WorldWideScience

Sample records for assembly ligand recognition

  1. Dynamic Presentation of Immobilized Ligands Regulated through Biomolecular Recognition

    OpenAIRE

    Liu, Bo; Liu, Yang; Riesberg, Jeremiah J.; Shen, Wei

    2010-01-01

    To mimic the dynamic regulation of signaling ligands immobilized on extracellular matrices or on the surfaces of neighboring cells for guidance of cell behavior and fate selection, we have harnessed biomolecular recognition in combination with polymer engineering to create dynamic surfaces on which the accessibility of immobilized ligands to cell surface receptors can be reversibly interconverted under physiological conditions. The cell-adhesive RGD peptide is chosen as a model ligand. RGD is...

  2. RESEARCH OF MOVEMENT NAVIGATION BASED ON ASSEMBLY CONSTRAINT RECOGNITION

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The requirements and features of virtual assembly movement navigator are analyzed to help operators flexibly manipulate virtual objects, precisely locate or assemble virtual parts in virtual environment. With the degree-of-freedom analysis, the assembly constraint hierarchical model is constructed and the system's constraints are built dynamically. Thus, all objects in virtual environment can be located reasonally by the navigator. Moreover, the assembly constraint recognition in the process of assembly and movement correction is also discussed.

  3. Structure and ligand recognition of class C GPCRs

    Institute of Scientific and Technical Information of China (English)

    Lei CHUN; Wen-hua ZHANG; Jian-feng LIU

    2012-01-01

    The G-protein-coupled receptors (GPCRs) are one of the largest super families of cell-surface receptors and play crucial roles in virtu-ally every organ system.One particular family of GPCRs,the class C GPCRs,is distinguished by a characteristically large extracellular domain and constitutive dimerization.The structure and activation mechanism of this family result in potentially unique ligand recognition sites,thereby offering a variety of possibilities by which receptor activity might be modulated using novel compounds.In the present article,we aim to provide an overview of the exact sites and structural features involved in ligand recognition of the class C GPCRs.Furthermore,we demonstrate the precise steps that occur during the receptor activation process,which underlie the possibilities by which receptor function may be altered by different approaches.Finally,we use four typical family members to illustrate orthosteric and allosteric sites with representative ligands and their corresponding therapeutic potential.

  4. Advances in Computational Techniques to Study GPCR-Ligand Recognition.

    Science.gov (United States)

    Ciancetta, Antonella; Sabbadin, Davide; Federico, Stephanie; Spalluto, Giampiero; Moro, Stefano

    2015-12-01

    G-protein-coupled receptors (GPCRs) are among the most intensely investigated drug targets. The recent revolutions in protein engineering and molecular modeling algorithms have overturned the research paradigm in the GPCR field. While the numerous ligand-bound X-ray structures determined have provided invaluable insights into GPCR structure and function, the development of algorithms exploiting graphics processing units (GPUs) has made the simulation of GPCRs in explicit lipid-water environments feasible within reasonable computation times. In this review we present a survey of the recent advances in structure-based drug design approaches with a particular emphasis on the elucidation of the ligand recognition process in class A GPCRs by means of membrane molecular dynamics (MD) simulations. PMID:26538318

  5. Self-assembled network via molecular recognition

    OpenAIRE

    Dionisio, Marco

    2012-01-01

    Supramolecular chemistry is the ultimate strategy for the fabrication of innovative materials devote to accomplish advanced tasks. Mastering the weak interactions that held together the molecular components, a sophisticated structures appear. The present thesis deals with the formation of supramolecular networks via molecular recognition, covering three main topics: 1) the realization of hybrid organic-inorganic material, by polymer controlled association of gold nanoparticles; 2) the fabr...

  6. Integration of screening and identifying ligand(s) from medicinal plant extracts based on target recognition by using NMR spectroscopy

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Yalin Tang, Qian Shang, Junfeng Xiang, Qianfan Yang, Qiuju Zhou, Lin Li, Hong Zhang, Qian Li, Hongxia Sun, Aijiao Guan, Wei Jiang & Wei Gai ### Abstract This protocol presents the screening of ligand(s) from medicinal plant extracts based on target recognition by using NMR spectroscopy. A detailed description of sample preparation and analysis process is provided. NMR spectroscopies described here are 1H NMR, diffusion-ordered spectroscopy (DOSY), relaxation-edited NMR, ...

  7. Reversible self-assembly of gels through metal-ligand interactions

    OpenAIRE

    Yuichiro Kobayashi; Yoshinori Takashima; Akihito Hashidzume; Hiroyasu Yamaguchi; Akira Harada

    2013-01-01

    Metal-ligand interactions with various proteins form in vivo metal assemblies. In recent years, metallosupramolecular approaches have been utilized to forge an assortment of fascinating two- and three-dimensional nano-architectures, and macroscopic materials, such as metal-ligand coordination polymeric materials, have promise in artificial systems. However to the best of our knowledge, the self-assembly of macroscopic materials through metal-ligand interactions has yet to be reported. Herein ...

  8. A Ferrocene-Based Catecholamide Ligand: the Consequences of Ligand Swivel for Directed Supramolecular Self-Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Mugridge, Jeffrey; Fiedler, Dorothea; Raymond, Kenneth

    2010-02-04

    A ferrocene-based biscatecholamide ligand was prepared and investigated for the formation of metal-ligand supramolecular assemblies with different metals. Reaction with Ge(IV) resulted in the formation of a variety of Ge{sub n}L{sub m} coordination complexes, including [Ge{sub 2}L{sub 3}]{sup 4-} and [Ge{sub 2}L{sub 2}({mu}-OMe){sub 2}]{sup 2-}. The ligand's ability to swivel about the ferrocenyl linker and adopt different conformations accounts for formation of many different Ge{sub n}L{sub m} species. This study demonstrates why conformational ligand rigidity is essential in the rational design and directed self-assembly of supramolecular complexes.

  9. Cyclic Peptide-Decorated Self-Assembled Nanohybrids for Selective Recognition and Detection of Multivalent RNAs.

    Science.gov (United States)

    Choi, Jun Shik; Han, So-hee; Kim, Hyoseok; Lim, Yong-Beom

    2016-03-16

    Although there has been substantial advancement in the development of nanostructures, the development of self-assembled nanostructures that can selectively recognize multivalent targets has been very difficult. Here we show the proof of concept that topology-controlled peptide nanoassemblies can selectively recognize and detect a multivalent RNA target. We compared the differential behaviors of peptides in a linear or cyclic topology in terms of peptide-gold nanoparticle hybrid nanostructure formation, conformational stabilization, monovalent and multivalent RNA binding in vitro, and multivalent RNA recognition in live cells. When the topology-dependent selectivity amplification of the cyclic peptide hybrids is combined with the noninvasive nature of dark-field microscopy, the cellular localization of the viral Rev response element (RRE) RNA can be monitored in situ. Because intracellular interactions are often mediated by overlapping binding partners with weak affinity, the topology-controlled peptide assemblies can provide a versatile means to convert weak ligands into multivalent ligands with high affinity and selectivity. PMID:26886413

  10. Mechanically Interlocked Molecules Assembled by π–π Recognition

    Energy Technology Data Exchange (ETDEWEB)

    Barin, Gokhan [Northwestern Univ., Evanston, IL (United States); Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Coskun, Ali [Northwestern Univ., Evanston, IL (United States); Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of); Fouda, Moustafa M. G. [King Saud Univ., Riyadh (Saudi Arabia); Stoddart, J. Fraser [Northwestern Univ., Evanston, IL (United States); Korea Advanced Inst. Science and Technology (KAIST), Daejeon (Korea, Republic of)

    2012-02-28

    The beauty and utility of interlocked architectures have been making their way relentlessly into chemistry in the form of mechanically interlocked molecules (MIMs) for almost half a century now. Few would challenge the assertion that the emergence of template-directed synthetic protocols has aided and abetted the facile and efficient construction of MIMs compared with the statistical approaches employed while the field was still in its infancy. To date, a panoply of MIMs has been created in the wake of emerging recognition motifs and the template-directed synthetic protocols they have forged. Among these motifs, those dependent on π–π stacking in the form of donor–acceptor interactions have played an important role in the increasingly rapid development of the field. The few integrated systems that have so far emerged based on this class of MIMs demonstrate their ability to act as active components in many potential applications. This review focuses on the progress which has been accomplished during the past decade involving MIMs comprising aromatic π–π stacking interactions. While progress has been remarkable, opportunities still abound for MIMs assembled by π–π recognition.

  11. Role of Assembling Invariant Moments and SVM in Fingerprint Recognition

    Directory of Open Access Journals (Sweden)

    Supriya Wable

    2013-06-01

    Full Text Available Fingerprint identification is one of the most well-knownexposed biometrics, because of their uniqueness, distinctivenessand consistency over time. It is the method of identifying anindividual and it can be used in various commercial, governmentand forensic application, such as, medical records, criminalinvestigation, cloud computing communication etc. In cloudcomputing communications, information security involves theprotection of information elements, only authorized users areallowed to access the available contents. However, traditionalfingerprint recognition approaches have some demerits of easylosing rich information and poor performances due to thecomplex inputs, such as image rotation, incomplete input image,poor quality image enrollment, and so on. In order to overcomethese shortcomings, a new fingerprint recognition scheme basedon a set of assembled invariant moments i.e., Geometricmoment and Zernike moment. These moment features areused to ensure the secure communications. This scheme isalso based on an effective preprocessing, the extraction of localand global features and a powerful classification tool i.e. SVM(Support vector machine, thus it is able to handle the variousinput conditions encountered in the cloud computingcommunication. A SVM is used for matching the identificationof test fingerprint inputs feature vectors with of the databaseimages.

  12. Human NKG2D-ligands: cell biology strategies to ensure immune recognition

    Directory of Open Access Journals (Sweden)

    Lola eFernández-Messina

    2012-09-01

    Full Text Available Immune recognition mediated by the activating receptor NKG2D plays an important role for the elimination of stressed cells, including tumours and virus-infected cells. On the other hand, the ligands for NKG2D can also be shed into the sera of cancer patients where they weaken the immune response by downmodulating the receptor on effector cells, mainly NK and T cells. Although both families of NKG2D-ligands, MICA/B and ULBPs, are related to MHC molecules and their expression is increased after stress, many differences are observed in terms of their biochemical properties and cell trafficking. In this paper, we summarise the variety of NKG2D-ligands and propose that selection pressure has driven evolution of diversity in their trafficking and shedding, but not receptor binding affinity. However, it is also possible to identify functional properties common to individual ULBP molecules and MICA/B alleles, but not generally conserved within the MIC or ULBP families. These characteristics likely represent examples of convergent evolution for efficient immune recognition, but are also attractive targets for pathogen immune evasion strategies. Categorization of NKG2D-ligands according to their biological features, rather than their genetic family, may help to achieve a better understanding of NKG2D-ligand association with disease.

  13. RNA gymnastics in mammalian signal recognition particle assembly.

    Science.gov (United States)

    Wild, Klemens; Sinning, Irmgard

    2014-01-01

    More than one third of the cellular proteome is destined for incorporation into cell membranes or export from the cell. In all domains of life, the signal recognition particle (SRP) delivers these proteins to the membrane and protein traffic falls apart without SRP logistics. With the aid of a topogenic transport signal, SRP retrieves its cargo right at the ribosome, from where they are sorted to the translocation channel. Mammalian SRP is a ribonucleoprotein complex consisting of an SRP RNA of 300 nucleotides and 6 proteins bound to it. Assembly occurs in a hierarchical manner mainly in the nucleolus and only SRP54, which recognizes the signal sequence and regulates the targeting process, is added as the last component in the cytosol. Here we present an update on recent insights in the structure, function and dynamics of SRP RNA in SRP assembly with focus on the S domain, and present SRP as an example for the complex biogenesis of a rather small ribonucleoprotein particle. PMID:25692231

  14. Structural Insights into KCTD Protein Assembly and Cullin3 Recognition.

    Science.gov (United States)

    Ji, Alan X; Chu, Anh; Nielsen, Tine Kragh; Benlekbir, Samir; Rubinstein, John L; Privé, Gilbert G

    2016-01-16

    Cullin3 (Cul3)-based ubiquitin E3 ligase complexes catalyze the transfer of ubiquitin from an E2 enzyme to target substrate proteins. In these assemblies, the C-terminal region of Cul3 binds Rbx1/E2-ubiquitin, while the N-terminal region interacts with various BTB (bric-à-brac, tramtrack, broad complex) domain proteins that serve as substrate adaptors. Previous crystal structures of the homodimeric BTB proteins KLHL3, KLHL11 and SPOP in complex with the N-terminal domain of Cul3 revealed the features required for Cul3 recognition in these proteins. A second class of BTB-domain-containing proteins, the KCTD proteins, is also Cul3 substrate adaptors, but these do not share many of the previously identified determinants for Cul3 binding. We report the pentameric crystal structures of the KCTD1 and KCTD9 BTB domains and identify plasticity in the KCTD1 rings. We find that the KCTD proteins 5, 6, 9 and 17 bind to Cul3 with high affinity, while the KCTD proteins 1 and 16 do not have detectable binding. Finally, we confirm the 5:5 assembly of KCTD9/Cul3 complexes by cryo-electron microscopy and provide a molecular rationale for BTB-mediated Cul3 binding specificity in the KCTD family. PMID:26334369

  15. Self-assembly of heteroleptic dinuclear metallosupramolecular kites from multivalent ligands via social self-sorting

    Directory of Open Access Journals (Sweden)

    Christian Benkhäuser

    2015-05-01

    Full Text Available A Tröger's base-derived racemic bis(1,10-phenanthroline ligand (rac-1 and a bis(2,2'-bipyridine ligand with a central 1,3-diethynylbenzene unit 2 were synthesized. Each of these ligands acts as a multivalent entity for the binding of two copper(I ions. Upon coordination to the metal ions these two ligands undergo selective self-assembly into heteroleptic dinuclear metallosupramolecular kites in a high-fidelity social self-sorting manner as evidenced by NMR spectroscopy and mass spectrometry.

  16. Self-assembly of heteroleptic dinuclear metallosupramolecular kites from multivalent ligands via social self-sorting.

    Science.gov (United States)

    Benkhäuser, Christian; Lützen, Arne

    2015-01-01

    A Tröger's base-derived racemic bis(1,10-phenanthroline) ligand (rac)-1 and a bis(2,2'-bipyridine) ligand with a central 1,3-diethynylbenzene unit 2 were synthesized. Each of these ligands acts as a multivalent entity for the binding of two copper(I) ions. Upon coordination to the metal ions these two ligands undergo selective self-assembly into heteroleptic dinuclear metallosupramolecular kites in a high-fidelity social self-sorting manner as evidenced by NMR spectroscopy and mass spectrometry. PMID:26124873

  17. Folding and ligand recognition of the TPP riboswitch aptamer at single-molecule resolution

    OpenAIRE

    Haller, Andrea; Altman, Roger B.; Soulière, Marie F.; Blanchard, Scott C; Micura, Ronald

    2013-01-01

    Thiamine pyrophosphate (TPP)-sensitive mRNA domains are the most prevalent riboswitches known. Despite intensive investigation, the complex ligand recognition and concomitant folding processes in the TPP riboswitch that culminate in the regulation of gene expression remain elusive. Here, we used single-molecule fluorescence resonance energy transfer imaging to probe the folding landscape of the TPP aptamer domain in the absence and presence of magnesium and TPP. To do so, distinct labeling pa...

  18. Ultrafast Electron Trapping in Ligand-Exchanged Quantum Dot Assemblies

    Science.gov (United States)

    Kikkawa, J. M.; Turk, M. E.; Vora, P. M.; Fafarman, A. T.; Diroll, B. T.; Murray, C. B.; Kagan, C. R.

    2015-03-01

    We use time-integrated and time-resolved photoluminescence and absorption to characterize the low-temperature (10 K) optical properties of CdSe quantum dot (QD) solids with different ligand and annealing preparation. Close-packed CdSe quantum dot solids are prepared with native aliphatic ligands and with thiocyanate with and without thermal annealing. Using sub-picosecond, broadband time-resolved photoluminescence and absorption, we find that ligand exchange increases the rate of carrier surface trapping. We further determine that holes within the QD core, rather than electrons, can bleach the band-edge transition in these samples at low temperature, a finding that comes as a surprise given what is known about the surface treatment in these QDs. We find that our ligand treatments lead to faster electron trapping to the quantum dot surface, a greater proportion of surface photoluminescence, and an increased rate of nonradiative decay due to enhanced interparticle coupling upon exchange and annealing. All aspects of this work supported by the U.S. Department of Energy Office of Basic Energy Sciences, Division of Materials Science and Engineering, under Award No. DE-SC0002158.

  19. Roles for ordered and bulk solvent in ligand recognition and docking in two related cavities.

    Directory of Open Access Journals (Sweden)

    Sarah Barelier

    Full Text Available A key challenge in structure-based discovery is accounting for modulation of protein-ligand interactions by ordered and bulk solvent. To investigate this, we compared ligand binding to a buried cavity in Cytochrome c Peroxidase (CcP, where affinity is dominated by a single ionic interaction, versus a cavity variant partly opened to solvent by loop deletion. This opening had unexpected effects on ligand orientation, affinity, and ordered water structure. Some ligands lost over ten-fold in affinity and reoriented in the cavity, while others retained their geometries, formed new interactions with water networks, and improved affinity. To test our ability to discover new ligands against this opened site prospectively, a 534,000 fragment library was docked against the open cavity using two models of ligand solvation. Using an older solvation model that prioritized many neutral molecules, three such uncharged docking hits were tested, none of which was observed to bind; these molecules were not highly ranked by the new, context-dependent solvation score. Using this new method, another 15 highly-ranked molecules were tested for binding. In contrast to the previous result, 14 of these bound detectably, with affinities ranging from 8 µM to 2 mM. In crystal structures, four of these new ligands superposed well with the docking predictions but two did not, reflecting unanticipated interactions with newly ordered waters molecules. Comparing recognition between this open cavity and its buried analog begins to isolate the roles of ordered solvent in a system that lends itself readily to prospective testing and that may be broadly useful to the community.

  20. High-density display of protein ligands on self-assembled capsules via noncovalent fluorous interactions.

    Science.gov (United States)

    Harano, Koji; Yamada, Junya; Mizuno, Shinichiro; Nakamura, Eiichi

    2015-01-01

    Ligand display on self-assembled nanostructures is an important tool in generating bioactive materials. Here, we demonstrate the display of sugar and biotin molecules on sub-100 nm-sized capsules with a high surface coverage, which was achieved by the use of noncovalent fluorous interactions between a fluorous-tagged ligand molecule and a fullerene vesicle covered with fluorous chains. Even after the high-density ligand display and protein binding, the vesicle stably maintains its spherical structure because the fluorous binding of the sugar does not affect the structural integrity of the vesicle that originates from strong fullerene-fullerene interactions. PMID:25404018

  1. Effects of ligands with different water solubilities on self-assembly and properties of targeted nanoparticles

    OpenAIRE

    Valencia, Pedro M.; Hanewich-Hollatz, Mikhail H.; Gao, Weiwei; Karim, Fawziya; Langer, Robert; Karnik, Rohit; Farokhzad, Omid C.

    2011-01-01

    The engineering of drug-encapsulated targeted nanoparticles (NPs) has the potential to revolutionize drug therapy. A major challenge for the smooth translation of targeted NPs to the clinic has been developing methods for the prediction and optimization of the NP surface composition, especially when targeting ligands (TL) of different chemical properties are involved in the NP self-assembly process. Here we investigated the self-assembly and properties of two different targeted NPs decorated ...

  2. Chiral recognition and selection during the self-assembly process of protein-mimic macroanions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Panchao; Zhang, Zhi-Ming; Lv, Hongjin; Li, Tao; Haso, Fadi; Hu, Lang; Zhang, Baofang; Basca, John; Wei, Yongge; Gao, Yanqing; Hou, Yu; Li, Yang-Guang; Hill, Craig L.; Wang, En-Bo; Liu, Tianbo

    2015-03-01

    The research on chiral recognition and chiral selection is not only fundamental in resolving the puzzle of homochirality, but also instructive in chiral separation and stereoselective catalysis. Here we report the chiral recognition and chiral selection during the self-assembly process of two enantiomeric wheel-shaped macroanions, [Fe28(μ3-O)8(Tart)16(HCOO)24]20- (Tart=D- or L-tartaric acid tetra-anion). The enantiomers are observed to remain self-sorted and self-assemble into their individual assemblies in their racemic mixture solution. The addition of chiral co-anions can selectively suppress the self-assembly process of the enantiomeric macroanions, which is further used to separate the two enantiomers from their mixtures on the basis of the size difference between the monomers and the assemblies. We believe that delicate long-range electrostatic interactions could be responsible for such high-level chiral recognition and selection.

  3. Supramolecular recognition of heteropairs of lanthanide ions: a step toward self-assembled bifunctional probes.

    Science.gov (United States)

    André, Nicolas; Jensen, Thomas B; Scopelliti, Rosario; Imbert, Daniel; Elhabiri, Mourad; Hopfgartner, Gérard; Piguet, Claude; Bünzli, Jean-Claude G

    2004-01-26

    Three unsymmetrical ditopic hexadentate ligands coded for the recognition of trivalent lanthanide ions have been synthesized, L(AB), L(AC), and L(BC), where A represents a benzimidazole-pyridine-benzimidazole coordination unit, B a benzimidazole-pyridine-carboxamide one, and C a benzimidazole-pyridine-carboxylic acid moiety. Under stoichiometric 2:3 (Ln:L) conditions, these ligands self-assemble with lanthanide ions to yield triple-stranded bimetallic helicates having a sizable stability in acetonitrile: log beta(23) values for Eu are equal to 23.9 +/- 0.5 (L(AB)), 23.3 +/- 0.7 (deprotonated L(AC)), and 29.8 +/- 0.5 (deprotonated L(BC)). The crystal structure of the EuEu helicate with L(AB) shows 9-coordinate metal ions and an HHH (H stands for head) configuration of the helically wrapped ligand strands. In the presence of equimolar quantities of Ln and Ln' ions, L(AB) displays a remarkable predisposition to form HHH-heterobimetallic edifices, as proved both in the solid state by the crystal structures of the LaEu, LaTb, PrEr, and PrLu helicates and in solution by NMR spectroscopy. In all cases, the benzimidazole-pyridine-carboxamide units of the three ligands are bound to the smaller lanthanide ion, a fact further ascertained by high-resolution luminescence data on LaEu and by (1)H NMR. Analysis of the lanthanide-induced (1)H NMR shifts and of the spin-lattice relaxation times of the [LnLu(L(AB))(3)](6+) series (Ln = Ce, Pr, Nd, Sm, Eu) demonstrates the isostructural nature of the complexes in solution and that the crystal structure of LaTb is a good model for the solution structure. The selectivity of L(AB) for heteropairs of Ln(III) ions increases with increasing difference in ionic radius, resulting in 70% of the heterobimetallic species for deltar(i) = 0.1 A and up to 90% for LaLu (deltar(i) = 0.18 A), and corresponding to delta(deltaG) in the range 3-10 kJ.mol(-)(1). The origins of this stabilization are discussed in terms of the donor properties of the

  4. Rational Design of Polynuclear Organometallic Assemblies from a Simple Heteromultifunctional Ligand.

    Science.gov (United States)

    Zhang, Long; Lin, Yue-Jian; Li, Zhen-Hua; Jin, Guo-Xin

    2015-10-28

    In modern coordination chemistry, supramolecular coordination complexes take advantage of ligand design to control the shapes and sizes of such architectures. Here we describe how to utilize starting building blocks and a multifunctional ligand to rationally design and synthesize different types of discrete assemblies. Using a hydroxamate ligand featuring two pair of chelating sites together with half-sandwich iridium and rhodium fragments, we were able to construct a series multinuclear organometallic macrocycles and cages through stepwise coordination-driven self-assembly. Experimental observations, supported by computational work, show that selective coordination modes were ascribed to the significant electronic density differences of the two chelating sites, (O,O') and (N,N'). The results underline the advantages of the discrimination between soft and hard binding sites, and suggest that hydroxamic acids can be used as a versatile class of facile multifunctional scaffold for the construction of novel two-dimensional and three-dimensional architectures. PMID:26440304

  5. Dynamic Assemblies and Photophysical Changes of Zinc Porphyrin Dimer Regulated by N-Containing Ligands

    Institute of Scientific and Technical Information of China (English)

    ZHOU Zai-Chun; HE Lin; ZHU Yi-Zhou; ZHENG Jian-Yu

    2007-01-01

    Zinc porphyrin dimer (1) has been designed and synthesized as a novel host of N-containing ligands. The assembly behavior and photophysical changes of its host-guest complexes were evaluated by 1H NMR, fluorescence,and UV-visible titrations, and the processes reveal that the host-guest assembly first creates a stable sandwich complex, then an axial coordination equilibrium appears between the sandwich complex and free ligand. The changes of absorption spectra of the assembly processes rely on the stabilities of the complexes, and fluorescence quenching depends on the axial coordination equilibrium, which indicates that the axial ligation/de-ligation dynamics is indeed a pathway from the excited state to the ground state for metalloporphyrin complexes.

  6. Mass spectrometry assisted lithography for the patterning of cell adhesion ligands on self-assembled monolayers.

    Science.gov (United States)

    Kim, Young-Kwan; Ryoo, Soo-Ryoon; Kwack, Sul-Jin; Min, Dal-Hee

    2009-01-01

    Pattern of events: A simple and flexible method has been developed for patterning cell adhesion ligands. Locally erasing self-assembled monolayers with tri(ethyleneglycol) groups on a gold substrate by using a MALDI-TOF MS nitrogen laser and filling the exposed gold surface with an alkanethiol presenting carboxylic acid groups enables subsequent immobilization of maleimide and a cell adhesion peptide, which can then recognize cells (see scheme). PMID:19347909

  7. Complement activation by ligand-driven juxtaposition of discrete pattern recognition complexes

    Science.gov (United States)

    Degn, Søren E.; Kjaer, Troels R.; Kidmose, Rune T.; Jensen, Lisbeth; Hansen, Annette G.; Tekin, Mustafa; Jensenius, Jens C.; Andersen, Gregers R.; Thiel, Steffen

    2014-01-01

    Defining mechanisms governing translation of molecular binding events into immune activation is central to understanding immune function. In the lectin pathway of complement, the pattern recognition molecules (PRMs) mannan-binding lectin (MBL) and ficolins complexed with the MBL-associated serine proteases (MASP)-1 and MASP-2 cleave C4 and C2 to generate C3 convertase. MASP-1 was recently found to be the exclusive activator of MASP-2 under physiological conditions, yet the predominant oligomeric forms of MBL carry only a single MASP homodimer. This prompted us to investigate whether activation of MASP-2 by MASP-1 occurs through PRM-driven juxtaposition on ligand surfaces. We demonstrate that intercomplex activation occurs between discrete PRM/MASP complexes. PRM ligand binding does not directly escort the transition of MASP from zymogen to active enzyme in the PRM/MASP complex; rather, clustering of PRM/MASP complexes directly causes activation. Our results support a clustering-based mechanism of activation, fundamentally different from the conformational model suggested for the classical pathway of complement. PMID:25197071

  8. Design of polymer motifs for nucleic acid recognition and assembly stabilization

    Science.gov (United States)

    Zhou, Zhun

    This dissertation describes the synthesis and assembly of bio-functional polymers and the applications of these polymers to drug encapsulation, delivery, and multivalent biomimetic macromolecular recognition between synthetic polymer and nucleic acids. The main content is divided into three parts: (1) polyacidic domains as strongly stabilizing design elements for aqueous phase polyacrylate diblock assembly; (2) small molecule/polymer recognition triggered macromolecular assembly and drug encapsulation; (3) trizaine derivatized polymer as a novel class of "bifacial polymer nucleic acid" (bPoNA) and applications of bPoNA to nanoparticle loading of DNA/RNA, silencing delivery as well as control of aptamer function. Through the studies in part (1) and part (2), it was demonstrated that well-designed polymer motifs are not only able to enhance assemblies driven by non-specific hydrophobic effect, but are also able to direct assemblies based on specific recognitions. In part (3) of this dissertation, this concept was further extended by the design of polyacrylate polymers that are capable of discrete and robust hybridization with nucleic acids. This surprising finding demonstrated both fundamental and practical applications. Overall, these studies provided insights into the rational design elements for improving the bio-functions of synthetic polymers, and significantly expanded the scope of biological applications in which polymers synthesized via controlled radical polymerization may play a role.

  9. Photoassisted photoluminescence fine-tuning of gold nanodots through free radical-mediated ligand-assembly

    Science.gov (United States)

    Tseng, Yu-Ting; Cherng, Rochelle; Harroun, Scott G.; Yuan, Zhiqin; Lin, Tai-Yuan; Wu, Chien-Wei; Chang, Huan-Tsung; Huang, Chih-Ching

    2016-05-01

    In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region (~520 nm). UV-light irradiation accelerates 11-MUA assembly on the 11-MUTABAu NDs (11-MUA/11-MUTAB-Au NDs) through a radical-mediated reaction. Furthermore, the PL wavelength of the 11-MUA/11-MUTAB-Au NDs can be switched to 640 nm via cysteamine under UV-light irradiation. We propose that the PL of the Au NDs with NIR and visible emissions was originally from the surface thiol-Au complexes and the Au core, respectively. These dramatically different optical properties of the Au NDs were due to variation in the surface ligands, as well as the densities and surface oxidant states of the surface Au atoms/ions. These effects can be controlled by assembling surface thiol ligands and accelerated by UV irradiation.In this study, we have developed a simple photoassisted ligand assembly to fine-tune the photoluminescence (PL) of (11-mercaptoundecyl)-N,N,N-trimethylammonium bromide-capped gold nanodots (11-MUTAB-Au NDs). The 11-MUTAB-Au NDs (size: ca. 1.8 nm), obtained from the reaction of gold nanoparticles (ca. 3 nm) and 11-MUTAB, exhibited weak, near-infrared (NIR) PL at 700 nm with a quantum yield (QY) of 0.37% upon excitation at 365 nm. The PL QY of the Au NDs increased to 11.43% after reaction with 11-mercaptoundecanoic acid (11-MUA) for 30 min under ultraviolet (UV) light, which was accompanied by a PL wavelength shift to the green region

  10. Molecular recognition of DNA by ligands: Roughness and complexity of the free energy profile

    Science.gov (United States)

    Zheng, Wenwei; Vargiu, Attilio Vittorio; Rohrdanz, Mary A.; Carloni, Paolo; Clementi, Cecilia

    2013-10-01

    Understanding the molecular mechanism by which probes and chemotherapeutic agents bind to nucleic acids is a fundamental issue in modern drug design. From a computational perspective, valuable insights are gained by the estimation of free energy landscapes as a function of some collective variables (CVs), which are associated with the molecular recognition event. Unfortunately the choice of CVs is highly non-trivial because of DNA's high flexibility and the presence of multiple association-dissociation events at different locations and/or sliding within the grooves. Here we have applied a modified version of Locally-Scaled Diffusion Map (LSDMap), a nonlinear dimensionality reduction technique for decoupling multiple-timescale dynamics in macromolecular systems, to a metadynamics-based free energy landscape calculated using a set of intuitive CVs. We investigated the binding of the organic drug anthramycin to a DNA 14-mer duplex. By performing an extensive set of metadynamics simulations, we observed sliding of anthramycin along the full-length DNA minor groove, as well as several detachments from multiple sites, including the one identified by X-ray crystallography. As in the case of equilibrium processes, the LSDMap analysis is able to extract the most relevant collective motions, which are associated with the slow processes within the system, i.e., ligand diffusion along the minor groove and dissociation from it. Thus, LSDMap in combination with metadynamics (and possibly every equivalent method) emerges as a powerful method to describe the energetics of ligand binding to DNA without resorting to intuitive ad hoc reaction coordinates.

  11. Structural Insights into Ligand Recognition by a Sensing Domain of the Cooperative Glycine Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    L Huang; A Serganov; D Patel

    2011-12-31

    Glycine riboswitches regulate gene expression by feedback modulation in response to cooperative binding to glycine. Here, we report on crystal structures of the second glycine-sensing domain from the Vibrio cholerae riboswitch in the ligand-bound and unbound states. This domain adopts a three-helical fold that centers on a three-way junction and accommodates glycine within a bulge-containing binding pocket above the junction. Glycine recognition is facilitated by a pair of bound Mg{sup 2+} cations and governed by specific interactions and shape complementarity with the pocket. A conserved adenine extrudes from the binding pocket and intercalates into the junction implying that glycine binding in the context of the complete riboswitch could impact on gene expression by stabilizing the riboswitch junction and regulatory P1 helix. Analysis of riboswitch interactions in the crystal and footprinting experiments indicates that adjacent glycine-sensing modules of the riboswitch could form specific interdomain interactions, thereby potentially contributing to the cooperative response.

  12. Structure of the F-spondin Domain of Mindin an Integrin Ligand and Pattern Recognition Molecule

    Energy Technology Data Exchange (ETDEWEB)

    Y Li; C Cao; W Jia; L Yu; M Mo; Q Wang; Y Huang; J Lim; M Ishihara; et. al.

    2011-12-31

    Mindin (spondin-2) is an extracellular matrix protein of unknown structure that is required for efficient T-cell priming by dendritic cells. Additionally, mindin functions as a pattern recognition molecule for initiating innate immune responses. These dual functions are mediated by interactions with integrins and microbial pathogens, respectively. Mindin comprises an N-terminal F-spondin (FS) domain and C-terminal thrombospondin type 1 repeat (TSR). We determined the structure of the FS domain at 1.8-A resolution. The structure revealed an eight-stranded antiparallel beta-sandwich motif resembling that of membrane-targeting C2 domains, including a bound calcium ion. We demonstrated that the FS domain mediates integrin binding and identified the binding site by mutagenesis. The mindin FS domain therefore represents a new integrin ligand. We further showed that mindin recognizes lipopolysaccharide (LPS) through its TSR domain, and obtained evidence that C-mannosylation of the TSR influences LPS binding. Through these dual interactions, the FS and TSR domains of mindin promote activation of both adaptive and innate immune responses.

  13. Structure of the F-Spondin Domain of Mindin, an Integrin Ligand and Pattern Recognition Molecule

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y.; Cao, C; Jia, W; Yu, L; Mo, M; Wang, Q; Huang, Y; Lim, J; Ishihara, M; et. al.

    2009-01-01

    Mindin (spondin-2) is an extracellular matrix protein of unknown structure that is required for efficient T-cell priming by dendritic cells. Additionally, mindin functions as a pattern recognition molecule for initiating innate immune responses. These dual functions are mediated by interactions with integrins and microbial pathogens, respectively. Mindin comprises an N-terminal F-spondin (FS) domain and C-terminal thrombospondin type 1 repeat (TSR). We determined the structure of the FS domain at 1.8-A resolution. The structure revealed an eight-stranded antiparallel ?-sandwich motif resembling that of membrane-targeting C2 domains, including a bound calcium ion. We demonstrated that the FS domain mediates integrin binding and identified the binding site by mutagenesis. The mindin FS domain therefore represents a new integrin ligand. We further showed that mindin recognizes lipopolysaccharide (LPS) through its TSR domain, and obtained evidence that C-mannosylation of the TSR influences LPS binding. Through these dual interactions, the FS and TSR domains of mindin promote activation of both adaptive and innate immune responses.

  14. Recognition and assembly at multiple length-scales

    Science.gov (United States)

    Olmsted, Brian Keith

    contours to study how symmetry and packing originates at the micron length-scale. Although much is known about assembly at the molecular level for symmetry and packing, the assembly of anisotropic particles at longer length scales, which involve different interactive forces, has not been studied. This work concludes by performing preliminary work in elucidating the general behavior towards symmetry and packing in two-dimensions of micron-sized particles by using gravitational gradients and dielectrophoresis.

  15. Cyclodextrin-based PNN supramolecular assemblies: a new class of pincer-type ligands for aqueous organometallic catalysis.

    Science.gov (United States)

    Menuel, S; Bertaut, E; Monflier, E; Hapiot, F

    2015-08-14

    Water-soluble cyclodextrins (CDs) bearing two nitrogen atoms as metal coordinating sites have been synthesized. An appropriate phosphane could be included within their cavity through the primary face to form self-assembled PNN supramolecular edifices. Once the PNN ligands were coordinated to platinum, the resulting complexes proved to be very effective as catalysts in a domino reaction, where a Pt-catalyzed reduction of nitrobenzene was followed by a Paal-Knorr pyrrole reaction. In the nitrobenzene reduction, the modified CDs acted both as first- and second-sphere ligands. Contrary to an acyclic glucopyranose-based NN ligand unable to interact with a phosphane ligand, the CD-based PNN ligands stabilized the catalytic species in water by supramolecular means. Interestingly, the product and the water-soluble Pt-catalyst could be recovered in two different phases once the reaction was complete. PMID:26148430

  16. Tuning Electron-Conduction and Spin Transport in Magnetic Iron Oxide Nanoparticle Assemblies via Tetrathiafulvalene-Fused Ligands.

    Science.gov (United States)

    Lv, Zhong-Peng; Luan, Zhong-Zhi; Wang, Hai-Ying; Liu, Sheng; Li, Cheng-Hui; Wu, Di; Zuo, Jing-Lin; Sun, Shouheng

    2015-12-22

    We report a strategy to coat Fe3O4 nanoparticles (NPs) with tetrathiafulvalene-fused carboxylic ligands (TTF-COO-) and to control electron conduction and magnetoresistance (MR) within the NP assemblies. The TTF-COO-Fe3O4 NPs were prepared by replacing oleylamine (OA) from OA-coated 5.7 nm Fe3O4 NPs. In the TTF-COO-Fe3O4 NPs, the ligand binding density was controlled by the ligand size, and spin polarization on the Fe3O4 NPs was greatly improved. As a result, the interparticle spacing within the TTF-COO-Fe3O4 NP assemblies are readily controlled by the geometric length of TTF-based ligand. The shorter the distance and the better the conjugation between the TTF's HOMO and LUMO, the higher the conductivity and MR of the assembly. The TTF-coating further stabilized the Fe3O4 NPs against deep oxidation and allowed I2-doping to increase electron conduction, making it possible to measure MR of the NP assembly at low temperature (<100 K). The TTF-COO-coating provides a viable way for producing stable magnetic Fe3O4 NP assemblies with controlled electron transport and MR for spintronics applications. PMID:26563827

  17. A capillary electrophoresis method to explore the self-assembly of a novel polypeptide ligand with quantum dots.

    Science.gov (United States)

    Wang, Jianhao; Zhang, Chencheng; Liu, Li; Kalesh, Karunakaran A; Qiu, Lin; Ding, Shumin; Fu, Minli; Gao, Li-Qian; Jiang, Pengju

    2016-08-01

    Polyhistidine peptides are effective ligands to coat quantum dots (QDs). It is known that both the number of histidine (His) residues repeats and their structural arrangements in a peptide ligand play important roles in the assembly of the peptide onto CdSe/ZnS QDs. However, due to steric hindrance, a peptide sequence with more than six His residue tandem repeats would hardly coordinate well with Zn(2+) in the QD shell to further enhance the binding affinity. To solve this problem, a His-containing peptide ligand, ATTO 590-E2 G (NH)6 (ATTO-NH), was specifically designed and synthesized for assembly with QDs. With sequential injection of QDs and ATTO-NH into the capillary electrophoresis with fluorescence detection, strong Förster resonance energy transfer phenomenon between the QDs and the ATTO 590 dye was observed, indicating efficient self-assembly of the novel peptide onto the QDs to form ATTO-NH capped QDs inside the capillary. The binding stability of the ligand onto the QD was then systematically investigated by titrating with imidazole, His, and a his-tag containing competitive peptide. It is believed that this new in-capillary assay significantly reduced the sample consumption and the analysis time. By functionalizing QDs with certain metal cation-specific group fused peptide ligand, the QD-based probes could be even extended to the online detection of metal cations for monitoring environment in the future. PMID:27334251

  18. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    International Nuclear Information System (INIS)

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL2(H2O)2]n·2nH2O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H2adbc), terephthalic acid (H2tpa), thiophene-2,5-dicarboxylic acid (H2tdc) and 1,4-benzenedithioacetic acid (H2bdtc), four 3D structures [Co2L2(adbc)]n·nH2O (2), [Co2L2(tpa)]n (3), [Co2L2(tdc)]n (4), [Co2L2(bdtc)(H2O)]n (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions

  19. Uranyl-organic assemblies with acetate-bearing phenyl- and cyclohexyl-based ligands

    International Nuclear Information System (INIS)

    Six novel complexes formed under hydrothermal conditions by uranyl ions with three ligands comprising a rigid phenyl- or cyclohexyl-containing platform, and two to four acetate arms have been obtained. 1,3,5-Benzene-triacetic acid (H3BTA) yielded the complex [NMe4][UO2(BTA)].H2O (1), in which the structure-directing counter-ion induces a two-dimensional, bilayer-type structure different from that previously reported, with both the tris-chelating ligand and the metal ion as trigonal nodes. Two complexes were obtained with 1,2-phenylenedioxy-diacetic acid (H2PDDA), [UO2(PDDA)(H2O)] (2) and [H2DABCO][(UO2)2(PDDA)3].1.5H2O (3). Complex 2 is a simple, ribbon-like, one-dimensional polymer, while 3 is a nano-tubular assembly built around the hydrogen-bonded, structure-directing counterions. Three complexes were obtained with trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (H4DCTA), a polyamino-poly-carboxylic acid, with different bases, [UO2(H2DCTA)(H2O)2].H2O (4), [UO2(H2DCTA)(H2O)].1.5H2O (5), and [UO2Na(HDCTA)(H2O)] (6). The nitrogen atoms are not coordinated, both of them (4) or only one (5 and 6) being protonated, and the carboxylic/ate groups are monodentate, except for one chelating in 6 and one nonbonding in 4. These differences in bonding result in various assemblies, one-dimensional in 4 and two-dimensional in 5 and 6. The layers in 5 are strongly corrugated, with the cyclohexyl groups pointing on either side, and their packing displays oval-shaped channels, while the layers in 6 are planar, with the cyclohexyl groups located on one side, and further assembled into dimeric units by the disordered sodium ions. These are the first crystal structures of actinide ion complexes with both H2PDDA and H4DCTA. (authors)

  20. A strategy using NMR peptide structures of thromboxane A2 receptor as templates to construct ligand-recognition pocket of prostacyclin receptor

    Directory of Open Access Journals (Sweden)

    Ruan Ke-He

    2005-11-01

    Full Text Available Abstract Background: Prostacyclin receptor (IP and thromboxane A2 receptor (TP belong to rhodopsin-type G protein-coupling receptors and respectively bind to prostacyclin and thromboxane A2 derived from arachidonic acid. Recently, we have determined the extracellular loop (eLP structures of the human TP receptor by 2-D 1H NMR spectroscopy using constrained peptides mimicking the individual eLP segments. The studies have identified the segment along with several residues in the eLP domains important to ligand recognition, as well as proposed a ligand recognition pocket for the TP receptor. Results: The IP receptor shares a similar primary structure in the eLPs with those of the TP receptor. Forty percent residues in the second eLPs of the receptors are identical, which is the major region involved in forming the ligand recognition pocket in the TP receptor. Based on the high homology score, the eLP domains of the IP receptor were constructed by the homology modeling approach using the NMR structures of the TP eLPs as templates, and then configured to the seven transmembrane (TM domains model constructed using the crystal structure of the bovine rhodopsin as a template. A NMR structure of iloprost was docked into the modeled IP ligand recognition pocket. After dynamic studies, the segments and residues involved in the IP ligand recognition were proposed. A key residue, Arg173 involved in the ligand recognition for the IP receptor, as predicted from the modeling, was confirmed by site-directed mutagenesis. Conclusion: A 3-D model of the human IP receptor was constructed by homology modeling using the crystal structure of bovine rhodopsin TM domains and the NMR structures of the synthetic constrained peptides of the eLP domains of the TP receptor as templates. This strategy can be applied to molecular modeling and the prediction of ligand recognition pockets for other prostanoid receptors.

  1. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    Science.gov (United States)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL2(H2O)2]n·2nH2O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H2adbc), terephthalic acid (H2tpa), thiophene-2,5-dicarboxylic acid (H2tdc) and 1,4-benzenedithioacetic acid (H2bdtc), four 3D structures [Co2L2(adbc)]n·nH2O (2), [Co2L2(tpa)]n (3), [Co2L2(tdc)]n (4), [Co2L2(bdtc)(H2O)]n (5) were obtained, respectively. It can be observed from the architectures of 1-5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated.

  2. Self-assembly of metallosupramolecular rhombi from chiral concave 9,9’-spirobifluorene-derived bis(pyridine ligands

    Directory of Open Access Journals (Sweden)

    Rainer Hovorka

    2014-02-01

    Full Text Available Two new 9,9’-spirobifluorene-based bis(4-pyridines were synthesised in enantiopure and one also in racemic form. These ligands act as concave templates and form metallosupramolecular [(dppp2M2L2] rhombi with cis-protected [(dpppPd]2+ and [(dpppPt]2+ ions. The self-assembly process of the racemic ligand preferably occurs in a narcissistic self-recognising manner. Hence, a mixture of all three possible stereoisomers [(dppp2M2{(R-L}2](OTf4, [(dppp2M2{(S-L}2](OTf4, and [(dppp2M2{(R-L}{(S-L}](OTf4 was obtained in an approximate 1.5:1.5:1 ratio which corresponds to an amplification of the homochiral assemblies by a factor of approximately three as evidenced by NMR spectroscopy and mass spectrometry. The racemic homochiral assemblies could also be characterised by single crystal X-ray diffraction.

  3. DMBT1 functions as pattern-recognition molecule for poly-sulfated and poly-phosphorylated ligands

    DEFF Research Database (Denmark)

    End, Caroline; Bikker, Floris; Renner, Marcus;

    2009-01-01

    unraveling the molecular basis of its function in mucosal protection and of its broad pathogen-binding specificity. We report that DMBT1 directly interacts with dextran sulfate sodium (DSS) and carrageenan, a structurally similar sulfated polysaccharide, which is used as a texturizer and thickener in human...... dietary products. However, binding of DMBT1 does not reduce the cytotoxic effects of these agents to intestinal epithelial cells in vitro. DSS and carrageenan compete for DMBT1-mediated bacterial aggregation via interaction with its bacterial-recognition motif. Competition and ELISA studies identify poly-sulfated...... propose that DMBT1 functions as pattern-recognition molecule for poly-sulfated and poly-phosphorylated ligands providing a molecular basis for its broad bacterial-binding specificity and its inhibitory effects on LPS-induced TLR4-mediated NF-kappaB activation....

  4. Effect of ligand self-assembly on nanostructure and carrier transport behaviour in CdSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kuiying, E-mail: kuiyingli@ysu.edu.cn; Xue, Zhenjie

    2014-11-14

    Adjustment of the nanostructure and carrier behaviour of CdSe quantum dots (QDs) by varying the ligands used during QD synthesis enables the design of specific quantum devices via a self-assembly process of the QD core–shell structure without additional technologies. Surface photovoltaic (SPV) technology supplemented by X-ray diffractometry and infrared absorption spectroscopy were used to probe the characteristics of these QDs. Our study reveals that while CdSe QDs synthesized in the presence of and capped by thioglycolic acid, 3-mercaptopropionic acid, mercaptoethanol or α-thioglycerol ligands display zinc blende nanocrystalline structures, CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures, because different end groups in these ligands induce distinctive nucleation and growth mechanisms. Carboxyl end groups in the ligand served to increase the SPV response of the QDs, when illuminated by hν ≥ E{sub g,nano-CdSe}. Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit photo-generated free charge carrier (FCC) transfer transitions of CdSe QDs illuminated by photon energy of 4.13 to 2.14 eV. The terminal hydroxyl group might better accommodate energy released in the non-radiative de-excitation process of photo-generated FCCs in the ligand's lowest unoccupied molecular orbital in the 300–580 nm wavelength region, when compared with other ligand end groups. - Highlights: • CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures. • Carboxyl end groups in the ligand serve to increase the SPV response of CdSe QDs. • Terminal hydroxyl group in the ligand might accommodate non-radiative de-excitation process in CdSe QDs. • Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit carriers transport of CdSe QDs.

  5. Effect of ligand self-assembly on nanostructure and carrier transport behaviour in CdSe quantum dots

    International Nuclear Information System (INIS)

    Adjustment of the nanostructure and carrier behaviour of CdSe quantum dots (QDs) by varying the ligands used during QD synthesis enables the design of specific quantum devices via a self-assembly process of the QD core–shell structure without additional technologies. Surface photovoltaic (SPV) technology supplemented by X-ray diffractometry and infrared absorption spectroscopy were used to probe the characteristics of these QDs. Our study reveals that while CdSe QDs synthesized in the presence of and capped by thioglycolic acid, 3-mercaptopropionic acid, mercaptoethanol or α-thioglycerol ligands display zinc blende nanocrystalline structures, CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures, because different end groups in these ligands induce distinctive nucleation and growth mechanisms. Carboxyl end groups in the ligand served to increase the SPV response of the QDs, when illuminated by hν ≥ Eg,nano-CdSe. Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit photo-generated free charge carrier (FCC) transfer transitions of CdSe QDs illuminated by photon energy of 4.13 to 2.14 eV. The terminal hydroxyl group might better accommodate energy released in the non-radiative de-excitation process of photo-generated FCCs in the ligand's lowest unoccupied molecular orbital in the 300–580 nm wavelength region, when compared with other ligand end groups. - Highlights: • CdSe QDs modified by L-cysteine possess wurtzite nanocrystalline structures. • Carboxyl end groups in the ligand serve to increase the SPV response of CdSe QDs. • Terminal hydroxyl group in the ligand might accommodate non-radiative de-excitation process in CdSe QDs. • Increased length of the alkyl chains and side-chain radicals in the ligands partially inhibit carriers transport of CdSe QDs

  6. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long, E-mail: sky37@zjnu.cn

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n} (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.

  7. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites

    Science.gov (United States)

    Vukovic, Sinisa; Brennan, Paul E.; Huggins, David J.

    2016-09-01

    The interaction between any two biological molecules must compete with their interaction with water molecules. This makes water the most important molecule in medicine, as it controls the interactions of every therapeutic with its target. A small molecule binding to a protein is able to recognize a unique binding site on a protein by displacing bound water molecules from specific hydration sites. Quantifying the interactions of these water molecules allows us to estimate the potential of the protein to bind a small molecule. This is referred to as ligandability. In the study, we describe a method to predict ligandability by performing a search of all possible combinations of hydration sites on protein surfaces. We predict ligandability as the summed binding free energy for each of the constituent hydration sites, computed using inhomogeneous fluid solvation theory. We compared the predicted ligandability with the maximum observed binding affinity for 20 proteins in the human bromodomain family. Based on this comparison, it was determined that effective inhibitors have been developed for the majority of bromodomains, in the range from 10 to 100 nM. However, we predict that more potent inhibitors can be developed for the bromodomains BPTF and BRD7 with relative ease, but that further efforts to develop inhibitors for ATAD2 will be extremely challenging. We have also made predictions for the 14 bromodomains with no reported small molecule K d values by isothermal titration calorimetry. The calculations predict that PBRM1(1) will be a challenging target, while others such as TAF1L(2), PBRM1(4) and TAF1(2), should be highly ligandable. As an outcome of this work, we assembled a database of experimental maximal K d that can serve as a community resource assisting medicinal chemistry efforts focused on BRDs. Effective prediction of ligandability would be a very useful tool in the drug discovery process.

  8. Exploring the role of water in molecular recognition: predicting protein ligandability using a combinatorial search of surface hydration sites.

    Science.gov (United States)

    Vukovic, Sinisa; Brennan, Paul E; Huggins, David J

    2016-09-01

    The interaction between any two biological molecules must compete with their interaction with water molecules. This makes water the most important molecule in medicine, as it controls the interactions of every therapeutic with its target. A small molecule binding to a protein is able to recognize a unique binding site on a protein by displacing bound water molecules from specific hydration sites. Quantifying the interactions of these water molecules allows us to estimate the potential of the protein to bind a small molecule. This is referred to as ligandability. In the study, we describe a method to predict ligandability by performing a search of all possible combinations of hydration sites on protein surfaces. We predict ligandability as the summed binding free energy for each of the constituent hydration sites, computed using inhomogeneous fluid solvation theory. We compared the predicted ligandability with the maximum observed binding affinity for 20 proteins in the human bromodomain family. Based on this comparison, it was determined that effective inhibitors have been developed for the majority of bromodomains, in the range from 10 to 100 nM. However, we predict that more potent inhibitors can be developed for the bromodomains BPTF and BRD7 with relative ease, but that further efforts to develop inhibitors for ATAD2 will be extremely challenging. We have also made predictions for the 14 bromodomains with no reported small molecule K d values by isothermal titration calorimetry. The calculations predict that PBRM1(1) will be a challenging target, while others such as TAF1L(2), PBRM1(4) and TAF1(2), should be highly ligandable. As an outcome of this work, we assembled a database of experimental maximal K d that can serve as a community resource assisting medicinal chemistry efforts focused on BRDs. Effective prediction of ligandability would be a very useful tool in the drug discovery process. PMID:27367338

  9. Emergent Molecular Recognition through Self-Assembly: Unexpected Selectivity for Hyaluronic Acid among Glycosaminoglycans.

    Science.gov (United States)

    Noguchi, Takao; Roy, Bappaditya; Yoshihara, Daisuke; Sakamoto, Junji; Yamamoto, Tatsuhiro; Shinkai, Seiji

    2016-05-01

    Oligophenylenevinylene (OPV)-based fluorescent (FL) chemosensors exhibiting linear FL responses toward polyanions were designed. Their application to FL sensing of glycosaminoglycans (heparin: HEP, chondroitin 4-sulfate: ChS, and hyaluronic acid: HA) revealed that the charge density encoded as the unit structure directs the mode of OPV self-assembly: H-type aggregate for HEP with 16-times FL increase and J-type aggregate for HA with 93-times FL increase, thus unexpectedly achieving the preferential selectivity for HA in contrast to the conventional HEP selective systems. We have found that the integral magnitude of three factors consisting of binding mechanism, self-assembly, and FL response can amplify the structural information on the target input into the characteristic FL output. This emergent property has been used for a novel molecular recognition system that realizes unconventional FL sensing of HA, potentially applicable to the clinical diagnosis of cancer-related diseases. PMID:27060601

  10. Decomposing Scanned Assembly Meshes Based on Periodicity Recognition and Its Application to Kinematic Simulation Modeling

    Science.gov (United States)

    Mizoguchi, Tomohiro; Kanai, Satoshi

    Along with the rapid growth of industrial X-ray CT scanning systems, it is now possible to non-destructively acquire the entire meshes of assemblies consisting of a set of parts. For the advanced inspections of the assemblies, such as estimation of their assembling errors or examinations of their behaviors in the motions, based on their CT scanned meshes, it is necessary to accurately decompose the mesh and to extract a set of partial meshes each of which correspond to a part. Moreover it is required to create models which can be used for the real-product based simulations. In this paper, we focus on CT scanned meshes of gear assemblies as examples and propose beneficial methods for establishing such advance inspections of the assemblies. We first propose a method that accurately decomposes the mesh into partial meshes each of which corresponds to a gear based on periodicity recognitions. The key idea is first to accurately recognize the periodicity of each gear and then to extract the partial meshes as sets of topologically connected mesh elements where periodicities are valid. Our method can robustly and accurately recognize periodicities from noisy scanned meshes. In contrast to previous methods, our method can deal with single-material CT scanned meshes and can estimate the correct boundaries of neighboring parts with no previous knowledge. Moreover it can efficiently extract the partial meshes from large scanned meshes containing about one million triangles in a few minutes. We also propose a method for creating simulation models which can be used for a gear teeth contact evaluation using extracted partial meshes and their periodicities. Such an evaluation of teeth contacts is one of the most important functions in kinematic simulations of gear assemblies for predicting the power transmission efficiency, noise and vibration. We demonstrate the effectiveness of our method on a variety of artificial and CT scanned meshes.

  11. Hand Gesture Modeling and Recognition for Human and Robot Interactive Assembly Using Hidden Markov Models

    Directory of Open Access Journals (Sweden)

    Fei Chen

    2015-04-01

    Full Text Available Gesture recognition is essential for human and robot collaboration. Within an industrial hybrid assembly cell, the performance of such a system significantly affects the safety of human workers. This work presents an approach to recognizing hand gestures accurately during an assembly task while in collaboration with a robot co-worker. We have designed and developed a sensor system for measuring natural human-robot interactions. The position and rotation information of a human worker’s hands and fingertips are tracked in 3D space while completing a task. A modified chain-code method is proposed to describe the motion trajectory of the measured hands and fingertips. The Hidden Markov Model (HMM method is adopted to recognize patterns via data streams and identify workers’ gesture patterns and assembly intentions. The effectiveness of the proposed system is verified by experimental results. The outcome demonstrates that the proposed system is able to automatically segment the data streams and recognize the gesture patterns thus represented with a reasonable accuracy ratio.

  12. Distinct roles of beta1 metal ion-dependent adhesion site (MIDAS), adjacent to MIDAS (ADMIDAS), and ligand-associated metal-binding site (LIMBS) cation-binding sites in ligand recognition by integrin alpha2beta1.

    Science.gov (United States)

    Valdramidou, Dimitra; Humphries, Martin J; Mould, A Paul

    2008-11-21

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as alpha2beta1, ligand recognition takes place exclusively at the alpha subunit I domain. However, activation of the alphaI domain depends on its interaction with a structurally similar domain in the beta subunit known as the I-like or betaI domain. The top face of the betaI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS), and LIMBS (ligand-associated metal-binding site). The role of these sites in controlling ligand binding to the alphaI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to alpha2beta1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating monoclonal antibody TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between alphaI and betaI, whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of betaI. An activating mutation in the alpha2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca(2+), Mg(2+), and Mn(2+) on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn(2+) stimulates ligand binding, whereas the LIMBS is a stimulatory Ca(2+)-binding site, occupancy of which increases the affinity of Mg(2+) for the MIDAS. PMID:18820259

  13. The Use of the Calcitonin Minimal Recognition Module for the Design of DOPA-Containing Fibrillar Assemblies

    Directory of Open Access Journals (Sweden)

    Galit Fichman

    2014-08-01

    Full Text Available Amyloid deposits are insoluble fibrous protein aggregates, identified in numerous diseases, which self-assemble through molecular recognition. This process is facilitated by short amino acid sequences, identified as minimal modules. Peptides corresponding to these motifs can be used for the formation of amyloid-like fibrillar assemblies in vitro. Such assemblies hold broad appeal in nanobiotechnology due to their ordered structure and to their ability to be functionalized. The catechol functional group, present in the non-coded L-3,4-dihydroxyphenylalanine (DOPA amino acid, can take part in diverse chemical interactions. Moreover, DOPA-incorporated polymers have demonstrated adhesive properties and redox activity. In this work, amyloid-like fibrillar assemblies were formed through the self-assembly of a pentapeptide containing DOPA residues, Asp-DOPA-Asn-Lys-DOPA. The design of this peptide was based on the minimal amyloidogenic recognition motif of the human calcitonin hormone, Asp-Phe-Asn-Lys-Phe, the first amyloidogenic pentapeptide identified. By substituting phenylalanine with DOPA, we obtained DOPA-functionalized amyloid-like assemblies in water. Electron microscopy revealed elongated, linear fibril-like nanometric assemblies. Secondary structure analysis indicated the presence of amyloid-characteristic β-sheet structures as well as random coil structures. Deposition of silver on the DOPA-incorporated assemblies suggested redox activity and demonstrated the applicative potential of this novel nanobiomaterial.

  14. Graphene–cyclodextrin–cytochrome c layered assembly with improved electron transfer rate and high supramolecular recognition capability

    Energy Technology Data Exchange (ETDEWEB)

    Gong, Cheng-Bin; Guo, Cong-Cong; Jiang, Dan; Tang, Qian, E-mail: qiantang@swu.edu.cn; Liu, Chang-Hua; Ma, Xue-Bing

    2014-06-01

    This study aimed to develop a new graphene-based layered assembly, named graphene–cyclodextrin–cytochrome c with improved electron transfer rate. This assembly has combined high conductivity of graphene nanosheets (GNs), selectively binding properties and electronegativity of cyclodextrins (CDs), as well as electropositivity of cytochrome c (Cyt c). This assembly can also mimic the confined environments of the intermembrane space of mitochondria. A β-cyclodextrin (β-CD) functionalized GN (GN–CD) assembly was initially prepared by a simple wet-chemical strategy, i.e., in situ thermal reduction of graphene oxide with hydrazine hydrate in the presence of β-CD. Cyt c was then intercalated to the GN–CD assembly to form a layered self-assembled structure, GN–CD–Cyt c, through electrostatic interaction. Compared with GNs and GN–CD, GN–CD–Cyt c assembly displayed improved electron transfer rate and high supramolecular recognition capability toward six probe molecules. - Highlights: • A new tertiary layered assembly named GN–CD–Cyt c was prepared. • Compared with GNs and GN–CD, GN–CD–Cyt c shows improved electron transfer rate. • GN–CD–Cyt c displays high supramolecular recognition capability.

  15. Molecular mechanism of ligand recognition by NR3 subtype glutamate receptors

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yongneng; Harrison, Chris B.; Freddolino, Peter L.; Schulten, Klaus; Mayer, Mark L. (UIUC); (NIH)

    2008-10-27

    NR3 subtype glutamate receptors have a unique developmental expression profile, but are the least well-characterized members of the NMDA receptor gene family, which have key roles in synaptic plasticity and brain development. Using ligand binding assays, crystallographic analysis, and all atom MD simulations, we investigate mechanisms underlying the binding by NR3A and NR3B of glycine and D-serine, which are candidate neurotransmitters for NMDA receptors containing NR3 subunits. The ligand binding domains of both NR3 subunits adopt a similar extent of domain closure as found in the corresponding NR1 complexes, but have a unique loop 1 structure distinct from that in all other glutamate receptor ion channels. Within their ligand binding pockets, NR3A and NR3B have strikingly different hydrogen bonding networks and solvent structures from those found in NR1, and fail to undergo a conformational rearrangement observed in NR1 upon binding the partial agonist ACPC. MD simulations revealed numerous interdomain contacts, which stabilize the agonist-bound closed-cleft conformation, and a novel twisting motion for the loop 1 helix that is unique in NR3 subunits.

  16. DISTINCT ROLES OF β1 MIDAS, ADMIDAS AND LIMBS CATION-BINDING SITES IN LIGAND RECOGNITION BY INTEGRIN α2β1*

    Science.gov (United States)

    Valdramidou, Dimitra; Humphries, Martin J.; Mould, A. Paul

    2012-01-01

    Integrin-ligand interactions are regulated in a complex manner by divalent cations, and previous studies have identified ligand-competent, stimulatory, and inhibitory cation-binding sites. In collagen-binding integrins, such as α2β1, ligand recognition takes place exclusively at the α subunit I domain. However, activation of the αI domain depends on its interaction with a structurally similar domain in the β subunit known as the I-like or βI domain. The top face of the βI domain contains three cation-binding sites: the metal-ion dependent adhesion site (MIDAS), the ADMIDAS (adjacent to MIDAS) and LIMBS (ligand-associated metal binding site). The role of these sites in controlling ligand binding to the αI domain has yet to be elucidated. Mutation of the MIDAS or LIMBS completely blocked collagen binding to α2β1; in contrast mutation of the ADMIDAS reduced ligand recognition but this effect could be overcome by the activating mAb TS2/16. Hence, the MIDAS and LIMBS appear to be essential for the interaction between αI and βI whereas occupancy of the ADMIDAS has an allosteric effect on the conformation of βI. An activating mutation in the α2 I domain partially restored ligand binding to the MIDAS and LIMBS mutants. Analysis of the effects of Ca2+, Mg2+ and Mn2+ on ligand binding to these mutants showed that the MIDAS is a ligand-competent site through which Mn2+ stimulates ligand binding, whereas the LIMBS is a stimulatory Ca2+-binding site, occupancy of which increases the affinity of Mg2+ for the MIDAS. PMID:18820259

  17. Supramolecular self-assembled polynuclear complexes from tritopic, tetratopic, and pentatopic ligands: structural, magnetic and surface studies.

    Science.gov (United States)

    Dey, Subrata K; Abedin, Tareque S M; Dawe, Louise N; Tandon, Santokh S; Collins, Julie L; Thompson, Laurence K; Postnikov, Andrei V; Alam, Mohammad S; Müller, Paul

    2007-09-17

    Polymetallic, highly organized molecular architectures can be created by "bottom-up" self-assembly methods using ligands with appropriately programmed coordination information. Ligands based on 2,6-picolyldihydrazone (tritopic and pentatopic) and 3,6-pyridazinedihydrazone (tetratopic) cores, with tridentate coordination pockets, are highly specific and lead to the efficient self-assembly of square [3 x 3] Mn9, [4 x 4] Mn16, and [5 x 5] Mn25 nanoscale grids. Subtle changes in the tritopic ligand composition to include bulky end groups can lead to a rectangular 3 x [1 x 3] Mn9 grid, while changing the central pyridazine to a more sterically demanding pyrazole leads to simple dinuclear copper complexes, despite the potential for binding four metal ions. The creation of all bidentate sites in a tetratopic pyridazine ligand leads to a dramatically different spiral Mn4 strand. Single-crystal X-ray structural data show metallic connectivity through both mu-O and mu-NN bridges, which leads to dominant intramolecular antiferromagnetic spin exchange in all cases. Surface depositions of the Mn9, Mn16, and Mn25 square grid molecules on graphite (HOPG) have been examined using STM/CITS imagery (scanning tunneling microscopy/current imaging tunneling spectroscopy), where tunneling through the metal d-orbital-based HOMO levels reveals the metal ion positions. CITS imagery of the grids clearly shows the presence of 9, 16, and 25 manganese ions in the expected square grid arrangements, highlighting the importance and power of this technique in establishing the molecular nature of the surface adsorbed species. Nanoscale, electronically functional, polymetallic assemblies of this sort, created by such a bottom-up synthetic approach, constitute important components for advanced molecule-based materials. PMID:17696336

  18. A role for water molecules in DNA-ligand minor groove recognition

    OpenAIRE

    Nguyen, Binh; Neidle, Stephen; Wilson, W. David

    2009-01-01

    Targeting the minor groove of DNA through binding to a small molecule has long been considered an important molecular-recognition strategy in biology. A wide range of synthetic heterocyclic molecules bind non-covalently in the minor groove of the double helix and are also effective against a number of human and animal diseases. A classic structural concept, the isohelicity principle, has guided much of this work: such heterocyclic molecules require a shape that complements the convex surface ...

  19. Evolution of recognition of ligands from gram-positive bacteria: similarities and differences in the TLR2-mediated response between mammalian vertebrates and teleost fish

    NARCIS (Netherlands)

    Ribeiro, C.M.S.; Hermsen, G.J.; Taverne-Thiele, J.J.; Savelkoul, H.F.J.; Wiegertjes, G.F.

    2010-01-01

    We investigated the role of the TLR2 receptor in the recognition of ligands from Gram-positive bacteria in fish. Comparative sequence analysis showed a highly conserved Toll/IL-1 receptor domain. Although the leucine-rich repeat domain was less conserved, the position of the critical peptidoglycan (

  20. New Family of Octagonal-Prismatic Lanthanide Coordination Cages Assembled from Unique Ln17 Clusters and Simple Cliplike Dicarboxylate Ligands.

    Science.gov (United States)

    Zhou, Yuan-Yuan; Geng, Bing; Zhang, Zhen-Wei; Guan, Qun; Lu, Jun-Ling; Bo, Qi-Bing

    2016-03-01

    Novel high-nuclearity lanthanide clusters (Ln17) are generated in situ in the coordination-driven self-assembly. A metal-cluster-directed symmetry strategy for building metal coordination cages is successfully applied to a lanthanide system for the first time. A new family of octagonal-prismatic lanthanide coordination cages UJN-Ln, formulated as [Ln(μ3-OH)8][Ln16(μ4-O)(μ4-OH)(μ3-OH)8(H2O)8(μ4-dcd)8][(μ3-dcd)8]·22H2O (Ln = Gd, Tb, Dy, Ho, and Er; dcd = 3,3-dimethylcyclopropane-1,2-dicarboxylate dianion), have been assembled from the unique Ln17 clusters and simple cliplike ligand H2dcd. Apart from featuring aesthetically charming structures, all of the compounds present predominantly antiferromagnetic coupling between the corresponding lanthanide ions. Additionally, the intense-green photoluminescence for UJN-Tb and magnetic relaxation behavior for UJN-Dy have been observed. Remarkably, UJN-Gd shows a large magnetocaloric effect (MCE) with an impressive entropy change value of 42.3 J kg(-1) K(-1) for ΔH = 7.0 T at 2.0 K due to the high-nuclearity cluster and the lightweight ligand. The studies highlight the structural diversity of multigonal-prismatic metal coordination cages and provide a new direction in the design of cagelike multifunctional materials by the introduction of lanthanide clusters and other suitable cliplike ligands. PMID:26894272

  1. Controlled Assembly of Endohedrally-Functionalized Metal-Ligand Supramolecular Complexes

    OpenAIRE

    Johnson, Amber

    2014-01-01

    An area of supramolecular chemistry that has recently been growing in popularity is the synthesis of metal-ligand cages. These are most commonly comprised of organic ligands and transition metal ions. Cage complexes often take the form of geometric polyhedra such as tetrahedra and octahedra, where the ligands act as the edges or faces and the metals serve as the vertices. Because these complexes have a polyhedral design, there is a central cavity in the cage, and this has been exploited for g...

  2. Electronic structures of ruthenium complexes encircling non-innocent ligand assembly

    Indian Academy of Sciences (India)

    Amit Das; Dipanwita Das; Tanaya Kundu; Goutam Kumar Lahiri

    2012-11-01

    Electronic structural forms of selected mononuclear and dinuclear ruthenium complexes encompassing redox non-innocent terminal as well as bridging ligands have been addressed. The sensitive valence and spin situations of the complexes have been established in the native and accessible redox states via detailed analysis of their crystal structures, electrochemistry, UV/VIS/NIR spectroelectrochemistry, EPR signatures at the paramagnetic states and DFT calculations. Mononuclear complexes exhibit significant variations in valence and spin distribution processes based on the simple modification of the non-innocent ligand frameworks as well as electronic nature of the co-ligands, -donating or -accepting. Dinuclear complexes with modified pyrazine, -quinone and azo-derived redox-active bridging ligands show complex features including redoxinduced electron-transfer (RIET), remote metal to metal spin-interaction in a three-spin metal-bridge-metal arrangement as well as electron-transfer driven chemical transformation (EC).

  3. New Trends in Inspecting GPCR-ligand Recognition Process: the Contribution of the Molecular Modeling Section (MMS) at the University of Padova.

    Science.gov (United States)

    Ciancetta, Antonella; Cuzzolin, Alberto; Deganutti, Giuseppe; Sturlese, Mattia; Salmaso, Veronica; Cristiani, Andrea; Sabbadin, Davide; Moro, Stefano

    2016-09-01

    In this review, we present a survey of the recent advances carried out by our research groups in the field of ligand-GPCRs recognition process simulations recently implemented at the Molecular Modeling Section (MMS) of the University of Padova. We briefly describe a platform of tools we have tuned to aid the identification of novel GPCRs binders and the better understanding of their binding mechanisms, based on two extensively used computational techniques such as molecular docking and MD simulations. The developed methodologies encompass: (i) the selection of suitable protocols for docking studies, (ii) the exploration of the dynamical evolution of ligand-protein interaction networks, (iii) the detailed investigation of the role of water molecules upon ligand binding, and (iv) a glance at the way the ligand might go through prior reaching the binding site. PMID:27546048

  4. Protein-induced conformational changes of RNA during the assembly of human signal recognition particle.

    Science.gov (United States)

    Menichelli, Elena; Isel, Catherine; Oubridge, Chris; Nagai, Kiyoshi

    2007-03-16

    The human signal recognition particle (SRP) is a large RNA-protein complex that targets secretory and membrane proteins to the endoplasmic reticulum membrane. The S domain of SRP is composed of roughly half of the 7SL RNA and four proteins (SRP19, SRP54, and the SRP68/72 heterodimer). In order to understand how the binding of proteins induces conformational changes of RNA and affects subsequent binding of other protein subunits, we have performed chemical and enzymatic probing of all S domain assembly intermediates. Ethylation interference experiments show that phosphate groups in helices 5, 6 and 7 that are essential for the binding of SRP68/72 are all on the same face of the RNA. Hydroxyl radical footprinting and dimethylsulphate (DMS) modifications show that SRP68/72 brings the lower part of helices 6 and 8 closer. SRP68/72 binding also protects the SRP54 binding site (helix 8 asymmetric loop) from chemical modification and RNase cleavage, whereas, in the presence of both SRP19 and SRP68/72, the long strand of helix 8 asymmetric loop becomes readily accessible to chemical and enzymatic probes. These results indicate that the RNA platform observed in the crystal structure of the SRP19-SRP54M-RNA complex already exists in the presence of SRP68/72 and SRP19. Therefore, SRP68/72, together with SRP19, rearranges the 7SL RNA in an SRP54 binding competent state. PMID:17254600

  5. C2-Symmetric chiral diamine ligands for enantiomeric recognition of amino acid esters and mandelic acid by proton NMR titration method

    OpenAIRE

    ARAL, Hayriye; ARAL, Tarık; ÇOLAK, Mehmet; ZİYADANOĞULLARI, Berrin; ZİYADANOĞULLARI, Recep

    2013-01-01

    Two novel C2-symmetric chiral diamines containing a -phenylethyl and a -(1-naphthyl)ethyl chiral subunits were prepared with quantitative yields. Enantiomeric recognition properties of these simple structured diamine ligands towards D- and L-amino acid esters and D- and L-mandelic acid were examined by the 1H NMR titration method. These ligands exhibited strong complexation (with Kf up to 2481 M-1) and good enantioselectivity (up to KL/KD = 4.08) towards the mandelic acid enantiomers...

  6. Fragment-based solid-phase assembly of oligonucleotide conjugates with peptide and polyethylene glycol ligands.

    Science.gov (United States)

    Dirin, Mehrdad; Urban, Ernst; Noe, Christian R; Winkler, Johannes

    2016-10-01

    Ligand conjugation to oligonucleotides is an attractive strategy for enhancing the therapeutic potential of antisense and siRNA agents by inferring properties such as improved cellular uptake or better pharmacokinetic properties. Disulfide linkages enable dissociation of ligands and oligonucleotides in reducing environments found in endosomal compartments after cellular uptake. Solution-phase fragment coupling procedures for producing oligonucleotide conjugates are often tedious, produce moderate yields and reaction byproducts are frequently difficult to remove. We have developed an improved method for solid-phase coupling of ligands to oligonucleotides via disulfides directly after solid-phase synthesis. A 2'-thiol introduced using a modified nucleotide building block was orthogonally deprotected on the controlled pore glass solid support with N-butylphosphine. Oligolysine peptides and a short monodisperse ethylene glycol chain were successfully coupled to the deprotected thiol. Cleavage from the resin and full removal of oligonucleotide protection groups were achieved using methanolic ammonia. After standard desalting, and without further purification, homogenous conjugates were obtained as demonstrated by HPLC, gel electrophoresis, and mass spectrometry. The attachment of both amphiphilic and cationic ligands proves the versatility of the conjugation procedure. An antisense oligonucleotide conjugate with hexalysine showed pronounced gene silencing in a cell culture tumor model in the absence of a transfection reagent and the corresponding ethylene glycol conjugate resulted in down regulation of the target gene to nearly 50% after naked application. PMID:27236069

  7. Assembly of new polyoxometalate–templated metal–organic frameworks based on flexible ligands

    International Nuclear Information System (INIS)

    Four new polyoxometalate(POM)–templated metal–organic frameworks based on flexible ligands, namely, [Cu6(bip)12(PMoVI12O40)2(PMoVMoVI11O40O2)]·8H2O(1), [CuI3CuII3(bip)12(PMoVI12O40)2(PMoV12O34)]·8H2O(2), [Ni6(bip)12(PMoVI12O40)(PMoVI11MoVO40)2]Cl·6H2O(3), [CoII3CoIII2(H2bib)2(Hbib)2(PW9O34)2(H2O)6]·6H2O(4) (bip=1,3-bis(imidazolyl)propane, bib=1,4-bis(imidazolyl)butane) have been obtained under hydrothermal condition and characterized by single-crystal X-ray diffraction analyses, elemental analyses, and thermogravimetric (TG) analyses. The studies of single crystal X-ray indicate that compounds 1–3 crystallize in the trigonal space group P-3, and compound 4 crystallizes in the triclinic space group P-1. Compounds 1 and 3 represent 3D frameworks, and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals, while compounds 2 and 4 show 3D frameworks by hydrogen bonds. This compounds provide new examples of host–guest compounds based on flexible bis(imidazole) ligands. In addition, the electrochemical property and the catalytic property of compound 1 have also been investigated. - Graphical abstract: Four inorganic–organic hybrid compounds based polyoxometalates (POMs) and flexible ligands, namely, have been obtained under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compounds 1–3 are new examples of host–guest compounds based on flexible bis(imidazole) ligands and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals. - Highlights: • Polyoxometalate–templated metal–organic frameworks have been prepared. • POMs as the guest molecules are incorporated into the cages. • The cages are flexibility based on flexible bis(imidazole) ligands

  8. Assembly of new polyoxometalate–templated metal–organic frameworks based on flexible ligands

    Energy Technology Data Exchange (ETDEWEB)

    Li, Na; Mu, Bao; Lv, Lei; Huang, Rudan, E-mail: huangrd@bit.edu.cn

    2015-03-15

    Four new polyoxometalate(POM)–templated metal–organic frameworks based on flexible ligands, namely, [Cu{sub 6}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40}){sub 2}(PMo{sup V}Mo{sup VI}{sub 11}O{sub 40}O{sub 2})]·8H{sub 2}O(1), [Cu{sup I}{sub 3}Cu{sup II}{sub 3}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40}){sub 2}(PMo{sup V}{sub 12}O{sub 34})]·8H{sub 2}O(2), [Ni{sub 6}(bip){sub 12}(PMo{sup VI}{sub 12}O{sub 40})(PMo{sup VI}{sub 11}Mo{sup V}O{sub 40}){sub 2}]Cl·6H{sub 2}O(3), [Co{sup II}{sub 3}Co{sup III}{sub 2}(H{sub 2}bib){sub 2}(Hbib){sub 2}(PW{sub 9}O{sub 34}){sub 2}(H{sub 2}O){sub 6}]·6H{sub 2}O(4) (bip=1,3-bis(imidazolyl)propane, bib=1,4-bis(imidazolyl)butane) have been obtained under hydrothermal condition and characterized by single-crystal X-ray diffraction analyses, elemental analyses, and thermogravimetric (TG) analyses. The studies of single crystal X-ray indicate that compounds 1–3 crystallize in the trigonal space group P-3, and compound 4 crystallizes in the triclinic space group P-1. Compounds 1 and 3 represent 3D frameworks, and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals, while compounds 2 and 4 show 3D frameworks by hydrogen bonds. This compounds provide new examples of host–guest compounds based on flexible bis(imidazole) ligands. In addition, the electrochemical property and the catalytic property of compound 1 have also been investigated. - Graphical abstract: Four inorganic–organic hybrid compounds based polyoxometalates (POMs) and flexible ligands, namely, have been obtained under hydrothermal conditions and characterized by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, and thermogravimetric (TG) analyses. Compounds 1–3 are new examples of host–guest compounds based on flexible bis(imidazole) ligands and POMs as the guest molecules are incorporated into the cages which are composed of the ligands and metals. - Highlights: • Polyoxometalate

  9. Different aliphatic dicarboxylates affected assemble of new coordination polymers constructed from flexible-rigid mixed ligands

    International Nuclear Information System (INIS)

    In this article, seven coordination polymers: [Cd(C5H6O4)(C10H8N2)]n (1), [Zn(C5H6O4)(C10H8N2)]n (2), [Cd(C6H8O4)(C10H8N2)]n (3), {[Mn(C10H8N2)(H2O)4] (C4H4O4).4H2O}n (4), [Mn5(C4H4O4)4(O)]n (5), [Cd(C4H4O4)(C10H8N2)(H2O)]n (6) and [Zn(C6H6O4)(C12H8N2)(H2O)]n (7) were synthesized and characterized by single-crystallographic X-ray diffraction. Compounds 1 and 2 are two-dimensional layers connected by glutarate anions and 4,4'-bpy. Unlike compounds 1 and 2, compound 3 is a two-fold interpenetration network. Compound 4 is a one-dimensional chain-like structure, which is further extended to two-dimensional supramolecular layer structure with hydrogen bond. During the synthesis of compound 4, to our surprise, we got compound 5; compound 5 is an interesting three-dimensional network composed of pentanuclear Mn(II) building units and succinate anions. Compound 6 is also a two-dimensional supramolecular layer structure composed of one-dimensional chain-like structure with hydrogen bonds and Π-Π interactions. Compound 7 is also a one-dimensional chain-like structure, which is further connected with the same kind of interaction to generate two-dimensional supramolecular layer structure. Furthermore, compounds 1 and 2 both exhibit fluorescent property at room temperature. - Graphical abstract: Seven complexes composed by 3D metal ions, aliphatic acid ligand and rigid bidentate nitrogen ligands: 4,4'-bpy, 2,2'-bpy and 1,10'-phen. With the change of the carbon number of the backbone of aliphatic dicarboxylate ligand, we can synthesize different complexes with various structures

  10. Controllable assemblies of Cd(II) supramolecular coordination complexes based on a versatile tripyridyltriazole ligand and halide/pseduohalide anions

    Science.gov (United States)

    Wang, Xi; Guo, Wei; Guo, Ya-Mei

    2015-09-01

    Three Cd(II) complexes [Cd(L)(H2O)Cl2]n (1), [Cd(L)(H2O)Br2]n (2), and [Cd(L)I2]2 (3) have been assembled from CdX2 (1, X = Cl; 2, X = Br; 3, X = I) and a tripyridyltriazole ligand 3-(2-pyridyl)-4-(4-pyridyl)-5-(3-pyridyl)-1,2,4-triazole (L). Complexes 1 and 2 are isostructural and exhibit 1-D loop-like chain, while complex 3 has a distinct dimeric macrocyclic motif. Interestingly, another 1-D chain [Cd(L)I(SCN)]n (4) can be achieved when NH4SCN is introduced into the assembled system of 3. Structural analysis of 1-4 illustrates that the halide and thiocyanate anions in these coordination complexes behave as not only the counteranions, but also the structure directing agents. The fluorescent and thermal properties of 1-4 have also been investigated.

  11. Self-Assembled Core-Satellite Gold Nanoparticle Networks for Ultrasensitive Detection of Chiral Molecules by Recognition Tunneling Current.

    Science.gov (United States)

    Zhang, Yuanchao; Liu, Jingquan; Li, Da; Dai, Xing; Yan, Fuhua; Conlan, Xavier A; Zhou, Ruhong; Barrow, Colin J; He, Jin; Wang, Xin; Yang, Wenrong

    2016-05-24

    Chirality sensing is a very challenging task. Here, we report a method for ultrasensitive detection of chiral molecule l/d-carnitine based on changes in the recognition tunneling current across self-assembled core-satellite gold nanoparticle (GNP) networks. The recognition tunneling technique has been demonstrated to work at the single molecule level where the binding between the reader molecules and the analytes in a nanojunction. This process was observed to generate a unique and sensitive change in tunneling current, which can be used to identify the analytes of interest. The molecular recognition mechanism between amino acid l-cysteine and l/d-carnitine has been studied with the aid of SERS. The different binding strength between homo- or heterochiral pairs can be effectively probed by the copper ion replacement fracture. The device resistance was measured before and after the sequential exposures to l/d-carnitine and copper ions. The normalized resistance change was found to be extremely sensitive to the chirality of carnitine molecule. The results suggested that a GNP networks device optimized for recognition tunneling was successfully built and that such a device can be used for ultrasensitive detection of chiral molecules. PMID:27104661

  12. Pyridine ligand rotation in self-assembled trigonal prisms. Evidence for intracage solvent vapor bubbles

    Czech Academy of Sciences Publication Activity Database

    Vacek, Jaroslav; Caskey, D. C.; Horinek, D.; Shoemaker, R. K.; Stang, P. J.; Michl, Josef

    2008-01-01

    Roč. 130, č. 24 (2008), s. 7629-7638. ISSN 0002-7863 R&D Projects: GA AV ČR IAA400550616; GA MŠk ME 857 Grant ostatní: NSF(US) CHE-0306720; NSF(US) CHE-0446688; NSF(US) OISE0532040; European Commission(XE) STRPNMP4-013880; European Commission(XE) MCRTNCT-2005019481 Institutional research plan: CEZ:AV0Z40550506 Keywords : role of bubbles * self assembly * trigonal prisms Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 8.091, year: 2008

  13. High-dimensional assembly depending on polyoxoanion templates, metal ion coordination geometries, and a flexible bis(imidazole) ligand.

    Science.gov (United States)

    Dong, Bao-xia; Peng, Jun; Gómez-García, Carlos J; Benmansour, Samia; Jia, Heng-qing; Hu, Ning-hai

    2007-07-23

    By introducing the flexible 1,1'-(1,4-butanediyl)bis(imidazole) (bbi) ligand into the polyoxovanadate system, five novel polyoxoanion-templated architectures based on [As(8)V(14)O(42)](4-) and [V(16)O(38)Cl](6-) building blocks were obtained: [M(bbi)(2)](2)[As(8)V(14)O(42)(H(2)O)] [M = Co (1), Ni (2), and Zn (3)], [Cu(bbi)](4)[As(8)V(14)O(42)(H(2)O)] (4), and [Cu(bbi)](6)[V(16)O(38)Cl] (5). Compounds 1-3 are isostructural, and they exhibit a binodal (4,6)-connected 2D structure with Schläfli symbol (3(4) x 4(2))(3(4) x 4(4) x 5(4) x 6(3))(2), in which the polyoxoanion induces a closed four-membered circuit of M(4)(bbi)(4). Compound 4 exhibits an interesting 3D framework constructed from tetradentate [As(8)V(14)O(42)](4-) cluster anions and cationic ladderlike double chains. There exists a bigger M(8)(bbi)(6)O(2) circuit in 4. The 3D extended structure of 5 is composed of heptadentate [V(16)O(38)Cl](6-) anions and flexural cationic chains; the latter consists of six Cu(bbi) segments arranged alternately. It presents the largest 24-membered circuit of M(24)(bbi)(24) so far observed made of bbi molecules and transition-metal cations. Investigation of their structural relations shows the important template role of the polyoxoanions and the synergetic interactions among the polyoxoanions, transition-metal ions, and flexible ligand in the assembly process. The magnetic properties of compounds 1-3 were also studied. PMID:17592834

  14. Control of local structures and photophysical properties of zinc porphyrin-based supramolecular assemblies structurally organized by regioselective ligand coordination.

    Science.gov (United States)

    Sakuma, Takao; Sakai, Hayato; Araki, Yasuyuki; Wada, Takehiko; Hasobe, Taku

    2016-02-10

    Nano- and micro-sized molecular assemblies of zinc porphyrins [5,10,15,20-tetrakis(4-carboxyphenyl)porphyrinato-zinc(ii) (ZnTCPP)] utilizing bridging nitrogen ligands such as diazabicycro[2.2.2]octane (DABCO) were prepared to demonstrate the regioselective coordination by two different synthetic strategies such as (i) the solvothermal method and (ii) the colloidal metal organic framework (MOF) method. The initial organization process is a planar checkerboard patterned formation (2D platform) of zinc porphyrins organized by paddlewheel secondary building units (PSBUs) between carboxylate and zinc ions. Then, DABCO moieties are decorated on zinc atoms in the metal centres of the porphyrin rings (m-cPDC) in the solvothermal method, whereas the metal centres in the porphyrin rings (n-uPDC) remain uncoordinated in the colloidal MOF method. These internal structural changes between m-cPDC and n-uPDC are in sharp contrast with the corresponding reference systems using ZnTCPP and a 4,4'-bipyridine (BPY) ligand (i.e., m-cPBC and n-cPBC). Concretely, the metal centres of zinc porphyrins in n-uPDC were unsaturated and uncoordinated with the DABCO ligands, which was confirmed by XRD and steady-state spectroscopic measurements. These different coordination features have great effect on the spectroscopic and photophysical properties. For example, the average fluorescence lifetime of m-cPDC is much smaller than that of n-uPDC because of the acceleration of nonradiative processes, which are highly related with the coordination of DABCO to the Zn(ii) centre of the ZnTCPP unit. Finally, fluorescence quenching experiments via photoinduced electron transfer (PET) utilizing an electron acceptor: benzoquinone (BQ) were performed. The apparent association constant (Kapp) of n-uPDC is larger than that of m-cPDC. This suggested that the unsaturated ZnTCPP units embedded in n-uPDC easily accommodate guest molecules as compared to the other systems. PMID:26821786

  15. Structural Basis for Telomerase RNA Recognition and RNP Assembly by the Holoenzyme La Family Protein p65

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Mahavir; Wang, Zhonghua; Koo, Bon-Kyung; Patel, Anooj; Cascio, Duilio; Collins, Kathleen; Feigon, Juli (UCLA); (UCB)

    2012-07-01

    Telomerase is a ribonucleoprotein complex essential for maintenance of telomere DNA at linear chromosome ends. The catalytic core of Tetrahymena telomerase comprises a ternary complex of telomerase RNA (TER), telomerase reverse transcriptase (TERT), and the essential La family protein p65. NMR and crystal structures of p65 C-terminal domain and its complex with stem IV of TER reveal that RNA recognition is achieved by a combination of single- and double-stranded RNA binding, which induces a 105{sup o} bend in TER. The domain is a cryptic, atypical RNA recognition motif with a disordered C-terminal extension that forms an {alpha} helix in the complex necessary for hierarchical assembly of TERT with p65-TER. This work provides the first structural insight into biogenesis and assembly of TER with a telomerase-specific protein. Additionally, our studies define a structurally homologous domain (xRRM) in genuine La and LARP7 proteins and suggest a general mode of RNA binding for biogenesis of their diverse RNA targets.

  16. Selective recognition and stabilization of new ligands targeting the potassium form of the human telomeric G-quadruplex DNA

    Science.gov (United States)

    Lin, Yi-Hwa; Chuang, Show-Mei; Wu, Pei-Ching; Chen, Chun-Liang; Jeyachandran, Sivakamavalli; Lo, Shou-Chen; Huang, Hsu-Shan; Hou, Ming-Hon

    2016-01-01

    The development of a ligand that is capable of distinguishing among the wide variety of G-quadruplex structures and targeting telomeres to treat cancer is particularly challenging. In this study, the ability of two anthraquinone telomerase inhibitors (NSC749235 and NSC764638) to target telomeric G-quadruplex DNA was probed. We found that these ligands specifically target the potassium form of telomeric G-quadruplex DNA over the DNA counterpart. The characteristic interaction with the telomeric G-quadruplex DNA and the anticancer activities of these ligands were also explored. The results of this present work emphasize our understanding of the binding selectivity of anthraquinone derivatives to G-quadruplex DNA and assists in future drug development for G-quadruplex-specific ligands. PMID:27511133

  17. Modulation of Intracellular Quantum Dot to Fluorescent Protein Förster Resonance Energy Transfer via Customized Ligands and Spatial Control of Donor–Acceptor Assembly

    Directory of Open Access Journals (Sweden)

    Lauren D. Field

    2015-12-01

    Full Text Available Understanding how to controllably modulate the efficiency of energy transfer in Förster resonance energy transfer (FRET-based assemblies is critical to their implementation as sensing modalities. This is particularly true for sensing assemblies that are to be used as the basis for real time intracellular sensing of intracellular processes and events. We use a quantum dot (QD donor -mCherry acceptor platform that is engineered to self-assemble in situ wherein the protein acceptor is expressed via transient transfection and the QD donor is microinjected into the cell. QD-protein assembly is driven by metal-affinity interactions where a terminal polyhistidine tag on the protein binds to the QD surface. Using this system, we show the ability to modulate the efficiency of the donor–acceptor energy transfer process by controllably altering either the ligand coating on the QD surface or the precise location where the QD-protein assembly process occurs. Intracellularly, a short, zwitterionic ligand mediates more efficient FRET relative to longer ligand species that are based on the solubilizing polymer, poly(ethylene glycol. We further show that a greater FRET efficiency is achieved when the QD-protein assembly occurs free in the cytosol compared to when the mCherry acceptor is expressed tethered to the inner leaflet of the plasma membrane. In the latter case, the lower FRET efficiency is likely attributable to a lower expression level of the mCherry acceptor at the membrane combined with steric hindrance. Our work points to some of the design considerations that one must be mindful of when developing FRET-based sensing schemes for use in intracellular sensing.

  18. Cell-type specific recognition of human Metapneumoviruses by RIG-I and TLR7 and viral interference of RIG-I ligand recognition by HMPVB1 Phosphoprotein

    OpenAIRE

    Goutagny, Nadege; Jiang, Zhaozhao; Tian, Jane; Parroche, Peggy; Schlicki, Jeanne; Monks, Brian G; Ulbrandt, Nancy; Ji, Hong; Kiener, Peter; Coyle, Anthony J.; Fitzgerald, Katherine A.

    2009-01-01

    Human Metapneumoviruses (HMPV) are recently identified Paramyxoviridae that contribute to respiratory tract infections in children. No effective treatments or vaccines are available. Successful defense against virus infection relies on early detection by germline encoded pattern recognition receptors and activation of cytokine and type I interferon genes. Recently, the RNA helicase Retinoic acid inducible gene (RIG-I) has been shown to sense HMPV. In this study, we investigated the ability of...

  19. Ligand recognition and domain structure of Vps10p, a vacuolar protein sorting receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Jørgensen, M U; Emr, S D; Winther, Jakob R.

    1999-01-01

    Vp10p is a receptor that sorts several different vacuolar proteins by cycling between a late Golgi compartment and the endosome. The cytoplasmic tail of Vps10p is necessary for the recycling, whereas the lumenal domain is predicted to interact with the soluble ligands. We have studied ligand....... The native proteases compete for binding to domain 2. Binding of CPY(156)-invertase or PrA(137)-invertase, on the other hand, do not interfere with binding of CPY to Vps10p. Furthermore, the Q24RPL27 sequence known to be important for vacuolar sorting of CPY, is of little importance in the Vps10p...

  20. Conformational changes and ligand recognition of Escherichia coli D-xylose binding protein revealed

    DEFF Research Database (Denmark)

    Sooriyaarachchi, Sanjeewani; Ubhayasekera, Wimal; Park, Chankyu;

    2010-01-01

    ATP binding cassette transport systems account for most import of necessary nutrients in bacteria. The periplasmic binding component (or an equivalent membrane-anchored protein) is critical to recognizing cognate ligand and directing it to the appropriate membrane permease. Here we report the X-r...

  1. Carrier transport in quantum dot quantum well microstructures of the self-assembled CdTe/CdS/ligand core-shell system

    Science.gov (United States)

    Li, K. Y.; Shan, Q. S.; Zhu, R. P.; Yin, H.; Lin, Y. Y.; Wang, L. Q.

    2015-04-01

    The study on the quantum dot quantum well (QDQW) microstructure modified by choosing different ligands containing a sulfhydryl group is of significance because it enables one to regulate photoexcited free charge carriers' (FCCs') transport behaviours in high-quality CdTe/ligand QDs via a self-assembled way. The photoelectron characteristics of ligand-capped CdTe nanoparticles were probed by a combination of surface photovoltaic (SPV) and photoacoustic technologies, supplemented by a computer simulation method of the CASTEP module. The experiment reveals that the D-value ΔEWi obtained by the associated two parameters of the SPV spectroscopy was closely related to the quantum confinement energy in the self-assembled CdTe/CdS/ligand core-shell system. In the paper the D-value was termed the depth of QWs, which were buried in the space charge regions located in the graded-band-gap and on either side of the shell-CdS. Obvious resonance quantum tunnelling may occur in the energy band structure with deep QWs on using certain ligands, resulting in an extended diffusion length of the FCCs on illumination of the photon energy hν >= Eg, core-CdTe, and in a strong SPV response at a specific wavelength region. In addition, the carrier-longitudinal optical phonon interaction is the reciprocal of the carriers' lifetime. The d-frontier orbital in the graded-band-gap plays an important role in both the microstructure and the resonance quantum tunnelling of the QDQW system according to the CASTEP calculations.The study on the quantum dot quantum well (QDQW) microstructure modified by choosing different ligands containing a sulfhydryl group is of significance because it enables one to regulate photoexcited free charge carriers' (FCCs') transport behaviours in high-quality CdTe/ligand QDs via a self-assembled way. The photoelectron characteristics of ligand-capped CdTe nanoparticles were probed by a combination of surface photovoltaic (SPV) and photoacoustic technologies

  2. DNA recognition for virus assembly through multiple sequence-independent interactions with a helix-turn-helix motif.

    Science.gov (United States)

    Greive, Sandra J; Fung, Herman K H; Chechik, Maria; Jenkins, Huw T; Weitzel, Stephen E; Aguiar, Pedro M; Brentnall, Andrew S; Glousieau, Matthieu; Gladyshev, Grigory V; Potts, Jennifer R; Antson, Alfred A

    2016-01-29

    The helix-turn-helix (HTH) motif features frequently in protein DNA-binding assemblies. Viral pac site-targeting small terminase proteins possess an unusual architecture in which the HTH motifs are displayed in a ring, distinct from the classical HTH dimer. Here we investigate how such a circular array of HTH motifs enables specific recognition of the viral genome for initiation of DNA packaging during virus assembly. We found, by surface plasmon resonance and analytical ultracentrifugation, that individual HTH motifs of the Bacillus phage SF6 small terminase bind the packaging regions of SF6 and related SPP1 genome weakly, with little local sequence specificity. Nuclear magnetic resonance chemical shift perturbation studies with an arbitrary single-site substrate suggest that the HTH motif contacts DNA similarly to how certain HTH proteins contact DNA non-specifically. Our observations support a model where specificity is generated through conformational selection of an intrinsically bent DNA segment by a ring of HTHs which bind weakly but cooperatively. Such a system would enable viral gene regulation and control of the viral life cycle, with a minimal genome, conferring a major evolutionary advantage for SPP1-like viruses. PMID:26673721

  3. Mitotic regulator Mis18β interacts with and specifies the centromeric assembly of molecular chaperone holliday junction recognition protein (HJURP).

    Science.gov (United States)

    Wang, Jianyu; Liu, Xing; Dou, Zhen; Chen, Liang; Jiang, Hao; Fu, Chuanhai; Fu, Guosheng; Liu, Dan; Zhang, Jiancun; Zhu, Tongge; Fang, Jingwen; Zang, Jianye; Cheng, Jinke; Teng, Maikun; Ding, Xia; Yao, Xuebiao

    2014-03-21

    The centromere is essential for precise and equal segregation of the parental genome into two daughter cells during mitosis. CENP-A is a unique histone H3 variant conserved in eukaryotic centromeres. The assembly of CENP-A to the centromere is mediated by Holliday junction recognition protein (HJURP) in early G1 phase. However, it remains elusive how HJURP governs CENP-A incorporation into the centromere. Here we show that human HJURP directly binds to Mis18β, a component of the Mis18 complex conserved in the eukaryotic kingdom. A minimal region of HJURP for Mis18β binding was mapped to residues 437-460. Depletion of Mis18β by RNA interference dramatically impaired HJURP recruitment to the centromere, indicating the importance of Mis18β in HJURP loading. Interestingly, phosphorylation of HJURP by CDK1 weakens its interaction with Mis18β, consistent with the notion that assembly of CENP-A to the centromere is achieved after mitosis. Taken together, these data define a novel molecular mechanism underlying the temporal regulation of CENP-A incorporation into the centromere by accurate Mis18β-HJURP interaction. PMID:24519934

  4. Mitotic Regulator Mis18β Interacts with and Specifies the Centromeric Assembly of Molecular Chaperone Holliday Junction Recognition Protein (HJURP)*

    Science.gov (United States)

    Wang, Jianyu; Liu, Xing; Dou, Zhen; Chen, Liang; Jiang, Hao; Fu, Chuanhai; Fu, Guosheng; Liu, Dan; Zhang, Jiancun; Zhu, Tongge; Fang, Jingwen; Zang, Jianye; Cheng, Jinke; Teng, Maikun; Ding, Xia; Yao, Xuebiao

    2014-01-01

    The centromere is essential for precise and equal segregation of the parental genome into two daughter cells during mitosis. CENP-A is a unique histone H3 variant conserved in eukaryotic centromeres. The assembly of CENP-A to the centromere is mediated by Holliday junction recognition protein (HJURP) in early G1 phase. However, it remains elusive how HJURP governs CENP-A incorporation into the centromere. Here we show that human HJURP directly binds to Mis18β, a component of the Mis18 complex conserved in the eukaryotic kingdom. A minimal region of HJURP for Mis18β binding was mapped to residues 437–460. Depletion of Mis18β by RNA interference dramatically impaired HJURP recruitment to the centromere, indicating the importance of Mis18β in HJURP loading. Interestingly, phosphorylation of HJURP by CDK1 weakens its interaction with Mis18β, consistent with the notion that assembly of CENP-A to the centromere is achieved after mitosis. Taken together, these data define a novel molecular mechanism underlying the temporal regulation of CENP-A incorporation into the centromere by accurate Mis18β-HJURP interaction. PMID:24519934

  5. Self-assembly of 5,11,17,23-Tetranitro-25,26,27,28-tetramethoxythiacalix[4]arene with Neutral Molecules and its Use for Anion Recognition

    Czech Academy of Sciences Publication Activity Database

    Macková, M.; Himl, M.; Budka, J.; Pojarová, M.; Císařová, I.; Eigner, V.; Cuřínová, Petra; Dvořáková, H.; Lhoták, P.

    2013-01-01

    Roč. 69, č. 4 (2013), s. 1397-1402. ISSN 0040-4020 R&D Projects: GA ČR GA203/09/0691; GA AV ČR IAAX08240901 Institutional support: RVO:67985858 Keywords : thiacalixarenes * self assembly * anion recognition Subject RIV: CC - Organic Chemistry Impact factor: 2.817, year: 2013

  6. Development of small molecule non-peptide formyl peptide receptor (FPR) ligands and molecular modeling of their recognition

    OpenAIRE

    Schepetkin I.A.; Klebnikov A.I.; Giovannoni M.P.; Kirpotina L.N.; Cilibrizzi A.; Quinn M.T.

    2014-01-01

    Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. These receptors play an important role in the regulation of inflammatory reactions and sensing cellular damage. They have also been implicated in the pathogenesis of various diseases, including neurodegenerative diseases, cataract formation, and atherogenesis. Thus, FPR ligands, both agonists and antagonists, may represent novel therapeutics for modulating host defense and innate immu...

  7. Lamellar organic thin films through self-assembly and molecular recognition

    OpenAIRE

    Holder, Simon J.; Elemans, Johannes A. A. W.; Donners, J.M.; Boerakker, Mark J.; Gelder, R. de; Barbera, J.; Rowan, Alan E.; Nolte, Roeland J. M.

    2001-01-01

    Molecular clips possessing U-shaped cavities have been functionalized on their convex side with long aliphatic tails. These molecules form dimers which self-assemble into malleable lamellar thin films. Upon addition of a guest (methyl 3,5-dihydroxybenzoate), a 1:1 host-guest complex is formed, which prohibits clip dimerization. As a result, the lamellar structure of the material is lost. Complexation of 3,5-dihydroxybenzoic acid in the clip results in host-guest complexes which dimerize by hy...

  8. Development of small molecule non-peptide formyl peptide receptor (FPR) ligands and molecular modeling of their recognition.

    Science.gov (United States)

    Schepetkin, I A; Khlebnikov, A I; Giovannoni, M P; Kirpotina, L N; Cilibrizzi, A; Quinn, M T

    2014-01-01

    Formyl peptide receptors (FPRs) are G protein-coupled receptors (GPCRs) expressed on a variety of cell types. These receptors play an important role in the regulation of inflammatory reactions and sensing cellular damage. They have also been implicated in the pathogenesis of various diseases, including neurodegenerative diseases, cataract formation, and atherogenesis. Thus, FPR ligands, both agonists and antagonists, may represent novel therapeutics for modulating host defense and innate immunity. A variety of molecules have been identified as receptor subtype-selective and mixed FPR agonists with potential therapeutic value during last decade. This review describes our efforts along with recent advances in the identification, optimization, biological evaluation, and structure-activity relationship (SAR) analysis of small molecule non-peptide FPR agonists and antagonists, including chiral molecules. Questions regarding the interaction at the molecular level of benzimidazoles, pyrazolones, pyridazin-3(2H)-ones, N-phenylureas and other derivatives with FPR1 and FPR2 are discussed. Application of computational models for virtual screening and design of FPR ligands is also considered. PMID:24350845

  9. Self-Assembled M2L4 Nanocapsules: Synthesis, Structure and Host-Guest Recognition Toward Square Planar Metal Complexes

    Directory of Open Access Journals (Sweden)

    Christophe Desmarets

    2014-01-01

    Full Text Available Metallosupramolecular cages of the general formulas [M2(L4][X]4 can be self-assembled in good yields, where M = Pd, X = NO3, L = L1 (1a; M = Pd, X = OTf, L = L1 (1b; M = Pt, X = OTf, L = L1 (2; M = Pd, X = OTf, L = L2 (3; L1 = 1,3-bis(pyridin-3-ylethynyl-5-methoxybenzene; and L2 = 2,6-(pyridin-3-ylethynyl- 4-methoxyaniline, respectively. These cages have been fully characterized using 1H, 13C NMR, elemental analysis, IR spectroscopy, and electrospray mass spectrometry. Additionally the molecular structure of [Pd2(L14][OTf]4 (1b was confirmed using single crystal X-ray diffraction. The capacity of central cavities of M2L4 cages to accommodate square planar metal complexes was investigated. In particular, the tetracationic cage [Pd2(L24][OTf]4 (3 was found to encapsulate the anionic metal complex [PtCl4]2− through electrostatic interactions and also via hydrogen bonding with the amino groups of the bridging ligand displayed by this nanocage.

  10. Resonance elastic light scattering (RELS) spectroscopy of fast non-Langmuirian ligand-exchange in glutathione-induced gold nanoparticle assembly.

    Science.gov (United States)

    Stobiecka, Magdalena; Coopersmith, Kaitlin; Hepel, Maria

    2010-10-01

    The interactions of a biomolecule glutathione (GSH) with citrate-capped gold nanoparticles (AuNP) have been investigated to evaluate the viability of a rapid GSH-capture by gold nanoparticle carriers, as a model system for applications ranging from designing nanoparticle-enhanced functional biosensor interfaces to nanomedicine. The measurements, performed using resonance elastic light scattering (RELS) spectroscopy, have shown a strong dependence of GSH-induced scattering cross-section on gold nanoparticle size. A large increase in RELS intensity after injection of GSH, in a short reaction time (tau=60 s), has been observed for small AuNP (5nm dia.) and ascribed to the fast ligand-exchange followed by AuNP assembly. The unexpected non-Langmuirian concentration dependence of scattering intensity for AuNP (5 nm) indicates on a 2D nucleation and growth mechanism of the ligand-exchange process. The ligand-exchange and small nanoparticle ensemble formation followed by relaxation have been observed in long term (10 h) monitoring of GSH-AuNP interactions by RELS. The results of molecular dynamics and quantum mechanical calculations corroborate the mechanism of the formation of hydrogen-bonded GSH-linkages and interparticle interactions and show that the assembly is driven by multiple H-bonding between GSH-capped AuNP and electrostatic zwitterionic interactions. The RELS spectroscopy has been found as a very sensitive tool for studying interparticle interactions. The application of RELS can be expanded to monitor reactivities and assembly of other monolayer-protected metal clusters, especially in very fast processes which cannot be followed by other techniques. PMID:20591439

  11. A versatile polypeptide platform for integrated recognition and reporting: affinity arrays for protein-ligand interaction analysis.

    Science.gov (United States)

    Enander, Karin; Dolphin, Gunnar T; Liedberg, Bo; Lundström, Ingemar; Baltzer, Lars

    2004-05-17

    A molecular platform for protein detection and quantification is reported in which recognition has been integrated with direct monitoring of target-protein binding. The platform is based on a versatile 42-residue helix-loop-helix polypeptide that dimerizes to form four-helix bundles and allows site-selective modification with recognition and reporter elements on the side chains of individually addressable lysine residues. The well-characterized interaction between the model target-protein carbonic anhydrase and its inhibitor benzenesulfonamide was used for a proof-of-concept demonstration. An affinity array was designed where benzenesulfonamide derivatives with aliphatic or oligoglycine spacers and a fluorescent dansyl reporter group were introduced into the scaffold. The affinities of the array members for human carbonic anhydrase II (HCAII) were determined by titration with the target protein and were found to be highly affected by the properties of the spacers (dissociation constant Kd=0.02-3 microM). The affinity of HCAII for acetazolamide (Kd=4 nM) was determined in a competition experiment with one of the benzenesulfonamide array members to address the possibility of screening substance libraries for new target-protein binders. Also, successful affinity discrimination between different carbonic anhydrase isozymes highlighted the possibility of performing future isoform-expression profiling. Our platform is predicted to become a flexible tool for a variety of biosensor and protein-microarray applications within biochemistry, diagnostics and pharmaceutical chemistry. PMID:15146511

  12. Self-Assembly of Discrete Metallocycles versus Coordination Polymers Based on Cu(I and Ag(I Ions and Flexible Ligands: Structural Diversification and Luminescent Properties

    Directory of Open Access Journals (Sweden)

    Javier Vallejos

    2016-02-01

    Full Text Available Three new Ag(I and one Cu(I coordination compounds with two different positional isomers, propane-1,3-diyl bis(pyridine-4-carboxylate (L1 and propane-1,3-diyl bis(pyridine-3-carboxylate (L2, of a bis-(pyridyl-carboxylate ligand have been synthesized. X-ray diffraction analysis revealed that the self-assembly of L1 with AgCF3SO3 and AgClO4 salts leads to the formation of discrete binuclear metallocycles {Ag(L1CF3SO3}2 (1 and {Ag(L1ClO4}2 (2, respectively. However, self-assembly of the other ligand, L2, with AgCF3SO3 and CuCl salts, results in a 1-D zig-zag chain {Ag(L2CF3SO3}∞ (3 and a 1-D double-stranded helical chain {Cu2Cl2(L22}∞ (4 coordination polymers, respectively. Solid emission spectra recorded at room temperature show interesting luminescence properties for all four compounds in the range from 438 to 550 nm, especially for compound 4 that was found to change its emission color when the wavelength of the excitation radiation is switched from 332 to 436 nm.

  13. Assembly of metal ions and ligands with adaptable coordinative tendencies as a route to functional metal-organic solids

    International Nuclear Information System (INIS)

    The majority of efforts on metal-organic frameworks (MOFs) concern their rational design and, intuitively, researchers are drawn to assembly units with well-defined, reliable coordinating tendencies. Assembly units with less well-defined properties are generally less employed. This concept paper discusses the merits of using adaptable components for the assembly of functional MOFs. 'Adaptable' components, whether for the metal ion or for the ligating group, are defined as those having several coordination modes within a narrow energetic range. Use of these assembly units can lead to new solids with: (i) highly dynamic properties; (ii) new inorganic structural motifs; and possibly (iii) high thermal stabilities. The article, to facilitate comparison, considers a framework on the basis of metal ion, coordinating functionality, and organic spacer. Networks with one, two and three 'adaptable' units are then discussed. Ultimately, the illustration that less well-defined properties does not necessarily translate to less functional materials will be made

  14. Self-assembly of multinuclear coordination species with chiral bipyridine ligands: silver complexes of 5,6-CHIRAGEN(o,m,p-xylidene) ligands and equilibrium behaviour in solution.

    Science.gov (United States)

    Mamula, O; Monlien, F J; Porquet, A; Hopfgartner, G; Merbach, A E; von Zelewsky, A

    2001-01-19

    The complexation reactions between Ag- and a series of enantiopure ligands belonging to the CHIRAGEN (from CHIRAlity GENerator) family (L1, L2, L3, based on (-)-5,6-pinene bipyridine) have been studied in solution. It has been shown that the length of the bridge plays a fundamental role in the self-assembly processes leading to different compounds: mononuclear complexes (with L3), mixtures of polynuclear complexes (with L2) and circular helicates (with L 1). Although the absolute configuration of the chiral centres in all three ligands is the same, the metal-centred chirality of L3 (delta) is inverted with respect to that in the other two complexes with L1 and L2 (delta). The metal configuration is thus opposite in the mononuclear complex with respect to the polynuclear species. Detailed thermodynamic studies were carried out for the Ag+ and L1 ligand system by 1H and 109Ag NMR spectroscopy (as a function of concentration, temperature and pressure). At low temperature and high pressure, the [Ag6L1(6)]6+ hexanuclear circular helicate forms a tetranuclear circular helicate [Ag4L1(4)]4+: 2[Ag6L1(6)]6+ 3 [Ag4L1(4)]4+. The thermodynamics parameters, obtained by temperature and pressure variation, have the following values: K298 = (8.7 +/- 0.7) x 10(-5) mol x kg(-1), deltaHo = -15.65 +/- 0.8 kJ x mol(-1), deltaSo = -130.2 +/- 3 J x mol(-1) x K(-1) and deltaVo(256 K)= -160 +/- 12 cm3 x mol(-1). The reaction volume calculated according to Connolly's method indicates that the calculated structure of [Ag4L1(4)]4+ is plausible. Both the signs and large magnitudes of deltaSo and deltaVo are counterintuitive, yet can be understood by modelling methods. PMID:11271539

  15. Syntheses, structures and photoluminescence of lanthanide-organic frameworks assembled from multifunctional N,O-donor ligand

    International Nuclear Information System (INIS)

    Four new lanthanide complexes [Ln(O–NCP)2(NO3)]n based on multifunctional N,O-donor ligand 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (O–HNCP) and Ln(NO3)3·6H2O (Ln=Nd(1), La(2), Sm(3), Eu(4)) have been achieved under hydrothermal conditions and characterized by elemental analyses, infrared spectra and single crystal X-ray diffraction. Structural analyses revealed that all of these four complexes possess similar two-dimensional layer structures. In addition, thermal stability and luminescent properties of these complexes were also investigated. - Graphical abstract: A series of lanthanide(III) coordination polymers with intriguing structures based on 2-(2-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline ligand have been hydrothermally synthesized. The thermal stabilities and photoluminescence properties of these complexes have been investigated. - Highlights: • Four lanthanide(III) complexes have been hydrothermally synthesized. • The N,O-donor O–HNCP was used as the ligand. • TGA and PL properties of complexes 1–4 have been investigated

  16. Controlling the specificity of modularly assembled small molecules for RNA via ligand module spacing: targeting the RNAs that cause myotonic muscular dystrophy.

    Science.gov (United States)

    Lee, Melissa M; Childs-Disney, Jessica L; Pushechnikov, Alexei; French, Jonathan M; Sobczak, Krzysztof; Thornton, Charles A; Disney, Matthew D

    2009-12-01

    Myotonic muscular dystrophy types 1 and 2 (DM1 and DM2, respectively) are caused by expansions of repeating nucleotides in noncoding regions of RNA. In DM1, the expansion is an rCUG triplet repeat, whereas the DM2 expansion is an rCCUG quadruplet repeat. Both RNAs fold into hairpin structures with periodically repeating internal loops separated by two 5'GC/3'CG base pairs. The sizes of the loops, however, are different: the DM1 repeat forms 1 x 1 nucleotide UU loops while the DM2 repeat forms 2 x 2 nucleotide 5'CU/3'UC loops. DM is caused when the expanded repeats bind the RNA splicing regulator Muscleblind-like 1 protein (MBNL1), thus compromising its function. Therefore, one potential therapeutic strategy for these diseases is to prevent MBNL1 from binding the toxic RNA repeats. Previously, we designed nanomolar inhibitors of the DM2-MBNL1 interaction by modularly assembling 6'-N-5-hexyonate kanamycin A (K) onto a peptoid backbone. The K ligand binds the 2 x 2 pyrimidine-rich internal loops found in the DM2 RNA with high affinity. The best compound identified from that study contains three K modules separated by four propylamine spacing modules and is 20-fold selective for the DM2 RNA over the DM1 RNA. Because the modularly assembled K-containing compounds also bound the DM1 RNA, albeit with lower affinity, and because the loop size is different, we hypothesized that the optimal DM1 RNA binder may display K modules separated by a shorter distance. Indeed, here the ideal DM1 RNA binder has only two propylamine spacing modules separating the K ligands. Peptoids displaying three and four K modules on a peptoid scaffold bind the DM1 RNA with K(d)'s of 20 nM (3-fold selective for DM1 over DM2) and 4 nM (6-fold selective) and inhibit the RNA-protein interaction with IC(50)'s of 40 and 7 nM, respectively. Importantly, by coupling the two studies together, we have determined that appropriate spacing can affect binding selectivity by 60-fold (20- x 3-fold). The trimer and

  17. Layer-by-layer assembly of luminescent ultrathin films by Mg-Al-Eu LDHs nanosheets and organic ligand with high transparency

    Science.gov (United States)

    Zhang, Wenjun; Li, Yanlin; Fan, Hongxian

    2016-01-01

    We fabricated a kind of luminescent ordered multilayer transparent ultrathin films (OMTFs) based on inorganic rare earth doped layered double hydroxides (Mg-Al-Eu LDHs) nanosheets and the organic ligand 2-thenoyltrifluoroacetone (TTA) via layer-by-layer assembly method. At the same time, Polyvinyl Alcohol (PVA) aqueous solution was used as intermediate linkers. UV-visible absorption spectroscopy, X-ray diffraction, fluorescence spectroscopy and scanning electron microscopy were introduced to investigate the structure and properties of these films. Surprisingly, the uniformity and the fluorescence emission intensity of OMTFs which utilized polyvinyl Alcohol (PVA) as intermediate linkers are significantly enhanced compared with that of OMTFs without PVA. Herein, it was found that the fluorescence emission intensity of this kind of ultrathin film with PVA displays a monotonic increase as the number of deposition cycles increasing, and further the films which are highly transparent, uniform and ultrathin have potential applications in the optical display devices.

  18. Monolayers assembled from a glycolipid biosurfactant from Pseudozyma (Candida) antarctica serve as a high-affinity ligand system for immunoglobulin G and M.

    Science.gov (United States)

    Imura, Tomohiro; Ito, Seya; Azumi, Reiko; Yanagishita, Hiroshi; Sakai, Hideki; Abe, Masahiko; Kitamoto, Dai

    2007-06-01

    A carbohydrate ligand system has been developed which is composed of self-assembled monolayers (SAMs) of mannosylerythritol lipid-A (MEL-A) from Pseudozyma antarctica, serving for human immunoglobulin G and M (HIgG and HIgM). The estimated binding constants from surface plasmon resonance (SPR) measurement were Ka = 9.4 x 10(6) M(-1) for HIgG and 5.4 x 10(6) M(-1) for HIgM, respectively. The binding site was not in the Fc region of immunoglobulin but in the Fab region. Large amounts of HIgG and HIgM bound to MEL-A SAMs were directly observed by atomic force microscopy. PMID:17342348

  19. Synthesis of an S T = 7 [Mn 3 ] Mixed-Valence Complex Based on 1,3-Propanediol Ligand Derivatives and Its One-Dimensional Assemblies

    KAUST Repository

    Huang, Jian

    2013-10-07

    Controlled organization of high-spin complexes and single-molecule magnets is a great challenge in molecular magnetism in order to study the effect of the intercomplex magnetic interactions on the intrinsic properties of a given magnetic object. In this work, a new ST = 7 trinuclear mixed-valence Mn complex, [MnIIIMnII 2(LA) 2(Br)4(CH3OH)6] ·Br· (CH3OH)1.5·(H2O)0.5 (1), is reported using a pyridinium-functionalized 1,3-propanediol ligand (H 2LABr = 1-(3-bromo-2,2-bis(hydroxymethyl)propyl)pyridinium bromide). Using azido anions as bridging ligands and different pyridinium-functionalized 1,3-propanediol ligands (H2LBBr = 1-(3-bromo-2,2-bis(hydroxymethyl)propyl)-4-picolinium bromide; H 2LCBr = 1-(3-bromo-2,2-bis(hydroxymethyl)propyl)-3,5- lutidinium bromide), the linear [MnIIIMnII 2L2X4]+ building block has been assembled into one-dimensional coordination networks: [MnIIIMn II 2(LA)2(Br)4(CH 3OH)4(N3)]·((C2H 5)2O)1.25 (2∞), [MnIIIMn II 2(LB)2(Br)4(C 2H5OH)(CH3OH)(H2O) 2(N3)]·(H2O)0.25 (3∞), and [MnIIIMnII 2(LC) 2(Cl)3.8(Br)0.2(C2H 5OH)3(CH3OH)(N3)] (4∞). The syntheses, characterization, crystal structures, and magnetic properties of these new [Mn3]-based materials are reported. © 2013 American Chemical Society.

  20. Synthesis, properties and surface self-assembly of a pentanuclear cluster based on the new π-conjugated TTF-triazole ligand

    Science.gov (United States)

    Cui, Long; Geng, Yan-Fang; Leong, Chanel F.; Ma, Qian; D’Alessandro, Deanna M.; Deng, Ke; Zeng, Qing-Dao; Zuo, Jing-Lin

    2016-01-01

    The new π-extended redox-active ligand with both TTF and triazole units, 6-(4,5-bis(propylthio)-1,3-dithiol-2-ylidene)-1H-[1,3]dithiolo[4′,5′:4,5]benzo [1,2-d] [1–3]triazole, has been successfully prepared. Based on the versatile ligand and Cu(tta)2 precursors (tta− = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione), a TTF-based pentanuclear CuII cluster (Cu5(tta)4(TTFN3)6) is synthesized and structurally characterized. Their absorption and electrochemical properties are investigated. Antiferromagnetic couplings are operative between metal ion centers bridged by triazoles in the complex. The self-assembled structure of the cluster complex on a highly oriented pyrolytic graphite (HOPG) surface was observed using scanning tunneling microscopy and density functional theory (DFT) calculations have been performed to provide insight into the formation mechanism. The introduction of the redox-active TTF unit into the cluster complexes with interesting magnetic properties renders them promising candidates for new multifunctional materials. PMID:27150720

  1. Synthesis, properties and surface self-assembly of a pentanuclear cluster based on the new π-conjugated TTF-triazole ligand

    Science.gov (United States)

    Cui, Long; Geng, Yan-Fang; Leong, Chanel F.; Ma, Qian; D’Alessandro, Deanna M.; Deng, Ke; Zeng, Qing-Dao; Zuo, Jing-Lin

    2016-05-01

    The new π-extended redox-active ligand with both TTF and triazole units, 6-(4,5-bis(propylthio)-1,3-dithiol-2-ylidene)-1H-[1,3]dithiolo[4‧,5‧:4,5]benzo [1,2-d] [1–3]triazole, has been successfully prepared. Based on the versatile ligand and Cu(tta)2 precursors (tta‑ = 4,4,4-trifluoro-1-(thiophen-2-yl)butane-1,3-dione), a TTF-based pentanuclear CuII cluster (Cu5(tta)4(TTFN3)6) is synthesized and structurally characterized. Their absorption and electrochemical properties are investigated. Antiferromagnetic couplings are operative between metal ion centers bridged by triazoles in the complex. The self-assembled structure of the cluster complex on a highly oriented pyrolytic graphite (HOPG) surface was observed using scanning tunneling microscopy and density functional theory (DFT) calculations have been performed to provide insight into the formation mechanism. The introduction of the redox-active TTF unit into the cluster complexes with interesting magnetic properties renders them promising candidates for new multifunctional materials.

  2. A review of immune amplification via ligand clustering by self-assembled liquid-crystalline DNA complexes.

    Science.gov (United States)

    Lee, Ernest Y; Lee, Calvin K; Schmidt, Nathan W; Jin, Fan; Lande, Roberto; Curk, Tine; Frenkel, Daan; Dobnikar, Jure; Gilliet, Michel; Wong, Gerard C L

    2016-06-01

    We examine how the interferon production of plasmacytoid dendritic cells is amplified by the self-assembly of liquid-crystalline antimicrobial peptide/DNA complexes. These specialized dendritic cells are important for host defense because they quickly release large quantities of type I interferons in response to infection. However, their aberrant activation is also correlated with autoimmune diseases such as psoriasis and lupus. In this review, we will describe how polyelectrolyte self-assembly and the statistical mechanics of multivalent interactions contribute to this process. In a more general compass, we provide an interesting conceptual corrective to the common notion in molecular biology of a dichotomy between specific interactions and non-specific interactions, and show examples where one can construct exquisitely specific interactions using non-specific interactions. PMID:26956527

  3. Double-degradable responsive self-assembled multivalent arrays-temporary nanoscale recognition between dendrons and DNA

    OpenAIRE

    Barnard, A.; Posocco, P.; Fermeglia, M.; Tschiche, A.; Calderon, Marcelo; Pricl, S.; Smith, D. K.

    2014-01-01

    This article reports self-assembling dendrons which bind DNA in a multivalent manner. The molecular design directly impacts on self-assembly which subsequently controls the way these multivalent nanostructures bind DNA-this can be simulated by multiscale modelling. Incorporation of an S-S linkage between the multivalent hydrophilic dendron and the hydrophobic units responsible for self-assembly allows these structures to undergo triggered reductive cleavage, with dithiothreitol (DTT) inducing...

  4. Recognition-driven layer-by-layer construction of multiprotein assemblies on surfaces: a biomolecular toolkit for building up chemoresponsive bioelectrochemical interfaces.

    Science.gov (United States)

    Pallarola, Diego; von Bildering, Catalina; Pietrasanta, Lía I; Queralto, Nuria; Knoll, Wolfgang; Battaglini, Fernando; Azzaroni, Omar

    2012-08-21

    The development of soft bioelectronic interfaces with accurate compositional and topological control of the supramolecular architecture attracts intense interest in the fast-growing field of bioelectronics and biosensing. The present study explores the recognition-driven layer-by-layer assembly of glycoenzymes onto electrode surfaces. The design of the multi-protein interfacial architecture is based on the multivalent supramolecular carbohydrate-lectin interactions between redox glycoproteins and concanavalin A (Con A) derivatives. Specifically, [Os(bpy)(2)Clpy](2+)-tagged Con A (Os-Con A) and native Con A were used to direct the assembly of horseradish peroxidase (HRP) and glucose oxidase (GOx) in a stepwise topologically controlled procedure. In our designed configuration, GOx acts as the biorecognition element to glucose stimulus, while HRP acts as the transducing element. Surface plasmon resonance (SPR) spectroscopy and quartz crystal microbalance with dissipation (QCM-D) results are combined to give a close representation of the protein surface coverage and the content of water in the protein assembly. The characterization is complemented with in situ atomic force microscopy (AFM) to give a topographical description of the layers assemblage. Electrochemical (EC) techniques were used to characterize the functional features of the spontaneously self-assembled biohybrid architecture, showing that the whole system presents efficient electron transfer and mass transport processes being able to transform micromolar glucose concentration into electrical information. In this way the combination of the electroactive and nonelectroactive Con A provides an efficient strategy to control the position and composition of the protein layers via recognition-driven processes, which defines its sensitivity toward glucose. Furthermore, the incorporation of dextran as a permeable interlayer able to bind Con A promotes the physical separation of the biochemical and transducing

  5. Zwitterionic Cobalt Complexes with Bis(diphenylphosphino)(N-thioether)amine Assembling Ligands: Structural, EPR, Magnetic, and Computational Studies.

    Science.gov (United States)

    Fliedel, Christophe; Rosa, Vitor; Vileno, Bertrand; Parizel, Nathalie; Choua, Sylvie; Gourlaouen, Christophe; Rosa, Patrick; Turek, Philippe; Braunstein, Pierre

    2016-05-01

    The coordination of two heterofunctional P,P,S ligands of the N-functionalized DPPA-type bearing an alkylthioether or arylthioether N-substituent, (Ph2P)2N(CH2)3SMe (1) and (Ph2P)2N(p-C6H4)SMe (2), respectively, toward cobalt dichloride was investigated to examine the influence of the linker between the PNP nitrogen and the S atoms. The complexes [CoCl2(1)]2 (3) and [CoCl2(2)]2 (4) have been isolated, and 3 was shown by X-ray diffraction to be a unique dinuclear, zwitterion containing one CoCl moiety bis-chelated by two ligands 1 and one CoCl3 fragment coordinated by the S atom of a thioether function. The FT-IR, UV-vis, and EPR spectroscopic features of 3 were analyzed as the superposition of those of constitutive fragments identified by a retrosynthetic-type analysis. A similar approach provided insight into the nature of 4 for which no X-ray diffraction data could be obtained. A comparison between the spectroscopic features of 4 and of its constitutive fragments, [CoCl(2)2]PF6 (7) and [H2']2[CoCl4] (8) (2' = NH2(p-C6H4)SMe), and between those of 4 and 3 suggested that 4 could either have a zwitterionic structure, similar to that of 3, or contain a tetrahedral dicationic bis-chelated Co center associated with a CoCl4 dianion. Magnetic and EPR studies and theoretical calculations were performed. Doublet spin states were found for the pentacoordinated complexes [CoCl(1)2]PF6 (5) and 7 and anisotropic quadruplet spin states for the tetrahedral complexes [CoCl3(H1')] (6) (1' = NH2(CH2)3SMe) and 8. A very similar behavior was observed for 3 and 4, consisting in the juxtaposition of noninteracting doublet and quadruplet spin states. Antiferromagnetic interactions explain the formation of dimers for 6 and of layers for 8. The EPR signatures of 3 and 4 correspond to the superposition of low-spin nuclei in 5 and 7 and high-spin nuclei in 6 and 8, respectively. From DFT calculations, the solid-state structure of 4 appears best described as zwitterionic, with a low

  6. Honeycomb-shaped coordination polymers based on the self-assembly of long flexible ligands and alkaline-earth ions

    Science.gov (United States)

    Lian, Chen; Liu, Liu; Guo, Xu; Long, Yinshuang; Jia, Shanshan; Li, Huanhuan; Yang, Lirong

    2016-01-01

    Two novel coordination polymers, namely, [Ca(NCP)2]∞ (I) and [Sr(NCP)2]∞ (II) were synthesized under hydrothermal conditions based on 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (HNCP) and characterized by elemental analysis, infrared spectrometry, X-ray powder diffraction and single crystal X-ray diffraction. Findings indicate that I and II are isomorphous and isostructural, containing the unit of M(NCP-)4 (M=Ca(II) and Sr(II)), based on which to assemble into three-dimensional (3D) porous 4-fold interpenetration honeycomb-shaped neutral coordination polymers (CPs). Between the adjacent lamellar structures in I and II, there exist π-π interactions between the pyridine rings belonging to phenanthroline of NCP- which stabilize the frameworks. Both I and II display stronger fluorescence emissions as well as high thermal stability.

  7. Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding

    Science.gov (United States)

    Çetinkol, Özgül Persil; Hud, Nicholas V.

    2009-01-01

    A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (Tm ≈ 60°C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (Ka >107 M−1), and that the crescent shape of coralyne appears necessary for poly(A) binding. We also show that the binding of similar ligands to poly(A) can be highly cooperative. For one particular ligand, at least six ligand molecules are required to stabilize the poly(A) self-structure at room temperature. This highly cooperative binding produces very sharp transitions between unstructured and structured poly(A) as a function of ligand concentration. Given the fact that junctions between Watson–Crick and A·A duplexes are tolerated, we propose that poly(A) sequence elements and appropriate ligands could be used to reversibly drive transitions in DNA and RNA-based molecular structures by simply diluting/concentrating a sample about the poly(A)-ligand ‘critical concentration’. The ligands described here may also find biological or medicinal applications, owing to the 3′-polyadenylation of mRNA in living cells. PMID:19073699

  8. Double-degradable responsive self-assembled multivalent arrays--temporary nanoscale recognition between dendrons and DNA.

    Science.gov (United States)

    Barnard, Anna; Posocco, Paola; Fermeglia, Maurizio; Tschiche, Ariane; Calderon, Marcelo; Pricl, Sabrina; Smith, David K

    2014-01-21

    This article reports self-assembling dendrons which bind DNA in a multivalent manner. The molecular design directly impacts on self-assembly which subsequently controls the way these multivalent nanostructures bind DNA--this can be simulated by multiscale modelling. Incorporation of an S-S linkage between the multivalent hydrophilic dendron and the hydrophobic units responsible for self-assembly allows these structures to undergo triggered reductive cleavage, with dithiothreitol (DTT) inducing controlled breakdown, enabling the release of bound DNA. As such, the high-affinity self-assembled multivalent binding is temporary. Furthermore, because the multivalent dendrons are constructed from esters, a second slow degradation step causes further breakdown of these structures. This two-step double-degradation mechanism converts a large self-assembling unit with high affinity for DNA into small units with no measurable binding affinity--demonstrating the advantage of self-assembled multivalency (SAMul) in achieving highly responsive nanoscale binding of biological targets. PMID:24263553

  9. G protein-coupled receptor 30 ligand G-1 increases aryl hydrocarbon receptor signalling by inhibition of tubulin assembly and cell cycle arrest in human MCF-7 cells.

    Science.gov (United States)

    Tarnow, Patrick; Tralau, Tewes; Luch, Andreas

    2016-08-01

    Regulatory crosstalk between the aryl hydrocarbon receptor (AHR) and oestrogen receptor α (ERα) is well established. Apart from the nuclear receptors ERα and ERβ, oestrogen signalling further involves an unrelated G protein-coupled receptor termed GPR30. In order to investigate potential regulatory crosstalk, this study investigated the influence of G-1 as one of the few GPR30-specific ligands on the AHR regulon in MCF-7 cells. As a well-characterised model system, these human mammary carcinoma cells co-express all three receptors (AHR, ERα and GPR30) and are thus ideally suited to study corresponding regulatory pathway interactions on transcript level. Indeed, treatment with micromolar concentrations of the GPR30-specific agonist G-1 resulted in up-regulation of AHR as well as the transcripts for cytochromes P450 1A1 and 1B1, two well-known targets of the AHR regulon. While this was partly attributable to G-1-mediated inhibition of tubulin assembly and subsequent cell cycle arrest in the G2/M phase, the effects nevertheless required functional AHR. However, G-1-induced up-regulation of CYP 1A1 was not mediated by GPR30, as G15 antagonist treatment as well as a knockdown of GPR30 and AHR failed to inhibit this effect. PMID:26475489

  10. Pattern-recognition techniques applied to performance monitoring of the DSS 13 34-meter antenna control assembly

    Science.gov (United States)

    Mellstrom, J. A.; Smyth, P.

    1991-01-01

    The results of applying pattern recognition techniques to diagnose fault conditions in the pointing system of one of the Deep Space network's large antennas, the DSS 13 34-meter structure, are discussed. A previous article described an experiment whereby a neural network technique was used to identify fault classes by using data obtained from a simulation model of the Deep Space Network (DSN) 70-meter antenna system. Described here is the extension of these classification techniques to the analysis of real data from the field. The general architecture and philosophy of an autonomous monitoring paradigm is described and classification results are discussed and analyzed in this context. Key features of this approach include a probabilistic time-varying context model, the effective integration of signal processing and system identification techniques with pattern recognition algorithms, and the ability to calibrate the system given limited amounts of training data. Reported here are recognition accuracies in the 97 to 98 percent range for the particular fault classes included in the experiments.

  11. Self-assembled tetra- and pentanuclear nickel(II) aggregates from phenoxido-based ligand -bound {Ni2} fragments: carboxylate bridge controlled structures.

    Science.gov (United States)

    Ghosh, Aloke Kumar; Shatruk, Michael; Bertolasi, Valerio; Pramanik, Kausikisankar; Ray, Debashis

    2013-12-16

    Three different carboxylato bridges (R = C2H5, CF3, and PhCH2 in RCO2(-)) have been used to obtain the supramolecular aggregates [Ni5(μ-H2bpmp)2(μ3-OH)2(μ1,3-O2CC2H5)6]·2H2O·4DMF (1·2H2O·4DMF), [Ni4(μ3-H2bpmp)2(μ3-OH)2(μ1,3-O2CCF3)2](CF3CO2)2·H2O (2·H2O), and [Ni4(μ3-H2bpmp)2(μ3-OH)2(μ1,3-O2CCH2Ph)2](PhCH2CO2)2·4H2O (3·4H2O) (H3bpmp =2,6-bis-[(3-hydroxy-propylimino)-methyl]-4-methyl-phenol) from the hydroxido-bridged dinuclear motif [Ni2(μ-H2bpmp)(OH)](2+). These complexes have been characterized by X-ray crystallography and magnetic measurements. A change from propanoate group to trifluoroacetate and phenylaceate groups provided different course of cluster assembly based on Ni2(μ-H2bpmp)2 fragments. The {Ni5(μ3-OH)2(μ1,3-O2CC2H5)6}(2+) core in 1 contains five Ni(II) ions in an hourglass (pentanuclear vertex-shared double cubane) arrangement. These compounds are new examples of [Ni5] and [Ni4] complexes where aggregation of the building motifs are guided by the nature of the carboxylate anions, which allows an effective tuning of the self-aggregate process within same ligand environment. The study of the magnetic properties reveals that 1 exhibits an S = 3 ground state. Nevertheless, the magnetization increases above the expected saturation value of 6 μB at higher fields, because of the suppression of antiferromagnetic exchange between the central and peripheral Ni(II) ions. Complexes 2 and 3 exhibit ferromagnetic exchange interactions that result in the S = 4 ground state. Examination of AC magnetic susceptibility showed that complex 2 in finely ground form behaves as spin glass with the spin-freezing temperature of ∼5.5 K. This behavior was attributed to the collapse of the structure upon the loss of interstitial solvent. Such property was not observed for complex 3, in which the bulkier carboxylate ligands provide for a more robust crystal packing and larger separation between the [Ni4O4] clusters. PMID:24295223

  12. Self-recognition mechanism of MamA, a magnetosome-associated TPR-containing protein, promotes complex assembly

    OpenAIRE

    Zeytuni, Natalie; Ozyamak, Ertan; Ben-Harush, Kfir; Davidov, Geula; Levin, Maxim; Gat, Yair; Moyal, Tal; Brik, Ashraf; Komeili, Arash; Zarivach, Raz

    2011-01-01

    The magnetosome, a biomineralizing organelle within magnetotactic bacteria, allows their navigation along geomagnetic fields. Magnetosomes are membrane-bound compartments containing magnetic nanoparticles and organized into a chain within the cell, the assembly and biomineralization of magnetosomes are controlled by magnetosome-associated proteins. Here, we describe the crystal structures of the magnetosome-associated protein, MamA, from Magnetospirillum magneticum AMB-1 and Magnetospirillum ...

  13. Molecular Recognition of the Catalytic Zinc(II Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies

    Directory of Open Access Journals (Sweden)

    Thomas Fischer

    2016-03-01

    Full Text Available Matrix metalloproteinases (MMPs are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077: IC50 = 134 nM whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135: LLE = 2.91.

  14. Molecular Recognition of the Catalytic Zinc(II) Ion in MMP-13: Structure-Based Evolution of an Allosteric Inhibitor to Dual Binding Mode Inhibitors with Improved Lipophilic Ligand Efficiencies.

    Science.gov (United States)

    Fischer, Thomas; Riedl, Rainer

    2016-01-01

    Matrix metalloproteinases (MMPs) are a class of zinc dependent endopeptidases which play a crucial role in a multitude of severe diseases such as cancer and osteoarthritis. We employed MMP-13 as the target enzyme for the structure-based design and synthesis of inhibitors able to recognize the catalytic zinc ion in addition to an allosteric binding site in order to increase the affinity of the ligand. Guided by molecular modeling, we optimized an initial allosteric inhibitor by addition of linker fragments and weak zinc binders for recognition of the catalytic center. Furthermore we improved the lipophilic ligand efficiency (LLE) of the initial inhibitor by adding appropriate zinc binding fragments to lower the clogP values of the inhibitors, while maintaining their potency. All synthesized inhibitors showed elevated affinity compared to the initial hit, also most of the novel inhibitors displayed better LLE. Derivatives with carboxylic acids as the zinc binding fragments turned out to be the most potent inhibitors (compound 3 (ZHAWOC5077): IC50 = 134 nM) whereas acyl sulfonamides showed the best lipophilic ligand efficiencies (compound 18 (ZHAWOC5135): LLE = 2.91). PMID:26938528

  15. Fluorescence turn-on recognition of chiral amino acids using dye incorporated β-CD functionalized AuNPs assembly

    International Nuclear Information System (INIS)

    An assembly of dye incorporated β-cyclodextrin (βCD) functionalized AuNPs for the fluorescent probing of chiral amino acids is presented. Gold nanoparticles (AuNPs) possessing a high extinction coefficient function can be used as excellent fluorescent quenchers in AuNP–fluorophore system. Inclusion of fluorescein (FL) into β-cyclodextrin (βCD) makes energy transfer to occur through the donor and quencher nearby. This energy transfer switches off by virtue of the analyte induced release of FL from β-CD cavity, which results in the fluorescence recovery of the quenched dye. Analysis suggests that the assembly of AuNPs–βCDs–FL is effective as a turn-on fluorescent probe for the chiroselective optical discrimination between D,L-tryptophan, D,L-phenyl alanine and D,L-tyrosine. The detection limits for analyzing L-tryptophan, L-phenyl alanine and L-tyrosine were found to be 0.59, 1.2 and 1.5 μM respectively. - Highlights: • Fluorescence quenching AuNP–βCD–dye assembly via energy transfer. • Energy transfer from dye to AuNPs is a SET process. • Fluorescence turn-on detection of amino acids by the competitive binding method. • Chiroselective discrimination between enantiomeric amino acids

  16. Fluorescence turn-on recognition of chiral amino acids using dye incorporated β-CD functionalized AuNPs assembly

    Energy Technology Data Exchange (ETDEWEB)

    Aswathy, B., E-mail: aswathybv@gmail.com; Sony, G., E-mail: emailtosony@gmail.com

    2014-10-15

    An assembly of dye incorporated β-cyclodextrin (βCD) functionalized AuNPs for the fluorescent probing of chiral amino acids is presented. Gold nanoparticles (AuNPs) possessing a high extinction coefficient function can be used as excellent fluorescent quenchers in AuNP–fluorophore system. Inclusion of fluorescein (FL) into β-cyclodextrin (βCD) makes energy transfer to occur through the donor and quencher nearby. This energy transfer switches off by virtue of the analyte induced release of FL from β-CD cavity, which results in the fluorescence recovery of the quenched dye. Analysis suggests that the assembly of AuNPs–βCDs–FL is effective as a turn-on fluorescent probe for the chiroselective optical discrimination between D,L-tryptophan, D,L-phenyl alanine and D,L-tyrosine. The detection limits for analyzing L-tryptophan, L-phenyl alanine and L-tyrosine were found to be 0.59, 1.2 and 1.5 μM respectively. - Highlights: • Fluorescence quenching AuNP–βCD–dye assembly via energy transfer. • Energy transfer from dye to AuNPs is a SET process. • Fluorescence turn-on detection of amino acids by the competitive binding method. • Chiroselective discrimination between enantiomeric amino acids.

  17. CMPO-functionalized C3-symmetric tripodal ligands in liquid/liquid extractions : efficient, selective recognition of Pu(IV) with low affinity for 3+ metal ions

    International Nuclear Information System (INIS)

    Structural modifications of carbamoylmethylphosphine oxide (CPMO)-functionalized triphenoxymethane platforms are described, and the influence of these changes on the ability of the ligand to extract actinides from simulated acidic nuclear waste streams has been evaluated. The ligand system has been shown to have excellent binding efficiency and a selectivity for An(IV) in comparison to the a simple monomeric CMPO ligand under analogous conditions. Both the extraction efficiency and selectivity are strongly dependent on the flexibility and electronic properties of the ligating units in the triphenoxymethane construct. The Tb(III) and Bi(III) nitrate complexes of tris-CMPO derivatives have been isolated, and their structures were elucidated by NMR, ESI FT-ICR MS, and X-ray analysis, providing information on the interactions between metal ions and the tris-CMPO molecules

  18. CMPO-functionalized C3-symmetric tripodal ligands in liquid/liquid extractions: efficient, selective recognition of Pu(IV) with low affinity for 3+ metal ions.

    Science.gov (United States)

    Matloka, Kornelia; Sah, Ajay K; Peters, Matthew W; Srinivasan, Priya; Gelis, Artem V; Regalbuto, Monica; Scott, Michael J

    2007-12-10

    Structural modifications of carbamoylmethylphosphine oxide (CPMO)-functionalized triphenoxymethane platforms are described, and the influence of these changes on the ability of the ligand to extract actinides from simulated acidic nuclear waste streams has been evaluated. The ligand system has been shown to have excellent binding efficiency and a selectivity for An(IV) in comparison to the a simple monomeric CMPO ligand under analogous conditions. Both the extraction efficiency and selectivity are strongly dependent on the flexibility and electronic properties of the ligating units in the triphenoxymethane construct. The Tb(III) and Bi(III) nitrate complexes of tris-CMPO derivatives have been isolated, and their structures were elucidated by NMR, ESI FT-ICR MS, and X-ray analysis, providing information on the interactions between metal ions and the tris-CMPO molecules. PMID:17999487

  19. Orc1 Binding to Mitotic Chromosomes Precedes Spatial Patterning during G1 Phase and Assembly of the Origin Recognition Complex in Human Cells.

    Science.gov (United States)

    Kara, Nihan; Hossain, Manzar; Prasanth, Supriya G; Stillman, Bruce

    2015-05-01

    Replication of eukaryotic chromosomes occurs once every cell division cycle in normal cells and is a tightly controlled process that ensures complete genome duplication. The origin recognition complex (ORC) plays a key role during the initiation of DNA replication. In human cells, the level of Orc1, the largest subunit of ORC, is regulated during the cell division cycle, and thus ORC is a dynamic complex. Upon S phase entry, Orc1 is ubiquitinated and targeted for destruction, with subsequent dissociation of ORC from chromosomes. Time lapse and live cell images of human cells expressing fluorescently tagged Orc1 show that Orc1 re-localizes to condensing chromatin during early mitosis and then displays different nuclear localization patterns at different times during G1 phase, remaining associated with late replicating regions of the genome in late G1 phase. The initial binding of Orc1 to mitotic chromosomes requires C-terminal amino acid sequences that are similar to mitotic chromosome-binding sequences in the transcriptional pioneer protein FOXA1. Depletion of Orc1 causes concomitant loss of the mini-chromosome maintenance (Mcm2-7) helicase proteins on chromatin. The data suggest that Orc1 acts as a nucleating center for ORC assembly and then pre-replication complex assembly by binding to mitotic chromosomes, followed by gradual removal from chromatin during the G1 phase. PMID:25784553

  20. Protein Camouflage: Supramolecular Anion Recognition by Ubiquitin.

    Science.gov (United States)

    Mallon, Madeleine; Dutt, Som; Schrader, Thomas; Crowley, Peter B

    2016-04-15

    Progress in the field of bio-supramolecular chemistry, the bottom-up assembly of protein-ligand systems, relies on a detailed knowledge of molecular recognition. To address this issue, we have characterised complex formation between human ubiquitin (HUb) and four supramolecular anions. The ligands were: pyrenetetrasulfonic acid (4PSA), p-sulfonato-calix[4]arene (SCLX4), bisphosphate tweezers (CLR01) and meso-tetrakis (4-sulfonatophenyl)porphyrin (TPPS), which vary in net charge, size, shape and hydrophobicity. All four ligands induced significant changes in the HSQC spectrum of HUb. Chemical shift perturbations and line-broadening effects were used to identify binding sites and to quantify affinities. Supporting data were obtained from docking simulations. It was found that these weakly interacting ligands bind to extensive surface patches on HUb. A comparison of the data suggests some general indicators for the protein-binding specificity of supramolecular anions. Differences in binding were observed between the cavity-containing and planar ligands. The former had a preference for the arginine-rich, flexible C terminus of HUb. PMID:26818656

  1. Collision-induced dissociation of noncovalent complexes between vancomycin antibiotics and peptide ligand stereoisomers: evidence for molecular recognition in the gas phase

    DEFF Research Database (Denmark)

    Jørgensen, Thomas J. D.; Delforge, D; Remacle, J;

    1999-01-01

    In solution, the antibiotics of the vancomycin group bind stereospecifically to peptides with the C-terminal sequence: -L-Lys-D-Ala-D-Ala, Substitution by a L-Ala at either of the two C-terminal residues causes a dramatic decrease in the binding affinity to the antibiotics. This solution behavior...... ions consisting of an antibiotic, a -L-Ala peptide, a -D-Ala stereoisomer, one ligand isotopically labelled. Upon CID of the negatively charged mixed cluster ions a stereoselective loss of the assumed "nonspecifically" bound -L-Ala ligand was observed. (Int J Mass Spectrom 188 (1999) 63-85) (C) 1999...

  2. Self-Assembled M2L4 Nanocapsules: Synthesis, Structure and Host-Guest Recognition Toward Square Planar Metal Complexes

    OpenAIRE

    Christophe Desmarets; Thierry Ducarre; Marie Noelle Rager; Geoffrey Gontard; Hani Amouri

    2014-01-01

    Metallosupramolecular cages of the general formulas [M2(L)4][X]4 can be self-assembled in good yields, where M = Pd, X = NO3, L = L1 (1a); M = Pd, X = OTf, L = L1 (1b); M = Pt, X = OTf, L = L1 (2); M = Pd, X = OTf, L = L2 (3); L1 = 1,3-bis(pyridin-3-ylethynyl)-5-methoxybenzene; and L2 = 2,6-(pyridin-3-ylethynyl)- 4-methoxyaniline, respectively. These cages have been fully characterized using 1H, 13C NMR, elemental analysis, IR spectroscopy, and electrospray mass spectrometry. Additionally ...

  3. Non-equivalence of key positively charged residues of the free fatty acid 2 receptor in the recognition and function of agonist versus antagonist ligands

    DEFF Research Database (Denmark)

    Sergeev, Eugenia; Hojgaard Hansen, Anders; Pandey, Sunil K;

    2016-01-01

    Short chain fatty acids (SCFAs) are produced in the gut by bacterial fermentation of poorly digested carbohydrates. A key mediator of their actions is the G protein-coupled Free Fatty Acid 2 (FFA2) receptor and this has been suggested as a therapeutic target for the treatment of both metabolic an....... A homology model capable of rationalizing these observations was developed and provides a tool that will be invaluable for identifying improved FFA2 agonists and antagonists to further define function and therapeutic opportunities of this receptor....... inflammatory diseases. However, a lack of understanding of the molecular determinants dictating how ligands bind to this receptor has hindered development. We have developed a novel radiolabelled FFA2 antagonist in order to probe ligand binding to FFA2 and in combination with mutagenesis and molecular...... modelling studies define how agonist and antagonist ligands interact with the receptor. Although both agonist and antagonist ligands contain negatively charged carboxylates that interact with two key positively charged arginine residues in transmembrane domains V and VII of FFA2, there are clear differences...

  4. A Stimuli-Responsive Biosensor of Glucose on Layer-by-Layer Films Assembled through Specific Lectin-Glycoenzyme Recognition

    Directory of Open Access Journals (Sweden)

    Huiqin Yao

    2016-04-01

    Full Text Available The research on intelligent bioelectrocatalysis based on stimuli-responsive materials or interfaces is of great significance for biosensors and other bioelectronic devices. In the present work, lectin protein concanavalin A (Con A and glycoenzyme glucose oxidase (GOD were assembled into {Con A/GOD}n layer-by-layer (LbL films by taking advantage of the biospecific lectin-glycoenzyme affinity between them. These film electrodes possess stimuli-responsive properties toward electroactive probes such as ferrocenedicarboxylic acid (Fc(COOH2 by modulating the surrounding pH. The CV peak currents of Fc(COOH2 were quite large at pH 4.0 but significantly suppressed at pH 8.0, demonstrating reversible stimuli-responsive on-off behavior. The mechanism of stimuli-responsive property of the films was explored by comparative experiments and attributed to the different electrostatic interaction between the films and the probes at different pH. This stimuli-responsive films could be used to realize active/inactive electrocatalytic oxidation of glucose by GOD in the films and mediated by Fc(COOH2 in solution, which may establish a foundation for fabricating novel stimuli-responsive electrochemical biosensors based on bioelectrocatalysis with immobilized enzymes.

  5. Impedimetric biosensor based on self-assembled hybrid cystein-gold nanoparticles and CramoLL lectin for bacterial lipopolysaccharide recognition.

    Science.gov (United States)

    Oliveira, Maria D L; Andrade, Cesar A S; Correia, Maria T S; Coelho, Luana C B B; Singh, Pankaj R; Zeng, Xiangqun

    2011-10-01

    We report the development of a new selective and specific electrochemical biosensor for bacterial lipolysaccharide (LPS). An electrode interface was constructed using a l-cysteine-gold nanoparticle (AuNpCys) composite to be immobilized by electrostatic interaction in the network of a poly(vinyl chloride-vinyl acetate maleic acid) (PVM) layer on a gold bare electrode. The impedimetric biosensor is fabricated by self-assembled CramoLL lectin on the PVM-AuNpCys-modified gold electrode through electrostatic interaction. CramoLL is used as the recognition interface. AFM images showed that LPS was specifically recognized on the PVM-AuNpCys-CramoLL system surface. The measurements of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) showed that the electrochemical response of a redox probe system (K(4)[Fe(CN)(6)](4-)/K(3)[Fe(CN)(6)](3-)) were blocked, due to the procedures of modified electrode with PVM-AuNpCys-CramoLL. In the majority of the experiments the lectin retained its activity as observed through its interaction with LPS from Escherichia coli, Serratia marcescens, Salmonella enterica and Klebsiella pneumoniae. The results are expressed in terms of the charge transfer resistance and current peak anodic using the EIS and CV techniques for the development of a biosensor for contamination by endotoxins. A new type of sensor for selective discrimination of LPS types with a high sensitivity has been obtained. PMID:21752390

  6. Molecular recognition of poly(A) by small ligands: an alternative method of analysis reveals nanomolar, cooperative and shape-selective binding

    OpenAIRE

    Çetinkol, Özgül Persil; Hud, Nicholas V.

    2008-01-01

    A few drug-like molecules have recently been found to bind poly(A) and induce a stable secondary structure (T m ≈ 60°C), even though this RNA homopolymer is single-stranded in the absence of a ligand. Here, we report results from experiments specifically designed to explore the association of small molecules with poly(A). We demonstrate that coralyne, the first small molecule discovered to bind poly(dA), binds with unexpectedly high affinity (K a >107 M−1), and that the crescent shape of cora...

  7. Synthesis, crystal structures, and luminescent properties of Cd(II) coordination polymers assembled from semi-rigid multi-dentate N-containing ligand

    International Nuclear Information System (INIS)

    Three new polymers, [Cd(L)2(H2O)2]n (1), [Cd3(L)2(μ3-OH)2(μ2-Cl)2(H2O)2]n (2), {[Cd2(L)2(nic)2(H2O)2]·H2O}n (3) (HL=5-(4-((1H-1,2,4-triazol-1-yl)methyl)phenyl)-1H-tetrazole, Hnic=nicotinic acid) have been prepared and structurally characterized. Compounds 1 and 2 display 2D monomolecular layers built by the inter-linking single helical chains and L− ligands connecting chain-like [Cd(μ3-OH)(μ2-Cl)]n secondary building units, respectively. Compound 3 is constructed from the mixed ligands and possesses a (3,4)-connected framework with (4·82)(4·82·103) topology. Moreover, the fluorescent properties of HL ligand and compounds 1–3 are also been investigated. - Graphical abstract: Three new coordination polymers based on the semi-rigid multidentate N-donor ligand have been successfully synthesized by hydrothermal reaction. Complexes 1 and 2 exhibit the 2D layers formed by inter-linking single helices and L− anions bridging 1D chain-like SBUs, respectively. Complex 3 is buit by L− and assistant nic− ligands connecting metal centers and possesses a (3,4)-connected framework with (4×82)(4×82×103) topology. Moreover, these complexes display fluorescent properties indicating that they may have potential applications as optical materials. Highlights: ► Three Cd-compounds were prepared from semi-rigid HL ligand with different N-containing groups. ► They exhibit diverse structures from 2D monomolecular layer to 3D covalent framework. ► The HL ligands displayed various coordination modes under different reaction conditions. ► These compounds exhibit good luminescent properties.

  8. Polymer complexes.. XXXX. Supramolecular assembly on coordination models of mixed-valence-ligand poly[1-acrylamido-2-(2-pyridyl)ethane] complexes

    Science.gov (United States)

    El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.

    2003-02-01

    The build-up of polymer metallic supramolecules based on homopolymer (1-acrylamido-2-(2-pyridyl)ethane (AEPH)) and ruthenium, rhodium, palladium as well as platinum complexes has been pursued with great interest. The homopolymer shows three types of coordination behaviour. In the mixed valence paramagnetic trinuclear polymer complexes [( 11)+( 12)] in the paper and in mononuclear polymer complexes ( 1)-( 5) it acts as a neutral bidentate ligand coordinating through the N-pyridine and NH-imino atoms, while in the mixed ligand diamagnetic poly-chelates, which are obtained from the reaction of AEPH with PdX 2 and KPtCl 4 in the presence of N-heterocyclic base consisting of polymer complexes ( 9)+( 10), and in monouclear compounds ( 6)-( 8), it behaves as a monobasic bidentate ligand coordinating through the same donor atoms. In mononuclear compounds ( 13)+( 14) it acts as a monobasic and neutral bidentate ligand coordinating only through the same donor atoms. Monomeric distorted octahedral or trimeric chlorine-bridged, approximately octahedral structures are proposed for these polymer complexes. The poly-chelates are of 1:1, 1:2 and 3:2 (metal-homopolymer) stoichiometry and exhibit six coordination. The values of ligand field parameters were calculated. The homopolymer and their polymer complexes have been characterized physicochemically.

  9. A New Ligand-Based Method for Purifying Active Human Plasma-Derived Ficolin-3 Complexes Supports the Phenomenon of Crosstalk between Pattern-Recognition Molecules and Immunoglobulins

    Science.gov (United States)

    Man-Kupisinska, Aleksandra; Michalski, Mateusz; Maciejewska, Anna; Swierzko, Anna S.; Cedzynski, Maciej; Lugowski, Czeslaw; Lukasiewicz, Jolanta

    2016-01-01

    Despite recombinant protein technology development, proteins isolated from natural sources remain important for structure and activity determination. Ficolins represent a class of proteins that are difficult to isolate. To date, three methods for purifying ficolin-3 from plasma/serum have been proposed, defined by most critical step: (i) hydroxyapatite absorption chromatography (ii) N-acetylated human serum albumin affinity chromatography and (iii) anti-ficolin-3 monoclonal antibody-based affinity chromatography. We present a new protocol for purifying ficolin-3 complexes from human plasma that is based on an exclusive ligand: the O-specific polysaccharide of Hafnia alvei PCM 1200 LPS (O-PS 1200). The protocol includes (i) poly(ethylene glycol) precipitation; (ii) yeast and l-fucose incubation, for depletion of mannose-binding lectin; (iii) affinity chromatography using O-PS 1200-Sepharose; (iv) size-exclusion chromatography. Application of this protocol yielded average 2.2 mg of ficolin-3 preparation free of mannose-binding lectin (MBL), ficolin-1 and -2 from 500 ml of plasma. The protein was complexed with MBL-associated serine proteases (MASPs) and was able to activate the complement in vitro. In-process monitoring of MBL, ficolins, and total protein content revealed the presence of difficult-to-remove immunoglobulin G, M and A, in some extent in agreement with recent findings suggesting crosstalk between IgG and ficolin-3. We demonstrated that recombinant ficolin-3 interacts with IgG and IgM in a concentration-dependent manner. Although this association does not appear to influence ficolin-3-ligand interactions in vitro, it may have numerous consequences in vivo. Thus our purification procedure provides Ig-ficolin-3/MASP complexes that might be useful for gaining further insight into the crosstalk and biological activity of ficolin-3. PMID:27232184

  10. A New Ligand-Based Method for Purifying Active Human Plasma-Derived Ficolin-3 Complexes Supports the Phenomenon of Crosstalk between Pattern-Recognition Molecules and Immunoglobulins.

    Science.gov (United States)

    Man-Kupisinska, Aleksandra; Michalski, Mateusz; Maciejewska, Anna; Swierzko, Anna S; Cedzynski, Maciej; Lugowski, Czeslaw; Lukasiewicz, Jolanta

    2016-01-01

    Despite recombinant protein technology development, proteins isolated from natural sources remain important for structure and activity determination. Ficolins represent a class of proteins that are difficult to isolate. To date, three methods for purifying ficolin-3 from plasma/serum have been proposed, defined by most critical step: (i) hydroxyapatite absorption chromatography (ii) N-acetylated human serum albumin affinity chromatography and (iii) anti-ficolin-3 monoclonal antibody-based affinity chromatography. We present a new protocol for purifying ficolin-3 complexes from human plasma that is based on an exclusive ligand: the O-specific polysaccharide of Hafnia alvei PCM 1200 LPS (O-PS 1200). The protocol includes (i) poly(ethylene glycol) precipitation; (ii) yeast and l-fucose incubation, for depletion of mannose-binding lectin; (iii) affinity chromatography using O-PS 1200-Sepharose; (iv) size-exclusion chromatography. Application of this protocol yielded average 2.2 mg of ficolin-3 preparation free of mannose-binding lectin (MBL), ficolin-1 and -2 from 500 ml of plasma. The protein was complexed with MBL-associated serine proteases (MASPs) and was able to activate the complement in vitro. In-process monitoring of MBL, ficolins, and total protein content revealed the presence of difficult-to-remove immunoglobulin G, M and A, in some extent in agreement with recent findings suggesting crosstalk between IgG and ficolin-3. We demonstrated that recombinant ficolin-3 interacts with IgG and IgM in a concentration-dependent manner. Although this association does not appear to influence ficolin-3-ligand interactions in vitro, it may have numerous consequences in vivo. Thus our purification procedure provides Ig-ficolin-3/MASP complexes that might be useful for gaining further insight into the crosstalk and biological activity of ficolin-3. PMID:27232184

  11. Design and Formation of a Large, Tetrahedral, Metal-ligand Cluster Using 1,1'-Binaphthyl Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Biros, Shannon M.; Yeh, Robert M.; Raymond, Kenneth N.

    2008-03-13

    Many chemists have been fascinated with the development of discrete supramolecular structures that encapsulate guest molecules. These structures can be assembled through covalent or hydrogen bonds, electrostatic or metal-ligand interactions. These host structures have provided valuable insight into the forces involved in small molecule recognition. Our work has focused on the design and study of metal-ligand clusters of varying sizes. The naphthalene [M{sub 4}L{sub 6}]{sup 12-} cluster 1, shown in Figure 1, has demonstrated diastereoselective guest binding and chiral induction properties as well as the ability to catalyze reactions carried out inside the cavity in an enzyme-like manner. However, the size of the cavity (ca. 300-500 {angstrom}{sup 3}) has often limited the scope of substrates for these transformations.

  12. Anion-directed assembly and crystal transformation of Ag(I) coordination polymers with a versatile tripyridyltriazole ligand 3,4-bis(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole

    Science.gov (United States)

    Li, Cheng-Peng; Chen, Jing; Guo, Wei; Du, Miao

    2015-03-01

    A series of distinct Ag(I) coordination polymers, namely {[Ag2(L224)(H2O)3](SiF6)(H2O)4}n (1), {[Ag2(L224)2(NO3)](NO3)(H2O)}n (3), {[Ag2(L224)(OOCC6H5)(H2O)](NO3)(H2O)2}n (4), and {[Ag(L224)2](CF3SO3)(H2O)0.25}n (5) have been synthesized by assembling a versatile ligand 3,4-bis(2-pyridyl)-5-(4-pyridyl)-1,2,4-triazole (L224) with different Ag(I) salts. Their diverse 1D and 2D coordination arrays indicate the critical role of counterions in structural assemblies. Interestingly, single-crystal-to-single-crystal (SC-SC) transformation from 1 to {[Ag2(L224)(CF3COO)2(H2O)](H2O)}n (2) will occur in the water solution of Ag(CF3COO). Structural comparison and mechanism of SC-SC transformation are discussed. These Ag(I) coordination polymers show enhanced ligand-based solid-state fluorescent emissions.

  13. Solvent-Controlled Assembly of ionic Metal-Organic Frameworks Based on Indium and Tetracarboxylate Ligand: Topology Variety and Gas Sorption Properties

    KAUST Repository

    Zheng, Bing

    2016-07-15

    Four Metal-Organic Frameworks (MOFs) based on Indium and tetracarboxylate ligand have been synthesized through regulation of the solvent conditions, the resulted compounds not only exhibited rich structural topologies (pts, soc and unique topologies), but also interesting charge reversal framework features. By regulating the solvent, different building units (indium monomer, trimer) have been generated in situ, and they are connected with the ligand to form ionic frameworks 1-4, respectively. Among the synthesized four ionic frameworks, compounds 3 and 4 could keep their crystallinity upon heating temperature up to 300oC after fully removal of solvent guest molecules, they also exhibit the charge reversal framework features (3 adopts an overall cationic framework, while 4 has an anionic framework). Both compounds 3 and 4 exhibit significant uptake capacity for CO2 and H2, besides that, compounds 3 and 4 also present excellent selective adsorption of CO2 over N2 and CH4.

  14. Assembly and tunable luminescence of lanthanide-organic frameworks constructed from 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylate ligand

    International Nuclear Information System (INIS)

    Highlights: ► A new N-heterocycle muticarboxylate ligand 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic acid (H4dpda) was developed. ► Several lanthanide metal–organic frameworks (Ln = Eu, Gd, Tb, Dy) and Eu/Tb mixed MOFs were synthesized. ► The ligand H4dpda can provide efficient sensitization for the lanthanide ion Tb(III) and Eu(III). ► Luminescence color of the mixed MOFs can be easily tuned by varying the molar ratios of Eu(III)/Tb(III). - Abstract: A novel N-heterocycle multicarboxylate ligand 4-(3,5-dicarboxyphenyl)pyridine-2,6-dicarboxylic acid (H4dpda) was synthesized, and then reacted with lanthanide salts to yield a series of lanthanide metal–organic frameworks, [Ln(Hdpda)(H2O)4]·0.5(H2O) (Ln = Eu(1), Gd(2), Tb(3), Dy(4)) and [Tb1−xEux(Hdpda)(H2O)4]·0.5(H2O) (x = 0.1–10 mol%). Single crystal X-ray diffraction and powder XRD patterns confirm these MOFs are isostructural. Luminescent measurements suggest that the ligand can provide efficient sensitization for the lanthanide ion Tb(III) and Eu(III) in the mixed lanthanide MOFs. Additionally, the luminescence color of the mixed MOFs can be easily tuned from green to green–yellow, yellow, orange, red–orange and red by varying the molar ratio of Eu(III)/Tb(III).

  15. One-pot assembly of metal/organic-acid sites on amine-functionalized ligands of MOFs for photocatalytic hydrogen peroxide splitting.

    Science.gov (United States)

    Qin, Lei; Li, Zhaowen; Hu, Qiong; Xu, Zehai; Guo, Xinwen; Zhang, Guoliang

    2016-06-01

    A one-pot organic-acid-directed post-synthetic modification allows molecular iron/citric acid complexes to be anchored into amine-functionalized MOFs by a simple and rapid liquid spraying method. Amidation between organic acid and -NH2 groups of ligands can lead to more small nanoparticles (NPs) that are well-dispersed into MOFs and exhibit high activity for photocatalytic H2O2 splitting. PMID:27166081

  16. Four 1-D metal-organic polymers self-assembled from semi-flexible benzimidazole-based ligand: Syntheses, structures and fluorescent properties

    Science.gov (United States)

    Zhou, Chun-lin; Wang, Shi-min; Liu, Sai-nan; Yu, Tian-tian; Li, Rui-ying; Xu, Hong; Liu, Zhong-yi; Sun, Huan; Cheng, Jia-jia; Li, Jin-peng; Hou, Hong-wei; Chang, Jun-biao

    2016-08-01

    Four one-dimensional (1-D) metal-organic polymers based on methylene-bis(1,1‧-benzimidazole)(mbbz), namely, {[Hg(mbbz)(SCN)2]·1/3H2O}n (1), [Co(mbbz)(Cl)2]n (2), {[Co(mbbz)(SO4)]·CH3OH}n (3) and {[Zn(mbbz)(SO4)]·CH3OH}n (4) have been successfully synthesized and structurally characterized. Single-crystal X-ray diffraction reveals that polymers 1 and 2 exhibit interesting 1-D double helical chain structures, while polymers 3 and 4 are 1-D double chain structures due to the bridging effect of mbbz ligands and sulfate anions. These polymers containing the mbbz-based ligand have a high degree of dependence on the corresponding counter anions. Furthermore, the fluorescence properties of the four polymers were also investigated in the solid state, showing the fluorescence signal changes in comparing with that of free ligand mbbz.

  17. Ancillary ligand-assisted assembly of C3-symmetric 4,4′,4″-nitrilotribenzoic acid with divalent Zn2+ ions: Syntheses, topological structures, and photoluminescence properties

    International Nuclear Information System (INIS)

    4,4′,4″-nitrilotribenzoic acid (H3L), a C3-symmetric ligand, was found to self-assemble into two polymorphs driven by intermolecular hydrogen-bonding interactions. Reactions of this ligand with Zn2+ under solvothermal conditions resulted in four new coordination polymers bearing interesting structural motifs: [Zn2(L)2(py)2]·2(H2NMe2)+·DMF·2H2O (1), [Zn2(L)(H2L)(bipy)]·1.5H2O·Guest (2), [Zn2(L)2(bipy)]·2(H2NMe2)+·2DMF (3), and [Zn3(L)2(bpa)]·2H2O·Guest (4) (H3L=4,4′,4′′-nitrilotribenzoic acid, DMF=dimethylformamide, py=pyridine, bipy=4,4′-bipyridine, bpa=1,2-bis(4-pyridyl)diazene). Single-crystal structural analysis revealed that compound 1 exhibits a rare example of twofold interpenetrating anionic 3D (3,3)-net framework containing helical channels, whereas in 2, the 3D pillar-layer structure generated from bipy-pillared Zn2(L)(H2L) layer is further reinforced by intermolecular hydrogen bonding among pairs of free –COOH units. Compound 3 shows an interesting entangled architecture of 2D→3D parallel polycatenation consisting five-coordinated Zn2+ ions. Compound 4 displays a 3D pillar-layer framework with trimeric Zn3(CO2)6 serving as secondary building unit (SBU). The syntheses, structures, thermal stabilities, powder X-ray diffractions and solid-state photoluminescence properties for these crystalline materials have been carried out. In addition, supramolecular assembly of H3L under solvothermal conditions will also be addressed. - Graphical abstract: Supramolecular assembly of 4,4′,4′′-nitrilotribenzoic acid and its ligand behavior toward Zn2+ were investigated, which exhibit two polymorphs of the free acid and four metal coordination polymers bearing interesting structural motifs. - Highlights: • Two polymorphs of H3L showing different hydrogen-bonded network were obtained. • Tune over the structure of MOFs was achieved. • 1 has a 2-fold interpenetrating anionic 3D network containing helical channels. • Structures bearing

  18. Assemblies of a new flexible multicarboxylate ligand and d10 metal centers toward the construction of homochiral helical coordination polymers: structures, luminescence, and NLO-active properties.

    Science.gov (United States)

    Zang, Shuangquan; Su, Yang; Li, Yizhi; Ni, Zhaoping; Meng, Qingjin

    2006-01-01

    Hydro(solvo)thermal reactions between a new flexible multicarboxylate ligand of 2,2',3,3'-oxydiphthalic acid (2,2',3,3'-H(4)ODPA) and M(NO(3))(2).xH(2)O (M = Zn, x = 6; M = Cd, x = 4) in the presence of 4,4'-bipyridine (bpy) afford two novel homochiral helical coordination polymers [[Zn(2)(2,2',3,3'-ODPA)(bpy)(H(2)O)(3)].(H(2)O)(2) for 1 and [Cd(2)(2,2',3,3'-ODPA)(bpy)(H(2)O)(3)].(H(2)O)(2) for 2]. Though having almost the same chemical formula, they have different space groups (P2(1)2(1)2(1) for 1 and P2(1) for 2) and different bridging modes of the 2,2',3,3'-ODPA ligand. Two kinds of homochiral helices (right-handed) are found in both 1 and 2, each of which discriminates only one kind of crystallographical nonequivalent metal atom. 1 has a 2D metal-organic framework and can be seen as the unity of two parallel homochiral Zn1 and Zn2 helices, in which the nodes are etheric oxygen atoms. In contrast, 2 has a 3D metal-organic framework and consists of two partially overlapped homochiral Cd1 and Cd2 helices in the two dimensions. Moreover, metal-ODPA helices give a 2D chiral herringbone structural motif in both 1 and 2 in the two dimensions, which are further strengthened by the second ligand of bpy. Bulk materials for 1 and 2 all have good second-harmonic generation activity, approximately 1 and 0.8 times that of urea. PMID:16390053

  19. Rational assembly of Pb(II)/Cd(II)/Mn(II) coordination polymers based on flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Gao-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Liu, Chong-Bo, E-mail: cbliu@nchu.edu.cn [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Liu, Hong [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Robbins, Julianne; Zhang, Z. John [School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 (United States); Yin, Hong-Shan [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China); Wen, Hui-Liang [State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047 (China); Wang, Yu-Hua [School of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063 (China)

    2015-05-15

    Six new coordination polymers, namely, [Pb(L)(H{sub 2}O)] (1), [Pb(L)(phen)] (2), [Pb{sub 2}(L){sub 2}(4,4′-bipy){sub 0.5}] (3), [Cd(L)(phen)] (4), [Cd(L)(4,4′-bipy)]·H{sub 2}O (5) and [Mn(L)(4,4′-bipy)]·H{sub 2}O (6) have been synthesized by the hydrothermal reaction of 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H{sub 2}L) with Pb(II)/Cd(II)/Mn(II) in the presence of ancillary ligands 4,4′-bipyridine (4,4′-bipy) or 1,10-phenanthroline (phen). Complexes 1 and 4–6 exhibit 2-D structures, and complexes 2–3 display 3-D frameworks, of which L{sup 2−} ligands join metal ions to single-stranded helical chains of 1, 3–6 and double-stranded helical chains of 2. Complexes 2 and 3 also contain double-stranded Metal–O helices. Topology analysis reveals that complexes 1 and 4 both represent 4-connected sql net, 2 represents 6-connected pcu net, 3 exhibits a novel (3,12)-connected net, while 5 and 6 display (3,5)-connected gek1 net. The six complexes exhibit two kinds of inorganic–organic connectivities: I{sup 0}O{sup 2} for 1, 4–6, and I{sup 1}O{sup 2} for 2–3. The photoluminescent properties of 4–5 and the magnetic properties of 6 have been investigated. - Graphical abstract: Six new Pb(II)/Cd(II)/Mn(II) coordination polymers with helical structures based on flexible V-shaped dicarboxylate ligand have been synthesized and structurally characterized. Photoluminescent and magnetic properties have been investigated. - Highlights: • Six novel M(II) coordination polymers with 2,2′-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid and N-donor ligands. • Complexes 1–6 show diverse intriguing helical characters. • The luminescent properties of complexes 1–5 were investigated. • Complex 6 shows antiferromagnetic coupling.

  20. Electrochemical behavior of the 1,10-phenanthroline ligand on a multiwalled carbon nanotube surface and its relevant electrochemistry for selective recognition of copper ion and hydrogen peroxide sensing.

    Science.gov (United States)

    Gayathri, Prakasam; Senthil Kumar, Annamalai

    2014-09-01

    1,10-Phenanthroline (Phen) is a well-known benchmark ligand and has often been used in the coordination chemistry for the complexation of transition metal ions, such as Fe(2+), Ni(2+), and Co(2+). Because the electro-oxidation potential of Phen is much higher (>2 V versus Ag/AgCl) than the water decomposition potential, i.e., ∼1.5 V versus Ag/AgCl, in pH 7, it is practically difficult to electro-oxidize Phen in aqueous medium using any conventional electrodes, such as glassy carbon electrode (GCE), gold, and platinum. Interestingly, herein, we report an unexpected oxidation of Phen to a highly redox active 1,10-phenanthroline-5,6-dione (Phen-dione) and its confinement on a multiwalled carbon nanotube (MWCNT)-modified glassy carbon electrode (GCE/MWCNT@Phen-dione) surface by potential cycling of Phen-adsorbed GCE/MWCNT (GCE/MWCNT@Phen) from -1 to 1 V versus Ag/AgCl in pH 7 phosphate buffer solution. GCE/MWCNT@Phen-dione showed selective recognition of copper ion (GCE/MWCNT@Phen-dione-Cu(2+)) by catalyzing the hydrogen peroxide reduction reaction in a neutral pH solution. The precise structure of the Phen electro-oxidized product has been identified after characterizing the electrode and/or ethanolic extract of the product by various techniques, such as Raman, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) (for copper complex), liquid chromatography-mass spectrometry (LC-MS), electrospray ionization-mass spectrometry (ESI-MS) (for copper complex), cyclic voltammetry (CV), and in situ electrochemical quartz crystal microbalance (EQCM) and comparing electrochemical behavior of several control compounds, such as phenanthrene and 9,10-phenanthrenequinone. It is concluded that the product formed is 1,10-phenanthroline-5,6-dione, wherein the dione position is ortho to each other and the copper ion is complexed with nitrogen of the phenanthroline ring. With extended electrochemical oxidation of a structurally similar ligand, 2

  1. Combinatorial approaches to gene recognition.

    Science.gov (United States)

    Roytberg, M A; Astakhova, T V; Gelfand, M S

    1997-01-01

    Recognition of genes via exon assembly approaches leads naturally to the use of dynamic programming. We consider the general graph-theoretical formulation of the exon assembly problem and analyze in detail some specific variants: multicriterial optimization in the case of non-linear gene-scoring functions; context-dependent schemes for scoring exons and related procedures for exon filtering; and highly specific recognition of arbitrary gene segments, oligonucleotide probes and polymerase chain reaction (PCR) primers. PMID:9440930

  2. Unusual one-dimensional branched-chain structures assembled by a novel imidazole-containing tripodal ligand with cadmium(II) salts and their fluorescent property

    International Nuclear Information System (INIS)

    Three novel coordination polymers [Cd3(L)2(μ-Br)(μ-Cl)Br3Cl] (1), [Cd3(L)2(μ-Cl)2Cl4] (2) and [Cd(L)Cl]2[CdCl4].H2O (3) were obtained by reactions of an imidazole-containing tripodal ligand N 1-(2-aminoethyl)-N 1-(2-imidazolethyl)-ethane-1,2-diamine (L) with Cd(II) salts. Their structures were determined by X-ray crystallography. Crystal data for 1, monoclinic system, P21/c, a=7.752(4) A, b=31.70(2) A, c=14.012(7) A, β=109.439(7)o, V=3247(3) A3, Z=4. 2, monoclinic system, P21/c, a=7.6564(15) A, b=31.433(6) A, c=13.925(3) A, β=109.89(3)o, V=3151.1(11) A3, Z=4. 3, orthorhombic system, Pbcn, a=22.950(2) A, b=8.435(7) A, c=17.360(2) A, V=3360.3(51) A3, Z=4. Complexes 1 and 2 have similar one-dimensional (1D) branched-chain structure while complex 3 features a 1D zigzag cationic chain with [CdCl4]2- serving as counter anion. The photoluminescent measurements reveal that all the complexes exhibit blue fluorescence at room temperature in the solid state. - Graphical abstract: Three novel coordination polymers [Cd3(L)2(μ-Br)(μ-Cl)Br3Cl] (1), [Cd3(L)2(μ-Cl)2Cl4] (2) and [Cd(L)Cl]2[CdCl4].H2O (3) with one dimensional branched chain and zigzag chain structures were obtained by reactions of an imidazole-containing tripodal ligand N 1-(2-aminoethyl)-N 1-(2-imidazolethyl)-ethane-1,2-diamine (L) with Cd(II) salts

  3. Ancillary ligand-assisted assembly of C{sub 3}-symmetric 4,4′,4″-nitrilotribenzoic acid with divalent Zn{sup 2+} ions: Syntheses, topological structures, and photoluminescence properties

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Li-Ting; Niu, Yan-Fei [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China); Han, Jie, E-mail: chan@ouhk.edu.hk [School of Science & Technology, The Open University of Hong Kong, Kowloon, Hong Kong SAR (China); Zhao, Xiao-Li, E-mail: xlzhao@chem.ecnu.edu.cn [Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062 (China)

    2015-07-15

    4,4′,4″-nitrilotribenzoic acid (H{sub 3}L), a C{sub 3}-symmetric ligand, was found to self-assemble into two polymorphs driven by intermolecular hydrogen-bonding interactions. Reactions of this ligand with Zn{sup 2+} under solvothermal conditions resulted in four new coordination polymers bearing interesting structural motifs: [Zn{sub 2}(L){sub 2}(py){sub 2}]·2(H{sub 2}NMe{sub 2}){sup +}·DMF·2H{sub 2}O (1), [Zn{sub 2}(L)(H{sub 2}L)(bipy)]·1.5H{sub 2}O·Guest (2), [Zn{sub 2}(L){sub 2}(bipy)]·2(H{sub 2}NMe{sub 2}){sup +}·2DMF (3), and [Zn{sub 3}(L){sub 2}(bpa)]·2H{sub 2}O·Guest (4) (H{sub 3}L=4,4′,4′′-nitrilotribenzoic acid, DMF=dimethylformamide, py=pyridine, bipy=4,4′-bipyridine, bpa=1,2-bis(4-pyridyl)diazene). Single-crystal structural analysis revealed that compound 1 exhibits a rare example of twofold interpenetrating anionic 3D (3,3)-net framework containing helical channels, whereas in 2, the 3D pillar-layer structure generated from bipy-pillared Zn{sub 2}(L)(H{sub 2}L) layer is further reinforced by intermolecular hydrogen bonding among pairs of free –COOH units. Compound 3 shows an interesting entangled architecture of 2D→3D parallel polycatenation consisting five-coordinated Zn{sup 2+} ions. Compound 4 displays a 3D pillar-layer framework with trimeric Zn{sub 3}(CO{sub 2}){sub 6} serving as secondary building unit (SBU). The syntheses, structures, thermal stabilities, powder X-ray diffractions and solid-state photoluminescence properties for these crystalline materials have been carried out. In addition, supramolecular assembly of H{sub 3}L under solvothermal conditions will also be addressed. - Graphical abstract: Supramolecular assembly of 4,4′,4′′-nitrilotribenzoic acid and its ligand behavior toward Zn{sup 2+} were investigated, which exhibit two polymorphs of the free acid and four metal coordination polymers bearing interesting structural motifs. - Highlights: • Two polymorphs of H{sub 3}L showing different hydrogen

  4. Three luminescent d10 metal coordination polymers assembled from a semirigid V-shaped ligand with high selective detecting of Cu2+ ion and nitrobenzene

    Science.gov (United States)

    Wu, Wei-Ping; Liu, Ping; Liang, Yu-Tong; Cui, Lin; Xi, Zheng-Ping; Wang, Yao-Yu

    2015-08-01

    Three 2D luminescent coordination polymers with helical frameworks, [ZnL2]n (1) and {[ML2]·(H2O)}n (M=Zn (2), Cd (3)) (HL=4-((2-methyl-1 H-imidazol-1-yl)methyl)benzoic acid), have been assembled under hydro(solvo)thermal conditions. Complex 1 is in chiral space group and displays a rare 2D→2D 2-fold parallel interpenetrated layer network with two types of chiral double helixes. Interestingly, the single crystal structure analyses indicate the coexistence of enantiomers la and 1b in one pot, while the bulk crystallization of 1 are racemic mixtures based on the CD measurement. 2 and 3 are isostructural, in the structure, there are two kinds of 2D chiral helical-layers which stack in an -ABAB- sequence leading to the overall structure are mesomer and achiral. All compounds display intense luminescence in solid state at room temperature with high chemical and thermal stability. More importantly, 1 has been successfully applied in the detection of Cu2+ ions in aqueous media and nitrobenzene and the probable detecting mechanism was also discussed.

  5. Co-assembly of CdTe and Fe3O4 with molecularly imprinted polymer for recognition and separation of endocrine disrupting chemicals

    Science.gov (United States)

    Chang, Limin; Chen, Shaona; Chu, Jia; Li, Xin

    2013-11-01

    In this study, we present a general protocol to fabricate imprinting matrix co-loaded with CdTe quantum dots and Fe3O4 nanoparticles for the recognition of endocrine disrupting chemicals (EDCs). The resultant composites were characterized by transmission electron microscopy, fluorescence spectroscopy, and energy dispersive spectroscopy. The materials have been demonstrated to be characterized with spherical shape with a saturation magnetization value of 1.7 emu g-1. Furthermore, the rebinding experiments show that the resultant materials have greater affinity and selectivity towards p-nitrophenol (model EDCs) over structurally related compounds. We believe that the effective method proposed in this work might provide a platform to prepare magnetic and fluorescent molecularly imprinted polymers for the recognition and separation of EDCs.

  6. Three luminescent d10 metal coordination polymers assembled from a semirigid V-shaped ligand with high selective detecting of Cu2+ ion and nitrobenzene

    International Nuclear Information System (INIS)

    Three 2D luminescent coordination polymers with helical frameworks, [ZnL2]n (1) and ([ML2]·(H2O))n (M=Zn (2), Cd (3)) (HL=4-((2-methyl-1 H-imidazol-1-yl)methyl)benzoic acid), have been assembled under hydro(solvo)thermal conditions. Complex 1 is in chiral space group and displays a rare 2D→2D 2-fold parallel interpenetrated layer network with two types of chiral double helixes. Interestingly, the single crystal structure analyses indicate the coexistence of enantiomers la and 1b in one pot, while the bulk crystallization of 1 are racemic mixtures based on the CD measurement. 2 and 3 are isostructural, in the structure, there are two kinds of 2D chiral helical-layers which stack in an -ABAB- sequence leading to the overall structure are mesomer and achiral. All compounds display intense luminescence in solid state at room temperature with high chemical and thermal stability. More importantly, 1 has been successfully applied in the detection of Cu2+ ions in aqueous media and nitrobenzene and the probable detecting mechanism was also discussed. - Graphical abstract: Three luminescent d10 metal coordination polymers with helical-layer based on 4-((2-methyl-1H-imidazol-1-yl)methyl)benzoic acid have been obtained. Compound 1 shows high selective detecting for Cu2+ ion in aqueous and nitrobenzene. - Highlights: • Three coordination polymers with chiral helical-layer have been obtained. • 1 Can luminescent detect Cu2+ ion in aqueous media and nitrobenzene. • Racemic mixture or mesomer compounds can be obtained by controlling the reaction conditions

  7. Construction and Ion Exchange Properties of Supramolecular Complexes with Organic Ligands and Metal Ions

    Institute of Scientific and Technical Information of China (English)

    SUN WeiYin; FAN Jian

    2001-01-01

    @@ Supramolecular architectures with specific topologies such as closed threedimensional molecular cages present a large range of applications in material science, medicine and chemical technology.1,2 In the past decades, a number of such frameworks, e.g. M6L4, M12L8 and M18L6, have been synthesized by assembly of organic ligands with transitional metal salts.3-5 However, the M3L2 type cage-like complexes are not well known up to now.6,7 We report herein the generation of M3L2 type cages by tripodal ligands and various metal salts, and the anion exchange, molecular recognition properties of these metallosupramolecular cages.

  8. A size, shape and concentration controlled self-assembling structure with host-guest recognition at the liquid-solid interface studied by STM

    Science.gov (United States)

    Shen, Mengqi; Luo, Zhouyang; Zhang, Siqi; Wang, Shuai; Cao, Lili; Geng, Yanfang; Deng, Ke; Zhao, Dahui; Duan, Wubiao; Zeng, Qingdao

    2016-06-01

    In the present investigation, we reported the fabrication of host networks formed by two newly prepared phenanthrene-butadiynylene macrocycles (PBMs) at the liquid-solid interface. Size, shape and concentration controlled experiments have been performed to investigate the PBMs/coronene (COR) host-guest system with the structural polymorphism phenomenon. Initially, PBM1 could form a regular linear network structure and PBM2 form a well-ordered nanoporous network structure. When the COR molecules were introduced, the self-assembled structure of PBM1 remained unchanged, while COR could be entrapped into the cavities of the PBM2 nanoporous network, and the co-assembly of the PBM2/COR host-guest systems underwent a structural transformation with the increase of concentration of COR. Scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations are utilized to reveal the formation mechanism of the molecular nanoarrays controlled by the solution concentration.In the present investigation, we reported the fabrication of host networks formed by two newly prepared phenanthrene-butadiynylene macrocycles (PBMs) at the liquid-solid interface. Size, shape and concentration controlled experiments have been performed to investigate the PBMs/coronene (COR) host-guest system with the structural polymorphism phenomenon. Initially, PBM1 could form a regular linear network structure and PBM2 form a well-ordered nanoporous network structure. When the COR molecules were introduced, the self-assembled structure of PBM1 remained unchanged, while COR could be entrapped into the cavities of the PBM2 nanoporous network, and the co-assembly of the PBM2/COR host-guest systems underwent a structural transformation with the increase of concentration of COR. Scanning tunneling microscopy (STM) measurements and density functional theory (DFT) calculations are utilized to reveal the formation mechanism of the molecular nanoarrays controlled by the solution

  9. Ylide Ligands

    OpenAIRE

    Esteban P. Urriolabeitia

    2010-01-01

    The use of ylides of P, N, As, or S as ligands toward transition metals is still a very active research area in organometallic chemistry. This fact is mainly due to the nucleophilic character of the ylides and to their particular bonding properties and coordination modes. They can behave as monodentate or bidentate chelate or bridging species, they can be used as chiral auxiliary reagents, and they are interesting reaction intermediates or useful starting materials in a wide ...

  10. Star-shaped poly(L-lactide)-b-poly(lactobionamidoethyl methacrylate) with porphyrin core: synthesis, self-assembly, singlet oxygen research and recognition properties.

    Science.gov (United States)

    Dai, Xiao-Hui; Wang, Zhi-Ming; Pan, Jian-Ming; Yuan, Si-Song; Yan, Yong-sheng; Liu, Dong-Ming; Sun, Lin

    2014-01-01

    Star-shaped porphyrin-cored poly(L-lactide)-b-poly(lactobionamidoethyl methacrylate) block copolymers (SPPLA-b-PLAMA) were synthesized via RAFT of unprotected Lactobionamidoethyl methacrylate (LAMA) in 1-methyl-2-pyrrolidinone (NMP) solution at 70 °C. The structure of this as-synthesized SPPLA-b-PLAMA block copolymer was thoroughly studied by nuclear magnetic resonance spectroscopy, gel permeation chromatography (GPC), and Fourier transforms infrared. Moreover, under the irradiation, such SPPLA-b-PGAMA copolymer exhibits efficient singlet oxygen generation (0.17) and indicates high fluorescence quantum yields (0.20). Notably, with UV-vis investigation, SPPLA-b-PLAMA showed a very specific recognition with RCA120 lectin. This will not only provide potentially prophyrin-cored star-shaped SPPLA-b-PLAMA block copolymers for targeted photodynamic therapy, but also improve the physical, biodegradation, biocompatibility properties of PLA-based biomaterials. PMID:25138060

  11. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    Energy Technology Data Exchange (ETDEWEB)

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radi, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer (UCB); (UCSD)

    2008-07-28

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotinic receptors and selective toxicity as insecticides. AChBPs are of neither mammalian nor insect origin and exhibit a distinctive pattern of selectivity for the neonicotinoid ligands. We define here the binding orientation and determinants of differential molecular recognition for the neonicotinoids and classical nicotinoids by estimates of kinetic and equilibrium binding parameters and crystallographic analysis. Neonicotinoid complex formation is rapid and accompanied by quenching of the AChBP tryptophan fluorescence. Comparisons of the neonicotinoids imidacloprid and thiacloprid in the binding site from Aplysia californica AChBP at 2.48 and 1.94 {angstrom} in resolution reveal a single conformation of the bound ligands with four of the five sites occupied in the pentameric crystal structure. The neonicotinoid electronegative pharmacophore is nestled in an inverted direction compared with the nicotinoid cationic functionality at the subunit interfacial binding pocket. Characteristic of several agonists, loop C largely envelops the ligand, positioning aromatic side chains to interact optimally with conjugated and hydrophobic regions of the neonicotinoid. This template defines the association of interacting amino acids and their energetic contributions to the distinctive interactions of neonicotinoids.

  12. Macromolecular recognition: Recognition of polymer side chains by cyclodextrin

    Science.gov (United States)

    Hashidzume, Akihito; Harada, Akira

    2015-12-01

    The interaction of cyclodextrins (CD) with water soluble polymers possessing guest residues has been investigated as model systems in biological molecular recognition. The selectivity of interaction of CD with polymer-carrying guest residues is controlled by polymer chains, i.e., the steric effect of polymer main chain, the conformational effect of polymer main chain, and multi-site interaction. Macroscopic assemblies have been also realized based on molecular recognition using polyacrylamide-based gels possessing CD and guest residues.

  13. Molecular Recognition in the Sphingosine 1-Phosphate Receptor Family

    OpenAIRE

    Truc-Chi, T.; Fells, James I.; Osborne, Daniel A.; North, E. Jeffrey; Naor, Mor M.; Parrill, Abby L.

    2007-01-01

    Computational modeling and its application in ligand screening and ligand receptor interaction studies play important roles in structure-based drug design. A series of sphingosine 1-phosphate (S1P) receptor ligands with varying potencies and receptor selectivities were docked into homology models of the S1P1-5 receptors. These studies provided molecular insights into pharmacological trends both across the receptor family as well as at single receptors. This study identifies ligand recognition...

  14. Anion Recognition Triggered Nanoribbon-Like Self-Assembly: A Fluorescent Chemosensor for Nitrate in Acidic Aqueous Solution and Living Cells.

    Science.gov (United States)

    Yang, Yaping; Chen, Shiyan; Ni, Xin-Long

    2015-07-21

    A water-soluble π-conjugated bispyridinium phenylenevinylene-based fluorogenic probe has been developed as a novel fluorescent chemosensor for highly selective, sensitive, and rapid detection of NO3(-) anion in acidic aqueous media. This system self-assembles to a nanoribbon as a result of ionic interaction. The positively charged chemosensor generates a nearly instantaneous significant fluorescence signal (475 vs 605 nm) in response to NO3(-) in the green/yellow spectral region, with a large Stokes shift (130 nm). The fluorescence changes can be attributed to the self-aggregation of the sensor triggered by ionic interaction, which occurs as a consequence of the subtle cooperation of electrostatic ionic bonding, van der Waals forces, and π-stacking of the π-conjugated aromatic moieties. Importantly, this chemosensor has been employed for the first time for the fluorescence detection of intracellular NO3(-) anion in cultured cells. PMID:26084357

  15. Stimuli-Responsive Metal?Ligand Assemblies

    OpenAIRE

    McConnell, Anna J.; Wood, Christopher S.; Neelakandan, Prakash P.; Nitschke, Jonathan R.

    2015-01-01

    This is the accepted manuscript of a paper published in Chemical Reviews (McConnell AJ, Wood CS, Neelakandan PP, Nitschke JR, Chemical Reviews (2015) 115(15):7729-7793. doi:10.1021/cr500632f). The final version is available at http://dx.doi.org/10.1021/cr500632f

  16. Face Recognition

    OpenAIRE

    Haugen, Liv Merete; Olavsbråten, Inge

    2007-01-01

    Machine based face recognition has been a popular research area for several years, and has numerous applications. This technology has now reached a point where there already exists good algorithms for recognition for standardized still images - which have little variation in e.g. lighting, facial expression and pose. We are however in lack of good algorithms that are able to do recognition from live video. The low quality of most surveillance cameras, together with non-standardized imaging c...

  17. Controlling Nanocrystal Superlattice Symmetry and Shape-Anisotropic Interactions through Variable Ligand Surface Coverage

    KAUST Repository

    Choi, Joshua J.

    2011-03-09

    The assembly of colloidal nanocrystals (NCs) into superstructures with long-range translational and orientational order is sensitive to the molecular interactions between ligands bound to the NC surface. We illustrate how ligand coverage on colloidal PbS NCs can be exploited as a tunable parameter to direct the self-assembly of superlattices with predefined symmetry. We show that PbS NCs with dense ligand coverage assemble into face-centered cubic (fcc) superlattices whereas NCs with sparse ligand coverage assemble into body-centered cubic (bcc) superlattices which also exhibit orientational ordering of NCs in their lattice sites. Surface chemistry characterization combined with density functional theory calculations suggest that the loss of ligands occurs preferentially on {100} than on reconstructed {111} NC facets. The resulting anisotropic ligand distribution amplifies the role of NC shape in the assembly and leads to the formation of superlattices with translational and orientational order. © 2011 American Chemical Society.

  18. Fingerprint recognition

    OpenAIRE

    Diefenderfer, Graig T.

    2006-01-01

    The use of biometrics is an evolving component in today's society. Fingerprint recognition continues to be one of the most widely used biometric systems. This thesis explores the various steps present in a fingerprint recognition system. The study develops a working algorithm to extract fingerprint minutiae from an input fingerprint image. This stage incorporates a variety of image pre-processing steps necessary for accurate minutiae extraction and includes two different methods of ridge thin...

  19. A Dynamic Combinatorial Approach for Identifying Side Groups that Stabilize DNA-Templated Supramolecular Self-Assemblies

    Directory of Open Access Journals (Sweden)

    Delphine Paolantoni

    2015-02-01

    Full Text Available DNA-templated self-assembly is an emerging strategy for generating functional supramolecular systems, which requires the identification of potent multi-point binding ligands. In this line, we recently showed that bis-functionalized guanidinium compounds can interact with ssDNA and generate a supramolecular complex through the recognition of the phosphodiester backbone of DNA. In order to probe the importance of secondary interactions and to identify side groups that stabilize these DNA-templated self-assemblies, we report herein the implementation of a dynamic combinatorial approach. We used an in situ fragment assembly process based on reductive amination and tested various side groups, including amino acids. The results reveal that aromatic and cationic side groups participate in secondary supramolecular interactions that stabilize the complexes formed with ssDNA.

  20. Speech recognition based on pattern recognition techniques

    Science.gov (United States)

    Rabiner, Lawrence R.

    1990-05-01

    Algorithms for speech recognition can be characterized broadly as pattern recognition approaches and acoustic phonetic approaches. To date, the greatest degree of success in speech recognition has been obtained using pattern recognition paradigms. The use of pattern recognition techniques were applied to the problems of isolated word (or discrete utterance) recognition, connected word recognition, and continuous speech recognition. It is shown that understanding (and consequently the resulting recognizer performance) is best to the simplest recognition tasks and is considerably less well developed for large scale recognition systems.

  1. Role of ligand-ligand vs. core-core interactions in gold nanoclusters.

    Science.gov (United States)

    Milowska, Karolina Z; Stolarczyk, Jacek K

    2016-05-14

    The controlled assembly of ligand-coated gold nanoclusters (NCs) into larger structures paves the way for new applications ranging from electronics to nanomedicine. Here, we demonstrate through rigorous density functional theory (DFT) calculations employing novel functionals accounting for van der Waals forces that the ligand-ligand interactions determine whether stable assemblies can be formed. The study of NCs with different core sizes, symmetry forms, ligand lengths, mutual crystal orientations, and in the presence of a solvent suggests that core-to-core van der Waals interactions play a lesser role in the assembly. The dominant interactions originate from combination of steric effects, augmented by ligand bundling on NC facets, and related to them changes in electronic properties induced by neighbouring NCs. We also show that, in contrast to standard colloidal theory approach, DFT correctly reproduces the surprising experimental trends in the strength of the inter-particle interaction observed when varying the length of the ligands. The results underpin the importance of understanding NC interactions in designing gold NCs for a specific function. PMID:27097887

  2. Customer recognition and competition

    OpenAIRE

    Shy, Oz; Stenbacka , Rune

    2011-01-01

    We introduce three types of consumer recognition: identity recognition, asymmetric preference recognition, and symmetric preference recognition. We characterize price equilibria and compare profits, consumer surplus, and total welfare. Asymmetric preference recognition enhances profits compared with identity recognition, but firms have no incentive to exchange information regarding customer-specific preferences (symmetric preference recognition). Consumers would benefit from a policy panning ...

  3. Engineering colloidal assembly via biological adhesion

    Science.gov (United States)

    Hiddessen, Amy Lynn

    Due to highly specialized recognition properties, biological receptor-ligand interactions offer valuable tools for engineering the assembly of novel colloidal materials. A unique sub-class of these macromolecules, called selectins, was exploited to develop binary suspensions where particles are programmed to associate reversibly or irreversibly via specific biomolecular cross-linking. Flow cytometry and videomicroscopy were used to examine factors controlling suspension assembly and structure, including biomolecular affinity and density, and individual and total particle volume fractions. By functionalizing small (RA = 0.47 mum) and larger (RB = 2.75 mum) particles with high surface densities of complementary E-selectin/sialyl Lewis X (sLeX) carbohydrate chemistry, a series of structures, from colloidal micelles (large particle coated with smaller particles) and clusters, to rings and elongated chains, was synthesized by decreasing the number ratio, NA/NB, of small (A) to large (B) particles (2 ≤ NA/NB ≤ 200) at low total volume fraction (10-4 ≤ φT ≤ 10-3 ). Using significantly lower surface densities, the low affinity binding between E-selectin and sLeX was exploited to create particles that interact reversibly, and average particle interaction lifetimes were tuned from minutes down to single selectin-carbohydrate bond lifetimes (≈1 s) by reducing sLeX density, a significant step toward assembling ordered microstructures. Particle binding lifetimes were analyzed with a receptor-ligand binding model, yielding estimates for molecular parameters, including on rate, 10-2 s-1 docking dynamics of particles. Finally, at significantly higher volume fraction (φ T ≥ 10-1) and low number ratio, the rheology of space-filling networks crosslinked by high affinity streptavidin-biotin chemistry was probed to acquire knowledge on bulk properties of biocolloidal suspensions. Flow curves (apparent viscosity (eta) versus shear rate ( ġ )) exhibited non

  4. Liquid-liquid interfacial nanoparticle assemblies

    Science.gov (United States)

    Emrick, Todd S.; Russell, Thomas P.; Dinsmore, Anthony; Skaff, Habib; Lin, Yao

    2008-12-30

    Self-assembly of nanoparticles at the interface between two fluids, and methods to control such self-assembly process, e.g., the surface density of particles assembling at the interface; to utilize the assembled nanoparticles and their ligands in fabrication of capsules, where the elastic properties of the capsules can be varied from soft to tough; to develop capsules with well-defined porosities for ultimate use as delivery systems; and to develop chemistries whereby multiple ligands or ligands with multiple functionalities can be attached to the nanoparticles to promote the interfacial segregation and assembly of the nanoparticles. Certain embodiments use cadmium selenide (CdSe) nanoparticles, since the photoluminescence of the particles provides a convenient means by which the spatial location and organization of the particles can be probed. However, the systems and methodologies presented here are general and can, with suitable modification of the chemistries, be adapted to any type of nanoparticle.

  5. Handling ligands with Coot

    OpenAIRE

    Debreczeni, Judit É.; Emsley, Paul

    2012-01-01

    Coot is a molecular-graphics application primarily aimed to assist in model building and validation of biological macromolecules. Recently, tools have been added to work with small molecules. The newly incorporated tools for the manipulation and validation of ligands include interaction with PRODRG, subgraph isomorphism-based tools, representation of ligand chemistry, ligand fitting and analysis, and are described here.

  6. Properties modification of nanopatterned surfaces functionalized with photo activated ligands

    OpenAIRE

    Stoianov, Stefan Vladimirov

    2011-01-01

    This dissertation focuses on four research topics: self-assembly of colloidal nanoparticles, surface modifications of the properties of ionically self-assembled multilayer films, surface enhanced Raman spectroscopy of functionalized gold nanoparticles, and two photon uncaging in gel. Those techniques are used for development of novel nanofabrication methods for top-down and bottom-up assembly of nanostructures, by modifying the properties of nanopatterned surfaces with photoactive ligands, an...

  7. Facial Recognition

    Directory of Open Access Journals (Sweden)

    Mihalache Sergiu

    2014-05-01

    Full Text Available During their lifetime, people learn to recognize thousands of faces that they interact with. Face perception refers to an individual's understanding and interpretation of the face, particularly the human face, especially in relation to the associated information processing in the brain. The proportions and expressions of the human face are important to identify origin, emotional tendencies, health qualities, and some social information. From birth, faces are important in the individual's social interaction. Face perceptions are very complex as the recognition of facial expressions involves extensive and diverse areas in the brain. Our main goal is to put emphasis on presenting human faces specialized studies, and also to highlight the importance of attractiviness in their retention. We will see that there are many factors that influence face recognition.

  8. Landscape of protein-small ligand binding modes.

    Science.gov (United States)

    Kasahara, Kota; Kinoshita, Kengo

    2016-09-01

    Elucidating the mechanisms of specific small-molecule (ligand) recognition by proteins is a long-standing conundrum. While the structures of these molecules, proteins and ligands, have been extensively studied, protein-ligand interactions, or binding modes, have not been comprehensively analyzed. Although methods for assessing similarities of binding site structures have been extensively developed, the methods for the computational treatment of binding modes have not been well established. Here, we developed a computational method for encoding the information about binding modes as graphs, and assessing their similarities. An all-against-all comparison of 20,040 protein-ligand complexes provided the landscape of the protein-ligand binding modes and its relationships with protein- and chemical spaces. While similar proteins in the same SCOP Family tend to bind relatively similar ligands with similar binding modes, the correlation between ligand and binding similarities was not very high (R(2)  = 0.443). We found many pairs with novel relationships, in which two evolutionally distant proteins recognize dissimilar ligands by similar binding modes (757,474 pairs out of 200,790,780 pairs were categorized into this relationship, in our dataset). In addition, there were an abundance of pairs of homologous proteins binding to similar ligands with different binding modes (68,217 pairs). Our results showed that many interesting relationships between protein-ligand complexes are still hidden in the structure database, and our new method for assessing binding mode similarities is effective to find them. PMID:27327045

  9. Designer TGFβ superfamily ligands with diversified functionality.

    Directory of Open Access Journals (Sweden)

    George P Allendorph

    Full Text Available Transforming Growth Factor--beta (TGFβ superfamily ligands, including Activins, Growth and Differentiation Factors (GDFs, and Bone Morphogenetic Proteins (BMPs, are excellent targets for protein-based therapeutics because of their pervasiveness in numerous developmental and cellular processes. We developed a strategy termed RASCH (Random Assembly of Segmental Chimera and Heteromer, to engineer chemically-refoldable TGFβ superfamily ligands with unique signaling properties. One of these engineered ligands, AB208, created from Activin-βA and BMP-2 sequences, exhibits the refolding characteristics of BMP-2 while possessing Activin-like signaling attributes. Further, we find several additional ligands, AB204, AB211, and AB215, which initiate the intracellular Smad1-mediated signaling pathways more strongly than BMP-2 but show no sensitivity to the natural BMP antagonist Noggin unlike natural BMP-2. In another design, incorporation of a short N-terminal segment from BMP-2 was sufficient to enable chemical refolding of BMP-9, without which was never produced nor refolded. Our studies show that the RASCH strategy enables us to expand the functional repertoire of TGFβ superfamily ligands through development of novel chimeric TGFβ ligands with diverse biological and clinical values.

  10. Metal-ligand cooperation.

    Science.gov (United States)

    Khusnutdinova, Julia R; Milstein, David

    2015-10-12

    Metal-ligand cooperation (MLC) has become an important concept in catalysis by transition metal complexes both in synthetic and biological systems. MLC implies that both the metal and the ligand are directly involved in bond activation processes, by contrast to "classical" transition metal catalysis where the ligand (e.g. phosphine) acts as a spectator, while all key transformations occur at the metal center. In this Review, we will discuss examples of MLC in which 1) both the metal and the ligand are chemically modified during bond activation and 2) bond activation results in immediate changes in the 1st coordination sphere involving the cooperating ligand, even if the reactive center at the ligand is not directly bound to the metal (e.g. via tautomerization). The role of MLC in enabling effective catalysis as well as in catalyst deactivation reactions will be discussed. PMID:26436516

  11. Realization Techniques of Virtual Assembly Process Planning System

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-hua; NING Ru-xin; TANG Cheng-tong

    2005-01-01

    The key realization techniques of virtual assembly process planning (VAPP) system are analyzed,including virtual assembly model, real-time collision detection, automatic constraint recognition algorithm, cable harness assembly process planning and visual assembly process plan at the workshop. A virtual assembly model based on hierarchical assembly task list (HATL) is put forward, in which assembly tasks are defined to express component assembling operations and are sequentially and hierarchically organized according to different subassemblies, which can perfectly model the construction process of product. And a multi-layer automatic geometry constraint recognition algorithm of how to identify assembly constraint relations in the virtual environment is proposed, then a four-layer collision detection algorithm is discussed. A VAPP system is built and some simple mechanical assemblies are used to illustrate the feasibility of the proposed method and algorithms.

  12. Selective oxoanion separation using a tripodal ligand

    Energy Technology Data Exchange (ETDEWEB)

    Custelcean, Radu; Moyer, Bruce A.; Rajbanshi, Arbin

    2016-02-16

    The present invention relates to urea-functionalized crystalline capsules self-assembled by sodium or potassium cation coordination and by hydrogen-bonding water bridges to selectively encapsulate tetrahedral divalent oxoanions from highly competitive aqueous alkaline solutions and methods using this system for selective anion separations from industrial solutions. The method involves competitive crystallizations using a tripodal tris(urea) functionalized ligand and, in particular, provides a viable approach to sulfate separation from nuclear wastes.

  13. Recognition intent and visual word recognition.

    Science.gov (United States)

    Wang, Man-Ying; Ching, Chi-Le

    2009-03-01

    This study adopted a change detection task to investigate whether and how recognition intent affects the construction of orthographic representation in visual word recognition. Chinese readers (Experiment 1-1) and nonreaders (Experiment 1-2) detected color changes in radical components of Chinese characters. Explicit recognition demand was imposed in Experiment 2 by an additional recognition task. When the recognition was implicit, a bias favoring the radical location informative of character identity was found in Chinese readers (Experiment 1-1), but not nonreaders (Experiment 1-2). With explicit recognition demands, the effect of radical location interacted with radical function and word frequency (Experiment 2). An estimate of identification performance under implicit recognition was derived in Experiment 3. These findings reflect the joint influence of recognition intent and orthographic regularity in shaping readers' orthographic representation. The implication for the role of visual attention in word recognition was also discussed. PMID:19036609

  14. Complexity of the Ruminococcus flavefaciens cellulosome reflects an expansion in glycan recognition

    Science.gov (United States)

    Venditto, Immacolata; Luis, Ana S.; Rydahl, Maja; Schückel, Julia; Fernandes, Vânia O.; Vidal-Melgosa, Silvia; Bule, Pedro; Goyal, Arun; Pires, Virginia M. R.; Dourado, Catarina G.; Ferreira, Luís M. A.; Coutinho, Pedro M.; Henrissat, Bernard; Knox, J. Paul; Baslé, Arnaud; Najmudin, Shabir; Gilbert, Harry J.; Willats, William G. T.; Fontes, Carlos M. G. A.

    2016-01-01

    The breakdown of plant cell wall (PCW) glycans is an important biological and industrial process. Noncatalytic carbohydrate binding modules (CBMs) fulfill a critical targeting function in PCW depolymerization. Defining the portfolio of CBMs, the CBMome, of a PCW degrading system is central to understanding the mechanisms by which microbes depolymerize their target substrates. Ruminococcus flavefaciens, a major PCW degrading bacterium, assembles its catalytic apparatus into a large multienzyme complex, the cellulosome. Significantly, bioinformatic analyses of the R. flavefaciens cellulosome failed to identify a CBM predicted to bind to crystalline cellulose, a key feature of the CBMome of other PCW degrading systems. Here, high throughput screening of 177 protein modules of unknown function was used to determine the complete CBMome of R. flavefaciens. The data identified six previously unidentified CBM families that targeted β-glucans, β-mannans, and the pectic polysaccharide homogalacturonan. The crystal structures of four CBMs, in conjunction with site-directed mutagenesis, provide insight into the mechanism of ligand recognition. In the CBMs that recognize β-glucans and β-mannans, differences in the conformation of conserved aromatic residues had a significant impact on the topology of the ligand binding cleft and thus ligand specificity. A cluster of basic residues in CBM77 confers calcium-independent recognition of homogalacturonan, indicating that the carboxylates of galacturonic acid are key specificity determinants. This report shows that the extended repertoire of proteins in the cellulosome of R. flavefaciens contributes to an extended CBMome that supports efficient PCW degradation in the absence of CBMs that specifically target crystalline cellulose. PMID:27298375

  15. A Novel Binding Pattern Unique in Two Ligands for One Carbohydrate Recognition Domain in Galectins%半乳糖凝集素糖结合的新模式:一个糖结合域的双重配体结合

    Institute of Scientific and Technical Information of China (English)

    卞乘凤; 张英; 李德峰; 王大成

    2011-01-01

    半乳糖凝集素家族通过糖识别结构域(CRD)可以专一性识别和结合含β-半乳糖的多糖配体来发挥其生物学功能.到目前发现的CRD对β-半乳糖的识别模式是非常保守的,在结构已知的半乳糖凝集素结构中,一个CRD只能结合一个多糖配体分子.最近,通过对人源半乳糖凝聚素-3 CRD与对硝基TF二糖(TFN)复合物的晶体结构解析首次发现,一个CRD可以同时结合2个TFN分子.与这2个TFN分子有双向结合的残基突变体E165A结构分析显示,一个残基的突变引起的结构上的微小变化会使结合位点2丧失结合糖底物的能力,而位点1的配体结合却不受影响.这表明,结合位点1对糖底物保守的识别和结合是基本的、主要的,而结合位点2对于糖有条件的结合,是额外的、次要的.序列比对和立体化学分析显示,参与新位点2结合的关键残基在其他半乳糖凝集素分子中都是保守的,而它们参与糖配体结合并不常见,表明它们作用的发挥是有条件的.可能在复杂寡聚结构的情况下,如有多重分支结构,双重结合位点将有利于对这类配体分子的辨识和结合,已有一系列研究报道,具有分支结构的寡糖与半乳糖分子的亲和势明显高于单价糖配体,与上述分析相一致.对这类双重位点糖结合的可能生物学意义进行了讨论.%Galectins are a protein family with diverse biological functions,which are unique in specifically recognition and binding with β-galactosides as the primary structural basis for its functional performance.So far,all structurally characterized galectins display a conservative binding mode for the β-galactoside-containing carbohydrate ligands,in which one carbohydrate recognition domain (CRD) binds only one ligand.Here a novel binding pattern unique in two carbohydrate ligands for one CRD was reported,which is observed from the structure of Gal-3 CRD complexed with glycan TFN.In this doublet binding

  16. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    International Nuclear Information System (INIS)

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H2O)2][Cd(Dpq)(1,8-NDC)].2H2O (1), [Cd(Dpq)(1,4-NDC)(H2O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H2NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H2NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H2NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and π-π stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer π-π stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands

  17. Binuclear Complexes and Extended Chains Featuring Pt(II)-Tl(I) Bonds: Influence of the Pyridine-2-Thiolate and Cyclometalated Ligands on the Self-Assembly and Luminescent Behavior.

    Science.gov (United States)

    Berenguer, Jesús R; Lalinde, Elena; Martín, Antonio; Moreno, M Teresa; Sánchez, Sergio; Shahsavari, Hamid R

    2016-08-15

    Platinum solvate complexes [Pt(C6F5)(C^N)(S)] [C^N = phenylpyridinyl (ppy), S = dimethyl sulfoxide (DMSO) (A); C^N = benzoquinolinyl (bzq), S = CH3COCH3 (B)] react with [Tl(Spy)] (Spy = 2-pyridinethiolate) to afford binuclear [{Pt(C6F5)(C^N)}Tl(Spy)] [C^N = ppy (1) and bzq (2)] species containing a Pt-Tl bonding interaction, supported by a μ-Spy-κN,S bridging ligand, as confirmed by X-ray diffraction. However, the related reactions with [Tl(SpyCF3-5)] [SpyCF3-5 = 5-(trifluoromethyl)-2-pyridinethiolate] give neutral extended chains [{Pt(C6F5)(C^N)}Tl(SpyCF3-5)]n [C^N = ppy (3) and bzq (4)]. 3 features a zigzag -Pt-Tl···S-Pt- chain, generated by Pt-Tl and Tl···S bonds, with the SpyCF3 acting as a μ-κN:κ(2)S bridging ligand, whereas 4 displays an unsupported ···Tl-Pt···Tl-Pt··· backbone (angle of ca. 158.7°). The lowest-energy absorption bands in the UV-vis spectra in CH2Cl2, associated with (1)L'LCT transitions with minor (1)LC/(1)MLCT (L' = Spy or SpyCF3-5; L = C^N) character, are similar for all complexes 1-4, demonstrating that for 3 and 4 the chains break down in solution to yield similar bimetallic Pt-Tl units. For 2, two different forms, 2-o (orange) and 2-y (yellow), exhibiting different colors and emissions were found depending on the isolation conditions. Slow crystallization favors formation of the thermodynamically more stable yellow form (2-y), which exhibits a high-energy (HE) structured emission band, whereas fast crystallization gives rise to the orange form (2-o), with a remarkably lower energy structureless emission. Complexes 1 and 3 exhibit dual luminescence in the solid state at 298 K: an unstructured low-energy band associated with (3)ππ* excimeric emission due to π···π (C^N) interactions and a more structured HE band, assigned, with support of density functional theory calculations, to an intraligand (3)LC (C^N) excited state mixed with some ligand (SPy)/platinum-to-ligand (C^N)(3)[(L' + M)LCT] charge transfer. Chain

  18. Metal Vector Manipulated Molecular Self-Assembly from Werner System to Cotton System

    Institute of Scientific and Technical Information of China (English)

    YU Shu-Yan; ZHANG Zhong-Xing; HUANG Hui; LI Sheng-Hui; HUANG Hai-Ping

    2004-01-01

    A definition of metal vector was given to coordinatively unsaturated metals or asymmetrically coordinated metal complexes in which the metal center is partly blocked by inert chelating ligand(s), thus possess specific reactivity and directionality, such as cis-coordinated square Pd(Ⅱ) or Pt(Ⅱ) complexes. Metal vectors have been extensively used in coordination catalysis and molecular assembly. In 1990, Fujita [ 1 ] first demonstrated the utility of cis-coordinated square Pd(Ⅱ)or Pt(Ⅱ) complexes as a right angular 2D metal vector in the formation of molecular square, a cyclic tetramer with nano-cavity and unique molecular recognition. So far, much attention has been paid to the use of the mononuclear coordination centers (Werner-type metal vectors) in molecular assembly.As late as 1999, Cotton et al. [2] reported the use of cis-coordinated metal-metal bonded dimetal units (Cotton-type metal vectors) to direct assembly of molecular squares.This presentation includes two parts: 1) Werner-type metal vector directed molecular assembly; [3]2) Cotton-type metal vector directed molecular assembly.[4]Firstly, the Werner-type metal vector, cis-coordinated Pd(Ⅱ) nitrate, was used to direct a 6-component self-assembly. This leads to the formation of a molecular bowl or crown with syn,syn,syn conformation. These structures are analogues of calix[3]arenes and can function as anion receptors. Interestingly, an nitrate is found to distort from a trigonal plane into a trigonal pyramid when binding to the bottom of the molecular bowl.Secondly, the Cotton-type metal vector, cis-diRh(Ⅱ, Ⅱ), was used to assemble di- or poly-carboxylate anions into neutral supermolecules. Most interestingly, a calixarene-based carceplex with four cis-diRh(Ⅱ, Ⅱ) fastners was obtained[5].All self-assembling entities were studied by both X-ray crystallographic analysis and solution NMR spectra, which are consistent with the presence of assembling structures even in solution.

  19. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria;

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies and...... plays an important role in processing the information generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence assembly programs. We describe the basic principles of computational assembly along with the main concerns, such as repetitive sequences...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  20. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B.P. [Pacific Northwest National Lab., Richland, WA (United States)

    1997-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used in the cost-effective removal of specific radionuclides from nuclear waste streams. Organic ligands with metal ion specificity are critical components in the development of solvent extraction and ion exchange processes that are highly selective for targeted radionuclides. The traditional approach to the development of such ligands involves lengthy programs of organic synthesis and testing, which in the absence of reliable methods for screening compounds before synthesis, results in wasted research effort. The author`s approach breaks down and simplifies this costly process with the aid of computer-based molecular modeling techniques. Commercial software for organic molecular modeling is being configured to examine the interactions between organic ligands and metal ions, yielding an inexpensive, commercially or readily available computational tool that can be used to predict the structures and energies of ligand-metal complexes. Users will be able to correlate the large body of existing experimental data on structure, solution binding affinity, and metal ion selectivity to develop structural design criteria. These criteria will provide a basis for selecting ligands that can be implemented in separations technologies through collaboration with other DOE national laboratories and private industry. The initial focus will be to select ether-based ligands that can be applied to the recovery and concentration of the alkali and alkaline earth metal ions including cesium, strontium, and radium.

  1. Identification of ligands for bacterial sensor proteins.

    Science.gov (United States)

    Fernández, Matilde; Morel, Bertrand; Corral-Lugo, Andrés; Rico-Jiménez, Miriam; Martín-Mora, David; López-Farfán, Diana; Reyes-Darias, José Antonio; Matilla, Miguel A; Ortega, Álvaro; Krell, Tino

    2016-02-01

    Bacteria have evolved a variety of different signal transduction mechanisms. However, the cognate signal molecule for the very large amount of corresponding sensor proteins is unknown and their functional annotation represents a major bottleneck in the field of signal transduction. The knowledge of the signal molecule is an essential prerequisite to understand the signalling mechanisms. Recently, the identification of signal molecules by the high-throughput protein screening of commercially available ligand collections using differential scanning fluorimetry has shown promise to resolve this bottleneck. Based on the analysis of a significant number of different ligand binding domains (LBDs) in our laboratory, we identified two issues that need to be taken into account in the experimental design. Since a number of LBDs require the dimeric state for ligand recognition, it has to be assured that the protein analysed is indeed in the dimeric form. A number of other examples demonstrate that purified LBDs can contain bound ligand which prevents further binding. In such cases, the apo-form can be generated by denaturation and subsequent refolding. We are convinced that this approach will accelerate the functional annotation of sensor proteins which will help to understand regulatory circuits in bacteria. PMID:26511375

  2. Surfactant Ligand Removal and Rational Fabrication of Inorganically Connected Quantum Dots

    KAUST Repository

    Zhang, Haitao

    2011-12-14

    A novel method is reported to create inorganically connected nanocrystal (NC) assemblies for both II-VI and IV-VI semiconductors by removing surfactant ligands using (NH 4) 2S. This surface modification process differs from ligand exchange methods in that no new surfactant ligands are introduced and the post-treated NC surfaces are nearly bare. The detailed mechanism study shows that the high reactivity between (NH 4) 2S and metal-surfactant ligand complexes enables the complete removal of surfactant ligands in seconds and converts the NC metal-rich shells into metal sulfides. The post-treated NCs are connected through metal-sulfide bonding and form a larger NCs film assembly, while still maintaining quantum confinement. Such "connected but confined" NC assemblies are promising new materials for electronic and optoelectronic devices. © 2011 American Chemical Society.

  3. Ligand modeling and design

    Energy Technology Data Exchange (ETDEWEB)

    Hay, B. [Pacific Northwest Lab., Richland, WA (United States)

    1996-10-01

    The purpose of this work is to develop and implement a molecular design basis for selecting organic ligands that would be used tin applications for the cost-effective removal of specific radionuclides from nuclear waste streams.

  4. Molecular recognition in chemical and biological systems.

    Science.gov (United States)

    Persch, Elke; Dumele, Oliver; Diederich, François

    2015-03-01

    Structure-based ligand design in medicinal chemistry and crop protection relies on the identification and quantification of weak noncovalent interactions and understanding the role of water. Small-molecule and protein structural database searches are important tools to retrieve existing knowledge. Thermodynamic profiling, combined with X-ray structural and computational studies, is the key to elucidate the energetics of the replacement of water by ligands. Biological receptor sites vary greatly in shape, conformational dynamics, and polarity, and require different ligand-design strategies, as shown for various case studies. Interactions between dipoles have become a central theme of molecular recognition. Orthogonal interactions, halogen bonding, and amide⋅⋅⋅π stacking provide new tools for innovative lead optimization. The combination of synthetic models and biological complexation studies is required to gather reliable information on weak noncovalent interactions and the role of water. PMID:25630692

  5. Recognition of protein complexation based on hydrophobicity distribution

    OpenAIRE

    Banach, Mateusz; Roterman, Irena

    2009-01-01

    The identification of the surface area able to generate the protein-protein complexation ligand and ion ligation is critical for the recognition of the biological function of particular proteins. The technique based on the analysis of the irregularity of hydrophobicity distribution is used as the criterion for the recognition of the interaction regions. Particularly, the exposure of hydrophobic residues on the surface of protein as well as the localization of the hydrophilic residues in the h...

  6. Self-assembly of magnetic biofunctional nanoparticles

    International Nuclear Information System (INIS)

    Spherical, ferromagnetic FePt nanoparticles with a particle size of 3 nm were prepared by the simultaneous polyol reduction of Fe(acac)3 and Pt(acac)2 in phenyl ether in the presence of oleic acid and oleylamine. The oleic acid ligands can be replaced with 11-mercaptoundecanoic acid, giving particles that can be dispersed in water. Both x-ray diffraction and transmission electron microscopy indicated that FePt particles were not affected by ligands replacement. Dispersions of the FePt particles with 11-mercaptoundecanoic acid ligands and ammonium counter ions gave self-assembled films consisting of highly ordered hexagonal arrays of particles

  7. Speaker recognition by voice

    OpenAIRE

    Kamarauskas, Juozas

    2009-01-01

    Questions of speaker’s recognition by voice are investigated in this dissertation. Speaker recognition systems, their evolution, problems of recognition, systems of features, questions of speaker modeling and matching used in text-independent and text-dependent speaker recognition are considered too. The text-independent speaker recognition system has been developed during this work. The Gaussian mixture model approach was used for speaker modeling and pattern matching. The automatic m...

  8. Iris Recognition Technique

    Institute of Scientific and Technical Information of China (English)

    XIE Mei

    2006-01-01

    The demand on security is increasing greatly in these years and biometric recognition gradually becomes a hot field of research. Iris recognition is a new branch of biometric recognition, which is regarded as the most stable, safe and accurate biometric recognition method. In these years, much progress in this field has been made by scholars and experts of different countries. In this paper, some successful iris recognition methods are listed and their performance are compared. Furthermore, the existing problems and challenges are discussed.

  9. Molecular Mechanisms of Cell-cell Recognition

    Institute of Scientific and Technical Information of China (English)

    WANG Jia-Huai

    2004-01-01

    Cell-cell recognition is the key for multicellular organisms to survive. This recognition critically depends on protein-protein interactions from opposing cell surfaces. Recent structural investigations reveal unique features of these cell surface receptors and how they interact. These interactions are specific, but usually relatively weak, with more hydrophilic forces involved in binding. The receptors appear to have specialized ways to present their key interacting elements for ligand-binding from the cell surface. Cell-cell contacts are multivalent. A large group of cell surface molecules are engaged in interactions. Characteristic weak interactions make possible for each individual molecule pair within the group to constantly associate-dissociate-reassociate, such that the cell-cell recognition becomes a dynamic process. The immunological synapse is a good example for immune receptors to be orchestrated in performing immunological function in a collective fashion.

  10. Ultrafast singlet-singlet energy transfer in self-assembled via metal-ligand axial coordination of free-base porphyrin-zinc phthalocyanine and free-base porphyrin-zinc naphthalocyanine dyads.

    Science.gov (United States)

    Maligaspe, Eranda; Kumpulainen, Tatu; Lemmetyinen, Helge; Tkachenko, Nikolai V; Subbaiyan, Navaneetha K; Zandler, Melvin E; D'Souza, Francis

    2010-01-14

    Singlet-singlet energy transfer in self-assembled via axial coordination of imidazole-appended (at different positions of one of the meso-phenyl entities) free-base tetraphenylporphyrin, H(2)PIm, to either zinc phthalocyanine, ZnPc, or zinc naphthalocyanine, ZnNc, dyads is investigated in noncoordinating solvents, o-dichlorobenzene and toluene, using both steady-state and time-resolved transient absorption techniques. The newly formed supramolecular dyads were fully characterized by spectroscopic, computational, and electrochemical methods. The binding constants measured from optical absorption spectral data were found to be in the range of 10(4)-10(5) M(-1) for the 1:1 dyads, suggesting fairly stable complex formation. Electrochemical and computational studies suggested that photoinduced electron transfer is a thermodynamically unfavorable process when free-base porphyrin is excited in these dyads. Selective excitation of the donor free-base porphyrin entity was possible in both types of dyads formed by either of the ZnPc or ZnNc energy acceptors. Efficient singlet-singlet energy transfer was observed in these dyads, and the position of imidazole linkage on the free-base porphyrin entity, although flexible, seems to have some control over the overall efficiency of excited energy transfer process. Kinetics of energy transfer was monitored by performing transient absorption measurements using both up-conversion and pump-probe techniques. Such studies revealed ultrafast singlet-singlet energy transfer in the studied dyads with time constants on the order of 2-25 ps depending upon the type of the dyad. PMID:19928821

  11. Three luminescent d{sup 10} metal coordination polymers assembled from a semirigid V-shaped ligand with high selective detecting of Cu{sup 2+} ion and nitrobenzene

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China); Institute of Functional Materials, College of Chemistry and Pharmaceutical Engineering, Sichuan University of Science & Engineering, Zigong 643000 (China); Liu, Ping; Liang, Yu-Tong; Cui, Lin; Xi, Zheng-Ping [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China); Wang, Yao-Yu, E-mail: wyaoyu@nwu.edu.cn [Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, Shaanxi Key Laboratory of Physico-Inorg. Chem., College of Chemistry & Materials Science, Northwest University, Xi’an 710069 (China)

    2015-08-15

    Three 2D luminescent coordination polymers with helical frameworks, [ZnL{sub 2}]{sub n} (1) and ([ML{sub 2}]·(H{sub 2}O)){sub n} (M=Zn (2), Cd (3)) (HL=4-((2-methyl-1 H-imidazol-1-yl)methyl)benzoic acid), have been assembled under hydro(solvo)thermal conditions. Complex 1 is in chiral space group and displays a rare 2D→2D 2-fold parallel interpenetrated layer network with two types of chiral double helixes. Interestingly, the single crystal structure analyses indicate the coexistence of enantiomers la and 1b in one pot, while the bulk crystallization of 1 are racemic mixtures based on the CD measurement. 2 and 3 are isostructural, in the structure, there are two kinds of 2D chiral helical-layers which stack in an -ABAB- sequence leading to the overall structure are mesomer and achiral. All compounds display intense luminescence in solid state at room temperature with high chemical and thermal stability. More importantly, 1 has been successfully applied in the detection of Cu{sup 2+} ions in aqueous media and nitrobenzene and the probable detecting mechanism was also discussed. - Graphical abstract: Three luminescent d{sup 10} metal coordination polymers with helical-layer based on 4-((2-methyl-1H-imidazol-1-yl)methyl)benzoic acid have been obtained. Compound 1 shows high selective detecting for Cu{sup 2+} ion in aqueous and nitrobenzene. - Highlights: • Three coordination polymers with chiral helical-layer have been obtained. • 1 Can luminescent detect Cu{sup 2+} ion in aqueous media and nitrobenzene. • Racemic mixture or mesomer compounds can be obtained by controlling the reaction conditions.

  12. IDENTIFICATION OF VDR ANTAGONISTS AMONG NUCLEAR RECEPTOR LIGANDS USING VIRTUAL SCREENING

    OpenAIRE

    Kelly Teske; Premchendar Nandhikonda; Bogart, Jonathan W.; Belaynesh Feleke; Preetpal Sidhu; Yuan, Nina Y.; Joshua Preston; Robin Goy; Lanlan Han; Silvaggi, Nicholas R; Singh, Rakesh K.; Bikle, Daniel D.; Cook, James M.; Arnold, Leggy A.

    2014-01-01

    Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR) antagonists among nuclear receptor (NR) ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The ...

  13. Surface molecular recognition

    OpenAIRE

    Sampson, Nicole S.; Mrksich, Milan; Bertozzi, Carolyn R.

    2001-01-01

    The spatial display of cellular ligands and receptors is important for cell adhesion and communication. Two approaches that emphasize developing selective methods to dissect, modify, and control receptor–ligand interactions at the cellular interface are discussed.

  14. Identification of VDR Antagonists among Nuclear Receptor Ligands Using Virtual Screening

    Directory of Open Access Journals (Sweden)

    Kelly Teske

    2014-04-01

    Full Text Available Herein, we described the development of two virtual screens to identify new vitamin D receptor (VDR antagonists among nuclear receptor (NR ligands. Therefore, a database of 14330 nuclear receptor ligands and their NR affinities was assembled using the online available “Binding Database.” Two different virtual screens were carried out in conjunction with a reported VDR crystal structure applying a stringent and less stringent pharmacophore model to filter docked NR ligand conformations. The pharmacophore models were based on the spatial orientation of the hydroxyl functionalities of VDR's natural ligands 1,25(OH2D3 and 25(OH2D3. The first virtual screen identified 32 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. All but nordihydroguaiaretic acid (NDGA are VDR ligands, which inhibited the interaction between VDR and coactivator peptide SRC2-3 with an IC50 value of 15.8 μM. The second screen identified 162 NR ligands with a calculated free energy of VDR binding of more than -6.0 kJ/mol. More than half of these ligands were developed to bind VDR followed by ERα/β ligands (26%, TRα/β ligands (7%, and LxRα/β ligands (7%. The binding between VDR and ERα ligand H6036 as well as TRα/β ligand triiodothyronine and a homoserine analog thereof was confirmed by fluorescence polarization.

  15. Molecule Recognition Imaging and Highly Ordered Gold Nanoparticle Templating of Functional Bacterial S-Layer Nanoarrays

    Institute of Scientific and Technical Information of China (English)

    Jilin TANG; Andreas Ebner; Helga Badelt-Lichtblau; Christian Rankl; Michael Leitner; Hermann J.Gruber; Uwe B.Sleytr; Nicola Ilk; Peter Hinterdorfer

    2009-01-01

    @@ Molecular recognition between receptors and their cognate ligands plays an important role in life sciences.Such specific interactions include those between complementary strands of DNA,enzyme and substrate,antigen and antibody,lectin and carbohydrate,ligands and cell surface receptors as well as between cell adhesion proteins.

  16. Mössbauer spectra of assembled complex

    International Nuclear Information System (INIS)

    Applications of Mössbauer spectrometry, which reveals a detail in stepwise spin transition in binuclear, trinuclear, and tetranuclear complex, are introduced to the study of spin-crossover phenomena. The appearance of spin-crossover phenomenon by enclathrating guest molecule in the assembled complex is introduced. A variety of assembled structures are obtained by changing conformer of bridging ligand. The reversible structural change of host framework triggered by desorption and adsorption of guest benzene molecules was also introduced. (author)

  17. Structural Basis of Cooperative Ligand Binding by the Glycine Riboswitch

    Energy Technology Data Exchange (ETDEWEB)

    E Butler; J Wang; Y Xiong; S Strobel

    2011-12-31

    The glycine riboswitch regulates gene expression through the cooperative recognition of its amino acid ligand by a tandem pair of aptamers. A 3.6 {angstrom} crystal structure of the tandem riboswitch from the glycine permease operon of Fusobacterium nucleatum reveals the glycine binding sites and an extensive network of interactions, largely mediated by asymmetric A-minor contacts, that serve to communicate ligand binding status between the aptamers. These interactions provide a structural basis for how the glycine riboswitch cooperatively regulates gene expression.

  18. Macromolecular recognition in the Protein Data Bank

    International Nuclear Information System (INIS)

    X-ray structures in the PDB illustrate both the specific recognition of two polypeptide chains in protein–protein complexes and dimeric proteins and their nonspecific interaction at crystal contacts. Crystal structures deposited in the Protein Data Bank illustrate the diversity of biological macromolecular recognition: transient interactions in protein–protein and protein–DNA complexes and permanent assemblies in homodimeric proteins. The geometric and physical chemical properties of the macromolecular interfaces that may govern the stability and specificity of recognition are explored in complexes and homodimers compared with crystal-packing interactions. It is found that crystal-packing interfaces are usually much smaller; they bury fewer atoms and are less tightly packed than in specific assemblies. Standard-size interfaces burying 1200–2000 Å2 of protein surface occur in protease–inhibitor and antigen–antibody complexes that assemble with little or no conformation changes. Short-lived electron-transfer complexes have small interfaces; the larger size of the interfaces observed in complexes involved in signal transduction and homodimers correlates with the presence of conformation changes, often implicated in biological function. Results of the CAPRI (critical assessment of predicted interactions) blind prediction experiment show that docking algorithms efficiently and accurately predict the mode of assembly of proteins that do not change conformation when they associate. They perform less well in the presence of large conformation changes and the experiment stimulates the development of novel procedures that can handle such changes

  19. Computer simulations of adsorption and molecular recognition phenomena in molecularly imprinted polymers

    OpenAIRE

    Dourado, Eduardo Manuel de Azevedo

    2011-01-01

    Molecularly imprinted polymers (MIPs) are a novel, promising family of porous materials with potential applications ranging from separations, chemical sensing and catalysis to drug delivery and artificial immunoassays. The unique feature of these materials is their biomimetic molecular recognition functionality. Molecular recognition is the biological phenomenon of specific, selective and strong association between a substrate and a ligand. In man made MIPs this functionalit...

  20. Multivalent IDP assemblies: Unique properties of LC8-associated, IDP duplex scaffolds.

    Science.gov (United States)

    Clark, Sarah A; Jespersen, Nathan; Woodward, Clare; Barbar, Elisar

    2015-09-14

    A wide variety of subcellular complexes are composed of one or more intrinsically disordered proteins (IDPs) that are multivalent, flexible, and characterized by dynamic binding of diverse partner proteins. These multivalent IDP assemblies, of broad functional diversity, are classified here into five categories distinguished by the number of IDP chains and the arrangement of partner proteins in the functional complex. Examples of each category are summarized in the context of the exceptional molecular and biological properties of IDPs. One type - IDP duplex scaffolds - is considered in detail. Its unique features include parallel alignment of two IDP chains, formation of new self-associated domains, enhanced affinity for additional bivalent ligands, and ubiquitous binding of the hub protein LC8. For two IDP duplex scaffolds, dynein intermediate chain IC and nucleoporin Nup159, these duplex features, together with the inherent flexibility of IDPs, are central to their assembly and function. A new type of IDP-LC8 interaction, distributed binding of LC8 among multiple IDP recognition sites, is described for Nup159 assembly. PMID:26226419

  1. Templated Formation of Discrete RNA and DNA:RNA Hybrid G-Quadruplexes and Their Interactions with Targeting Ligands.

    Science.gov (United States)

    Bonnat, Laureen; Dejeu, Jérôme; Bonnet, Hugues; Génnaro, Béatrice; Jarjayes, Olivier; Thomas, Fabrice; Lavergne, Thomas; Defrancq, Eric

    2016-02-24

    G-rich RNA and DNA oligonucleotides derived from the human telomeric sequence were assembled onto addressable cyclopeptide platforms through oxime ligations and copper-catalyzed azide-alkyne cycloaddition (CuAAc) reactions. The resulting conjugates were able to fold into highly stable RNA and DNA:RNA hybrid G-quadruplex (G4) architectures as demonstrated by UV, circular dichroism (CD), and NMR spectroscopic analysis. Whereas rationally designed parallel RNA and DNA:RNA hybrid G4 topologies could be obtained, we could not force the formation of an antiparallel RNA G4 structure, thus supporting the idea that this topology is strongly disfavored. The binding affinities of four representative G4 ligands toward the discrete RNA and DNA:RNA hybrid G4 topologies were compared to the one obtained with the corresponding DNA G4 structure. Surface plasmon resonance (SPR) binding analysis suggests that the accessibility to G4 recognition elements is different among the three structures and supports the idea that G4 ligands might be shaped to achieve structure selectivity in a biological context. PMID:26808196

  2. Synthesis and Chiral Recognition of a New Type of Chiral Calix[4]arene Derivatives

    Institute of Scientific and Technical Information of China (English)

    HE,Yong-Bing; LI,Jian-Feng; XIAO,Yuan-Jing; WEI,Lan-Hua; WU,Xiao-Jun; MENG,Ling-Zhi

    2003-01-01

    Two new chiral calix[4] arenes bearing chiral pendants, which were from by-product of the antibiotic industry, were synthesized and characterized by 1H NMR, MS-FAB and elemental analysis. Studies of 1H NMR of the two calix [4] arene derivatives indicate that they exist in cone conformation in solution. Results of chiral recognition of the two chiral ligands 2a and 2b towards the tartaric acid derivative 3 show that ligand 2a exhibited good chiral recognition abilities compared to ligand 2b.

  3. Recognition of Problem Drinkers

    OpenAIRE

    Cornel, Michiel; van Zutphen, Wim M.

    1989-01-01

    General practitioners often see patients with problems related to drinking behaviour, but recognize only a small proportion of these problem drinkers. The authors discuss some mechanisms of this non-recognition phenomenon and suggest ways to enhance early recognition.

  4. Speech recognition and understanding

    Energy Technology Data Exchange (ETDEWEB)

    Vintsyuk, T.K.

    1983-05-01

    This article discusses the automatic processing of speech signals with the aim of finding a sequence of works (speech recognition) or a concept (speech understanding) being transmitted by the speech signal. The goal of the research is to develop an automatic typewriter that will automatically edit and type text under voice control. A dynamic programming method is proposed in which all possible class signals are stored, after which the presented signal is compared to all the stored signals during the recognition phase. Topics considered include element-by-element recognition of words of speech, learning speech recognition, phoneme-by-phoneme speech recognition, the recognition of connected speech, understanding connected speech, and prospects for designing speech recognition and understanding systems. An application of the composition dynamic programming method for the solution of basic problems in the recognition and understanding of speech is presented.

  5. RECOGNITION OF CONTESTED STATES

    OpenAIRE

    Ali, Nanna; Ben-Ahmed, Michele; Bom, Thomas Falk; Ching, Rune Kieran; Steffensen, Lars Schmidt; Funningsstovu, Janus Hanusarson í

    2012-01-01

    Contested states have existed in many decades and been on the political agenda worldwide. A small group of entities in the world are aspiring for recognition and independence, while some entities gained recognition relatively smoothly. This project accounts for UN’s recognition process and investigates entities prospects of influencing the process for obtaining recognition. Based on theories of liberalism and constructivism as well as the opposing theories of international relations, re...

  6. Glutamate receptor ligands

    DEFF Research Database (Denmark)

    Guldbrandt, Mette; Johansen, Tommy N; Frydenvang, Karla Andrea; Bräuner-Osborne, Hans; Stensbøl, Tine B; Nielsen, Birgitte; Karla, Rolf; Santi, Flavio; Krogsgaard-Larsen, Povl; Madsen, Ulf

    2002-01-01

    Homologation and substitution on the carbon backbone of (S)-glutamic acid [(S)-Glu, 1], as well as absolute stereochemistry, are structural parameters of key importance for the pharmacological profile of (S)-Glu receptor ligands. We describe a series of methyl-substituted 2-aminoadipic acid (AA...

  7. AMPA receptor ligands

    DEFF Research Database (Denmark)

    Strømgaard, Kristian; Mellor, Ian

    2004-01-01

    polyamines are known to modulate the function of these receptors in vivo. In this study, recent developments in the medicinal chemistry of polyamine-based ligands are given, particularly focusing on the use of solid-phase synthesis (SPS) as a tool for the facile generation of libraries of polyamine toxin...

  8. Recognition and Teleportation

    OpenAIRE

    Fichtner, K. -H.; Freudenberg, W.; Ohya, M.

    2004-01-01

    We study a possible function of brain, in particular, we try to describe several aspects of the process of recognition. In order to understand the fundamental parts of the recognition process, the quantum teleportation scheme seems to be useful. We consider a channel expression of the teleportation process that serves for a simplified description of the recognition process in brain.

  9. Nucleoprotein-based nanoscale assembly

    OpenAIRE

    Smith, Steven S.; Niu, Luming; Baker, David J.; Wendel, John A.; Kane, Susan E.; Joy, Darrin S.

    1997-01-01

    A system for addressing in the construction of macromolecular assemblies can be based on the biospecificity of DNA (cytosine-5) methyltransferases and the capacity of these enzymes to form abortive covalent complexes at targeted 5-fluorocytosine residues in DNA. Using this system, macromolecular assemblies have been created using two representative methyltransferases: M·HhaI and M·MspI. When 5-fluorocytosine (F) is placed at the targeted cytosine in each recognition sequence in a synthetic ol...

  10. Natural Cytotoxicity Receptors: Pattern Recognition and Involvement of Carbohydrates

    Directory of Open Access Journals (Sweden)

    Angel Porgador

    2005-01-01

    Full Text Available Natural cytotoxicity receptors (NCRs, expressed by natural killer (NK cells, trigger NK lysis of tumor and virus-infected cells on interaction with cell-surface ligands of these target cells. We have determined that viral hemagglutinins expressed on the surface of virus-infected cells are involved in the recognition by the NCRs, NKp44 and NKp46. Recognition of tumor cells by the NCRs NKp30 and NKp46 involves heparan sulfate epitopes expressed on the tumor cell membrane. Our studies provide new evidence for the identity of the ligands for NCRs and indicate that a broader definition should be applied to pathological patterns recognized by innate immune receptors. Since nonmicrobial endogenous carbohydrate structures contribute significantly to this recognition, there is an imperative need to develop appropriate tools for the facile sequencing of carbohydrate moieties.

  11. Innate immune recognition of cancer.

    Science.gov (United States)

    Woo, Seng-Ryong; Corrales, Leticia; Gajewski, Thomas F

    2015-01-01

    The observation that a subset of cancer patients show evidence for spontaneous CD8+ T cell priming against tumor-associated antigens has generated renewed interest in the innate immune pathways that might serve as a bridge to an adaptive immune response to tumors. Manipulation of this endogenous T cell response with therapeutic intent-for example, using blocking antibodies inhibiting PD-1/PD-L1 (programmed death-1/programmed death ligand 1) interactions-is showing impressive clinical results. As such, understanding the innate immune mechanisms that enable this T cell response has important clinical relevance. Defined innate immune interactions in the cancer context include recognition by innate cell populations (NK cells, NKT cells, and γδ T cells) and also by dendritic cells and macrophages in response to damage-associated molecular patterns (DAMPs). Recent evidence has indicated that the major DAMP driving host antitumor immune responses is tumor-derived DNA, sensed by the stimulator of interferon gene (STING) pathway and driving type I IFN production. A deeper knowledge of the clinically relevant innate immune pathways involved in the recognition of tumors is leading toward new therapeutic strategies for cancer treatment. PMID:25622193

  12. Heteroligand molecular "stirrups" using conformationally flexible ditopic pyridyl-pyrazolyl ligands.

    Science.gov (United States)

    Lu, Jinzhen; Turner, David R; Harding, Lindsay P; Batten, Stuart R

    2009-08-17

    Heteroligand molecular "stirrups" form by the self-assembly of flexible ditopic ligands in combination with 4,4'-bipyridine and [(dppp)Pd)](2+). Crystallographic analysis shows that the ligands, bis[3-(4-pyridyl)pyrazolyl]-m-xylene (mXy(4py3pz)) and bis[4-(4-pyridyl)pyrazolyl]-p-xylene (pXy(4py4pz)) form complexes of the type [{(dppp)Pd}(2)(4,4'-bipy)(L)].4OTf (1.4OTf and 2.4OTf, respectively) in the solid state, with remarkably similar structures considering the differences in substitution patterns between the two ligands. The self-assembly of both 1(4+) and 2(4+) is assisted by face-to-face pi interactions on the exterior of the macrocycle between the phenyl rings of the dppp ligands and the pyridyl groups of the ditopic ligands. PMID:19594137

  13. Analysis of macromolecules, ligands and macromolecule-ligand complexes

    Science.gov (United States)

    Von Dreele, Robert B.

    2008-12-23

    A method for determining atomic level structures of macromolecule-ligand complexes through high-resolution powder diffraction analysis and a method for providing suitable microcrystalline powder for diffraction analysis are provided. In one embodiment, powder diffraction data is collected from samples of polycrystalline macromolecule and macromolecule-ligand complex and the refined structure of the macromolecule is used as an approximate model for a combined Rietveld and stereochemical restraint refinement of the macromolecule-ligand complex. A difference Fourier map is calculated and the ligand position and points of interaction between the atoms of the macromolecule and the atoms of the ligand can be deduced and visualized. A suitable polycrystalline sample of macromolecule-ligand complex can be produced by physically agitating a mixture of lyophilized macromolecule, ligand and a solvent.

  14. Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition

    Energy Technology Data Exchange (ETDEWEB)

    Gueltekin, Aytac [Department of Chemistry, Trakya University, Edirne (Turkey); Ersoez, Arzu; Huer, Deniz [Department of Chemistry, Anadolu University, Eskisehir (Turkey); Sarioezlue, Nalan Yilmaz [Department of Biology, Anadolu University, Eskisehir (Turkey); Denizli, Adil [Department of Chemistry, Hacettepe University, Ankara (Turkey); Say, Ridvan, E-mail: rsay@anadolu.edu.tr [Department of Chemistry, Anadolu University, Eskisehir (Turkey); BIBAM (Plant, Drug and Scientific Research Center) Anadolu University (Turkey)

    2009-10-15

    Taking into account the recognition element for sensors linked to molecular imprinted polymers (MIPs), a proliferation of interest has been witnessed by those who are interested in this subject. Indeed, MIP nanoparticles are theme which recently has come to light in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamidocysteine (MAC) attached to gold nanoparticles, reminiscent of a self-assembled monolayer. Furthermore, a surface shell by synthetic host polymers based on molecular imprinting method for recognition has been reconstructed. In this method, methacryloyl iminodiacetic acid-chrome (MAIDA-Cr(III)) has been used as a new metal-chelating monomer via metal coordination-chelation interactions and dipicolinic acid (DPA) which is the main participant of Bacillus cereus spores has been used as a template. Nanoshell sensors with templates produce a cavity that is selective for DPA. The DPA can simultaneously chelate to Cr(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Cr(III) ion and free coordination spheres has an effect on the binding ability of the gold nanoparticles nanosensor. The interactions between DPA and MIP particles were studied observing fluorescence measurements. DPA addition caused significant decreases in fluorescence intensity because they induced photoluminescence emission from Au nanoparticles through the specific binding to the recognition sites of the crosslinked nanoshell polymer matrix. The binding affinity of the DPA imprinted nanoparticles has been explored by using the Langmuir and Scatchard methods and the analysis of the quenching results has been performed in terms of the Stern-Volmer equation.

  15. Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition

    International Nuclear Information System (INIS)

    Taking into account the recognition element for sensors linked to molecular imprinted polymers (MIPs), a proliferation of interest has been witnessed by those who are interested in this subject. Indeed, MIP nanoparticles are theme which recently has come to light in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamidocysteine (MAC) attached to gold nanoparticles, reminiscent of a self-assembled monolayer. Furthermore, a surface shell by synthetic host polymers based on molecular imprinting method for recognition has been reconstructed. In this method, methacryloyl iminodiacetic acid-chrome (MAIDA-Cr(III)) has been used as a new metal-chelating monomer via metal coordination-chelation interactions and dipicolinic acid (DPA) which is the main participant of Bacillus cereus spores has been used as a template. Nanoshell sensors with templates produce a cavity that is selective for DPA. The DPA can simultaneously chelate to Cr(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Cr(III) ion and free coordination spheres has an effect on the binding ability of the gold nanoparticles nanosensor. The interactions between DPA and MIP particles were studied observing fluorescence measurements. DPA addition caused significant decreases in fluorescence intensity because they induced photoluminescence emission from Au nanoparticles through the specific binding to the recognition sites of the crosslinked nanoshell polymer matrix. The binding affinity of the DPA imprinted nanoparticles has been explored by using the Langmuir and Scatchard methods and the analysis of the quenching results has been performed in terms of the Stern-Volmer equation.

  16. Gold nanoparticles having dipicolinic acid imprinted nanoshell for Bacillus cereus spores recognition

    Science.gov (United States)

    Gültekin, Aytaç; Ersöz, Arzu; Hür, Deniz; Sarıözlü, Nalan Yılmaz; Denizli, Adil; Say, Rıdvan

    2009-10-01

    Taking into account the recognition element for sensors linked to molecular imprinted polymers (MIPs), a proliferation of interest has been witnessed by those who are interested in this subject. Indeed, MIP nanoparticles are theme which recently has come to light in the literature. In this study, we have proposed a novel thiol ligand-capping method with polymerizable methacryloylamidocysteine (MAC) attached to gold nanoparticles, reminiscent of a self-assembled monolayer. Furthermore, a surface shell by synthetic host polymers based on molecular imprinting method for recognition has been reconstructed. In this method, methacryloyl iminodiacetic acid-chrome (MAIDA-Cr(III)) has been used as a new metal-chelating monomer via metal coordination-chelation interactions and dipicolinic acid (DPA) which is the main participant of Bacillus cereus spores has been used as a template. Nanoshell sensors with templates produce a cavity that is selective for DPA. The DPA can simultaneously chelate to Cr(III) metal ion and fit into the shape-selective cavity. Thus, the interaction between Cr(III) ion and free coordination spheres has an effect on the binding ability of the gold nanoparticles nanosensor. The interactions between DPA and MIP particles were studied observing fluorescence measurements. DPA addition caused significant decreases in fluorescence intensity because they induced photoluminescence emission from Au nanoparticles through the specific binding to the recognition sites of the crosslinked nanoshell polymer matrix. The binding affinity of the DPA imprinted nanoparticles has been explored by using the Langmuir and Scatchard methods and the analysis of the quenching results has been performed in terms of the Stern-Volmer equation.

  17. Analytical developments for screening of lanthanides/ligands interactions

    International Nuclear Information System (INIS)

    This work investigates the potential of hyphenated capillary electrophoresis and inductively coupled mass spectrometry to classify different ligands according to their europium binding affinity in a hydro-organic medium. On the one hand, this method enables to evaluate the affinity of phosphorus-containing ligands in less than two hours and using less than 15 ng of ligand. On the other hand, complexation constants could be determined. The results are in excellent agreement with the values obtained by spectrophotometric titrations.Moreover, a library of copolymers for solid/liquid extraction of europium is investigated. The extraction protocol enables to classify copolymers according to their europium affinity in a hydro-organic medium. This screening requires 60 mg of copolymers. For the most promising recognition properties and selectivity La3+/Eu3+/Lu3+ are evaluated. (author)

  18. Fuel assembly

    International Nuclear Information System (INIS)

    Purpose: To improve the thermal and mechanical safety of fuel rods and structural components by making the local power coefficient of jointed fuel rods greater than that of other fuel rods in a fuel assembly. Constitution: In a fuel assembly comprising a plurality of fuel rods bundled by a spacer and held at the upper and the lower positions with tie plates for insertion into a channel, the degree of enrichment of uranium 235 for uranium dioxide fuel pellets charged in jointed fuel rods is adjusted such that the local power coefficient of the jointed fuel rods is made greater than that of the other fuel rods. In the case if the upper tie plate is moved upwardly by the extension of the jointed fuel rods, other fuel rods axially free from the upper tie plate receives no tension, whereby the safety of the fuel assembly can be improved. (Moriyama, K.)

  19. Ligand-Receptor Interactions

    CERN Document Server

    Bongrand, Pierre

    2008-01-01

    The formation and dissociation of specific noncovalent interactions between a variety of macromolecules play a crucial role in the function of biological systems. During the last few years, three main lines of research led to a dramatic improvement of our understanding of these important phenomena. First, combination of genetic engineering and X ray cristallography made available a simultaneous knowledg of the precise structure and affinity of series or related ligand-receptor systems differing by a few well-defined atoms. Second, improvement of computer power and simulation techniques allowed extended exploration of the interaction of realistic macromolecules. Third, simultaneous development of a variety of techniques based on atomic force microscopy, hydrodynamic flow, biomembrane probes, optical tweezers, magnetic fields or flexible transducers yielded direct experimental information of the behavior of single ligand receptor bonds. At the same time, investigation of well defined cellular models raised the ...

  20. Radiobiology with DNA ligands

    International Nuclear Information System (INIS)

    The paper deals with the following topics: labelling of DNA ligands and other tumour-affinic compounds with 4.15-d 124I, radiotoxicity of Hoechst 33258 and 33342 and of iodinated Hoechst 33258 in cell cultures, preparation of 76Br-, 123I-, and 221At-labelled 5-halo-2'-deoxyuridine, chemical syntheses of boron derivatives of Hoechst 33258.III., Gadolinium neutron capture therapy

  1. Imidazoline receptors ligands

    Directory of Open Access Journals (Sweden)

    Agbaba Danica

    2012-01-01

    Full Text Available Extensive biochemical and pharmacological studies have determined three different subtypes of imidazoline receptors: I1-imidazoline receptors (I1-IR involved in central inhibition of sympathicus that produce hypotensive effect; I2-imidazoline receptors (I2-IR modulate monoamine oxidase B activity (MAO-B; I3-imidazoline receptors (I3-IR regulate insulin secretion from pancreatic β-cells. Therefore, the I1/I2/I3 imidazoline receptors are selected as new, interesting targets for drug design and discovery. Novel selective I1/I2/I3 agonists and antagonists have been recently developed. In the present review, we provide a brief update to the field of imidazoline research, highlighting some of the chemical diversity and progress made in the 2D-QSAR, 3D-QSAR and quantitative pharmacophore development studies of I1-IR and I2-IR imidazoline receptor ligands. Theoretical studies of I3-IR ligands are not yet performed because of insufficient number of synthesized I3-IR ligands.

  2. GIANT: pattern analysis of molecular interactions in 3D structures of protein–small ligand complexes

    OpenAIRE

    Kasahara, Kota; Kinoshita, Kengo

    2014-01-01

    Background Interpretation of binding modes of protein–small ligand complexes from 3D structure data is essential for understanding selective ligand recognition by proteins. It is often performed by visual inspection and sometimes largely depends on a priori knowledge about typical interactions such as hydrogen bonds and π-π stacking. Because it can introduce some biases due to scientists’ subjective perspectives, more objective viewpoints considering a wide range of interactions are required....

  3. Optical Pattern Recognition

    Science.gov (United States)

    Yu, Francis T. S.; Jutamulia, Suganda

    2008-10-01

    Contributors; Preface; 1. Pattern recognition with optics Francis T. S. Yu and Don A. Gregory; 2. Hybrid neural networks for nonlinear pattern recognition Taiwei Lu; 3. Wavelets, optics, and pattern recognition Yao Li and Yunglong Sheng; 4. Applications of the fractional Fourier transform to optical pattern recognition David Mendlovic, Zeev Zalesky and Haldum M. Oxaktas; 5. Optical implementation of mathematical morphology Tien-Hsin Chao; 6. Nonlinear optical correlators with improved discrimination capability for object location and recognition Leonid P. Yaroslavsky; 7. Distortion-invariant quadratic filters Gregory Gheen; 8. Composite filter synthesis as applied to pattern recognition Shizhou Yin and Guowen Lu; 9. Iterative procedures in electro-optical pattern recognition Joseph Shamir; 10. Optoelectronic hybrid system for three-dimensional object pattern recognition Guoguang Mu, Mingzhe Lu and Ying Sun; 11. Applications of photrefractive devices in optical pattern recognition Ziangyang Yang; 12. Optical pattern recognition with microlasers Eung-Gi Paek; 13. Optical properties and applications of bacteriorhodopsin Q. Wang Song and Yu-He Zhang; 14. Liquid-crystal spatial light modulators Aris Tanone and Suganda Jutamulia; 15. Representations of fully complex functions on real-time spatial light modulators Robert W. Cohn and Laurence G. Hassbrook; Index.

  4. An NMR-Based Structural Rationale for Contrasting Stoichiometry and Ligand Binding Site(s) in Fatty Acid-binding Proteins†

    OpenAIRE

    He, Yan; Estephan, Rima; Yang, Xiaomin; Vela, Adriana; Wang, Hsin; Bernard, Cédric; Stark, Ruth E.

    2011-01-01

    Liver fatty acid-binding protein (LFABP) is a 14-kDa cytosolic polypeptide, differing from other family members in number of ligand binding sites, diversity of bound ligands, and transfer of fatty acid(s) to membranes primarily via aqueous diffusion rather than direct collisional interactions. Distinct two-dimensional 1H-15N NMR signals indicative of slowly exchanging LFABP assemblies formed during stepwise ligand titration were exploited, without solving the protein-ligand complex structures...

  5. Integrated Virtual Assembly Process Planning System

    Institute of Scientific and Technical Information of China (English)

    LIU Jianhua; HOU Weiwei; HOU Weiwei; SHANG Wei; SHANG Wei; NING Ruxin; NING Ruxin

    2009-01-01

    Assembly process planning(APP) for complicated products is a time-consuming and difficult work with conventional method. Virtual assembly process planning(VAPP) provides engineers a new and efficiency way. Previous studies in VAPP are almost isolated and dispersive, and have not established a whole understanding and discussed key realization techniques of VAPP from a systemic and integrated view. The integrated virtual assembly process planning(IVAPP) system is a new virtual reality based engineering application, which offers engineers an efficient, intuitive, immersive and integrated method for assembly process planning in a virtual environment. Based on analysis the information integration requirement of VAPP, the architecture of IVAPP is proposed. Through the integrated structure, IVAPP system can realize information integration and workflow controlling. In order to model the assembly process in IVAPP, a hierarchical assembly task list(HATL) is presented, in which different assembly tasks for assembling different components are organized into a hierarchical list. A process-oriented automatic geometrical constraint recognition algorithm(AGCR) is proposed, so that geometrical constraints between components can be automatically recognized during the process of interactive assembling. At the same time, a progressive hierarchical reasoning(PHR) model is discussed. AGCR and PHR will greatly reduce the interactive workload. A discrete control node model(DCNM) for cable harness assembly planning in IVAPP is detailed. DCNM converts a cable harness into continuous flexed line segments connected by a series of section center points, and designs can realize cable harness planning through controlling those control nodes. Mechanical assemblies (such as transmission case and engine of automobile) are used to illustrate the feasibility of the proposed method and algorithms. The application of IVAPP system reveals advantages over the traditional assembly process planning method

  6. Pattern recognition & machine learning

    CERN Document Server

    Anzai, Y

    1992-01-01

    This is the first text to provide a unified and self-contained introduction to visual pattern recognition and machine learning. It is useful as a general introduction to artifical intelligence and knowledge engineering, and no previous knowledge of pattern recognition or machine learning is necessary. Basic for various pattern recognition and machine learning methods. Translated from Japanese, the book also features chapter exercises, keywords, and summaries.

  7. ANATOMY ON PATTERN RECOGNITION

    OpenAIRE

    MAYANK PARASHER; SHRUTI SHARMA; A .K. SHARMA,; J.P.Gupta

    2011-01-01

    Pattern Recognition is the science of recognizing patterns by machines. This is very wide research area as of today, because every newresearch tries to make machine as intelligent as human for recognizing patterns. Pattern recognition is an active research and an importanttrait of ‘artificial intelligence’. This review paper introduces pattern recognition, its fundamental definitions, and provides understanding of related research work. This paper presents different types of algorithms, their...

  8. Context dependent speech recognition

    OpenAIRE

    Andersson, Sebastian

    2006-01-01

    Poor speech recognition is a problem when developing spoken dialogue systems, but several studies has showed that speech recognition can be improved by post-processing of recognition output that use the dialogue context, acoustic properties of a user utterance and other available resources to train a statistical model to use as a filter between the speech recogniser and dialogue manager. In this thesis a corpus of logged interactions between users and a dialogue system was used...

  9. Statistical Pattern Recognition

    CERN Document Server

    Webb, Andrew R

    2011-01-01

    Statistical pattern recognition relates to the use of statistical techniques for analysing data measurements in order to extract information and make justified decisions.  It is a very active area of study and research, which has seen many advances in recent years. Applications such as data mining, web searching, multimedia data retrieval, face recognition, and cursive handwriting recognition, all require robust and efficient pattern recognition techniques. This third edition provides an introduction to statistical pattern theory and techniques, with material drawn from a wide range of fields,

  10. Molecular Component Structures Mediated Formation of Self-assemblies

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Molecular recognition directed self-assemblies from complementary molecular components, melamine and barbituric acid derivatives were studied by means of NMR, fluorescence, and TEM. It was found that both the process of the self-assembly and the morphologies of the result ed self-assemblies could be mediated by modifying the structures of the molecular components used. The effect of the structures of the molecular components on the formation of the self-as semblies was discussed in terms of intermolecular interactions.

  11. Fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly is composed of a fuel bundle surrounded by a channel box. The fuel bundle comprises a large number of fuel rods and a water rod secured to upper and lower tie plate by way of a plurality of fuel spacers. Grooves (libretti) are formed in the direction along the flowing direction of coolants to at least one of the surface of the fuel rods, the inner surface of the channel box, the surface of the water rod and spacer constituting components. In this case, the lateral width of the libretto in the flowing direction is determined as the minimum thickness of the bottom layer of a layered flow determined by a coolant flow rate. With such a constitution, abrasion resistance relative to coolants is reduced to reduce the pressure loss of fuel assemblies. (I.N.)

  12. PANP is a novel O-glycosylated PILRα ligand expressed in neural tissues

    International Nuclear Information System (INIS)

    Research highlights: → A Novel molecule, PANP, was identified to be a PILRα ligand. → Sialylated O-glycan structures on PANP were required for PILRα recognition. → Transcription of PANP was mainly observed in neural tissues. → PANP seems to be involved in immune regulation as a ligand for PILRα. -- Abstract: PILRα is an immune inhibitory receptor possessing an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain enabling it to deliver inhibitory signals. Binding of PILRα to its ligand CD99 is involved in immune regulation; however, whether there are other PILRα ligands in addition to CD99 is not known. Here, we report that a novel molecule, PILR-associating neural protein (PANP), acts as an additional ligand for PILRα. Transcription of PANP was mainly observed in neural tissues. PILRα-Ig fusion protein bound cells transfected with PANP and the transfectants stimulated PILRα reporter cells. Specific O-glycan structures on PANP were found to be required for PILR recognition of this ligand. These results suggest that PANP is involved in immune regulation as a ligand of the PILRα.

  13. PANP is a novel O-glycosylated PILR{alpha} ligand expressed in neural tissues

    Energy Technology Data Exchange (ETDEWEB)

    Kogure, Amane [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Shiratori, Ikuo [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Wang, Jing [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); Lanier, Lewis L. [Department of Microbiology and Immunology and the Cancer Research Institute, University of California San Francisco, San Francisco, CA 94143 (United States); Arase, Hisashi, E-mail: arase@biken.osaka-u.ac.jp [Department of Immunochemistry, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871 (Japan); Laboratory of Immunochemistry, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871 (Japan); JST CREST, Saitama 332-0012 (Japan)

    2011-02-18

    Research highlights: {yields} A Novel molecule, PANP, was identified to be a PILR{alpha} ligand. {yields} Sialylated O-glycan structures on PANP were required for PILR{alpha} recognition. {yields} Transcription of PANP was mainly observed in neural tissues. {yields} PANP seems to be involved in immune regulation as a ligand for PILR{alpha}. -- Abstract: PILR{alpha} is an immune inhibitory receptor possessing an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytoplasmic domain enabling it to deliver inhibitory signals. Binding of PILR{alpha} to its ligand CD99 is involved in immune regulation; however, whether there are other PILR{alpha} ligands in addition to CD99 is not known. Here, we report that a novel molecule, PILR-associating neural protein (PANP), acts as an additional ligand for PILR{alpha}. Transcription of PANP was mainly observed in neural tissues. PILR{alpha}-Ig fusion protein bound cells transfected with PANP and the transfectants stimulated PILR{alpha} reporter cells. Specific O-glycan structures on PANP were found to be required for PILR recognition of this ligand. These results suggest that PANP is involved in immune regulation as a ligand of the PILR{alpha}.

  14. Molecular path for ligand search

    Institute of Scientific and Technical Information of China (English)

    Tao Lu; Yuan Yuan Qiao; Pan Wen Shen

    2011-01-01

    A ligand is a small molecule bind to several residues of a receptor. We adapt the concept of molecular path for effective ligand search with its contacting residues. Additionally, we allow wild type definitions on atoms and bonds of molecular paths for fuzzy algorithms on structural match. We choose hydrogen bond interactions to characterize the binding mode of a ligand by several proper molecular paths and use them to query the deposited ligands in PDBe that interact with their residues in the same way. Expression of molecular path and format of database entries are described with examples. Our molecular path provides a new approach to explore the ligand-receptor interactions and to provide structural framework reference on new ligand design.

  15. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  16. Synthesis and enzymatic cleavage of dual-ligand quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Sewell, Sarah L. [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Giorgio, Todd D., E-mail: todd.d.giorgio@vanderbilt.edu [Department of Biomedical Engineering, Vanderbilt University, Nashville, TN (United States); Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN (United States)

    2009-05-05

    Site directed therapy promises to minimize treatment-limiting systemic effects associated with cytotoxic agents that have no specificity for pathologic tissues. One general strategy is to target cell surface receptors uniquely presented on particular tissues. Highly specific in vivo targeting of an emerging neoplasm through a single molecular recognition mechanism has not generally been successful. Nonspecific binding and specific binding to non-target cells compromise the therapeutic index of small molecule, ubiquitous cancer targeting ligands. In this work, we have designed and fabricated a nanoparticle (NP) construct that could potentially overcome the current limitations of targeted in vivo delivery. Quantum dots (QDs) were functionalized with a poly(ethylene glycol) (PEG) modified to enable specific cleavage by matrix metalloprotease-7 (MMP-7). The QDs were further functionalized with folic acid, a ligand for a cell surface receptor that is overexpressed in many tumors, but also expressed in some normal tissues. The nanomolecular construct is designed so that the PEG initially conceals the folate ligand and construct binding to cells is inhibited. MMP-7 activated peptide cleavage and subsequent unmasking of the folate ligand occurs only near tumor tissue, resulting in a proximity activated (PA) targeting system. QDs functionalized with both the MMP-7 cleavable substrate and folic acid were successfully synthesized and characterized. The proteolytic capability of the dual ligand QD construct was quantitatively assessed by fluorometric analysis and compared to a QD construct functionalized with only the PA ligand. The dual ligand PA nanoparticles studied here exhibit significant susceptibility to cleavage by MMP-7 at physiologically relevant conditions. The capacity to autonomously convert a biopassivated nanostructure to a tissue-specific targeted delivery agent in vivo represents a paradigm change for site-directed therapies.

  17. Synthesis and enzymatic cleavage of dual-ligand quantum dots

    International Nuclear Information System (INIS)

    Site directed therapy promises to minimize treatment-limiting systemic effects associated with cytotoxic agents that have no specificity for pathologic tissues. One general strategy is to target cell surface receptors uniquely presented on particular tissues. Highly specific in vivo targeting of an emerging neoplasm through a single molecular recognition mechanism has not generally been successful. Nonspecific binding and specific binding to non-target cells compromise the therapeutic index of small molecule, ubiquitous cancer targeting ligands. In this work, we have designed and fabricated a nanoparticle (NP) construct that could potentially overcome the current limitations of targeted in vivo delivery. Quantum dots (QDs) were functionalized with a poly(ethylene glycol) (PEG) modified to enable specific cleavage by matrix metalloprotease-7 (MMP-7). The QDs were further functionalized with folic acid, a ligand for a cell surface receptor that is overexpressed in many tumors, but also expressed in some normal tissues. The nanomolecular construct is designed so that the PEG initially conceals the folate ligand and construct binding to cells is inhibited. MMP-7 activated peptide cleavage and subsequent unmasking of the folate ligand occurs only near tumor tissue, resulting in a proximity activated (PA) targeting system. QDs functionalized with both the MMP-7 cleavable substrate and folic acid were successfully synthesized and characterized. The proteolytic capability of the dual ligand QD construct was quantitatively assessed by fluorometric analysis and compared to a QD construct functionalized with only the PA ligand. The dual ligand PA nanoparticles studied here exhibit significant susceptibility to cleavage by MMP-7 at physiologically relevant conditions. The capacity to autonomously convert a biopassivated nanostructure to a tissue-specific targeted delivery agent in vivo represents a paradigm change for site-directed therapies.

  18. Paradigms in object recognition

    International Nuclear Information System (INIS)

    A broad range of approaches has been proposed and applied for the complex and rather difficult task of object recognition that involves the determination of object characteristics and object classification into one of many a priori object types. Our paper revises briefly the three main different paradigms in pattern recognition, namely Bayesian statistics, neural networks, and expert systems. (author)

  19. Recognition as care

    DEFF Research Database (Denmark)

    Ahlmark, Nanna; Whyte, Susan Reynolds; Harting, Janneke;

    2014-01-01

    -based and solidarity-based recognition to analyse what was at stake in these experiences, and we engage Annemarie Mol’s concept of a logic of care to show how recognition unfolded practically during the training. We propose that participants’ wider social context and experiences of misrecognition situated the training...

  20. Macrocyclic G-quadruplex ligands

    DEFF Research Database (Denmark)

    Nielsen, M C; Ulven, Trond

    2010-01-01

    G-quadruplex stabilizing compounds have recently received increased interest due to their potential application as anticancer therapeutics. A significant number of structurally diverse G-quadruplex ligands have been developed. Some of the most potent and selective ligands currently known are...... macrocyclic structures which have been modeled after the natural product telomestatin or from porphyrin-based ligands discovered in the late 1990s. These two structural classes of G-quadruplex ligands are reviewed here with special attention to selectivity and structure-activity relationships, and with focus...

  1. METAL NANOPARTICLES FUNCTIONALIZED WITH METAL-LIGAND COVALENT BONDS

    OpenAIRE

    Kang, Xiongwu

    2012-01-01

    Metal-organic contact has been recognized to play important roles in regulation of optical and electronic properties of nanoparticles. In this thesis, significant efforts have been devoted into synthesis of ruthenium nanoparticles with various metal-ligand interfacial linkages and investigation of their electronic and optical properties. Ruthenium nanoparticles were prepared by the self-assembly of functional group onto bare Ru colloid surface. As to Ru-alkyne nanoparticles, the formation of ...

  2. A conserved WW domain-like motif regulates invariant chain-dependent cell-surface transport of the NKG2D ligand ULBP2

    DEFF Research Database (Denmark)

    Uhlenbrock, Franziska Katharina; van Andel, Esther; Andresen, Lars; Skov, Søren

    2015-01-01

    Malignant cells expressing NKG2D ligands on their cell surface can be directly sensed and killed by NKG2D-bearing lymphocytes. To ensure this immune recognition, accumulating evidence suggests that NKG2D ligands are trafficed via alternative pathways to the cell surface. We have previously shown ...

  3. Heater assembly

    International Nuclear Information System (INIS)

    An electrical resistance heater, installed in the H1 borehole, is used to thermally perturb the rock mass through a controlled heating and cooling cycle. Heater power levels are controlled by a Variac power transformer and are measured by wattmeters. Temperatures are measured by thermocouples on the borehole wall and on the heater assembly. Power and temperature values are recorded by the DAS described in Chapter 12. The heater assembly consists of a 3.55-m (11.6-ft) long by 20.3-cm (8-in.) O.D., Type 304 stainless steel pipe, containing a tubular hairpin heating element. The element has a heated length of 3 m (9.84 ft). The power rating of the element is 10 kW; however, we plan to operate the unit at a maximum power of only 3 kW. The heater is positioned with its midpoint directly below the axis of the P2 borehole, as shown in the borehole configuration diagram. This heater midpoint position corresponds to a distance of approximately 8.5 m (27.9 ft) from the H1 borehole collar. A schematic of the heater assembly in the borehole is shown. The distance from the borehole collar to the closest point on the assembly (the front end) is 6.5 m (21.3 ft). A high-temperature inflatable packer, used to seal the borehole for moisture collection, is positioned 50 cm (19.7 in.) ahead of the heater front end. The heater is supported and centralized within the borehole by two skids, fabricated from 25-mm (1-in.) O.D. stainless steel pipe. Thermocouples are installed at a number of locations in the H1 borehole. Four thermocouples that are attached to the heater skin monitor temperatures on the outer surface of the can, while three thermocouples that are held in place by rock sections monitor borehole wall temperatures beneath the heater. Temperatures are also monitored at the heater terminal and on the packer hardware

  4. Assembling consumption

    DEFF Research Database (Denmark)

    Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies the i...... societies. This is an essential reading for both seasoned scholars and advanced students of markets, economies and social forms of consumption....... the investigative tools offered by assemblage theory, actor-network theory and non-representational theory. Clear theoretical explanation and methodological innovation, alongside empirical applications of these emerging frameworks will offer readers new and refreshing perspectives on consumer culture and market...

  5. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    Mardi 5 avril à 11 h 00 BE Auditorium Meyrin (6-2-024) Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 5 mai 2015. Présentation et approbation du rapport d’activités 2015. Présentation et approbation du rapport financier 2015. Présentation et approbation du rapport des vérificateurs aux comptes pour 2015. Programme de travail 2016. Présentation et approbation du projet de budget 2016 Approbation du taux de cotisation pour 2017. Modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commissio...

  6. General Assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : 1- Adoption de l’ordre du jour. 2- Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. 3- Présentation et approbation du rapport d’activités 2014. 4- Présentation et approbation du rapport financier 2014. 5- Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. 6- Programme 2015. 7- Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. 8- Pas de modifications aux Statuts de l'Association du personnel proposée. 9- Élections des membres de la Commission é...

  7. General assembly

    CERN Multimedia

    Staff Association

    2015-01-01

    Mardi 5 mai à 11 h 00 Salle 13-2-005 Conformément aux statuts de l’Association du personnel, une Assemblée générale ordinaire est organisée une fois par année (article IV.2.1). Projet d’ordre du jour : Adoption de l’ordre du jour. Approbation du procès-verbal de l’Assemblée générale ordinaire du 22 mai 2014. Présentation et approbation du rapport d’activités 2014. Présentation et approbation du rapport financier 2014. Présentation et approbation du rapport des vérificateurs aux comptes pour 2014. Programme 2015. Présentation et approbation du projet de budget 2015 et taux de cotisation pour 2015. Pas de modifications aux Statuts de l'Association du personnel proposée. Élections des membres de la Commission électorale. &am...

  8. Fuel assembly

    International Nuclear Information System (INIS)

    The cross section of a fuel assembly is divided to a first region containing corner portions at which channel fasteners are situated and a second region not containing corner portions. The average enrichment degree of plutonium in the first region is decreased than that of the second region, and the number of fuel rods containing burnable poisons is increased at the first region than that of the second region. In the first region of the fuel assembly, the effect of moderating neutrons is enhanced since the cross section of a moderator flow channel at the outer side of the channel box is large. Therefore, local power peaking is increased in the first region while it is decreased in the second region that opposes to a narrow gap. The average enrichment degree of plutonium in the first region is decreased and that in the second region is increased by so much, to flatten the power distribution. Then, the reduction of the reactivity worth of gadolinia, as burnable poisons, can be suppressed. (N.H.)

  9. Hatch assembly

    International Nuclear Information System (INIS)

    This patent describes a nuclear reactor installation including means defining a fuel handling area and means defining a containment area separated from the fuel handling area and including a refuelling cavity; the improvement comprising: (a) a fuel transfer tube connecting the refuelling cavity with the fuel handling area; the fuel transfer tube having a first end in the fuel handling area and a second end in the refueling cavity; (b) valve means for opening and closing the first end; and (c) a hatch assembly mounted on the second end; the hatch assembly including (1) a hatch ring affixed to the fuel transfer tube at the second end the hatch ring has an integral annular seat surrounded by the hatch ring and defines a hatch opening in the second end of the fuel transfer tube; (2) a hatch cover adapts to be positioned on the annular seat for covering the hatch opening; (3) latching units are supported on the hatch ring about the hatch opening, each latching unit

  10. Fuel assembly

    International Nuclear Information System (INIS)

    The present invention concerns a fuel assembly of a BWR type reactor, and prevents aging change of flow rate of coolants leaked from a gap between a lower tie plate and a channel box. That is, in the fuel assembly, a great number of fuel rods and a plurality of water rods are bundled by a plurality of spacers, the upper and the lower ends thereof are supported by upper and lower tie plates, and they are contained in a channel box. Plate-like protrusions are disposed rotatably to the lower tie plate at a position corresponding to the lower end of the channel box. In addition, through holes are disposed on the side wall of the lower tie plate. With such a constitution, the protrusions rotate at a connection portion by hydraulic pressure of leaking coolants, and urge the channel box by the other end to control leakage of coolants. Further, since the through holes are disposed on the side wall of the lower tie plate, pressure difference is caused between the upper and the lower surfaces of the plate of the protrusion, to rotate the protrusions at the connection portion, and the other end of the protrusions presses the channel box to obtain the same effect. (I.S.)

  11. Handbook of Face Recognition

    CERN Document Server

    Li, Stan Z

    2011-01-01

    This highly anticipated new edition provides a comprehensive account of face recognition research and technology, spanning the full range of topics needed for designing operational face recognition systems. After a thorough introductory chapter, each of the following chapters focus on a specific topic, reviewing background information, up-to-date techniques, and recent results, as well as offering challenges and future directions. Features: fully updated, revised and expanded, covering the entire spectrum of concepts, methods, and algorithms for automated face detection and recognition systems

  12. Mobile intention recognition

    CERN Document Server

    Kiefer, Peter

    2011-01-01

    Mobile Intention Recognition addresses problems of practical relevance for mobile system engineers: how can we make mobile assistance systems more intelligent? How can we model and recognize patterns of human behavior which span more than a limited spatial context? This text provides an overview on plan and intention recognition, ranging from the late 1970s to very recent approaches. This overview is unique as it discusses approaches with respect to the specificities of mobile intention recognition. This book covers problems from research on mobile assistance systems using methods from artific

  13. The first self-assembled trimetallic lanthanide helicate: different coordination sites in symmetrical molecular architectures.

    Science.gov (United States)

    Bocquet, Bernard; Bernardinelli, Gérald; Ouali, Nadjet; Floquet, Sebastien; Renaud, Fabien; Hopfgartner, Gérard; Piguet, Claude

    2002-05-01

    A tris-tridentate segmental ligand has been designed for the self-assembly of homotrimetallic triple-stranded lanthanide helicates possessing different coordination sites along the threefold axis. PMID:12123053

  14. Perylenetetracarboxylic-metal assemblies and anisotropic charge transport in a CuII assembly

    Science.gov (United States)

    Bai, Linyi; Xia, Youyi; Jana, Avijit; Ang, Chung Yen; Zhao, Lingzhi; Fan, Zhi; Zhao, Yanli

    2016-04-01

    Structural diversity and uniformity of nanomaterials are usually prerequisites for many practical applications involving the oriented fabrication of various devices with full control over their desired physiochemical properties. Particularly in the optoelectronic field, ordered assembly inside cells is required not only for obtaining attractive configurations but also for playing an important role in the characteristics of photoconduction and conductivity. Here, we present a synergetic self-assembly driven by coordination and intermolecular interactions for the construction of organic-inorganic hybrids with multi-morphologies and tunable physical properties. 3,4,9,10-Perylenetetracarboxylic dianhydride was treated with base to produce various assemblies by coordination with metal ions, showing morphologies of nanowires, nanosheets, nanoribbons and nanorods. The organic π-spacer affords an extension in different directions through the suitable incorporation of metal ions with different coordination modes for the formation of metal-ligand complexes. Interestingly, the obtained nanorods were twisted rods with obvious screw threads on the rod wall, supporting the synergetic self-assembly. Then, anisotropic mobility measurements of the obtained Cu2+-ligand assembly were carried out to show the importance of the size- and shape-confined synthesis of the hybrids. By presenting a series of ordered metal-ligand complex superstructures driven by synergetic self-assembly, this work is expected to pave the way for future anisotropic measurements of complex assemblies.Structural diversity and uniformity of nanomaterials are usually prerequisites for many practical applications involving the oriented fabrication of various devices with full control over their desired physiochemical properties. Particularly in the optoelectronic field, ordered assembly inside cells is required not only for obtaining attractive configurations but also for playing an important role in the

  15. Fluorescent naphthalene-based benzene tripod for selective recognition of fluoride in physiological condition

    Indian Academy of Sciences (India)

    Barun kumar Datta; Chirantan Kar; Gopal Das

    2015-02-01

    Aluminium complex of a naphthalene-based benzene tripod ligand system has been reported for the selective recognition of fluoride in aqueous medium in physiological condition. The ligand can selectively recognize Al3+ through enhancement in the fluorescence intensity and this in situ formed aluminium complex recognizes fluoride through quenching of fluorescence. The receptor system detects fluoride in nanomolar range. The sensing property was extended for practical utility to sense fluoride in tap water, pond water and river water.

  16. Conformational diversity of flexible ligand in metal-organic frameworks controlled by size-matching mixed ligands

    Science.gov (United States)

    Hua, Xiu-Ni; Qin, Lan; Yan, Xiao-Zhi; Yu, Lei; Xie, Yi-Xin; Han, Lei

    2015-12-01

    Hydrothermal reactions of N-auxiliary flexible exo-bidentate ligand 1,3-bis(4-pyridyl)propane (bpp) and carboxylates ligands naphthalene-2,6-dicarboxylic acid (2,6-H2ndc) or 4,4‧-(hydroxymethylene)dibenzoic acid (H2hmdb), in the presence of cadmium(II) salts have given rise to two novel metal-organic frameworks based on flexible ligands (FL-MOFs), namely, [Cd2(2,6-ndc)2(bpp)(DMF)]·2DMF (1) and [Cd3(hmdb)3(bpp)]·2DMF·2EtOH (2) (DMF=N,N-Dimethylformamide). Single-crystal X-ray diffraction analyses revealed that compound 1 exhibits a three-dimensional self-penetrating 6-connected framework based on dinuclear cluster second building unit. Compound 2 displays an infinite three-dimensional 'Lucky Clover' shape (2,10)-connected network based on the trinuclear cluster and V-shaped organic linkers. The flexible bpp ligand displays different conformations in 1 and 2, which are successfully controlled by size-matching mixed ligands during the self-assembly process.

  17. Conformational proofreading: the impact of conformational changes on the specificity of molecular recognition.

    Directory of Open Access Journals (Sweden)

    Yonatan Savir

    Full Text Available To perform recognition, molecules must locate and specifically bind their targets within a noisy biochemical environment with many look-alikes. Molecular recognition processes, especially the induced-fit mechanism, are known to involve conformational changes. This raises a basic question: Does molecular recognition gain any advantage by such conformational changes? By introducing a simple statistical-mechanics approach, we study the effect of conformation and flexibility on the quality of recognition processes. Our model relates specificity to the conformation of the participant molecules and thus suggests a possible answer: Optimal specificity is achieved when the ligand is slightly off target; that is, a conformational mismatch between the ligand and its main target improves the selectivity of the process. This indicates that deformations upon binding serve as a conformational proofreading mechanism, which may be selected for via evolution.

  18. Human Emotion Recognition System

    Directory of Open Access Journals (Sweden)

    Dilbag Singh

    2012-08-01

    Full Text Available This paper discusses the application of feature extraction of facial expressions with combination of neural network for the recognition of different facial emotions (happy, sad, angry, fear, surprised, neutral etc... Humans are capable of producing thousands of facial actions during communication that vary in complexity, intensity, and meaning. This paper analyses the limitations with existing system Emotion recognition using brain activity. In this paper by using an existing simulator I have achieved 97 percent accurate results and it is easy and simplest way than Emotion recognition using brain activity system. Purposed system depends upon human face as we know face also reflects the human brain activities or emotions. In this paper neural network has been used for better results. In the end of paper comparisons of existing Human Emotion Recognition System has been made with new one.

  19. Forensic speaker recognition

    NARCIS (Netherlands)

    Meuwly, Didier

    2009-01-01

    The aim of forensic speaker recognition is to establish links between individuals and criminal activities, through audio speech recordings. This field is multidisciplinary, combining predominantly phonetics, linguistics, speech signal processing, and forensic statistics. On these bases, expert-based

  20. Work and Recognition

    DEFF Research Database (Denmark)

    Willig, Rasmus

    2004-01-01

    -Pierre Le Goff, Christophe Dejours and Emmanuel Renault. In spite of many differences, their work is united by a critical description of the logic of work and its consequences for individual individuation. These theorists agree that the growth of autonomy, flexibility and mobility has destabilised......The article deals with the relationship between work and recognition, taking Axel Honneth’s social-philosophical theory of the struggle for recognition as its point of departure. In order to give sociological substance to Honneth’s theory, we turn to three contemporary social theorists - Jean...... individual and collective identity formation and has led to an increase in social pathological illnesses such as stress and depression. By juxtaposing these analyses with Honneth’s theory on recognition, we conclude that the contemporary logic of work is unable to provide adequate forms of recognition...

  1. Heterocyclic Scaffolds in the Design of Peptidomimetic Integrin Ligands: Synthetic Strategies, Structural Aspects, and Biological Activity.

    Science.gov (United States)

    De Marco, Rossella; Mazzotti, Giacomo; Greco, Arianna; Gentilucci, Luca

    2016-01-01

    The integrin receptors represent valuable targets for therapeutic interventions; being overexpressed in many pathological states, their inhibition can be effective to treat a number of severe diseases. Since integrin functions are mediated by interactions with ECM protein ligands, the inhibition can be achieved by interfering with such interactions using small mimetics of the integrin-ligand recognition motifs (e.g. RGD, LDV, etc.). In this review, we focus on the antagonists with peptideheterocycle hybrid structures. The introduction of well-designed scaffolds has met considerable success in the rational design of highly stable, bioavailable, and conformationally defined antagonists. Two main approaches are discussed herein. The first approach is the use of scaffolds external to the main recognition motifs, aimed at improving conformational definition. In the second approach, heterocyclic cores are introduced within the recognition motifs, giving access to libraries of 3D diverse candidate antagonists. PMID:26265351

  2. Macrocyclic Assembly: A Dive into the Pecking Order and Applied Aspects of Multitalented Metallomacrocycles

    Directory of Open Access Journals (Sweden)

    Ashu Chaudhary

    2014-01-01

    Full Text Available To aid in knowledge of macrocyclic complexes and biomedical scientists, we are presenting here a review article with compilation of work done so far along in relation to macrocyclic ligands and their metal complexes. The metal ion chemistry of macrocyclic ligands has now become a major subdivision of coordination chemistry. This overview focuses on developments in design, synthesis, and self-assembly of metal-based architectures and ligands related to macrocyclic chemistry.

  3. Evaluating music emotion recognition

    DEFF Research Database (Denmark)

    Sturm, Bob L.

    2013-01-01

    A fundamental problem with nearly all work in music genre recognition (MGR)is that evaluation lacks validity with respect to the principal goals of MGR. This problem also occurs in the evaluation of music emotion recognition (MER). Standard approaches to evaluation, though easy to implement, do...... not reliably differentiate between recognizing genre or emotion from music, or by virtue of confounding factors in signals (e.g., equalization). We demonstrate such problems for evaluating an MER system, and conclude with recommendations....

  4. Towards Open World Recognition

    OpenAIRE

    Bendale, Abhijit; Boult, Terrance

    2014-01-01

    With the of advent rich classification models and high computational power visual recognition systems have found many operational applications. Recognition in the real world poses multiple challenges that are not apparent in controlled lab environments. The datasets are dynamic and novel categories must be continuously detected and then added. At prediction time, a trained system has to deal with myriad unseen categories. Operational systems require minimum down time, even to learn. To handle...

  5. Automatic Licenses Plate Recognition

    OpenAIRE

    Ronak P Patel; Narendra M Patel; Keyur Brahmbhatt

    2013-01-01

    This paper describes the Smart Vehicle Screening System, which can be installed into a tollboothfor automated recognition of vehicle license plate information using a photograph of a vehicle. An automatedsystem could then be implemented to control the payment of fees, parking areas, highways, bridges ortunnels, etc. This paper contains new algorithm for recognition number plate using Morphological operation,Thresholding operation, Edge detection, Bounding box analysis for number plate extract...

  6. Human Emotion Recognition System

    OpenAIRE

    Dilbag Singh

    2012-01-01

    This paper discusses the application of feature extraction of facial expressions with combination of neural network for the recognition of different facial emotions (happy, sad, angry, fear, surprised, neutral etc..). Humans are capable of producing thousands of facial actions during communication that vary in complexity, intensity, and meaning. This paper analyses the limitations with existing system Emotion recognition using brain activity. In this paper by using an existing simulator I hav...

  7. Fingerprint Recognition System

    OpenAIRE

    Bhawna Negi; Varun Sharma

    2012-01-01

    The popular Biometric used to authenticate a person is Fingerprint which is unique and permanent throughout a person’s life. A minutia matching is widely used for fingerprint recognition and can be classified as ridge ending and ridge bifurcation. In this paper we projected Fingerprint Recognition using Minutia Score Matching method (FRMSM). For Fingerprint thinning, the Block Filter is used, which scans the image at the boundary to preserves the quality of the image and extract the minutiae ...

  8. Android object recognition framework

    OpenAIRE

    Karlsen, Mats-Gøran

    2012-01-01

    This thesis is a continuation of the author’s specialization project where the ultimate goal is to build an object recognition framework suitable for mobile devices in real world environments, where control over parameters such as illumination, distance, noise and availability of consistent network architectures are limited. Based on shortcomings related to object recognition performance and architectural issues the author’s goal was to increase the flexibility, usability and perfor...

  9. The Recognition Of Fatigue

    DEFF Research Database (Denmark)

    Elsass, Peter; Jensen, Bodil; Mørup, Rikke;

    2007-01-01

    Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87......Elsass P., Jensen B., Morup R., Thogersen M.H. (2007). The Recognition Of Fatigue: A qualitative study of life-stories from rehabilitation clients. International Journal of Psychosocial Rehabilitation. 11 (2), 75-87...

  10. Fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly of a BWR type reactor comprises a rectangular parallelopiped channel box and fuel bundles contained in the channel box. The fuel bundle comprises an upper tie plate, a lower tie plate, a plurality of spacers a plurality of fuel rods and a water rod. In each fuel rod, the amount of fission products is reduced at upper and lower end regions of an effective fuel portion than that in other regions of the effective fuel region. In a portion of the fuel rods, fuel pellets containing burnable poisons are disposed at the upper and lower end regions. In addition, the upper and lower portions are constituted with natural uranium. Each of the upper and lower end regions is not greater than 15% of the effective fuel length. Since this can enhance reactivity control effect without worsening fuel economy, the control amount for excess reactivity upon long-term cycle operation can be increased. (I.N.)

  11. Why recognition is rational

    Directory of Open Access Journals (Sweden)

    Clintin P. Davis-Stober

    2010-07-01

    Full Text Available The Recognition Heuristic (Gigerenzer and Goldstein, 1996; Goldstein and Gigerenzer, 2002 makes the counter-intuitive prediction that a decision maker utilizing less information may do as well as, or outperform, an idealized decision maker utilizing more information. We lay a theoretical foundation for the use of single-variable heuristics such as the Recognition Heuristic as an optimal decision strategy within a linear modeling framework. We identify conditions under which over-weighting a single predictor is a mini-max strategy among a class of a priori chosen weights based on decision heuristics with respect to a measure of statistical lack of fit we call ``risk''. These strategies, in turn, outperform standard multiple regression as long as the amount of data available is limited. We also show that, under related conditions, weighting only one variable and ignoring all others produces the same risk as ignoring the single variable and weighting all others. This approach has the advantage of generalizing beyond the original environment of the Recognition Heuristic to situations with more than two choice options, binary or continuous representations of recognition, and to other single variable heuristics. We analyze the structure of data used in some prior recognition tasks and find that it matches the sufficient conditions for optimality in our results. Rather than being a poor or adequate substitute for a compensatory model, the Recognition Heuristic closely approximates an optimal strategy when a decision maker has finite data about the world.

  12. Programmed Nanomaterial Assemblies in Large Scales: Applications of Synthetic and Genetically- Engineered Peptides to Bridge Nano-Assemblies and Macro-Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Matsui, Hiroshi

    2014-09-09

    Work is reported in these areas: Large-scale & reconfigurable 3D structures of precise nanoparticle assemblies in self-assembled collagen peptide grids; Binary QD-Au NP 3D superlattices assembled with collagen-like peptides and energy transfer between QD and Au NP in 3D peptide frameworks; Catalytic peptides discovered by new hydrogel-based combinatorial phage display approach and their enzyme-mimicking 2D assembly; New autonomous motors of metal-organic frameworks (MOFs) powered by reorganization of self-assembled peptides at interfaces; Biomimetic assembly of proteins into microcapsules on oil-in-water droplets with structural reinforcement via biomolecular recognition-based cross-linking of surface peptides; and Biomimetic fabrication of strong freestanding genetically-engineered collagen peptide films reinforced by quantum dot joints. We gained the broad knowledge about biomimetic material assembly from nanoscale to microscale ranges by coassembling peptides and NPs via biomolecular recognition. We discovered: Genetically-engineered collagen-like peptides can be self-assembled with Au NPs to generate 3D superlattices in large volumes (> μm{sup 3}); The assembly of the 3D peptide-Au NP superstructures is dynamic and the interparticle distance changes with assembly time as the reconfiguration of structure is triggered by pH change; QDs/NPs can be assembled with the peptide frameworks to generate 3D superlattices and these QDs/NPs can be electronically coupled for the efficient energy transfer; The controlled assembly of catalytic peptides mimicking the catalytic pocket of enzymes can catalyze chemical reactions with high selectivity; and, For the bacteria-mimicking swimmer fabrication, peptide-MOF superlattices can power translational and propellant motions by the reconfiguration of peptide assembly at the MOF-liquid interface.

  13. RESEARCH OF GUIDANCE TECHNOLOGY FOR ASSEMBLY MODELING IN VIRTUAL ENVIRONMENT

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Technology of movement and knowledge guidance in virtual assembly is presented. The designer can move the mechanical part precisely under the movement guidance. The movement guidance is implemented based on constraint recognition and assembly degree of freedom analysis. A multi-hierarchy knowledge base is built to represent the assembly knowledge and information. The virtual assembly system judges the requirement of the designer based on the context of design task and searches for the useful knowledge and information, which can be provided to the designer in a natural way.

  14. Self-assembled containers based on extended tetrathiafulvalene.

    Science.gov (United States)

    Bivaud, Sébastien; Goeb, Sébastien; Croué, Vincent; Dron, Paul I; Allain, Magali; Sallé, Marc

    2013-07-10

    Two original self-assembled containers constituted each by six electroactive subunits are described. They are synthesized from a concave tetratopic π-extended tetrathiafulvalene ligand bearing four pyridyl units and cis-M(dppf)(OTf)2 (M = Pd or Pt; dppf = 1,1'-bis(diphenylphosphino)ferrocene; OTf = trifluoromethane-sulfonate) complexes. Both fully characterized assemblies present an oblate spheroidal cavity that can incorporate one perylene molecule. PMID:23795694

  15. Hypoxic regulation of the NKG2D ligand, H60

    OpenAIRE

    Krishnamurthy, Siddharth Ravindran

    2009-01-01

    Hypoxia in the context of cancer has been well studied as it has been shown that tumors that are in hypoxic conditions tend to become malignant or metastatic. There is evidence that hypoxia is able to modulate tumor immunogenicity, however this phenomenon has not been well characterized. Here, we look at the effects of hypoxia on tumor immunogenicity from the perspective of NK cell recognition. We find that hypoxia decreases the expression of the NKG2D ligand, H60 post-transcriptionally but n...

  16. GAP: A computer program for gene assembly

    Energy Technology Data Exchange (ETDEWEB)

    Eisnstein, J.R.; Uberbacher, E.C.; Guan, X.; Mural, R.J.; Mann, R.C.

    1991-09-01

    A computer program, GAP (Gene Assembly Program), has been written to assemble and score hypothetical genes, given a DNA sequence containing the gene, and the outputs of several other programs which analyze the sequence. These programs include the codign-recognition and splice-junction-recognition modules developed in this laboratory. GAP is a prototype of a planned system in which it will be integrated with an expert system and rule base. Initial tests of GAP have been carried out with four sequences, the exons of which have been determined by biochemcial methods. The highest-scoring hypothetical genes for each of the four sequences had percent correct splice junctions ranging from 50 to 100% (average 81%) and percent correct bases ranging from 92 to 100% (average 96%). 9 refs., 1 tab.

  17. Tailoring self-assembled monolayers at the electrochemical interface

    Indian Academy of Sciences (India)

    S Varatharajan; Sheela Berchmans; V Yegnaraman

    2009-09-01

    The main focus of this review is to illustrate the amenability of self-assembled monolayers (SAMs) for functionalisation with different receptors, catalytic materials, biomolecules, enzymes, antigen-antibody, etc for various applications. The review discusses initially about the preparation and characterization of SAMs and tailoring of SAMs by incorporation of suitable recognition elements. A description of how the molecular recognition is achieved through forces like electrostatic, covalent and host-guest interactions is included in the review.

  18. Released ligand fluoroimmunoassay

    International Nuclear Information System (INIS)

    Radioimmunoassay (RIA) is one of the most sensitive and specific methods for analysis of proteins, drugs and other substances commonly found in biological fluids. Because of the limited stability and problems in handling radioisotopes (particularly 125I), there has been a continuous effort in recent years to develop non-isotopic immunoassays. Fluoroimmunoassay is one of the more promising alternatives to RIA, but has relatively low sensitivity due to background fluorescence from other substances in biological fluids. The authors have proposed an alternative type of fluoroimmunoassay, released ligand fluoroimmunoassay (RLFIA), wherein the fluorophore is released from the analyte and analyzed separately, thus reducing the problems of background fluorescence. 1-(4-(3-(2,3-dihydroxy-1-carboxyethyl))-phenyl)-3-(3-(7-diethylamino-4-methylcoumarinyl)) thiourea (IX), a fluorescent coumarin derivative with a periodate cleavable vic-glycol linkage, was synthesized and employed to demonstrate the principle of RLFIA. The principle of the RLFIA was tested by comparison with a commercially available kit Immuno-Fluor IgG Assay. Because of the lower quantum yield of the fluorophore used, the sensitivity of the resulting RLFIA was only one tenth that of the commercial kit. As an outgrowth of this project, a series of analogs of compound IX, having electron donating and withdrawing groups at the phenyl ring, were synthesized in order to study the effect of substituent on fluorescence yield. An interactive computer graphics system, Chemical Structure Drawing 2-Dimensional (CSD2D), developed by the author mainly for the generation of publication quality structure drawings is also described

  19. Fuel assembly

    International Nuclear Information System (INIS)

    Since the neutron flux distribution and the power distribution of a fuel assembly in which short fuel rods vary greatly in the vicinity of a boundary where the distribution of uranium amount is different, the reading value of local power range monitors, having the detectors positioned in the vicinity of the boundary is varied. Then in the present invention, the upper end of the effective axial length of fuel rod is so made as not approaching with the detection position of the local power range monitor in a reactor core. Further, the upper end of the effective axial length of fuel rods in a 4 x 4 fuel rod lattice positioned at the corner on the side of the local power range monitor is so made as not approaching the detection position of the local power range monitor. As a result, the change of the neutron flux distribution and power distribution in the vicinity of the position where the detector of the local power range monitor is situated can be extremely reduced. Accordingly, there is no scattering and fluctuation for the reading value by the local power range monitor, to improve the monitoring performance for thermal characteristics in the reactor core. (N.H.)

  20. Fuel assembly

    International Nuclear Information System (INIS)

    Purpose: To reconstruct a BWR type reactor into a high conversion reactor with no substantial changes for the reactor inner structure such as control rod structure. Constitution: The horizontal cross sectional shape of a channel box is reformed into a square configuration and the arrangement of fuel rods is formed as a trigonal lattice-like configuration. As a method of improving the conversion ratio, there is considered to use a dense lattice by narrowing the distance between fuel rods and trigonal lattice arrangement for fuel rod is advantageous therefor. A square shape cross sectional configuration having equal length both in the lateral and longitudinal directions is suitable for the channel box as a guide upon movement of the control rod. Fuel rods can be arranged with no loss by the trigonal lattice configuration, by which it is possible to improve the neutron moderation, increase the reactor core reactivity and conduct effective fuel combustion. In this way, it is possible to attain the object by inserting the follower portion of the control rod at the earier half and extracting the same at the latter half during the operation period in the reactor core comprising fuel assemblies suitable to a high conversion BWR type reactor having average conversion ratio of about 0.8. (Kamimura, M.)

  1. Fuel assembly

    International Nuclear Information System (INIS)

    Fuel rods are arranged in a lattice-like structure by way of a plurality of spacers and the lower ends thereof are fixed to a lower tie plate for assembling a fuel rod bundle. The outer circumference is surrounded by a basket having a plurality of openings and the basket is surrounded by a channel box. The basket is connected to a handle at the upper end and to a lower tie plate at the lower end and, further, defined with a scraper at each of openings. Coolants flown from the lower tie plate to the channel box flow the channels between the channel box and the basket and a fuel rod bundle, uprise while forming a two-phase flow and flow out from the upper end of the channel box. Since no upper tie plate is present, pressure loss of coolants flow is reduced, and liquid membranes of coolants are peeled off by the scraper disposed at the opening of the basket, which contributes to the improvement of the limit power. In addition, fuel rods are inspected and cleaned easily. (N.H.)

  2. Fuel assembly

    International Nuclear Information System (INIS)

    The object of the present invention is to improve the hydrodynamic stability in the fuel channels of BWR type reactors and effectively utilize the coolant driving power corresponding to the reduction due to pressure loss. That is, in a fuel assembly having usual fuel rods and, in addition, water rods and short fuel rods, the structures of water rods, upper tie plates and the spacers are designed from a hydrodynamic point of view, to reduce the pressure loss. On the other hand, a lattice-like flow channel resistance member is disposed to a lower tie plate. The bundle flow rate is made uniform by the flow channel resistance member, and the pressure loss of the tie plate is increased by the reduction of the pressure loss by the arrangement of the short fuel rod and the reduction of the pressure loss described above. Since this increases the ratio of the single phase stream pressure loss in the total reactor core pressure loss, the hydrodynamic stability in the fuel channel is improved. (I.J.)

  3. Nutraceuticals as Ligands of PPARγ

    OpenAIRE

    Meera Penumetcha; Nalini Santanam

    2012-01-01

    Peroxisome proliferator-activated receptors (PPARs) are ligand-activated nuclear receptors that respond to several exogenous and endogenous ligands by modulating genes related to lipid, glucose, and insulin homeostasis. PPARγ, expressed in adipose tissue and liver, regulates lipid storage and glucose metabolism and is the target of type 2 diabetes drugs, thiazolidinediones (TZDs). Due to high levels of toxicity associated with the first generation TZDs, troglitazone (Rezulin), rosiglitazone (...

  4. Validity of Ligand Efficiency Metrics

    OpenAIRE

    Murray, Christopher W; Erlanson, Daniel A.; Hopkins, Andrew L.; Keserü, György M; Leeson, Paul D.; Rees, David C.; Reynolds, Charles H.; Richmond, Nicola J.

    2014-01-01

    A recent viewpoint article (Improving the plausibility of success with inefficient metrics. ACS Med. Chem. Lett.2014, 5, 2–5) argued that the standard definition of ligand efficiency (LE) is mathematically invalid. In this viewpoint, we address this criticism and show categorically that the definition of LE is mathematically valid. LE and other metrics such as lipophilic ligand efficiency (LLE) can be useful during the multiparameter optimization challenge faced by med...

  5. Nuclear reactor fuel assembly

    International Nuclear Information System (INIS)

    A fuel assembly construction for liquid metal cooled fast breeder reactors is described in which the sub-assemblies carry a smaller proportion of parasitic material than do conventional sub-assemblies. (U.K.)

  6. Ligand Identification Scoring Algorithm (LISA)

    Science.gov (United States)

    Zheng, Zheng; Merz, Kenneth M.

    2011-01-01

    A central problem in de novo drug design is determining the binding affinity of a ligand with a receptor. A new scoring algorithm is presented that estimates the binding affinity of a protein-ligand complex given a three-dimensional structure. The method, LISA (Ligand Identification Scoring Algorithm), uses an empirical scoring function to describe the binding free energy. Interaction terms have been designed to account for van der Waals (VDW) contacts, hydrogen bonding, desolvation effects and metal chelation to model the dissociation equilibrium constants using a linear model. Atom types have been introduced to differentiate the parameters for VDW, H-bonding interactions and metal chelation between different atom pairs. A training set of 492 protein-ligand complexes was selected for the fitting process. Different test sets have been examined to evaluate its ability to predict experimentally measured binding affinities. By comparing with other well known scoring functions, the results show that LISA has advantages over many existing scoring functions in simulating protein-ligand binding affinity, especially metalloprotein-ligand binding affinity. Artificial Neural Network (ANN) was also used in order to demonstrate that the energy terms in LISA are well designed and do not require extra cross terms. PMID:21561101

  7. Contrasting roles for TLR ligands in HIV-1 pathogenesis.

    Directory of Open Access Journals (Sweden)

    Beda Brichacek

    Full Text Available The first line of a host's response to various pathogens is triggered by their engagement of cellular pattern recognition receptors (PRRs. Binding of microbial ligands to these receptors leads to the induction of a variety of cellular factors that alter intracellular and extracellular environment and interfere directly or indirectly with the life cycle of the triggering pathogen. Such changes may also affect any coinfecting microbe. Using ligands to Toll-like receptors (TLRs 5 and 9, we examined their effect on human immunodeficiency virus (HIV-1 replication in lymphoid tissue ex vivo. We found marked differences in the outcomes of such treatment. While flagellin (TLR5 agonist treatment enhanced replication of CC chemokine receptor 5 (CCR 5-tropic and CXC chemokine receptor 4 (CXCR4-tropic HIV-1, treatment with oligodeoxynucleotide (ODN M362 (TLR9 agonist suppressed both viral variants. The differential effects of these TLR ligands on HIV-1 replication correlated with changes in production of CC chemokines CCL3, CCL4, CCL5, and of CXC chemokines CXCL10, and CXCL12 in the ligand-treated HIV-1-infected tissues. The nature and/or magnitude of these changes were dependent on the ligand as well as on the HIV-1 viral strain. Moreover, the tested ligands differed in their ability to induce cellular activation as evaluated by the expression of the cluster of differentiation markers (CD 25, CD38, CD39, CD69, CD154, and human leukocyte antigen D related (HLA-DR as well as of a cell proliferation marker, Ki67, and of CCR5. No significant effect of the ligand treatment was observed on apoptosis and cell death/loss in the treated lymphoid tissue ex vivo. Our results suggest that binding of microbial ligands to TLRs is one of the mechanisms that mediate interactions between coinfected microbes and HIV-1 in human tissues. Thus, the engagement of appropriate TLRs by microbial molecules or their mimetic might become a new strategy for HIV therapy or prevention.

  8. Probabilistic Open Set Recognition

    Science.gov (United States)

    Jain, Lalit Prithviraj

    Real-world tasks in computer vision, pattern recognition and machine learning often touch upon the open set recognition problem: multi-class recognition with incomplete knowledge of the world and many unknown inputs. An obvious way to approach such problems is to develop a recognition system that thresholds probabilities to reject unknown classes. Traditional rejection techniques are not about the unknown; they are about the uncertain boundary and rejection around that boundary. Thus traditional techniques only represent the "known unknowns". However, a proper open set recognition algorithm is needed to reduce the risk from the "unknown unknowns". This dissertation examines this concept and finds existing probabilistic multi-class recognition approaches are ineffective for true open set recognition. We hypothesize the cause is due to weak adhoc assumptions combined with closed-world assumptions made by existing calibration techniques. Intuitively, if we could accurately model just the positive data for any known class without overfitting, we could reject the large set of unknown classes even under this assumption of incomplete class knowledge. For this, we formulate the problem as one of modeling positive training data by invoking statistical extreme value theory (EVT) near the decision boundary of positive data with respect to negative data. We provide a new algorithm called the PI-SVM for estimating the unnormalized posterior probability of class inclusion. This dissertation also introduces a new open set recognition model called Compact Abating Probability (CAP), where the probability of class membership decreases in value (abates) as points move from known data toward open space. We show that CAP models improve open set recognition for multiple algorithms. Leveraging the CAP formulation, we go on to describe the novel Weibull-calibrated SVM (W-SVM) algorithm, which combines the useful properties of statistical EVT for score calibration with one-class and binary

  9. Twigged streptavidin polymer as a scaffold for protein assembly.

    Science.gov (United States)

    Matsumoto, Takuya; Isogawa, Yuki; Minamihata, Kosuke; Tanaka, Tsutomu; Kondo, Akihiko

    2016-05-10

    Protein assemblies are an emerging tool that is finding many biological and bioengineering applications. We here propose a method for the site-specific assembly of proteins on a twigged streptavidin (SA) polymer using streptavidin as a functional scaffold. SA was genetically appended with a G tag (sortase A recognition sequence) and a Y tag (HRP recognition sequence) on its N- and C-termini, respectively, to provide G-SA-Y. G-SA-Y was polymerized using HPR-mediated tyrosine coupling, then fluorescent proteins were immobilized on the polymer by biotin-SA affinity and sortase A-mediated ligation. Fluorescence measurements showed that the proteins were immobilized in close proximity to each other. Hydrolyzing enzymes were also functionally assembled on the G-SA-Y polymer. The site-specific assembly of proteins on twigged SA polymer may find new applications in various biological and bioengineering fields. PMID:27002233

  10. Touchless palmprint recognition systems

    CERN Document Server

    Genovese, Angelo; Scotti, Fabio

    2014-01-01

    This book examines the context, motivation and current status of biometric systems based on the palmprint, with a specific focus on touchless and less-constrained systems. It covers new technologies in this rapidly evolving field and is one of the first comprehensive books on palmprint recognition systems.It discusses the research literature and the most relevant industrial applications of palmprint biometrics, including the low-cost solutions based on webcams. The steps of biometric recognition are described in detail, including acquisition setups, algorithms, and evaluation procedures. Const

  11. Coordination chemistry of lanthanides(III) ions with oxygen nitrogen tripodal ligands

    International Nuclear Information System (INIS)

    This work aims at demonstrating the great potentialities of flexible tripodal ligands in various fields of applications of the coordination chemistry of lanthanide(III) ions. The coordination properties of different tripodal ligands with Ln(III) ions are reported. The ligand trenphen acts as a nona-dentate ligand for the Ln(III) ions independently to the ion size. The solid-state crystal structure and the rigid solution structure of the isostructural [Ln(trenphen)](OTt)3 complexes have been determined. Solvent extraction studies of lanthanides(III) and actinides(III) shows that the ligand trenphen is a selective complexant of actinides(III), thus confirming the interest of tripodal ligand containing soft nitrogen atoms for the selective extraction of actinides(III). The high number of coordination sites and the likely presence of interstrand interactions in the potentially dodeca-dentate ligand trenterpy prevent the formation of mononuclear complexes. In presence of lanthanum triflate, this ligand leads to the self-assembly of a discrete trinuclear complex. The use of tripodal ligands is a possible way to generate polynuclear arrays. We also report the synthesis and the structural properties of the Ln(III) complexes of the hepta-dentate ligand tpaa. Three types of crystal structures have been found for these complexes along the series which differ in their nuclearity and in the coordination number of the metal (10, 9 and 8). This flexible podate leads to a Gd complex with a relaxivity remarkably higher than those of the currently used contrast agents for MRI based on complexes of octa-dentate ligands. A shorter water proton-Gd(III) bond distance associated with a probable water coordination equilibrium appear to be at the origin of the high relaxivity of the Gd complex. This complex also displays a fast exchange rate of the coordinated water. Renee, the use of carefully tailored podates could prove to be a very efficient way to achieve optimized relaxivity

  12. Synthesis, characterization and self-assembly of Co3+ complexes appended with phenol and catechol groups

    Indian Academy of Sciences (India)

    Afsar Ali; Deepak Bansal; Rajeev Gupt

    2014-09-01

    This work presents the syntheses, characterization and hydrogen bonding based self-assembly of Co3+ complexes of pyridine-amide based bidentate ligands containing appended phenol and catechol groups. Placement of multiple hydrogen bond donors (phenolic OH and amidic NH groups) and acceptors (Oamide groups) in these molecules results in interesting self-assembled architectures.

  13. Construction of Supramolecular Architectures via Self-assembly

    Institute of Scientific and Technical Information of China (English)

    Takeharu; Haino

    2007-01-01

    1 Results In this paper we report supramolecular polymeric nano networks formed by the molecular-recognition-directed self-assembly between a calix[5]arene and C60[1]. Covalently-linked double-calix[5]arenes take up C60 into their cavities[2]. This complementary interaction creates a strong non-covalent bonding; thus,the iterative self-assembly between dumbbell fullerene 1 and ditopic host 2 can produce the supramolecular polymer networks (See Fig.1).

  14. Characterization and utilization of self-assembled diphenylalanine nanotubes

    OpenAIRE

    Xu, Kairuo

    2011-01-01

    Diphenylalanine (FF) peptide is the core-recognition motif of β-amyloid polypeptide, a peptide associated with diseases such as Alzheimer’s and which is known to be capable of self-assembly. FF has attracted interest in nanotechnology due to the physical and chemical stability and mechanical rigidity of the self-assembled nanotube form of the peptide. A number of promising applications of FF nanotubes have previously been explored. To extend this work to biomedical and pharmaceutical areas, a...

  15. An Improved Method of Geometric Hashing Pattern Recognition

    OpenAIRE

    Ling Ma; Yumin Liu; Huiqin Jiang; Zhongyong Wang; Haofei Zhou

    2011-01-01

    Geometric hashing (GH) is a general model-based recognition scheme. GH is widely used in the industrial products assembly and inspection tasks. The aim of this study is to speed up the geometric hashing pattern recognition method for the purpose of real-time object detection applications. In our method, a pattern is decomposed into some sub-patterns to reduce the data number in hash table bins. In addition, the sub-patterns are recorded in a plurality of hash tables. Finally we improve the re...

  16. Immunotoxins, ligand-toxin conjugates and molecular targeting.

    Science.gov (United States)

    Soria, M

    1989-01-01

    Biotechnology provides tools for therapeutic exploitation following advances in the elucidation of protein-to-cell and cell-to-cell interactions. Molecular targeting of bacterial and plant toxins to the desired district of action can be achieved through effector molecules like monoclonal antibodies or protein ligands. Biochemical conjugation of these effectors to SO-6, a single-chain Ribosome Inactivating Protein from Saponaria officinalis, yielded powerful cytotoxic agents that are attractive candidates for therapeutic evaluation. Cloning of the gene for this plant toxin has been achieved. Technologies for expression of protein ligands, such as apolipoproteins or several growth factors, are available in recombinant microorganisms, providing adequate partners for the assembly of targeted chimaeras. Domain engineering of structural and functional regions in effector proteins is now possible and will be carried out with the available technologies to improve existing therapy. PMID:2698471

  17. Ficolins and FIBCD1: Soluble and membrane bound pattern recognition molecules with acetyl group selectivity

    DEFF Research Database (Denmark)

    Thomsen, Theresa; Schlosser, Anders; Holmskov, Uffe;

    2011-01-01

    A network of molecules, which recognizes pathogens, work together to establish a quick and efficient immune response to infectious agents. Molecules containing a fibrinogen related domain in invertebrates and vertebrates have been implicated in immune responses against pathogens, and characterized......D-containing molecules, and discusses structural resemblance but also diversity in recognition of acetylated ligands....

  18. Assembly of a Cyclic Dimer Silver(I) Complex Encapsulating Two BF4 - Ions

    International Nuclear Information System (INIS)

    Unusual twenty-membered cyclic dimer encapsulating two BF4- anions was obtained by the self-assembly of the tridentate N2S donor ligand and silver ion. We are currently investigating the subtle factors influencing the formation of discrete or continuous complexes using dipicolyl sulfide derivatives including. It is a challenging work to capture ionic species or small molecules as guests. Thus, the construction of self-assembled cyclic oligomer complexes composed of metal centres connected by acyclic organic ligands has been a subject of great interest together with the inclusion phenomena of macrocyclic ligands in the supramolecular chemistry. The majority of the organic-inorgaic hybrid macrocyclic structures reported so far have been based on bis-monodentate ligands such as 4,4'-bipyridine and its derivatives interconnected by rigid or flexible spacers. The same type of ligands has been also used for the formation of coordination network

  19. Wavelets and Face Recognition

    OpenAIRE

    Dai, Dao-Qing; Yan, Hong

    2007-01-01

    Wavelets have been successfully used in image processing. Their ability to capture localized spatial-frequency information of image motivates their use for feature extraction. We give an overview of using wavelets in the face recognition technology. Due to limit of space the use of Gabor wavelets is not covered in this survey. Interested readers are referred to section 8.3 for references.

  20. Recognition of fractal graphs

    NARCIS (Netherlands)

    Perepelitsa, VA; Sergienko, [No Value; Kochkarov, AM

    1999-01-01

    Definitions of prefractal and fractal graphs are introduced, and they are used to formulate mathematical models in different fields of knowledge. The topicality of fractal-graph recognition from the point of view, of fundamental improvement in the efficiency of the solution of algorithmic problems i

  1. FINGERPRINT RECOGNITION SYSTEM DESIGN

    OpenAIRE

    SONMEZ, Öznur Sinem; OZTAS, Oguzhan

    2010-01-01

    In this study, a minutiae-based fingerprint recognition system is implemented which includes normalization, enhancement, thinning, extraction of minutiae, elimination of false minutiae, orientation estimation, core point detection, finding reference points and matching processes. Accordingly, the effects of enhancement and elimination of false minutiae processes, methods of reference point determination and low quality fingerprint images on system performance are analyzed using two different ...

  2. Multi-tasking Schiff base ligand: a new concept of AuNPs synthesis.

    Science.gov (United States)

    Abad, Jose Maria; Bravo, Iria; Pariente, Felix; Lorenzo, Encarnación

    2016-03-01

    Multi-tasking 3,4-dihydroxysalophen Schiff base tetradentate ligand (3,4-DHS) as reductant, stabilizer, and catalyst in a new concept of gold nanoparticles (AuNPs) synthesis is demonstrated. 3,4-DHS is able to reduce HAuCl4 in water, acting also as capping agent for the generation of stable colloidal suspensions of Schiff base ligand-AuNPs assemblies of controlled size by providing a robust coating to AuNPs, within a unique reaction step. Once deposited on carbon electrodes, 3,4-DHS-AuNPs assemblies show a potent electrocatalytic effect towards hydrazine oxidation and hydrogen peroxide oxidation/reduction. Graphical Abstract Multi-tasking 3,4-dihydroxysalophen Schiff base tetradentate ligand (3,4-DHS) as reductant, stabilizer, and catalyst. PMID:26922338

  3. Visualization of Metal-to-Ligand and Ligand-to-Ligand Charge Transfer in Metal-Ligand Complexes

    Institute of Scientific and Technical Information of China (English)

    Yong Ding; Jian-xiu Guo; Xiang-si Wang; Sha-sha Liu; Feng-cai Ma

    2009-01-01

    Three methods including the atomic resolved density of state, charge difference density, and the transition density matrix are used to visualize metal to ligand charge transfer (MLCT) in ruthenium(Ⅱ) ammine complex. The atomic resolved density of state shows that there is density of Ru on the HOMOs. All the density is localized on the ammine, which reveals that the excited electrons in the Ru complex are delocalized over the ammine ligand. The charge difference density shows that all the holes are localized on the Ru and the electrons on the ammine. The localization explains the MLCT on excitation. The transition density matrix shows that there is electron-hole coherence between Ru and ammine. These methods are also used to examine the MLCT in Os(bpy)(p0p)Cl ("Osp0p"; bpy=2,2'-bipyridyl; p0p=4,4'-bipyridyl) and the ligand-to-ligand charge transfer (LLCT) in Alq3. The calculated results show that these methods are powerful to examine MLCT and LLCT in the metal-ligand system.

  4. Atomic interactions of neonicotinoid agonists with AChBP: Molecular recognition of the distinctive electronegative pharmacophore

    OpenAIRE

    Talley, Todd T.; Harel, Michal; Hibbs, Ryan E.; Radić, Zoran; Tomizawa, Motohiro; Casida, John E.; Taylor, Palmer

    2008-01-01

    Acetylcholine-binding proteins (AChBPs) from mollusks are suitable structural and functional surrogates of the nicotinic acetylcholine receptors when combined with transmembrane spans of the nicotinic receptor. These proteins assemble as a pentamer with identical ACh binding sites at the subunit interfaces and show ligand specificities resembling those of the nicotinic receptor for agonists and antagonists. A subset of ligands, termed the neonicotinoids, exhibit specificity for insect nicotin...

  5. Autonomy and Recognition

    Directory of Open Access Journals (Sweden)

    Miguel Giusti

    2007-04-01

    Full Text Available Resumen:El presente ensayo contiene dos partes. En la primera se hace una breve descripción de las carencias de la reflexión moral a las que parece venir al encuentro el concepto de reconocimiento. Charles Taylor y Axel Honneth, protagonistas en estos debates, dan buenas razones para dirigir la discusión hacia el tema del reconocimiento, pero no coinciden ni en su definición, ni en el modo de recuperar la tesis de Hegel, ni tampoco en la forma de tratar la relación entre autonomía y reconocimiento. En la segunda parte se analiza la concepción propiamente hegeliana, con la intención de destacar el nexo esencial, no la ruptura, que existe entre la noción de reconocimiento y el modelo conceptual de la voluntad libre o del espíritu. Abstract:This essay is divided into two parts. The first one is a short description of the deficiencies of moral reflection, which seem to lead the discussion towards the concept of recognition. Charles Taylor and Axel Honneth, two of the protagonists of these debates, give very good reasons for turning the argument towards the issue of recognition, but they do not agree on its definition, on the way to recover the Hegelian thesis, or on how to approach the relationship between autonomy and recognition. The second part constitutes an analysis of the Hegelian conception of recognition, in order to highlight the essential link –rather than the rupture– between the notion of recognition and the conceptual model of free will or spirit.

  6. Galeotti on recognition as inclusion

    DEFF Research Database (Denmark)

    Lægaard, Sune

    2008-01-01

    Anna Elisabetta Galeotti's theory of 'toleration as recognition' has been criticised by Peter Jones for being conceptually incoherent, since liberal toleration presupposes a negative attitude to differences, whereas multicultural recognition requires positive affirmation hereof. The paper spells...

  7. A facile strategy to prepare monodisperse nanocrystals with initiative assembly into superlattice

    Institute of Scientific and Technical Information of China (English)

    Qian Zhao; Jiatao Zhang; Hesun Zhu

    2013-01-01

    A facile green strategy, low temperature in-situ chemical conversion, is reported to prepare nanocrystals with initiative “bottom-up” assembly into large-scale superlattice. The appropriate organic chalcogen precursors were chosen to control the kinetics of these reactions to keep monodisperse morphology. They also provide the capping ligands to acquire van der Waals interactions between ligands and dipole moment to self-assemble into large-scale superlattice. This strategy could flexibly modulate the composition of semiconductor nanostructures, such as cations, anions and even the heterostructures with metal nanoparticles. This bottom-up assembly behavior is necessary for the development of optoelectronic devices of II-VI semiconductor nanocrystals.

  8. Structure-Based Evolution of Subtype-Selective Neurotensin Receptor Ligands

    OpenAIRE

    Schaab, Carolin; Kling, Ralf Christian; Einsiedel, Jürgen; Hübner, Harald; Clark, Tim; Seebach, Dieter; Gmeiner, Peter

    2014-01-01

    Subtype-selective agonists of the neurotensin receptor NTS2 represent a promising option for the treatment of neuropathic pain, as NTS2 is involved in the mediation of μ-opioid-independent anti-nociceptive effects. Based on the crystal structure of the subtype NTS1 and previous structure–activity relationships (SARs) indicating a potential role for the sub-pocket around Tyr11 of NT(8–13) in subtype-specific ligand recognition, we have developed new NTS2-selective ligands. Starting from NT(8–1...

  9. A Vitamin D Receptor Selectively Activated by Gemini Analogs Reveals Ligand Dependent and Independent Effects

    OpenAIRE

    Tiphaine Huet; Gilles Laverny; Fabrice Ciesielski; Ferdinand Molnár; Thanuja Gali Ramamoorthy; Anna Y. Belorusova; Pierre Antony; Noelle Potier; Daniel Metzger; Dino Moras; Natacha Rochel

    2015-01-01

    The bioactive form of vitamin D [1,25(OH)2D3] regulates mineral and bone homeostasis and exerts potent anti-inflammatory and antiproliferative properties through binding to the vitamin D receptor (VDR). The 3D structures of the VDR ligand-binding domain with 1,25(OH)2D3 or gemini analogs unveiled the molecular mechanism underlying ligand recognition. On the basis of structure-function correlations, we generated a point-mutated VDR (VDRgem) that is unresponsive to 1,25(OH)2D3, but the activity...

  10. RECOGNITION AND ASSESSMENT IN ACCOUNTANCY

    Directory of Open Access Journals (Sweden)

    DIMA FLORIN CONSTANTIN

    2012-11-01

    Full Text Available The recognition and assessment of the component elements of the annual financial statements’ structures is crucial in order that the information released by them fulfils the qualitative characteristics and the reflected image is a “true and fair view”. Therefore, our approach takes into consideration the recognition and assessment methods for the component elements of the financial statements’ structures, as well as certain possible risks arising from the erroneous recognition or non-recognition of some of these elements.

  11. Why mercury prefers soft ligands

    Energy Technology Data Exchange (ETDEWEB)

    Riccardi, Demian M [ORNL; Guo, Hao-Bo [ORNL; Gu, Baohua [ORNL; Parks, Jerry M [ORNL; Summers, Anne [University of Georgia, Athens, GA; Miller, S [University of California, San Francisco; Liang, Liyuan [ORNL; Smith, Jeremy C [ORNL

    2013-01-01

    Mercury (Hg) is a major global pollutant arising from both natural and anthropogenic sources. Defining the factors that determine the relative affinities of different ligands for the mercuric ion, Hg2+, is critical to understanding its speciation, transformation, and bioaccumulation in the environment. Here, we use quantum chemistry to dissect the relative binding free energies for a series of inorganic anion complexes of Hg2+. Comparison of Hg2+ ligand interactions in the gaseous and aqueous phases shows that differences in interactions with a few, local water molecules led to a clear periodic trend within the chalcogenide and halide groups and resulted in the well-known experimentally observed preference of Hg2+ for soft ligands such as thiols. Our approach establishes a basis for understanding Hg speciation in the biosphere.

  12. Molecular insight in the purification of immunoglobulin by pseudobiospecific ligand l-histidine and histidyl moieties in histidine ligand affinity chromatography (HLAC) by molecular docking.

    Science.gov (United States)

    Savane, Tushar S; Kumar, Sanjit; Janakiraman, Vignesh Narasimhan; Kamalanathan, Agamudi S; Vijayalakshmi, Mookambeswaran A

    2016-05-15

    Pseudobiospecific ligand l-histidine is an inexpensive, highly stable, non-toxic ligand explored successfully over the last twenty years for the purification of immunoglobulins in immobilised histidine ligand affinity chromatography. It is of great interest to know the molecular recognition sites of IgG to immobilized l-histidine. Here, we have used an in silico approach to explore the molecular recognition of l-histidine by IgG. We have assessed the feasible binding modes of histidine and its moieties at different sites of IgG and considered only those binding conformations which are exhibited via the imidazole ring NH group or any other OH donating group apart from the ones which are terminally conjugated with the support matrix. We categorised binding site into two categories; category I: inner binding groove and category II: surface binding groove and observed that the hinge region of IgG has most favourable binding pocket for l-histidine and histidyl moieties. Ser and Tyr residues on the hinge region make several significant interactions with l-histidine and histidyl moieties. In case of Fc region of IgG, l-histidine and histidyl moieties closely resemble the binding modes of Protein A, biomimetic ligand 22/8 and B domain of SpA to IgG. In addition to these we have also observed a significant binding site for l-histidine and histidyl moieties at Fab region of IgG. PMID:26476866

  13. Novel bispidine ligands with a possible application in nuclear medicine

    International Nuclear Information System (INIS)

    Due to our current way of life and the environmental influences we are exposed in the industrial nations, cancer diseases turn out to be a more and more serious threat to our civilization. The ongoing research during the last decades leads to a better insight in cancer diseases and enables an earlier recognition of developing carcinoma. The detection of pathological tissue changes at an early stage increases the patients' chances of cure. Magnetic resonance tomography (MRT) and computed tomography (CT) as well as radiopharmaceutically assisted imaging techniques, like positron emission tomography (PET) and scintigraphy are an indispensable clinical tool in the oncological early diagnosis. By the development of multimodality imaging agents that combine the benefits of several imaging techniques, the early recognition of tumors can be more efficient and in consequence a matching therapy can be applied. This thesis deals with the synthesis of novel bispidine based ligands and their transition metal complexes as potential mono- and bimodal imaging agents for a 64Cu-assisted radiopharmaceutical application in positron emission tomography (PET) and optical imaging (OI). The synthesized ligands L and LOH are offering the opportunity to build up a ruthenium(II) polypyridine complex by one of the ligand's donor sets, to act as a fluorescence dye for optical imaging (OI), and to coordinate 64CuII by the ligand's vacant cavity for positron emission tomography (PET). The RuII complex exhibits two different fluorescence activities with two different lifetimes and only one of the two fluorescences is quenched by subsequent complexation of CuII. The calculated CuII stability constant of L and LOH is similar to that of the isomeric ligand N2py2 which has been already evaluated as a 64Cu-radiotracer. Further transition metal complexes of FeII, FeIII and MnII are dealing with interesting structural properties like pentagonal bipyramidal geometries. For the development of stable and

  14. Newnes electronics assembly handbook

    CERN Document Server

    Brindley, Keith

    2013-01-01

    Newnes Electronics Assembly Handbook: Techniques, Standards and Quality Assurance focuses on the aspects of electronic assembling. The handbook first looks at the printed circuit board (PCB). Base materials, basic mechanical properties, cleaning of assemblies, design, and PCB manufacturing processes are then explained. The text also discusses surface mounted assemblies and packaging of electromechanical assemblies, as well as the soldering process. Requirements for the soldering process; solderability and protective coatings; cleaning of PCBs; and mass solder/component reflow soldering are des

  15. Inlet nozzle assembly

    Science.gov (United States)

    Christiansen, David W.; Karnesky, Richard A.; Precechtel, Donald R.; Smith, Bob G.; Knight, Ronald C.

    1987-01-01

    An inlet nozzle assembly for directing coolant into the duct tube of a fuel assembly attached thereto. The nozzle assembly includes a shell for housing separable components including an orifice plate assembly, a neutron shield block, a neutron shield plug, and a diffuser block. The orifice plate assembly includes a plurality of stacked plates of differently configurated and sized openings for directing coolant therethrough in a predesigned flow pattern.

  16. Forensic Face Recognition: A Survey

    NARCIS (Netherlands)

    Ali, Tauseef; Spreeuwers, Luuk; Veldhuis, Raymond; Quaglia, Adamo; Epifano, Calogera M.

    2012-01-01

    The improvements of automatic face recognition during the last 2 decades have disclosed new applications like border control and camera surveillance. A new application field is forensic face recognition. Traditionally, face recognition by human experts has been used in forensics, but now there is a

  17. 3D modelling and recognition

    OpenAIRE

    Rodrigues, Marcos; Robinson, Alan; Alboul, Lyuba; Brink, Willie

    2006-01-01

    3D face recognition is an open field. In this paper we present a method for 3D facial recognition based on Principal Components Analysis. The method uses a relatively large number of facial measurements and ratios and yields reliable recognition. We also highlight our approach to sensor development for fast 3D model acquisition and automatic facial feature extraction.

  18. Projective Methods of Image Recognition

    OpenAIRE

    Putyatin, Yevgeniy; Gorohovatsky, Vladimir; Gorohovatsky, Alexey; Peredriy, Elena

    2008-01-01

    We propose a method for image recognition on the base of projections. Radon transform gives an opportunity to map image into space of its projections. Projection properties allow constructing informative features on the base of moments that can be successfully used for invariant recognition. Offered approach gives about 91-97% of correct recognition.

  19. IRIS Based Human Recognition System

    Directory of Open Access Journals (Sweden)

    Mansi Jhamb, Vinod Kumar Khera

    2011-04-01

    Full Text Available The paper explores iris recognition for personal identification and verification. In this paper a newiris recognition technique is proposed using (Scale Invariant Feature Transform SIFT. Imageprocessingalgorithms have been validated on noised real iris image database. The proposedinnovative technique is computationally effective as well as reliable in terms of recognition rates.

  20. Electric-Field-Assisted Assembly of Polymer-Tethered Gold Nanorods in Cylindrical Nanopores.

    Science.gov (United States)

    Wang, Ke; Jin, Seon-Mi; Xu, Jiangping; Liang, Ruijing; Shezad, Khurram; Xue, Zhigang; Xie, Xiaolin; Lee, Eunji; Zhu, Jintao

    2016-05-24

    In this report, we demonstrate the confined assembly of polymer-tethered gold nanorods in anodic aluminum oxide (AAO) channels with the assistance of electric field (EF). Various interesting hybrid assemblies, such as single-, double-, triple-, or quadruple-helix, linear, and hexagonally packed structures are obtained by adjusting pore size in AAO channels, ligand length, and EF orientation. Correspondingly, surface plasmonic property of the assemblies can thus be tuned. This strategy, by coupling of external-field and cylindrically confined assembly, is believed to be a promising approach for generating ordered hybrid assemblies with hierarchical structures, which may find potential applications in photoelectric devices, biosensors, and data storage devices. PMID:27054687

  1. Tilt assembly for tracking solar collector assembly

    Science.gov (United States)

    Almy, Charles; Peurach, John; Sandler, Reuben

    2012-01-24

    A tilt assembly is used with a solar collector assembly of the type comprising a frame, supporting a solar collector, for movement about a tilt axis by pivoting a drive element between first and second orientations. The tilt assembly comprises a drive element coupler connected to the drive element and a driver, the driver comprising a drive frame, a drive arm and a drive arm driver. The drive arm is mounted to the drive frame for pivotal movement about a drive arm axis. Movement on the drive arm mimics movement of the drive element. Drive element couplers can extend in opposite directions from the outer portion of the drive arm, whereby the assembly can be used between adjacent solar collector assemblies in a row of solar collector assemblies.

  2. A proposal for positive cooperation in anion-cation binding in yttrium and lutetium complexes based on o-amino-substituted phenolate ligands. On the way to coordination polymers by self-assembly. Molecular structures of [ClLu(OAr)3Na] (X-ray) and [ClY(OAr')3Y(OAr')3Na] (X-ray and 89Y-NMR)

    NARCIS (Netherlands)

    Koten, G. van; Hogerheide, M.P.; Ringelberg, S.N.; Grove, D.M.; Jastrzebski, J.T.B.H.; Boersma, J.; Smeets, W.J.J.; Spek, A.L.

    1996-01-01

    Unique hetero(poly)metallic complexes [ClM(OAr)3Na] (M = Lu (3a), Y (3b)) and [ClY(OAr')3Y(OAr')3Na] (4) containing the bis (OAr = OC6H2(CH2NMe2)2-2,6-Me-4) and mono (OAr' = OC6H4(CH2NMe2)-2) o-amino-substituted phenolate ligands have been synthesized and characterized by NMR (1H, 13C, and 89Y) and

  3. Covalent Coupling of Nanoparticles with Low-Density Functional Ligands to Surfaces via Click Chemistry

    Directory of Open Access Journals (Sweden)

    Ina Rianasari

    2013-02-01

    Full Text Available We demonstrate the application of the 1,3-dipolar cycloaddition (“click” reaction to couple gold nanoparticles (Au NPs functionalized with low densities of functional ligands. The ligand coverage on the citrate-stabilized Au NPs was adjusted by the ligand:Au surface atom ratio, while maintaining the colloidal stability of the Au NPs in aqueous solution. A procedure was developed to determine the driving forces governing the selectivity and reactivity of citrate-stabilized and ligand-functionalized Au NPs on patterned self-assembled monolayers. We observed selective and remarkably stable chemical bonding of the Au NPs to the complimentarily functionalized substrate areas, even when estimating that only 1–2 chemical bonds are formed between the particles and the substrate.

  4. Explicit all-atom modeling of realistically sized ligand-capped nanocrystals

    KAUST Repository

    Kaushik, Ananth P.

    2012-01-01

    We present a study of an explicit all-atom representation of nanocrystals of experimentally relevant sizes (up to 6 nm), capped with alkyl chain ligands, in vacuum. We employ all-atom molecular dynamics simulation methods in concert with a well-tested intermolecular potential model, MM3 (molecular mechanics 3), for the studies presented here. These studies include determining the preferred conformation of an isolated single nanocrystal (NC), pairs of isolated NCs, and (presaging studies of superlattice arrays) unit cells of NC superlattices. We observe that very small NCs (3 nm) behave differently in a superlattice as compared to larger NCs (6 nm and above) due to the conformations adopted by the capping ligands on the NC surface. Short ligands adopt a uniform distribution of orientational preferences, including some that lie against the face of the nanocrystal. In contrast, longer ligands prefer to interdigitate. We also study the effect of changing ligand length and ligand coverage on the NCs on the preferred ligand configurations. Since explicit all-atom modeling constrains the maximum system size that can be studied, we discuss issues related to coarse-graining the representation of the ligands, including a comparison of two commonly used coarse-grained models. We find that care has to be exercised in the choice of coarse-grained model. The data provided by these realistically sized ligand-capped NCs, determined using explicit all-atom models, should serve as a reference standard for future models of coarse-graining ligands using united atom models, especially for self-assembly processes. © 2012 American Institute of Physics.

  5. Molecular cloning of porcine chemokine CXC motif ligand 2 (CXCL2) and mapping to the SSC8

    Science.gov (United States)

    Maternal recognition of pregnancy is accompanied by inflammatory responses with leukocytosis and increased levels of cytokines and chemokines. Human trophoblast cells secrete chemokine CXC motif ligand 1 (CXCL1)/Gro-a and other chemotactic proteins, while monocytes co-cultured with trophoblast cells...

  6. Toxoplasma gondii peptide ligands open the gate of the HLA class I binding groove

    DEFF Research Database (Denmark)

    McMurtrey, Curtis; Trolle, Thomas; Sansom, Tiffany; Remesh, Soumya G.; Kaever, Thomas; Bardet, Wilfried; Jackson, Kenneth; McLeod, Rima; Sette, Alessandro; Nielsen, Morten; Zajonc, Dirk M.; Blader, Ira J.; Peters, Bjoern; Hildebrand, William

    2016-01-01

    HLA class I presentation of pathogen-derived peptide ligands is essential for CD8+ T cell recognition of Toxoplasma gondii infected cells. Currently, little data exist pertaining to peptides that are presented after T. gondii infection. Herein we purify HLA-A*02:01 complexes from T. gondii infected...

  7. Vehicle License Plate Recognition Syst

    Directory of Open Access Journals (Sweden)

    Meenakshi,R. B. Dubey

    2012-12-01

    Full Text Available The vehicle license plate recognition system has greater efficiency for vehicle monitoring in automatic zone access control. This Plate recognition system will avoid special tags, since all vehicles possess a unique registration number plate. A number of techniques have been used for car plate characters recognition. This system uses neural network character recognition and pattern matching of characters as two character recognition techniques. In this approach multilayer feed-forward back-propagation algorithm is used. The performance of the proposed algorithm has been tested on several car plates and provides very satisfactory results.

  8. Audio-visual gender recognition

    Science.gov (United States)

    Liu, Ming; Xu, Xun; Huang, Thomas S.

    2007-11-01

    Combining different modalities for pattern recognition task is a very promising field. Basically, human always fuse information from different modalities to recognize object and perform inference, etc. Audio-Visual gender recognition is one of the most common task in human social communication. Human can identify the gender by facial appearance, by speech and also by body gait. Indeed, human gender recognition is a multi-modal data acquisition and processing procedure. However, computational multimodal gender recognition has not been extensively investigated in the literature. In this paper, speech and facial image are fused to perform a mutli-modal gender recognition for exploring the improvement of combining different modalities.

  9. Vehicle License Plate Recognition System

    Directory of Open Access Journals (Sweden)

    Meenakshi

    2012-12-01

    Full Text Available The vehicle license plate recognition system has greater efficiency for vehicle monitoring in automatic zone access control. This Plate recognition system will avoid special tags, since all vehicles possess a unique registration number plate. A number of techniques have been used for car plate characters recognition. This system uses neural network character recognition and pattern matching of characters as two character recognition techniques. In this approach multilayer feed-forward back-propagation algorithm is used. The performance of the proposed algorithm has been tested on several car plates and provides very satisfactory results.

  10. DWT BASED IRIS RECOGNITION

    Directory of Open Access Journals (Sweden)

    MAYURI MEMANE

    2012-08-01

    Full Text Available The iris recognition is an emerging technology widely used due to various characteristics such as uniqueness,universal, stable, independent of genetics, acceptable etc. The recognition is carried out using discrete wavelet transform (DWT. It includes collection of iris database, carrying out preprocessing (includes separation ofpupil, normalization and feature extraction. Normalization includes polar to rectangular conversion. After this area of interest is selected from which features are extracted using DWT. It generates approximate, horizontal, vertical and diagonal coefficients. These are compared with the stored templates using hamming distance. If thetemplate is match with the stored one than the match ID is displayed. The unauthorized person is indicated by displaying ID equal to ‘00’

  11. Confined-but-Connected Quantum Solids via Controlled Ligand Displacement

    KAUST Repository

    Baumgardner, William J.

    2013-07-10

    Confined-but-connected quantum dot solids (QDS) combine the advantages of tunable, quantum-confined energy levels with efficient charge transport through enhanced electronic interdot coupling. We report the fabrication of QDS by treating self-assembled films of colloidal PbSe quantum dots with polar nonsolvents. Treatment with dimethylformamide balances the rates of self-assembly and ligand displacement to yield confined-but-connected QDS structures with cubic ordering and quasi-epitaxial interdot connections through facets of neighboring dots. The QDS structure was analyzed by a combination of transmission electron microscopy and wide-angle and small-angle X-ray scattering. Excitonic absorption signatures in optical spectroscopy confirm that quantum confinement is preserved. Transport measurements show significantly enhanced conductivity in treated films. © 2013 American Chemical Society.

  12. Structural assembly demonstration experiment

    Science.gov (United States)

    Stokes, J. W.

    1982-01-01

    The experiment is of an operational variety, designed to assess crew capability in Large Space System (LSS) assembly. The six Structural Assembly Demonstration Experiment objectives include: (1) the establishment of a quantitative correlation between LSS neutral buoyancy simulation and on-orbit assembly operations in order to enhance the validity of those assembly simulations; (2) the quantitative study of the capabilities and mechanics of human assembly in an Extravehicular Activity environment; (3) the further corroboration of the LSS Assembly Analysis cost algorithm through the obtainment of hard data base information; (4) the verification of LSS assembly techniques and timeless, as well as the identification of crew imposed loads and assembly aid requirements and concepts; (5) verification of a Launch/Assembly Platform structure concept for other LSS missions; and (6) lastly, to advance thermal control concepts through a flexible heat pipe.

  13. Iris Recognition Using Wavelet

    OpenAIRE

    Khaliq Masood; Muhammad Younus Javed; Abdul Basit

    2013-01-01

    Biometric systems are getting more attention in the present era. Iris recognition is one of the most secure and authentic among the other biometrics and this field demands more authentic, reliable and fast algorithms to implement these biometric systems in real time. In this paper, an efficient localization technique is presented to identify pupil and iris boundaries using histogram of the iris image. Two small portions of iris have been used for polar transformation to reduce computational t...

  14. Automatic pattern recognition

    OpenAIRE

    Petheram, R.J.

    1989-01-01

    In this thesis the author presents a new method for the location, extraction and normalisation of discrete objects found in digital images. The extraction is by means of sub-pixcel contour following around the object. The normalisation obtains and removes the information concerning size, orientation and location of the object within an image. Analyses of the results are carried out to determine the confidence in recognition of patterns, and methods of cross correlation of object descriptions ...

  15. Infrared face recognition

    OpenAIRE

    Lee, Colin K.

    2004-01-01

    Approved for public release, distribution is unlimited This study continues a previous face recognition investigation using uncooled infrared technology. The database developed in an earlier study is further expanded to include 50 volunteers with 30 facial images from each subject. The automatic image reduction method reduces the pixel size of each image from 160 120 to 60 45 . The study reexamines two linear classification methods: the Principal Component Analysis (PCA) and Fisher ...

  16. Facial Expression Recognition

    OpenAIRE

    Neeta Sarode; Prof. Shalini Bhatia

    2010-01-01

    Facial expression analysis is rapidly becoming an area of intense interest in computer science and human-computer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper a method is implemented using 2D appearance-based local approach for the extraction of intransient facial features and recognition of four facial expressions. The algorithm implements Radial Symmetry Transform and further uses edge projection analysis for fe...

  17. Recognition of Teaching Excellence*

    OpenAIRE

    Hammer, Dana; Piascik, Peggy; Medina, Melissa; Pittenger, Amy; Rose, Renee; Creekmore, Freddy; Soltis, Robert; Bouldin, Alicia; Schwarz, Lindsay; Scott, Steven

    2010-01-01

    The 2008-2009 Task Force for the Recognition of Teaching Excellence was charged by the AACP Council of Faculties Leadership to examine teaching excellence by collecting best practices from colleges and schools of pharmacy, evaluating the literature to identify evidence-based criteria for excellent teaching, and recommending appropriate means to acknowledge and reward teaching excellence. This report defines teaching excellence and discusses a variety of ways to assess it, including student, a...

  18. Collagen fibril surface displays a constellation of sites capable of promoting fibril assembly, stability, and hemostasis

    Energy Technology Data Exchange (ETDEWEB)

    Orgel, J.P.; Antipova, O.; Sagi, I.; Bitler, A.; Qiu, D.; Wang, R.; Xu, Y.; San Antonio, J.D. (IIT)

    2011-12-14

    Fibrillar collagens form the structural basis of organs and tissues including the vasculature, bone, and tendon. They are also dynamic, organizational scaffolds that present binding and recognition sites for ligands, cells, and platelets. We interpret recently published X-ray diffraction findings and use atomic force microscopy data to illustrate the significance of new insights into the functional organization of the collagen fibril. These data indicate that collagen's most crucial functional domains localize primarily to the overlap region, comprising a constellation of sites we call the 'master control region.' Moreover, the collagen's most exposed aspect contains its most stable part - the C-terminal region that controls collagen assembly, cross-linking, and blood clotting. Hidden beneath the fibril surface exists a constellation of 'cryptic' sequences poised to promote hemostasis and cell - collagen interactions in tissue injury and regeneration. These findings begin to address several important, and previously unresolved, questions: How functional domains are organized in the fibril, which domains are accessible, and which require proteolysis or structural trauma to become exposed? Here we speculate as to how collagen fibrillar organization impacts molecular processes relating to tissue growth, development, and repair.

  19. Nanoparticle Assemblies at Fluid Interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Russell, Thomas P.

    2015-03-10

    A systematic study of the structure and dynamics of nanoparticles (NP) and NP-surfactants was performed. The ligands attached to both the NPs and NP-surfactants dictate the manner in which the nanoscopic materials assemble at fluid interfaces. Studies have shown that a single layer of the nanoscpic materials form at the interface to reduce the interactions between the two immiscible fluids. The shape of the NP is, also, important, where for spherical particles, a disordered, liquid-like monolayer forms, and, for nanorods, ordered domains at the interface is found and, if the monolayers are compressed, the orientation of the nanorods with respect to the interface can change. By associating end-functionalized polymers to the NPs assembled at the interface, NP-surfactants are formed that increase the energetic gain in segregating each NP at the interface which allows the NP-surfactants to jam at the interface when compressed. This has opened the possibility of structuring the two liquids by freezing in shape changes of the liquids.

  20. Polypharmacology of dopamine receptor ligands.

    Science.gov (United States)

    Butini, S; Nikolic, K; Kassel, S; Brückmann, H; Filipic, S; Agbaba, D; Gemma, S; Brogi, S; Brindisi, M; Campiani, G; Stark, H

    2016-07-01

    Most neurological diseases have a multifactorial nature and the number of molecular mechanisms discovered as underpinning these diseases is continuously evolving. The old concept of developing selective agents for a single target does not fit with the medical need of most neurological diseases. The development of designed multiple ligands holds great promises and appears as the next step in drug development for the treatment of these multifactorial diseases. Dopamine and its five receptor subtypes are intimately involved in numerous neurological disorders. Dopamine receptor ligands display a high degree of cross interactions with many other targets including G-protein coupled receptors, transporters, enzymes and ion channels. For brain disorders like Parkinsońs disease, schizophrenia and depression the dopaminergic system, being intertwined with many other signaling systems, plays a key role in pathogenesis and therapy. The concept of designed multiple ligands and polypharmacology, which perfectly meets the therapeutic needs for these brain disorders, is herein discussed as a general ligand-based concept while focusing on dopaminergic agents and receptor subtypes in particular. PMID:27234980

  1. HUMAN SPEECH EMOTION RECOGNITION

    Directory of Open Access Journals (Sweden)

    Maheshwari Selvaraj

    2016-02-01

    Full Text Available Emotions play an extremely important role in human mental life. It is a medium of expression of one’s perspective or one’s mental state to others. Speech Emotion Recognition (SER can be defined as extraction of the emotional state of the speaker from his or her speech signal. There are few universal emotions- including Neutral, Anger, Happiness, Sadness in which any intelligent system with finite computational resources can be trained to identify or synthesize as required. In this work spectral and prosodic features are used for speech emotion recognition because both of these features contain the emotional information. Mel-frequency cepstral coefficients (MFCC is one of the spectral features. Fundamental frequency, loudness, pitch and speech intensity and glottal parameters are the prosodic features which are used to model different emotions. The potential features are extracted from each utterance for the computational mapping between emotions and speech patterns. Pitch can be detected from the selected features, using which gender can be classified. Support Vector Machine (SVM, is used to classify the gender in this work. Radial Basis Function and Back Propagation Network is used to recognize the emotions based on the selected features, and proved that radial basis function produce more accurate results for emotion recognition than the back propagation network.

  2. Techniques for automatic speech recognition

    Science.gov (United States)

    Moore, R. K.

    1983-05-01

    A brief insight into some of the algorithms that lie behind current automatic speech recognition system is provided. Early phonetically based approaches were not particularly successful, due mainly to a lack of appreciation of the problems involved. These problems are summarized, and various recognition techniques are reviewed in the contect of the solutions that they provide. It is pointed out that the majority of currently available speech recognition equipments employ a "whole-word' pattern matching approach which, although relatively simple, has proved particularly successful in its ability to recognize speech. The concepts of time-normalizing plays a central role in this type of recognition process and a family of such algorithms is described in detail. The technique of dynamic time warping is not only capable of providing good performance for isolated word recognition, but how it is also extended to the recognition of connected speech (thereby removing one of the most severe limitations of early speech recognition equipment).

  3. Firearm trigger assembly

    Science.gov (United States)

    Crandall, David L.; Watson, Richard W.

    2010-02-16

    A firearm trigger assembly for use with a firearm includes a trigger mounted to a forestock of the firearm so that the trigger is movable between a rest position and a triggering position by a forwardly placed support hand of a user. An elongated trigger member operatively associated with the trigger operates a sear assembly of the firearm when the trigger is moved to the triggering position. An action release assembly operatively associated with the firearm trigger assembly and a movable assembly of the firearm prevents the trigger from being moved to the triggering position when the movable assembly is not in the locked position.

  4. Assembly plans for ITER

    International Nuclear Information System (INIS)

    The assembly of ITER represents an extrapolation of a factor of two or more in size over existing large tokamaks. An assembly plan has been developed based on the ITER Outline Design. This plan was reviewed by technical experts and critical issues were identified. Alternate designs are being developed to address the most serious concerns and to minimize cost and assembly schedule. Because ITER has many characteristics of a full-scale nuclear reactor its assembly has challenges not faced previously by the fusion community. Careful assembly planning and well-designed tooling are required to insure success in the assembly of ITER

  5. An Improved Method of Geometric Hashing Pattern Recognition

    Directory of Open Access Journals (Sweden)

    Ling Ma

    2011-06-01

    Full Text Available Geometric hashing (GH is a general model-based recognition scheme. GH is widely used in the industrial products assembly and inspection tasks. The aim of this study is to speed up the geometric hashing pattern recognition method for the purpose of real-time object detection applications. In our method, a pattern is decomposed into some sub-patterns to reduce the data number in hash table bins. In addition, the sub-patterns are recorded in a plurality of hash tables. Finally we improve the recognition performance by combining with image pyramid and edge direction information. To confirm the validity of our proposed method, we make a complexity analysis, and apply our method to some images. Both complexity analysis and experiment evaluations have demonstrated the efficiency of this technique.

  6. Crystallization of protein–ligand complexes

    International Nuclear Information System (INIS)

    Methods presented for growing protein–ligand complexes fall into the categories of co-expression of the protein with the ligands of interest, use of the ligands during protein purification, cocrystallization and soaking the ligands into existing crystals. Obtaining diffraction-quality crystals has long been a bottleneck in solving the three-dimensional structures of proteins. Often proteins may be stabilized when they are complexed with a substrate, nucleic acid, cofactor or small molecule. These ligands, on the other hand, have the potential to induce significant conformational changes to the protein and ab initio screening may be required to find a new crystal form. This paper presents an overview of strategies in the following areas for obtaining crystals of protein–ligand complexes: (i) co-expression of the protein with the ligands of interest, (ii) use of the ligands during protein purification, (iii) cocrystallization and (iv) soaks

  7. A novel self-assembly with zinc porphyrin coordination polymer for enhanced photocurrent conversion in supramolecular solar cells

    International Nuclear Information System (INIS)

    Graphical abstract: An innovative type of self-assembly based on acetohydrazide zinc porphyrin coordination polymer has been prepared in supramolecular solar cells. - Highlights: • A novel assembly with acetohydrazide porphyrin coordination polymer. • The assembly based on porphyrin is prepared as parallel sample. • Coordination polymer-based assembly shows enhanced photoelectronic behavior. • A series of different organic acid ligands as anchoring groups are prepared. - Abstract: In this work, a novel acetohydrazide zinc porphyrin-based coordination polymer (CP)-isonicotinic acid self-assembly by metal-ligand axial coordination to modify the nano-structured TiO2 electrode surface has been investigated in photoelectrochemical device. Compared to the assembly based on corresponding zinc porphyrin combined with isonicotinic acid by metal-ligand axial coordination, CP-isonicotinic acid assembly exhibits a significantly enhanced photoelectronic behavior. In addition, a series of different organic acid ligands were prepared to probe the impact of their structures on the photoelectronic performances of their corresponding assemblies-sensitized cells. This study affords a novel type of self-assembly to functionalize the nanostructured TiO2 electrode surface in supramolecular solar cells

  8. Self-assembly of like-charged nanoparticles into microscopic crystals

    Science.gov (United States)

    Pillai, Pramod P.; Kowalczyk, Bartlomiej; Grzybowski, Bartosz A.

    2015-12-01

    Like-charged nanoparticles, NPs, can assemble in water into large, faceted crystals, each made of several million particles. These NPs are functionalized with mixed monolayers comprising ligands terminating in carboxylic acid group ligands as well as positively charged quaternary ammonium ligands. The latter groups give rise to electrostatic interparticle repulsions which partly offset the hydrogen bonding between the carboxylic acids. It is the balance between these two interactions that ultimately enables self-assembly. Depending on the pH, the particles can crystallize, form aggregates, remain unaggregated or even - in mixtures of two particle types - can ``choose'' whether to crystallize with like-charged or oppositely charged particles.Like-charged nanoparticles, NPs, can assemble in water into large, faceted crystals, each made of several million particles. These NPs are functionalized with mixed monolayers comprising ligands terminating in carboxylic acid group ligands as well as positively charged quaternary ammonium ligands. The latter groups give rise to electrostatic interparticle repulsions which partly offset the hydrogen bonding between the carboxylic acids. It is the balance between these two interactions that ultimately enables self-assembly. Depending on the pH, the particles can crystallize, form aggregates, remain unaggregated or even - in mixtures of two particle types - can ``choose'' whether to crystallize with like-charged or oppositely charged particles. Electronic supplementary information (ESI) available: Further experimental details, images of crystals as well as NMR and EDX spectra. See DOI: 10.1039/c5nr06983a

  9. Pentameric ligand-gated ion channel ELIC is activated by GABA and modulated by benzodiazepines

    OpenAIRE

    Spurny, R.; Ramerstorfer, J.; Price, K; Brams, M.; M. Ernst; Nury, H.; Verheij, M.; Legrand, P.; Bertrand, D.; Bertrand, S.; Dougherty, D A; de Esch, I. J. P.; Corringer, P.-J.; Sieghart, W.; Lummis, S. C. R.

    2012-01-01

    GABA_A receptors are pentameric ligand-gated ion channels involved in fast inhibitory neurotransmission and are allosterically modulated by the anxiolytic, anticonvulsant, and sedative-hypnotic benzodiazepines. Here we show that the prokaryotic homolog ELIC also is activated by GABA and is modulated by benzodiazepines with effects comparable to those at GABA_A receptors. Crystal structures reveal important features of GABA recognition and indicate that benzodiazepines, depending on their conc...

  10. Distal Hydrogen-bonding Interactions in Ligand Sensing and Signaling by Mycobacterium tuberculosis DosS.

    Science.gov (United States)

    Basudhar, Debashree; Madrona, Yarrow; Yukl, Erik T; Sivaramakrishnan, Santhosh; Nishida, Clinton R; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2016-07-29

    Mycobacterium tuberculosis DosS is critical for the induction of M. tuberculosis dormancy genes in response to nitric oxide (NO), carbon monoxide (CO), or hypoxia. These environmental stimuli, which are sensed by the DosS heme group, result in autophosphorylation of a DosS His residue, followed by phosphotransfer to an Asp residue of the response regulator DosR. To clarify the mechanism of gaseous ligand recognition and signaling, we investigated the hydrogen-bonding interactions of the iron-bound CO and NO ligands by site-directed mutagenesis of Glu-87 and His-89. Autophosphorylation assays and molecular dynamics simulations suggest that Glu-87 has an important role in ligand recognition, whereas His-89 is essential for signal transduction to the kinase domain, a process for which Arg-204 is important. Mutation of Glu-87 to Ala or Gly rendered the protein constitutively active as a kinase, but with lower autophosphorylation activity than the wild-type in the Fe(II) and the Fe(II)-CO states, whereas the E87D mutant had little kinase activity except for the Fe(II)-NO complex. The H89R mutant exhibited attenuated autophosphorylation activity, although the H89A and R204A mutants were inactive as kinases, emphasizing the importance of these residues in communication to the kinase core. Resonance Raman spectroscopy of the wild-type and H89A mutant indicates the mutation does not alter the heme coordination number, spin state, or porphyrin deformation state, but it suggests that interdomain interactions are disrupted by the mutation. Overall, these results confirm the importance of the distal hydrogen-bonding network in ligand recognition and communication to the kinase domain and reveal the sensitivity of the system to subtle differences in the binding of gaseous ligands. PMID:27235395

  11. 3D vision assisted flexible robotic assembly of machine components

    Science.gov (United States)

    Ogun, Philips S.; Usman, Zahid; Dharmaraj, Karthick; Jackson, Michael R.

    2015-12-01

    Robotic assembly systems either make use of expensive fixtures to hold components in predefined locations, or the poses of the components are determined using various machine vision techniques. Vision-guided assembly robots can handle subtle variations in geometries and poses of parts. Therefore, they provide greater flexibility than the use of fixtures. However, the currently established vision-guided assembly systems use 2D vision, which is limited to three degrees of freedom. The work reported in this paper is focused on flexible automated assembly of clearance fit machine components using 3D vision. The recognition and the estimation of the poses of the components are achieved by matching their CAD models with the acquired point cloud data of the scene. Experimental results obtained from a robot demonstrating the assembly of a set of rings on a shaft show that the developed system is not only reliable and accurate, but also fast enough for industrial deployment.

  12. Universal statistical fluctuations in thermodynamics and kinetics of single molecular recognition.

    Science.gov (United States)

    Zheng, Xiliang; Wang, Jin

    2016-03-16

    We investigated the main universal statistical distributions of single molecular recognition. The distributions of the single molecule binding free energy spectrum or density of states were characterized in the ligand-receptor binding energy landscape. The analytical results are consistent with the microscopic molecular simulations. The free energy distribution of different binding modes or states for a single molecule ligand receptor pair is approximately Gaussian near the mean and exponential at the tail. The equilibrium constant of single molecule binding is log-normal distributed near the mean and power law distributed near the tail. Additionally, we found that the kinetics distribution of single molecule ligand binding can be characterized by log-normal around the mean and power law distribution near the tail. This distribution is caused by exploration of the underlying inhomogeneous free energy landscape. Different ligand-receptor binding complexes have the same universal form of distribution but differ in parameters. PMID:26947972

  13. Electrophilic Metal Alkyl Chemistry in New Ligand Environments

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, Richard F. [University of Chicago

    2013-06-30

    The goals of this project were to design new electrophilic metal alkyl complexes and to exploit these systems in fundamental studies of olefin polymerization and other important and new catalytic reactions. A key target reaction is insertion copolymerization of olefins and polar CH2=CHX vinyl monomers such as vinyl halides and vinyl ethers. During the period covered by this report we (i) investigated the properties of ortho-alkoxy-arylphosphine ligands in Ni-based olefin polymerization catalysts, (ii) studied the synthesis of double-end-capped polyethylene using group 4 metal catalysts that contain tris-pyrazolylborate ligands, (iii) explored the ethylene insertion reactivity of group 4 metal tris-pyrazolyl-borate complexes, (iv) showed that (α-diimine)PdMe{sup +} species undergo multiple insertion of silyl vinyl ethers, (v) synthesized and explored the reactivity of base-free Ni benzyl complexes that contain ortho-phosphino-arene sulfonate ligands, (vi) established the mechanism of the reaction of vinyl chloride with (α-diimine)PdMe{sup +} catalysts, (vii) explored the role of cationic polymerization and insertion chemistry in the reactions of vinyl ethers with (α-diimine)PdMe{sup +} species, (viii) discovered a new class of self-assembled tetranuclear Pd catalysts that produce high molecular weight linear polyethylene and copolymerize ethylene and vinyl fluoride, and (ix) developed model systems that enabled investigation of cis-trans isomerization of {phosphine-sulfonate}Pd(II) complexes.

  14. The structural biology of molecular recognition by vancomycin.

    Science.gov (United States)

    Loll, P J; Axelsen, P H

    2000-01-01

    Vancomycin is the archetype among naturally occurring compounds known as glycopeptide antibiotics. Because it is a vital therapeutic agent used world-wide for the treatment of infections with gram-positive bacteria, emerging bacterial resistance to vancomycin is a major public health threat. Recent investigations into the mechanisms of action of glycopeptide antibiotics are driven by a need to understand their detailed mechanism of action so that new agents can be developed to overcome resistance. These investigations have revealed that glycopeptide antibiotics exhibit a rich array of complex cooperative phenomena when they bind target ligands, making them valuable model systems for the study of molecular recognition. PMID:10940250

  15. Advances in Speech Recognition

    CERN Document Server

    Neustein, Amy

    2010-01-01

    This volume is comprised of contributions from eminent leaders in the speech industry, and presents a comprehensive and in depth analysis of the progress of speech technology in the topical areas of mobile settings, healthcare and call centers. The material addresses the technical aspects of voice technology within the framework of societal needs, such as the use of speech recognition software to produce up-to-date electronic health records, not withstanding patients making changes to health plans and physicians. Included will be discussion of speech engineering, linguistics, human factors ana

  16. Recognition Using Regions

    OpenAIRE

    Gu, Chunhui

    2012-01-01

    Multi-scale window scanning has been popular in object detection but it generalizes poorly to complex features (e.g. nonlinear SVM kernel), deformable objects (e.g. animals), and finer-grained tasks (e.g. segmentation). In contrast to that, regions are appealing as image primitives for recognition because: (1) they encode object shape and scale naturally; (2) they are only mildly affected by background clutter; and (3) they significantly reduce the set of possible object locations in images.I...

  17. Visual affect recognition

    CERN Document Server

    Stathopoulou, I-O

    2010-01-01

    It is generally known that human faces, as well as body motions and gestures, provide a wealth of information about a person, such as age, race, sex and emotional state. This monograph primarily studies the perception of facial expression of emotion, and secondarily of motion and gestures, with the purpose of developing a fully automated visual affect recognition system for use in modes of human/computer interaction. The book begins with a survey of the literature on emotion perception, followed by a description of empirical studies conducted with human participants and the construction of a '

  18. Metal Nanoparticle/Block Copolymer Composite Assembly and Disassembly

    OpenAIRE

    Li, Zihui; Sai, Hiroaki; Warren, Scott C.; Kamperman, Marleen; Arora, Hitesh; Gruner, Sol M.; Wiesner, Ulrich

    2009-01-01

    Ligand-stabilized platinum nanoparticles (Pt NPs) were self-assembled with poly(isoprene-block-dimethylaminoethyl methacrylate) (PI-b-PDMAEMA) block copolymers to generate organic-inorganic hybrid materials. High loadings of NPs in hybrids were achieved through usage of N,N-di-(2-(allyloxy)ethyl)-N-3-mercaptopropyl-N-3-methylammonium chloride as the ligand, which provided high solubility of NPs in various solvents as well as high affinity to PDMAEMA. From NP synthesis, existence of sub-1 nm P...

  19. Ligand chain length conveys thermochromism.

    Science.gov (United States)

    Ganguly, Mainak; Panigrahi, Sudipa; Chandrakumar, K R S; Sasmal, Anup Kumar; Pal, Anjali; Pal, Tarasankar

    2014-08-14

    Thermochromic properties of a series of non-ionic copper compounds have been reported. Herein, we demonstrate that Cu(II) ion with straight-chain primary amine (A) and alpha-linolenic (fatty acid, AL) co-jointly exhibit thermochromic properties. In the current case, we determined that thermochromism becomes ligand chain length-dependent and at least one of the ligands (A or AL) must be long chain. Thermochromism is attributed to a balanced competition between the fatty acids and amines for the copper(II) centre. The structure-property relationship of the non-ionic copper compounds Cu(AL)2(A)2 has been substantiated by various physical measurements along with detailed theoretical studies based on time-dependent density functional theory. It is presumed from our results that the compound would be a useful material for temperature-sensor applications. PMID:24943491

  20. Human activity recognition and prediction

    CERN Document Server

    2016-01-01

    This book provides a unique view of human activity recognition, especially fine-grained human activity structure learning, human-interaction recognition, RGB-D data based action recognition, temporal decomposition, and causality learning in unconstrained human activity videos. The techniques discussed give readers tools that provide a significant improvement over existing methodologies of video content understanding by taking advantage of activity recognition. It links multiple popular research fields in computer vision, machine learning, human-centered computing, human-computer interaction, image classification, and pattern recognition. In addition, the book includes several key chapters covering multiple emerging topics in the field. Contributed by top experts and practitioners, the chapters present key topics from different angles and blend both methodology and application, composing a solid overview of the human activity recognition techniques. .

  1. Recent progress in fingerprint recognition

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Fingerprint recognition has been increasingly used to realize personal identification in civilian's daily life, such as ID card, fingerprints hard disk and so on. Great improvement has been achieved in the on-line fingerprint sensing technology and automatic fingerprint recognition algorithms. Various fingerprint recognition techniques, including fingerprint acquisition, classification, enhancement and matching, are highly improved. This paper overviews recent advances in fingerprint recognition and summarizes the algorithm proposed for every step with special focuses on the enhancement of low-quality fingerprints and the matching of the distorted fingerprint images. Both issues are believed to be significant and challenging tasks. In addition, we also discuss the common evaluation for the fingerprint recognition algorithm of the Fingerprint Verification Competition 2004 (FVC2004) and the Fingerprint Vendor Technology Evaluation 2003 (FpVTE2003), based on which we could measure the performance of the recognition algorithm objectively and uniformly.

  2. Sensor mount assemblies and sensor assemblies

    Science.gov (United States)

    Miller, David H.

    2012-04-10

    Sensor mount assemblies and sensor assemblies are provided. In an embodiment, by way of example only, a sensor mount assembly includes a busbar, a main body, a backing surface, and a first finger. The busbar has a first end and a second end. The main body is overmolded onto the busbar. The backing surface extends radially outwardly relative to the main body. The first finger extends axially from the backing surface, and the first finger has a first end, a second end, and a tooth. The first end of the first finger is disposed on the backing surface, and the tooth is formed on the second end of the first finger.

  3. Presentation of Ligands on Hydroxylapatite

    Science.gov (United States)

    Chu, Barbara C. F.; Orgel, Leslie E.

    1997-01-01

    Conjugates of biotin with the decamer of glutamic acid (glu(sub 10)) and the trimer of D,L-2-amino-5-phosphonovaleric acid (I) have been synthesized, and it has been shown that they mediate the binding of avidin to hydroxylapatite. In a similar way a conjugate of methotrexate with glu(sub 10) mediates the binding of dihydrofolate reductase to the mineral. The presentation of ligands on the hydroxylapatite component of bone may find applications in clinical medicine.

  4. Privileged chiral ligands and catalysts

    CERN Document Server

    Zhou, Qi-Lin

    2011-01-01

    This ultimate ""must have"" and long awaited reference for every chemist working in the field of asymmetric catalysis starts with the core structure of the catalysts, explaining why a certain ligand or catalyst is so successful. It describes in detail the history, the basic structural characteristics, and the applications of these ""privileged catalysts"". A novel concept that gives readers a much deeper insight into the topic.

  5. Monocular SLAM Supported Object Recognition

    OpenAIRE

    Pillai, Sudeep; Leonard, John,

    2015-01-01

    In this work, we develop a monocular SLAM-aware object recognition system that is able to achieve considerably stronger recognition performance, as compared to classical object recognition systems that function on a frame-by-frame basis. By incorporating several key ideas including multi-view object proposals and efficient feature encoding methods, our proposed system is able to detect and robustly recognize objects in its environment using a single RGB camera in near-constant time. Through e...

  6. Embedded Systems for Iris Recognition

    OpenAIRE

    Anushree S. Patil; Sushil M. Rajbhoj

    2015-01-01

    Iris Recognition increasingly used method of biometric authentication that involves pattern-recognition techniques of images of irides to uniquely identify a person. In this paper, IRIS biometrics has been chosen for implementation due to the reduced error rates and the robustness their algorithms provide. The goal of this paper is to design a detached system, to implement a working prototype of the techniques and methods used for iris recognition. A powerful ARM7TDMI-S core based...

  7. Speech recognition in university classrooms

    OpenAIRE

    Wald, Mike; Bain, Keith; Basson, Sara H

    2002-01-01

    The LIBERATED LEARNING PROJECT (LLP) is an applied research project studying two core questions: 1) Can speech recognition (SR) technology successfully digitize lectures to display spoken words as text in university classrooms? 2) Can speech recognition technology be used successfully as an alternative to traditional classroom notetaking for persons with disabilities? This paper addresses these intriguing questions and explores the underlying complex relationship between speech recognition te...

  8. Forensic Face Recognition: A Survey

    OpenAIRE

    Ali, Tauseef; Veldhuis, Raymond; Spreeuwers, Luuk

    2010-01-01

    Beside a few papers which focus on the forensic aspects of automatic face recognition, there is not much published about it in contrast to the literature on developing new techniques and methodologies for biometric face recognition. In this report, we review forensic facial identification which is the forensic experts‟ way of manual facial comparison. Then we review famous works in the domain of forensic face recognition. Some of these papers describe general trends in forensics [1], guidelin...

  9. Innovative Technique for Character Recognition

    OpenAIRE

    Sumant Raj Chauhan; Punit Soni

    2010-01-01

    Development of OCRs for Indian script is an active area of activity today. Optical character recognition (OCR) is the mechanical or electronic translation of images of handwritten, typewritten or printed text (usually captured by a scanner) into machine-editable text. In simple words OCR is a visual recognition process that turns printed or written text into an electronic character based file. OCR is a field of research in pattern recognition, artificial intelligence and machine vision. India...

  10. Information theory and pattern recognition

    OpenAIRE

    Daemi, M.F.

    1990-01-01

    This thesis presents an account of an investigation into the use of information theory measures in pattern recognition problems. The objectives were firstly to determine the information content of the set of representations of an input image which are found at the output of an array of sensors; secondly to assess the information which may be used to allocate different patterns to appropriate classes in order to provide a means of recognition; and thirdly to assess the recognition capability o...

  11. Techniques in Facial Expression Recognition

    OpenAIRE

    Avinash Prakash Pandhare; Umesh Balkrishna Chavan

    2016-01-01

    Facial expression recognition is gaining widespread importance as the applications related to Human – Computer interactions are increasing. This paper mentions various techniques and approaches that have been used in the field of facial expression recognition. Facial expression recognition takes place in various stages and these stages have been implemented by various approaches. Viola and Jones for face detection, Gabor filters for feature extraction, SVM classifiers for classifi...

  12. Tumor targeting via integrin ligands

    Directory of Open Access Journals (Sweden)

    HorstKessler

    2013-08-01

    Full Text Available Selective and targeted delivery of drugs to tumors is a major challenge for an effective cancer therapy and also to overcome the side effects associated with current treatments. Overexpression of various receptors on tumor cells is a characteristic structural and biochemical aspect of tumors and distinguishes them from physiologically normal cells. This abnormal feature is therefore suitable for selectively directing anticancer molecules to tumors by using ligands that can preferentially recognize such receptors. Several subtypes of integrin receptors that are crucial for cell adhesion, cell signaling, cell viability and motility have been shown to have an upregulated expression on cancer cells. Thus, ligands that recognize specific integrin subtypes represent excellent candidates to be conjugated to drugs or drug carrier systems and be targeted to tumors. In this regard, integrins recognizing the RGD cell adhesive sequence have been extensively targeted for tumor specific drug delivery. Here we review key recent examples on the presentation of RGD-based integrin ligands by means of distinct drug delivery systems, and discuss the prospects of such therapies to specifically target tumor cells.

  13. Radioiodinated ligands for dopamine receptors

    International Nuclear Information System (INIS)

    The dopamine receptor system is important for normal brain function; it is also the apparent action site for various neuroleptic drugs for the treatment of schizophrenia and other metal disorders. In the past few years radioiodinated ligands for single photon emission tomography (SPECT) have been successfully developed and tested in humans: [123I]TISCH for D1 dopamine receptors; [123I]IBZM, epidepride, IBF and FIDA2, four iodobenzamide derivatives, for D2/D3 dopamine receptors. In addition, [123I]β-CIT (RTI-55) and IPT, cocaine derivatives, for the dopamine reuptake site are potentially useful for diagnosis of loss of dopamine neurons. The first iodinated ligand, (R)trans-7-OH-PIPAT, for D3 dopamine receptors, was synthesized and characterized with cloned cell lines (Spodoptera frugiperda, Sf9) expressing the D2 and D3 dopamine receptors and with rat basal forebrain membrane preparations. Most of the known iodobenzamides displayed similar potency in binding to both D2 and D3 dopamine receptors expressed in the cell lines. Initial studies appear to suggest that by fine tuning the structures it may be possible to develop agents specific for D2 and D3 dopamine receptors. It is important to investigate D2/D3 selectivity for this series of potent ligands

  14. A new crystal form of human tear lipocalin reveals high flexibility in the loop region and induced fit in the ligand cavity

    OpenAIRE

    Breustedt, Daniel A.; Chatwell, Lorenz; Skerra, Arne

    2009-01-01

    The crystal structure of tear lipocalin determined in space group P21 revealed large structural deviations from the previously solved X-ray structure in space group C2, especially in the loop region and adjoining parts of the β-barrel which give rise to the ligand-binding site. These findings illustrate a novel mechanism for promiscuity in ligand recognition by the lipocalin protein family.

  15. Carbohydrate recognition by the antiviral lectin cyanovirin-N.

    Science.gov (United States)

    Fujimoto, Yukiji K; Green, David F

    2012-12-01

    Cyanovirin-N (CVN) is a cyanobacterial lectin with potent antiviral activity and has been the focus of extensive preclinical investigation as a potential prophylactic for the prevention of the sexual transmission of the human immunodeficiency virus (HIV). Here we present a detailed analysis of carbohydrate recognition by this important protein, using a combination of computational methods, including extensive molecular dynamics simulations and molecular mechanics/Poisson-Boltzmann surface area (MM/PBSA) energetic analysis. The simulation results strongly suggest that the observed tendency of wild-type CVN to form domain-swapped dimers is the result of a previously unidentified cis-peptide bond present in the monomeric state. The energetic analysis additionally indicates that the highest-affinity ligand for CVN characterized to date (α-Man-(1,2)-α-Man-(1,2)-α-Man) is recognized asymmetrically by the two binding sites. Finally, we are able to provide a detailed map of the role of all binding site functional groups (both backbone and side chain) to various aspects of molecular recognition: general affinity for cognate ligands, specificity for distinct oligosaccharide targets, and the asymmetric recognition of α-Man-(1,2)-α-Man-(1,2)-α-Man. Taken as a whole, these results complement past experimental characterization (both structural and thermodynamic) to provide the most complete understanding of carbohydrate recognition by CVN to date. The results also provide strong support for the application of similar approaches to the understanding of other protein-carbohydrate complexes. PMID:23057413

  16. Soldering in electronics assembly

    CERN Document Server

    Judd, Mike

    2013-01-01

    Soldering in Electronics Assembly discusses several concerns in soldering of electronic assemblies. The book is comprised of nine chapters that tackle different areas in electronic assembly soldering. Chapter 1 discusses the soldering process itself, while Chapter 2 covers the electronic assemblies. Chapter 3 talks about solders and Chapter 4 deals with flux. The text also tackles the CS and SC soldering process. The cleaning of soldered assemblies, solder quality, and standards and specifications are also discussed. The book will be of great use to professionals who deal with electronic assem

  17. Markov Models for Handwriting Recognition

    CERN Document Server

    Plotz, Thomas

    2011-01-01

    Since their first inception, automatic reading systems have evolved substantially, yet the recognition of handwriting remains an open research problem due to its substantial variation in appearance. With the introduction of Markovian models to the field, a promising modeling and recognition paradigm was established for automatic handwriting recognition. However, no standard procedures for building Markov model-based recognizers have yet been established. This text provides a comprehensive overview of the application of Markov models in the field of handwriting recognition, covering both hidden

  18. Study of Face Recognition Techniques

    Directory of Open Access Journals (Sweden)

    Sangeeta Kaushik

    2014-12-01

    Full Text Available A study of both face recognition and detection techniques is carried out using the algorithms like Principal Component Analysis (PCA, Kernel Principal Component Analysis (KPCA, Linear Discriminant Analysis (LDA and Line Edge Map (LEM. These algorithms show different rates of accuracy under different conditions. The automatic recognition of human faces presents a challenge to the pattern recognition community. Typically, human faces are different in shapes with minor similarity from person to person. Furthermore, lighting condition changes, facial expressions and pose variations further complicate the face recognition task as one of the difficult problems in pattern analysis.

  19. A SURVEY ON FACE RECOGNITION

    Directory of Open Access Journals (Sweden)

    R.VINODINI

    2014-02-01

    Full Text Available Face recognition is one of the most emerging and popular biometric authentication of a person, it presents a challenging problem in the field of image analysis and computer vision. Though there are various biometric traits such as iris, fingerprint and palm print etc., we focused on face recognition as it is socially acceptable and reliable. Here user identity plays a very important role to uniquely verify or authenticate the individual person. Many techniques were implemented in face recognition all having their respective pros and cons. In this paper, we presented an overview of face recognition techniques and its applications.

  20. Retina vascular network recognition

    Science.gov (United States)

    Tascini, Guido; Passerini, Giorgio; Puliti, Paolo; Zingaretti, Primo

    1993-09-01

    The analysis of morphological and structural modifications of the retina vascular network is an interesting investigation method in the study of diabetes and hypertension. Normally this analysis is carried out by qualitative evaluations, according to standardized criteria, though medical research attaches great importance to quantitative analysis of vessel color, shape and dimensions. The paper describes a system which automatically segments and recognizes the ocular fundus circulation and micro circulation network, and extracts a set of features related to morphometric aspects of vessels. For this class of images the classical segmentation methods seem weak. We propose a computer vision system in which segmentation and recognition phases are strictly connected. The system is hierarchically organized in four modules. Firstly the Image Enhancement Module (IEM) operates a set of custom image enhancements to remove blur and to prepare data for subsequent segmentation and recognition processes. Secondly the Papilla Border Analysis Module (PBAM) automatically recognizes number, position and local diameter of blood vessels departing from optical papilla. Then the Vessel Tracking Module (VTM) analyses vessels comparing the results of body and edge tracking and detects branches and crossings. Finally the Feature Extraction Module evaluates PBAM and VTM output data and extracts some numerical indexes. Used algorithms appear to be robust and have been successfully tested on various ocular fundus images.

  1. Radically enhanced molecular recognition

    KAUST Repository

    Trabolsi, Ali

    2009-12-17

    The tendency for viologen radical cations to dimerize has been harnessed to establish a recognition motif based on their ability to form extremely strong inclusion complexes with cyclobis(paraquat-p-phenylene) in its diradical dicationic redox state. This previously unreported complex involving three bipyridinium cation radicals increases the versatility of host-guest chemistry, extending its practice beyond the traditional reliance on neutral and charged guests and hosts. In particular, transporting the concept of radical dimerization into the field of mechanically interlocked molecules introduces a higher level of control within molecular switches and machines. Herein, we report that bistable and tristable [2]rotaxanes can be switched by altering electrochemical potentials. In a tristable [2]rotaxane composed of a cyclobis(paraquat-p-phenylene) ring and a dumbbell with tetrathiafulvalene, dioxynaphthalene and bipyridinium recognition sites, the position of the ring can be switched. On oxidation, it moves from the tetrathiafulvalene to the dioxynaphthalene, and on reduction, to the bipyridinium radical cation, provided the ring is also reduced simultaneously to the diradical dication. © 2010 Macmillan Publishers Limited. All rights reserved.

  2. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    S Truschel; D Sengupta; A Foote; A Heroux; M Macbeth; A Linstedt

    2011-12-31

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  3. Structure of the Membrane-tethering GRASP Domain Reveals a Unique PDZ Ligand Interaction That Mediates Golgi Biogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Truschel, S.T.; Heroux, A.; Sengupta, D.; Foote, A.; Macbeth, M. R.; Linstedt, A. D.

    2011-06-10

    Biogenesis of the ribbon-like membrane network of the mammalian Golgi requires membrane tethering by the conserved GRASP domain in GRASP65 and GRASP55, yet the tethering mechanism is not fully understood. Here, we report the crystal structure of the GRASP55 GRASP domain, which revealed an unusual arrangement of two tandem PDZ folds that more closely resemble prokaryotic PDZ domains. Biochemical and functional data indicated that the interaction between the ligand-binding pocket of PDZ1 and an internal ligand on PDZ2 mediates the GRASP self-interaction, and structural analyses suggest that this occurs via a unique mode of internal PDZ ligand recognition. Our data uncover the structural basis for ligand specificity and provide insight into the mechanism of GRASP-dependent membrane tethering of analogous Golgi cisternae.

  4. Conformational Selection Underlies Recognition of a Molybdoenzyme by Its Dedicated Chaperone

    OpenAIRE

    Lorenzi, Magali; Sylvi, Léa; Gerbaud, Guillaume; Mileo, Elisabetta; Halgand, Frédéric; Walburger, Anne; Vezin, Hervé; Belle, Valérie; Guigliarelli, Bruno; Magalon, Axel

    2012-01-01

    Molecular recognition is central to all biological processes. Understanding the key role played by dedicated chaperones in metalloprotein folding and assembly requires the knowledge of their conformational ensembles. In this study, the NarJ chaperone dedicated to the assembly of the membrane-bound respiratory nitrate reductase complex NarGHI, a molybdenum-iron containing metalloprotein, was taken as a model of dedicated chaperone. The combination of two techniques ie site-directed spin labeli...

  5. Technical trend of OCR and recognition technology

    International Nuclear Information System (INIS)

    This book is comprised of nine chapters, which are introduction of optical character reader, the history and development of OCR, foundation of character recognition technology, print letter recognition, script character recognition with stroke matching method, On-line character recognition on summary of character recognition of on-line script, the ways of on-line script and on-line Hangeul recognition with syntactic analysis, construction of character recognition system and formation of Hangeul for character recognition. This book describes character recognition technology with various technique of optical character reader.

  6. A proposal for positive cooperation in anion-cation binding in yttrium and lutetium complexes based on o-amino-substituted phenolate ligands. On the way to coordination polymers by self-assembly. Molecular structures of [ClLu(OAr)3Na] (X-ray) and [ClY(OAr')3Y(OAr')3Na] (X-ray and 89Y-NMR)

    OpenAIRE

    van Koten, G; Hogerheide, M.P.; Ringelberg, S.N.; Grove, D.M.; Jastrzebski, J.T.B.H.; Boersma, J.; Smeets, W.J.J.; Spek, A.L.

    1996-01-01

    Unique hetero(poly)metallic complexes [ClM(OAr)3Na] (M = Lu (3a), Y (3b)) and [ClY(OAr')3Y(OAr')3Na] (4) containing the bis (OAr = OC6H2(CH2NMe2)2-2,6-Me-4) and mono (OAr' = OC6H4(CH2NMe2)-2) o-amino-substituted phenolate ligands have been synthesized and characterized by NMR (1H, 13C, and 89Y) and X-ray structure determinations (3a and 4). Crystals of 3a are triclinic, space group P, with unit cell dimensions a = 10.706(1) Å, b = 14.099(2) Å, c = 18.882(3) Å, = 93.48(1), = 99.49(1), = 108.72...

  7. The Legal Recognition of Sign Languages

    Science.gov (United States)

    De Meulder, Maartje

    2015-01-01

    This article provides an analytical overview of the different types of explicit legal recognition of sign languages. Five categories are distinguished: constitutional recognition, recognition by means of general language legislation, recognition by means of a sign language law or act, recognition by means of a sign language law or act including…

  8. Linking aptamer-ligand binding and expression platform folding in riboswitches: prospects for mechanistic modeling and design.

    Science.gov (United States)

    Aboul-ela, Fareed; Huang, Wei; Abd Elrahman, Maaly; Boyapati, Vamsi; Li, Pan

    2015-01-01

    The power of riboswitches in regulation of bacterial metabolism derives from coupling of two characteristics: recognition and folding. Riboswitches contain aptamers, which function as biosensors. Upon detection of the signaling molecule, the riboswitch transduces the signal into a genetic decision. The genetic decision is coupled to refolding of the expression platform, which is distinct from, although overlapping with, the aptamer. Early biophysical studies of riboswitches focused on recognition of the ligand by the aptamer-an important consideration for drug design. A mechanistic understanding of ligand-induced riboswitch RNA folding can further enhance riboswitch ligand design, and inform efforts to tune and engineer riboswitches with novel properties. X-ray structures of aptamer/ligand complexes point to mechanisms through which the ligand brings together distal strand segments to form a P1 helix. Transcriptional riboswitches must detect the ligand and form this P1 helix within the timescale of transcription. Depending on the cell's metabolic state and cellular environmental conditions, the folding and genetic outcome may therefore be affected by kinetics of ligand binding, RNA folding, and transcriptional pausing, among other factors. Although some studies of isolated riboswitch aptamers found homogeneous, prefolded conformations, experimental, and theoretical studies point to functional and structural heterogeneity for nascent transcripts. Recently it has been shown that some riboswitch segments, containing the aptamer and partial expression platforms, can form binding-competent conformers that incorporate an incomplete aptamer secondary structure. Consideration of the free energy landscape for riboswitch RNA folding suggests models for how these conformers may act as transition states-facilitating rapid, ligand-mediated aptamer folding. PMID:26361734

  9. Structural basis for AMPA receptor activation and ligand selectivity

    DEFF Research Database (Denmark)

    Hogner, A; Kastrup, Jette Sandholm Jensen; Jin, R;

    2002-01-01

    structures reveal that AMPA agonists with an isoxazole moiety adopt different binding modes in the receptor, dependent on the substituents of the isoxazole. Br-HIBO displays selectivity among different AMPA receptor subunits, and the design and structure determination of the S1S2J-Y702F mutant in complex...... with Br-HIBO and ACPA have allowed us to explain the molecular mechanism behind this selectivity and to identify key residues for ligand recognition. The agonists induce the same degree of domain closure as AMPA, except for Br-HIBO, which shows a slightly lower degree of domain closure. An excellent...... the functional studies on the full-length receptor, form a powerful platform for the design of new selective agonists....

  10. Iris Recognition Using Wavelet

    Directory of Open Access Journals (Sweden)

    Khaliq Masood

    2013-08-01

    Full Text Available Biometric systems are getting more attention in the present era. Iris recognition is one of the most secure and authentic among the other biometrics and this field demands more authentic, reliable and fast algorithms to implement these biometric systems in real time. In this paper, an efficient localization technique is presented to identify pupil and iris boundaries using histogram of the iris image. Two small portions of iris have been used for polar transformation to reduce computational time and to increase the efficiency of the system. Wavelet transform is used for feature vector generation. Rotation of iris is compensated without shifts in the iris code. System is tested on Multimedia University Iris Database and results show that proposed system has encouraging performance.

  11. Recognition Using Hybrid Classifiers.

    Science.gov (United States)

    Osadchy, Margarita; Keren, Daniel; Raviv, Dolev

    2016-04-01

    A canonical problem in computer vision is category recognition (e.g., find all instances of human faces, cars etc., in an image). Typically, the input for training a binary classifier is a relatively small sample of positive examples, and a huge sample of negative examples, which can be very diverse, consisting of images from a large number of categories. The difficulty of the problem sharply increases with the dimension and size of the negative example set. We propose to alleviate this problem by applying a "hybrid" classifier, which replaces the negative samples by a prior, and then finds a hyperplane which separates the positive samples from this prior. The method is extended to kernel space and to an ensemble-based approach. The resulting binary classifiers achieve an identical or better classification rate than SVM, while requiring far smaller memory and lower computational complexity to train and apply. PMID:26959677

  12. Chemical recognition software

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.S.; Trahan, M.W.; Nelson, W.E.; Hargis, P.J. Jr.; Tisone, G.C.

    1994-12-01

    We have developed a capability to make real time concentration measurements of individual chemicals in a complex mixture using a multispectral laser remote sensing system. Our chemical recognition and analysis software consists of three parts: (1) a rigorous multivariate analysis package for quantitative concentration and uncertainty estimates, (2) a genetic optimizer which customizes and tailors the multivariate algorithm for a particular application, and (3) an intelligent neural net chemical filter which pre-selects from the chemical database to find the appropriate candidate chemicals for quantitative analyses by the multivariate algorithms, as well as providing a quick-look concentration estimate and consistency check. Detailed simulations using both laboratory fluorescence data and computer synthesized spectra indicate that our software can make accurate concentration estimates from complex multicomponent mixtures. even when the mixture is noisy and contaminated with unknowns.

  13. Chemical recognition software

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, J.S.; Trahan, M.W.; Nelson, W.E.; Hargis, P.H. Jr.; Tisone, G.C.

    1994-06-01

    We have developed a capability to make real time concentration measurements of individual chemicals in a complex mixture using a multispectral laser remote sensing system. Our chemical recognition and analysis software consists of three parts: (1) a rigorous multivariate analysis package for quantitative concentration and uncertainty estimates, (2) a genetic optimizer which customizes and tailors the multivariate algorithm for a particular application, and (3) an intelligent neural net chemical filter which pre-selects from the chemical database to find the appropriate candidate chemicals for quantitative analyses by the multivariate algorithms, as well as providing a quick-look concentration estimate and consistency check. Detailed simulations using both laboratory fluorescence data and computer synthesized spectra indicate that our software can make accurate concentration estimates from complex multicomponent mixtures, even when the mixture is noisy and contaminated with unknowns.

  14. Automatic Speaker Recognition System

    Directory of Open Access Journals (Sweden)

    Parul,R. B. Dubey

    2012-12-01

    Full Text Available Spoken language is used by human to convey many types of information. Primarily, speech convey message via words. Owing to advanced speech technologies, people's interactions with remote machines, such as phone banking, internet browsing, and secured information retrieval by voice, is becoming popular today. Speaker verification and speaker identification are important for authentication and verification in security purpose. Speaker identification methods can be divided into text independent and text-dependent. Speaker recognition is the process of automatically recognizing speaker voice on the basis of individual information included in the input speech waves. It consists of comparing a speech signal from an unknown speaker to a set of stored data of known speakers. This process recognizes who has spoken by matching input signal with pre- stored samples. The work is focussed to improve the performance of the speaker verification under noisy conditions.

  15. Forensic Face Recognition: A Survey

    NARCIS (Netherlands)

    Ali, Tauseef; Veldhuis, Raymond; Spreeuwers, Luuk

    2010-01-01

    Beside a few papers which focus on the forensic aspects of automatic face recognition, there is not much published about it in contrast to the literature on developing new techniques and methodologies for biometric face recognition. In this report, we review forensic facial identification which is t

  16. Ligand placement based on prior structures: the guided ligand-replacement method

    Energy Technology Data Exchange (ETDEWEB)

    Klei, Herbert E. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Moriarty, Nigel W., E-mail: nwmoriarty@lbl.gov; Echols, Nathaniel [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Terwilliger, Thomas C. [Los Alamos National Laboratory, Los Alamos, NM 87545-0001 (United States); Baldwin, Eric T. [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Natural Discovery LLC, Princeton, NJ 08542-0096 (United States); Pokross, Matt; Posy, Shana [Bristol-Myers Squibb, Princeton, NJ 08543-4000 (United States); Adams, Paul D. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); University of California at Berkeley, Berkeley, CA 94720-1762 (United States)

    2014-01-01

    A new module, Guided Ligand Replacement (GLR), has been developed in Phenix to increase the ease and success rate of ligand placement when prior protein-ligand complexes are available. The process of iterative structure-based drug design involves the X-ray crystal structure determination of upwards of 100 ligands with the same general scaffold (i.e. chemotype) complexed with very similar, if not identical, protein targets. In conjunction with insights from computational models and assays, this collection of crystal structures is analyzed to improve potency, to achieve better selectivity and to reduce liabilities such as absorption, distribution, metabolism, excretion and toxicology. Current methods for modeling ligands into electron-density maps typically do not utilize information on how similar ligands bound in related structures. Even if the electron density is of sufficient quality and resolution to allow de novo placement, the process can take considerable time as the size, complexity and torsional degrees of freedom of the ligands increase. A new module, Guided Ligand Replacement (GLR), was developed in Phenix to increase the ease and success rate of ligand placement when prior protein–ligand complexes are available. At the heart of GLR is an algorithm based on graph theory that associates atoms in the target ligand with analogous atoms in the reference ligand. Based on this correspondence, a set of coordinates is generated for the target ligand. GLR is especially useful in two situations: (i) modeling a series of large, flexible, complicated or macrocyclic ligands in successive structures and (ii) modeling ligands as part of a refinement pipeline that can automatically select a reference structure. Even in those cases for which no reference structure is available, if there are multiple copies of the bound ligand per asymmetric unit GLR offers an efficient way to complete the model after the first ligand has been placed. In all of these applications, GLR

  17. Bile salt recognition by human liver fatty acid binding protein.

    Science.gov (United States)

    Favretto, Filippo; Santambrogio, Carlo; D'Onofrio, Mariapina; Molinari, Henriette; Grandori, Rita; Assfalg, Michael

    2015-04-01

    Fatty acid binding proteins (FABPs) act as intracellular carriers of lipid molecules, and play a role in global metabolism regulation. Liver FABP (L-FABP) is prominent among FABPs for its wide ligand repertoire, which includes long-chain fatty acids as well as bile acids (BAs). In this work, we performed a detailed molecular- and atomic-level analysis of the interactions established by human L-FABP with nine BAs to understand the binding specificity for this important class of cholesterol-derived metabolites. Protein-ligand complex formation was monitored using heteronuclear NMR, steady-state fluorescence spectroscopy, and mass spectrometry. BAs were found to interact with L-FABP with dissociation constants in the narrow range of 0.6-7 μm; however, the diverse substitution patterns of the sterol nucleus and the presence of side-chain conjugation resulted in complexes endowed with various degrees of conformational heterogeneity. Trihydroxylated BAs formed monomeric complexes in which single ligand molecules occupied similar internal binding sites, based on chemical-shift perturbation data. Analysis of NMR line shapes upon progressive addition of taurocholate indicated that the binding mechanism departed from a simple binary association equilibrium, and instead involved intermediates along the binding path. The co-linear chemical shift behavior observed for L-FABP complexes with cholate derivatives added insight into conformational dynamics in the presence of ligands. The observed spectroscopic features of L-FABP/BA complexes, discussed in relation to ligand chemistry, suggest possible molecular determinants of recognition, with implications regarding intracellular BA transport. Our findings suggest that human L-FABP is a poorly selective, universal BA binder. PMID:25639618

  18. Pattern Recognition by Combined Invariants

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaohong; ZHAO Rongchun

    2001-01-01

    A feature-based recognition of objectsor patterns independent of their position, size, orien-tation and other variations has been the goal of muchrecent research. The existing approaches to invarianttwo-dimensional pattern recognition are useless whenpattern is blurred. In this paper, we present a novelpattern recognition system which can solve the prob-lem by using combined invariants as image features.The classification technique we choose for our systemis weighted normalized cross correlation. The mean ofthe intraclass standard deviations of the kth featureover the total number of prototypes for each class isused as a weighting factor during the classification pro-cess to improve recognition accuracy. The feasibilityof our pattern recognition system and the invarianceof the combined features with respect to translation,scaling, rotation and blurring are approved by numer-ical experiments on head images.

  19. Optimizing Face Recognition Using PCA

    Directory of Open Access Journals (Sweden)

    Manal Abdullah

    2012-04-01

    Full Text Available Principle Component Analysis PCA is a classical feature extraction and data representation technique widely used in pattern recognition. It is one of the most successful techniques in face recognition. But it has drawback of high computational especially for big size database. This paper conducts a study to optimize the time complexity of PCA (eigenfaces that does not affects the recognition performance. The authorsminimize the participated eigenvectors which consequently decreases the computational time. A comparison is done to compare the differences between the recognition time in the original algorithm and in the enhanced algorithm. The performance of the original and the enhanced proposed algorithm is tested on face94 face database. Experimental results show that the recognition time is reduced by 35% by applying our proposed enhanced algorithm. DET Curves are used to illustrate the experimental results.

  20. Solution NMR studies provide structural basis for endotoxin pattern recognition by the innate immune receptor CD14

    International Nuclear Information System (INIS)

    CD14 functions as a key pattern recognition receptor for a diverse array of Gram-negative and Gram-positive cell-wall components in the host innate immune response by binding to pathogen-associated molecular patterns (PAMPs) at partially overlapping binding site(s). To determine the potential contribution of CD14 residues in this pattern recognition, we have examined using solution NMR spectroscopy, the binding of three different endotoxin ligands, lipopolysaccharide, lipoteichoic acid, and a PGN-derived compound, muramyl dipeptide to a 15N isotopically labeled 152-residue N-terminal fragment of sCD14 expressed in Pichia pastoris. Mapping of NMR spectral changes upon addition of ligands revealed that the pattern of residues affected by binding of each ligand is partially similar and partially different. This first direct structural observation of the ability of specific residue combinations of CD14 to differentially affect endotoxin binding may help explain the broad specificity of CD14 in ligand recognition and provide a structural basis for pattern recognition. Another interesting finding from the observed spectral changes is that the mode of binding may be dynamically modulated and could provide a mechanism for binding endotoxins with structural diversity through a common binding site

  1. Deciphering Ligand Specificity of a Clostridium thermocellum Family 35 Carbohydrate Binding Module (CtCBM35) for Gluco- and Galacto- Substituted Mannans and Its Calcium Induced Stability

    OpenAIRE

    Ghosh, Arabinda; Luís, Ana Sofia; Brás, Joana L. A.; Pathaw, Neeta; Nikhil K. Chrungoo; Fontes, Carlos M. G. A.; Goyal, Arun

    2013-01-01

    This study investigated the role of CBM35 from Clostridium thermocellum (CtCBM35) in polysaccharide recognition. CtCBM35 was cloned into pET28a (+) vector with an engineered His6 tag and expressed in Escherichia coli BL21 (DE3) cells. A homogenous 15 kDa protein was purified by immobilized metal ion chromatography (IMAC). Ligand binding analysis of CtCBM35 was carried out by affinity electrophoresis using various soluble ligands. CtCBM35 showed a manno-configured ligand specific binding displ...

  2. Assembler for de novo assembly of large genomes

    OpenAIRE

    Chu, Te-Chin; Lu, Chen-Hua; Liu, Tsunglin; Lee, Greg C.; Li, Wen-Hsiung; Shih, Arthur Chun-Chieh

    2013-01-01

    Assembling a large genome faces three challenges: assembly quality, computer memory requirement, and execution time. Our developed assembler, JR-Assembler, uses (a) a strategy that selects good seeds for contig construction, (b) an extension strategy that uses whole sequencing reads to increase the chance to jump over repeats and to expedite extension, and (c) detecting misassemblies by remapping reads to assembled sequences. Compared with current assemblers, JR-Assembler achieves a better ov...

  3. Initial receptor-ligand interactions modulate gene expression and phagosomal properties during both early and late stages of phagocytosis.

    Science.gov (United States)

    Hoffmann, Eik; Marion, Sabrina; Mishra, Bibhuti Bhusan; John, Mathias; Kratzke, Ramona; Ahmad, Syed Furquan; Holzer, Daniela; Anand, Paras Kumar; Weiss, Dieter G; Griffiths, Gareth; Kuznetsov, Sergei A

    2010-09-01

    The receptors engaged during recognition and phagocytic uptake of microorganisms and particles influence signaling events and diverse subcellular responses that occur during phagosome formation and maturation. However, pathogens generally have multiple ligands on their surface, making it difficult to dissect the roles of individual receptors during phagocytosis. Moreover, it remains elusive to which extent receptor-ligand interactions and early binding events define the subsequent intracellular fate of phagosomes. Here, we used latex beads coupled to single ligands, focusing on immunoglobulin G, mannan, bacterial lipopolysaccharides and avidin, and monitored: (1) phagocytic uptake rates, (2) fusion of phagosomes with lysosomal compartments, (3) the gene expression profile during phagocytosis, (4) the protein composition of mature phagosomes and (5) time-dependent dynamics of protein association with phagosomes in J774.A1 mouse macrophages. The differently coated latex beads were internalized at different rates and exhibited different kinetics of phagolysosomal fusion events dependent on their specific ligand. Furthermore, less than 60% of identified phagosomal proteins and only 10-15% of changes in gene expression were common to all investigated ligands. These findings demonstrate that each single ligand induced a distinct pattern of genes and a different protein composition of phagosomes. Taken together, our data argue that phagocytic receptor-specific programs of signaling events direct phagosomes to different physiological states and support the existence of a specific receptor-ligand 'signature' during the whole process of phagocytosis. PMID:20579766

  4. Assembly tool design

    International Nuclear Information System (INIS)

    The reactor core of the International Thermonuclear Experimental Reactor (ITER) is assembled with a number of large and asymmetric components within a tight tolerance in order to assure the structural integrity for various loads and to provide the tritium confinement. In addition, the assembly procedure should be compatible with remote operation since the core structures will be activated by 14-MeV neutrons once it starts operation and thus personal access will be prohibited. Accordingly, the assembly procedure and tool design are quite essential and should be designed from the beginning to facilitate remote operation. According to the ITER Design Task Agreement, the Japan Atomic Energy Research Institute (JAERI) has performed design study to develop the assembly procedures and associated tool design for the ITER tokamak assembly. This report describes outlines of the assembly tools and the remaining issues obtained in this design study. (author)

  5. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold

    Science.gov (United States)

    Beste, Gerald; Schmidt, Frank S.; Stibora, Thomas; Skerra, Arne

    1999-01-01

    We demonstrate that the ligand pocket of a lipocalin from Pieris brassicae, the bilin-binding protein (BBP), can be reshaped by combinatorial protein design such that it recognizes fluorescein, an established immunological hapten. For this purpose 16 residues at the center of the binding site, which is formed by four loops on top of an eight-stranded β-barrel, were subjected to random mutagenesis. Fluorescein-binding BBP variants were then selected from the mutant library by bacterial phage display. Three variants were identified that complex fluorescein with high affinity, exhibiting dissociation constants as low as 35.2 nM. Notably, one of these variants effects almost complete quenching of the ligand fluorescence, similarly as an anti-fluorescein antibody. Detailed ligand-binding studies and site-directed mutagenesis experiments indicated (i) that the molecular recognition of fluorescein is specific and (ii) that charged residues at the center of the pocket are responsible for tight complex formation. Sequence comparison of the BBP variants directed against fluorescein with the wild-type protein and with further variants that were selected against several other ligands revealed that all of the randomized amino acid positions are variable. Hence, a lipocalin can be used for generating molecular pockets with a diversity of shapes. We term this class of engineered proteins “anticalins.” Their one-domain scaffold makes them a promising alternative to antibodies to create a stable receptor protein for a ligand of choice. PMID:10051566

  6. pK(a) based protonation states and microspecies for protein-ligand docking.

    Science.gov (United States)

    ten Brink, Tim; Exner, Thomas E

    2010-11-01

    In this paper we present our reworked approach to generate ligand protonation states with our structure preparation tool SPORES (Structure PrOtonation and REcognition System). SPORES can be used for the preprocessing of proteins and protein-ligand complexes as e.g. taken from the Protein Data Bank as well as for the setup of 3D ligand databases. It automatically assigns atom and bond types, generates different protonation, tautomeric states as well as different stereoisomers. In the revised version, pKa calculations with the ChemAxon software MARVIN are used either to determine the likeliness of a combinatorial generated protonation state or to determine the titrable atoms used in the combinatorial approach. Additionally, the MARVIN software is used to predict microspecies distributions of ligand molecules. Docking studies were performed with our recently introduced program PLANTS (Protein-Ligand ANT System) on all protomers resulting from the three different selection methods for the well established CCDC/ASTEX clean data set demonstrating the usefulness of especially the latter approach. PMID:20882397

  7. In silico elucidation of the recognition dynamics of ubiquitin.

    Directory of Open Access Journals (Sweden)

    Dong Long

    2011-04-01

    Full Text Available Elucidation of the mechanism of biomacromolecular recognition events has been a topic of intense interest over the past century. The inherent dynamic nature of both protein and ligand molecules along with the continuous reshaping of the energy landscape during the binding process renders it difficult to characterize this process at atomic detail. Here, we investigate the recognition dynamics of ubiquitin via microsecond all-atom molecular dynamics simulation providing both thermodynamic and kinetic information. The high-level of consistency found with respect to experimental NMR data lends support to the accuracy of the in silico representation of the conformational substates and their interconversions of free ubiquitin. Using an energy-based reweighting approach, the statistical distribution of conformational states of ubiquitin is monitored as a function of the distance between ubiquitin and its binding partner Hrs-UIM. It is found that extensive and dense sampling of conformational space afforded by the µs MD trajectory is essential for the elucidation of the binding mechanism as is Boltzmann sampling, overcoming inherent limitations of sparsely sampled empirical ensembles. The results reveal a population redistribution mechanism that takes effect when the ligand is at intermediate range of 1-2 nm from ubiquitin. This mechanism, which may be depicted as a superposition of the conformational selection and induced fit mechanisms, also applies to other binding partners of ubiquitin, such as the GGA3 GAT domain.

  8. Ligand photo-isomerization triggers conformational changes in iGluR2 ligand binding domain.

    Directory of Open Access Journals (Sweden)

    Tino Wolter

    Full Text Available Neurological glutamate receptors bind a variety of artificial ligands, both agonistic and antagonistic, in addition to glutamate. Studying their small molecule binding properties increases our understanding of the central nervous system and a variety of associated pathologies. The large, oligomeric multidomain membrane protein contains a large and flexible ligand binding domains which undergoes large conformational changes upon binding different ligands. A recent application of glutamate receptors is their activation or inhibition via photo-switchable ligands, making them key systems in the emerging field of optochemical genetics. In this work, we present a theoretical study on the binding mode and complex stability of a novel photo-switchable ligand, ATA-3, which reversibly binds to glutamate receptors ligand binding domains (LBDs. We propose two possible binding modes for this ligand based on flexible ligand docking calculations and show one of them to be analogues to the binding mode of a similar ligand, 2-BnTetAMPA. In long MD simulations, it was observed that transitions between both binding poses involve breaking and reforming the T686-E402 protein hydrogen bond. Simulating the ligand photo-isomerization process shows that the two possible configurations of the ligand azo-group have markedly different complex stabilities and equilibrium binding modes. A strong but slow protein response is observed after ligand configuration changes. This provides a microscopic foundation for the observed difference in ligand activity upon light-switching.

  9. Target Assembly Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Target Assembly Facility integrates new armor concepts into actual armored vehicles. Featuring the capability ofmachining and cutting radioactive materials, it...

  10. Composite turbine bucket assembly

    Science.gov (United States)

    Liotta, Gary Charles; Garcia-Crespo, Andres

    2014-05-20

    A composite turbine blade assembly includes a ceramic blade including an airfoil portion, a shank portion and an attachment portion; and a transition assembly adapted to attach the ceramic blade to a turbine disk or rotor, the transition assembly including first and second transition components clamped together, trapping said ceramic airfoil therebetween. Interior surfaces of the first and second transition portions are formed to mate with the shank portion and the attachment portion of the ceramic blade, and exterior surfaces of said first and second transition components are formed to include an attachment feature enabling the transition assembly to be attached to the turbine rotor or disk.

  11. Assembly of ISX

    Energy Technology Data Exchange (ETDEWEB)

    Durfee, N.W.

    1977-01-01

    The Impurity Study Experiment, a moderate size tokamak, was recently assembled at ORNL. Demountable toroidal field coils allowed for the assembly of major components at remote locations and rapid installation into ISX. A discharge cleaning plasma was generated in ISX six weeks after the arrival of the final toroidal field coil. A chronological summary of the assembly is presented, emphasizing features designed to aid in assembly and maintenance. A cross-section of the machine showing the major mechanical components to be discussed is given.

  12. Rotational Control of a Dirhodium-Centered Supramolecular Four-Gear System by Ligand Exchange.

    Science.gov (United States)

    Sanada, Kazuma; Ube, Hitoshi; Shionoya, Mitsuhiko

    2016-03-01

    Self-assembled molecular machines have great potential to enable noncovalent regulation of a coupled motion of the building blocks. Herein we report the synthesis and the rotational control of a lantern-type dirhodium complex with circularly arranged four 2,3,6,7,14,15-hexamethyltriptycene carboxylates as gears and two axial ligands as the rate control elements. The rotating rates in solution were markedly affected by the coordination ability and the bulkiness of axial ligands. Notably, the rate changes were closely correlated with the changes in the electronic states of the dirhodium center. Such ligand exchange-based control of rotational motions with color changes would advance stimulus-responsive metallo-molecular multirotors. PMID:26910765

  13. Neat and complete: Thiolate-ligand exchange on a silver molecular nanoparticle

    KAUST Repository

    AbdulHalim, Lina G.

    2014-11-12

    Atomically precise thiolate-protected noble metal molecular nanoparticles are a promising class of model nanomaterials for catalysis, optoelectronics, and the bottom-up assembly of true molecular crystals. However, these applications have not fully materialized due to a lack of ligand exchange strategies that add functionality, but preserve the properties of these remarkable particles. Here we present a method for the rapid (<30 s) and complete thiolate-for-thiolate exchange of the highly sought after silver molecular nanoparticle [Ag44(SR)30]-4. Only by using this method were we able to preserve the precise nature of the particles and simultaneously replace the native ligands with ligands containing a variety of functional groups. Crucially, as a result of our method we were able to process the particles into smooth thin films, paving the way for their integration into solution-processed devices.

  14. Recent Progress in Molecular Recognition Imaging Using Atomic Force Microscopy.

    Science.gov (United States)

    Senapati, Subhadip; Lindsay, Stuart

    2016-03-15

    Atomic force microscopy (AFM) is an extremely powerful tool in the field of bionanotechnology because of its ability to image single molecules and make measurements of molecular interaction forces with piconewton sensitivity. It works in aqueous media, enabling studies of molecular phenomenon taking place under physiological conditions. Samples can be imaged in their near-native state without any further modifications such as staining or tagging. The combination of AFM imaging with the force measurement added a new feature to the AFM technique, that is, molecular recognition imaging. Molecular recognition imaging enables mapping of specific interactions between two molecules (one attached to the AFM tip and the other to the imaging substrate) by generating simultaneous topography and recognition images (TREC). Since its discovery, the recognition imaging technique has been successfully applied to different systems such as antibody-protein, aptamer-protein, peptide-protein, chromatin, antigen-antibody, cells, and so forth. Because the technique is based on specific binding between the ligand and receptor, it has the ability to detect a particular protein in a mixture of proteins or monitor a biological phenomenon in the native physiological state. One key step for recognition imaging technique is the functionalization of the AFM tips (generally, silicon, silicon nitrides, gold, etc.). Several different functionalization methods have been reported in the literature depending on the molecules of interest and the material of the tip. Polyethylene glycol is routinely used to provide flexibility needed for proper binding as a part of the linker that carries the affinity molecule. Recently, a heterofunctional triarm linker has been synthesized and successfully attached with two different affinity molecules. This novel linker, when attached to AFM tip, helped to detect two different proteins simultaneously from a mixture of proteins using a so-called "two

  15. Ruthenium Cumulenylidene Complexes Bearing Heteroscorpionate Ligands

    OpenAIRE

    Strinitz, Frank

    2014-01-01

    In previous work of the BURZLAFF group, the design of suitable N,N,O ligands for a wide variety of applications ranging from catalysis to bioinorganic model compounds has been extensively investigated. Especially the methyl substituted bis(3,5-dimethylpyrazol-1-yl) acetate (bdmpza) ligand has shown manifold chemistry, comparable to the anionic cyclopentadienyl (Cp) and hydridotris(pyrazol-1-yl)borato (Tp) ligand. In the first part of this thesis the new tricarbonylmanganese(I) complexes be...

  16. Phenotypic spandrel: absolute discrimination and ligand antagonism

    OpenAIRE

    François, Paul; Johnson, Kyle A.; Saunders, Laura N.

    2015-01-01

    We consider the general problem of absolute discrimination between categories of ligands irrespective of their concentration. An instance of this problem is immune discrimination between self and not-self. We connect this problem to biochemical adaptation, and establish that ligand antagonism - the ability of sub threshold ligands to negatively impact response - is a necessary consequence of absolute discrimination.Thus antagonism constitutes a "phenotypic spandrel": a phenotype existing as a...

  17. Method of assembling nuclear fuel assembly

    International Nuclear Information System (INIS)

    Thin films are formed to the surface of a fuel rod for preventing the occurrence of injuries at the surface of the fuel rod. That is, in a method of assembling a nuclear fuel assembly by inserting fuel rods into lattice cells of a support lattice, thin films of polyvinyl alcohol are formed to a predetermined thickness at the surface of each of the fuel rods and, after insertion of the fuel rods into the lattice cells, the nuclear fuel assemblies are dipped into water or steams to dissolve and remove the thin films. Since polyvinyl alcohol is noncombustible and not containing nuclear inhibitive material as the ingredient, they cause no undesired effects on plant facilities even if not completely removed from the fuel rods. The polyvinyl alcohol thin films have high strength and can sufficiently protect the fuel rod. Further, scraping damages caused by support members of the support lattice upon insertion can also be prevented. (T.M.)

  18. Selectivity in ligand binding to uranyl compounds: A synthetic, structural, thermodynamic and computational study

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, John [Univ. of California, Berkeley, CA (United States)

    2015-01-21

    The uranyl cation (UO₂²⁺) is the most abundant form of uranium on the planet. It is estimated that 4.5 billion tons of uranium in this form exist in sea water. The ability to bind and extract the uranyl cation from aqueous solution while separating it from other elements would provide a limitless source of nuclear fuel. A large body of research concerns the selective recognition and extraction of uranyl. A stable molecule, the cation has a linear O=U=O geometry. The short U-O bonds (1.78 Å) arise from the combination of uranium 5f/6d and oxygen 2p orbitals. Due to the oxygen moieties being multiply bonded, these sites were not thought to be basic enough for Lewis acidic coordination to be a viable approach to sequestration. The goal of this research is thus to broaden the coordination chemistry of the uranyl ion by studying new ligand systems via synthetic, structural, thermodynamic and computational methods. It is anticipated that this fundamental science will find use beyond actinide separation technologies in areas such as nuclear waste remediation and nuclear materials. The focus of this study is to synthesize uranyl complexes incorporating amidinate and guanidinate ligands. Both synthetic and computational methods are used to investigate novel equatorial ligand coordination and how this affects the basicity of the oxo ligands. Such an understanding will later apply to designing ligands incorporating functionalities that can bind uranyl both equatorially and axially for highly selective sequestration. Efficient and durable chromatography supports for lanthanide separation will be generated by (1) identifying robust peptoid-based ligands capable of binding different lanthanides with variable affinities, and (2) developing practical synthetic methods for the attachment of these ligands to Dowex ion exchange resins.

  19. Fuel assembly assessment from CVD image analysis: A feasibility study

    International Nuclear Information System (INIS)

    The Swedish Nuclear Inspectorate commissioned a feasibility study of automatic assessment of fuel assemblies from images obtained with the digital Cerenkov viewing device currently in development. The goal is to assist the IAEA inspectors in evaluating the fuel since they typically have only a few seconds to inspect an assembly. We report results here in two main areas: Investigation of basic image processing and recognition techniques needed to enhance the images and find the assembly in the image; Study of the properties of the distributions of light from the assemblies to determine whether they provide unique signatures for different burn-up and cooling times for real fuel or indicate presence of non-fuel. 8 refs, 27 figs

  20. Kernel learning algorithms for face recognition

    CERN Document Server

    Li, Jun-Bao; Pan, Jeng-Shyang

    2013-01-01

    Kernel Learning Algorithms for Face Recognition covers the framework of kernel based face recognition. This book discusses the advanced kernel learning algorithms and its application on face recognition. This book also focuses on the theoretical deviation, the system framework and experiments involving kernel based face recognition. Included within are algorithms of kernel based face recognition, and also the feasibility of the kernel based face recognition method. This book provides researchers in pattern recognition and machine learning area with advanced face recognition methods and its new

  1. Clinical Use of PPARγ Ligands in Cancer

    Directory of Open Access Journals (Sweden)

    Jennifer L. Hatton

    2008-01-01

    Full Text Available The role of PPARγ in adipocyte differentiation has fueled intense interest in the function of this steroid nuclear receptor for regulation of malignant cell growth and differentiation. Given the antiproliferative and differentiating effects of PPARγ ligands on liposarcoma cells, investigation of PPARγ expression and ligand activation in other solid tumors such as breast, colon, and prostate cancers ensued. The anticancer effects of PPARγ ligands in cell culture and rodent models of a multitude of tumor types suggest broad applicability of these agents to cancer therapy. This review focuses on the clinical use of PPARγ ligands, specifically the thiazolidinediones, for the treatment and prevention of cancer.

  2. Development of immobilized ligands for actinide separations

    International Nuclear Information System (INIS)

    Primary goals during this grant period were to (1) synthesize new bifunctional chelating ligands, (2) characterize the structural features of the Ln and An coordination complexes formed by these ligands, (3) use structural data to iteratively design new classes of multifunctional ligands, and (4) explore additional routes for attachment of key ligands to solid supports that could be useful for chromatographic separations. Some highlights of recently published work as well as a summary of submitted, unpublished and/or still in progress research are outlined

  3. A microprocessor-based single board computer for high energy physics event pattern recognition

    International Nuclear Information System (INIS)

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments. (orig.)

  4. Microprocessor-based single board computer for high energy physics event pattern recognition

    International Nuclear Information System (INIS)

    A single board MC 68000 based computer has been assembled and bench marked against the CDC 7600 running portions of the pattern recognition code used at the MPS. This computer has a floating coprocessor to achieve throughputs equivalent to several percent that of the 7600. A major part of this work was the construction of a FORTRAN compiler including assembler, linker and library. The intention of this work is to assemble a large number of these single board computers in a parallel FASTBUS environment to act as an on-line and off-line filter for the raw data from MPS II and ISABELLE experiments

  5. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  6. Genome filtering using methylation-sensitive restriction enzymes with six-base pair recognition sites

    Science.gov (United States)

    The large fraction of repetitive DNA in many plant genomes has complicated all aspects of DNA sequencing and assembly, and thus techniques that enrich for genes and low-copy sequences have been employed to isolate gene space. Methyl sensitive restriction enzymes with six base pair recognition sites...

  7. Side-View Face Recognition

    OpenAIRE

    Santemiz, Pinar; Spreeuwers, Luuk J.; Veldhuis, Raymond N. J.; Biggelaar, van den, M.

    2011-01-01

    As a widely used biometrics, face recognition has many advantages such as being non-intrusive, natural and passive. On the other hand, in real-life scenarios with uncontrolled environment, pose variation up to side-view positions makes face recognition a challenging work. In this paper we discuss the use of side-view face recognition in house safety applications. Our goal is to recognize people as they pass through doors in order to estimate their location in the house. In order to preserve p...

  8. Side-View Face Recognition

    OpenAIRE

    Santemiz, Pinar; Spreeuwers, Luuk J.; Veldhuis, Raymond N. J.

    2010-01-01

    Side-view face recognition is a challenging problem with many applications. Especially in real-life scenarios where the environment is uncontrolled, coping with pose variations up to side-view positions is an important task for face recognition. In this paper we discuss the use of side view face recognition techniques to be used in house safety applications. Our aim is to recognize people as they pass through a door, and estimate their location in the house. Here, we compare available databas...

  9. Logo Recognition Theory and Practice

    CERN Document Server

    Chen, Jingying

    2011-01-01

    Used by companies, organizations, and even individuals to promote recognition of their brand, logos can also act as a valuable means of identifying the source of a document. E-business applications can retrieve and catalog products according to their logos. Governmental agencies can easily inspect goods using smart mobile devices that use logo recognition techniques. However, because logos are two-dimensional shapes of varying complexity, the recognition process can be challenging. Although promising results have been found for clean logos, they have not been as robust for noisy logos. Logo Re

  10. Post Stamp Perforation Recognition

    OpenAIRE

    Koníček, Vladimír

    2008-01-01

    Rozpoznávání zoubkování poštovních známek je důležitým faktorem při posuzování pravosti poštovní známky. Typ a rozměr zoubkování mají výrazný vliv na cenu poštovní známky. Tato práce se zabývá navrhem detektoru zoubkování poštovních známek. Cílem práce je vytvořit aplikaci, která z fotografie určí zoubkování zobrazené poštovní známky. Aplikace pro práci s obrazy využívá knihovnu OpenCV. Post stamp perforation recognition is important factor in authentication of post stamps. Type and perfor...

  11. Reactor fuel assemblies

    International Nuclear Information System (INIS)

    A description is given of an improved spacer grid for a nuclear fuel assembly comprising fuel rods in a matrix wherein each rod is adapted to be enclosed by a spacer ''cell'' for positioning thereof relative to adjacent rods in the fuel assembly. 7 claims, 12 drawing figures

  12. Extending reference assembly models

    DEFF Research Database (Denmark)

    Church, Deanna M.; Schneider, Valerie A.; Steinberg, Karyn Meltz;

    2015-01-01

    The human genome reference assembly is crucial for aligning and analyzing sequence data, and for genome annotation, among other roles. However, the models and analysis assumptions that underlie the current assembly need revising to fully represent human sequence diversity. Improved analysis tools...

  13. Laser bottom hole assembly

    Science.gov (United States)

    Underwood, Lance D; Norton, Ryan J; McKay, Ryan P; Mesnard, David R; Fraze, Jason D; Zediker, Mark S; Faircloth, Brian O

    2014-01-14

    There is provided for laser bottom hole assembly for providing a high power laser beam having greater than 5 kW of power for a laser mechanical drilling process to advance a borehole. This assembly utilizes a reverse Moineau motor type power section and provides a self-regulating system that addresses fluid flows relating to motive force, cooling and removal of cuttings.

  14. Ligand-specific conformational changes in the alpha1 glycine receptor ligand-binding domain

    DEFF Research Database (Denmark)

    Pless, Stephan Alexander; Lynch, Joseph W

    2009-01-01

    residue responded differently to glycine and strychnine, thus underlining the importance of loop C in ligand discrimination. These results provide an important step toward mapping the domains crucial for ligand discrimination in the ligand-binding domain of glycine receptors and possibly other Cys loop...

  15. The Movable Type Method Applied to Protein-Ligand Binding

    Science.gov (United States)

    Zheng, Zheng; Ucisik, Melek N.; Merz, Kenneth M.

    2013-01-01

    Accurately computing the free energy for biological processes like protein folding or protein-ligand association remains a challenging problem. Both describing the complex intermolecular forces involved and sampling the requisite configuration space make understanding these processes innately difficult. Herein, we address the sampling problem using a novel methodology we term “movable type”. Conceptually it can be understood by analogy with the evolution of printing and, hence, the name movable type. For example, a common approach to the study of protein-ligand complexation involves taking a database of intact drug-like molecules and exhaustively docking them into a binding pocket. This is reminiscent of early woodblock printing where each page had to be laboriously created prior to printing a book. However, printing evolved to an approach where a database of symbols (letters, numerals, etc.) was created and then assembled using a movable type system, which allowed for the creation of all possible combinations of symbols on a given page, thereby, revolutionizing the dissemination of knowledge. Our movable type (MT) method involves the identification of all atom pairs seen in protein-ligand complexes and then creating two databases: one with their associated pairwise distant dependent energies and another associated with the probability of how these pairs can combine in terms of bonds, angles, dihedrals and non-bonded interactions. Combining these two databases coupled with the principles of statistical mechanics allows us to accurately estimate binding free energies as well as the pose of a ligand in a receptor. This method, by its mathematical construction, samples all of configuration space of a selected region (the protein active site here) in one shot without resorting to brute force sampling schemes involving Monte Carlo, genetic algorithms or molecular dynamics simulations making the methodology extremely efficient. Importantly, this method explores the

  16. Fuel Assembly Damping Summary

    International Nuclear Information System (INIS)

    This paper summary the fuel assembly damping data in air/in still water/under flow, released from foreign fuel vendors, compared our data with the published data. Some technical issues in fuel assembly damping measurement testing are also briefly discussed. Understanding of each fuel assembly damping mechanisms according to the surrounding medium and flow velocity can support the fuel design improvement in fuel assembly dynamics and structural integrity aspect. Because the upgraded requirements of the newly-developed advanced reactor system will demands to minimize fuel design margin in integrity evaluation, reduction in conservatism of fuel assembly damping can contribute to alleviate the fuel design margin for sure. Damping is an energy dissipation mechanism in a vibrating mechanical structure and prevents a resonant structure from having infinite vibration amplitudes. The sources of fuel assembly damping are various from support friction to flow contribution, and it can be increased by the viscosity or drag of surrounding fluid medium or the average velocity of water flowing. Fuel licensing requires fuel design evaluation in transient or accidental condition. Dynamic response analysis of fuel assembly is to show fuel integrity and requires information on assembly-wise damping in dry condition and under wet or water flowing condition. However, damping measurement test for the full-scale fuel assembly prototype is not easy to carry out because of the scale (fuel prototype, test facility), unsteadiness of test data (scattering, random sampling and processing), instrumentation under water flowing (water-proof response measurement), and noise. LWR fuel technology division in KAERI is preparing the infra structure for damping measurement test of full-scale fuel assembly, to support fuel industries and related research activities. Here is a preliminary summary of fuel assembly damping, published in the literature. Some technical issues in fuel assembly damping

  17. Supramolecular recognition: On the kinetic lability of thermodynamically stable host–guest association complexes

    OpenAIRE

    Goshe, Andrew J.; Steele, Ian M.; Ceccarelli, Christopher; Rheingold, Arnold L.; Bosnich, B.

    2002-01-01

    A molecular receptor consisting of a spacer bearing two cofacially disposed terpyridyl–palladium–ligand (terpy-Pd-L) units rigidly separated by about 7 Å has been investigated for molecular recognition of planar aromatic molecules. It is found that although the receptor forms stable 1:2 host–guest association complexes with 9-methylanthracene (9-MA), the guest undergoes very rapid site exchange within the receptor and with external free 9-MA. A crystal structure of the 2:...

  18. Structural studies of nucleic acids and proteins involved in nucleic acid recognition

    OpenAIRE

    Russo Krauss, Irene

    2010-01-01

    This PhD thesis focuses on the structural analysis of the protein-nucleic acid recognition. In particular the research work has been focalized on two different kinds of proteins and their nucleotide ligands. The first part concerns the structural characterization of complexes between human α-thrombin, a protein of physiological and pathological relevance, and two oligonucleotide aptamers (the so called thrombin binding aptamer and a modified version of it), which adopt a G-quadruplex fold. Th...

  19. Optimizing a coarse-grained model for the recognition of protein-protein binding

    OpenAIRE

    Emperador, Agustí; Orozco, Modesto

    2015-01-01

    We are optimizing a force-field to be used with our coarsegrained protein model for the recognition of protein -protein binding. We have found that, apart from ranking correctly the ligand-receptor conformations generated in a protein-protein docking algorithm, our model is able to distinguish binding (experimental structure) from nonbinding (false positive) conformations for many complexes. This suggests us that the model could have a good performance in complete cross-d...

  20. Silver, Gold, Palladium Nanoparticles: Ligand Design, Synthesis and Polymer Composites

    Science.gov (United States)

    Iqbal, Muhammad

    Metal nanoparticles, especially gold nanoparticles (AuNPs), have been extensively studied due to their interesting optical properties and potential applications in emerging technologies like drug delivery, cancer therapy, catalysis, chemical and bio-sensing and microelectronics devices. Alkyl thiol ligands in the form of self assembled monolayers are often used to stabilize and functionalize the gold nanoparticles while other types of ligands have been rarely employed and the properties of AuNPs protected by different types of ligands have not been studied comprehensively and comparatively. This dissertation reports the first comparative studies on the thermal and chemical stability of AuNPs protected by alkyl thiolates, alkyl selenolates, dialkyl dithiophosphinates, and dialkyl dithiophosphates (Chapters 2 and 3). AuNPs protected by dialkyl dithiophosphinates and dialkyl dithiophosphates are unprecedented. All AuNPs were prepared from amine protected precursor AuNPs by ligand exchange to ensure similar size, size distribution, and chemical composition. They were extensively characterized by solution 1H-NMR and UV-VIS spectroscopy, transmission electron microscopy (TEM), thermal analysis, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) analysis. For the first time, thermal stability was investigated by differential scanning calorimetry (DSC) that provided more accurate decomposition temperatures and enthalpies, whereas chemical stability was tested as the availability of the gold surface towards etching with cyanide in different solvents. Surprisingly, alkyl selenolate protected AuNPs are thermally less stable than alkyl thiolate protected AuNPs despite their proposed stronger binding to the gold surface and a much more crystalline monolayer, which suggests that different decomposition mechanisms apply to alkyl thiolate and alkyl selenolate protected AuNPs. Dialkyl dithiophosphinates and dialkyl dithiophosphates protected AuNPs are thermally

  1. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  2. Methodology for local verification of flow regimes in fuel assemblies charts

    International Nuclear Information System (INIS)

    The best estimate thermal hydraulic codes describe adequately two-phase flows in nuclear energy facilities if there is proper system of closed relations. It could be obtained from the reliable information on structure forms of two-phase flows, its boundaries and reliable regime charts. In the paper the methodology of automatic recognition of the boundaries of the main types of two phase flows for rod fuel assemblies is presented. The methodology is based on definition of thermal hydraulic parameters distribution in experimental fuel assembly. The measurements were carried out using ASD signals of acoustic noise. In the paper data on two-phase flow regimes boundaries recognition especially low boundaries of bubble flow are summarized for experimental fuel assembly. The methodology of flow regimes charts applied to recognition of upper boundaries of boiling crisis regime was verificated. The satisfactory coincidence with experimental results have been shown. (author)

  3. Understanding of viral assembly through characterization of virus like nanoparticles

    Science.gov (United States)

    Malyutin, Andrey

    Virus like nanoparticles (VNPs) are a versatile platform for the development of novel materials that can be used in clinical applications or to study fundamental aspects of viral self-assembly and biophysics. In this work I summarize my progress on three VNP based studies. (1) We perform small angle X-ray scattering, cryo-electron microscopy (cryo-EM) combined with single particle reconstruction, and magnetic resonance imaging (MRI) to characterize structure and properties of VNPs containing gold coated iron oxide nanoparticles (NPs). These 11 nm NPs can be functionalized with HS-PEG-COOH ligand and maintain native protein structure and excellent magnetic properties, making them suitable for use as contrast agents in MRI. (2) Light scattering and cryo-EM and tomography are applied to study the assembly mechanism of BMV capsids around gold NPs. A novel mechanism of assembly is observed that, upon initiation of assembly, proceeds through an intermediary aggregation step of proteins and NPs, followed by protein annealing, and a release of assembled VNPs. This mechanism could have biological relevance to native virus assembly, as it exemplifies the versatility and robustness of the BMV protein, its ability to rescue assembly even in an aggregated state, as derived from the need to assemble in a variety of hosts and conditions. (3) The effects of crowding conditions, as mimicked by PEG6000 and Ficoll 70, on the assembly of empty capsids of BMV and structure of native BMV virions are investigated by light scattering, cryo-EM, and single particle reconstruction. Native virions display reduction in overall size, dependent on crowding agent concentration; whereas the assembly of empty capsids is greatly accelerated in crowded conditions at a range of ionic strengths. This work further displays the need for in vivo methods to study viral properties, as in vitro experiments miss the complexities of the cell.

  4. Macrocyclic ligands for uranium complexation

    International Nuclear Information System (INIS)

    A highly preorganized 24-macrocycle containing biuret, thiobiuret and pyridine subunits has been prepared by high dilution ring-closure procedures. Intermediate products to this macrocycle have been utilized to extend this synthetic route to include further representatives where solubility and stability will be influenced by substituent variation. A 1:1 complex has been formed from uranyl acetate and a quinquepyridine derivative, this representing a new type of ligand for the uranyl ion. A very convenient synthetic procedure that will allow the incorporation of these macrocycles into polymeric systems has been developed for the introduction of a vinyl substituent into the 4-position of the pyridine ring. Using triflate, vinyltributyltin and Pd0 chemistry, this procedure should make a variety of substituted 4-vinylpyridines available for the first time. 3 refs

  5. Synthesis and characterization of mixed ligand chiral nanoclusters

    OpenAIRE

    Güven, Zekiye Pelin; Guven, Zekiye Pelin; Üstbaş, Burçin; Ustbas, Burcin; Harkness, Kellen M.; Coşkun, Hikmet; Coskun, Hikmet; Joshi, Chakra P.; Besong, Tabot M. D.; Stellacci, Francesco; Bakr, Osman M.; Akbulut, Özge; Akbulut, Ozge

    2015-01-01

    Chiral mixed ligand silver nanoclusters were synthesized in the presence of a chiral and an achiral ligand. The ratio of the ligands was changed to track the formation of these clusters. While the chiral ligand lead to nanoparticles, Presence of the achiral ligand induced the formation of nanoclusters with chiral properties.

  6. Iris Recognition using Orthogonal Transforms

    Directory of Open Access Journals (Sweden)

    M.Mani Roja

    2012-12-01

    Full Text Available Iris Recognition is a biometric recognition technique in which features of the iris are used to uniquely identify individuals. Iris recognition has over the years emerged as one of the most accuratebiometric techniques as opposed to other biometric techniques like face, signature and fingerprint. First, the iris image is pre processed using canny edge detector using a Gaussian filter. The iris edge and the pupil edge are extracted using image morphological operation, image opening. After normalization of red, green and blue components of the colour iris using Euclidean distance method, they are combined to form the localized colour iris. For feature vectors extraction, orthogonal transforms like discrete cosine transform, discrete sine transform and discrete Fourier transform have been considered. The proposed iris recognition system is very time efficient and it takes less than 1 second to grant authentication.

  7. Similarity measures for face recognition

    CERN Document Server

    Vezzetti, Enrico

    2015-01-01

    Face recognition has several applications, including security, such as (authentication and identification of device users and criminal suspects), and in medicine (corrective surgery and diagnosis). Facial recognition programs rely on algorithms that can compare and compute the similarity between two sets of images. This eBook explains some of the similarity measures used in facial recognition systems in a single volume. Readers will learn about various measures including Minkowski distances, Mahalanobis distances, Hansdorff distances, cosine-based distances, among other methods. The book also summarizes errors that may occur in face recognition methods. Computer scientists "facing face" and looking to select and test different methods of computing similarities will benefit from this book. The book is also useful tool for students undertaking computer vision courses.

  8. Pattern recognition and string matching

    CERN Document Server

    Cheng, Xiuzhen

    2002-01-01

    The research and development of pattern recognition have proven to be of importance in science, technology, and human activity. Many useful concepts and tools from different disciplines have been employed in pattern recognition. Among them is string matching, which receives much theoretical and practical attention. String matching is also an important topic in combinatorial optimization. This book is devoted to recent advances in pattern recognition and string matching. It consists of twenty eight chapters written by different authors, addressing a broad range of topics such as those from classifica­ tion, matching, mining, feature selection, and applications. Each chapter is self-contained, and presents either novel methodological approaches or applications of existing theories and techniques. The aim, intent, and motivation for publishing this book is to pro­ vide a reference tool for the increasing number of readers who depend upon pattern recognition or string matching in some way. This includes student...

  9. Moment Invariants for Object Recognition

    Czech Academy of Sciences Publication Activity Database

    Flusser, Jan

    Boca Raton: Wiley&Sons, 2015. ISBN 9780471346081 Institutional support: RVO:67985556 Keywords : invariants * object recognition * moments Subject RIV: JC - Computer Hardware ; Software http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0442976.pdf

  10. Biomimetic assembly and activation of [FeFe]-hydrogenases.

    Science.gov (United States)

    Berggren, G; Adamska, A; Lambertz, C; Simmons, T R; Esselborn, J; Atta, M; Gambarelli, S; Mouesca, J-M; Reijerse, E; Lubitz, W; Happe, T; Artero, V; Fontecave, M

    2013-07-01

    Hydrogenases are the most active molecular catalysts for hydrogen production and uptake, and could therefore facilitate the development of new types of fuel cell. In [FeFe]-hydrogenases, catalysis takes place at a unique di-iron centre (the [2Fe] subsite), which contains a bridging dithiolate ligand, three CO ligands and two CN(-) ligands. Through a complex multienzymatic biosynthetic process, this [2Fe] subsite is first assembled on a maturation enzyme, HydF, and then delivered to the apo-hydrogenase for activation. Synthetic chemistry has been used to prepare remarkably similar mimics of that subsite, but it has failed to reproduce the natural enzymatic activities thus far. Here we show that three synthetic mimics (containing different bridging dithiolate ligands) can be loaded onto bacterial Thermotoga maritima HydF and then transferred to apo-HydA1, one of the hydrogenases of Chlamydomonas reinhardtii algae. Full activation of HydA1 was achieved only when using the HydF hybrid protein containing the mimic with an azadithiolate bridge, confirming the presence of this ligand in the active site of native [FeFe]-hydrogenases. This is an example of controlled metalloenzyme activation using the combination of a specific protein scaffold and active-site synthetic analogues. This simple methodology provides both new mechanistic and structural insight into hydrogenase maturation and a unique tool for producing recombinant wild-type and variant [FeFe]-hydrogenases, with no requirement for the complete maturation machinery. PMID:23803769

  11. A Survey: Face Recognition Techniques

    OpenAIRE

    Muhammad Sharif; Sajjad Mohsin; Muhammad Younas Javed

    2012-01-01

    In this study, the existing techniques of face recognition are to be encountered along with their pros and cons to conduct a brief survey. The most general methods include Eigenface (Eigenfeatures), Hidden Markov Model (HMM), geometric based and template matching approaches. This survey actually performs analysis on these approaches in order to constitute face representations which will be discussed as under. In the second phase of the survey, factors affecting the recognition rates and proce...

  12. A SURVEY ON FACE RECOGNITION

    OpenAIRE

    R.VINODINI; DR.M.KARNAN

    2014-01-01

    Face recognition is one of the most emerging and popular biometric authentication of a person, it presents a challenging problem in the field of image analysis and computer vision. Though there are various biometric traits such as iris, fingerprint and palm print etc., we focused on face recognition as it is socially acceptable and reliable. Here user identity plays a very important role to uniquely verify or authenticate the individual person. Many techniques were implemented in face recogni...

  13. Theoretical Aspects of Molecular Recognition

    OpenAIRE

    Harmat, Veronika; Náray-Szabó, Gábor

    2009-01-01

    Molecular recognition is a key process in non-covalent interactions, which determines, among others, host-guest complexation, drug action and protein-protein interaction. A simple and attractive formulation is the lock-and-key analogy defining the host as a lock accommodating the guest as a key. We stress three major aspects of molecular recognition, determining both complementarity between host and guest and similarity within a group of guest molecules. These aspects are: steric, i.e. maximi...

  14. Pattern Recognition Theory of Mind

    OpenAIRE

    de Paiva, Gilberto

    2009-01-01

    I propose that pattern recognition, memorization and processing are key concepts that can be a principle set for the theoretical modeling of the mind function. Most of the questions about the mind functioning can be answered by a descriptive modeling and definitions from these principles. An understandable consciousness definition can be drawn based on the assumption that a pattern recognition system can recognize its own patterns of activity. The principles, descriptive modeling and definiti...

  15. Educational perspectives on recognition theory

    OpenAIRE

    Hanhela, T. (Teemu)

    2014-01-01

    Abstract The starting point for the research is to examine the educational perspectives of Axel Honneth’s recognition theory to find useful contents for educational institutions. The method of the thesis is conceptual analysis which gets a dual role: chapters two and three of the treatise define and analyse Honneth’s concept of recognition and its historic-philosophical context and with help of critical analyses, the articles (I, II and III) and chapter four of the dissertation connects t...

  16. Object Recognition Using Spatiotemporal Signatures

    OpenAIRE

    James V Stone

    1998-01-01

    The sequence of images generated by motion between observer and object specifies a spatiotemporal signature for that object. Evidence is presented that such spatiotemporal signatures are used in object recognition. Subjects learned novel, three-dimensional, rotating objects from image sequences in a continuous recognition task. During learning, the temporal order of images of a given object was constant. During testing, the order of images in each sequence was reversed, relative to its order ...

  17. Automatic Number Plate Recognition System

    OpenAIRE

    Rajshree Dhruw; Dharmendra Roy

    2014-01-01

    Automatic Number Plate Recognition (ANPR) is a mass surveillance system that captures the image of vehicles and recognizes their license number. The objective is to design an efficient automatic authorized vehicle identification system by using the Indian vehicle number plate. In this paper we discus different methodology for number plate localization, character segmentation & recognition of the number plate. The system is mainly applicable for non standard Indian number plates by recognizing...

  18. Facial Expressions Recognition Using Eigenspaces

    OpenAIRE

    Senthil Ragavan Valayapalayam Kittusamy; Venkatesh Chakrapani

    2012-01-01

    A challenging research topic is to make the Computer Systems to recognize facial expressions from the face image. A method of facial expression recognition, based on Eigenspaces is presented in this study. Here, the authors recognize the userâs facial expressions from the input images, using a method that was customized from eigenface recognition. Evaluation was done for this method in terms of identification correctness using two different Facial Expressions databases, Cohn-Kanade facial exp...

  19. Speech Recognition Technology: Applications & Future

    OpenAIRE

    Pankaj Pathak

    2010-01-01

    Voice or speech recognition is "the technology by which sounds, words or phrases spoken by humans are converted into electrical signals, and these signals are transformed into coding patterns to which meaning has been assigned", .It is the technology needs a combination of improved artificial intelligence technology and a more sophisticated speech-recognition engine . Initially a primitive device is developed which could recognize speech, by AT & T Bell Laboratories in the 1940s. According to...

  20. Recognition Memory in Psychotic Patients

    Directory of Open Access Journals (Sweden)

    H. Ellis

    1992-01-01

    Full Text Available Preliminary data are reported from experiments in which Warrington's (1984 Recognition Memory Tests were given to patients with misidentification delusions including the Capgras type and to psychotic patients. The results showed a profound impairment on face recognition for most groups, especially those with the Capgras delusion. It was rare to find a patent whose score on the word test was anything but normal.

  1. The first crystal structure of an actinide complex of the macrocyclic ligand DOTA: a two-dimensional uranyl-organic framework

    International Nuclear Information System (INIS)

    Reaction of excess uranyl nitrate with DOTA (H4L) under hydrothermal conditions gave the complex [(UO2)2(H2L)(C2O4)(H2O)2]· 6H2O (1), in which the oxalato ligand was generated in situ. Each H2L2- ligand is bound to four uranyl groups, further oxalato-bridging giving rise to corrugated layers. This result shows the interest of DOTA as a square assembler. (author)

  2. Ligand-receptor Interactions by NMR Spectroscopy

    Directory of Open Access Journals (Sweden)

    Novak. P.

    2008-04-01

    Full Text Available Today NMR spectroscopy is a method of choice for elucidation of interactions between biomolecules and the potential ligands. Knowledge on these interactions is an essential prerequisite for the rational drug design. The most important contribution of NMR to drug design a few years ago was the 3D structure determination of proteins. Besides delivering the 3D structures of the free proteins as a raw material for the modeling studies on ligand binding, NMR can directly yield valuable experimental data on the biologically important protein-ligand complexes. In addition to X-ray diffraction, NMR spectroscopy can provide information on the internal protein dynamics ordynamics of intermolecular interactions. Changes in NMR parameters allow us to detect ("SAR by NMR" and quantitatively determine binding affinities (titration, diffusion NMR experiments, etc. of potential ligands. Also, it is possible to determine the binding site and conformations of ligands, receptors and receptor-ligand complexes with the help of NMR methods such as tr-NOESY. Epitopes or functional groups responsible for binding of ligands to the receptor can be identified by employing STD or WaterLOGSY experiments. In this review are described some of the most frequent NMR methods for the characterization of the interactions between biomolecules and ligands, together with their advantages and disadvantages.

  3. Magnetic nanoparticles linked to a ligand

    OpenAIRE

    Penadés, Soledad; Martín-Lomas, Manuel; Martínez de la Fuente, Jesús; Rademacher, Thomas W.

    2006-01-01

    Materials and methods for making small magnetic particles, e.g. clusters of metal atoms, which can be employed as a substrate for immobilising a plurality of ligands. Also disclosed are uses of these magnetic nanoparticles as therapeutic and diagnostic reagents, and in the study of ligand-mediated interactions.

  4. Electrochemistry of complex combinations with organic ligands

    International Nuclear Information System (INIS)

    The electrochemical behaviour of Cd(2), Ni(2), Fe(2), Fe(3), In(3), Pb(2) complexes with organic bi-and polydentate ligands have been studied by methods of classical and alternating current polarography. Cadmium and indium complexing depending on pH value and the nature of the ligands (bipyridyl isomers, phosphoric acid esters) is discussed

  5. Ligand sphere conversions in terminal carbide complexes

    DEFF Research Database (Denmark)

    Morsing, Thorbjørn Juul; Reinholdt, Anders; Sauer, Stephan P. A.; Bendix, Jesper

    2016-01-01

    Metathesis is introduced as a preparative route to terminal carbide complexes. The chloride ligands of the terminal carbide complex [RuC(Cl)2(PCy3)2] (RuC) can be exchanged, paving the way for a systematic variation of the ligand sphere. A series of substituted complexes, including the first exam...

  6. Success with voice recognition.

    Science.gov (United States)

    Sferrella, Sheila M

    2003-01-01

    You need a compelling reason to implement voice recognition technology. At my institution, the compelling reason was a turnaround time for Radiology results of more than two days. Only 41 percent of our reports were transcribed and signed within 24 hours. In November 1998, a team from Lehigh Valley Hospital went to RSNA and reviewed every voice system on the market. The evaluation was done with the radiologist workflow in mind, and we came back from the meeting with the vendor selection completed. The next steps included developing a business plan, approval of funds, reference calls to more than 15 sites and contract negotiation, all of which took about six months. The department of Radiology at Lehigh Valley Hospital and Health Network (LVHHN) is a multi-site center that performs over 360,000 procedures annually. The department handles all modalities of radiology: general diagnosis, neuroradiology, ultrasound, CT Scan, MRI, interventional radiology, arthography, myelography, bone densitometry, nuclear medicine, PET imaging, vascular lab and other advanced procedures. The department consists of 200 FTEs and a medical staff of more than 40 radiologists. The budget is in the $10.3 million range. There are three hospital sites and four outpatient imaging center sites where services are provided. At Lehigh Valley Hospital, radiologists are not dedicated to one subspecialty, so implementing a voice system by modality was not an option. Because transcription was so far behind, we needed to eliminate that part of the process. As a result, we decided to deploy the system all at once and with the radiologists as editors. The planning and testing phase took about four months, and the implementation took two weeks. We deployed over 40 workstations and trained close to 50 physicians. The radiologists brought in an extra radiologist from our group for the two weeks of training. That allowed us to train without taking a radiologist out of the department. We trained three to six

  7. Pressure-Directed Assembly: Nanostructures Made Easy

    Science.gov (United States)

    Fan, Hongyou

    Precise control of structural parameters through nanoscale engineering to improve optical and electronic properties of functional nanomaterials continuously remains an outstanding challenge. Previous work has been conducted largely at ambient pressure and relies on specific chemical or physical interactions such as van der Waals interactions, dipole-dipole interactions, chemical reactions, ligand-receptor interactions, etc. In this presentation, I will introduce a new pressure-directed assembly method that uses mechanical compressive force applied to nanoparticle arrays to induce structural phase transition and to consolidate new nanomaterials with precisely controlled structures and tunable properties. By manipulating nanoparticle coupling through external pressure, instead of through chemistry, a reversible change in their assemblies and properties can be achieved and demonstrated. In addition, over a certain threshold, the external pressure will force these nanoparticles into contact, thereby allowing the formation and consolidation of one- to three-dimensional nanostructures. Through pressure induced nanoparticle assembly, materials engineering and synthesis become remarkably flexible without relying on traditional crystallization process where atoms/ions are locked in a specific crystal structure. Therefore, morphology or architecture can be readily tuned to produce desirable properties for practical applications. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  8. Voice congruency facilitates word recognition.

    Directory of Open Access Journals (Sweden)

    Sandra Campeanu

    Full Text Available Behavioral studies of spoken word memory have shown that context congruency facilitates both word and source recognition, though the level at which context exerts its influence remains equivocal. We measured event-related potentials (ERPs while participants performed both types of recognition task with words spoken in four voices. Two voice parameters (i.e., gender and accent varied between speakers, with the possibility that none, one or two of these parameters was congruent between study and test. Results indicated that reinstating the study voice at test facilitated both word and source recognition, compared to similar or no context congruency at test. Behavioral effects were paralleled by two ERP modulations. First, in the word recognition test, the left parietal old/new effect showed a positive deflection reflective of context congruency between study and test words. Namely, the same speaker condition provided the most positive deflection of all correctly identified old words. In the source recognition test, a right frontal positivity was found for the same speaker condition compared to the different speaker conditions, regardless of response success. Taken together, the results of this study suggest that the benefit of context congruency is reflected behaviorally and in ERP modulations traditionally associated with recognition memory.

  9. Building the bacterial orisome: high affinity DnaA recognition plays a role in setting the conformation of oriC DNA

    OpenAIRE

    Kaur, Gulpreet; Vora, Mansi P.; Czerwonka, Christopher A.; Rozgaja, Tania A.; Grimwade, Julia E.; Leonard, Alan C.

    2014-01-01

    During assembly of the E. coli pre-replicative complex (pre-RC), initiator DnaA oligomers are nucleated from three widely separated high affinity DnaA recognition sites in oriC. Oligomer assembly is then guided by low affinity DnaA recognition sites, but is also regulated by a switch-like conformational change in oriC mediated by sequential binding of two DNA bending proteins, Fis and IHF, serving as inhibitor and activator, respectively. Although their recognition sites are separated by up t...

  10. Multi-associative memory in fLIF cell assemblies.

    OpenAIRE

    Huyck, Christian R.; Nadh, Kailash

    2009-01-01

    The fundamental mammalian behaviours of perception, recognition, recollection, and all other psychological phenomena are intrinsically related to the basic cognitive tasks of memorisation and association. Based on Hebb’s Cell Assembly (CA) theory, it is believed that concepts are encoded as neuronal CAs in mammalian cortical areas. This paper describes a series of simulations that demonstrate various associative memory tasks using CAs based on biologically plausible fatiguing, Leaky, Integrat...

  11. From supramolecular chemistry to nanotechnology : assembly of 3D nanostructures

    OpenAIRE

    Ling, Xing Yi

    2008-01-01

    Fabricating well-defined and stable nanoparticle arrays and crystals in a controlled fashion receives growing attention in nanotechnology owing to the potential application in optoelectronic devices, biological sensors, and photonic structures. The research described in this thesis aims to construct stable, ordered and functional 2D and 3D nanoparticle structures. Molecular recognition abilities have been exploited by using a combination of supramolecularly directed self-assembly of receptor-...

  12. Polyaromatic N-heterocyclic carbene ligands and π-stacking. Catalytic consequences.

    Science.gov (United States)

    Peris, Eduardo

    2016-04-30

    In the course of our most recent research, we demonstrated how homogeneous catalysts with polyaromatic functionalities possess properties that clearly differ from those shown by analogues lacking these polyaromatic systems. The differences arise from the ability of the polyaromatic groups to afford non-covalent interactions with aromatic molecules, which can either be substrates in a homogeneous catalysed reaction, or the same catalysts to afford self-assembled systems. This article summarizes all our efforts toward understanding the fundamental effects of π-stacking interactions in homogenous catalysis, particularly in those cases where catalysts bearing polyaromatic functionalities are used. The study reveals several important implications regarding the influence of ligand-ligand interactions, ligand-additive interactions, and ligand-substrate interactions, in the performance of the catalysts used. In particular, the electronic properties of ligands with fused polyconjugated systems, are modified if molecules with π-stacking abilities are added, via a ligand-additive interaction. Also, the kinetics of the reactions in which aromatic substrates and catalysts with polyaromatic ligands are used, are strongly influenced by the self-association of the catalysts and by the non-covalent interaction between the catalyst and the aromatic substrates. The nature and the magnitude of these supramolecular interactions were unveiled by using host-guest chemistry methods applied to organometallic catalysis. Finally, non-covalent interactions afford a very convenient approach for the immobilization of catalysts decorated with polyaromatic systems onto the surfaces of graphene derivatives, hence affording an easy yet extremely effective way to support catalysts and facilitate recycling. The results given have fundamental implications in the design of future catalysts containing rigid polyaromatic systems, and may inspire future researchers in the design of improved homogeneous

  13. Nuclear fuel assembly

    International Nuclear Information System (INIS)

    A nuclear fuel assembly includes and upper yoke, a base, an elongated, outer flow channel disposed substantially along the entire length of the fuel assembly and an elongated, internal, central water cross, formed by four, elongated metal angles, that divides the nuclear fuel assembly into four, separate, elongated fuel sections and that provides a centrally disposed path for the flow of subcooled neutron moderator along the length of the fuel assembly. A separate fuel bundle is located in each of the four fuel sections and includes an upper tie plate, a lower tie plate and a plurality of elongated fuel rods disposed therebetween. Preferably, each upper tie plate is formed from a plurality of interconnected thin metal bars and includes an elongated, axially extending pin that is received by the upper yoke of the fuel assembly for restraining lateral motion of the fuel bundle while permitting axial movement of the fuel bundle with respect to the outer flow channel. The outer flow channel is fixedly secured at its opposite longitudinal ends to the upper yoke and to the base to permit the fuel assembly to be lifted and handled in a vertical position without placing lifting loads or stresses on the fuel rods. The yoke, removably attached at the upper end of the fuel assembly to four structural ribs secured to the inner walls of the outer flow channel, includes, as integrally formed components, a lifting bail or handle, laterally extending bumpers, a mounting post for a spring assembly, four elongated apertures for receiving with a slip fit the axially extending pins mounted on the upper tie plates and slots for receiving the structural ribs secured to the outer flow channel. Locking pins securely attach the yoke to the structural ribs enabling the fuel assembly to be lifted as an entity

  14. DC source assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Jeremy B; Newson, Steve

    2013-02-26

    Embodiments of DC source assemblies of power inverter systems of the type suitable for deployment in a vehicle having an electrically grounded chassis are provided. An embodiment of a DC source assembly comprises a housing, a DC source disposed within the housing, a first terminal, and a second terminal. The DC source also comprises a first capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the first terminal. The DC source assembly further comprises a second capacitor having a first electrode electrically coupled to the housing, and a second electrode electrically coupled to the second terminal.

  15. Influence of self-assembly on intercalative DNA binding interaction of double-chain surfactant Co(III) complexes containing imidazo[4,5-f][1,10]phenanthroline and dipyrido[3,2-d:2'-3'-f]quinoxaline ligands: experimental and theoretical study.

    Science.gov (United States)

    Nagaraj, Karuppiah; Velmurugan, Gunasekaran; Sakthinathan, Subramanian; Venuvanalingam, Ponnambalam; Arunachalam, Sankaralingam

    2014-12-28

    A new class of surfactant Co(III) complexes, cis-[Co(ip)2(C12H25NH2)2](ClO4)3 (1) and cis-[Co(dpq)2(C12H25NH2)2](ClO4)3 (2) (ip = imidazo[4,5-f][1,10]phenanthroline, dpq = dipyrido[3,2-d:2'-3'-f]quinoxaline), have been synthesized and characterized by various spectroscopic and physico-chemical techniques. The critical micelle concentration (CMC) values of these complexes in aqueous solution were obtained from conductance measurements. The specific conductivity data (at 303, 308, 313, 318 and 323 K) served for the evaluation of the temperature-dependent CMC and the thermodynamics of micellization (ΔG(0)(m), ΔH(0)(m) and ΔS(0)(m)). The trend in DNA-binding affinities and the spectral properties of a series of complexes, cis-[Co(ip)2(C12H25NH2)2](ClO4)3 (1) and cis-[Co(dpq)2(C12H25NH2)2](ClO4)3 (2), have been experimentally and theoretically investigated. The experimental results indicate that the size and shape of the intercalated ligand and hydrophobicity of the complexes have a marked effect on the binding affinity of the complexes to CT DNA in intercalation mode, and the order of their intrinsic DNA-binding constants Kb is Kb(1) extended aromatic ring and optical properties of the complexes can be reasonably explained by applying the DFT calculations. The energy gap between HOMO and LUMO indicates that these complexes are prone to interact with CT DNA. Further, molecular docking calculations have also been performed to understand the nature of binding of the complexes and the result confirms that the complexes interact with CT DNA through the alkyl chain. The cytotoxic activity of these complexes on human liver carcinoma cancer cells were determined adopting MTT assay and specific staining techniques, which revealed that the viability of the cells thus treated was significantly decreased and the cells succumbed to apoptosis as seen in the changes in the nuclear morphology and cytoplasmic features. PMID:25354359

  16. Protein-ligand-based pharmacophores: generation and utility assessment in computational ligand profiling.

    Science.gov (United States)

    Meslamani, Jamel; Li, Jiabo; Sutter, Jon; Stevens, Adrian; Bertrand, Hugues-Olivier; Rognan, Didier

    2012-04-23

    Ligand profiling is an emerging computational method for predicting the most likely targets of a bioactive compound and therefore anticipating adverse reactions, side effects and drug repurposing. A few encouraging successes have already been reported using ligand 2-D similarity searches and protein-ligand docking. The current study describes the use of receptor-ligand-derived pharmacophore searches as a tool to link ligands to putative targets. A database of 68,056 pharmacophores was first derived from 8,166 high-resolution protein-ligand complexes. In order to limit the number of queries, a maximum of 10 pharmacophores was generated for each complex according to their predicted selectivity. Pharmacophore search was compared to ligand-centric (2-D and 3-D similarity searches) and docking methods in profiling a set of 157 diverse ligands against a panel of 2,556 unique targets of known X-ray structure. As expected, ligand-based methods outperformed, in most of the cases, structure-based approaches in ranking the true targets among the top 1% scoring entries. However, we could identify ligands for which only a single method was successful. Receptor-ligand-based pharmacophore search is notably a fast and reliable alternative to docking when few ligand information is available for some targets. Overall, the present study suggests that a workflow using the best profiling method according to the protein-ligand context is the best strategy to follow. We notably present concrete guidelines for selecting the optimal computational method according to simple ligand and binding site properties. PMID:22480372

  17. Micro-Recognition - Erving Goffman as Recognition Thinker

    DEFF Research Database (Denmark)

    Jacobsen, Michael Hviid; Kristiansen, Søren

    2009-01-01

      The purpose of this article is to present, develop and exemplify the argument that Erving Goffman can be regarded as an important yet somewhat overlooked contributor to recognition theory in contemporary sociology. Despite often being neglected in this respect, this article provides an interpre......  The purpose of this article is to present, develop and exemplify the argument that Erving Goffman can be regarded as an important yet somewhat overlooked contributor to recognition theory in contemporary sociology. Despite often being neglected in this respect, this article provides an...... interpretation of Goffman as a major recognition theorist on the micro-level of social analysis by way of his ritual metaphor. Erving Goffman's sociology is conventionally approached and appreciated primarily through his famous dramaturgical metaphor that describes and comprehends social life through the......-structural or macro-sociological recognition claims and all contain a certain political or moral edge - Goffman rather provides a much more descriptive and micro-sociological account of the workings and necessity of recognition. In his ritual metaphorical perspective, social interaction to a large extent...

  18. Interaction Entropy: A New Paradigm for Highly Efficient and Reliable Computation of Protein-Ligand Binding Free Energy.

    Science.gov (United States)

    Duan, Lili; Liu, Xiao; Zhang, John Z H

    2016-05-01

    Efficient and reliable calculation of protein-ligand binding free energy is a grand challenge in computational biology and is of critical importance in drug design and many other molecular recognition problems. The main challenge lies in the calculation of entropic contribution to protein-ligand binding or interaction systems. In this report, we present a new interaction entropy method which is theoretically rigorous, computationally efficient, and numerically reliable for calculating entropic contribution to free energy in protein-ligand binding and other interaction processes. Drastically different from the widely employed but extremely expensive normal mode method for calculating entropy change in protein-ligand binding, the new method calculates the entropic component (interaction entropy or -TΔS) of the binding free energy directly from molecular dynamics simulation without any extra computational cost. Extensive study of over a dozen randomly selected protein-ligand binding systems demonstrated that this interaction entropy method is both computationally efficient and numerically reliable and is vastly superior to the standard normal mode approach. This interaction entropy paradigm introduces a novel and intuitive conceptual understanding of the entropic effect in protein-ligand binding and other general interaction systems as well as a practical method for highly efficient calculation of this effect. PMID:27058988

  19. Oracle Complexity and Nontransitivity in Pattern Recognition

    OpenAIRE

    Bulitko, Vadim

    2000-01-01

    Different mathematical models of recognition processes are known. In the present paper we consider a pattern recognition algorithm as an oracle computation on a Turing machine. Such point of view seems to be useful in pattern recognition as well as in recursion theory. Use of recursion theory in pattern recognition shows connection between a recognition algorithm comparison problem and complexity problems of oracle computation. That is because in many cases we can take into account only the n...

  20. Galactose 6-O-sulfotransferases are not required for the generation of Siglec-F ligands in leukocytes or lung tissue.

    Science.gov (United States)

    Patnode, Michael L; Cheng, Chu-Wen; Chou, Chi-Chi; Singer, Mark S; Elin, Matilda S; Uchimura, Kenji; Crocker, Paul R; Khoo, Kay-Hooi; Rosen, Steven D

    2013-09-13

    Eosinophil accumulation is a characteristic feature of the immune response to parasitic worms and allergens. The cell surface carbohydrate-binding receptor Siglec-F is highly expressed on eosinophils and negatively regulates their accumulation during inflammation. Although endogenous ligands for Siglec-F have yet to be biochemically defined, binding studies using glycan arrays have implicated galactose 6-O-sulfate (Gal6S) as a partial recognition determinant for this receptor. Only two sulfotransferases are known to generate Gal6S, namely keratan sulfate galactose 6-O-sulfotransferase (KSGal6ST) and chondroitin 6-O-sulfotransferase 1 (C6ST-1). Here we use mice deficient in both KSGal6ST and C6ST-1 to determine whether these sulfotransferases are required for the generation of endogenous Siglec-F ligands. First, we characterize ligand expression on leukocyte populations and find that ligands are predominantly expressed on cell types also expressing Siglec-F, namely eosinophils, neutrophils, and alveolar macrophages. We also detect Siglec-F ligand activity in bronchoalveolar lavage fluid fractions containing polymeric secreted mucins, including MUC5B. Consistent with these observations, ligands in the lung increase dramatically during infection with the parasitic nematode, Nippostrongylus brasiliensis, which is known to induce eosinophil accumulation and mucus production. Surprisingly, Gal6S is undetectable in sialylated glycans from eosinophils and BAL fluid analyzed by mass spectrometry. Furthermore, none of the ligands we describe are diminished in mice lacking KSGal6ST and C6ST-1, indicating that neither of the known galactose 6-O-sulfotransferases is required for ligand synthesis. These results establish that ligands for Siglec-F are present on several cell types that are relevant during allergic lung inflammation and argue against the widely held view that Gal6S is critical for glycan recognition by this receptor. PMID:23880769

  1. Labeling of fatty acid ligands with the strong electrophilic metal fragment [99mTc(N)(PNP)]2+ (PNP=diphosphane ligand).

    Science.gov (United States)

    Cazzola, Emiliano; Benini, Elisa; Pasquali, Micol; Mirtschink, Peter; Walther, Martin; Pietzsch, Hans-Jurgen; Uccelli, Licia; Boschi, Alessandra; Bolzati, Cristina; Duatti, Adriano

    2008-02-01

    The electrophilic metal fragment [(99m)Tc(N)(PNP)](2+) (PNP=diphosphane ligand) has been employed for the labeling of fatty acid chains of different lengths. To provide a site-specific group for the attachment of the metallic moiety, the fatty acid derivatives were functionalized by appending a bis-mercapto or, alternatively, a dithiocarbamato pi-donor chelating systems to one terminus of the carbon chain to yield both dianionic and monoanionic bifunctional ligands (L). The resulting complexes, [(99m)Tc(N)(PNP)(L)] (0/+), exhibited the usual asymmetrical structure in which a Tc(triple bond)N group was surrounded by two different bidentate chelating ligands. Dianionic ligands gave rise to neutral complexes, while monoanionic ligands afforded monocationic species. Biodistribution studies were carried out in rats. An isolated perfused rat heart model was employed to assess how structural changes in the radiolabeled fatty acid compound affect the myocardial first pass extraction. Results showed that only monocationic complexes accumulated in myocardium to a significant extent. Conversely, neutral complexes were not efficiently retained into the heart region and rapidly washed out. In isolated perfused rat heart experiments, monocationic complexes exhibited a behavior similar to that of the monocationic flow tracers (99m)Tc-MIBI and (99m)Tc-DBODC with almost identical extraction values, a result that could be attributed to the presence of the monopositive charge. Instead, a slightly lower myocardial extraction was found for neutral complexes. Comparison of the observed kinetic behavior of neutral complexes in the isolated perfused rat heart model with that of the myocardial metabolic tracer [(123)I]IPPA revealed that the introduction of the metallic moiety partially hampers recognition of the labeled fatty acids by cardiac enzymes, and consequently, their behavior did not completely reflect myocardial metabolism. PMID:18205326

  2. Fluorescent BINOL-based sensor for thorium recognition and a density functional theory investigation

    International Nuclear Information System (INIS)

    Graphical abstract: A novel BINOL fluorescence sensor L-1 for the recognition of thorium ion with high selectivity and sensitivity. -- Highlights: • The first case of one-to-one stoichiometric responding fluorescent sensor for thorium. • An easy preparation and novel BINOL-based chemical sensor. • This sensor for thorium ion recognition by fluorescence spectrophotometry with high selectivity and sensitivity. • This sensor shows good accuracy for analysis of thorium ions in river water. • DFT calculations indicate that a strong binding interaction exists between the L-1 and Th4+. -- Abstract: A novel 1,1′-bi-2-naphthol (BINOL) derivative fluorescence sensor L-1 for the recognition of thorium ion with a fluorescence quench response. This ligand showed high selectivity and sensitivity for thorium ion recognition. Coordination effects were investigated by DFT calculations, and the coordination modes and sites were confirmed. Moreover, the coordination abilities of the L-1 ligand with Th4+ and UO22+ were evaluated

  3. Discovery of novel ligands for mouse olfactory receptor MOR42-3 using an in silico screening approach and in vitro validation.

    Directory of Open Access Journals (Sweden)

    Selvan Bavan

    Full Text Available The ligands for many olfactory receptors remain largely unknown despite successful heterologous expression of these receptors. Understanding the molecular receptive range of olfactory receptors and deciphering the olfactory recognition code are hampered by the huge number of odorants and large number of olfactory receptors, as well as the complexity of their combinatorial coding. Here, we present an in silico screening approach to find additional ligands for a mouse olfactory receptor that allows improved definition of its molecular receptive range. A virtual library of 574 odorants was screened against a mouse olfactory receptor MOR42-3. We selected the top 20 candidate ligands using two different scoring functions. These 40 odorant candidate ligands were then tested in vitro using the Xenopus oocyte heterologous expression system and two-electrode voltage clamp electrophysiology. We experimentally confirmed 22 of these ligands. The candidate ligands were screened for both agonist and antagonist activity. In summary, we validated 19 agonists and 3 antagonists. Two of the newly identified antagonists were of low potency. Several previously known ligands (mono- and dicarboxylic acids are also confirmed in this study. However, some of the newly identified ligands were structurally dissimilar compounds with various functional groups belonging to aldehydes, phenyls, alkenes, esters and ethers. The high positive predictive value of our in silico approach is promising. We believe that this approach can be used for initial deorphanization of olfactory receptors as well as for future comprehensive studies of molecular receptive range of olfactory receptors.

  4. Nuclear reactor spacer assembly

    International Nuclear Information System (INIS)

    A fuel assembly for a nuclear reactor is disclosed wherein the fuel element receiving and supporting grid is comprised of a first metal, the guide tubes which pass through the grid assembly are comprised of a second metal and the grid is supported on the guide tubes by means of expanded sleeves located intermediate the grid and guide tubes. The fuel assembly is fabricated by inserting the sleeves, of initial outer diameter commensurate with the guide tube outer diameters, through the holes in the grid assembly provided for the guide tubes and thereafter expanding the sleeves radially outwardly along their entire length such that the guide tubes can subsequently be passed through the sleeves. The step of radial expansion, as a result of windows provided in the sleeves having dimensions commensurate with the geometry of the grid, mechanically captures the grid and simultaneously preloads the sleeve against the grid whereby relative motion between the grid and guide tube will be precluded

  5. Spent fuel assembly hardware

    International Nuclear Information System (INIS)

    When spent nuclear fuel is disposed of in a repository, the waste package will include the spent fuel assembly hardware, the structural portion of the fuel assembly, and the fuel pins. The spent fuel assembly hardware is the subject of this paper. The basic constituent parts of the fuel assembly will be described with particular attention on the materials used in their construction. The results of laboratory analyses performed to determine radionuclide inventories and trace impurities also will be described. Much of this work has been incorporated into a US Department of Energy (DOE) database maintained by Oak Ridge National Laboratory (ORNL). This database is documented in DOE/RW-0184 and can be obtained from Karl Notz at ORNL. The database provides a single source for information regarding wastes that may be sent to the repository

  6. Steam separator latch assembly

    Science.gov (United States)

    Challberg, Roy C.; Kobsa, Irvin R.

    1994-01-01

    A latch assembly removably joins a steam separator assembly to a support flange disposed at a top end of a tubular shroud in a nuclear reactor pressure vessel. The assembly includes an annular head having a central portion for supporting the steam separator assembly thereon, and an annular head flange extending around a perimeter thereof for supporting the head to the support flange. A plurality of latches are circumferentially spaced apart around the head flange with each latch having a top end, a latch hook at a bottom end thereof, and a pivot support disposed at an intermediate portion therebetween and pivotally joined to the head flange. The latches are pivoted about the pivot supports for selectively engaging and disengaging the latch hooks with the support flange for fixedly joining the head to the shroud or for allowing removal thereof.

  7. Key role of the Lewis base position in asymmetric bifunctional catalysis: design and evaluation of a new ligand for chiral polymetallic catalysts.

    Science.gov (United States)

    Fujimori, Ikuo; Mita, Tsuyoshi; Maki, Keisuke; Shiro, Motoo; Sato, Akihiro; Furusho, Sanae; Kanai, Motomu; Shibasaki, Masakatsu

    2006-12-27

    New chiral ligands for asymmetric polymetallic catalysts were designed on the basis of the assumption that the higher-order assembly structure is stabilized by modifying the modular unit. The designed ligands 6 and 7 contained a scaffolding cyclohexane ring with a Lewis base phosphine oxide directly attached to the scaffold. A module in the polymetallic complex contains two metals per ligand, and a stable 6-, 5-, 5-membered fused chelation ring system should be generated. Synthesis of these ligands is simple and high yielding, using a catalytic dynamic kinetic resolution promoted by the Trost catalyst as a key step. Ligand function was assessed in a catalytic asymmetric ring-opening reaction of meso-aziridines with TMSCN, a useful reaction for the synthesis of optically active beta-amino acids. The Gd complex generated from Gd(OiPr)3 and the ligand was a highly active and enantioselective catalyst in this reaction. Enantioselectivity was reversed compared to the previously reported d-glucose-derived catalyst containing the same chirality of the individual module. ESI-MS analysis and X-ray crystallographic studies indicate that the assembly state of the modules in the polymetallic catalysts differs depending on the chiral ligand. The difference in the higher-order structure stems from a subtle change (one carbon) in the position of the Lewis base relative to the Gd metal. The change in the higher-order structure of the polymetallic complex led to a dramatic reversal of the enantioselectivity and increased catalyst activity. PMID:17177358

  8. Autocrine signal transmission with extracellular ligand degradation

    International Nuclear Information System (INIS)

    Traveling waves of cell signaling in epithelial layers orchestrate a number of important processes in developing and adult tissues. These waves can be mediated by positive feedback autocrine loops, a mode of cell signaling where binding of a diffusible extracellular ligand to a cell surface receptor can lead to further ligand release. We formulate and analyze a biophysical model that accounts for ligand-induced ligand release, extracellular ligand diffusion and ligand–receptor interaction. We focus on the case when the main mode for ligand degradation is extracellular and analyze the problem with the sharp threshold positive feedback nonlinearity. We derive expressions that link the speed of propagation and other characteristics of traveling waves to the parameters of the biophysical processes, such as diffusion rates, receptor expression level, etc. Analyzing the derived expressions we found that traveling waves in such systems can exhibit a number of unusual properties, e.g. non-monotonic dependence of the speed of propagation on ligand diffusivity. Our results for the fully developed traveling fronts can be used to analyze wave initiation from localized perturbations, a scenario that frequently arises in the in vitro models of epithelial wound healing, and guide future modeling studies of cell communication in epithelial layers

  9. Assemblies of gold icosahedra

    OpenAIRE

    Bilalbegovic, G.

    2004-01-01

    Low-dimensional free-standing aggregates of bare gold clusters are studied by the molecular dynamics simulation. Icosahedra of 55 and 147 atoms are equilibrated at T=300 K. Then, their one- and two-dimensional assemblies are investigated. It is found that icosahedra do not coalescence into large drops, but stable amorphous nanostructures are formed: nanowires for one-dimensional and nanofilms for two-dimensional assemblies. The high-temperature stability of these nanostructures is also invest...

  10. High speed door assembly

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.

    1991-12-31

    This invention is comprised of a high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  11. Hierarchical assembly of block copolymer micelles into reversible networks: MC simulations

    Science.gov (United States)

    Wang, Zilu; Dormidontova, Elena

    2015-03-01

    The rapid development of nanoscience has considerably expanded the range of building blocks for complex self-assembled nanostructure formation, which show great potential for numerous advanced applications. We apply Monte Carlo simulations to gain understanding of molecular mechanism of self-assembly of nanostructures formed by diblock copolymer micelles interconnected by means of metal-ligand complexation. These systems exhibit interesting chemical and mechanical stimuli-responsive behavior and possess two levels of self-assembly: 1) self-assembly of diblock copolymers into micelles and 2) reversible inter-micelle bridging by coordination bonding between metal ions and ligands attached to the corona of nanoparticles, which is responsible for the network viscoelastic properties. Using MC simulations we investigate the effect of metal-ligand complexation on diblock-copolymer micelle formation and vice versa. We analyze the extent of intra- and inter-micelle loops and bridges formed by metal-ligand complexation in relation to the degree of crosslinking and elastic properties of the network. The effect of polymer concentration, hydrophilic block length, metal to oligomer ratio and type of complexation (2:1 or 3:1) on equilibrium properties of reversible networks will be discussed.

  12. Nucleobase assemblies supported by uranyl cation coordination and other non-covalent interactions

    Indian Academy of Sciences (India)

    Jitendra Kumar; Sandeep Verma

    2011-11-01

    We describe synthesis and solid state structural description of uranyl complexes of carboxylate functionalized adenine and uracil derivatives. The metal coordination through carboxylate pendant leads to the formation of dimeric assemblies, whereas the directional nature of hydrogen bonding interaction supported by nucleobases and aqua ligands, result in the generation of complex 3-D architectures containing embedded nucleobase ribbons.

  13. Thermodynamic fingerprints of ligand binding to human telomeric G-quadruplexes.

    Science.gov (United States)

    Bončina, Matjaž; Podlipnik, Črtomir; Piantanida, Ivo; Eilmes, Julita; Teulade-Fichou, Marie-Paule; Vesnaver, Gorazd; Lah, Jurij

    2015-12-01

    Thermodynamic studies of ligand binding to human telomere (ht) DNA quadruplexes, as a rule, neglect the involvement of various ht-DNA conformations in the binding process. Therefore, the thermodynamic driving forces and the mechanisms of ht-DNA G-quadruplex-ligand recognition remain poorly understood. In this work we characterize thermodynamically and structurally binding of netropsin (Net), dibenzotetraaza[14]annulene derivatives (DP77, DP78), cationic porphyrin (TMPyP4) and two bisquinolinium ligands (Phen-DC3, 360A-Br) to the ht-DNA fragment (Tel22) AGGG(TTAGGG)3 using isothermal titration calorimetry, CD and fluorescence spectroscopy, gel electrophoresis and molecular modeling. By global thermodynamic analysis of experimental data we show that the driving forces characterized by contributions of specific interactions, changes in solvation and conformation differ significantly for binding of ligands with low quadruplex selectivity over duplexes (Net, DP77, DP78, TMPyP4; KTel22 ≈ KdsDNA). These contributions are in accordance with the observed structural features (changes) and suggest that upon binding Net, DP77, DP78 and TMPyP4 select hybrid-1 and/or hybrid-2 conformation while Phen-DC3 and 360A-Br induce the transition of hybrid-1 and hybrid-2 to the structure with characteristics of antiparallel or hybrid-3 type conformation. PMID:26546516

  14. Characterization of host responses induced by Toll-like receptor ligands in chicken cecal tonsil cells.

    Science.gov (United States)

    Taha-Abdelaziz, Khaled; Alkie, Tamiru Negash; Hodgins, Douglas C; Shojadoost, Bahram; Sharif, Shayan

    2016-06-01

    The innate responses of cecal tonsils against invading microorganisms are mediated by conserved pattern recognition receptors (PRRs) such as the Toll-like receptors (TLRs). TLRs expressed by mammalian and avian immune system cells have the capability to recognize pathogen-associated molecular patterns (PAMPs). Although, the role of TLR ligands in innate and adaptive responses in chickens has been characterized in spleen and bursa of Fabricius, considerably less is known about responses in cecal tonsils. The aim of the current study was to assess responses of mononuclear cells from cecal tonsils to treatment with the TLR2, TLR4 and TLR21 ligands, Pam3CSK4, lipopolysaccharide (LPS), and CpG oligodeoxynucleotide (ODN), respectively. All three ligands induced significant up-regulation of interferon (IFN)-γ, interleukin (IL)-1β, IL-6 and CxCLi2/IL-8, whereas no significant changes were observed in expression of IL-13 or the antimicrobial peptides, avian β-defensin (AvBD) 1, AvBD2 and cathelicidin 3 (CATHL-3). In general, CpG ODN elicited the highest cytokine responses by cecal tonsil mononuclear cells, inducing significantly higher expression compared to LPS and Pam3CSK4, for IFNγ, IL-1β, IL-6 and CxCLi2 at various time points. These findings suggest the potential use of TLR21 ligands as mucosal vaccine adjuvants, especially in the context of pathogens of the intestinal tract. PMID:27185259

  15. Influence of protonation, tautomeric, and stereoisomeric states on protein-ligand docking results.

    Science.gov (United States)

    ten Brink, Tim; Exner, Thomas E

    2009-06-01

    In this work, we present a systematical investigation of the influence of ligand protonation states, stereoisomers, and tautomers on results obtained with the two protein-ligand docking programs GOLD and PLANTS. These different states were generated with a fully automated tool, called SPORES (Structure PrOtonation and Recognition System). First, the most probable protonations, as defined by this rule based system, were compared to the ones stored in the well-known, manually revised CCDC/ASTEX data set. Then, to investigate the influence of the ligand protonation state on the docking results, different protonation states were created. Redocking and virtual screening experiments were conducted demonstrating that both docking programs have problems in identifying the correct protomer for each complex. Therefore, a preselection of plausible protomers or the improvement of the scoring functions concerning their ability to rank different molecules/states is needed. Additionally, ligand stereoisomers were tested for a subset of the CCDC/ASTEX set, showing similar problems regarding the ranking of these stereoisomers as the ranking of the protomers. PMID:19453150

  16. Fuel assembly reconstitution

    International Nuclear Information System (INIS)

    Fuel failures have been happened in Nuclear Power Plants worldwide, without lost of integrity and safety, mainly for the public, environment and power plants workers. The most common causes of these events are corrosion (CRUD), fretting and pellet cladding interaction. These failures are identified by increasing the activity of fission products, verified by chemical analyses of reactor coolant. Through these analyses, during the fourth operation cycle of Angra 2 Nuclear Power Plant, was possible to observe fuel failure indication. This indication was confirmed in the end of the cycle during the unloading of reactor core through leakage tests of fuel assembly, using the equipment called 'In Mast Sipping' and 'Box Sipping'. After confirmed, the fuel assembly reconstitution was scheduled, and happened in April, 2007, where was identified the cause and the fuel rod failure, which was substitute by dummy rods (zircaloy). The cause was fretting by 'debris'. The actions to avoid and prevent fuel assemblies failures are important. The goals of this work are to describe the methodology of fuel assembly reconstitution using the FARE (Fuel Assembly Reconstitution Equipment) system, to describe the results of this task in economic and security factors of the company and show how the fuel assembly failures are identified during operation and during the outage. (author)

  17. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  18. Design and Validation of Conditional Ligands for HLA-B*08:01, HLA-B*15:01, HLA-B*35:01, and HLA-B*44:05

    DEFF Research Database (Denmark)

    Frøsig, Thomas Mørch; Yap, Jiawei; Seremet, Tina;

    2015-01-01

    We designed conditional ligands restricted to HLA-B*08:01, 2B*35:01, and 2B*44:05 and proved the use of a conditional ligand previously designed for HLA-B*15:02 together with HLA-B*15:01. Furthermore, we compared the detection capabilities of specific HLA-B*15:01-restricted T cells using the HLA......-B*15:01 and HLA-B*15:02 major histocompatibility complex (MHC) multimers and found remarkable differences in the staining patterns detected by flow cytometry. These new conditional ligands greatly add to the application of MHC-based technologies in the analyses of T-cell recognition as they represent...... frequently expressed HLA-B molecules. This expansion of conditional ligands is important to allow T-cell detection over a wide range of HLA restrictions, and provide comprehensive understanding of the T-cell recognition in a given context....

  19. Functional interactions between polypyrimidine tract binding protein and PRI peptide ligand containing proteins.

    Science.gov (United States)

    Coelho, Miguel B; Ascher, David B; Gooding, Clare; Lang, Emma; Maude, Hannah; Turner, David; Llorian, Miriam; Pires, Douglas E V; Attig, Jan; Smith, Christopher W J

    2016-08-15

    Polypyrimidine tract binding protein (PTBP1) is a heterogeneous nuclear ribonucleoprotein (hnRNP) that plays roles in most stages of the life-cycle of pre-mRNA and mRNAs in the nucleus and cytoplasm. PTBP1 has four RNA binding domains of the RNA recognition motif (RRM) family, each of which can bind to pyrimidine motifs. In addition, RRM2 can interact via its dorsal surface with proteins containing short peptide ligands known as PTB RRM2 interacting (PRI) motifs, originally found in the protein Raver1. Here we review our recent progress in understanding the interactions of PTB with RNA and with various proteins containing PRI ligands. PMID:27528752

  20. The Novel Dipeptide Translocator Protein Ligand, Referred to As GD-23, Exerts Anxiolytic and Nootropic Activities

    Science.gov (United States)

    Povarnina, P. Yu.; Yarkov, S. A.; Gudasheva, T. A.; Yarkova, M. A.; Seredenin, S. B.

    2015-01-01

    The translocator protein (TSPO) promotes the translocation of cholesterol to the inner mitochondrial membrane and mediates steroid formation. In this study, we first report on a biological evaluation of the dipeptide GD-23 (N-carbobenzoxy-L tryptophanyl-L isoleucine amide), a structural analogue of Alpidem, the principal TSPO ligand. We show that GD-23 in a dose range of 0.05 to 0.5 mg/kg (i.p.) exhibits anxiolytic activity in the elevated plus maze test and nootropic activity in the object recognition test in scopolamine-induced amnesia in rodents. It was shown that GD-23 did not affect spontaneous locomotor activity, holding promise as a nonsedative anxiolytic agent. The anxiolytic and nootropic activities of GD-23 were abrogated by the TSPO specific ligand PK11195, which thus suggests a role for TSPO in mediating the pharmacological activity of GD-23. PMID:26483966