods and algorithms are necessary to manipulate and process such data. However, certain challenges have emerged, such as genome assembly using short reads and high-throughput platforms. In this context, several algorithms have been developed, such as Velvet, Abyss, Euler-SR, Mira, Edna, Maq, SHRiMP, Newbler, ALLPATHS, Bowtie and BWA. However, most such assemblers do not have a graphical interface, which makes their use difficult for users without computing experience given the complexity of the assembler syntax. Thus, to make the operation of such assemblers accessible to users without a computing background, we developed AutoAssemblyD, which is a graphical tool for genome assembly submission and remote management by multiple assemblers through XML templates. AssemblyD is freely available at https://sourceforge.net/projects/autoassemblyd. It requires Sun jdk 6 or higher.

  14. Technical operations procedure for assembly and emplacement of the soil temperature test--test assembly

    International Nuclear Information System (INIS)

    Weber, A.P.

    1978-01-01

    A description is given of the plan for assembly, instrumentation, emplacement, and operational checkout of the soil temperature test assembly and dry well liner. The activities described cover all operations necessary to accomplish the receiving inspection, instrumentation and pre-construction handling of the dry well liner, plus all operations performed with the test article. Actual details of construction work are not covered by this procedure. Each part and/or section of this procedure is a separate function to be accomplished as required by the nature of the operation. The organization of the procedure is not intended to imply a special operational sequence or schedular requirement. Specific procedure operational sections include: receiving inspection; liner assembly operations; construction operations (by others); prepare shield plug; test article assembly and installation; and operational checkout

  15. Fuel assembly storage pool

    International Nuclear Information System (INIS)

    Hiranuma, Hiroshi.

    1976-01-01

    Object: To remove limitation of the number of storage of fuel assemblies to increase the number of storage thereof so as to relatively reduce the water depth required for shielding radioactive rays. Structure: Fuel assembly storage rack containers for receiving a plurality of spent fuel assembly racks are stacked in multi-layer fashion within a storage pool filled with water for shielding radioactive rays and removing heat. (Furukawa, Y.)

  16. NIF Target Assembly Metrology Methodology and Results

    Energy Technology Data Exchange (ETDEWEB)

    Alger, E. T. [General Atomics, San Diego, CA (United States); Kroll, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dzenitis, E. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Montesanti, R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Hughes, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Swisher, M. [IAP, Livermore, CA (United States); Taylor, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Segraves, K. [IAP, Livermore, CA (United States); Lord, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Reynolds, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Castro, C. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Edwards, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2011-01-01

    During our inertial confinement fusion (ICF) experiments at the National Ignition Facility (NIF) we require cryogenic targets at the 1-cm scale to be fabricated, assembled, and metrologized to micron-level tolerances. During assembly of these ICF targets, there are physical dimensmetrology is completed using optical coordinate measurement machines that provide repeatable measurements with micron precision, while also allowing in-process data collection for absolute accuracy in assembly. To date, 51 targets have been assembled and metrologized, and 34 targets have been successfully fielded on NIF relying on these metrology data. In the near future, ignition experiments on NIF will require tighter tolerances and more demanding target assembly and metrology capability. Metrology methods, calculations, and uncertainty estimates will be discussed. Target diagnostic port alignment, target position, and capsule location results will be reviewed for the 2009 Energetics Campaign. The information is presented via control charts showing the effect of process improvements that were made during target production. Certain parameters, including capsule position, met the 2009 campaign specifications but will have much tighter requirements in the future. Finally, in order to meet these new requirements assembly process changes and metrology capability upgrades will be necessary.

  17. Data Crosscutting Requirements Review

    Energy Technology Data Exchange (ETDEWEB)

    Kleese van Dam, Kerstin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Shoshani, Arie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Plata, Charity [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-04-01

    In April 2013, a diverse group of researchers from the U.S. Department of Energy (DOE) scientific community assembled to assess data requirements associated with DOE-sponsored scientific facilities and large-scale experiments. Participants in the review included facilities staff, program managers, and scientific experts from the offices of Basic Energy Sciences, Biological and Environmental Research, High Energy Physics, and Advanced Scientific Computing Research. As part of the meeting, review participants discussed key issues associated with three distinct aspects of the data challenge: 1) processing, 2) management, and 3) analysis. These discussions identified commonalities and differences among the needs of varied scientific communities. They also helped to articulate gaps between current approaches and future needs, as well as the research advances that will be required to close these gaps. Moreover, the review provided a rare opportunity for experts from across the Office of Science to learn about their collective expertise, challenges, and opportunities. The "Data Crosscutting Requirements Review" generated specific findings and recommendations for addressing large-scale data crosscutting requirements.

  18. Distinct requirements for signal peptidase processing and function in the stable signal peptide subunit of the Junin virus envelope glycoprotein

    International Nuclear Information System (INIS)

    York, Joanne; Nunberg, Jack H.

    2007-01-01

    The arenavirus envelope glycoprotein (GP-C) retains a cleaved and stable signal peptide (SSP) as an essential subunit of the mature complex. This 58-amino-acid residue peptide serves as a signal sequence and is additionally required to enable transit of the assembled GP-C complex to the Golgi, and for pH-dependent membrane fusion activity. We have investigated the C-terminal region of the Junin virus SSP to study the role of the cellular signal peptidase (SPase) in generating SSP. Site-directed mutagenesis at the cleavage site (positions - 1 and - 3) reveals a pattern of side-chain preferences consistent with those of SPase. Although position - 2 is degenerate for SPase cleavage, this residue in the arenavirus SSP is invariably a cysteine. In the Junin virus, this cysteine is not involved in disulfide bonding. We show that replacement with alanine or serine is tolerated for SPase cleavage but prevents the mutant SSP from associating with GP-C and enabling transport to the cell surface. Conversely, an arginine mutation at position - 1 that prevents SPase cleavage is fully compatible with GP-C-mediated membrane fusion activity when the mutant SSP is provided in trans. These results point to distinct roles of SSP sequences in SPase cleavage and GP-C biogenesis. Further studies of the unique structural organization of the GP-C complex will be important in identifying novel opportunities for antiviral intervention against arenaviral hemorrhagic disease

  19. The step-wise pathway of septin hetero-octamer assembly in budding yeast.

    Science.gov (United States)

    Weems, Andrew; McMurray, Michael

    2017-05-25

    Septin proteins bind guanine nucleotides and form rod-shaped hetero-oligomers. Cells choose from a variety of available septins to assemble distinct hetero-oligomers, but the underlying mechanism was unknown. Using a new in vivo assay, we find that a stepwise assembly pathway produces the two species of budding yeast septin hetero-octamers: Cdc11/Shs1-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11/Shs1. Rapid GTP hydrolysis by monomeric Cdc10 drives assembly of the core Cdc10 homodimer. The extended Cdc3 N terminus autoinhibits Cdc3 association with Cdc10 homodimers until prior Cdc3-Cdc12 interaction. Slow hydrolysis by monomeric Cdc12 and specific affinity of Cdc11 for transient Cdc12•GTP drive assembly of distinct trimers, Cdc11-Cdc12-Cdc3 or Shs1-Cdc12-Cdc3. Decreasing the cytosolic GTP:GDP ratio increases the incorporation of Shs1 vs Cdc11, which alters the curvature of filamentous septin rings. Our findings explain how GTP hydrolysis controls septin assembly, and uncover mechanisms by which cells construct defined septin complexes.

  20. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    Science.gov (United States)

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  1. Nondeterministic self-assembly of two tile types on a lattice.

    Science.gov (United States)

    Tesoro, S; Ahnert, S E

    2016-04-01

    Self-assembly is ubiquitous in nature, particularly in biology, where it underlies the formation of protein quaternary structure and protein aggregation. Quaternary structure assembles deterministically and performs a wide range of important functions in the cell, whereas protein aggregation is the hallmark of a number of diseases and represents a nondeterministic self-assembly process. Here we build on previous work on a lattice model of deterministic self-assembly to investigate nondeterministic self-assembly of single lattice tiles and mixtures of two tiles at varying relative concentrations. Despite limiting the simplicity of the model to two interface types, which results in 13 topologically distinct single tiles and 106 topologically distinct sets of two tiles, we observe a wide variety of concentration-dependent behaviors. Several two-tile sets display critical behaviors in the form of a sharp transition from bound to unbound structures as the relative concentration of one tile to another increases. Other sets exhibit gradual monotonic changes in structural density, or nonmonotonic changes, while again others show no concentration dependence at all. We catalog this extensive range of behaviors and present a model that provides a reasonably good estimate of the critical concentrations for a subset of the critical transitions. In addition, we show that the structures resulting from these tile sets are fractal, with one of two different fractal dimensions.

  2. Programming Hierarchical Self-Assembly of Patchy Particles into Colloidal Crystals via Colloidal Molecules.

    Science.gov (United States)

    Morphew, Daniel; Shaw, James; Avins, Christopher; Chakrabarti, Dwaipayan

    2018-03-27

    Colloidal self-assembly is a promising bottom-up route to a wide variety of three-dimensional structures, from clusters to crystals. Programming hierarchical self-assembly of colloidal building blocks, which can give rise to structures ordered at multiple levels to rival biological complexity, poses a multiscale design problem. Here we explore a generic design principle that exploits a hierarchy of interaction strengths and employ this design principle in computer simulations to demonstrate the hierarchical self-assembly of triblock patchy colloidal particles into two distinct colloidal crystals. We obtain cubic diamond and body-centered cubic crystals via distinct clusters of uniform size and shape, namely, tetrahedra and octahedra, respectively. Such a conceptual design framework has the potential to reliably encode hierarchical self-assembly of colloidal particles into a high level of sophistication. Moreover, the design framework underpins a bottom-up route to cubic diamond colloidal crystals, which have remained elusive despite being much sought after for their attractive photonic applications.

  3. New requirements for the WWER fuel and their consideration in designing the fuel assemblies

    International Nuclear Information System (INIS)

    Vasilchenko, I.; Ananyev, Y.

    2003-01-01

    In 2001-2002 the base designs of the new generation fuel assemblies for the WWER-440 and WWER-1000 reactors were developed. The ways of their further modernisation were defined. The present report deals with the urgent requirements and how they have been implemented in these designs. The assessment of the efficiency of new designs is carried out on the basis of the existing data of the world market on the cost of: Uranium concentrate; dividing operations; fabrication. It is additionally possible also to take into account the cost of transportation, storage and processing of the irradiated fuel including burial of wastes

  4. Functional diversification of hsp40: distinct j-protein functional requirements for two prions allow for chaperone-dependent prion selection.

    Science.gov (United States)

    Harris, Julia M; Nguyen, Phil P; Patel, Milan J; Sporn, Zachary A; Hines, Justin K

    2014-07-01

    Yeast prions are heritable amyloid aggregates of functional yeast proteins; their propagation to subsequent cell generations is dependent upon fragmentation of prion protein aggregates by molecular chaperone proteins. Mounting evidence indicates the J-protein Sis1 may act as an amyloid specificity factor, recognizing prion and other amyloid aggregates and enabling Ssa and Hsp104 to act in prion fragmentation. Chaperone interactions with prions, however, can be affected by variations in amyloid-core structure resulting in distinct prion variants or 'strains'. Our genetic analysis revealed that Sis1 domain requirements by distinct variants of [PSI+] are strongly dependent upon overall variant stability. Notably, multiple strong [PSI+] variants can be maintained by a minimal construct of Sis1 consisting of only the J-domain and glycine/phenylalanine-rich (G/F) region that was previously shown to be sufficient for cell viability and [RNQ+] prion propagation. In contrast, weak [PSI+] variants are lost under the same conditions but maintained by the expression of an Sis1 construct that lacks only the G/F region and cannot support [RNQ+] propagation, revealing mutually exclusive requirements for Sis1 function between these two prions. Prion loss is not due to [PSI+]-dependent toxicity or dependent upon a particular yeast genetic background. These observations necessitate that Sis1 must have at least two distinct functional roles that individual prions differentially require for propagation and which are localized to the glycine-rich domains of the Sis1. Based on these distinctions, Sis1 plasmid-shuffling in a [PSI+]/[RNQ+] strain permitted J-protein-dependent prion selection for either prion. We also found that, despite an initial report to the contrary, the human homolog of Sis1, Hdj1, is capable of [PSI+] prion propagation in place of Sis1. This conservation of function is also prion-variant dependent, indicating that only one of the two Sis1-prion functions may have

  5. The cation diffusion facilitator proteins MamB and MamM of Magnetospirillum gryphiswaldense have distinct and complex functions, and are involved in magnetite biomineralization and magnetosome membrane assembly

    DEFF Research Database (Denmark)

    Uebe, René; Junge, Katja; Henn, Verena

    2011-01-01

    Magnetotactic bacteria form chains of intracellular membrane‐enclosed, nanometre‐sized magnetite crystals for navigation along the earth's magnetic field. The assembly of these prokaryotic organelles requires several specific polypeptides. Among the most abundant proteins associated with the magn......Magnetotactic bacteria form chains of intracellular membrane‐enclosed, nanometre‐sized magnetite crystals for navigation along the earth's magnetic field. The assembly of these prokaryotic organelles requires several specific polypeptides. Among the most abundant proteins associated...... with the magnetosome membrane of Magnetospirillum gryphiswaldense are MamB and MamM, which were implicated in magnetosomal iron transport because of their similarity to the cation diffusion facilitator family. Here we demonstrate that MamB and MamM are multifunctional proteins involved in several steps of magnetosome...

  6. Selection of conformational states in surface self-assembly for a molecule with eight possible pairs of surface enantiomers

    DEFF Research Database (Denmark)

    Nuermaimaiti, Ajiguli; Schultz-Falk, Vickie; Lind Cramer, Jacob

    2016-01-01

    Self-assembly of a molecule with many distinct conformational states, resulting in eight possible pairs of surface enantiomers, is investigated on a Au(111) surface under UHV conditions. The complex molecule is equipped with alkyl and carboxyl moieties to promote controlled self-assembly of lamel......Self-assembly of a molecule with many distinct conformational states, resulting in eight possible pairs of surface enantiomers, is investigated on a Au(111) surface under UHV conditions. The complex molecule is equipped with alkyl and carboxyl moieties to promote controlled self......-assembly of lamellae structures. From statistical analysis of Scanning Tunnelling Microscopy (STM) data we observe a clear selection of specific conformational states after self-assembly. Using Density Functional Theory (DFT) calculations we rationalise how this selection is correlated to the orientation of the alkyl...

  7. Premitotic assembly of human CENPs -T and -W switches centromeric chromatin to a mitotic state.

    Directory of Open Access Journals (Sweden)

    Lisa Prendergast

    2011-06-01

    Full Text Available Centromeres are differentiated chromatin domains, present once per chromosome, that direct segregation of the genome in mitosis and meiosis by specifying assembly of the kinetochore. They are distinct genetic loci in that their identity in most organisms is determined not by the DNA sequences they are associated with, but through specific chromatin composition and context. The core nucleosomal protein CENP-A/cenH3 plays a primary role in centromere determination in all species and directs assembly of a large complex of associated proteins in vertebrates. While CENP-A itself is stably transmitted from one generation to the next, the nature of the template for centromere replication and its relationship to kinetochore function are as yet poorly understood. Here, we investigate the assembly and inheritance of a histone fold complex of the centromere, the CENP-T/W complex, which is integrated with centromeric chromatin in association with canonical histone H3 nucleosomes. We have investigated the cell cycle regulation, timing of assembly, generational persistence, and requirement for function of CENPs -T and -W in the cell cycle in human cells. The CENP-T/W complex assembles through a dynamic exchange mechanism in late S-phase and G2, is required for mitosis in each cell cycle and does not persist across cell generations, properties reciprocal to those measured for CENP-A. We propose that the CENP-A and H3-CENP-T/W nucleosome components of the centromere are specialized for centromeric and kinetochore activities, respectively. Segregation of the assembly mechanisms for the two allows the cell to switch between chromatin configurations that reciprocally support the replication of the centromere and its conversion to a mitotic state on postreplicative chromatin.

  8. IGD motifs, which are required for migration stimulatory activity of fibronectin type I modules, do not mediate binding in matrix assembly.

    Directory of Open Access Journals (Sweden)

    Lisa M Maurer

    Full Text Available Picomolar concentrations of proteins comprising only the N-terminal 70-kDa region (70K of fibronectin (FN stimulate cell migration into collagen gels. The Ile-Gly-Asp (IGD motifs in four of the nine FN type 1 (FNI modules in 70K are important for such migratory stimulating activity. The 70K region mediates binding of nanomolar concentrations of intact FN to cell-surface sites where FN is assembled. Using baculovirus, we expressed wildtype 70K and 70K with Ile-to-Ala mutations in (3FNI and (5FNI; (7FNI and (9FNI; or (3FNI, (5FNI, (7FNI, and (9FNI. Wildtype 70K and 70K with Ile-to-Ala mutations were equally active in binding to assembly sites of FN-null fibroblasts. This finding indicates that IGD motifs do not mediate the interaction between 70K and the cell-surface that is important for FN assembly. Further, FN fragment N-(3FNIII, which does not stimulate migration, binds to assembly sites on FN-null fibroblast. The Ile-to-Ala mutations had effects on the structure of FNI modules as evidenced by decreases in abilities of 70K with Ile-to-Ala mutations to bind to monoclonal antibody 5C3, which recognizes an epitope in (9FNI, or to bind to FUD, a polypeptide based on the F1 adhesin of Streptococcus pyogenes that interacts with 70K by the β-zipper mechanism. These results suggest that the picomolar interactions of 70K with cells that stimulate cell migration require different conformations of FNI modules than the nanomolar interactions required for assembly.

  9. Experimental Study of an Assembly with Extreme Particulate, Molecular, and Biological Requirements in Different Environmental Scenarios from Quality Point of View

    Science.gov (United States)

    Müller, A.; Urich, D.; Kreck, G.; Metzmacher, M.; Lindner, R.

    2018-04-01

    The presentation will cover results from an ESA supported investigation to collect lessons learned for mechanism assembly with the focus on quality and contamination requirements verification in exploration projects such as ExoMars.

  10. Mobius Assembly: A versatile Golden-Gate framework towards universal DNA assembly.

    Directory of Open Access Journals (Sweden)

    Andreas I Andreou

    Full Text Available Synthetic biology builds upon the foundation of engineering principles, prompting innovation and improvement in biotechnology via a design-build-test-learn cycle. A community-wide standard in DNA assembly would enable bio-molecular engineering at the levels of predictivity and universality in design and construction that are comparable to other engineering fields. Golden Gate Assembly technology, with its robust capability to unidirectionally assemble numerous DNA fragments in a one-tube reaction, has the potential to deliver a universal standard framework for DNA assembly. While current Golden Gate Assembly frameworks (e.g. MoClo and Golden Braid render either high cloning capacity or vector toolkit simplicity, the technology can be made more versatile-simple, streamlined, and cost/labor-efficient, without compromising capacity. Here we report the development of a new Golden Gate Assembly framework named Mobius Assembly, which combines vector toolkit simplicity with high cloning capacity. It is based on a two-level, hierarchical approach and utilizes a low-frequency cutter to reduce domestication requirements. Mobius Assembly embraces the standard overhang designs designated by MoClo, Golden Braid, and Phytobricks and is largely compatible with already available Golden Gate part libraries. In addition, dropout cassettes encoding chromogenic proteins were implemented for cost-free visible cloning screening that color-code different cloning levels. As proofs of concept, we have successfully assembled up to 16 transcriptional units of various pigmentation genes in both operon and multigene arrangements. Taken together, Mobius Assembly delivers enhanced versatility and efficiency in DNA assembly, facilitating improved standardization and automation.

  11. Surface mediated assembly of small, metastable gold nanoclusters

    Science.gov (United States)

    Pettibone, John M.; Osborn, William A.; Rykaczewski, Konrad; Talin, A. Alec; Bonevich, John E.; Hudgens, Jeffrey W.; Allendorf, Mark D.

    2013-06-01

    The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The films exhibit distinct structure from Au nanoparticles observed by X-ray diffraction, and film dissolution data support the preservation of small nanoclusters. UV-Vis spectroscopy, electrospray ionization mass spectrometry, X-ray photoelectron spectroscopy and electron microscopy are used to elucidate information regarding the nanocluster formation and assembly mechanism. Preferential deposition of nanocluster assemblies can be achieved on multiple substrates, including polymer, Cr, Si, SiO2, SiNx, and metal-organic frameworks (MOFs). Unlike other vapor phase coating processes, nanocluster assembly on the MIL-68(In) MOF crystal is capable of preferentially coating the external surface and stabilizing the crystal structure in hydrothermal conditions, which should enhance their storage, separation and delivery capabilities.The unique properties of metallic nanoclusters are attractive for numerous commercial and industrial applications but are generally less stable than nanocrystals. Thus, developing methodologies for stabilizing nanoclusters and retaining their enhanced functionality is of great interest. We report the assembly of PPh3-protected Au9 clusters from a heterogeneous mixture into films consisting of sub 3 nm nanocluster assemblies. The depositing nanoclusters are metastable in solution, but the resulting nanocluster assemblies are stabilized indefinitely in air or fresh solvent. The

  12. NSF- and SNARE-mediated membrane fusion is required for nuclear envelope formation and completion of nuclear pore complex assembly in Xenopus laevis egg extracts.

    Science.gov (United States)

    Baur, Tina; Ramadan, Kristijan; Schlundt, Andreas; Kartenbeck, Jürgen; Meyer, Hemmo H

    2007-08-15

    Despite the progress in understanding nuclear envelope (NE) reformation after mitosis, it has remained unclear what drives the required membrane fusion and how exactly this is coordinated with nuclear pore complex (NPC) assembly. Here, we show that, like other intracellular fusion reactions, NE fusion in Xenopus laevis egg extracts is mediated by SNARE proteins that require activation by NSF. Antibodies against Xenopus NSF, depletion of NSF or the dominant-negative NSF(E329Q) variant specifically inhibited NE formation. Staging experiments further revealed that NSF was required until sealing of the envelope was completed. Moreover, excess exogenous alpha-SNAP that blocks SNARE function prevented membrane fusion and caused accumulation of non-flattened vesicles on the chromatin surface. Under these conditions, the nucleoporins Nup107 and gp210 were fully recruited, whereas assembly of FxFG-repeat-containing nucleoporins was blocked. Together, we define NSF- and SNARE-mediated membrane fusion events as essential steps during NE formation downstream of Nup107 recruitment, and upstream of membrane flattening and completion of NPC assembly.

  13. A conceptual design of assembly strategy and dedicated tools for assembly of 40o sector

    International Nuclear Information System (INIS)

    Park, H.K.; Nam, K.O.; Kim, D.J.; Ahn, H.J.; Lee, J.H.; Im, K.; Shaw, R.

    2010-01-01

    The International Thermanuclear Experimental Reactor (ITER) tokamak device is composed of 9 vacuum vessel (VV)/toroidal field coils (TFCs)/vacuum vessel thermal shields (VVTS) 40 o sectors. Each VV/TFCs/VVTS 40 o sector is made up of one 40 o VV, two 20 o TFCs and associated VVTS segments. The 40 o sectors are sub-assembled at assembly hall respectively and then nine 40 o sectors sub-assembled at assembly hall are finally assembled at tokamak in-pit hall. The assembly strategy and tools for the 40 o sector sub-assembly and final assembly should be developed to satisfy the basic assembly requirements of the ITER tokamak device. Accordingly, the purpose-built assembly tools should be designed and manufactured considering assembly plan, available space, cost, safety, easy operation, efficient maintenance, and so on. The 40 o sector assembly tools are classified into 2 groups. One group is the sub-assembly tools including upending tool, lifting tool, sub-assembly tool, VV supports and bracing tools used at assembly hall and the other group is the in-pit assembly tools including lifting tool, central column, radial beams and their supports. This paper describes the current status of the assembly strategy and major tools for the VV/TFCs/VVTS 40 o sector assembly at in-pit hall and assembly hall. The conceptual design of the major assembly tools and assembly process at assembly hall and tokamak in-pit hall are presented also.

  14. De novo centriole formation in human cells is error-prone and does not require SAS-6 self-assembly.

    Science.gov (United States)

    Wang, Won-Jing; Acehan, Devrim; Kao, Chien-Han; Jane, Wann-Neng; Uryu, Kunihiro; Tsou, Meng-Fu Bryan

    2015-11-26

    Vertebrate centrioles normally propagate through duplication, but in the absence of preexisting centrioles, de novo synthesis can occur. Consistently, centriole formation is thought to strictly rely on self-assembly, involving self-oligomerization of the centriolar protein SAS-6. Here, through reconstitution of de novo synthesis in human cells, we surprisingly found that normal looking centrioles capable of duplication and ciliation can arise in the absence of SAS-6 self-oligomerization. Moreover, whereas canonically duplicated centrioles always form correctly, de novo centrioles are prone to structural errors, even in the presence of SAS-6 self-oligomerization. These results indicate that centriole biogenesis does not strictly depend on SAS-6 self-assembly, and may require preexisting centrioles to ensure structural accuracy, fundamentally deviating from the current paradigm.

  15. Dynamics of self-assembled cytosine nucleobases on graphene

    Science.gov (United States)

    Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra

    2018-05-01

    Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.

  16. Development of the ITER IOIS assembly tool and mock-up

    International Nuclear Information System (INIS)

    Nam, Kyoungo; Kim, Dongjin; Park, Hyunki; Ahn, Heejae; Kim, Kyoungkyu; Yoo, Yongsoo; Watson, Emma; Shaw, Robert

    2014-01-01

    The ITER toroidal field coils (TFCs) are connected by 3 different connecting structures as follows; Outer Intercoil Structure (OIS), Inner Intercoil Structure (IIS), Intermediate Outer Intercoil Structure (IOIS). In assessing the assembly, requirements and environmental conditions of each Intercoil structure, the IOIS and IIS assembly were thought to be the most challenging compared to the OIS assembly due to the very limited assembly space available and the strict requirements requested by IO, especially the IOIS assembly, which has particularly difficult installation requirements including complicated shear pin assemblies. A conceptual and preliminary design has been developed by the Korean domestic agency (KODA) for the sub assembly and final assembly phase; the tool includes the ability to control both IOIS plates simultaneously. For design verification of the IOIS assembly tool mentioned above, structural analysis has been carried out considering seismic event. Also, a half sized mock-up has been fabricated and tested according to assembly procedures. In this paper, a description of tool design and the results of analysis and mock-test will be introduced

  17. SWAP-Assembler: scalable and efficient genome assembly towards thousands of cores.

    Science.gov (United States)

    Meng, Jintao; Wang, Bingqiang; Wei, Yanjie; Feng, Shengzhong; Balaji, Pavan

    2014-01-01

    There is a widening gap between the throughput of massive parallel sequencing machines and the ability to analyze these sequencing data. Traditional assembly methods requiring long execution time and large amount of memory on a single workstation limit their use on these massive data. This paper presents a highly scalable assembler named as SWAP-Assembler for processing massive sequencing data using thousands of cores, where SWAP is an acronym for Small World Asynchronous Parallel model. In the paper, a mathematical description of multi-step bi-directed graph (MSG) is provided to resolve the computational interdependence on merging edges, and a highly scalable computational framework for SWAP is developed to automatically preform the parallel computation of all operations. Graph cleaning and contig extension are also included for generating contigs with high quality. Experimental results show that SWAP-Assembler scales up to 2048 cores on Yanhuang dataset using only 26 minutes, which is better than several other parallel assemblers, such as ABySS, Ray, and PASHA. Results also show that SWAP-Assembler can generate high quality contigs with good N50 size and low error rate, especially it generated the longest N50 contig sizes for Fish and Yanhuang datasets. In this paper, we presented a highly scalable and efficient genome assembly software, SWAP-Assembler. Compared with several other assemblers, it showed very good performance in terms of scalability and contig quality. This software is available at: https://sourceforge.net/projects/swapassembler.

  18. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Directory of Open Access Journals (Sweden)

    Myron S Ignatius

    Full Text Available The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382 mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382 mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382 mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382 defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  19. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development.

    Science.gov (United States)

    Ignatius, Myron S; Unal Eroglu, Arife; Malireddy, Smitha; Gallagher, Glen; Nambiar, Roopa M; Henion, Paul D

    2013-01-01

    The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382) mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382) mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382) mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382) defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.

  20. Distinct regions in the C-Terminus required for GLP-1R cell surface expression, activity and internalisation.

    Science.gov (United States)

    Thompson, Aiysha; Kanamarlapudi, Venkateswarlu

    2015-09-15

    The glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), an important drug target in the treatment of type 2 diabetes, is a G-protein coupled receptor (GPCR) that mediates insulin secretion by GLP-1. The N-terminus controls GLP-1R biosynthetic trafficking to the cell surface but the C-terminus involvement in that trafficking is unknown. The aim of this study was to identify distinct regions within the C-terminal domain required for human GLP-1R (hGLP-1R) cell surface expression, activity and internalisation using a number of C-terminal deletions and site-directed mutations. The results of this study revealed that the residues 411-418 within the C-terminal domain of the hGLP-1R are critical in targeting the newly synthesised receptor to the plasma membrane. The residues 419-430 are important for cAMP producing activity of the receptor, most likely by coupling to Gαs. However, the residues 431-450 within the C-terminus are essential for agonist-induced hGLP-1R internalisation. In conclusion, these findings demonstrate the hGLP-1R has distinct regions within the C-terminal domain required for its cell surface expression, activity and agonist-induced internalisation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  1. Assembling Fe/S-clusters and modifying tRNAs: ancient co-factors meet ancient adaptors.

    Science.gov (United States)

    Alfonzo, Juan D; Lukeš, Julius

    2011-06-01

    Trypanosoma brucei undergoes two clearly distinct develomental stages: in the insect vector (procyclic stage) the cells generate the bulk of their energy through respiration, whereas in the bloodstream of the mammalian host (bloodstream stage) they grow mostly glycolytically. Several mitochondrial respiratory proteins require iron-sulfur clusters for activity, and their activation coincides with developmental changes. Likewise some tRNA modification enzymes either require iron-sulfur clusters or use components of the iron-sulfur cluster assembly pathway for activity. These enzymes affect the anticodon loop of various tRNAs and can impact protein synthesis. Herein, the possibility of these pathways being integrated and exploited by T. brucei to carefully coordinate energy demands to translational rates in response to enviromental changes is examined.

  2. Subcritical assemblies, use and their feasibility assessment

    International Nuclear Information System (INIS)

    Haroon, M.R.

    1982-03-01

    In developing countries, subcritical assemblies can be a useful tool for training and research in the field of nuclear technology with minimum cost. The historical development of subcritical assemblies and the reactor physics experiments which can be carried out using this facility are outlined. The different types of subcritical assemblies have been described and material requirements for each assembly have been pointed out. (author)

  3. Arf4 is required for Mammalian development but dispensable for ciliary assembly.

    Directory of Open Access Journals (Sweden)

    John A Follit

    2014-02-01

    Full Text Available The primary cilium is a sensory organelle, defects in which cause a wide range of human diseases including retinal degeneration, polycystic kidney disease and birth defects. The sensory functions of cilia require specific receptors to be targeted to the ciliary subdomain of the plasma membrane. Arf4 has been proposed to sort cargo destined for the cilium at the Golgi complex and deemed a key regulator of ciliary protein trafficking. In this work, we show that Arf4 binds to the ciliary targeting sequence (CTS of fibrocystin. Knockdown of Arf4 indicates that it is not absolutely required for trafficking of the fibrocystin CTS to cilia as steady-state CTS levels are unaffected. However, we did observe a delay in delivery of newly synthesized CTS from the Golgi complex to the cilium when Arf4 was reduced. Arf4 mutant mice are embryonic lethal and die at mid-gestation shortly after node formation. Nodal cilia appeared normal and functioned properly to break left-right symmetry in Arf4 mutant embryos. At this stage of development Arf4 expression is highest in the visceral endoderm but we did not detect cilia on these cells. In the visceral endoderm, the lack of Arf4 caused defects in cell structure and apical protein localization. This work suggests that while Arf4 is not required for ciliary assembly, it is important for the efficient transport of fibrocystin to cilia, and also plays critical roles in non-ciliary processes.

  4. Calcium-binding capacity of centrin2 is required for linear POC5 assembly but not for nucleotide excision repair.

    Directory of Open Access Journals (Sweden)

    Tiago J Dantas

    Full Text Available Centrosomes, the principal microtubule-organising centres in animal cells, contain centrins, small, conserved calcium-binding proteins unique to eukaryotes. Centrin2 binds to xeroderma pigmentosum group C protein (XPC, stabilising it, and its presence slightly increases nucleotide excision repair (NER activity in vitro. In previous work, we deleted all three centrin isoforms present in chicken DT40 cells and observed delayed repair of UV-induced DNA lesions, but no centrosome abnormalities. Here, we explore how centrin2 controls NER. In the centrin null cells, we expressed centrin2 mutants that cannot bind calcium or that lack sites for phosphorylation by regulatory kinases. Expression of any of these mutants restored the UV sensitivity of centrin null cells to normal as effectively as expression of wild-type centrin. However, calcium-binding-deficient and T118A mutants showed greatly compromised localisation to centrosomes. XPC recruitment to laser-induced UV-like lesions was only slightly slower in centrin-deficient cells than in controls, and levels of XPC and its partner HRAD23B were unaffected by centrin deficiency. Interestingly, we found that overexpression of the centrin interactor POC5 leads to the assembly of linear, centrin-dependent structures that recruit other centrosomal proteins such as PCM-1 and NEDD1. Together, these observations suggest that assembly of centrins into complex structures requires calcium binding capacity, but that such assembly is not required for centrin activity in NER.

  5. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint.

    Directory of Open Access Journals (Sweden)

    Sagar P Mahale

    Full Text Available The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC. However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division.

  6. Self-assembly strategies for the synthesis of functional nanostructured materials

    Science.gov (United States)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  7. In-Pile Section(IPS) Inner Assembly Manufacturing Report

    International Nuclear Information System (INIS)

    Lee, Jong Min; Shim, Bong Sik; Lee, Chung Yong

    2009-12-01

    The objective of this report is to present the manufacturing, assembling and testing process of IPS Inner Assembly used in Fuel Test Loop(FTL) pre-operation test. The majority of the manufactured components are test fuels, inner assembly structures and subsidiary tools that is needed during the assembly process. In addition, Mock-up test for the welding and brazing is included at this stage. Lower structure, such as test fuels, fuel carrier legs are assembled and following structures, such as fuel carrier stem in the middle structure, top flange in the top structure are assembled together each other. To Verify the Reactor Coolant Pressure Boundary(RCPB) function in IPS Inner Assembly helium leak test and hydraulic test is performed with its acceptance criteria. According to the ASME III code Authorized Nuclear Inspector(ANI) is required during the hydraulic test. As-built measurement and insulation resistance test are performed to the structures and instrumentations after the test process. All requirements are satisfied and the IPS Inner Assembly was loaded in HANARO IR-1 hole in September 25, 2009

  8. From self-organization to self-assembly: a new materialism?

    Science.gov (United States)

    Vincent, Bernadette Bensaude

    2016-09-01

    While self-organization has been an integral part of academic discussions about the distinctive features of living organisms, at least since Immanuel Kant's Critique of Judgement, the term 'self-assembly' has only been used for a few decades as it became a hot research topic with the emergence of nanotechnology. Could it be considered as an attempt at reducing vital organization to a sort of assembly line of molecules? Considering the context of research on self-assembly I argue that the shift of attention from self-organization to self-assembly does not really challenge the boundary between chemistry and biology. Self-assembly was first and foremost investigated in an engineering context as a strategy for manufacturing without human intervention and did not raise new perspectives on the emergence of vital organization itself. However self-assembly implies metaphysical assumptions that this paper tries to disentangle. It first describes the emergence of self-assembly as a research field in the context of materials science and nanotechnology. The second section outlines the metaphysical implications and will emphasize a sharp contrast between the ontology underlying two practices of self-assembly developed under the umbrella of synthetic biology. And unexpectedly, we shall see that chemists are less on the reductionist side than most synthetic biologists. Finally, the third section ventures some reflections on the kind of design involved in self-assembly practices.

  9. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2010-01-01

    Tuesday 20 April at 10.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 12 May 2009 Presentation and approval of the Activity Report 2009 Presentation and approval of the Financial Report 2009 Presentation and approval of the Auditors Report 2009 Programme for 2010 Presentation et and approval of the draft budget and subscription rate 2010 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly may require t...

  10. Comparing memory-efficient genome assemblers on stand-alone and cloud infrastructures.

    Science.gov (United States)

    Kleftogiannis, Dimitrios; Kalnis, Panos; Bajic, Vladimir B

    2013-01-01

    A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.

  11. Comparing Memory-Efficient Genome Assemblers on Stand-Alone and Cloud Infrastructures

    KAUST Repository

    Kleftogiannis, Dimitrios A.

    2013-09-27

    A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory requirements for different assembly programs even when data volume exceeds memory capacity by orders of magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable computational resources for assembly.

  12. The Cellular Chaperone Heat Shock Protein 90 Is Required for Foot-and-Mouth Disease Virus Capsid Precursor Processing and Assembly of Capsid Pentamers.

    Science.gov (United States)

    Newman, Joseph; Asfor, Amin S; Berryman, Stephen; Jackson, Terry; Curry, Stephen; Tuthill, Tobias J

    2018-03-01

    Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity

  13. ULtiMATE system for rapid assembly of customized TAL effectors.

    Directory of Open Access Journals (Sweden)

    Junjiao Yang

    Full Text Available Engineered TAL-effector nucleases (TALENs and TALE-based constructs have become powerful tools for eukaryotic genome editing. Although many methods have been reported, it remains a challenge for the assembly of designer-based TALE repeats in a fast, precise and cost-effective manner. We present an ULtiMATE (USER-based Ligation Mediated Assembly of TAL Effector system for speedy and accurate assembly of customized TALE constructs. This method takes advantage of uracil-specific excision reagent (USER to create multiple distinct sticky ends between any neighboring DNA fragments for specific ligation. With pre-assembled templates, multiple TALE DNA-binding domains could be efficiently assembled in order within hours with minimal manual operation. This system has been demonstrated to produce both functional TALENs for effective gene knockout and TALE-mediated gene-specific transcription activation (TALE-TA. The feature of both ease-of-operation and high efficiency of ULtiMATE system makes it not only an ideal method for biologic labs, but also an approach well suited for large-scale assembly of TALENs and any other TALE-based constructions.

  14. Genome-Wide Requirements for Resistance to Functionally Distinct DNA-Damaging Agents.

    Directory of Open Access Journals (Sweden)

    2005-08-01

    Full Text Available The mechanistic and therapeutic differences in the cellular response to DNA-damaging compounds are not completely understood, despite intense study. To expand our knowledge of DNA damage, we assayed the effects of 12 closely related DNA-damaging agents on the complete pool of ~4,700 barcoded homozygous deletion strains of Saccharomyces cerevisiae. In our protocol, deletion strains are pooled together and grown competitively in the presence of compound. Relative strain sensitivity is determined by hybridization of PCR-amplified barcodes to an oligonucleotide array carrying the barcode complements. These screens identified genes in well-characterized DNA-damage-response pathways as well as genes whose role in the DNA-damage response had not been previously established. High-throughput individual growth analysis was used to independently confirm microarray results. Each compound produced a unique genome-wide profile. Analysis of these data allowed us to determine the relative importance of DNA-repair modules for resistance to each of the 12 profiled compounds. Clustering the data for 12 distinct compounds uncovered both known and novel functional interactions that comprise the DNA-damage response and allowed us to define the genetic determinants required for repair of interstrand cross-links. Further genetic analysis allowed determination of epistasis for one of these functional groups.

  15. Temporomandibular joint formation requires two distinct hedgehog-dependent steps.

    Science.gov (United States)

    Purcell, Patricia; Joo, Brian W; Hu, Jimmy K; Tran, Pamela V; Calicchio, Monica L; O'Connell, Daniel J; Maas, Richard L; Tabin, Clifford J

    2009-10-27

    We conducted a genetic analysis of the developing temporo-mandibular or temporomandi-bular joint (TMJ), a highly specialized synovial joint that permits movement and function of the mammalian jaw. First, we used laser capture microdissection to perform a genome-wide expression analysis of each of its developing components. The expression patterns of genes identified in this screen were examined in the TMJ and compared with those of other synovial joints, including the shoulder and the hip joints. Striking differences were noted, indicating that the TMJ forms via a distinct molecular program. Several components of the hedgehog (Hh) signaling pathway are among the genes identified in the screen, including Gli2, which is expressed specifically in the condyle and in the disk of the developing TMJ. We found that mice deficient in Gli2 display aberrant TMJ development such that the condyle loses its growth-plate-like cellular organization and no disk is formed. In addition, we used a conditional strategy to remove Smo, a positive effector of the Hh signaling pathway, from chondrocyte progenitors. This cell autonomous loss of Hh signaling allows for disk formation, but the resulting structure fails to separate from the condyle. Thus, these experiments establish that Hh signaling acts at two distinct steps in disk morphogenesis, condyle initiation, and disk-condyle separation and provide a molecular framework for future studies of the TMJ.

  16. Self-assembly strategies for the synthesis of functional nanostructured materials

    International Nuclear Information System (INIS)

    Perego, M.; Seguini, G.

    2016-01-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10 nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer selfassembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  17. Self-assembling nanoparticles at surfaces and interfaces

    NARCIS (Netherlands)

    Kinge, S.S.; Crego Calama, Mercedes; Reinhoudt, David

    2008-01-01

    Nanoparticles are the focus of much attention due to their astonishing properties and numerous possibilities for applications in nanotechnology. For realising versatile functions, assembly of nanoparticles in regular patterns on surfaces and at interfaces is required. Assembling nanoparticles

  18. Development of an Advanced Recycle Filter Tank Assembly for the ISS Urine Processor Assembly

    Science.gov (United States)

    Link, Dwight E., Jr.; Carter, Donald Layne; Higbie, Scott

    2010-01-01

    Recovering water from urine is a process that is critical to supporting larger crews for extended missions aboard the International Space Station. Urine is collected, preserved, and stored for processing into water and a concentrated brine solution that is highly toxic and must be contained to avoid exposure to the crew. The brine solution is collected in an accumulator tank, called a Recycle Filter Tank Assembly (RFTA) that must be replaced monthly and disposed in order to continue urine processing operations. In order to reduce resupply requirements, a new accumulator tank is being developed that can be emptied on orbit into existing ISS waste tanks. The new tank, called the Advanced Recycle Filter Tank Assembly (ARFTA) is a metal bellows tank that is designed to collect concentrated brine solution and empty by applying pressure to the bellows. This paper discusses the requirements and design of the ARFTA as well as integration into the urine processor assembly.

  19. A high resolution radiation hybrid map of bovine chromosome 14 identifies scaffold rearrangement in the latest bovine assembly

    Directory of Open Access Journals (Sweden)

    Wang Zhiquan

    2007-07-01

    Full Text Available Abstract Background Radiation hybrid (RH maps are considered to be a tool of choice for fine mapping closely linked loci, considering that the resolution of linkage maps is determined by the number of informative meiosis and recombination events which may require very large mapping populations. Accurately defining the marker order on chromosomes is crucial for correct identification of quantitative trait loci (QTL, haplotype map construction and refinement of candidate gene searches. Results A 12 k Radiation hybrid map of bovine chromosome 14 was constructed using 843 single nucleotide polymorphism markers. The resulting map was aligned with the latest version of the bovine assembly (Btau_3.1 as well as other previously published RH maps. The resulting map identified distinct regions on Bovine chromosome 14 where discrepancies between this RH map and the bovine assembly occur. A major region of discrepancy was found near the centromere involving the arrangement and order of the scaffolds from the assembly. The map further confirms previously published conserved synteny blocks with human chromosome 8. As well, it identifies an extra breakpoint and conserved synteny block previously undetected due to lower marker density. This conserved synteny block is in a region where markers between the RH map presented here and the latest sequence assembly are in very good agreement. Conclusion The increase of publicly available markers shifts the rate limiting step from marker discovery to the correct identification of their order for further use by the research community. This high resolution map of bovine chromosome 14 will facilitate identification of regions in the sequence assembly where additional information is required to resolve marker ordering.

  20. Fuel assembly inspection device

    International Nuclear Information System (INIS)

    Yaginuma, Yoshitaka

    1998-01-01

    The present invention provides a device suitable to inspect appearance of fuel assemblies by photographing the appearance of fuel assemblies. Namely, the inspection device of the present invention measures bowing of fuel assembly or each of fuel rods or both of them based on the partially photographed images of fuel assembly. In this case, there is disposed a means which flashily projects images in the form of horizontal line from a direction intersecting obliquely relative to a horizontal cross section of the fuel assembly. A first image processing means separates the projected image pictures including projected images and calculates bowing. A second image processing means replaces the projected image pictures of the projected images based on projected images just before and after the photographing. Then, images for the measurement of bowing and images for inspection can be obtained simultaneously. As a result, the time required for the photographing can be shortened, the time for inspection can be shortened and an effect of preventing deterioration of photographing means by radiation rays can be provided. (I.S.)

  1. Organization of Mitochondrial Gene Expression in Two Distinct Ribosome-Containing Assemblies

    Directory of Open Access Journals (Sweden)

    Kirsten Kehrein

    2015-02-01

    Full Text Available Mitochondria contain their own genetic system that provides subunits of the complexes driving oxidative phosphorylation. A quarter of the mitochondrial proteome participates in gene expression, but how all these factors are orchestrated and spatially organized is currently unknown. Here, we established a method to purify and analyze native and intact complexes of mitochondrial ribosomes. Quantitative mass spectrometry revealed extensive interactions of ribosomes with factors involved in all the steps of posttranscriptional gene expression. These interactions result in large expressosome-like assemblies that we termed mitochondrial organization of gene expression (MIOREX complexes. Superresolution microscopy revealed that most MIOREX complexes are evenly distributed throughout the mitochondrial network, whereas a subset is present as nucleoid-MIOREX complexes that unite the whole spectrum of organellar gene expression. Our work therefore provides a conceptual framework for the spatial organization of mitochondrial protein synthesis that likely developed to facilitate gene expression in the organelle.

  2. Integrating complex functions: coordination of nuclear pore complex assembly and membrane expansion of the nuclear envelope requires a family of integral membrane proteins.

    Science.gov (United States)

    Schneiter, Roger; Cole, Charles N

    2010-01-01

    The nuclear envelope harbors numerous large proteinaceous channels, the nuclear pore complexes (NPCs), through which macromolecular exchange between the cytosol and the nucleoplasm occurs. This double-membrane nuclear envelope is continuous with the endoplasmic reticulum and thus functionally connected to such diverse processes as vesicular transport, protein maturation and lipid synthesis. Recent results obtained from studies in Saccharomyces cerevisiae indicate that assembly of the nuclear pore complex is functionally dependent upon maintenance of lipid homeostasis of the ER membrane. Previous work from one of our laboratories has revealed that an integral membrane protein Apq12 is important for the assembly of functional nuclear pores. Cells lacking APQ12 are viable but cannot grow at low temperatures, have aberrant NPCs and a defect in mRNA export. Remarkably, these defects in NPC assembly can be overcome by supplementing cells with a membrane fluidizing agent, benzyl alcohol, suggesting that Apq12 impacts the flexibility of the nuclear membrane, possibly by adjusting its lipid composition when cells are shifted to a reduced temperature. Our new study now expands these findings and reveals that an essential membrane protein, Brr6, shares at least partially overlapping functions with Apq12 and is also required for assembly of functional NPCs. A third nuclear envelope membrane protein, Brl1, is related to Brr6, and is also required for NPC assembly. Because maintenance of membrane homeostasis is essential for cellular survival, the fact that these three proteins are conserved in fungi that undergo closed mitoses, but are not found in metazoans or plants, may indicate that their functions are performed by proteins unrelated at the primary sequence level to Brr6, Brl1 and Apq12 in cells that disassemble their nuclear envelopes during mitosis.

  3. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial Metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Graham, Emily B.; Crump, Alex R.; Resch, Charles T.; Fansler, Sarah; Arntzen, Evan; Kennedy, David W.; Fredrickson, Jim K.; Stegen, James C.

    2016-12-16

    Community assembly processes govern shifts in species abundances in response to environmental change, yet our understanding of assembly remains largely decoupled from ecosystem function. Here, we test hypotheses regarding assembly and function across space and time using hyporheic microbial communities as a model system. We pair sampling of two habitat types through hydrologic fluctuation with null modeling and multivariate statistics. We demonstrate that dual selective pressures assimilate to generate compositional changes at distinct timescales among habitat types, resulting in contrasting associations of Betaproteobacteria and Thaumarchaeota with selection and with seasonal changes in aerobic metabolism. Our results culminate in a conceptual model in which selection from contrasting environments regulates taxon abundance and ecosystem function through time, with increases in function when oscillating selection opposes stable selective pressures. Our model is applicable within both macrobial and microbial ecology and presents an avenue for assimilating community assembly processes into predictions of ecosystem function.

  4. Harnessing NGS and Big Data Optimally: Comparison of miRNA Prediction from Assembled versus Non-assembled Sequencing Data--The Case of the Grass Aegilops tauschii Complex Genome.

    Science.gov (United States)

    Budak, Hikmet; Kantar, Melda

    2015-07-01

    MicroRNAs (miRNAs) are small, endogenous, non-coding RNA molecules that regulate gene expression at the post-transcriptional level. As high-throughput next generation sequencing (NGS) and Big Data rapidly accumulate for various species, efforts for in silico identification of miRNAs intensify. Surprisingly, the effect of the input genomics sequence on the robustness of miRNA prediction was not evaluated in detail to date. In the present study, we performed a homology-based miRNA and isomiRNA prediction of the 5D chromosome of bread wheat progenitor, Aegilops tauschii, using two distinct sequence data sets as input: (1) raw sequence reads obtained from 454-GS FLX Titanium sequencing platform and (2) an assembly constructed from these reads. We also compared this method with a number of available plant sequence datasets. We report here the identification of 62 and 22 miRNAs from raw reads and the assembly, respectively, of which 16 were predicted with high confidence from both datasets. While raw reads promoted sensitivity with the high number of miRNAs predicted, 55% (12 out of 22) of the assembly-based predictions were supported by previous observations, bringing specificity forward compared to the read-based predictions, of which only 37% were supported. Importantly, raw reads could identify several repeat-related miRNAs that could not be detected with the assembly. However, raw reads could not capture 6 miRNAs, for which the stem-loops could only be covered by the relatively longer sequences from the assembly. In summary, the comparison of miRNA datasets obtained by these two strategies revealed that utilization of raw reads, as well as assemblies for in silico prediction, have distinct advantages and disadvantages. Consideration of these important nuances can benefit future miRNA identification efforts in the current age of NGS and Big Data driven life sciences innovation.

  5. Amino Acid Availability Modulates Vacuolar H+-ATPase Assembly*

    Science.gov (United States)

    Stransky, Laura A.; Forgac, Michael

    2015-01-01

    The vacuolar H+-ATPase (V-ATPase) is an ATP-dependent proton pump composed of a peripheral ATPase domain (V1) and a membrane-integral proton-translocating domain (V0) and is involved in many normal and disease processes. An important mechanism of regulating V-ATPase activity is reversible assembly of the V1 and V0 domains. Increased assembly in mammalian cells occurs under various conditions and has been shown to involve PI3K. The V-ATPase is necessary for amino acid-induced activation of mechanistic target of rapamycin complex 1 (mTORC1), which is important in controlling cell growth in response to nutrient availability and growth signals. The V-ATPase undergoes amino acid-dependent interactions with the Ragulator complex, which is involved in recruitment of mTORC1 to the lysosomal membrane during amino acid sensing. We hypothesized that changes in the V-ATPase/Ragulator interaction might involve amino acid-dependent changes in V-ATPase assembly. To test this, we measured V-ATPase assembly by cell fractionation in HEK293T cells treated with and without amino acids. V-ATPase assembly increases upon amino acid starvation, and this effect is reversed upon readdition of amino acids. Lysosomes from amino acid-starved cells possess greater V-ATPase-dependent proton transport, indicating that assembled pumps are catalytically active. Amino acid-dependent changes in both V-ATPase assembly and activity are independent of PI3K and mTORC1 activity, indicating the involvement of signaling pathways distinct from those implicated previously in controlling assembly. By contrast, lysosomal neutralization blocks the amino acid-dependent change in assembly and reactivation of mTORC1 after amino acid starvation. These results identify an important new stimulus for controlling V-ATPase assembly. PMID:26378229

  6. Opal-like Multicolor Appearance of Self-Assembled Photonic Array.

    Science.gov (United States)

    Arnon, Zohar A; Pinotsi, Dorothea; Schmidt, Matthias; Gilead, Sharon; Guterman, Tom; Sadhanala, Aditya; Ahmad, Shahab; Levin, Aviad; Walther, Paul; Kaminski, Clemens F; Fändrich, Marcus; Kaminski Schierle, Gabriele S; Adler-Abramovich, Lihi; Shimon, Linda J W; Gazit, Ehud

    2018-06-20

    Molecular self-assembly of short peptide building blocks leads to the formation of various material architectures that may possess unique physical properties. Recent studies had confirmed the key role of biaromaticity in peptide self-assembly, with the diphenylalanine (FF) structural family as an archetypal model. Another significant direction in the molecular engineering of peptide building blocks is the use of fluorenylmethoxycarbonyl (Fmoc) modification, which promotes the assembly process and may result in nanostructures with distinctive features and macroscopic hydrogel with supramolecular features and nanoscale order. Here, we explored the self-assembly of the protected, noncoded fluorenylmethoxycarbonyl-β,β-diphenyl-Ala-OH (Fmoc-Dip) amino acid. This process results in the formation of elongated needle-like crystals with notable aromatic continuity. By altering the assembly conditions, arrays of spherical particles were formed that exhibit strong light scattering. These arrays display vivid coloration, strongly resembling the appearance of opal gemstones. However, unlike the Rayleigh scattering effect produced by the arrangement of opal, the described optical phenomenon is attributed to Mie scattering. Moreover, by controlling the solution evaporation rate, i.e., the assembly kinetics, we were able to manipulate the resulting coloration. This work demonstrates a bottom-up approach, utilizing self-assembly of a protected amino acid minimal building block, to create arrays of organic, light-scattering colorful surfaces.

  7. Proteins evolve on the edge of supramolecular self-assembly

    Science.gov (United States)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  8. SV40 Assembly In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Ariella Oppenheim

    2008-01-01

    Full Text Available The Simian virus 40 (SV40 capsid is a T = 7d icosahedral lattice ∼45 nm in diameter surrounding the ∼5 kb circular minichromosome. The outer shell is composed of 360 monomers of the major capsid protein VP1, tightly bound in 72 pentamers. VP1 is a jellyroll β-barrel, with extending N- and C-terminal arms. The N-terminal arms bind DNA and face the interior of the capsid. The flexible C-arms tie together the 72 pentamers in three distinct kinds of interactions, thus facilitating the formation of a T = 7 icosahedron from identical pentameric building blocks. Assembly in vivo was shown to occur by addition of capsomers around the DNA. We apply a combination of biochemical and genetic approaches to study SV40 assembly. Our in vivo and in vitro studies suggest the following model: one or two capsomers bind at a high affinity to ses, the viral DNA encapsidation signal, forming the nucleation centre for assembly. Next, multiple capsomers attach concomitantly, at lower affinity, around the minichromosome. This increases their local concentration facilitating rapid, cooperative assembly reaction. Formation of the icosahedron proceeds either by gradual addition of single pentamers to the growing shell or by concerted assembly of pentamer clusters.

  9. Regulated assembly of a supramolecular centrosome scaffold in vitro

    DEFF Research Database (Denmark)

    Woodruff, J. B.; Wueseke, O.; Viscardi, V.

    2015-01-01

    are not well understood. In Caenorhabditis elegans, PCM assembly requires the coiled-coil protein SPD-5. We found that recombinant SPD-5 could polymerize to form micrometer-sized porous networks in vitro. Network assembly was accelerated by two conserved regulators that control PCM assembly in vivo, Polo...

  10. Metrology for ITER Assembly

    International Nuclear Information System (INIS)

    Bogusch, E.

    2006-01-01

    The overall dimensions of the ITER Tokamak and the particular assembly sequence preclude the use of conventional optical metrology, mechanical jigs and traditional dimensional control equipment, as used for the assembly of smaller, previous generation, fusion devices. This paper describes the state of the art of the capabilities of available metrology systems, with reference to the previous experience in Fusion engineering and in other industries. Two complementary procedures of transferring datum from the primary datum network on the bioshield to the secondary datum s inside the VV with the desired accuracy of about 0.1 mm is described, one method using the access directly through the ports and the other using transfer techniques, developed during the co-operation with ITER/EFDA. Another important task described is the development of a method for the rapid and easy measurement of the gaps between sectors, required for the production of the customised splice plates between them. The scope of the paper includes the evaluation of the composition and cost of the systems and team of technical staff required to meet the requirements of the assembly procedure. The results from a practical, full-scale demonstration of the methodologies used, using the proposed equipment, is described. This work has demonstrated the feasibility of achieving the necessary accuracies for the successful building of ITER. (author)

  11. DNA controlled assembly of liposomes

    DEFF Research Database (Denmark)

    Vogel, Stefan; Jakobsen, Ulla; Simonsen, Adam Cohen

    2009-01-01

    DNA-encoding of solid nanoparticles requires surfacechemistry, which is often tedious and not generally applicable. In the present study non-covalently attached DNA are used to assemble soft nanoparticles (liposomes) in solution. This process displays remarkably sharp thermal transitions from...... assembled to disassembled state for which reason this method allows easy and fast detection of polynucleotides (e.g. DNA or RNA), including single nucleotide polymorphisms as well as insertions and deletions....

  12. Elucidating dominant pathways of the nano-particle self-assembly process.

    Science.gov (United States)

    Zeng, Xiangze; Li, Bin; Qiao, Qin; Zhu, Lizhe; Lu, Zhong-Yuan; Huang, Xuhui

    2016-09-14

    Self-assembly processes play a key role in the fabrication of functional nano-structures with widespread application in drug delivery and micro-reactors. In addition to the thermodynamics, the kinetics of the self-assembled nano-structures also play an important role in determining the formed structures. However, as the self-assembly process is often highly heterogeneous, systematic elucidation of the dominant kinetic pathways of self-assembly is challenging. Here, based on mass flow, we developed a new method for the construction of kinetic network models and applied it to identify the dominant kinetic pathways for the self-assembly of star-like block copolymers. We found that the dominant pathways are controlled by two competing kinetic parameters: the encounter time Te, characterizing the frequency of collision and the transition time Tt for the aggregate morphology change from rod to sphere. Interestingly, two distinct self-assembly mechanisms, diffusion of an individual copolymer into the aggregate core and membrane closure, both appear at different stages (with different values of Tt) of a single self-assembly process. In particular, the diffusion mechanism dominates the middle-sized semi-vesicle formation stage (with large Tt), while the membrane closure mechanism dominates the large-sized vesicle formation stage (with small Tt). Through the rational design of the hydrophibicity of the copolymer, we successfully tuned the transition time Tt and altered the dominant self-assembly pathways.

  13. 49 CFR 571.209 - Standard No. 209; Seat belt assemblies.

    Science.gov (United States)

    2010-10-01

    ... seat belt assembly to fit the user, including such hardware that may be integral with a buckle... the proper use of the assembly, stressing particularly the importance of wearing the assembly snugly... of Standard No. 208. (a)(1) A manual seat belt assembly, which is subject to the requirements of S5.1...

  14. Analysis of spatial patterns informs community assembly and sampling requirements for Collembola in forest soils

    Science.gov (United States)

    Dirilgen, Tara; Juceviča, Edite; Melecis, Viesturs; Querner, Pascal; Bolger, Thomas

    2018-01-01

    The relative importance of niche separation, non-equilibrial and neutral models of community assembly has been a theme in community ecology for many decades with none appearing to be applicable under all circumstances. In this study, Collembola species abundances were recorded over eleven consecutive years in a spatially explicit grid and used to examine (i) whether observed beta diversity differed from that expected under conditions of neutrality, (ii) whether sampling points differed in their relative contributions to overall beta diversity, and (iii) the number of samples required to provide comparable estimates of species richness across three forest sites. Neutrality could not be rejected for 26 of the forest by year combinations. However, there is a trend toward greater structure in the oldest forest, where beta diversity was greater than predicted by neutrality on five of the eleven sampling dates. The lack of difference in individual- and sample-based rarefaction curves also suggests randomness in the system at this particular scale of investigation. It seems that Collembola communities are not spatially aggregated and assembly is driven primarily by neutral processes particularly in the younger two sites. Whether this finding is due to small sample size or unaccounted for environmental variables cannot be determined. Variability between dates and sites illustrates the potential of drawing incorrect conclusions if data are collected at a single site and a single point in time.

  15. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting

    Science.gov (United States)

    Nie, Xiang-Kun; Xu, Yi-Ting; Song, Zhi-Ling; Ding, Ding; Gao, Feng; Liang, Hao; Chen, Long; Bian, Xia; Chen, Zhuo; Tan, Weihong

    2014-10-01

    Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change, strong and unique Raman scattering and fluorescence emission, sensitive NIR thermal response, and distinctive magnetic properties afford this assembly system with multicoded anti-counterfeiting capabilities.Molecular self-assembly, a process to design molecular entities to aggregate into desired structures, represents a promising bottom-up route towards precise construction of functional systems. Here we report a multifunctional, self-assembled system based on magnetic-graphitic-nanocapsule (MGN) templated diacetylene assembly and photopolymerization. The as-prepared assembly system maintains the unique color and fluorescence change properties of the polydiacetylene (PDA) polymers, while also pursues the superior Raman, NIR, magnetic and superconducting properties from the MGN template. Based on both fluorescence and magnetic resonance imaging (MRI) T2 relaxivity, the MGN@PDA system could efficiently monitor the pH variations which could be used as a pH sensor. The MGN@PDA system further demonstrates potential as unique ink for anti-counterfeiting applications. Reversible color change

  16. “Her place among the nations of the earth”: Irish votes at the UN General Assembly, 1955-2005

    Directory of Open Access Journals (Sweden)

    Christophe Gillissen

    2007-03-01

    Full Text Available Since joining the United Nations in 1955, Ireland has enjoyed a good reputation within the organization because of its commitment to multilateral diplomacy and its progressive position on human rights, self-determination and disarmament. However, when voting on resolutions in the General Assembly, the Irish delegation must take into account its effectiveness and impact on the UN, as well as the position of other countries. The USA has exerted particular pressure from the beginning, and since 1973 Ireland has also had to comply with the requirements of European solidarity. Nonetheless, various studies of Irish votes at the General Assembly show that on the whole Ireland has maintained a distinctive profile, faithful to its traditional values. Despite some changes over time, continuity seems to be the hallmark of Ireland’s UN policy, which is characterised by a moderate, constructive approach within the framework of a progressive grouping of states

  17. Quantifying quality in DNA self-assembly

    Science.gov (United States)

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  18. Rac1 GTPase activates the WAVE regulatory complex through two distinct binding sites

    Science.gov (United States)

    Brautigam, Chad A; Xing, Wenmin; Yang, Sheng; Henry, Lisa; Doolittle, Lynda K; Walz, Thomas

    2017-01-01

    The Rho GTPase Rac1 activates the WAVE regulatory complex (WRC) to drive Arp2/3 complex-mediated actin polymerization, which underpins diverse cellular processes. Here we report the structure of a WRC-Rac1 complex determined by cryo-electron microscopy. Surprisingly, Rac1 is not located at the binding site on the Sra1 subunit of the WRC previously identified by mutagenesis and biochemical data. Rather, it binds to a distinct, conserved site on the opposite end of Sra1. Biophysical and biochemical data on WRC mutants confirm that Rac1 binds to both sites, with the newly identified site having higher affinity and both sites required for WRC activation. Our data reveal that the WRC is activated by simultaneous engagement of two Rac1 molecules, suggesting a mechanism by which cells may sense the density of active Rac1 at membranes to precisely control actin assembly. PMID:28949297

  19. The single SNR fuel assembly container (ESBB) to transport unirradiated SNR 300 fuel assemblies

    International Nuclear Information System (INIS)

    Hilbert, F.; Hottenrott, G.

    1998-01-01

    In this paper a new type B(U) package design is presented. The Single SNR Fuel Assembly Container (ESBB) is designed for the transport and storage of a single SNR 300 fuel assembly. This package is the main component for the future interim storage of the fuel assemblies in heavy storage casks. Its benefits are that it is compatible with the Category I transport system of Nuclear Cargo + Service NCS) used in Germany and that it can be easily handled at the current storage locations as well as in an interim storage facility. In total 205 fuel assemblies are currently stored in Hanau, Germany and Dounreay, U.K. Former studies have shown, that heavy transport and storage casks can be handled there only with considerable efforts. But the required category I transport to an interim storage is not reasonably feasible. To overcome these problems the ESBB was designed. It consists of a stainless steel tube with welded bottom, a welded plug as closure system and shock absorbers 26 packages at maximum can be transported in one batch with the NCS security vehicle. The safety analysis shows that the package complies with IAEA 1996. Standard calculations methods and computer codes like HEATING 7.2 (Childs 1993) have been used for the analysis. Criticality safety assessment is based on conservative assumptions as required in IAEA 1996. Drop tests carried out by BAM will be used to verify the design. These tests are scheduled for mid 1998. For the validation of the design prototypes have already been manufactured. Handling tests show that the design complies with the requirements. Preliminary drop tests show that the certification drop tests will be passed positively. (authors)

  20. Multispectral Thermal Imager Optical Assembly Performance and Integration of the Flight Focal Plane Assembly

    International Nuclear Information System (INIS)

    Blake, Dick; Byrd, Don; Christensen, Wynn; Henson, Tammy; Krumel, Les; Rappoport, William; Shen, Gon-Yen

    1999-01-01

    The Multispectral Thermal Imager Optical Assembly (OA) has been fabricated, assembled, successfully performance tested, and integrated into the flight payload structure with the flight Focal Plane Assembly (FPA) integrated and aligned to it. This represents a major milestone achieved towards completion of this earth observing E-O imaging sensor that is to be operated in low earth orbit. The OA consists of an off-axis three mirror anastigmatic (TMA) telescope with a 36 cm unobscured clear aperture, a wide-field-of-view (WFOV) of 1.82 along the direction of spacecraft motion and 1.38 across the direction of spacecraft motion. It also contains a comprehensive on-board radiometric calibration system. The OA is part of a multispectral pushbroom imaging sensor which employs a single mechanically cooled focal plane with 15 spectral bands covering a wavelength range from 0.45 to 10.7 m. The OA achieves near diffraction-limited performance from visible to the long-wave infrared (LWIR) wavelengths. The two major design drivers for the OA are 80% enpixeled energy in the visible bands and radiometric stability. Enpixeled energy in the visible bands also drove the alignment of the FPA detectors to the OA image plane to a requirement of less than 20 m over the entire visible detector field of view (FOV). Radiometric stability requirements mandated a cold Lyot stop for stray light rejection and thermal background reduction. The Lyot stop is part of the FPA assembly and acts as the aperture stop for the imaging system. The alignment of the Lyot stop to the OA drove the centering and to some extent the tilt alignment requirements of the FPA to the OA

  1. Some assembly required: Contributions of Tom Stevens' lab to the V-ATPase field.

    Science.gov (United States)

    Graham, Laurie A; Finnigan, Gregory C; Kane, Patricia M

    2018-06-01

    Tom Stevens' lab has explored the subunit composition and assembly of the yeast V-ATPase for more than 30 years. Early studies helped establish yeast as the predominant model system for study of V-ATPase proton pumps and led to the discovery of protein splicing of the V-ATPase catalytic subunit. The Vma - phenotype, characteristic of loss-of-V-ATPase activity in yeast was key in determining the enzyme's subunit composition via yeast genetics. V-ATPase subunit composition proved to be highly conserved among eukaryotes. Genetic screens for new vma mutants led to identification of a set of dedicated V-ATPase assembly factors and helped unravel the complex pathways for V-ATPase assembly. In later years, exploration of the evolutionary history of several V-ATPase subunits provided new information about the enzyme's structure and function. This review highlights V-ATPase work in the Stevens' lab between 1987 and 2017. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Directional cell movements downstream of Gbx2 and Otx2 control the assembly of sensory placodes

    Directory of Open Access Journals (Sweden)

    Ben Steventon

    2016-11-01

    Full Text Available Cranial placodes contribute to sensory structures including the inner ear, the lens and olfactory epithelium and the neurons of the cranial sensory ganglia. At neurula stages, placode precursors are interspersed in the ectoderm surrounding the anterior neural plate before segregating into distinct placodes by as yet unknown mechanisms. Here, we perform live imaging to follow placode progenitors as they aggregate to form the lens and otic placodes. We find that while placode progenitors move with the same speed as their non-placodal neighbours, they exhibit increased persistence and directionality and these properties are required to assemble morphological placodes. Furthermore, we demonstrate that these factors are components of the transcriptional networks that coordinate placode cell behaviour including their directional movements. Together with previous work, our results support a dual role for Otx and Gbx transcription factors in both the early patterning of the neural plate border and the later segregation of its derivatives into distinct placodes.

  3. EAST machine assembly and its measurement system

    International Nuclear Information System (INIS)

    Wu, S.T.

    2005-01-01

    The EAST (HT-7U) superconducting tokamak consists of a superconducting poloidal field magnet system, a toroidal field magnet system, a vacuum vessel and in-vessel components, thermal shields and a cryostat vessel. The main parts of the machine have been delivered to ASIPP (Institute of Plasma Physics, Chinese Academy of Sciences) successionally from 2003. For its complicated constitution and precise requirement, a reasonable assembly procedure and measurement technique should be defined carefully. Before the assembly procedure, a reference frame has been set up with reference fiducial targets on the wall of the test hall by an industrial measurement system. After the torus of TF coils is formed, a new reference frame will be set up from the position of the TF torus. The vacuum vessel with all inner parts will be installed with reference of the new reference frame. The big size and mass of components, special configuration of the superconducting machine with tight installation tolerances of the HT-7U (EAST) machine result in complicated assembly procedure. The procedure had begun with the installation of the support frame and the base of cryostat vessel last year. In this paper, the requirements of the assembly precise for some key components of the machine are described. The reference frame for the assembly and maintenance is explained. The assembly procedure is introduced

  4. An iterative homogenization technique that preserves assembly core exchanges

    International Nuclear Information System (INIS)

    Mondot, Ph.; Sanchez, R.

    2003-01-01

    A new interactive homogenization procedure for reactor core calculations is proposed that requires iterative transport assembly and diffusion core calculations. At each iteration the transport solution of every assembly type is used to produce homogenized cross sections for the core calculation. The converged solution gives assembly fine multigroup transport fluxes that preserve macro-group assembly exchanges in the core. This homogenization avoids the periodic lattice-leakage model approximation and gives detailed assembly transport fluxes without need of an approximated flux reconstruction. Preliminary results are given for a one-dimensional core model. (authors)

  5. Optimal testlet pool assembly for multistage testing designs

    NARCIS (Netherlands)

    Ariel, A.; Veldkamp, Bernard P.; Breithaupt, Krista

    2006-01-01

    Computerized multistage testing (MST) designs require sets of test questions (testlets) to be assembled to meet strict, often competing criteria. Rules that govern testlet assembly may dictate the number of questions on a particular subject or may describe desirable statistical properties for the

  6. Figure-ground segregation requires two distinct periods of activity in V1: a transcranial magnetic stimulation study.

    Science.gov (United States)

    Heinen, Klaartje; Jolij, Jacob; Lamme, Victor A F

    2005-09-08

    Discriminating objects from their surroundings by the visual system is known as figure-ground segregation. This process entails two different subprocesses: boundary detection and subsequent surface segregation or 'filling in'. In this study, we used transcranial magnetic stimulation to test the hypothesis that temporally distinct processes in V1 and related early visual areas such as V2 or V3 are causally related to the process of figure-ground segregation. Our results indicate that correct discrimination between two visual stimuli, which relies on figure-ground segregation, requires two separate periods of information processing in the early visual cortex: one around 130-160 ms and the other around 250-280 ms.

  7. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.

    Science.gov (United States)

    Brown, Noam; Lei, Jiangtao; Zhan, Chendi; Shimon, Linda J W; Adler-Abramovich, Lihi; Wei, Guanghong; Gazit, Ehud

    2018-04-24

    Self-assembly is a process of key importance in natural systems and in nanotechnology. Peptides are attractive building blocks due to their relative facile synthesis, biocompatibility, and other unique properties. Diphenylalanine (FF) and its derivatives are known to form nanostructures of various architectures and interesting and varied characteristics. The larger triphenylalanine peptide (FFF) was found to self-assemble as efficiently as FF, forming related but distinct architectures of plate-like and spherical nanostructures. Here, to understand the effect of triaromatic systems on the self-assembly process, we examined carboxybenzyl-protected diphenylalanine (z-FF) as a minimal model for such an arrangement. We explored different self-assembly conditions by changing solvent compositions and peptide concentrations, generating a phase diagram for the assemblies. We discovered that z-FF can form a variety of structures, including nanowires, fibers, nanospheres, and nanotoroids, the latter were previously observed only in considerably larger or co-assembly systems. Secondary structure analysis revealed that all assemblies possessed a β-sheet conformation. Additionally, in solvent combinations with high water ratios, z-FF formed rigid and self-healing hydrogels. X-ray crystallography revealed a "wishbone" structure, in which z-FF dimers are linked by hydrogen bonds mediated by methanol molecules, with a 2-fold screw symmetry along the c-axis. All-atom molecular dynamics (MD) simulations revealed conformations similar to the crystal structure. Coarse-grained MD simulated the assembly of the peptide into either fibers or spheres in different solvent systems, consistent with the experimental results. This work thus expands the building block library for the fabrication of nanostructures by peptide self-assembly.

  8. Development of the Triple Theta assembly station with machine vision feedback

    International Nuclear Information System (INIS)

    Schmidt, Derek William

    2008-01-01

    Increased requirements for tighter tolerances on assembled target components in complex three-dimensional geometries with only days to assemble complete campaigns require the implementation of a computer-controlled high-precision assembly station. Over the last year, an 11-axis computer-controlled assembly station has been designed and built with custom software to handle the multiple coordinate systems and automatically calculate all relational positions. Preliminary development efforts have also been done to explore the benefit of a machine vision feedback module with a dual-camera viewing system to automate certain basic features like crosshair calibration, component leveling, and component centering.

  9. Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components

    Science.gov (United States)

    Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.; Grun, Casey; Strauss, Maximilian T.; Bron, Patrick; Lai-Kee-Him, Josephine; Schueder, Florian; Wang, Bei; Wang, Pengfei; Kishi, Jocelyn Y.; Myhrvold, Cameron; Zhu, Allen; Jungmann, Ralf; Bellot, Gaetan; Ke, Yonggang; Yin, Peng

    2017-12-01

    Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair ‘voxels’ that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can

  10. Nanomechanical properties of distinct fibrillar polymorphs of the protein α-synuclein

    Science.gov (United States)

    Makky, Ali; Bousset, Luc; Polesel-Maris, Jérôme; Melki, Ronald

    2016-11-01

    Alpha-synuclein (α-Syn) is a small presynaptic protein of 140 amino acids. Its pathologic intracellular aggregation within the central nervous system yields protein fibrillar inclusions named Lewy bodies that are the hallmarks of Parkinson’s disease (PD). In solution, pure α-Syn adopts an intrinsically disordered structure and assembles into fibrils that exhibit considerable morphological heterogeneity depending on their assembly conditions. We recently established tightly controlled experimental conditions allowing the assembly of α-Syn into highly homogeneous and pure polymorphs. The latter exhibited differences in their shape, their structure but also in their functional properties. We have conducted an AFM study at high resolution and performed a statistical analysis of fibrillar α-Syn shape and thermal fluctuations to calculate the persistence length to further assess the nanomechanical properties of α-Syn polymorphs. Herein, we demonstrated quantitatively that distinct polymorphs made of the same protein (wild-type α-Syn) show significant differences in their morphology (height, width and periodicity) and physical properties (persistence length, bending rigidity and axial Young’s modulus).

  11. A practical comparison of de novo genome assembly software tools for next-generation sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Wenyu Zhang

    Full Text Available The advent of next-generation sequencing technologies is accompanied with the development of many whole-genome sequence assembly methods and software, especially for de novo fragment assembly. Due to the poor knowledge about the applicability and performance of these software tools, choosing a befitting assembler becomes a tough task. Here, we provide the information of adaptivity for each program, then above all, compare the performance of eight distinct tools against eight groups of simulated datasets from Solexa sequencing platform. Considering the computational time, maximum random access memory (RAM occupancy, assembly accuracy and integrity, our study indicate that string-based assemblers, overlap-layout-consensus (OLC assemblers are well-suited for very short reads and longer reads of small genomes respectively. For large datasets of more than hundred millions of short reads, De Bruijn graph-based assemblers would be more appropriate. In terms of software implementation, string-based assemblers are superior to graph-based ones, of which SOAPdenovo is complex for the creation of configuration file. Our comparison study will assist researchers in selecting a well-suited assembler and offer essential information for the improvement of existing assemblers or the developing of novel assemblers.

  12. Onset of self-assembly

    International Nuclear Information System (INIS)

    Chitanvis, S.M.

    1998-01-01

    We have formulated a theory of self-assembly based on the notion of local gauge invariance at the mesoscale. Local gauge invariance at the mesoscale generates the required long-range entropic forces responsible for self-assembly in binary systems. Our theory was applied to study the onset of mesostructure formation above a critical temperature in estane, a diblock copolymer. We used diagrammatic methods to transcend the Gaussian approximation and obtain a correlation length ξ∼(c-c * ) -γ , where c * is the minimum concentration below which self-assembly is impossible, c is the current concentration, and γ was found numerically to be fairly close to 2/3. The renormalized diffusion constant vanishes as the critical concentration is approached, indicating the occurrence of critical slowing down, while the correlation function remains finite at the transition point. copyright 1998 The American Physical Society

  13. Electrostatics and the assembly of an RNA virus

    NARCIS (Netherlands)

    Schoot, van der P.P.A.M.; Bruinsma, R.

    2005-01-01

    Electrostatic interactions play a central role in the assembly of single-stranded RNA viruses. Under physiological conditions of salinity and acidity, virus capsid assembly requires the presence of genomic material that is oppositely charged to the core proteins. In this paper we apply basic polymer

  14. Design parameters for voltage-controllable directed assembly of single nanoparticles

    International Nuclear Information System (INIS)

    Porter, Benjamin F; Bhaskaran, Harish; Abelmann, Leon

    2013-01-01

    Techniques to reliably pick-and-place single nanoparticles into functional assemblies are required to incorporate exotic nanoparticles into standard electronic circuits. In this paper we explore the use of electric fields to drive and direct the assembly process, which has the advantage of being able to control the nano-assembly process at the single nanoparticle level. To achieve this, we design an electrostatic gating system, thus enabling a voltage-controllable nanoparticle picking technique. Simulating this system with the nonlinear Poisson–Boltzmann equation, we can successfully characterize the parameters required for single particle placement, the key being single particle selectivity, in effect designing a system that can achieve this controllably. We then present the optimum design parameters required for successful single nanoparticle placement at ambient temperature, an important requirement for nanomanufacturing processes. (paper)

  15. Orthology Guided Assembly in highly heterozygous crops

    DEFF Research Database (Denmark)

    Ruttink, Tom; Sterck, Lieven; Rohde, Antje

    2013-01-01

    to outbreeding crop species hamper De Bruijn Graph-based de novo assembly algorithms, causing transcript fragmentation and the redundant assembly of allelic contigs. If multiple genotypes are sequenced to study genetic diversity, primary de novo assembly is best performed per genotype to limit the level......Despite current advances in next-generation sequencing data analysis procedures, de novo assembly of a reference sequence required for SNP discovery and expression analysis is still a major challenge in genetically uncharacterized, highly heterozygous species. High levels of polymorphism inherent...... of polymorphism and avoid transcript fragmentation. Here, we propose an Orthology Guided Assembly procedure that first uses sequence similarity (tBLASTn) to proteins of a model species to select allelic and fragmented contigs from all genotypes and then performs CAP3 clustering on a gene-by-gene basis. Thus, we...

  16. Flexible Assembly Solar Technology (FAST) Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Toister, Elad [BrightSource Energy Inc., Jerusalem (Israel)

    2014-11-06

    The Flexible Assembly Solar Technology (FAST) project was initiated by BrightSource in an attempt to provide potential solar field EPC contractors with an effective set of tools to perform specific construction tasks. These tasks are mostly associated with heliostat assembly and installation, and require customized non-standard tools. The FAST concept focuses on low equipment cost, reduced setup time and increased assembly throughput as compared to the Ivanpah solar field construction tools.

  17. A mobile robot with parallel kinematics constructed under requirements for assembling and machining of the ITER vacuum vessel

    International Nuclear Information System (INIS)

    Pessi, P.; Huapeng Wu; Handroos, H.; Jones, L.

    2006-01-01

    ITER sectors require more stringent tolerances ± 5 mm than normally expected for the size of structure involved. The walls of ITER sectors are made of 60 mm thick stainless steel and are joined together by high efficiency structural and leak tight welds. In addition to the initial vacuum vessel assembly, sectors may have to be replaced for repair. Since commercially available machines are too heavy for the required machining operations and the lifting of a possible e-beam gun column system, and conventional robots lack the stiffness and accuracy in such machining condition, a new flexible, lightweight and mobile robotic machine is being considered. For the assembly of the ITER vacuum vessel sector, precise positioning of welding end-effectors, at some distance in a confined space from the available supports, will be required, which is not possible using conventional machines or robots. This paper presents a special robot, able to carry out welding and machining processes from inside the ITER vacuum vessel, consisting of a ten-degree-of-freedom parallel robot mounted on a carriage driven by electric motor/gearbox on a track. The robot consists of a Stewart platform based parallel mechanism. Water hydraulic cylinders are used as actuators to reach six degrees of freedom for parallel construction. Two linear and two rotational motions are used for enlargement the workspace of the manipulator. The robot carries both welding gun such as a TIG, hybrid laser or e-beam welding gun to weld the inner and outer walls of the ITER vacuum vessel sectors and machining tools to cut and milling the walls with necessary accuracy, it can also carry other tools and material to a required position inside the vacuum vessel . For assembling an on line six degrees of freedom seam finding algorithm has been developed, which enables the robot to find welding seam automatically in a very complex environment. In the machining multi flexible machining processes carried out automatically by

  18. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity

    Science.gov (United States)

    Simon, Joseph R.; Carroll, Nick J.; Rubinstein, Michael; Chilkoti, Ashutosh; López, Gabriel P.

    2017-06-01

    Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.

  19. Assembly and handling apparatus for the EBFA Marx generator

    International Nuclear Information System (INIS)

    Staller, G.E.; Hiett, G.E.; Hamilton, I.D.; Aker, M.F.; Daniels, G.A.

    1979-05-01

    Marx generators, a major slow-pulsed power component in Sandia Laboratories' Electron Beam Fusion Accelerator (EBFA), were assembled at a remote facility modified to utilize an assembly-line technique. Due to the size and weight of the various components, as well as the final Marx generator assembly, special handling apparatus was designed. Time and manpower constraints required that this assembly be done in parallel with the construction of the Electron Beam Fusion Facility (EBFF). The completed Marx generators were temporarily stored and then moved from the assembly building to the EBFF using special transportation racks designed specifically for this purpose

  20. Assembly of viral genomes from metagenomes

    Directory of Open Access Journals (Sweden)

    Saskia L Smits

    2014-12-01

    Full Text Available Viral infections remain a serious global health issue. Metagenomic approaches are increasingly used in the detection of novel viral pathogens but also to generate complete genomes of uncultivated viruses. In silico identification of complete viral genomes from sequence data would allow rapid phylogenetic characterization of these new viruses. Often, however, complete viral genomes are not recovered, but rather several distinct contigs derived from a single entity, some of which have no sequence homology to any known proteins. De novo assembly of single viruses from a metagenome is challenging, not only because of the lack of a reference genome, but also because of intrapopulation variation and uneven or insufficient coverage. Here we explored different assembly algorithms, remote homology searches, genome-specific sequence motifs, k-mer frequency ranking, and coverage profile binning to detect and obtain viral target genomes from metagenomes. All methods were tested on 454-generated sequencing datasets containing three recently described RNA viruses with a relatively large genome which were divergent to previously known viruses from the viral families Rhabdoviridae and Coronaviridae. Depending on specific characteristics of the target virus and the metagenomic community, different assembly and in silico gap closure strategies were successful in obtaining near complete viral genomes.

  1. Selective Assembly of Na,K-ATPase α2β2 Heterodimers in the Heart: DISTINCT FUNCTIONAL PROPERTIES AND ISOFORM-SELECTIVE INHIBITORS.

    Science.gov (United States)

    Habeck, Michael; Tokhtaeva, Elmira; Nadav, Yotam; Ben Zeev, Efrat; Ferris, Sean P; Kaufman, Randal J; Bab-Dinitz, Elizabeta; Kaplan, Jack H; Dada, Laura A; Farfel, Zvi; Tal, Daniel M; Katz, Adriana; Sachs, George; Vagin, Olga; Karlish, Steven J D

    2016-10-28

    The Na,K-ATPase α 2 subunit plays a key role in cardiac muscle contraction by regulating intracellular Ca 2+ , whereas α 1 has a more conventional role of maintaining ion homeostasis. The β subunit differentially regulates maturation, trafficking, and activity of α-β heterodimers. It is not known whether the distinct role of α 2 in the heart is related to selective assembly with a particular one of the three β isoforms. We show here by immunofluorescence and co-immunoprecipitation that α 2 is preferentially expressed with β 2 in T-tubules of cardiac myocytes, forming α 2 β 2 heterodimers. We have expressed human α 1 β 1 , α 2 β 1 , α 2 β 2 , and α 2 β 3 in Pichia pastoris, purified the complexes, and compared their functional properties. α 2 β 2 and α 2 β 3 differ significantly from both α 2 β 1 and α 1 β 1 in having a higher K 0.5 K + and lower K 0.5 Na + for activating Na,K-ATPase. These features are the result of a large reduction in binding affinity for extracellular K + and shift of the E 1 P-E 2 P conformational equilibrium toward E 1 P. A screen of perhydro-1,4-oxazepine derivatives of digoxin identified several derivatives (e.g. cyclobutyl) with strongly increased selectivity for inhibition of α 2 β 2 and α 2 β 3 over α 1 β 1 (range 22-33-fold). Molecular modeling suggests a possible basis for isoform selectivity. The preferential assembly, specific T-tubular localization, and low K + affinity of α 2 β 2 could allow an acute response to raised ambient K + concentrations in physiological conditions and explain the importance of α 2 β 2 for cardiac muscle contractility. The high sensitivity of α 2 β 2 to digoxin derivatives explains beneficial effects of cardiac glycosides for treatment of heart failure and potential of α 2 β 2 -selective digoxin derivatives for reducing cardiotoxicity. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  2. Ultrasound Microbubble Treatment Enhances Clathrin-Mediated Endocytosis and Fluid-Phase Uptake through Distinct Mechanisms.

    Directory of Open Access Journals (Sweden)

    Farnaz Fekri

    Full Text Available Drug delivery to tumors is limited by several factors, including drug permeability of the target cell plasma membrane. Ultrasound in combination with microbubbles (USMB is a promising strategy to overcome these limitations. USMB treatment elicits enhanced cellular uptake of materials such as drugs, in part as a result of sheer stress and formation of transient membrane pores. Pores formed upon USMB treatment are rapidly resealed, suggesting that other processes such as enhanced endocytosis may contribute to the enhanced material uptake by cells upon USMB treatment. How USMB regulates endocytic processes remains incompletely understood. Cells constitutively utilize several distinct mechanisms of endocytosis, including clathrin-mediated endocytosis (CME for the internalization of receptor-bound macromolecules such as Transferrin Receptor (TfR, and distinct mechanism(s that mediate the majority of fluid-phase endocytosis. Tracking the abundance of TfR on the cell surface and the internalization of its ligand transferrin revealed that USMB acutely enhances the rate of CME. Total internal reflection fluorescence microscopy experiments revealed that USMB treatment altered the assembly of clathrin-coated pits, the basic structural units of CME. In addition, the rate of fluid-phase endocytosis was enhanced, but with delayed onset upon USMB treatment relative to the enhancement of CME, suggesting that the two processes are distinctly regulated by USMB. Indeed, vacuolin-1 or desipramine treatment prevented the enhancement of CME but not of fluid phase endocytosis upon USMB, suggesting that lysosome exocytosis and acid sphingomyelinase, respectively, are required for the regulation of CME but not fluid phase endocytosis upon USMB treatment. These results indicate that USMB enhances both CME and fluid phase endocytosis through distinct signaling mechanisms, and suggest that strategies for potentiating the enhancement of endocytosis upon USMB treatment may

  3. Accomplishments in Field Period Assembly for NCSX. This is how we did it

    International Nuclear Information System (INIS)

    Viola, Michael; Edwards, J.; Brown, T.; Dudek, L.; Ellis, R.; Heitzenroeder, P.; Strykowsky, R.; Cole, Michael

    2009-01-01

    The National Compact Stellarator Experiment (NCSX) was a collaborative effort between ORNL and PPPL. PPPL provided the assembly techniques with guidance from ORNL to meet design criteria. The individual vacuum vessel segments, modular coils, trim coils, and toroidal field coils components were delivered to the Field Period Assembly (FPA) crew who then would complete the component assemblies and then assemble the final three field period assemblies, each consisting of two sets of three modular coils assembled over a 120o vacuum vessel segment with the trim coils and toroidal field coils providing the outer layer. The requirements for positioning the modular coils were found to be most demanding. The assembly tolerances required for accurate positioning of the field coil windings in order to generate sufficiently accurate magnetic fields strained state of the art techniques in metrology and alignment and required constant monitoring of assembly steps with laser trackers, measurement arms, and photogrammetry. The FPA activities were being performed concurrently while engineering challenges were being resolved. For example, it was determined that high friction electrically isolated shims were needed between the modular coil interface joints and low distortion welding was required in the nose region of those joints. This took months of analysis and development yet the assembly was not significantly impacted because other assembly tasks could be performed in parallel with ongoing assembly tasks as well as tasks such as advance tooling setup preparation for the eventual welding tasks. The crew technicians developed unique, accurate time saving techniques and tooling which provided significant cost and schedule savings. Project management displayed extraordinary foresight and every opportunity to gain advanced knowledge and develop techniques was taken advantage of. Despite many risk concerns, the cost and schedule performance index was maintained nearly 1.0 during the

  4. Nanoscale protein arrays of rich morphologies via self-assembly on chemically treated diblock copolymer surfaces

    International Nuclear Information System (INIS)

    Song Sheng; Milchak, Marissa; Zhou Hebing; Lee, Thomas; Hanscom, Mark; Hahm, Jong-in

    2013-01-01

    Well-controlled assembly of proteins on supramolecular templates of block copolymers can be extremely useful for high-throughput biodetection. We report the adsorption and assembly characteristics of a model antibody protein to various polystyrene-block-poly(4-vinylpyridine) templates whose distinctive nanoscale structures are obtained through time-regulated exposure to chloroform vapor. The strong adsorption preference of the protein to the polystyrene segment in the diblock copolymer templates leads to an easily predictable, controllable, rich set of nanoscale protein morphologies through self-assembly. We also demonstrate that the chemical identities of various subareas within individual nanostructures can be readily elucidated by investigating the corresponding protein adsorption behavior on each chemically distinct area of the template. In our approach, a rich set of intricate nanoscale morphologies of protein arrays that cannot be easily attained through other means can be generated straightforwardly via self-assembly of proteins on chemically treated diblock copolymer surfaces, without the use of clean-room-based fabrication tools. Our approach provides much-needed flexibility and versatility for the use of block copolymer-based protein arrays in biodetection. The ease of fabrication in producing well-defined and self-assembled templates can contribute to a high degree of versatility and simplicity in acquiring an intricate nanoscale geometry and spatial distribution of proteins in arrays. These advantages can be extremely beneficial both for fundamental research and biomedical detection, especially in the areas of solid-state-based, high-throughput protein sensing. (paper)

  5. GABenchToB: a genome assembly benchmark tuned on bacteria and benchtop sequencers.

    Directory of Open Access Journals (Sweden)

    Sebastian Jünemann

    Full Text Available De novo genome assembly is the process of reconstructing a complete genomic sequence from countless small sequencing reads. Due to the complexity of this task, numerous genome assemblers have been developed to cope with different requirements and the different kinds of data provided by sequencers within the fast evolving field of next-generation sequencing technologies. In particular, the recently introduced generation of benchtop sequencers, like Illumina's MiSeq and Ion Torrent's Personal Genome Machine (PGM, popularized the easy, fast, and cheap sequencing of bacterial organisms to a broad range of academic and clinical institutions. With a strong pragmatic focus, here, we give a novel insight into the line of assembly evaluation surveys as we benchmark popular de novo genome assemblers based on bacterial data generated by benchtop sequencers. Therefore, single-library assemblies were generated, assembled, and compared to each other by metrics describing assembly contiguity and accuracy, and also by practice-oriented criteria as for instance computing time. In addition, we extensively analyzed the effect of the depth of coverage on the genome assemblies within reasonable ranges and the k-mer optimization problem of de Bruijn Graph assemblers. Our results show that, although both MiSeq and PGM allow for good genome assemblies, they require different approaches. They not only pair with different assembler types, but also affect assemblies differently regarding the depth of coverage where oversampling can become problematic. Assemblies vary greatly with respect to contiguity and accuracy but also by the requirement on the computing power. Consequently, no assembler can be rated best for all preconditions. Instead, the given kind of data, the demands on assembly quality, and the available computing infrastructure determines which assembler suits best. The data sets, scripts and all additional information needed to replicate our results are freely

  6. Identification of distinct SET/TAF-Ibeta domains required for core histone binding and quantitative characterisation of the interaction.

    Science.gov (United States)

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-04-09

    The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Ibeta belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Ibeta, we designed several SET/TAF-Ibeta truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Wild type SET/TAF-Ibeta binds to histones H2B and H3 with Kd values of 2.87 and 0.15 microM, respectively. The preferential binding of SET/TAF-Ibeta to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Ibeta, as well as the H3 amino-terminal tail, are dispensable for this interaction. This type of analysis allowed us to assess the relative affinities of SET/TAF-Ibeta for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Ibeta and can be valuable to understand the role of SET/TAF-Ibeta in chromatin function.

  7. A-type and B-type lamins initiate layer assembly at distinct areas of the nuclear envelope in living cells

    Energy Technology Data Exchange (ETDEWEB)

    Furukawa, Kazuhiro, E-mail: furukawa@chem.sc.niigata-u.ac.jp [Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Ishida, Kazuya; Tsunoyama, Taka-aki; Toda, Suguru; Osoda, Shinichi; Horigome, Tsuneyoshi [Department of Chemistry, Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Fisher, Paul A. [Department of Pharmacological Sciences, School of Medicine, University Medical Center, State University of New York at Stony Brook, Stony Brook, NY 11794-8651 (United States); Sugiyama, Shin [Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602 (Japan)

    2009-04-15

    To investigate nuclear lamina re-assembly in vivo, Drosophila A-type and B-type lamins were artificially expressed in Drosophila lamin Dm{sub 0}null mutant brain cells. Both exogenous lamin C (A-type) and Dm{sub 0} (B-type) formed sub-layers at the nuclear periphery, and efficiently reverted the abnormal clustering of the NPC. Lamin C initially appeared where NPCs were clustered, and subsequently extended along the nuclear periphery accompanied by the recovery of the regular distribution of NPCs. In contrast, lamin Dm{sub 0} did not show association with the clustered NPCs during lamina formation and NPC spacing recovered only after completion of a closed lamin Dm{sub 0} layer. Further, when lamin Dm{sub 0} and C were both expressed, they did not co-polymerize, initiating layer formation in separate regions. Thus, A and B-type lamins reveal differing properties during lamina assembly, with A-type having the primary role in organizing NPC distribution. This previously unknown complexity in the assembly of the nuclear lamina could be the basis for intricate nuclear envelope functions.

  8. Lipoproteins in Drosophila melanogaster—Assembly, Function, and Influence on Tissue Lipid Composition

    Science.gov (United States)

    Palm, Wilhelm; Sampaio, Julio L.; Brankatschk, Marko; Carvalho, Maria; Mahmoud, Ali; Shevchenko, Andrej; Eaton, Suzanne

    2012-01-01

    Interorgan lipid transport occurs via lipoproteins, and altered lipoprotein levels correlate with metabolic disease. However, precisely how lipoproteins affect tissue lipid composition has not been comprehensively analyzed. Here, we identify the major lipoproteins of Drosophila melanogaster and use genetics and mass spectrometry to study their assembly, interorgan trafficking, and influence on tissue lipids. The apoB-family lipoprotein Lipophorin (Lpp) is the major hemolymph lipid carrier. It is produced as a phospholipid-rich particle by the fat body, and its secretion requires Microsomal Triglyceride Transfer Protein (MTP). Lpp acquires sterols and most diacylglycerol (DAG) at the gut via Lipid Transfer Particle (LTP), another fat body-derived apoB-family lipoprotein. The gut, like the fat body, is a lipogenic organ, incorporating both de novo–synthesized and dietary fatty acids into DAG for export. We identify distinct requirements for LTP and Lpp-dependent lipid mobilization in contributing to the neutral and polar lipid composition of the brain and wing imaginal disc. These studies define major routes of interorgan lipid transport in Drosophila and uncover surprising tissue-specific differences in lipoprotein lipid utilization. PMID:22844248

  9. Coding the Assembly of Polyoxotungstates with a Programmable Reaction System.

    Science.gov (United States)

    Ruiz de la Oliva, Andreu; Sans, Victor; Miras, Haralampos N; Long, De-Liang; Cronin, Leroy

    2017-05-01

    Chemical transformations are normally conducted in batch or flow mode, thereby allowing the chemistry to be temporally or spatially controlled, but these approaches are not normally combined dynamically. However, the investigation of the underlying chemistry masked by the self-assembly processes that often occur in one-pot reactions and exploitation of the potential of complex chemical systems requires control in both time and space. Additionally, maintaining the intermediate constituents of a self-assembled system "off equilibrium" and utilizing them dynamically at specific time intervals provide access to building blocks that cannot coexist under one-pot conditions and ultimately to the formation of new clusters. Herein, we implement the concept of a programmable networked reaction system, allowing us to connect discrete "one-pot" reactions that produce the building block{W 11 O 38 } ≡ {W 11 } under different conditions and control, in real time, the assembly of a series of polyoxometalate clusters {W 12 O 42 } ≡ {W 12 }, {W 22 O 74 } ≡ {W 22 } 1a, {W 34 O 116 } ≡ {W 34 } 2a, and {W 36 O 120 } ≡ {W 36 } 3a, using pH and ultraviolet-visible monitoring. The programmable networked reaction system reveals that is possible to assemble a range of different clusters using {W 11 }-based building blocks, demonstrating the relationship between the clusters within the family of iso-polyoxotungstates, with the final structural motif being entirely dependent on the building block libraries generated in each separate reaction space within the network. In total, this approach led to the isolation of five distinct inorganic clusters using a "fixed" set of reagents and using a fully automated sequence code, rather than five entirely different reaction protocols. As such, this approach allows us to discover, record, and implement complex one-pot reaction syntheses in a more general way, increasing the yield and reproducibility and potentially giving access to

  10. Chlamydomonas IFT25 is dispensable for flagellar assembly but required to export the BBSome from flagella

    Directory of Open Access Journals (Sweden)

    Bin Dong

    2017-11-01

    Full Text Available Intraflagellar transport (IFT particles are composed of polyprotein complexes IFT-A and IFT-B as well as cargo adaptors such as the BBSome. Two IFT-B subunits, IFT25 and IFT27 were found to form a heterodimer, which is essential in exporting the BBSome out of the cilium but not involved in flagellar assembly and cytokinesis in vertebrates. Controversial results were, however, recorded to show that defects in IFT, flagellar assembly and even cytokinesis were caused by IFT27 knockdown in Chlamydomonas reinhardtii. Using C. reinhardtii as a model organism, we report that depletion of IFT25 has no effect on flagellar assembly and does not affect the entry of the BBSome into the flagellum, but IFT25 depletion did impair BBSome movement out of the flagellum, clarifying the evolutionally conserved role of IFT25 in regulating the exit of the BBSome from the flagellum cross species. Interestingly, depletion of IFT25 causes dramatic reduction of IFT27 as expected, which does not cause defects in flagellar assembly and cytokinesis in C. reinhardtii. Our data thus support that Chlamydomonas IFT27, like its vertebrate homologues, is not involved in flagellar assembly and cytokinesis.

  11. Study on assembly techniques and procedures for ITER tokamak device

    International Nuclear Information System (INIS)

    Obara, Kenjiro; Kakudate, Satoshi; Shibanuma, Kiyoshi; Sago, Hiromi; Ue, Koichi; Shimizu, Katsusuke; Onozuka, Masanori

    2006-06-01

    The International Thermonuclear Experimental Reactor (ITER) tokamak is mainly composed of a doughnut-shaped vacuum vessel (VV), four types of superconducting coils such as toroidal field coils (TF coils) arranged around the VV, and in-vessel components, such as blanket and divertor. The dimensions and weight of the respective components are around a few ten-meters and several hundred-tons. In addition, the whole tokamak assembly, which are composed of these components, are roughly estimated, 26 m in diameter, 18 m in height and over 16,500 tons in total weight. On the other hand, as for positioning and assembly tolerances of the VV and the TF coil are required to be a high accuracy of ±3 mm in spite of large size and heavy weight. The assembly procedures and techniques of the ITER tokamak are therefore studied, taking account of the tolerance requirements as well as the configuration of the tokamak with large size and heavy weight. Based on the above backgrounds, the assembly procedures and techniques, which are able to assemble the tokamak with high accuracy, are described in the present report. The tokamak assembly operations are categorized into six work break down structures (WBS), i.e., (1) preparation for assembly operations, (2) sub-assembly of the 40deg sector composed of 40deg VV sector, two TF coils and thermal shield between VV and TF coil at the assembly hall, (3) completion of the doughnut-shaped tokamak assembly composed of nine 40deg sectors in the cryostat at the tokamak pit, (4) measurement of positioning and accuracy after the completion of the tokamak assembly, (5) installation of the ex-vessel components, and (6) installation of in-vessel components. In the present report, two assembly operations of (2) and (3) in the above six WBS, which are the most critical in the tokamak assembly, are mainly described. The report describes the following newly developed tokamak assembly procedures and techniques, jigs and tools for assembly and metrology

  12. WHO: World Health Assembly.

    Science.gov (United States)

    McGregor, A

    1992-05-23

    1200 delegates from 175 member countries attended the 45th World Health Assembly in Geneva. Everyone at the Assembly ratified measures to prevent and control AIDS. 12 countries intended to do long term planning for community based care for AIDS patients. Further the Assembly denounced instances where countries and individuals denied the gravity of the AIDS pandemic. In fact, it expressed the importance for urgent and intensive action against HIV/AIDS. The assembly backed proposals to prevent and control sexually transmitted diseases that affect AIDS patients, especially hepatitis B. For example, in countries with hepatitis B prevalence 8% (many countries in Sub-Sahara Africa, Asia, the Pacific region, and South America), health officials should introduce hepatitis B vaccine into their existing immunization programs by 1995. By 1997, this vaccine should be part of all immunization programs. The Assembly was aware of the obstacles of establishing reliable cold chains for nationwide distribution, however. Delegates in Committee A objected to the fact that 50% of the populations of developing countries continued to have limited access to essential drugs. They also expressed disapproval in implementation of WHO's 1988 ethical criteria for promotion of drugs which WHO entrusted to the Council for International Organisations of Medical Sciences (CIOMS). CIOMS lacked WHO's status and thus could not effectively monitor drug advertising. In fact, the pharmaceutical industry as well as WHO provided the funds for a meeting of 25 experts to discuss principles included in the ethical criteria. At least 4 countries insisted that WHO have the ultimate authority in monitoring drug advertising. Delegates did adopt a compromise resolution on this topic which required that industry promotion methods be reported to the 1994 Assembly via the Executive Board. The Assembly requested WHO to establish an international advisory committee on nursing and midwifery and to improve the network of

  13. Nondestructive examination of Oconee 1 fuel assemblies after three cycles of irradiation

    International Nuclear Information System (INIS)

    Pyecha, T.D.; Davis, H.H.; Mayer, J.T.; Guthrie, B.A. III; Larson, J.G.

    1979-09-01

    The Babcock and Wilcox Company (B and W) in conjunction with Duke Power Company is participating in a Department of Energy sponsored research and development program to qualify current design pressurized water reactor (PWR) fuel assemblies for extended burnup (>40,000 MWd/mtU). The information obtained from this program will provide a basis for future design improvements in PWR fuel assemblies culminating in an extended burnup assembly having a nominal operating limit of approximately 50,000 MWd/mtU. An extension of the current assembly design to higher burnups will result in the following benefits: (1) lower uranium ore requirements, (2) greater fuel cycle efficiency, (3) reduction in spent fuel storage requirements, and (4) increased flexibility in tailoring fuel batch sizes to better accommodate the varying energy requirements of the utilities

  14. Opto-mechanical assembly procurement for the National Ignition Facility

    International Nuclear Information System (INIS)

    House, W.; Simon, T.

    1999-01-01

    A large number of the small optics procurements for the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) will be in the form of completely assembled, tested, and cleaned subsystems. These subsystems will be integrated into the NIF at LLNL. To accomplish this task, the procurement packages will include, optical and mechanical drawings, acceptance test and cleanliness requirements. In January 1999, the first such integrated opto-mechanical assembly was received and evaluated at LLNL. With the successful completion of this important trial procurement, we were able to establish the viability of purchasing clean, ready to install, opto-mechanical assemblies from vendors within the optics industry. 32 vendors were chosen from our supplier database for quote, then five were chosen to purchase from. These five vendors represented a cross section of the optics industry. From a ''value'' catalog supplier (that did the whole job internally) to a partnership between three specialty companies, these vendors demonstrated they have the ingenuity and capability to deliver cost competitive, NIF-ready, opto- mechanical assemblies. This paper describes the vendor selection for this procurement, technical requirements including packaging, fabrication, coating, and cleanliness specifications, then testing and verification. It also gives real test results gathered from inspections performed at LLNL that show how our vendors scored on the various requirements. Keywords: Opto-Mechanical, assembly, NIF, packaging, shipping, specifications, procurement, MIL-STD-1246C, surface cleanliness

  15. Clean industrial room for drift tube assembling

    International Nuclear Information System (INIS)

    Glonti, G.L.; Gongadze, A.L.; Evtukhovich, P.G.

    2001-01-01

    Description of a clean industrial room for assembly of drift tubes for the muon spectrometer of the ATLAS experiment is presented. High quality specifications on the detectors to be produced demanded creation of a workplace with stable temperature and humidity, as well as minimum quantity of dust in the room. Checking of parameters of intra-room air during long period of continuous work has confirmed correctness of the designed characteristics of the climatic system installed in the clean room. The room large volume (∼ 190 m 3 ), the powerful and flexible climatic system, and simplicity of service allow assembling of detectors with length up to 5 m. Subsequent checking of functionality of the assembled detectors has shown high quality of assembling (the amount of rejected tubes does not exceed 2%). It demonstrates conformity to the assembling quality requirements for mass production of drift chambers for the muon spectrometer. (author)

  16. Clean Industrial Room for Drift Tube Assembling

    CERN Document Server

    Glonti, GL; Evtoukhovitch, P G; Kroa, G; Manz, A; Potrap, I N; Rihter, P; Stoletov, G D; Tskhadadze, E G; Chepurnov, V F; Chirkov, A V; Shelkov, G A

    2001-01-01

    Description of a clean industrial room for assembly of drift tubes for the muon spectrometer of the ATLAS experiment is presented. High quality specifications on the detectors to be produced demanded creation of a workplace with stable temperature and humidity, as well as minimum quantity of dust in the room. Checking of parameters of intra-room air during long period of continuous work has been confirmed correctness of the designed characteristics of the climatic system installed in the clean room. The room large volum (\\sim 190 m^3), the powerful and flexible climatic system, and simplicity of service allow assembling of detectors with length up to 5 m. Subsequent checking of functionality of the assembled detectors has shown high quality of assembling (the amount of rejected tubes does not exceed 2 %). It demonstrates conformity to the assembling quality requirements for mass production of drift chambers for the muon spectrometer.

  17. Interactive Assembly Guide using Augmented Reality

    DEFF Research Database (Denmark)

    Andersen, Martin; Andersen, Rasmus Skovgaard; Larsen, Christian Lindequist

    2009-01-01

    This paper presents an Augmented Reality system for aiding a pump assembling process at Grundfos, one of the leading pump producers. Stable pose estimation of the pump is required in order to augment the graphics correctly. This is achieved by matching image edges with synthesized edges from CAD...... norm. A dynamic visualization of the augmented graphics provides the user with guidance. Usability tests show that the accuracy of the system is sufficient for assembling the pump....

  18. Spool assembly support analysis

    International Nuclear Information System (INIS)

    Norman, B.F.

    1994-01-01

    This document provides the wind/seismic analysis and evaluation for the pump pit spool assemblies. Hand calculations were used for the analysis. UBC, AISC, and load factors were used in this evaluation. The results show that the actual loads are under the allowable loads and all requirements are met

  19. Large branched self-assembled DNA complexes

    International Nuclear Information System (INIS)

    Tosch, Paul; Waelti, Christoph; Middelberg, Anton P J; Davies, A Giles

    2007-01-01

    Many biological molecules have been demonstrated to self-assemble into complex structures and networks by using their very efficient and selective molecular recognition processes. The use of biological molecules as scaffolds for the construction of functional devices by self-assembling nanoscale complexes onto the scaffolds has recently attracted significant attention and many different applications in this field have emerged. In particular DNA, owing to its inherent sophisticated self-organization and molecular recognition properties, has served widely as a scaffold for various nanotechnological self-assembly applications, with metallic and semiconducting nanoparticles, proteins, macromolecular complexes, inter alia, being assembled onto designed DNA scaffolds. Such scaffolds may typically contain multiple branch-points and comprise a number of DNA molecules selfassembled into the desired configuration. Previously, several studies have used synthetic methods to produce the constituent DNA of the scaffolds, but this typically constrains the size of the complexes. For applications that require larger self-assembling DNA complexes, several tens of nanometers or more, other techniques need to be employed. In this article, we discuss a generic technique to generate large branched DNA macromolecular complexes

  20. Most advanced HTP fuel assembly design for EPR

    International Nuclear Information System (INIS)

    Francillon, Eric; Kiehlmann, Horst-Dieter

    2006-01-01

    End 2003, the Finnish electricity utility Teollisuuden Voima Oy (TVO) signed the contract for building an EPR in Olkiluoto (Finland). Mid 2004, the French electricity utility EDF selected an EPR to be built in France. In 2005, Framatome ANP, an AREVA and Siemens company, announced that they will be pursuing a design certification in the U.S. The EPR development is based on the latest PWR product lines of former Framatome (N4) and Siemens Nuklear (Konvoi). As an introductory part, different aspects of the EPR core characteristics connected to fuel assembly design are presented. It includes means of ensuring reactivity control like hybrid AIC/B4C control rod absorbers and gadolinium as burnable absorber integrated in fuel rods, and specific options for in-core instrumentation, such as Aeroball type instrumentation. Then the design requirements for the EPR fuel assembly are presented in term of very high burnup capacity, rod cladding and fuel assembly reliability. Framatome ANP fuel assembly product characteristics meeting these requirements are then described. EPR fuel assembly design characteristics benefit from the experience feedback of the latest fuel assembly products designed within Framatome ANP, leading to resistance to assembly deformation, high fuel rod restraint and prevention of handling hazards. EPR fuel assembly design features the best components composing the cornerstones of the upgraded family of fuel assemblies that FRAMATOME ANP proposes today. This family is based on a set of common characteristics and associated features, which include the HMP grid as bottom end spacer, the MONOBLOC guide tube and the Robust FUELGUARD as lower tie plate, the use of the M5 Alloy, as cladding and structure material. This fully re-crystallized, ternary Zr-Nb-O alloy produces radically improved in-reactor corrosion, very low hydrogen uptake and growth and an excellent creep behavior, which are described there. EPR fuel assembly description also includes fuel rod

  1. A classification scheme for LWR fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Moore, R.S.; Williamson, D.A.; Notz, K.J.

    1988-11-01

    With over 100 light water nuclear reactors operating nationwide, representing designs by four primary vendors, and with reload fuel manufactured by these vendors and additional suppliers, a wide variety of fuel assembly types are in existence. At Oak Ridge National Laboratory, both the Systems Integration Program and the Characteristics Data Base project required a classification scheme for these fuels. This scheme can be applied to other areas and is expected to be of value to many Office of Civilian Radioactive Waste Management programs. To develop the classification scheme, extensive information on the fuel assemblies that have been and are being manufactured by the various nuclear fuel vendors was compiled, reviewed, and evaluated. It was determined that it is possible to characterize assemblies in a systematic manner, using a combination of physical factors. A two-stage scheme was developed consisting of 79 assembly types, which are grouped into 22 assembly classes. The assembly classes are determined by the general design of the reactor cores in which the assemblies are, or were, used. The general BWR and PWR classes are divided differently but both are based on reactor core configuration. 2 refs., 15 tabs.

  2. A classification scheme for LWR fuel assemblies

    International Nuclear Information System (INIS)

    Moore, R.S.; Williamson, D.A.; Notz, K.J.

    1988-11-01

    With over 100 light water nuclear reactors operating nationwide, representing designs by four primary vendors, and with reload fuel manufactured by these vendors and additional suppliers, a wide variety of fuel assembly types are in existence. At Oak Ridge National Laboratory, both the Systems Integration Program and the Characteristics Data Base project required a classification scheme for these fuels. This scheme can be applied to other areas and is expected to be of value to many Office of Civilian Radioactive Waste Management programs. To develop the classification scheme, extensive information on the fuel assemblies that have been and are being manufactured by the various nuclear fuel vendors was compiled, reviewed, and evaluated. It was determined that it is possible to characterize assemblies in a systematic manner, using a combination of physical factors. A two-stage scheme was developed consisting of 79 assembly types, which are grouped into 22 assembly classes. The assembly classes are determined by the general design of the reactor cores in which the assemblies are, or were, used. The general BWR and PWR classes are divided differently but both are based on reactor core configuration. 2 refs., 15 tabs

  3. A facility to remotely assemble radioisotope thermoelectric generators

    International Nuclear Information System (INIS)

    Engstrom, J.W.; Goldmann, L.H.; Truitt, R.W.

    1992-07-01

    Radioisotope Thermoelectric Generators (RTGs) are electrical power sources that use heat from decaying radioisotopes to directly generate electrical power. The RTG assembly process is performed in an inert atmosphere inside a large glovebox, which is surrounded by radiation shielding to reduce exposure to neutron and gamma radiation from the radioisotope heat source. In the past, allowable dose rate limits have allowed direct, manual assembly methods; however, current dose rate limits require a thicker radiation shielding that makes direct, manual assembly infeasible. To minimize RTG assembly process modifications, telerobotic systems are being investigated to perform remote assembly tasks. Telerobotic systems duplicate human arm motion and incorporate force feedback sensitivity to handle objects and tools in a human-like manner. A telerobotic system with two arms and a three-dimensional (3-D) vision system can be used to perform remote RTG assembly tasks inside gloveboxes and cells using unmodified, normal hand tools

  4. Assembly Test of Elastic Averaging Technique to Improve Mechanical Alignment for Accelerating Structure Assemblies in CLIC

    CERN Document Server

    Huopana, J

    2010-01-01

    The CLIC (Compact LInear Collider) is being studied at CERN as a potential multi-TeV e+e- collider [1]. The manufacturing and assembly tolerances for the required RF-components are important for the final efficiency and for the operation of CLIC. The proper function of an accelerating structure is very sensitive to errors in shape and location of the accelerating cavity. This causes considerable issues in the field of mechanical design and manufacturing. Currently the design of the accelerating structures is a disk design. Alternatively it is possible to create the accelerating assembly from quadrants, which favour the mass manufacturing. The functional shape inside of the accelerating structure remains the same and a single assembly uses less parts. The alignment of these quadrants has been previously made kinematic by using steel pins or spheres to align the pieces together. This method proved to be a quite tedious and time consuming method of assembly. To limit the number of different error sources, a meth...

  5. Power module assembly with reduced inductance

    Energy Technology Data Exchange (ETDEWEB)

    Ward, Terence G.; Stancu, Constantin C.; Jaksic, Marko; Mann, Brooks S.

    2018-03-13

    A power module assembly has a plurality of electrically conducting layers, including a first layer and a third layer. One or more electrically insulating layers are operatively connected to each of the plurality of electrically conducting layers. The electrically insulating layers include a second layer positioned between and configured to electrically isolate the first and the third layers. The first layer is configured to carry a first current flowing in a first direction. The third layer is configured to carry a second current flowing in a second direction opposite to the first direction, thereby reducing an inductance of the assembly. The electrically insulating layers may include a fourth layer positioned between and configured to electrically isolate the third layer and a fifth layer. The assembly results in a combined substrate and heat sink structure. The assembly eliminates the requirements for connections between separate substrate and heat sink structures.

  6. Distinct roles for nucleic acid in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins

    Czech Academy of Sciences Publication Activity Database

    Ulbrich, P.; Haubová, Š.; Nermut, M. V.; Hunter, E.; Rumlová, Michaela; Ruml, Tomáš

    2006-01-01

    Roč. 80, č. 14 (2006), s. 7089-7099 ISSN 0022-538X R&D Projects: GA AV ČR(CZ) IAA4055304; GA ČR(CZ) GP203/03/P094; GA MŠk 1M0520 Institutional research plan: CEZ:AV0Z40550506 Keywords : M-PMV * CANC proteins * HIV-1 * in vitro assembly Subject RIV: CE - Biochemistry Impact factor: 5.341, year: 2006

  7. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons

    Science.gov (United States)

    Anderson, Fenja; Rother, Franziska; Rudolph, Kathrin; Prank, Ute; Binz, Anne; Hügel, Stefanie; Hartmann, Enno; Bader, Michael; Bauerfeind, Rudolf; Sodeik, Beate

    2018-01-01

    Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. PMID:29304174

  8. International Space Station (ISS) Advanced Recycle Filter Tank Assembly (ARFTA)

    Science.gov (United States)

    Nasrullah, Mohammed K.

    2013-01-01

    The International Space Station (ISS) Recycle Filter Tank Assembly (RFTA) provides the following three primary functions for the Urine Processor Assembly (UPA): volume for concentrating/filtering pretreated urine, filtration of product distillate, and filtration of the Pressure Control and Pump Assembly (PCPA) effluent. The RFTAs, under nominal operations, are to be replaced every 30 days. This poses a significant logistical resupply problem, as well as cost in upmass and new tanks purchase. In addition, it requires significant amount of crew time. To address and resolve these challenges, NASA required Boeing to develop a design which eliminated the logistics and upmass issues and minimize recurring costs. Boeing developed the Advanced Recycle Filter Tank Assembly (ARFTA) that allowed the tanks to be emptied on-orbit into disposable tanks that eliminated the need for bringing the fully loaded tanks to earth for refurbishment and relaunch, thereby eliminating several hundred pounds of upmass and its associated costs. The ARFTA will replace the RFTA by providing the same functionality, but with reduced resupply requirements

  9. In Vitro Assembly of Catalase*

    Science.gov (United States)

    Baureder, Michael; Barane, Elisabeth; Hederstedt, Lars

    2014-01-01

    Most aerobic organisms contain catalase, which functions to decompose hydrogen peroxide. Typical catalases are structurally complex homo-tetrameric enzymes with one heme prosthetic group buried in each subunit. It is not known how catalase in the cell is assembled from its constituents. The bacterium Enterococcus faecalis cannot synthesize heme but can acquire it from the environment to form a cytoplasmic catalase. We have in E. faecalis monitored production of the enzyme polypeptide (KatA) depending on the availability of heme and used our findings to devise a procedure for the purification of preparative amounts of in vivo-synthesized apocatalase. We show that fully active catalase can be obtained in vitro by incubating isolated apoprotein with hemin. We have characterized features of the assembly process and describe a temperature-trapped hemylated intermediate of the enzyme maturation process. Hemylation of apocatalase does not require auxiliary cell components, but rapid assembly of active enzyme seemingly is assisted in the cell. Our findings provide insight about catalase assembly and offer new experimental possibilities for detailed studies of this process. PMID:25148685

  10. Recruitment and Consolidation of Cell Assemblies for Words by Way of Hebbian Learning and Competition in a Multi-Layer Neural Network.

    Science.gov (United States)

    Garagnani, Max; Wennekers, Thomas; Pulvermüller, Friedemann

    2009-06-01

    Current cognitive theories postulate either localist representations of knowledge or fully overlapping, distributed ones. We use a connectionist model that closely replicates known anatomical properties of the cerebral cortex and neurophysiological principles to show that Hebbian learning in a multi-layer neural network leads to memory traces (cell assemblies) that are both distributed and anatomically distinct. Taking the example of word learning based on action-perception correlation, we document mechanisms underlying the emergence of these assemblies, especially (i) the recruitment of neurons and consolidation of connections defining the kernel of the assembly along with (ii) the pruning of the cell assembly's halo (consisting of very weakly connected cells). We found that, whereas a learning rule mapping covariance led to significant overlap and merging of assemblies, a neurobiologically grounded synaptic plasticity rule with fixed LTP/LTD thresholds produced minimal overlap and prevented merging, exhibiting competitive learning behaviour. Our results are discussed in light of current theories of language and memory. As simulations with neurobiologically realistic neural networks demonstrate here spontaneous emergence of lexical representations that are both cortically dispersed and anatomically distinct, both localist and distributed cognitive accounts receive partial support.

  11. Self-assembly of diphenylalanine backbone homologues and their combination with functionalized carbon nanotubes.

    Science.gov (United States)

    Dinesh, Bhimareddy; Squillaci, Marco A; Ménard-Moyon, Cécilia; Samorì, Paolo; Bianco, Alberto

    2015-10-14

    The integration of carbon nanotubes (CNTs) into organized nanostructures is of great interest for applications in materials science and biomedicine. In this work we studied the self-assembly of β and γ homologues of diphenylalanine peptides under different solvent and pH conditions. We aimed to investigate the role of peptide backbone in tuning the formation of different types of nanostructures alone or in combination with carbon nanotubes. In spite of having the same side chain, β and γ peptides formed distinctively different nanofibers, a clear indication of the role played by the backbone homologation on the self-assembly. The variation of the pH allowed to transform the nanofibers into spherical structures. Moreover, the co-assembly of β and γ peptides with carbon nanotubes covalently functionalized with the same peptide generated unique dendritic assemblies. This comparative study on self-assembly using diphenylalanine backbone homologues and of the co-assembly with CNT covalent conjugates is the first example exploring the capacity of β and γ peptides to adopt precise nanostructures, particularly in combination with carbon nanotubes. The dendritic organization obtained by mixing carbon nanotubes and peptides might find interesting applications in tissue engineering and neuronal interfacing.

  12. Genome Sequence Databases (Overview): Sequencing and Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Lapidus, Alla L.

    2009-01-01

    From the date its role in heredity was discovered, DNA has been generating interest among scientists from different fields of knowledge: physicists have studied the three dimensional structure of the DNA molecule, biologists tried to decode the secrets of life hidden within these long molecules, and technologists invent and improve methods of DNA analysis. The analysis of the nucleotide sequence of DNA occupies a special place among the methods developed. Thanks to the variety of sequencing technologies available, the process of decoding the sequence of genomic DNA (or whole genome sequencing) has become robust and inexpensive. Meanwhile the assembly of whole genome sequences remains a challenging task. In addition to the need to assemble millions of DNA fragments of different length (from 35 bp (Solexa) to 800 bp (Sanger)), great interest in analysis of microbial communities (metagenomes) of different complexities raises new problems and pushes some new requirements for sequence assembly tools to the forefront. The genome assembly process can be divided into two steps: draft assembly and assembly improvement (finishing). Despite the fact that automatically performed assembly (or draft assembly) is capable of covering up to 98% of the genome, in most cases, it still contains incorrectly assembled reads. The error rate of the consensus sequence produced at this stage is about 1/2000 bp. A finished genome represents the genome assembly of much higher accuracy (with no gaps or incorrectly assembled areas) and quality ({approx}1 error/10,000 bp), validated through a number of computer and laboratory experiments.

  13. Fuel assemblies

    International Nuclear Information System (INIS)

    Echigoya, Hironori; Nomata, Terumitsu.

    1983-01-01

    Purpose: To render the axial distribution relatively flat. Constitution: First nuclear element comprises a fuel can made of zircalloy i.e., the metal with less neutron absorption, which is filled with a plurality of UO 2 pellets and sealed by using a lower end plug, a plenum spring and an upper end plug by means of welding. Second fuel element is formed by substituting a part of the UO 2 pellets with a water tube which is sealed with water and has a space for allowing the heat expansion. The nuclear fuel assembly is constituted by using the first and second fuel elements together. In such a structure, since water reflects neutrons and decrease their leakage to increase the temperature, reactivity is added at the upper portion of the fuel assembly to thereby flatten the axial power distribution. Accordingly, stable operation is possible only by means of deep control rods while requiring no shallow control rods. (Sekiya, K.)

  14. Cholera toxin B subunits assemble into pentamers--proposition of a fly-casting mechanism.

    Directory of Open Access Journals (Sweden)

    Jihad Zrimi

    Full Text Available The cholera toxin B pentamer (CtxB(5, which belongs to the AB(5 toxin family, is used as a model study for protein assembly. The effect of the pH on the reassembly of the toxin was investigated using immunochemical, electrophoretic and spectroscopic methods. Three pH-dependent steps were identified during the toxin reassembly: (i acquisition of a fully assembly-competent fold by the CtxB monomer, (ii association of CtxB monomer into oligomers, (iii acquisition of the native fold by the CtxB pentamer. The results show that CtxB(5 and the related heat labile enterotoxin LTB(5 have distinct mechanisms of assembly despite sharing high sequence identity (84% and almost identical atomic structures. The difference can be pinpointed to four histidines which are spread along the protein sequence and may act together. Thus, most of the toxin B amino acids appear negligible for the assembly, raising the possibility that assembly is driven by a small network of amino acids instead of involving all of them.

  15. Assembly of cells and vesicles for organ engineering

    International Nuclear Information System (INIS)

    Taguchi, Tetsushi

    2011-01-01

    The development of materials and technologies for the assembly of cells and/or vesicles is a key for the next generation of tissue engineering. Since the introduction of the tissue engineering concept in 1993, various types of scaffolds have been developed for the regeneration of connective tissues in vitro and in vivo. Cartilage, bone and skin have been successfully regenerated in vitro, and these regenerated tissues have been applied clinically. However, organs such as the liver and pancreas constitute numerous cell types, contain small amounts of extracellular matrix, and are highly vascularized. Therefore, organ engineering will require the assembly of cells and/or vesicles. In particular, adhesion between cells/vesicles will be required for regeneration of organs in vitro. This review introduces and discusses the key technologies and materials for the assembly of cells/vesicles for organ regeneration. (topical review)

  16. Identification of distinct SET/TAF-Iβ domains required for core histone binding and quantitative characterisation of the interaction

    Science.gov (United States)

    Karetsou, Zoe; Emmanouilidou, Anastasia; Sanidas, Ioannis; Liokatis, Stamatis; Nikolakaki, Eleni; Politou, Anastasia S; Papamarcaki, Thomais

    2009-01-01

    Background The assembly of nucleosomes to higher-order chromatin structures is finely tuned by the relative affinities of histones for chaperones and nucleosomal binding sites. The myeloid leukaemia protein SET/TAF-Iβ belongs to the NAP1 family of histone chaperones and participates in several chromatin-based mechanisms, such as chromatin assembly, nucleosome reorganisation and transcriptional activation. To better understand the histone chaperone function of SET/TAF-Iβ, we designed several SET/TAF-Iβ truncations, examined their structural integrity by circular Dichroism and assessed qualitatively and quantitatively the histone binding properties of wild-type protein and mutant forms using GST-pull down experiments and fluorescence spectroscopy-based binding assays. Results Wild type SET/TAF-Iβ binds to histones H2B and H3 with Kd values of 2.87 and 0.15 μM, respectively. The preferential binding of SET/TAF-Iβ to histone H3 is mediated by its central region and the globular part of H3. On the contrary, the acidic C-terminal tail and the amino-terminal dimerisation domain of SET/TAF-Iβ, as well as the H3 amino-terminal tail, are dispensable for this interaction. Conclusion This type of analysis allowed us to assess the relative affinities of SET/TAF-Iβ for different histones and identify the domains of the protein required for effective histone recognition. Our findings are consistent with recent structural studies of SET/TAF-Iβ and can be valuable to understand the role of SET/TAF-Iβ in chromatin function. PMID:19358706

  17. Quantitative self-assembly prediction yields targeted nanomedicines

    Science.gov (United States)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  18. Vector assembly of colloids on monolayer substrates

    Science.gov (United States)

    Jiang, Lingxiang; Yang, Shenyu; Tsang, Boyce; Tu, Mei; Granick, Steve

    2017-06-01

    The key to spontaneous and directed assembly is to encode the desired assembly information to building blocks in a programmable and efficient way. In computer graphics, raster graphics encodes images on a single-pixel level, conferring fine details at the expense of large file sizes, whereas vector graphics encrypts shape information into vectors that allow small file sizes and operational transformations. Here, we adapt this raster/vector concept to a 2D colloidal system and realize `vector assembly' by manipulating particles on a colloidal monolayer substrate with optical tweezers. In contrast to raster assembly that assigns optical tweezers to each particle, vector assembly requires a minimal number of optical tweezers that allow operations like chain elongation and shortening. This vector approach enables simple uniform particles to form a vast collection of colloidal arenes and colloidenes, the spontaneous dissociation of which is achieved with precision and stage-by-stage complexity by simply removing the optical tweezers.

  19. Structural Aspects of Bacterial Outer Membrane Protein Assembly.

    Science.gov (United States)

    Calmettes, Charles; Judd, Andrew; Moraes, Trevor F

    2015-01-01

    The outer membrane of Gram-negative bacteria is predominantly populated by β-Barrel proteins and lipid anchored proteins that serve a variety of biological functions. The proper folding and assembly of these proteins is essential for bacterial viability and often plays a critical role in virulence and pathogenesis. The β-barrel assembly machinery (Bam) complex is responsible for the proper assembly of β-barrels into the outer membrane of Gram-negative bacteria, whereas the localization of lipoproteins (Lol) system is required for proper targeting of lipoproteins to the outer membrane.

  20. A drying system for spent fuel assemblies

    International Nuclear Information System (INIS)

    Suikki, M.; Warinowski, M.; Nieminen, J.

    2007-06-01

    The report presents a proposed drying apparatus for spent fuel assemblies. The apparatus is used for removing the moisture left in fuel assemblies during intermediate storage and transport. The apparatus shall be installed in connection with the fuel handling cell of an encapsulation plant. The report presents basic requirements for and implementation of the drying system, calculation of the drying process, operation, service and maintenance of the equipment, as well as a cost estimate. Some aspects of the apparatus design are quite specified, but the actual detailed planning and final selection of components have not been included. The report also describes actions for possible malfunction and fault conditions. An objective of the drying system for fuel assemblies is to remove moisture from the assemblies prior to placing the same in a disposal canister for spent nuclear fuel. Drying is performed as a vacuum drying process for vaporizing and draining the moisture present on the surface of the assemblies. The apparatus comprises two pieces of drying equipment. One of the chambers is equipped to take up Lo1-2 fuel assemblies and the other OL1-2 fuel assemblies. The chambers have an internal space sufficient to accommodate also OL3 fuel assemblies, but this requires replacing the internal chamber structure for laying down the assemblies to be dried. The drying chambers can be closed with hatches facing the fuel handling cell. Water vapour pumped out of the chamber is collected in a controlled manner, first by condensing with a heat exchanger and further by freezing in a cold trap. For reasons of safety, the exhaust air of vacuum pumps is further delivered into the ventilation outlet duct of a controlled area. The adequate drying result is ascertained by a low final pressure of about 100 Pa, as well as by a sufficient holding time. The chamber is built for making its cleaning as easy as possible in the event of a fuel rod breaking during a drying, loading or unloading

  1. Nanostructure and molecular mechanics of spider dragline silk protein assemblies

    Science.gov (United States)

    Keten, Sinan; Buehler, Markus J.

    2010-01-01

    Spider silk is a self-assembling biopolymer that outperforms most known materials in terms of its mechanical performance, despite its underlying weak chemical bonding based on H-bonds. While experimental studies have shown that the molecular structure of silk proteins has a direct influence on the stiffness, toughness and failure strength of silk, no molecular-level analysis of the nanostructure and associated mechanical properties of silk assemblies have been reported. Here, we report atomic-level structures of MaSp1 and MaSp2 proteins from the Nephila clavipes spider dragline silk sequence, obtained using replica exchange molecular dynamics, and subject these structures to mechanical loading for a detailed nanomechanical analysis. The structural analysis reveals that poly-alanine regions in silk predominantly form distinct and orderly beta-sheet crystal domains, while disorderly regions are formed by glycine-rich repeats that consist of 31-helix type structures and beta-turns. Our structural predictions are validated against experimental data based on dihedral angle pair calculations presented in Ramachandran plots, alpha-carbon atomic distances, as well as secondary structure content. Mechanical shearing simulations on selected structures illustrate that the nanoscale behaviour of silk protein assemblies is controlled by the distinctly different secondary structure content and hydrogen bonding in the crystalline and semi-amorphous regions. Both structural and mechanical characterization results show excellent agreement with available experimental evidence. Our findings set the stage for extensive atomistic investigations of silk, which may contribute towards an improved understanding of the source of the strength and toughness of this biological superfibre. PMID:20519206

  2. Self-assembling segmented coiled tubing

    Science.gov (United States)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  3. PAVE: Program for assembling and viewing ESTs

    Directory of Open Access Journals (Sweden)

    Bomhoff Matthew

    2009-08-01

    Full Text Available Abstract Background New sequencing technologies are rapidly emerging. Many laboratories are simultaneously working with the traditional Sanger ESTs and experimenting with ESTs generated by the 454 Life Science sequencers. Though Sanger ESTs have been used to generate contigs for many years, no program takes full advantage of the 5' and 3' mate-pair information, hence, many tentative transcripts are assembled into two separate contigs. The new 454 technology has the benefit of high-throughput expression profiling, but introduces time and space problems for assembling large contigs. Results The PAVE (Program for Assembling and Viewing ESTs assembler takes advantage of the 5' and 3' mate-pair information by requiring that the mate-pairs be assembled into the same contig and joined by n's if the two sub-contigs do not overlap. It handles the depth of 454 data sets by "burying" similar ESTs during assembly, which retains the expression level information while circumventing time and space problems. PAVE uses MegaBLAST for the clustering step and CAP3 for assembly, however it assembles incrementally to enforce the mate-pair constraint, bury ESTs, and reduce incorrect joins and splits. The PAVE data management system uses a MySQL database to store multiple libraries of ESTs along with their metadata; the management system allows multiple assemblies with variations on libraries and parameters. Analysis routines provide standard annotation for the contigs including a measure of differentially expressed genes across the libraries. A Java viewer program is provided for display and analysis of the results. Our results clearly show the benefit of using the PAVE assembler to explicitly use mate-pair information and bury ESTs for large contigs. Conclusion The PAVE assembler provides a software package for assembling Sanger and/or 454 ESTs. The assembly software, data management software, Java viewer and user's guide are freely available.

  4. PAVE: program for assembling and viewing ESTs.

    Science.gov (United States)

    Soderlund, Carol; Johnson, Eric; Bomhoff, Matthew; Descour, Anne

    2009-08-26

    New sequencing technologies are rapidly emerging. Many laboratories are simultaneously working with the traditional Sanger ESTs and experimenting with ESTs generated by the 454 Life Science sequencers. Though Sanger ESTs have been used to generate contigs for many years, no program takes full advantage of the 5' and 3' mate-pair information, hence, many tentative transcripts are assembled into two separate contigs. The new 454 technology has the benefit of high-throughput expression profiling, but introduces time and space problems for assembling large contigs. The PAVE (Program for Assembling and Viewing ESTs) assembler takes advantage of the 5' and 3' mate-pair information by requiring that the mate-pairs be assembled into the same contig and joined by n's if the two sub-contigs do not overlap. It handles the depth of 454 data sets by "burying" similar ESTs during assembly, which retains the expression level information while circumventing time and space problems. PAVE uses MegaBLAST for the clustering step and CAP3 for assembly, however it assembles incrementally to enforce the mate-pair constraint, bury ESTs, and reduce incorrect joins and splits. The PAVE data management system uses a MySQL database to store multiple libraries of ESTs along with their metadata; the management system allows multiple assemblies with variations on libraries and parameters. Analysis routines provide standard annotation for the contigs including a measure of differentially expressed genes across the libraries. A Java viewer program is provided for display and analysis of the results. Our results clearly show the benefit of using the PAVE assembler to explicitly use mate-pair information and bury ESTs for large contigs. The PAVE assembler provides a software package for assembling Sanger and/or 454 ESTs. The assembly software, data management software, Java viewer and user's guide are freely available.

  5. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing.

    Science.gov (United States)

    Gamalinda, Michael; Jakovljevic, Jelena; Babiano, Reyes; Talkish, Jason; de la Cruz, Jesús; Woolford, John L

    2013-02-01

    Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.

  6. Zwint-1 is required for spindle assembly checkpoint function and kinetochore-microtubule attachment during oocyte meiosis.

    Science.gov (United States)

    Woo Seo, Dong; Yeop You, Seung; Chung, Woo-Jae; Cho, Dong-Hyung; Kim, Jae-Sung; Su Oh, Jeong

    2015-10-21

    The key step for faithful chromosome segregation during meiosis is kinetochore assembly. Defects in this process result in aneuploidy, leading to miscarriages, infertility and various birth defects. However, the roles of kinetochores in homologous chromosome segregation during meiosis are ill-defined. Here we found that Zwint-1 is required for homologous chromosome segregation during meiosis. Knockdown of Zwint-1 accelerated the first meiosis by abrogating the kinetochore recruitment of Mad2, leading to chromosome misalignment and a high incidence of aneuploidy. Although Zwint-1 knockdown did not affect Aurora C kinase activity, the meiotic defects following Zwint-1 knockdown were similar to those observed with ZM447439 treatment. Importantly, the chromosome misalignment following Aurora C kinase inhibition was not restored after removing the inhibitor in Zwint-1-knockdown oocytes, whereas the defect was rescued after the inhibitor washout in the control oocytes. These results suggest that Aurora C kinase-mediated correction of erroneous kinetochore-microtubule attachment is primarily regulated by Zwint-1. Our results provide the first evidence that Zwint-1 is required to correct erroneous kinetochore-microtubule attachment and regulate spindle checkpoint function during meiosis.

  7. Assembly procedure for the silicon pixel ladder for PHENIX silicon vertex tracker

    International Nuclear Information System (INIS)

    Onuki, Y.; Akiba, Y.; En'yo, H.; Fujiwara, K.; Haki, Y.; Hashimoto, K.; Ichimiya, R.; Kasai, M.; Kawashima, M.; Kurita, K.; Kurosawa, M.; Mannel, E.J.; Nakano, K.; Pak, R.; Sekimoto, M.; Sondheim, W.E.; Taketani, A.; Togawa, M.; Yamamoto, Y.

    2009-01-01

    The silicon vertex tracker (VTX) will be installed in the summer of 2010 to enhance the physics capabilities of the Pioneering High Energy Nuclear Interaction eXperiment (PHENIX) experiment at Brookhaven National Laboratory. The VTX consists of two types of silicon detectors: a pixel detector and a strip detector. The pixel detector consists of 30 pixel ladders placed on the two inner cylindrical layers of the VTX. The ladders are required to be assembled with high precision, however, they should be assembled in both cost and time efficient manner. We have developed an assembly bench for the ladder with several assembly fixtures and a quality assurance (Q/A) system using a 3D measurement machine. We have also developed an assembly procedure for the ladder, including a method for dispensing adhesive uniformly and encapsulation of bonding wires. The developed procedures were adopted in the assembly of the first pixel ladder and satisfy the requirements.

  8. Ultra-Precise Assembly of Micro-Electromechanical Systems (MEMS) Components

    Energy Technology Data Exchange (ETDEWEB)

    Feddema, J.T.; Simon, R.; Polosky, M.; Christenson, T.

    1999-04-01

    This report summarizes a three year effort to develop an automated microassembly workcell for the assembly of LIGA (Lithography Galvonoforming Abforming) parts. Over the last several years, Sandia has developed processes for producing surface machined silicon and LIGA parts for use in weapons surety devices. Some of these parts have outside dimensions as small as 100 micron, and most all have submicron tolerances. Parts this small and precise are extremely difficult to assembly by hand. Therefore, in this project, we investigated the technologies required to develop a robotic workcell to assembly these parts. In particular, we concentrated on micro-grippers, visual servoing, micro-assembly planning, and parallel assembly. Three different micro-grippers were tested: a pneumatic probe, a thermally actuated polysilicon tweezer, and a LIGA fabricated tweezer. Visual servoing was used to accuracy position two parts relative to one another. Fourier optics methods were used to generate synthetic microscope images from CAD drawings. These synthetic images are used off-line to test image processing routines under varying magnifications and depths of field. They also provide reference image features which are used to visually servo the part to the desired position. We also investigated a new aspect of fine motion planning for the micro-domain. As parts approach 1-10 {micro}m or less in outside dimensions, interactive forces such as van der Waals and electrostatic forces become major factors which greatly change the assembly sequence and path plans. We developed the mathematics required to determine the goal regions for pick up, holding, and release of a micro-sphere being handled by a rectangular tool. Finally, we implemented and tested the ability to assemble an array of LIGA parts attached to two 3 inch diameter wafers. In this way, hundreds of parts can be assembled in parallel rather than assembling each part individually.

  9. Interactions Between HIV-1 Gag and Viral RNA Genome Enhance Virion Assembly

    DEFF Research Database (Denmark)

    Dilley, Kari A; Nikolaitchik, Olga A; Galli, Andrea

    2017-01-01

    between Gag and viral RNA are required for the enhancement of particle production. Taken together, these studies are consistent with our previous hypothesis that specific dimeric viral RNA:Gag interactions are the nucleation event of infectious virion assembly, ensuring that one RNA dimer is packaged......Most HIV-1 virions contain two copies of full-length viral RNA, indicating that genome packaging is efficient and tightly regulated. However, the structural protein Gag is the only component required for the assembly of noninfectious virus-like particles and the viral RNA is dispensable...... in this process. The mechanism that allows HIV-1 to achieve such high efficiency of genome packaging when a packageable viral RNA is not required for virus assembly is currently unknown. In this report, we examined the role of HIV-1 RNA in virus assembly and found that packageable HIV-1 RNA enhances particle...

  10. Reducing assembly complexity of microbial genomes with single-molecule sequencing

    Science.gov (United States)

    Genome assembly algorithms cannot fully reconstruct microbial chromosomes from the DNA reads output by first or second-generation sequencing instruments. Therefore, most genomes are left unfinished due to the significant resources required to manually close gaps left in the draft assemblies. Single-...

  11. Targeted assembly of short sequence reads.

    Directory of Open Access Journals (Sweden)

    René L Warren

    Full Text Available As next-generation sequence (NGS production continues to increase, analysis is becoming a significant bottleneck. However, in situations where information is required only for specific sequence variants, it is not necessary to assemble or align whole genome data sets in their entirety. Rather, NGS data sets can be mined for the presence of sequence variants of interest by localized assembly, which is a faster, easier, and more accurate approach. We present TASR, a streamlined assembler that interrogates very large NGS data sets for the presence of specific variants by only considering reads within the sequence space of input target sequences provided by the user. The NGS data set is searched for reads with an exact match to all possible short words within the target sequence, and these reads are then assembled stringently to generate a consensus of the target and flanking sequence. Typically, variants of a particular locus are provided as different target sequences, and the presence of the variant in the data set being interrogated is revealed by a successful assembly outcome. However, TASR can also be used to find unknown sequences that flank a given target. We demonstrate that TASR has utility in finding or confirming genomic mutations, polymorphisms, fusions and integration events. Targeted assembly is a powerful method for interrogating large data sets for the presence of sequence variants of interest. TASR is a fast, flexible and easy to use tool for targeted assembly.

  12. Improved Assembly for Gas Shielding During Welding or Brazing

    Science.gov (United States)

    Gradl, Paul; Baker, Kevin; Weeks, Jack

    2009-01-01

    An improved assembly for inert-gas shielding of a metallic joint is designed to be useable during any of a variety of both laser-based and traditional welding and brazing processes. The basic purpose of this assembly or of a typical prior related assembly is to channel the flow of a chemically inert gas to a joint to prevent environmental contamination of the joint during the welding or brazing process and, if required, to accelerate cooling upon completion of the process.

  13. Distinctiveness of Saudi Arabian EFL Learners

    Directory of Open Access Journals (Sweden)

    Manssour Habbash

    2016-04-01

    Full Text Available In view of the increasing concern among English language teachers dealing with students from Saudi Arabia, as it manifests in TESOL community discussions, about the uniqueness of Saudi Arabian EFL learners, this paper attempts to document the outcome of a study of their distinctiveness from the perspective of expatriate teachers working for PYPs (Preparatory Year Programs in Saudi Arabia. This study examines the distinctiveness with regard to the learning attitudes of Saudi students that are often cultivated by the culture and academic environment in their homeland. Employing an emic approach for collecting the required data an analysis was carried out in light of the other studies on ‘education’ in Saudi Arabia that have particular reference to the factors that can positively influence student motivation, student success and the academic environment. The findings were used in constructing the rationale behind such distinctiveness. Assuming that the outcome of the discussion on the findings of this exploration can be helpful for teachers in adapting their teaching methodology and improving their teacher efficacy in dealing with students both from the kingdom and in the kingdom, some recommendations are made. Keywords: China Distinctiveness, Saudi Arabian University context, Expatriate teachers’ perspective, Distinctiveness Theory

  14. Construction of Insulin 18-mer Nanoassemblies Driven by Coordination to Iron(II) and Zinc(II) Ions at Distinct Sites

    DEFF Research Database (Denmark)

    Munch, Henrik K.; Nygaard, Jesper; Christensen, Niels Johan

    2016-01-01

    Controlled self-assembly (SA) of proteins offers the possibility to tune their properties or to create new materials. Herein, we present the synthesis of a modified human insulin (HI) with two distinct metal-ion binding sites, one native, the other abiotic, enabling hierarchical SA through...

  15. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    Science.gov (United States)

    Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.

    2015-01-01

    Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895

  16. Design parameters for voltage-controllable directed assembly of single nanoparticles

    NARCIS (Netherlands)

    Porter, Benjamin F.; Abelmann, Leon; Bhaskaran, Harish

    2013-01-01

    Techniques to reliably pick-and-place single nanoparticles into functional assemblies are required to incorporate exotic nanoparticles into standard electronic circuits. In this paper we explore the use of electric fields to drive and direct the assembly process, which has the advantage of being

  17. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Yang, Liang; Hu, Yifan; Liu, Yang

    2011-01-01

    Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several d...... polysaccharide is more important than Pel polysaccharide in P. aeruginosa PAO1 biofilm formation and antibiotic resistance. Our study thus suggests that different EPS materials play distinct roles during bacterial biofilm formation.......Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several...... distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural...

  18. In vitro assembly of catalase.

    Science.gov (United States)

    Baureder, Michael; Barane, Elisabeth; Hederstedt, Lars

    2014-10-10

    Most aerobic organisms contain catalase, which functions to decompose hydrogen peroxide. Typical catalases are structurally complex homo-tetrameric enzymes with one heme prosthetic group buried in each subunit. It is not known how catalase in the cell is assembled from its constituents. The bacterium Enterococcus faecalis cannot synthesize heme but can acquire it from the environment to form a cytoplasmic catalase. We have in E. faecalis monitored production of the enzyme polypeptide (KatA) depending on the availability of heme and used our findings to devise a procedure for the purification of preparative amounts of in vivo-synthesized apocatalase. We show that fully active catalase can be obtained in vitro by incubating isolated apoprotein with hemin. We have characterized features of the assembly process and describe a temperature-trapped hemylated intermediate of the enzyme maturation process. Hemylation of apocatalase does not require auxiliary cell components, but rapid assembly of active enzyme seemingly is assisted in the cell. Our findings provide insight about catalase assembly and offer new experimental possibilities for detailed studies of this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. TESS Lens-Bezel Assembly Modal Testing

    Science.gov (United States)

    Dilworth, Brandon J.; Karlicek, Alexandra

    2017-01-01

    The Transiting Exoplanet Survey Satellite (TESS) program, led by the Kavli Institute for Astrophysics and Space Research at the Massachusetts Institute of Technology (MIT) will be the first-ever spaceborne all-sky transit survey. MIT Lincoln Laboratory is responsible for the cameras, including the lens assemblies, detector assemblies, lens hoods, and camera mounts. TESS is scheduled to be launched in August of 2017 with the primary goal to detect small planets with bright host starts in the solar neighborhood, so that detailed characterizations of the planets and their atmospheres can be performed. The TESS payload consists of four identical cameras and a data handling unit. Each camera consists of a lens assembly with seven optical elements and a detector assembly with four charge-coupled devices (CCDs) including their associated electronics. The optical prescription requires that several of the lenses are in close proximity to a neighboring element. A finite element model (FEM) was developed to estimate the relative deflections between each lens-bezel assembly under launch loads to predict that there are adequate clearances preventing the lenses from making contact. Modal tests using non-contact response measurements were conducted to experimentally estimate the modal parameters of the lens-bezel assembly, and used to validate the initial FEM assumptions. Key Words Non-contact measurements, modal analysis, model validation

  20. Design strategies for self-assembly of discrete targets

    International Nuclear Information System (INIS)

    Madge, Jim; Miller, Mark A.

    2015-01-01

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority

  1. Biomimetic Layer-by-Layer Self-Assembly of Nanofilms, Nanocoatings, and 3D Scaffolds for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Shichao Zhang

    2018-06-01

    Full Text Available Achieving surface design and control of biomaterial scaffolds with nanometer- or micrometer-scaled functional films is critical to mimic the unique features of native extracellular matrices, which has significant technological implications for tissue engineering including cell-seeded scaffolds, microbioreactors, cell assembly, tissue regeneration, etc. Compared with other techniques available for surface design, layer-by-layer (LbL self-assembly technology has attracted extensive attention because of its integrated features of simplicity, versatility, and nanoscale control. Here we present a brief overview of current state-of-the-art research related to the LbL self-assembly technique and its assembled biomaterials as scaffolds for tissue engineering. An overview of the LbL self-assembly technique, with a focus on issues associated with distinct routes and driving forces of self-assembly, is described briefly. Then, we highlight the controllable fabrication, properties, and applications of LbL self-assembly biomaterials in the forms of multilayer nanofilms, scaffold nanocoatings, and three-dimensional scaffolds to systematically demonstrate advances in LbL self-assembly in the field of tissue engineering. LbL self-assembly not only provides advances for molecular deposition but also opens avenues for the design and development of innovative biomaterials for tissue engineering.

  2. Role of CD3 gamma in T cell receptor assembly

    DEFF Research Database (Denmark)

    Dietrich, J; Neisig, A; Hou, X

    1996-01-01

    . In contrast, treatment of T cells with tunicamycin suggested that N-linked glycosylation of CD3 delta is required for TCR assembly. Site-directed mutagenesis of the acidic amino acid in the TM domain of CD3 gamma demonstrated that this residue is involved in TCR assembly probably by binding to Ti beta......The T cell receptor (TCR) consists of the Ti alpha beta heterodimer and the associated CD3 gamma delta epsilon and zeta 2 chains. The structural relationships between the subunits of the TCR complex are still not fully known. In this study we examined the role of the extracellular (EC...... predicted in the EC domain of CD3 gamma. Site-directed mutagenesis demonstrated that these sites play a crucial role in TCR assembly probably by binding to CD3 epsilon. Mutagenesis of N-linked glycosylation sites showed that glycosylation of CD3 gamma is not required for TCR assembly and expression...

  3. Carbon nanotube-templated assembly of regioregular poly(3-alkylthiophene) in solution

    Science.gov (United States)

    Zhu, Jiahua; Stevens, Eric; He, Youjun; Hong, Kunlun; Ivanov, Ilia

    2016-09-01

    Control of structural heterogeneity by rationally encoding of the molecular assemblies is a key enabling design of hierarchical, multifunctional materials of the future. Here we report the strategies to gain such control using solution- based assembly to construct a hybrid nano-assembly and a network hybrid structure of regioregular poly(3- alkylthiophene) - carbon nanotube (P3AT-CNT). The opto-electronic performance of conjugated polymer (P3AT) is defined by the structure of the aggregate in solution and in the solid film. Control of P3AT aggregation would allow formation of broad range of morphologies with very distinct electro-optical. We utilize interactive templating to confine the assembly behavior of conjugated polymers, replacing poorly controlled solution processing approach. Perfect crystalline surface of the single-walled and multi-walled carbon nanotube (SWCNT/MWCNT) acts as a template, seeding P3AT aggregation of the surface of the nanotube. The seed continues directional growth through pi-pi stacking leading to the formation of to well-defined P3AT-CNT morphologies, including comb-like nano-assemblies, super- structures and gel networks. Interconnected, highly-branched network structure of P3AT-CNT hybrids is of particular interest to enable efficient, long-range, balanced charge carrier transport. The structure and opto-electionic function of the intermediate assemblies and networks of P3AT/CNT hybrids are characterized by transmission election microscopy and UV-vis absorption.

  4. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 32, Coil assembly documentation. Volume 5

    International Nuclear Information System (INIS)

    Weber, C.M.

    1995-01-01

    This document is intended to address the contract requirement for providing coil assembly documentation, as required in the applicable Statement of Work: 'Provide preliminary procedures and preliminary design and supporting analysis of the equipment, fixtures, and hardware required to integrate and align the impregnated coil assemblies with the coil cases and intercoil structure. Each of the three major processes associated with the coil case and intercoil structure (ICS), TF Case Fabrication, Coil Preparation for Case Assembly are examined in detail. The specific requirements, processes, equipment, and technical concerns for each of these assembly processes is presented

  5. 29 CFR 549.3 - Distinction between plan and trust.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Distinction between plan and trust. 549.3 Section 549.3 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS REQUIREMENTS OF A âBONA FIDE PROFIT-SHARING PLAN OR TRUSTâ § 549.3 Distinction between plan and trust. As used in this part: (a) Profit-sharing plan...

  6. Council of Europe. Parliamentary Assembly: Media Provisions in New Texts on (Roma) Migrants and Refugees

    NARCIS (Netherlands)

    McGonagle, T.

    2012-01-01

    The Parliamentary Assembly of the Council of Europe (PACE) adopted its Resolution 1889 on the portrayal of migrants and refugees during election campaigns and its Recommendation 2003 (2012) on Roma migrants in Europe on 27 and 28 June 2012 respectively. While formally distinct, the texts display

  7. Combined Respiratory Chain Deficiency and UQCC2 Mutations in Neonatal Encephalomyopathy: Defective Supercomplex Assembly in Complex III Deficiencies

    Directory of Open Access Journals (Sweden)

    René G. Feichtinger

    2017-01-01

    Full Text Available Vertebrate respiratory chain complex III consists of eleven subunits. Mutations in five subunits either mitochondrial (MT-CYB or nuclear (CYC1, UQCRC2, UQCRB, and UQCRQ encoded have been reported. Defects in five further factors for assembly (TTC19, UQCC2, and UQCC3 or iron-sulphur cluster loading (BCS1L and LYRM7 cause complex III deficiency. Here, we report a second patient with UQCC2 deficiency. This girl was born prematurely; pregnancy was complicated by intrauterine growth retardation and oligohydramnios. She presented with respiratory distress syndrome, developed epileptic seizures progressing to status epilepticus, and died at day 33. She had profound lactic acidosis and elevated urinary pyruvate. Exome sequencing revealed two homozygous missense variants in UQCC2, leading to a severe reduction of UQCC2 protein. Deficiency of complexes I and III was found enzymatically and on the protein level. A review of the literature on genetically distinct complex III defects revealed that, except TTC19 deficiency, the biochemical pattern was very often a combined respiratory chain deficiency. Besides complex III, typically, complex I was decreased, in some cases complex IV. In accordance with previous observations, the presence of assembled complex III is required for the stability or assembly of complexes I and IV, which might be related to respirasome/supercomplex formation.

  8. The design of reconfigurable assembly stations for high variety and mass customisation manufacturing

    Directory of Open Access Journals (Sweden)

    Padayachee, Jared

    2013-11-01

    Full Text Available The economical production of mass customised and high variety goods is a challenge facing modern manufacturers. This challenge is being addressed, in part, by the on-going development of technologies that facilitate the manufacturing of these goods. Existing technologies require either excessive inbuilt flexibility or frequent changes to the machine set up to provide the manufacturing functions required for the customisation process. This paper presents design principles for automated assembly stations within the scope of mass customisation. Design principles are presented that minimise the hardware and operating complexities of assembly stations, allowing stations to be easily automated for concurrent mixed model assembly with a First In First Out (FIFO scheduling policy. A reconfigurable assembly station is developed to demonstrate how the proposed design methods simplify the creation and operation of an assembly station for a product family of flashlights.

  9. Multigeometry Nanoparticle Engineering via Kinetic Control through Multistep assembly

    Science.gov (United States)

    Chen, Yingchao; Wang, Xiaojun; Zhang, Ke; Zhang, Fuwu; Mays, Jimmy; Wooley, Karen; Pochan, Darrin

    2014-03-01

    Organization of block copolymers into complicated multicompartment (MCM) and multigeometry (MGM) nanostructures is of increasing interest. Multistep, co-assembly methods resulting in kinetic control processing was used to produce complex nanoparticles that are not obtained via other assembly methods. Vesicle-cylinder, separate vesicle and cylinder, disk-cylinder, and mixed vesicle nanoparticles were constructed by binary blends of distinct diblock copolymers. Initially, the vesicle former polyacrylic acid-polyisoprene and cylinder former polyacrylic acid-polystyrene which share the same hydrophilic domain but immiscible hydrophobic domain were blended in THF. Secondly, dimaine molecules are added to associate with the common hydrophilic PAA. Importantly, and lastly, by tuning the kinetic addition rate of selective, miscible solvent water, the unlike hydrophobic blocks are kinetically trapped into one particle and eventually nanophase separate to form multiple compartments and multigeometries. The effective bottom-up multistep assembly strategies can be applied in other binary/ternary blends, in which new vesicle-sphere, disk-disk and cylinder-cylinder MCM/MGM nanoparticles were programed. We are grateful for the financial support from the National Science Funding DMR-0906815 (D.J.P. and K.L.W.) and NIST METROLOGY POCHAN 2012.

  10. Statistical methods in the mechanical design of fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Radsak, C.; Streit, D.; Muench, C.J. [AREVA NP GmbH, Erlangen (Germany)

    2013-07-01

    The mechanical design of a fuel assembly is still being mainly performed in a de terministic way. This conservative approach is however not suitable to provide a realistic quantification of the design margins with respect to licensing criter ia for more and more demanding operating conditions (power upgrades, burnup increase,..). This quantification can be provided by statistical methods utilizing all available information (e.g. from manufacturing, experience feedback etc.) of the topic under consideration. During optimization e.g. of the holddown system certain objectives in the mechanical design of a fuel assembly (FA) can contradict each other, such as sufficient holddown forces enough to prevent fuel assembly lift-off and reducing the holddown forces to minimize axial loads on the fuel assembly structure to ensure no negative effect on the control rod movement.By u sing a statistical method the fuel assembly design can be optimized much better with respect to these objectives than it would be possible based on a deterministic approach. This leads to a more realistic assessment and safer way of operating fuel assemblies. Statistical models are defined on the one hand by the quanti le that has to be maintained concerning the design limit requirements (e.g. one FA quantile) and on the other hand by the confidence level which has to be met. Using the above example of the holddown force, a feasible quantile can be define d based on the requirement that less than one fuel assembly (quantile > 192/19 3 [%] = 99.5 %) in the core violates the holddown force limit w ith a confidence of 95%. (orig.)

  11. Identification of RNA Binding Proteins Associated with Dengue Virus RNA in Infected Cells Reveals Temporally Distinct Host Factor Requirements.

    Directory of Open Access Journals (Sweden)

    Olga V Viktorovskaya

    2016-08-01

    Full Text Available There are currently no vaccines or antivirals available for dengue virus infection, which can cause dengue hemorrhagic fever and death. A better understanding of the host pathogen interaction is required to develop effective therapies to treat DENV. In particular, very little is known about how cellular RNA binding proteins interact with viral RNAs. RNAs within cells are not naked; rather they are coated with proteins that affect localization, stability, translation and (for viruses replication.Seventy-nine novel RNA binding proteins for dengue virus (DENV were identified by cross-linking proteins to dengue viral RNA during a live infection in human cells. These cellular proteins were specific and distinct from those previously identified for poliovirus, suggesting a specialized role for these factors in DENV amplification. Knockdown of these proteins demonstrated their function as viral host factors, with evidence for some factors acting early, while others late in infection. Their requirement by DENV for efficient amplification is likely specific, since protein knockdown did not impair the cell fitness for viral amplification of an unrelated virus. The protein abundances of these host factors were not significantly altered during DENV infection, suggesting their interaction with DENV RNA was due to specific recruitment mechanisms. However, at the global proteome level, DENV altered the abundances of proteins in particular classes, including transporter proteins, which were down regulated, and proteins in the ubiquitin proteasome pathway, which were up regulated.The method for identification of host factors described here is robust and broadly applicable to all RNA viruses, providing an avenue to determine the conserved or distinct mechanisms through which diverse viruses manage the viral RNA within cells. This study significantly increases the number of cellular factors known to interact with DENV and reveals how DENV modulates and usurps

  12. Robotically Assembled Aerospace Structures: Digital Material Assembly using a Gantry-Type Assembler

    Science.gov (United States)

    Trinh, Greenfield; Copplestone, Grace; O'Connor, Molly; Hu, Steven; Nowak, Sebastian; Cheung, Kenneth; Jenett, Benjamin; Cellucci, Daniel

    2017-01-01

    This paper evaluates the development of automated assembly techniques for discrete lattice structures using a multi-axis gantry type CNC machine. These lattices are made of discrete components called "digital materials." We present the development of a specialized end effector that works in conjunction with the CNC machine to assemble these lattices. With this configuration we are able to place voxels at a rate of 1.5 per minute. The scalability of digital material structures due to the incremental modular assembly is one of its key traits and an important metric of interest. We investigate the build times of a 5x5 beam structure on the scale of 1 meter (325 parts), 10 meters (3,250 parts), and 30 meters (9,750 parts). Utilizing the current configuration with a single end effector, performing serial assembly with a globally fixed feed station at the edge of the build volume, the build time increases according to a scaling law of n4, where n is the build scale. Build times can be reduced significantly by integrating feed systems into the gantry itself, resulting in a scaling law of n3. A completely serial assembly process will encounter time limitations as build scale increases. Automated assembly for digital materials can assemble high performance structures from discrete parts, and techniques such as built in feed systems, parallelization, and optimization of the fastening process will yield much higher throughput.

  13. Analysis of reconfigurable assembly system framing systems in automotive industry

    Directory of Open Access Journals (Sweden)

    Md Zain Mohamad Zamri

    2017-01-01

    Full Text Available Current trend in automotive industry shows increasing demand for multiple models with lean production. Prior to that, automotive manufacturing systems evolved from mass production to flexible automation. Material handling systems and equipment in a single assembly line with multiple models require high investment but with low throughput thus making production cost relatively high. Current assembly process of side structure and undercarriage with downtime occurrence during assembly process affecting production performance (quality, cost and delivery. Manufacturing facilities should allow more flexibility and increase intelligence evolving toward novel reconfigurable assembly systems (RAS. RAS is envisaged capable of increasing factor flexibility and responsiveness by incorporating assembly jig, robot and framing, which could be next generation of world class automotive assembly systems. This project research proposes a new methodology of framework reconfigurable assembly systems principles in automotive framing systems i.e. enhance assembly process between side structure assembly and undercarriage assembly which a new RAS is capable to reconfigure the assembly processes of multiple model on a single assembly line. Simulation software (Witness will be used to simulate and validate current and proposed assembly process. RAS is expected to be a solution for rapid change in structure and for a responsively adjustable production capacity. Quality, cost and delivery are production key parameters that can be achieved by implementing RAS.

  14. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  15. Status of Preliminary Design on the Assembly Tools for ITER Tokamak Machine

    International Nuclear Information System (INIS)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin; Moon, Jae Hwan; Kim, Byung Seok; Lee, Jae Hyuk; Shaw, Robert

    2012-01-01

    The ITER Tokamak device is principally composed of nine 40 .deg. sectors. Each 40 .deg. sector is made up of one 40 .deg. vacuum vessel (VV), two 20 .deg. toroidal filed coils (TFC) and associated vacuum vessel thermal shield (VVTS) segments which consist of one inboard and two outboard vacuum vessel thermal shields. Based on the design description document and final report prepared by the ITER organization (IO) and conceptual design, Korea has carried out the preliminary design of these assembly tools. The assembly strategy and relevant tools for the 40 .deg. sector sub-assembly and sector assembly at in-pit should be developed to satisfy the basic assembly requirements of the ITER Tokamak machine. Assembly strategy, preliminary design of the sector sub-assembly and assembly tools are described in this paper

  16. Bacteriophage Assembly

    Directory of Open Access Journals (Sweden)

    Anastasia A. Aksyuk

    2011-02-01

    Full Text Available Bacteriophages have been a model system to study assembly processes for over half a century. Formation of infectious phage particles involves specific protein-protein and protein-nucleic acid interactions, as well as large conformational changes of assembly precursors. The sequence and molecular mechanisms of phage assembly have been elucidated by a variety of methods. Differences and similarities of assembly processes in several different groups of bacteriophages are discussed in this review. The general principles of phage assembly are applicable to many macromolecular complexes.

  17. Cryogenic Fiber Optic Assemblies for Spaceflight Environments: Design, Manufacturing, Testing, and Integration

    Science.gov (United States)

    Thomes, W. Joe; Ott, Melanie N.; Chuska, Richard; Switzer, Robert; Onuma, Eleanya; Blair, Diana; Frese, Erich; Matyseck, Marc

    2016-01-01

    Fiber optic assemblies have been used on spaceflight missions for many years as an enabling technology for routing, transmitting, and detecting optical signals. Due to the overwhelming success of NASA in implementing fiber optic assemblies on spaceflight science-based instruments, system scientists increasingly request fibers that perform in extreme environments while still maintaining very high optical transmission, stability, and reliability. Many new applications require fiber optic assemblies that will operate down to cryogenic temperatures as low as 20 Kelvin. In order for the fiber assemblies to operate with little loss in optical throughput at these extreme temperatures requires a system level approach all the way from how the fiber assembly is manufactured to how it is held, routed, and integrated. The NASA Goddard Code 562 Photonics Group has been designing, manufacturing, testing, and integrating fiber optics for spaceflight and other high reliability applications for nearly 20 years. Design techniques and lessons learned over the years are consistently applied to developing new fiber optic assemblies that meet these demanding environments. System level trades, fiber assembly design methods, manufacturing, testing, and integration will be discussed. Specific recent examples of ground support equipment for the James Webb Space Telescope (JWST); the Ice, Cloud and Land Elevation Satellite-2 (ICESat-2); and others will be included.

  18. Disassembling and rebuilding 900 MW unit fuel assemblies in Celimene

    International Nuclear Information System (INIS)

    Giquel, G.; Leseur, A.; Pillet, C.; Van Craeynest, J.C.

    1987-01-01

    The Celimene high activity laboratory, in the Nuclear Research Centre of Saclay, has equipment for and experience of disassembling and rebuilding fuel assemblies from 900 MW light water reactors. These operations have been performed for R and D purposes; they allow removal for investigation of some of the fuel rods and examination of the skeleton. The rebuilt assemblies are sent to the fuel reprocessing plant. Reirradiation of these assemblies has not been considered so far and would require modifications of the procedure and of parts of the new skeleton. Disassembling and rebuilding have already been performed on three assemblies and a fourth one will be rebuilt in the coming months [fr

  19. Short- and long-term memory in Drosophila require cAMP signaling in distinct neuron types.

    Science.gov (United States)

    Blum, Allison L; Li, Wanhe; Cressy, Mike; Dubnau, Josh

    2009-08-25

    A common feature of memory and its underlying synaptic plasticity is that each can be dissected into short-lived forms involving modification or trafficking of existing proteins and long-term forms that require new gene expression. An underlying assumption of this cellular view of memory consolidation is that these different mechanisms occur within a single neuron. At the neuroanatomical level, however, different temporal stages of memory can engage distinct neural circuits, a notion that has not been conceptually integrated with the cellular view. Here, we investigated this issue in the context of aversive Pavlovian olfactory memory in Drosophila. Previous studies have demonstrated a central role for cAMP signaling in the mushroom body (MB). The Ca(2+)-responsive adenylyl cyclase RUTABAGA is believed to be a coincidence detector in gamma neurons, one of the three principle classes of MB Kenyon cells. We were able to separately restore short-term or long-term memory to a rutabaga mutant with expression of rutabaga in different subsets of MB neurons. Our findings suggest a model in which the learning experience initiates two parallel associations: a short-lived trace in MB gamma neurons, and a long-lived trace in alpha/beta neurons.

  20. A review on electrospinning design and nanofibre assemblies

    International Nuclear Information System (INIS)

    Teo, W E; Ramakrishna, S

    2006-01-01

    Although there are many methods of fabricating nanofibres, electrospinning is perhaps the most versatile process. Materials such as polymer, composites, ceramic and metal nanofibres have been fabricated using electrospinning directly or through post-spinning processes. However, what makes electrospinning different from other nanofibre fabrication processes is its ability to form various fibre assemblies. This will certainly enhance the performance of products made from nanofibres and allow application specific modifications. It is therefore vital for us to understand the various parameters and processes that allow us to fabricate the desired fibre assemblies. Fibre assemblies that can be fabricated include nonwoven fibre mesh, aligned fibre mesh, patterned fibre mesh, random three-dimensional structures and sub-micron spring and convoluted fibres. Nevertheless, more studies are required to understand and precisely control the actual mechanics in the formation of various electrospun fibrous assemblies. (topical review)

  1. AREVA's fuel assemblies addressing high performance requirements of the worldwide PWR fleet

    International Nuclear Information System (INIS)

    Anniel, Marc; Bordy, Michel-Aristide

    2009-01-01

    Taking advantage of its presence in the fuel activities since the start of commercial nuclear worldwide operation, AREVA is continuing to support the customers with the priority on reliability, to: >participate in plant operational performance for the in core fuel reliability, the Zero Tolerance for Failure ZTF as a continuous improvement target and the minimisation of manufacturing/quality troubles, >guarantee the supply chain a proven product stability and continuous availability, >support performance improvements with proven design and technology for fuel management updating and cycle cost optimization, >support licensing assessments for fuel assembly and reloads, data/methodologies/services, >meet regulatory challenges regarding new phenomena, addressing emergent performance issues and emerging industry challenges for changing operating regimes. This capacity is based on supplies by AREVA accumulating very large experience both in manufacturing and in plant operation, which is demonstrated by: >manufacturing location in 4 countries including 9 fuel factories in USA, Germany, Belgium and France. Up to now about 120,000 fuel assemblies and 8,000 RCCA have been released to PWR nuclear countries, from AREVA European factories, >irradiation performed or in progress in about half of PWR world wide nuclear plants. Our optimum performances cover rod burn ups of to 82GWD/tU and fuel assemblies successfully operated under various world wide fuel management types. AREVA's experience, which is the largest in the world, has the extensive support of the well known fuel components such as the M5'TM'cladding, the MONOBLOC'TM'guide tube, the HTP'TM' and HMP'TM' structure components and the comprehensive services brought in engineering, irradiation and post irradiation fields. All of AREVA's fuel knowledge is devoted to extend the definition of fuel reliability to cover the whole scope of fuel vendor support. Our Top Reliability and Quality provide customers with continuous

  2. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers.

    Science.gov (United States)

    Zhang, Yongli

    2017-07-01

    Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are universal molecular engines that drive membrane fusion. Particularly, synaptic SNAREs mediate fast calcium-triggered fusion of neurotransmitter-containing vesicles with plasma membranes for synaptic transmission, the basis of all thought and action. During membrane fusion, complementary SNAREs located on two apposed membranes (often called t- and v-SNAREs) join together to assemble into a parallel four-helix bundle, releasing the energy to overcome the energy barrier for fusion. A long-standing hypothesis suggests that SNAREs act like a zipper to draw the two membranes into proximity and thereby force them to fuse. However, a quantitative test of this SNARE zippering hypothesis was hindered by difficulties to determine the energetics and kinetics of SNARE assembly and to identify the relevant folding intermediates. Here, we first review different approaches that have been applied to study SNARE assembly and then focus on high-resolution optical tweezers. We summarize the folding energies, kinetics, and pathways of both wild-type and mutant SNARE complexes derived from this new approach. These results show that synaptic SNAREs assemble in four distinct stages with different functions: slow N-terminal domain association initiates SNARE assembly; a middle domain suspends and controls SNARE assembly; and rapid sequential zippering of the C-terminal domain and the linker domain directly drive membrane fusion. In addition, the kinetics and pathway of the stagewise assembly are shared by other SNARE complexes. These measurements prove the SNARE zippering hypothesis and suggest new mechanisms for SNARE assembly regulated by other proteins. © 2017 The Protein Society.

  3. Assembled genomic and tissue-specific transcriptomic data resources for two genetically distinct lines of Cowpea ( Vigna unguiculata (L.) Walp).

    Science.gov (United States)

    Spriggs, Andrew; Henderson, Steven T; Hand, Melanie L; Johnson, Susan D; Taylor, Jennifer M; Koltunow, Anna

    2018-02-09

    Cowpea ( Vigna unguiculata (L.) Walp) is an important legume crop for food security in areas of low-input and smallholder farming throughout Africa and Asia. Genetic improvements are required to increase yield and resilience to biotic and abiotic stress and to enhance cowpea crop performance. An integrated cowpea genomic and gene expression data resource has the potential to greatly accelerate breeding and the delivery of novel genetic traits for cowpea. Extensive genomic resources for cowpea have been absent from the public domain; however, a recent early release reference genome for IT97K-499-35 ( Vigna unguiculata  v1.0, NSF, UCR, USAID, DOE-JGI, http://phytozome.jgi.doe.gov/) has now been established in a collaboration between the Joint Genome Institute (JGI) and University California (UC) Riverside. Here we release supporting genomic and transcriptomic data for IT97K-499-35 and a second transformable cowpea variety, IT86D-1010. The transcriptome resource includes six tissue-specific datasets for each variety, with particular emphasis on reproductive tissues that extend and support the V. unguiculata v1.0 reference. Annotations have been included in our resource to allow direct mapping to the v1.0 cowpea reference. Access to this resource provided here is supported by raw and assembled data downloads.

  4. Self-organization of a self-assembled supramolecular rectangle, square, and three-dimensional cage on Au111 surfaces.

    Science.gov (United States)

    Yuan, Qun-Hui; Wan, Li-Jun; Jude, Hershel; Stang, Peter J

    2005-11-23

    The structure and conformation of three self-assembled supramolecular species, a rectangle, a square, and a three-dimensional cage, on Au111 surfaces were investigated by scanning tunneling microscopy. These supramolecular assemblies adsorb on Au111 surfaces and self-organize to form highly ordered adlayers with distinct conformations that are consistent with their chemical structures. The faces of the supramolecular rectangle and square lie flat on the surface, preserving their rectangle and square conformations, respectively. The three-dimensional cage also forms well-ordered adlayers on the gold surface, forming regular molecular rows of assemblies. When the rectangle and cage were mixed together, the assemblies separated into individual domains, and no mixed adlayers were observed. These results provide direct evidence of the noncrystalline solid-state structures of these assemblies and information about how they self-organize on Au111 surfaces, which is of importance in the potential manufacturing of functional nanostructures and devices.

  5. hPOC5 is a centrin-binding protein required for assembly of full-length centrioles.

    Science.gov (United States)

    Azimzadeh, Juliette; Hergert, Polla; Delouvée, Annie; Euteneuer, Ursula; Formstecher, Etienne; Khodjakov, Alexey; Bornens, Michel

    2009-04-06

    Centrin has been shown to be involved in centrosome biogenesis in a variety of eukaryotes. In this study, we characterize hPOC5, a conserved centrin-binding protein that contains Sfi1p-like repeats. hPOC5 is localized, like centrin, in the distal portion of human centrioles. hPOC5 recruitment to procentrioles occurs during G2/M, a process that continues up to the full maturation of the centriole during the next cell cycle and is correlated with hyperphosphorylation of the protein. In the absence of hPOC5, RPE1 cells arrest in G1 phase, whereas HeLa cells show an extended S phase followed by cell death. We show that hPOC5 is not required for the initiation of procentriole assembly but is essential for building the distal half of centrioles. Interestingly, the hPOC5 family reveals an evolutionary divergence between vertebrates and organisms like Drosophila melanogaster or Caenorhabditis elegans, in which the loss of hPOC5 may correlate with the conspicuous differences in centriolar structure.

  6. In vitro reconstitution of chaperone-mediated human RISC assembly.

    Science.gov (United States)

    Naruse, Ken; Matsuura-Suzuki, Eriko; Watanabe, Mariko; Iwasaki, Shintaro; Tomari, Yukihide

    2018-01-01

    To silence target mRNAs, small RNAs and Argonaute (Ago) proteins need to be assembled into RNA-induced silencing complexes (RISCs). Although the assembly of Drosophila melanogaster RISC was recently reconstituted by Ago2, the Dicer-2/R2D2 heterodimer, and five chaperone proteins, the absence of a reconstitution system for mammalian RISC assembly has posed analytical challenges. Here we describe reconstitution of human RISC assembly using Ago2 and five recombinant chaperone proteins: Hsp90β, Hsc70, Hop, Dnaja2, and p23. Our data show that ATP hydrolysis by both Hsp90β and Hsc70 is required for RISC assembly of small RNA duplexes but not for that of single-stranded RNAs. The reconstitution system lays the groundwork for further studies of small RNA-mediated gene silencing in mammals. © 2018 Naruse et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Optimizing Transcriptome Assemblies for Eleusine indica Leaf and Seedling by Combining Multiple Assemblies from Three De Novo Assemblers

    Directory of Open Access Journals (Sweden)

    Shu Chen

    2015-03-01

    Full Text Available Due to rapid advances in sequencing technology, increasing amounts of genomic and transcriptomic data are available for plant species, presenting enormous challenges for biocomputing analysis. A crucial first step for a successful transcriptomics-based study is the building of a high-quality assembly. Here, we utilized three different de novo assemblers (Trinity, Velvet, and CLC and the EvidentialGene pipeline tr2aacds to assemble two optimized transcript sets for the notorious weed species, . Two RNA sequencing (RNA-seq datasets from leaf and aboveground seedlings were processed using three assemblers, which resulted in 20 assemblies for each dataset. The contig numbers and N50 values of each assembly were compared to study the effect of read number, k-mer size, and in silico normalization on assembly output. The 20 assemblies were then processed through the tr2aacds pipeline to remove redundant transcripts and to select the transcript set with the best coding potential. Each assembly contributed a considerable proportion to the final transcript combination with the exception of the CLC-k14. Thus each assembler and parameter set did assemble better contigs for certain transcripts. The redundancy, total contig number, N50, fully assembled contig number, and transcripts related to target-site herbicide resistance were evaluated for the EvidentialGene and Trinity assemblies. Comparing the EvidentialGene set with the Trinity assembly revealed improved quality and reduced redundancy in both leaf and seedling EvidentialGene sets. The optimized transcriptome references will be useful for studying herbicide resistance in and the evolutionary process in the three allotetraploid offspring.

  8. Cooperation between humans and robots in fine assembly

    Science.gov (United States)

    Jalba, C. K.; Konold, P.; Rapp, I.; Mann, C.; Muminovic, A.

    2017-01-01

    The development of ever smaller components in manufacturing processes require handling, assembling and testing of miniature similar components. The human eye meets its optical limits with ongoing miniaturization of parts, due to the fact that it is not able to detect particles with a size smaller than 0.11 mm or register distances below 0.07 mm - like separating gaps. After several hours of labour, workers cannot accurately differentiate colour nuances as well as constant quality of work cannot be guaranteed. Assembly is usually done with tools, such as microscopes, magnifiers or digital measuring devices. Due to the enormous mental concentration, quickly a fatigue process sets in. This requires breaks or change of task and reduces productivity. Dealing with handling devices such as grippers, guide units and actuators for component assembling, requires a time consuming training process. Often productivity increase is first achieved after years of daily training. Miniaturizations are ubiquitously needed, for instance in the surgery. Very small add-on instruments must be provided. In measurement, e.g. it is a technological must and a competitive advantage, to determine required data with a small-as-possible, highest-possible-resolution sensor. Solution: The realization of a flexible universal workstation, using standard robotic systems and image processing devices in cooperation with humans, where workers are largely freed up from highly strenuous physical and fine motoric work, so that they can do productive work monitoring and adjusting the machine assisted production process.

  9. Reusable fuel test assembly for the FFTF

    International Nuclear Information System (INIS)

    Pitner, A.L.; Dittmer, J.O.

    1992-01-01

    A fuel test assembly that provides re-irradiation capability after interim discharge and reconstitution of the test pin bundle has been developed for use in the Fast Flux Test Facility (FFTF). This test vehicle permits irradiation test data to be obtained at multiple exposures on a few select test pins without the substantial expense of fabricating individual test assemblies as would otherwise be required. A variety of test pin types can be loaded in the reusable test assembly. A reusable test vehicle for irradiation testing in the FFTF has long been desired, but a number of obstacles previously prevented the implementation of such an experimental rig. The MFF-8A test assembly employs a 169-pin bundle using HT-9 alloy for duct and cladding material. The standard driver pins in the fuel bundle are sodium-bonded metal fuel (U-10 wt% Zr). Thirty-seven positions in the bundle are replaceable pin positions. Standard MFF-8A driver pins can be loaded in any test pin location to fill the bundle if necessary. Application of the MFF-8A reusable test assembly in the FFTF constitutes a considerable cost-saving measure with regard to irradiation testing. Only a few well-characterized test pins need be fabricated to conduct a test program rather than constructing entire test assemblies

  10. Terminating DNA Tile Assembly with Nanostructured Caps.

    Science.gov (United States)

    Agrawal, Deepak K; Jiang, Ruoyu; Reinhart, Seth; Mohammed, Abdul M; Jorgenson, Tyler D; Schulman, Rebecca

    2017-10-24

    Precise control over the nucleation, growth, and termination of self-assembly processes is a fundamental tool for controlling product yield and assembly dynamics. Mechanisms for altering these processes programmatically could allow the use of simple components to self-assemble complex final products or to design processes allowing for dynamic assembly or reconfiguration. Here we use DNA tile self-assembly to develop general design principles for building complexes that can bind to a growing biomolecular assembly and terminate its growth by systematically characterizing how different DNA origami nanostructures interact with the growing ends of DNA tile nanotubes. We find that nanostructures that present binding interfaces for all of the binding sites on a growing facet can bind selectively to growing ends and stop growth when these interfaces are presented on either a rigid or floppy scaffold. In contrast, nucleation of nanotubes requires the presentation of binding sites in an arrangement that matches the shape of the structure's facet. As a result, it is possible to build nanostructures that can terminate the growth of existing nanotubes but cannot nucleate a new structure. The resulting design principles for constructing structures that direct nucleation and termination of the growth of one-dimensional nanostructures can also serve as a starting point for programmatically directing two- and three-dimensional crystallization processes using nanostructure design.

  11. An Accessory Protein Required for Anchoring and Assembly of Amyloid Fibers in B. subtilis Biofilms

    Science.gov (United States)

    Romero, Diego; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2011-01-01

    Cells within Bacillus subtilis biofilms are held in place by an extracellular matrix that contains cell-anchored amyloid fibers, composed of the amyloidogenic protein TasA. As biofilms age they disassemble because the cells release the amyloid fibers. This release appears to be the consequence of incorporation of D-tyrosine, D-leucine, D-tryptophan and D-methionine into the cell wall. Here, we characterize the in vivo roles of an accessory protein TapA (TasA anchoring/assembly protein; previously YqxM) that serves both to anchor the fibers to the cell wall and to assemble TasA into fibers. TapA is found in discrete foci in the cell envelope and these foci disappear when cells are treated with a mixture of D-amino acids. Purified cell wall sacculi retain a functional form of this anchoring protein such that purified fibers can be anchored to the sacculi in vitro. In addition, we show that TapA is essential for the proper assembly of the fibers. Its absence results in a dramatic reduction in TasA levels and what little TasA is left produces only thin fibers that are not anchored to the cell. PMID:21477127

  12. ASSEMBLY TRANSFER SYSTEM DESCRIPTION DOCUMENT

    International Nuclear Information System (INIS)

    Gorpani, B.

    2000-01-01

    into the cask unloading pool. In the cask unloading pool the DPC is removed from the cask and placed in an overpack and the DPC lid is severed and removed. Assemblies are removed from either an open cask or DPC and loaded into assembly baskets positioned in the basket staging rack in the assembly unloading pool. A method called ''blending'' is utilized to load DCs with a heat output of less than 11.8 kW. This involves combining hotter and cooler assemblies from different baskets. Blending requires storing some of the hotter fuel assemblies in fuel-blending inventory pools until cooler assemblies are available. The assembly baskets are then transferred from the basket staging rack to the assembly handling cell and loaded into the assembly drying vessels. After drying, the assemblies are removed from the assembly drying vessels and loaded into a DC positioned below the DC load port. After installation of a DC inner lid and temporary sealing device, the DC is transferred to the DC decontamination cell where the top area of the DC, the DC lifting collar, and the DC inner lid and temporary sealing device are decontaminated, and the DC is evacuated and backfilled with inert gas to prevent prolonged clad exposure to air. The DC is then transferred to the Disposal Container Handling System for lid welding. In another cask preparation and decontamination area, lids are replaced on the empty transportation casks and DPC overpacks, the casks and DPC overpacks are decontaminated, inspected, and transferred to the Carrier/Cask Handling System for shipment off-site. All system equipment is designed to facilitate manual or remote operation, decontamination, and maintenance. The system interfaces with the Carrier/Cask Handling System for incoming and outgoing transportation casks and DPCs. The system also interfaces with the Disposal Container Handling System, which prepares the DC for loading and subsequently seals the loaded DC. The system support interfaces are the Waste Handling

  13. Ebola virus VP35 blocks stress granule assembly.

    Science.gov (United States)

    Le Sage, Valerie; Cinti, Alessandro; McCarthy, Stephen; Amorim, Raquel; Rao, Shringar; Daino, Gian Luca; Tramontano, Enzo; Branch, Donald R; Mouland, Andrew J

    2017-02-01

    Stress granules (SGs) are dynamic cytoplasmic aggregates of translationally silenced mRNAs that assemble in response to environmental stress. SGs appear to play an important role in antiviral innate immunity and many viruses have evolved to block or subvert SGs components for their own benefit. Here, we demonstrate that intracellular Ebola virus (EBOV) replication and transcription-competent virus like particles (trVLP) infection does not lead to SG assembly but leads to a blockade to Arsenite-induced SG assembly. Moreover we show that EBOV VP35 represses the assembly of canonical and non-canonical SGs induced by a variety of pharmacological stresses. This SG blockade requires, at least in part, the C-terminal domain of VP35. Furthermore, results from our co-immunoprecipitation studies indicate that VP35 interacts with multiple SG components, including G3BP1, eIF3 and eEF2 through a stress- and RNA-independent mechanism. These data suggest a novel function for EBOV VP35 in the repression of SG assembly. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Structure and assembly mechanism for heteromeric kainate receptors.

    Science.gov (United States)

    Kumar, Janesh; Schuck, Peter; Mayer, Mark L

    2011-07-28

    Native glutamate receptor ion channels are tetrameric assemblies containing two or more different subunits. NMDA receptors are obligate heteromers formed by coassembly of two or three divergent gene families. While some AMPA and kainate receptors can form functional homomeric ion channels, the KA1 and KA2 subunits are obligate heteromers which function only in combination with GluR5-7. The mechanisms controlling glutamate receptor assembly involve an initial step in which the amino terminal domains (ATD) assemble as dimers. Here, we establish by sedimentation velocity that the ATDs of GluR6 and KA2 coassemble as a heterodimer of K(d) 11 nM, 32,000-fold lower than the K(d) for homodimer formation by KA2; we solve crystal structures for the GluR6/KA2 ATD heterodimer and heterotetramer assemblies. Using these structures as a guide, we perform a mutant cycle analysis to probe the energetics of assembly and show that high-affinity ATD interactions are required for biosynthesis of functional heteromeric receptors. Copyright © 2011 Elsevier Inc. All rights reserved.

  15. A prefoldin-associated WD-repeat protein (WDR92) is required for the correct architectural assembly of motile cilia

    Science.gov (United States)

    Patel-King, Ramila S.; King, Stephen M.

    2016-01-01

    WDR92 is a highly conserved WD-repeat protein that has been proposed to be involved in apoptosis and also to be part of a prefoldin-like cochaperone complex. We found that WDR92 has a phylogenetic signature that is generally compatible with it playing a role in the assembly or function of specifically motile cilia. To test this hypothesis, we performed an RNAi-based knockdown of WDR92 gene expression in the planarian Schmidtea mediterranea and were able to achieve a robust reduction in mRNA expression to levels undetectable under our standard RT-PCR conditions. We found that this treatment resulted in a dramatic reduction in the rate of organismal movement that was caused by a switch in the mode of locomotion from smooth, cilia-driven gliding to muscle-based, peristaltic contractions. Although the knockdown animals still assembled cilia of normal length and in similar numbers to controls, these structures had reduced beat frequency and did not maintain hydrodynamic coupling. By transmission electron microscopy we observed that many cilia had pleiomorphic defects in their architecture, including partial loss of dynein arms, incomplete closure of the B-tubule, and occlusion or replacement of the central pair complex by accumulated electron-dense material. These observations suggest that WDR92 is part of a previously unrecognized cytoplasmic chaperone system that is specifically required to fold key components necessary to build motile ciliary axonemes. PMID:26912790

  16. Skylab communications carrier 16536G and filter bypass adapter assembly 12535G. [development of communications equipment for use with Skylab spacecraft

    Science.gov (United States)

    1974-01-01

    Communications equipment for use with the Skylab project is examined to show compliance with contract requirements. The items of equipment considered are: (1) communications carrier assemblies, (2) filter bypass adapter assemblies, and (3) sub-assemblies, parts, and repairs. Additional information is provided concerning contract requirements, test requirements, and failure investigation actions.

  17. PRACTICAL CONTRIBUTIONS TO THE STUDY OF RESISTANCE ASSEMBLIES MADE WITH WARP KNITS

    Directory of Open Access Journals (Sweden)

    OANA Ioan-Pavel

    2014-05-01

    Full Text Available Based on the principle that a body to be obtained by sewing the material to provide resistance and the like in the stitching assembly, the experimental study of which developed resistance is compared with the resistance materials to effectively assembled by the assembly line. The experimental values resistance for assemblies were obtained in the testing for resistance to sliding stitch ASTM D 434 using Tinius Olsen HK5T test type machine. The assembly strength was determined for warp knitted fabric and satin charmeuse, made of poly-filamentary wires and mono-filament polyester and polyamide. Resistance assembling is one of the major determinants of the quality of the stitching. It is defined as "the tensile strength or friction." Tenacity stitching seam rupture is the force recorded at its weakest point. Seam abrasion resistance is the number of cycles required friction mesh destruction of seam. It can be said that the strength of the used assembly, the seam 301 is achieved by, in most of the cases, lower resistance knitted studied. In these cases, the primary findings presented, it is clear that the assembly is not appropriate in terms of reliability and maintainability of the product. Such a situation requires a first step to change the type (class of stitch used. Another way to remedy the deficiencies could be using a sewing thread with a lower finesse or strength in grain, especially in the upper loop of wire used in the study-specific.

  18. Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices

    Science.gov (United States)

    Udayabhaskararao, Thumu; Altantzis, Thomas; Houben, Lothar; Coronado-Puchau, Marc; Langer, Judith; Popovitz-Biro, Ronit; Liz-Marzán, Luis M.; Vuković, Lela; Král, Petr; Bals, Sara; Klajn, Rafal

    2017-10-01

    Self-assembly of inorganic nanoparticles has been used to prepare hundreds of different colloidal crystals, but almost invariably with the restriction that the particles must be densely packed. Here, we show that non-close-packed nanoparticle arrays can be fabricated through the selective removal of one of two components comprising binary nanoparticle superlattices. First, a variety of binary nanoparticle superlattices were prepared at the liquid-air interface, including several arrangements that were previously unknown. Molecular dynamics simulations revealed the particular role of the liquid in templating the formation of superlattices not achievable through self-assembly in bulk solution. Second, upon stabilization, all of these binary superlattices could be transformed into distinct “nanoallotropes”—nanoporous materials having the same chemical composition but differing in their nanoscale architectures.

  19. Fuel assemblies

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi.

    1979-01-01

    Purpose: To prevent scattering of gaseous fission products released from fuel assemblies stored in an fbr type reactor. Constitution; A cap provided with means capable of storing gas is adapted to amount to the assembly handling head, for example, by way of threading in a storage rack of spent fuel assemblies consisting of a bottom plate, a top plate and an assembly support mechanism. By previously eliminating the gas inside of the assembly and the cap in the storage rack, gaseous fission products upon loading, if released from fuel rods during storage, are stored in the cap and do not scatter in the storage rack. (Horiuchi, T.)

  20. Methods and characteristics of assembly language software testing

    International Nuclear Information System (INIS)

    Wang Lingfang

    2001-01-01

    Single chip micro-controllers are widely implemented to the controlling and testing products in industrial controlling and national defence embedded controlling systems. The invalidation of the source programs could lead to the unreliability of the whole systems, even to cause fatal results. Therefore, software testing is the necessary measures to reduce the mistakes and to improve the quality of the software. In the paper, the development of the software testing is presented. The distinctions between the assembly language testing and those of the high level languages is introduced. And the essential flow and methods of software testing are discussed in detail

  1. Retroviral Gag protein-RNA interactions: Implications for specific genomic RNA packaging and virion assembly.

    Science.gov (United States)

    Olson, Erik D; Musier-Forsyth, Karin

    2018-03-31

    Retroviral Gag proteins are responsible for coordinating many aspects of virion assembly. Gag possesses two distinct nucleic acid binding domains, matrix (MA) and nucleocapsid (NC). One of the critical functions of Gag is to specifically recognize, bind, and package the retroviral genomic RNA (gRNA) into assembling virions. Gag interactions with cellular RNAs have also been shown to regulate aspects of assembly. Recent results have shed light on the role of MA and NC domain interactions with nucleic acids, and how they jointly function to ensure packaging of the retroviral gRNA. Here, we will review the literature regarding RNA interactions with NC, MA, as well as overall mechanisms employed by Gag to interact with RNA. The discussion focuses on human immunodeficiency virus type-1, but other retroviruses will also be discussed. A model is presented combining all of the available data summarizing the various factors and layers of selection Gag employs to ensure specific gRNA packaging and correct virion assembly. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining.

    Directory of Open Access Journals (Sweden)

    Aurélie Kapusta

    2011-04-01

    Full Text Available During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs, each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs, which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ, are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi-mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5'-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3' ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a "cut-and-close" mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new

  3. Highly precise and developmentally programmed genome assembly in Paramecium requires ligase IV-dependent end joining.

    Science.gov (United States)

    Kapusta, Aurélie; Matsuda, Atsushi; Marmignon, Antoine; Ku, Michael; Silve, Aude; Meyer, Eric; Forney, James D; Malinsky, Sophie; Bétermier, Mireille

    2011-04-01

    During the sexual cycle of the ciliate Paramecium, assembly of the somatic genome includes the precise excision of tens of thousands of short, non-coding germline sequences (Internal Eliminated Sequences or IESs), each one flanked by two TA dinucleotides. It has been reported previously that these genome rearrangements are initiated by the introduction of developmentally programmed DNA double-strand breaks (DSBs), which depend on the domesticated transposase PiggyMac. These DSBs all exhibit a characteristic geometry, with 4-base 5' overhangs centered on the conserved TA, and may readily align and undergo ligation with minimal processing. However, the molecular steps and actors involved in the final and precise assembly of somatic genes have remained unknown. We demonstrate here that Ligase IV and Xrcc4p, core components of the non-homologous end-joining pathway (NHEJ), are required both for the repair of IES excision sites and for the circularization of excised IESs. The transcription of LIG4 and XRCC4 is induced early during the sexual cycle and a Lig4p-GFP fusion protein accumulates in the developing somatic nucleus by the time IES excision takes place. RNAi-mediated silencing of either gene results in the persistence of free broken DNA ends, apparently protected against extensive resection. At the nucleotide level, controlled removal of the 5'-terminal nucleotide occurs normally in LIG4-silenced cells, while nucleotide addition to the 3' ends of the breaks is blocked, together with the final joining step, indicative of a coupling between NHEJ polymerase and ligase activities. Taken together, our data indicate that IES excision is a "cut-and-close" mechanism, which involves the introduction of initiating double-strand cleavages at both ends of each IES, followed by DSB repair via highly precise end joining. This work broadens our current view on how the cellular NHEJ pathway has cooperated with domesticated transposases for the emergence of new mechanisms

  4. Experience with construction and assembly of V-1 nuclear power plant

    International Nuclear Information System (INIS)

    Prochazka, J.; Stepanek, S.; Drahy, J.

    1981-01-01

    The model is discussed of the constructions of the V-1 nuclear power plant at Jaslovske Bohunice with SKODA Trust fulfilling the role of the general supplier of the secondary part technology and the chief and special assembly contractor. The SKODA Trust mediated the Soviet supplies of technology, Soviet assembly and special assembly, and the mounting of the primary part according to Soviet projects. Plant start-up was safeguarded by the investor through Bohunice power plant staff and Soviet experts. The assembly of the primary circuit and the test assembly of reactor parts are described and the experience gained is discussed. The technological requirements are illustrated by the most important characteristics of the individual parts of the primary circuit. Also described are the design specifications of the 220 MW saturated steam turbine and the experience with its assembly and start-up. (B.S.)

  5. Forces that Drive Nanoscale Self-assembly on Solid Surfaces

    International Nuclear Information System (INIS)

    Suo, Z.; Lu, W.

    2000-01-01

    Experimental evidence has accumulated in the recent decade that nanoscale patterns can self-assemble on solid surfaces. A two-component monolayer grown on a solid surface may separate into distinct phases. Sometimes the phases select sizes about 10 nm, and order into an array of stripes or disks. This paper reviews a model that accounts for these behaviors. Attention is focused on thermodynamic forces that drive the self-assembly. A double-welled, composition-dependent free energy drives phase separation. The phase boundary energy drives phase coarsening. The concentration-dependent surface stress drives phase refining. It is the competition between the coarsening and the refining that leads to size selection and spatial ordering. These thermodynamic forces are embodied in a nonlinear diffusion equation. Numerical simulations reveal rich dynamics of the pattern formation process. It is relatively fast for the phases to separate and select a uniform size, but exceedingly slow to order over a long distance, unless the symmetry is suitably broken

  6. A porous medium model for predicting the duct wall temperature of sodium fast reactor fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yiqi, E-mail: yyu@anl.gov [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Merzari, Elia; Obabko, Aleksandr [Mathematics and Computer Science Division, Argonne National Laboratory, Lemont, IL 60439 (United States); Thomas, Justin [Nuclear Engineering Division, Argonne National Laboratory, Lemont, IL 60439 (United States)

    2015-12-15

    Highlights: • The proposed models are 400 times less computationally expensive than CFD simulations. • The proposed models show good duct wall temperature agreement with CFD simulations. • The paper provides an efficient tool for coupled radial core expansion calculation. - Abstract: Porous medium models have been established for predicting duct wall temperature of sodium fast reactor rod bundle assembly, which is much less computationally expensive than conventional CFD simulations that explicitly represent the wire-wrap and fuel pin geometry. Three porous medium models are proposed in this paper. Porous medium model 1 takes the whole assembly as one porous medium of uniform characteristics in the conventional approach. Porous medium model 2 distinguishes the pins along the assembly's edge from those in the interior with two distinct regions, each with a distinct porosity, resistance, and volumetric heat source. This accounts for the different fuel-to-coolant volume ratio in the two regions, which is important for predicting the temperature of the assembly's exterior duct wall. In Porous medium model 3, a precise resistance distribution was employed to define the characteristic of the porous medium. The results show that both porous medium model 2 and 3 can capture the average duct wall temperature well. Furthermore, the local duct wall variations due to different sub-channel patterns in bare rod bundles are well captured by porous medium model 3, although the wire effect on the duct wall temperature in wire wrap rod bundle has not been fully reproduced yet.

  7. Status of Conceptual Design Progress for ITER Sector Sub-assembly Tools

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Kyoung O; Park, Hyun Ki; Kim, Dong Jin [National Fusion Research Institute, Daejeon (Korea, Republic of); Lee, Jae Hyuk; Kim, Kyung Kyu [SFA Engineering Corp., Changwon (Korea, Republic of); Im, Ki Hak; Robert, Shaw [ITER Organization, Paul lez Durance (France)

    2010-05-15

    The ITER (International Thermonuclear Experimental Reactor) Tokamak assembly tools are purpose-built tools to complete the ITER Tokamak machine which includes the cryostat and the components contained therein. Based on the design description document prepared by the ITER organization, Korea has carried out the conceptual design of assembly tools. The 40 .deg. sector assemblies sub-assembled at assembly hall are transferred to Tokamak hall using the lifting tool operated by Tokamak main cranes. In-pit assembly tools are the purpose-built assembly tools for the completion of final sector assembly at Tokamak hall. The 40 .deg. sector sub-assembly tools are composed of the upending tool, the sector sub-assembly tool, the sector lifting tool and the vacuum vessel support and bracing tools. The process of the ITER sector sub-assembly at assembly hall and status of research and development are described in this paper. The ITER Tokamak device is composed of 9 vacuum vessel (VV)/toroidal field coils (TFCs)/vacuum vessel thermal shields (VVTS) 40 .deg. sectors. Each VV/TFCs/VVTS 40 .deg. sector is made up of one 40 .deg. VV, two 20 .deg. TFCs and associated VVTS segments. The 40 .deg. sectors are sub-assembled at assembly hall respectively and then 9 sectors which sub-assembled at assembly hall are finally assembled at Tokamak hall. As a basic assembly component, the assembly strategy and tools for the 40 .deg. sector sub-assembly and final assembly at inpit should be developed to satisfy the basic assembly requirements of the ITER Tokamak device. Accordingly, the purpose-built assembly tools should be designed and manufactured considering assembly plan, available space, safety, easy operation, efficient maintenance, and so on. The 40 .deg. sector assembly tools are classified into 2 groups. One group is the sub-assembly tools including upending tool, lifting tool, sub-assembly tool, VV supports and bracing tools used at assembly hall and the other group is the in

  8. National Spherical Torus Experiment (NSTX) Torus Design, Fabrication and Assembly

    International Nuclear Information System (INIS)

    Neumeyer, C.; Barnes, G.; Chrzanowski, J.H.; Heitzenroeder, P.

    1999-01-01

    The National Spherical Torus Experiment (NSTX) is a low aspect ratio spherical torus (ST) located at Princeton Plasma Physics Laboratory (PPPL). Fabrication, assembly, and initial power tests were completed in February of 1999. The majority of the design and construction efforts were constructed on the Torus system components. The Torus system includes the centerstack assembly, external Poloidal and Toroidal coil systems, vacuum vessel, torus support structure and plasma facing components (PFC's). NSTX's low aspect ratio required that the centerstack be made with the smallest radius possible. This, and the need to bake NSTXs carbon-carbon composite plasma facing components at 350 degrees C, was major drivers in the design of NSTX. The Centerstack Assembly consists of the inner legs of the Toroidal Field (TF) windings, the Ohmic Heating (OH) solenoid and its associated tension cylinder, three inner Poloidal Field (PF) coils, thermal insulation, diagnostics and an Inconel casing which forms the inner wall of the vacuum vessel boundary. It took approximately nine months to complete the assembly of the Centerstack. The tight radial clearances and the extreme length of the major components added complexity to the assembly of the Centerstack components. The vacuum vessel was constructed of 304-stainless steel and required approximately seven months to complete and deliver to the Test Cell. Several of the issues associated with the construction of the vacuum vessel were control of dimensional stability following welding and controlling the permeability of the welds. A great deal of time and effort was devoted to defining the correct weld process and material selection to meet our design requirements. The PFCs will be baked out at 350 degrees C while the vessel is maintained at 150 degrees C. This required care in designing the supports so they can accommodate the high electromagnetic loads resulting from plasma disruptions and the resulting relative thermal expansions

  9. The conserved glycine residues in the transmembrane domain of the Semliki Forest virus fusion protein are not required for assembly and fusion

    International Nuclear Information System (INIS)

    Liao Maofu; Kielian, Margaret

    2005-01-01

    The alphavirus Semliki Forest virus (SFV) infects cells via a low pH-triggered fusion reaction mediated by the viral E1 protein. Both the E1 fusion peptide and transmembrane (TM) domain are essential for membrane fusion, but the functional requirements for the TM domain are poorly understood. Here we explored the role of the five TM domain glycine residues, including the highly conserved glycine pair at E1 residues 415/416. SFV mutants with alanine substitutions for individual or all five glycine residues (5G/A) showed growth kinetics and fusion pH dependence similar to those of wild-type SFV. Mutants with increasing substitution of glycine residues showed an increasingly more stringent requirement for cholesterol during fusion. The 5G/A mutant showed decreased fusion kinetics and extent in fluorescent lipid mixing assays. TM domain glycine residues thus are not required for efficient SFV fusion or assembly but can cause subtle effects on the properties of membrane fusion

  10. Distinct Adsorption Configurations and Self-Assembly Characteristics of Fibrinogen on Chemically Uniform and Alternating Surfaces including Block Copolymer Nanodomains

    Science.gov (United States)

    2015-01-01

    Understanding protein–surface interactions is crucial to solid-state biomedical applications whose functionality is directly correlated with the precise control of the adsorption configuration, surface packing, loading density, and bioactivity of protein molecules. Because of the small dimensions and highly amphiphilic nature of proteins, investigation of protein adsorption performed on nanoscale topology can shed light on subprotein-level interaction preferences. In this study, we examine the adsorption and assembly behavior of a highly elongated protein, fibrinogen, on both chemically uniform (as-is and buffered HF-treated SiO2/Si, and homopolymers of polystyrene and poly(methyl methacrylate)) and varying (polystyrene-block-poly(methyl methacrylate)) surfaces. By focusing on high-resolution imaging of individual protein molecules whose configurations are influenced by protein–surface rather than protein–protein interactions, fibrinogen conformations characteristic to each surface are identified and statistically analyzed for structural similarities/differences in key protein domains. By exploiting block copolymer nanodomains whose repeat distance is commensurate with the length of the individual protein, we determine that fibrinogen exhibits a more neutral tendency for interaction with both polystyrene and poly(methyl methacrylate) blocks relative to the case of common globular proteins. Factors affecting fibrinogen–polymer interactions are discussed in terms of hydrophobic and electrostatic interactions. In addition, assembly and packing attributes of fibrinogen are determined at different loading conditions. Primary orientations of fibrinogen and its rearrangements with respect to the underlying diblock nanodomains associated with different surface coverage are explained by pertinent protein interaction mechanisms. On the basis of two-dimensional stacking behavior, a protein assembly model is proposed for the formation of an extended fibrinogen network

  11. An Efficient and Versatile Means for Assembling and Manufacturing Systems in Space

    Science.gov (United States)

    Dorsey, John T.; Doggett, William R.; Hafley, Robert A.; Komendera, Erik; Correll, Nikolaus; King, Bruce

    2012-01-01

    Within NASA Space Science, Exploration and the Office of Chief Technologist, there are Grand Challenges and advanced future exploration, science and commercial mission applications that could benefit significantly from large-span and large-area structural systems. Of particular and persistent interest to the Space Science community is the desire for large (in the 10- 50 meter range for main aperture diameter) space telescopes that would revolutionize space astronomy. Achieving these systems will likely require on-orbit assembly, but previous approaches for assembling large-scale telescope truss structures and systems in space have been perceived as very costly because they require high precision and custom components. These components rely on a large number of mechanical connections and supporting infrastructure that are unique to each application. In this paper, a new assembly paradigm that mitigates these concerns is proposed and described. A new assembly approach, developed to implement the paradigm, is developed incorporating: Intelligent Precision Jigging Robots, Electron-Beam welding, robotic handling/manipulation, operations assembly sequence and path planning, and low precision weldable structural elements. Key advantages of the new assembly paradigm, as well as concept descriptions and ongoing research and technology development efforts for each of the major elements are summarized.

  12. Assembly process of the ITER neutral beam injectors

    Energy Technology Data Exchange (ETDEWEB)

    Graceffa, J., E-mail: joseph.graceffa@iter.org [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Boilson, D.; Hemsworth, R.; Petrov, V.; Schunke, B.; Urbani, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul lez Durance (France); Pilard, V. [Fusion for Energy, C/ Josep Pla, n°2, Torres Diagonal Litoral, Edificio B3, 08019 Barcelona (Spain)

    2013-10-15

    The ITER neutral beam (NB) injectors are used for heating and diagnostics operations. There are 4 injectors in total, 3 heating neutral beam injectors (HNBs) and one diagnostic neutral beam injector (DNB). Two HNBs and the DNB will start injection into ITER during the hydrogen/helium phase of ITER operations. A third HNB is considered as an upgrade to the ITER heating systems, and the impact of the later installation and use of that injector have to be taken into account when considering the installation and assembly of the whole NB system. It is assumed that if a third HNB is to be installed, it will be installed before the nuclear phase of the ITER project. The total weight of one injector is around 1200 t and it is composed of 18 main components and 36 sets of shielding plates. The overall dimensions are length 20 m, height 10 m and width 5 m. Assembly of the first two HNBs and the DNB will start before the first plasma is produced in ITER, but as the time required to assemble one injector is estimated at around 1.5 year, the assembly will be divided into 2 steps, one prior to first plasma, and the second during the machine second assembly phase. To comply with this challenging schedule the assembly sequence has been defined to allow assembly of three first injectors in parallel. Due to the similar design between the DNB and HNBs it has been decided to use the same tools, which will be designed to accommodate the differences between the two sets of components. This reduces the global cost of the assembly and the overall assembly time for the injector system. The alignment and positioning of the injectors is a major consideration for the injector assembly as the alignment of the beamline components and the beam source are critical if good injector performance is to be achieved. The theoretical axes of the beams are defined relative to the duct liners which are installed in the NB ports. The concept adopted to achieve the required alignment accuracy is to use the

  13. The STAR-X X-Ray Telescope Assembly (XTA)

    Science.gov (United States)

    McClelland, Ryan S.; Bautz, Mark W.; Bonafede, Joseph A.; Miller, Eric D.; Saha, Timo T.; Solly, Peter M.; Zhang, William W.

    2017-01-01

    The Survey and Time-domain Astrophysical Research eXplorer (STAR-X) science goals are to discover what powers the most violent explosions in the Universe, understand how black holes grow across cosmic time and mass scale, and measure how structure formation heats the majority of baryons in the Universe. To achieve these goals, STAR-X requires a powerful X-ray telescope with a large field of view, large collecting area, and excellent point spread function. The STAR-X instrument, the X-Ray Telescope Assembly (XTA), meets these requirements using a powerful X-ray mirror technology based on precision-polished single crystal silicon and a mature CCD detector technology. The XTA is composed of three major subsystems: an X-ray Mirror Assembly (MA) of high resolution, lightweight mirror segments fabricated out of single crystal silicon; a Focal Plane Assembly (FPA) made of back-illuminated CCD's capable of detecting X-rays with excellent quantum efficiency; and a composite Telescope Tube that structurally links the MA and FPA. The MA consists of 5,972 silicon mirror segments mounted into five subassemblies called meta-shells. A meta-shell is constructed from an annular central structural shell covered with interlocking layers of mirror segments. This paper describes the requirements, design, and analysis of the XTA subsystems with particular focus on the MA.

  14. An accessory protein required for anchoring and assembly of amyloid fibres in B. subtilis biofilms.

    Science.gov (United States)

    Romero, Diego; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2011-06-01

    Cells within Bacillus subtilis biofilms are held in place by an extracellular matrix that contains cell-anchored amyloid fibres, composed of the amyloidogenic protein TasA. As biofilms age they disassemble because the cells release the amyloid fibres. This release appears to be the consequence of incorporation of D-tyrosine, D-leucine, D-tryptophan and D-methionine into the cell wall. Here, we characterize the in vivo roles of an accessory protein TapA (TasA anchoring/assembly protein; previously YqxM) that serves both to anchor the fibres to the cell wall and to assemble TasA into fibres. TapA is found in discrete foci in the cell envelope and these foci disappear when cells are treated with a mixture of D-amino acids. Purified cell wall sacculi retain a functional form of this anchoring protein such that purified fibres can be anchored to the sacculi in vitro. In addition, we show that TapA is essential for the proper assembly of the fibres. Its absence results in a dramatic reduction in TasA levels and what little TasA is left produces only thin fibres that are not anchored to the cell. © 2011 Blackwell Publishing Ltd.

  15. The self-assembly of particles with isotropic interactions: Using DNA coated colloids to create designer nanomaterials

    International Nuclear Information System (INIS)

    Thompson, R. B.; Dion, S.; Konigslow, K. von

    2014-01-01

    Self-consistent field theory equations are presented that are suitable for use as a coarse-grained model for DNA coated colloids, polymer-grafted nanoparticles and other systems with approximately isotropic interactions. The equations are generalized for arbitrary numbers of chemically distinct colloids. The advantages and limitations of such a coarse-grained approach for DNA coated colloids are discussed, as are similarities with block copolymer self-assembly. In particular, preliminary results for three species self-assembly are presented that parallel results from a two dimensional ABC triblock copolymer phase. The possibility of incorporating crystallization, dynamics, inverse statistical mechanics and multiscale modelling techniques are discussed

  16. FMIT Test assemblies. Progress report

    International Nuclear Information System (INIS)

    Nygren, R.E.; Opperman, E.K.

    1978-08-01

    This progress report is a reference document for a number of inter-related tasks supporting the Fusion Materials Irradiation Test (FMIT) Facility being developed by the Hanford Engineering Development Laboratory. The report describes the basic configuration of test assemblies and supporting rationale based on the neutron flux distribution. Perturbed and unperturbed flux profiles are discussed as well as heating rates and cooling requirements

  17. Simulation model of dynamical behaviour of reactor fuel assemblies

    International Nuclear Information System (INIS)

    Planchard, J.

    1994-01-01

    This report briefly describes the homogenized dynamical equations of a tube bundle placed in a perfect irrotational fluid, on case of small displacements. This approach can be used to study the mechanical behaviour of fuel assemblies of PWR reactor submitted to earthquake or depressurization blow-down. The numerical calculations require to define the added mass matrix of the fuel assemblies, for which the principle of computation is presented. (author). 14 refs., 4 figs

  18. Launch and Assembly Reliability Analysis for Human Space Exploration Missions

    Science.gov (United States)

    Cates, Grant; Gelito, Justin; Stromgren, Chel; Cirillo, William; Goodliff, Kandyce

    2012-01-01

    NASA's future human space exploration strategy includes single and multi-launch missions to various destinations including cis-lunar space, near Earth objects such as asteroids, and ultimately Mars. Each campaign is being defined by Design Reference Missions (DRMs). Many of these missions are complex, requiring multiple launches and assembly of vehicles in orbit. Certain missions also have constrained departure windows to the destination. These factors raise concerns regarding the reliability of launching and assembling all required elements in time to support planned departure. This paper describes an integrated methodology for analyzing launch and assembly reliability in any single DRM or set of DRMs starting with flight hardware manufacturing and ending with final departure to the destination. A discrete event simulation is built for each DRM that includes the pertinent risk factors including, but not limited to: manufacturing completion; ground transportation; ground processing; launch countdown; ascent; rendezvous and docking, assembly, and orbital operations leading up to trans-destination-injection. Each reliability factor can be selectively activated or deactivated so that the most critical risk factors can be identified. This enables NASA to prioritize mitigation actions so as to improve mission success.

  19. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H [Redondo Beach, CA

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  20. Metrology Techniques for the Assembly of NCSX

    International Nuclear Information System (INIS)

    Priniski, C.; Dodson, T.; Duco, M.; Raftopoulos, S.; Ellis, R.; Brooks, A.

    2009-01-01

    In support of the National Compact Stellerator Experiment (NCSX), stellerator assembly activities continued this past year at the Princeton Plasma Physics Laboratory (PPPL) in partnership with the Oak Ridge National Laboratory (ORNL). The construction program saw the completion of the first two Half Field-Period Assemblies (HPA), each consisting of three modular coils. The full machine includes six such sub-assemblies. A single HPA consists of three of the NCSX modular coils wound and assembled at PPPL. These geometrically-complex three dimensional coils were wound using computer-aided metrology and CAD models to tolerances within +/- 0.5mm. The assembly of these coils required similar accuracy on a larger scale with the added complexity of more individual parts and fewer degrees of freedom for correction. Several new potential positioning issues developed for which measurement and control techniques were developed. To accomplish this, CAD coordinate-based computer metrology equipment and software similar to the solutions employed for winding the modular coils was used. Given the size of the assemblies, the primary tools were both interferometer aided and Absolute Distance Measurement (ADM)-only based laser trackers. In addition, portable Coordinate Measurement Machine (CMM) arms and some novel indirect measurement techniques were employed. This paper will detail both the use of CAD coordinate-based metrology technology and the techniques developed and employed for dimensional control of NSCX subassemblies. The results achieved and possible improvements to techniques will be discussed.

  1. Disrupting self-assembly and toxicity of amyloidogenic protein oligomers by "molecular tweezers" - from the test tube to animal models.

    Science.gov (United States)

    Attar, Aida; Bitan, Gal

    2014-01-01

    Despite decades of research, therapy for diseases caused by abnormal protein folding and aggregation (amyloidoses) is limited to treatment of symptoms and provides only temporary and moderate relief to sufferers. The failure in developing successful disease-modifying drugs for amyloidoses stems from the nature of the targets for such drugs - primarily oligomers of amyloidogenic proteins, which are distinct from traditional targets, such as enzymes or receptors. The oligomers are metastable, do not have well-defined structures, and exist in dynamically changing mixtures. Therefore, inhibiting the formation and toxicity of these oligomers likely will require out-of-the-box thinking and novel strategies. We review here the development of a strategy based on targeting the combination of hydrophobic and electrostatic interactions that are key to the assembly and toxicity of amyloidogenic proteins using lysine (K)-specific "molecular tweezers" (MTs). Our discussion includes a survey of the literature demonstrating the important role of K residues in the assembly and toxicity of amyloidogenic proteins and the development of a lead MT derivative called CLR01, from an inhibitor of protein aggregation in vitro to a drug candidate showing effective amelioration of disease symptoms in animal models of Alzheimer's and Parkinson's diseases.

  2. Polyomaviridae Assembly Polymorphism from an Energy Landscape Perspective

    Directory of Open Access Journals (Sweden)

    Karim M. ElSawy

    2008-01-01

    Full Text Available Polyomaviridae assemble in vitro into different aggregates depending on experimental conditions. We use an energy landscape approach using empirical energy calculations to quantify how the formation of these different aggregates depends on pH, the presence of bound calcium ions and disulfide linkages. Computations are carried out for SV40, a member of the Polyomaviridae family and are based on the binding free energy landscape of three distinct trimers of pentamers that correspond to the different bonding configurations between the capsid proteins observed in its crystal structure. Our computational analysis shows that the energetics of one of these environments is pivotal for the polymorphic assembly behaviour of SV40, whilst the binding energy landscapes of the other two environments are broadly funnel-shaped and thus contribute little to the formation of particles other than virus-like particles (VLP. We have quantified how the existence of bound calcium ions in the absence of disulfide linkages enhances the binding free energies of all three environments and hence, favours the assembly of VLPs. Moreover, estimation of the relative binding free energies of the three environments at pH 5 and pH 8 reveals that they are destabilized at pH 5 relative to pH 8. The extent of this destabilization is dependent on the presence of disulfide linkages and bound calcium ions and accounts for the experimentally observed polymorphic behaviour of VP1 proteins at pH 5. Interestingly, concurrent existence of bound calcium ions and disulfide linkages is found to be destabilizing and thus may disrupt the assembly of VLPs at pH 8.

  3. L-Area STS MTR/NRU/NRX Grapple Assembly Closure Mechanics Review

    International Nuclear Information System (INIS)

    Huizenga, D. J.

    2016-01-01

    A review of the closure mechanics associated with the Shielded Transfer System (STS) MTR/NRU/NRX grapple assembly utilized at the Savannah River Site (SRS) was performed. This review was prompted by an operational event which occurred at the Canadian Nuclear Laboratories (CNL) utilizing a DTS-XL grapple assembly which is essentially identical to the STS MTR/NRU/NRX grapple assembly used at the SRS. The CNL operational event occurred when a NRU/NRX fuel basket containing spent nuclear fuel assemblies was inadvertently released by the DTS-XL grapple assembly during a transfer. The SM review of the STS MTR/NRU/NRX grapple assembly will examine the operational aspects of the STS and the engineered features of the STS which prevent such an event at the SRS. The design requirements for the STS NRU/NRX modifications and the overall layout of the STS are provided in other documents.

  4. Collective Activity of Many Bistable Assemblies Reproduces Characteristic Dynamics of Multistable Perception.

    Science.gov (United States)

    Cao, Robin; Pastukhov, Alexander; Mattia, Maurizio; Braun, Jochen

    2016-06-29

    The timing of perceptual decisions depends on both deterministic and stochastic factors, as the gradual accumulation of sensory evidence (deterministic) is contaminated by sensory and/or internal noise (stochastic). When human observers view multistable visual displays, successive episodes of stochastic accumulation culminate in repeated reversals of visual appearance. Treating reversal timing as a "first-passage time" problem, we ask how the observed timing densities constrain the underlying stochastic accumulation. Importantly, mean reversal times (i.e., deterministic factors) differ enormously between displays/observers/stimulation levels, whereas the variance and skewness of reversal times (i.e., stochastic factors) keep characteristic proportions of the mean. What sort of stochastic process could reproduce this highly consistent "scaling property?" Here we show that the collective activity of a finite population of bistable units (i.e., a generalized Ehrenfest process) quantitatively reproduces all aspects of the scaling property of multistable phenomena, in contrast to other processes under consideration (Poisson, Wiener, or Ornstein-Uhlenbeck process). The postulated units express the spontaneous dynamics of attractor assemblies transitioning between distinct activity states. Plausible candidates are cortical columns, or clusters of columns, as they are preferentially connected and spontaneously explore a restricted repertoire of activity states. Our findings suggests that perceptual representations are granular, probabilistic, and operate far from equilibrium, thereby offering a suitable substrate for statistical inference. Spontaneous reversals of high-level perception, so-called multistable perception, conform to highly consistent and characteristic statistics, constraining plausible neural representations. We show that the observed perceptual dynamics would be reproduced quantitatively by a finite population of distinct neural assemblies, each with

  5. A Theoretical and Experimental Study of DNA Self-assembly

    Science.gov (United States)

    Chandran, Harish

    providing detailed designs for local molecular computations that involve spatially contiguous molecules arranged on addressable substrates via enzyme-free DNA hybridization reaction cascades. We use the Visual DSD simulation software in conjunction with localized reaction rates obtained from biophysical modeling to create chemical reaction networks of localized hybridization circuits that are then model checked using the PRISM model checking software. We develop a DNA detection system employing the triggered self-assembly of a novel DNA dendritic nanostructure. Detection begins when a specific, single-stranded target DNA strand triggers a hybridization chain reaction between two distinct DNA hairpins. Each hairpin opens and hybridizes up to two copies of the other, and hence each layer of the growing dendritic nanostructure can in principle accommodate an exponentially increasing number of cognate molecules, generating a nanostructure with high molecular weight. We build linear activatable assemblies employing a novel protection/deprotection strategy to strictly enforce the direction of tiling assembly growth to ensure the robustness of the assembly process. Our system consists of two tiles that can form a linear co-polymer. These tiles, which are initially protected such that they do not react with each other, can be activated to form linear co-polymers via the use of a strand displacing enzyme.

  6. Self-assembled nanomaterials based on beta (β"3) tetrapeptides

    International Nuclear Information System (INIS)

    Seoudi, Rania S; Hinds, Mark G; Wilson, David J D; Adda, Christopher G; Mechler, Adam; Del Borgo, Mark; Aguilar, Marie-Isabel; Perlmutter, Patrick

    2016-01-01

    β "3-amino acid based polypeptides offer a unique starting material for the design of self-assembled nanostructures such as fibres and hierarchical dendritic assemblies, due to their well-defined helical geometry in which the peptide side chains align at 120° due to the 3.0–3.1 residue pitch of the helix. In a previous work we have described the head-to-tail self-assembly of N-terminal acetylated β "3-peptides into infinite helical nanorods that was achieved by designing a bioinspired supramolecular self-assembly motif. Here we describe the effect of consecutively more polar side chains on the self-assembly characteristics of β "3-tetrapeptides Ac-β "3Ala-β "3Leu-β "3Ile-β "3Ala (Ac-β"3[ALIA]), Ac-β "3Ser-β "3Leu-β "3Ile-β "3Ala (Ac-β"3[SLIA]) and Ac-β "3Lys-β "3Leu-β "3Ile-β "3Glu (Ac-β"3[KLIE]). β "3-tetrapeptides complete 1 1/3 turns of the helix: thus in the oligomeric form the side chain positions shift 120° with each added monomer, forming a regular periodic pattern along the nanorod. Dynamic light scattering (DLS) measurements confirmed that these peptides self-assemble even in highly polar solvents such as water and DMSO, while diffusion-ordered NMR spectroscopy revealed the presence of a substantial monomeric population. Temperature dependence of the size distribution in DLS measurements suggests a dynamic equilibrium between monomers and oligomers. Solution casting produced distinct fibrillar deposits after evaporating the solvent. In the case of the apolar Ac-β "3[ALIA] the longitudinal helix morphology gives rise to geometrically defined (∼70°) junctions between fibres, forming a mesh that opens up possibilities for applications e.g. in tissue scaffolding. The deposits of polar Ac-β "3[SLIA] and Ac-β "3[KLIE] exhibit fibres in regular parallel alignment over surface areas in the order of 10 μm. (paper)

  7. Mechanical fragmentation of nuclear reactor fuel assemblies by the double cutting method

    International Nuclear Information System (INIS)

    Voitsekhovskii, B.V.; Istomin, V.L.; Mitrofanov, V.V.

    1995-01-01

    A method is described for cutting a spent fuel assembly with straight shears into pieces of a prescribed size. The method does not require separation of the casing and the lattices. The double cutting method is briefly described, and experiments designed for cutting BN-350 and VVER-440 fuel assemblies are outlined. The testing showed that the cutting method was suitable for mechanical polarization of fuel assemblies. The investigations led to the development of turnkey industrial equipment for cutting spent fuel assemblies of different geometries with a maximum size up to 170 mm. 6 refs., 8 figs., 1 tab

  8. Safeguards on MOX assemblies at LWRs

    International Nuclear Information System (INIS)

    Arenas Carrasco, J.; Koulikov, I.; Heinonen, O.J.; Arlt, R.; Grigoleit, K.; Clarke, R.; Swinhoe, M.

    2000-01-01

    Operating within the framework of the New Partnership Approach (NPA) for unirradiated MOX fuel assemblies in LWRs, the IAEA and EURATOM have gained experience in safeguarding 13 LWRs licensed to operate with MOX assemblies. In order to fulfil SIR requirements, verification methods and techniques capable of measuring MOX assemblies under water have been and are still being developed. These encompass both qualitative tests for the detection of plutonium (gross attribute tests) and quantitative tests for the measurement of the amount of plutonium (partial defect tests) and are based on gamma and neutron detection techniques. There are nine PWR and two BWR where the reactor and the spent fuel pond can be covered by the same surveillance device. These are Type I reactors where the reactor and the pond are located in the same hall. In these types of facilities relying on surveillance during the MOX refuelling is especially difficult at the BWRs due to the depth of the core pond. There are two PWR type facilities where the reactor and the spent fuel pond are located in different halls and cannot be covered by the same surveillance device (Type II). An open core camera has not been installed during refuelling and therefore indirect surveillance is currently used to survey MOX loading. Improvements are therefore required and are under consideration. After receipt at the facility, there are a few facilities which must keep the received fresh MOX fuel in wet storage, not only for a short period prior to refuelling, but for more than a year, until the next refuelling campaign. In these cases timely inspections for direct use fresh nuclear material require considerable inspection effort. Additionally, where human surveillance of core loading and finally core closure are necessary there is also a large demand for manpower. Either an agreement should be reached with the operators to delay the MOX loading until the end of the fuelling campaign, or alternative approaches should be

  9. The Gerda Phase II detector assembly

    Energy Technology Data Exchange (ETDEWEB)

    Bode, Tobias; Schoenert, Stefan [Physik-Department E15, Technische Universitaet Muenchen (Germany); Schwingenheuer, Bernhard [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Collaboration: GERDA-Collaboration

    2013-07-01

    Phase II of the Gerda (Germanium Detector Array) experiment will continue the search for the neutrinoless double beta decay (0νββ) of {sup 76}Ge. Prerequisites for Phase II are an increased target mass and a reduced background index of < 10 {sup -3} cts/(keV.kg.yr). Major hardware upgrades to achieve these requirements are scheduled for 2013. They include the deployment of a new radio pure low mass detector assembly. The structural properties of available radio-pure materials and reduction of mass necessitate a change of the electrical contacting used to bias and read-out the detectors. The detector assembly design and the favored contacting solution are presented.

  10. Competition-colonization trade-offs, competitive uncertainty, and the evolutionary assembly of species.

    Directory of Open Access Journals (Sweden)

    Pradeep Pillai

    Full Text Available We utilize a standard competition-colonization metapopulation model in order to study the evolutionary assembly of species. Based on earlier work showing how models assuming strict competitive hierarchies will likely lead to runaway evolution and self-extinction for all species, we adopt a continuous competition function that allows for levels of uncertainty in the outcome of competition. We then, by extending the standard patch-dynamic metapopulation model in order to include evolutionary dynamics, allow for the coevolution of species into stable communities composed of species with distinct limiting similarities. Runaway evolution towards stochastic extinction then becomes a limiting case controlled by the level of competitive uncertainty. We demonstrate how intermediate competitive uncertainty maximizes the equilibrium species richness as well as maximizes the adaptive radiation and self-assembly of species under adaptive dynamics with mutations of non-negligible size. By reconciling competition-colonization tradeoff theory with co-evolutionary dynamics, our results reveal the importance of intermediate levels of competitive uncertainty for the evolutionary assembly of species.

  11. The Assembly of Cell-Encapsulating Microscale Hydrogels Using Acoustic Waves

    Science.gov (United States)

    Xu, Feng; Finley, Thomas Dylan; Turkaydin, Muge; Sung, Yuree; Gurkan, Umut Atakan; Yavuz, Ahmet Sinan; Guldiken, Rasim; Demirci, Utkan

    2011-01-01

    Microscale hydrogels find widespread applications in medicine and biology, e.g., as building blocks for tissue engineering and regenerative medicine. In these applications, these microgels are assembled to fabricate large complex 3D constructs. The success of this approach requires non-destructive and high throughput assembly of the microgels. Although various assembly methods have been developed based on modifying interfaces, and using microfluidics, so far, none of the available assembly technologies have shown the ability to assembly microgels using non-invasive fields rapidly within seconds in an efficient way. Acoustics has been widely used in biomedical area to manipulatedroplets, cells and biomolecules. In this study, we developed a simple, non-invasiveacoustic assembler for cell-encapsulating microgels with maintained cell viability (>93%). We assessed the assembler for both microbeads (with diameter of 50 µm and 100 µm) and microgels of different sizes and shapes (e.g., cubes, lock-and-key shapes, tetris, saw) in microdroplets (with volume of 10 µL, 20 µL, 40 µL, 80 µL). The microgels were assembled in second sin a non-invasive manner. These results indicate that the developed acoustic approach could become an enabling biotechnology tool for tissue engineering, regenerative medicine, pharmacology studies and high throughput screening applications. PMID:21820734

  12. An efficient approach to BAC based assembly of complex genomes.

    Science.gov (United States)

    Visendi, Paul; Berkman, Paul J; Hayashi, Satomi; Golicz, Agnieszka A; Bayer, Philipp E; Ruperao, Pradeep; Hurgobin, Bhavna; Montenegro, Juan; Chan, Chon-Kit Kenneth; Staňková, Helena; Batley, Jacqueline; Šimková, Hana; Doležel, Jaroslav; Edwards, David

    2016-01-01

    There has been an exponential growth in the number of genome sequencing projects since the introduction of next generation DNA sequencing technologies. Genome projects have increasingly involved assembly of whole genome data which produces inferior assemblies compared to traditional Sanger sequencing of genomic fragments cloned into bacterial artificial chromosomes (BACs). While whole genome shotgun sequencing using next generation sequencing (NGS) is relatively fast and inexpensive, this method is extremely challenging for highly complex genomes, where polyploidy or high repeat content confounds accurate assembly, or where a highly accurate 'gold' reference is required. Several attempts have been made to improve genome sequencing approaches by incorporating NGS methods, to variable success. We present the application of a novel BAC sequencing approach which combines indexed pools of BACs, Illumina paired read sequencing, a sequence assembler specifically designed for complex BAC assembly, and a custom bioinformatics pipeline. We demonstrate this method by sequencing and assembling BAC cloned fragments from bread wheat and sugarcane genomes. We demonstrate that our assembly approach is accurate, robust, cost effective and scalable, with applications for complete genome sequencing in large and complex genomes.

  13. Software-Supported USER Cloning Strategies for Site-Directed Mutagenesis and DNA Assembly

    DEFF Research Database (Denmark)

    Genee, Hans Jasper; Bonde, Mads Tvillinggaard; Bagger, Frederik Otzen

    2015-01-01

    USER cloning is a fast and versatile method for engineering of plasmid DNA. We have developed a user friendly Web server tool that automates the design of optimal PCR primers for several distinct USER cloning-based applications. Our Web server, named AMUSER (Automated DNA Modifications with USER...... cloning), facilitates DNA assembly and introduction of virtually any type of site-directed mutagenesis by designing optimal PCR primers for the desired genetic changes. To demonstrate the utility, we designed primers for a simultaneous two-position site-directed mutagenesis of green fluorescent protein...... (GFP) to yellow fluorescent protein (YFP), which in a single step reaction resulted in a 94% cloning efficiency. AMUSER also supports degenerate nucleotide primers, single insert combinatorial assembly, and flexible parameters for PCR amplification. AMUSER is freely available online at ....

  14. Dual brush process for selective surface modification in graphoepitaxy directed self-assembly

    Science.gov (United States)

    Doise, Jan; Chan, Boon Teik; Hori, Masafumi; Gronheid, Roel

    2017-07-01

    Graphoepitaxy directed self-assembly is a potential low-cost solution for patterning via layers with pitches beyond the reach of a single optical lithographic exposure. In this process, selective control of the interfacial energy at the bottom and sidewall of the template is an important but challenging exercise. A dual brush process is implemented, in which two brushes with distinct end-groups are consecutively grafted to the prepattern to achieve fully independent modification of the bottom and sidewall surface of the template. A comprehensive study of hole pattern quality shows that using a dual brush process leads to a substantial improvement in terms of positional and dimensional variability across the process window. These findings will be useful to others who wish to manipulate polymer-surface interactions in directed self-assembly flows.

  15. Emitter and absorber assembly for multiple self-dual operation and directional transparency

    Science.gov (United States)

    Kalozoumis, P. A.; Morfonios, C. V.; Kodaxis, G.; Diakonos, F. K.; Schmelcher, P.

    2017-03-01

    We demonstrate how to systematically design wave scattering systems with simultaneous coherent perfect absorbing and lasing operation at multiple and prescribed frequencies. The approach is based on the recursive assembly of non-Hermitian emitter and absorber units into self-dual emitter-absorber trimers at different composition levels, exploiting the simple structure of the corresponding transfer matrices. In particular, lifting the restriction to parity-time-symmetric setups enables the realization of emitter and absorber action at distinct frequencies and provides flexibility with respect to the choice of realistic parameters. We further show how the same assembled scatterers can be rearranged to produce unidirectional and bidirectional transparency at the selected frequencies. With the design procedure being generically applicable to wave scattering in single-channel settings, we demonstrate it with concrete examples of photonic multilayer setups.

  16. 10 distinct stellar populations in omega Centauri.

    Science.gov (United States)

    Bellini, Andrea; Anderson, Jay; Bedin, Luigi R.; Cool, Adrienne; King, Ivan R.; van der marel, roeland p.

    2015-08-01

    We are constructing the most comprehensive catalog of photometry and proper motions ever assembled for a globular cluster. The core of omega Centauri has been imaged over 600 times through WFC3’s UVIS and IR channels for the purposes of detector calibration. There exist ~30 exposures each for 26 filters, stretching uniformly from F225W in the UV to F160W in the infrared. Furthermore, the 12-year baseline between this data and a 2002 ACS survey will more than triple both the accuracy and the number of well-measured stars compared to previous studies.This totally unprecedented complete spectral coverage for over 400,000 stars, from the red-giant branch down to the white dwarfs, provides the best chance yet to understand the multiple-population phenomenon in any globular cluster. A preliminary analysis of the color-magnitude diagrams in different bands already allows us to identify 10 distinct sequences.

  17. Recipe-Based Engineering and Operator Support for Flexible Configuration of High-Mix Assembly

    NARCIS (Netherlands)

    Verhoosel, J.P.C.; Bekkum, M.A. van

    2017-01-01

    Nowadays, manufacturers must be increasingly flexible to quickly produce a high mix of on-demand, customer-specific, low volume product types. This requires flexible assembly lines with operators that are well-supported in their constantly changing assembly task, while producing high-quality,

  18. Simulation Of Assembly Processes With Technical Of Virtual Reality

    Science.gov (United States)

    García García, Manuel; Arenas Reina, José Manuel; Lite, Alberto Sánchez; Sebastián Pérez, Miguel Ángel

    2009-11-01

    Virtual reality techniques use at industrial processes provides a real approach to product life cycle. For components manual assembly, the use of virtual surroundings facilitates a simultaneous engineering in which variables such as human factors and productivity take a real act. On the other hand, in the actual phase of industrial competition it is required a rapid adjustment to client needs and to market situation. In this work it is analyzed the assembly of the front components of a vehicle using virtual reality tools and following up a product-process design methodology which includes every life service stage. This study is based on workstations design, taking into account productive and human factors from the ergonomic point of view implementing a postural study of every assembly operation, leaving the rest of stages for a later study. Design is optimized applying this methodology together with the use of virtual reality tools. It is also achieved a 15% reduction on time assembly and of 90% reduction in muscle—skeletal diseases at every assembly operation.

  19. RISC assembly: Coordination between small RNAs and Argonaute proteins.

    Science.gov (United States)

    Kobayashi, Hotaka; Tomari, Yukihide

    2016-01-01

    Non-coding RNAs generally form ribonucleoprotein (RNP) complexes with their partner proteins to exert their functions. Small RNAs, including microRNAs, small interfering RNAs, and PIWI-interacting RNAs, assemble with Argonaute (Ago) family proteins into the effector complex called RNA-induced silencing complex (RISC), which mediates sequence-specific target gene silencing. RISC assembly is not a simple binding between a small RNA and Ago; rather, it follows an ordered multi-step pathway that requires specific accessory factors. Some steps of RISC assembly and RISC-mediated gene silencing are dependent on or facilitated by particular intracellular platforms, suggesting their spatial regulation. In this review, we summarize the currently known mechanisms for RISC assembly of each small RNA class and propose a revised model for the role of the chaperone machinery in the duplex-initiated RISC assembly pathway. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Integrated Radiation Transport and Nuclear Fuel Performance for Assembly-Level Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Clarno, Kevin T [ORNL; Hamilton, Steven P [ORNL; Philip, Bobby [ORNL; Berrill, Mark A [ORNL; Sampath, Rahul S [ORNL; Allu, Srikanth [ORNL; Pugmire, Dave [ORNL; Dilts, Gary [Los Alamos National Laboratory (LANL); Banfield, James E [ORNL

    2012-02-01

    billion degrees of freedom for 10 loading steps. The single radiation transport calculation required about 50% of the time required to solve the thermo-mechanics with a single loading step, which demonstrates that it is feasible to incorporate, in a single code, a high-fidelity radiation transport capability with a high-fidelity nuclear fuel thermo-mechanics capability and anticipate acceptable computational requirements. The results of the full assembly simulation clearly show the axial, radial, and azimuthal variation of the neutron flux, power, temperature, and deformation of the assembly, highlighting behavior that is neglected in traditional axisymmetric fuel performance codes that do not account for assembly features, such as guide tubes and control rods.

  1. A study for the development of the capsule assembly machine for the re-irradiation test

    International Nuclear Information System (INIS)

    Kang, Y. H.; Kim, J. K.; Yeom, K. Y.; Yoon, K. B.; Choi, M. H.; Kim, B. K.

    2004-01-01

    A series of in-pile tests are being carried out to support the advanced fuel development programs at the HANARO reactor. There are still some limitations for satisfying the test requirements. To meet the demands for the high burnup test at HANARO, new capsule assembling technology is required. This paper describes the design requirements, design and fabrication of the mockup, and pre-operational tests performed for the development of the new capsule assembly machine. The mockup manufactured consists of a base plate, a capsule stand, a capsule guide pipe and clamping device and is 1m in outer diameter, 1.8m in height and 136kg in weight. From the pre-operation tests, the optimum clamping torque was 450kgf·cm for preventing rotation and shaking of the capsule main body during assembling capsule main body and protection tube, and this remote assembling procedure can be applicable to the high burnup test

  2. Transport of fresh MOX fuel assemblies for the Monju initial core

    International Nuclear Information System (INIS)

    Kurakami, J.; Ouchi, Y.; Usami, M.

    1997-01-01

    Transport of fresh MOX fuel assemblies for the prototype FBR MONJU initial core started in July 1992 and ended in March 1994. As many as 205 fresh MOX fuel assemblies for an inner core, 91 assemblies for an outer core and 5 assemblies for testing) were transported in nine transport missions. The packaging for fuel assemblies, which has shielding and shock absorbing material inside, meets IAEA regulatory requirements for Type B(U) packaging including hypothetical accident conditions such as the 9 m drop test, fire test, etc. Moreover, this package design feature such advanced technologies as high performance neutron shielding material and an automatic hold-down mechanism for the fuel assemblies. Every effort was made to carry out safe transport in conjunction with the cooperation of every competent organisation. This effort includes establishment of the transport control centre, communication training, and accompanying of the radiation monitoring expert. No transport accident occurred during the transport and all the transport missions were successfully completed on schedule. (Author)

  3. INTEGRATION OF SHIP HULL ASSEMBLY SEQUENCE PLANNING, SCHEDULING AND BUDGETING

    Directory of Open Access Journals (Sweden)

    Remigiusz Romuald Iwańkowicz

    2015-02-01

    Full Text Available The specificity of the yard work requires the particularly careful treatment of the issues of scheduling and budgeting in the production planning processes. The article presents the method of analysis of the assembly sequence taking into account the duration of individual activities and the demand for resources. A method of the critical path and resource budgeting were used. Modelling of the assembly was performed using the acyclic graphs. It has been shown that the assembly sequences can have very different feasible budget regions. The proposed model is applied to the assembly processes of large-scale welded structures, including the hulls of ships. The presented computational examples have a simulation character. They show the usefulness of the model and the possibility to use it in a variety of analyses.

  4. Verification Test of Automated Robotic Assembly of Space Truss Structures

    Science.gov (United States)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1995-01-01

    A multidisciplinary program has been conducted at the Langley Research Center to develop operational procedures for supervised autonomous assembly of truss structures suitable for large-aperture antennas. The hardware and operations required to assemble a 102-member tetrahedral truss and attach 12 hexagonal panels were developed and evaluated. A brute-force automation approach was used to develop baseline assembly hardware and software techniques. However, as the system matured and operations were proven, upgrades were incorporated and assessed against the baseline test results. These upgrades included the use of distributed microprocessors to control dedicated end-effector operations, machine vision guidance for strut installation, and the use of an expert system-based executive-control program. This paper summarizes the developmental phases of the program, the results of several assembly tests, and a series of proposed enhancements. No problems that would preclude automated in-space assembly or truss structures have been encountered. The test system was developed at a breadboard level and continued development at an enhanced level is warranted.

  5. In-core sipping method for the identification of failed fuel assemblies

    International Nuclear Information System (INIS)

    Wu Zhongwang; Zhang Yajun

    2000-01-01

    The failed fuel assembly identification system is an important safety system which ensures safe operations of reactor and immediate treatment of failed fuel rod cladding. The system uses an internationally recognized method to identify failed fuel assemblies in a reactor with fuel element cases. The in-core sipping method is customary used to identify failed fuel assemblies during refueling or after fuel rod cladding failure accidents. The test is usually performed after reactor shutdown by taking samples from each fuel element case while the cases are still in their original core positions. The sample activity is then measured to identify failed fuel assemblies. A failed fuel assembly identification system was designed for the NHR-200 based on the properties of the NHR-200 and national requirements. the design provides an internationally recognized level of safety to ensure the safety of NHR-200

  6. Classification of the MGR Assembly Transfer System

    International Nuclear Information System (INIS)

    S.E. Salzman

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) assembly transfer system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  7. Combined fuel assembly and thimble plug gripper for a nuclear reactor

    International Nuclear Information System (INIS)

    1977-01-01

    This invention relates to an apparatus for loading and unloading a fuel assembly into and from the core of a nuclear reactor and for removing and inserting control rod guide thimble plugs from and into the fuel assembly during a reactor refueling operation in substantially less time than that presently required and in a more reliable, safe and efficient manner. (UK)

  8. The plutonium product: design of the rod and of the assembly

    International Nuclear Information System (INIS)

    Francillon, G.

    1985-10-01

    On the base of physical and experimental data the aim to be reached is to design a mixed oxide-fuel rod and a mixed oxide-fuel assembly which will be introduced in a PWR type reactor while ensuring the operation and safety of the unit required presently. This paper presents successively the MOX fuel rod and the MOX fuel assembly [fr

  9. Plant X-tender: An extension of the AssemblX system for the assembly and expression of multigene constructs in plants

    Science.gov (United States)

    Machens, Fabian; Coll, Anna; Baebler, Špela; Messerschmidt, Katrin; Gruden, Kristina

    2018-01-01

    Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scar-free and sequence-independent multigene assembly strategy AssemblX, based on overlap-depended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster

  10. Plant X-tender: An extension of the AssemblX system for the assembly and expression of multigene constructs in plants.

    Science.gov (United States)

    Lukan, Tjaša; Machens, Fabian; Coll, Anna; Baebler, Špela; Messerschmidt, Katrin; Gruden, Kristina

    2018-01-01

    Cloning multiple DNA fragments for delivery of several genes of interest into the plant genome is one of the main technological challenges in plant synthetic biology. Despite several modular assembly methods developed in recent years, the plant biotechnology community has not widely adopted them yet, probably due to the lack of appropriate vectors and software tools. Here we present Plant X-tender, an extension of the highly efficient, scar-free and sequence-independent multigene assembly strategy AssemblX, based on overlap-depended cloning methods and rare-cutting restriction enzymes. Plant X-tender consists of a set of plant expression vectors and the protocols for most efficient cloning into the novel vector set needed for plant expression and thus introduces advantages of AssemblX into plant synthetic biology. The novel vector set covers different backbones and selection markers to allow full design flexibility. We have included ccdB counterselection, thereby allowing the transfer of multigene constructs into the novel vector set in a straightforward and highly efficient way. Vectors are available as empty backbones and are fully flexible regarding the orientation of expression cassettes and addition of linkers between them, if required. We optimised the assembly and subcloning protocol by testing different scar-less assembly approaches: the noncommercial SLiCE and TAR methods and the commercial Gibson assembly and NEBuilder HiFi DNA assembly kits. Plant X-tender was applicable even in combination with low efficient homemade chemically competent or electrocompetent Escherichia coli. We have further validated the developed procedure for plant protein expression by cloning two cassettes into the newly developed vectors and subsequently transferred them to Nicotiana benthamiana in a transient expression setup. Thereby we show that multigene constructs can be delivered into plant cells in a streamlined and highly efficient way. Our results will support faster

  11. Characterization of MVP and VPARP assembly into vault ribonucleoprotein complexes.

    Science.gov (United States)

    Zheng, Chun-Lei; Sumizawa, Tomoyuki; Che, Xiao-Fang; Tsuyama, Shinichiro; Furukawa, Tatsuhiko; Haraguchi, Misako; Gao, Hui; Gotanda, Takenari; Jueng, Hei-Cheul; Murata, Fusayoshi; Akiyama, Shin-Ichi

    2005-01-07

    Vaults are barrel-shaped cytoplasmic ribonucleoprotein particles composed of three proteins: the major vault protein (MVP), the vault poly(ADP-ribose)polymerase (VPARP), and the telomerase-associated protein 1, together with one or more small untranslated RNAs. To date, little is known about the process of vault assembly or about the stability of vault components. In this study, we analyzed the biosynthesis of MVP and VPARP, and their half-lives within the vault particle in human ACHN renal carcinoma cells. Using an immunoprecipitation assay, we found that it took more than 4h for newly synthesized MVPs to be incorporated into vault particles but that biosynthesized VPARPs were completely incorporated into vaults within 1.5h. Once incorporated into the vault complex, both MVP and VPARP were very stable. Expression of human MVP alone in Escherichia coli resulted in the formation of particles that had a distinct vault morphology. The C-terminal region of VPARP that lacks poly(ADP-ribose)polymerase activity co-sedimented with MVP particles. This suggests that the activity of VPARP is not essential for interaction with MVP-self-assembled vault-like particles. In conclusion, our findings provide an insight into potential mechanisms of physiological vault assembly.

  12. Lipid dip-pen nanolithography on self-assembled monolayers

    International Nuclear Information System (INIS)

    Gavutis, Martynas; Navikas, Vytautas; Rakickas, Tomas; Vaitekonis, Šarūnas; Valiokas, Ramūnas

    2016-01-01

    Dip-pen nanolithography (DPN) with lipids as an ink enables functional micro/nanopatterning on different substrates at high process speeds. However, only a few studies have addressed the influence of the physicochemical properties of the surface on the structure and phase behavior of DPN-printed lipid assemblies. Therefore, by combining the scanning probe and optical imaging techniques in this work we have analyzed lipid microdomain formation on the self-assembled monolayers (SAMs) on gold as well-defined model surfaces that displayed hydrophilic (protein-repellent) or hydrophobic (protein-adhesive) characteristics. We have found that on the tri(ethylene glycol)-terminated SAM the lipid ink transfer was fast (∼10 –1 μm 3 s −1 ), quasi-linear and it yielded unstable, sparsely packed lipid microspots. Contrary to this, on the methyl-terminated SAM the lipid transfer was ∼20 times slower, nonlinear, and the obtained stable dots of ∼1 μm in diameter consisted of lipid multilayers. Our comparative analysis indicated that the measured lipid transfer was consistent with the previously reported so-called polymer transfer model (Felts et al 2012, Nanotechnology 23 215301). Further on, by employing the observed distinct contrast in the DPN ink behavior we constructed confined lipid microdomains on pre-patterned SAMs, in which the lipids assembled either into monolayer or multilamellar phases. Such microdomains can be further utilized for lipid membrane mimetics in microarray and lab-on-a-chip device formats. (paper)

  13. Light water reactors fuel assembly mechanical design and evaluation

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This standard establishes a procedure for performing an evaluation of the mechanical design of fuel assemblies for light water-cooled commercial power reactors. It does not address the various aspects of neutronic or thermalhydraulic performance except where these factors impose loads or constraints on the mechanical design of the fuel assemblies. This standard also includes a set of specific requirements for design, various potential performance problems and criteria aimed specifically at averting them. This standard replaces ANSI/ANS-57.5-1978

  14. Programmed Nanomaterial Assemblies in Large Scales: Applications of Synthetic and Genetically- Engineered Peptides to Bridge Nano-Assemblies and Macro-Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Hiroshi

    2014-09-09

    Work is reported in these areas: Large-scale & reconfigurable 3D structures of precise nanoparticle assemblies in self-assembled collagen peptide grids; Binary QD-Au NP 3D superlattices assembled with collagen-like peptides and energy transfer between QD and Au NP in 3D peptide frameworks; Catalytic peptides discovered by new hydrogel-based combinatorial phage display approach and their enzyme-mimicking 2D assembly; New autonomous motors of metal-organic frameworks (MOFs) powered by reorganization of self-assembled peptides at interfaces; Biomimetic assembly of proteins into microcapsules on oil-in-water droplets with structural reinforcement via biomolecular recognition-based cross-linking of surface peptides; and Biomimetic fabrication of strong freestanding genetically-engineered collagen peptide films reinforced by quantum dot joints. We gained the broad knowledge about biomimetic material assembly from nanoscale to microscale ranges by coassembling peptides and NPs via biomolecular recognition. We discovered: Genetically-engineered collagen-like peptides can be self-assembled with Au NPs to generate 3D superlattices in large volumes (> μm{sup 3}); The assembly of the 3D peptide-Au NP superstructures is dynamic and the interparticle distance changes with assembly time as the reconfiguration of structure is triggered by pH change; QDs/NPs can be assembled with the peptide frameworks to generate 3D superlattices and these QDs/NPs can be electronically coupled for the efficient energy transfer; The controlled assembly of catalytic peptides mimicking the catalytic pocket of enzymes can catalyze chemical reactions with high selectivity; and, For the bacteria-mimicking swimmer fabrication, peptide-MOF superlattices can power translational and propellant motions by the reconfiguration of peptide assembly at the MOF-liquid interface.

  15. DNA fragments assembly based on nicking enzyme system.

    Directory of Open Access Journals (Sweden)

    Rui-Yan Wang

    Full Text Available A couple of DNA ligation-independent cloning (LIC methods have been reported to meet various requirements in metabolic engineering and synthetic biology. The principle of LIC is the assembly of multiple overlapping DNA fragments by single-stranded (ss DNA overlaps annealing. Here we present a method to generate single-stranded DNA overlaps based on Nicking Endonucleases (NEases for LIC, the method was termed NE-LIC. Factors related to cloning efficiency were optimized in this study. This NE-LIC allows generating 3'-end or 5'-end ss DNA overlaps of various lengths for fragments assembly. We demonstrated that the 10 bp/15 bp overlaps had the highest DNA fragments assembling efficiency, while 5 bp/10 bp overlaps showed the highest efficiency when T4 DNA ligase was added. Its advantage over Sequence and Ligation Independent Cloning (SLIC and Uracil-Specific Excision Reagent (USER was obvious. The mechanism can be applied to many other LIC strategies. Finally, the NEases based LIC (NE-LIC was successfully applied to assemble a pathway of six gene fragments responsible for synthesizing microbial poly-3-hydroxybutyrate (PHB.

  16. Large-scale parallel genome assembler over cloud computing environment.

    Science.gov (United States)

    Das, Arghya Kusum; Koppa, Praveen Kumar; Goswami, Sayan; Platania, Richard; Park, Seung-Jong

    2017-06-01

    The size of high throughput DNA sequencing data has already reached the terabyte scale. To manage this huge volume of data, many downstream sequencing applications started using locality-based computing over different cloud infrastructures to take advantage of elastic (pay as you go) resources at a lower cost. However, the locality-based programming model (e.g. MapReduce) is relatively new. Consequently, developing scalable data-intensive bioinformatics applications using this model and understanding the hardware environment that these applications require for good performance, both require further research. In this paper, we present a de Bruijn graph oriented Parallel Giraph-based Genome Assembler (GiGA), as well as the hardware platform required for its optimal performance. GiGA uses the power of Hadoop (MapReduce) and Giraph (large-scale graph analysis) to achieve high scalability over hundreds of compute nodes by collocating the computation and data. GiGA achieves significantly higher scalability with competitive assembly quality compared to contemporary parallel assemblers (e.g. ABySS and Contrail) over traditional HPC cluster. Moreover, we show that the performance of GiGA is significantly improved by using an SSD-based private cloud infrastructure over traditional HPC cluster. We observe that the performance of GiGA on 256 cores of this SSD-based cloud infrastructure closely matches that of 512 cores of traditional HPC cluster.

  17. Benchmark calculations of power distribution within assemblies

    International Nuclear Information System (INIS)

    Cavarec, C.; Perron, J.F.; Verwaerde, D.; West, J.P.

    1994-09-01

    The main objective of this Benchmark is to compare different techniques for fine flux prediction based upon coarse mesh diffusion or transport calculations. We proposed 5 ''core'' configurations including different assembly types (17 x 17 pins, ''uranium'', ''absorber'' or ''MOX'' assemblies), with different boundary conditions. The specification required results in terms of reactivity, pin by pin fluxes and production rate distributions. The proposal for these Benchmark calculations was made by J.C. LEFEBVRE, J. MONDOT, J.P. WEST and the specification (with nuclear data, assembly types, core configurations for 2D geometry and results presentation) was distributed to correspondents of the OECD Nuclear Energy Agency. 11 countries and 19 companies answered the exercise proposed by this Benchmark. Heterogeneous calculations and homogeneous calculations were made. Various methods were used to produce the results: diffusion (finite differences, nodal...), transport (P ij , S n , Monte Carlo). This report presents an analysis and intercomparisons of all the results received

  18. Required Equipment for Photo-Switchable Donor-Acceptor (D-A) Dyad Interfacial Self-Assembled Monolayers for Organic Photovoltaic Cells

    Science.gov (United States)

    2014-01-24

    Interfacial Tuning via Electron-Blocking/Hole-Transport Layers and Indium Tin Oxide Surface Treatment in Bulk- Heterojunction Organic Photovoltaic Cells...devices Figure 3 shows the compounds we prepared to assemble on gold (Au) surfaces. Results of TPA-C60 dyads (1 and 2) self-assembled on Au electrodes...surface hydroxyl groups, respectively, we decided to prepare compounds 5-7 to attach as SAMs, see Figure 5. Difficulties and unexpected problems

  19. Construction and actuation of a microscopic gear assembly formed using optical tweezers

    International Nuclear Information System (INIS)

    Kim, Jung-Dae; Lee, Yong-Gu

    2013-01-01

    The assembly of micrometer-sized parts is an important manufacturing process; any development in it could potentially change the current manufacturing practices for micrometer-scale devices. Due to the lack of reliable microassembly techniques, these devices are often manufactured using silicon, which includes etching and depositions with little use of assembly processes. The result is the requirement of specialized manufacturing conditions with hazardous byproducts and limited applications where only simple mechanisms are allowed. Optical tweezers are non-contact type manipulators that are very suitable for assembling microparts and solve one of the most difficult problems for microassembly, which is the sticking of the physical manipulator to the micropart. Although contact type manipulators can be surface modified to be non-sticky, this involves extra preprocessing—optical tweezers do not require such additional efforts. The weakness of using optical tweezers is that the permanent assembly of parts is not possible as only very small forces can be applied. We introduce an advanced microassembly environment with the combined use of optical tweezers and a motorized microtip, where the former is used to position two parts and the latter is used to introduce deformation in the parts so that they form a strongly fitted assembly. (paper)

  20. Design and research of seal structure for thermocouple column assembly

    International Nuclear Information System (INIS)

    Rao Qiqi; Li Na; Zhao Wei; Ma Zhigang

    2015-01-01

    The new seal structure was designed to satisfy the function of thermocouple column assembly and the reactor structure. This seal structure uses the packing graphite ring and adopts the self-sealing principle. Cone angle is brought to the seal face of seal structure which is conveniently to assembly and disassembly. After the sealing principle analysis and stress calculation of graphite ring which adopt the cone angle, the cone angle increases the radial force of seal structure and improves the seal effect. The stress analysis result shows the seal structure strength satisfies the regulation requirement. The cold and hot function test results shows the sealing effect is good, and the design requirement is satisfied. (authors)

  1. Self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    While the solution state structure of 1 can be best described as a trinuclear complex, in the solidstate well-fashioned intermolecular - and CH- interactions are observed. Thus, in the solid-state further self-assembly of already self-assembled molecular triangle is witnessed. The triangular panels are arranged in a linear ...

  2. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Da; Lee, Jim Yang, E-mail: cheleejy@nus.edu.sg [Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, 10 Kent Ridge Crescent, 119260 (Singapore)

    2011-09-02

    A simple and scalable procedure combining hydrothermal synthesis with post-synthesis calcination was developed to produce a linker-free, thermally stable, mesoscale 3D ordered assembly of spinel-type ZnCo{sub 2}O{sub 4} nanocrystals. The mesoscale assembly with distinctively sharp edges was formed by close-packing the ZnCo{sub 2}O{sub 4} nanocrystal building blocks with a unit size changeable by the synthesis temperature. A self-templating mechanism based on the topotactic transformation of an oxalato-bridged precursor coordination compound was proposed for the assembly. The packaging of crystalline ZnCo{sub 2}O{sub 4} nanoparticles, an active lithium ion storage compound, into a dense organized structure is an effective way to increase the volumetric capacity of ZnCo{sub 2}O{sub 4} nanoparticles for reversible lithium ion storage. The highly ordered 3D assembly of ZnCo{sub 2}O{sub 4} demonstrated excellent reversible lithium ion storage properties and a specific capacity ({approx}800 mAh g{sup -1}) much higher than that of carbon (typically {approx} 350 mAh g{sup -1}).

  3. Linker-free 3D assembly of nanocrystals with tunable unit size for reversible lithium ion storage

    International Nuclear Information System (INIS)

    Deng, Da; Lee, Jim Yang

    2011-01-01

    A simple and scalable procedure combining hydrothermal synthesis with post-synthesis calcination was developed to produce a linker-free, thermally stable, mesoscale 3D ordered assembly of spinel-type ZnCo 2 O 4 nanocrystals. The mesoscale assembly with distinctively sharp edges was formed by close-packing the ZnCo 2 O 4 nanocrystal building blocks with a unit size changeable by the synthesis temperature. A self-templating mechanism based on the topotactic transformation of an oxalato-bridged precursor coordination compound was proposed for the assembly. The packaging of crystalline ZnCo 2 O 4 nanoparticles, an active lithium ion storage compound, into a dense organized structure is an effective way to increase the volumetric capacity of ZnCo 2 O 4 nanoparticles for reversible lithium ion storage. The highly ordered 3D assembly of ZnCo 2 O 4 demonstrated excellent reversible lithium ion storage properties and a specific capacity (∼800 mAh g -1 ) much higher than that of carbon (typically ∼ 350 mAh g -1 ).

  4. Evaluation of nine popular de novo assemblers in microbial genome assembly.

    Science.gov (United States)

    Forouzan, Esmaeil; Maleki, Masoumeh Sadat Mousavi; Karkhane, Ali Asghar; Yakhchali, Bagher

    2017-12-01

    Next generation sequencing (NGS) technologies are revolutionizing biology, with Illumina being the most popular NGS platform. Short read assembly is a critical part of most genome studies using NGS. Hence, in this study, the performance of nine well-known assemblers was evaluated in the assembly of seven different microbial genomes. Effect of different read coverage and k-mer parameters on the quality of the assembly were also evaluated on both simulated and actual read datasets. Our results show that the performance of assemblers on real and simulated datasets could be significantly different, mainly because of coverage bias. According to outputs on actual read datasets, for all studied read coverages (of 7×, 25× and 100×), SPAdes and IDBA-UD clearly outperformed other assemblers based on NGA50 and accuracy metrics. Velvet is the most conservative assembler with the lowest NGA50 and error rate. Copyright © 2017. Published by Elsevier B.V.

  5. Coordination in the Decentralized Assembly System with Dual Supply Modes

    Directory of Open Access Journals (Sweden)

    Xu Guan

    2013-01-01

    Full Text Available This paper investigates a decentralized assembly system that consists of one assembler and two independent suppliers; wherein one supplier is perfectly reliable for the production, while the other generates yield uncertainty. Facing the random market demand, the assembler has to order the components from one supplier in advance and meanwhile requires the other supplier to deliver the components under VMI mode. We construct a Nash game between the supplier and the assembler so as to derive their equilibrium procurement/production strategies. The results show that the channel’s performance is highly undermined by the decentralization between players and also the combination of two supply modes. Compared to the centralized system, we propose an advance payment contract to perfectly coordinate the supply chain performance. The numerical examples indicate some management implications on the supply mode comparison and sensitivity analysis.

  6. The Self-Assembly of Nanogold for Optical Metamaterials

    Science.gov (United States)

    Nidetz, Robert A.

    2011-12-01

    Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger

  7. Fuel injection assembly for use in turbine engines and method of assembling same

    Science.gov (United States)

    Berry, Jonathan Dwight; Johnson, Thomas Edward; York, William David; Uhm, Jong Ho

    2015-12-15

    A fuel injection assembly for use in a turbine engine is provided. The fuel injection assembly includes an end cover, an endcap assembly, a fluid supply chamber, and a plurality of tube assemblies positioned at the endcap assembly. Each of the tube assemblies includes housing having a fuel plenum and a cooling fluid plenum. The cooling fluid plenum is positioned downstream from the fuel plenum and separated from the fuel plenum by an intermediate wall. The plurality of tube assemblies also include a plurality of tubes that extends through the housing. Each of the plurality of tubes is coupled in flow communication with the fluid supply chamber and a combustion chamber positioned downstream from the tube assembly. The plurality of tube assemblies further includes an aft plate at a downstream end of the cooling fluid plenum. The plate includes at least one aperture.

  8. Drosophila parthenogenesis: A tool to decipher centrosomal vs acentrosomal spindle assembly pathways

    International Nuclear Information System (INIS)

    Riparbelli, Maria Giovanna; Callaini, Giuliano

    2008-01-01

    Development of unfertilized eggs in the parthenogenetic strain K23-O-im of Drosophila mercatorum requires the stochastic interactions of self-assembled centrosomes with the female chromatin. In a portion of the unfertilized eggs that do not assemble centrosomes, microtubules organize a bipolar anastral mitotic spindle around the chromatin like the one formed during the first female meiosis, suggesting that similar pathways may be operative. In the cytoplasm of eggs in which centrosomes do form, monastral and biastral spindles are found. Analysis by laser scanning confocal microscopy suggests that these spindles are derived from the stochastic interaction of astral microtubules directly with kinetochore regions or indirectly with kinetochore microtubules. Our findings are consistent with the idea that mitotic spindle assembly requires both acentrosomal and centrosomal pathways, strengthening the hypothesis that astral microtubules can dictate the organization of the spindle by capturing kinetochore microtubules

  9. Two-phase, passive separator-and-filter assembly

    Science.gov (United States)

    Erickson, A. C.; Porter, F. J., Jr.

    1974-01-01

    Assembly separates liquid from gas by passive hydrophilic/hydrophobic material approach. Apparatus is comprised of porous glass hydrophilic tubes. Quantity, lateral size, and pore size of glass tubes are determined by particular design requirements with regard to water rate, water quality contamination level, application endurance life, and operating differential pressure level.

  10. Regulation of corneal stroma extracellular matrix assembly.

    Science.gov (United States)

    Chen, Shoujun; Mienaltowski, Michael J; Birk, David E

    2015-04-01

    The transparent cornea is the major refractive element of the eye. A finely controlled assembly of the stromal extracellular matrix is critical to corneal function, as well as in establishing the appropriate mechanical stability required to maintain corneal shape and curvature. In the stroma, homogeneous, small diameter collagen fibrils, regularly packed with a highly ordered hierarchical organization, are essential for function. This review focuses on corneal stroma assembly and the regulation of collagen fibrillogenesis. Corneal collagen fibrillogenesis involves multiple molecules interacting in sequential steps, as well as interactions between keratocytes and stroma matrix components. The stroma has the highest collagen V:I ratio in the body. Collagen V regulates the nucleation of protofibril assembly, thus controlling the number of fibrils and assembly of smaller diameter fibrils in the stroma. The corneal stroma is also enriched in small leucine-rich proteoglycans (SLRPs) that cooperate in a temporal and spatial manner to regulate linear and lateral collagen fibril growth. In addition, the fibril-associated collagens (FACITs) such as collagen XII and collagen XIV have roles in the regulation of fibril packing and inter-lamellar interactions. A communicating keratocyte network contributes to the overall and long-range regulation of stromal extracellular matrix assembly, by creating micro-domains where the sequential steps in stromal matrix assembly are controlled. Keratocytes control the synthesis of extracellular matrix components, which interact with the keratocytes dynamically to coordinate the regulatory steps into a cohesive process. Mutations or deficiencies in stromal regulatory molecules result in altered interactions and deficiencies in both transparency and refraction, leading to corneal stroma pathobiology such as stromal dystrophies, cornea plana and keratoconus. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Compartmentalization Technologies via Self-Assembly and Cross-Linking of Amphiphilic Random Block Copolymers in Water.

    Science.gov (United States)

    Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo

    2017-05-31

    Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.

  12. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy.

    Science.gov (United States)

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-02-21

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA 'sub-tile' strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs.

  13. MYBPH inhibits NM IIA assembly via direct interaction with NMHC IIA and reduces cell motility

    International Nuclear Information System (INIS)

    Hosono, Yasuyuki; Usukura, Jiro; Yamaguchi, Tomoya; Yanagisawa, Kiyoshi; Suzuki, Motoshi; Takahashi, Takashi

    2012-01-01

    Highlights: ► MYBPH inhibits NMHC IIA assembly and cell motility. ► MYBPH interacts to assembly-competent NM IIA. ► MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA. -- Abstract: Actomyosin filament assembly is a critical step in tumor cell migration. We previously found that myosin binding protein H (MYBPH) is directly transactivated by the TTF-1 lineage-survival oncogene in lung adenocarcinomas and inhibits phosphorylation of the myosin regulatory light chain (RLC) of non-muscle myosin IIA (NM IIA) via direct interaction with Rho kinase 1 (ROCK1). Here, we report that MYBPH also directly interacts with an additional molecule, non-muscle myosin heavy chain IIA (NMHC IIA), which was found to occur between MYBPH and the rod portion of NMHC IIA. MYBPH inhibited NMHC IIA assembly and reduced cell motility. Conversely, siMYBPH-induced increased motility was partially, yet significantly, suppressed by blebbistatin, a non-muscle myosin II inhibitor, while more profound effects were attained by combined treatment with siROCK1 and blebbistatin. Electron microscopy observations showed well-ordered paracrystals of NMHC IIA reflecting an assembled state, which were significantly less frequently observed in the presence of MYBPH. Furthermore, an in vitro sedimentation assay showed that a greater amount of NMHC IIA was in an unassembled state in the presence of MYBPH. Interestingly, treatment with a ROCK inhibitor that impairs transition of NM IIA from an assembly-incompetent to assembly-competent state reduced the interaction between MYBPH and NMHC IIA, suggesting that MYBPH has higher affinity to assembly-competent NM IIA. These results suggest that MYBPH inhibits RLC and NMHC IIA, independent components of NM IIA, and negatively regulates actomyosin organization at 2 distinct steps, resulting in firm inhibition of NM IIA assembly.

  14. The Current Working Conditions in Ugandan Apparel Assembly Plants

    Directory of Open Access Journals (Sweden)

    Mike Tebyetekerwa

    2017-12-01

    Full Text Available Background: The present rapid shift of industrialization from developed to developing countries requires developing countries to understand issues related to work organization, management, and working conditions. There are many factors slackening production, of which working conditions is part. A complete inquiry into the workers' working conditions can enable managements to reduce risks in the workplaces and improve productivity. Understanding and awareness of the benefits of workplace research and a probe into the working conditions in the Ugandan apparel assembly plants are urgently required. Methods: A total of 103 (70 women and 33 men workers from five different plants were interviewed. Together with the top management of various plants, questionnaires about the workers' opinions of their physical working conditions were prepared. Data was collected using two methods: (1 questionnaire; and (2 observation of the workers during their work. Results: The results indicated that poor plant working conditions were mainly contributed by the workers' social factors and the management policies. Conclusion: The government, together with the management, should work to improve the working conditions in the apparel assembly plants, as it greatly affects both. Keywords: apparel assembly plants, ergonomics, musculoskeletal disorders, Uganda, working conditions

  15. Channel selective tunnelling through a nanographene assembly

    International Nuclear Information System (INIS)

    Wong, H S; Durkan, C; Feng, X; Müllen, K; Chandrasekhar, N

    2012-01-01

    We report selective tunnelling through a nanographene intermolecular tunnel junction achieved via scanning tunnelling microscope tip functionalization with hexa-peri-hexabenzocoronene (HBC) molecules. This leads to an offset in the alignment between the energy levels of the tip and the molecular assembly, resulting in the imaging of a variety of distinct charge density patterns in the HBC assembly, not attainable using a bare metallic tip. Different tunnelling channels can be selected by the application of an electric field in the tunnelling junction, which changes the condition of the HBC on the tip. Density functional theory-based calculations relate the imaged HBC patterns to the calculated molecular orbitals at certain energy levels. These patterns bear a close resemblance to the π-orbital states of the HBC molecule calculated at the relevant energy levels, mainly below the Fermi energy of HBC. This correlation demonstrates the ability of an HBC functionalized tip as regards accessing an energy range that is restricted to the usual operating bias range around the Fermi energy with a normal metallic tip at room temperature. Apart from relating to molecular orbitals, some patterns could also be described in association with the Clar aromatic sextet formula. Our observations may help pave the way towards the possibility of controlling charge transport between organic interfaces. (paper)

  16. Assembly, alignment and test of the Transiting Exoplanet Survey Satellite (TESS) optical assemblies

    Science.gov (United States)

    Balonek, Gregory; Brown, Joshua J.; Andre, James E.; Chesbrough, Christian D.; Chrisp, Michael P.; Dalpiaz, Michael; Lennon, Joseph; Richards, B. C.; Clark, Kristin E.

    2017-08-01

    The Transiting Exoplanet Survey Satellite (TESS) will carry four visible waveband, seven-element, refractive F/1.4 lenses, each with a 34 degree diagonal field of view. This paper describes the methods used for the assembly, alignment and test of the four flight optical assemblies. Prior to commencing the build of the four flight optical assemblies, a Risk Reduction Unit (RRU) was successfully assembled and tested [1]. The lessons learned from the RRU were applied to the build of the flight assemblies. The main modifications to the flight assemblies include the inking of the third lens element stray light mitigation, tighter alignment tolerances, and diamond turning for critical mechanical surfaces. Each of the optical assemblies was tested interferometrically and measured with a low coherence distance measuring interferometer (DMI) to predict the optimal shim thickness between the lens assembly and detector before -75°C environmental testing. In addition to individual test data, environmental test results from prior assemblies allow for the exploration of marginal performance differences between each of the optical assemblies.

  17. Arc Requires PSD95 for Assembly into Postsynaptic Complexes Involved with Neural Dysfunction and Intelligence

    Directory of Open Access Journals (Sweden)

    Esperanza Fernández

    2017-10-01

    Full Text Available Arc is an activity-regulated neuronal protein, but little is known about its interactions, assembly into multiprotein complexes, and role in human disease and cognition. We applied an integrated proteomic and genetic strategy by targeting a tandem affinity purification (TAP tag and Venus fluorescent protein into the endogenous Arc gene in mice. This allowed biochemical and proteomic characterization of native complexes in wild-type and knockout mice. We identified many Arc-interacting proteins, of which PSD95 was the most abundant. PSD95 was essential for Arc assembly into 1.5-MDa complexes and activity-dependent recruitment to excitatory synapses. Integrating human genetic data with proteomic data showed that Arc-PSD95 complexes are enriched in schizophrenia, intellectual disability, autism, and epilepsy mutations and normal variants in intelligence. We propose that Arc-PSD95 postsynaptic complexes potentially affect human cognitive function.

  18. Molecular Architecture of the Human Mediator–RNA Polymerase II–TFIIF Assembly

    Science.gov (United States)

    Bernecky, Carrie; Grob, Patricia; Ebmeier, Christopher C.; Nogales, Eva; Taatjes, Dylan J.

    2011-01-01

    The macromolecular assembly required to initiate transcription of protein-coding genes, known as the Pre-Initiation Complex (PIC), consists of multiple protein complexes and is approximately 3.5 MDa in size. At the heart of this assembly is the Mediator complex, which helps regulate PIC activity and interacts with the RNA polymerase II (pol II) enzyme. The structure of the human Mediator–pol II interface is not well-characterized, whereas attempts to structurally define the Mediator–pol II interaction in yeast have relied on incomplete assemblies of Mediator and/or pol II and have yielded inconsistent interpretations. We have assembled the complete, 1.9 MDa human Mediator–pol II–TFIIF complex from purified components and have characterized its structural organization using cryo-electron microscopy and single-particle reconstruction techniques. The orientation of pol II within this assembly was determined by crystal structure docking and further validated with projection matching experiments, allowing the structural organization of the entire human PIC to be envisioned. Significantly, pol II orientation within the Mediator–pol II–TFIIF assembly can be reconciled with past studies that determined the location of other PIC components relative to pol II itself. Pol II surfaces required for interacting with TFIIB, TFIIE, and promoter DNA (i.e., the pol II cleft) are exposed within the Mediator–pol II–TFIIF structure; RNA exit is unhindered along the RPB4/7 subunits; upstream and downstream DNA is accessible for binding additional factors; and no major structural re-organization is necessary to accommodate the large, multi-subunit TFIIH or TFIID complexes. The data also reveal how pol II binding excludes Mediator–CDK8 subcomplex interactions and provide a structural basis for Mediator-dependent control of PIC assembly and function. Finally, parallel structural analysis of Mediator–pol II complexes lacking TFIIF reveal that TFIIF plays a key role in

  19. Mechanical analysis of an assembly box with honeycomb structure

    International Nuclear Information System (INIS)

    Herbell, Heiko; Himmel, Steffen; Schulenberg, Thomas

    2008-01-01

    Fuel assembly concepts for supercritical water cooled reactors have often been designed with assembly and moderator boxes to provide additional moderator water in the core in case of higher coolant temperatures. The fuel assembly considered here has been designed for the High Performance Light Water Reactor (HPLWR) with three succeeding heat up steps, one evaporator and two superheater steps. The high coolant pressure drop of such a core design causes, however, a higher pressure difference across the box walls than those typically occurring in boiling water reactors. Hot, superheated steam conditions, on the other hand, require thermally insulated box walls rather than solid box walls to reduce heating of the moderator water. In this paper an innovative design for moderator- and assembly boxes is investigated which consists of an alumina filled stainless steel honeycomb structure, built as a sandwich design between two stainless steel liners. The liners in contact with the colder moderator water are perforated to lower the pressure load on the honeycomb structure. As a consequence, the alumina will be soaked with supercritical water causing stagnant flow conditions in the honeycomb cells. In comparison to solid box walls, the use of the presented design can provide the same stiffness but with a drastic reduction of structural material and thus less neutron absorption. Finite Element Analyses are used to verify the required stiffness, to identify stress concentrations, and to optimize the design. (author)

  20. Enabling Graph Appliance for Genome Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Rina [ORNL; Graves, Jeffrey A [ORNL; Lee, Sangkeun (Matt) [ORNL; Sukumar, Sreenivas R [ORNL; Shankar, Mallikarjun [ORNL

    2015-01-01

    In recent years, there has been a huge growth in the amount of genomic data available as reads generated from various genome sequencers. The number of reads generated can be huge, ranging from hundreds to billions of nucleotide, each varying in size. Assembling such large amounts of data is one of the challenging computational problems for both biomedical and data scientists. Most of the genome assemblers developed have used de Bruijn graph techniques. A de Bruijn graph represents a collection of read sequences by billions of vertices and edges, which require large amounts of memory and computational power to store and process. This is the major drawback to de Bruijn graph assembly. Massively parallel, multi-threaded, shared memory systems can be leveraged to overcome some of these issues. The objective of our research is to investigate the feasibility and scalability issues of de Bruijn graph assembly on Cray s Urika-GD system; Urika-GD is a high performance graph appliance with a large shared memory and massively multithreaded custom processor designed for executing SPARQL queries over large-scale RDF data sets. However, to the best of our knowledge, there is no research on representing a de Bruijn graph as an RDF graph or finding Eulerian paths in RDF graphs using SPARQL for potential genome discovery. In this paper, we address the issues involved in representing a de Bruin graphs as RDF graphs and propose an iterative querying approach for finding Eulerian paths in large RDF graphs. We evaluate the performance of our implementation on real world ebola genome datasets and illustrate how genome assembly can be accomplished with Urika-GD using iterative SPARQL queries.

  1. Analysis of the initiating events in HIV-1 particle assembly and genome packaging.

    Directory of Open Access Journals (Sweden)

    Sebla B Kutluay

    2010-11-01

    Full Text Available HIV-1 Gag drives a number of events during the genesis of virions and is the only viral protein required for the assembly of virus-like particles in vitro and in cells. Although a reasonable understanding of the processes that accompany the later stages of HIV-1 assembly has accrued, events that occur at the initiation of assembly are less well defined. In this regard, important uncertainties include where in the cell Gag first multimerizes and interacts with the viral RNA, and whether Gag-RNA interaction requires or induces Gag multimerization in a living cell. To address these questions, we developed assays in which protein crosslinking and RNA/protein co-immunoprecipitation were coupled with membrane flotation analyses in transfected or infected cells. We found that interaction between Gag and viral RNA occurred in the cytoplasm and was independent of the ability of Gag to localize to the plasma membrane. However, Gag:RNA binding was stabilized by the C-terminal domain (CTD of capsid (CA, which participates in Gag-Gag interactions. We also found that Gag was present as monomers and low-order multimers (e.g. dimers but did not form higher-order multimers in the cytoplasm. Rather, high-order multimers formed only at the plasma membrane and required the presence of a membrane-binding signal, but not a Gag domain (the CA-CTD that is essential for complete particle assembly. Finally, sequential RNA-immunoprecipitation assays indicated that at least a fraction of Gag molecules can form multimers on viral genomes in the cytoplasm. Taken together, our results suggest that HIV-1 particle assembly is initiated by the interaction between Gag and viral RNA in the cytoplasm and that this initial Gag-RNA encounter involves Gag monomers or low order multimers. These interactions per se do not induce or require high-order Gag multimerization in the cytoplasm. Instead, membrane interactions are necessary for higher order Gag multimerization and subsequent

  2. Assembly tool design

    International Nuclear Information System (INIS)

    Kanamori, Naokazu; Nakahira, Masataka; Ohkawa, Yoshinao; Tada, Eisuke; Seki, Masahiro

    1996-06-01

    The reactor core of the International Thermonuclear Experimental Reactor (ITER) is assembled with a number of large and asymmetric components within a tight tolerance in order to assure the structural integrity for various loads and to provide the tritium confinement. In addition, the assembly procedure should be compatible with remote operation since the core structures will be activated by 14-MeV neutrons once it starts operation and thus personal access will be prohibited. Accordingly, the assembly procedure and tool design are quite essential and should be designed from the beginning to facilitate remote operation. According to the ITER Design Task Agreement, the Japan Atomic Energy Research Institute (JAERI) has performed design study to develop the assembly procedures and associated tool design for the ITER tokamak assembly. This report describes outlines of the assembly tools and the remaining issues obtained in this design study. (author)

  3. Identification of optimum sequencing depth especially for de novo genome assembly of small genomes using next generation sequencing data.

    Science.gov (United States)

    Desai, Aarti; Marwah, Veer Singh; Yadav, Akshay; Jha, Vineet; Dhaygude, Kishor; Bangar, Ujwala; Kulkarni, Vivek; Jere, Abhay

    2013-01-01

    Next Generation Sequencing (NGS) is a disruptive technology that has found widespread acceptance in the life sciences research community. The high throughput and low cost of sequencing has encouraged researchers to undertake ambitious genomic projects, especially in de novo genome sequencing. Currently, NGS systems generate sequence data as short reads and de novo genome assembly using these short reads is computationally very intensive. Due to lower cost of sequencing and higher throughput, NGS systems now provide the ability to sequence genomes at high depth. However, currently no report is available highlighting the impact of high sequence depth on genome assembly using real data sets and multiple assembly algorithms. Recently, some studies have evaluated the impact of sequence coverage, error rate and average read length on genome assembly using multiple assembly algorithms, however, these evaluations were performed using simulated datasets. One limitation of using simulated datasets is that variables such as error rates, read length and coverage which are known to impact genome assembly are carefully controlled. Hence, this study was undertaken to identify the minimum depth of sequencing required for de novo assembly for different sized genomes using graph based assembly algorithms and real datasets. Illumina reads for E.coli (4.6 MB) S.kudriavzevii (11.18 MB) and C.elegans (100 MB) were assembled using SOAPdenovo, Velvet, ABySS, Meraculous and IDBA-UD. Our analysis shows that 50X is the optimum read depth for assembling these genomes using all assemblers except Meraculous which requires 100X read depth. Moreover, our analysis shows that de novo assembly from 50X read data requires only 6-40 GB RAM depending on the genome size and assembly algorithm used. We believe that this information can be extremely valuable for researchers in designing experiments and multiplexing which will enable optimum utilization of sequencing as well as analysis resources.

  4. Statistical Methods in Assembly Quality Management of Multi-Element Products on Automatic Rotor Lines

    Science.gov (United States)

    Pries, V. V.; Proskuriakov, N. E.

    2018-04-01

    To control the assembly quality of multi-element mass-produced products on automatic rotor lines, control methods with operational feedback are required. However, due to possible failures in the operation of the devices and systems of automatic rotor line, there is always a real probability of getting defective (incomplete) products into the output process stream. Therefore, a continuous sampling control of the products completeness, based on the use of statistical methods, remains an important element in managing the quality of assembly of multi-element mass products on automatic rotor lines. The feature of continuous sampling control of the multi-element products completeness in the assembly process is its breaking sort, which excludes the possibility of returning component parts after sampling control to the process stream and leads to a decrease in the actual productivity of the assembly equipment. Therefore, the use of statistical procedures for continuous sampling control of the multi-element products completeness when assembled on automatic rotor lines requires the use of such sampling plans that ensure a minimum size of control samples. Comparison of the values of the limit of the average output defect level for the continuous sampling plan (CSP) and for the automated continuous sampling plan (ACSP) shows the possibility of providing lower limit values for the average output defects level using the ACSP-1. Also, the average sample size when using the ACSP-1 plan is less than when using the CSP-1 plan. Thus, the application of statistical methods in the assembly quality management of multi-element products on automatic rotor lines, involving the use of proposed plans and methods for continuous selective control, will allow to automating sampling control procedures and the required level of quality of assembled products while minimizing sample size.

  5. Virtual commissioning of automated micro-optical assembly

    Science.gov (United States)

    Schlette, Christian; Losch, Daniel; Haag, Sebastian; Zontar, Daniel; Roßmann, Jürgen; Brecher, Christian

    2015-02-01

    In this contribution, we present a novel approach to enable virtual commissioning for process developers in micro-optical assembly. Our approach aims at supporting micro-optics experts to effectively develop assisted or fully automated assembly solutions without detailed prior experience in programming while at the same time enabling them to easily implement their own libraries of expert schemes and algorithms for handling optical components. Virtual commissioning is enabled by a 3D simulation and visualization system in which the functionalities and properties of automated systems are modeled, simulated and controlled based on multi-agent systems. For process development, our approach supports event-, state- and time-based visual programming techniques for the agents and allows for their kinematic motion simulation in combination with looped-in simulation results for the optical components. First results have been achieved for simply switching the agents to command the real hardware setup after successful process implementation and validation in the virtual environment. We evaluated and adapted our system to meet the requirements set by industrial partners-- laser manufacturers as well as hardware suppliers of assembly platforms. The concept is applied to the automated assembly of optical components for optically pumped semiconductor lasers and positioning of optical components for beam-shaping

  6. Drive piston assembly for a valve actuator assembly

    Science.gov (United States)

    Sun, Zongxuan

    2010-02-23

    A drive piston assembly is provided that is operable to selectively open a poppet valve. The drive piston assembly includes a cartridge defining a generally stepped bore. A drive piston is movable within the generally stepped bore and a boost sleeve is coaxially disposed with respect to the drive piston. A main fluid chamber is at least partially defined by the generally stepped bore, drive piston, and boost sleeve. First and second feedback chambers are at least partially defined by the drive piston and each are disposed at opposite ends of the drive piston. At least one of the drive piston and the boost sleeve is sufficiently configured to move within the generally stepped bore in response to fluid pressure within the main fluid chamber to selectively open the poppet valve. A valve actuator assembly and engine are also provided incorporating the disclosed drive piston assembly.

  7. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data.

    Science.gov (United States)

    Chin, Chen-Shan; Alexander, David H; Marks, Patrick; Klammer, Aaron A; Drake, James; Heiner, Cheryl; Clum, Alicia; Copeland, Alex; Huddleston, John; Eichler, Evan E; Turner, Stephen W; Korlach, Jonas

    2013-06-01

    We present a hierarchical genome-assembly process (HGAP) for high-quality de novo microbial genome assemblies using only a single, long-insert shotgun DNA library in conjunction with Single Molecule, Real-Time (SMRT) DNA sequencing. Our method uses the longest reads as seeds to recruit all other reads for construction of highly accurate preassembled reads through a directed acyclic graph-based consensus procedure, which we follow with assembly using off-the-shelf long-read assemblers. In contrast to hybrid approaches, HGAP does not require highly accurate raw reads for error correction. We demonstrate efficient genome assembly for several microorganisms using as few as three SMRT Cell zero-mode waveguide arrays of sequencing and for BACs using just one SMRT Cell. Long repeat regions can be successfully resolved with this workflow. We also describe a consensus algorithm that incorporates SMRT sequencing primary quality values to produce de novo genome sequence exceeding 99.999% accuracy.

  8. Self-assembly of poly(vinylidene fluoride–polystyrene block copolymers in solution: Effects of the length of polystyrene block and solvent compositions

    Directory of Open Access Journals (Sweden)

    Yao Wu

    2017-09-01

    Full Text Available We report the first preliminary and extensive study on the solution self-assembly behaviors of poly(vinylidene fluoride–b-polystyrene (PVDF–PS block copolymers. The two PVDF–PS polymers we examined have the same length of PVDF block with number averaged repeating unit of 180, but distinctly different lengths of PS block with number averaged repeating unit of 125 and 1202. The self-assembly experiments were carried out in a series of mixture solutions containing a good solvent N,N-dimethylformamide and a selective solvent with different ratios. Our results showed that the self-assembly process was greatly affected by the two factors we examined, i.e. the length of the PS block and the solvent composition. We hope that our study could stimulate more research on the self-assembly of PVDF-containing polymers in solution.

  9. Assembly factors for the membrane arm of human complex I.

    Science.gov (United States)

    Andrews, Byron; Carroll, Joe; Ding, Shujing; Fearnley, Ian M; Walker, John E

    2013-11-19

    Mitochondrial respiratory complex I is a product of both the nuclear and mitochondrial genomes. The integration of seven subunits encoded in mitochondrial DNA into the inner membrane, their association with 14 nuclear-encoded membrane subunits, the construction of the extrinsic arm from 23 additional nuclear-encoded proteins, iron-sulfur clusters, and flavin mononucleotide cofactor require the participation of assembly factors. Some are intrinsic to the complex, whereas others participate transiently. The suppression of the expression of the NDUFA11 subunit of complex I disrupted the assembly of the complex, and subcomplexes with masses of 550 and 815 kDa accumulated. Eight of the known extrinsic assembly factors plus a hydrophobic protein, C3orf1, were associated with the subcomplexes. The characteristics of C3orf1, of another assembly factor, TMEM126B, and of NDUFA11 suggest that they all participate in constructing the membrane arm of complex I.

  10. Allelic recombination between distinct genomic locations generates copy number diversity in human β-defensins

    Science.gov (United States)

    Bakar, Suhaili Abu; Hollox, Edward J.; Armour, John A. L.

    2009-01-01

    β-Defensins are small secreted antimicrobial and signaling peptides involved in the innate immune response of vertebrates. In humans, a cluster of at least 7 of these genes shows extensive copy number variation, with a diploid copy number commonly ranging between 2 and 7. Using a genetic mapping approach, we show that this cluster is at not 1 but 2 distinct genomic loci ≈5 Mb apart on chromosome band 8p23.1, contradicting the most recent genome assembly. We also demonstrate that the predominant mechanism of change in β-defensin copy number is simple allelic recombination occurring in the interval between the 2 distinct genomic loci for these genes. In 416 meiotic transmissions, we observe 3 events creating a haplotype copy number not found in the parent, equivalent to a germ-line rate of copy number change of ≈0.7% per gamete. This places it among the fastest-changing copy number variants currently known. PMID:19131514

  11. Fuel assembly design for APR1400 with low CBC

    Energy Technology Data Exchange (ETDEWEB)

    Hah, Chang Joo, E-mail: changhah@kings.ac.kr [Department of NPP Engineering, KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2015-04-29

    APR 1400 is a PWR (Pressurized Water Reactor) with rated power of 3983 MWth and 241 assemblies. Recently, demand for extremely longer cycle up to 24 months is increasing with challenge of higher critical boron concentration (CBC). In this paper, assembly design method of selecting Gd-rods is introduced to reduce CBC. The purpose of the method is to lower the critical boron concentration of the preliminary core loading pattern (PLP), and consequently to achieve more negative or less positive moderator temperature coefficient (MTC). In this method, both the ratio of the number of low-Gd rod to the number of high-Gd rod (r) and assembly average Gd wt% (w) are the decision variables. The target function is the amount of soluble boron concentration reduction, which can be converted to Δk{sub TARGET}. A set of new designed fuel assembly satisfies an objective function, min [f=∑{sub i}(Δk{sub FA}−Δk{sub i})], and enables a final loading pattern to reach a target CBC. The constraints required to determine a set of Δk are physically realizable pair, (r,w), and the sum of Δk of new designed assemblies as close to Δk{sub TARGET} as possible. New Gd-bearing assemblies selected based on valid pairs of (r,w) are replaced with existing assemblies in a PLP. This design methodology is applied to Shin-Kori Unit 3 Cycle 1 used as a reference model. CASMO-3/MASTER code is used for depletion calculation. CASMO-3/MASTER calculations with new designed assemblies produce lower CBC than the expected CBC, proving that the proposed method works successful.

  12. Benchmark physics tests in the metallic-fueled assembly ZPPR-15

    International Nuclear Information System (INIS)

    McFarlane, H.F.; Brumbach, S.B.; Carpenter, S.G.; Collins, P.J.

    1989-01-01

    Results of the first benchmark physics tests of a metallic-fueled, demonstration-size liquid-metal reactor (LMR) are reported. A simple, two-zone, cylindrical conventional assembly was built with three distinctly different compositions to represent the stages of the Integral Fast Reactor fuel cycle. Experiments included criticality, control, power distribution, reaction rate ratios, reactivity coefficients, shielding, kinetics, and spectrum. Analysis was done with three-dimensional nodal diffusion calculations and ENDF/B-V.2 cross sections. Predictions of the ZPPR-15 reactor physics parameters agreed sufficiently well with the measured values to justify confidence in design analyses for metallic-fueled LMRs

  13. Benchmark physics tests in the metallic-fuelled assembly ZPPR-15

    International Nuclear Information System (INIS)

    McFarlane, H.F.; Brumbach, S.B.; Carpenter, S.G.; Collins, P.J.

    1987-01-01

    Results of the first benchmark physics tests of a metallic-fueled, demonstration-size, liquid metal reactor are reported. A simple, two-zone, cylindrical conventional assembly was built with three distinctly different compositions to represent the stages of the Integral Fast Reactor fuel cycle. Experiments included criticality, control, power distribution, reaction rate ratios, reactivity coefficients, shielding, kinetics and spectrum. Analysis was done with 3-D nodal diffusion calculations and ENDFIB-V.2 cross sections. Predictions of the ZPPR-15 reactor physics parameters agreed sufficiently well with the measured values to justify confidence in design analyses for metallic-fueled LMRs

  14. Shrink-induced graphene sensor for alpha-fetoprotein detection with low-cost self-assembly and label-free assay

    Science.gov (United States)

    Sando, Shota; Zhang, Bo; Cui, Tianhong

    2017-12-01

    Combination of shrink induced nano-composites technique and layer-by-layer (LbL) self-assembled graphene challenges controlling surface morphology. Adjusting shrink temperature achieves tunability on graphene surface morphology on shape memory polymers, and it promises to be an alternative in fields of high-surface-area conductors and molecular detection. In this study, self-assembled graphene on a shrink polymer substrate exhibits nanowrinkles after heating. Induced nanowrinkles on graphene with different shrink temperature shows distinct surface roughness and wettability. As a result, it becomes more hydrophilic with higher shrink temperatures. The tunable wettability promises to be utilized in, for example, microfluidic devices. The graphene on shrink polymer also exhibits capability of being used in sensing applications for pH and alpha-fetoprotein (AFP) detection with advantages of label free and low cost, due to self-assembly technique, easy functionalization, and antigen-antibody reaction on graphene surface. The detection limit of AFP detection is down to 1 pg/mL, and therefore the sensor also has a significant potential for biosensing as it relies on low-cost self-assembly and label-free assay.

  15. Analysis of Bracket Assembly for Portable Leak Detector Station

    International Nuclear Information System (INIS)

    ZIADA, H.H.

    1999-01-01

    This Supporting Document Presents Structural and Stress Analysis of a Portable Leak Detector Station for Tank Farms. The results show that the bracket assembly meets the requirements for dead load and natural phenomena hazards loads (seismic and wind)

  16. Molecular basis for SNX-BAR-mediated assembly of distinct endosomal sorting tubules

    DEFF Research Database (Denmark)

    van Weering, Jan R.T.; Sessions, Richard B.; Traer, Colin J.

    2012-01-01

    that dimerization is achieved in part through neutralization of charged residues in the hydrophobic BAR-dimerization interface. Membrane remodelling also requires functional amphipathic helices, predicted to be present in all SNX-BARs, and the formation of high order SNX-BAR oligomers through selective 'tip...... and organizes the tubular endosomal network....

  17. Engineering of automated assembly of beam-shaping optics

    Science.gov (United States)

    Haag, Sebastian; Sinhoff, Volker; Müller, Tobias; Brecher, Christian

    2014-03-01

    Beam-shaping is essential for any kind of laser application. Assembly technologies for beam-shaping subassemblies are subject to intense research and development activities and their technical feasibility has been proven in recent years while economic viability requires more efficient engineering tools for process planning and production ramp up of complex assembly tasks for micro-optical systems. The work presented in this paper aims for significant reduction of process development and production ramp up times for the automated assembly of micro-optical subassemblies for beam-collimation and beam-tilting. The approach proposed bridges the gap between the product development phase and the realization of automation control through integration of established software tools such as optics simulation and CAD modeling as well as through introduction of novel software tools and methods to efficiently describe active alignment strategies. The focus of the paper is put on the methodological approach regarding the engineering of assembly processes for beam-shaping micro-optics and the formal representation of assembly objectives similar to representation in mechanical assemblies. Main topic of the paper is the engineering methodology for active alignment processes based on the classification of optical functions for beam-shaping optics and corresponding standardized measurement setups including adaptable alignment algorithms. The concepts are applied to industrial use-cases: (1) integrated collimation module for fast- and slow-axis and (2) beam-tilting subassembly consisting of a fast-axis collimator and micro-lens array. The paper concludes with an overview of current limitations as well as an outlook on the next development steps considering adhesive bonding processes.

  18. The meiosis-specific nuclear passenger protein is required for proper assembly of forespore membrane in fission yeast.

    Science.gov (United States)

    Takaine, Masak; Imada, Kazuki; Numata, Osamu; Nakamura, Taro; Nakano, Kentaro

    2014-10-15

    Sporulation, gametogenesis in yeast, consists of meiotic nuclear division and spore morphogenesis. In the fission yeast Schizosaccharomyces pombe, the four haploid nuclei produced after meiosis II are encapsulated by the forespore membrane (FSM), which is newly synthesized from spindle pole bodies (SPBs) in the cytoplasm of the mother cell as spore precursors. Although the coordination between meiosis and FSM assembly is vital for proper sporulation, the underlying mechanism remains unclear. In the present study, we identified a new meiosis-specific protein Npg1, and found that it was involved in the efficient formation of spores and spore viability. The accumulation and organization of the FSM was compromised in npg1-null cells, leading to the error-prone envelopment of nuclei. Npg1 was first seen as internuclear dots and translocated to the SPBs before the FSM assembled. Genetic analysis revealed that Npg1 worked in conjunction with the FSM proteins Spo3 and Meu14. These results suggest a possible signaling link from the nucleus to the meiotic SPBs in order to associate the onset of FSM assembly with meiosis II, which ensures the successful partitioning of gametic nuclei. © 2014. Published by The Company of Biologists Ltd.

  19. Two-Dimensional Layered Oxide Structures Tailored by Self-Assembled Layer Stacking via Interfacial Strain.

    Science.gov (United States)

    Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan

    2016-07-06

    Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.

  20. Norgal: extraction and de novo assembly of mitochondrial DNA from whole-genome sequencing data.

    Science.gov (United States)

    Al-Nakeeb, Kosai; Petersen, Thomas Nordahl; Sicheritz-Pontén, Thomas

    2017-11-21

    Whole-genome sequencing (WGS) projects provide short read nucleotide sequences from nuclear and possibly organelle DNA depending on the source of origin. Mitochondrial DNA is present in animals and fungi, while plants contain DNA from both mitochondria and chloroplasts. Current techniques for separating organelle reads from nuclear reads in WGS data require full reference or partial seed sequences for assembling. Norgal (de Novo ORGAneLle extractor) avoids this requirement by identifying a high frequency subset of k-mers that are predominantly of mitochondrial origin and performing a de novo assembly on a subset of reads that contains these k-mers. The method was applied to WGS data from a panda, brown algae seaweed, butterfly and filamentous fungus. We were able to extract full circular mitochondrial genomes and obtained sequence identities to the reference sequences in the range from 98.5 to 99.5%. We also assembled the chloroplasts of grape vines and cucumbers using Norgal together with seed-based de novo assemblers. Norgal is a pipeline that can extract and assemble full or partial mitochondrial and chloroplast genomes from WGS short reads without prior knowledge. The program is available at: https://bitbucket.org/kosaidtu/norgal .

  1. AFEAP cloning: a precise and efficient method for large DNA sequence assembly.

    Science.gov (United States)

    Zeng, Fanli; Zang, Jinping; Zhang, Suhua; Hao, Zhimin; Dong, Jingao; Lin, Yibin

    2017-11-14

    Recent development of DNA assembly technologies has spurred myriad advances in synthetic biology, but new tools are always required for complicated scenarios. Here, we have developed an alternative DNA assembly method named AFEAP cloning (Assembly of Fragment Ends After PCR), which allows scarless, modular, and reliable construction of biological pathways and circuits from basic genetic parts. The AFEAP method requires two-round of PCRs followed by ligation of the sticky ends of DNA fragments. The first PCR yields linear DNA fragments and is followed by a second asymmetric (one primer) PCR and subsequent annealing that inserts overlapping overhangs at both sides of each DNA fragment. The overlapping overhangs of the neighboring DNA fragments annealed and the nick was sealed by T4 DNA ligase, followed by bacterial transformation to yield the desired plasmids. We characterized the capability and limitations of new developed AFEAP cloning and demonstrated its application to assemble DNA with varying scenarios. Under the optimized conditions, AFEAP cloning allows assembly of an 8 kb plasmid from 1-13 fragments with high accuracy (between 80 and 100%), and 8.0, 11.6, 19.6, 28, and 35.6 kb plasmids from five fragments at 91.67, 91.67, 88.33, 86.33, and 81.67% fidelity, respectively. AFEAP cloning also is capable to construct bacterial artificial chromosome (BAC, 200 kb) with a fidelity of 46.7%. AFEAP cloning provides a powerful, efficient, seamless, and sequence-independent DNA assembly tool for multiple fragments up to 13 and large DNA up to 200 kb that expands synthetic biologist's toolbox.

  2. Influence of topographically patterned angled guidelines on directed self-assembly of block copolymers

    Science.gov (United States)

    Rebello, Nathan; Sethuraman, Vaidyanathan; Blachut, Gregory; Ellison, Christopher J.; Willson, C. Grant; Ganesan, Venkat

    2017-11-01

    Single chain in mean-field Monte Carlo simulations were employed to study the self-assembly of block copolymers (BCP) in thin films that use trapezoidal guidelines to direct the orientation and alignment of lamellar patterns. The present study explored the influence of sidewall interactions and geometry of the trapezoidal guidelines on the self-assembly of perpendicularly oriented lamellar morphologies. When both the sidewall and the top surface exhibit preferential interactions to the same block of the BCP, trapezoidal guidelines with intermediate taper angles were found to result in less defective perpendicularly orientated morphologies. Similarly, when the sidewall and top surface are preferential to distinct blocks of the BCP, intermediate tapering angles were found to be optimal in promoting defect free structures. Such results are rationalized based on the energetics arising in the formation of perpendicularly oriented lamella on patterned substrates.

  3. High Energy X-Ray System Specification for the Device Assembly Facility (DAF) at the NNSS

    International Nuclear Information System (INIS)

    Fry, David A.

    2012-01-01

    This specification establishes requirements for an X-Ray System to be used at the Device Assembly Facility (DAF) at the Nevada National Security Site (NNSS) to support radiography of experimental assemblies for Laboratory (LANL, LLNL, SNL) programs conducting work at the NNSS.

  4. In-Space Assembly Capability Assessment for Potential Human Exploration and Science Applications

    Science.gov (United States)

    Jefferies, Sharon A.; Jones, Christopher A.; Arney, Dale C.; Stillwagen, Frederic H.; Chai, Patrick R.; Hutchinson, Craig D.; Stafford, Matthew A.; Moses, Robert W.; Dempsey, James A.; Rodgers, Erica M.; hide

    2017-01-01

    Human missions to Mars present several major challenges that must be overcome, including delivering multiple large mass and volume elements, keeping the crew safe and productive, meeting cost constraints, and ensuring a sustainable campaign. Traditional methods for executing human Mars missions minimize or eliminate in-space assembly, which provides a narrow range of options for addressing these challenges and limits the types of missions that can be performed. This paper discusses recent work to evaluate how the inclusion of in-space assembly in space mission architectural concepts could provide novel solutions to address these challenges by increasing operational flexibility, robustness, risk reduction, crew health and safety, and sustainability. A hierarchical framework is presented to characterize assembly strategies, assembly tasks, and the required capabilities to assemble mission systems in space. The framework is used to identify general mission system design considerations and assembly system characteristics by assembly strategy. These general approaches are then applied to identify potential in-space assembly applications to address each challenge. Through this process, several focus areas were identified where applications of in-space assembly could affect multiple challenges. Each focus area was developed to identify functions, potential assembly solutions and operations, key architectural trades, and potential considerations and implications of implementation. This paper helps to identify key areas to investigate were potentially significant gains in addressing the challenges with human missions to Mars may be realized, and creates a foundation on which to further develop and analyze in-space assembly concepts and assembly-based architectures.

  5. Nanoscopic and Photonic Ultrastructural Characterization of Two Distinct Insulin Amyloid States

    Directory of Open Access Journals (Sweden)

    Mikael Lindgren

    2012-02-01

    Full Text Available Two different conformational isoforms or amyloid strains of insulin with different cytotoxic capacity have been described previously. Herein these filamentous and fibrillar amyloid states of insulin were investigated using biophysical and spectroscopic techniques in combination with luminescent conjugated oligothiophenes (LCO. This new class of fluorescent probes has a well defined molecular structure with a distinct number of thiophene units that can adopt different dihedral angles depending on its binding site to an amyloid structure. Based on data from surface charge, hydrophobicity, fluorescence spectroscopy and imaging, along with atomic force microscopy (AFM, we deduce the ultrastructure and fluorescent properties of LCO stained insulin fibrils and filaments. Combined total internal reflection fluorescence microscopy (TIRFM and AFM revealed rigid linear fibrous assemblies of fibrils whereas filaments showed a short curvilinear morphology which assemble into cloudy deposits. All studied LCOs bound to the filaments afforded more blue-shifted excitation and emission spectra in contrast to those corresponding to the fibril indicating a different LCO binding site, which was also supported by less efficient hydrophobic probe binding. Taken together, the multi-tool approach used here indicates the power of ultrastructure identification applying AFM together with LCO fluorescence interrogation, including TIRFM, to resolve structural differences between amyloid states.

  6. Hantavirus Gn and Gc glycoproteins self-assemble into virus-like particles.

    Science.gov (United States)

    Acuña, Rodrigo; Cifuentes-Muñoz, Nicolás; Márquez, Chantal L; Bulling, Manuela; Klingström, Jonas; Mancini, Roberta; Lozach, Pierre-Yves; Tischler, Nicole D

    2014-02-01

    How hantaviruses assemble and exit infected cells remains largely unknown. Here, we show that the expression of Andes (ANDV) and Puumala (PUUV) hantavirus Gn and Gc envelope glycoproteins lead to their self-assembly into virus-like particles (VLPs) which were released to cell supernatants. The viral nucleoprotein was not required for particle formation. Further, a Gc endodomain deletion mutant did not abrogate VLP formation. The VLPs were pleomorphic, exposed protrusions and reacted with patient sera.

  7. XML-based assembly visualization for a multi-CAD digital mock-up system

    International Nuclear Information System (INIS)

    Song, In Ho; Chung, Sung Chong

    2007-01-01

    Using a virtual assembly tool, engineers are able to design accurate and interference free parts without making physical mock-ups. Instead of a single CAD source, several CAD systems are used to design a complex product in a distributed design environment. In this paper, a multi-CAD assembly method is proposed through an XML and the lightweight CAD file. XML data contains a hierarchy of the multi-CAD assembly. The lightweight CAD file produced from various CAD files through the ACIS kemel and InterOp includes not only mesh and B-Rep data, but also topological data. It is used to visualize CAD data and to verify dimensions of the parts. The developed system is executed on desktop computers. It does not require commercial CAD systems to visualize 3D assembly data. Multi-CAD models have been assembled to verify the effectiveness of the developed DMU system on the Internet

  8. Photochemical properties and interfacial fluorescence sensing for homocysteine of triptycene orthoquinone layer-by-layer-assembled multilayers

    International Nuclear Information System (INIS)

    Sun, Xiangying; Liu, Bin; Wu, Qiong; Li, Fang

    2014-01-01

    In the present work, the properties of triptycene orthoquinone derivatives were studied. As a kind of good electron-transfer platform, triptycene derivatives with different electron donors or electron acceptors behave distinctively with their luminescent properties. The intensity ratio of fluorescence peaks can be controlled by the number of methoxy groups (electron donor) and orthoquinone groups (electron acceptor) simultaneously. We have assembled 6,7,12,13-4-methoxyl-2, 3-2-orthoquinone triptycene onto self-assembled monolayers (SAMs) to create a probe for detecting biological thiols. The SAMs exhibited higher selectivity toward homocysteine than to other thiol-containing compounds with a fast response and a stable signal over a wide liner range from 2.0 μmol/L to 1.0 mmol/L with the detection limit of 0.52 μmol/L. - Highlights: • A dual fluorescence probe for biological thiols was reported. • This probe is based on triptycene orthoquinones self-assembled mutilayers. • The sensor exhibits higher selectivity toward homocysteine than other thiol compounds

  9. Photochemical properties and interfacial fluorescence sensing for homocysteine of triptycene orthoquinone layer-by-layer-assembled multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xiangying, E-mail: sunxy@hqu.edu.cn; Liu, Bin; Wu, Qiong; Li, Fang

    2014-07-01

    In the present work, the properties of triptycene orthoquinone derivatives were studied. As a kind of good electron-transfer platform, triptycene derivatives with different electron donors or electron acceptors behave distinctively with their luminescent properties. The intensity ratio of fluorescence peaks can be controlled by the number of methoxy groups (electron donor) and orthoquinone groups (electron acceptor) simultaneously. We have assembled 6,7,12,13-4-methoxyl-2, 3-2-orthoquinone triptycene onto self-assembled monolayers (SAMs) to create a probe for detecting biological thiols. The SAMs exhibited higher selectivity toward homocysteine than to other thiol-containing compounds with a fast response and a stable signal over a wide liner range from 2.0 μmol/L to 1.0 mmol/L with the detection limit of 0.52 μmol/L. - Highlights: • A dual fluorescence probe for biological thiols was reported. • This probe is based on triptycene orthoquinones self-assembled mutilayers. • The sensor exhibits higher selectivity toward homocysteine than other thiol compounds.

  10. On the Automatic Generation of Plans for Life Cycle Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)

    CALTON,TERRI L.

    2000-01-01

    Designing products for easy assembly and disassembly during their entire life cycles for purposes including product assembly, product upgrade, product servicing and repair, and product disposal is a process that involves many disciplines. In addition, finding the best solution often involves considering the design as a whole and by considering its intended life cycle. Different goals and manufacturing plan selection criteria, as compared to initial assembly, require re-visiting significant fundamental assumptions and methods that underlie current assembly planning techniques. Previous work in this area has been limited to either academic studies of issues in assembly planning or to applied studies of life cycle assembly processes that give no attention to automatic planning. It is believed that merging these two areas will result in a much greater ability to design for, optimize, and analyze the cycle assembly processes. The study of assembly planning is at the very heart of manufacturing research facilities and academic engineering institutions; and, in recent years a number of significant advances in the field of assembly planning have been made. These advances have ranged from the development of automated assembly planning systems, such as Sandia's Automated Assembly Analysis System Archimedes 3.0{copyright}, to the startling revolution in microprocessors and computer-controlled production tools such as computer-aided design (CAD), computer-aided manufacturing (CAM), flexible manufacturing systems (EMS), and computer-integrated manufacturing (CIM). These results have kindled considerable interest in the study of algorithms for life cycle related assembly processes and have blossomed into a field of intense interest. The intent of this manuscript is to bring together the fundamental results in this area, so that the unifying principles and underlying concepts of algorithm design may more easily be implemented in practice.

  11. Optical Filter Assembly for Interplanetary Optical Communications

    Science.gov (United States)

    Chen, Yijiang; Hemmati, Hamid

    2013-01-01

    Ground-based, narrow-band, high throughput optical filters are required for optical links from deep space. We report on the development of a tunable filter assembly that operates at telecommunication window of 1550 nanometers. Low insertion loss of 0.5 decibels and bandwidth of 90 picometers over a 2000 nanometers operational range of detectors has been achieved.

  12. Nuclear reactor fuel assemblies and end fitting grid structures therefor

    International Nuclear Information System (INIS)

    Jabsen, F.S.

    1978-01-01

    An improved end fitting grid structure is described for nuclear fuel assemblies which overcomes the need for load-bearing control rod guide tubes and the expensive special fittings that these tubes required. (UK)

  13. Quantum Distinction: Quantum Distinctiones!

    OpenAIRE

    Zeps, Dainis

    2009-01-01

    10 pages; How many distinctions, in Latin, quantum distinctiones. We suggest approach of anthropic principle based on anthropic reference system which should be applied equally both in theoretical physics and in mathematics. We come to principle that within reference system of life subject of mathematics (that of thinking) should be equated with subject of physics (that of nature). For this reason we enter notions of series of distinctions, quantum distinction, and argue that quantum distinct...

  14. Programmable DNA tile self-assembly using a hierarchical sub-tile strategy

    International Nuclear Information System (INIS)

    Shi, Xiaolong; Lu, Wei; Wang, Zhiyu; Pan, Linqiang; Cui, Guangzhao; Xu, Jin; LaBean, Thomas H

    2014-01-01

    DNA tile based self-assembly provides a bottom-up approach to construct desired nanostructures. DNA tiles have been directly constructed from ssDNA and readily self-assembled into 2D lattices and 3D superstructures. However, for more complex lattice designs including algorithmic assemblies requiring larger tile sets, a more modular approach could prove useful. This paper reports a new DNA ‘sub-tile’ strategy to easily create whole families of programmable tiles. Here, we demonstrate the stability and flexibility of our sub-tile structures by constructing 3-, 4- and 6-arm DNA tiles that are subsequently assembled into 2D lattices and 3D nanotubes according to a hierarchical design. Assembly of sub-tiles, tiles, and superstructures was analyzed using polyacrylamide gel electrophoresis and atomic force microscopy. DNA tile self-assembly methods provide a bottom-up approach to create desired nanostructures; the sub-tile strategy adds a useful new layer to this technique. Complex units can be made from simple parts. The sub-tile approach enables the rapid redesign and prototyping of complex DNA tile sets and tiles with asymmetric designs. (paper)

  15. Assembly of the MreB-associated cytoskeletal ring of Escherichia coli.

    Science.gov (United States)

    Vats, Purva; Shih, Yu-Ling; Rothfield, Lawrence

    2009-04-01

    The Escherichia coli actin homologue MreB is part of a helical cytoskeletal structure that winds around the cell between the two poles. It has been shown that MreB redistributes during the cell cycle to form circumferential ring structures that flank the cytokinetic FtsZ ring and appear to be associated with division and segregation of the helical cytoskeleton. We show here that the MreB cytoskeletal ring also contains the MreC, MreD, Pbp2 and RodA proteins. Assembly of MreB, MreC, MreD and Pbp2 into the ring structure required the FtsZ ring but no other known components of the cell division machinery, whereas assembly of RodA into the cytoskeletal ring required one or more additional septasomal components. Strikingly, MreB, MreC, MreD and RodA were each able to independently assemble into the cytoskeletal ring and coiled cytoskeletal structures in the absence of any of the other ring components. This excludes the possibility that one or more of these proteins acts as a scaffold for incorporation of the other proteins into these structures. In contrast, incorporation of Pbp2 required the presence of MreC, which may provide a docking site for Pbp2 entry.

  16. Harnessing Thin-Film Continuous-Flow Assembly Lines.

    Science.gov (United States)

    Britton, Joshua; Castle, Jared W; Weiss, Gregory A; Raston, Colin L

    2016-07-25

    Inspired by nature's ability to construct complex molecules through sequential synthetic transformations, an assembly line synthesis of α-aminophosphonates has been developed. In this approach, simple starting materials are continuously fed through a thin-film reactor where the intermediates accrue molecular complexity as they progress through the flow system. Flow chemistry allows rapid multistep transformations to occur via reaction compartmentalization, an approach not amenable to using conventional flasks. Thin film processing can also access facile in situ solvent exchange to drive reaction efficiency, and through this method, α-aminophosphonate synthesis requires only 443 s residence time to produce 3.22 g h(-1) . Assembly-line synthesis allows unprecedented reaction flexibility and processing efficiency. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Criticality safety evaluation report for FFTF 42% fuel assemblies

    International Nuclear Information System (INIS)

    Richard, R.F.

    1997-01-01

    An FFTF tritium/isotope production mission will require a new fuel supply. The reference design core will use a mixed oxide fuel nominally enriched to 40 wt% Pu. This enrichment is significantly higher than that of the standard Driver Fuel Assemblies used in past operations. Consequently, criticality safety for handling and storage of this fuel must be addressed. The purpose of this document is to begin the process by determining the minimum critical number for these new fuel assemblies in water, sodium and air. This analysis is preliminary and further work can be done to refine the results reported here. Analysis was initially done using 45 wt 5 PuO. Additionally, a preliminary assessment is done concerning storage of these fuel assemblies in Interim Decay Storage (IDS), Fuel Storage Facility (FSF), and Core Component Containers/Interim Storage Casks (CCC/ISC)

  18. Application of PLUTO Test Facility for U. S. NRC Licensing of a Fuel Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Dongseok; Shin, Changhwan; Lee, Kanghee; Kang, Heungseok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-10-15

    The fuel assembly of the PLUS-7 loaded in the APR-1400 follows the same schedule. Meanwhile, In July 1998, the U.S. NRC adopted a research plan to address the effects of high burnup from a Loss of Coolant Accident (LOCA). From these programs, several important technical findings for rule revision were obtained. Based on the technical findings, the U. S. NRC has amended the 10 CFR 50.46 which will be proclaimed sooner or later. Through the amendment, a LOCA analysis on the fuel assembly has to show the safety at both a fresh and End of Life (EOL) state. The U. S. NRC has already required EOL effects on seismic/LOCA performance for a fuel assembly since 1998. To obtain U.S NRC licensing of a fuel assembly, based on the amendment of 10CFR50.46, a LOCA analysis of the fuel assembly has to show safety both fresh and EOL states. The proper damping factor of the fuel assembly measured at the hydraulic test loop for a dynamic model in a LOCA and a seismic analysis code are at least required. In this paper, we have examined the damping technologies and compared the test facility of PLUTO with others in terms of performance. PLUTO has a better performance on the operating conditions than any others.

  19. A 3D Optical Metamaterial Made by Self-Assembly

    KAUST Repository

    Vignolini, Silvia

    2011-10-24

    Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A 3D Optical Metamaterial Made by Self-Assembly

    KAUST Repository

    Vignolini, Silvia; Yufa, Nataliya A.; Cunha, Pedro S.; Guldin, Stefan; Rushkin, Ilia; Stefik, Morgan; Hur, Kahyun; Wiesner, Ulrich; Baumberg, Jeremy J.; Steiner, Ullrich

    2011-01-01

    Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Fuel assembly

    International Nuclear Information System (INIS)

    Abe, Hideaki; Sakai, Takao; Ishida, Tomio; Yokota, Norikatsu.

    1992-01-01

    The lower ends of a plurality of plate-like shape memory alloys are secured at the periphery of the upper inside of the handling head of a fuel assembly. As the shape memory alloy, a Cu-Zn alloy, a Ti-Pd alloy or a Fe-Ni alloy is used. When high temperature coolants flow out to the handling head, the shape memory alloy deforms by warping to the outer side more greatly toward the upper portion thereof with the temperature increase of the coolants. As the result, the shape of the flow channel of the coolants is changed so as to enlarge at the exit of the upper end of the fuel assembly. Then, the pressure loss of the coolants in the fuel assembly is decreased by the enlargement. Accordingly, the flow rate of the coolants in the fuel assembly is increased to lower the temperature of the coolants. Further, high temperature coolants and low temperature coolants are mixed sufficiently just above the fuel assembly. This can suppress the temperature fluctuation of the mixed coolants in the upper portion of the reactor core, thereby enabling to decrease a fatigue and failures of the structural components in the upper portion of the reactor core. (I.N.)

  2. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike

    2013-01-01

    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  3. Analysis of Alternative Rework Strategies for Printed Wiring Assembly Manufacturing Systems

    OpenAIRE

    Driels, Morris; Klegka, John S.

    1991-01-01

    This paper presents a model for predicting the cost of test, diagnosis, and rework activities in the manufacture of printed wiring assemblies (PWA's). Rework is defined as all actions taken to correct or improve the basic assembly process. These actions may include those of inspectors and solder touchup technicians who do not add value to the PWA, but whose actions are required in order to produce acceptable yields from the manufacturing process. Two alternative rework strategies for cont...

  4. Multivalent protein assembly using monovalent self-assembling building blocks

    NARCIS (Netherlands)

    Petkau - Milroy, K.; Sonntag, M.H.; Colditz, A.; Brunsveld, L.

    2013-01-01

    Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard

  5. Self assembly of anisotropic particles with critical Casimir forces

    NARCIS (Netherlands)

    Nguyễn, Trúc Anh

    2016-01-01

    Building new materials with structures on the micron and nanoscale presents a grand challenge currently. It requires fine control in the assembly of well-designed building blocks, and understanding of the mechanical, thermodynamic, and opto-electronic properties of the resulting structures. Patchy

  6. Bearing assemblies, apparatuses, and motor assemblies using the same

    Science.gov (United States)

    Sexton, Timothy N.; Cooley, Craig H.; Knuteson, Cody W.

    2015-12-29

    Various embodiments of the invention relate to bearing assemblies, apparatuses and motor assemblies that include geometric features configured to impart a selected amount of heat transfer and/or hydrodynamic film formation. In an embodiment, a bearing assembly may include a plurality of superhard bearing pads distributed circumferentially about an axis. At least some of the plurality of superhard bearing pads may include a plurality of sub-superhard bearing elements defining a bearing surface. At least some of the plurality of sub-superhard bearing elements may be spaced from one another by one or more voids to impart a selected amount of heat transfer and hydrodynamic film formation thereon during operation. The bearing assembly may also include a support ring that carries the plurality of superhard bearing pads. In addition, at least a portion of the sub-superhard bearing elements may extend beyond the support ring.

  7. Education and Training: Is There Any Longer a Useful Distinction?

    Science.gov (United States)

    Hager, Paul; Laurent, John

    1990-01-01

    Although education and training were distinct concepts when Taylorism dominated the workplace, it is no longer appropriate to separate them. Today's highly competitive environment requires the education of a flexible, multiskilled workforce, not training for narrowly defined employment tasks. (SK)

  8. Design improvement for fretting-wear reduction of HANARO fuel assembly

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R

    2000-06-01

    In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared

  9. Design improvement for fretting-wear reduction of HANARO fuel assembly

    International Nuclear Information System (INIS)

    Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R.

    2000-06-01

    In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared

  10. High-power fused assemblies enabled by advances in fiber-processing technologies

    Science.gov (United States)

    Wiley, Robert; Clark, Brett

    2011-02-01

    The power handling capabilities of fiber lasers are limited by the technologies available to fabricate and assemble the key optical system components. Previous tools for the assembly, tapering, and fusion of fiber laser elements have had drawbacks with regard to temperature range, alignment capability, assembly flexibility and surface contamination. To provide expanded capabilities for fiber laser assembly, a wide-area electrical plasma heat source was used in conjunction with an optimized image analysis method and a flexible alignment system, integrated according to mechatronic principles. High-resolution imaging and vision-based measurement provided feedback to adjust assembly, fusion, and tapering process parameters. The system was used to perform assembly steps including dissimilar-fiber splicing, tapering, bundling, capillary bundling, and fusion of fibers to bulk optic devices up to several mm in diameter. A wide range of fiber types and diameters were tested, including extremely large diameters and photonic crystal fibers. The assemblies were evaluated for conformation to optical and mechanical design criteria, such as taper geometry and splice loss. The completed assemblies met the performance targets and exhibited reduced surface contamination compared to assemblies prepared on previously existing equipment. The imaging system and image analysis algorithms provided in situ fiber geometry measurement data that agreed well with external measurement. The ability to adjust operating parameters dynamically based on imaging was shown to provide substantial performance benefits, particularly in the tapering of fibers and bundles. The integrated design approach was shown to provide sufficient flexibility to perform all required operations with a minimum of reconfiguration.

  11. Fuel assembly

    International Nuclear Information System (INIS)

    Gjertsen, R.K.; Bassler, E.A.; Huckestein, E.A.; Salton, R.B.; Tower, S.N.

    1988-01-01

    A fuel assembly adapted for use with a pressurized water nuclear reactor having capabilities for fluid moderator spectral shift control is described comprising: parallel arranged elongated nuclear fuel elements; means for providing for axial support of the fuel elements and for arranging the fuel elements in a spaced array; thimbles interspersed among the fuel elements adapted for insertion of a rod control cluster therewithin; means for structurally joining the fuel elements and the guide thimbles; fluid moderator control means for providing a volume of low neutron absorbing fluid within the fuel assembly and for removing a substantially equivalent volume of reactor coolant water therefrom, a first flow manifold at one end of the fuel assembly sealingly connected to a first end of the moderator control tubes whereby the first ends are commonly flow connected; and a second flow manifold, having an inlet passage and an outlet passage therein, sealingly connected to a second end of the moderator control tubes at a second end of the fuel assembly

  12. Self assembly of organic nanostructures and dielectrophoretic assembly of inorganic nanowires.

    Science.gov (United States)

    Dholakia, Geetha; Kuo, Steven; Allen, E. L.

    2007-03-01

    Self assembly techniques enable the organization of organic molecules into nanostructures. Currently engineering strategies for efficient assembly and routine integration of inorganic nanoscale objects into functional devices is very limited. AC Dielectrophoresis is an efficient technique to manipulate inorganic nanomaterials into higher dimensional structures. We used an alumina template based sol-gel synthesis method for the growth of various metal oxide nanowires with typical diameters of 100-150 nm, ranging in length from 3-10 μm. Here we report the dielectrophoretic assembly of TiO2 nanowires, an important material for photocatalysis and photovoltaics, onto interdigitated devices. Self assembly in organic nanostructures and its dependence on structure and stereochemistry of the molecule and dielectrophoretic field dependence in the assembly of inorganic nanowires will be compared and contrasted. Tunneling spectroscopy and DOS of these nanoscale systems will also be discussed.

  13. Morphology and deformational history of Tellus Regio, Venus: Evidence for assembly and collision

    Science.gov (United States)

    Gilmore, M. S.; Head, J. W.

    2018-05-01

    Tessera terrain is the oldest stratigraphic unit on Venus, but its origin and evolution are inadequately understood. Here we have performed detailed mapping of Tellus Regio, the third largest tessera plateau on Venus. Tellus Regio is shown to have distinct marginal and interior facies. The east and west margins of Tellus rise up to 2 km above the interior and include ridges and troughs ∼5-20 km across, oriented parallel to the present plains-tessera boundary. Structures characteristic of the interior of Tellus are found within the eastern and western margins and are deformed by the margin-parallel ridges indicating their presence during the time of the formation of the current margins. These relationships suggest that the margins formed by the application of external horizontal compressional stresses at the edges of an already-existing tessera interior. Structural and stratigraphic relationships in southwest Tellus show the assembly of three structurally distinct tessera regions and intervening plains that are consistent with the collision of the southwest margin into the plateau interior. This requires that tessera terrain was formed regionally and collected into the present day Tellus plateau. The latest stages of activity in Tellus include volcanism and pervasive, distributed, 1-2 km wide graben, which may have been formed due to large-scale gravitational relaxation of the plateau topography. A large intratessera plains unit may have formed via crustal delamination. The collisional oroclinal deformation of the margins are most consistent with models that invoke mantle downwelling for the origin of Tellus Regio and other tessera plateaus with similar structural relationships.

  14. Fire resistant PV shingle assembly

    Science.gov (United States)

    Lenox, Carl J.

    2012-10-02

    A fire resistant PV shingle assembly includes a PV assembly, including PV body, a fire shield and a connection member connecting the fire shield below the PV body, and a support and inter-engagement assembly. The support and inter-engagement assembly is mounted to the PV assembly and comprises a vertical support element, supporting the PV assembly above a support surface, an upper interlock element, positioned towards the upper PV edge, and a lower interlock element, positioned towards the lower PV edge. The upper interlock element of one PV shingle assembly is inter-engageable with the lower interlock element of an adjacent PV shingle assembly. In some embodiments the PV shingle assembly may comprise a ventilation path below the PV body. The PV body may be slidably mounted to the connection member to facilitate removal of the PV body.

  15. Assembly of the epithelial Na+ channel evaluated using sucrose gradient sedimentation analysis.

    Science.gov (United States)

    Cheng, C; Prince, L S; Snyder, P M; Welsh, M J

    1998-08-28

    Three subunits, alpha, beta, and gamma, contribute to the formation of the epithelial Na+ channel. To investigate the oligomeric assembly of the channel complex, we used sucrose gradient sedimentation analysis to determine the sedimentation properties of individual subunits and heteromultimers comprised of multiple subunits. When the alpha subunit was expressed alone, it first formed an oligomeric complex with a sedimentation coefficient of 11 S, and then generated a higher order multimer of 25 S. In contrast, individual beta and gamma subunits predominately assembled into 11 S complexes. We obtained similar results with expression in cells and in vitro. When we co-expressed beta with alpha or with alpha plus gamma, the beta subunit assembled into a 25 S complex. Glycosylation of the alpha subunit was not required for assembly into a 25 S complex. We found that the alpha subunit formed intra-chain disulfide bonds. Although such bonds were not required to generate an oligomeric complex, under nonreducing conditions the alpha subunit formed a complex that migrated more homogeneously at 25 S. This suggests that intra-chain disulfide bonds may stabilize the complex. These data suggest that the epithelial Na+ channel subunits form high order oligomeric complexes and that the alpha subunit contains the information that facilitates such formation. Interestingly, the ability of the alpha, but not the beta or gamma, subunit to assemble into a 25 S homomeric complex correlates with the ability of these subunits to generate functional channels when expressed alone.

  16. Modeling Evaporation and Particle Assembly in Colloidal Droplets.

    Science.gov (United States)

    Zhao, Mingfei; Yong, Xin

    2017-06-13

    Evaporation-induced assembly of nanoparticles in a drying droplet is of great importance in many engineering applications, including printing, coating, and thin film processing. The investigation of particle dynamics in evaporating droplets can provide fundamental hydrodynamic insight for revealing the processing-structure relationship in the particle self-organization induced by solvent evaporation. We develop a free-energy-based multiphase lattice Boltzmann method coupled with Brownian dynamics to simulate evaporating colloidal droplets on solid substrates with specified wetting properties. The influence of interface-bound nanoparticles on the surface tension and evaporation of a flat liquid-vapor interface is first quantified. The results indicate that the particles at the interface reduce surface tension and enhance evaporation flux. For evaporating particle-covered droplets on substrates with different wetting properties, we characterize the increase of evaporate rate via measuring droplet volume. We find that droplet evaporation is determined by the number density and circumferential distribution of interfacial particles. We further correlate particle dynamics and assembly to the evaporation-induced convection in the bulk and on the surface of droplet. Finally, we observe distinct final deposits from evaporating colloidal droplets with bulk-dispersed and interface-bound particles. In addition, the deposit pattern is also influenced by the equilibrium contact angle of droplet.

  17. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Marmonier, Pierre; Mesnage, Bernard; Nervi, J.C.

    1975-01-01

    This invention refers to fuel assemblies for a liquid metal cooled fast neutron reactor. Each assembly is composed of a hollow vertical casing, of regular polygonal section, containing a bundle of clad pins filled with a fissile or fertile substance. The casing is open at its upper end and has a cylindrical foot at its lower end for positioning the assembly in a housing provided in the horizontal diagrid, on which the core assembly rests. A set of flat bars located on the external surface of the casing enables it to be correctly orientated in its housing among the other core assemblies [fr

  18. Developing Spent Fuel Assembly for Advanced NDA Instrument Calibration - NGSI Spent Fuel Project

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauld, Ian C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Banfield, James [GE Hitachi Nuclear Energy, Wilmington, NC (United States); Skutnik, Steven [Univ. of Tennessee, Knoxville, TN (United States)

    2014-02-01

    This report summarizes the work by Oak Ridge National Laboratory to investigate the application of modeling and simulation to support the performance assessment and calibration of the advanced nondestructive assay (NDA) instruments developed under the Next Generation Safeguards Initiative Spent Fuel (NGSI-SF) Project. Advanced NDA instrument calibration will likely require reference spent fuel assemblies with well-characterized nuclide compositions that can serve as working standards. Because no reference spent fuel standard currently exists, and the practical ability to obtain direct measurement of nuclide compositions using destructive assay (DA) measurements of an entire fuel assembly is prohibitive in the near term due to the complexity and cost of spent fuel experiments, modeling and simulation will be required to construct such reference fuel assemblies. These calculations will be used to support instrument field tests at the Swedish Interim Storage Facility (Clab) for Spent Nuclear Fuel.

  19. Vibrational characterization of hexagonal duct core assemblies under various support conditions

    International Nuclear Information System (INIS)

    Bartholf, L.W.; Julyk, L.J.; Ryan, J.A.

    1989-03-01

    Analysis of the dynamic response of advanced Liquid Metal Reactor (LMR) core internals to seismic excitation requires a significant number of simplifying assumptions and idealizations to economically meet the constraints of present-day computer limitations. Fluid coupling and nonlinearities associated with inter-assembly lateral support stiffness and clearances of a large cluster of core internal assemblies are some of the factors that complicate the analytical procedure (Moran, 1976). Well defined test data were needed to quantify these and other uncertainties associated with the use of analytical or numerical computer codes used in the seismic design and analysis of reactor cores. The purpose of the present experimental program was to supplement existing data, such as reported in (Sasaki and Muto, 1983), by developing vibrational characteristics of core assemblies over a range of parameters relative to LMR conceptual designs. The parameters selected for this program were variations in number and location of restraints, restraint-pad to duct-load-pad clearances, and input forcing frequency and g-level. Feature tests were conducted to characterize load pad stiffness and coefficient of restitution, and to calibrate load pads to measure inter-assembly across-flat impact loads. Simulated full-size LMR hexagonal duct core assemblies were used in vibration tests. A single assembly and a row of five assemblies were tested in air to establish modal characteristics and forced response behavior. 2 refs., 7 figs., 1 tab

  20. Desmosome Assembly and Disassembly Are Membrane Raft-Dependent

    Science.gov (United States)

    Faundez, Victor; Koval, Michael; Mattheyses, Alexa L.; Kowalczyk, Andrew P.

    2014-01-01

    Strong intercellular adhesion is critical for tissues that experience mechanical stress, such as the skin and heart. Desmosomes provide adhesive strength to tissues by anchoring desmosomal cadherins of neighboring cells to the intermediate filament cytoskeleton. Alterations in assembly and disassembly compromise desmosome function and may contribute to human diseases, such as the autoimmune skin blistering disease pemphigus vulgaris (PV). We previously demonstrated that PV auto-antibodies directed against the desmosomal cadherin desmoglein 3 (Dsg3) cause loss of adhesion by triggering membrane raft-mediated Dsg3 endocytosis. We hypothesized that raft membrane microdomains play a broader role in desmosome homeostasis by regulating the dynamics of desmosome assembly and disassembly. In human keratinocytes, Dsg3 is raft associated as determined by biochemical and super resolution immunofluorescence microscopy methods. Cholesterol depletion, which disrupts rafts, prevented desmosome assembly and adhesion, thus functionally linking rafts to desmosome formation. Interestingly, Dsg3 did not associate with rafts in cells lacking desmosomal proteins. Additionally, PV IgG-induced desmosome disassembly occurred by redistribution of Dsg3 into raft-containing endocytic membrane domains, resulting in cholesterol-dependent loss of adhesion. These findings demonstrate that membrane rafts are required for desmosome assembly and disassembly dynamics, suggesting therapeutic potential for raft targeting agents in desmosomal diseases such as PV. PMID:24498201

  1. Growth of equilibrium structures built from a large number of distinct component types.

    Science.gov (United States)

    Hedges, Lester O; Mannige, Ranjan V; Whitelam, Stephen

    2014-09-14

    We use simple analytic arguments and lattice-based computer simulations to study the growth of structures made from a large number of distinct component types. Components possess 'designed' interactions, chosen to stabilize an equilibrium target structure in which each component type has a defined spatial position, as well as 'undesigned' interactions that allow components to bind in a compositionally-disordered way. We find that high-fidelity growth of the equilibrium target structure can happen in the presence of substantial attractive undesigned interactions, as long as the energy scale of the set of designed interactions is chosen appropriately. This observation may help explain why equilibrium DNA 'brick' structures self-assemble even if undesigned interactions are not suppressed [Ke et al. Science, 338, 1177, (2012)]. We also find that high-fidelity growth of the target structure is most probable when designed interactions are drawn from a distribution that is as narrow as possible. We use this result to suggest how to choose complementary DNA sequences in order to maximize the fidelity of multicomponent self-assembly mediated by DNA. We also comment on the prospect of growing macroscopic structures in this manner.

  2. Design requirements for SRB production control system. Volume 1: Study background and overview

    Science.gov (United States)

    1981-01-01

    The solid rocket boosters assembly environment is described in terms of the contraints it places upon an automated production control system. The business system generated for the SRB assembly and the computer system which meets the business system requirements are described. The selection software process and modifications required to the recommended software are addressed as well as the hardware and configuration requirements necessary to support the system.

  3. Self assembly of rectangular shapes on concentration programming and probabilistic tile assembly models.

    Science.gov (United States)

    Kundeti, Vamsi; Rajasekaran, Sanguthevar

    2012-06-01

    Efficient tile sets for self assembling rectilinear shapes is of critical importance in algorithmic self assembly. A lower bound on the tile complexity of any deterministic self assembly system for an n × n square is [Formula: see text] (inferred from the Kolmogrov complexity). Deterministic self assembly systems with an optimal tile complexity have been designed for squares and related shapes in the past. However designing [Formula: see text] unique tiles specific to a shape is still an intensive task in the laboratory. On the other hand copies of a tile can be made rapidly using PCR (polymerase chain reaction) experiments. This led to the study of self assembly on tile concentration programming models. We present two major results in this paper on the concentration programming model. First we show how to self assemble rectangles with a fixed aspect ratio ( α:β ), with high probability, using Θ( α + β ) tiles. This result is much stronger than the existing results by Kao et al. (Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008) and Doty (Randomized self-assembly for exact shapes. In: proceedings of the 50th annual IEEE symposium on foundations of computer science (FOCS), IEEE, Atlanta. pp 85-94, 2009)-which can only self assembly squares and rely on tiles which perform binary arithmetic. On the other hand, our result is based on a technique called staircase sampling . This technique eliminates the need for sub-tiles which perform binary arithmetic, reduces the constant in the asymptotic bound, and eliminates the need for approximate frames (Kao et al. Randomized self-assembly for approximate shapes, LNCS, vol 5125. Springer, Heidelberg, 2008). Our second result applies staircase sampling on the equimolar concentration programming model (The tile complexity of linear assemblies. In: proceedings of the 36th international colloquium automata, languages and programming: Part I on ICALP '09, Springer-Verlag, pp 235

  4. Neutronic characteristics of linear-assembly breed-and-burn reactors

    International Nuclear Information System (INIS)

    Petroski, Robert; Forget, Benoit; Forsberg, Charles

    2012-01-01

    Highlights: ► Simple models used to characterize general behavior of linear-assembly B and B reactors. ► Diffusion theory model developed to explain axial distributions, height vs. reactivity. ► Neutron excess concept reformulated to include linear-assembly B and B reactors. ► Designed model of B and B reactor started using melt-refined B and B reactor used fuel. ► Computed doubling time of fuel cycle requiring no chemical separations. - Abstract: Linear-assembly breed-and-burn (B and B) reactors are B and B reactors that use axially connected assemblies similar to conventional LWR or fast reactor fuel assemblies. Methods for analyzing linear-assembly B and B reactors and their fuel cycles are developed and applied. General neutronic characteristics of linear-assembly B and B reactors are analyzed, including the effects that burnup, shuffling sequence, and radial and axial size have on equilibrium-cycle k-effective. The mechanisms that give rise to a highly peaked axial burnup distribution are explained, and a method for predicting peak burnup vs. k-effective based on infinite-medium depletion calculations is developed. Next, the neutron excess concept from previous studies of B and B reactors is extended to apply to linear-assembly B and B reactors, which allows the amount of starter fuel needed to establish a given equilibrium cycle to be calculated. Several example applications of the neutron excess formulation are given. First, an example model of a linear-assembly B and B reactor is analyzed to find the neutron excess cost of an equilibrium cycle. Second, simple one-dimensional models are used to predict the neutron excess value obtainable from different starter fuel configurations. Finally, these ideas are applied to design a fuel cycle consisting of linear-assembly B and B reactors and fuel recycling via a melt refining process. The neutron excess concept is used to design an appropriate starter fuel configuration made from melt refined fuel, which

  5. Nuclear fuel string assembly

    International Nuclear Information System (INIS)

    Ip, A.K.; Koyanagi, K.; Tarasuk, W.R.

    1976-01-01

    A method of fabricating rodded fuels suitable for use in pressure tube type reactors and in pressure vessel type reactors is described. Fuel rods are secured as an inner and an outer sub-assembly, each rod attached between mounting rings secured to the rod ends. The two sub-assemblies are telescoped together and positioned by spaced thimbles located between them to provide precise positioning while permittng differential axial movement between the sub-assemblies. Such sub-assemblies are particularly suited for mounting as bundle strings. The method provides particular advantages in the assembly of annular-section fuel pins, which includes booster fuel containing enriched fuel material. (LL)

  6. Fuel assembly reconstitution

    International Nuclear Information System (INIS)

    Morgado, Mario M.; Oliveira, Monica G.N.; Ferreira Junior, Decio B.M.; Santos, Barbara O. dos; Santos, Jorge E. dos

    2009-01-01

    Fuel failures have been happened in Nuclear Power Plants worldwide, without lost of integrity and safety, mainly for the public, environment and power plants workers. The most common causes of these events are corrosion (CRUD), fretting and pellet cladding interaction. These failures are identified by increasing the activity of fission products, verified by chemical analyses of reactor coolant. Through these analyses, during the fourth operation cycle of Angra 2 Nuclear Power Plant, was possible to observe fuel failure indication. This indication was confirmed in the end of the cycle during the unloading of reactor core through leakage tests of fuel assembly, using the equipment called 'In Mast Sipping' and 'Box Sipping'. After confirmed, the fuel assembly reconstitution was scheduled, and happened in April, 2007, where was identified the cause and the fuel rod failure, which was substitute by dummy rods (zircaloy). The cause was fretting by 'debris'. The actions to avoid and prevent fuel assemblies failures are important. The goals of this work are to describe the methodology of fuel assembly reconstitution using the FARE (Fuel Assembly Reconstitution Equipment) system, to describe the results of this task in economic and security factors of the company and show how the fuel assembly failures are identified during operation and during the outage. (author)

  7. Self-assembly of Archimedean tilings with enthalpically and entropically patchy polygons.

    Science.gov (United States)

    Millan, Jaime A; Ortiz, Daniel; van Anders, Greg; Glotzer, Sharon C

    2014-03-25

    Considerable progress in the synthesis of anisotropic patchy nanoplates (nanoplatelets) promises a rich variety of highly ordered two-dimensional superlattices. Recent experiments of superlattices assembled from nanoplates confirm the accessibility of exotic phases and motivate the need for a better understanding of the underlying self-assembly mechanisms. Here, we present experimentally accessible, rational design rules for the self-assembly of the Archimedean tilings from polygonal nanoplates. The Archimedean tilings represent a model set of target patterns that (i) contain both simple and complex patterns, (ii) are comprised of simple regular shapes, and (iii) contain patterns with potentially interesting materials properties. Via Monte Carlo simulations, we propose a set of design rules with general applicability to one- and two-component systems of polygons. These design rules, specified by increasing levels of patchiness, correspond to a reduced set of anisotropy dimensions for robust self-assembly of the Archimedean tilings. We show for which tilings entropic patches alone are sufficient for assembly and when short-range enthalpic interactions are required. For the latter, we show how patchy these interactions should be for optimal yield. This study provides a minimal set of guidelines for the design of anisostropic patchy particles that can self-assemble all 11 Archimedean tilings.

  8. Controlled interfacial assembly of 2D curved colloidal crystals and jammed shells

    OpenAIRE

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.

    2006-01-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional micro-crystalline materials useful in fields as diverse as biomedicine1, materials science2, mineral flotation3 and food processing4. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials employed5-9. The development of methods that exploit the great potential of interfacial assembly f...

  9. Full scale tests on remote handled FFTF fuel assembly waste handling and packaging

    International Nuclear Information System (INIS)

    Allen, C.R.; Cash, R.J.; Dawson, S.A.; Strode, J.N.

    1986-01-01

    Handling and packaging of remote handled, high activity solid waste fuel assembly hardware components from spent FFTF reactor fuel assemblies have been evaluated using full scale components. The demonstration was performed using FFTF fuel assembly components and simulated components which were handled remotely using electromechanical manipulators, shielding walls, master slave manipulators, specially designed grapples, and remote TV viewing. The testing and evaluation included handling, packaging for current and conceptual shipping containers, and the effects of volume reduction on packing efficiency and shielding requirements. Effects of waste segregation into transuranic (TRU) and non-transuranic fractions also are discussed

  10. Probabilistic Performance Guarantees for Distributed Self-Assembly

    KAUST Repository

    Fox, Michael J.

    2015-04-01

    In distributed self-assembly, a multitude of agents seek to form copies of a particular structure, modeled here as a labeled graph. In the model, agents encounter each other in spontaneous pairwise interactions and decide whether or not to form or sever edges based on their two labels and a fixed set of local interaction rules described by a graph grammar. The objective is to converge on a graph with a maximum number of copies of a given target graph. Our main result is the introduction of a simple algorithm that achieves an asymptotically maximum yield in a probabilistic sense. Notably, agents do not need to update their labels except when forming or severing edges. This contrasts with certain existing approaches that exploit information propagating rules, effectively addressing the decision problem at the level of subgraphs as opposed to individual vertices. We are able to obey more stringent locality requirements while also providing smaller rule sets. The results can be improved upon if certain requirements on the labels are relaxed. We discuss limits of performance in self-assembly in terms of rule set characteristics and achievable maximum yield.

  11. SOURCE OF BURNUP VALUES FOR COMMERCIAL SPENT NUCLEAR FUEL ASSEMBLIES

    International Nuclear Information System (INIS)

    BSC

    2004-01-01

    Waste packages are loaded with commercial spent nuclear fuel (SNF) that satisfies the minimum burnup requirements of a criticality loading curve. The burnup value assigned by the originating nuclear utility to each SNF assembly (assigned burnup) is used to load waste packages in compliance with a criticality loading curve. The burnup provided by a nuclear utility has uncertainties, so conservative calculation methods are used to characterize those uncertainties for incorporation into the criticality loading curves. Procedural safety controls ensure that the correct assembly is loaded into each waste package to prevent a misload that could create a condition affecting the safety margins. Probabilistic analyses show that procedural safety controls can minimize the chance of a misload but can not completely eliminate the possibility. Physical measurements of burnup with instrumentation in the surface facility are not necessary due to the conservative calculation methods used to produce the criticality loading curves. The reactor records assigned burnup of a commercial SNF assembly contains about two percent uncertainty, which is increased to five-percent to ensure conservatism. This five-percent uncertainty is accommodated by adjusting the criticality loading curve. Also, the record keeping methods of nuclear utilities are not uniform and the level of detail required by the NRC has varied over the last several decades. Thus, some SNF assemblies may have assigned burnups that are averages for a batch of assemblies with similar characteristics. Utilities typically have access to more detailed core-follow records that allow the batch average burnup to be changed to an assembly specific burnup. Alternatively, an additional safety margin is incorporated into the criticality loading curve to accommodate SNF assemblies with batch average burnups or greater uncertainties due to the methodology used by the nuclear utility. The utility records provide the assembly identifier

  12. Sag compensation system for assembly of MDT-chambers for the ATLAS experiment

    International Nuclear Information System (INIS)

    Barashkov, A.V.; Glonti, G.L.; Gongadze, A.L.; Evtukhovich, P.G.; Il'yushenko, E.N.; Kotov, S.A.; Kruchonok, V.G.; Tskhadadze, Eh.G.; Chepurnov, V.F.; Shelkov, G.A.

    2005-01-01

    The description of a system of the devices created for compensation of the gravitational deflection of the drift chamber during its assembly is presented. By means of this system during stage-by-stage gluing of layers of tube drift detectors to the chamber the transversal deflection considerably decreases and by that high accuracy of mutual position of separate tubes is provided. The devices were applied at assembly of 74 MDT-chambers of the ATLAS experiment. Design values of deformation of the chambers as well as the results of measurement of transversal deflections obtained during the assembly with the use of the system of sag compensation are given. Testing of chambers on the X-ray tomograph at CERN has shown that the accuracy of the positions of separate signal wires inside the assembled chambers is within the limits of the required 20 μm

  13. Three-Dimensional Assembly Tolerance Analysis Based on the Jacobian-Torsor Statistical Model

    Directory of Open Access Journals (Sweden)

    Peng Heping

    2017-01-01

    Full Text Available The unified Jacobian-Torsor model has been developed for deterministic (worst case tolerance analysis. This paper presents a comprehensive model for performing statistical tolerance analysis by integrating the unified Jacobian-Torsor model and Monte Carlo simulation. In this model, an assembly is sub-divided into surfaces, the Small Displacements Torsor (SDT parameters are used to express the relative position between any two surfaces of the assembly. Then, 3D dimension-chain can be created by using a surface graph of the assembly and the unified Jacobian-Torsor model is developed based on the effect of each functional element on the whole functional requirements of products. Finally, Monte Carlo simulation is implemented for the statistical tolerance analysis. A numerical example is given to demonstrate the capability of the proposed method in handling three-dimensional assembly tolerance analysis.

  14. Molecular polymorphism of a cell surface proteoglycan: distinct structures on simple and stratified epithelia.

    Science.gov (United States)

    Sanderson, R D; Bernfield, M

    1988-12-01

    Epithelial cells are organized into either a single layer (simple epithelia) or multiple layers (stratified epithelia). Maintenance of these cellular organizations requires distinct adhesive mechanisms involving many cell surface molecules. One such molecule is a cell surface proteoglycan, named syndecan, that contains both heparan sulfate and chondroitin sulfate chains. This proteoglycan binds cells to fibrillar collagens and fibronectin and thus acts as a receptor for interstitial matrix. The proteoglycan is restricted to the basolateral surface of simple epithelial cells, but is located over the entire surface of stratified epithelial cells, even those surfaces not contacting matrix. We now show that the distinct localization in simple and stratified epithelia correlates with a distinct proteoglycan structure. The proteoglycan from simple epithelia (modal molecular size, 160 kDa) is larger than that from stratified epithelia (modal molecular size, 92 kDa), but their core proteins are identical in size and immunoreactivity. The proteoglycan from simple epithelia has more and larger heparan sulfate and chondroitin sulfate chains than the proteoglycan from stratified epithelia. Thus, the cell surface proteoglycan shows a tissue-specific structural polymorphism due to distinct posttranslational modifications. This polymorphism likely reflects distinct proteoglycan functions in simple and stratified epithelia, potentially meeting the different adhesive requirements of the cells in these different organizations.

  15. Electron Transport Chain Is Biochemically Linked to Pilus Assembly Required for Polymicrobial Interactions and Biofilm Formation in the Gram-Positive Actinobacterium Actinomyces oris

    Directory of Open Access Journals (Sweden)

    Belkys C. Sanchez

    2017-06-01

    Full Text Available The Gram-positive actinobacteria Actinomyces spp. are key colonizers in the development of oral biofilms due to the inherent ability of Actinomyces to adhere to receptor polysaccharides on the surface of oral streptococci and host cells. This receptor-dependent bacterial interaction, or coaggregation, requires a unique sortase-catalyzed pilus consisting of the pilus shaft FimA and the coaggregation factor CafA forming the pilus tip. While the essential role of the sortase machine SrtC2 in pilus assembly, biofilm formation, and coaggregation has been established, little is known about trans-acting factors contributing to these processes. We report here a large-scale Tn5 transposon screen for mutants defective in Actinomyces oris coaggregation with Streptococcus oralis. We obtained 33 independent clones, 13 of which completely failed to aggregate with S. oralis, and the remainder of which exhibited a range of phenotypes from severely to weakly defective coaggregation. The former had Tn5 insertions in fimA, cafA, or srtC2, as expected; the latter were mapped to genes coding for uncharacterized proteins and various nuo genes encoding the NADH dehydrogenase subunits. Electron microscopy and biochemical analyses of mutants with nonpolar deletions of nuo genes and ubiE, a menaquinone C-methyltransferase-encoding gene downstream of the nuo locus, confirmed the pilus and coaggregation defects. Both nuoA and ubiE mutants were defective in oxidation of MdbA, the major oxidoreductase required for oxidative folding of pilus proteins. Furthermore, supplementation of the ubiE mutant with exogenous menaquinone-4 rescued the cell growth and pilus defects. Altogether, we propose that the A. oris electron transport chain is biochemically linked to pilus assembly via oxidative protein folding.

  16. RCC-C: Design and construction rules for fuel assemblies of PWR nuclear power plants

    International Nuclear Information System (INIS)

    2015-01-01

    The RCC-C code contains all the requirements for the design, fabrication and inspection of nuclear fuel assemblies and the different types of core components (rod cluster control assemblies, burnable poison rod assemblies, primary and secondary source assemblies and thimble plug assemblies). The design, fabrication and inspection rules defined in RCC-C leverage the results of the research and development work pioneered in France, Europe and worldwide, and which have been successfully used by industry to design and build nuclear fuel assemblies and incorporate the resulting feedback. The code's scope covers: fuel system design, especially for assemblies, the fuel rod and associated core components, the characteristics to be checked for products and parts, fabrication methods and associated inspection methods. The RCC-C code is used by the operator of the PWR nuclear power plants in France as a reference when sourcing fuel from the world's top two suppliers in the PWR market, given that the French operator is the world's largest buyer of PWR fuel. Fuel for EPR projects is manufactured according to the provisions of the RCC-C code. The code is available in French and English. The 2005 edition has been translated into Chinese. Contents of the 2015 edition of the RCC-C code: Chapter 1 - General provisions: 1.1 Purpose of the RCC-C, 1.2 Definitions, 1.3 Applicable standards, 1.4 Equipment subject to the RCC-C, 1.5 Management system, 1.6 Processing of non-conformances; Chapter 2 - Description of the equipment subject to the RCC-C: 2.1 Fuel assembly, 2.2 Core components; Chapter 3 - Design: Safety functions, operating functions and environment of fuel assemblies and core components, design and safety principles; Chapter 4 - Manufacturing: 4.1 Materials and part characteristics, 4.2 Assembly requirements, 4.3 Manufacturing and inspection processes, 4.4 Inspection methods, 4.5 Certification of NDT inspectors, 4.6 Characteristics to be inspected for the

  17. Tools for LWR spent fuel characterization: Assembly classes and fuel designs

    International Nuclear Information System (INIS)

    Moore, R.S.; Notz, K.J.

    1991-01-01

    The Characteristics Data Base (CDB) is sponsored by the DOE's Office of Civilian Radioactive Waste Management (OCRWM). The CDB provides a single, comprehensive source of data pertaining to radioactive wastes that will or may require geologic disposal, including detailed data describing the physical, quantitative, and radiological characteristics of light-water reactor (LWR) spent fuel. In developing the CDB, tools for the classification of fuel assembly types have been developed. The assembly class scheme is particularly useful for size- and handling-based describes these tools and presents results of their applications in the areas of fuel assembly type identification, characterization of projected discharges, cask accommodation analyses, and defective fuel analyses. Suggestions for additional applications are also made. 7 refs., 1 fig., 2 tabs

  18. Self-assembly of protein-based biomaterials initiated by titania nanotubes.

    Science.gov (United States)

    Forstater, Jacob H; Kleinhammes, Alfred; Wu, Yue

    2013-12-03

    Protein-based biomaterials are a promising strategy for creating robust highly selective biocatalysts. The assembled biomaterials must sufficiently retain the near-native structure of proteins and provide molecular access to catalytically active sites. These requirements often exclude the use of conventional assembly techniques, which rely on covalent cross-linking of proteins or entrapment within a scaffold. Here we demonstrate that titania nanotubes can initiate and template the self-assembly of enzymes, such as ribonuclease A, while maintaining their catalytic activity. Initially, the enzymes form multilayer thick ellipsoidal aggregates centered on the nanotube surface; subsequently, these nanosized entities assemble into a micrometer-sized enzyme material that has enhanced enzymatic activity and contains as little as 0.1 wt % TiO2 nanotubes. This phenomenon is uniquely associated with the active anatase (001)-like surface of titania nanotubes and does not occur on other anatase nanomaterials, which contain significantly fewer undercoordinated Ti surface sites. These findings present a nanotechnology-enabled mechanism of biomaterial growth and open a new route for creating stable protein-based biomaterials and biocatalysts without the need for chemical modification.

  19. Reflector-moderated critical assemblies

    International Nuclear Information System (INIS)

    Paxton, H.C.; Jarvis, G.A.; Byers, C.C.

    1975-07-01

    Experiments with reflector-moderated critical assemblies were part of the Rover Program at the Los Alamos Scientific Laboratory (LASL). These assemblies were characterized by thick D 2 O or beryllium reflectors surrounding large cavities that contained highly enriched uranium at low average densities. Because interest in this type of system has been revived by LASL Plasma Cavity Assembly studies, more detailed descriptions of the early assemblies than had been available in the unclassified literature are provided. (U.S.)

  20. Distinct roles for dystroglycan, beta1 integrin and perlecan in cell surface laminin organization

    DEFF Research Database (Denmark)

    Henry, M D; Satz, J S; Brakebusch, C

    2001-01-01

    Dystroglycan (DG) is a cell surface receptor for several extracellular matrix (ECM) molecules including laminins, agrin and perlecan. Recent data indicate that DG function is required for the formation of basement membranes in early development and the organization of laminin on the cell surface...... integrin-deficient ES cells, laminin-1 binds to the cell surface, but fails to organize into more morphologically complex structures. This result indicates that beta1 integrin function is required after DG function in the cell surface-mediated laminin assembly process. In perlecan-deficient ES cells......, the formation of complex laminin-1 structures is defective, implicating perlecan in the laminin matrix assembly process. Moreover, laminin and perlecan reciprocally modulate the organization of the other on the cell surface. Taken together, the data support a model whereby DG serves as a receptor essential...

  1. SWAP-Assembler 2: Optimization of De Novo Genome Assembler at Large Scale

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Jintao; Seo, Sangmin; Balaji, Pavan; Wei, Yanjie; Wang, Bingqiang; Feng, Shengzhong

    2016-08-16

    In this paper, we analyze and optimize the most time-consuming steps of the SWAP-Assembler, a parallel genome assembler, so that it can scale to a large number of cores for huge genomes with the size of sequencing data ranging from terabyes to petabytes. According to the performance analysis results, the most time-consuming steps are input parallelization, k-mer graph construction, and graph simplification (edge merging). For the input parallelization, the input data is divided into virtual fragments with nearly equal size, and the start position and end position of each fragment are automatically separated at the beginning of the reads. In k-mer graph construction, in order to improve the communication efficiency, the message size is kept constant between any two processes by proportionally increasing the number of nucleotides to the number of processes in the input parallelization step for each round. The memory usage is also decreased because only a small part of the input data is processed in each round. With graph simplification, the communication protocol reduces the number of communication loops from four to two loops and decreases the idle communication time. The optimized assembler is denoted as SWAP-Assembler 2 (SWAP2). In our experiments using a 1000 Genomes project dataset of 4 terabytes (the largest dataset ever used for assembling) on the supercomputer Mira, the results show that SWAP2 scales to 131,072 cores with an efficiency of 40%. We also compared our work with both the HipMER assembler and the SWAP-Assembler. On the Yanhuang dataset of 300 gigabytes, SWAP2 shows a 3X speedup and 4X better scalability compared with the HipMer assembler and is 45 times faster than the SWAP-Assembler. The SWAP2 software is available at https://sourceforge.net/projects/swapassembler.

  2. The Assembly of the LHC Short Straight Sections (SSS) at CERN Project Status and Lessons Learned

    CERN Document Server

    Parma, Vittorio; Dos Santos de Campos, Paulo M; Feitor, Rogerio C; Gandel, Makcim; López, R; Schmidlkofer, Martin; Slits, Ivo

    2005-01-01

    The series production of the LHC SSS has started in the beginning of 2004 and is foreseen to last until end 2006. The production consists in the assembly of 474 cold masses housing superconducting quadrupoles and corrector magnets within their cryostats. 87 cold mass variants, resulting from various combinations of main quadrupole and corrector magnets, have to be assembled in 55 cryostat types, depending on the specific cryogenic and electrical powering schemes required by the collider topology. The assembly activity features the execution of more than 5 km of leak-tight welding of stainless steel and aluminium cryogenic lines, designed for 20-bar pressure, according to high qualification standards and undergoing severe QA inspections. Some 2500 leak detection tests, using He mass spectrometry, are required to check the tightness of the cryogenic circuits. Extensive electrical control work, to check the integrity of the magnet instrumentation and electrical circuits throughout the assembly of the SSS, is als...

  3. Analysis of the assembling phase of lattice slabs

    Directory of Open Access Journals (Sweden)

    A. L. Sartorti

    Full Text Available Lattice slabs are usual in Brazil. They are formed by precast joists with latticed bars on a base of concrete, and a cover of concrete placed at the jobsite. The assembly of the joists and the filling elements is simple and do not require manpower with great skill, presenting low cost-benefit ratio. However, it is precisely in assembling phase that arise questions related to the scaffold support distance. A mistake in the proper positioning can lead to two undesirable situations. In one of them, a small space between the support lines increases the cost of scaffold, and in other an excessive space can generate exaggerated displacements, and even the collapse of the slab in the stage of concreting. The objective of this work is to analyze the bearing capacity of lattice joists in assembling phase, looking for information that is useful in defining the scaffold support distance. Several joists were tested to define the failure modes and their load bearing capacities. The results allowed to determine equations for calculating the appropriate distance between the support lines of the joists.

  4. Polymer Directed Protein Assemblies

    NARCIS (Netherlands)

    van Rijn, Patrick

    2013-01-01

    Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e. g., virus particles. Viruses are a multi-protein assembly of which the morphology is

  5. In Silico understanding of the cyclodextrin–phenanthrene hybrid assemblies in both aqueous medium and bacterial membranes

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Baiping [College of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024 (China); State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023 (China); Gao, Huipeng; Cao, Yafeng [College of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024 (China); Jia, Lingyun, E-mail: lyj81@dlut.edu.cn [College of Life Science and Biotechnology, Dalian University of Technology, No. 2 Linggong Road, Dalian 116024 (China)

    2015-03-21

    Highlights: • Two hetero-assemblies, βCD{sub 1}–Phe{sub 1}, and βCD{sub 2}–Phe{sub 1} were observed in water solution. • Distinct membrane-binding patterns for βCD, Phe, and their complexes were found. • Minor Phe trans-membrane energy barrier confirmed its membrane penetration ability. • Huge energy barriers for βCD-involved assemblies denied their membrane penetration. • Phe separation from βCD{sub 1}–Phe{sub 1} was easier than that from βCD{sub 2}–Phe{sub 1}. - Abstract: The explicit-solvent molecular dynamic (MD) simulation and adaptive biased forces (ABF) methods were employed to systemically study the structural and thermodynamic nature of the β-cyclodextrin (βCD) monomer, phenanthrene (Phe) monomer, and their inclusion complexes in both the aqueous and membrane environments, aiming at clarifying the atomic-level mechanisms underlying in the CD-enhanced degradation of polycyclic aromatic hydrocarbons (PAHs) by bacteria. Simulations showed that βCD and Phe monomers could associate together to construct two distinctive assemblies, i.e, βCD{sub 1}–Phe{sub 1} and βCD{sub 2}–Phe{sub 1}, respectively. The membrane-involved equilibrium simulations and the data of potential of mean forces (PMFs) further confirmed that Phe monomer was capable of penetrating through the membranes without confronting any large energy barrier, whereas, the single βCD and βCD-involved assemblies were unable to pass across the membranes. These observations clearly suggested that βCD only served as the carrier to enhance the bioavailability of Phe rather than the co-substrate in the Phe biodegradation process. The Phe-separation PMF profiles indicated that the maximum of the Phe uptake by bacteria would be achieved by the “optimal” βCD:Phe molar ratio, which facilitated the maximal formation of βCD{sub 1}–Phe{sub 1} inclusion and the minimal construction of βCD{sub 2}–Phe{sub 1} complex.

  6. Controlled assembly of jammed colloidal shells on fluid droplets

    Science.gov (United States)

    Subramaniam, Anand Bala; Abkarian, Manouk; Stone, Howard A.

    2005-07-01

    Assembly of colloidal particles on fluid interfaces is a promising technique for synthesizing two-dimensional microcrystalline materials useful in fields as diverse as biomedicine, materials science, mineral flotation and food processing. Current approaches rely on bulk emulsification methods, require further chemical and thermal treatments, and are restrictive with respect to the materials used. The development of methods that exploit the great potential of interfacial assembly for producing tailored materials have been hampered by the lack of understanding of the assembly process. Here we report a microfluidic method that allows direct visualization and understanding of the dynamics of colloidal crystal growth on curved interfaces. The crystals are periodically ejected to form stable jammed shells, which we refer to as colloidal armour. We propose that the energetic barriers to interfacial crystal growth and organization can be overcome by targeted delivery of colloidal particles through hydrodynamic flows. Our method allows an unprecedented degree of control over armour composition, size and stability.

  7. Core/coil assembly for use in superconducting magnets and method for assembling the same

    Science.gov (United States)

    Kassner, David A.

    1979-01-01

    A core/coil assembly for use in a superconducting magnet of the focusing or bending type used in syncronous particle accelerators comprising a coil assembly contained within an axial bore of the stacked, washer type, carbon steel laminations which comprise the magnet core assembly, and forming an interference fit with said laminations at the operating temperature of said magnet. Also a method for making such core/coil assemblies comprising the steps of cooling the coil assembly to cryogenic temperatures and drawing it rapidly upwards into the bore of said stacked laminations.

  8. Interrelated Dimensional Chains in Predicting Accuracy of Turbine Wheel Assembly Parameters

    Science.gov (United States)

    Yanyukina, M. V.; Bolotov, M. A.; Ruzanov, N. V.

    2018-03-01

    The working capacity of any device primarily depends on the assembly accuracy which, in its turn, is determined by the quality of each part manufactured, i.e., the degree of conformity between final geometrical parameters and the set ones. However, the assembly accuracy depends not only on a qualitative manufacturing process but also on the assembly process correctness. In this connection, there were preliminary calculations of assembly stages in terms of conformity to real geometrical parameters with their permissible values. This task is performed by means of the calculation of dimensional chains. The calculation of interrelated dimensional chains in the aircraft industry requires particular attention. The article considers the issues of dimensional chain calculation modelling by the example of the turbine wheel assembly process. The authors described the solution algorithm in terms of mathematical statistics implemented in Matlab. The paper demonstrated the results of a dimensional chain calculation for a turbine wheel in relation to the draw of turbine blades to the shroud ring diameter. Besides, the article provides the information on the influence of a geometrical parameter tolerance for the dimensional chain link elements on a closing one.

  9. Development and verification testing of automation and robotics for assembly of space structures

    Science.gov (United States)

    Rhodes, Marvin D.; Will, Ralph W.; Quach, Cuong C.

    1993-01-01

    A program was initiated within the past several years to develop operational procedures for automated assembly of truss structures suitable for large-aperture antennas. The assembly operations require the use of a robotic manipulator and are based on the principle of supervised autonomy to minimize crew resources. A hardware testbed was established to support development and evaluation testing. A brute-force automation approach was used to develop the baseline assembly hardware and software techniques. As the system matured and an operation was proven, upgrades were incorprated and assessed against the baseline test results. This paper summarizes the developmental phases of the program, the results of several assembly tests, the current status, and a series of proposed developments for additional hardware and software control capability. No problems that would preclude automated in-space assembly of truss structures have been encountered. The current system was developed at a breadboard level and continued development at an enhanced level is warranted.

  10. Development of conductor feedthrough module of LV electrical penetration assembly for research reactors

    International Nuclear Information System (INIS)

    Luo Zhiyuan; Wang Guangjin; Zhou Bin

    2007-01-01

    A LV electrical penetration assembly with perfusion sealing conductor feedthrough module was developed, which can be used for the connection of internal and external cables through the wall of the research reactor workshop. The LV electrical penetration assembly was combined with several independent modules. The maintenance and replacement of the assembly can be easily done in service. The sealing of conductor feedthrough module was achieved with the perfusion of self-extinguishing epoxy. The leakage between the conductor feedthrough module and the end plate module was blocked with rubber rings. The result of the leakage test and the electrical performance test for the samples of conductor feedthrough module satisfied the requirement of research reactor. The structure of the new electrical penetration assembly is simple and compact. It can be manufactured with mature technology and cost low price. The performance of the assembly is steady. It can be used widely in research reactors. (authors)

  11. Investigation regarding the safety of handling the fuel assemblies for the nuclear ship 'Mutsu'

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    It was concluded previously that the general inspection of safety and the repair of shielding can be carried out as the fuel assemblies are charged, and the safety can be secured sufficiently. According to the decision by the meeting of cabinet ministers concerned with the nuclear ship ''Mutsu'', the Mutsu General Inspection and Repair Technology Investigation Committee investigated on the basic concept regarding the method and the safety of taking out, transporting and preserving the fuel assemblies. 112 fuel rods and 9 burnable poison rods are arranged into the square grid of 11 x 11 in a fuel assembly, and 32 fuel assemblies are employed. The contents of the investigation are the outline of the fuel assemblies, the present states of nuclear fission products, surface dose rate and soundness of the fuel assemblies, the safety of taking out, transporting and preserving the fuel assemblies, the measures required for securing the safety, and the place for taking out the fuel assemblies. In case of taking out, transporting and preserving the fuel assemblies, it is considered in view of the present state of the fuel assemblies that the safety can be secured sufficiently if the works are carried out carefully by taking the methods and conditions investigated into consideration. Also the committee reached already the conclusion described at the outset. (Kako, I.)

  12. Cloning Should Be Simple: Escherichia coli DH5α-Mediated Assembly of Multiple DNA Fragments with Short End Homologies

    Science.gov (United States)

    Richardson, Ruth E.; Suzuki, Yo

    2015-01-01

    Numerous DNA assembly technologies exist for generating plasmids for biological studies. Many procedures require complex in vitro or in vivo assembly reactions followed by plasmid propagation in recombination-impaired Escherichia coli strains such as DH5α, which are optimal for stable amplification of the DNA materials. Here we show that despite its utility as a cloning strain, DH5α retains sufficient recombinase activity to assemble up to six double-stranded DNA fragments ranging in size from 150 bp to at least 7 kb into plasmids in vivo. This process also requires surprisingly small amounts of DNA, potentially obviating the need for upstream assembly processes associated with most common applications of DNA assembly. We demonstrate the application of this process in cloning of various DNA fragments including synthetic genes, preparation of knockout constructs, and incorporation of guide RNA sequences in constructs for clustered regularly interspaced short palindromic repeats (CRISPR) genome editing. This consolidated process for assembly and amplification in a widely available strain of E. coli may enable productivity gain across disciplines involving recombinant DNA work. PMID:26348330

  13. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 8 AND 9 CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    Wilson, Michael L.

    2001-01-01

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 8 and 9 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for Commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies

  14. Nuclear fuel assemblies and fuel pins usable in such assemblies

    International Nuclear Information System (INIS)

    Jolly, R.

    1982-01-01

    A novel end cap for a nuclear fuel assembly is described in detail. It consists of a trisection arrangement which is received within a cell of a cellular grid. The cell contains abutment means with which the trisection comes into abutment. The grid also contains an abutment means for preventing the trisections from being inserted into the cell in an incorrect orientation. The present design allows fuel pins to be securely held in a hold-down grid of a sub-assembly. The design also allows easier dis-assembly of the swollen and embrittled fuel pins prior to reprocessing. (U.K.)

  15. Biogenesis of the mitochondrial TOM complex: Mim1 promotes insertion and assembly of signal-anchored receptors.

    Science.gov (United States)

    Becker, Thomas; Pfannschmidt, Sylvia; Guiard, Bernard; Stojanovski, Diana; Milenkovic, Dusanka; Kutik, Stephan; Pfanner, Nikolaus; Meisinger, Chris; Wiedemann, Nils

    2008-01-04

    The translocase of the outer membrane (TOM complex) is the central entry gate for nuclear-encoded mitochondrial precursor proteins. All Tom proteins are also encoded by nuclear genes and synthesized as precursors in the cytosol. The channel-forming beta-barrel protein Tom40 is targeted to mitochondria via Tom receptors and inserted into the outer membrane by the sorting and assembly machinery (SAM complex). A further outer membrane protein, Mim1, plays a less defined role in assembly of Tom40 into the TOM complex. The three receptors Tom20, Tom22, and Tom70 are anchored in the outer membrane by a single transmembrane alpha-helix, located at the N terminus in the case of Tom20 and Tom70 (signal-anchored) or in the C-terminal portion in the case of Tom22 (tail-anchored). Insertion of the precursor of Tom22 into the outer membrane requires pre-existing Tom receptors while the import pathway of the precursors of Tom20 and Tom70 is only poorly understood. We report that Mim1 is required for efficient membrane insertion and assembly of Tom20 and Tom70, but not Tom22. We show that Mim1 associates with SAM(core) components to a large SAM complex, explaining its role in late steps of the assembly pathway of Tom40. We conclude that Mim1 is not only required for biogenesis of the beta-barrel protein Tom40 but also for membrane insertion and assembly of signal-anchored Tom receptors. Thus, Mim1 plays an important role in the efficient assembly of the mitochondrial TOM complex.

  16. Self-assembly of coiled coil peptides into nanoparticles vs 2-d plates: effects of assembly pathway

    Science.gov (United States)

    Kim, Kyunghee; Pochan, Darrin

    Molecular solution assembly, or self-assembly, is a process by which ordered nanostructures or patterns are formed by non-covalent interactions during assembly. Biomimicry, the use of bioinspired molecules or biologically relevant materials, is an important area of self-assembly research with peptides serving a critical role as molecular tools. The morphology of peptide assemblies can be controlled by adjusting solution conditions such as the concentration of peptides, the temperature, and pH. Herein, spherical nanostructures, which have potential for creating an encapsulation system, are formed by self-assembly when coiled coil peptides are combined in solution. These peptides are homotrimeric and heterodimeric coiled-coil bundles and the homotrimer is connected with each of heterodimer through their external surfaces via disulfide bonds. The resultant covalent constructs could co-assemble into complementary trimeric hubs, respectively. The two peptide constructs are directly mixed and assembled in solution in order to produce either spherical particles or 2-d plates depending on the solution conditions and kinetic pathway of assembly. In particular, structural changes of the self-assembled peptides are explored by control of the thermal history of the assembly solution.

  17. Improvement of the Threespine Stickleback Genome Using a Hi-C-Based Proximity-Guided Assembly.

    Science.gov (United States)

    Peichel, Catherine L; Sullivan, Shawn T; Liachko, Ivan; White, Michael A

    2017-09-01

    Scaffolding genomes into complete chromosome assemblies remains challenging even with the rapidly increasing sequence coverage generated by current next-generation sequence technologies. Even with scaffolding information, many genome assemblies remain incomplete. The genome of the threespine stickleback (Gasterosteus aculeatus), a fish model system in evolutionary genetics and genomics, is not completely assembled despite scaffolding with high-density linkage maps. Here, we first test the ability of a Hi-C based proximity-guided assembly (PGA) to perform a de novo genome assembly from relatively short contigs. Using Hi-C based PGA, we generated complete chromosome assemblies from a distribution of short contigs (20-100 kb). We found that 96.40% of contigs were correctly assigned to linkage groups (LGs), with ordering nearly identical to the previous genome assembly. Using available bacterial artificial chromosome (BAC) end sequences, we provide evidence that some of the few discrepancies between the Hi-C assembly and the existing assembly are due to structural variation between the populations used for the 2 assemblies or errors in the existing assembly. This Hi-C assembly also allowed us to improve the existing assembly, assigning over 60% (13.35 Mb) of the previously unassigned (~21.7 Mb) contigs to LGs. Together, our results highlight the potential of the Hi-C based PGA method to be used in combination with short read data to perform relatively inexpensive de novo genome assemblies. This approach will be particularly useful in organisms in which it is difficult to perform linkage mapping or to obtain high molecular weight DNA required for other scaffolding methods. © The American Genetic Association 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Self-assembly morphology effects on the crystallization of semicrystalline block copolymer thin film

    Science.gov (United States)

    Wei, Yuhan; Pan, Caiyuan; Li, Binyao; Han, Yanchun

    2007-03-01

    Self-assembly morphology effects on the crystalline behavior of asymmetric semicrystalline block copolymer polystyrene-block-poly(L-lactic acid) thin film were investigated. Firstly, a series of distinctive self-assembly aggregates, from spherical to ellipsoid and rhombic lamellar micelles (two different kinds of rhombic micelles, defined as rhomb 1 and rhomb 2) was prepared by means of promoting the solvent selectivity. Then, the effects of these self-assembly aggregates on crystallization at the early stage of film evolution were investigated by in situ hot stage atomic force microscopy. Heterogeneous nucleation initiated from the spherical micelles and dendrites with flat on crystals appeared with increasing temperature. At high temperature, protruding structures were observed due to the thickening of the flat-on crystals and finally more thermodynamically stable crystallization formed. Annealing the rhombic lamellar micelles resulted in different phenomena. Turtle-shell-like crystalline structure initiated from the periphery of the rhombic micelle 1 and spread over the whole film surface in the presence of mostly noncrystalline domain interior. Erosion and small hole appeared at the surface of the rhombic lamellar micelle 2; no crystallization like that in rhomb 1 occurred. It indicated that the chain-folding degree was different in these two micelles, which resulted in different annealing behaviors.

  19. Polymorphism of fibrillar structures depending on the size of assembled Aβ17-42 peptides

    Science.gov (United States)

    Cheon, Mookyung; Kang, Mooseok; Chang, Iksoo

    2016-01-01

    The size of assembled Aβ17-42 peptides can determine polymorphism during oligomerization and fibrillization, but the mechanism of this effect is unknown. Starting from separate random monomers, various fibrillar oligomers with distinct structural characteristics were identified using discontinuous molecular dynamics simulations based on a coarse-grained protein model. From the structures observed in the simulations, two characteristic oligomer sizes emerged, trimer and paranuclei, which generated distinct structural patterns during fibrillization. A majority of the simulations for trimers and tetramers formed non-fibrillar oligomers, which primarily progress to off-pathway oligomers. Pentamers and hexamers were significantly converted into U-shape fibrillar structures, meaning that these oligomers, called paranuclei, might be potent on-pathway intermediates in fibril formation. Fibrillar oligomers larger than hexamers generated substantial polymorphism in which hybrid structures were readily formed and homogeneous fibrillar structures appeared infrequently. PMID:27901087

  20. Rapid centriole assembly in Naegleria reveals conserved roles for both de novo and mentored assembly.

    Science.gov (United States)

    Fritz-Laylin, Lillian K; Levy, Yaron Y; Levitan, Edward; Chen, Sean; Cande, W Zacheus; Lai, Elaine Y; Fulton, Chandler

    2016-03-01

    Centrioles are eukaryotic organelles whose number and position are critical for cilia formation and mitosis. Many cell types assemble new centrioles next to existing ones ("templated" or mentored assembly). Under certain conditions, centrioles also form without pre-existing centrioles (de novo). The synchronous differentiation of Naegleria amoebae to flagellates represents a unique opportunity to study centriole assembly, as nearly 100% of the population transitions from having no centrioles to having two within minutes. Here, we find that Naegleria forms its first centriole de novo, immediately followed by mentored assembly of the second. We also find both de novo and mentored assembly distributed among all major eukaryote lineages. We therefore propose that both modes are ancestral and have been conserved because they serve complementary roles, with de novo assembly as the default when no pre-existing centriole is available, and mentored assembly allowing precise regulation of number, timing, and location of centriole assembly. © 2016 Wiley Periodicals, Inc.

  1. Next-generation transcriptome assembly

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Jeffrey A.; Wang, Zhong

    2011-09-01

    Transcriptomics studies often rely on partial reference transcriptomes that fail to capture the full catalog of transcripts and their variations. Recent advances in sequencing technologies and assembly algorithms have facilitated the reconstruction of the entire transcriptome by deep RNA sequencing (RNA-seq), even without a reference genome. However, transcriptome assembly from billions of RNA-seq reads, which are often very short, poses a significant informatics challenge. This Review summarizes the recent developments in transcriptome assembly approaches - reference-based, de novo and combined strategies-along with some perspectives on transcriptome assembly in the near future.

  2. Software design for the Tritium System Test Assembly

    International Nuclear Information System (INIS)

    Claborn, G.W.; Heaphy, R.T.; Lewis, P.S.; Mann, L.W.; Nielson, C.W.

    1983-01-01

    The control system for the Tritium Systems Test Assembly (TSTA) must execute complicated algorithms for the control of several sophisticated subsystems. It must implement this control with requirements for easy modifiability, for high availability, and provide stringent protection for personnel and the environment. Software techniques used to deal with these requirements are described, including modularization based on the structure of the physical systems, a two-level hierarchy of concurrency, a dynamically modifiable man-machine interface, and a specification and documentation language based on a computerized form of structured flowcharts

  3. Software design for the Tritium Systems Test Assembly

    International Nuclear Information System (INIS)

    Claborn, G.W.; Keaphy, R.T.

    1983-01-01

    The control system for the Tritium Systems Test Assembly (TSTA) must execute complicated algorithms for the control of several sophisticated subsystems. It must implement this control with requirements for easy modifiability, for high availability, and provide stringent protection for personnel and the environment. Software techniques used to deal with these requirements are described, including modularization based on the structure of the physical systems, a two-level hierarchy of concurrency, a dynamically modifiable manmachine interface, and a specification and documentation language based on a computerized form of structured flowcharts

  4. IEEE C37.82-1987: IEEE standard for the qualification of switchgear assemblies for Class 1E applications in nuclear power generating stations

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This document describes the methods and requirements for qualifying switchgear assemblies for indoor areas outside of the containment in nuclear power generating stations. These assemblies include (1) metal-enclosed low-voltage power circuit breaker switchgear assemblies, as defined in ANSI/IEEE C37.20.1-1987, (2) metal-clad switchgear assemblies, as defined in ANSI/IEEE C37.20.2-1987, (3) metal-enclosed bus, as defined in ANSI/IEEE C37.23-1987, and (4) metal-enclosed interrupter switchgear assemblies, as defined in ANSI/IEEE C37.20.3-1987. The purpose of this document is to provide amplification of the general requirements of ANSI/IEEE Std 323-1983 as they apply to the specific features of Class 1E switchgear assemblies. Where differences exist between this document and ANSI/IEEE Std 323-1983, this document takes precedence insofar as switchgear assemblies are concerned

  5. Human Assisted Assembly Processes

    Energy Technology Data Exchange (ETDEWEB)

    CALTON,TERRI L.; PETERS,RALPH R.

    2000-01-01

    Automatic assembly sequencing and visualization tools are valuable in determining the best assembly sequences, but without Human Factors and Figure Models (HFFMs) it is difficult to evaluate or visualize human interaction. In industry, accelerating technological advances and shorter market windows have forced companies to turn to an agile manufacturing paradigm. This trend has promoted computerized automation of product design and manufacturing processes, such as automated assembly planning. However, all automated assembly planning software tools assume that the individual components fly into their assembled configuration and generate what appear to be a perfectly valid operations, but in reality the operations cannot physically be carried out by a human. Similarly, human figure modeling algorithms may indicate that assembly operations are not feasible and consequently force design modifications; however, if they had the capability to quickly generate alternative assembly sequences, they might have identified a feasible solution. To solve this problem HFFMs must be integrated with automated assembly planning to allow engineers to verify that assembly operations are possible and to see ways to make the designs even better. Factories will very likely put humans and robots together in cooperative environments to meet the demands for customized products, for purposes including robotic and automated assembly. For robots to work harmoniously within an integrated environment with humans the robots must have cooperative operational skills. For example, in a human only environment, humans may tolerate collisions with one another if they did not cause much pain. This level of tolerance may or may not apply to robot-human environments. Humans expect that robots will be able to operate and navigate in their environments without collisions or interference. The ability to accomplish this is linked to the sensing capabilities available. Current work in the field of cooperative

  6. Heterogeneous assembly for plutonium multi recycling in PWRs: the Corail concept

    International Nuclear Information System (INIS)

    Youinou, G.; Zaetta, A.; Vasile, A.; Delpech, M.; Rohart, M.; Guillet, J.L.

    2001-01-01

    The CORAIL assembly is a standard 17 x 17 PWR fuel assembly containing 180 UO 2 rods and 84 MOX rods located at the periphery to limit the hot-channel factor. After many recycling, the plutonium content stabilizes around 8% and the U 235 enrichment around 4.8% (for a 3 u 15000 MWd/t fuel cycle length). An all-CORAIL park would have a zero plutonium mass balance, and compared with an all-UO 2 park the gain in terms of Separating Work Units and natural uranium would be between 15% and 20%. Detailed calculations of a 1300 MWe PWR loaded with such assemblies show that its control would not require the use of enriched boron. Burnable poison is necessary to limit the hot-channel factor. (author)

  7. Self-Assembly of Infinite Structures

    Directory of Open Access Journals (Sweden)

    Scott M. Summers

    2009-06-01

    Full Text Available We review some recent results related to the self-assembly of infinite structures in the Tile Assembly Model. These results include impossibility results, as well as novel tile assembly systems in which shapes and patterns that represent various notions of computation self-assemble. Several open questions are also presented and motivated.

  8. Benefits of Instructed Responding in Manual Assembly Tasks: An ERP Approach

    Directory of Open Access Journals (Sweden)

    Pavle eMijović

    2016-04-01

    Full Text Available The majority of neuroergonomics studies are focused mainly on investigating the interaction between operators and automated systems. Far less attention has been dedicated to the investigation of brain processes in more traditional workplaces, such as manual assembly, which are still ubiquitous in industry. The present study investigates whether assembly workers’ attention can be enhanced if they are instructed with which hand to initiate the assembly operation, as opposed to the case when they can commence the operation with whichever hand they prefer. For this aim, we replicated a specific workplace, where seventeen participants in the study simulated a manual assembly operation of the rubber hoses that are used in vehicle hydraulic brake systems, while wearing wireless electroencephalography (EEG. The specific EEG feature of interest for this study was the P300 components’ amplitude of the event-related potential (ERP, as it has previously been shown that it is positively related to human attention. The behavioral attention-related modality of reaction times (RTs was also recorded. Participants were presented with two distinct tasks during the simulated operation, which were counterbalanced across participants. In the first task, digits were used as indicators for the operation initiation (Numbers task, where participants could freely choose with which hand they would commence the action upon seeing the digit. In the second task, participants were presented with arrows, which served as instructed operation initiators (Arrows task, and they were instructed to start each operation with the hand that corresponded to the arrow direction. The results of this study showed that the P300 amplitude was significantly higher in the instructed condition. Interestingly, the RTs did not differ across any task conditions. This, together with the other findings of this study, suggests that attention levels can be increased using instructed responses

  9. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Anthony, A.J.

    1980-01-01

    A bimetallic spacer means is cooperatively associated with a nuclear fuel assembly and operative to resist the occurrence of in-reactor bowing of the nuclear fuel assembly. The bimetallic spacer means in one embodiment of the invention includes a space grid formed, at least principally, of zircaloy to the external surface of which are attached a plurality of stainless steel strips. In another embodiment the strips are attached to fuel pins. In each of the embodiments, the stainless steel strips during power production expand outwardly to a greater extent than do the members to which the stainless steel strips are attached, thereby forming stiff springs which abut against like bimetallic spacer means with which the other nuclear fuel assemblies are provided in a given nuclear reactor core to thus prevent the occurrence of in-reactor bowing of the nuclear fuel assemblies. (author)

  10. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    Betten, P.R.

    1976-01-01

    Under the invention the fuel assembly is particularly suitable for liquid metal cooled fast neutron breeder reactors. Hence, according to the invention a fuel assembly cladding includes inward corrugations with respect to the remainder of the cladding according to a recurring pattern determined by the pitch of the metal wire helically wound round the fuel rods of the assembly. The parts of the cladding pressed inwards correspond to the areas in which the wire encircling the peripheral fuel rods is generally located apart from the cladding, thereby reducing the play between the cladding and the peripheral fuel rods situated in these areas. The reduction in the play in turn improves the coolant flow in the internal secondary channels of the fuel assembly to the detriment of the flow in the peripheral secondary channels and thereby establishes a better coolant fluid temperature profile [fr

  11. Method and apparatus for assembling a permanent magnet pole assembly

    Science.gov (United States)

    Carl, Jr., Ralph James; Bagepalli, Bharat Sampathkumaran [Niskayuna, NY; Jansen, Patrick Lee [Scotia, NY; Dawson, Richard Nils [Voorheesville, NY; Qu, Ronghai [Clifton Park, NY; Avanesov, Mikhail Avramovich [Moscow, RU

    2009-08-11

    A pole assembly for a rotor, the pole assembly includes a permanent magnet pole including at least one permanent magnet block, a plurality of laminations including a pole cap mechanically coupled to the pole, and a plurality of laminations including a base plate mechanically coupled to the pole.

  12. TPX assembly plan

    International Nuclear Information System (INIS)

    Knutson, D.

    1993-01-01

    The TPX machine will be assembled in the TFTR Test Cell at the Plasma Physics Laboratory, utilizing the existing TFTR machine foundation. Preparation of the area for assembly will begin after completion of the decontamination and decommissioning phase on TFTR and certification that the radiation levels remaining, if any, are consistent with the types of operations planned. Assembly operations begin with the arrival of the first components, and conclude, approximately 24 months later, with the successful completion of the integrated systems tests and the achievement of a first plasma

  13. The AAA-ATPase NVL2 is a telomerase component essential for holoenzyme assembly

    Energy Technology Data Exchange (ETDEWEB)

    Her, Joonyoung [Departments of Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749 (Korea, Republic of); Chung, In Kwon, E-mail: topoviro@yonsei.ac.kr [Departments of Biology and Integrated Omics for Biomedical Science, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-01-20

    Highlights: Black-Right-Pointing-Pointer Identification of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. Black-Right-Pointing-Pointer NVL2 associates with catalytically active telomerase via an interaction with hTERT. Black-Right-Pointing-Pointer NVL2 is a telomerase component essential for holoenzyme assembly. Black-Right-Pointing-Pointer ATP-binding activity of NVL2 is required for hTERT binding and telomerase assembly. -- Abstract: Continued cell proliferation requires telomerase to maintain functional telomeres that are essential for chromosome integrity. Although the core enzyme includes a telomerase reverse transcriptase (TERT) and a telomerase RNA component (TERC), a number of auxiliary proteins have been identified to regulate telomerase assembly, localization, and enzymatic activity. Here we describe the characterization of the AAA-ATPase NVL2 as a novel hTERT-interacting protein. NVL2 interacts and co-localizes with hTERT in the nucleolus. NLV2 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT. Depletion of endogenous NVL2 by small interfering RNA led to a decrease in hTERT without affecting the steady-state levels of hTERT mRNA, thereby reducing telomerase activity, suggesting that NVL2 is an essential component of the telomerase holoenzyme. We also found that ATP-binding activity of NVL2 is required for hTERT binding as well as telomerase assembly. Our findings suggest that NVL2, in addition to its role in ribosome biosynthesis, is essential for telomerase biogenesis and provides an alternative approach for inhibiting telomerase activity in cancer.

  14. Fuel assembly

    International Nuclear Information System (INIS)

    Wataumi, Kazutoshi; Tajiri, Hiroshi.

    1992-01-01

    In a fuel assembly of a BWR type reactor, a pellet to be loaded comprises an external layer of fissile materials containing burnable poisons and an internal layer of fissile materials not containing burnable poison. For example, there is provided a dual type pellet comprising an external layer made of UO 2 incorporated with Gd 2 O 3 at a predetermined concentration as the burnable poisons and an internal layer made of UO 2 not containing Gd 2 O 3 . The amount of the burnable poisons required for predetermined places is controlled by the thickness of the ring of the external layer. This can dissipate an unnecessary poisoning effect at the final stage of the combustion cycle. Further, since only one or a few kinds of powder mixture of the burnable poisons and the fissile materials is necessary, production and product control can be facilitated. (I.N.)

  15. Key aromatic/hydrophobic amino acids controlling a cross-amyloid peptide interaction versus amyloid self-assembly.

    Science.gov (United States)

    Bakou, Maria; Hille, Kathleen; Kracklauer, Michael; Spanopoulou, Anna; Frost, Christina V; Malideli, Eleni; Yan, Li-Mei; Caporale, Andrea; Zacharias, Martin; Kapurniotu, Aphrodite

    2017-09-01

    The interaction of the intrinsically disordered polypeptide islet amyloid polypeptide (IAPP), which is associated with type 2 diabetes (T2D), with the Alzheimer's disease amyloid-β (Aβ) peptide modulates their self-assembly into amyloid fibrils and may link the pathogeneses of these two cell-degenerative diseases. However, the molecular determinants of this interaction remain elusive. Using a systematic alanine scan approach, fluorescence spectroscopy, and other biophysical methods, including heterocomplex pulldown assays, far-UV CD spectroscopy, the thioflavin T binding assay, transmission EM, and molecular dynamics simulations, here we identified single aromatic/hydrophobic residues within the amyloid core IAPP region as hot spots or key residues of its cross-interaction with Aβ40(42) peptide. Importantly, we also find that none of these residues in isolation plays a key role in IAPP self-assembly, whereas simultaneous substitution of four aromatic/hydrophobic residues with Ala dramatically impairs both IAPP self-assembly and hetero-assembly with Aβ40(42). Furthermore, our experiments yielded several novel IAPP analogs, whose sequences are highly similar to that of IAPP but have distinct amyloid self- or cross-interaction potentials. The identified similarities and major differences controlling IAPP cross-peptide interaction with Aβ40(42) versus its amyloid self-assembly offer a molecular basis for understanding the underlying mechanisms. We propose that these insights will aid in designing intervention strategies and novel IAPP analogs for the management of type 2 diabetes, Alzheimer's disease, or other diseases related to IAPP dysfunction or cross-amyloid interactions. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Dynamic response of a typical synchrotron magnet/girder assembly

    International Nuclear Information System (INIS)

    Jendrzejczyk, J.A.; Smith, R.K.; Vogt, M.E.

    1993-06-01

    In the Advanced Photon Source, the synchrotron booster ring accelerates positrons to the required energy level of 7 GeV. The positrons are then injected into the storage ring where they continue to orbit for 10--15 h. The storage ring quadrupoles have very stringent vibration criteria that must be satisfied to ensure that beam emittance growth is within acceptable limits, viz., <10%. Because the synchrotron booster ring is not operated after particle insertion into the storage ring, its vibration response is not a critical issue relative to the performance of the storage ring beam. Nevertheless, the synchrotron pulses at a frequency of 2 Hz, and if a vibration response frequency of the synchrotron magnet/girder assembly were to coincide with the pulsation frequency or its near harmonics, large-amplitude motion could result, with the effect that it could compromise the operation of the synchrotron. Due to the complex dynamics of the synchrotron magnet/girder assembly, it is necessary to measure the dynamic response of a prototypic assembly and its components to ensure that the inherent dynamic response frequencies are not equal to 2 Hz or any near harmonics. Dynamic-response measurement of the synchrotron girder assembly and component magnets is the subject of this report

  17. Thermal-hydraulic calculation and analysis on helium cooled ceramic breeder pebble bed assembly for in-pile irradiation and in-situ tritium extraction

    International Nuclear Information System (INIS)

    Guo Chunqiu; Xie Jiachun; Liu Xingmin

    2013-01-01

    In-pile irradiation and in-situ tritium extraction experiment is one of associated domestic research projects in ITER special program. According to the technical requirements of in-pile irradiation experiment of helium cooled ceramic breeder (ceramic) pebble bed assembly in a research reactor, the feasibility of the design for the in-pile irradiation and in-situ tritium extraction experiment of ceramic pebble bed assembly was evaluated. By conducting thermal-hydraulic design calculation with different in-pile irradiation channels, locations and structure parameters for ceramic pebble bed assembly, a reasonable design scheme of ceramic pebble bed assembly satisfying the design requirements for in-pile irradiation was obtained. (authors)

  18. Hierarchical recruitment of ribosomal proteins and assembly factors remodels nucleolar pre-60S ribosomes.

    Science.gov (United States)

    Biedka, Stephanie; Micic, Jelena; Wilson, Daniel; Brown, Hailey; Diorio-Toth, Luke; Woolford, John L

    2018-04-24

    Ribosome biogenesis involves numerous preribosomal RNA (pre-rRNA) processing events to remove internal and external transcribed spacer sequences, ultimately yielding three mature rRNAs. Removal of the internal transcribed spacer 2 spacer RNA is the final step in large subunit pre-rRNA processing and begins with endonucleolytic cleavage at the C 2 site of 27SB pre-rRNA. C 2 cleavage requires the hierarchical recruitment of 11 ribosomal proteins and 14 ribosome assembly factors. However, the function of these proteins in C 2 cleavage remained unclear. In this study, we have performed a detailed analysis of the effects of depleting proteins required for C 2 cleavage and interpreted these results using cryo-electron microscopy structures of assembling 60S subunits. This work revealed that these proteins are required for remodeling of several neighborhoods, including two major functional centers of the 60S subunit, suggesting that these remodeling events form a checkpoint leading to C 2 cleavage. Interestingly, when C 2 cleavage is directly blocked by depleting or inactivating the C 2 endonuclease, assembly progresses through all other subsequent steps. © 2018 Biedka et al.

  19. Design and Testing of the Fusion Virtual Assembly System FVAS1.0

    International Nuclear Information System (INIS)

    Pengcheng Long; Songlin Liu; Yican Wu

    2006-01-01

    Virtual assembly (VA), utilizing virtual reality (VR) technologies to plan and evaluate assembly process, retains the benefits (time-saving, inexpensive and no hazardous) of VR technologies and conquers the shortcoming of physical prototypes, such as long circle, high cost, low precision, and so on. Presented in this paper is the Fusion Virtual Assembly System FVAS 1.0 that makes possible engineering application for assemblies of large-scale complex nuclear facilities. FVAS 1.0 is designed to support the planning, evaluation and demonstration of assembly process, and training assemblers, and to work on PC (personal computer) platform. In this paper, architecture and main features of FVAS are introduced firstly. Then, design of the key sections (such as collision detection, virtual roaming) are described in detail. Finally, some successful application cases are presented. To enhance the real-time performance for large-scale nuclear facilities simulation, a policy based on separation of display scene and collision detection scene has been adopted. The display scene can be predigested to reduce the time of scene refreshment, and the collision detection performance is greatly improved by using the mature interference check ability of commercial CAD systems. Convenient observation mechanism brings more practicability. So a multi-viewpoints roaming scheme has been utilized to facilitate users' assembly operation. Users can obtain much optical information from multiple angles by switching between multi-viewpoints. The ESAT superconducting tokamak is characterized by large volume, complicated constitution and high assembly precision, e.g. the strict precision requirement in the assembly for the three tori (the tori of vacuum vessel, thermal shield, and toroidal coil). FVAS 1.0 has succeeded in demonstrating the assembly process of ESAT components. Furthermore, FVAS 1.0 has been applied to evaluate FDS-I (Fusion-Driven Sub-critical system) concept from assembly point of

  20. Assembly of a Full-Scale External Tank Barrel Section Using Friction Stir Welding

    Science.gov (United States)

    Jones, Chip; Adams, Glynn

    1999-01-01

    A full-scale pathfinder barrel section of the External Tank for the National Aeronautics and Space Administration (NASA) Space Transport System (Space Shuttle) has been assembled at Marshall Space Flight Center (MSFC) via a collaborative effort between NASA/MSFC and Lockheed Martin Michoud Space Systems. The barrel section is 27.5 feet in diameter and 15 feet in height. The barrel was assembled using Super-Light-Weight (SLWT), orthogrid, Al-Li 2195 panel sections and a single longeron panel. A vertical weld tool at MSFC was modified to accommodate FSW and used to assemble the barrel. These modifications included the addition of a FSW weld head and new controller hardware and software, the addition of a backing anvil and the replacement of the clamping system with individually actuated clamps. Weld process 4evelopment was initially conducted to optimize the process for the welds required for completing the assembly. The variable thickness welds in the longeron section were conducted via both two-sided welds and with the use of a retractable pin tool. The barrel assembly was completed in October 1998. Details of the vertical weld tool modifications and the assembly process are presented.

  1. Dynamic behaviour of diagnostic assemblies

    International Nuclear Information System (INIS)

    Pecinka, L.

    1980-01-01

    The methodology is shown of calculating the frequency spectrum of a diagnostic assembly. The oscillations of the assembly as a whole, of a fuel rod bundle, the assembly jacket and of the individual rods in the bundle were considered. The manufacture is suggested of a model assembly which would be used for testing forced vibrations using an experimental water loop. (M.S.)

  2. Framatome experience in fuel assembly repair and reconstitution

    International Nuclear Information System (INIS)

    Leroy, G.

    1998-01-01

    Since 1985, FRAMATOME has build up extensive experience in the poolside replacement of fuel rods for repair or R and D purposes and the reconstitution of fuel assemblies (i.e. replacement of a damaged structure to enable reuse of the fuel rod bundle). This experience feedback enables FRAMATOME to improve in steps the technical process and the equipment used for the above operations in order to enhance their performance in terms of setup, flexibility, operating time and safety. In parallel, the fuel assembly and fuel rod designs have been modified to meet the same goals. The paper will describe: - the overall experience of FRAMATOME with UO 2 fuel as well as MOX fuel; the usual technical process used for fuel replacement and the corresponding equipment set; - the usual technical process for fuel assembly reconstitution and the corresponding equipment set. This process is rather unique since it takes profit of the specific FRAMATOME fuel assembly design with removable top and bottom nozzles, so that fuel rods insertion by pulling through in the new structure is similar to what is done in the manufacturing plant; - the usual inspections done on the fuel rods and/or the fuel assembly; - the design of the new reconstitution equipment (STAR) compared with the previous one as well as their comparative performance. The final section will be a description of the alternative reconstitution process and equipment used by FRAMATOME in reactors in which the process cannot be used for several reasons such as compatibility or administrative authorization. This process involves the pushing of fuel rods into the new structure, requiring further precautions. (author)

  3. Selecting Operations for Assembler Encoding

    Directory of Open Access Journals (Sweden)

    Tomasz Praczyk

    2010-04-01

    Full Text Available Assembler Encoding is a neuro-evolutionary method in which a neural network is represented in the form of a simple program called Assembler Encoding Program. The task of the program is to create the so-called Network Definition Matrix which maintains all the information necessary to construct the network. To generate Assembler Encoding Programs and the subsequent neural networks evolutionary techniques are used.
    The performance of Assembler Encoding strongly depends on operations used in Assembler Encoding Programs. To select the most effective operations, experiments in the optimization and the predator-prey problem were carried out. In the experiments, Assembler Encoding Programs equipped with different types of operations were tested. The results of the tests are presented at the end of the paper.

  4. Criticality calculations for a critical assembly, graphite moderate, using 20% enriched uranium

    International Nuclear Information System (INIS)

    Almeida Ferreira, A.C. de; Hukai, R.Y.

    1975-01-01

    The construction of a Zero Power Reactor (ZPR) at the Instituto de Energia Atomica in order to measure the neutron characteristics (parameters) of HTGR reactors is proposed. The necessary quantity fissile uranium for these measurements has been calculed. Criticality studies of graphite moderated critical assemblies containing thorium have been made and the critical mass of each of several typical commercial HTGR compositions has been calculated using computer codes HAMMER and CITATION. Assemblies investigated contained a central cylindrical core region, simulating a typical commercial HTGR composition, a uranium-graphite driver region and a outer pure graphite reflector region. It is concluded that a 10Kg inventory of fissile uranium will be required for a program of measurements utilizing each of the several calculated assemblies

  5. Reversible unfolding of infectious prion assemblies reveals the existence of an oligomeric elementary brick.

    Directory of Open Access Journals (Sweden)

    Angélique Igel-Egalon

    2017-09-01

    Full Text Available Mammalian prions, the pathogens that cause transmissible spongiform encephalopathies, propagate by self-perpetuating the structural information stored in the abnormally folded, aggregated conformer (PrPSc of the host-encoded prion protein (PrPC. To date, no structural model related to prion assembly organization satisfactorily describes how strain-specified structural information is encoded and by which mechanism this information is transferred to PrPC. To achieve progress on this issue, we correlated the PrPSc quaternary structural transition from three distinct prion strains during unfolding and refolding with their templating activity. We reveal the existence of a mesoscopic organization in PrPSc through the packing of a highly stable oligomeric elementary subunit (suPrP, in which the strain structural determinant (SSD is encoded. Once kinetically trapped, this elementary subunit reversibly loses all replicative information. We demonstrate that acquisition of the templating interface and infectivity requires structural rearrangement of suPrP, in concert with its condensation. The existence of such an elementary brick scales down the SSD support to a small oligomer and provide a basis of reflexion for prion templating process and propagation.

  6. Flashback resistant pre-mixer assembly

    Science.gov (United States)

    Laster, Walter R [Oviedo, FL; Gambacorta, Domenico [Oviedo, FL

    2012-02-14

    A pre-mixer assembly associated with a fuel supply system for mixing of air and fuel upstream from a main combustion zone in a gas turbine engine. The pre-mixer assembly includes a swirler assembly disposed about a fuel injector of the fuel supply system and a pre-mixer transition member. The swirler assembly includes a forward end defining an air inlet and an opposed aft end. The pre-mixer transition member has a forward end affixed to the aft end of the swirler assembly and an opposed aft end defining an outlet of the pre-mixer assembly. The aft end of the pre-mixer transition member is spaced from a base plate such that a gap is formed between the aft end of the pre-mixer transition member and the base plate for permitting a flow of purge air therethrough to increase a velocity of the air/fuel mixture exiting the pre-mixer assembly.

  7. Self-Assembly of Octopus Nanoparticles into Pre-Programmed Finite Clusters

    Science.gov (United States)

    Halverson, Jonathan; Tkachenko, Alexei

    2012-02-01

    The precise control of the spatial arrangement of nanoparticles (NP) is often required to take full advantage of their novel optical and electronic properties. NPs have been shown to self-assemble into crystalline structures using either patchy surface regions or complementary DNA strands to direct the assembly. Due to a lack of specificity of the interactions these methods lead to only a limited number of structures. An emerging approach is to bind ssDNA at specific sites on the particle surface making so-called octopus NPs. Using octopus NPs we investigate the inverse problem of the self-assembly of finite clusters. That is, for a given target cluster (e.g., arranging the NPs on the vertices of a dodecahedron) what are the minimum number of complementary DNA strands needed for the robust self-assembly of the cluster from an initially homogeneous NP solution? Based on the results of Brownian dynamics simulations we have compiled a set of design rules for various target clusters including cubes, pyramids, dodecahedrons and truncated icosahedrons. Our approach leads to control over the kinetic pathway and has demonstrated nearly perfect yield of the target.

  8. Table-top deterministic and collective colloidal assembly using videoprojector lithography

    International Nuclear Information System (INIS)

    Cordeiro, J.; Zelsmann, M.; Honegger, T.; Picard, E.; Hadji, E.; Peyrade, D.

    2015-01-01

    Graphical abstract: - Highlights: • Micrometric resolution substrates are made at low cost using a videoprojector. • Fabricated patterns could be used as substrates for capillary force assembly. • Arrays of organized particles are made using a table-top capillary assembly tool. • This process offers a new bridge between the colloidal domain and the chip world. - Abstract: In the field of micro- and nanotechnology, most lithography and fabrication tools coming from the microelectronic industry are expensive, time-consuming and may need some masks that have to be subcontracted. Such approach is not suitable for other fields that require rapid prototyping such as chemistry, life science or energy and may hinder research creativity. In this work, we present two table-top equipments dedicated to the fabrication of deterministic colloidal particles assemblies onto micro-structured substrates. We show that, with a limited modification of the optics of a standard videoprojector, it is possible to quickly obtain substrates with thousands of micrometric features. Then, we combine these substrates with thermodynamic colloidal assembly and generate arrays of particles without defects. This work opens the way to a simple and table-top fabrication of devices based on colloidal particles

  9. Table-top deterministic and collective colloidal assembly using videoprojector lithography

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, J. [Univ Grenoble Alpes, F-38000 Grenoble (France); CNRS, LTM, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38000 Grenoble (France); Zelsmann, M., E-mail: marc.zelsmann@cea.fr [Univ Grenoble Alpes, F-38000 Grenoble (France); CNRS, LTM, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38000 Grenoble (France); Honegger, T. [Univ Grenoble Alpes, F-38000 Grenoble (France); CNRS, LTM, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38000 Grenoble (France); Picard, E.; Hadji, E. [Univ Grenoble Alpes, F-38000 Grenoble (France); CEA, INAC-SP2M, F-38000 Grenoble (France); Peyrade, D. [Univ Grenoble Alpes, F-38000 Grenoble (France); CNRS, LTM, F-38000 Grenoble (France); CEA, LETI, MINATEC Campus, F-38000 Grenoble (France)

    2015-09-15

    Graphical abstract: - Highlights: • Micrometric resolution substrates are made at low cost using a videoprojector. • Fabricated patterns could be used as substrates for capillary force assembly. • Arrays of organized particles are made using a table-top capillary assembly tool. • This process offers a new bridge between the colloidal domain and the chip world. - Abstract: In the field of micro- and nanotechnology, most lithography and fabrication tools coming from the microelectronic industry are expensive, time-consuming and may need some masks that have to be subcontracted. Such approach is not suitable for other fields that require rapid prototyping such as chemistry, life science or energy and may hinder research creativity. In this work, we present two table-top equipments dedicated to the fabrication of deterministic colloidal particles assemblies onto micro-structured substrates. We show that, with a limited modification of the optics of a standard videoprojector, it is possible to quickly obtain substrates with thousands of micrometric features. Then, we combine these substrates with thermodynamic colloidal assembly and generate arrays of particles without defects. This work opens the way to a simple and table-top fabrication of devices based on colloidal particles.

  10. Design and fabrication of self-powered in-core neutron flux monitor assembly

    International Nuclear Information System (INIS)

    Chung, M.K.; Cho, S.W.; Kang, H.D.; Cho, K.K.; Cho, B.S.; Kang, S.S.

    1980-01-01

    This is the final report on the prototypical fabrication of an in-core neutron flux monitor detector assembly for a specific power reactor conducted by KAERI from July 1, 1978 to December 31, 1979. It is well known that power reactors require a large number of in-core neutron flux detector for reactor regulation and the structures of detector assemblies are different from reactor to reactor. Therefore, from the nature of this project, it should be noted here that the target model of the prototypical farbrication of an in-core neutron flux monitor detector assembly is a VFD-2 System for Wolsung CANDU. It is concluded that fabrication of in-core neutron flux monitor detector assembly for CANDU reactor is technically feasible and will bring economical benefit as much as 50 % of the unit price if they are fabricated in Korea by using partially materials which are available from local market. (author)

  11. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    Sasaki, Y.; Tashima, J.

    1975-01-01

    A description is given of nuclear reactor fuel assemblies arranged in the form of a lattice wherein there is attached to the interface of one of two adjacent fuel assemblies a plate spring having a concave portion curved toward said interface and to the interface of the other fuel assembly a plate spring having a convex portion curved away from said interface

  12. Low Cost Electrode Assembly for EEG Recordings in Mice

    Directory of Open Access Journals (Sweden)

    Emily C. Vogler

    2017-11-01

    Full Text Available Wireless electroencephalography (EEG of small animal subjects typically utilizes miniaturized EEG devices which require a robust recording and electrode assembly that remains in place while also being well-tolerated by the animal so as not to impair the ability of the animal to perform normal living activities or experimental tasks. We developed simple and fast electrode assembly and method of electrode implantation using electrode wires and wire-wrap technology that provides both higher survival and success rates in obtaining recordings from the electrodes than methods using screws as electrodes. The new wire method results in a 51% improvement in the number of electrodes that successfully record EEG signal. Also, the electrode assembly remains affixed and provides EEG signal for at least a month after implantation. Screws often serve as recording electrodes, which require either drilling holes into the skull to insert screws or affixing screws to the surface of the skull with adhesive. Drilling holes large enough to insert screws can be invasive and damaging to brain tissue, using adhesives may interfere with conductance and result in a poor signal, and soldering screws to wire leads results in fragile connections. The methods presented in this article provide a robust implant that is minimally invasive and has a significantly higher success rate of electrode implantation. In addition, the implant remains affixed and produces good recordings for over a month, while using economical, easily obtained materials and skills readily available in most animal research laboratories.

  13. Design of the ITER Tokamak Assembly Tools

    International Nuclear Information System (INIS)

    Park, Hyunki; Her, Namil; Kim, Byungchul; Im, Kihak; Jung, Kijung; Lee, Jaehyuk; Im, Kisuk

    2006-01-01

    ITER (International Thermonuclear Experimental Reactor) Procurement allocation among the seven Parties, EU, JA, CN, IN , KO, RF and US had been decided in Dec. 2005. ITER Tokamak assembly tools is one of the nine components allocated to Korea for the construction of the ITER. Assembly tools except measurement and common tools are supplied to assemble the ITER Tokamak and classified into 9 groups according to components to be assembled. Among the 9 groups of assembly tools, large-sized Sector Sub-assembly Tools and Sector Assembly Tools are used at the first stage of ITER Tokamak construction and need to be designed faster than seven other assembly tools. ITER IT (International Team) proposed Korea to accomplish ITA (ITER Transitional Arrangements) Task on detailed design, manufacturing feasibility and contract specification of specific, large sized tools such as Upending Tool, Lifting Tool, Sector Sub-assembly Tool and Sector Assembly Tool in Oct. 2004. Based on the concept design by ITER IT, Korea carried out ITA Task on detailed design of large-sized and specific Sector Sub-assembly and Sector Assembly Tools until Mar. 2006. The Sector Sub-assembly Tools mainly consist of the Upending, Lifting, Vacuum Vessel Support and Bracing, and Sector Sub-assembly Tool, among which the design of three tools are herein. The Sector Assembly Tools mainly consist of the Toroidal Field (TF) Gravity Support Assembly, Sector In-pit Assembly, TF Coil Assembly, Vacuum Vessel (VV) Welding and Vacuum Vessel Thermal Shield (TS) Assembly Tool, among which the design of Sector In-pit Assembly Tool is described herein

  14. Judgement on the data for fuel assembly outlet temperatures of WWER fuel assemblies in power reactors based on measurements with experimental fuel assemblies

    International Nuclear Information System (INIS)

    Krause, F.

    1986-01-01

    In the period from 1980 to 1985, in the Rheinsberg nuclear power plant experimental fuel assemblies were used on lattices at the periphery of the core. These particular fuel assemblies dispose of an extensive in-core instrumentation with different sensors. Besides this, they are fit out with a device to systematically thottle the coolant flow. The large power gradient present at the core position of the experimental fuel assembly causes a temperature profile along the fuel assemblies which is well provable at the measuring points of the outlet temperature. Along the direction of flow this temperature profile in the coolant degrades only slowly. This effect is to be taken into account when measuring the fuel assembly outlet temperature of WWER fuel assemblies. Besides this, the results of the measurements hinted both at a γ-heating of the temperature measuring points and at tolerances in the calculation of the micro power density distribution. (author)

  15. Fuel assemblies

    International Nuclear Information System (INIS)

    Nagano, Mamoru; Yoshioka, Ritsuo

    1983-01-01

    Purpose: To effectively utilize nuclear fuels by increasing the reactivity of a fuel assembly and reduce the concentration at the central region thereof upon completion of the burning. Constitution: A fuel assembly is bisected into a central region and a peripheral region by disposing an inner channel box within a channel box. The flow rate of coolants passing through the central region is made greater than that in the peripheral region. The concentration of uranium 235 of the fuel rods in the central region is made higher. In such a structure, since the moderating effect in the central region is improved, the reactivity of the fuel assembly is increased and the uranium concentration in the central region upon completion of the burning can be reduced, fuel economy and effective utilization of uranium can be attained. (Kamimura, M.)

  16. Fuel assembly

    International Nuclear Information System (INIS)

    Nakatsuka, Masafumi; Matsuzuka, Ryuji.

    1976-01-01

    Object: To provide a fuel assembly which can decrease pressure loss of coolant to uniform temperature. Structure: A sectional area of a flow passage in the vicinity of an inner peripheral surface of a wrapper tube is limited over the entire length to prevent the temperature of a fuel element in the outermost peripheral portion from being excessively decreased to thereby flatten temperature distribution. To this end, a plurality of pincture-frame-like sheet metals constituting a spacer for supporting a fuel assembly, which has a plurality of fuel elements planted lengthwise and in given spaced relation within the wrapper tube, is disposed in longitudinal grooves and in stacked fashion to form a substantially honeycomb-like space in cross section. The fuel elements are inserted and supported in the space to form a fuel assembly. (Kamimura, M.)

  17. Origin Licensing Requires ATP Binding and Hydrolysis by the MCM Replicative Helicase

    Science.gov (United States)

    Coster, Gideon; Frigola, Jordi; Beuron, Fabienne; Morris, Edward P.; Diffley, John F.X.

    2014-01-01

    Summary Loading of the six related Minichromosome Maintenance (MCM) proteins as head-to-head double hexamers during DNA replication origin licensing is crucial for ensuring once-per-cell-cycle DNA replication in eukaryotic cells. Assembly of these prereplicative complexes (pre-RCs) requires the Origin Recognition Complex (ORC), Cdc6, and Cdt1. ORC, Cdc6, and MCM are members of the AAA+ family of ATPases, and pre-RC assembly requires ATP hydrolysis. Here we show that ORC and Cdc6 mutants defective in ATP hydrolysis are competent for origin licensing. However, ATP hydrolysis by Cdc6 is required to release nonproductive licensing intermediates. We show that ATP binding stabilizes the wild-type MCM hexamer. Moreover, by analyzing MCM containing mutant subunits, we show that ATP binding and hydrolysis by MCM are required for Cdt1 release and double hexamer formation. This work alters our view of how ATP is used by licensing factors to assemble pre-RCs. PMID:25087873

  18. Welding facilities for NPP assembling

    International Nuclear Information System (INIS)

    Rojtenberg, S.S.

    1987-01-01

    Recommendations concerning the choice of equipment for welding in pre-assembling work shops, in the enlarging assembling shops and at the assembling site, are given. Advanced production automatic welders and semiautomatic machines, applied during the NPP equipment assembling as well as automatic machines specially produced for welding the main reactor components and pipelines are described. Automatic and semiautomatic machine and manual welding post supply sources are considered

  19. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 4 AND 5 OF CRYSTAL RIVER UNIT 3

    International Nuclear Information System (INIS)

    Wright, Kenneth D.

    1997-01-01

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 4 and 5 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies

  20. Halo assembly bias and the tidal anisotropy of the local halo environment

    Science.gov (United States)

    Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.

    2018-05-01

    We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e. whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect, using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1 M⊙) ≲ 1014.9. We probe the large-scale environment, using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multiscale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.

  1. Developing An Effective Strategy to Configure Assembly Systems Using Lean Concepts

    Directory of Open Access Journals (Sweden)

    M.Eswaramoorthi

    2010-12-01

    Full Text Available The manufacturing industry has been pushed to adopt more effective production strategies to meet the challenges of shorter life cycle, higher quality, lower cost and wider variety of customer demands. This increased emphasis on achieving highly adaptive manufacturing with reduction in manufacturing costs and better utilization of manufacturing resources force to implementing new and efficient management techniques in their manufacturing operations. Some of the established tools in this context are lean practices. In manufacturing, assembly is one of the major activities that combine the machined components into final product. Decision on appropriate facility layout and viable assembly sequence (line balancing adaptable to takt time requirement with cost benefit is a challenging task. This paper proposes an integrated cost model for a typical assembly process to determine cost per part more precisely by considering seven types of "contributing factors". This procedure is performed under different takt time conditions to configure the assembly system in terms of cost per piece and to decide the adaptable layout. A prototype assembly system is established in this research to demonstrate the effectiveness of the cost model. The results show that there are significant variations in cost per piece with respect to changes in layout configurations and takt time.

  2. About fuel assemblies optimization in research reactor

    International Nuclear Information System (INIS)

    Malers, Yu.P.

    1992-01-01

    Ealier was considered an algorithm for optimization of fuel assembly arrangement in a research reator. The alggorithm was based on an analytical relation between distributions of energy release and fuel concentration and on the method of succesive linearization and partially integral-number programming. In the paper are solved the problems, appeared as a result of realization of the used approach and required more correct formulation of the algorithm and introduction in it some variations

  3. Composite turbine bucket assembly

    Science.gov (United States)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  4. The Current Working Conditions in Ugandan Apparel Assembly Plants.

    Science.gov (United States)

    Tebyetekerwa, Mike; Akankwasa, Nicholus Tayari; Marriam, Ifra

    2017-12-01

    The present rapid shift of industrialization from developed to developing countries requires developing countries to understand issues related to work organization, management, and working conditions. There are many factors slackening production, of which working conditions is part. A complete inquiry into the workers' working conditions can enable managements to reduce risks in the workplaces and improve productivity. Understanding and awareness of the benefits of workplace research and a probe into the working conditions in the Ugandan apparel assembly plants are urgently required. A total of 103 (70 women and 33 men) workers from five different plants were interviewed. Together with the top management of various plants, questionnaires about the workers' opinions of their physical working conditions were prepared. Data was collected using two methods: (1) questionnaire; and (2) observation of the workers during their work. The results indicated that poor plant working conditions were mainly contributed by the workers' social factors and the management policies. The government, together with the management, should work to improve the working conditions in the apparel assembly plants, as it greatly affects both.

  5. TOOL ASSEMBLY WITH BI-DIRECTIONAL BEARING

    Science.gov (United States)

    Longhurst, G.E.

    1961-07-11

    A two-direction motion bearing which is incorporated in a refueling nuclear fuel element trsnsfer tool assembly is described. A plurality of bi- directional bearing assembliesare fixed equi-distantly about the circumference of the transfer tool assembly to provide the tool assembly with a bearing surface- for both axial and rotational motion. Each bi-directional bearing assembly contains a plurality of circumferentially bulged rollers mounted in a unique arrangement which will provide a bearing surface for rotational movement of the tool assembly within a bore. The bi-direc tional bearing assembly itself is capable of rational motion and thus provides for longitudinal movement of the tool assembly.

  6. Colloidal polymers with controlled sequence and branching constructed from magnetic field assembled nanoparticles.

    Science.gov (United States)

    Bannwarth, Markus B; Utech, Stefanie; Ebert, Sandro; Weitz, David A; Crespy, Daniel; Landfester, Katharina

    2015-03-24

    The assembly of nanoparticles into polymer-like architectures is challenging and usually requires highly defined colloidal building blocks. Here, we show that the broad size-distribution of a simple dispersion of magnetic nanocolloids can be exploited to obtain various polymer-like architectures. The particles are assembled under an external magnetic field and permanently linked by thermal sintering. The remarkable variety of polymer-analogue architectures that arises from this simple process ranges from statistical and block copolymer-like sequencing to branched chains and networks. This library of architectures can be realized by controlling the sequencing of the particles and the junction points via a size-dependent self-assembly of the single building blocks.

  7. Optimizing DNA assembly based on statistical language modelling.

    Science.gov (United States)

    Fang, Gang; Zhang, Shemin; Dong, Yafei

    2017-12-15

    By successively assembling genetic parts such as BioBrick according to grammatical models, complex genetic constructs composed of dozens of functional blocks can be built. However, usually every category of genetic parts includes a few or many parts. With increasing quantity of genetic parts, the process of assembling more than a few sets of these parts can be expensive, time consuming and error prone. At the last step of assembling it is somewhat difficult to decide which part should be selected. Based on statistical language model, which is a probability distribution P(s) over strings S that attempts to reflect how frequently a string S occurs as a sentence, the most commonly used parts will be selected. Then, a dynamic programming algorithm was designed to figure out the solution of maximum probability. The algorithm optimizes the results of a genetic design based on a grammatical model and finds an optimal solution. In this way, redundant operations can be reduced and the time and cost required for conducting biological experiments can be minimized. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  8. Transient Analysis of a Gas-cooled Fast Reactor for Single Control Assembly Withdrawal

    International Nuclear Information System (INIS)

    Choi, Hangbok

    2014-01-01

    The Energy Multiplier Module (EMZ) system response has been evaluated for control assembly withdrawal transients. Currently the EM2 core is equipped with six cylindrical drum-type control assemblies in the reflector zone for excess reactivity control and power maneuvering during the operating core life. This study investigates the system response to the control assembly withdrawal accident with various rotational speeds and reactivity worth to determine feasible control assembly design requirements from the physics viewpoint. The simulations have been conducted for single control assembly withdrawal transients without scram by a gas-cooled reactor plant simulator, which is based on a simplified plant nodal model, including the point reactor kinetics, single channel core thermal-fluid model, and a turbo-machinery performance model. Simulations were conducted for the middle-of- cycle core, when the excess reactivity of the core is the highest. Control assembly withdrawal times were varied from 1 (runaway) to 180 sec and reactivity worth was varied from 100 to 400 pcm. For a single control assembly withdrawal, the simulation has shown that the peak fuel temperature is expected to be ~1820°C when the assembly worth is 200 pcm and the runaway time is 1 sec per 180 degree rotation. The peak temperature could be reduced to ~1780°C if the assembly is rotated out in a moderate speed such as 1 degree/sec. These peak temperatures give a thermal margin of 22 to 24% to the melting point of uranium carbide fuel. The results also indicate that the current design with a single control assembly worth of 314 pcm may need adjustments in the future design. (author)

  9. Fuel assembly spacer

    International Nuclear Information System (INIS)

    Shirakawa, Ken-etsu.

    1988-01-01

    Purpose: To reduce the pressure loss of coolants by fuel assembly spacers. Constitution: Spacers for supporting a fuel assembly are attached by means of a plurality of wires to an outer frame. The outer frame is made of shape memory alloy such that the wires are caused to slacken at normal temperature and the slacking of the wires is eliminated in excess of the transition temperature. Since the wires slacken at the normal temperature, fuel rods can be inserted easily. After the insertion of the fuel rods, when the entire portion or the outer frame is heated by water or gas at a predetermined temperature, the outer frame resumes its previously memorized shape to tighten the wires and, accordingly, the fuel rods can be supported firmly. In this way, since the fuel rods are inserted in the slacken state of the wires and, after the assembling, the outer frame resumes its memorized shape, the assembling work can be conducted efficiently. (Kamimura, M.)

  10. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2011-01-01

    Tuesday 12 April at 14.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 20 April 2010 Presentation and approval of the Activity Report 2010 Presentation and approval of the Financial Report 2010 Presentation and approval of the Auditors Report 2010 Programme for 2011 Presentation et and approval of the draft budget and subscription rate 2012 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly ma...

  11. Ordinary General Assembly

    CERN Multimedia

    Staff Association

    2011-01-01

    Tuesday 12 April at 14.00 Council Chamber, Bldg 503 In conformity with the Statutes of the Staff Association, an ordinary General Assembly is organized once a year (article IV.2.1). Agenda   Adoption of the Agenda Approval of the Draft Minutes of the Ordinary General Assembly of 20 April 2010 Presentation and approval of the Activity Report 2010 Presentation and approval of the Financial Report 2010 Presentation and approval of the Auditors Report 2010 Programme for 2011 Presentation and approval of the draft budget and subscription rate 2012 Election of the Election Committee Election of the Board of Auditors Miscellaneous We remind members of article IV.3.4 in the Statutes of the Association which reads: “After having dealt with all the items on the agenda, the members may, with the consent of the Assembly, have other matters discussed, but decisions may be taken only on the items listed on the agenda. Nevertheless, the Assembly may r...

  12. Optimizing de novo common wheat transcriptome assembly using short-read RNA-Seq data

    Directory of Open Access Journals (Sweden)

    Duan Jialei

    2012-08-01

    Full Text Available Abstract Background Rapid advances in next-generation sequencing methods have provided new opportunities for transcriptome sequencing (RNA-Seq. The unprecedented sequencing depth provided by RNA-Seq makes it a powerful and cost-efficient method for transcriptome study, and it has been widely used in model organisms and non-model organisms to identify and quantify RNA. For non-model organisms lacking well-defined genomes, de novo assembly is typically required for downstream RNA-Seq analyses, including SNP discovery and identification of genes differentially expressed by phenotypes. Although RNA-Seq has been successfully used to sequence many non-model organisms, the results of de novo assembly from short reads can still be improved by using recent bioinformatic developments. Results In this study, we used 212.6 million pair-end reads, which accounted for 16.2 Gb, to assemble the hexaploid wheat transcriptome. Two state-of-the-art assemblers, Trinity and Trans-ABySS, which use the single and multiple k-mer methods, respectively, were used, and the whole de novo assembly process was divided into the following four steps: pre-assembly, merging different samples, removal of redundancy and scaffolding. We documented every detail of these steps and how these steps influenced assembly performance to gain insight into transcriptome assembly from short reads. After optimization, the assembled transcripts were comparable to Sanger-derived ESTs in terms of both continuity and accuracy. We also provided considerable new wheat transcript data to the community. Conclusions It is feasible to assemble the hexaploid wheat transcriptome from short reads. Special attention should be paid to dealing with multiple samples to balance the spectrum of expression levels and redundancy. To obtain an accurate overview of RNA profiling, removal of redundancy may be crucial in de novo assembly.

  13. Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly

    Directory of Open Access Journals (Sweden)

    Amy J. Gerc

    2015-09-01

    Full Text Available The Type VI secretion system (T6SS is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches.

  14. Visualization of the Serratia Type VI Secretion System Reveals Unprovoked Attacks and Dynamic Assembly

    Science.gov (United States)

    Gerc, Amy J.; Diepold, Andreas; Trunk, Katharina; Porter, Michael; Rickman, Colin; Armitage, Judith P.; Stanley-Wall, Nicola R.; Coulthurst, Sarah J.

    2015-01-01

    Summary The Type VI secretion system (T6SS) is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo. We report that the localization and dynamic behavior of each of the components examined is distinct, revealing a multi-stage and dynamic assembly process for the T6SS machinery. We also show that the T6SS can assemble and fire without needing a cell contact trigger, defining an aggressive strategy that broadens target range and suggesting that activation of the T6SS is tailored to survival in specific niches. PMID:26387948

  15. New Insights into HTLV-1 Particle Structure, Assembly, and Gag-Gag Interactions in Living Cells

    Directory of Open Access Journals (Sweden)

    Jolene L. Johnson

    2011-06-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 has a reputation for being extremely difficult to study in cell culture. The challenges in propagating HTLV-1 has prevented a rigorous analysis of how these viruses replicate in cells, including the detailed steps involved in virus assembly. The details for how retrovirus particle assembly occurs are poorly understood, even for other more tractable retroviral systems. Recent studies on HTLV-1 using state-of-the-art cryo-electron microscopy and fluorescence-based biophysical approaches explored questions related to HTLV-1 particle size, Gag stoichiometry in virions, and Gag-Gag interactions in living cells. These results provided new and exciting insights into fundamental aspects of HTLV-1 particle assembly—which are distinct from those of other retroviruses, including HIV-1. The application of these and other novel biophysical approaches promise to provide exciting new insights into HTLV-1 replication.

  16. Different requirements of functional telomeres in neural stem cells and terminally differentiated neurons.

    Science.gov (United States)

    Lobanova, Anastasia; She, Robert; Pieraut, Simon; Clapp, Charlie; Maximov, Anton; Denchi, Eros Lazzerini

    2017-04-01

    Telomeres have been studied extensively in peripheral tissues, but their relevance in the nervous system remains poorly understood. Here, we examine the roles of telomeres at distinct stages of murine brain development by using lineage-specific genetic ablation of TRF2, an essential component of the shelterin complex that protects chromosome ends from the DNA damage response machinery. We found that functional telomeres are required for embryonic and adult neurogenesis, but their uncapping has surprisingly no detectable consequences on terminally differentiated neurons. Conditional knockout of TRF2 in post-mitotic immature neurons had virtually no detectable effect on circuit assembly, neuronal gene expression, and the behavior of adult animals despite triggering massive end-to-end chromosome fusions across the brain. These results suggest that telomeres are dispensable in terminally differentiated neurons and provide mechanistic insight into cognitive abnormalities associated with aberrant telomere length in humans. © 2017 Lobanova et al.; Published by Cold Spring Harbor Laboratory Press.

  17. ANALYSIS OF THE GAZE BEHAVIOUR OF THE WORKER ON THE CARBURETOR ASSEMBLY TASK

    Directory of Open Access Journals (Sweden)

    Novie Susanto

    2015-06-01

    Full Text Available This study presents analysis of the area of interest (AOI and the gaze behavior of human during assembly task. This study aims at investigating the human behavior in detail using an eye‐tracking system during assembly task using LEGO brick and an actual manufactured product, a carburetor. An analysis using heat map data based on the recorded videos from the eye-tracking system is taken into account to examine and investigate the gaze behavior of human. The results of this study show that the carburetor assembly requires more attention than the product made from LEGO bricks. About 50% of the participants experience the necessity to visually inspect the interim state of the work object during the simulation of the assembly sequence on the screen. They also show the tendency to want to be more certain about part fitting in the actual work object.

  18. Assembling Transgender Moments

    Science.gov (United States)

    Greteman, Adam J.

    2017-01-01

    In this article, the author seeks to assemble moments--scholarly, popular, and aesthetic--in order to explore the possibilities that emerge as moments collect in education's encounters with the needs, struggles, and possibilities of transgender lives and practices. Assembling moments, the author argues, illustrates the value of "moments"…

  19. Stress relief of ceramic components in high voltage assemblies. Final report

    International Nuclear Information System (INIS)

    Heinen, R.J.

    1979-02-01

    Two types of ceramic packages were evaluated to determine the effectiveness of encapsulating the ceramic components in beta eucryptite filled epoxy. The requirements (no high voltage breakdown, no ceramic cracking, and no encapsulant cracking) were met by the spark gap assembly, but the sprytron assembly had cracking in the encapsulant after thermal cycling. The encapsulation of the ceramic component in beta eucryptite filled epoxy with a stress decoupling material selectively applied in the stress concentrated areas were used to prevent cracking in the sprytron encapsulant. This method is proposed as the standard encapsulation process for high voltage ceramic components

  20. Thermal adaptation of mesophilic and thermophilic FtsZ assembly by modulation of the critical concentration.

    Directory of Open Access Journals (Sweden)

    Luis Concha-Marambio

    Full Text Available Cytokinesis is the last stage in the cell cycle. In prokaryotes, the protein FtsZ guides cell constriction by assembling into a contractile ring-shaped structure termed the Z-ring. Constriction of the Z-ring is driven by the GTPase activity of FtsZ that overcomes the energetic barrier between two protein conformations having different propensities to assemble into polymers. FtsZ is found in psychrophilic, mesophilic and thermophilic organisms thereby functioning at temperatures ranging from subzero to >100°C. To gain insight into the functional adaptations enabling assembly of FtsZ in distinct environmental conditions, we analyzed the energetics of FtsZ function from mesophilic Escherichia coli in comparison with FtsZ from thermophilic Methanocaldococcus jannaschii. Presumably, the assembly may be similarly modulated by temperature for both FtsZ orthologs. The temperature dependence of the first-order rates of nucleotide hydrolysis and of polymer disassembly, indicated an entropy-driven destabilization of the FtsZ-GTP intermediate. This destabilization was true for both mesophilic and thermophilic FtsZ, reflecting a conserved mechanism of disassembly. From the temperature dependence of the critical concentrations for polymerization, we detected a change of opposite sign in the heat capacity, that was partially explained by the specific changes in the solvent-accessible surface area between the free and polymerized states of FtsZ. At the physiological temperature, the assembly of both FtsZ orthologs was found to be driven by a small positive entropy. In contrast, the assembly occurred with a negative enthalpy for mesophilic FtsZ and with a positive enthalpy for thermophilic FtsZ. Notably, the assembly of both FtsZ orthologs is characterized by a critical concentration of similar value (1-2 μM at the environmental temperatures of their host organisms. These findings suggest a simple but robust mechanism of adaptation of FtsZ, previously shown

  1. Examination of leakage aspects through concrete - steel interfaces at and around containment penetration assemblies

    International Nuclear Information System (INIS)

    Chakrabarti, S.K.; Sai, A.S.R.; Basu, P.C.

    1994-01-01

    Penetration assemblies are parts required to be provided in the containment wall/dome to permit piping, mechanical devices, equipments, electrical cables, personnel movements etc. Integrity of arrangements with respect to leak tightness at or around these penetration assemblies, is of utmost importance for achieving safe functioning of containment. Considering the feasibilities in controlling leakages along different possible paths, it has been found necessary to examine in detail the leakage possibilities at concrete - steel interfaces at and around penetration assemblies. The present paper addresses this issue with respect to the important related aspects like constructional details, testing conditions, normal operating conditions, and the accidental situation associated with containment structures. (author)

  2. The Assembly of the LHC Short Straight Sections at CERN Work Organization, Quality Assurance and Lessons Learned

    CERN Document Server

    Bourcey, N; López, R; Poncet, A; Parma, V

    2007-01-01

    After 4 years of activity, the assembly of approximately 500 Short Straight Sections (SSS) for the LHC has come to an end at the beginning of 2007. This activity, which was initially foreseen in European industry, was in-sourced at CERN because of the insolvency of the prime contractor. While the quadrupole cold masses were produced in industry, the assembly within their cryostats was transferred to CERN and executed by an external company under a result-oriented contract. CERN procured cryostat components, set up a dedicated 2000 m2 assembly hall with all the specific assembly equipment and tooling and defined the assembly and testing procedures. The contractor took up responsibility for the delivery, on time, of assemblies according to the required quality. A dedicated CERN production and quality assurance team was constituted. A specific quality assurance plan was set up involving 2 additional contractors responsible for weld inspections on a total of about 20'000 assembly welds and the execution of about ...

  3. High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers

    KAUST Repository

    Kim, Gi-Hwan; Garcí a de Arquer, F. Pelayo; Yoon, Yung Jin; Lan, Xinzheng; Liu, Mengxia; Voznyy, Oleksandr; Yang, Zhenyu; Fan, Fengjia; Ip, Alexander H.; Kanjanaboos, Pongsakorn; Hoogland, Sjoerd; Kim, Jin Young; Sargent, Edward H.

    2015-01-01

    to voltage. With this goal in mind, self-assembled monolayers (SAMs) can be used to modify interface energy levels locally. However, to be effective SAMs must be made robust to treatment using the various solvents and ligands required for to fabricate high

  4. Keratinocytes express fibrillin and assemble microfibrils: implications for dermal matrix organization.

    Science.gov (United States)

    Haynes, S L; Shuttleworth, C A; Kielty, C M

    1997-07-01

    Fibrillin-containing microfibrils are key architectural structures of the upper dermis and integral components of the dermal elastic fibre network. Microfibril bundles intercalate into the dermal-epithelial junction and provide an elastic connection between the dermal elastic fibre network and the epidermis. Immunohistochemical studies have suggested that they are laid down both at the dermal-epithelial junction and in the deep dermis. While dermal fibroblasts are responsible for deposition of the elastin and microfibrillar components that comprise the elastic fibres of the deep dermis, the cellular origin of the microfibril bundles that extrude from the dermal-epithelial junction is not well defined. We have used fresh tissues, freshly isolated epidermis and primary human and porcine keratinocyte cultures to investigate the possibility that keratinocytes are responsible for deposition of these microfibrils. We have shown that keratinocytes in vivo and in vitro synthesize both fibrillin-1 and fibrillin-2, and assemble beaded microfibrils concurrently with expression of basement membrane collagen. These observations suggest that keratinocytes co-ordinate the secretion, deposition and assembly of these distinct structural elements of the dermal matrix, and have important implications for skin remodelling.

  5. Self-assembled gold coating enhances X-ray imaging of alginate microcapsules

    Science.gov (United States)

    Qie, Fengxiang; Astolfo, Alberto; Wickramaratna, Malsha; Behe, Martin; Evans, Margaret D. M.; Hughes, Timothy C.; Hao, Xiaojuan; Tan, Tianwei

    2015-01-01

    Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified AuNPs (PAuNPs) were coated onto the surface of negatively charged alginate MCs resulting in hybrids which possessed low cytotoxicity and high mechanical stability in vitro. As a result of their high localized Au concentration, the hybrid MCs exhibited a distinctive bright circular ring even with a low X-ray dose and rapid scanning in post-mortem imaging experiments facilitating their positive identification and potentially enabling them to be used for in vivo tracking experiments over multiple time-points.Therapeutic biomolecules produced from cells encapsulated within alginate microcapsules (MCs) offer a potential treatment for a number of diseases. However the fate of such MCs once implanted into the body is difficult to establish. Labelling the MCs with medical imaging contrast agents may aid their detection and give researchers the ability to track them over time thus aiding the development of such cellular therapies. Here we report the preparation of MCs with a self-assembled gold nanoparticle (AuNPs) coating which results in distinctive contrast and enables them to be readily identified using a conventional small animal X-ray micro-CT scanner. Cationic Reversible Addition-Fragmentation chain Transfer (RAFT) homopolymer modified Au

  6. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  7. CFD Analysis for Advanced Integrated Head Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Won Ho; Kang, Tae Kyo; Cho, Yeon Ho; Kim, Hyun Min [KEPCO Engineering and Construction Co., Daejeon (Korea, Republic of)

    2016-10-15

    The Integrated Head Assembly (IHA) is permanently installed on the reactor vessel closure head during the normal plant operation and refueling operation. It consists of a number of systems and components such as the head lifting system, seismic support system, Control Element Drive Mechanism (CEDM) cooling system, cable support system, cooling shroud assemblies. With the operating experiences of the IHA, the needs for the design change to the current APR1400 IHA arouse to improve the seismic resistance and to accommodate the convenient maintenance. In this paper, the effects of the design changes were rigorously studied for the various sizes of the inlet openings to assure the proper cooling of the CEDMs. And the system pressure differentials and required flow rate for the CEDM cooling fan were analyzed regarding the various operating conditions for determining the capacity of the fan. As a part of the design process of the AIHA, the number of air inlets and baffle regions are reduced by simplifying the design of the APR1400 IHA. The design change of the baffle regions has been made such that the maximum possible space are occupied inside the IHA cooling shroud shell while avoiding the interference with CEDMs. So, only the air inlet opening was studied for the design change to supply a sufficient cooling air flow for each CEDM. The size and location of the air inlets in middle cooling shroud assembly were determined by the CFD analyses of the AIHA. And the case CFD analyses were performed depending on the ambient air temperature and fan operating conditions. The size of the air inlet openings is increased by comparison with the initial AIHA design, and it is confirmed that the cooling air flow rate for each CEDM meet the design requirement of 800 SCFM ± 10% with the increased air inlets. At the initial analysis, the fan outlet flow rate was assumed as 48.3 lbm/s, but the result revealed that the less outflow rate at the fan is enough to meet the design requirement

  8. Multi-scale coarse-graining for the study of assembly pathways in DNA-brick self-assembly

    Science.gov (United States)

    Fonseca, Pedro; Romano, Flavio; Schreck, John S.; Ouldridge, Thomas E.; Doye, Jonathan P. K.; Louis, Ard A.

    2018-04-01

    Inspired by recent successes using single-stranded DNA tiles to produce complex structures, we develop a two-step coarse-graining approach that uses detailed thermodynamic calculations with oxDNA, a nucleotide-based model of DNA, to parametrize a coarser kinetic model that can reach the time and length scales needed to study the assembly mechanisms of these structures. We test the model by performing a detailed study of the assembly pathways for a two-dimensional target structure made up of 334 unique strands each of which are 42 nucleotides long. Without adjustable parameters, the model reproduces a critical temperature for the formation of the assembly that is close to the temperature at which assembly first occurs in experiments. Furthermore, the model allows us to investigate in detail the nucleation barriers and the distribution of critical nucleus shapes for the assembly of a single target structure. The assembly intermediates are compact and highly connected (although not maximally so), and classical nucleation theory provides a good fit to the height and shape of the nucleation barrier at temperatures close to where assembly first occurs.

  9. Safety of Research Reactors. Specific Safety Requirements (French Edition)

    International Nuclear Information System (INIS)

    2017-01-01

    This Safety Requirements publication establishes requirements for all main areas of safety for research reactors, with particular emphasis on requirements for design and operation. It explains the safety objectives and concepts that form the basis for safety and safety assessment for all stages in the lifetime of a research reactor. Technical and administrative requirements for the safety of new research reactors are established in accordance with these objectives and concepts, and they are to be applied to the extent practicable for existing research reactors. The safety requirements established in this publication for the management of safety and regulatory supervision apply to site evaluation, design, manufacturing, construction, commissioning, operation (including utilization and modification), and planning for decommissioning of research reactors (including critical assemblies and subcritical assemblies). The publication is intended for use by regulatory bodies and other organizations with responsibilities in these areas and in safety analysis, verification and review, and the provision of technical support.

  10. CRC DEPLETION CALCULATIONS FOR THE NON-RODDED ASSEMBLIES IN BATCHES 4 AND 5 OF CRYSTAL RIVER UNIT 3

    Energy Technology Data Exchange (ETDEWEB)

    Kenneth D. Wright

    1997-07-30

    The purpose of this design analysis is to document the SAS2H depletion calculations of certain non-rodded fuel assemblies from batches 4 and 5 of the Crystal River Unit 3 pressurized water reactor (PWR) that are required for commercial Reactor Critical (CRC) evaluations to support the development of the disposal criticality methodology. A non-rodded assembly is one which never contains a control rod assembly (CRA) or an axial power shaping rod assembly (APSRA) during its irradiation history. The objective of this analysis is to provide SAS2H generated isotopic compositions for each fuel assembly's depleted fuel and depleted burnable poison materials. These SAS2H generated isotopic compositions are acceptable for use in CRC benchmark reactivity calculations containing the various fuel assemblies.

  11. Heat evaluation examination of fuel assembly

    International Nuclear Information System (INIS)

    Suto, Shinya; Nakabayashi, Hiroki; Yao, Kaoru

    2007-03-01

    The cooling examination was executed by using the simulated fuel assembly to obtain the basic data of the most effective cooling system in the lazer disassembling process of the spent fuel assembly of prototype fast breeder reactor 'Monju'. As a result, the following have been understood. (1) Before the laser disassembling (there is not any duct tube cutting), it is possible to cool enough by the amount of the wind of 20m 3 /h or more flowing from the handling head side. (2) After the laser disassembling begins (duct tube is cut), 1kW or more of the heat generation cannot be cooled by ventilation from the handling head side. (3) Cooling by the flow across fuel pin is required during lazer disassembling. The basic data of the cooling system was obtained from these examination results. However, for cooling across fuel pin during the laser disassembling, it is necessary to examine shape of the side cooling nozzle, spraying angle, and flow velocity at the nozzle exit, etc. enough. (author)

  12. Dynamic Multi-Component Hemiaminal Assembly

    Science.gov (United States)

    You, Lei; Long, S. Reid; Lynch, Vincent M.

    2012-01-01

    A simple approach to generating in situ metal templated tris-(2-picolyl)amine-like multi-component assemblies with potential applications in molecular recognition and sensing is reported. The assembly is based on the reversible covalent association between di-(2-picolyl)amine and aldehydes. Zinc ion is the best for inducing assembly among the metal salts investigated, while 2-picolinaldehyde is the best among the heterocyclic aldehydes studied. Although an equilibrium constant of 6.6 * 103 M-1 was measured for the assembly formed by 2-picolinaldehdye, di-(2-picolyl)amine, and zinc triflate, the equilibrium constants for other systems are in the 102 M-1 range. X-ray structural analysis revealed that zinc adopts a trigonal bipyramidal geometry within the assembled ligand. The diversity and equilibrium of the assemblies are readily altered by simply changing concentrations, varying components, or adding counter anions. PMID:21919095

  13. The assembly of the silicon tracker for the GLAST beam test engineering model

    International Nuclear Information System (INIS)

    Allport, P.; Atwood, E.; Atwood, W.; Beck, G.; Bhatnager, B.; Bloom, E.; Broeder, J.; Chen, V.; Clark, J.; Cotton, N.; Couto e Silva, E. do; Feerick, B.; Giebels, G.; Godfrey, G.; Handa, T.; Hernando, J.A.; Hirayama, M.; Johnson, R.P.; Kamae, T.; Kashiguine, S.; Kroeger, W.; Milbury, C.; Miller, W.; Millican, O.; Nikolaou, M.; Nordby, M.; Ohsugi, T.; Paliaga, G.; Ponslet, E.; Rowe, W.; Sadrozinski, H.F.-W.; Spencer, E.; Stromberg, S.; Swensen, E.; Takayuki, M.; Tournear, D.; Webster, A.; Winkler, G.; Yamamoto, K.; Yamamura, K.; Yoshida, S.

    2001-01-01

    The silicon tracker for the engineering model of the GLAST Large Area Telescope (LAT) to date represents the largest surface of silicon microstrip detectors assembled in a tracker (2.7 m 2 ). It demonstrates the feasibility of employing this technology for satellite based experiments, in which large effective areas and high reliability are required. This note gives an overview of the assembly of this silicon tracker and discusses in detail studies performed to track quality assurance: leakage current, mechanical alignment and production yields

  14. RNA Packing Specificity and Folding during Assembly of the Bacteriophage MS2

    Directory of Open Access Journals (Sweden)

    Ottar Rolfsson

    2008-01-01

    Full Text Available Using a combination of biochemistry, mass spectrometry, NMR spectroscopy and cryo-electron microscopy (cryo-EM, we have been able to show that quasi-equivalent conformer switching in the coat protein (CP of an RNA bacteriophage (MS2 is controlled by a sequence-specific RNA–protein interaction. The RNA component of this complex is an RNA stem-loop encompassing just 19 nts from the phage genomic RNA, which is 3569 nts in length. This binding results in the conversion of a CP dimer from a symmetrical conformation to an asymmetric one. Only when both symmetrical and asymmetrical dimers are present in solution is assembly of the T = 3 phage capsid efficient. This implies that the conformers, we have characterized by NMR correspond to the two distinct quasi-equivalent conformers seen in the 3D structure of the virion. An icosahedrally-averaged single particle cryo-EM reconstruction of the wild-type phage (to ∼9 Å resolution has revealed icosahedrally ordered density encompassing up to 90% of the single-stranded RNA genome. The RNA is seen with a novel arrangement of two concentric shells, with connections between them along the 5-fold symmetry axes. RNA in the outer shell interacts with each of the 90 CP dimers in the T = 3 capsid and although the density is icosahedrally averaged, there appears to be a different average contact at the different quasi-equivalent protein dimers: precisely the result that would be expected if protein conformer switching is RNA-mediated throughout the assembly pathway. This unprecedented RNA structure provides new constraints for models of viral assembly and we describe experiments aimed at probing these. Together, these results suggest that viral genomic RNA folding is an important factor in efficient assembly, and further suggest that RNAs that could sequester viral CPs but not fold appropriately could act as potent inhibitors of viral assembly.

  15. Actin-myosin network is required for proper assembly of influenza virus particles

    Energy Technology Data Exchange (ETDEWEB)

    Kumakura, Michiko; Kawaguchi, Atsushi, E-mail: ats-kawaguchi@md.tsukuba.ac.jp; Nagata, Kyosuke, E-mail: knagata@md.tsukuba.ac.jp

    2015-02-15

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network.

  16. Actin-myosin network is required for proper assembly of influenza virus particles

    International Nuclear Information System (INIS)

    Kumakura, Michiko; Kawaguchi, Atsushi; Nagata, Kyosuke

    2015-01-01

    Actin filaments are known to play a central role in cellular dynamics. After polymerization of actin, various actin-crosslinking proteins including non-muscle myosin II facilitate the formation of spatially organized actin filament networks. The actin-myosin network is highly expanded beneath plasma membrane. The genome of influenza virus (vRNA) replicates in the cell nucleus. Then, newly synthesized vRNAs are nuclear-exported to the cytoplasm as ribonucleoprotein complexes (vRNPs), followed by transport to the beneath plasma membrane where virus particles assemble. Here, we found that, by inhibiting actin-myosin network formation, the virus titer tends to be reduced and HA viral spike protein is aggregated on the plasma membrane. These results indicate that the actin-myosin network plays an important role in the virus formation. - Highlights: • Actin-myosin network is important for the influenza virus production. • HA forms aggregations at the plasma membrane in the presence of blebbistatin. • M1 is recruited to the budding site through the actin-myosin network

  17. Advanced gray rod control assembly

    Science.gov (United States)

    Drudy, Keith J; Carlson, William R; Conner, Michael E; Goldenfield, Mark; Hone, Michael J; Long, Jr., Carroll J; Parkinson, Jerod; Pomirleanu, Radu O

    2013-09-17

    An advanced gray rod control assembly (GRCA) for a nuclear reactor. The GRCA provides controlled insertion of gray rod assemblies into the reactor, thereby controlling the rate of power produced by the reactor and providing reactivity control at full power. Each gray rod assembly includes an elongated tubular member, a primary neutron-absorber disposed within the tubular member said neutron-absorber comprising an absorber material, preferably tungsten, having a 2200 m/s neutron absorption microscopic capture cross-section of from 10 to 30 barns. An internal support tube can be positioned between the primary absorber and the tubular member as a secondary absorber to enhance neutron absorption, absorber depletion, assembly weight, and assembly heat transfer characteristics.

  18. Multi-Robot Assembly Strategies and Metrics

    Science.gov (United States)

    MARVEL, JEREMY A.; BOSTELMAN, ROGER; FALCO, JOE

    2018-01-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies. PMID:29497234

  19. Multi-Robot Assembly Strategies and Metrics.

    Science.gov (United States)

    Marvel, Jeremy A; Bostelman, Roger; Falco, Joe

    2018-02-01

    We present a survey of multi-robot assembly applications and methods and describe trends and general insights into the multi-robot assembly problem for industrial applications. We focus on fixtureless assembly strategies featuring two or more robotic systems. Such robotic systems include industrial robot arms, dexterous robotic hands, and autonomous mobile platforms, such as automated guided vehicles. In this survey, we identify the types of assemblies that are enabled by utilizing multiple robots, the algorithms that synchronize the motions of the robots to complete the assembly operations, and the metrics used to assess the quality and performance of the assemblies.

  20. Assembly and maintenance of full scale NIF amplifiers in the amplifier module prototype laboratory (AMPLAB)

    International Nuclear Information System (INIS)

    Horvath, J. A.

    1998-01-01

    Mechanical assembly and maintenance of the prototype National Ignition Facility amplifiers in the Amplifier Module Prototype Laboratory (AMPLAB) at Lawrence Livermore National Laboratory requires specialized equipment designed to manipulate large and delicate amplifier components in a safe and clean manner. Observations made during the operation of this assembly and maintenance equipment in AMPLAB provide design guidance for similar tools being built for the National Ignition Facility. Fixtures used for amplifier frame installation, laser slab and flashlamp cassette assembly, transport, and installation, and in-situ blastshield exchange are presented. Examples include a vacuum slab gripper, slab handling clean crane, slab cassette assembly fixture, sealed transport vehicle for slab cassette movement between the cleanroom and amplifier, slab cassette transfer fixture between the cleanroom and transport vehicle, and equipment needed for frame assembly unit, blastshield, an d flashlamp cassette installation and removal. The use of these tools for amplifier assembly, system reconfiguration, reflector replacement, and recovery from an abnormal occurrence such as a flashlamp explosion is described. Observations are made on the design and operation of these tools and their contribution to the final design