WorldWideScience

Sample records for assembly heme synthesis

  1. Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on iron-sulfur cluster assembly, heme synthesis and resistance to oxidative stress

    DEFF Research Database (Denmark)

    Seguin, Alexandra; Bayot, Aurélien; Dancis, Andrew

    2009-01-01

    Friedreich's ataxia is generally associated with defects in [Fe-S] cluster assembly/stability and heme synthesis and strong susceptibility to oxidative stress. We used the yeast (Saccharomyces cerevisiae) model of Friedreich's ataxia to study the physiological consequences of modulating...... the expression of the frataxin gene (YFH1). We show that the number of frataxin molecules per wild-type cell varies from less than 200 to 1500 according to the iron concentration in the medium. Cells overexpressing YFH1 on a plasmid (2muYFH1; about 3500 molecules Yfh1/cell) took up more iron than wild-type cells...

  2. Supramolecular assembling systems formed by heme-heme pocket interactions in hemoproteins.

    Science.gov (United States)

    Oohora, Koji; Onoda, Akira; Hayashi, Takashi

    2012-12-14

    A native protein in a biological system spontaneously produces large and elegant assemblies via self-assembly or assembly with various biomolecules which provide non-covalent interactions. In this context, the protein plays a key role in construction of a unique supramolecular structure operating as a functional system. Our group has recently highlighted the structure and function of hemoproteins reconstituted with artificially created heme analogs. The heme molecule is a replaceable cofactor of several hemoproteins. Here, we focus on the successive supramolecular protein assemblies driven by heme-heme pocket interactions to afford various examples of protein fibers, networks and three-dimensional clusters in which an artificial heme moiety is introduced onto the surface of a hemoprotein via covalent linkage and the native heme cofactor is removed from the heme pocket. This strategy is found to be useful for constructing hybrid materials with an electrode or with nanoparticles. The new systems described herein are expected to lead to the generation of various biomaterials with functions and characteristic physicochemical properties similar to those of hemoproteins.

  3. Molecular hijacking of siroheme for the synthesis of heme and d1 heme

    Science.gov (United States)

    Bali, Shilpa; Lawrence, Andrew D.; Lobo, Susana A.; Saraiva, Lígia M.; Golding, Bernard T.; Palmer, David J.; Howard, Mark J.; Ferguson, Stuart J.; Warren, Martin J.

    2011-01-01

    Modified tetrapyrroles such as chlorophyll, heme, siroheme, vitamin B12, coenzyme F430, and heme d1 underpin a wide range of essential biological functions in all domains of life, and it is therefore surprising that the syntheses of many of these life pigments remain poorly understood. It is known that the construction of the central molecular framework of modified tetrapyrroles is mediated via a common, core pathway. Herein a further branch of the modified tetrapyrrole biosynthesis pathway is described in denitrifying and sulfate-reducing bacteria as well as the Archaea. This process entails the hijacking of siroheme, the prosthetic group of sulfite and nitrite reductase, and its processing into heme and d1 heme. The initial step in these transformations involves the decarboxylation of siroheme to give didecarboxysiroheme. For d1 heme synthesis this intermediate has to undergo the replacement of two propionate side chains with oxygen functionalities and the introduction of a double bond into a further peripheral side chain. For heme synthesis didecarboxysiroheme is converted into Fe-coproporphyrin by oxidative loss of two acetic acid side chains. Fe-coproporphyrin is then transformed into heme by the oxidative decarboxylation of two propionate side chains. The mechanisms of these reactions are discussed and the evolutionary significance of another role for siroheme is examined. PMID:21969545

  4. Acquisition of iron from transferrin regulates reticulocyte heme synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ponka, P.; Schulman, H.M.

    1985-11-25

    Fe-salicylaldehyde isonicotinoylhydrazone (SIH), which can donate iron to reticulocytes without transferrin as a mediator, has been utilized to test the hypothesis that the rate of iron uptake from transferrin limits the rate of heme synthesis in erythroid cells. Reticulocytes take up VZFe from (VZFe)SIH and incorporate it into heme to a much greater extent than from saturating concentrations of (VZFe)transferrin. Also, Fe-SIH stimulates (2- UC)glycine into heme when compared to the incorporation observed with saturating levels of Fe-transferrin. In addition, delta-aminolevulinic acid does not stimulate VZFe incorporation into heme from either (VZFe)transferrin or (VZFe)SIH but does reverse the inhibition of VZFe incorporation into heme caused by isoniazid, an inhibitor of delta-aminolevulinic acid synthase. Taken together, these results suggest the hypothesis that some step(s) in the pathway of iron from extracellular transferrin to intracellular protoporphyrin limits the overall rate of heme synthesis in reticulocytes.

  5. Dietary iron controls circadian hepatic glucose metabolism through heme synthesis.

    Science.gov (United States)

    Simcox, Judith A; Mitchell, Thomas Creighton; Gao, Yan; Just, Steven F; Cooksey, Robert; Cox, James; Ajioka, Richard; Jones, Deborah; Lee, Soh-Hyun; King, Daniel; Huang, Jingyu; McClain, Donald A

    2015-04-01

    The circadian rhythm of the liver maintains glucose homeostasis, and disruption of this rhythm is associated with type 2 diabetes. Feeding is one factor that sets the circadian clock in peripheral tissues, but relatively little is known about the role of specific dietary components in that regard. We assessed the effects of dietary iron on circadian gluconeogenesis. Dietary iron affects circadian glucose metabolism through heme-mediated regulation of the interaction of nuclear receptor subfamily 1 group d member 1 (Rev-Erbα) with its cosuppressor nuclear receptor corepressor 1 (NCOR). Loss of regulated heme synthesis was achieved by aminolevulinic acid (ALA) treatment of mice or cultured cells to bypass the rate-limiting enzyme in hepatic heme synthesis, ALA synthase 1 (ALAS1). ALA treatment abolishes differences in hepatic glucose production and in the expression of gluconeogenic enzymes seen with variation of dietary iron. The differences among diets are also lost with inhibition of heme synthesis with isonicotinylhydrazine. Dietary iron modulates levels of peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a transcriptional activator of ALAS1, to affect hepatic heme. Treatment of mice with the antioxidant N-acetylcysteine diminishes PGC-1α variation observed among the iron diets, suggesting that iron is acting through reactive oxygen species signaling. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  6. Heme-Protein Active Site Models via Self-Assembly in Water

    NARCIS (Netherlands)

    Fiammengo, R.; Wojciechowski, Kamil; Crego Calama, Mercedes; Figoli, A.; Wessling, Matthias; Reinhoudt, David; Timmerman, P.

    2003-01-01

    Water-soluble models of heme-protein active sites are obtained via the self-assembly of cationic porphyrins 1 and tetrasulfonato calix[4]arene 2 (K1·2 = 105 M-1). Selective binding of ligands either outside or inside the cavity of assemblies 1·2 via coordination to the zinc center has been observed.

  7. Synthetic Heme/Copper Assemblies: Toward an Understanding of Cytochrome c Oxidase Interactions with Dioxygen and Nitrogen Oxides

    Science.gov (United States)

    Hematian, Shabnam; Garcia-Bosch, Isaac; Karlin, Kenneth D.

    2016-01-01

    Conspectus Our long-time niche in synthetic biological inorganic chemistry has been to design ligands and generate coordination complexes of copper and/or iron ions, those reacting with dioxygen (O2) and/or nitrogen oxides (e.g., nitric oxide (NO(g)) and nitrite (NO2−)). As inspiration for this work, we turn to mitochondrial cytochrome c oxidase which is responsible for dioxygen consumption and is also the predominant target for NO(g) and nitrite within mitochondria. In this Account, we highlight recent advances in studying synthetic heme/Cu complexes in two respects. First, there is the design, synthesis and characterization of new O2-adducts whose further study will add insights into O2-reductive cleavage chemistry. Second, we describe how related heme/Cu constructs reduce nitrite ion to NO(g) or the reverse, oxidize NO(g) to nitrite. The reactions of nitrogen oxides occur as part of CcO’s function, which is intimately tied to cellular O2-balance. We had first discovered that reduced heme/Cu compounds react with O2 giving μ-oxo heme-FeIII-O-CuII(L) products; their properties are discussed. The O-atom is derived from dioxygen and interrogations of these systems led to the construction and characterization of three distinctive classes of heme-peroxo-complexes, two high-spin and one low-spin species. Recent investigations include a new approach to the synthesis of low-spin heme-peroxo-Cu complexes, employing a “naked” synthon, where the copper ligand denticity and geometric types can be varied. The result is a collection of such complexes; spectroscopic and structural features (by DFT calculations) are described. Some of these compounds are reactive toward reductants/protons effecting subsequent O-O cleavage. This points to how subtle improvements in ligand environment lead to a desired local structure and resulting optimized reactivity, as known to occur at enzyme active-sites. The other sector of research is focused on heme/Cu assemblies mediating the

  8. Identification and phylogenetic analysis of heme synthesis genes in trypanosomatids and their bacterial endosymbionts.

    Directory of Open Access Journals (Sweden)

    João M P Alves

    Full Text Available It has been known for decades that some insect-infecting trypanosomatids can survive in culture without heme supplementation while others cannot, and that this capability is associated with the presence of a betaproteobacterial endosymbiont in the flagellate's cytoplasm. However, the specific mechanisms involved in this process remained obscure. In this work, we sequence and phylogenetically analyze the heme pathway genes from the symbionts and from their hosts, as well as from a number of heme synthesis-deficient Kinetoplastida. Our results show that the enzymes responsible for synthesis of heme are encoded on the symbiont genomes and produced in close cooperation with the flagellate host. Our evidence suggests that this synergistic relationship is the end result of a history of extensive gene loss and multiple lateral gene transfer events in different branches of the phylogeny of the Trypanosomatidae.

  9. Heme A synthesis and CcO activity are essential forTrypanosoma cruziinfectivity and replication.

    Science.gov (United States)

    Merli, Marcelo L; Cirulli, Brenda A; Menéndez-Bravo, Simón M; Cricco, Julia A

    2017-06-27

    Trypanosoma cruzi , the causative agent of Chagas disease, presents a complex life cycle and adapts its metabolism to nutrients' availability. Although T. cruzi is an aerobic organism, it does not produce heme. This cofactor is acquired from the host and is distributed and inserted into different heme-proteins such as respiratory complexes in the parasite's mitochondrion. It has been proposed that T. cruzi's energy metabolism relies on a branched respiratory chain with a cytochrome c oxidase-type aa 3 (C c O) as the main terminal oxidase. Heme A, the cofactor for all eukaryotic C c O, is synthesized via two sequential enzymatic reactions catalyzed by heme O synthase (HOS) and heme A synthase (HAS). Previously, TcCox10 and TcCox15 ( Trypanosoma cruzi Cox10 and Cox15 proteins) were identified in T. cruzi They presented HOS and HAS activity, respectively, when they were expressed in yeast. Here, we present the first characterization of TcCox15 in T. cruzi , confirming its role as HAS. It was differentially detected in the different T. cruzi stages, being more abundant in the replicative forms. This regulation could reflect the necessity of more heme A synthesis, and therefore more C c O activity at the replicative stages. Overexpression of a non-functional mutant caused a reduction in heme A content. Moreover, our results clearly showed that this hindrance in the heme A synthesis provoked a reduction on C c O activity and, in consequence, an impairment on T. cruzi survival, proliferation and infectivity. This evidence supports that T. cruzi depends on the respiratory chain activity along its life cycle, being C c O an essential terminal oxidase. © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  10. No changes in heme synthesis in human Friedreich´s ataxia erythroid progenitor cells.

    Science.gov (United States)

    Steinkellner, Hannes; Singh, Himanshu Narayan; Muckenthaler, Martina U; Goldenberg, Hans; Moganty, Rajeswari R; Scheiber-Mojdehkar, Barbara; Sturm, Brigitte

    2017-07-20

    Friedreich's ataxia (FRDA) is a neurodegenerative disease caused by reduced expression of the protein frataxin. Frataxin is thought to play a role in iron-sulfur cluster biogenesis and heme synthesis. In this study, we used erythroid progenitor stem cells obtained from FRDA patients and healthy donors to investigate the putative role, if any, of frataxin deficiency in heme synthesis. We used electrochemiluminescence and qRT-PCR for frataxin protein and mRNA quantification. We used atomic absorption spectrophotometry for iron levels and a photometric assay for hemoglobin levels. Protoporphyrin IX and Ferrochelatase were analyzed using auto-fluorescence. An "IronChip" microarray analysis followed by a protein-protein interaction analysis was performed. FRDA patient cells showed no significant changes in iron levels, hemoglobin synthesis, protoporphyrin IX levels, and ferrochelatase activity. Microarray analysis presented 11 genes that were significantly changed in all patients compared to controls. The genes are especially involved in oxidative stress, iron homeostasis and angiogenesis. The mystery about the involvement of frataxin on iron metabolism raises the question why frataxin deficiency in primary FRDA cells did not lead to changes in biochemical parameters of heme synthesis. It seems that alternative pathways can circumvent the impact of frataxin deficiency on heme synthesis. We show for the first time in primary FRDA patient cells that reduced frataxin levels are still sufficient for heme synthesis and possibly other mechanisms can overcome reduced frataxin levels in this process. Our data strongly support the fact that so far no anemia in FRDA patients was reported. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Characterization of the heme synthesis enzyme coproporphyrinogen oxidase (CPO) in zebrafish erythrogenesis.

    Science.gov (United States)

    Hanaoka, Ryuki; Katayama, Shiori; Dawid, Igor B; Kawahara, Atsuo

    2006-03-01

    Hemoglobin consists of heme and globin proteins and is essential for oxygen transport in all vertebrates. Although biochemical features of heme synthesis enzymes have been well characterized, the function of these enzymes in early embryogenesis is not fully understood. We found that the sixth heme synthesis enzyme, coproporphyrinogen oxidase (CPO), is predominantly expressed in the intermediate cell mass (ICM) that is a major site of zebrafish primitive hematopoiesis. Knockdown of zebrafish CPO using anti-sense morpholinos (CPO-MO) leads to a significant suppression of hemoglobin production without apparent reduction of blood cells. Injection of human CPO RNA, but not a mutant CPO RNA that is similar to a mutant responsible for a hereditary coproporphyria (HCP), restores hemoglobin production in the CPO-MO-injected embryos. Furthermore, expression of CPO in the ICM is severely suppressed in both vlad tepes/gata1 mutants and in biklf-MO-injected embryos. In contrast, over-expression of biklf and gata1 significantly induces ectopic CPO expression. The function of CPO in heme biosynthesis is apparently conserved between zebrafish and human, suggesting that CPO-MO-injected zebrafish embryos might be a useful in vivo assay system to measure the biological activity of human CPO mutations.

  12. Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis

    Science.gov (United States)

    Iolascon, Achille; De Falco, Luigia; Beaumont, Carole

    2009-01-01

    Microcytic anemia is the most commonly encountered anemia in general medical practice. Nutritional iron deficiency and β thalassemia trait are the primary causes in pediatrics, whereas bleeding disorders and anemia of chronic disease are common in adulthood. Microcytic hypochromic anemia can result from a defect in globin genes, in heme synthesis, in iron availability or in iron acquisition by the erythroid precursors. These microcytic anemia can be sideroblastic or not, a trait which reflects the implications of different gene abnormalities. Iron is a trace element that may act as a redox component and therefore is integral to vital biological processes that require the transfer of electrons as in oxygen transport, oxidative phosphorylation, DNA biosynthesis and xenobiotic metabolism. However, it can also be pro-oxidant and to avoid its toxicity, iron metabolism is strictly controlled and failure of these control systems could induce iron overload or iron deficient anemia. During the past few years, several new discoveries mostly arising from human patients or mouse models have highlighted the implication of iron metabolism components in hereditary microcytic anemia, from intestinal absorption to its final inclusion into heme. In this paper we will review the new information available on the iron acquisition pathway by developing erythrocytes and its regulation, and we will consider only inherited microcytosis due to heme synthesis or to iron metabolism defects. This information could be useful in the diagnosis and classification of these microcytic anemias. PMID:19181781

  13. Molecular basis of inherited microcytic anemia due to defects in iron acquisition or heme synthesis.

    Science.gov (United States)

    Iolascon, Achille; De Falco, Luigia; Beaumont, Carole

    2009-03-01

    Microcytic anemia is the most commonly encountered anemia in general medical practice. Nutritional iron deficiency and beta thalassemia trait are the primary causes in pediatrics, whereas bleeding disorders and anemia of chronic disease are common in adulthood. Microcytic hypochromic anemia can result from a defect in globin genes, in heme synthesis, in iron availability or in iron acquisition by the erythroid precursors. These microcytic anemia can be sideroblastic or not, a trait which reflects the implications of different gene abnormalities. Iron is a trace element that may act as a redox component and therefore is integral to vital biological processes that require the transfer of electrons as in oxygen transport, oxidative phosphorylation, DNA biosynthesis and xenobiotic metabolism. However, it can also be pro-oxidant and to avoid its toxicity, iron metabolism is strictly controlled and failure of these control systems could induce iron overload or iron deficient anemia. During the past few years, several new discoveries mostly arising from human patients or mouse models have highlighted the implication of iron metabolism components in hereditary microcytic anemia, from intestinal absorption to its final inclusion into heme. In this paper we will review the new information available on the iron acquisition pathway by developing erythrocytes and its regulation, and we will consider only inherited microcytosis due to heme synthesis or to iron metabolism defects. This information could be useful in the diagnosis and classification of these microcytic anemias.

  14. Impairment of heme synthesis in myelin as potential trigger of multiple sclerosis.

    Science.gov (United States)

    Morelli, Alessandro; Ravera, Silvia; Calzia, Daniela; Panfoli, Isabella

    2012-06-01

    The pathogenesis of multiple sclerosis (MS), a disease characterized by demyelination and subsequent axonal degeneration, is as yet unknown. Also, the nature of the disease is as yet not established, since doubts have been cast on its autoimmune origin. Genetic and environmental factors have been implied in MS, leading to the idea of an overall multifactorial origin. An unexpected role in energizing the axon has been reported for myelin, supposed to be the site of consumption of most of oxygen in brain. Myelin would be able to perform oxidative phosphorylation to supply the axons with ATP, thanks to the expression therein of mitochondrial F(o)F(1)-ATP synthase, and respiratory chains. Interestingly, myelin expresses the pathway of heme synthesis, hence of cytochromes, that rely on heme group, in turn depending on Fe availability. Poisoning by these pollutants shares the common characteristic to bring about demyelination both in animal models and in man. Carbon monoxide (CO) and lead poisoning which cause functional imbalance of the heme group, as well as of heme synthesis, cause myelin damage. On the other hand, a lack of essential metals such as iron and copper, produces dramatic myelin decrease. Myelin is a primary target, of iron shortage, indicating that in myelin Fe-dependent processes are more active than in other tissues. The predominant spread of MS in industrialized countries where pollution by heavy metals, and CO poisoning is widespread, suggests a relationship among toxic action of metal pollutants and MS. According to the present hypothesis, MS can be primarily triggered by environmental factors acting on a genetic susceptibility, while the immune response may be a consequence of a primary oxidative damage due to reactive oxygen species produced consequently to an imbalance of cytochromes and respiratory chains in the sheath. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. In vitro effects of selected environmental toxicants on two heme synthesis enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, D.J.; Williams, H.L.; Slater, S.; Haut, M.J.; Altstatt, L.B.

    1985-11-01

    Benzene and some of its substitution products become environmental toxicants due to improper disposal procedures. Benzene has been found to alter heme and globin synthesis in anucleate rabbit reticulocytes (Forte et al., 1976; Wildman et al., 1976) and based on these findings we felt it would be useful to determine what, if any, effect these derivatives would have on heme synthesis in vitro by studying their influence on delta-aminolevulinic acid synthetase (ALAS) and ferrochelatase (FC) activities in rat liver homogenates. ALAS was measured according to Ebert et al. (1970). FC was measured after Williams et al. (1980). Final concentrations of each added compound to the reaction mixture were 10(-3) to 10(-6) M. Normal values for rat liver ALAS were 250-350 nmol ALA/g protein/30 min, mean 290 +/- 40, and for FC were 12-40 mumol heme/g protein/45 min, mean 20 +/- 7. At 10(-3) M and lower concentrations these compounds inhibited ALAS and stimulated FC activities. Their effect on ALAS activity expressed as percentage of control of three analyses performed in triplicate +/- SEM was: o- and p-dinitrobenzenes-46 +/- 2; trinitrotoluenes-55 +/- 2; dinitrotoluenes-70 +/- 2; and amino-dinitrotoluenes-171 +/- 4. The stimulatory effect of these compounds expressed as percentage of control +/- SEM on FC was: dinitrotoluenes-171 +/- 3; dinitrobenzenes-152 +/- 3; trinitrotoluenes-142 +/- 4; and amino-dinitrotoluenes-130 +/- 4. Other classes of compounds tested did not significantly affect these enzymes at the same concentrations. These in vitro techniques may prove useful for predicting in vivo toxicologic effects of pollutants on species of interest.

  16. Catalytic promiscuity and heme-dependent redox regulation of H2S synthesis.

    Science.gov (United States)

    Banerjee, Ruma

    2017-04-01

    The view of enzymes as punctilious catalysts has been shifting as examples of their promiscuous behavior increase. However, unlike a number of cases where the physiological relevance of breached substrate specificity is questionable, the very synthesis of H 2 S relies on substrate and reaction promiscuity, which presents the enzymes with a multitude of substrate and reaction choices. The transsulfuration pathway, a major source of H 2 S, is inherently substrate-ambiguous. A heme-regulated switch embedded in the first enzyme in the pathway can help avert the stochastic production of cysteine versus H 2 S and control switching between metabolic tracks to meet cellular needs. This review discusses the dominant role of enzyme promiscuity in pathways that double as sulfur catabolic and H 2 S synthetic tracks. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Increased heme synthesis in yeast induces a metabolic switch from fermentation to respiration even under conditions of glucose repression.

    Science.gov (United States)

    Zhang, Tiantian; Bu, Pengli; Zeng, Joey; Vancura, Ales

    2017-10-13

    Regulation of mitochondrial biogenesis and respiration is a complex process that involves several signaling pathways and transcription factors as well as communication between the nuclear and mitochondrial genomes. Under aerobic conditions, the budding yeast Saccharomyces cerevisiae metabolizes glucose predominantly by glycolysis and fermentation. We have recently shown that altered chromatin structure in yeast induces respiration by a mechanism that requires transport and metabolism of pyruvate in mitochondria. However, how pyruvate controls the transcriptional responses underlying the metabolic switch from fermentation to respiration is unknown. Here, we report that this pyruvate effect involves heme. We found that heme induces transcription of HAP4, the transcriptional activation subunit of the Hap2/3/4/5p complex, required for growth on nonfermentable carbon sources, in a Hap1p- and Hap2/3/4/5p-dependent manner. Increasing cellular heme levels by inactivating ROX1, which encodes a repressor of many hypoxic genes, or by overexpressing HEM3 or HEM12 induced respiration and elevated ATP levels. Increased heme synthesis, even under conditions of glucose repression, activated Hap1p and the Hap2/3/4/5p complex and induced transcription of HAP4 and genes required for the tricarboxylic acid (TCA) cycle, electron transport chain, and oxidative phosphorylation, leading to a switch from fermentation to respiration. Conversely, inhibiting metabolic flux into the TCA cycle reduced cellular heme levels and HAP4 transcription. Together, our results indicate that the glucose-mediated repression of respiration in budding yeast is at least partly due to the low cellular heme level. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer

    DEFF Research Database (Denmark)

    Jensen, Palle Skovhus; Chi, Qijin; Grumsen, Flemming Bjerg

    2007-01-01

    -defined stoichiometry. The systems were investigated in homogeneous solution and at liquid/solid interface. Conjugation of cyt c results in a small but consistent broadening of the nanoparticle plasmon band. This phenomenon can be explained in terms of long-range electronic interactions between the gold nanoparticle...... and characterization of water-soluble gold nanoparticles (AuNPs) with core diameter 3-4 nm and their application for the enhancement of long-range interfacial ET of a heme protein. Gold nanoparticles were electrostatically conjugated with cyt c to form nanoparticle-protein hybrid ET systems with well...... and the protein molecule. When the nanoparticle-protein conjugates are assembled on Au(111) surfaces, long-range interfacial ET across a physical distance of over 50 A via the nanoparticle becomes feasible. Moreover, significant enhancement of the interfacial ET rate by more than an order of magnitude compared...

  19. Heme Gazing: Illuminating Eukaryotic Heme Trafficking, Dynamics, and Signaling with Fluorescent Heme Sensors.

    Science.gov (United States)

    Hanna, David A; Martinez-Guzman, Osiris; Reddi, Amit R

    2017-04-04

    Heme (iron protoporphyrin IX) is an essential protein prosthetic group and signaling molecule required for most life on Earth. All heme-dependent processes require the dynamic and rapid mobilization of heme from sites of synthesis or uptake to hemoproteins present in virtually every subcellular compartment. The cytotoxicity and hydrophobicity of heme necessitate that heme mobilization be carefully controlled to mitigate the deleterious effects of this essential toxin. Indeed, a number of disorders, including certain cancers, cardiovascular diseases, and aging and age-related neurodegenerative diseases, are tied to defects in heme homeostasis. However, the molecules and mechanisms that mediate heme transport and trafficking, and the dynamics of these processes, are poorly understood. This is in large part due to the lack of physical tools for probing cellular heme. Herein, we discuss the recent development of fluorescent probes that can monitor and image kinetically labile heme with respect to its mobilization and role in signaling. In particular, we will highlight how heme gazing with these tools can uncover new heme trafficking factors upon being integrated with genetic screens and illuminate the concentration, subcellular distribution, and dynamics of labile heme in various physiological contexts. Altogether, the monitoring of labile heme, along with recent biochemical and cell biological studies demonstrating the reversible regulation of certain cellular processes by heme, is challenging us to reconceptualize heme from being a static cofactor buried in protein active sites to a dynamic and mobile signaling molecule.

  20. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  1. [Changes in the activity of enzymes of heme synthesis and catabolism, and level of microsomal hemoproteins during the liver acute intoxication by thioacetamide].

    Science.gov (United States)

    Kharimov, Kh Ia; Inoiatova, F Kh; Dolimova, M A

    2001-01-01

    Thioacetamide administration to rats (20 mg/100 g) caused the development of toxic hepatitis which was accompanied by the increase of hepatic ALA-synthase and D-ALA that led to accumulating free porphyrines in the liver. At the same time an increase in activity of heme oxigenase was also found. A decrease in heme synthesis correlated with a decrease in content of cytochrome P450 and b5 in microsomal hepatic fraction of experimental animals.

  2. Diagnosis and treatment of sideroblastic anemias: from defective heme synthesis to abnormal RNA splicing.

    Science.gov (United States)

    Cazzola, Mario; Malcovati, Luca

    2015-01-01

    The sideroblastic anemias are a heterogeneous group of inherited and acquired disorders characterized by the presence of ring sideroblasts in the bone marrow. X-linked sideroblastic anemia (XLSA) is caused by germline mutations in ALAS2. Hemizygous males have a hypochromic microcytic anemia, which is generally mild to moderate and is caused by defective heme synthesis and ineffective erythropoiesis. XLSA is a typical iron-loading anemia; although most patients are responsive to pyridoxine, treatment of iron overload is also important in the management of these patients. Autosomal recessive sideroblastic anemia attributable to mutations in SLC25A38, a member of the mitochondrial carrier family, is a severe disease: patients present in infancy with microcytic anemia, which soon becomes transfusion dependent. Conservative therapy includes regular red cell transfusion and iron chelation, whereas allogenic stem cell transplantation represents the only curative treatment. Refractory anemia with ring sideroblasts (RARS) is a myelodysplastic syndrome characterized mainly by anemia attributable to ineffective erythropoiesis. The clinical course of RARS is generally indolent, but there is a tendency to worsening of anemia over time, so that most patients become transfusion dependent in the long run. More than 90% of these patients carry somatic mutations in SF3B1, a gene encoding a core component of the RNA splicing machinery. These mutations cause misrecognition of 3' splice sites in downstream genes, resulting in truncated gene products and/or decreased expression attributable to nonsense-mediated RNA decay; this explains the multifactorial pathogenesis of RARS. Variants of RARS include refractory cytopenia with multilineage dysplasia and ring sideroblasts, and RARS associated with marked thrombocytosis; these variants involve additional genetic lesions. Inhibitors of molecules of the transforming growth factor-β superfamily have been shown recently to target ineffective

  3. Synthesis and supramolecular assembly of biomimetic polymers

    Science.gov (United States)

    Marciel, Amanda Brittany

    A grand challenge in materials chemistry is the synthesis of macromolecules and polymers with precise shapes and architectures. Polymer microstructure and architecture strongly affect the resulting functionality of advanced materials, yet understanding the static and dynamic properties of these complex macromolecules in bulk has been difficult due to their inherit polydispersity. Single molecule studies have provided a wealth of information on linear flexible and semi-flexible polymers in dilute solutions. However, few investigations have focused on industrially relevant complex topologies (e.g., star, comb, hyperbranched polymers) in industrially relevant solution conditions (e.g., semi-dilute, concentrated). Therefore, from this perspective there is a strong need to synthesize precision complex architectures for bulk studies as well as complex architectures compatible with current single molecule techniques to study static and dynamic polymer properties. In this way, we developed a hybrid synthetic strategy to produce branched polymer architectures based on chemically modified DNA. Overall, this approach enables control of backbone length and flexibility, as well as branch grafting density and chemical identity. We utilized a two-step scheme based on enzymatic incorporation of non-natural nucleotides containing bioorthogonal dibenzocyclooctyne (DBCO) functional groups along the main polymer backbone, followed by copper-free "click" chemistry to graft synthetic polymer branches or oligonucleotide branches to the DNA backbone, thereby allowing for the synthesis of a variety of polymer architectures, including three-arm stars, H-polymers, graft block copolymers, and comb polymers for materials assembly and single molecule studies. Bulk materials properties are also affected by industrial processing conditions that alter polymer morphology. Therefore, in an alternative strategy we developed a microfluidic-based approach to assemble highly aligned synthetic

  4. Practice guidelines for the diagnosis and management of microcytic anemias due to genetic disorders of iron metabolism or heme synthesis.

    Science.gov (United States)

    Donker, Albertine E; Raymakers, Reinier A P; Vlasveld, L Thom; van Barneveld, Teus; Terink, Rieneke; Dors, Natasja; Brons, Paul P T; Knoers, Nine V A M; Swinkels, Dorine W

    2014-06-19

    During recent years, our understanding of the pathogenesis of inherited microcytic anemias has gained from the identification of several genes and proteins involved in systemic and cellular iron metabolism and heme syntheses. Numerous case reports illustrate that the implementation of these novel molecular discoveries in clinical practice has increased our understanding of the presentation, diagnosis, and management of these diseases. Integration of these insights into daily clinical practice will reduce delays in establishing a proper diagnosis, invasive and/or costly diagnostic tests, and unnecessary or even detrimental treatments. To assist the clinician, we developed evidence-based multidisciplinary guidelines on the management of rare microcytic anemias due to genetic disorders of iron metabolism and heme synthesis. These genetic disorders may present at all ages, and therefore these guidelines are relevant for pediatricians as well as clinicians who treat adults. This article summarizes these clinical practice guidelines and includes background on pathogenesis, conclusions, and recommendations and a diagnostic flowchart to facilitate using these guidelines in the clinical setting. © 2014 by The American Society of Hematology.

  5. Functional Characterization of the Canine Heme-Regulated eIF2α Kinase: Regulation of Protein Synthesis

    Directory of Open Access Journals (Sweden)

    Kimon C. Kanelakis

    2009-01-01

    Full Text Available The heme-regulated inhibitor (HRI negatively regulates protein synthesis by phosphorylating eukaryotic initiation factor-2α (eIF2α thereby inhibiting protein translation. The importance of HRI in regulating hemoglobin synthesis in erythroid cells makes it an attractive molecular target in need of further characterization. In this work, we have cloned and expressed the canine form of the HRI kinase. The canine nucleotide sequence has 86%, 82%, and 81% identity to the human, mouse, and rat HRI, respectively. It was noted that an isoleucine residue in the ATP binding site of human, rat, and mouse HRI is replaced by a valine in the canine kinase. The expression of canine HRI protein by in vitro translation using wheat germ lysate or in Sf9 cells using a baculovirus expression system was increased by the addition of hemin. Following purification, the canine protein was found to be 72 kD and showed kinase activity determined by its ability to phosphorylate a synthetic peptide substrate. Quercetin, a kinase inhibitor known to inhibit mouse and human HRI, inhibits canine HRI in a concentration-dependent manner. Additionally, quercetin is able to increase de novo protein synthesis in canine reticulocytes. We conclude that the canine is a suitable model species for studying the role of HRI in erythropoiesis.

  6. Impact of heme oxygenase-1 on cholesterol synthesis, cholesterol efflux and oxysterol formation in cultured astroglia.

    Science.gov (United States)

    Hascalovici, Jacob R; Song, Wei; Vaya, Jacob; Khatib, Soliman; Fuhrman, Bianca; Aviram, Michael; Schipper, Hyman M

    2009-01-01

    Up-regulation of heme oxygenase-1 (HO-1) and altered cholesterol (CH) metabolism are characteristic of Alzheimer-diseased neural tissues. The liver X receptor (LXR) is a molecular sensor of CH homeostasis. In the current study, we determined the effects of HO-1 over-expression and its byproducts iron (Fe(2+)), carbon monoxide (CO) and bilirubin on CH biosynthesis, CH efflux and oxysterol formation in cultured astroglia. HO-1/LXR interactions were also investigated in the context of CH efflux. hHO-1 over-expression for 3 days ( approximately 2-3-fold increase) resulted in a 30% increase in CH biosynthesis and a two-fold rise in CH efflux. Both effects were abrogated by the competitive HO inhibitor, tin mesoporphyrin. CO, released from administered CORM-3, significantly enhanced CH biosynthesis; a combination of CO and iron stimulated CH efflux. Free iron increased oxysterol formation three-fold. Co-treatment with LXR antagonists implicated LXR activation in the modulation of CH homeostasis by heme degradation products. In Alzheimer's disease and other neuropathological states, glial HO-1 induction may transduce ambient noxious stimuli (e.g. beta-amyloid) into altered patterns of glial CH homeostasis. As the latter may impact synaptic plasticity and neuronal repair, modulation of glial HO-1 expression (by pharmacological or other means) may confer neuroprotection in patients with degenerative brain disorders.

  7. Synthesis and Self-Assembly of Triangulenium Salts

    DEFF Research Database (Denmark)

    Shi, Dong

    This thesis describes the design and synthesis of asymmetrically substituted amphiphilic tis(dialkylamino)trioxiatriangulenium (ATOTA+) salts with different counter ions. Attention was focused on exploring the assembling properties of the ATOTA+ salts in aqueous media. A direct vortexing-processed...... in influencing the assembling process and morphology of the assembled nanostructures. Tailoring the ATOTA+ system with alkyl chains of different length showed large effect on the final morphology of assembled supramolecular structures. The first two chapters give a brief introduction to molecular self......, highly ordered, and free-floating bilayer nanosheets through prolonged vigorous shaking. In this study, a mechanism for the self-assembly process agitated by prolonged vigorous shaking is proposed. It is proposed that the self-assembly is realized via a intermediated monolayer formed at the dynamic air...

  8. Building block synthesis using the polymerase chain assembly method.

    Science.gov (United States)

    Marchand, Julie A; Peccoud, Jean

    2012-01-01

    De novo gene synthesis allows the creation of custom DNA molecules without the typical constraints of traditional cloning assembly: scars, restriction site incompatibility, and the quest to find all the desired parts to name a few. Moreover, with the help of computer-assisted design, the perfect DNA molecule can be created along with its matching sequence ready to download. The challenge is to build the physical DNA molecules that have been designed with the software. Although there are several DNA assembly methods, this section presents and describes a method using the polymerase chain assembly (PCA).

  9. Benzene and lead inhibition of rabbit reticulocyte heme and protein synthesis: evidence for additive toxicity of these two components of commercial gasoline

    Energy Technology Data Exchange (ETDEWEB)

    Wildman, J.M.; Freedman, M.L.; Rosman, J.; Goldstein, B.

    1976-03-01

    Both benzene and lead are known hematopoietic toxins. These compounds are components of commercial gasoline, and therefore pose an environmental risk. The present study demonstrates that benzene and lead individually inhibit both intact reticulocyte heme and protein synthesis in the presence or absence of iron-transferrin. When these two compounds are present in the same incubation, their effects are additive. These in vitro results suggest that further evaluation of the combined risks of benzene and lead is indicated. The data shows the potential for additive interaction by chemically unrelated environmental compounds.

  10. Iterative assembly line synthesis of polypropionates with full stereocontrol

    Science.gov (United States)

    Bootwicha, Teerawut; Feilner, Julian M.; Myers, Eddie L.; Aggarwal, Varinder K.

    2017-09-01

    The polypropionate motif is ubiquitous, being characteristic of the most important family of natural products for human health, the polyketides. Numerous strategies have been devised to construct these molecules with high stereocontrol, but certain stereoisomers remain challenging to prepare. We now describe the development of an iterative assembly line strategy for the construction of polypropionates. An assembly line strategy for the synthesis of deoxypolypropionates has already been described. However, the introduction of carbinol units required the development of new building blocks and new reaction conditions. This has been achieved by the use of enantioenriched lithiated α-chlorosilanes [1-((2‧-lithiochloromethyldimethylsilyl)-methyl)-2-(methoxymethyl)-pyrrolidine], thus enabling the programmed synthesis of polypropionates in a fully stereocontrolled manner, including the stereochemically challenging anti-anti isomers. The versatility of the approach is exemplified in its extension to the synthesis of 1,3-related polyols. The methodology now allows access to a much wider family of polyketide natural products with stereochemistry being dialled in at will.

  11. Heme and erythropoieis: more than a structural role

    Science.gov (United States)

    Chiabrando, Deborah; Mercurio, Sonia; Tolosano, Emanuela

    2014-01-01

    Erythropoiesis is the biological process that consumes the highest amount of body iron for heme synthesis. Heme synthesis in erythroid cells is finely coordinated with that of alpha (α) and beta (β)-globin, resulting in the production of hemoglobin, a tetramer of 2α- and 2β-globin chains, and heme as the prosthetic group. Heme is not only the structural component of hemoglobin, but it plays multiple regulatory roles during the differentiation of erythroid precursors since it controls its own synthesis and regulates the expression of several erythroid-specific genes. Heme is synthesized in developing erythroid progenitors by the stage of proerythroblast, through a series of eight enzymatic reactions divided between mitochondria and cytosol. Defects of heme synthesis in the erythroid lineage result in sideroblastic anemias, characterized by microcytic anemia associated to mitochondrial iron overload, or in erythropoietic porphyrias, characterized by porphyrin deposition in erythroid cells. Here, we focus on the heme biosynthetic pathway and on human erythroid disorders due to defective heme synthesis. The regulatory role of heme during erythroid differentiation is discussed as well as the heme-mediated regulatory mechanisms that allow the orchestration of the adaptive cell response to heme deficiency. PMID:24881043

  12. Practice guidelines for the diagnosis and management of microcytic anemias due to genetic disorders of iron metabolism or heme synthesis

    NARCIS (Netherlands)

    Donker, A.E.; Raymakers, R.A.P.; Vlasveld, L.T.; Barneveld, T. van; Terink, R.; Dors, N.; Brons, P.P.T.; Knoers, N.V.A.M.; Swinkels, D.W.

    2014-01-01

    During recent years, our understanding of the pathogenesis of inherited microcytic anemias has gained from the identification of several genes and proteins involved in systemic and cellular iron metabolism and heme syntheses. Numerous case reports illustrate that the implementation of these novel

  13. Synthesis, purification and assembly of gold and iron oxide nanoparticles

    Science.gov (United States)

    Qiu, Penghe

    The aims of the current research include developing new synthetic strategies to prepare structurally complex gold nanoparticles and new size sorting methods to separate nanoparticles of larger size, as well as studying the assembly of nanoparticles into novel hierarchical structures through both template-assisted and template-free strategies. In the synthesis section of this dissertation (Chapters 2 & 3), a size controllable synthesis of dendritic gold nanoparticles through a seed-mediated process in ethanol is described. The effect of seeds size and shape as well as the carbon chain length of alkylamines on the formation of dendritic structure was investigated. The synthetic strategy developed is capable of forming dendritic structure on various substrates, like flat or rod-like gold particles. In another work, the shape evolution of gold nanoparticles in a seed-mediated growth as well as the kinetics of reduction of HAuCl4 in the presence of seeds was studied. The reduction of the gold precursor by sodium citrate could be greatly accelerated in the presence of seed nanoparticles. Along with the enhanced reaction kinetics, dramatic shape evolution of gold nanoparticles was observed by changing ratios of precursors. In the purification section (Chapter 4), a novel method of separating nanoparticles of different sizes in a viscosity gradient was developed. The viscosity gradient was created with polyvinylpyrrolidone (PVP) aqueous solutions. Previously, such size separation was all achieved in the density gradient, while the hidden contribution of viscosity difference inside the density gradient was not well recognized. Through this work, it is clarified that the viscosity can contribute as importantly as density in the size sorting of nanoparticles through rate zonal centrifuge. It was also demonstrated both experimentally and mathematically that the viscosity gradient is more effective in separation of larger sized nanoparticles. In the assembly section (Chapter 5

  14. Synthesis and self-assembly of complex hollow materials

    KAUST Repository

    Zeng, Hua Chun

    2011-01-01

    Hollow materials with interiors or voids and pores are a class of lightweight nanostructured matters that promise many future technological applications, and they have received significant research attention in recent years. On the basis of well-known physicochemical phenomena and principles, for example, several solution-based protocols have been developed for the general preparation of these complex materials under mild reaction conditions. This article is thus a short introductory review on the synthetic aspects of this field of development. The synthetic methodologies can be broadly divided into three major categories: (i) template-assisted synthesis, (ii) self-assembly with primary building blocks, and (iii) induced matter relocations. In most cases, both synthesis and self-assembly are involved in the above processes. Further combinations of these methodologies appear to be very important, as they will allow one to prepare functional materials at a higher level of complexity and precision. The synthetic strategies are introduced through some simple case studies with schematic illustrations. Salient features of the methods developed have been summarized, and some urgent issues of this field have also been indicated. © 2011 The Royal Society of Chemistry.

  15. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications.

    Science.gov (United States)

    Murphy, Catherine J; Sau, Tapan K; Gole, Anand M; Orendorff, Christopher J; Gao, Jinxin; Gou, Linfeng; Hunyadi, Simona E; Li, Tan

    2005-07-28

    This feature article highlights work from the authors' laboratories on the synthesis, assembly, reactivity, and optical applications of metallic nanoparticles of nonspherical shape, especially nanorods. The synthesis is a seed-mediated growth procedure, in which metal salts are reduced initially with a strong reducing agent, in water, to produce approximately 4 nm seed particles. Subsequent reduction of more metal salt with a weak reducing agent, in the presence of structure-directing additives, leads to the controlled formation of nanorods of specified aspect ratio and can also yield other shapes of nanoparticles (stars, tetrapods, blocks, cubes, etc.). Variations in reaction conditions and crystallographic analysis of gold nanorods have led to insight into the growth mechanism of these materials. Assembly of nanorods can be driven by simple evaporation from solution or by rational design with molecular-scale connectors. Short nanorods appear to be more chemically reactive than long nanorods. Finally, optical applications in sensing and imaging, which take advantage of the visible light absorption and scattering properties of the nanorods, are discussed.

  16. Synthesis and Heme Polymerization Inhibitory Activity (HPIA Assay of Antiplasmodium of (1-N-(3,4-Dimethoxybenzyl-1,10-Phenanthrolinium Bromide from Vanillin

    Directory of Open Access Journals (Sweden)

    Dhina Fitriastuti

    2014-03-01

    Full Text Available The synthesis of (1-N-(3,4-dimethoxy-benzyl-1,10-phenanthrolinium bromide had been conducted from vanillin. Heme polymerization inhibitory activity assay of the synthesized antiplasmodium has also been carried out. The first step of reaction was methylation of vanillin using dimethylsulfate and NaOH. The mixture was refluxed for 2 h to yield veratraldehyde in the form of light yellow solid (79% yield. Methylation product was reduced using sodium borohydride (NaBH4 with grinding method and yielded veratryl alcohol in the form of yellow liquid (98% yield. Veratryl alcohol was brominated using PBr3 to yield yellowish black liquid (85% yield. The final step was benzylation of 1,10-phenanthroline monohydrate with the synthesized veratryl bromide under reflux condition in acetone for 14 h to afford (1-N-(3,4-dimethoxy-benzyl-1,10-phenanthrolinium bromide (84% as yellow solid with melting point of 166-177 °C. The structures of products were characterized by FT-IR, GC-MS and 1H-NMR spectrometers. The results of heme polymerization inhibitory activity assay of (1-N-(3,4-dimethoxybenzyl-1,10-phenanthrolinium bromide showed that it had IC50 HPIA of 3.63 mM, while chloroquine had IC50 of4.37 mM. These results indicated that (1-N-(3,4-dimethoxybenzyl-1,10-phenanthrolinium bromide was more potential antiplasmodium than chloroquine.

  17. Biology of Heme in Mammalian Erythroid Cells and Related Disorders

    Directory of Open Access Journals (Sweden)

    Tohru Fujiwara

    2015-01-01

    Full Text Available Heme is a prosthetic group comprising ferrous iron (Fe2+ and protoporphyrin IX and is an essential cofactor in various biological processes such as oxygen transport (hemoglobin and storage (myoglobin and electron transfer (respiratory cytochromes in addition to its role as a structural component of hemoproteins. Heme biosynthesis is induced during erythroid differentiation and is coordinated with the expression of genes involved in globin formation and iron acquisition/transport. However, erythroid and nonerythroid cells exhibit distinct differences in the heme biosynthetic pathway regulation. Defects of heme biosynthesis in developing erythroblasts can have profound medical implications, as represented by sideroblastic anemia. This review will focus on the biology of heme in mammalian erythroid cells, including the heme biosynthetic pathway as well as the regulatory role of heme and human disorders that arise from defective heme synthesis.

  18. Biology of Heme in Mammalian Erythroid Cells and Related Disorders

    Science.gov (United States)

    Fujiwara, Tohru; Harigae, Hideo

    2015-01-01

    Heme is a prosthetic group comprising ferrous iron (Fe2+) and protoporphyrin IX and is an essential cofactor in various biological processes such as oxygen transport (hemoglobin) and storage (myoglobin) and electron transfer (respiratory cytochromes) in addition to its role as a structural component of hemoproteins. Heme biosynthesis is induced during erythroid differentiation and is coordinated with the expression of genes involved in globin formation and iron acquisition/transport. However, erythroid and nonerythroid cells exhibit distinct differences in the heme biosynthetic pathway regulation. Defects of heme biosynthesis in developing erythroblasts can have profound medical implications, as represented by sideroblastic anemia. This review will focus on the biology of heme in mammalian erythroid cells, including the heme biosynthetic pathway as well as the regulatory role of heme and human disorders that arise from defective heme synthesis. PMID:26557657

  19. Sequenced defined biomolecules for nanomaterial synthesis, functionalization, and assembly.

    Science.gov (United States)

    Slocik, Joseph M; Naik, Rajesh R

    2017-08-01

    Biomolecules represent an invaluable resource to nanotechnology by providing a large diversity of highly functional biomolecular templates. As a result, these have been extensively used for controlling the synthesis, functionalization, and assembly of nanomaterials, while also creating materials with new properties and structures. In the following, we focus on the use of peptides to achieve these goals and describe their general utility, sequence programmability, and use as templates. Also, we highlight several recent advances in the identification and selection of high affinity nanomaterial-binding peptides, provide a few examples of peptide functionalized surfaces and peptide templated materials, and describe how simple modifications to well characterized nanomaterial-binding peptides can be used to manipulate interactions and physiochemical properties. Published by Elsevier Ltd.

  20. Dendrimers in Layer-by-Layer Assemblies: Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Katsuhiko Sato

    2013-07-01

    Full Text Available We review the synthesis of dendrimer-containing layer-by-layer (LbL assemblies and their applications, including biosensing, controlled drug release, and bio-imaging. Dendrimers can be built into LbL films and microcapsules by alternating deposition of dendrimers and counter polymers on the surface of flat substrates and colloidal microparticles through electrostatic bonding, hydrogen bonding, covalent bonding, and biological affinity. Dendrimer-containing LbL assemblies have been used to construct biosensors, in which electron transfer mediators and metal nanoparticles are often coupled with dendrimers. Enzymes have been successfully immobilized on the surface of electrochemical and optical transducers by forming enzyme/dendrimer LbL multilayers. In this way, high-performance enzyme sensors are fabricated. In addition, dendrimer LbL films and microcapsules are useful for constructing drug delivery systems because dendrimers bind drugs to form inclusion complexes or the dendrimer surface is covalently modified with drugs. Magnetic resonance imaging of cancer cells by iron oxide nanoparticles coated with dendrimer LbL film is also discussed.

  1. Interaction of blood lead and delta-aminolevulinic acid dehydratase genotype on markers of heme synthesis and sperm production in lead smelter workers.

    Science.gov (United States)

    Alexander, B H; Checkoway, H; Costa-Mallen, P; Faustman, E M; Woods, J S; Kelsey, K T; van Netten, C; Costa, L G

    1998-04-01

    The gene that encodes gamma-aminolevulinic acid dehydratase (ALAD) has a polymorphism that may modify lead toxicokinetics and ultimately influence individual susceptibility to lead poisoning. To evaluate the effect of the ALAD polymorphism on lead-mediated outcomes, a cross-sectional study of male employees from a lead-zinc smelter compared associations between blood lead concentration and markers of heme synthesis and semen quality with respect to ALAD genotype. Male employees were recruited via postal questionnaire to donate blood and urine for analysis of blood lead, zinc protoporphyrin (ZPP), urinary coproporphyrin (CPU), and ALAD genotype, and semen samples for semen analysis. Of the 134 workers who had ALAD genotypes completed, 114 (85%) were ALAD1-1 (ALAD1) and 20 (15%) were ALAD1-2 (ALAD2). The mean blood lead concentrations for ALAD1 and ALAD2 were 23.1 and 28.4 microg/dl (p = 0.08), respectively. ZPP/heme ratios were higher in ALAD1 workers (68.6 vs. 57.8 micromol/ml; p = 0.14), and the slope of the blood lead ZPP linear relationship was greater for ALAD1 (2.83 vs. 1.50, p = 0.06). No linear relationship between CPU and blood lead concentration was observed for either ALAD1 or ALAD2. The associations of blood lead concentration with ZPP, CPU, sperm count, and sperm concentration were more evident in workers with the ALAD1 genotype and blood lead concentrations >/= 40 microg/dl. The ALAD genetic polymorphism appears to modify the association between blood lead concentration and ZPP. However, consistent modification of effects were not found for CPU, sperm count, or sperm concentration.

  2. The synthesis, characterization, and application of ¹³C-methyl isocyanide as an NMR probe of heme protein active sites.

    Science.gov (United States)

    McCullough, Christopher; Pullela, Phani Kumar; Im, Sang-Choul; Waskell, Lucy; Sem, Daniel

    2013-01-01

    The cytochromes P450 (CYPs) play a central role in a variety of important biological oxidations, such as steroid synthesis and the metabolism of xenobiotic compounds, including most drugs. Because CYPs are frequently assayed as drug targets or as anti-targets, tools that provide confirmation of active-site binding and information on binding orientation would be of great utility. Of greatest value are assays that are reasonably high throughput. Other heme proteins, too-such as the nitric oxide synthases (NOSs), with their importance in signaling, regulation of blood pressure, and involvement in the immune response-often display critical roles in the complex functions of many higher organisms, and also require improved assay methods. To this end, we have developed an analog of cyanide, with a (13)CH3-reporter group attached to make methyl isocyanide. We describe the synthesis and use of (13)C-methyl isocyanide as a probe of both bacterial (P450cam) and membrane-bound mammalian (CYP2B4) CYPs. The (13)C-methyl isocyanide probe can be used in a relatively high-throughput 1-D experiment to identify binders, but it can also be used to detect structural changes in the active site based on chemical shift changes, and potentially nuclear Overhauser effects between probe and inhibitor.

  3. Synthesis, Assembly, and Applications of Hybrid Nanostructures for Biosensing.

    Science.gov (United States)

    Zhang, Shuaidi; Geryak, Ren; Geldmeier, Jeffrey; Kim, Sunghan; Tsukruk, Vladimir V

    2017-10-25

    The robust, sensitive, and selective detection of targeted biomolecules in their native environment by prospective nanostructures holds much promise for real-time, accurate, and high throughput biosensing. However, in order to be competitive, current biosensor nanotechnologies need significant improvements, especially in specificity, integration, throughput rate, and long-term stability in complex bioenvironments. Advancing biosensing nanotechnologies in chemically "noisy" bioenvironments require careful engineering of nanoscale components that are highly sensitive, biorecognition ligands that are capable of exquisite selective binding, and seamless integration at a level current devices have yet to achieve. This review summarizes recent advances in the synthesis, assembly, and applications of nanoengineered reporting and transducing components critical for efficient biosensing. First, major classes of nanostructured components, both inorganic reporters and organic transducers, are discussed in the context of the synthetic control of their individual compositions, shapes, and properties. Second, the design of surface functionalities and transducing path, the characterization of interfacial architectures, and the integration of multiple nanoscale components into multifunctional ordered nanostructures are extensively examined. Third, examples of current biosensing structures created from hybrid nanomaterials are reviewed, with a distinct emphasis on the need to tailor nanosensor designs to specific operating environments. Finally, we offer a perspective on the future developments of nanohybrid materials and future nanosensors, outline possible directions to be pursued that may yield breakthrough results, and envision the exciting potential of high-performance nanomaterials that will cause disruptive improvements in the field of biosensing.

  4. In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation

    National Research Council Canada - National Science Library

    Jewett, Michael C; Fritz, Brian R; Timmerman, Laura E; Church, George M

    ...‐step co‐activation of rRNA transcription, assembly of transcribed rRNA with native ribosomal proteins into functional ribosomes, and synthesis of active protein by these ribosomes in the same compartment...

  5. Synthesis, assembly, and applications of single-walled carbon nanotube

    Science.gov (United States)

    Ryu, Koungmin

    This dissertation presents the synthesis and assembly of aligned carbon nanotubes, and their applications in both nano-electronics such as transistor and integrated circuits and macro-electronics in energy conversion devices as transparent conducting electrodes. Also, the high performance chemical sensor using metal oxide nanowire has been demonstrated. Chapter 1 presents a brief introduction of carbon nanotube, followed by discussion of a new synthesis technique using nanosphere lithography to grow highly aligned single-walled carbon nanotubes atop quartz and sapphire substrates. This method offers great potential to produce carbon nanotube arrays with simultaneous control over the nanotube orientation, position, density, diameter and even chirality. Chapter 3 introduces the wafer-scale integration and assembly of aligned carbon nanotubes, including full-wafer scale synthesis and transfer of massively aligned carbon nanotube arrays, and nanotube device fabrication on 4 inch Si/SiO2 wafer to yield submicron channel transistors with high on-current density ˜ 20 muA/mum and good on/off ratio and CMOS integrated circuits. In addition, various chemical doping methods for n-type nanotube transistors are studied to fabricate CMOS integrated nanotube circuits such as inverter, NAND and NOR logic devices. Furthermore, defect-tolerant circuit design for NAND and NOR is proposed and demonstrated to guarantee the correct operation of logic circuit, regardless of the presence of mis-aligned or mis-positioned nanotubes. Carbon nanotube flexible electronics and smart textiles for ubiquitous computing and sensing are demonstrated in chapter 4. A facile transfer printing technique has been introduced to transfer massively aligned single-walled carbon nanotubes from the original sapphire/quartz substrates to virtually any other substrates, including glass, silicon, polymer sheets, and even fabrics. The characterization of transferred nanotubes reveals that the transferred

  6. Simultaneous depletion of Atm and Mdl rebalances cytosolic Fe-S cluster assembly but not heme import into the mitochondrion of Trypanosoma brucei

    Czech Academy of Sciences Publication Activity Database

    Horáková, Eva; Changmai, Piya; Paris, Zdeněk; Salmon, D.; Lukeš, Julius

    2015-01-01

    Roč. 282, č. 21 (2015), s. 4157-4175 ISSN 1742-464X R&D Projects: GA ČR(CZ) GAP305/11/2179; GA ČR GJ15-21450Y; GA MŠk LH12104 EU Projects: European Commission(XE) 316304 Institutional support: RVO:60077344 Keywords : Atm * Fe-S cluster * heme * Mdl * Trypanosoma Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.237, year: 2015

  7. Porphyrin and heme metabolism and the porphyrias.

    Science.gov (United States)

    Bonkovsky, Herbert L; Guo, Jun-Tao; Hou, Weihong; Li, Ting; Narang, Tarun; Thapar, Manish

    2013-01-01

    Porphyrins and metalloporphyrins are the key pigments of life on earth as we know it, because they include chlorophyll (a magnesium-containing metalloporphyrin) and heme (iron protoporphyrin). In eukaryotes, porphyrins and heme are synthesized by a multistep pathway that involves eight enzymes. The first and rate-controlling step is the formation of delta-aminolevulinic acid (ALA) from glycine plus succinyl CoA, catalyzed by ALA synthase. Intermediate steps occur in the cytoplasm, with formation of the monopyrrole porphobilinogen and the tetrapyrroles hydroxymethylbilane and a series of porphyrinogens, which are serially decarboxylated. Heme is utilized chiefly for the formation of hemoglobin in erythrocytes, myoglobin in muscle cells, cytochromes P-450 and mitochondrial cytochromes, and other hemoproteins in hepatocytes. The rate-controlling step of heme breakdown is catalyzed by heme oxygenase (HMOX), of which there are two isoforms, called HMOX1 and HMOX2. HMOX breaks down heme to form biliverdin, carbon monoxide, and iron. The porphyrias are a group of disorders, mainly inherited, in which there are defects in normal porphyrin and heme synthesis. The cardinal clinical features are cutaneous (due to the skin-damaging effects of excess deposited porphyrins) or neurovisceral attacks of pain, sometimes with weakness, delirium, seizures, and the like (probably due mainly to neurotoxic effects of ALA). The treatment of choice for the acute hepatic porphyrias is intravenous heme therapy, which repletes a critical regulatory heme pool in hepatocytes and leads to downregulation of hepatic ALA synthase, which is a biochemical hallmark of all forms of acute porphyria in relapse.

  8. Heme metabolism as an integral part of iron homeostasis

    Directory of Open Access Journals (Sweden)

    Paweł Lipiński

    2014-01-01

    Full Text Available Heme, a ferrous iron protoporphyrin IX complex, is employed as a prosthetic group in a number of diverse heme proteins that participate in important cellular and systemic physiological processes. Provision of an adequate amount of iron for heme biosynthesis is one of the elemental hallmarks of intracellular iron homeostasis. In the cell the bioavailability of iron for the two main iron biological pathways – heme synthesis and the biogenesis of iron-sulfur clusters ([Fe-S] – is mainly regulated by the IRP/IRE posttranscriptional system. The biogenesis of [Fe-S] centers is crucial for heme synthesis because these co-factors determine the activity of IRP1 and that of ferrochelatase, an enzyme responsible for the insertion of an iron into protoporphyrin IX to produce heme. On the other hand, delivery of iron for heme and hemoglobin synthesis in erythroblasts, precursors of erythrocytes in bone marrow, is an indispensable element of body iron homeostasis. This process relies on the recovery of iron from senescent red blood cells through the enzymatic degradation of heme molecules and recycling of iron to the circulation. Molecular coordination of these processes involves the activity of heme oxygenase 1, IRP1 and IRP2 as well as the functioning of the hepcidin-ferroportin regulatory axis. Recent studies show in mammals the existence of an expanded system of proteins involved in the transport of intact heme molecules at the cellular and systemic levels. The biological role of this system is of particular importance when the concentration of free heme reaches a toxic level in the body (intravascular hemolysis as well as locally in cells having intensive heme metabolism such as erythroblasts and macrophages.

  9. Synthesis, characterization and self-assembly of Co complexes ...

    Indian Academy of Sciences (India)

    (H-bonded) assemblies and afford inclusion complexes with solvents serving as the guest molecules.12 Self- assembly of phenolic compounds show that the ...... Board (SERB), Govt. of India for the generous financial support and CIF-USIC of this university for the instru- mental facilities. AA and DB thank University Grant.

  10. Bioinspired synthesis and self-assembly of hybrid organic–inorganic nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Honghu [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    Nature is replete with complex organic–inorganic hierarchical materials of diverse yet specific functions. These materials are intricately designed under physiological conditions through biomineralization and biological self-assembly processes. Tremendous efforts have been devoted to investigating mechanisms of such biomineralization and biological self-assembly processes as well as gaining inspiration to develop biomimetic methods for synthesis and self-assembly of functional nanomaterials. In this work, we focus on the bioinspired synthesis and self-assembly of functional inorganic nanomaterials templated by specialized macromolecules including proteins, DNA and polymers. The in vitro biomineralization process of the magnetite biomineralizing protein Mms6 has been investigated using small-angle X-ray scattering. Templated by Mms6, complex magnetic nanomaterials can be synthesized on surfaces and in the bulk. DNA and synthetic polymers have been exploited to construct macroscopic two- and three-dimensional (2D and 3D) superlattices of gold nanocrystals. Employing X-ray scattering and spectroscopy techniques, the self-assembled structures and the self-assembly mechanisms have been studied, and theoretical models have been developed. Our results show that specialized macromolecules including proteins, DNA and polymers act as effective templates for synthesis and self-assembly of nanomaterials. These bottom-up approaches provide promising routes to fabricate hybrid organic–inorganic nanomaterials with rationally designed hierarchical structures, targeting specific functions.

  11. Transforming growth factor β1 enhances heme oxygenase 1 expression in human synovial fibroblasts by inhibiting microRNA 519b synthesis.

    Directory of Open Access Journals (Sweden)

    Shu-Jui Kuo

    Full Text Available Osteoarthritis (OA is manifested by synovial inflammation and cartilage destruction that is directly linked to synovitis, joint swelling and pain. In the light of the role of synovium in the pathogenesis and the symptoms of OA, synovium-targeted therapy is a promising strategy to mitigate the symptoms and progression of OA. Transforming growth factor beta 1 (TGF-β1, a secreted homodimeric protein, possesses unique and potent anti-inflammatory and immune-regulatory properties in many cell types. Heme oxygenase 1 (HO-1 is an inducible anti-inflammatory and stress responsive enzyme that has been proven to prevent injuries caused by many diseases. Despite the similar anti-inflammatory profile and their involvement in the pathogenesis of arthritic diseases, no studies have as yet explored the possibility of any association between the expression of TGF-β1 and HO-1.TGF-β1-induced HO-1 expression was examined by HO-1 promoter assay, qPCR, and Western blotting. The siRNAs and enzyme inhibitors were utilized to determine the intermediate involved in the signal transduction pathway. We showed that TGF-β1 stimulated the synthesis of HO-1 in a concentration- and time-dependent manner, which can be mitigated by blockade of the phospholipase (PLCγ/protein kinase C alpha (PKCα pathway. We also showed that the expression of miRNA-519b, which blocks HO-1 transcription, is inhibited by TGF-β1, and the suppression of miRNA 519b could be reversed via blockade of the PLCγ/PKCα pathway.TGF-β1 stimulated the expression of HO-1 via activating the PLCγ/PKCα pathway and suppressing the downstream expression of miRNA-519b. These results may shed light on the pathogenesis and treatment of OA.

  12. Environmental heme utilization by heme-auxotrophic bacteria.

    Science.gov (United States)

    Gruss, Alexandra; Borezée-Durant, Elise; Lechardeur, Delphine

    2012-01-01

    Heme, an iron-containing porphyrin, is the prosthetic group for numerous key cellular enzymatic and regulatory processes. Many bacteria encode the biosynthetic enzymes needed for autonomous heme production. Remarkably, however, numerous other bacteria lack a complete heme biosynthesis pathway, yet encode heme-requiring functions. For such heme-auxotrophic bacteria (HAB), heme or porphyrins must be captured from the environment. Functional studies, aided by genomic analyses, provide insight into the HAB lifestyle, how they acquire and manage heme, and the uses of heme that make it worthwhile, and sometimes necessary, to capture this bioactive molecule. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. Urethane tetrathiafulvalene derivatives: synthesis, self-assembly and electrochemical properties

    Directory of Open Access Journals (Sweden)

    Xiang Sun

    2015-11-01

    Full Text Available This paper reports the self-assembly of two new tetrathiafulvalene (TTF derivatives that contain one or two urethane groups. The formation of nanoribbons was evidenced by scanning electron microscopy (SEM and X-ray diffraction (XRD, which showed that the self-assembly ability of T1 was better than that of T2. The results revealed that more urethane groups in a molecule did not necessarily instigate self-assembly. UV–vis and FTIR spectra were measured to explore noncovalent interactions. The driving forces for self-assembly of TTF derivatives were mainly hydrogen bond interactions and π–π stacking interactions. The electronic conductivity of the T1 and T2 films was tested by a four-probe method.

  14. 3D Architectured Polyazomethine Gel Synthesis: Its Self Assembled ...

    Indian Academy of Sciences (India)

    23

    Abstract. Azomethine is the key linkage in all Schiff base reactions. The present context has efficiently emphasized on the utilization of Schiff base strategy effectively in the synthesis of polyazomethine polymer gel materials. The synthesized polymer gel is characterized by different physical techniques for testing its proper ...

  15. The protein inhibitor of nNOS (PIN/DLC1/LC8) binding does not inhibit the NADPH-dependent heme reduction in nNOS, a key step in NO synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Parhad, Swapnil S. [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India); Jaiswal, Deepa [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India); TIFR Centre for Interdisciplinary Sciences, 21 Brundavan Colony, Narsingi, Hyderabad 500075 (India); Ray, Krishanu, E-mail: krishanu@tifr.res.in [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India); Mazumdar, Shyamalava, E-mail: shyamal@tifr.res.in [Tata Institute of Fundamental Research (TIFR), Homi Bhabha Road, Mumbai 400 005 (India)

    2016-03-25

    The neuronal nitric oxide synthase (nNOS) is an essential enzyme involved in the synthesis of nitric oxide (NO), a potent neurotransmitter. Although previous studies have indicated that the dynein light chain 1 (DLC1) binding to nNOS could inhibit the NO synthesis, the claim is challenged by contradicting reports. Thus, the mechanism of nNOS regulation remained unclear. nNOS has a heme-bearing, Cytochrome P450 core, and the functional enzyme is a dimer. The electron flow from NADPH to Flavin, and finally to the heme of the paired nNOS subunit within a dimer, is facilitated upon calmodulin (CaM) binding. Here, we show that DLC1 binding to nNOS-CaM complex does not affect the electron transport from the reductase to the oxygenase domain. Therefore, it cannot inhibit the rate of NADPH-dependent heme reduction in nNOS, which results in L-Arginine oxidation. Also, the NO release activity does not decrease with increasing DLC1 concentration in the reaction mix, which further confirmed that DLC1 does not inhibit nNOS activity. These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell. - Highlights: • The effect of interaction of nNOS with DLC1 has been debatable with contradicting reports in literature. • Purified DLC1 has no effect on electron transport between reductase and oxygenase domain of purified nNOS-CaM. • The NO release activity of nNOS was not altered by DLC1, supporting that DLC1 does not inhibit the enzyme. • These findings suggest that the DLC1 binding may have other implications for the nNOS function in the cell.

  16. A novel genetic technique in Plasmodium berghei allows liver stage analysis of genes required for mosquito stage development and demonstrates that de novo heme synthesis is essential for liver stage development in the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Upeksha L Rathnapala

    2017-06-01

    Full Text Available The combination of drug resistance, lack of an effective vaccine, and ongoing conflict and poverty means that malaria remains a major global health crisis. Understanding metabolic pathways at all parasite life stages is important in prioritising and targeting novel anti-parasitic compounds. The unusual heme synthesis pathway of the rodent malaria parasite, Plasmodium berghei, requires eight enzymes distributed across the mitochondrion, apicoplast and cytoplasm. Deletion of the ferrochelatase (FC gene, the final enzyme in the pathway, confirms that heme synthesis is not essential in the red blood cell stages of the life cycle but is required to complete oocyst development in mosquitoes. The lethality of FC deletions in the mosquito stage makes it difficult to study the impact of these mutations in the subsequent liver stage. To overcome this, we combined locus-specific fluorophore expression with a genetic complementation approach to generate viable, heterozygous oocysts able to produce a mix of FC expressing and FC deficient sporozoites. These sporozoites show normal motility and can invade liver cells, where FC deficient parasites can be distinguished by fluorescence and phenotyped. Parasites lacking FC exhibit a severe growth defect within liver cells, with development failure detectable in the early to mid stages of liver development in vitro. FC deficient parasites could not complete liver stage development in vitro nor infect naïve mice, confirming liver stage arrest. These results validate the heme pathway as a potential target for prophylactic drugs targeting liver stage parasites. In addition, we demonstrate that our simple genetic approach can extend the phenotyping window beyond the insect stages, opening considerable scope for straightforward reverse genetic analysis of genes that are dispensable in blood stages but essential for completing mosquito development.

  17. The mitochondrial heme exporter FLVCR1b mediates erythroid differentiation.

    Science.gov (United States)

    Chiabrando, Deborah; Marro, Samuele; Mercurio, Sonia; Giorgi, Carlotta; Petrillo, Sara; Vinchi, Francesca; Fiorito, Veronica; Fagoonee, Sharmila; Camporeale, Annalisa; Turco, Emilia; Merlo, Giorgio R; Silengo, Lorenzo; Altruda, Fiorella; Pinton, Paolo; Tolosano, Emanuela

    2012-12-01

    Feline leukemia virus subgroup C receptor 1 (FLVCR1) is a cell membrane heme exporter that maintains the balance between heme levels and globin synthesis in erythroid precursors. It was previously shown that Flvcr1-null mice died in utero due to a failure of erythropoiesis. Here, we identify Flvcr1b, a mitochondrial Flvcr1 isoform that promotes heme efflux into the cytoplasm. Flvcr1b overexpression promoted heme synthesis and in vitro erythroid differentiation, whereas silencing of Flvcr1b caused mitochondrial heme accumulation and termination of erythroid differentiation. Furthermore, mice lacking the plasma membrane isoform (Flvcr1a) but expressing Flvcr1b had normal erythropoiesis, but exhibited hemorrhages, edema, and skeletal abnormalities. Thus, FLVCR1b regulates erythropoiesis by controlling mitochondrial heme efflux, whereas FLVCR1a expression is required to prevent hemorrhages and edema. The aberrant expression of Flvcr1 isoforms may play a role in the pathogenesis of disorders characterized by an imbalance between heme and globin synthesis.

  18. The assembly and use of continuous flow systems for chemical synthesis.

    Science.gov (United States)

    Britton, Joshua; Jamison, Timothy F

    2017-11-01

    The adoption of and opportunities in continuous flow synthesis ('flow chemistry') have increased significantly over the past several years. Continuous flow systems provide improved reaction safety and accelerated reaction kinetics, and have synthesised several active pharmaceutical ingredients in automated reconfigurable systems. Although continuous flow platforms are commercially available, systems constructed 'in-lab' provide researchers with a flexible, versatile, and cost-effective alternative. Herein, we describe the assembly and use of a modular continuous flow apparatus from readily available and affordable parts in as little as 30 min. Once assembled, the synthesis of a sulfonamide by reacting 4-chlorobenzenesulfonyl chloride with dibenzylamine in a single reactor coil with an in-line quench is presented. This example reaction offers the opportunity to learn several important skills including reactor construction, charging of a back-pressure regulator, assembly of stainless-steel syringes, assembly of a continuous flow system with multiple junctions, and yield determination. From our extensive experience of single-step and multistep continuous flow synthesis, we also describe solutions to commonly encountered technical problems such as precipitation of solids ('clogging') and reactor failure. Following this protocol, a nonspecialist can assemble a continuous flow system from reactor coils, syringes, pumps, in-line liquid-liquid separators, drying columns, back-pressure regulators, static mixers, and packed-bed reactors.

  19. Rational synthesis and self-assembly of anisotropic plasmonic nanoparticles

    OpenAIRE

    Scarabelli, Leonardo

    2016-01-01

    This thesis work has been carried out in the framework of the ERC Advanced Grant Plasmaquo (nº 267867), which focused on the development of novel nanostructured plasmonic materials based on crystalline assemblies of anisotropic nanoparticles, to be used as optical enhancers for the surface enhanced Raman scattering detection of bacterial Quorum Sensing signaling molecules. More specifically, the thesis was oriented toward the design of such nanostructures, and on the characterization of their...

  20. Synthesis and assembly of infectious bovine papillomavirus particles in vitro.

    Science.gov (United States)

    Zhou, J; Stenzel, D J; Sun, X Y; Frazer, I H

    1993-04-01

    Bovine papillomavirus type 1 (BPV-1) virions were produced in vitro using vaccinia virus (VV) recombinants expressing the BPV-1 L1 and L2 capsid proteins. Particles morphologically resembling papillomaviruses were observed in the nucleus of cells infected with a VV recombinant for the BPV-1 L1 protein, and greater numbers of similar particles were seen in the nuclei of cells infected with a VV double recombinant for L1 and L2. Virus-like particles (VLPs) assembled in cells infected with the VV double recombinant for BPV-1 L1 and L2, and not those assembled in cells infected with the VV recombinant for BPV-1 L1 alone, were able to package BPV-1 DNA. Transcription of the BPV-1 E1 viral open reading frame was observed after a mouse fibroblast cell line was exposed to VLPs produced using a BPV-1 L1/L2 VV recombinant in a cell line containing episomal BPV-1 DNA. E1 transcription was not observed when the VLPs were pre-incubated with antibodies to the capsid protein of BPV-1. This system should allow an in vitro approach to the definition of the BPV-1 cellular receptor.

  1. Tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles.

    Science.gov (United States)

    Sun, Leming; Fan, Zhen; Wang, Yongzhong; Huang, Yujian; Schmidt, Michael; Zhang, Mingjun

    2015-05-21

    While tremendous efforts have been made in investigating scalable approaches for fabricating nanoparticles, less progress has been made in scalable synthesis of cyclic peptide nanoparticles and nanotubes, despite their great potential for broader biomedical applications. In this paper, tunable synthesis of self-assembled cyclic peptide nanotubes and nanoparticles using three different methods, phase equilibrium, pH-driven, and pH-sensitive methods, were proposed and investigated. The goal is scalable nanomanufacturing of cyclic peptide nanoparticles and nanotubes with different sizes in large quality by controlling multiple process parameters. Cyclo-(L-Gln-D-Ala-L-Glu-D-Ala-)2 was applied to illustrate the proposed ideas. In the study, mass spectrometry and high performance liquid chromatography were employed to verify the chemical structures and purity of the cyclic peptides. Morphology and size of the synthesized nanomaterials were characterized using atomic force microscopy and dynamic light scattering. The dimensions of the self-assembled nanostructures were found to be strongly influenced by the cyclic peptide concentration, side chain modification, pH values, reaction time, stirring intensity, and sonication time. This paper proposed an overall strategy to integrate all the parameters to achieve optimal synthesis outputs. Mechanisms of the self-assembly of the cyclic peptide nanotubes and nanoparticles under variable conditions and tunable parameters were discussed. This study contributes to scalable nanomanufacturing of cyclic peptide based self-assembled nanoparticles and nanotubes for broader biomedical applications.

  2. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg, E-mail: oleg.vasylkiv@nims.go.jp

    2017-04-15

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9–18 nm), rice-seed-like (75–290 nm) and lumpy (75–150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9–15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan. - Highlights: • Magnetite-chitosan nanostructures are synthesized via self-assembly. • Different morphology can be obtained by adjusting the synthesis parameters. • An attractive combination of magnetic properties and morphology is obtained. • Magnetite-chitosan nanostructures are ferrimagnetic and pseudo-single domain.

  3. Microsomal prostaglandin E synthase type 2 (mPGES2) is a glutathione-dependent heme protein, and dithiothreitol dissociates the bound heme to produce active prostaglandin E2 synthase in vitro.

    Science.gov (United States)

    Takusagawa, Fusao

    2013-04-05

    An x-ray study indicated that microsomal prostaglandin E synthase type 2 (mPGES2) is a heme-bound protein and catalyzes prostaglandin (PG) H2 degradation, but not PGE2 formation (Yamada, T., and Takusagawa, F. (2007) Biochemistry 46, 8414-8424). In response to the x-ray study, Watanabe et al. claimed that mPGES2 is a heme-free protein and that both the heme-free and heme-bound proteins have PGE2 synthesis activity in the presence of dithiothreitol (Watanabe, K., Ito, S., and Yamamoto, S. (2008) Biochem. Biophys. Res. Commun. 367, 782-786). To resolve the contradictory results, the heme-binding scheme of mPGES2 was further characterized in vivo and in vitro by absorption and fluorescence spectroscopies. A substantial amount of heme-bound mPGES2 was detected in cell extracts. The heme content in mPGES2 was increased along with an increase in Fe(3+) in the culture medium. Heme-free mPGES2 was converted to the heme-bound form by mixing it with pig liver extract, indicating that mPGES2 is capable of forming a complex with heme in mammalian cells. Heme binds to mPGES2 only in the presence of glutathione. The newly determined heme dissociation constant (2.9 nM) supports strongly that mPGES2 is a heme-bound protein in vivo. The bound heme was not dissociated by oxidation by H2O2 or reduction by glutathione or 2-mercaptoethanol. However, reduction by dithiothreitol (an artificial reducing compound) induced the bound heme to dissociate from mPGES2 and released heme-free mPGES2, which exhibited PGE2 synthesis activity in vitro. Imidazole bound to mPGES2 by stacking on the bound heme and inhibited heme oxidation by H2O2 and reduction by dithiothreitol.

  4. Synthesis and Self-Assembly of Gold Nanoparticles by Chemically Modified Polyol Methods under Experimental Control

    Directory of Open Access Journals (Sweden)

    Nguyen Viet Long

    2013-01-01

    Full Text Available In our present research, bottom-up self-assembly of gold (Au nanoparticles on a flat copper (Cu substrate is performed by a facile method. The very interesting evidence of self-assembly of Au nanoparticles on the top of the thin assembled layer was observed by scanning electron microscopy (SEM. We had discovered one of the most general and simple methods for the self-assembly of metal nanoparticles. The general physical and chemical mechanisms of the evaporation process of the solvents can be used for self-assembly of the as-prepared nanoparticles. The important roles of molecules of the used solvents are very critical to self-assembly of the as-prepared Au nanoparticles in the case without using any polymers for those processes. It is clear that self-assembly of such one nanosystem of the uniform Au nanoparticles is fully examined. Finally, an exciting surface plasmon resonance (SPR phenomenon of the pure Au nanoparticles in the solvent was fully discovered in their exciting changes of the narrow and large SPR bands according to synthesis time. The SPR was considered as the collective oscillation of valence electrons of the surfaces of the pure Au nanoparticles in the solvent by incident ultraviolet-visible light. Then, the frequency of light photons matches the frequency of the oscillation of surface electrons of the Au nanoparticles that are excited.

  5. Molecular design and synthesis of self-assembling camptothecin drug amphiphiles.

    Science.gov (United States)

    Cheetham, Andrew G; Lin, Yi-An; Lin, Ran; Cui, Honggang

    2017-06-01

    The conjugation of small molecular hydrophobic anticancer drugs onto a short peptide with overall hydrophilicity to create self-assembling drug amphiphiles offers a new prodrug strategy, producing well-defined, discrete nanostructures with a high and quantitative drug loading. Here we show the detailed synthesis procedure and how the molecular structure can influence the synthesis of the self-assembling prodrugs and the physicochemical properties of their assemblies. A series of camptothecin-based drug amphiphiles were synthesized via combined solid- and solution-phase synthetic techniques, and the physicochemical properties of their self-assembled nanostructures were probed using a number of imaging and spectroscopic techniques. We found that the number of incorporated drug molecules strongly influences the rate at which the drug amphiphiles are formed, exerting a steric hindrance toward any additional drugs to be conjugated and necessitating extended reaction time. The choice of peptide sequence was found to affect the solubility of the conjugates and, by extension, the critical aggregation concentration and contour length of the filamentous nanostructures formed. In the design of self-assembling drug amphiphiles, the number of conjugated drug molecules and the choice of peptide sequence have significant effects on the nanostructures formed. These observations may allow the fine-tuning of the physicochemical properties for specific drug delivery applications, ie systemic vs local delivery.

  6. Synthesis of Au-Pd Nanoflowers Through Nanocluster Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jianguang [Duke University; Howe, Jane Y [ORNL; Chi, Miaofang [ORNL; Wilson, Adria [Duke University; Rathmall, Aaron [Duke University; Wiley, Benjamin J [ORNL

    2011-01-01

    Reduction of Pd ions by hydroquinone in the presence of gold nanoparticles and polyvinylpyrrolidone resulted in the formation of nanoflowers with a Au core and Pd petals. Addition of HCl to the synthesis halted the reduction by hydroquinone and enabled the acquisition of snapshots of the nanoflowers at different stages of growth. TEM images of the reaction after 10 s show that the nanoflower morphology resulted from the homogeneous nucleation of Pd clusters in solution and their subsequent attachment to gold seeds coated with a thin (0.8 {+-} 0.1 nm) shell of Pd. UV-visible spectra also indicate Pd clusters formed in the early stages of the reaction and disappeared as the nanoflowers grew. The speed at which this reaction can be halted is useful not only for producing a variety of bimetallic nanostructures with precisely controlled dimensions and morphologies but also for understanding the growth mechanism of these structures. The ability of the AuPd core-shell structure to catalyze the Suzuki coupling reaction of iodobenzene to phenylboronic acid was probed and compared against the activity of Pd nanocubes and thin-shelled AuPd core-shell nanoparticles. The results of this study suggest that Suzuki coupling was not affected by the surface structure or subsurface composition of the nanoparticles, but instead was primarily catalyzed by molecular Pd species that leached from the nanostructures.

  7. Synthesis and solution self-assembly of side-chain cobaltocenium-containing block copolymers.

    Science.gov (United States)

    Ren, Lixia; Hardy, Christopher G; Tang, Chuanbing

    2010-07-07

    The synthesis of side-chain cobaltocenium-containing block copolymers and their self-assembly in solution was studied. Highly pure monocarboxycobaltocenium was prepared and subsequently attached to side chains of poly(tert-butyl acrylate)-block-poly(2-hydroxyethyl acrylate), yielding poly(tert-butyl acrylate)-block-poly(2-acryloyloxyethyl cobaltoceniumcarboxylate). The cobaltocenium block copolymers exhibited vesicle morphology in the mixture of acetone and water, while micelles of nanotubes were formed in the mixture of acetone and chloroform.

  8. Chemical synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications.

    Science.gov (United States)

    Ling, Daishun; Lee, Nohyun; Hyeon, Taeghwan

    2015-05-19

    Magnetic iron oxide nanoparticles have been extensively investigated for their various biomedical applications including diagnostic imaging, biological sensing, drug, cell, and gene delivery, and cell tracking. Recent advances in the designed synthesis and assembly of uniformly sized iron oxide nanoparticles have brought innovation in the field of nanomedicine. This Account provides a review on the recent progresses in the controlled synthesis and assembly of uniformly sized iron oxide nanoparticles for medical applications. In particular, it focuses on three topics: stringent control of particle size during synthesis via the "heat-up" process, surface modification for the high stability and biocompatibility of the nanoparticles for diagnostic purposes, and assembly of the nanoparticles within polymers or mesoporous silica matrices for theranostic applications. Using extremely small 3 nm sized iron oxide nanoparticles (ESION), a new nontoxic T1 MRI contrast agent was realized for high-resolution MRI of blood vessels down to 0.2 mm. Ferrimagnetic iron oxide nanoparticles (FION) that are larger than 20 nm exhibit extremely large magnetization and coercivity values. The cells labeled with FIONs showed very high T2 contrast effect so that even a single cell can be readily imaged. Designed assembly of iron oxide nanoparticles with mesoporous silica and polymers was conducted to fabricate multifunctional nanoparticles for theranostic applications. Mesoporous silica nanoparticles are excellent scaffolds for iron oxide nanoparticles, providing magnetic resonance and fluorescence imaging modalities as well as the functionality of the drug delivery vehicle. Polymeric ligands could be designed to respond to various biological stimuli such as pH, temperature, and enzymatic activity. For example, we fabricated tumor pH-sensitive magnetic nanogrenades (termed PMNs) composed of self-assembled iron oxide nanoparticles and pH-responsive ligands. They were utilized to visualize

  9. De novo synthesis and properties of analogues of the self-assembling chlorosomal bacteriochlorophylls

    Energy Technology Data Exchange (ETDEWEB)

    Mass, Olga [North Carolina State Univ., Raleigh, NC (United States); Pandithavidana, Dinesh R. [North Carolina State Univ., Raleigh, NC (United States); Ptaszek, Marcin [North Carolina State Univ., Raleigh, NC (United States); Santiago, Koraliz [North Carolina State Univ., Raleigh, NC (United States); Springer, Joseph W. [Washington Univ., St. Louis, MO (United States); Jiao, Jieying [Univ. Of California, Riverside, CA (United States); Tang, Qun [Univ. Of California, Riverside, CA (United States); Kirmaier, Christine [Washington Univ., St. Louis, MO (United States); Bocian, David F. [Univ. Of California, Riverside, CA (United States); Holten, Dewey [Washington Univ., St. Louis, MO (United States); Lindsey, Jonathan S. [North Carolina State Univ., Raleigh, NC (United States)

    2011-01-01

    Natural photosynthetic pigments bacteriochlorophyllsc, d and e in green bacteria undergo self-assembly to create an organized antenna system known as the chlorosome, which collects photons and funnels the resulting excitation energy toward the reaction centers. Mimicry of chlorosome function is a central problem in supramolecular chemistry and artificial photosynthesis, and may have relevance for the design of photosynthesis-inspired solar cells. The main challenge in preparing artificial chlorosomes remains the synthesis of the appropriate pigment (chlorin) equipped with a set of functional groups suitable to direct the assembly and assure efficient energy transfer. Prior approaches have entailed derivatization of porphyrins or semisynthesis beginning with chlorophylls. This paper reports a third approach, the de novo synthesis of macrocycles that contain the same hydrocarbon skeleton as chlorosomal bacteriochlorophylls. The synthesis here of Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines (the aryl group consists of phenyl, mesityl, or pentafluorophenyl) entails selective bromination of a 3,13-diacetyl-10-arylchlorin, palladium-catalyzed 13¹-oxophorbine formation, and selective reduction of the 3-acetyl group using BH₃·tBuNH₂. Each macrocycle contains a geminal dimethyl group in the pyrroline ring to provide stability toward adventitious dehydrogenation. A Zn(II) 7-(1-hydroxyethyl)-10-phenyl-17-oxochlorin also has been prepared. Altogether, 30 new hydroporphyrins were synthesized. The UV-Vis absorption spectra of the new chlorosomal bacteriochlorophyll mimics reveal a bathochromic shift of [similar]1800 cm-1 of the Qy band in nonpolar solvent, indicating extensive assembly in solution. The Zn(II) 3-(1-hydroxyethyl)-10-aryl-13¹-oxophorbines differ in the propensity to form assemblies based on the 10-substituent in the following order: mesitylassemblies also can be formed in solid media and

  10. In vitro integration of ribosomal RNA synthesis, ribosome assembly, and translation.

    Science.gov (United States)

    Jewett, Michael C; Fritz, Brian R; Timmerman, Laura E; Church, George M

    2013-06-25

    Purely in vitro ribosome synthesis could provide a critical step towards unraveling the systems biology of ribosome biogenesis, constructing minimal cells from defined components, and engineering ribosomes with new functions. Here, as an initial step towards this goal, we report a method for constructing Escherichia coli ribosomes in crude S150 E. coli extracts. While conventional methods for E. coli ribosome reconstitution are non-physiological, our approach attempts to mimic chemical conditions in the cytoplasm, thus permitting several biological processes to occur simultaneously. Specifically, our integrated synthesis, assembly, and translation (iSAT) technology enables one-step co-activation of rRNA transcription, assembly of transcribed rRNA with native ribosomal proteins into functional ribosomes, and synthesis of active protein by these ribosomes in the same compartment. We show that iSAT makes possible the in vitro construction of modified ribosomes by introducing a 23S rRNA mutation that mediates resistance against clindamycin. We anticipate that iSAT will aid studies of ribosome assembly and open new avenues for making ribosomes with altered properties.

  11. Nonlinear hybrid modal synthesis based on branch modes for dynamic analysis of assembled structure

    Science.gov (United States)

    Huang, Xing-Rong; Jézéquel, Louis; Besset, Sébastien; Li, Lin; Sauvage, Olivier

    2018-01-01

    This paper describes a simple and fast numerical procedure to study the steady state responses of assembled structures with nonlinearities along continuous interfaces. The proposed strategy is based on a generalized nonlinear modal superposition approach supplemented by a double modal synthesis strategy. The reduced nonlinear modes are derived by combining a single nonlinear mode method with reduction techniques relying on branch modes. The modal parameters containing essential nonlinear information are determined and then employed to calculate the stationary responses of the nonlinear system subjected to various types of excitation. The advantages of the proposed nonlinear modal synthesis are mainly derived in three ways: (1) computational costs are considerably reduced, when analyzing large assembled systems with weak nonlinearities, through the use of reduced nonlinear modes; (2) based on the interpolation models of nonlinear modal parameters, the nonlinear modes introduced during the first step can be employed to analyze the same system under various external loads without having to reanalyze the entire system; and (3) the nonlinear effects can be investigated from a modal point of view by analyzing these nonlinear modal parameters. The proposed strategy is applied to an assembled system composed of plates and nonlinear rubber interfaces. Simulation results have proven the efficiency of this hybrid nonlinear modal synthesis, and the computation time has also been significantly reduced.

  12. Controllable synthesis of self-assembly Co3O4 nanoflake microspheres for electrochemical performance

    Science.gov (United States)

    Liu, Fangyan; Zhang, Binbin; Su, Hai; Zhang, Haitao; Zhang, Lei; Yang, Weiqing

    2016-09-01

    Tuning the ratios of ethanol to water, self-assembling microspheres composed of Co3O4 nanoflakes are synthesized by the hydrothermal method. The scanning electron microscopy (SEM) images of as-grown samples obviously show that the dispersive multilayered structures gradually change into micro/nanobelts and cubic blocks structures, and then into the desired self-assembled microspheres with increasing ratios of ethanol to water. Also, all the x-ray diffraction (XRD) patterns evidently demonstrate that all obtained Co3O4 has cubic crystal structure. The corresponding synthesis mechanism is discussed in detail. More importantly, the unique self-assembling Co3O4 nanoflake microspheres have excellent electrochemical performance with large specific capacitance, good rate capability and excellent cycling performance, evidently presenting a potential capability of Co3O4 nanoflake microspheres to act as electrode materials for supercapacitors in sustainable power sources.

  13. The self-assembly of redox active peptides: Synthesis and electrochemical capacitive behavior.

    Science.gov (United States)

    Piccoli, Julia P; Santos, Adriano; Santos-Filho, Norival A; Lorenzón, Esteban N; Cilli, Eduardo M; Bueno, Paulo R

    2016-05-01

    The present work reports on the synthesis of a redox-tagged peptide with self-assembling capability aiming applications in electrochemically active capacitive surfaces (associated with the presence of the redox centers) generally useful in electroanalytical applications. Peptide containing ferrocene (fc) molecular (redox) group (Ac-Cys-Ile-Ile-Lys(fc)-Ile-Ile-COOH) was thus synthesized by solid phase peptide synthesis (SPPS). To obtain the electrochemically active capacitive interface, the side chain of the cysteine was covalently bound to the gold electrode (sulfur group) and the side chain of Lys was used to attach the ferrocene in the peptide chain. After obtaining the purified redox-tagged peptide, the self-assembly and redox capability was characterized by cyclic voltammetry (CV) and electrochemical impedance-based capacitance spectroscopy techniques. The obtained results confirmed that the redox-tagged peptide was successfully attached by forming an electroactive self-assembled monolayer onto gold electrode. The design of redox active self-assembly ferrocene-tagged peptide is predictably useful in the development of biosensor devices precisely to detect, in a label-free platform, those biomarkers of clinical relevance. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 357-367, 2016. © 2016 Wiley Periodicals, Inc.

  14. Heme A synthase in bacteria depends on one pair of cysteinyls for activity.

    Science.gov (United States)

    Lewin, Anna; Hederstedt, Lars

    2016-02-01

    Heme A is a prosthetic group unique for cytochrome a-type respiratory oxidases in mammals, plants and many microorganisms. The poorly understood integral membrane protein heme A synthase catalyzes the synthesis of heme A from heme O. In bacteria, but not in mitochondria, this enzyme contains one or two pairs of cysteine residues that are present in predicted hydrophilic polypeptide loops on the extracytoplasmic side of the membrane. We used heme A synthase from the eubacterium Bacillus subtilis and the hyperthermophilic archeon Aeropyrum pernix to investigate the functional role of these cysteine residues. Results with B. subtilis amino acid substituted proteins indicated the pair of cysteine residues in the loop connecting transmembrane segments I and II as being essential for catalysis but not required for binding of the enzyme substrate, heme O. Experiments with isolated A. pernix and B. subtilis heme A synthase demonstrated that a disulfide bond can form between the cysteine residues in the same loop and also between loops showing close proximity of the two loops in the folded enzyme protein. Based on the findings, we propose a classification scheme for the four discrete types of heme A synthase found so far in different organisms and propose that essential cysteinyls mediate transfer of reducing equivalents required for the oxygen-dependent catalysis of heme A synthesis from heme O. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Correlating self-assembly of block copolymers for their application in synthesis of gold nanoparticles.

    Science.gov (United States)

    Ray, Debes; Aswall, Vinod Kumar; Srivastava, Dinesh

    2011-03-01

    We report the role of self-assembly of polyethylene oxide-polypropylene oxide-polyethylene oxide (PEO-PPO-PEO) block copolymers for the synthesis of gold nanoparticles from hydrogen tetrachloroaureate (III) hydrate (HAuCl4 x 3H2O) in aqueous solution. The synthesis has been carried out using three different block copolymers P85 [EO26PO39EO26], F88 [EO103PO39EO103] and P105 [EO37PO56EO37], which not only have varying molecular weight but also differ in hydrophobicity to hydrophilicity ratio. The formation of gold nanoparticles is confirmed by the UV-Visible Spectroscopy. Transmission electron microscopy (TEM) provides the sizes of the nanoparticles formed in these systems. Small-Angle Neutron Scattering (SANS) and Dynamic Light Scattering (DLS) techniques are used to correlate the self-assembly of block copolymer to their propensity to form gold nanoparticles. The yield is found to be in the order P105 > P85 > F88 and is related to the higher tendency of block copolymer to self-assemble to give greater yield of gold nanoparticles. For all the block copolymers, SANS and DLS results suggests that the yield in the synthesis does not always increases with the salt concentration and is limited due to the fact that most of the block copolymers remain unassociated with the gold nanoparticles. By making use of these unassociated block copolymers, we propose two methods (i) step addition method and (ii) additional reductant method, where the synthesis yield of gold nanoparticles can be enhanced by manifold.

  16. Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block.

    Science.gov (United States)

    Isoda, Yuta; Sasaki, Norihiko; Kitamura, Kei; Takahashi, Shuji; Manmode, Sujit; Takeda-Okuda, Naoko; Tamura, Jun-Ichi; Nokami, Toshiki; Itoh, Toshiyuki

    2017-01-01

    The total synthesis of TMG-chitotriomycin using an automated electrochemical synthesizer for the assembly of carbohydrate building blocks is demonstrated. We have successfully prepared a precursor of TMG-chitotriomycin, which is a structurally-pure tetrasaccharide with typical protecting groups, through the methodology of automated electrochemical solution-phase synthesis developed by us. The synthesis of structurally well-defined TMG-chitotriomycin has been accomplished in 10-steps from a disaccharide building block.

  17. Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures

    Science.gov (United States)

    Bezdorozhev, Oleksii; Kolodiazhnyi, Taras; Vasylkiv, Oleg

    2017-04-01

    This paper reports the synthesis and magnetic properties of unique magnetite-chitosan nanostructures synthesized by the chemical precipitation of magnetite nanoparticles in the presence of chitosan. The influence of varying synthesis parameters on the morphology of the magnetic composites is determined. Depending on the synthesis parameters, magnetite-chitosan nanostructures of spherical (9-18 nm), rice-seed-like (75-290 nm) and lumpy (75-150 nm) shapes were obtained via self-assembly. Spherical nanostructures encapsulated by a 9-15 nm chitosan layer were assembled as well. The prospective morphology of the nanostructures is combined with their excellent magnetic characteristics. It was found that magnetite-chitosan nanostructures are ferromagnetic and pseudo-single domain. Rice-seed-like nanostructures exhibited a coercivity of 140 Oe and saturation magnetization of 56.7 emu/g at 300 K. However, a drop in the magnetic properties was observed for chitosan-coated spherical nanostructures due to the higher volume fraction of chitosan.

  18. Bacterial Nitric Oxide Synthase Is Required for the Staphylococcus aureus Response to Heme Stress.

    Science.gov (United States)

    Surdel, Matthew C; Dutter, Brendan F; Sulikowski, Gary A; Skaar, Eric P

    2016-08-12

    Staphylococcus aureus is a pathogen that causes significant morbidity and mortality worldwide. Within the vertebrate host, S. aureus requires heme as a nutrient iron source and as a cofactor for multiple cellular processes. Although required for pathogenesis, excess heme is toxic. S. aureus employs a two-component system, the heme sensor system (HssRS), to sense and protect against heme toxicity. Upon activation, HssRS induces the expression of the heme-regulated transporter (HrtAB), an efflux pump that alleviates heme toxicity. The ability to sense and respond to heme is critical for the pathogenesis of numerous Gram-positive organisms, yet the mechanism of heme sensing remains unknown. Compound '3981 was identified in a high-throughput screen as an activator of staphylococcal HssRS that triggers HssRS independently of heme accumulation. '3981 is toxic to S. aureus; however, derivatives of '3981 were synthesized that lack toxicity while retaining HssRS activation, enabling the interrogation of the heme stress response without confounding toxic effects of the parent molecule. Using '3981 derivatives as probes of the heme stress response, numerous genes required for '3981-induced activation of HssRS were uncovered. Specifically, multiple genes involved in the production of nitric oxide were identified, including the gene encoding bacterial nitric oxide synthase (bNOS). bNOS protects S. aureus from oxidative stress imposed by heme. Taken together, this work identifies bNOS as crucial for the S. aureus heme stress response, providing evidence that nitric oxide synthesis and heme sensing are intertwined.

  19. Supramolecular Gel-Templated In Situ Synthesis and Assembly of CdS Quantum Dots Gels

    Science.gov (United States)

    Zhu, Lili; He, Jie; Wang, Xiaoliang; Li, Dawei; He, Haibing; Ren, Lianbing; Jiang, Biwang; Wang, Yong; Teng, Chao; Xue, Gi; Tao, Huchun

    2017-01-01

    Although many studies have attempted to develop strategies for spontaneously organizing nanoparticles (NPs) into three-dimensional (3D) geometries, it remains a fascinating challenge. In this study, a method for in situ synthesis and self-assembly of a CdS quantum dots (QDs) gel using a Cd supramolecular gel as a scaffold was demonstrated. During the QDs formation process, the Cd ions that constituted the Cd gels served as the precursors of the CdS QDs, and the oleic acid (OA) that ligated with the Cd in the supramolecular gels was capped on the surface of the CdS QDs in the form of carboxylate. The OA-stabilized CdS QDs were in situ synthesized in the entangled self-assembled fibrillar networks (SAFIN) of the Cd gels through reactions between the gelator and H2S. As a result, the QDs exactly replicated the framework of the SAFIN in the CdS QD gels instead of simply assembling along the SAFIN of the supramolecular gels. Moreover, the CdS QDs showed extraordinary sensitivity in the fluorescence detection of IO4 - anions. The facile one-step method developed here is a new approach to assembling nanostructured materials into 3D architectures and has general implications for the design of low molecular mass gelators to bring desired functionality to the developed supramolecular gels.

  20. Synthesis, self-assembly and lipoplex formulation of two novel cyclic phosphonate lipids

    Directory of Open Access Journals (Sweden)

    JenniferYeh

    2013-05-01

    Full Text Available Background: Synthetic cationic lipids hold much potential as gene packaging and delivery agents for the treatment of inherited and acquired life threatening diseases, such as cancer, AIDS, cardiovascular diseases, and certain autoimmune disorders. Methods: We report the synthesis, self-assembly as characterized by critical micelle concentrations and plasmid DNA gel retardation using two novel cyclic, phosphonate cationic lipids 2a and 2b, which were synthesized by derivatizing two diastereomeric macrocyclic phosphonates 1a and 1b with a 2-carbon hydroxylamine linker, N, N-dimethylethanolamine (3. Results: The production of cyclic phosphonate lipids 2a and 2b in 73% and 60% yields, respectively, was achieved using classical synthetic methods involving nucleophilic substitution at the phosphorus centre. Conclusions: The synthesis, aggregation and DNA binding properties of these novel cyclic phosphonate lipids suggest that they may have utility serving as gene packaging and delivery agents.

  1. Hydrocortisone effect on hyaluronate synthesis in a self-assembled human dermal equivalent.

    Science.gov (United States)

    Deshpande, Madhura; Papp, Suzanne; Schaffer, Lana; Pouyani, Tara

    2016-10-01

    Human dermal matrix is a 'self-assembled' dermal equivalent containing large amounts of the glycosaminoglycan hyaluronic acid (hyaluronate, hyaluronan, HA). We sought to investigate the actions of the hormone hydrocortisone on hyaluronate synthesis in the human dermal matrix. To this end, human dermal fibroblasts were cultured under serum-free conditions, and in the absence of a three-dimensional matrix, in the presence of varying amounts of hydrocortisone. The resultant human dermal matrices were characterized. We report that low concentrations of hydrocortisone enhance hyaluronate synthesis in the human dermal equivalent and higher concentrations cause inhibition of hyaluronate synthesis. Other glycosaminoglycan (chondroitin sulphate) synthesis is not affected by changing hydrocortisone concentrations up to 500× (200 µg/ml) of the base value. In order to gain preliminary insight into the molecular mechanism of hyaluronate inhibition, a differential gene array analysis was conducted of human dermal matrix grown in the presence of 200 µg/ml hydrocortisone and in a physiological concentration (0.4 µg/ml, normal conditions). The results of these experiments demonstrate the differential expression of 43 genes in the 500× (200 µg/ml) hydrocortisone construct as compared to the construct grown under normal conditions (0.4 µg/ml hydrocortisone). These preliminary experiments suggest that hydrocortisone at higher concentrations may exert its inhibitory effect on hyaluronate synthesis early in the glycolytic pathway, leading to HA biosynthesis by downregulation of phosphoglucomutase and glucose phosphate isomerase, possibly leading to depletion of the cellular pool of UDP-sugar precursors necessary for HA synthesis. Copyright © 2013 John Wiley & Sons, Ltd. Copyright © 2013 John Wiley & Sons, Ltd.

  2. How Heme Oxygenase-1 Prevents Heme-Induced Cell Death.

    Directory of Open Access Journals (Sweden)

    Lilibeth Lanceta

    Full Text Available Earlier observations indicate that free heme is selectively toxic to cells lacking heme oxygenase-1 (HO-1 but how this enzyme prevents heme toxicity remains unexplained. Here, using A549 (human lung cancer and immortalized human bronchial epithelial cells incubated with exogenous heme, we find knock-down of HO-1 using siRNA does promote the accumulation of cell-associated heme and heme-induced cell death. However, it appears that the toxic effects of heme are exerted by "loose" (probably intralysosomal iron because cytotoxic effects of heme are lessened by pre-incubation of HO-1 deficient cells with desferrioxamine (which localizes preferentially in the lysosomal compartment. Desferrioxamine also decreases lysosomal rupture promoted by intracellularly generated hydrogen peroxide. Supporting the importance of endogenous oxidant production, both chemical and siRNA inhibition of catalase activity predisposes HO-1 deficient cells to heme-mediated killing. Importantly, it appears that HO-1 deficiency somehow blocks the induction of ferritin; control cells exposed to heme show ~10-fold increases in ferritin heavy chain expression whereas in heme-exposed HO-1 deficient cells ferritin expression is unchanged. Finally, overexpression of ferritin H chain in HO-1 deficient cells completely prevents heme-induced cytotoxicity. Although two other products of HO-1 activity--CO and bilirubin--have been invoked to explain HO-1-mediated cytoprotection, we conclude that, at least in this experimental system, HO-1 activity triggers the induction of ferritin and the latter is actually responsible for the cytoprotective effects of HO-1 activity.

  3. Propyl-ended hemifluorinated surfactants: synthesis and self-assembling properties.

    Science.gov (United States)

    Abla, Maher; Durand, Grégory; Pucci, Bernard

    2011-04-01

    The advantages of using hemifluorinated surfactants as an efficient alternative to detergents for manipulating membrane proteins in aqueous solution have been demonstrated in recent reports. However, the large-scale synthesis of these surfactants is still considered as a major matter and has limited their use for biochemical purposes. We report herein the synthesis of a novel series of perfluorohexane-based surfactants endowed with a short propyl hydrocarbon tip and whose polar head size is modulated by the presence of two or three glucose moieties. The synthetic route is based on the radical addition of two alkenes onto the 1,6-diiodoperfluorohexane using AIBN as a radical initiator, affording the surfactants in satisfactory overall yields. The self-assembling properties of these hemifluorinated surfactants were studied by surface tension measurements, dynamic light scattering, as well as their behavior upon reversed-phase chromatography and were compared with those of their perfluorinated analogues. Our findings strongly suggest the predominant influence of the propyl tip on both adsorption and micellization phenomena as well as on the hydrophobic character of the surfactants, whereas as previously observed, the shorter ethyl tip does not greatly affect these properties when compared to the perfluorinated analogues. Moreover, all the surfactants reported here self-assemble into small and monodisperse aggregates, a feature of crucial importance for biochemistry applications.

  4. Synthesis of Zeolites Using the ADOR (Assembly-Disassembly-Organization-Reassembly) Route.

    Science.gov (United States)

    Wheatley, Paul S; Čejka, Jiří; Morris, Russell E

    2016-04-03

    Zeolites are an important class of materials that have wide ranging applications such as heterogeneous catalysts and adsorbents which are dependent on their framework topology. For new applications or improvements to existing ones, new zeolites with novel pore systems are desirable. We demonstrate a method for the synthesis of novel zeolites using the ADOR route. ADOR is an acronym for Assembly, Disassembly, Organization and Reassembly. This synthetic route takes advantage of the assembly of a relatively poorly stable that which can be selectively disassembled into a layered material. The resulting layered intermediate can then be organized in different manners by careful chemical manipulation and then reassembled into zeolites with new topologies. By carefully controlling the organization step of the synthetic pathway, new zeolites with never before seen topologies are capable of being synthesized. The structures of these new zeolites are confirmed using powder X-ray diffraction and further characterized by nitrogen adsorption and scanning electron microscopy. This new synthetic pathway for zeolites demonstrates its capability to produce novel frameworks that have never been prepared by traditional zeolite synthesis techniques.

  5. Increased Heme Levels in the Heart Lead to Exacerbated Ischemic Injury.

    Science.gov (United States)

    Sawicki, Konrad Teodor; Shang, Meng; Wu, Rongxue; Chang, Hsiang-Chun; Khechaduri, Arineh; Sato, Tatsuya; Kamide, Christine; Liu, Ting; Naga Prasad, Sathyamangla V; Ardehali, Hossein

    2015-07-31

    Heme is an essential iron-containing molecule for cardiovascular physiology, but in excess it may increase oxidative stress. Failing human hearts have increased heme levels, with upregulation of the rate-limiting enzyme in heme synthesis, δ-aminolevulinic acid synthase 2 (ALAS2), which is normally not expressed in cardiomyocytes. We hypothesized that increased heme accumulation (through cardiac overexpression of ALAS2) leads to increased oxidative stress and cell death in the heart. We first showed that ALAS2 and heme levels are increased in the hearts of mice subjected to coronary ligation. To determine the causative role of increased heme in the development of heart failure, we generated transgenic mice with cardiac-specific overexpression of ALAS2. While ALAS2 transgenic mice have normal cardiac function at baseline, their hearts display increased heme content, higher oxidative stress, exacerbated cell death, and worsened cardiac function after coronary ligation compared to nontransgenic littermates. We confirmed in cultured cardiomyoblasts that the increased oxidative stress and cell death observed with ALAS2 overexpression is mediated by increased heme accumulation. Furthermore, knockdown of ALAS2 in cultured cardiomyoblasts exposed to hypoxia reversed the increases in heme content and cell death. Administration of the mitochondrial antioxidant MitoTempo to ALAS2-overexpressing cardiomyoblasts normalized the elevated oxidative stress and cell death levels to baseline, indicating that the effects of increased ALAS2 and heme are through elevated mitochondrial oxidative stress. The clinical relevance of these findings was supported by the finding of increased ALAS2 induction and heme accumulation in failing human hearts from patients with ischemic cardiomyopathy compared to nonischemic cardiomyopathy. Heme accumulation is detrimental to cardiac function under ischemic conditions, and reducing heme in the heart may be a novel approach for protection against the

  6. Redox and light control the heme-sensing activity of AppA.

    Science.gov (United States)

    Yin, Liang; Dragnea, Vladimira; Feldman, George; Hammad, Loubna A; Karty, Jonathan A; Dann, Charles E; Bauer, Carl E

    2013-08-27

    The DNA binding activity of the photosystem-specific repressor PpsR is known to be repressed by the antirepressor AppA. AppA contains a blue-light-absorbing BLUF domain and a heme-binding SCHIC domain that controls the interaction of AppA with PpsR in response to light and heme availability. In this study, we have solved the structure of the SCHIC domain and identified the histidine residue that is critical for heme binding. We also demonstrate that dark-adapted AppA binds heme better than light-excited AppA does and that heme bound to the SCHIC domain significantly reduces the length of the BLUF photocycle. We further show that heme binding to the SCHIC domain is affected by the redox state of a disulfide bridge located in the Cys-rich carboxyl-terminal region. These results demonstrate that light, redox, and heme are integrated inputs that control AppA's ability to disrupt the DNA binding activity of PpsR. Photosynthetic bacteria must coordinate synthesis of the tetrapyrroles cobalamin, heme, and bacteriochlorophyll, as overproduction of the latter two is toxic to cells. A key regulator controlling tetrapyrrole biosynthesis is PpsR, and the activity of PpsR is controlled by the heme-binding and light-regulated antirepressor AppA. We show that AppA binds heme only under dark conditions and that heme binding significantly affects the length of the AppA photocycle. Since AppA interacts with PpsR only in the dark, bound heme thus stimulates the antirepressor activity of PpsR. This causes the redirection of tetrapyrrole biosynthesis away from heme into the bacteriochlorophyll branch.

  7. Effects of chronic exposure to sublethal concentrations of lead acetate on heme synthesis and immune function in red-tailed hawks.

    Science.gov (United States)

    Redig, P T; Lawler, E M; Schwartz, S; Dunnette, J L; Stephenson, B; Duke, G E

    1991-07-01

    Red-tailed hawks were exposed to sublethal levels of lead acetate for periods of 3 or 11 weeks. Alterations in the heme biosynthetic pathway were demonstrated after the first week of exposure to 0.82 mg lead per kilogram body weight per day. Activity of erythrocyte porphobilinogen synthase (aminolevulinic acid dehydratase) was depressed significantly and did not return to normal levels until 5 weeks after the termination of lead treatments. A rapid and relatively brief increase in erythrocyte free protoporphyrin and a slower but more prolonged increase in its zinc complex were also demonstrated with exposure to this dose of lead for 3 weeks. Less substantial decreases in hematocrit and hemoglobin levels occurred but only in the longer experiment with exposure to higher lead levels. Short term, low level lead exposure did not effect immune function significantly in the hawks, as measured by antibody titers to foreign red blood cells or by the mitogenic stimulation of T-lymphocytes. Increased lead exposure produced a significant decrease in the mitogenic response but had no effect on antibody titers.

  8. Hemoglobin and heme scavenger receptors

    DEFF Research Database (Denmark)

    Nielsen, Marianne Jensby; Møller, Holger Jon; Moestrup, Søren Kragh

    2010-01-01

    Heme, the functional group of hemoglobin, myoglobin, and other hemoproteins, is a highly toxic substance when it appears in the extracellular milieu. To circumvent potential harmful effects of heme from hemoproteins released during physiological or pathological cell damage (such as hemolysis...

  9. Synthesis and self-assembly of 1-deoxyglucose derivatives as low molecular weight organogelators

    Directory of Open Access Journals (Sweden)

    Sherwin Cheuk

    2011-02-01

    Full Text Available Low molecular weight gelators are an important class of molecules. The supramolecular gels formed by carbohydrate derived low molecular weight gelators are interesting soft materials that show great potential for many applications. Previously, we have synthesized a series of methyl 4,6-O-benzylidene-α-D-glucopyranoside derivatives and found that several of them are good gelators for water, aqueous mixtures of DMSO, or aqueous mixtures of ethanol. The gelation efficiency of these glycolipid derivatives is dependent upon the structures of their acyl chains. In order to understand the influence of the anomeric position of the sugar headgroup towards self-assembly, we synthesized a series of 1-deoxyglucose analogs, and examined their gelation properties in several solvents. Several long chain esters, including diacetylene containing esters, and aryl esters exhibited gelation in ethanol, aqueous ethanol, or aqueous DMSO. The synthesis and characterization of these novel analogs are reported.

  10. Synthesis and self-assembly of 1-deoxyglucose derivatives as low molecular weight organogelators.

    Science.gov (United States)

    Wang, Guijun; Yang, Hao; Cheuk, Sherwin; Coleman, Sherman

    2011-02-21

    Low molecular weight gelators are an important class of molecules. The supramolecular gels formed by carbohydrate derived low molecular weight gelators are interesting soft materials that show great potential for many applications. Previously, we have synthesized a series of methyl 4,6-O-benzylidene-α-D-glucopyranoside derivatives and found that several of them are good gelators for water, aqueous mixtures of DMSO, or aqueous mixtures of ethanol. The gelation efficiency of these glycolipid derivatives is dependent upon the structures of their acyl chains. In order to understand the influence of the anomeric position of the sugar headgroup towards self-assembly, we synthesized a series of 1-deoxyglucose analogs, and examined their gelation properties in several solvents. Several long chain esters, including diacetylene containing esters, and aryl esters exhibited gelation in ethanol, aqueous ethanol, or aqueous DMSO. The synthesis and characterization of these novel analogs are reported.

  11. Assembly-line flash synthesis of ZnO nanobelts on metal Zn

    Science.gov (United States)

    Zou, Qiang; Mo, Shentong; Wang, Yanan; Dang, Mengjiao; Qin, Guoxuan; Fu, Xing; Wang, Hui; Tao, Xue

    2017-09-01

    In this study, ZnO nanobelts were successfully fabricated by flash synthesis without any expensive catalyst at a relatively low temperature (600∘C). The whole process took just ˜30 min. Introducing a solution tank containing a mixture of polyvinyl alcohol (PVA) and Zn(AC)2, was an auxiliary process to elevate the quality of the products. The morphology of the ZnO nanobelts was systematically investigated by means of field emission scanning electron microscopy (FRSEM) and high-resolution transmission electron microscopy (HRTEM). The products had an average width of 200nm and a length of more than 10μm. X-ray diffraction analysis indicated that the ZnO nanobelts had a typical wurtzite structure. Finally, the growth mechanism of the unique morphology of the ZnO nanobelts is discussed. An assembly-line production method is also proposed based on the results.

  12. Micelles by self-assembling peptide-conjugate amphiphile: synthesis and structural characterization.

    Science.gov (United States)

    Accardo, Antonella; Tesauro, Diego; Del Pozzo, Luigi; Mangiapia, Gaetano; Paduano, Luigi; Morelli, Giancarlo

    2008-08-01

    The chemical synthesis by solid-phase methods of a novel amphiphilic peptide, peptide-conjugate amphiphile (PCA), containing in the same molecule three different functions: (i) the N,N-bis[2-[bis(carboxy-ethyl)amino]ethyl]-L-glutamic acid (DTPAGlu) chelating agent, (ii) the CCK8 bioactive peptide, and (iii) a hydrophobic moiety containing four alkyl chains with 18 carbon atoms each, is reported. In water solution at pH 7.4, PCA self-assembles in very stable micelles at very low concentration [critical micellar concentration (cmc) values of 5 x 10(-7) mol kg(-1)] as confirmed by fluorescence spectroscopy. The structural characterization, obtained with small-angle neutron scattering (SANS) measurements, indicates that the aggregates are substantially represented by ellipsoidal micelles with an aggregation number of 39 +/- 2 and the two micellar axes of about 52 and 26 A. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.

  13. Hepatic heme catabolism in cultured hepatocytes

    Energy Technology Data Exchange (ETDEWEB)

    Lincoln, B.C.; Bonkovsky, H.L.

    1987-05-01

    Uncertainty persists concerning the role and importance of heme oxygenase in the catabolism of heme by hepatocytes. The products of heme oxygenase catalyzed heme catabolism are equimolar amounts of biliverdin IX..cap alpha.., CO, and iron. Previous reports from studies with rodent hepatocyte cultures have suggested the possibility that non-heme oxygenase pathway(s) predominate in the breakdown of hepatic hemoprotein heme. The authors have studied this question in cultured chick embryo hepatocytes, which retain normal regulation of heme metabolism and levels of cytochromes P-450 as in intact animals. Exogenous heme added to the culture medium with control chick embryo hepatocyte cultures was quantitatively converted to biliverdin IX..cap alpha... To study endogenous heme breakdown, cellular heme was labelled by exposing cultured cells to (5-/sup 14/C) 5-aminolevulinic acid (ALA). The hepatocytes were also treated with mephenytoin that increases cytochrome P-450, total hepatic heme and heme oxygenase. At various times after labelling heme, biliverdin, and CO were isolated and counted. For at least 8 hrs, the increase in CO radioactivity corresponded to the loss of radioactivity in heme. Beyond 1 h biliverdin was unstable in culture medium, but for 1 h after labelling (dpm BVIX..cap alpha.. + dpm CO) ..delta..dpm heme. All BV detected was the ..cap alpha.. isomer. They conclude that heme oxygenase accounts for both endogenous and exogenous heme breakdown by hepatocytes.

  14. RAFT Synthesis and Self-Assembly of Free-Base Porphyrin Cored Star Polymers

    Directory of Open Access Journals (Sweden)

    Lin Wu

    2011-01-01

    Full Text Available Reversible addition fragmentation chain transfer (RAFT synthesis and self-assembly of free-base porphyrin cored star polymers are reported. The polymerization, in the presence of a free-base porphyrin cored chain transfer agent (CTA-FBP, produced porphyrin star polymers with controlled molecular weights and narrow polydispersities for a number of monomers including N, N-dimethylacrylamide (DMA and styrene (St. Well-defined amphiphilic star block copolymers, P-(PS-PDMA4 and P-(PDMA-PS4 (P: porphyrin, were also prepared and used for self-assembly studies. In methanol, a selective solvent for PDMA, spherical micelles were observed for both block copolymers as characterized by TEM. UV-vis studies suggested star-like micelles were formed from P-(PS-PDMA4, while P-(PDMA-PS4 aggregated into flower-like micelles. Spectrophotometric titrations indicated that the optical response of these two micelles to external ions was a function of micellar structures. These structure-related properties will be used for micelle studies and functional material development in the future.

  15. Synthesis and Characterization of Fatty Acid/Amino Acid Self-Assemblies

    Directory of Open Access Journals (Sweden)

    Joanna Gajowy

    2014-10-01

    Full Text Available In this paper, we discuss the synthesis and self-assembling behavior of new copolymers derived from fatty acid/amino acid components, namely dimers of linoleic acid (DLA and tyrosine derived diphenols containing alkyl ester pendent chains, designated as “R” (DTR. Specific pendent chains were ethyl (E and hexyl (H. These poly(aliphatic/aromatic-ester-amides were further reacted with poly(ethylene glycol (PEG and poly(ethylene glycol methyl ether of different molecular masses, thus resulting in ABA type (hydrophilic-hydrophobic-hydrophilic triblock copolymers. We used Fourier transform infrared (FTIR and nuclear magnetic resonance (NMR spectroscopies to evaluate the chemical structure of the final materials. The molecular masses were estimated by gel permeation chromatography (GPC measurements. The self-organization of these new polymeric systems into micellar/nanospheric structures in aqueous environment was evaluated using ultraviolet/visible (UV-VIS spectroscopy, dynamic light scattering (DLS and transmission electron microscopy (TEM. The polymers were found to spontaneously self-assemble into nanoparticles with sizes in the range 196–239 nm and critical micelle concentration (CMC of 0.125–0.250 mg/mL. The results are quite promising and these materials are capable of self-organizing into well-defined micelles/nanospheres encapsulating bioactive molecules, e.g., vitamins or antibacterial peptides for antibacterial coatings on medical devices.

  16. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites.

    Science.gov (United States)

    Corma, Avelino; Rey, Fernando; Rius, Jordi; Sabater, Maria J; Valencia, Susana

    2004-09-16

    Solid materials with uniform micropores, such as zeolites, can act as selective catalysts and adsorbents for molecular mixtures by separating those molecules small enough to enter their pores while leaving the larger molecules behind. Zeolite A is a microporous material with a high void volume. Despite its widespread industrial use in, for example, molecular separations and in detergency, its capability as a petroleum-refining material is limited owing to its poor acid-catalytic activity and hydrothermal stability, and its low hydrophobicity. These characteristics are ultimately a consequence of the low framework Si/Al ratio (normally around one) and the resulting high cationic fraction within the pores and cavities. Researchers have modified the properties of type-A zeolites by increasing the Si/Al compositions up to a ratio of three. Here we describe the synthesis of zeolite A structures exhibiting high Si/Al ratios up to infinity (pure silica). We synthesize these materials, named ITQ-29, using a supramolecular organic structure-directing agent obtained by the self-assembly, through pi-pi type interactions, of two identical organic cationic moieties. The highly hydrophobic pure-silica zeolite A can be used for hydrocarbon separations that avoid oligomerization reactions, whereas materials with high Si/Al ratios give excellent shape-selective cracking additives for increasing propylene yield in fluid catalytic cracking operations. We have also extended the use of our supramolecular structure-directing agents to the synthesis of a range of other zeolites.

  17. Templated Synthesis of Magnetic Nanoparticles through the Self-Assembly of Polymers and Surfactants

    Directory of Open Access Journals (Sweden)

    Vo Thu An Nguyen

    2014-08-01

    Full Text Available The synthesis of superparamagnetic nanoparticles (NPs for various technological applications continues to be an interesting research topic. The successful application of superparamagnetic NPs to each specific area typically depends on the achievement of high magnetization for the nanocrystals obtained, which is determined by their average size and size distribution. The size dispersity of magnetic NPs (MNPs is markedly improved when, during the synthesis, the nucleation and growth steps of the reaction are well-separated. Tuning the nucleation process with the assistance of a hosting medium that encapsulates the precursors (such as self-assembled micelles, dispersing them in discrete compartments, improves control over particle formation. These inorganic-organic hybrids inherit properties from both the organic and the inorganic materials, while the organic component can also bring a specific functionality to the particles or prevent their aggregation in water. The general concept of interest in this review is that the shape and size of the synthesized MNPs can be controlled to some extent by the geometry and the size of the organic templates used, which thus can be considered as molds at the nanometer scale, for both porous continuous matrices and suspensions.

  18. Heme isomers substantially affect heme's electronic structure and function

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2017-01-01

    to similar energy of the isomers but with a sizable (25 kJ mol-1) barrier to interconversion arising from restricted rotation around the conjugated bonds. The four isomers, EE, EZ, ZE, and ZZ, were then investigated as 4-coordinate hemes, as 5-coordinate deoxyhemes, in 6-coordinate O2-adducts of globins.......e. the effects are not method-dependent. Thus, the nature of the isomer state is an important but overlooked feature of heme chemistry and function, and previous and future studies of hemes may be reconsidered in this new context....

  19. Colloidal nanocrystals: Synthesis and shape-control, interparticle interactions and self-assembly

    Science.gov (United States)

    Saunders, Aaron Edward

    Control over nanocrystal growth kinetics provides a powerful way of tailoring particle size and shape during synthesis. Investigations into the growth of gold nanocrystals demonstrated how reaction conditions can be adjusted to control the growth rate and produce monodisperse particles. Kinetic control during the synthesis of CdS, CdSe and CdTe nanoparticles allows the shape to be tuned, from rods to spheres, without modifying the reaction chemistry. The growth and optical properties of these shape-anisotropic semiconductor particles were studied, and these methods were extended to produce semiconductor heterostructure nanorods. Solvent-mediated interparticle interactions between nanocrystals dispersed in toluene and in supercritical carbon dioxide were also studied. Nanocrystal dispersions were characterized using small-angle X-ray scattering in order to obtain information about the pair interaction potential. In organic solvents, subtle differences in the concentration-dependent scattering from dispersions allowed second virial coefficients to be measured as a function of nanocrystal size. Interestingly, larger nanocrystals exhibited overall repulsive interactions, while smaller nanocrystals exhibited attractive interactions, which is likely due to differences in ligand coverage among the different sized particles. Nanocrystals coated with fluorinated ligands could be dispersed into supercritical carbon dioxide, and the relatively strong interparticle interactions were measured at different carbon dioxide densities. As expected, the interaction strength increased as the solvent density was lowered, due to a decreased ability of the solvent to solvate the capping ligands. The formation of metastable nanocrystal flocculates was also observed at all system conditions studied. The assembly of nanocrystals into ordered superlattices under equilibrium conditions is strongly influenced by nanocrystal interparticle interactions. The formation of binary superlattices was

  20. Synthesis and Characterization of Stimuli Responsive Block Copolymers, Self-Assembly Behavior and Applications

    Energy Technology Data Exchange (ETDEWEB)

    Determan, Michael Duane [Iowa State Univ., Ames, IA (United States)

    2005-12-17

    The central theme of this thesis work is to develop new block copolymer materials for biomedical applications. While there are many reports of stimuli-responsive amphiphilic [19-21] and crosslinked hydrogel materials [22], the development of an in situ gel forming, pH responsive pentablock copolymer is a novel contribution to the field, Figure 1.1 is a sketch of an ABCBA pentablock copolymer. The A blocks are cationic tertiary amine methacrylates blocked to a central Pluronic F127 triblock copolymer. In addition to the prerequisite synthetic and macromolecular characterization of these new materials, the self-assembled supramolecular structures formed by the pentablock were experimentally evaluated. This synthesis and characterization process serves to elucidate the important structure property relationships of these novel materials, The pH and temperature responsive behavior of the pentablock copolymer were explored especially with consideration towards injectable drug delivery applications. Future synthesis work will focus on enhancing and tuning the cell specific targeting of DNA/pentablock copolymer polyplexes. The specific goals of this research are: (1) Develop a synthetic route for gel forming pentablock block copolymers with pH and temperature sensitive properties. Synthesis of these novel copolymers is accomplished with ATRP, yielding low polydispersity and control of the block copolymer architecture. Well defined macromolecular characteristics are required to tailor the phase behavior of these materials. (2) Characterize relationship between the size and shape of pentablock copolymer micelles and gel structure and the pH and temperature of the copolymer solutions with SAXS, SANS and CryoTEM. (3) Evaluate the temperature and pH induced phase separation and macroscopic self-assembly phenomenon of the pentablock copolymer. (4) Utilize the knowledge gained from first three goals to design and formulate drug delivery formulations based on the multi

  1. Designing Selectivity in Metal-Semiconductor Nanocrystals: Synthesis, Characterization, and Self-Assembly

    Science.gov (United States)

    Pavlopoulos, Nicholas George

    This dissertation contains six chapters detailing recent advances that have been made in the synthesis and characterization of metal-semiconductor hybrid nanocrystals (HNCs), and the applications of these materials. Primarily focused on the synthesis of well-defined II-VI semiconductor nanorod (NR) and tetrapod (TP) based constructs of interest for photocatalytic and solar energy applications, the research described herein discusses progress towards the realization of key design rules for the synthesis of functional semiconductor nanocrystals (NCs). As such, a blend of novel synthesis, advanced characterization, and direct application of heterostructured nanoparticles are presented. The first chapter is a review summarizing the design, synthesis, properties, and applications of multicomponent nanomaterials composed of disparate semiconductor and metal domains. By coupling two compositionally distinct materials onto a single nanocrystal, synergistic properties can arise that are not present in the isolated components, ranging from self-assembly to photocatalysis. For semiconductor nanomaterials, this was first realized in the ability to tune nanomaterial dimensions from 0-D quantum dot (QD) structures to cylindrical (NR) and branched (TP) structures by exploitation of advanced colloidal synthesis techniques and understandings of NC facet reactivities. The second chapter is focused on the synthesis and characterization of well-defined CdSe-seeded-CdS (CdSe CdS) NR systems synthesized by overcoating of wurtzite (W) CdSe quantum dots with W-CdS shells. 1-dimensional NRs have been interesting constructs for applications such as solar concentrators, optical gains, and photocatalysis. Through synthetic control over CdSe CdS NR systems, materials with small and large CdSe seeds were prepared, and for each seed size, multiple NR lengths were prepared. Through transient absorption studies, it was found that band alignment did not affect the efficiency of charge localization

  2. A Robust and Engineerable Self-Assembling Protein Template for the Synthesis and Patterning of Ordered Nanoparticle Arrays

    Science.gov (United States)

    McMillan, R. Andrew; Howard, Jeanie; Zaluzec, Nestor J.; Kagawa, Hiromi K.; Li, Yi-Fen; Paavola, Chad D.; Trent, Jonathan D.

    2004-01-01

    Self-assembling biomolecules that form highly ordered structures have attracted interest as potential alternatives to conventional lithographic processes for patterning materials. Here we introduce a general technique for patterning materials on the nanoscale using genetically modified protein cage structures called chaperonins that self-assemble into crystalline templates. Constrained chemical synthesis of transition metal nanoparticles is specific to templates genetically functionalized with poly-Histidine sequences. These arrays of materials are ordered by the nanoscale structure of the crystallized protein. This system may be easily adapted to pattern a variety of materials given the rapidly growing list of peptide sequences selected by screening for specificity for inorganic materials.

  3. Nonequilibrium synthesis and assembly of hybrid inorganic-protein nanostructures using an engineered DNA binding protein.

    Science.gov (United States)

    Dai, Haixia; Choe, Woo-Seok; Thai, Corrine K; Sarikaya, Mehmet; Traxler, Beth A; Baneyx, François; Schwartz, Daniel T

    2005-11-09

    We show that a protein with no intrinsic inorganic synthesis activity can be endowed with the ability to control the formation of inorganic nanostructures under thermodynamically unfavorable (nonequilibrium) conditions, reproducing a key feature of biological hard-tissue growth and assembly. The nonequilibrium synthesis of Cu(2)O nanoparticles is accomplished using an engineered derivative of the DNA-binding protein TraI in a room-temperature precursor electrolyte. The functional TraI derivative (TraIi1753::CN225) is engineered to possess a cysteine-constrained 12-residue Cu(2)O binding sequence, designated CN225, that is inserted into a permissive site in TraI. When TraIi1753::CN225 is included in the precursor electrolyte, stable Cu(2)O nanoparticles form, even though the concentrations of [Cu(+)] and [OH(-)] are at 5% of the solubility product (K(sp,Cu2O)). Negative control experiments verify that Cu(2)O formation is controlled by inclusion of the CN225 binding sequence. Transmission electron microscopy and electron diffraction reveal a core-shell structure for the nonequilibrium nanoparticles: a 2 nm Cu(2)O core is surrounded by an adsorbed protein shell. Quantitative protein adsorption studies show that the unexpected stability of Cu(2)O is imparted by the nanomolar surface binding affinity of TraIi1753::CN225 for Cu(2)O (K(d) = 1.2 x 10(-)(8) M), which provides favorable interfacial energetics (-45 kJ/mol) for the core-shell configuration. The protein shell retains the DNA-binding traits of TraI, as evidenced by the spontaneous organization of nanoparticles onto circular double-stranded DNA.

  4. Novel approaches to the synthesis and cooperative assembly of inorganic materials utilizing block copolypeptides

    Science.gov (United States)

    Euliss, Larken E.

    Biominerals and biocomposites are highly ornate and functional materials. Nature controls the properties of these materials by organizing their organic and inorganic constituents on the atomic, molecular, nano, and micron scales. The remarkable precision and complexity of this organization is accomplished using a combination of electrostatics, hydrogen bonding, disulfide bonding, and other molecular-level interactions. The goal of the work described in this dissertation was to use the principles employed by Nature in the biological assembly of biomaterials as inspiration for developing (1) completely synthetic and novel composite materials, and (2) new general methods for the synthesis of composite materials. Specifically, block copolypeptides were used as structure-directing agents in several successful applications of this approach. One application involves the rational design of an organic polymer molecule to direct the crystallization of calcium carbonate into microspheres. I have shown that the doubly-hydrophilic block copolypeptide poly{Nepsilon-2[2-(2 methoxy-ethoxy)ethoxy]acetyl-L-lysine}100-block-poly(L-aspartate sodium salt)30 can act as the structure-directing agent in this process. In addition, control over the morphology of calcium carbonate crystals can be exerted using anionic, amphiphilic block copolypeptides, such as poly(L-aspartate sodium salt)100-block-poly(L-phenylalanine- random-L-leucine)50 and poly(L-glutamate sodium salt) 100-block-poly(L-phenylalanine-random-L-leucine) 50. I have demonstrated that microspheres of calcium carbonate can be prepared by introducing the polymer additive during crystallization. These self-assembling polymers control the precipitation of the microspheres by acting as templates for sphere formation. Another application involves the organization of magnetic nanoparticles into well-defined, soluble nanoclusters. First, I have demonstrated that highly crystalline, monodisperse maghemite (gamma-Fe2O3) nanoparticles

  5. Reduced heme levels underlie the exponential growth defect of the Shewanella oneidensis hfq mutant.

    Directory of Open Access Journals (Sweden)

    Christopher M Brennan

    Full Text Available The RNA chaperone Hfq fulfills important roles in small regulatory RNA (sRNA function in many bacteria. Loss of Hfq in the dissimilatory metal reducing bacterium Shewanella oneidensis strain MR-1 results in slow exponential phase growth and a reduced terminal cell density at stationary phase. We have found that the exponential phase growth defect of the hfq mutant in LB is the result of reduced heme levels. Both heme levels and exponential phase growth of the hfq mutant can be completely restored by supplementing LB medium with 5-aminolevulinic acid (5-ALA, the first committed intermediate synthesized during heme synthesis. Increasing expression of gtrA, which encodes the enzyme that catalyzes the first step in heme biosynthesis, also restores heme levels and exponential phase growth of the hfq mutant. Taken together, our data indicate that reduced heme levels are responsible for the exponential growth defect of the S. oneidensis hfq mutant in LB medium and suggest that the S. oneidensis hfq mutant is deficient in heme production at the 5-ALA synthesis step.

  6. Heme on innate immunity and inflammation

    Directory of Open Access Journals (Sweden)

    Fabianno Ferreira Dutra

    2014-05-01

    Full Text Available Heme is an essential molecule expressed ubiquitously all through our tissues. Heme plays major functions in cellular physiology and metabolism as the prostetic group of diverse proteins. Once released from cells and from hemeproteins free heme causes oxidative damage and inflammation, thus acting as a prototypic damage-associated molecular pattern. In this context, free heme is a critical component of the pathological process of sterile and infectious hemolytic conditions including malaria, hemolytic anemias, ischemia-reperfusion and hemorrhage. The plasma scavanger proteins hemopexin and albumin reduce heme toxicity and are responsible for transporting free heme to intracellular compartments where it is catabolized by heme-oxygenase enzymes. Upon hemolysis or severe cellular damage the serum capacity to scavange heme may saturate and increase free heme to sufficient amounts to cause tissue damage in various organs. The mechanism by which heme causes reactive oxygen generation, activation of cells of the innate immune system and cell death are not fully understood. Although heme can directly promote lipid peroxidation by its iron atom, heme can also induce ROS generation and production of inflammatory mediators through the activation of selective signaling pathways. Heme activates innate immune cells such as macrophages and neutrophils through activation of innate immune receptors. The importance of these events has been demonstrated in infectious and non-infectious diseases models. In this review we will discuss the mechanisms behind heme-induced citotoxicity and inflammation and the consequences of these events on different tissues and diseases.

  7. Assembly of Four Diverse Heterocyclic Libraries Enabled by Prins Cyclization, Au-Catalyzed Enyne Cycloisomerization, and Automated Amide Synthesis

    Science.gov (United States)

    Cui, Jiayue; Chai, David I.; Miller, Christopher; Hao, Jason; Thomas, Christopher; Wang, JingQi; Scheidt, Karl A.; Kozmin, Sergey A.

    2013-01-01

    We describe a unified synthetic strategy for efficient assembly of four new heterocyclic libraries. The synthesis began by creating a range of structurally diverse pyrrolidinones or piperidinones. Such compounds were obtained in a simple one-flask operation starting with readily available amines, ketoesters, and unsaturated anhydrides. The use of tetrahydropyran-containing ketoesters, which were rapidly assembled by our Prins cyclization protocol, enabled efficient fusion of pyran and piperidinone cores. A newly developed Au(I)-catalyzed cycloisomerization of alkyne-containing enamides further expanded heterocyclic diversity by providing rapid entry into a wide range of bicyclic and tricyclic dienamides. The final stage of the process entailed diversification of each of the initially produced carboxylic acids using a fully automated platform for amide synthesis, which delivered 1872 compounds in high diastereomeric and chemical purity. PMID:22860634

  8. Synthesis and characterization of DNA fenced, self-assembled SnO2 nano-assemblies for supercapacitor applications.

    Science.gov (United States)

    Nithiyanantham, U; Ramadoss, Ananthakumar; Kundu, Subrata

    2016-02-28

    Self-assembled, aggregated, chain-like SnO2 nano-assemblies were synthesized at room temperature by a simple wet chemical route within an hour in the presence of DNA as a scaffold. The average size of the SnO2 particles and the chain diameter were controlled by tuning the DNA to Sn(ii) molar ratio and altering the other reaction parameters. A formation and growth mechanism of the SnO2 NPs on DNA is discussed. The SnO2 chain-like assemblies were utilized as potential anode materials in an electrochemical supercapacitor. From the supercapacitor study, it was found that the SnO2 nanomaterials showed different specific capacitance (Cs) values depending on varying chain-like morphologies and the order of Cs values was: chain-like (small size) > chain-like (large size). The highest Cs of 209 F g(-1) at a scan rate of 5 mV s(-1) was observed for SnO2 nano-assemblies having chain-like structure with a smaller size. The long term cycling stability study of a chain-like SnO2 electrode was found to be stable and retained ca. 71% of the initial specific capacitance, even after 5000 cycles. A supercapacitor study revealed that both morphologies can be used as a potential anode material and the best efficiency was observed for small sized chain-like morphology which is due to their higher BET surface area and specific structural orientation. The proposed route, by virtue of its simplicity and being environmentally benign, might become a future promising candidate for further processing, assembly, and practical application of other oxide based nanostructure materials.

  9. Synthesis and self-assembling of responsive polysaccharide-based copolymers in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Nivia do N.; Balaban, Rosangela de C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Halila, Sami; Borsali, Redouane, E-mail: borsali@cermav.cnrs.fr, E-mail: halila@cermav.cnrs.fr [Centre de Recherche sur les Macromolecules Vegetales (CERMAV), Grenoble (France)

    2015-07-01

    This work reports the synthesis and the thermoresponsive self-assembly behavior of carboxymethylcellulose-g-JeffamineM2070 and carboxymethylcellulose-g-JeffamineM600 copolymers in aqueous media. They were prepared through the grafting of two different types of amino-terminated poly(ethylene oxide-co-propylene oxide) chains onto the carboxylate groups of carboxymethylcellulose, by using water-soluble carbodiimide derivative and N-hydroxysuccinimide as coupling reagents. The grafting efficiency was confirmed by infrared and the degree of substitution by {sup 1}H NMR integrations. The salt effect on cloud point temperature was evaluated into different solvents (Milli-Q water, 0.5M NaCl, synthetic sea water (SSW) and 0.5M K{sub 2}CO{sub 3}) by UV-Vis and dynamic light scattering (DLS) measurements. Both copolymers showed lower cloud point temperature in 0.5M K2CO3 than in 0.5M NaCl and in SSW, which was attributed to the higher ionic strength for K{sub 2}CO{sub 3} combined to the ability of CO{sub 3}{sup 2-} to decrease polymer-water interactions. Copolymers chains displayed higher hydrodynamic radii than CMC precursor at 25 and 60 °C in saline solutions, and self-associations changed as a function of the environment and copolymer composition. (author)

  10. Synthesis of dispersible Pd@CeO(2) core-shell nanostructures by self-assembly.

    Science.gov (United States)

    Cargnello, Matteo; Wieder, Noah L; Montini, Tiziano; Gorte, Raymond J; Fornasiero, Paolo

    2010-02-03

    A methodology is described for the preparation of Pd@CeO(2) core-shell nanostructures that are easily dispersible in common organic solvents. The method involves the synthesis of Pd nanoparticles protected by a monolayer of 11-mercaptoundecanoic acid (MUA). The carboxylic groups on the nanoparticle surfaces are used to direct the self-assembly of a cerium(IV) alkoxide around the metal particles, followed by the controlled hydrolysis to form CeO(2). The characterization of the nanostructures by means of different techniques, in particular by electron microscopy, allowed us to demonstrate the nature of core-shell systems, with CeO(2) nanocrystals forming a shell around the MUA-protected Pd core. Finally, an example of the use of these nanostructures as flexible precursors for the preparation of heterogeneous catalysts is reported by investigating the reactivity of Pd@CeO(2)/Al(2)O(3) nanocomposites toward CO oxidation, water-gas shift (WGS), and methanol steam reforming reactions. Together with CO adsorption data, these observations suggest the accessibility of the Pd phase in the nanocomposites.

  11. Surfactant-free synthesis of hierarchical niobic acid microflowers assembled from ultrathin nanosheets with efficient photoactivities

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wenhao [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); Pan, Feng, E-mail: phypf2012@163.com [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); Wang, Yanyan [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); Xiao, Shuning [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); International Joint Lab on Resource Chemistry SHNU-NUS-PU, Department of Chemistry, Shanghai Normal University, Shanghai 200234 (China); Wu, Kai [Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); BNLMS, SKLSCUSS, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871 (China); Xu, Guo Qin [Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543 (Singapore); Singapore-Peking University Research Centre, Centre for Research Excellence & Technological Enterprise (CREATE), Singapore, 138602 (Singapore); National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Jiangsu Prov., 215123 (China); and others

    2017-01-15

    Highlights: • 3D hierarchical niobic acid microflower was synthesized by a surfactant-free method. • The microflower was composed of ultrathin nanosheets with ∼5 nm thickness. • The microflower showed high photoactivity owing to the 3D structural features. • This microflower was converted to Nb{sub 2}O{sub 5} without significant structural alteration. • Nb{sub 2}O{sub 5} nanoneedles can also be obtained by adjusting the pH value during synthesis. - Abstract: Hierarchical niobic acid (Nb{sub 2}O{sub 5}·nH{sub 2}O) microflowers are synthesized by a surfactant-free hydrothermal approach. The three-dimensional microflowers are assembled from two-dimensional ultrathin nanosheets with thickness of ∼5 nm. Using rhodamine B as a probe, the Nb{sub 2}O{sub 5}·nH{sub 2}O microflowers exhibit high photocatalytic activity under UV light irradiation. Furthermore, the Nb{sub 2}O{sub 5}·nH{sub 2}O microflowers are easily converted to niobium pentoxide without significant structural alteration.

  12. Synthesis and Self-Assembly of Amphiphilic Triblock Terpolymers with Complex Macromolecular Architecture

    KAUST Repository

    Polymeropoulos, George

    2015-11-25

    Two star triblock terpolymers (PS-b-P2VP-b-PEO)3 and one dendritic-like terpolymer [PS-b-P2VP-b-(PEO)2]3 of PS (polystyrene), P2VP (poly(2-vinylpyridine)), and PEO (poly(ethylene oxide)), never reported before, were synthesized by combining atom transfer radical and anionic polymerizations. The synthesis involves the transformation of the -Br groups of the previously reported Br-terminated 3-arm star diblock copolymers to one or two -OH groups, followed by anionic polymerization of ethylene oxide to afford the star or dendritic structure, respectively. The well-defined structure of the terpolymers was confirmed by static light scattering, size exclusion chromatography, and NMR spectroscopy. The self-assembly in solution and the morphology in bulk of the terpolymers, studied by dynamic light scattering and transmission electron microscopy, respectively, reveal new insights in the phase separation of these materials with complex macromolecular architecture. © 2015 American Chemical Society.

  13. Synthesis and Optoelectronic Applications of Graphene/Transition Metal Dichalcogenides Flat-Pack Assembly

    KAUST Repository

    Li, Henan

    2017-11-16

    Being a representative candidate from the two-dimensional (2D) materials family, graphene has been one of the most intensively researched candidates because of its ultrahigh carrier mobility, quantum Hall effects, excellent mechanical property and high optical transmittance. Unfortunately, the lack of a band gap makes graphene a poor fit for digital electronics, where the current on/off ratio is critical. Huge efforts have been advocated to discover new 2D layered materials with wonderful properties, which complements the needs of 2D electronics. Appropriately designed graphene based hybrid structure could perform better than its counterpart alone. The graphene hybrid structure soon become one of the most exciting frontiers in advanced 2D materials, and many efforts have been made to create artificial heterostructures by assembling of graphene with various layered materials. In this review, we present the recent development in synthesis and applications of graphene based 2D heterostructures. Although 2D transition metal dichalcogenide semiconductors have been demonstrated as strong candidates for next-generation electronics and optoelectronics, by combining advantages of various properties of 2D materials together with graphene, it is highly possible to build entire digital circuits using atomically thin components, and create many novel devices that can be utilized in different areas.

  14. Total synthesis and evaluation of C25-benzyloxyepothilone C for tubulin assembly and cytotoxicity against MCF-7 breast cancer cells.

    Science.gov (United States)

    Hutt, Oliver E; Reddy, Bollu S; Nair, Sajiv K; Reiff, Emily A; Henri, John T; Greiner, Jack F; Chiu, Ting-Lan; Vandervelde, David G; Amin, Elizabeth A; Himes, Richard H; Georg, Gunda I

    2008-09-01

    The total synthesis of C25-benzyloxy epothilone C is described. A sequential Suzuki-Aldol-Yamaguchi macrolactonization strategy was utilized employing a novel derivatized C8-C12 fragment. The C25-benzyloxy analog exhibited significantly reduced biological activity in microtubule assembly and cytotoxicity assays. Molecular modeling simulations indicated that excessive steric bulk in the C25 position may reduce activity by disrupting key hydrogen bonds that are crucial for epothilone binding to beta-tubulin.

  15. Structural Characterization of Heme Environmental Mutants of CgHmuT that Shuttles Heme Molecules to Heme Transporters

    Directory of Open Access Journals (Sweden)

    Norifumi Muraki

    2016-05-01

    Full Text Available Corynebacteria contain a heme uptake system encoded in hmuTUV genes, in which HmuT protein acts as a heme binding protein to transport heme to the cognate transporter HmuUV. The crystal structure of HmuT from Corynebacterium glutamicum (CgHmuT reveals that heme is accommodated in the central cleft with His141 and Tyr240 as the axial ligands and that Tyr240 forms a hydrogen bond with Arg242. In this work, the crystal structures of H141A, Y240A, and R242A mutants were determined to understand the role of these residues for the heme binding of CgHmuT. Overall and heme environmental structures of these mutants were similar to those of the wild type, suggesting that there is little conformational change in the heme-binding cleft during heme transport reaction with binding and the dissociation of heme. A loss of one axial ligand or the hydrogen bonding interaction with Tyr240 resulted in an increase in the redox potential of the heme for CgHmuT to be reduced by dithionite, though the wild type was not reduced under physiological conditions. These results suggest that the heme environmental structure stabilizes the ferric heme binding in CgHmuT, which will be responsible for efficient heme uptake under aerobic conditions where Corynebacteria grow.

  16. Correction: An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells.

    Science.gov (United States)

    Payne, Abby-Jo; Li, Shi; Dayneko, Sergey V; Risko, Chad; Welch, Gregory C

    2017-09-21

    Correction for 'An unsymmetrical non-fullerene acceptor: synthesis via direct heteroarylation, self-assembly, and utility as a low energy absorber in organic photovoltaic cells' by Abby-Jo Payne et al., Chem. Commun., 2017, 53, 10168-10171.

  17. Controllable Assembly and Separation of Colloidal Nanoparticles through a One-Tube Synthesis Based on Density Gradient Centrifugation.

    Science.gov (United States)

    Qi, Xiaohan; Li, Minglin; Kuang, Yun; Wang, Cheng; Cai, Zhao; Zhang, Jin; You, Shusen; Yin, Meizhen; Wan, Pengbo; Luo, Liang; Sun, Xiaoming

    2015-05-04

    Self-assembly of gold nanoparticles into one-dimensional (1D) nanostructures with finite primary units was achieved by introducing a thin salt (NaCl) solution layer into density gradient before centrifugation. The electrostatic interactions between Au nanoparticles would be affected and cause 1D assembly upon passing through the salt layer. A negatively charged polymer such as poly(acrylic acid) was used as an encapsulation/stabilization layer to help the formation of 1D Au assemblies, which were subsequently sorted according to unit numbers at succeeding separation zones. A centrifugal field was introduced as the external field to overcome the random Brownian motion of NPs and benefit the assembly effect. Such a facile "one-tube synthesis" approach couples assembly and separation in one centrifuge tube by centrifuging once. The method can be tuned by changing the concentration of interference salt layer, encapsulation layer, and centrifugation rate. Furthermore, positively charged fluorescent polymers such as perylenediimide-poly(N,N-diethylaminoethyl methacrylate) could encapsulate the assemblies to give tunable fluorescence properties. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Giardia intestinalis incorporates heme into cytosolic cytochrome b₅.

    Science.gov (United States)

    Pyrih, Jan; Harant, Karel; Martincová, Eva; Sutak, Robert; Lesuisse, Emmanuel; Hrdý, Ivan; Tachezy, Jan

    2014-02-01

    The anaerobic intestinal pathogen Giardia intestinalis does not possess enzymes for heme synthesis, and it also lacks the typical set of hemoproteins that are involved in mitochondrial respiration and cellular oxygen stress management. Nevertheless, G. intestinalis may require heme for the function of particular hemoproteins, such as cytochrome b5 (cytb5). We have analyzed the sequences of eukaryotic cytb5 proteins and identified three distinct cytb5 groups: group I, which consists of C-tail membrane-anchored cytb5 proteins; group II, which includes soluble cytb5 proteins; and group III, which comprises the fungal cytb5 proteins. The majority of eukaryotes possess both group I and II cytb5 proteins, whereas three Giardia paralogs belong to group II. We have identified a fourth Giardia cytb5 paralog (gCYTb5-IV) that is rather divergent and possesses an unusual 134-residue N-terminal extension. Recombinant Giardia cytb5 proteins, including gCYTb5-IV, were expressed in Escherichia coli and exhibited characteristic UV-visible spectra that corresponded to heme-loaded cytb5 proteins. The expression of the recombinant gCYTb5-IV in G. intestinalis resulted in the increased import of extracellular heme and its incorporation into the protein, whereas this effect was not observed when gCYTb5-IV containing a mutated heme-binding site was expressed. The electrons for Giardia cytb5 proteins may be provided by the NADPH-dependent Tah18-like oxidoreductase GiOR-1. Therefore, GiOR-1 and cytb5 may constitute a novel redox system in G. intestinalis. To our knowledge, G. intestinalis is the first anaerobic eukaryote in which the presence of heme has been directly demonstrated.

  19. Pimelic acid, the first precursor of the Bacillus subtilis biotin synthesis pathway, exists as the free acid and is assembled by fatty acid synthesis.

    Science.gov (United States)

    Manandhar, Miglena; Cronan, John E

    2017-05-01

    Biotin synthetic pathways are readily separated into two stages, synthesis of the seven carbon α, ω-dicarboxylic acid pimelate moiety and assembly of the fused heterocyclic rings. The biotin pathway genes responsible for pimelate moiety synthesis vary widely among bacteria whereas the ring synthesis genes are highly conserved. Bacillus subtilis seems to have redundant genes, bioI and bioW, for generation of the pimelate intermediate. Largely consistent with previous genetic studies it was found that deletion of bioW caused a biotin auxotrophic phenotype whereas deletion of bioI did not. BioW is a pimeloyl-CoA synthetase that converts pimelic acid to pimeloyl-CoA. The essentiality of BioW for biotin synthesis indicates that the free form of pimelic acid is an intermediate in biotin synthesis although this is not the case in E. coli. Since the origin of pimelic acid in Bacillus subtilis is unknown, 13 C-NMR studies were carried out to decipher the pathway for its generation. The data provided evidence for the role of free pimelate in biotin synthesis and the involvement of fatty acid synthesis in pimelate production. Cerulenin, an inhibitor of the key fatty acid elongation enzyme, FabF, markedly decreased biotin production by B. subtilis resting cells whereas a strain having a cerulenin-resistant FabF mutant produced more biotin. In addition, supplementation with pimelic acid fully restored biotin production in cerulenin-treated cells. These results indicate that pimelic acid originating from fatty acid synthesis pathway is a bona fide precursor of biotin in B. subtilis. © 2017 John Wiley & Sons Ltd.

  20. Enhanced heme function and mitochondrial respiration promote the progression of lung cancer cells.

    Science.gov (United States)

    Hooda, Jagmohan; Cadinu, Daniela; Alam, Md Maksudul; Shah, Ajit; Cao, Thai M; Sullivan, Laura A; Brekken, Rolf; Zhang, Li

    2013-01-01

    Lung cancer is the leading cause of cancer-related mortality, and about 85% of the cases are non-small-cell lung cancer (NSCLC). Importantly, recent advance in cancer research suggests that altering cancer cell bioenergetics can provide an effective way to target such advanced cancer cells that have acquired mutations in multiple cellular regulators. This study aims to identify bioenergetic alterations in lung cancer cells by directly measuring and comparing key metabolic activities in a pair of cell lines representing normal and NSCLC cells developed from the same patient. We found that the rates of oxygen consumption and heme biosynthesis were intensified in NSCLC cells. Additionally, the NSCLC cells exhibited substantially increased levels in an array of proteins promoting heme synthesis, uptake and function. These proteins include the rate-limiting heme biosynthetic enzyme ALAS, transporter proteins HRG1 and HCP1 that are involved in heme uptake, and various types of oxygen-utilizing hemoproteins such as cytoglobin and cytochromes. Several types of human tumor xenografts also displayed increased levels of such proteins. Furthermore, we found that lowering heme biosynthesis and uptake, like lowering mitochondrial respiration, effectively reduced oxygen consumption, cancer cell proliferation, migration and colony formation. In contrast, lowering heme degradation does not have an effect on lung cancer cells. These results show that increased heme flux and function are a key feature of NSCLC cells. Further, increased generation and supply of heme and oxygen-utilizing hemoproteins in cancer cells will lead to intensified oxygen consumption and cellular energy production by mitochondrial respiration, which would fuel cancer cell proliferation and progression. The results show that inhibiting heme and respiratory function can effectively arrest the progression of lung cancer cells. Hence, understanding heme function can positively impact on research in lung cancer

  1. Molecular Assemblies of Porphyrins and Macrocyclic Receptors: Recent Developments in Their Synthesis and Applications

    Directory of Open Access Journals (Sweden)

    Abdirahman A. Mohamod

    2012-10-01

    Full Text Available Metalloporphyrins which form the core of many bioenzymes and natural light harvesting or electron transport systems, exhibit a variety of selective functional properties depending on the state and surroundings with which they exist in biological systems. The specificity and ease with which they function in each of their bio-functions appear to be largely governed by the nature and disposition of the protein globule around the porphyrin reaction center. Synthetic porphyrin frameworks confined within or around a pre-organized molecular entity like the protein network in natural systems have attracted considerable attraction, especially in the field of biomimetic reactions. At the same time a large number of macrocyclic oligomers such as calixarenes, resorcinarenes, spherands, cyclodextrins and crown ethers have been investigated in detail as efficient molecular receptors. These molecular receptors are synthetic host molecules with enclosed interiors, which are designed three dimensionally to ensure strong and precise molecular encapsulation/recognition. Due to their complex structures, enclosed guest molecules reside in an environment isolated from the outside and as a consequence, physical properties and chemical reactions specific to that environment in these guest species can be identified. The facile incorporation of such molecular receptors into the highly photoactive and catalytically efficient porphyrin framework allows for convenient design of useful molecular systems with unique structural and functional properties. Such systems have provided over the years attractive model systems for the study of various biological and chemical processes, and the design of new materials and molecular devices. This review focuses on the recent developments in the synthesis of porphyrin assemblies associated with cyclodextrins, calixarenes and resorcinarenes and their potential applications in the fields of molecular encapsulation/recognition, and

  2. Regulation of heme metabolism in normal and sideroblastic bone marrow cells in culture

    Energy Technology Data Exchange (ETDEWEB)

    Ibraham, N.G.; Lutton, J.D.; Hoffman, R.; Levere, R.D.

    1985-05-01

    Heme metabolism was examined in developing in vitro erythroid colonies (CFUE) and in bone marrow samples taken directly from four normal donors and four patients with sideroblastic anemia. Maximum activities of delta-aminolevulinic acid synthase (ALAS), ALA dehydratase (ALAD), and /sup 14/C-ALA incorporation into heme were achieved in normal marrow CFUE after 8 days of culture, whereas heme oxygenase progressively decreased to low levels of activity during the same period. Assays on nucleated bone marrow cells taken directly from patients revealed that ALAS activity was considerably reduced in idiopathic sideroblastic anemia (IASA) and X-linked sideroblastic anemia (X-SA) bone marrow specimens, whereas the activity increased more than twofold (normal levels) when cells were assayed from 8-day CFUE. In all cases, ALAD activity appeared to be within normal levels. Measurement of heme synthesis revealed that normal levels of /sup 14/C-ALA incorporation into heme were achieved in IASA cells but were reduced in X-SA cells. In marked contrast to levels in normal cells, heme oxygenase was found to be significantly elevated (two- to fourfold) in bone marrow cells taken directly from patients with IASA and X-SA. Results from this study demonstrate that IASA and X-SA bone marrow cells have disturbances in ALAS and heme metabolism, and that erythropoiesis (CFUE) can be restored to normal levels when cells are cultured in methylcellulose.

  3. Autonomous assembly of synthetic oligonucleotides built from an expanded DNA alphabet. Total synthesis of a gene encoding kanamycin resistance.

    Science.gov (United States)

    Merritt, Kristen K; Bradley, Kevin M; Hutter, Daniel; Matsuura, Mariko F; Rowold, Diane J; Benner, Steven A

    2014-01-01

    Many synthetic biologists seek to increase the degree of autonomy in the assembly of long DNA (L-DNA) constructs from short synthetic DNA fragments, which are today quite inexpensive because of automated solid-phase synthesis. However, the low information density of DNA built from just four nucleotide "letters", the presence of strong (G:C) and weak (A:T) nucleobase pairs, the non-canonical folded structures that compete with Watson-Crick pairing, and other features intrinsic to natural DNA, generally prevent the autonomous assembly of short single-stranded oligonucleotides greater than a dozen or so. We describe a new strategy to autonomously assemble L-DNA constructs from fragments of synthetic single-stranded DNA. This strategy uses an artificially expanded genetic information system (AEGIS) that adds nucleotides to the four (G, A, C, and T) found in standard DNA by shuffling hydrogen-bonding units on the nucleobases, all while retaining the overall Watson-Crick base-pairing geometry. The added information density allows larger numbers of synthetic fragments to self-assemble without off-target hybridization, hairpin formation, and non-canonical folding interactions. The AEGIS pairs are then converted into standard pairs to produce a fully natural L-DNA product. Here, we report the autonomous assembly of a gene encoding kanamycin resistance using this strategy. Synthetic fragments were built from a six-letter alphabet having two AEGIS components, 5-methyl-2'-deoxyisocytidine and 2'-deoxyisoguanosine (respectively S and B), at their overlapping ends. Gaps in the overlapped assembly were then filled in using DNA polymerases, and the nicks were sealed by ligase. The S:B pairs in the ligated construct were then converted to T:A pairs during PCR amplification. When cloned into a plasmid, the product was shown to make Escherichia coli resistant to kanamycin. A parallel study that attempted to assemble similarly sized genes with optimally designed standard nucleotides

  4. Insitu synthesis of self-assembled gold nanoparticles on glass or silicon substrates through reactive inkjet printing

    KAUST Repository

    Abulikemu, Mutalifu

    2013-12-18

    A facile and low cost method for the synthesis of self-assembled nanoparticles (NPs) with minimal size variation and chemical waste by using reactive inkjet printing was developed. Gold NPs with diameters as small as (8±2)nm can be made at low temperature (120 °C). The size of the resulting NPs can be readily controlled through the concentration of the gold precursor and oleylamine ink. The pure gold composition of the synthesized NPs was confirmed by energy-dispersive X-ray spectroscopy (EDXS) analysis. High-resolution SEM (HRSEM) and TEM (HRTEM), and X-ray diffraction revealed their size and face-centered cubic (fcc) crystal structure, respectively. Owing to the high density of the NP film, UV/Vis spectroscopy showed a red shift in the intrinsic plasmonic resonance peak. We envision the extension of this approach to the synthesis of other nanomaterials and the production of tailored functional nanomaterials and devices. Midas touch: The use of low-cost manufacturing approaches in the synthesis of nanoparticles is critical for many applications. Reactive inkjet printing, along with a judicious choice of precursor/solvent system, was used to synthesize a relatively uniform assembly of crystalline gold nanoparticles, with diameters as small as (8±2)nm, over a given substrate surface. © 2014 WILEY-VCH Verlag GmbH.

  5. Characterization of Human and Yeast Mitochondrial Glycine Carriers with Implications for Heme Biosynthesis and Anemia.

    Science.gov (United States)

    Lunetti, Paola; Damiano, Fabrizio; De Benedetto, Giuseppe; Siculella, Luisa; Pennetta, Antonio; Muto, Luigina; Paradies, Eleonora; Marobbio, Carlo Marya Thomas; Dolce, Vincenza; Capobianco, Loredana

    2016-09-16

    Heme is an essential molecule in many biological processes, such as transport and storage of oxygen and electron transfer as well as a structural component of hemoproteins. Defects of heme biosynthesis in developing erythroblasts have profound medical implications, as represented by sideroblastic anemia. The synthesis of heme requires the uptake of glycine into the mitochondrial matrix where glycine is condensed with succinyl coenzyme A to yield δ-aminolevulinic acid. Herein we describe the biochemical and molecular characterization of yeast Hem25p and human SLC25A38, providing evidence that they are mitochondrial carriers for glycine. In particular, the hem25Δ mutant manifests a defect in the biosynthesis of δ-aminolevulinic acid and displays reduced levels of downstream heme and mitochondrial cytochromes. The observed defects are rescued by complementation with yeast HEM25 or human SLC25A38 genes. Our results identify new proteins in the heme biosynthetic pathway and demonstrate that Hem25p and its human orthologue SLC25A38 are the main mitochondrial glycine transporters required for heme synthesis, providing definitive evidence of their previously proposed glycine transport function. Furthermore, our work may suggest new therapeutic approaches for the treatment of congenital sideroblastic anemia. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  6. Synthesis and self-assembly of Janus and patchy colloidal particles

    Science.gov (United States)

    Jiang, Shan

    Colloidal particles are considered classically as spherical particles with homogeneous surface chemistry. When this is so, the interactions between particles are isotropic and governed only by their separations. One can take advantage of this to simulate atoms, visualizing them one-by-one in a microscope, albeit at a larger length scale and longer time scale than for true atoms. However if the particles are not homogeneous, but Janus or patchy instead, with different surface chemistry on different hemispheres or otherwise different surface sites that are addressably controlled, the interactions between these particles depend not only on their separation, but also on their orientation. Research on Janus and patchy colloidal particles has opened a new chapter in the colloid research field, allowing us to mimic the behavior of these colloidal analogues of molecules, and in this way to ask new and exciting questions of condensed matter physics. In this dissertation, I investigated the synthesis and self-assembly of Janus and patchy colloidal particles with emphasis on Janus amphiphilic particles, which are the colloidal counterpart of surfactant molecules. Improving the scale-up capability, and also the capacity to control the geometry of Janus particles, I developed a simple and versatile method to synthesize Janus particles using an approach based on Pickering emulsions with particles adsorbed at the liquid-liquid interface. I showed that this method can be scaled up to synthesize Janus particles in large quantity. Also, the Janus balance can be predictably controlled by adding surfactant molecules during emulsification. In addition, going beyond the Janus geometry, I developed another synthetic method to fabricate trivalent patchy colloidal particles using micro-contact printing. With these synthetic methods in hand, I explored the self-assembly of Janus amphiphilic particles in aqueous solutions, while controlling systematically the salt concentration, the particle

  7. Photoinduced Thiol-ene Chemistry Applied to the Synthesis of Self-Assembling Elastin-Inspired Glycopeptides.

    Science.gov (United States)

    Piccirillo, Germano; Pepe, Antonietta; Bedini, Emiliano; Bochicchio, Brigida

    2017-02-21

    Synthetic (glyco)peptides inspired by proteins able to self-assemble are appealing biomaterials in the field of tissue engineering and regenerative medicine. Herein, for the first time, taking advantage of thiol-ene chemistry coupled to solid-phase peptide synthesis, a self-assembling peptide inspired by elastin protein was bioconjugated to three carbohydrates in order to obtain the corresponding glycopeptides. They were studied at the molecular and supramolecular level. The results show that the carbohydrate influences the molecular conformation of the glycopeptide and its self-aggregation properties as well. As future perspective, the results could enable us to tune the final self-aggregation properties of the glycopeptide by changing the sugar moiety. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Allocation of Heme is Differentially Regulated by Ferrochelatase Isoforms in Arabidopsis Cells

    Directory of Open Access Journals (Sweden)

    Nino Asuela Espinas

    2016-08-01

    Full Text Available Heme is involved in various biological processes as a cofactor of hemoproteins located in various organelles. In plant cells, heme is synthesized by two isoforms of plastid-localized ferrochelatase, FC1 and FC2. In this study, by characterizing Arabidopsis T-DNA insertional mutants, we showed that the allocation of heme is differentially regulated by ferrochelatase isoforms in plant cells. Analyses of weak (fc1-1 and null (fc1-2 mutants suggest that FC1-producing heme is required for initial growth of seedling development. In contrast, weak (fc2-1 and null (fc2-2 mutants of FC2 showed pale green leaves and retarded growth, indicating that FC2-producing heme is necessary for chloroplast development. During the initial growth stage, FC2 deficiency caused reduction of plastid cytochromes. In addition, although FC2 deficiency marginally affected the assembly of photosynthetic reaction center complexes, it caused relatively larger but insufficient light-harvesting antenna to reaction centers, resulting in lower efficiency of photosynthesis. In the later vegetative growth, however, fc2-2 recovered photosynthetic growth, showing that FC1-producing heme may complement the FC2 deficiency. On the other hand, reduced level of cytochromes in microsomal fraction was discovered in fc1-1, suggesting that FC1-producing heme is mainly allocated to extraplastidic organelles. Furthermore, the expression of FC1 is induced by the treatment of an elicitor flg22 while that of FC2 was reduced, and fc1-1 abolished the flg22-dependent induction of FC1 expression and peroxidase activity. Consequently, our results clarified that FC2 produces heme for the photosynthetic machinery in the chloroplast, while FC1 is the housekeeping enzyme providing heme cofactor to the entire cell. In addition, FC1 can partly complement FC2 deficiency and is also involved in defense against stressful conditions.

  9. Resonance Raman and EPR spectroscopic studies on heme-heme oxygenase complexes.

    Science.gov (United States)

    Sun, J; Wilks, A; Ortiz de Montellano, P R; Loehr, T M

    1993-12-28

    The binding of ferrous and ferric hemes and manganese(II)- and manganese(III)-substituted hemes to heme oxygenase has been investigated by optical absorption, resonance Raman, and EPR spectroscopy. The results are consistent with the presence of a six-coordinate heme moiety ligated to an essential histidine ligand and a water molecule. The latter ionizes with a pKa approximately 8.0 to give a mixture of high-spin and low-spin six-coordinate hydroxo adducts. Addition of excess cyanide converts the heme to a hexacoordinate low-spin species. The resonance Raman spectrum of the ferrous heme-heme oxygenase complex and that of the Mn(II)protoporphyrin-heme oxygenase complex shows bands at 216 and 212 cm-1, respectively, that are assigned to the metal-histidine stretching mode. The EPR spectrum of the oxidized heme-heme oxygenase complex has a strongly axial signal with g parallel of approximately 6 and g perpendicular approximately 2. 14NO and 15NO adducts of ferrous heme-heme oxygenase exhibit EPR hyperfine splittings of approximately 20 and approximately 25 Gauss, respectively. In addition, both nitrosyl complexes show additional superhyperfine splittings of approximately 7 Gauss from spin-spin interaction with the proximal histidine nitrogen. The heme environment in the heme-heme oxygenase enzyme-substrate complex has spectroscopic properties similar to those of the heme in myoglobin. Hence, there is neither a strongly electron-donating fifth (proximal) ligand nor an electron-withdrawing network on the distal side of the heme moiety comparable to that for cytochromes P-450 and peroxidases. This observation has profound implications about the nature of the oxygen-activating process in the heme-->biliverdin reaction that are discussed in this paper.

  10. High-throughput development of amphiphile self-assembly materials: fast-tracking synthesis, characterization, formulation, application, and understanding.

    Science.gov (United States)

    Mulet, Xavier; Conn, Charlotte E; Fong, Celesta; Kennedy, Danielle F; Moghaddam, Minoo J; Drummond, Calum J

    2013-07-16

    Amphiphile self-assembly materials, which contain both a hydrophilic and a hydrophobic domain, have great potential in high-throughput and combinatorial approaches to discovery and development. However, the materials chemistry community has not embraced these ideas to anywhere near the extent that the medicinal chemistry community has. While this situation is beginning to change, extracting the full potential of high-throughput approaches in the development of self-assembling materials will require further development in the synthesis, characterization, formulation, and application domains. One of the key factors that make small molecule amphiphiles prospective building blocks for next generation multifunctional materials is their ability to self-assemble into complex nanostructures through low-energy transformations. Scientists can potentially tune, control, and functionalize these structures, but only after establishing their inherent properties. Because both robotic materials handling and customized rapid characterization equipment are increasingly available, high-throughput solutions are now attainable. These address traditional development bottlenecks associated with self-assembling amphiphile materials, such as their structural characterization and the assessment of end-use functional performance. A high-throughput methodology can help streamline materials development workflows, in accord with existing high-throughput discovery pipelines such as those used by the pharmaceutical industry in drug discovery. Chemists have identified several areas that are amenable to a high-throughput approach for amphiphile self-assembly materials development. These allow an exploration of not only a large potential chemical, compositional, and structural space, but also material properties, formulation, and application variables. These areas of development include materials synthesis and preparation, formulation, characterization, and screening performance for the desired end

  11. Heme Oxygenase-1 and breast cancer resistance protein protect against heme-induced toxicity

    NARCIS (Netherlands)

    Wagener, Frank A D T G; Dankers, Anita C A; van Summeren, Frank; Scharstuhl, Alwin; van den Heuvel, Jeroen J M W; Koenderink, Jan B; Pennings, Sebastiaan W C; Russel, Frans G M; Masereeuw, R.

    2013-01-01

    Heme is the functional group of diverse hemoproteins and crucial for many cellular processes. However, heme is increasingly recognized as a culprit for a wide variety of pathologies, including sepsis, malaria, and kidney failure. Excess of free heme can be detrimental to tissues by mediating

  12. Heme Oxygenase-1 and Breast Cancer Resistance Protein Protect Against Heme-induced Toxicity

    NARCIS (Netherlands)

    Wagener, F.A.D.T.G.; Dankers, A.C.A.; Summeren, F. van; Scharstuhl, A.; Heuvel, J.J. van den; Koenderink, J.B.; Pennings, S.W.C.; Russel, F.G.M.; Masereeuw, R.

    2013-01-01

    Heme is the functional group of diverse hemoproteins and crucial for many cellular processes. However, heme is increasingly recognized as a culprit for a wide variety of pathologies, including sepsis, malaria, and kidney failure. Excess of free heme can be detrimental to tissues by mediating

  13. Stable silica-coated self-assembly of gold nanorods: synthesis and plasmonic properties

    Science.gov (United States)

    Liu, Jinsheng; Kan, Caixia; Shi, Daning; Ke, Shanlin; Liu, Yangzheng

    2017-10-01

    Assembled gold nanorods (GNRs) attract much attention for their distinctive plasmon-coupled properties, but it remains challenging to realize practical use for their instability of the structure and the toxicity of the surfactant. We herein present a simple and effective protocol to coat mesoporous silica on the end-to-end and side-by-side assemblies, which are induced by different amount of the dithiol poly(ethylene glycol). The finite-difference time-domain (FDTD) simulations are also utilized to study the plasmonic properties of the nanostructures. Experimental and calculated results indicate that the as-prepared core-shell nanostructure possesses not only the optical stability, but also the fascinating and tunable optical response through changing the organized modes of assemblies. The result is promising in investigating near field plasmonic property, and biomedical application for in vivo bioimaging and photothermal cancer therapy.

  14. Rapamycin Induces Heme Oxygenase-1 in Liver but Inhibits Bile Flow Recovery after Ischemia

    NARCIS (Netherlands)

    Kist, Alwine; Wakkie, Joris; Madu, Max; Versteeg, Ruth; ten Berge, Judith; Nikolic, Andrej; Nieuwenhuijs, Vincent B.; Porte, Robert J.; Padbury, Robert T. A.; Barritt, Greg J.

    Background/Aims. Rapamycin, which is employed in the management of patients undergoing liver surgery, induces the synthesis of heme oxygenase-1 (HO-1) in some non-liver cell types. The aim was to investigate whether rapamycin can induce HO-1 expression in the liver, and to test the effects of

  15. Synthesis, electrochemistry, STM investigation of oligothiophene self-assemblies with superior structural order and electronic properties

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, Cheng-Yu [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Liu, Yinghao; Yarotski, Dmitry [Center of Integrated Nanotechnologies, Materials Physics and Application Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Li, Hao [Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Xu, Ping; Yen, Hung-Ju [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Tretiak, Sergei, E-mail: serg@lanl.gov [Theory Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Wang, Hsing-Lin, E-mail: hwang@lanl.gov [C-PCS, Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2016-12-20

    Graphical abstract: STM imaging reveals differently oriented domains of self-assembled tetrathiophene molecules. - Highlights: • Optical and redox properties of oligothiophene derivatives are studied. • Packing pattern of self-assembly monolayer depends on the conjugation length. • Strong electronic coupling and three redox couples in cyclic voltamogram are observed in the hierarchical self-assembly. - Abstract: Three oligothiophene (terthiophene, tetrathiophene and pentathiophene) derivatives are synthesized and their monolayer self-assemblies on gold (Au) are prepared via Au–S covalent bond. Our UV–Vis experimental characterization of solution reveals the dependence of the optical properties on the conjugation length of the oligothiophenes, which compares well with Time-Dependent Density Functional Theory (TDDFT) simulations of spectra of individual chromophores. Photoluminescent spectra of thin films show pronounced red shifts compared to that of solutions, suggesting strong inter-oligomer interactions. The comparative studies of cyclic voltammograms of tetrathiophene from solution, cast film and self-assembled monolayer (SAM) indicate presence of one, two, and three oxidized species in these samples, respectively, suggesting a very strong electronic coupling between tetrathiophene molecules in the SAM. Scanning tunneling microscopy (STM) imaging of SAMs of the tetrathiophene on an atomically flat Au surface exhibits formation of monolayer assemblies with molecular order, and the molecular packing appears to show an overlay of oligothiophene molecules on top of another one. In contrast, the trimer and pentamer images show only aggregated species lacking long-range order on the molecular level. Such trends in going from disordered–ordered–disordered monolayer assemblies are mainly due to a delicate balance between inter-chromophore π–π couplings, hydrophobic interaction and the propensity to form Au–S covalent bond. Such hypothesis has been

  16. Self-assembly strategies for the synthesis of functional nanostructured materials

    Science.gov (United States)

    Perego, M.; Seguini, G.

    2016-06-01

    Self-assembly is the autonomous organization of components into patterns or structures without human intervention. This is the approach followed by nature to generate living cells and represents one of the practical strategies to fabricate ensembles of nanostructures. In static self-assembly the formation of ordered structures could require energy but once formed the structures are stable. The introduction of additional regular features in the environment could be used to template the self-assembly guiding the organization of the components and determining the final structure they form. In this regard self-assembly of block copolymers represents a potent platform for fundamental studies at the nanoscale and for application-driven investigation as a tool to fabricate functional nanostructured materials. Block copolymers can hierarchically assemble into chemically distinct domains with size and periodicity on the order of 10nm or below, offering a potentially inexpensive route to generate large-area nanostructured materials. The final structure characteristics of these materials are dictated by the properties of the elementary block copolymers, like chain length, volume fraction or degree of block incompatibility. Modern synthetic chemistry offers the possibility to design these macromolecules with very specific length scales and geometries, directly embodying in the block copolymers the code that drives their self- assembling process. The understanding of the kinetics and thermodynamics of the block copolymer self-assembly process in the bulk phase as well as in thin films represents a fundamental prerequisite toward the exploitation of these materials. Incorporating block copolymer into device fabrication procedures or directly into devices, as active elements, will lead to the development of a new generation of devices fabricated using the fundamental law of nature to our advantage in order to minimize cost and power consumption in the fabrication process

  17. Clinically Important Features of Porphyrin and Heme Metabolism and the Porphyrias

    Directory of Open Access Journals (Sweden)

    Siddesh Besur

    2014-11-01

    Full Text Available Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA, porphobilinogen and porphyrins are chiefly overproduced. The hepatic porphyrias are further subdivided into acute porphyrias and chronic hepatic porphyrias. The acute porphyrias include acute intermittent, hereditary copro-, variegate and ALA dehydratase deficiency porphyria. Chronic hepatic porphyrias include porphyria cutanea tarda and hepatoerythropoietic porphyria. The erythropoietic porphyrias include congenital erythropoietic porphyria (Gűnther’s disease and erythropoietic protoporphyria. In this review, we summarize the key features of normal heme synthesis and its differing regulation in liver versus bone marrow. In both organs, principal regulation is exerted at the level of the first and rate-controlling enzyme, but by different molecules (heme in the liver and iron in the bone marrow. We also describe salient clinical, laboratory and genetic features of the eight types of porphyria.

  18. Clinically Important Features of Porphyrin and Heme Metabolism and the Porphyrias

    Science.gov (United States)

    Besur, Siddesh; Hou, Weihong; Schmeltzer, Paul; Bonkovsky, Herbert L.

    2014-01-01

    Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias) and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA), porphobilinogen and porphyrins) are chiefly overproduced. The hepatic porphyrias are further subdivided into acute porphyrias and chronic hepatic porphyrias. The acute porphyrias include acute intermittent, hereditary copro-, variegate and ALA dehydratase deficiency porphyria. Chronic hepatic porphyrias include porphyria cutanea tarda and hepatoerythropoietic porphyria. The erythropoietic porphyrias include congenital erythropoietic porphyria (Gűnther’s disease) and erythropoietic protoporphyria. In this review, we summarize the key features of normal heme synthesis and its differing regulation in liver versus bone marrow. In both organs, principal regulation is exerted at the level of the first and rate-controlling enzyme, but by different molecules (heme in the liver and iron in the bone marrow). We also describe salient clinical, laboratory and genetic features of the eight types of porphyria. PMID:25372274

  19. Clinically important features of porphyrin and heme metabolism and the porphyrias.

    Science.gov (United States)

    Besur, Siddesh; Hou, Wehong; Schmeltzer, Paul; Bonkovsky, Herbert L

    2014-11-03

    Heme, like chlorophyll, is a primordial molecule and is one of the fundamental pigments of life. Disorders of normal heme synthesis may cause human diseases, including certain anemias (X-linked sideroblastic anemias) and porphyrias. Porphyrias are classified as hepatic and erythropoietic porphyrias based on the organ system in which heme precursors (5-aminolevulinic acid (ALA), porphobilinogen and porphyrins) are chiefly overproduced. The hepatic porphyrias are further subdivided into acute porphyrias and chronic hepatic porphyrias. The acute porphyrias include acute intermittent, hereditary copro-, variegate and ALA dehydratase deficiency porphyria. Chronic hepatic porphyrias include porphyria cutanea tarda and hepatoerythropoietic porphyria. The erythropoietic porphyrias include congenital erythropoietic porphyria (Gűnther's disease) and erythropoietic protoporphyria. In this review, we summarize the key features of normal heme synthesis and its differing regulation in liver versus bone marrow. In both organs, principal regulation is exerted at the level of the first and rate-controlling enzyme, but by different molecules (heme in the liver and iron in the bone marrow). We also describe salient clinical, laboratory and genetic features of the eight types of porphyria.

  20. Synthesis of Arbitrary Quantum Circuits to Topological Assembly: Systematic, Online and Compact.

    Science.gov (United States)

    Paler, Alexandru; Fowler, Austin G; Wille, Robert

    2017-09-05

    It is challenging to transform an arbitrary quantum circuit into a form protected by surface code quantum error correcting codes (a variant of topological quantum error correction), especially if the goal is to minimise overhead. One of the issues is the efficient placement of magic state distillation sub circuits, so-called distillation boxes, in the space-time volume that abstracts the computation's required resources. This work presents a general, systematic, online method for the synthesis of such circuits. Distillation box placement is controlled by so-called schedulers. The work introduces a greedy scheduler generating compact box placements. The implemented software, whose source code is available at www.github.com/alexandrupaler/tqec, is used to illustrate and discuss synthesis examples. Synthesis and optimisation improvements are proposed.

  1. Diastereoselective noncovalent synthesis of hydrogen-bonded double-rosette assemblies

    NARCIS (Netherlands)

    Prins, L.J.; Hulst, A.J.R.L.; Timmerman, P.; Reinhoudt, David

    2002-01-01

    Chiral centers present either in the dimelamine components of calix[4]arene 1 or in the cyanurate components CA quantitatively induce one handedness (P or M) in the corresponding hydrogen-bonded assemblies 13(CA)6 (de>98 %). The high degree of chiral induction results from the presence of six chiral

  2. Porphyrins with directly meso-attached disaccharide moieties: Synthesis, self-assembly and cellular study

    Czech Academy of Sciences Publication Activity Database

    Malachowska, M.; Sperduto, C.; Darmostuk, M.; Monti, D.; Venanzi, M.; Mancini, G.; D'Acunto, C.W.; Králová, Jarmila; Ruml, T.; Wimmer, Zdeněk; Drasar, P.

    2016-01-01

    Roč. 20, č. 7 (2016), s. 773-784 ISSN 1088-4246 Institutional support: RVO:61389030 ; RVO:68378050 Keywords : derivatives * aggregation * steroids * sucrose * porphyrinoids * carbohydrates * self-assembly * cellular localisation * liposomes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.043, year: 2016

  3. Supramolecular assembled three-dimensional graphene hybrids: Synthesis and applications in supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Ni, Lubin [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Zhang, Wang [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 151-742 (Korea, Republic of); Wu, Zhen; Sun, Chunyu; Cai, Yin; Yang, Guang; Chen, Ming [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Piao, Yuanzhe, E-mail: parkat9@snu.ac.kr [Graduate School of Convergence Science and Technology, Seoul National University, Seoul, 151-742 (Korea, Republic of); Diao, Guowang, E-mail: gwdiao@yzu.edu.cn [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China)

    2017-02-28

    Graphical abstract: Supramolecular assembled three-dimensdional graphene-based architectures were built by host-guest interactions of β-cyclodextrin polymers(β-CDPs) with adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD), exhibit significantly improved electrochemical performances of supercapacitor in terms of high specific capacitance, remarkable rate capability, and excellent cycling stability compared to pristine reduced graphene oxide. - Highlights: • Supramolecular assembled three-Dimensional (3D) graphene was first fabricated by host-guest interactions of β-CDPs with PEG-AD linkers. • The incorporation of PEG-AD linker into rGO sheets can provide efficient 3D electron transfer pathways and ion diffusion channels. • The 3D self-assembled graphene exhibits high specific capacitance, remarkable rate capability, and excellent cycling stability. • This study shed new lights to design 3D self-assembled graphene materials and their urgent applications in energy storage. - Abstract: Graphene-based materials have received worldwide attention in the focus of forefront energy storage investigations. Currently, the design of novel three-dimensional (3D) graphene structures with high energy capability, superior electron and ion conductivity, and robust mechanical flexibility is still a great challenge. Herein, we have successfully demonstrated a novel approach to fabricate 3D assembled graphene through the supramolecular interactions of β-cyclodextrin polymers (β-CDP) with an adamantine end-capped poly(ethylene oxide) polymer linker (PEG-AD). The incorporation of PEG-AD linker into rGO sheets increased the interlayer spacing of rGO sheets to form 3D graphene materials, which can provide efficient 3D electron transfer pathways and ion diffusion channels, and facilitate the infiltration of gel electrolyte. The as-prepared 3D self-assembled graphene materials exhibit significantly improved electrochemical performances of supercapacitor in terms

  4. Synthesis, electrochemistry, STM investigation of oligothiophene self-assemblies with superior structural order and electronic properties

    Science.gov (United States)

    Kuo, Cheng-Yu; Liu, Yinghao; Yarotski, Dmitry; Li, Hao; Xu, Ping; Yen, Hung-Ju; Tretiak, Sergei; Wang, Hsing-Lin

    2016-12-01

    Three oligothiophene (terthiophene, tetrathiophene and pentathiophene) derivatives are synthesized and their monolayer self-assemblies on gold (Au) are prepared via Au-S covalent bond. Our UV-Vis experimental characterization of solution reveals the dependence of the optical properties on the conjugation length of the oligothiophenes, which compares well with Time-Dependent Density Functional Theory (TDDFT) simulations of spectra of individual chromophores. Photoluminescent spectra of thin films show pronounced red shifts compared to that of solutions, suggesting strong inter-oligomer interactions. The comparative studies of cyclic voltammograms of tetrathiophene from solution, cast film and self-assembled monolayer (SAM) indicate presence of one, two, and three oxidized species in these samples, respectively, suggesting a very strong electronic coupling between tetrathiophene molecules in the SAM. Scanning tunneling microscopy (STM) imaging of SAMs of the tetrathiophene on an atomically flat Au surface exhibits formation of monolayer assemblies with molecular order, and the molecular packing appears to show an overlay of oligothiophene molecules on top of another one. In contrast, the trimer and pentamer images show only aggregated species lacking long-range order on the molecular level. Such trends in going from disordered-ordered-disordered monolayer assemblies are mainly due to a delicate balance between inter-chromophore π-π couplings, hydrophobic interaction and the propensity to form Au-S covalent bond. Such hypothesis has been validated by our computational results suggesting different interaction patterns of oligothiophenes with odd numbered and even numbered thiophene repeat units placed in a dimer configuration. Observed correlations between oligomer geometry and structural order of monolayer assembly elucidate important structure-property relationships and have implications for these molecular structures in organic optoelectronic devices and energy

  5. Synthesis and Self-Assembly of Donor–Acceptor–Donor Based Oligothiophenes and Their Optoelectronic Properties

    DEFF Research Database (Denmark)

    Siram, Raja Bhaskar Kanth; Tandy, Kristen; Horecha, Marta

    2011-01-01

    In this work, the synthesis of an oligothiophene having a donor–acceptor–donor (D–A–D) chromophore with hydrogen bonding groups is described. The D–A–D molecule was demonstrated to self-organize via intermolecular H-bonding between barbituric acid units. Interactions between the oligothiophene su...

  6. Coordinated assembly of a new 3D mesoporous Fe₃O₄@Cu₂O-graphene oxide framework as a highly efficient and reusable catalyst for the synthesis of quinoxalines.

    Science.gov (United States)

    Wang, Zhiyi; Hu, Guowen; Liu, Jian; Liu, Weisheng; Zhang, Haoli; Wang, Baodui

    2015-03-25

    A new three-dimensional (3D) mesoporous hybrid framework was synthesized by coordinated layer-by-layer assembly between nanosheets of reduced graphene oxide and Fe3O4@Cu2O. This 3D mesoporous framework shows an excellent catalytic performance with a remarkable activity, selectivity (>99%), and strong durability in the synthesis of quinoxalines.

  7. Synthesis of Cobalt Phosphide Nanoparticles Supported on Pristine Graphene by Dynamically Self-Assembled Graphene Quantum Dots for Hydrogen Evolution.

    Science.gov (United States)

    Wang, Xiaoyan; Yuan, Weiyong; Yu, Yanan; Li, Chang Ming

    2017-03-09

    A highly active, durable, and low-cost hydrogen evolution reaction (HER) catalyst is desirable for energy storage through water splitting but its fabrication presents great challenges. Herein, mediated by dynamically self-assembled graphene quantum dots (GQDs), small, uniform, high-density, and well-dispersed CoP nanoparticles were grown in situ on pristine graphene for the first time. This hybrid nanostructure was then employed as HER electrocatalyst, showing an onset potential of 7 mV, an overpotential of 91.3 mV to achieve 10 mA cm-2 , a Tafel slope of 42.6 mV dec-1 , and an exchange current density of 0.1225 mA cm-2 , all of which compare favorably to those of most reported non-noble-metal catalysts. The developed catalyst also exhibits excellent durability with negligible current loss after 2000 cyclic voltammetry cycles (+0.01 to -0.17 V vs. RHE) or 34 h of chronoamperometric measurement at an overpotential of 91.3 mV. This work not only develops a new strategy for the fabrication of high-performance and inexpensive electrocatalysts for HER but also provides scientific insight into the mechanism of the dynamically self-assembled GQDsmediated synthesis process. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Confined cooperative self-assembly and synthesis of optically and electrically active nanostructures : final LDRD report

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Eric Nicholas; Haddad, Raid Edward (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Ta, Anh (University of New Mexico, Albuquerque, NM); Bai, Feng (University of New Mexico, Albuquerque, NM); Rodriguez, Mark Andrew; Huang, Jian Yu

    2011-10-01

    In this project, we developed a confined cooperative self-assembly process to synthesize one-dimensional (1D) j-aggregates including nanowires and nanorods with controlled diameters and aspect ratios. The facile and versatile aqueous solution process assimilates photo-active macrocyclic building blocks inside surfactant micelles, forming stable single-crystalline high surface area nanoporous frameworks with well-defined external morphology defined by the building block packing. Characterizations using TEM, SEM, XRD, N{sub 2} and NO sorption isotherms, TGA, UV-vis spectroscopy, and fluorescence imaging and spectroscopy indicate that the j-aggregate nanostructures are monodisperse and may further assemble into hierarchical arrays with multi-modal functional pores. The nanostructures exhibit enhanced and collective optical properties over the individual chromophores. This project was a small footprint research effort which, nonetheless, produced significant progress towards both the stated goal as well as unanticipated research directions.

  9. Synthesis and assembly of Pd nanoparticles on graphene for enhanced electrooxidation of formic acid

    Science.gov (United States)

    Jin, Tao; Guo, Shaojun; Zuo, Jing-Lin; Sun, Shouheng

    2012-12-01

    Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions.Monodisperse 4.5 nm Pd nanoparticles (NPs) were synthesized by solution phase reduction of palladium acetylacetonate with morpholine borane in a mixture of oleylamine and 1-octadecene. These NPs were assembled on graphene uniformly in the form of a monolayer, and showed much enhanced catalysis for electrooxidation of formic acid. The work demonstrates the great potential of graphene as a support to enhance NP catalysis and stability for important chemical oxidation reactions. Electronic supplementary information (ESI) available. See DOI: 10.1039/c2nr33060a

  10. Amphiphilic Perylene-Calix[4]arene hybrids:synthesis and tunable self-assembly

    OpenAIRE

    Rodler, Fabian; Schade, Boris; Jaeger, Christof M.; Backes, Susanne; Hampel, Frank; Boettcher, Christoph; Clark, Timothy; Hirsch, Andreas

    2015-01-01

    The first highly water-soluble perylene–calix[4]arene hybrid with the calixarene scaffold acting as a structure-determining central platform is presented. In this tetrahedrally shaped amphiphilic architecture the hydrophilic and hydrophobic subunits are oriented at the opposite side of the calixarene platform. The hydrophobic part contains the two perylene diimide moieties, which enable strong π–π interactions in self-assembly processes. Two hydrophilic Newkome-type dendrons provide sufficien...

  11. Synthesis and evaluation of 2-pyridinylpyrimidines as inhibitors of HIV-1 structural protein assembly

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Milan; Štěpánek, Ondřej; Parkan, Kamil; Albinana, C. B.; Pávová, Marcela; Weber, Jan; Kräusslich, H. G.; Konvalinka, Jan; Machara, A.

    2016-01-01

    Roč. 26, č. 15 (2016), s. 3487-3490 ISSN 0960-894X R&D Projects: GA ČR GA13-19561S; GA MŠk(CZ) LK11207 Institutional support: RVO:61388963 Keywords : assay * assembly * capsid * inhibition * pyrimidine Subject RIV: CE - Biochemistry Impact factor: 2.454, year: 2016 http://www.sciencedirect.com/science/article/pii/S0960894X16306503

  12. Synthesis, Isotopic Enrichment, and Solid-State NMR Characterization of Zeolites Derived from the Assembly, Disassembly, Organization, Reassembly Process.

    Science.gov (United States)

    Bignami, Giulia P M; Dawson, Daniel M; Seymour, Valerie R; Wheatley, Paul S; Morris, Russell E; Ashbrook, Sharon E

    2017-04-12

    The great utility and importance of zeolites in fields as diverse as industrial catalysis and medicine has driven considerable interest in the ability to target new framework types with novel properties and applications. The recently introduced and unconventional assembly, disassembly, organization, reassembly (ADOR) method represents one exciting new approach to obtain solids with targeted structures by selectively disassembling preprepared hydrolytically unstable frameworks and then reassembling the resulting products to form materials with new topologies. However, the hydrolytic mechanisms underlying such a powerful synthetic method are not understood in detail, requiring further investigation of the kinetic behavior and the outcome of reactions under differing conditions. In this work, we report the optimized ADOR synthesis, and subsequent solid-state characterization, of (17)O- and doubly (17)O- and (29)Si-enriched UTL-derived zeolites, by synthesis of (29)Si-enriched starting Ge-UTL frameworks and incorporation of (17)O from (17)O-enriched water during hydrolysis. (17)O and (29)Si NMR experiments are able to demonstrate that the hydrolysis and rearrangement process occurs over a much longer time scale than seen by diffraction. The observation of unexpectedly high levels of (17)O in the bulk zeolitic layers, rather than being confined only to the interlayer spacing, reveals a much more extensive hydrolytic rearrangement than previously thought. This work sheds new light on the role played by water in the ADOR process and provides insight into the detailed mechanism of the structural changes involved.

  13. Self-assembly versus stepwise synthesis: heterometal-organic frameworks based on metalloligands with tunable luminescence properties.

    Science.gov (United States)

    Zhang, Shu-Ran; Du, Dong-Ying; Tan, Ke; Qin, Jun-Sheng; Dong, Hui-Qing; Li, Shun-Li; He, Wen-Wen; Lan, Ya-Qian; Shen, Ping; Su, Zhong-Min

    2013-08-19

    A new family of heterometal-organic frameworks has been prepared by two synthesis strategies, in which IFMC-26 and IFMC-27 are constructed by self-assembly and IFMC-28 is obtained by stepwise synthesis based on the metalloligand (IFMC=Institute of Functional Material Chemistry). IFMC-26 is a (3,6)-connected net and IFMC-27 is a (4,8)-connected 3D framework. The metalloligands {Ni(H4 L)}(NO3 )2 are connected by binuclear lanthanide clusters giving rise to a 2D sheet structure in IFMC-28. Notably, IFMC-26-Eux Tby and IFMC-28-Eux Tby have been obtained by changing the molar ratios of raw materials. Owing to the porosity of IFMC-26, Tb(3+) @IFMC-26-Eu and Eu(3+) @IFMC-26-Tb are obtained by postencapsulating Tb(III) and Eu(III) ions into the pores, respectively. Tunable luminescence in metal-organic frameworks is achieved by the two kinds of doping methods. In particular, the quantum yields of heterometal-organic frameworks are apparently enhanced by postencapsulation of Ln(III) ions. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. The use and abuse of heme in apicomplexan parasites.

    Science.gov (United States)

    van Dooren, Giel G; Kennedy, Alexander T; McFadden, Geoffrey I

    2012-08-15

    Heme is an essential prosthetic group for most life on Earth. It functions in numerous cellular redox reactions, including in antioxidant defenses and at several stages of the electron transport chain in prokaryotes and eukaryotic mitochondria. Heme also functions as a sensor and transport molecule for gases such as oxygen. Heme is a complex organic molecule and can only be synthesized through a multienzyme pathway from simpler precursors. Most free-living organisms synthesize their own heme by a broadly conserved metabolic pathway. Parasites are adept at scavenging molecules from their hosts, and heme is no exception. In this review we examine recent advances in understanding heme usage and acquisition in Apicomplexa, a group of parasites that include the causative agents of malaria, toxoplasmosis, and several major parasites of livestock. Heme is critical to the survival of Apicomplexa, although the functions of heme in these organisms remain poorly understood. Some Apicomplexa likely scavenge heme from their host organisms, while others retain the ability to synthesize heme. Surprisingly, some Apicomplexa may be able to both synthesize and scavenge heme. Several Apicomplexa live in intracellular environments that contain high levels of heme. Since heme is toxic at high concentrations, parasites must carefully regulate intracellular heme levels and develop mechanisms to detoxify excess heme. Indeed, drugs interfering with heme detoxification serve as major antimalarials. Understanding heme requirements and regulation in apicomplexan parasites promises to reveal multiple targets for much-needed therapeutic intervention against these parasites.

  15. Precise positioning and compliance synthesis for automatic assembly using Lorentz levitation

    Science.gov (United States)

    Hollis, R. L.; Salcudean, S.

    1992-01-01

    Many manufacturing assembly tasks require fine compliant motion and fast, accurate positioning. Conventional robots perform poorly in these tasks because of their large mass, friction and backlash in gears, cogging in drive motors and other deleterious effects. Even robots equipped with special control systems enabling compliant operation offer only partial solutions. It is difficult or impossible to automate many product assemblies requiring fine, compliant motion. This problem can be greatly alleviated by dividing the manipulation system into coarse and fine domains. In this scenario, a standard industrial robot can serve as a coarse positioner which in turn carries a six degrees of freedom fine motion wrist. Thus the robot can access a workspace measured in meters at low bandwidth and low resolution while the wrist can move over millimeters at high bandwidth and high resolution during the final phase of the assembly operation. Work indicates that fine motion wrists using Lorentz levitation can greatly augment the accuracy and dexterity of robots because they are frictionless, have high bandwidths and have a single back drivable moving part. Also, since there is no contact between the moving and stationary parts, wear and contamination can be eliminated. The use of six Lorentz force actuators in combination with real time position and orientation sensing offers several important advantages over magnetic bearing approaches.

  16. Synthesis of Coordination Polymer Nanoparticles using Self-Assembled Block Copolymers as Template.

    Science.gov (United States)

    Weber, Birgit

    2017-12-22

    Nowadays there is a high demand in specialized functional materials, for example, for applications as sensors in biomedicine. For the realization of such applications, nanostructures and the integration in a composite matrix are indispensable. Coordination polymers and networks, for example, with spin crossover properties, are a highly promising family of switchable materials in which the switching process can be triggered by various external stimuli. An overview over different strategies for the synthesis of nanoparticles of such systems is given. A special focus is set on the use of block copolymer micelles as templates for the synthesis of nanocomposites. The block copolymer defines the final size and shape of the nanoparticle core. Additionally it allows a further functionalization of the obtained nanoparticles by variation of the polymer blocks and an easy deposition of the composite material on surfaces. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Molecular Self-Assembly and Nanochemistry: A Chemical Strategy for the Synthesis of Nanostructures

    Science.gov (United States)

    1991-12-01

    at least for the time) in syntheses of the very complex molecules vitamin B12 (JA) and palytoxin (mw - 2680) (11). Sequential covalent synthesis can be...monolayers on water; lipid bilayers, hydrophobic Ocores’ of proteins inclusion complexes with cyclodextrins (AA) Aromatic 7r-stacking and charge Nucleic...association of 6- cyclodextrin (16.1) (a toroid molecule that is a cyclic heptamer of glucose) with aromatic rings; the tetraphenyl borate anions seem also to

  18. Self-assembled peptide template directed synthesis of one-dimensional inorganic nanostructures and their applications

    OpenAIRE

    Acar, Handan

    2012-01-01

    Ankara : The Materials Science and Nanotechnology Program of the Graduate School of Engineering and Sciences of Bilkent University, 2012. Thesis (Ph. D.) -- Bilkent University, 2012. Includes bibliographical references. Engineering at the nano scale has been an active area of science and technology over the last decade. Inspired by nature, synthesis of functional inorganic materials using synthetic organic templates constitutes the theme of this thesis. Developing organic te...

  19. PCBP1 and NCOA4 regulate erythroid iron storage and heme biosynthesis.

    Science.gov (United States)

    Ryu, Moon-Suhn; Zhang, Deliang; Protchenko, Olga; Shakoury-Elizeh, Minoo; Philpott, Caroline C

    2017-05-01

    Developing erythrocytes take up exceptionally large amounts of iron, which must be transferred to mitochondria for incorporation into heme. This massive iron flux must be precisely controlled to permit the coordinated synthesis of heme and hemoglobin while avoiding the toxic effects of chemically reactive iron. In cultured animal cells, iron chaperones poly rC-binding protein 1 (PCBP1) and PCBP2 deliver iron to ferritin, the sole cytosolic iron storage protein, and nuclear receptor coactivator 4 (NCOA4) mediates the autophagic turnover of ferritin. The roles of PCBP, ferritin, and NCOA4 in erythroid development remain unclear. Here, we show that PCBP1, NCOA4, and ferritin are critical for murine red cell development. Using a cultured cell model of erythroid differentiation, depletion of PCBP1 or NCOA4 impaired iron trafficking through ferritin, which resulted in reduced heme synthesis, reduced hemoglobin formation, and perturbation of erythroid regulatory systems. Mice lacking Pcbp1 exhibited microcytic anemia and activation of compensatory erythropoiesis via the regulators erythropoietin and erythroferrone. Ex vivo differentiation of erythroid precursors from Pcbp1-deficient mice confirmed defects in ferritin iron flux and heme synthesis. These studies demonstrate the importance of ferritin for the vectorial transfer of imported iron to mitochondria in developing red cells and of PCBP1 and NCOA4 in mediating iron flux through ferritin.

  20. Prebiotics increase heme iron bioavailability and do not affect non-heme iron bioavailability in humans.

    Science.gov (United States)

    Weinborn, Valerie; Valenzuela, Carolina; Olivares, Manuel; Arredondo, Miguel; Weill, Ricardo; Pizarro, Fernando

    2017-05-24

    The aim of this study was to establish the effect of a prebiotic mix on heme and non-heme iron (Fe) bioavailability in humans. To this purpose, twenty-four healthy women were randomized into one of two study groups. One group ate one yogurt per day for 12 days with a prebiotic mix (prebiotic group) and the other group received the same yogurt but without the prebiotic mix (control group). Before and after the intake period, the subjects participated in Fe absorption studies. These studies used (55)Fe and (59)Fe radioactive isotopes as markers of heme Fe and non-heme Fe, respectively, and Fe absorption was measured by the incorporation of radioactive Fe into erythrocytes. The results showed that there were no significant differences in heme and non-heme Fe bioavailability in the control group. Heme Fe bioavailability of the prebiotic group increased significantly by 56% post-prebiotic intake. There were no significant differences in non-heme Fe bioavailability in this group. We concluded that daily consumption of a prebiotic mix increases heme Fe bioavailability and does not affect non-heme iron bioavailability.

  1. The surface protein Shr of Streptococcus pyogenes binds heme and transfers it to the streptococcal heme-binding protein Shp

    Directory of Open Access Journals (Sweden)

    Lei Benfang

    2008-01-01

    Full Text Available Abstract Background The heme acquisition machinery in Streptococcus pyogenes is believed to consist of the surface proteins, Shr and Shp, and heme-specific ATP-binding cassette transporter HtsABC. Shp has been shown to rapidly transfer its heme to the lipoprotein component, HtsA, of HtsABC. The function of Shr and the heme source of Shp have not been established. Results The objective of this study was to determine whether Shr binds heme and is a heme source of Shp. To achieve the objective, recombinant Shr protein was prepared. The purified Shr displays a spectrum typical of hemoproteins, indicating that Shr binds heme and acquires heme from Escherichia coli hemoproteins in vivo. Spectral analysis of Shr and Shp isolated from a mixture of Shr and heme-free Shp (apoShp indicates that Shr and apoShp lost and gained heme, respectively; whereas Shr did not efficiently lose its heme in incubation with apoHtsA under the identical conditions. These results suggest that Shr directly transfers its heme to Shp. In addition, the rates of heme transfer from human hemoglobin to apoShp are close to those of simple ferric heme dissociation from hemoglobin, suggesting that methemoglobin does not directly transfer its heme to apoShp. Conclusion We have demonstrated that recombinant Shr can acquire heme from E. coli hemoproteins in vivo and appears to directly transfer its heme to Shp and that Shp appears not to directly acquire heme from human methemoglobin. These results suggest the possibility that Shr is a source of heme for Shp and that the Shr-to-Shp heme transfer is a step of the heme acquisition process in S. pyogenes. Further characterization of the Shr/Shp/HtsA system would advance our understanding of the mechanism of heme acquisition in S. pyogenes.

  2. Synthesis of Self-Assembled Multifunctional Nanocomposite Catalysts with Highly Stabilized Reactivity and Magnetic Recyclability

    Science.gov (United States)

    Yu, Xu; Cheng, Gong; Zheng, Si-Yang

    2016-05-01

    In this paper, a multifunctional Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite catalyst with highly stabilized reactivity and magnetic recyclability was synthesized by a self-assembled method. The magnetic Fe3O4 nanoparticles were coated with a thin layer of the SiO2 to obtain a negatively charged surface. Then positively charged poly(ethyleneimine) polymer (PEI) was self-assembled onto the Fe3O4@SiO2 by electrostatic interaction. Next, negatively charged glutathione capped gold nanoparticles (GSH-AuNPs) were electrostatically self-assembled onto the Fe3O4@SiO2@PEI. After that, silver was grown on the surface of the nanocomposite due to the reduction of the dopamine in the alkaline solution. An about 5 nm thick layer of polydopamine (PDA) was observed to form the Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was carefully characterized by the SEM, TEM, FT-IR, XRD and so on. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite shows a high saturation magnetization (Ms) of 48.9 emu/g, which allows it to be attracted rapidly to a magnet. The Fe3O4@SiO2@PEI-Au/Ag@PDA nanocomposite was used to catalyze the reduction of p-nitrophenol (4-NP) to p-aminophenol (4-AP) as a model system. The reaction kinetic constant k was measured to be about 0.56 min-1 (R2 = 0.974). Furthermore, the as-prepared catalyst can be easily recovered and reused for 8 times, which didn’t show much decrease of the catalytic capability.

  3. Self-Assembled Three-Dimensional Graphene Macrostructures: Synthesis and Applications in Supercapacitors.

    Science.gov (United States)

    Xu, Yuxi; Shi, Gaoquan; Duan, Xiangfeng

    2015-06-16

    Graphene and its derivatives are versatile building blocks for bottom-up assembly of advanced functional materials. In particular, with exceptionally large specific surface area, excellent electrical conductivity, and superior chemical/electrochemical stability, graphene represents the ideal material for various electrochemical energy storage devices including supercapacitors. However, due to the strong π-π interaction between graphene sheets, the graphene flakes tend to restack to form graphite-like powders when they are processed into practical electrode materials, which can greatly reduce the specific surface area and lead to inefficient utilization of the graphene layers for electrochemical energy storage. The self-assembly of two-dimensional graphene sheets into three-dimensional (3D) framework structures can largely retain the unique properties of individual graphene sheets and has recently garnered intense interest for fundamental investigations and potential applications in diverse technologies. In this Account, we review the recent advances in preparing 3D graphene macrostructures and exploring them as a unique platform for supercapacitor applications. We first describe the synthetic strategies, in which reduction of a graphene oxide dispersion above a certain critical concentration can induce the reduced graphene oxide sheets to cross-link with each other via partial π-π stacking interactions to form a 3D interconnected porous macrostructure. Multiple reduction strategies, including hydrothermal/solvothermal reduction, chemical reduction, and electrochemical reduction, have been developed for the preparation of 3D graphene macrostructures. The versatile synthetic strategies allow for easy incorporation of heteroatoms, carbon nanomaterials, functional polymers, and inorganic nanostructures into the macrostructures to yield diverse composites with tailored structures and properties. We then summarize the applications of the 3D graphene macrostructures

  4. The assembly and properties of protobiological structures - The beginnings of cellular peptide synthesis

    Science.gov (United States)

    Fox, S. W.; Nakashima, T.

    1980-01-01

    New data indicate that lysine-rich proteinoids have the ability to catalyze the synthesis of peptide bonds from a variety of amino acids and ATP. This capacity is evident in aqueous solution, in suspension of phase-separated complexes of lysine-rich proteinoid with acidic proteinoids, and in suspension of phase-separated particles composed of lysine-rich proteinoids with polynucleotides. Since the proteinoid complexes can contain other catalytic activities, including ability to catalyze internucleotide bond formation, it is inferred that the first protocells on earth already had a number of biological types of activity.

  5. Dioxygen reactivity of meso-hydroxylated hemes: intermediates in ...

    Indian Academy of Sciences (India)

    Keywords. Heme oxygenase; heme degradation; coupled oxidation; variable temperature paramagnetic NMR. Abstract. Heme oxygenase (HO) is the only enzyme in mammals known to catalyse the physiological degradation of unwanted heme into biliverdin, Fe ion and CO. The process involves introduction of the hydroxyl ...

  6. Facile Synthesis of Self-Assembled Flower-Like Mesoporous Zinc Oxide Nanoflakes for Energy Applications

    Science.gov (United States)

    Saranya, P. E.; Selladurai, S.

    Flower-shaped self-assembled zinc oxide (ZnO) nanoflakes were successfully synthesized via a temperature-controlled hydrothermal method. The crystallinity and phase formation of the compound were determined from powder X-ray diffraction (PXRD) result. Surface morphology investigations reveal the self-assembled ZnO nanoflakes to form a spherical flower-like structure. In addition, the particle size was determined from high-resolution transmission electron microscope measurement as 18nm which is in accord with XRD and UV results. X-ray photo electron spectroscopy studies reveal the chemical composition and oxidation state of the ZnO nanoparticle. The specific surface area was calculated, and mesoporous nature was confirmed using Brunauer-Emmett-Teller analysis. Results support the superior interaction between the electrode and electrolyte ions through surface pores. Capacitive performance of the ZnO electrode material was determined using cyclic voltammetry and galvanostatic charge/discharge studies, and a maximum specific capacitance of 322F/g was obtained at 5mV/sec. Electrochemical impedance spectrum reveals the materials fast charge transfer kinetics.

  7. Amphiphilic perylene-calix[4]arene hybrids: synthesis and tunable self-assembly.

    Science.gov (United States)

    Rodler, Fabian; Schade, Boris; Jäger, Christof M; Backes, Susanne; Hampel, Frank; Böttcher, Christoph; Clark, Timothy; Hirsch, Andreas

    2015-03-11

    The first highly water-soluble perylene-calix[4]arene hybrid with the calixarene scaffold acting as a structure-determining central platform is presented. In this tetrahedrally shaped amphiphilic architecture the hydrophilic and hydrophobic subunits are oriented at the opposite side of the calixarene platform. The hydrophobic part contains the two perylene diimide moieties, which enable strong π-π interactions in self-assembly processes. Two hydrophilic Newkome-type dendrons provide sufficient water solubility at slightly basic conditions. The tetrahedrally shaped amphiphile displays an unprecedented aggregation behavior down to concentrations as low as 10(-7) mol L(-1). The intriguing self-assembly process of the compound in water as well as under changed polarity conditions, achieved by addition of THF, could be monitored by the complemented use of cryogenic transmission electron microscopy (cryo-TEM), UV-vis spectroscopy, and fluorescence spectroscopy. Molecular-dynamics and molecular modeling simulations helped in understanding the interplay of supramolecular and optical behavior.

  8. Self-assembled synthesis and characterization of microchannels in polymeric membranes

    Science.gov (United States)

    Kahsai, Wintana T.; Pham, Uyen H. T.; Sankaran, Jeyantt S.; Iqbal, Samir M.

    2012-07-01

    This article describes a novel self-assembly approach to create microchannels in polydimethylsiloxane (PDMS) membranes using poly(ethylene oxide) (PEO) and polyurethane (PU). The interactions between hydrophilic PEO/PU and hydrophobic PDMS, as it cross-links, result into PEO/PU pushed out of the bulk PDMS. As this occurs, PEO/PU particles leave behind their tracks. PEO depicts ease of handling, better inherent alignment, and excellent repeatability. Fourier transform infrared spectroscopy, optical/confocal laser scanning microscopy, and fluid flow measurements are done to characterize the microfluidic channels. These channels have a circular cross-section and are parallel to each other. PEO generates smaller channels compared to PU. The diameter, arrangement, and height of these channels are seen to depend on temperature; for example, channel length increases linearly with temperature. An interdependent relationship between temperature, pore size, and number of pores is also exhibited. During phase separation of hydrophilic and hydrophobic materials, interface shows concentric circular arrangements of hydrophilic molten polymer. The circular pattern shows almost similar radial change in size. The flow behavior of colored ink solutions shows higher velocity at the entrance of microchannels which decreases to sustained lower velocity as fluid travels farther in the microchannels. The fabrication of membrane does not need lithography or etching, and channels are self-assembled from bottom-up interactions. These microchannel membranes can have applications in drug delivery, cell culture studies, mixing of solutions, separation of mixtures, lab-on-a-chip, etc.

  9. Synthesis and Functionalization of 3D Nano-graphene Materials: Graphene Aerogels and Graphene Macro Assemblies.

    Science.gov (United States)

    Campbell, Patrick G; Worsley, Marcus A; Hiszpanski, Anna M; Baumann, Theodore F; Biener, Juergen

    2015-11-05

    Efforts to assemble graphene into three-dimensional monolithic structures have been hampered by the high cost and poor processability of graphene. Additionally, most reported graphene assemblies are held together through physical interactions (e.g., van der Waals forces) rather than chemical bonds, which limit their mechanical strength and conductivity. This video method details recently developed strategies to fabricate mass-producible, graphene-based bulk materials derived from either polymer foams or single layer graphene oxide. These materials consist primarily of individual graphene sheets connected through covalently bound carbon linkers. They maintain the favorable properties of graphene such as high surface area and high electrical and thermal conductivity, combined with tunable pore morphology and exceptional mechanical strength and elasticity. This flexible synthetic method can be extended to the fabrication of polymer/carbon nanotube (CNT) and polymer/graphene oxide (GO) composite materials. Furthermore, additional post-synthetic functionalization with anthraquinone is described, which enables a dramatic increase in charge storage performance in supercapacitor applications.

  10. One-step synthesis and self-assembly of metal oxide nanoparticles into 3D superlattices.

    Science.gov (United States)

    Pucci, Andrea; Willinger, Marc-Georg; Liu, Feng; Zeng, Xiangbing; Rebuttini, Valentina; Clavel, Guylhaine; Bai, Xue; Ungar, Goran; Pinna, Nicola

    2012-05-22

    A simple one-pot approach based on the "benzyl alcohol route" is introduced for the fabrication of highly ordered supercrystals composed of highly uniform 3-4 nm zirconia and rare-earth stabilized zirconia nanoparticles. The as-fabricated supercrystals reach sizes larger than 10 μm and present well-defined 3D morphologies such as flower-like, rhombic dodecahedron, and bipyramids. This system is unique in that the supercrystals are formed in one-step directly in the reaction medium where the nanoparticles are synthesized. The uniformity in nanocrystal shape and size is attributed to the in situ formation of benzoate species that directs the nanoparticle growth and assembly. The low colloidal stabilization of the benzoate-capped nanoparticles in benzyl alcohol promotes the formation of supercrystals in solution by π-π interaction between the in situ formed benzoate ligands attached to neighboring particles. By varying the reaction temperature and the nature of the doping the way the nanobulding blocks assemble in the supercrystals could be controlled. Standard FCC superlattice packings were found together with more unusual ones with P6/mmm and R ̅3m symmetries.

  11. Surfactantless synthesis and textural properties of self-assembled mesoporous SnO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Velasquez, Celso [Departamento de QuImica, Universidad Autonoma Metropolitana-Iztapalapa, PO Box 55-534, Mexico, DF 09340 (Mexico); Ojeda, MarIa Luisa [Instituto de QuImica, UNAM, Circuito Exterior, Ciudad Universitaria, CP 04510, Mexico, DF (Mexico); Campero, Antonio [Departamento de QuImica, Universidad Autonoma Metropolitana-Iztapalapa, PO Box 55-534, Mexico, DF 09340 (Mexico); Esparza, Juan Marcos [Departamento de QuImica, Universidad Autonoma Metropolitana-Iztapalapa, PO Box 55-534, Mexico, DF 09340 (Mexico); Rojas, Fernando [Departamento de QuImica, Universidad Autonoma Metropolitana-Iztapalapa, PO Box 55-534, Mexico, DF 09340 (Mexico)

    2006-07-28

    Ordered surfactantless self-assembled, mesoporous SnO{sub 2} adsorbents, consisting of tubular voids of nanometric sizes, are prepared by the sol-gel processing of tin (IV) tetra-tert-amyloxide, Sn(OAm{sup t}){sub 4}, whose molecules have been previously chelated with acetylacetone in the absence of water, to modulate their reactivity and to promote an incipient self-assembling of -O-Sn-O oligomeric species; ultimately, the necessary amount of water to induce the hydrolysis-condensation reactions is added to this aged sol, then producing tubular pore templates within the SnO{sub 2} xerogel network. A collection of mesoporous SnO{sub 2} xerogels of assorted structural properties has been obtained after calcination in air of precursory gels proceeding from an aged mixture of Sn(OAm{sup t}){sub 4} and acetylacetone at temperatures in the range 200-1000 deg. C. N{sub 2} sorption isotherms measured on these SnO{sub 2} solids evidence mesoporous structures of diverse textural characteristics (i.e. pore widths of 3-50 nm and surface areas of 10-140 m{sup 2} g{sup -1}) in which voids virtually behave as if they are independent cylindrical pores during capillary condensation and evaporation.

  12. Synthesis and Characterization of Self-Assembled Nanogels Made of Pullulan

    Directory of Open Access Journals (Sweden)

    Sílvia A. Ferreira

    2011-03-01

    Full Text Available Self-assembled nanogels made of hydrophobized pullulan were obtained using a versatile, simple, reproducible and low-cost method. In a first reaction pullulan was modified with hydroxyethyl methacrylate or vinyl methacrylate, further modified in the second step with hydrophobic 1-hexadecanethiol, resulting as an amphiphilic material, which self-assembles in water via the hydrophobic interaction among alkyl chains. Structural features, size, shape, surface charge and stability of the nanogels were studied using hydrogen nuclear magnetic resonance, fluorescence spectroscopy, cryo-field emission scanning electron microscopy and dynamic light scattering. Above the critical aggregation concentration spherical polydisperse macromolecular micelles revealed long-term colloidal stability in aqueous medium, with a nearly neutral negative surface charge and mean hydrodynamic diameter in the range 100–400 nm, depending on the polymer degree of substitution. Good size stability was observed when nanogels were exposed to potential destabilizing pH conditions. While the size stability of the nanogel made of pullulan with vinyl methacrylate and more hydrophobic chains grafted was affected by the ionic strength and urea, nanogel made of pullulan with hydroxyethyl methacrylate and fewer hydrophobic chains grafted remained stable.

  13. Expeditious organic-free assembly: morphologically controlled synthesis of iron oxides using microwaves

    Science.gov (United States)

    Kou, Jiahui; Varma, Rajender S.

    2013-08-01

    A microwave hydrothermal method is developed for the synthesis of iron oxides, α-Fe2O3, β-FeOOH, and the junction of α-Fe2O3-β-FeOOH. This method is absolutely organic-free, and various structures could be obtained simply by changing the use of the iron source and NaOH. The as-prepared sea urchin-like β-FeOOH exhibits excellent catalytic performance for the degradation of methylene blue (MB) in the presence of H2O2.A microwave hydrothermal method is developed for the synthesis of iron oxides, α-Fe2O3, β-FeOOH, and the junction of α-Fe2O3-β-FeOOH. This method is absolutely organic-free, and various structures could be obtained simply by changing the use of the iron source and NaOH. The as-prepared sea urchin-like β-FeOOH exhibits excellent catalytic performance for the degradation of methylene blue (MB) in the presence of H2O2. Electronic supplementary information (ESI) available: XRD patterns and the reaction profile of the microwave system. See DOI: 10.1039/c3nr02663a

  14. Heme environment in HmuY, the heme-binding protein of Porphyromonas gingivalis

    Energy Technology Data Exchange (ETDEWEB)

    Wojtowicz, Halina [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Wojaczynski, Jacek [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Mariusz [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland); Kroliczewski, Jaroslaw [Laboratory of Biophysics, Faculty of Biotechnology, University of Wroclaw, 50-148 Wroclaw (Poland); Latos-Grazynski, Lechoslaw [Department of Chemistry, University of Wroclaw, 50-383 Wroclaw (Poland); Olczak, Teresa, E-mail: Teresa.Olczak@biotech.uni.wroc.pl [Laboratory of Biochemistry, Faculty of Biotechnology, University of Wroclaw, Tamka 2, 50-137 Wroclaw (Poland)

    2009-05-29

    Porphyromonas gingivalis, a Gram-negative anaerobic bacterium implicated in the development and progression of chronic periodontitis, acquires heme for growth by a novel mechanism composed of HmuY and HmuR proteins. The aim of this study was to characterize the nature of heme binding to HmuY. The protein was expressed, purified and detailed investigations using UV-vis absorption, CD, MCD, and {sup 1}H NMR spectroscopy were carried out. Ferric heme bound to HmuY may be reduced by sodium dithionite and re-oxidized by potassium ferricyanide. Heme complexed to HmuY, with a midpoint potential of 136 mV, is in a low-spin Fe(III) hexa-coordinate environment. Analysis of heme binding to several single and double HmuY mutants with the methionine, histidine, cysteine, or tyrosine residues replaced by an alanine residue identified histidines 134 and 166 as potential heme ligands.

  15. Self-assembling Polypeptide Nanoparticles: Design, Synthesis, Biophysical Characterization and Biomedical Applications

    Science.gov (United States)

    Araujo Pereira Falcao Pimentel, Tais de

    Inspired by the architecture of icosahedral viruses, self-assembling polypeptide nanoparticles (SAPN) with icosahedral symmetry were developed. The building block for the SAPN was a single polypeptide chain. Similarly, the capsid of quite a few small viruses are built from one single peptide chain. The polypeptide chain of the SAPN consists of a pentameric coiled-coil domain at the N-terminus joined by a short linker segment to a trimeric coiled-coil domain at the C-terminus. Here we have studied factors governing self-assembly of the SAPN such as linker constitution and trimer length. The interdomain linker 2i88 afforded the most homogenous nanoparticles as verified by TEM and DLS. Furthermore, AUC and STEM analyses suggest that the nanoparticles formed using the linker 2i88 have a T=3-like architecture confirming computer modeling predictions. As for trimer length, we have shown that it is possible to synthesize SAPN with a trimer that is as short as only 17 amino acids. Given that the N-terminus and C-terminus of the SAPN can be extended to include epitopes and give rise to a repetitive antigen display system, vaccine applications of the SAPN were also investigated here. We grafted parts of the SARS virus' spike protein onto our SAPN to repetitively display this B-cell epitope. Biophysical characterization showed that single nanoparticles of the expected size range were formed. Immunization experiments in mice at University of Colorado Denver revealed that the antibodies elicited were conformation-specific. Moreover, the antibodies significantly inhibited SARS virus infection of Vero E6 cells. SAPN were also functionalized at the C-terminus with a B-cell epitope from the circumsporozoite protein (CSP) of the malaria parasite Plasmodium falciparum and at the N-terminus with CTL epitopes from CSP. The trimeric coiled-coil domains of these malaria SAPN were modified to include a HTL epitope. Even will all these modifications, self-assembly occurred as confirmed by

  16. Self-Assembly Synthesis of N-Doped Carbon Aerogels for Supercapacitor and Electrocatalytic Oxygen Reduction.

    Science.gov (United States)

    Zhang, Junli; Chen, Gaoli; Zhang, Qian; Kang, Fei; You, Bo

    2015-06-17

    The rational design of high-performance and cheap nanomaterials for multiple sustainable energy storage applications is extremely urgent but remains challenging. Herein, a facile commercial melamine-sponge-directed multicomponent surface self-assembly strategy has been reported to synthesize N-doped carbon aerogels (NCAs) with low density (0.01 g cm(-3)), large open pores, and high surface area (1626 m2 g(-1)). The commercial melamine sponge simultaneously serves as a green N source for N-doping and a 3D scaffold to buffer electrolytes for reducing ion transport resistance and minimizing ion diffusion distance. With their tailored architecture characteristics, the NCAs-based supercapacitor and oxygen reduction electrocatalyst show excellent performance.

  17. Synthesis and characterization of polystyrene coated iron oxide nanoparticles and asymmetric assemblies by phase inversion

    KAUST Repository

    Xie, Yihui

    2014-09-02

    Films with a gradient concentration of magnetic iron oxide nanoparticles are reported, based on a phase inversion membrane process. Nanoparticles with ∼13 nm diameter were prepared by coprecipitation in aqueous solution and stabilized by oleic acid. They were further functionalized by ATRP leading to grafted polystyrene brush. The final nanoparticles of 33 nm diameter were characterized by TGA, FTIR spectroscopy, GPC, transmission electron microscopy, and dynanmic light scattering. Asymmetric porous nanoparticle assemblies were then prepared by solution casting and immersion in water. The nanocomposite film production with functionalized nanoparticles is fast and technically scalable. The morphologies of films were characterized by scanning electron microscopy and atomic force microscopy, demonstrating the presence of sponge-like structures and finger-like cavities when 50 and 13 wt % casting solutions were, respectively, used. The magnetic properties were evaluated using vibrating sample magnetometer.

  18. Microwave synthesis of chain-like zircona nanofibers through carbon-induced self-assembly growth

    Science.gov (United States)

    Zhao, Wanyu; Li, Jian; Fan, Bingbing; Shao, Gang; Wang, Hailong; Song, Bozhen; Wei, Shengnan; Zhang, Rui

    2017-12-01

    Chain-like zircona (ZrO2) nanofibers were prepared by microwave sintering without any surfactants or solid templates. Microwave sintering was conducted in a multimode microwave cavity with TE666 resonant mode at 2.45 GHz. Carbon particles were used to activate unique thermal processes when mixed with ZrO2 precursor. The sintering condition was at 1300°C for 10 min. Samples were characterized by XRD, SEM, TEM techniques. It was found that both monolithic and tetragonal ZrO2 co-existed in samples prepared fromthe mixture of ZrO2 precursors and carbon by either microwave or conventional sintering. Only m-ZrO2 exists in samples prepared by ZrO2 precursors without carbon. ZrO2 appeared as chain-like nanofibers, which might be attributed to a so-called carbon-induced self-assembly growth mechanism.

  19. Synthesis and self-assembly of amphiphilic gradient copolymer via RAFT emulsifier-free emulsion polymerization.

    Science.gov (United States)

    Chen, Yanjun; Luo, Wen; Wang, Yifeng; Sun, Chong; Han, Mei; Zhang, Chaocan

    2012-03-01

    The amphiphilic gradient copolymers of 2,2,2-trifluoroethyl methacrylate (TFEMA) and acrylic acid (AA) have been synthesized by using amphiphilic RAFT agent via emulsifier-free emulsion polymerization with a starved feed method of adding TFEMA. Different cosolvents are added into polymerization system to inhibit AA's homopolymerization of in aqueous phase. RAFT polymerization kinetics under different reaction conditions are discussed in detail. (1)H NMR results indicate that the obtained copolymer has a chain structure with AA segments gradually changing to TFEMA segments. The copolymer latexes exhibit good pH stability (pH value from 5 to 14) and Ca(2+) stability. The self-assembly behavior of gradient copolymers in selective solvents are observed and studied by transmission electron microscopy. All the copolymers can form spherical micelles, but the homogeneity and size of micelles are different. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Synthesis, Self-Assembly and Photoresponsive Liquid Crystals Based on Azobenzene Derivatives.

    Science.gov (United States)

    Wang, Hongyan; Han, Yi; Yuan, Wei; Wu, Mengjiao; Chen, Yulan

    2018-02-17

    A new class of rod-coil-rod molecules with an azobenzene core were synthesized. They were found to form robust organogels in several kinds of organic solvents. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), atomic force microscopy (AFM), FT-IR spectroscopy, UV-vis absorption spectroscopy, 1H NMR, and X-ray diffraction (XRD) revealed that in these organogels, the molecules self-assembled into nanofiber network with an H-type aggregation mode under the joint effect of Pi-Pi stacking, intermolecular hydrogen bonding, and van der Waals forces. Interestingly, the incorporation of the azobenzene mesogene into the rigid core led to photo-isomerizable liquid crystal materials, which exhibited fast responsiveness to light and temperature, along with the trans-cis transition stimulated by UV light and heating. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Biomimetic synthesis of enamel-like hydroxyapatite on self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Li Hong [Department of Materials Science and Engineering, Jinan University, Guangzhou, 510632 (China); Huang Weiya [Department of Chemistry, Jinan University, Guangzhou, 510632 (China); Zhang Yuanming [Department of Chemistry, Jinan University, Guangzhou, 510632 (China)]. E-mail: tzhangym@jnu.edu.cn; Zhong Mei [Department of Stomatology, Affiliated Hospital of Jinan University, Guangzhou, 510632 (China)

    2007-05-16

    Hydroxyapatite (HAp) crystals mimicking tooth enamel in chemical composition and morphology were formed on sulfonic-terminated self-assembled monolayer (SAM) in 1.5SBF with F{sup -} at 50 {sup o}C for 7 days. F{sup -} ions showed a marked effect on the composition and morphology of deposited HAp crystals. In the absence of F{sup -} ions, HAp containing CO{sub 3} {sup 2-} were formed on SAM, and worm-like crystals of 200-300 nm in length aggregated to form a spherical morphology. When F{sup -} was added, HAp crystals containing both CO{sub 3} {sup 2-} and F{sup -} were formed on SAM. Needle-shaped crystals of high aspect ratio and 1-2 {mu}m in length grew elongated along the c-axial direction. In addition, these needle-shaped crystals grew in bundles, mimicking HAp crystals in tooth enamel. After the process of ripening, the needles in bundle grew to large size of up to 10 {mu}m in length, and still kept no crystal-crystal fusion like enamel HAp crystals. The formation of enamel-like HAp can be attributed to the substitute of F{sup -} for OH{sup -} by disturbing the normal progress of HAp formation on SAM. The results suggest potential applications in preparing a novel dental material by a simple method. -- Graphical abstract: Hydroxyapatite (HAp) crystals mimicking tooth enamel in chemical composition and morphology were formed on self-assembled monolayer (SAM) by a biomimetic process. The needle-shaped crystals grew in bundles, mimicking HAp crystals in tooth enamel. Display Omitted.

  2. DNA synthesis and microtubule assembly-related events in fertilized Paracentrotus lividus eggs: reversible inhibition by 10 mM procaine.

    Science.gov (United States)

    Raymond, M N; Foucault, G; Coffe, G; Pudles, J

    1986-04-01

    This report describes the effects of 10 mM procaine on microtubule assembly and on DNA synthesis, as followed by [3H]colchicine binding assays and [3H]thymidine incorporation respectively, in fertilized Paracentrotus lividus eggs. In the absence of microtubule assembly inhibitors, about 25% of the total egg tubulin is submitted to two cycles of polymerization prior to the first cell division, this polymerization process precedes DNA synthesis. If the zygotes are treated with 10 mM procaine in the course of the cell cycle, tubulin polymerization is inhibited or microtubules are disassembled. DNA synthesis is inhibited when procaine treatment is performed 10 min, before the initiation of the S-period. However, when the drug is applied in the course of this synthetic period, the process is normally accomplished, but the next S-period becomes inhibited. Moreover, procaine treatment increases the cytoplasmic pH of the fertilized eggs by about 0.6 to 0.8 pH units. This pH increase precedes microtubule disassembly and inhibition of DNA synthesis. Washing out the drug induces a decrease of the intracellular pH which returns to about the same value as that of the fertilized egg controls. This pH change is then followed by the reinitiation of microtubule assembly, DNA synthesis and cell division. Our results show that the inhibition of both tubulin polymerization and DNA synthesis in fertilized eggs treated with 10 mM procaine, appears to be related to the drug-induced increase in cytoplasmic pH.

  3. Heme Compounds in Dinosaur Trabecular Bone

    National Research Council Canada - National Science Library

    Mary H. Schweitzer; Mark Marshall; Keith Carron; D. Scott Bohle; Scott C. Busse; Ernst V. Arnold; Darlene Barnard; J. R. Horner; Jean R. Starkey

    1997-01-01

    Six independent lines of evidence point to the existence of heme-containing compounds and/or hemoglobin breakdown products in extracts of trabecular tissues of the large theropod dinosaur Tyrannosaurus rex...

  4. Synthesis and cell localization of self-assembled dinuclear lanthanide bioprobes.

    Science.gov (United States)

    Chauvin, Anne-Sophie; Thomas, Frédéric; Song, Bo; Vandevyver, Caroline D B; Bünzli, Jean-Claude G

    2013-07-28

    Lanthanide bioprobes and bioconjugates are ideal luminescent stains in view of their low propensity to photobleaching, sharp emission lines and long excited state lifetimes permitting time-resolved detection for enhanced sensitivity. In this paper, we expand our previous work which demonstrated that self-assembled dinuclear triple-stranded helicates [Ln2(L(C2X))3] behave as excellent cell and tissue labels in immunocytochemical and immunohistochemical assays. The synthetic strategy of the hexadentate ditopic ligands incorporating dipicolinic acid, benzimidazole units and polyoxyethylene pendants is revisited in order to provide a more straightforward route and to give access to further functionalization of the polyoxyethylene arms by incorporating a terminal function X. Formation of the helicates [Ln2(L(C2X))3] (X=COOH, CH2OH, COEt, NH2, phthalimide) is ascertained by several experimental techniques and their stability tested against diethylenetriaminepentaacetate. Their photophysical properties (quantum yield, lifetime, radiative lifetime and sensitization efficiency) are presented and compared with those of the parent helicates [Ln2(L(C2))3]. Finally, the cellular uptake of five Eu(III) helicates is monitored by time-resolved luminescence microscopy and their localization in HeLa cells established by co-staining experiments.

  5. Synthesis, characterization, and assembly of beta-In2S3 nanoparticles.

    Science.gov (United States)

    Vigneashwari, B; Dash, S; Tyagi, A K; Parameswaran, P; Ravichandran, V; Sunthathiraraj, S Austin

    2007-06-01

    Semiconductor nanoparticles of Indium Sulphide were synthesized by a hydrothermal method using InCl3 and Na2S. Powder X-ray Diffraction analysis confirmed that the product obtained was nanocrystals of single-phase beta-In2S3. The crystallite size distribution was obtained from the diffraction profile and the average size was approximately 5 nm. The compositional analyses performed on the as-prepared powder showed that the material was devoid of any impurity with an In:S ratio very close to 2:3. A colloid of very fine In2S3 particles was obtained from the as-prepared powder by suspending them in acetonitrile. The optical absorption of this colloid showed evidence of strong quantum confinement of excitons and as a result the particles yielded intense photoluminescence in the violet-blue region. These colloidal particles were then electrophoretically driven on to a transparent conducting substrate to assemble into a nanostructure. A Grazing Incidence X-ray Diffraction analysis of the deposited layer revealed that the preferred orientation noticed in the native powder was removed in the deposit. The surface morphology of the deposit studied using SEM and AFM displayed an inherent ordering behaviour in the clusters organized into a two-dimensional film. The locus of the cluster lines tend to form closed circles, at the nanoscopic as well as microscopic scales, indicative of certain strong neighborhood correlations. Such structures may be expected to exhibit novel correlated properties also.

  6. Synthesis of surface modified mesoporous materials via co-assemble route and their drug release properties.

    Science.gov (United States)

    Wang, Yi; Zhu, Jun; Han, Jie; Guo, Rong

    2009-11-01

    A series of mesostructured Mn-MCM-41 composites were synthesized via a co-assembly route with tetraethylorthosilicate (TEOS) and manganese sulfate (MnSO4) as silica and manganese sources, respectively. And a model drug of cephanone was introduced via physical adsorption process into the channels of mesoporous silica, which could be used as the Mn-MCM-41 type mesoporous silica-based drug controlled-release delivery system. XRD, TEM, FT-IR, EDS and N2 adsorption-desorption were used to characterize the structural and textural properties of Mn-MCM-41 composites. The investigations showed that the addition of a small amount of manganese species was favorable for the long-range ordered structure of the mesoporous composites, whereas the ordered mesostructure was partially or completely distorted when the loaded manganese increased. The characterizations of cephanone loaded Mn-MCM-41 and in vitro release studies showed that the in vitro releases of cephanone in the ordered mesoporous materials follow an anomalous non-Fick's transport, and the impregnated manganese species had great influences on the release rate of cephanone from mesopores.

  7. Synthesis of self-assembled Ge nano crystals employing reactive RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, A. [Universidad Autonoma del Estado de Hidalgo, Escuela Superior de Apan, Calle Ejido de Chimalpa Tlalayote s/n, Col. Chimalpa, Apan, Hidalgo (Mexico); Hernandez H, L. A. [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco, 07730 Ciudad de Mexico (Mexico); Monroy, B. M.; Santana R, G. [UNAM, Instituto de Investigaciones en Materiales, Apdo. Postal 70-360, 04510 Ciudad de Mexico (Mexico); Santoyo S, J.; Gallardo H, S. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14740, 07300 Ciudad de Mexico (Mexico); Marquez H, A. [Universidad de Guanajuato, Campus Irapuato-Salamanca, Departamento de Ingenieria Agricola, Km. 9 Carretera Irapuato-Silao, 36500 Irapuato, Guanajuato (Mexico); Mani G, P. G.; Melendez L, M. [Universidad Autonoma de Ciudad Juarez, Instituto de Ingenieria y Tecnologia, Departamento de Fisica y Matematicas, 32310 Ciudad Juarez, Chihuahua (Mexico)

    2016-11-01

    This work presents the results of a simple methodology able to control crystal size, dispersion and spatial distribution of germanium nano crystals (Ge-NCs). It takes advantage of a self-assembled process taken place during the deposit of the system SiO{sub 2}/Ge/SiO{sub 2} by reactive RF sputtering. Nanoparticles formation is controlled mainly by the roughness of the first SiO{sub 2} layer buy the ulterior interaction of the interlayer with the top layer also play a role. Structural quality of germanium nano crystals increases with roughness and the interlayer thickness. The tetragonal phase of germanium is produced and its crystallographic quality improves with interlayer thickness and oxygen partial pressure. Room temperature photoluminescence emission without a post growth thermal annealing process indicates that our methodology produces a low density of non-radiative traps. The surface topography of SiO{sub 2} reference samples was carried out by atomic force microscopy. The crystallographic properties of the samples were studied by grazing incidence X-ray diffraction at 1.5 degrees carried out in a Siemens D-5000 system employing the Cu Kα wavelength. (Author)

  8. Synthesis, permeability resonance and microwave absorption of flake-assembled cobalt superstructure

    Science.gov (United States)

    Wen, S. L.; Liu, Y.; Zhao, X. C.; Fan, Z. Z.

    2015-07-01

    To meet the demands of high-efficient microwave absorption materials, cobalt superstructure was synthesized and characterized. As SEM confirmed, the cobalt superstructure was assembled by flakes. The size of cobalt superstructure was about 10 μm, and the thickness of the flake was about 500 nm. The permittivity and permeability were investigated as a function of frequency in the microwave range of 1-18 GHz. Based on the LLG equation and exchange resonance mode, three magnetic resonances, including one natural resonance and two exchange resonances were discussed. The calculated reflection loss (RL) indicated the cobalt superstructure indicated the cobalt superstructure has potential application as a promising candidate for microwave absorption. The maximum RL reached as high as -77.29 dB with a matching thickness of 1.5 mm, and the effective bandwidth with a reflection loss less than -10 dB was 3.6 GHz from 9.85 to 13.45 GHz. For cobalt superstructure, magnetic loss mainly contributed even more than dielectric loss to the microwave absorption.

  9. Synthesis, permeability resonance and microwave absorption of flake-assembled cobalt superstructure

    Energy Technology Data Exchange (ETDEWEB)

    Wen, S.L. [School of Materials Science and Engineering, Beijing Institute of Technology (China); Liu, Y., E-mail: yingliu@bit.edu.cn [School of Materials Science and Engineering, Beijing Institute of Technology (China); Zhao, X.C. [School of Materials Science and Engineering, Beijing Institute of Technology (China); Fan, Z.Z. [AVIC Beijing Institute of Aeronautical Materials, Beijing 100081 (China)

    2015-07-01

    To meet the demands of high-efficient microwave absorption materials, cobalt superstructure was synthesized and characterized. As SEM confirmed, the cobalt superstructure was assembled by flakes. The size of cobalt superstructure was about 10 μm, and the thickness of the flake was about 500 nm. The permittivity and permeability were investigated as a function of frequency in the microwave range of 1–18 GHz. Based on the LLG equation and exchange resonance mode, three magnetic resonances, including one natural resonance and two exchange resonances were discussed. The calculated reflection loss (RL) indicated the cobalt superstructure indicated the cobalt superstructure has potential application as a promising candidate for microwave absorption. The maximum RL reached as high as −77.29 dB with a matching thickness of 1.5 mm, and the effective bandwidth with a reflection loss less than −10 dB was 3.6 GHz from 9.85 to 13.45 GHz. For cobalt superstructure, magnetic loss mainly contributed even more than dielectric loss to the microwave absorption. - Highlights: • The cobalt superstructure were synthesized and characterized. • The multiple magnetic resonances were studied for cobalt superstructure based on the LLG equation and exchange resonance mode. • The maximum reflection loss of cobalt superstructure reaches to −77.29 dB.

  10. Photosensitive Layer-by-Layer Assemblies Containing Azobenzene Groups: Synthesis and Biomedical Applications

    Directory of Open Access Journals (Sweden)

    Uichi Akiba

    2017-10-01

    Full Text Available This review provides an overview of the syntheses of photosensitive layer-by-layer (LbL films and microcapsules modified with azobenzene derivatives and their biomedical applications. Photosensitive LbL films and microcapsules can be prepared by alternate deposition of azobenzene-bearing polymers and counter polymers on the surface of flat substrates and microparticles, respectively. Azobenzene residues in the films and microcapsules exhibit trans-to-cis photoisomerization under UV light, which causes changes in the physical or chemical properties of the LbL assemblies. Therefore, azobenzene-functionalized LbL films and microcapsules have been used for the construction of photosensitive biomedical devices. For instance, cell adhesion on the surface of a solid can be controlled by UV light irradiation by coating the surface with azobenzene-containing LbL films. In another example, the ion permeability of porous materials coated with LbL films can be regulated by UV light irradiation. Furthermore, azobenzene-containing LbL films and microcapsules have been used as carriers for drug delivery systems sensitive to light. UV light irradiation triggers permeability changes in the LbL films and/or decomposition of the microcapsules, which results in the release of encapsulated drugs and proteins.

  11. Self-assembly of oxamidato bridged ester functionalised dirhenium metallastirrups: synthesis, characterisation and cytotoxicity studies.

    Science.gov (United States)

    Ramakrishna, Buthanapalli; Nagarajaprakash, R; Veena, V; Sakthivel, N; Manimaran, Bala

    2015-10-28

    A new set of ester functionalised Re(i)-based oxamidato bridged neutral dinuclear metallacycles were synthesised by self-assembly of four components from three building blocks in a facile one-pot reaction via an orthogonal bonding approach. Oxidative addition of oxamide ligands (H2L = N,N'-diphenyloxamide, and N,N'-dibenzyloxamide) to rhenium carbonyl (Re2(CO)10) in the presence of semi-rigid and flexible ditopic pyridyl ligands (L' = o-phenylene diisonicotinate (pdi), ethane diyl di-4-pyridine carboxylate (etdp) and 1,4-butane diyl di-4-pyridine carboxylate (budp)) having ester functionality afforded neutral dirhenium metallacycles of the general formula [(CO)3Re(μ-L)(μ-L')Re(CO)3] (1-5) under solvothermal reaction conditions. The metallacyclic compounds were characterised using elemental analyses, IR, UV-vis and NMR spectroscopic techniques. Structural analyses of 2-5 by single crystal X-ray diffraction methods revealed a stirrup like molecular framework in which two fac-Re(CO)3 units are bridged together by dissymmetrical NO∩ON bis-chelation of oxamide ligands (as a pedestal of stirrups) and further connected by a flexible ditopic tecton (as an arched anchor of stirrups) in an orthogonal fashion. The cytotoxicity activities of dirhenium metallacycles 1-5 were studied in vitro against three different cancer cell lines and normal cells.

  12. Fluorine-Containing ABC Linear Triblock Terpolymers: Synthesis and Self-assembly in Solution

    Energy Technology Data Exchange (ETDEWEB)

    He, Lihong [ORNL; Hinestrosa Salazar, Juan P [ORNL; Pickel, Joseph M [ORNL; Kilbey, II, S Michael [ORNL; Mays, Jimmy [ORNL; Zhang, Shanju [Georgia Institute of Technology; Bucknall, David G. [Georgia Institute of Technology; Hong, Kunlun [ORNL

    2011-01-01

    In this paper a fluorine-containing monomer, 2-fluroroethyl methacrylate (2FEMA) was used to synthesize the linear triblock terpolymer poly(n-butyl methacrylate)-poly(methyl methacrylate)-poly(2-fluoroethyl methacrylate) (PnBMA-PMMA-P2FEMA). A kinetic study of the homopolymerization of 2FEMA by reversible addition-fragmentation chain transfer (RAFT) polymerization showed that it demonstrates living character and produces well defined polymers with reasonably narrow polydispersities (~1.30). Triblock terpolymers were prepared sequentially using a purified Macro-CTA at 70 oC, resulting in final terpolymers with high Dp for each block (>150) and with polydispersities between 1.6 and 2.1. The structure and molecular weights of the resultant PnBMA-PMMA-P2FEMA triblock terpolymers were characterized via 1H NMR, 19F NMR, and gel permeation chromatography (GPC). Self-assembly of these polymers was carried out in a selective solvent and the micellar aggregates (MAs) thereby formed were analyzed using scanning electron microscopy (SEM) and dynamic light scattering (DLS). It was confirmed from SEM that these copolymers could directly self-organize into large compound micelles in tetrahydrofuran/methanol with different diameters, depending on polymer composition.

  13. Colloid electrostatic self-assembly synthesis of SnO{sub 2}/graphene nanocomposite for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yankun; Liu, Yushan; Zhang, Jianmin, E-mail: zhjm@zzu.edu.cn [Zhengzhou University, College of Chemistry and Molecular Engineering (China)

    2015-10-15

    In this paper, a simple and fast colloid electrostatic self-assembly method was adopted to prepare the SnO{sub 2}/graphene nanocomposite (SGNC). The crystal structure, chemical composition, and porous property of composite were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, Raman microscopy, X-ray photoelectron spectroscopy (XPS), and N{sub 2} adsorption–desorption experiments. The morphology analyses showed that the SnO{sub 2} nanoparticles about 5 nm were distributed homogenously on the reduced graphene oxide (rGO) sheets surface. The electrochemical performance measurements exhibited that SGNC possessed the specific capacitance of 347.3 F g{sup −1} at a scan rate of 5 mV s{sup −1} in 1 M Na{sub 2}SO{sub 4} electrolyte solution. Furthermore, this material also showed excellent cycling stability, and the specific capacitance still retained 90 % after 3000 cycles. These results indicate that the SGNC is a promising electrode material for high-performance supercapacitors.

  14. One-step synthesis and stabilization of gold nanoparticles and multilayer film assembly

    Science.gov (United States)

    Bao, Ya-Yan; Bi, Li-Hua; Wu, Li-Xin

    2011-03-01

    Au nanoparticles (NPs) were synthesized in the one-pot procedure in water at room temperature with the wheel-shaped V V-V IV mixed-valence tungstovanadate [P 8W 48O 184{V 4VV 2IVO 12(H 2O) 2} 2] 32- (V12) acting as both reducing and stabilizing agents. The V12 stabilized Au NPs (Au@V12 NPs) were characterized by SEM, TEM, DLS, UV-vis spectroscopy, XPS, and XRD analyses and the negatively charged surface of the Au@V12 NPs was proved by the zeta potential analysis. Based on the layer-by-layer assembly (LbL), the Au@V12 NPs-containing multilayer films have been fabricated on ITO-coated glass slide and quartz substrates with poly(ethyleneimine) (PEI). The regular growth of the multilayer films was monitored by UV-vis spectroscopy and cyclic voltammetry, the composition was characterized by XPS. The Au@V12 NPs based composite films showed electrocatalytic activities towards the reduction of dioxygen and the oxidation of methanol. This approach is expected to open the way towards procedures aimed at the one-step fabrication of Au NPs and polyoxometalates (POMs) into the multilayer films.

  15. Synthesis, characterization and self-assembly of well-defined linear heptablock quaterpolymers

    KAUST Repository

    Ntaras, Christos

    2016-05-17

    Two well-defined heptablock quaterpolymers of the ABCDCBA type [Α: polystyrene (PS), B: poly(butadiene) with ∼90% 1,4-microstructure (PB1,4), C: poly(isoprene) with ∼55% 3,4-microstructure (PI3,4) and D: poly(dimethylsiloxane) (PDMS)] were synthesized by combining anionic polymerization high vacuum techniques and hydrosilylation/chlorosilane chemistry. All intermediates and final products were characterized by size exclusion chromatography, membrane osmometry, and proton nuclear magnetic resonance spectroscopy. Fourier transform infrared spectroscopy was used to further verify the chemical modification reaction of the difunctional PDMS. The self-assembly in bulk of these novel heptablock quarterpolymers, studied by transmission electron microscopy and small angle X-ray scattering, revealed 3-phase 4-layer alternating lamellae morphology of PS, PB1,4, and mixed PI3,4/PDMS domains. Differential scanning calorimetry was used to further confirm the miscibility of PI3,4 and PDMS blocks. It is the first time that PDMS is the central segment in such multiblock polymers (≥3 chemically different blocks). © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016, 54, 1443–1449. © 2016 Wiley Periodicals, Inc.

  16. Supramolecular assemblies of nucleoside functionalized carbon nanotubes: synthesis, film preparation, and properties.

    Science.gov (United States)

    Micoli, Alessandra; Turco, Antonio; Araujo-Palomo, Elsie; Encinas, Armando; Quintana, Mildred; Prato, Maurizio

    2014-04-25

    Nucleoside-functionalized multi-walled carbon nanotubes (N-MWCNTs) were synthesized and characterized. A self-organization process using hydrogen bonding interactions was then used for the fabrication of self-assembled N-MWCNTs films free of stabilizing agents, polymers, or surfactants. Membranes were produced by using a simple water-dispersion-based vacuum-filtration method. Hydrogen-bond recognition was confirmed by analysis with IR spectroscopy and TEM images. Restoration of the electronic conduction properties in the N-MWCNTs membranes was performed by removing the organic portion by thermal treatment under an argon atmosphere to give d-N-MWCNTs. Electrical conductivity and thermal gravimetric analysis (TGA) measurements confirmed the efficiency of the annealing process. Finally, oxidative biodegradation of the films N-MWCNTs and d-N-MWCNTs was performed by using horseradish peroxidase (HRP) and low concentrations of H2 O2 . Our results confirm that functional groups play an important role in the biodegradation of CNT by HRP: N-MWCNTs films were completely biodegraded, whereas for d-N-MWCNTs films no degradation was observed, showing that the pristine CNT undergoes minimal enzyme-catalyzed oxidation This novel methodology offers a straightforward supramolecular strategy for the construction of conductive and biodegradable carbon nanotube films. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Synthesis, characterization and anticorrosion potentials of chitosan-g-PEG assembled on silver nanoparticles.

    Science.gov (United States)

    Hefni, Hassan H H; Azzam, Eid M; Badr, Emad A; Hussein, M; Tawfik, Salah M

    2016-02-01

    Chitosan (Ch) grafted with poly(ethylene glycol) (Ch-g-mPEG) were synthesized using mPEG with molecular weights 2000 g/mol. The synthesized Ch-g-mPEG was characterized using gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), proton nuclear magnetic resonance (1H NMR), and X-ray diffraction (XRD) techniques. Ch-g-mPEG silver nanoparticles has been synthesized and characterized by high-resolution transmission electron microscopy (HRTEM) and energy dispersive analysis of X-rays (EDAX). The synthesized Ch-g-mPEG and its nanostructure were examined as corrosion inhibitors for carbon steel in 1M HCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) techniques. The results revealed that the inhibition efficiency obtained by Ch-g-mPEG self-assembled on silver nanoparticles is greater than that obtained by Ch-g-mPEG only. Potentiodynamic polarization results reveal that the synthesized compound could be classified as mixed-type corrosion inhibitors with predominant control of the cathodic reaction. The results of EIS indicate that the both charge transfer resistance and inhibition efficiency tend to increase by increasing the inhibitor concentration. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Structural mechanisms of nonplanar hemes in proteins

    Energy Technology Data Exchange (ETDEWEB)

    Shelnutt, J.A.

    1997-05-01

    The objective is to assess the occurrence of nonplanar distortions of hemes and other tetrapyrroles in proteins and to determine the biological function of these distortions. Recently, these distortions were found by us to be conserved among proteins belonging to a functional class. Conservation of the conformation of the heme indicates a possible functional role. Researchers have suggested possible mechanisms by which heme distortions might influence biological properties; however, no heme distortion has yet been shown conclusively to participate in a structural mechanism of hemoprotein function. The specific aims of the proposed work are: (1) to characterize and quantify the distortions of the hemes in all of the more than 300 hemoprotein X-ray crystal structures in terms of displacements along the lowest-frequency normal coordinates, (2) to determine the structural features of the protein component that generate and control these nonplanar distortions by using spectroscopic studies and molecular-mechanics calculations for the native proteins, their mutants and heme-peptide fragments, and model porphyrins, (3) to determine spectroscopic markers for the various types of distortion, and, finally, (4) to discover the functional significance of the nonplanar distortions by correlating function with porphyrin conformation for proteins and model porphyrins.

  19. Heme Oxygenases in Cardiovascular Health and Disease

    Science.gov (United States)

    Ayer, Anita; Zarjou, Abolfazl; Agarwal, Anupam; Stocker, Roland

    2016-01-01

    Heme oxygenases are composed of two isozymes, Hmox1 and Hmox2, that catalyze the degradation of heme to carbon monoxide (CO), ferrous iron, and biliverdin, the latter of which is subsequently converted to bilirubin. While initially considered to be waste products, CO and biliverdin/bilirubin have been shown over the last 20 years to modulate key cellular processes, such as inflammation, cell proliferation, and apoptosis, as well as antioxidant defense. This shift in paradigm has led to the importance of heme oxygenases and their products in cell physiology now being well accepted. The identification of the two human cases thus far of heme oxygenase deficiency and the generation of mice deficient in Hmox1 or Hmox2 have reiterated a role for these enzymes in both normal cell function and disease pathogenesis, especially in the context of cardiovascular disease. This review covers the current knowledge on the function of both Hmox1 and Hmox2 at both a cellular and tissue level in the cardiovascular system. Initially, the roles of heme oxygenases in vascular health and the regulation of processes central to vascular diseases are outlined, followed by an evaluation of the role(s) of Hmox1 and Hmox2 in various diseases such as atherosclerosis, intimal hyperplasia, myocardial infarction, and angiogenesis. Finally, the therapeutic potential of heme oxygenases and their products are examined in a cardiovascular disease context, with a focus on how the knowledge we have gained on these enzymes may be capitalized in future clinical studies. PMID:27604527

  20. Synthesis and characterization of gold nanoparticles in a self-assembled ionic liquid polymer nanocomposite

    Science.gov (United States)

    Magurudeniya, Harsha; Ringstrand, Bryan; Jungjohann, Katherine; Firestone, Millicent

    Incorporation of nanoparticles(NPs) into polymer matrices has attracted interest, offering a means to create multi-functional materials combining the attributes of polymers (flexibility, processability, mechanical durability) with the opto-electrical properties of NPs. Synthesis of a self-supporting, hierarchically structured Au NP-network polymer was accomplished via a ``one-pot'' reaction employing a mesophase of AuCl3 and an imidazolium based-ionic liquid (IL) containing a acrylate group. In-situ generation of NPs was achieved by reduction of Au3+which in turn yields concomitant initiation of the polymerization of the mesophase. FT-IR and thermal analysis confirmed acrylate cross-linking. X-ray scattering confirms preservation of the mesophase within the NP composite. TEM showed a distribution of the NPs within the composite of primarily non-spherical morphologies. The co-integration of a macromer, PEG diacrylate, served as a reducing agent for the Au and the amount incorporated into the mesophase allowed for manipulation of the swelling factor of the resultant nanocomposite in a ethanol, providing means to modulate the plasmonic resonance of the NPs. This methodology provides means for organizing NPs within the structured regions of the poly(IL) matrix. Such composites may be of interest for photonic/sensing applications.

  1. Size- and shape-controlled synthesis of hexagonal bipyramidal crystals and hollow self-assembled Al-MOF spheres

    KAUST Repository

    Sarawade, Pradip

    2013-11-25

    We report an efficient protocol for the synthesis of monodisperse crystals of an aluminum (Al)-based metal organic framework (MOF) while obtaining excellent control over the size and shape solely by tuning of the reaction parameters without the use of a template or structure-directing agent. The size of the hexagonal crystals of the Al-MOF can be selectively varied from 100 nm to 2000 nm by simply changing the reaction time and temperature via its nucleation-growth mechanism. We also report a self-assembly phenomenon, observed for the first time in case of Al-MOF, whereby hollow spheres of Al-MOF were formed by the spontaneous organization of triangular sheet building blocks. These MOFs showed broad hysteresis loops during the CO2 capture, indicating that the adsorbed CO2 is not immediately desorbed upon decreasing the external pressure and is instead confined within the framework, which allows for the capture and subsequent selective trapping of CO2 from gaseous mixtures. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Superfast assembly and synthesis of gold nanostructures using nanosecond low-temperature compression via magnetic pulsed power

    Science.gov (United States)

    Li, Binsong; Bian, Kaifu; Lane, J. Matthew D.; Salerno, K. Michael; Grest, Gary S.; Ao, Tommy; Hickman, Randy; Wise, Jack; Wang, Zhongwu; Fan, Hongyou

    2017-03-01

    Gold nanostructured materials exhibit important size- and shape-dependent properties that enable a wide variety of applications in photocatalysis, nanoelectronics and phototherapy. Here we show the use of superfast dynamic compression to synthesize extended gold nanostructures, such as nanorods, nanowires and nanosheets, with nanosecond coalescence times. Using a pulsed power generator, we ramp compress spherical gold nanoparticle arrays to pressures of tens of GPa, demonstrating pressure-driven assembly beyond the quasi-static regime of the diamond anvil cell. Our dynamic magnetic ramp compression approach produces smooth, shockless (that is, isentropic) one-dimensional loading with low-temperature states suitable for nanostructure synthesis. Transmission electron microscopy clearly establishes that various gold architectures are formed through compressive mesoscale coalescences of spherical gold nanoparticles, which is further confirmed by in-situ synchrotron X-ray studies and large-scale simulation. This nanofabrication approach applies magnetically driven uniaxial ramp compression to mimic established embossing and imprinting processes, but at ultra-short (nanosecond) timescales.

  3. A spray-drying strategy for synthesis of nanoscale metal-organic frameworks and their assembly into hollow superstructures

    Science.gov (United States)

    Carné-Sánchez, Arnau; Imaz, Inhar; Cano-Sarabia, Mary; Maspoch, Daniel

    2013-03-01

    Metal-organic frameworks (MOFs) are among the most attractive porous materials known today. Their miniaturization to the nanoscale—into nanoMOFs—is expected to serve myriad applications from drug delivery to membranes, to open up novel avenues to more traditional storage and catalysis applications, and to enable the creation of sophisticated superstructures. Here, we report the use of spray-drying as a versatile methodology to assemble nanoMOFs, yielding spherical hollow superstructures with diameters smaller than 5 µm. This strategy conceptually mimics the emulsions used by chemists to confine the synthesis of materials, but does not require secondary immiscible solvents or surfactants. We demonstrate that the resulting spherical, hollow superstructures can be processed into stable colloids, whose disassembly by sonication affords discrete, homogeneous nanoMOFs. This spray-drying strategy enables the construction of multicomponent MOF superstructures, and the encapsulation of guest species within these superstructures. We anticipate that this will provide new routes to capsules, reactors and composite materials.

  4. Target guided synthesis using DNA nano-templates for selectively assembling a G-quadruplex binding c-MYC inhibitor

    Science.gov (United States)

    Panda, Deepanjan; Saha, Puja; Das, Tania; Dash, Jyotirmayee

    2017-07-01

    The development of small molecules is essential to modulate the cellular functions of biological targets in living system. Target Guided Synthesis (TGS) approaches have been used for the identification of potent small molecules for biological targets. We herein demonstrate an innovative example of TGS using DNA nano-templates that promote Huisgen cycloaddition from an array of azide and alkyne fragments. A G-quadruplex and a control duplex DNA nano-template have been prepared by assembling the DNA structures on gold-coated magnetic nanoparticles. The DNA nano-templates facilitate the regioselective formation of 1,4-substituted triazole products, which are easily isolated by magnetic decantation. The G-quadruplex nano-template can be easily recovered and reused for five reaction cycles. The major triazole product, generated by the G-quadruplex inhibits c-MYC expression by directly targeting the c-MYC promoter G-quadruplex. This work highlights that the nano-TGS approach may serve as a valuable strategy to generate target-selective ligands for drug discovery.

  5. Heme controls ferroportin1 (FPN1) transcription involving Bach1, Nrf2 and a MARE/ARE sequence motif at position -7007 of the FPN1 promoter.

    Science.gov (United States)

    Marro, Samuele; Chiabrando, Deborah; Messana, Erika; Stolte, Jens; Turco, Emilia; Tolosano, Emanuela; Muckenthaler, Martina U

    2010-08-01

    Macrophages of the reticuloendothelial system play a key role in recycling iron from hemoglobin of senescent or damaged erythrocytes. Heme oxygenase 1 degrades the heme moiety and releases inorganic iron that is stored in ferritin or exported to the plasma via the iron export protein ferroportin. In the plasma, iron binds to transferrin and is made available for de novo red cell synthesis. The aim of this study was to gain insight into the regulatory mechanisms that control the transcriptional response of iron export protein ferroportin to hemoglobin in macrophages. Iron export protein ferroportin mRNA expression was analyzed in RAW264.7 mouse macrophages in response to hemoglobin, heme, ferric ammonium citrate or protoporphyrin treatment or to siRNA mediated knockdown or overexpression of Btb And Cnc Homology 1 or nuclear accumulation of Nuclear Factor Erythroid 2-like. Iron export protein ferroportin promoter activity was analyzed using reporter constructs that contain specific truncations of the iron export protein ferroportin promoter or mutations in a newly identified MARE/ARE element. We show that iron export protein ferroportin is transcriptionally co-regulated with heme oxygenase 1 by heme, a degradation product of hemoglobin. The protoporphyrin ring of heme is sufficient to increase iron export protein ferroportin transcriptional activity while the iron released from the heme moiety controls iron export protein ferroportin translation involving the IRE in the 5'untranslated region. Transcription of iron export protein ferroportin is inhibited by Btb and Cnc Homology 1 and activated by Nuclear Factor Erythroid 2-like involving a MARE/ARE element located at position -7007/-7016 of the iron export protein ferroportin promoter. This finding suggests that heme controls a macrophage iron recycling regulon involving Btb and Cnc Homology 1 and Nuclear Factor Erythroid 2-like to assure the coordinated degradation of heme by heme oxygenase 1, iron storage and

  6. In Vitro Assembly of Catalase*

    Science.gov (United States)

    Baureder, Michael; Barane, Elisabeth; Hederstedt, Lars

    2014-01-01

    Most aerobic organisms contain catalase, which functions to decompose hydrogen peroxide. Typical catalases are structurally complex homo-tetrameric enzymes with one heme prosthetic group buried in each subunit. It is not known how catalase in the cell is assembled from its constituents. The bacterium Enterococcus faecalis cannot synthesize heme but can acquire it from the environment to form a cytoplasmic catalase. We have in E. faecalis monitored production of the enzyme polypeptide (KatA) depending on the availability of heme and used our findings to devise a procedure for the purification of preparative amounts of in vivo-synthesized apocatalase. We show that fully active catalase can be obtained in vitro by incubating isolated apoprotein with hemin. We have characterized features of the assembly process and describe a temperature-trapped hemylated intermediate of the enzyme maturation process. Hemylation of apocatalase does not require auxiliary cell components, but rapid assembly of active enzyme seemingly is assisted in the cell. Our findings provide insight about catalase assembly and offer new experimental possibilities for detailed studies of this process. PMID:25148685

  7. In vitro assembly of catalase.

    Science.gov (United States)

    Baureder, Michael; Barane, Elisabeth; Hederstedt, Lars

    2014-10-10

    Most aerobic organisms contain catalase, which functions to decompose hydrogen peroxide. Typical catalases are structurally complex homo-tetrameric enzymes with one heme prosthetic group buried in each subunit. It is not known how catalase in the cell is assembled from its constituents. The bacterium Enterococcus faecalis cannot synthesize heme but can acquire it from the environment to form a cytoplasmic catalase. We have in E. faecalis monitored production of the enzyme polypeptide (KatA) depending on the availability of heme and used our findings to devise a procedure for the purification of preparative amounts of in vivo-synthesized apocatalase. We show that fully active catalase can be obtained in vitro by incubating isolated apoprotein with hemin. We have characterized features of the assembly process and describe a temperature-trapped hemylated intermediate of the enzyme maturation process. Hemylation of apocatalase does not require auxiliary cell components, but rapid assembly of active enzyme seemingly is assisted in the cell. Our findings provide insight about catalase assembly and offer new experimental possibilities for detailed studies of this process. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Kidney injury and heme oxygenase-1

    Directory of Open Access Journals (Sweden)

    Hai-xing MAI

    2012-02-01

    Full Text Available     Heme oxygenase-1 (HO-1 is one of the main pathways to degrade heme in mammals, and the main degradation products are free iron (Fe2+, carbon monoxide (CO, and bilirubin. Heme plays an important role in promoting cell survival, circulation of intracellular substrates, and immune regulation. Previous studies suggest that HO-1 pathway is an important internal factor in determining the susceptibility and severity of acute kidney injury (AKI. The induction of HO-1 expression can attenuate the severity of renal ischemia-reperfusion injury (IRI, and the inhibition of HO-1 expression will aggravate IRI. The present article summarizes the latest advances in research abroad and at home on protective mechanism by which HO-1 prevents AKI to further deepen our understanding of the role of HO-1 in the treatment of AKI.   

  9. Molecular Simulations of Porphyrins and Heme Proteins

    Energy Technology Data Exchange (ETDEWEB)

    SHELNUTT,JOHN A.

    2000-01-18

    An overview of the use of classical mechanical molecular simulations of porphyrins, hydroporphyrins, and heme proteins is given. The topics cover molecular mechanics calculations of structures and conformer energies of porphyrins, energies of barriers for interconversion between stable conformers, molecular dynamics of porphyrins and heme proteins, and normal-coordinate structural analysis of experimental and calculated porphyrin structures. Molecular mechanics and dynamics are currently a fertile area of research on porphyrins. In the future, other computational methods such as Monte Carlo simulations, which have yet to be applied to porphyrins, will come into use and open new avenues of research into molecular simulations of porphyrins.

  10. Identification of the receptor scavenging hemopexin-heme complexes

    DEFF Research Database (Denmark)

    Hvidberg, Vibeke; Maniecki, Maciej B; Jacobsen, Christian

    2005-01-01

    Heme released from heme-binding proteins on internal hemorrhage, hemolysis, myolysis, or other cell damage is highly toxic due to oxidative and proinflammatory effects. Complex formation with hemopexin, the high-affinity heme-binding protein in plasma and cerebrospinal fluid, dampens these effects...

  11. Red meat and colon cancer : how dietary heme initiates hyperproliferation

    NARCIS (Netherlands)

    IJssennagger, N.

    2012-01-01

    Colorectal cancer is a leading cause of cancer deaths in Western countries. The risk to develop colorectal cancer is associated with the intake of red meat. Red meat contains the porphyrin pigment heme. Heme is an irritant for the colonic wall and it is previously shown that the addition of heme to

  12. Synthesis and Self-Assembly of Chiral Cylindrical Molecular Complexes: Functional Heterogeneous Liquid-Solid Materials Formed by Helicene Oligomers

    Directory of Open Access Journals (Sweden)

    Nozomi Saito

    2018-01-01

    Full Text Available Chiral cylindrical molecular complexes of homo- and hetero-double-helices derived from helicene oligomers self-assemble in solution, providing functional heterogeneous liquid-solid materials. Gels and liotropic liquid crystals are formed by fibril self-assembly in solution; molecular monolayers and fibril films are formed by self-assembly on solid surfaces; gels containing gold nanoparticles emit light; silica nanoparticles aggregate and adsorb double-helices. Notable dynamics appears during self-assembly, including multistep self-assembly, solid surface catalyzed double-helix formation, sigmoidal and stairwise kinetics, molecular recognition of nanoparticles, discontinuous self-assembly, materials clocking, chiral symmetry breaking and homogeneous-heterogeneous transitions. These phenomena are derived from strong intercomplex interactions of chiral cylindrical molecular complexes.

  13. Crystal Structures of Two Novel Dye-Decolorizing Peroxidases Reveal a Beta-Bar Fold With a Conserved Heme-Binding Motif

    Energy Technology Data Exchange (ETDEWEB)

    Zubieta, C.; Krishna, S.S.; Kapoor, M.; Kozbial, P.; McMullan, D.; Axelrod, H.L.; Miller, M.D.; Abdubek, P.; Ambing, E.; Astakhova, T.; Carlton, D.; Chiu, H.J.; Clayton, T.; Deller, M.C.; Duan, L.; Elsliger, M.A.; Feuerhelm, J.; Grzechnik, S.K.; Hale, J.; Hampton, E.; Han, G.W.; /JCSG /SLAC, SSRL /Burnham Inst. Med. Res. /UC, San Diego /Scripps Res. Inst. /Novartis Res. Found.

    2007-10-31

    BtDyP from Bacteroides thetaiotaomicron (strain VPI-5482) and TyrA from Shewanella oneidensis are dye-decolorizing peroxidases (DyPs), members of a new family of heme-dependent peroxidases recently identified in fungi and bacteria. Here, we report the crystal structures of BtDyP and TyrA at 1.6 and 2.7 Angstroms, respectively. BtDyP assembles into a hexamer, while TyrA assembles into a dimer; the dimerization interface is conserved between the two proteins. Each monomer exhibits a two-domain, {alpha}+{beta} ferredoxin-like fold. A site for heme binding was identified computationally, and modeling of a heme into the proposed active site allowed for identification of residues likely to be functionally important. Structural and sequence comparisons with other DyPs demonstrate a conservation of putative heme-binding residues, including an absolutely conserved histidine. Isothermal titration calorimetry experiments confirm heme binding, but with a stoichiometry of 0.3:1 (heme:protein).

  14. Synthesis of N-substituted pyrido[4,3-d]pyrimidines for the large-scale production of self-assembled rosettes and nanotubes.

    Science.gov (United States)

    Durmus, Asuman; Gunbas, Gorkem; Farmer, Steven C; Olmstead, Marilyn M; Mascal, Mark; Legese, Belete; Cho, Jae-Young; Beingessner, Rachel L; Yamazaki, Takeshi; Fenniri, Hicham

    2013-11-15

    N-substituted pyrido[4,3-d]pyrimidines are heterocycles which exhibit the asymmetric hydrogen bonding codes of both guanine and cytosine at 60° angles to each other, such that the molecules self-organize unambiguously into a cyclic hexamer, assembled via 18 intermolecular hydrogen bonds. The synthesis is straightforward and can be concluded in six steps from the commercially available malononitrile dimer. X-ray crystallographic analysis of the supermacrocyclic structure shows an undulating disk with a ca. 10.5 Å cavity, the centers of which do not overlap sufficiently to describe a channel in the solid state. However, AFM, SEM, and TEM imaging in solution reveals the formation of 1D nanostructures in agreement with their self-assembly into rosette supermacrocycles, which then stack linearly to form rosette nanotubes.

  15. Toward a modular multi-material nanoparticle synthesis and assembly strategy via bionanocombinatorics: bifunctional peptides for linking Au and Ag nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, Beverly D.; Palafox-Hernandez, J. Pablo; Li, Yue; Lim, Chang-Keun; Woehl, Taylor J.; Bedford, Nicholas M.; Seifert, Soenke; Swihart, Mark T.; Prasad, Paras N.; Walsh, Tiffany R.; Knecht, Marc R.

    2016-01-01

    Materials-binding peptides represent a unique avenue towards controlling the shape and size of nanoparticles (NPs) grown under aqueous conditions. Here, employing a bionanocombinatorics approach, two such materials-binding peptides were linked at either end of a photoswitchable spacer, forming a multi-domain materials-binding molecule to control the in situ synthesis and organization of Ag and Au NPs under ambient conditions. These multi-domain molecules retained the peptides’ ability to nucleate, grow, and stabilize Ag and Au NPs in aqueous media. Disordered co-assemblies of the two nanomaterials were observed by TEM imaging of dried samples after sequential growth of the two metals, and showed a clustering behavior that was not observed without both metals and the linker molecules. While TEM evidence indicated the formation of AuNP/AgNP assemblies upon drying, SAXS analysis indicated that no extended assemblies existed in solution, suggesting that sample drying plays an important role in facilitating NP clustering. Molecular simulations and experimental data revealed tunable materials-binding based upon the isomerization state of the photoswitchable unit and metal employed. This work is a first step in generating externally actuated biomolecules with specific material-binding properties that could be used as the building blocks to achieve multi-material switchable NP assemblies.

  16. Inhibition of Heme Peroxidases by Melamine

    Directory of Open Access Journals (Sweden)

    Pattaraporn Vanachayangkul

    2012-01-01

    Full Text Available In 2008 melamine-contaminated infant formula and dairy products in China led to over 50,000 hospitalizations of children due to renal injuries. In North America during 2007 and in Asia during 2004, melamine-contaminated pet food products resulted in numerous pet deaths due to renal failure. Animal studies have confirmed the potent renal toxicity of melamine combined with cyanuric acid. We showed previously that the solubility of melamine cyanurate is low at physiologic pH and ionic strength, provoking us to speculate how toxic levels of these compounds could be transported through the circulation without crystallizing until passing into the renal filtrate. We hypothesized that melamine might be sequestered by heme proteins, which could interfere with heme enzyme activity. Four heme peroxidase enzymes were selected for study: horseradish peroxidase (HRP, lactoperoxidase (LPO, and cyclooxygenase-1 and -2 (COX-1 and -2. Melamine exhibited noncompetitive inhibition of HRP (9.5±0.7mM, and LPO showed a mixed model of inhibition (14.5±4.7mM. The inhibition of HRP and LPO was confirmed using a chemiluminescent peroxidase assay. Melamine also exhibited COX-1 inhibition, but inhibition of COX-2 was not detected. Thus, our results demonstrate that melamine inhibits the activity of three heme peroxidases.

  17. An ultrasonic atomization assisted synthesis of self-assembled manganese oxide octahedral molecular sieve nanostructures and their application in catalysis and water treatment.

    Science.gov (United States)

    Iyer, Aparna; Kuo, Chung-Hao; Dharmarathna, Saminda; Luo, Zhu; Rathnayake, Dinithi; He, Junkai; Suib, Steven L

    2017-04-13

    Manganese oxides of octahedral molecular sieve (OMS-2) type have important applications in oxidation catalysis, adsorption, and as battery materials. The synthesis methods employed determine their morphology and textural properties which markedly affect their catalytic activity. In this work, a room temperature ultrasonic atomization assisted synthesis of OMS-2 type materials is demonstrated. This synthesis differs from previously reported methods in that it is a simple, no-heat application that leads to a striking morphological characteristic of uniformly sized OMS-2 fibers and their self-assembly into dense as well as hollow spheres. Control of various parameters in the ultrasonic atomization assisted synthesis led to OMS-2 with high surface areas (between 136-160 m(2) g(-1)) and mesoporosity. Catalytically these materials have higher activities in the oxidation of hydroxymethylfurfural (HMF), a bio-based chemical, (65% conversion of HMF vs. 14% with conventional OMS-2 catalyst) and a higher adsorption of lead from aqueous solutions (70% vs. 12% in conventional OMS-2 materials).

  18. Immunogenicity of heme complexes of peptides designed to mimic the heme environment of myoglobin and hemoglobin.

    Science.gov (United States)

    Atassi, M Zouhair; Childress, Catherine

    2005-01-01

    In the preceding paper (Protein J. 25, pages 37-49, 2005), we reported the preparation and oxygen-binding properties of peptides that form stable complexes with heme mimic. The design of the peptides was based on the natural environment of the heme group in myoglobin (Mb) and in the alpha- and beta-subunits of human adult hemoglobin (Hb). In the present work, the heme-peptides were each administered into mice, either as emulsions in adjuvant (both for injections and boosters) or intravenously as solutions in phosphate-buffered saline. Antibody (Ab) responses, monitored up to 14 weeks after the first administration, showed that when the heme-peptides were injected with adjuvant they stimulated Ab responses against the immunizing peptide, which in most cases bound to the correlate protein (Mb or Hb). However these heme-peptides were non-immunogenic when administered in PBS intravenously. It is concluded that heme-peptides:(a) would not trigger an adverse immune response if used for transfusion purposes.

  19. Inactivation of Dengue and Yellow Fever viruses by heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX.

    Science.gov (United States)

    Assunção-Miranda, I; Cruz-Oliveira, C; Neris, R L S; Figueiredo, C M; Pereira, L P S; Rodrigues, D; Araujo, D F F; Da Poian, A T; Bozza, M T

    2016-03-01

    To investigate the effect of heme, cobalt-protoporphyrin IX and tin-protoporphyrin IX (CoPPIX and SnPPIX), macrocyclic structures composed by a tetrapyrrole ring with a central metallic ion, on Dengue Virus (DENV) and Yellow Fever Virus (YFV) infection. Treatment of HepG2 cells with heme, CoPPIX and SnPPIX after DENV infection reduced infectious particles without affecting viral RNA contents in infected cells. The reduction of viral load occurs only with the direct contact of DENV with porphyrins, suggesting a direct effect on viral particles. Previously incubation of DENV and YFV with heme, CoPPIX and SnPPIX resulted in viral particles inactivation in a dose-dependent manner. Biliverdin, a noncyclical porphyrin, was unable to inactivate the viruses tested. Infection of HepG2 cells with porphyrin-pretreated DENV2 results in a reduced or abolished viral protein synthesis, RNA replication and cell death. Treatment of HepG2 or THP-1 cell lineage with heme or CoPPIX after DENV infection with a very low MOI resulted in a decreased DENV replication and protection from death. Heme, CoPPIX and SnPPIX possess a marked ability to inactivate DENV and YFV, impairing its ability to infect and induce cytopathic effects on target cells. These results open the possibility of therapeutic application of porphyrins or their use as models to design new antiviral drugs against DENV and YFV. © 2016 The Society for Applied Microbiology.

  20. From precursor powders to CsPbX{sub 3} perovskite nanowires. One-pot synthesis, growth mechanism, and oriented self-assembly

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Yu; Bohn, Bernhard J.; Urban, Alexander S.; Polavarapu, Lakshminarayana; Feldmann, Jochen [Chair for Photonics and Optoelectronics, Department of Physics and Center for NanoScience (CeNS), Muenchen Univ. (Germany); Nanosystems Initiative Munich (NIM), Munich (Germany); Bladt, Eva; Bals, Sara [EMAT, University of Antwerp (Belgium); Wang, Kun; Mueller-Buschbaum, Peter [Department of Physics, Chair for Functional Materials, Technische Univ. Muenchen (Germany)

    2017-10-23

    The colloidal synthesis and assembly of semiconductor nanowires continues to attract a great deal of interest. Herein, we describe the single-step ligand-mediated synthesis of single-crystalline CsPbBr{sub 3} perovskite nanowires (NWs) directly from the precursor powders. Studies of the reaction process and the morphological evolution revealed that the initially formed CsPbBr{sub 3} nanocubes are transformed into NWs through an oriented-attachment mechanism. The optical properties of the NWs can be tuned across the entire visible range by varying the halide (Cl, Br, and I) composition through subsequent halide ion exchange. Single-particle studies showed that these NWs exhibit strongly polarized emission with a polarization anisotropy of 0.36. More importantly, the NWs can self-assemble in a quasi-oriented fashion at an air/liquid interface. This process should also be easily applicable to perovskite nanocrystals of different morphologies for their integration into nanoscale optoelectronic devices. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Acetonitrile mediated facile synthesis and self-assembly of silver vanadate nanowires into 3D spongy-like structure as a cathode material for lithium ion battery

    Science.gov (United States)

    Klockner, W.; Yadav, R. M.; Yao, J.; Lei, S.; Aliyan, A.; Wu, J.; Martí, A. A.; Vajtai, R.; Ajayan, P. M.; Denardin, J. C.; Serafini, D.; Melo, F.; Singh, D. P.

    2017-08-01

    We report the facile, one-step acetonitrile-mediated synthesis and self-assembly of β-AgVO3 nanowires into three-dimensional (3D) porous spongy-like hydrogel ( 4 cm diameter) as cathode material for lithium ion battery of high performance and long-term stability. 3D structures made with superlong, very thin, and monoclinic β-AgVO3 nanowires exhibit high specific discharge capacities of 165 mAh g-1 in the first cycle and 100 mAh g-1 at the 50th cycle, with a cyclic capacity retention of 53% at a current density of 50 mA g-1. 3D structures are synthesized by reaction between ammonium vanadate and silver nitrate solution containing 5 mL of acetonitrile followed by a hydrothermal treatment at 200 °C for 12 h. Acetonitrile (used here for the first time in the silver vanadate synthesis) plays an important role in the self-assembly of the silver vanadate nanowires. A tentative growth mechanism for the 3D structure and lithium ions intercalation into β-AgVO3 nanowires has been discussed and described.

  2. Convenient synthesis and application of versatile nucleic acid lipid membrane anchors in the assembly and fusion of liposomes

    DEFF Research Database (Denmark)

    Ries, Oliver; Löffler, Philipp M. G.; Vogel, Stefan

    2015-01-01

    Hydrophobic moieties like lipid membrane anchors are highly demanded modifications for nucleic acid oligomers. Membrane-anchor modified oligonucleotides are applicable in biomedicine leading to new delivery strategies as well as in biophysical investigations towards assembly and fusion of liposom...

  3. Facile synthesis of a peptidic Au(i)-metalloamphiphile and its self-assembly into luminescent micelles in water

    NARCIS (Netherlands)

    Kemper, Benedict; Hristova, Yana R; Tacke, Sebastian; Stegemann, Linda; van Bezouwen, Laura S; Stuart, Marc C A; Klingauf, Jürgen; Strassert, Cristian A; Besenius, Pol

    2014-01-01

    We report a short synthetic route for the preparation of a peptidic Au(i)-metalloamphiphile which, in buffered environments of physiological ionic strength, self-assembles into luminescent micellar nanostructures of 14 nm in diameter.

  4. Synthesis, morphological control, dispersion stabilization and in situ self-assembly of noble metal nanostructures using multidentate resorcinarene surfactants

    Science.gov (United States)

    Han, Sangbum

    In this dissertation, a detailed investigation on the influence of various macrocyclic resorcinarene surfactants in determining the morphology, stabilization and self-assembly of mono- and bi- metallic nanoparticles was undertaken. (Abstract shortened by ProQuest.).

  5. Microtubule assembly is required for the formation of the pronuclei, nuclear lamin acquisition, and DNA synthesis during mouse, but not sea urchin, fertilization.

    Science.gov (United States)

    Schatten, H; Simerly, C; Maul, G; Schatten, G

    1989-07-01

    Microtubule assembly is required for the formation of the male and female pronuclei during mouse, but not sea urchin, fertilization. In mouse oocytes, 50 microM colcemid prevents the decondensation of the maternal meiotic chromosomes and of the incorporated sperm nucleus during in vitro fertilization. Nuclear lamins do not associate with either of the parental chromatin sets although peripherin, the Pl nuclear peripheral antigen, appears on both. DNA synthesis does not occur in these fertilized, colcemid-arrested oocytes. This effect is limited to the first hours after ovulation, since colcemid added 4-6 hours later no longer prevents pronuclear development, lamin acquisition, or DNA synthesis. Neither microtubule stabilization with 10 microM taxol nor microfilament inhibition with 10 microM cytochalasin D or 2.2 micrograms/ml latrunculin A prevent these pronuclear events; these drugs will inhibit the apposition of the pronuclei at the egg center. In sea urchin eggs, colcemid or griseofulvin treatment does not result in the same effect and the male pronucleus forms with the attendant accumulation of the nuclear lamins. The differences in the requirement for microtubule assembly during pronucleus formation may be related to the cell cycle: In mice the sperm enters a meiotic cytoplasm, whereas in sea urchin eggs it enters an interphase cytoplasm. Refertilization of mitotic sea urchin eggs was performed to test the possibility that this phenomenon is related to whether the sperm enters a meiotic/mitotic cytoplasm or one at interphase; during refertilization at first mitosis, the incorporated sperm nucleus is unable to decondense and acquire lamins. These results indicate a requirement for microtubule assembly for the progression from meiosis to first interphase during mouse fertilization and suggest that the cytoskeleton is required for changes in nuclear architecture necessary during fertilization and the cell cycle.

  6. Synthesis and self-assembly of four-armed star copolymer based on poly(ethylene brassylate) hydrophobic block as potential drug carries

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jiucun, E-mail: chenjc@swu.edu.cn; Li, Junzhi; Liu, Jianhua; Weng, Bo; Xu, Liqun [Southwest University, Institute for Clean Energy & Advanced Materials (China)

    2016-05-15

    A novel well-defined four-armed star poly(ethylene brassylate)-b-poly(poly(ethylene glycol)methyl ether methacrylate) (s-PEB-b-P(PEGMA)) was synthesized and self-assembled via the combination of ring-opening polymerization and reversible addition-fragmentation chain transfer polymerization (RAFT) in this work. It proceeded firstly with the synthesis of hydrophobic four-armed star homopolymer of ethylene brassylate (EB) via ROP with organic catalyst, followed by the esterification reaction of s-PEB with chain transfer agent. Afterward, RAFT polymerization of PEGMA monomer was initialed using PEB-based macro-RAFT agent, resulting in the target amphiphilic four-armed star copolymer. The obtained s-PEB-b-P(PEGMA) can assemble into micelles with PEB segments as core and P(PEGMA) segments as shell in aqueous solution. The self-assembly behavior was studied by dynamic light scattering and transmission electron microscope. The micelles of s-PEB-b-P(PEGMA) exhibited higher loading capacity of the anticancer drug doxorubicin (DOX). The investigation of DOX release from the micelles demonstrated that the release rate of the hydrophobic drug could be effectively controlled.Graphical Abstract.

  7. Self-Assembled Structures of PMAA-PMMA Block Copolymers : Synthesis, Characterization, and Self-Consistent Field Computations

    NARCIS (Netherlands)

    Li, Feng; Schellekens, Mike; de Bont, Jens; Peters, Ron; Overbeek, Ad; Leermakers, Frans A. M.; Tuinier, Remco

    2015-01-01

    Block copolymers composed of methacrylic acid (MAA) and methyl methacrylate (MMA) blocks are interesting candidates for replacing surfactants in emulsion polymerization methods. Here the synthesis and experimental characterization of well-defined PMAA-PMMA block copolymers made via RAFT

  8. Self-assembled structures of PMAA-PMMA block copolymers: Synthesis, characterization, and self-consistent field computations

    NARCIS (Netherlands)

    Li, F.; Schellekens, J.; Bont, de J.A.M.; Peters, R.; Overbeek, A.; Leermakers, F.A.M.; Tuinier, R.

    2015-01-01

    Block copolymers composed of methacrylic acid (MAA) and methyl methacrylate (MMA) blocks are interesting candidates for replacing surfactants in emulsion polymerization methods. Here the synthesis and experimental characterization of well-defined PMAA–PMMA block copolymers made via RAFT

  9. Green-fuel-mediated synthesis of self-assembled NiO nano-sticks for dual applications—photocatalytic activity on Rose Bengal dye and antimicrobial action on bacterial strains

    Science.gov (United States)

    Iyyappa Rajan, P.; Vijaya, J. Judith; Jesudoss, S. K.; Kaviyarasu, K.; Kennedy, L. John; Jothiramalingam, R.; Al-Lohedan, Hamad A.; Vaali-Mohammed, Mansoor-Ali

    2017-08-01

    With aim of promoting the employability of green fuels in the synthesis of nano-scaled materials with new kinds of morphologies for multiple applications, successful synthesis of self-assembled NiO nano-sticks was achieved through a 100% green-fuel-mediated hot-plate combustion reaction. The synthesized NiO nano-sticks show excellent photocatalytic activity on Rose Bengal dye and superior antibacterial potential towards both Gram-positive and Gram-negative bacteria.

  10. Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Directory of Open Access Journals (Sweden)

    Karina E. J. Tripodi

    2011-01-01

    Full Text Available Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi, leishmaniasis (Leishmania spp., and African trypanosomiasis (Trypanosoma brucei. Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents.

  11. Mimicking Heme Enzymes in the Solid State: Metal-Organic Materials with Selectively Encapsulated Heme

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M [USF

    2011-06-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal–organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a “ship-in-a-bottle” fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  12. Mimicking heme enzymes in the solid state: metal-organic materials with selectively encapsulated heme.

    Science.gov (United States)

    Larsen, Randy W; Wojtas, Lukasz; Perman, Jason; Musselman, Ronald L; Zaworotko, Michael J; Vetromile, Carissa M

    2011-07-13

    To carry out essential life processes, nature has had to evolve heme enzymes capable of synthesizing and manipulating complex molecules. These proteins perform a plethora of chemical reactions utilizing a single iron porphyrin active site embedded within an evolutionarily designed protein pocket. We herein report the first class of metal-organic materials (MOMs) that mimic heme enzymes in terms of both structure and reactivity. The MOMzyme-1 class is based upon a prototypal MOM, HKUST-1, into which catalytically active metalloporphyrins are selectively encapsulated in a "ship-in-a-bottle" fashion within one of the three nanoscale cages that exist in HKUST-1. MOMs offer unparalleled levels of permanent porosity and their modular nature affords enormous diversity of structures and properties. The MOMzyme-1 class could therefore represent a new paradigm for heme biomimetic catalysis since it combines the activity of a homogeneous catalyst with the stability and recyclability of heterogeneous catalytic systems within a single material.

  13. Co-Assembled Supported Catalysts: Synthesis of Nano-Structured Supported Catalysts with Hierarchic Pores through Combined Flow and Radiation Induced Co-Assembled Nano-Reactors

    Directory of Open Access Journals (Sweden)

    Galip Akay

    2016-05-01

    Full Text Available A novel generic method of silica supported catalyst system generation from a fluid state is presented. The technique is based on the combined flow and radiation (such as microwave, thermal or UV induced co-assembly of the support and catalyst precursors forming nano-reactors, followed by catalyst precursor decomposition. The transformation from the precursor to supported catalyst oxide state can be controlled from a few seconds to several minutes. The resulting nano-structured micro-porous silica supported catalyst system has a surface area approaching 300 m2/g and X-ray Diffraction (XRD-based catalyst size controlled in the range of 1–10 nm in which the catalyst structure appears as lamellar sheets sandwiched between the catalyst support. These catalyst characteristics are dependent primarily on the processing history as well as the catalyst (Fe, Co and Ni studied when the catalyst/support molar ratio is typically 0.1–2. In addition, Ca, Mn and Cu were used as co-catalysts with Fe and Co in the evaluation of the mechanism of catalyst generation. Based on extensive XRD, Scanning Electron Microscopy (SEM and Transmission Electron Microscopy (TEM studies, the micro- and nano-structure of the catalyst system were evaluated. It was found that the catalyst and silica support form extensive 0.6–2 nm thick lamellar sheets of 10–100 nm planar dimensions. In these lamellae, the alternate silica support and catalyst layer appear in the form of a bar-code structure. When these lamellae structures pack, they form the walls of a micro-porous catalyst system which typically has a density of 0.2 g/cm3. A tentative mechanism of catalyst nano-structure formation is provided based on the rheology and fluid mechanics of the catalyst/support precursor fluid as well as co-assembly nano-reactor formation during processing. In order to achieve these structures and characteristics, catalyst support must be in the form of silane coated silica nano

  14. Synthesis and electrochemical characterization of myoglobin-antibody protein immobilized self-assembled gold nanoparticles on ITO-glass plate

    Energy Technology Data Exchange (ETDEWEB)

    Rajesh, E-mail: rajesh_csir@yahoo.com [Polymer and Soft Material Section, National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Sharma, Vikash; Mishra, Sujeet K.; Biradar, Ashok M. [Polymer and Soft Material Section, National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer The Mb-Ab was covalently bonded to carboxyl groups of the mixed MUA and MPA over self-assembled GNPs. Black-Right-Pointing-Pointer This assembly on ITO-glass plate was used as an impedimetric immunosensor for myoglobin detection. Black-Right-Pointing-Pointer High loading of Mb-Ab, on the GNPs results in a wide range of Mb-Ag detection from 0.01 {mu}g to 1.65 {mu}g mL{sup -1} Black-Right-Pointing-Pointer The simple method and wide range of Mb-Ag detection makes this advantageous over other methods. - Abstract: We report a protein immobilized self-assembled monolayer (SAM) of gold nanoparticles (GNPs) on indium-tin-oxide (ITO) coated glass plate. The protein-antibody, Mb-Ab, was covalently immobilized over the self-assembly of GNPs through a mixed SAM of 11-mercapto undecanoic acid (MUA) and 3-mercapto propionic acid (MPA) via carbodiimide coupling reaction using N-(3-dimethylaminopropyl)-N Prime -ethyl carbodiimide (EDC) and N-hydroxy succinimide (NHS). The whole assembly was constructed on 0.25 cm{sup 2} area of ITO-glass plate (Mb-Ab/MUA-MPA/GNPs/APTES/ITO-glass) and an impedimetric study was carried out for its application in myoglobin detection. This prototype assembly was characterized by scanning electron microscopy, atomic force microscopy and electrochemical techniques. The modified electrode showed an increased electron-transfer resistance on coupling with protein antigen, Mb-Ag, in the presence of a redox probe [Fe(CN){sub 6}]{sup 3-/4-}. Its exhibits an electrochemical impedance response to protein myoglobin-antigen, Mb-Ag, concentration in a linear range from 0.01 {mu}g to 1.65 {mu}g mL{sup -1} with a lowest detection limit of 1.4 ng mL{sup -1}.

  15. Holo- And Apo- Structures of Bacterial Periplasmic Heme Binding Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Ho, W.W.; Li, H.; Eakanunkul, S.; Tong, Y.; Wilks, A.; Guo, M.; Poulos, T.L.

    2009-06-01

    An essential component of heme transport in Gram-negative bacterial pathogens is the periplasmic protein that shuttles heme between outer and inner membranes. We have solved the first crystal structures of two such proteins, ShuT from Shigella dysenteriae and PhuT from Pseudomonas aeruginosa. Both share a common architecture typical of Class III periplasmic binding proteins. The heme binds in a narrow cleft between the N- and C-terminal binding domains and is coordinated by a Tyr residue. A comparison of the heme-free (apo) and -bound (holo) structures indicates little change in structure other than minor alterations in the heme pocket and movement of the Tyr heme ligand from an 'in' position where it can coordinate the heme iron to an 'out' orientation where it points away from the heme pocket. The detailed architecture of the heme pocket is quite different in ShuT and PhuT. Although Arg{sup 228} in PhuT H-bonds with a heme propionate, in ShuT a peptide loop partially takes up the space occupied by Arg{sup 228}, and there is no Lys or Arg H-bonding with the heme propionates. A comparison of PhuT/ShuT with the vitamin B{sub 12}-binding protein BtuF and the hydroxamic-type siderophore-binding protein FhuD, the only two other structurally characterized Class III periplasmic binding proteins, demonstrates that PhuT/ShuT more closely resembles BtuF, which reflects the closer similarity in ligands, heme and B{sub 12}, compared with ligands for FhuD, a peptide siderophore.

  16. Rational synthesis of low-polydispersity block copolymer vesicles in concentrated solution via polymerization-induced self-assembly

    NARCIS (Netherlands)

    Gonzato, Carlo; Semsarilar, Mona; Jones, Elizabeth R.; Li, Feng; Krooshof, Gerard J P; Wyman, Paul; Mykhaylyk, Oleksandr O.; Tuinier, Remco|info:eu-repo/dai/nl/183514262; Armes, Steven P.

    2014-01-01

    Block copolymer self-assembly is normally conducted via post-polymerization processing at high dilution. In the case of block copolymer vesicles (or "polymersomes"), this approach normally leads to relatively broad size distributions, which is problematic for many potential applications. Herein we

  17. Sulfonated amphiphilic block copolymers : synthesis, self-assembly in water, and application as stabilizer in emulsion polymerization

    Science.gov (United States)

    Jiguang Zhang; Matthew R. Dubay; Carl J. Houtman; Steven J. Severtson

    2009-01-01

    Described is the synthesis of diblock copolymers generated via sequential atom transfer radical polymerization (ATRP) of poly(n-butyl acrylate) (PnBA) followed by chain augmentation with either sulfonated poly(2-hydroxyethyl methacrylate) (PHEMA) or poly(2-hydroxyethyl acrylate) (PHEA) blocks. ATRP of PHEMA or PHEA from PnBA macroinitiator was conducted in acetone/...

  18. Protein oxidation mediated by heme-induced active site conversion specific for heme-regulated transcription factor, iron response regulator.

    Science.gov (United States)

    Kitatsuji, Chihiro; Izumi, Kozue; Nambu, Shusuke; Kurogochi, Masaki; Uchida, Takeshi; Nishimura, Shin-ichiro; Iwai, Kazuhiro; O'Brian, Mark R; Ikeda-Saito, Masao; Ishimori, Koichiro

    2016-01-05

    The Bradyrhizobium japonicum transcriptional regulator Irr (iron response regulator) is a key regulator of the iron homeostasis, which is degraded in response to heme binding via a mechanism that involves oxidative modification of the protein. Here, we show that heme-bound Irr activates O2 to form highly reactive oxygen species (ROS) with the "active site conversion" from heme iron to non-heme iron to degrade itself. In the presence of heme and reductant, the ROS scavenging experiments show that Irr generates H2O2 from O2 as found for other hemoproteins, but H2O2 is less effective in oxidizing the peptide, and further activation of H2O2 is suggested. Interestingly, we find a time-dependent decrease of the intensity of the Soret band and appearance of the characteristic EPR signal at g = 4.3 during the oxidation, showing the heme degradation and the successive formation of a non-heme iron site. Together with the mutational studies, we here propose a novel "two-step self-oxidative modification" mechanism, during which O2 is activated to form H2O2 at the heme regulatory motif (HRM) site and the generated H2O2 is further converted into more reactive species such as ·OH at the non-heme iron site in the His-cluster region formed by the active site conversion.

  19. Heme Recognition By a Staphylococcus Aureus IsdE

    Energy Technology Data Exchange (ETDEWEB)

    Grigg, J.C.; Vermeiren, C.L.; Heinrichs, D.E.; Murphy, M.E.P.

    2009-06-03

    Staphylococcus aureus is a Gram-positive bacterial pathogen and a leading cause of hospital acquired infections. Because the free iron concentration in the human body is too low to support growth, S. aureus must acquire iron from host sources. Heme iron is the most prevalent iron reservoir in the human body and a predominant source of iron for S. aureus. The iron-regulated surface determinant (Isd) system removes heme from host heme proteins and transfers it to IsdE, the cognate substrate-binding lipoprotein of an ATP-binding cassette transporter, for import and subsequent degradation. Herein, we report the crystal structure of the soluble portion of the IsdE lipoprotein in complex with heme. The structure reveals a bi-lobed topology formed by an N- and C-terminal domain bridged by a single {alpha}-helix. The structure places IsdE as a member of the helical backbone metal receptor superfamily. A six-coordinate heme molecule is bound in the groove established at the domain interface, and the heme iron is coordinated in a novel fashion for heme transporters by Met{sup 78} and His{sup 229}. Both heme propionate groups are secured by H-bonds to IsdE main chain and side chain groups. Of these residues, His{sup 299} is essential for IsdE-mediated heme uptake by S. aureus when growth on heme as a sole iron source is measured. Multiple sequence alignments of homologues from several other Gram-positive bacteria, including the human pathogens pyogenes, Bacillus anthracis, and Listeria monocytogenes, suggest that these other systems function equivalently to S. aureus IsdE with respect to heme binding and transport.

  20. Relationship between natural and heme-mediated antibody polyreactivity

    Energy Technology Data Exchange (ETDEWEB)

    Hadzhieva, Maya; Vassilev, Tchavdar [Stephan Angelov Institute of Microbiology, Bulgarian Academy of Sciences, Sofia 1113 (Bulgaria); Bayry, Jagadeesh; Kaveri, Srinivas; Lacroix-Desmazes, Sébastien [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France); Dimitrov, Jordan D., E-mail: jordan.dimitrov@crc.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR-S 1138, Centre de Recherche des Cordeliers, F-75006 Paris (France); INSERM, UMR-S 1138, F-75006 Paris (France); Université Paris Descartes, Sorbonne Paris Cité, UMR-S 1138, F-75006 Paris (France)

    2016-03-25

    Polyreactive antibodies represent a considerable fraction of the immune repertoires. Some antibodies acquire polyreactivity post-translationally after interaction with various redox-active substances, including heme. Recently we have demonstrated that heme binding to a naturally polyreactive antibody (SPE7) results in a considerable broadening of the repertoire of recognized antigens. A question remains whether the presence of certain level of natural polyreactivity of antibodies is a prerequisite for heme-induced further extension of antigen binding potential. Here we used a second monoclonal antibody (Hg32) with unknown specificity and absence of intrinsic polyreactivity as a model to study the potential of heme to induce polyreactivity of antibodies. We demonstrated that exposure to heme greatly extends the antigen binding potential of Hg32, suggesting that the intrinsic binding promiscuity is not a prerequisite for the induction of polyreactivity by heme. In addition we compared the kinetics and thermodynamics of the interaction of heme-exposed antibodies with a panel of unrelated antigens. These analyses revealed that the two heme-sensitive antibodies adopt different mechanisms of binding to the same set of antigens. This study contributes to understanding the phenomenon of induced antibody polyreactivity. The data may also be of importance for understanding of physiological and pathological roles of polyreactive antibodies. - Highlights: • Exposure of certain monoclonal IgE antibodies to heme results in gain of antigen binding polyreactivity. • Natural polyreactivity of antibodies is dispensable for acquisition of polyreactivity through interaction with heme. • Heme-induced monoclonal IgE antibodies differ in their thermodynamic mechanisms of antigen recognition.

  1. Ethylene Glycol Intercalated Cobalt/Nickel Layered Double Hydroxide Nanosheet Assemblies with Ultrahigh Specific Capacitance: Structural Design and Green Synthesis for Advanced Electrochemical Storage.

    Science.gov (United States)

    Wang, Changhui; Zhang, Xiong; Xu, Zhongtang; Sun, Xianzhong; Ma, Yanwei

    2015-09-09

    Because of the rapid depletion of fossil fuels and severe environmental pollution, more advanced energy-storage systems need to possess dramatically improved performance and be produced on a large scale with high efficiency while maintaining low-enough costs to ensure the higher and wider requirements. A facile, energy-saving process was successfully adopted for the synthesis of ethylene glycol intercalated cobalt/nickel layered double hydroxide (EG-Co/Ni LDH) nanosheet assembly variants with higher interlayer distance and tunable transitional-metal composition. At an optimized starting Co/Ni ratio of 1, the nanosheet assemblies display a three-dimensional, spongelike network, affording a high specific surface area with advantageous mesopore structure in 2-5 nm containing large numbers of about 1.2 nm micropores for promoting electrochemical reaction. An unprecedented electrochemical performance was achieved, with a specific capacitance of 4160 F g(-1) at a discharge current density of 1 A g(-1) and of 1313 F g(-1) even at 50 A g(-1), as well as excellent cycling ability. The design and optimization of EG-Co/Ni LDH nanosheets in compositions, structures, and performances, in conjunction with the easy and relatively "green" synthetic process, will play a pivotal role in meeting the needs of large-scale manufacture and widespread application for advanced electrochemical storage.

  2. On-Electrode Synthesis of Shape-Controlled Hierarchical Flower-Like Gold Nanostructures for Efficient Interfacial DNA Assembly and Sensitive Electrochemical Sensing of MicroRNA.

    Science.gov (United States)

    Su, Shao; Wu, Yan; Zhu, Dan; Chao, Jie; Liu, Xingfen; Wan, Ying; Su, Yan; Zuo, Xiaolei; Fan, Chunhai; Wang, Lianhui

    2016-07-01

    The performance for biomolecular detection is closely associated with the interfacial structure of a biosensor, which profoundly affects both thermodynamics and kinetics of the assembly, binding and signal transduction of biomolecules. Herein, it is reported on a one-step and template-free on-electrode synthesis method for making shape-controlled gold nanostructures on indium tin oxide substrates, which provide an electrochemical sensing platform for ultrasensitive detection of nucleic acids. Thus-prepared hierarchical flower-like gold nanostructures (HFGNs) possess large surface area that can readily accommodate the assembly of DNA probes for subsequent hybridization detection. It is found that the sensitivity for electrochemical DNA sensing is critically dependent on the morphology of HFGNs. By using this new strategy, a highly sensitive electrochemical biosensor is developed for label-free detection of microRNA-21 (miRNA-21), a biomarker for lung cancers. Importantly, it is demonstrated that this biosensor can be employed to measure the miRNA-21 expression level from human lung cancer cell (A549) lysates and worked well in 100% serum, suggesting its potential for applications in clinical diagnosis and a wide range of bioanalysis. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Synthesis, anion exchange, and delamination of Co-Al layered double hydroxide: assembly of the exfoliated nanosheet/polyanion composite films and magneto-optical studies.

    Science.gov (United States)

    Liu, Zhaoping; Ma, Renzhi; Osada, Minoru; Iyi, Nobuo; Ebina, Yasuo; Takada, Kazunori; Sasaki, Takayoshi

    2006-04-12

    This paper describes a systematic study on the synthesis, anion exchange, and delamination of Co-Al layered double hydroxide (LDH), with the aim of achieving fabrication and clarifying the properties of LDH nanosheet/polyanion composite films. Co-Al-CO3 LDH hexagonal platelets of 4 mum in lateral size were synthesized by the urea method under optimized reaction conditions. The as-prepared CO3(2-)-LDH was converted to Cl- -LDH by treating with a NaCl-HCl mixed solution, retaining its high crystallinity and hexagonal platelike morphology. LDHs intercalated with a variety of anions (such as NO3-, ClO4-, acetate, lactate, dodecyl sulfate, and oleate) were further prepared from Cl- -LDH via an anion-exchange process employing corresponding salts. Exchanged products in various anion forms were found to show different delamination behaviors in formamide. Among them, best results were observed for NO3- -LDH in terms of the exfoliating degree and the quality of the exfoliated nanosheets. The delamination gave a pink transparent suspension containing well-defined nanosheets with lateral sizes of up to 2 microm. The resulting nanosheets were assembled layer-by-layer with an anionic polymer, poly(sodium styrene 4-sulfonate) (PSS), onto quartz glass substrates to produce composite films. Magnetic circular dichroism (MCD) measurements revealed that the assembled multilayer films exhibited an interesting magneto-optical response.

  4. ex vivo DNA assembly

    Directory of Open Access Journals (Sweden)

    Adam B Fisher

    2013-10-01

    Full Text Available Even with decreasing DNA synthesis costs there remains a need for inexpensive, rapid and reliable methods for assembling synthetic DNA into larger constructs or combinatorial libraries. Advances in cloning techniques have resulted in powerful in vitro and in vivo assembly of DNA. However, monetary and time costs have limited these approaches. Here, we report an ex vivo DNA assembly method that uses cellular lysates derived from a commonly used laboratory strain of Escherichia coli for joining double-stranded DNA with short end homologies embedded within inexpensive primers. This method concurrently shortens the time and decreases costs associated with current DNA assembly methods.

  5. Heme oxygenase-1, oxidation, inflammation and atherosclerosis

    Directory of Open Access Journals (Sweden)

    Jesus A Araujo

    2012-07-01

    Full Text Available Atherosclerosis is an inflammatory process of the vascular wall characterized by the infiltration of lipids and inflammatory cells. Oxidative modifications of infiltrating low density lipoproteins and induction of oxidative stress play a major role in lipid retention in the vascular wall, uptake by macrophages and generation of foam cells, a hallmark of this disorder. The vasculature has a plethora of protective resources against oxidation and inflammation, many of them regulated by the Nrf2 transcription factor. Heme oxygenase-1 (HO-1 is a Nrf2-regulated gene that plays a critical role in the prevention of vascular inflammation. It is the inducible isoform of heme oxygenase, responsible for the oxidative cleavage of heme groups leading to the generation of biliverdin, carbon monoxide and release of ferrous iron. HO-1 has important antioxidant, antiinflammatory, antiapoptotic, antiproliferative and immunomodulatory effects in vascular cells, most of which play a significant role in the protection against atherogenesis. HO-1 may also be an important feature in macrophage differentiation and polarization to certain subtypes. The biological effects of HO-1 are largely attributable to its enzymatic activity, which can be conceived as a system with three arms of action, corresponding to its three enzymatic byproducts. HO-1 mediated vascular protection may be due to a combination of systemic and vascular local effects. It is usually expressed at low levels but can be highly upregulated in the presence of several proatherogenic stimuli. The HO-1 system is amenable for use in the development of new therapies, some of them currently under experimental and clinical trials. Interestingly, in contrast to the HO-1 antiatherogenic actions, the expression of its transcriptional regulator Nrf2 leads to proatherogenic effects instead. This article reviews the evidence that supports the antiatherogenic role of HO-1, potential pathways and mechanisms mediating

  6. Synthesis of Janus-like gold nanoparticles with hydrophilic/hydrophobic faces by surface ligand exchange and their self-assemblies in water.

    Science.gov (United States)

    Iida, Ryo; Kawamura, Hitoshi; Niikura, Kenichi; Kimura, Takashi; Sekiguchi, Shota; Joti, Yasumasa; Bessho, Yoshitaka; Mitomo, Hideyuki; Nishino, Yoshinori; Ijiro, Kuniharu

    2015-04-14

    This study aims at the synthesis of Janus gold nanoparticles (Janus GNPs) with hydrophilic/hydrophobic faces by a simple ligand exchange reaction in an homogeneous system and at the elucidation of the self-assembled structures of the Janus GNPs in water. As hydrophilic surface ligands, we synthesized hexaethylene glycol (E6)-terminated thiolate ligands with C3, C7, or C11 alkyl chains, referred to as E6C3, E6C7, and E6C11, respectively. As a hydrophobic ligand, a butyl-headed thiolate ligand C4-E6C11, in which a C4 alkyl was introduced on the E6C11 terminus, was synthesized. The degree of segregation between the two ligands on the GNPs (5 nm in diameter) was examined by matrix-assisted laser desorption/ionization time-of fright mass spectrometry (MALDI-TOF MS) analysis. We found that the choice of immobilization methods, one-step or two-step addition of the two ligands to the GNP solution, crucially affects the degree of segregation. The two-step addition of a hydrophilic ligand (E6C3) followed by a hydrophobic ligand (C4-E6C11) produced a large degree of segregation on the GNPs, providing Janus-like GNPs. When dispersed in water, these Janus-like GNPs formed assemblies of ∼160 nm in diameter, whereas Domain GNPs, in which the two ligands formed partial domains on the surface, were precipitated even when the molar ratio of the hydrophilic ligand and the hydrophobic ligand on the surface of the NPs was almost 1:1. The assembled structure of the Janus-like GNPs in water was directly observed by pulsed coherent X-ray solution scattering using an X-ray free-electron laser, revealing irregular spherical structures with uneven surfaces.

  7. Synthesis and Study of Molecular Assemblies Formed by 4,6-O-(2-Phenylethylidene)-Functionalized d-Glucosamine Derivatives.

    Science.gov (United States)

    Chen, Anji; Adhikari, Surya B; Mays, Kellie; Wang, Guijun

    2017-08-15

    Low-molecular-weight gelators are interesting small molecules with potential applications as advanced materials. Carbohydrate-based small molecular gelators are especially useful because they are derived from renewable resources and are more likely to be biocompatible and biodegradable. Various 4,6-benzylidene acetal protected α-methyl 2-d-glucosamine derivatives have been found to be effective low-molecular-weight gelators. To understand the influence of the 4,6-benzylidene acetal functional group toward molecular self-assembly and to obtain effective molecular gelators, we synthesized and analyzed a new series of d-glucosamine derivatives in which the phenyl group of the acetal is replaced by a benzyl group. The homologation of the acetal protection from aromatic to aliphatic functional groups allows us to probe the effect of increasing structural flexibility on molecular self-assembly and gelation. In this study, nine representative amides and nine urea analogs were synthesized, and their gelation properties were analyzed in a series of organic solvents and aqueous solutions. The resulting amide and urea derivatives are versatile organogelators forming gels in toluene, ethanol, isopropanol, ethylene glycol, and aqueous mixtures of organic solvents. More interestingly, the amide analogs are also effective gelators for pump oil and engine oil. NMR spectroscopy at variable temperatures was used to analyze the molecular assemblies and intermolecular forces. The selected gelators with several drug and dye molecules in DMSO and water were studied for their effectiveness of encapsulation and release of these agents.

  8. Oligo(p-phenylenevinylene)-peptide conjugates: synthesis and self-assembly in solution and at the solid-liquid interface.

    Science.gov (United States)

    Matmour, Rachid; De Cat, Inge; George, Subi J; Adriaens, Wencke; Leclère, Philippe; Bomans, Paul H H; Sommerdijk, Nico A J M; Gielen, Jeroen C; Christianen, Peter C M; Heldens, Jeroen T; van Hest, Jan C M; Löwik, Dennis W P M; De Feyter, Steven; Meijer, E W; Schenning, Albertus P H J

    2008-11-05

    Two oligo(p-phenylenevinylene)-peptide hybrid amphiphiles have been synthesized using solid- and liquid-phase strategies. The amphiliphiles are composed of a pi-conjugated oligo(p-phenylenevinylene) trimer (OPV) which is coupled at either a glycinyl-alanyl-glycinyl-alanyl-glycine (GAGAG) silk-inspired beta-sheet or a glycinyl-alanyl-asparagyl-prolyl-asparagy-alanyl-alanyl-glycine (GANPNAAG) beta-turn forming oligopeptide sequence. The solid-phase strategy enables one to use longer peptides if strong acidic conditions are avoided, whereas the solution-phase coupling gives better yields. The study of the two-dimensional (2D) self-assembly of OPV-GAGAG by scanning tunneling microscopy (STM) at the submolecular level demonstrated the formation of bilayers in which the molecules are lying antiparallel in a beta-sheet conformation. In the case of OPV-GANPNAAG self-assembled monolayers could not be observed. Absorption, fluorescence, and circular dichroism studies showed that OPV-GAGAG and OPV-GANPNAAG are aggregated in a variety of organic solvents. In water cryogenic temperature transmission electron microscopy (cryo-TEM), atomic force microscopy (AFM), light scattering, and optical studies reveal that self-assembled nanofibers are formed in which the helical organization of the OPV segments is dictated by the peptide sequence.

  9. Effect of Promoters and Plasmid Copy Number on Cyt1A Synthesis and Crystal Assembly in Bacillus thuringiensis.

    Science.gov (United States)

    Park, Hyun-Woo; Hice, Robert H; Federici, Brian A

    2016-01-01

    Cyt1Aa is a major mosquitocidal protein synthesized during sporulation of Bacillus thuringiensis subsp. israelensis, composing more than 50% of its parasporal body. This high level of synthesis is due to several factors including three strong sporulation-dependent promoters, a strong transcription termination sequence, and an associated 20-kDa helper protein. Cyt1Aa's toxicity is low compared to the Cry proteins of this species, namely, Cry4Aa, Cry4Ba, and Cry11Aa, but it nevertheless plays an important role in the biology of B. thuringiensis subsp. israelensis in that it synergizes their mosquitocidal toxicity and suppresses the evolution of resistance. In the present study, the effects of using different cyt1Aa promoter combinations and plasmid copy number on synthesis of Cyt1Aa were evaluated. Using the 4Q7 (plasmid-cured) strain of B. thuringiensis subsp. israelensis as an experimental host, a plasmid copy number of two or three yielded no Cyt1Aa, whereas a copy number of four yielded only small crystals, even when expression was driven by one of the wild-type promoters. However, using all three wild-type promoters and a plasmid copy number of 20 yielded Cyt1A crystals tenfold larger than those produced by one promoter and a plasmid copy number of four. High levels of Cyt1Aa synthesis resulted in significantly fewer spores per unit medium and imperfectly formed crystals. Similar results were obtained when Cyt1Aa synthesis was evaluated using the same expression constructs in a mutant strain of B. thuringiensis subsp. israelensis that lacks the cyt1Aa gene.

  10. Heme Distortions in Sperm-Whale Carbonmonoxy Myoglobin: Correlations between Rotational Strengths and Heme Distortions in MD-Generated Structures

    Energy Technology Data Exchange (ETDEWEB)

    KIEFL,CHRISTOPH; SCREERAMA,NARASIMHA; LU,YI; QIU,YAN; SHELNUTT,JOHN A.; WOODY,ROBERT W.

    2000-07-13

    The authors have investigated the effects of heme rotational isomerism in sperm-whale carbonmonoxy myoglobin using computational techniques. Several molecular dynamics simulations have been performed for the two rotational isomers A and B, which are related by a 180{degree} rotation around the {alpha}-{gamma} axis of the heme, of sperm-whale carbonmonoxy myoglobin in water. Both neutron diffraction and NMR structures were used as starting structures. In the absence of an experimental structure, the structure of isomer B was generated by rotating the heme in the structure of isomer A. Distortions of the heme from planarity were characterized by normal coordinate structural decomposition and by the angle of twist of the pyrrole rings from the heme plane. The heme distortions of the neutron diffraction structure were conserved in the MD trajectories, but in the NMR-based trajectories, where the heme distortions are less well defined, they differ from the original heme deformations. The protein matrix induced similar distortions on the heroes in orientations A and B. The results suggest that the binding site prefers a particular macrocycle conformation, and a 180{degree} rotation of the heme does not significantly alter the protein's preference for this conformation. The intrinsic rotational strengths of the two Soret transitions, separated according to their polarization in the heme plane, show strong correlations with the ruf-deformation and the average twist angle of the pyrrole rings. The total rotational strength, which includes contributions from the chromophores in the protein, shows a weaker correlation with heme distortions.

  11. Heme acquisition mechanisms of Porphyromonas gingivalis - strategies used in a polymicrobial community in a heme-limited host environment.

    Science.gov (United States)

    Smalley, J W; Olczak, T

    2017-02-01

    Porphyromonas gingivalis, a main etiologic agent and key pathogen responsible for initiation and progression of chronic periodontitis requires heme as a source of iron and protoporphyrin IX for its survival and the ability to establish an infection. Porphyromonas gingivalis is able to accumulate a defensive cell-surface heme-containing pigment in the form of μ-oxo bisheme. The main sources of heme for P. gingivalis in vivo are hemoproteins present in saliva, gingival crevicular fluid, and erythrocytes. To acquire heme, P. gingivalis uses several mechanisms. Among them, the best characterized are those employing hemagglutinins, hemolysins, and gingipains (Kgp, RgpA, RgpB), TonB-dependent outer-membrane receptors (HmuR, HusB, IhtA), and hemophore-like proteins (HmuY, HusA). Proteins involved in intracellular heme transport, storage, and processing are less well characterized (e.g. PgDps). Importantly, P. gingivalis may also use the heme acquisition systems of other bacteria to fulfill its own heme requirements. Porphyromonas gingivalis displays a novel paradigm for heme acquisition from hemoglobin, whereby the Fe(II)-containing oxyhemoglobin molecule must first be oxidized to methemoglobin to facilitate heme release. This process not only involves P. gingivalis arginine- and lysine-specific gingipains, but other proteases (e.g. interpain A from Prevotella intermedia) or pyocyanin produced by Pseudomonas aeruginosa. Porphyromonas gingivalis is then able to fully proteolyze the more susceptible methemoglobin substrate to release free heme or to wrest heme from it directly through the use of the HmuY hemophore. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Dietary heme-mediated PPARα activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon.

    Directory of Open Access Journals (Sweden)

    Noortje Ijssennagger

    Full Text Available Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome analysis of mucosa of heme-fed mice showed, besides stress- and proliferation-related genes, many upregulated lipid metabolism-related PPARα target genes. The aim of this study was to investigate the role of PPARα in heme-induced hyperproliferation and hyperplasia. Male PPARα KO and WT mice received a purified diet with or without heme. As PPARα is proposed to protect against oxidative stress and lipid peroxidation, we hypothesized that the absence of PPARα leads to more surface injury and crypt hyperproliferation in the colon upon heme-feeding. Heme induced luminal cytotoxicity and lipid peroxidation and colonic hyperproliferation and hyperplasia to the same extent in WT and KO mice. Transcriptome analysis of colonic mucosa confirmed similar heme-induced hyperproliferation in WT and KO mice. Stainings for alkaline phosphatase activity and expression levels of Vanin-1 and Nrf2-targets indicated a compromised antioxidant defense in heme-fed KO mice. Our results suggest that the protective role of PPARα in antioxidant defense involves the Nrf2-inhibitor Fosl1, which is upregulated by heme in PPARα KO mice. We conclude that PPARα plays a protective role in colon against oxidative stress, but PPARα does not mediate heme-induced hyperproliferation. This implies that oxidative stress of surface cells is not the main determinant of heme-induced hyperproliferation and hyperplasia.

  13. Dioxygen reactivity of meso-hydroxylated hemes: intermediates in ...

    Indian Academy of Sciences (India)

    464. Scheme 2. in which the HO-bound heme could be converted to verdoheme and biliverdin by ascorbic acid or hydra- zine in the absence of NADPH and cytochrome. P450 reductase via the formation of similar interme- diates observed during the biological oxidation of heme by HO.2–7 The process involves initial meso.

  14. Heme oxygenase-1 and carbon monoxide in pulmonary medicine

    NARCIS (Netherlands)

    Slebos, DJ; Ryter, SW; Choi, AMK

    2003-01-01

    Heme oxygenase-1 (HO-1), an inducible stress protein, confers cytoprotection against oxidative stress in vitro and in vivo. In addition to its physiological role in heme degradation, HO-1 may influence a number of cellular processes, including growth, inflammation, and apoptosis. By virtue of

  15. ENGINEERING NON-HEME MONO- AND DIOXYGENASES FOR BIOCATALYSIS

    Directory of Open Access Journals (Sweden)

    Adi Dror

    2012-09-01

    Full Text Available Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.

  16. Engineering Non-Heme Mono- and Dioxygenases for Biocatalysis

    Directory of Open Access Journals (Sweden)

    Adi Dror

    2012-09-01

    Full Text Available Oxygenases are ubiquitous enzymes that catalyze the introduction of one or two oxygen atoms to unreactive chemical compounds. They require reduction equivalents from NADH or NADPH and comprise metal ions, metal ion complexes, or coenzymes in their active site. Thus, for industrial purposes, oxygenases are most commonly employed using whole cell catalysis, to alleviate the need for co-factor regeneration. Biotechnological applications include bioremediation, chiral synthesis, biosensors, fine chemicals, biofuels, pharmaceuticals, food ingredients and polymers. Controlling activity and selectivity of oxygenases is therefore of great importance and of growing interest to the scientific community. This review focuses on protein engineering of non-heme monooxygenases and dioxygenases for generating improved or novel functionalities. Rational mutagenesis based on x-ray structures and sequence alignment, as well as random methods such as directed evolution, have been utilized. It is concluded that knowledge-based protein engineering accompanied with targeted libraries, is most efficient for the design and tuning of biocatalysts towards novel substrates and enhanced catalytic activity while minimizing the screening efforts.

  17. Functional characterization of the Shigella dysenteriae heme ABC transporter.

    Science.gov (United States)

    Burkhard, Kimberly A; Wilks, Angela

    2008-08-05

    The heme ATP binding cassette (ABC) transporter, ShuUV, of Shigella dysenteriae has been incorporated into proteoliposomes. Functional characterization of ShuUV revealed that ATP hydrolysis and transport of heme from the periplasmic binding protein, ShuT, to the cytoplasmic binding protein, ShuS, are coupled. Site-directed mutagenesis of ShuT residues proposed to be required for stabilization of the complex abolished heme transport. Furthermore, residues His-252 and His-262, located in the translocation channel of ShuU, were required for the release of heme from ShuT and translocation to ShuS. The initial functional characterization of an in vitro heme uptake system provides a platform for future spectroscopic studies.

  18. One-step orthogonal-bonding approach to the self-assembly of neutral rhenium-based metallacycles: synthesis, structures, photophysics, and sensing applications.

    Science.gov (United States)

    Thanasekaran, Pounraj; Lee, Chung-Chou; Lu, Kuang-Lieh

    2012-09-18

    Self-assembled metallacycles offer structural diversity and interesting properties based on their unique frameworks and host-guest chemistry. As a result, the design and synthesis of these materials has attracted significant research interest. This Account describes our comprehensive investigations of an effective orthogonal-bonding approach for the self-assembly of neutral Re-based metallacycles. We discuss the various types of assemblies that can be created based on the nuclearity of the luminophore, including bimetallic materials, rectangles, cages, and calixarenes. This approach permits the preparation of a rectangular molecule, rather than two molecular squares, in excellent yields. We extended this strategy to the high yield synthesis of a series of Re-based metallacycles with different shapes. With the rich spectroscopic and luminescence properties, Re(I) metallacycles provide an excellent platform for studies of host-guest interactions. When possible, we also present potential applications of the luminescent Re-based metallosupramolecular assemblies. The orthogonal-bonding approach involves the simultaneous introduction of two ligands: a bis-chelating ligand to coordinate to two equatorial sites of two fac-(CO)(3)Re cores and a monotopic or ditopic nitrogen-donor ligand to the remaining orthogonal axial site. Furthermore, by the appropriate choice of the predesigned organic ligands with various backbones and connectivity information and fac-Re(CO)(3) metal centers, we could also design other novel functional metallacycles including rotors, gondolas, cages, triangles, and metallacalixarenes in high yields. The incorporation of flexible ligands into the Re(I) metallacycles allows us to introduce various conformation states and novel structures. As a result, these structures acquire new functions, such as adaptive recognition properties. For example, we assembled Re(I)-based metallacyclic rotors via a one-step process. These rotors, which contain a para

  19. Covalent heme attachment to the protein in human heme oxygenase-1 with selenocysteine replacing the His25 proximal iron ligand.

    Science.gov (United States)

    Jiang, Yongying; Trnka, Michael J; Medzihradszky, Katalin F; Ouellet, Hugues; Wang, Yongqiang; Ortiz de Montellano, Paul R

    2009-03-01

    To characterize heme oxygenase with a selenocysteine (SeCys) as the proximal iron ligand, we have expressed truncated human heme oxygenase-1 (hHO-1) His25Cys, in which Cys-25 is the only cysteine, in the Escherichia coli cysteine auxotroph strain BL21(DE3)cys. Selenocysteine incorporation into the protein was demonstrated by both intact protein mass measurement and mass spectrometric identification of the selenocysteine-containing tryptic peptide. One selenocysteine was incorporated into approximately 95% of the expressed protein. Formation of an adduct with Ellman's reagent (DTNB) indicated that the selenocysteine in the expressed protein was in the reduced state. The heme-His25SeCys hHO-1 complex could be prepared by either (a) supplementing the overexpression medium with heme, or (b) reconstituting the purified apoprotein with heme. Under reducing conditions in the presence of imidazole, a covalent bond is formed by addition of the selenocysteine residue to one of the heme vinyl groups. No covalent bond is formed when the heme is replaced by mesoheme, in which the vinyls are replaced by ethyl groups. These results, together with our earlier demonstration that external selenolate ligands can transfer an electron to the iron [Y. Jiang, P.R. Ortiz de Montellano, Inorg. Chem. 47 (2008) 3480-3482 ], indicate that a selenyl radical is formed in the hHO-1 His25SeCys mutant that adds to a heme vinyl group.

  20. Improved enzyme-mediated synthesis and supramolecular self-assembly of naturally occurring conjugates of beta-sitosterol

    Czech Academy of Sciences Publication Activity Database

    Wimmerová, Martina; Siglerová, Věra; Šaman, David; Šlouf, Miroslav; Kaletová, Eva; Wimmer, Zdeněk

    2017-01-01

    Roč. 117, JAN (2017), s. 38-43 ISSN 0039-128X R&D Projects: GA MŠk LD15012; GA MŠk(CZ) LO1507 Institutional support: RVO:61389030 ; RVO:61388963 ; RVO:61389013 Keywords : glycosides * esterification * resolution * sterols * esters * foods * l. * beta-Sitosterol * Acylated steryl glycoside * Lipase * Ionic liquid * Supramolecular self-assembly * Pharmacological activity Subject RIV: CC - Organic Chemistry; CD - Macromolecular Chemistry (UMCH-V) OBOR OECD: Polymer science Impact factor: 2.282, year: 2016

  1. Synthesis of skeletally diverse alkaloid-like molecules: exploitation of metathesis substrates assembled from triplets of building blocks

    Directory of Open Access Journals (Sweden)

    Sushil K. Maurya

    2013-04-01

    Full Text Available A range of metathesis substrates was assembled from triplets of unsaturated building blocks. The approach involved the iterative attachment of a propagating and a terminating building block to a fluorous-tagged initiating building block. Metathesis cascade chemistry was used to “reprogram” the molecular scaffolds. Remarkably, in one case, a cyclopropanation reaction competed with the expected metathesis cascade process. Finally, it was demonstrated that the metathesis products could be derivatised to yield the final products. At each stage, purification was facilitated by the presence of a fluorous-tagged protecting group.

  2. Dose-dependent differential effect of hemin on protein synthesis and ...

    Indian Academy of Sciences (India)

    Unknown

    Leishmania donovani requires an exogenous source of heme for growth and transformation. In in vitro culture of the free-living promastigotes, exogenously added hemin enhances cell proliferation. In this investigation, the question of the function of heme with particular reference to protein synthesis and cell proliferation has ...

  3. One-Pot Synthesis of Cu2O/Cu Self-Assembled Hollow Nanospheres with Enhanced Photocatalytic Performance

    Directory of Open Access Journals (Sweden)

    Bo Zhou

    2014-01-01

    Full Text Available Cu2O/Cu hollow spheres are prepared using one-pot template-free solvent-thermal synthesis route with (CH3COO2Cu·H2O as a precursor. With the reaction time increasing gradually from 2 h to 20 h, the morphology of the Cu2O/Cu evolves from nanoparticle to hollow nanosphere. The hollow structure is obtained when the cooling rate falls down to 0.7°C/min. And the content of Cu in the hollow spheres also can be easily controlled by adjusting the solvent-thermal synthesis time. Using photocatalytic degradation of phenol as the probe molecules under visible-light illumination, we have investigated the influence of hollow structure on the photocatalytic activity of Cu2O/Cu. The prepared hollow sphere Cu2O/Cu particles exhibited a higher photodegradation capability than nanoparticles and solid spheres. When the content of Cu lies in the range of 11–86 wt%, the samples exhibit higher photocatalytic performance, indicating that the Cu2O/Cu particles with hollow structure are promising candidates for the processing of pollutants.

  4. Epalrestat increases glutathione, thioredoxin, and heme oxygenase-1 by stimulating Nrf2 pathway in endothelial cells

    Directory of Open Access Journals (Sweden)

    Kaori Yama

    2015-04-01

    Full Text Available Epalrestat (EPS is the only aldose reductase inhibitor that is currently available for the treatment of diabetic neuropathy. Recently, we found that EPS at near-plasma concentration increases the intracellular levels of glutathione (GSH in rat Schwann cells. GSH plays a crucial role in protecting endothelial cells from oxidative stress, thereby preventing vascular diseases. Here we show that EPS increases GSH levels in not only Schwann cells but also endothelial cells. Treatment of bovine aortic endothelial cells (BAECs, an in vitro model of the vascular endothelium, with EPS caused a dramatic increase in intracellular GSH levels. This was concomitant with the up-regulation of glutamate cysteine ligase, an enzyme catalyzing the first and rate-limiting step in de novo GSH synthesis. Moreover, EPS stimulated the expression of thioredoxin and heme oxygenase-1, which have important redox regulatory functions in endothelial cells. Nuclear factor erythroid 2-related factor 2 (Nrf2 is a key transcription factor that regulates the expression of antioxidant genes. EPS increased nuclear Nrf2 levels in BAECs. Nrf2 knockdown by siRNA suppressed the EPS-induced glutamate cysteine ligase, thioredoxin-1, and heme oxygenase-1 expression. Interestingly, LY294002, an inhibitor of phosphatidylinositol 3-kinase, abolished the EPS-stimulated GSH synthesis, suggesting that the kinase is associated with Nrf2 activation induced by EPS. Furthermore, EPS reduced the cytotoxicity induced by H2O2 and tert-butylhydroperoxide, indicating that EPS plays a role in protecting cells from oxidative stress. Taken together, the results provide evidence that EPS exerts new beneficial effects on endothelial cells by increasing GSH, thioredoxin, and heme oxygenase-1 levels through the activation of Nrf2. We suggest that EPS has the potential to prevent several vascular diseases caused by oxidative stress.

  5. Synthesis and characterization of self-assembled monolayers on gold generated from partially fluorinated alkanethiols and aliphatic dithiocarboxylic acids

    Science.gov (United States)

    Colorado, Ramon, Jr.

    The formation of novel self-assembled monolayers (SAMs) on gold from the adsorption of four distinct series of partially fluorinated alkanethiols (PFAs) and one series of chelating aliphatic dithiocarboxylic acids (ADTCAs) is reported. The SAMs were characterized by optical ellipsometry, contact angle goniometry, polarization modulation infrared absorption spectroscopy (PM-IRRAS), and X-ray photoelectron spectroscopy (XPS). The results for the PFA SAMs provided evidence for both the importance of oriented surface dipoles in influencing interfacial wettabilities and the significance of the degree of fluorination of the PFAs in determining the dispersive interfacial energies of the films. In addition, a series of PFA SAMs was used to demonstrate that the attenuation lengths of photoelectrons in fluorocarbon films are indistinguishable from those in hydrocarbon films. The results for the ADTCA SAMs demonstrated that the use of a chelating headgroup induces structural changes within the monolayers that influence the interfacial properties of the films.

  6. Self-Assembled NaTb1-xEux(MoO4)2: Synthesis and Luminescence Properties.

    Science.gov (United States)

    Liu, Xiaoqing; Qu, Lingnan; Wang, Shuo; Li, Lv; Su, Yiguo; Wang, Xiaojing

    2016-04-01

    Novel 3D Eu3+ doped NaTb(MoO4)2 composites were successfully self-assembled by a facile hydrothermal treatment. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and photoluminescence (PL) spectra were used to characterize the structures, morphologies and the luminescent properties of as-prepared products. Emission and excitation spectra showed that the phosphor exhibits a dominant red emission at 615 nm with excitation wavelength of 465 nm at room temperature. The emission intensity increased with the increase of Eu3+ concentrations for the investigated range of 2-10 mol% Eu3+ doping in NaTb(MoO4)2. The doping of Eu3+ results in a distorted Eu-0. cluster and enhanced luminescence intensity.

  7. Isoporphyrin Intermediate in Heme Oxygenase Catalysis

    Science.gov (United States)

    Evans, John P.; Niemevz, Fernando; Buldain, Graciela; de Montellano, Paul Ortiz

    2008-01-01

    Human heme oxygenase-1 (hHO-1) catalyzes the O2- and NADPH-dependent oxidation of heme to biliverdin, CO, and free iron. The first step involves regiospecific insertion of an oxygen atom at the α-meso carbon by a ferric hydroperoxide and is predicted to proceed via an isoporphyrin π-cation intermediate. Here we report spectroscopic detection of a transient intermediate during oxidation by hHO-1 of α-meso-phenylheme-IX, α-meso-(p-methylphenyl)-mesoheme-III, and α-meso-(p-trifluoromethylphenyl)-mesoheme-III. In agreement with previous experiments (Wang, J., Niemevz, F., Lad, L., Huang, L., Alvarez, D. E., Buldain, G., Poulos, T. L., and Ortiz de Montellano, P. R. (2004) J. Biol. Chem. 279, 42593–42604), only the α-biliverdin isomer is produced with concomitant formation of the corresponding benzoic acid. The transient intermediate observed in the NADPH-P450 reductase-catalyzed reaction accumulated when the reaction was supported by H2O2 and exhibited the absorption maxima at 435 and 930 nm characteristic of an isoporphyrin. Product analysis by reversed phase high performance liquid chromatography and liquid chromatography electrospray ionization mass spectrometry of the product generated with H2O2 identified it as an isoporphyrin that, on quenching, decayed to benzoylbiliverdin. In the presence of H218O2, one labeled oxygen atom was incorporated into these products. The hHO-1-isoporphyrin complexes were found to have half-lives of 1.7 and 2.4 h for the p-trifluoromethyl- and p-methyl-substituted phenylhemes, respectively. The addition of NADPH-P450 reductase to the H2O2-generated hHO-1-isoporphyrin complex produced α-biliverdin, confirming its role as a reaction intermediate. Identification of an isoporphyrin intermediate in the catalytic sequence of hHO-1, the first such intermediate observed in hemoprotein catalysis, completes our understanding of the critical first step of heme oxidation. PMID:18487208

  8. Spectroscopic Studies Reveal That the Heme Regulatory Motifs of Heme Oxygenase-2 Are Dynamically Disordered and Exhibit Redox-Dependent Interaction with Heme

    Science.gov (United States)

    2015-01-01

    Heme oxygenase (HO) catalyzes a key step in heme homeostasis: the O2- and NADPH-cytochrome P450 reductase-dependent conversion of heme to biliverdin, Fe, and CO through a process in which the heme participates both as a prosthetic group and as a substrate. Mammals contain two isoforms of this enzyme, HO2 and HO1, which share the same α-helical fold forming the catalytic core and heme binding site, as well as a membrane spanning helix at their C-termini. However, unlike HO1, HO2 has an additional 30-residue N-terminus as well as two cysteine-proline sequences near the C-terminus that reside in heme regulatory motifs (HRMs). While the role of the additional N-terminal residues of HO2 is not yet understood, the HRMs have been proposed to reversibly form a thiol/disulfide redox switch that modulates the affinity of HO2 for ferric heme as a function of cellular redox poise. To further define the roles of the N- and C-terminal regions unique to HO2, we used multiple spectroscopic techniques to characterize these regions of the human HO2. Nuclear magnetic resonance spectroscopic experiments with HO2 demonstrate that, when the HRMs are in the oxidized state (HO2O), both the extra N-terminal and the C-terminal HRM-containing regions are disordered. However, protein NMR experiments illustrate that, under reducing conditions, the C-terminal region gains some structure as the Cys residues in the HRMs undergo reduction (HO2R) and, in experiments employing a diamagnetic protoporphyrin, suggest a redox-dependent interaction between the core and the HRM domains. Further, electron nuclear double resonance and X-ray absorption spectroscopic studies demonstrate that, upon reduction of the HRMs to the sulfhydryl form, a cysteine residue from the HRM region ligates to a ferric heme. Taken together with EPR measurements, which show the appearance of a new low-spin heme signal in reduced HO2, it appears that a cysteine residue(s) in the HRMs directly interacts with a second bound heme

  9. From Self-Assembled Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of Polymer Brushes

    Directory of Open Access Journals (Sweden)

    Myungwoong Kim

    2015-07-01

    Full Text Available In this review, we describe the latest advances in synthesis, characterization, and applications of polymer brushes. Synthetic advances towards well-defined polymer brushes, which meet criteria such as: (i Efficient and fast grafting, (ii Applicability on a wide range of substrates; and (iii Precise control of surface initiator concentration and hence, chain density are discussed. On the characterization end advances in methods for the determination of relevant physical parameters such as surface initiator concentration and grafting density are discussed. The impact of these advances specifically in emerging fields of nano- and bio-technology where interfacial properties such as surface energies are controlled to create nanopatterned polymer brushes and their implications in mediating with biological systems is discussed.

  10. Heme synthase (ferrochelatase) catalyzes the removal of iron from heme and demetalation of metalloporphyrins.

    Science.gov (United States)

    Taketani, Shigeru; Ishigaki, Mutsumi; Mizutani, Atsushi; Uebayashi, Masashi; Numata, Masahiro; Ohgari, Yoshiko; Kitajima, Sakihito

    2007-12-25

    The red pigments in meat products, including cooked cured ham, arise from the reaction of myoglobin with nitric oxide generated from exogenous nitrite. Since carcinogenic nitrosoamines may be generated by the treatment of meats with nitrite, the production of nitrite-free meat products is an attractive alternative. Raw dry-cured (Parma) hams are produced by the treatment of meats with salts other than nitrite. Analysis of pigments in raw dry-cured hams reveals that the main pigment is zinc protoporphyrin, suggesting that the conversion of heme to zinc protoporphyrin occurs via an iron-removal reaction from myoglobin heme during the processing of raw hams. Purification of the iron-removal enzyme showed that it was identical to ferrochelatase. Recombinant ferrochelatase in combination with NADH-cytochrome b5 reductase catalyzed NADH-dependent iron-removal reaction from hemin and hemoproteins. Metal ions such as zinc and cobalt were also removed from the corresponding metalloporphyrins. The addition of zinc ions led to the formation of zinc protoporphyrin. In cultured cells, the conversion of zinc mesoporphyrin to mesoheme was observed to be dependent on ferrochelatase and could be markedly induced during erythroid differentiation. This is the first demonstration of a new enzyme reaction, the reverse reaction of ferrochelatase, which may contribute to a new route of the recycling of protoporphyrin and heme in cells.

  11. Self-assembly of hollow MoS{sub 2} microflakes by one-pot hydrothermal synthesis for efficient electrocatalytic hydrogen evolution

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Aishi; Cui, Renjie; He, Yanna; Wang, Qi [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Zhang, Jian, E-mail: iamjzhang@njupt.edu.cn [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); Yang, Jianping [School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China); Li, Xing’ao, E-mail: lxahbmy@126.com [Key Laboratory for Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, Nanjing 210023 (China); School of Science, Nanjing University of Posts and Telecommunications (NUPT), Nanjing 210023 (China)

    2017-07-31

    Highlights: • A new hollow MoS{sub 2} microflakes are prepared by hydrothermal synthesis firstly. • SEM and TEM study show the structural nature of hollow microflakes in depth. • The unique hollow structures have large surface area owing to the cavity. • The hollow microflakes show better HER performance than their solid counterparts. - Abstract: Molybdenum disulfide (MoS{sub 2}) has emerged as a promising non-precious metal catalyst for hydrogen evolution reaction (HER) in recent years. Some strategies including nanotechnology as well as atom doping have been employed in the preparing of electrocatalysts for high-activity and stability. To the best of our knowledge, hollow MoS{sub 2} microflakes assembled from ultrathin nanosheets have not been prepared previously. In this work, a simple, facile and environmentally friendly hydrothermal synthesis was utilized for the fabrication of hollow MoS{sub 2} microflakes for the first time. The unique hollow structures have fascinating properties, such as the large surface and low density. The morphology and structure of MoS{sub 2} microflakes were confirmed by XRD, SEM, TEM and Raman. The composition of these materials was identified by the X-ray photoelectron spectroscopy. Notably, the as-prepared hollow MoS{sub 2} microflakes showed better electrocatalytic activity than other samples. The hollow flake-like structure can not only increase the active edge sites owing to the large specific surface area, but also enhance the electron transport to improve the electrocatalytic activity. Benefiting from these factors, the hollow MoS{sub 2} microflakes exhibited electrocatalytic activity and excellent stability with a low overpotential about 85 mV and a Tafel slope of 59 mV per decade.

  12. The effect of proteins from animal source foods on heme iron bioavailability in humans.

    Science.gov (United States)

    Pizarro, Fernando; Olivares, Manuel; Valenzuela, Carolina; Brito, Alex; Weinborn, Valerie; Flores, Sebastián; Arredondo, Miguel

    2016-04-01

    Forty-five women (35-45 year) were randomly assigned to three iron (Fe) absorption sub-studies, which measured the effects of dietary animal proteins on the absorption of heme Fe. Study 1 was focused on heme, red blood cell concentrate (RBCC), hemoglobin (Hb), RBCC+beef meat; study 2 on heme, heme+fish, chicken, and beef; and study 3 on heme and heme+purified animal protein (casein, collagen, albumin). Study 1: the bioavailability of heme Fe from Hb was similar to heme only (∼13.0%). RBCC (25.0%) and RBCC+beef (21.3%) were found to be increased 2- and 1.6-fold, respectively, when compared with heme alone (pProteins from animal source foods and their digestion products did not enhance heme Fe absorption. Copyright © 2015. Published by Elsevier Ltd.

  13. Absorption by Isolated Ferric Heme Nitrosyl Cations In Vacuo

    DEFF Research Database (Denmark)

    Wyer, Jean; Nielsen, Steen Brøndsted

    2012-01-01

    Keywords:biophysics;gas-phase spectroscopy;heme proteins;mass spectrometry;nitric oxide Almost innocent: In photobiophysical studies of ferric heme nitrosyl complexes, the absorption spectra of six-coordinate complexes with NO and Met or Cys are similar to that of the five-coordinate complex ion ......(heme)(NO)+. Since the absorption spectra of related proteins with histidine as the proximal ligand are similar to those of the gaseous complexes, the protein microenvironment has little effect on the lowest-energy transition of the porphyrin macrocycle....

  14. [Hereditary porphyrias and heme related disorders].

    Science.gov (United States)

    Puy, Hervé; Gouya, Laurent; Deybach, Jean-charles

    2014-06-01

    Hereditary porphyrias comprise a group of eight metabolic disorders of the haem biosynthesis pathway, characterised by acute neurovisceral symptoms and/or skin lesions. Each porphyria is caused by abnormal functioning of a particular enzymatic step, resulting in specific accumulation of heme precursors. Seven porphyrias are due to a partial enzyme deficiency, while a gain-of-function mechanism has recently been identify in a novel porphyria. Acute porphyrias present with severe abdominal pain, nausea, constipation and confusion, and are sometimes complicated by seizures and severe neurological disorders, which may be life-threatening. Cutaneous porphyrias can also be present, with either acute painful photosensitivity or skin fragility and blisters. Rare recessive porphyrias usually manifest in early childhood with either severe chronic neurological symptoms or chronic haemolysis and severe cutaneous photosensitivity. Porphyrias are still under-diagnosed, but recent advances in the pathogenesis and genetics of human porphyrias are leading to better care of these patients and their families.

  15. Discovery of Intracellular Heme-binding Protein HrtR, Which Controls Heme Efflux by the Conserved HrtB-HrtA Transporter in Lactococcus lactis*

    Science.gov (United States)

    Lechardeur, Delphine; Cesselin, Bénédicte; Liebl, Ursula; Vos, Marten H.; Fernandez, Annabelle; Brun, Célia; Gruss, Alexandra; Gaudu, Philippe

    2012-01-01

    Most commensal and food bacteria lack heme biosynthesis genes. For several of these, the capture of environmental heme is a means of activating aerobic respiration metabolism. Our previous studies in the Gram-positive bacterium Lactococcus lactis showed that heme exposure strongly induced expression of a single operon, called here hrtRBA, encoding an ortholog of the conserved membrane hrt (heme-regulated transporter) and a unique transcriptional regulator that we named HrtR. We show that HrtR expressed as a fusion protein is a heme-binding protein. Heme iron interaction with HrtR is non-covalent, hexacoordinated, and involves two histidines, His-72 and His-149. HrtR specifically binds a 15-nt palindromic sequence in the hrtRBA promoter region, which is needed for hrtRBA repression. HrtR-DNA binding is abolished by heme addition, which activates expression of the HrtB-HrtA (HrtBA) transporter in vitro and in vivo. The use of HrtR as an intracellular heme sensor appears to be conserved among numerous commensal bacteria, in contrast with numerous Gram-positive pathogens that use an extracellular heme-sensing system, HssRS, to regulate hrt. Finally, we show for the first time that HrtBA permease controls heme toxicity by its direct and specific efflux. The use of an intracellular heme sensor to control heme efflux constitutes a novel paradigm for bacterial heme homeostasis. PMID:22084241

  16. Discovery of intracellular heme-binding protein HrtR, which controls heme efflux by the conserved HrtB-HrtA transporter in Lactococcus lactis.

    Science.gov (United States)

    Lechardeur, Delphine; Cesselin, Bénédicte; Liebl, Ursula; Vos, Marten H; Fernandez, Annabelle; Brun, Célia; Gruss, Alexandra; Gaudu, Philippe

    2012-02-10

    Most commensal and food bacteria lack heme biosynthesis genes. For several of these, the capture of environmental heme is a means of activating aerobic respiration metabolism. Our previous studies in the Gram-positive bacterium Lactococcus lactis showed that heme exposure strongly induced expression of a single operon, called here hrtRBA, encoding an ortholog of the conserved membrane hrt (heme-regulated transporter) and a unique transcriptional regulator that we named HrtR. We show that HrtR expressed as a fusion protein is a heme-binding protein. Heme iron interaction with HrtR is non-covalent, hexacoordinated, and involves two histidines, His-72 and His-149. HrtR specifically binds a 15-nt palindromic sequence in the hrtRBA promoter region, which is needed for hrtRBA repression. HrtR-DNA binding is abolished by heme addition, which activates expression of the HrtB-HrtA (HrtBA) transporter in vitro and in vivo. The use of HrtR as an intracellular heme sensor appears to be conserved among numerous commensal bacteria, in contrast with numerous Gram-positive pathogens that use an extracellular heme-sensing system, HssRS, to regulate hrt. Finally, we show for the first time that HrtBA permease controls heme toxicity by its direct and specific efflux. The use of an intracellular heme sensor to control heme efflux constitutes a novel paradigm for bacterial heme homeostasis.

  17. YC-1 activation of human soluble guanylyl cyclase has both heme-dependent and heme-independent components

    Science.gov (United States)

    Martin, E.; Lee, Y. C.; Murad, F.

    2001-01-01

    YC-1 [3-(5'-hydroxymethyl-2'furyl)-1-benzyl indazole] is an allosteric activator of soluble guanylyl cyclase (sGC). YC-1 increases the catalytic rate of the enzyme and sensitizes the enzyme toward its gaseous activators nitric oxide or carbon monoxide. In other studies the administration of YC-1 to experimental animals resulted in the inhibition of the platelet-rich thrombosis and a decrease of the mean arterial pressure, which correlated with increased cGMP levels. However, details of YC-1 interaction with sGC and enzyme activation are incomplete. Although evidence in the literature indicates that YC-1 activation of sGC is strictly heme-dependent, this report presents evidence for both heme-dependent and heme-independent activation of sGC by YC-1. The oxidation of the sGC heme by 1H-(1,2,4)oxadiazole(4,3-a)quinoxalin-1-one completely inhibited the response to NO, but only partially attenuated activation by YC-1. We also observed activation by YC-1 of a mutant sGC, which lacks heme. These findings indicate that YC-1 activation of sGC can occur independently of heme, but that activation is substantially increased when the heme moiety is present in the enzyme.

  18. Introduction of a covalent histidine-heme linkage in a hemoglobin: a promising tool for heme protein engineering.

    Science.gov (United States)

    Rice, Selena L; Preimesberger, Matthew R; Johnson, Eric A; Lecomte, Juliette T J

    2014-12-01

    The hemoglobins of the cyanobacteria Synechococcus and Synechocystis (GlbNs) are capable of spontaneous and irreversible attachment of the b heme to the protein matrix. The reaction, which saturates the heme 2-vinyl by addition of a histidine residue, is reproduced in vitro by preparing the recombinant apoprotein, adding ferric heme, and reducing the iron to the ferrous state. Spontaneous covalent attachment of the heme is potentially useful for protein engineering purposes. Thus, to explore whether the histidine-heme linkage can serve in such applications, we attempted to introduce it in a test protein. We selected as our target the heme domain of Chlamydomonas eugametos LI637 (CtrHb), a eukaryotic globin that exhibits less than 50% sequence identity with the cyanobacterial GlbNs. We chose two positions, 75 in the FG corner and 111 in the H helix, to situate a histidine near a vinyl group. We characterized the proteins with gel electrophoresis, absorbance spectroscopy, and NMR analysis. Both T111H and L75H CtrHbs reacted upon reduction of the ferric starting material containing cyanide as the distal ligand to the iron. With L75H CtrHb, nearly complete (>90%) crosslinking was observed to the 4-vinyl as expected from the X-ray structure of wild-type CtrHb. Reaction of T111H CtrHb also occurred at the 4-vinyl, in a 60% yield indicating a preference for the flipped heme orientation in the starting material. The work suggests that the His-heme modification will be applicable to the design of proteins with a non-dissociable heme group. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Synthesis of Ionic Liquid Based Electrolytes, Assembly of Li-ion Batteries, and Measurements of Performance at High Temperature.

    Science.gov (United States)

    Lin, Xinrong; Chapman Varela, Jennifer; Grinstaff, Mark W

    2016-12-20

    The chemical instability of the traditional electrolyte remains a safety issue in widely used energy storage devices such as Li-ion batteries. Li-ion batteries for use in devices operating at elevated temperatures require thermally stable and non-flammable electrolytes. Ionic liquids (ILs), which are non-flammable, non-volatile, thermally stable molten salts, are an ideal replacement for flammable and low boiling point organic solvent electrolytes currently used today. We herein describe the procedures to: 1) synthesize mono- and di-phosphonium ionic liquids paired with chloride or bis(trifluoromethane)sulfonimide (TFSI) anions; 2) measure the thermal properties and stability of these ionic liquids by differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA); 3) measure the electrochemical properties of the ionic liquids by cyclic voltammetry (CV); 4) prepare electrolytes containing lithium bis(trifluoromethane)sulfonamide; 5) measure the conductivity of the electrolytes as a function of temperature; 6) assemble a coin cell battery with two of the electrolytes along with a Li metal anode and LiCoO2 cathode; and 7) evaluate battery performance at 100 °C. We additionally describe the challenges in execution as well as the insights gained from performing these experiments.

  20. Biomolecule-assisted hydrothermal synthesis and self-assembly of Bi2Te3 nanostring-cluster hierarchical structure.

    Science.gov (United States)

    Mi, Jian-Li; Lock, Nina; Sun, Ting; Christensen, Mogens; Søndergaard, Martin; Hald, Peter; Hng, Huey H; Ma, Jan; Iversen, Bo B

    2010-05-25

    A simple biomolecule-assisted hydrothermal approach has been developed for the fabrication of Bi(2)Te(3) thermoelectric nanomaterials. The product has a nanostring-cluster hierarchical structure which is composed of ordered and aligned platelet-like crystals. The platelets are approximately 100 nm in diameter and only approximately 10 nm thick even though a high reaction temperature of 220 degrees C and a long reaction time of 24 h were applied to prepare the sample. The growth of the Bi(2)Te(3) hierarchical structure appears to be a self-assembly process. Initially, Te nanorods are formed using alginic acid as both reductant and template. Subsequently, Bi(2)Te(3) grows in a certain direction on the surface of the Te rods, resulting in the nanostring structure. The nanostrings further recombine side-by-side with each other to achieve the ordered nanostring clusters. The particle size and morphology can be controlled by adjusting the concentration of NaOH, which plays a crucial role on the formation mechanism of Bi(2)Te(3). An even smaller polycrystalline Bi(2)Te(3) superstructure composed of polycrystalline nanorods with some nanoplatelets attached to the nanorods is achieved at lower NaOH concentration. The room temperature thermoelectric properties have been evaluated with an average Seebeck coefficient of -172 microV K(-1), an electrical resistivity of 1.97 x 10(-3) Omegam, and a thermal conductivity of 0.29 W m(-1) K(-1).

  1. Synthesis of Inorganic Nanocomposites by Selective Introduction of Metal Complexes into a Self-Assembled Block Copolymer Template

    Directory of Open Access Journals (Sweden)

    Hiroaki Wakayama

    2015-01-01

    Full Text Available Inorganic nanocomposites have characteristic structures that feature expanded interfaces, quantum effects, and resistance to crack propagation. These structures are promising for the improvement of many materials including thermoelectric materials, photocatalysts, and structural materials. Precise control of the inorganic nanocomposites’ morphology, size, and chemical composition is very important for these applications. Here, we present a novel fabrication method to control the structures of inorganic nanocomposites by means of a self-assembled block copolymer template. Different metal complexes were selectively introduced into specific polymer blocks of the block copolymer, and subsequent removal of the block copolymer template by oxygen plasma treatment produced hexagonally packed porous structures. In contrast, calcination removal of the block copolymer template yielded nanocomposites consisting of metallic spheres in a matrix of a metal oxide. These results demonstrate that different nanostructures can be created by selective use of processes to remove the block copolymer templates. The simple process of first mixing block copolymers and magnetic nanomaterial precursors and then subsequently removing the block copolymer template enables structural control of magnetic nanomaterials, which will facilitate their applicability in patterned media, including next-generation perpendicular magnetic recording media.

  2. Modular synthesis of self-assembling Janus-dendrimers and facile preparation of drug-loaded dendrimersomes.

    Science.gov (United States)

    Nummelin, Sami; Selin, Markus; Legrand, Sacha; Ropponen, Jarmo; Seitsonen, Jani; Nykänen, Antti; Koivisto, Jari; Hirvonen, Jouni; Kostiainen, Mauri A; Bimbo, Luis M

    2017-06-01

    Materials and methods aimed at the next generation of nanoscale carriers for drugs and other therapeutics are currently in great demand. Yet, creating these precise molecular arrangements in a feasible and straightforward manner represents a remarkable challenge. Herein we report a modular synthetic route for amphiphilic Janus-dendrimers via a copper-catalyzed click reaction (CuAAC) and a facile procedure, using simple injection, to obtain highly uniform dendrimersomes with efficient loading of the model drug compound propranolol. The resulting assemblies were analyzed by dynamic light scattering and cryogenic transmission electron microscopy revealing the formation of unilamellar and multilamellar dendrimersomes. The formation of a bilayer structure was confirmed using cryo-TEM and confocal microscopy visualization of an encapsulated solvatochromic dye (Nile Red). The dendrimersomes reported here are tunable in size, stable over time and display robust thermal stability in aqueous media. Our results expand the scope of dendrimer-based supramolecular colloidal systems and offer the means for one-step fabrication of drug-loaded dendrimersomes in the size range of 90-200 nm, ideal for biomedical applications.

  3. Facile solid-state synthesis of Ni@C nanosheet-assembled hierarchical network for high-performance lithium storage

    Science.gov (United States)

    Gu, Jinghe; Li, Qiyun; Zeng, Pan; Meng, Yulin; Zhang, Xiukui; Wu, Ping; Zhou, Yiming

    2017-08-01

    Micro/nano-architectured transition-metal@C hybrids possess unique structural and compositional features toward lithium storage, and are thus expected to manifest ideal anodic performances in advanced lithium-ion batteries (LIBs). Herein, we propose a facile and scalable solid-state coordination and subsequent pyrolysis route for the formation of a novel type of micro/nano-architectured transition-metal@C hybrid (i.e., Ni@C nanosheet-assembled hierarchical network, Ni@C network). Moreover, this coordination-pyrolysis route has also been applied for the construction of bare carbon network using zinc salts instead of nickel salts as precursors. When applied as potential anodic materials in LIBs, the Ni@C network exhibits Ni-content-dependent electrochemical performances, and the partially-etched Ni@C network manifests markedly enhanced Li-storage performances in terms of specific capacities, cycle life, and rate capability than the pristine Ni@C network and carbon network. The proposed solid-state coordination and pyrolysis strategy would open up new opportunities for constructing micro/nano-architectured transition-metal@C hybrids as advanced anode materials for LIBs.

  4. Mono- and bis(pyrrolo)tetrathiafulvalene derivatives tethered to C60: synthesis, photophysical studies, and self-assembled monolayers.

    Science.gov (United States)

    Solano, Marta Vico; Della Pia, Eduardo Antonio; Jevric, Martyn; Schubert, Christina; Wang, Xintai; van der Pol, Cornelia; Kadziola, Anders; Nørgaard, Kasper; Guldi, Dirk M; Nielsen, Mogens Brøndsted; Jeppesen, Jan O

    2014-08-04

    A series of mono- (MPTTF) and bis(pyrrolo)tetrathiafulvalene (BPTTF) derivatives tethered to one or two C60 moieties was synthesized and characterized. The synthetic strategy for these dumbbell-shaped compounds was based on a 1,3-dipolar cycloaddition reaction between aldehyde-functionalized MPTTF/BPTTF derivatives, two different tailor-made amino acids, and C60. Electronic communication between the MPTTF/BPTTF units and the C60 moieties was studied by a variety of techniques including cyclic voltammetry and absorption spectroscopy. These solution-based studies indicated no observable electronic communication between the MPTTF/BPTTF units and the C60 moieties. In addition, femtosecond and nanosecond transient absorption spectroscopy revealed, rather surprisingly, that no charge transfer from the MPTTF/BPTTF units to the C60 moieties takes place on excitation of the fullerene moiety. Finally, it was shown that the MPTTF-C60 and C60-BPTTF-C60 dyad and triad molecules formed self-assembled monolayers on a Au(111) surface by anchoring to C60. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. COMPACT STELLAR BINARY ASSEMBLY IN THE FIRST NUCLEAR STAR CLUSTERS AND r-PROCESS SYNTHESIS IN THE EARLY UNIVERSE

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez-Ruiz, Enrico; MacLeod, Morgan [Department of Astronomy and Astrophysics, University of California, Santa Cruz, CA 95064 (United States); Trenti, Michele [Kavli Institute for Cosmology and Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Roberts, Luke F. [TAPIR, California Institute of Technology, Pasadena, California 91125 (United States); Lee, William H.; Saladino-Rosas, Martha I. [Instituto de Astronomía, Universidad Nacional Autónoma de México, México DF 04510, México (Mexico)

    2015-04-01

    Investigations of elemental abundances in the ancient and most metal deficient stars are extremely important because they serve as tests of variable nucleosynthesis pathways and can provide critical inferences of the type of stars that lived and died before them. The presence of r-process elements in a handful of carbon-enhanced metal-poor (CEMP-r) stars, which are assumed to be closely connected to the chemical yield from the first stars, is hard to reconcile with standard neutron star mergers. Here we show that the production rate of dynamically assembled compact binaries in high-z nuclear star clusters can attain a sufficient high value to be a potential viable source of heavy r-process material in CEMP-r stars. The predicted frequency of such events in the early Galaxy, much lower than the frequency of Type II supernovae but with significantly higher mass ejected per event, can naturally lead to a high level of scatter of Eu as observed in CEMP-r stars.

  6. Reducing agent-free synthesis of curcumin-loaded albumin nanoparticles by self-assembly at room temperature.

    Science.gov (United States)

    Safavi, Maryam Sadat; Shojaosadati, Seyed Abbas; Yang, Hye Gyeong; Kim, Yejin; Park, Eun Ji; Lee, Kang Choon; Na, Dong Hee

    2017-08-30

    The purpose of this study was to prepare curcumin-loaded bovine serum albumin nanoparticles (CCM-BSA-NPs) by reducing agent-free self-assembly at room temperature. A 2(4) factorial design approach was used to investigate the CCM-BSA-NP preparation process at different pH values, temperatures, dithiothreitol amounts, and CCM/BSA mass ratios. Increasing the ionic strength enabled preparation of CCM-BSA-NPs at 25°C without reducing agent. CCM-BSA-NPs prepared under the optimized conditions at 25°C showed a particle size of 110±6nm, yield of 88.5%, and drug loading of 7.1%. The CCM-BSA-NPs showed strong antioxidant activity and neuroprotective effects in glutamate-induced mouse hippocampal neuronal HT22 cells. This study suggests that ionic strength can be a key parameter affecting the preparation of albumin-based NPs. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Self-assembly of block copolymer micelles: synthesis via reversible addition-fragmentation chain transfer polymerization and aqueous solution properties.

    Science.gov (United States)

    Mya, Khine Y; Lin, Esther M J; Gudipati, Chakravarthy S; Gose, Halima B A S; He, Chaobin

    2010-07-22

    Poly(hexafluorobutyl methacrylate) (PHFBMA) homopolymer was synthesized by reversible addition-fragmentation chain transfer (RAFT)-mediated living radical polymerization in the presence of cyano-2-propyl dithiobenzoate (CPDB) RAFT agent. A block copolymer of PHFBMA-poly(propylene glycol acrylate) (PHFBMA-b-PPGA) with dangling poly(propylene glycol) (PPG) side chains was then synthesized by using CPDB-terminated PHFBMA as a macro-RAFT agent. The amphiphilic properties and self-assembly of PHFBMA-b-PPGA block copolymer in aqueous solution were investigated by dynamic and static light scattering (DLS and SLS) studies, in combination with fluorescence spectroscopy and transmission electron microscopy (TEM). Although PPG shows moderately hydrophilic character, the formation of nanosize polymeric micelles was confirmed by fluorescence and TEM studies. The low value of the critical aggregation concentration exhibited that the tendency for the formation of copolymer aggregates in aqueous solution was very high due to the strong hydrophobicity of the PHFBMA(145)-b-PPGA(33) block copolymer. The combination of DLS and SLS measurements revealed the existence of micellar aggregates in aqueous solution with an association number of approximately 40 +/- 7 for block copolymer micelles. It was also found in TEM observation that there are 40-50 micelles accumulated into one aggregate and these micelles are loosely packed inside the aggregate.

  8. Synthesis of visible light emitting self assembled Ge nanocrystals embedded within a SiO{sub 2} matrix

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Hernandez, A.; De Moure-Flores, F.; Quinones-Galvan, J. G.; Santoyo-Salazar, J.; Melendez-Lira, M. [Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, A.P. 14740, C.P. 07300, Mexico, Distrito Federal (Mexico); Rangel-Kuoppa, V. T. [Institute of Semiconductor and Solid State Physics, Johannes Kepler Universitaet, A-4040 Linz (Austria); Plach, Thomas [Christian Doppler Laboratory for Microscopic and Spectroscopic Material Characterization, Center for Surface and Nanoanalytics, Johannes Kepler Universitaet, A-4040 Linz (Austria); Zapata-Torres, M. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria IPN, Calzada Legaria 694, Col. Irrigacion, 11500 Mexico, Distrito Federal (Mexico); Hernandez-Hernandez, L. A. [Escuela Superior de Fisica y Matematicas del Instituto Politecnico Nacional, Edificio 9 U.P. Adolfo Lopez Mateos, Col. San Pedro Zacatenco, C.P. 07730 (Mexico)

    2012-02-15

    As-grown light emitting self-assembled Ge nanocrystals (Ge-NCs) embedded in a SiO{sub 2} matrix were produced via a sequential deposition process of SiO{sub 2}/Ge/SiO{sub 2} layers employing a reactive radio frequency sputtering technique. Obtained Ge-NCs show a crystallographic phase, the proportion, size, quality, and specific orientation of which are determined by the oxygen partial pressure. Photoluminescence (PL) spectra indicate that the size distribution of Ge-NCs is reduced and centered on about 8 nm when higher oxygen partial pressure is employed; the formation of Ge-NCs is corroborated by transmission electron microscopy measurements, and their sizes are consistent with estimates from PL measurements. Resistivity measurements are explained by a near neighbors hopping process, with specific features depending on the Ge-NCs' size. The features of PL and resistivity measurements indicate that there is no appreciable dependence of the number of interfacial defects on the oxygen partial pressure.

  9. Implication for using heme methyl hyperfine shifts as indicators of heme seating as related to stereoselectivity in the catabolism of heme by heme oxygenase: in-plane heme versus axial his rotation.

    Science.gov (United States)

    Ogura, Hiroshi; Evans, John P; de Montellano, Paul R Ortiz; La Mar, Gerd N

    2008-01-08

    The triple mutant of the solubilized, 265-residue construct of human heme oxygenase, K18E/E29K/R183E-hHO, has been shown to redirect the exclusive alpha-regioselectivity of wild-type hHO to primarily beta,delta-selectivity in the cleavage of heme (Wang, J., Evans, J. P., Ogura, H., La Mar, G. N., and Ortiz de Montellano, P. R. (2006) Biochemistry 45, 61-73). The 1H NMR hyperfine shift pattern for the substrate and axial His CbetaH's and the substrate-protein contacts of the cyanide-inhibited protohemin and 2,4-dimethyldeuterohemin complexes of the triple mutant have been analyzed in detail and compared to data for the WT complex. It is shown that protein contacts for the major solution isomers for both substrates in the mutant dictate approximately 90 degrees in-plane clockwise rotation relative to that in the WT. The conventional interpretation of the pattern of substrate methyl hyperfine shifts, however, indicates substrate rotations of only approximately 50 degrees . This paradox is resolved by demonstrating that the axial His25 imidazole ring also rotates counterclockwise with respect to the protein matrix in the mutant relative to that in the WT. The axial His25 CbetaH hyperfine shifts are shown to serve as independent probes of the imidazole plane orientation relative to the protein matrix. The analysis indicates that the pattern of heme methyl hyperfine shifts cannot be used alone to determine the in-plane orientation of the substrate as it relates to the stereospecificity of heme cleavage, without explicit consideration of the orientation of the axial His imidazole plane relative to the protein matrix.

  10. Synthesis of Co submicrospheres self-assembled by Co nanosheets via a complexant-assisted hydrothermal approach

    Science.gov (United States)

    Li, Hao; Jin, Zhen; Song, Huiyu; Liao, Shijun

    2010-01-01

    Co submicrospheres with the typical diameter of ca. 500 nm, and possessing beautiful morphologies composed of dense Co nanosheets ca. 10 nm thick, were synthesized by a facile and low-cost complexant-assisted hydrothermal approach. Magnetic measurement at room temperature indicated the coercivity of the submicrospheres reached 268 Oe, which was much higher than that of bulk Co and of some microstructure cobalt materials reported previously. Hexagonal close-packed (hcp) and face-centered cubic (fcc) cobalt phases in the materials were identified by X-ray diffractometer (XRD). It was revealed that the addition of the complexant sodium tartrate played a crucial role in the formation of the hierarchical architectures of the Co submicrospheres. We believe that the high coercivity of the synthesized submicrospheres may result from their special nano-micro structure, and we suggest that this low-cost and facile synthesis approach can be used for large-scale production of Co magnetic materials with special structures and morphologies, as well as excellent magnetic properties.

  11. Synthesis of two subunits of the macrolide domain of the immunosuppressive agent sanglifehrin a and assembly of a macrolactone precursor. application of masamune anti-aldol condensation.

    Science.gov (United States)

    Suttisintong, Khomson; White, James D

    2015-02-20

    Asymmetric anti-aldol coupling of a norephedrine-derived ester with an α-chiral aldehyde was used to synthesize a carboxylic acid representing the C13-C19 segment of the macrocyclic domain present in the immunosuppressive agent sanglifehrin A. Felkin addition set configuration at the C14-C17 stereotetrad in this unit in which hydroxyl functions at C15 and C17 were masked as an internal ketal. The carboxyl group of this segment was coupled to the N-terminus of the tripeptide portion (C1-N12) of sanglifehrin A macrolactone to assemble the C1-C19 domain. Synthesis of the C20-C25 subunit of sanglifehrin A containing a (23S) alcohol was completed via asymmetric allylation of (E)-3-iodo-2-methylprop-2-enal followed by oxidative cleavage of the terminal vinyl appendage and a Takai olefination with pinacol dichloromethylboronate. Esterification of this alcohol with a C1-C19 carboxylic acid furnished an open C1-C25 macrolactone precursor, but this substance failed to undergo macrocyclization via intramolecular Suzuki-Miyaura coupling.

  12. Miktoarm star copolymers from D-(-)-salicin core aggregated into dandelion-like structures as anticancer drug delivery systems: synthesis, self-assembly and drug release.

    Science.gov (United States)

    Mielańczyk, Anna; Odrobińska, Justyna; Grządka, Sebastian; Mielańczyk, Łukasz; Neugebauer, Dorota

    2016-12-30

    The β-glucoside-based heterofunctional initiator was used in the synthesis of well-defined eight-armed miktopolymers by sequential ring opening polymerization (ROP) of ε-caprolactone (CL) and atom transfer radical (co)polymerization (ATRP) of methyl methacrylate (MMA) and/or tert-butyl methacrylate (tBMA). Consequently, methacrylic acid (MAA) repeating units were introduced via selective cleavage of pendant tert-butyl protecting groups. Both the amphiphilic copolymers and miktoarm copolymers were self-assembled at 37°C and pH 7.4. The aggregates of miktoarm polymers were larger than that formed by polymethacrylate homoarm stars (≥250nm vs ≤200nm). The critical aggregation concentrations (CAC) of (mikto)stars were relatively low (0.006-0.411mg/mL) and decreased with the increase in MAA fraction content. Both MAA-based mikto- and homoarmed (co)polymers with shorter arms exhibited lower doxorubicin (DOX) loading capacity, whereas camptothecin (CPT) was encapsulated preferably by miktostars. The kinetic profiles of drug release showed that the rate of release was higher at acidic environment (pH 5.0) than in neutral pH. In the most cases the studied miktopolymer systems demonstrated the well-controlled delivery of the model anticancer drugs, which can be adjusted by structural parameters of polymeric carriers. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Novel EGCG assisted ultrasound synthesis of self-assembled Ca2SiO4:Eu(3+) hierarchical superstructures: Photometric characteristics and LED applications.

    Science.gov (United States)

    Venkataravanappa, M; Nagabhushana, H; Darshan, G P; Daruka Prasad, B; Vijayakumar, G R; Premkumar, H B; Udayabhanu

    2016-11-01

    This paper reports for the first time ultrasound, EGCG assisted synthesis of pure and Eu(3+) (1-5mol%) activated Ca2SiO4 nanophosphors having self-assembled superstructures with high purity. The shape, size and morphology of the product were tuned by controlling influential parameters. It was found that morphology was highly dependent on EGCG concentration, sonication time, pH and sonication power. The probable formation mechanism for various hierarchical superstructures was proposed. The PL studies of Ca2SiO4:Eu(3+) phosphors can be effectively excited by the near ultraviolet (UV) (396nm) light and exhibited strong red emission around 613nm, which was attributed to the Eu(3+) ((5)D0→(7)F2) transition. The concentration quenching phenomenon was explained based on energy transfer between defect and Eu(3+) ions, electron-phonon coupling and Eu(3+)-Eu(3+) interaction. The Judd-Ofelt intensity parameters and radiative properties were estimated by using PL emission spectra. The photometric studies indicate that the obtained phosphors could be a promising red component for possible applications in the field of white light emitting diodes. Copyright © 2016 Elsevier B.V. All rights reserved.

  14. Facile Synthesis of Polyaniline Nanotubes Using Self-Assembly Method Based on the Hydrogen Bonding: Mechanism and Application in Gas Sensing

    Directory of Open Access Journals (Sweden)

    Changqing Yin

    2017-10-01

    Full Text Available Based on hydrogen bonding, the highly uniform polyaniline (PANI nanotubes were synthesized by self-assembly method using citric acid (CA as the dopant and the structure-directing agent by optimizing the molar ratio of CA to aniline monomer (Ani. Synthesis conditions like reaction temperature and mechanical stirring were considered to explore the effects of hydrogen bonding on the morphologies. The effects of CA on the final morphology of the products were also investigated. The as-synthesized CA doped polyaniline (PANI nanomaterials were further deposited on the plate electrodes for the test of gas sensing performance to ammonia (NH3. The sensitivity to various concentrations of NH3, the repeatability, and the stability of the sensors were also tested and analyzed. As a result, it was found that the PANI nanomaterial synthesized at the CA/Ani molar ratio of 0.5 has highly uniform tubular morphology and shows the best sensing performance to NH3. It makes the PANI nanotubes a promising material for high performance gas sensing to NH3.

  15. Immunolocalization of heme oxygenase-1 in periodontal diseases

    Directory of Open Access Journals (Sweden)

    G Gayathri

    2014-01-01

    Conclusion: The results of our study is an increasing evidence of involvement of antioxidant enzymes like heme oxygenase-1 in periodontal inflammation and their implication for treatment of chronic periodontitis.

  16. Heme Deficiency in Alzheimer's Disease: A Possible Connection to Porphyria

    Science.gov (United States)

    Dwyer, Barney E.; Stone, Meghan L.; Zhu, Xiongwei; Perry, George; Smith, Mark A.

    2006-01-01

    Mechanisms that cause Alzheimer's disease (AD), an invariably fatal neurodegenerative disease, are unknown. Important recent data indicate that neuronal heme deficiency may contribute to AD pathogenesis. If true, factors that contribute to the intracellular heme deficiency could potentially alter the course of AD. The porphyrias are metabolic disorders characterized by enzyme deficiencies in the heme biosynthetic pathway. We hypothesize that AD may differ significantly in individuals possessing the genetic trait for an acute hepatic porphyria. We elaborate on this hypothesis and briefly review the characteristics of the acute hepatic porphyrias that may be relevant to AD. We note the proximity of genes encoding enzymes of the heme biosynthesis pathway to genetic loci linked to sporadic, late-onset AD. In addition, we suggest that identification of individuals carrying the genetic trait for acute porphyria may provide a unique resource for investigating AD pathogenesis and inform treatment and management decisions. PMID:17047301

  17. Gas-phase spectroscopy of ferric heme-NO complexes

    DEFF Research Database (Denmark)

    Wyer, J.A.; Jørgensen, Anders; Pedersen, Bjarke

    2013-01-01

    and significantly blue-shifted compared to ferric heme nitrosyl proteins (maxima between 408 and 422 nm). This is in stark contrast to the Q-band absorption where the protein microenvironment is nearly innocent in perturbing the electronic structure of the porphyrin macrocycle. Photodissociation is primarily...... through loss of NO. In contrast to the Q-band region, two-photon absorption was seen in the Soret band despite NO loss only requiring ∼1 eV. A model based on intersystem crossing to a long-lived triplet state where a barrier has to be surmounted is suggested. Finally, we summarise the measured absorption...... maxima of heme and its complexes with amino acids and NO. Not so innocent: Weakly bound complexes between ferric heme and NO were synthesised in the gas phase, and their absorption measured from photodissociation yields. Opposite absorption trends in the Soret-band are seen upon NO addition to heme ions...

  18. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  19. Structure of the Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme and enzymatic inactivation by mutation of the heme coordinating residue His-193

    Energy Technology Data Exchange (ETDEWEB)

    Suits,M.; Jaffer, N.; Jia, Z.

    2006-01-01

    Heme oxygenases catalyze the oxidation of heme to biliverdin, CO, and free iron. For pathogenic microorganisms, heme uptake and degradation are critical mechanisms for iron acquisition that enable multiplication and survival within hosts they invade. Here we report the first crystal structure of the pathogenic Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme at 1.45 {angstrom} resolution. When compared with other heme oxygenases, ChuS has a unique fold, including structural repeats and a {beta}-sheet core. Not surprisingly, the mode of heme coordination by ChuS is also distinct, whereby heme is largely stabilized by residues from the C-terminal domain, assisted by a distant arginine from the N-terminal domain. Upon heme binding, there is no large conformational change beyond the fine tuning of a key histidine (His-193) residue. Most intriguingly, in contrast to other heme oxygenases, the propionic side chains of heme are orientated toward the protein core, exposing the {alpha}-meso carbon position where O{sub 2} is added during heme degradation. This unique orientation may facilitate presentation to an electron donor, explaining the significantly reduced concentration of ascorbic acid needed for the reaction. Based on the ChuS-heme structure, we converted the histidine residue responsible for axial coordination of the heme group to an asparagine residue (H193N), as well as converting a second histidine to an alanine residue (H73A) for comparison purposes. We employed spectral analysis and CO measurement by gas chromatography to analyze catalysis by ChuS, H193N, and H73A, demonstrating that His-193 is the key residue for the heme-degrading activity of ChuS.

  20. FORUM: Bioinspired Heme, Heme/non-heme Diiron, Heme/copper and Inorganic NOx Chemistry: ·NO(g) Oxidation, Peroxynitrite-Metal Chemistry and ·NO(g) Reductive Coupling

    Science.gov (United States)

    Schopfer, Mark P.; Wang, Jun; Karlin, Kenneth D.

    2010-01-01

    The focus of this Forum review highlights work from our own laboratories and those of others in the area of biochemical and biologically inspired inorganic chemistry dealing with nitric oxide (nitrogen monoxide, ·NO(g)) and its biological roles and reactions. The latter focus is on (i) oxidation of ·NO(g) to nitrate by nitric oxide dioxygenases (NOD’s), and (ii) reductive coupling of two molecules of ·NO(g) to give N2O(g). In the former case, NOD’s are described and the highlighting of possible peroxynitrite-heme intermediates and consequences of this are given by discussion of recent works with myoglobin and a synthetic heme model system for NOD action. Summaries of recent copper complex chemistries with ·NO(g) and O2(g) leading to peroxynitrite species are given. The coverage of biological reductive coupling of ·NO(g) deals with bacterial nitric oxide reductases (NOR’s) with heme/non-heme diiron active sites, and on heme/Cu oxidases such as cytochrome c oxidase which can mediate the same chemistry. Recent designed protein and synthetic model compound (heme/non-heme diiron or heme/copper) as functional mimics are discussed in some detail. We also highlight examples from the chemical literature, not necessarily involving biologically relevant metal ions, which describe the oxidation of ·NO(g) to nitrate (or nitrite) and possible peroxynitrite intermediates, or reductive coupling of ·NO(g) to give nitrous oxide. PMID:20666386

  1. Isocyanides inhibit human heme oxygenases at the verdoheme stage.

    Science.gov (United States)

    Evans, John P; Kandel, Sylvie; Ortiz de Montellano, Paul R

    2009-09-22

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides, isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 microM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design.

  2. Isocyanides Inhibit Human Heme Oxygenases at the Verdoheme Stage†

    Science.gov (United States)

    Evans, John P.; Kandel, Sylvie; Ortiz de Montellano, Paul R.

    2010-01-01

    Heme oxygenases (HO) catalyze the oxidative cleavage of heme to generate biliverdin, CO, and free iron. In humans, heme oxygenase-1 (hHO-1) is overexpressed in tumor tissues, where it helps to protect cancer cells from anticancer agents, while HOs in fungal pathogens, such as Candida albicans, function as the primary means of iron acquisition. Thus, HO can be considered a potential therapeutic target for certain diseases. In this study, we have examined the equilibrium binding of three isocyanides; isopropyl, n-butyl, and benzyl, to the two major human HO isoforms (hHO-1 and hHO-2), Candida albicans HO (CaHmx1), and human cytochrome P450 CYP3A4 using electronic absorption spectroscopy. Isocyanides coordinate to both ferric and ferrous HO-bound heme, with tighter binding by the more hydrophobic isocyanides, and 200-300-fold tighter binding to the ferrous form. Benzyl isocyanide was the strongest ligand to ferrous heme in all the enzymes. Because the dissociation constants (KD) of the ligands for ferrous heme-hHO-1 were below the limit of accuracy for equilibrium titrations, stopped-flow kinetic experiments were used to measure the binding parameters of the isocyanides to ferrous hHO-1. Steady-state activity assays showed that benzyl isocyanide was the most potent uncompetitive inhibitor with respect to heme with a KI = 0.15 μM for hHO-1. Importantly, single turnover assays revealed that the reaction was completely stopped by coordination of the isocyanide to the verdoheme intermediate rather than to the ferric heme complex. Much tighter binding of the inhibitor to the verdoheme intermediate differentiates it from inhibition of, for example, CYP3A4 and offers a possible route to more selective inhibitor design. PMID:19694439

  3. Genome-wide analysis reveals novel genes essential for heme homeostasis in Caenorhabditis elegans.

    Directory of Open Access Journals (Sweden)

    Scott Severance

    2010-07-01

    Full Text Available Heme is a cofactor in proteins that function in almost all sub-cellular compartments and in many diverse biological processes. Heme is produced by a conserved biosynthetic pathway that is highly regulated to prevent the accumulation of heme--a cytotoxic, hydrophobic tetrapyrrole. Caenorhabditis elegans and related parasitic nematodes do not synthesize heme, but instead require environmental heme to grow and develop. Heme homeostasis in these auxotrophs is, therefore, regulated in accordance with available dietary heme. We have capitalized on this auxotrophy in C. elegans to study gene expression changes associated with precisely controlled dietary heme concentrations. RNA was isolated from cultures containing 4, 20, or 500 microM heme; derived cDNA probes were hybridized to Affymetrix C. elegans expression arrays. We identified 288 heme-responsive genes (hrgs that were differentially expressed under these conditions. Of these genes, 42% had putative homologs in humans, while genomes of medically relevant heme auxotrophs revealed homologs for 12% in both Trypanosoma and Leishmania and 24% in parasitic nematodes. Depletion of each of the 288 hrgs by RNA-mediated interference (RNAi in a transgenic heme-sensor worm strain identified six genes that regulated heme homeostasis. In addition, seven membrane-spanning transporters involved in heme uptake were identified by RNAi knockdown studies using a toxic heme analog. Comparison of genes that were positive in both of the RNAi screens resulted in the identification of three genes in common that were vital for organismal heme homeostasis in C. elegans. Collectively, our results provide a catalog of genes that are essential for metazoan heme homeostasis and demonstrate the power of C. elegans as a genetic animal model to dissect the regulatory circuits which mediate heme trafficking in both vertebrate hosts and their parasites, which depend on environmental heme for survival.

  4. Chromosomal localization of the human heme oxygenase genes: Heme oxygenase-1 (HMOX1) maps to chromosome 22q12 and heme oxygenase-2 (HMOX2) maps to chromosome 16p13. 3

    Energy Technology Data Exchange (ETDEWEB)

    Kutty, R.K.; Kutty, G.; Rodriguez, I.R.; Chader, G.J.; Wiggert, B. (National Institutes of Health, Bethesda, MD (United States))

    1994-04-01

    Heme oxygenase catalyzes the oxidation of heme to biliverdin, the precursor of the bile pigment bilirubin, and carbon monoxide, a putative neurotransmitter. The authors have employed polymerase chain reaction and fluorescence in situ hybridization to determine the chromosome localization of the genes coding for the two known heme oxygenase isozymes. Heme oxygenase-1 (HMOX1), the inducible form, was localized to human chromosome 22q12, while heme oxygenase-2 (HMOX2), the constitutive form, was localized to chromosome 16p13.3. 14 refs., 3 figs.

  5. Synthesis, Characterization and Application of Poly (Styrene-4- Vinyl Pyridine) Membranes Assembled With Single-Wall Carbon Nanotubes

    KAUST Repository

    He, Haoze

    2011-06-01

    Poly(styrene‐4‐vinylpyridine) (PS‐P4VP) isoporous membranes were prepared and their properties were evaluated in this research. The solution was prepared by dissolving PS‐P4VP polymer with necessary additives into a 1:1:1 1,4‐dioxane – N,N‐dimethyl formamide – tetrahydrofuran (DOX‐DMF‐THF, DDT) solvent. Then 0.5‐1.0 mL of the primary solution was cast onto the non‐woven substrate membrane on a glass slide, evaporated for 15‐20 sec and immersed into de‐ionized water for more than 30 min for the solidification of isoporous structure and for the formation of the primary films, which could be post‐processed in different ways for different tests. The membrane surface presents a well‐ordered, hexagonal self‐assembly structure, which is fit for aqueous and gaseous filtration. The pore size of the isoporous surface is 30~40 nm. The pore size is also sensitive to [H+] in the solution and a typical pair of S‐shape pH‐correlation curves with significant hysteresis was found. Four techniques were tried to improve the properties of the membranes in this research: 1) 1,4‐diiodobutane was introduced to chemically change the structure as a cross‐linking agent. 2) single‐wall carbon nanotube (SWCNT) was linked to the membranes in order to strengthen the stability and rigidity and to reduce the hysteresis. 3) Homo‐poly(4‐vinylpyridine) (homo‐P4VP) was added and inserted into the PS‐P4VP micelles to affect the pore size and surface structure. 4) Copper acetate (Cu(Ac)2) was used as substitute of dioxane to prepare the Cu(Ac)2‐DMF‐THF (CDT) mixed solvent, for a better SWCNT dispersion. All the possible improvements were judged by the atomic force microscopy (AFM) images, water and gas flux tests and pH‐correlation curves. The introduction of SWCNT was the most important innovation in this research and is promising in future applications.

  6. Nanotechnology: A molecular assembler

    Science.gov (United States)

    Kelly, T. Ross; Snapper, Marc L.

    2017-09-01

    The idea of nanometre-scale machines that can assemble molecules has long been thought of as the stuff of science fiction. Such a machine has now been built -- and might herald a new model for organic synthesis. See Letter p.374

  7. HemeBIND: a novel method for heme binding residue prediction by combining structural and sequence information

    Directory of Open Access Journals (Sweden)

    Hu Jianjun

    2011-05-01

    Full Text Available Abstract Background Accurate prediction of binding residues involved in the interactions between proteins and small ligands is one of the major challenges in structural bioinformatics. Heme is an essential and commonly used ligand that plays critical roles in electron transfer, catalysis, signal transduction and gene expression. Although much effort has been devoted to the development of various generic algorithms for ligand binding site prediction over the last decade, no algorithm has been specifically designed to complement experimental techniques for identification of heme binding residues. Consequently, an urgent need is to develop a computational method for recognizing these important residues. Results Here we introduced an efficient algorithm HemeBIND for predicting heme binding residues by integrating structural and sequence information. We systematically investigated the characteristics of binding interfaces based on a non-redundant dataset of heme-protein complexes. It was found that several sequence and structural attributes such as evolutionary conservation, solvent accessibility, depth and protrusion clearly illustrate the differences between heme binding and non-binding residues. These features can then be separately used or combined to build the structure-based classifiers using support vector machine (SVM. The results showed that the information contained in these features is largely complementary and their combination achieved the best performance. To further improve the performance, an attempt has been made to develop a post-processing procedure to reduce the number of false positives. In addition, we built a sequence-based classifier based on SVM and sequence profile as an alternative when only sequence information can be used. Finally, we employed a voting method to combine the outputs of structure-based and sequence-based classifiers, which demonstrated remarkably better performance than the individual classifier alone

  8. Altered activity of heme biosynthesis pathway enzymes in individuals chronically exposed to arsenic in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez-Zavala, A.; Del Razo, L.M.; Garcia-Vargas, G.G.; Aguilar, C.; Borja, V.H.; Albores, A.; Cebrian, M.E. [CINVESTAV-IPN, Mexico (Mexico). Dept. de Farmacologia y Toxicologica

    1999-03-01

    Our objective was to evaluate the activities of some enzymes of the heme biosynthesis pathway and their relationship with the profile of urinary porphyrin excretion in individuals exposed chronically to arsenic (As) via drinking water in Region Lagunera, Mexico. We selected 17 individuals from each village studied: Benito Juarez, which has current exposure to 0.3 mg As/l; Santa Ana, where individuals have been exposed for more than 35 years to 0.4 mg As/l, but due to changes in the water supply (in 1992) exposure was reduced to its current level (0.1 mg As/l), and Nazareno, with 0.014 mg As/l. Average arsenic concentrations in urine were 2058, 398, and 88 {mu}g As/g creatinine, respectively. The more evident alterations in heme metabolism observed in the highly exposed individuals were: (1) small but significant increases in porphobilinogen deaminase (PBG-D) and uroporphyrinogen decarboxylase (URO-D) activities in peripheral blood erythrocytes; (2) increases in the urinary excretion of total porphyrins, mainly due to coproporphyrin III (COPROIII) and uroporphyrin III (UROIII); and (3) increases in the COPRO/URO and COPROIII/COPROI ratios. No significant changes were observed in uroporphyrinogen III synthetase (UROIII-S) activity. The direct relationships between enzyme activities and urinary porphyrins, suggest that the increased porphyrin excretion was related to PBG-D, whereas the increased URO-D activity would enhance coproporphyrin synthesis and excretion at the expense of uroporphyrin. None of the human studies available have reported the marked porphyric response and enzyme inhibition observed in rodents. In conclusion, chronic As exposure alters human heme metabolism; however the severity of the effects appears to depend on characteristics of exposure not yet fully characterized. (orig.) With 1 fig., 3 tabs., 20 refs.

  9. Heme Degradation by Heme Oxygenase Protects Mitochondria but Induces ER Stress via Formed Bilirubin

    Directory of Open Access Journals (Sweden)

    Andrea Müllebner

    2015-04-01

    Full Text Available Heme oxygenase (HO, in conjunction with biliverdin reductase, degrades heme to carbon monoxide, ferrous iron and bilirubin (BR; the latter is a potent antioxidant. The induced isoform HO-1 has evoked intense research interest, especially because it manifests anti-inflammatory and anti-apoptotic effects relieving acute cell stress. The mechanisms by which HO mediates the described effects are not completely clear. However, the degradation of heme, a strong pro-oxidant, and the generation of BR are considered to play key roles. The aim of this study was to determine the effects of BR on vital functions of hepatocytes focusing on mitochondria and the endoplasmic reticulum (ER. The affinity of BR to proteins is a known challenge for its exact quantification. We consider two major consequences of this affinity, namely possible analytical errors in the determination of HO activity, and biological effects of BR due to direct interaction with protein function. In order to overcome analytical bias we applied a polynomial correction accounting for the loss of BR due to its adsorption to proteins. To identify potential intracellular targets of BR we used an in vitro approach involving hepatocytes and isolated mitochondria. After verification that the hepatocytes possess HO activity at a similar level as liver tissue by using our improved post-extraction spectroscopic assay, we elucidated the effects of increased HO activity and the formed BR on mitochondrial function and the ER stress response. Our data show that BR may compromise cellular metabolism and proliferation via induction of ER stress. ER and mitochondria respond differently to elevated levels of BR and HO-activity. Mitochondria are susceptible to hemin, but active HO protects them against hemin-induced toxicity. BR at slightly elevated levels induces a stress response at the ER, resulting in a decreased proliferative and metabolic activity of hepatocytes. However, the proteins that are targeted

  10. Anion-controlled assembly of metal 3,5-bis(benzimidazol-1-ylmethyl) benzoate complexes: Synthesis, characterization and property

    Energy Technology Data Exchange (ETDEWEB)

    Kuai, Hai-Wei [Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Faculty of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003 (China); Lv, Gao-Chao; Hou, Chao [Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China); Sun, Wei-Yin, E-mail: sunwy@nju.edu.cn [Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210093 (China)

    2015-03-15

    Hydrothermal reactions of 3,5-bis(benzimidazol-1-ylmethyl)benzoic acid (HL) with Cd(II), Cu(II) and Zn(II) salts provide eight new metal complexes which were characterized by single crystal and powder X-ray diffraction, IR, elemental and thermogravimetric analyses. Two cadmium frameworks [Cd(L){sub 2}]·2H{sub 2}O (1) and [Cd(L)Cl] (2) have 3D structures with (4{sup 2}.6{sup 5}.8{sup 3})(4{sup 2}.6) and rtl (4.6{sup 2}){sub 2}(4{sup 2}.6{sup 10}.8{sup 3}) topologies, respectively. Structural diversity of four copper complexes [Cu{sub 3}(L){sub 2}]·NO{sub 3}·0.5H{sub 2}O (3), [Cu{sub 2}(HL){sub 2}(SO{sub 4})]·3.5H{sub 2}O (4), [Cu(L)(bdc){sub 0.5}]·1.5H{sub 2}O (5) and [Cu{sub 2}(L)(HL)(Hbdc)] (6) (H{sub 2}bdc=1,4-benzenedicarboxylic acid) is achieved through the alteration of copper salts and addition of auxiliary ligand. As a result, 3 has a 1D ladder structure, 4 is a discrete dinuclear complex, 5 displays a (3,4)-connected 2-nodal 3-fold interpenetrating framework with (4{sup 2}.6.10{sup 2}.12)(4{sup 2}.6) topology, 6 exhibits a 4-connected uninodal 2D sql (4{sup 4}.6{sup 2}) network. Within the zinc series, ZnCl{sub 2} and ZnSO{sub 4} were used for the syntheses of [Zn(L)Cl] (7) and [Zn(L)(SO{sub 4}){sub 0.5}]·2H{sub 2}O (8), respectively. 7 shows a 3-connected uninodal 2D hcb network with (6{sup 3}) topology and 8 is a (3,6)-connected 2-nodal 3D framework with (4{sup 2}.6){sub 2}(4{sup 4}.6{sup 2}.8{sup 8}.10) topology. The luminescent properties of the Cd(II) and Zn(II) complexes were investigated. - Graphical abstract: Eight new complexes have been successfully synthesized from the hydrothermal reactions of Cd(II), Cu(II) and Zn(II) salts with 3,5-bis(benzimidazol-1-ylmethyl)benzoic acid. The complexes exhibited anion-controlled structural diversity. - Highlights: • Metal complexes have diverse structures of 1D chains, 2D networks and 3D frameworks. • Anion-controlled assembly of the complexes is reported. • The luminescent properties of the Cd

  11. Asymmetric synthesis of densely functionalized medium-ring carbocycles and lactones through modular assembly and ring-closing metathesis of sulfoximine-substituted trienes and dienynes.

    Science.gov (United States)

    Lejkowski, Michal; Banerjee, Prabal; Schüller, Sabine; Münch, Alexander; Runsink, Jan; Vermeeren, Cornelia; Gais, Hans-Joachim

    2012-03-19

    An asymmetric synthesis of densely functionalized 7-11-membered carbocycles and 9-11-membered lactones has been developed. Its key steps are a modular assembly of sulfoximine-substituted C- and O-tethered trienes and C-tethered dienynes and their Ru-catalyzed ring-closing diene and enyne metathesis (RCDEM and RCEYM). The synthesis of the C-tethered trienes and dienynes includes the following steps: 1) hydroxyalkylation of enantiomerically pure titanated allylic sulfoximines with unsaturated aldehydes, 2) α-lithiation of alkenylsulfoximines, 3) alkylation, hydroxy-alkylation, formylation, and acylation of α-lithioalkenylsulfoximines, and 4) addition of Grignard reagents to α-formyl(acyl)alkenylsulfoximines. The sulfoximine group provided for high asymmetric induction in steps 1) and 4). RCDEM of the sulfoximine-substituted trienes with the second-generation Ru catalyst stereoselectively afforded the corresponding functionalized 7-11-membered carbocyles. RCDEM of diastereomeric silyloxy-substituted 1,6,12-trienes revealed an interesting difference in reactivity. While the (R)-diastereomer gave the 11-membered carbocyle, the (S)-diastereomer delivered in a cascade of cross metathesis and RCDEM 22-membered macrocycles. RCDEM of cyclic trienes furnished bicyclic carbocycles with a bicyclo[7.4.0]tridecane and bicyclo[9.4.0]pentadecane skeleton. Selective transformations of the sulfoximine- and bissilyloxy-substituted carbocycles were performed including deprotection, cross-coupling reaction and reduction of the sulfoximine moiety. Esterification of a sulfoximine-substituted homoallylic alcohol with unsaturated carboxylic acids gave the O-tethered trienes, RCDEM of which yielded the sulfoximine-substituted 9-11-membered lactones. RCEYM of a sulfoximine-substituted 1,7-dien-10-yne showed an unprecedented dichotomy in ring formation depending on the Ru catalyst. While the second-generation Ru catalyst gave the 9-membered exo 1,3-dienyl carbocycle, the first-generation Ru

  12. HEME OXYGENASE-1 AND FATTY LIVER DISEASE.

    Directory of Open Access Journals (Sweden)

    Daniela Nicolosi

    2016-04-01

    Full Text Available Fatty liver diseases are a spectrum of liver pathologies characterized by abnormal hepatocellular accumulations of lipids. This condition may occur in both adults and children, particularly those who are obese or have insulin resistance or following abuse of alcohol consumption. They are classified in Non-Alcoholic Fatty Liver Disease (NAFLD and Alcoholic Fatty Liver Disease (AFLD. Steatohepatitis is a specific pattern of injury within the spectrum of NAFLD and this pattern is associated with fibrotic progression and cirrhosis. The role of oxidative stress in liver steatosis production and its progression to inflammation leading to steatohepatitis has been discussed in relation to alterations in metabolic and pro-inflammatory pathway. One of the main enzymes responsible for antioxidant activity in the presence of liver damage is the Heme Oxygenase-1(HO-1.The products of the HO-1-catalyzed reaction, particularly carbon monoxide (CO and biliverdin/bilirubin have been shown to exert protective effects in several organs against oxidative and other noxious stimuli. In this context, it is interesting to note that induction of HO-1 expression contributes to protection against liver damage in various experimental models. The focus of this review is on the significance of targeted induction of HO-1 as a potential therapeutic strategy to protect the liver against fatty liver diseases.

  13. KH2PO4-Assisted Synthesis and Electrochemical Performance of Highly Uniform CuBi2O4 Microspheres Hierarchically Self-Assembled by Nanoparticles

    Science.gov (United States)

    Wang, Fei; Yang, Hua; Zhang, Yunchuan; Zhang, Haimin

    2017-08-01

    The effect of KH2PO4 on the synthesis of CuBi2O4 microstructures was investigated. The samples were characterized by powder x-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) analysis, x-ray photoelectron spectroscopy (XPS) and ultraviolet (UV)-visible diffuse reflectance spectroscopy. It is demonstrated that the use of KH2PO4 leads to the production of highly uniform CuBi2O4 microspheres hierarchically self-assembled by nanoparticles. With increasing the KH2PO4 concentration from 0.5 M to 1.4 M, the average diameter of the resultant microspheres decreases gradually from 3.3 μm to 1.4 μm. However, further increase in the KH2PO4 concentration up to 1.5 M leads to a sudden increase in the average diameter of the resultant microspheres up to 2.3 μm. In addition, a minor amount of bamboo leaf- or pine needle-like structures are visible in the samples prepared at the KH2PO4 concentrations of 1.0-1.5 M. The bandgap energy of the as-prepared samples is measured to be 1.89 eV by UV-visible diffuse reflectance spectroscopy. The electrochemical performance of the samples was investigated by cyclic voltammetry, galvanostatic charge-discharge measurements, and electrochemical impedance spectroscopy in 2 M KOH electrolyte. Among the hierarchical microspheres, those prepared at the KH2PO4 concentration of 1.4 M deliver a relatively higher specific capacitance due to their smaller size (1284 F g-1 at a current density of 2 A g-1).

  14. Dimethyl fumarate increases fetal hemoglobin, provides heme detoxification, and corrects anemia in sickle cell disease.

    Science.gov (United States)

    Krishnamoorthy, Sriram; Pace, Betty; Gupta, Dipti; Sturtevant, Sarah; Li, Biaoru; Makala, Levi; Brittain, Julia; Moore, Nancy; Vieira, Benjamin F; Thullen, Timothy; Stone, Ivan; Li, Huo; Hobbs, William E; Light, David R

    2017-10-19

    Sickle cell disease (SCD) results from a point mutation in the β-globin gene forming hemoglobin S (HbS), which polymerizes in deoxygenated erythrocytes, triggering recurrent painful vaso-occlusive crises and chronic hemolytic anemia. Reactivation of fetal Hb (HbF) expression ameliorates these symptoms of SCD. Nuclear factor (erythroid derived-2)-like 2 (Nrf2) is a transcription factor that triggers cytoprotective and antioxidant pathways to limit oxidative damage and inflammation and increases HbF synthesis in CD34+ stem cell-derived erythroid progenitors. We investigated the ability of dimethyl fumarate (DMF), a small-molecule Nrf2 agonist, to activate γ-globin transcription and enhance HbF in tissue culture and in murine and primate models. DMF recruited Nrf2 to the γ-globin promoters and the locus control region of the β-globin locus in erythroleukemia cells, elevated HbF in SCD donor-derived erythroid progenitors, and reduced hypoxia-induced sickling. Chronic DMF administration in SCD mice induced HbF and increased Nrf2-dependent genes to detoxify heme and limit inflammation. This improved hematological parameters, reduced plasma-free Hb, and attenuated inflammatory markers. Chronic DMF administration to nonanemic primates increased γ-globin mRNA in BM and HbF protein in rbc. DMF represents a potential therapy for SCD to induce HbF and augment vasoprotection and heme detoxification.

  15. A mononuclear non-heme manganese(IV)-oxo complex binding redox-inactive metal ions.

    Science.gov (United States)

    Chen, Junying; Lee, Yong-Min; Davis, Katherine M; Wu, Xiujuan; Seo, Mi Sook; Cho, Kyung-Bin; Yoon, Heejung; Park, Young Jun; Fukuzumi, Shunichi; Pushkar, Yulia N; Nam, Wonwoo

    2013-05-01

    Redox-inactive metal ions play pivotal roles in regulating the reactivities of high-valent metal-oxo species in a variety of enzymatic and chemical reactions. A mononuclear non-heme Mn(IV)-oxo complex bearing a pentadentate N5 ligand has been synthesized and used in the synthesis of a Mn(IV)-oxo complex binding scandium ions. The Mn(IV)-oxo complexes were characterized with various spectroscopic methods. The reactivities of the Mn(IV)-oxo complex are markedly influenced by binding of Sc(3+) ions in oxidation reactions, such as a ~2200-fold increase in the rate of oxidation of thioanisole (i.e., oxygen atom transfer) but a ~180-fold decrease in the rate of C-H bond activation of 1,4-cyclohexadiene (i.e., hydrogen atom transfer). The present results provide the first example of a non-heme Mn(IV)-oxo complex binding redox-inactive metal ions that shows a contrasting effect of the redox-inactive metal ions on the reactivities of metal-oxo species in the oxygen atom transfer and hydrogen atom transfer reactions.

  16. Human heme oxygenase-1 efficiently catabolizes heme in the absence of biliverdin reductase.

    Science.gov (United States)

    Reed, James R; Huber, Warren J; Backes, Wayne L

    2010-11-01

    Heme oxygenase 1 (HO-1) uses molecular oxygen and electrons from NADPH cytochrome P450 reductase to convert heme to CO, ferrous iron, and biliverdin (BV). Enzymatic studies with the purified 30-kDa form of HO-1 routinely use a coupled assay containing biliverdin reductase (BVR), which converts BV to bilirubin (BR). BVR is believed to be required for optimal HO-1 activity. The goal of this study was to determine whether HO-1 activity could be monitored directly by following BV generation or iron release (using the ferrous iron chelator, ferrozine) in the absence of BVR. Using assays for each of the three end products, we found that HO-1 activity was stimulated in the presence of catalase and comparable rates were measured with each assay. Absorbance scans revealed characteristic spectra for BR, BV, and/or the ferrozine-iron complex. The optimal conditions were slightly different for the direct and coupled assays. BSA activated the coupled but inhibited the direct assays, and the assays had different pH optima. By measuring the activity of BVR directly using BV as a substrate, these differences were attributed to different enzymatic properties of BVR and HO-1. Thus, BVR is not needed to measure the activity of HO-1 when catalase is present. In fact, the factors affecting catalysis by HO-1 are better understood using the direct assays because the coupled assay can be influenced by properties of BVR.

  17. Determination of heme in microorganisms using HPLC-MS/MS and cobalt(III) protoporphyrin IX inhibition of heme acquisition in Escherichia coli.

    Science.gov (United States)

    Fyrestam, Jonas; Östman, Conny

    2017-10-17

    One of the main threats to the achievements in modern medicine is antimicrobial resistance. Molecular targeting of bacterial acquisition mechanisms of heme has been suggested to be an alternative to antibiotics. In the present study, HPLC-MS/MS combined with a simple clean-up based on liquid-liquid extraction has been developed and evaluated for simultaneous determination of heme and porphyrin heme precursors in microorganisms. Experimental design was used to optimize the extraction parameters, to obtain a method with high recovery, low matrix effects, and high precision. The effects of additives in the culture medium on the biosynthesis of heme were studied using Escherichia coli as a model microorganism. 5-Aminolaevulinic acid and hemin increased the heme concentration in E. coli by a factor of 1.5 and 4.5, respectively. Addition of 5-aminolaevulinic acid bypassed the E. coli negative feedback control of heme biosynthesis, which led to high amounts of intracellular porphyrins. The high heme concentration obtained when hemin was used as a culture additive shows that E. coli has an uptake of heme from its surroundings. In contrast, addition of cobalt protoporphyrin IX to the growth medium reduced the amount of heme in E. coli, demonstrating this compound's ability to mimic real heme and inhibit the heme acquisition mechanisms.

  18. An Assembly Funnel Makes Biomolecular Complex Assembly Efficient

    Science.gov (United States)

    Zenk, John; Schulman, Rebecca

    2014-01-01

    Like protein folding and crystallization, the self-assembly of complexes is a fundamental form of biomolecular organization. While the number of methods for creating synthetic complexes is growing rapidly, most require empirical tuning of assembly conditions and/or produce low yields. We use coarse-grained simulations of the assembly kinetics of complexes to identify generic limitations on yields that arise because of the many simultaneous interactions allowed between the components and intermediates of a complex. Efficient assembly occurs when nucleation is fast and growth pathways are few, i.e. when there is an assembly “funnel”. For typical complexes, an assembly funnel occurs in a narrow window of conditions whose location is highly complex specific. However, by redesigning the components this window can be drastically broadened, so that complexes can form quickly across many conditions. The generality of this approach suggests assembly funnel design as a foundational strategy for robust biomolecular complex synthesis. PMID:25360818

  19. Heme oxygenase-1 deletion affects stress erythropoiesis.

    Directory of Open Access Journals (Sweden)

    Yu-An Cao

    Full Text Available Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1 deficiency leads to disrupted stress hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis.We used a transplant model to induce stress conditions. In irradiated recipients that received hmox(+/- or hmox(+/+ bone marrow cells, we evaluated (i the erythrocyte parameters in the peripheral blood; (ii the staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii the patterns of histological iron staining; and (iv the number of Mac-1(+-cells expressing TNF-α. In the spleens of mice that received hmox(+/- cells, we show (i decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii increases in the insoluble iron levels and decreases in the soluble iron levels; (iii increased numbers of Mac-1(+-cells expressing TNF-α; and (iv decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast populations.As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for hematologic diseases.

  20. Heme oxygenase activity correlates with serum indices of iron homeostasis in healthy nonsmokers

    Science.gov (United States)

    Heme oxygenase (HO) catalyzes the breakdown of heme to carbon monoxide, iron, and biliverdin. While the use of genetically altered animal models in investigation has established distinct associations between HO activity and systemic iron availability, studies have not yet confirm...

  1. Novel Insights into the Vasoprotective Role of Heme Oxygenase-1

    Directory of Open Access Journals (Sweden)

    Emanuela Marcantoni

    2012-01-01

    Full Text Available Cardiovascular risk factors contribute to enhanced oxidative stress which leads to endothelial dysfunction. These events trigger platelet activation and their interaction with leukocytes and endothelial cells, thus contributing to the induction of chronic inflammatory processes at the vascular wall and to the development of atherosclerotic lesions and atherothrombosis. In this scenario, endogenous antioxidant pathways are induced to restrain the development of vascular disease. In the present paper, we will discuss the role of heme oxygenase (HO-1 which is an enzyme of the heme catabolism and cleaves heme to form biliverdin and carbon monoxide (CO. Biliverdin is reduced enzymatically to the potent antioxidant bilirubin. Recent evidence supports the involvement of HO-1 in the antioxidant and antiinflammatory effect of cyclooxygenase(COX-2-dependent prostacyclin in the vasculature. Moreover, the role of HO-1 in estrogen vasoprotection is emerging. Finally, possible strategies to develop novel therapeutics against cardiovascular disease by targeting the induction of HO-1 will be discussed.

  2. Human heme oxygenase oxidation of 5- and 15-phenylhemes.

    Science.gov (United States)

    Wang, Jinling; Niemevz, Fernando; Lad, Latesh; Huang, Liusheng; Alvarez, Diego E; Buldain, Graciela; Poulos, Thomas L; de Montellano, Paul R Ortiz

    2004-10-08

    Human heme oxygenase-1 (hHO-1) catalyzes the O2-dependent oxidation of heme to biliverdin, CO, and free iron. Previous work indicated that electrophilic addition of the terminal oxygen of the ferric hydroperoxo complex to the alpha-meso-carbon gives 5-hydroxyheme. Earlier efforts to block this reaction with a 5-methyl substituent failed, as the reaction still gave biliverdin IXalpha. Surprisingly, a 15-methyl substituent caused exclusive cleavage at the gamma-meso-rather than at the normal, unsubstituted alpha-meso-carbon. No CO was formed in these reactions, but the fragment cleaved from the porphyrin eluded identification. We report here that hHO-1 cleaves 5-phenylheme to biliverdin IXalpha and oxidizes 15-phenylheme at the alpha-meso position to give 10-phenylbiliverdin IXalpha. The fragment extruded in the oxidation of 5-phenylheme is benzoic acid, one oxygen of which comes from O2 and the other from water. The 2.29- and 2.11-A crystal structures of the hHO-1 complexes with 1- and 15-phenylheme, respectively, show clear electron density for both the 5- and 15-phenyl rings in both molecules of the asymmetric unit. The overall structure of 15-phenylheme-hHO-1 is similar to that of heme-hHO-1 except for small changes in distal residues 141-150 and in the proximal Lys18 and Lys22. In the 5-phenylheme-hHO-1 structure, the phenyl-substituted heme occupies the same position as heme in the heme-HO-1 complex but the 5-phenyl substituent disrupts the rigid hydrophobic wall of residues Met34, Phe214, and residues 26-42 near the alpha-meso carbon. The results provide independent support for an electrophilic oxidation mechanism and support a role for stereochemical control of the reaction regiospecificity.

  3. The heme-regulatory motif of nuclear receptor Rev-erbβ is a key mediator of heme and redox signaling in circadian rhythm maintenance and metabolism.

    Science.gov (United States)

    Carter, Eric L; Ramirez, Yanil; Ragsdale, Stephen W

    2017-07-07

    Rev-erbβ is a heme-responsive transcription factor that regulates genes involved in circadian rhythm maintenance and metabolism, effectively bridging these critical cellular processes. Heme binding to Rev-erbβ indirectly facilitates its interaction with the nuclear receptor co-repressor (NCoR1), resulting in repression of Rev-erbβ target genes. Fe 3+ -heme binds in a 6-coordinate complex with axial His and Cys ligands, the latter provided by a heme-regulatory motif (HRM). Rev-erbβ was thought to be a heme sensor based on a weak K d value for the Rev-erbβ·heme complex of 2 μm determined with isothermal titration calorimetry. However, our group demonstrated with UV-visible difference titrations that the K d value is in the low nanomolar range, and the Fe 3+ -heme off-rate is on the order of 10 -6 s -1 making Rev-erbβ ineffective as a sensor of Fe 3+ -heme. In this study, we dissected the kinetics of heme binding to Rev-erbβ and provided a K d for Fe 3+ -heme of ∼0.1 nm Loss of the HRM axial thiolate via redox processes, including oxidation to a disulfide with a neighboring cysteine or dissociation upon reduction of Fe 3+ - to Fe 2+ -heme, decreased binding affinity by >20-fold. Furthermore, as measured in a co-immunoprecipitation assay, substitution of the His or Cys heme ligands in Rev-erbβ was accompanied by a significant loss of NCoR1 binding. These results demonstrate the importance of the Rev-erbβ HRM in regulating interactions with heme and NCoR1 and advance our understanding of how signaling through HRMs affects the major cellular processes of circadian rhythm maintenance and metabolism. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  4. Kinetics of heme transfer by the Shr NEAT domains of Group A Streptococcus.

    Science.gov (United States)

    Ouattara, Mahamoudou; Pennati, Andrea; Devlin, Darius J; Huang, Ya-Shu; Gadda, Giovanni; Eichenbaum, Zehava

    2013-10-15

    The hemolytic Group A Streptococcus (GAS) is a notorious human pathogen. Shr protein of GAS participates in iron acquisition by obtaining heme from host hemoglobin and delivering it to the adjacent receptor on the surface, Shp. Heme is then conveyed to the SiaABC proteins for transport across the membrane. Using rapid kinetic studies, we investigated the role of the two heme binding NEAT modules of Shr. Stopped-flow analysis showed that holoNEAT1 quickly delivered heme to apoShp. HoloNEAT2 did not exhibit such activity; only little and slow transfer of heme from NEAT2 to apoShp was seen, suggesting that Shr NEAT domains have distinctive roles in heme transport. HoloNEAT1 also provided heme to apoNEAT2, by a fast and reversible process. To the best of our knowledge this is the first transfer observed between isolated NEAT domains of the same receptor. Sequence alignment revealed that Shr NEAT domains belong to two families of NEAT domains that are conserved in Shr orthologs from several species. Based on the heme transfer kinetics, we propose that Shr proteins modulate heme uptake according to heme availability by a mechanism where NEAT1 facilitates fast heme delivery to Shp, whereas NEAT2 serves as a temporary storage for heme on the bacterial surface. Copyright © 2013. Published by Elsevier Inc.

  5. Chemoselective approaches to glycoprotein assembly

    Energy Technology Data Exchange (ETDEWEB)

    Hang, Howard C.; Bertozzi, Carolyn R.

    2001-02-23

    Oligosaccharides on proteins and lipids play central roles in human health and disease. The molecular analysis of glycoconjugate function has benefited tremendously from new methods for their chemical synthesis, which provides homogeneous material not attainable from biosynthetic systems. Still, glycoconjugate synthesis requires the manipulation of multiple stereocenters and protecting groups and remains the domain of a few expert laboratories around the world. This account summarizes chemoselective approaches for assembling homogeneous glycoconjugates that attempt to reduce the barriers to their synthesis. The objective of these methods is to make glycoconjugate synthesis accessible to a broader community, thereby accelerating progress in glycobiology.

  6. PREFACE: IUMRS-ICA 2008 Symposium, Sessions 'X. Applications of Synchrotron Radiation and Neutron Beam to Soft Matter Science' and 'Y. Frontier of Polymeric Nano-Soft-Materials - Precision Polymer Synthesis, Self-assembling and Their Functionalization'

    Science.gov (United States)

    Takahara, Atsushi; Kawahara, Seiichi

    2009-09-01

    Tashiro (Toyota Technological Institute) Professor Kazuo Sakurai(Kitakyushu University) Professor Keiji Tanaka (Kyushu University) Dr Sono Sasaki (JASRI/Spring-8) Professor Naoya Torikai (KENS) Professor Moonhor Ree (POSTECH) Professor Kookheon Char (Seoul National University) Professor Charles C Han (CAS) Professor Atsushi Takahara(Kyushu University) Frontier of Polymeric Nano-Soft-Materials, Precision Polymer Synthesis, Self-assembling and Their Functionalization (Symposium Y of IUMRS-ICA2008) Seiichi Kawahara, Rong-Ming Ho, Hiroshi Jinnai, Masami Kamigaito, Takashi Miyata, Hiroshi Morita, Hideyuki Otsuka, Daewon Sohn, Keiji Tanaka It is our great pleasure and honor to publish peer-reviewed papers, presented in Symposium Y 'Frontier of Polymeric Nano-Soft-Materials Precision Polymer Synthesis, Self-assembling and Their Functionalization' at the International Union of Materials Research Societies International Conference in Asia 2008 (IUMRS-ICA2008), which was held on 9-13 December 2008, at Nagoya Congress Center, Nagoya, Japan. 'Polymeric nano-soft-materials' are novel outcomes based on a recent innovative evolution in polymer science, i.e. precision polymer synthesis, self-assembling and functionalization of multi-component systems. The materials are expected to exhibit specific functions and unique properties due to their hierarchic morphologies brought either by naturally-generated ordering or by artificial manipulation of the systems, e.g., crystallization and phase-separation. The emerging precision synthesis has brought out new types of polymers with well-controlled primary structures. Furthermore, the surface and interface of the material are recognized to play an important role in the outstanding mechanical, electrical and optical properties, which are required for medical and engineering applications. In order to understand structure-property relationships in the nano-soft-materials, it is indispensable to develop novel characterization techniques. Symposium Y

  7. Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection.

    Directory of Open Access Journals (Sweden)

    Viswanathan Arun Nagaraj

    Full Text Available Heme metabolism is central to malaria parasite biology. The parasite acquires heme from host hemoglobin in the intraerythrocytic stages and stores it as hemozoin to prevent free heme toxicity. The parasite can also synthesize heme de novo, and all the enzymes in the pathway are characterized. To study the role of the dual heme sources in malaria parasite growth and development, we knocked out the first enzyme, δ-aminolevulinate synthase (ALAS, and the last enzyme, ferrochelatase (FC, in the heme-biosynthetic pathway of Plasmodium berghei (Pb. The wild-type and knockout (KO parasites had similar intraerythrocytic growth patterns in mice. We carried out in vitro radiolabeling of heme in Pb-infected mouse reticulocytes and Plasmodium falciparum-infected human RBCs using [4-(14C] aminolevulinic acid (ALA. We found that the parasites incorporated both host hemoglobin-heme and parasite-synthesized heme into hemozoin and mitochondrial cytochromes. The similar fates of the two heme sources suggest that they may serve as backup mechanisms to provide heme in the intraerythrocytic stages. Nevertheless, the de novo pathway is absolutely essential for parasite development in the mosquito and liver stages. PbKO parasites formed drastically reduced oocysts and did not form sporozoites in the salivary glands. Oocyst production in PbALASKO parasites recovered when mosquitoes received an ALA supplement. PbALASKO sporozoites could infect mice only when the mice received an ALA supplement. Our results indicate the potential for new therapeutic interventions targeting the heme-biosynthetic pathway in the parasite during the mosquito and liver stages.

  8. The 1.5-Å Structure of XplA-heme, an Unusual Cytochrome P450 Heme Domain That Catalyzes Reductive Biotransformation of Royal Demolition Explosive*

    Science.gov (United States)

    Sabbadin, Federico; Jackson, Rosamond; Haider, Kamran; Tampi, Girish; Turkenburg, Johan P.; Hart, Sam; Bruce, Neil C.; Grogan, Gideon

    2009-01-01

    XplA is a cytochrome P450 of unique structural organization, consisting of a heme- domain that is C-terminally fused to its native flavodoxin redox partner. XplA, along with flavodoxin reductase XplB, has been shown to catalyze the breakdown of the nitramine explosive and pollutant hexahydro-1,3,5-trinitro-1,3,5-triazine (royal demolition explosive) by reductive denitration. The structure of the heme domain of XplA (XplA-heme) has been solved in two crystal forms: as a dimer in space group P21 to a resolution of 1.9 Å and as a monomer in space group P21212 to a resolution of 1.5 Å, with the ligand imidazole bound at the heme iron. Although it shares the overall fold of cytochromes P450 of known structure, XplA-heme is unusual in that the kinked I-helix that traverses the distal face of the heme is broken by Met-394 and Ala-395 in place of the well conserved Asp/Glu plus Thr/Ser, important in oxidative P450s for the scission of the dioxygen bond prior to substrate oxygenation. The heme environment of XplA-heme is hydrophobic, featuring a cluster of three methionines above the heme, including Met-394. Imidazole was observed bound to the heme iron and is in close proximity to the side chain of Gln-438, which is situated over the distal face of the heme. Imidazole is also hydrogen-bonded to a water molecule that sits in place of the threonine side-chain hydroxyl exemplified by Thr-252 in Cyt-P450cam. Both Gln-438 → Ala and Ala-395 → Thr mutants of XplA-heme displayed markedly reduced activity compared with the wild type for royal demolition explosive degradation when combined with surrogate electron donors. PMID:19692330

  9. Alteration of the Regiospecificity of Human Heme Oxygenase-1 by Unseating of the Heme but not Disruption of the Distal Hydrogen Bonding Network†

    Science.gov (United States)

    Wang, Jinling; Evans, John P.; Ogura, Hiroshi; La Mar, Gerd N.; Ortiz de Montellano, Paul R.

    2008-01-01

    Heme oxygenase regiospecifically oxidizes heme at the α-meso position to give biliverdin IXα, CO, and iron. The heme orientation within the active site, which is thought to determine the oxidation regiospecificity, is shown here for the human enzyme (hHO1) to be largely determined by interactions between the heme carboxylic acid groups and residues Arg183 and Lys18 but not Tyr134. Mutation of either Arg183 or Lys18 individually does not significantly alter the NADPH-cytochrome P450 reductase-dependent reaction regiochemistry, but partially shifts the oxidation to the β/δ-meso positions in the reaction supported by ascorbic acid. Mutation of Glu29 to a lysine, which places a positive charge where it can interact with a heme carboxyl if the heme rotates by ~90°, causes a slight loss of regiospecificity, but combined with the R183E and K18E mutations results primarily in β/δ-meso oxidation of the heme under all conditions. NMR analysis of heme binding to the triple K18E/E29K/R183E mutant confirms rotation of the heme in the active site. Kinetic studies demonstrate that mutations of Arg183 greatly impair the rate of the P450 reductase-dependent reaction, in accord with the earlier finding that Arg183 is involved in binding of the reductase to hHO1, but have little effect on the ascorbate reaction. Mutations of Asp140 and Tyr58 that disrupt the active site hydrogen bonding network, impair catalytic rates but do not influence the oxidation regiochemistry. The results indicate both that the oxidation regiochemistry is largely controlled by ionic interactions of the heme propionic acid groups with the protein and that shifts in regiospecificity involve rotation of the heme about an axis perpendicular to the heme plane. PMID:16388581

  10. Heme utilization by pathogenic bacteria: not all pathways lead to biliverdin.

    Science.gov (United States)

    Wilks, Angela; Ikeda-Saito, Masao

    2014-08-19

    The eukaryotic heme oxygenases (HOs) (E.C. 1.14.99.3) convert heme to biliverdin, iron, and carbon monoxide (CO) in three successive oxygenation steps. Pathogenic bacteria require iron for survival and infection. Extracellular heme uptake from the host plays a critical role in iron acquisition and virulence. In the past decade, several HOs required for the release of iron from extracellular heme have been identified in pathogenic bacteria, including Corynebacterium diphtheriae, Neisseriae meningitides, and Pseudomonas aeruginosa. The bacterial enzymes were shown to be structurally and mechanistically similar to those of the canonical eukaryotic HO enzymes. However, the recent discovery of the structurally and mechanistically distinct noncanonical heme oxygenases of Staphylococcus aureus and Mycobacterium tuberculosis has expanded the reaction manifold of heme degradation. The distinct ferredoxin-like structural fold and extreme heme ruffling are proposed to give rise to the alternate heme degradation products in the S. aureus and M. tuberculosis enzymes. In addition, several "heme-degrading factors" with no structural homology to either class of HOs have recently been reported. The identification of these "heme-degrading proteins" has largely been determined on the basis of in vitro heme degradation assays. Many of these proteins were reported to produce biliverdin, although no extensive characterization of the products was performed. Prior to the characterization of the canonical HO enzymes, the nonenzymatic degradation of heme and heme proteins in the presence of a reductant such as ascorbate or hydrazine, a reaction termed "coupled oxidation", served as a model for biological heme degradation. However, it was recognized that there were important mechanistic differences between the so-called coupled oxidation of heme proteins and enzymatic heme oxygenation. In the coupled oxidation reaction, the final product, verdoheme, can readily be converted to biliverdin

  11. Heme metabolism in stress regulation and protein production: From Cinderella to a key player.

    Science.gov (United States)

    Martínez, J L; Petranovic, D; Nielsen, J

    2016-04-02

    Heme biosynthesis is a highly conserved pathway which is present in all kingdoms, from Archaea to higher organisms such as plants and mammals. The heme molecule acts as a prosthetic group for different proteins and enzymes involved in energy metabolism and reactions involved in electron transfer. Based on our recent findings and other recent reports, we here illustrate that heme is more than a co-factor. We also discuss the necessity to gain more insight into the heme biosynthesis pathway regulation, as this interacts closely with overall stress control. Understanding heme biosynthesis and its regulation could impact our ability to develop more efficient yeast cell factories for heterologous protein production.

  12. Effect of a heme oxygenase-1 inducer on NADPH oxidase ...

    African Journals Online (AJOL)

    Purpose: To investigated the effect of hemin, a heme oxygenase-1 (HO-1) inducer, on nicotinamide adenine dinucleotide phosphate oxidase (NOX) expression in rats with alcohol-induced liver injury. Methods: Male Wistar rats were randomly divided into four groups consisting of the control group, the ethanol (EtOH) group, ...

  13. Heme and HO-1 inhibition of HCV, HBV, and HIV

    Directory of Open Access Journals (Sweden)

    Warren N Schmidt

    2012-10-01

    Full Text Available Hepatitis C virus, human immunodeficiency virus, and hepatitis B virus are chronic viral infections that cause considerable morbidity and mortality throughout the world. In the decades following the identification and sequencing of these viruses, in vitro experiments demonstrated that heme oxygenase-1, its oxidative products, and related compounds of the heme oxygenase system are virucidal for all three viruses. The purpose of this review is to critically evaluate and summarize the seminal studies that described and characterized this remarkable behavior. It will also discuss more recent work that discovered the antiviral mechanisms and target sites of these unique antiviral agents. In spite of the fact that these viruses are diverse pathogens with quite profound differences in structure and life cycle, it is significant that heme and related compounds show striking similarity for viral target sites across all three species. Collectively, these findings strongly indicate that we should move forward and develop heme and related tetrapyrroles into versatile antiviral agents that could be used therapeutically in patients with single or multiple viral infections.

  14. Heme: From quantum spin crossover to oxygen manager of life

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2016-01-01

    discusses the spectroscopic and computational data that have helped to elucidate the nature of this remarkable molecular system, how it works, and how it is tuned by a range of molecular strategies. This tuning enables heme to carry out the two essential functions required for oxygen management of life, i...

  15. Cysteine-independent activation/inhibition of heme oxygenase-2.

    Science.gov (United States)

    Vukomanovic, Dragic; Rahman, Mona N; Maines, Mahin D; Ozolinš, Terence Rs; Szarek, Walter A; Jia, Zongchao; Nakatsu, Kanji

    2016-03-01

    Reactive thiols of cysteine (cys) residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2) isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2) and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD) and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  16. Identification of two genes potentially associated in iron-heme ...

    Indian Academy of Sciences (India)

    2013-03-15

    Mar 15, 2013 ... Classic characteristics are poor predictors of the risk of thromboembolism. Thus, better markers for the carotid atheroma plaque formation and symptom causing are needed. Our objective was to study by microarray analysis gene expression of genes involved in homeostasis of iron and heme in carotid ...

  17. Identification of two genes potentially associated in iron-heme ...

    Indian Academy of Sciences (India)

    Classic characteristics are poor predictors of the risk of thromboembolism. Thus, better markers for the carotid atheroma plaque formation and symptom causing are needed. Our objective was to study by microarray analysis gene expression of genes involved in homeostasis of iron and heme in carotid atheroma plaque ...

  18. Cysteine-independent activation/inhibition of heme oxygenase-2

    Directory of Open Access Journals (Sweden)

    Dragic Vukomanovic

    2016-01-01

    Full Text Available Reactive thiols of cysteine (cys residues in proteins play a key role in transforming chemical reactivity into a biological response. The heme oxygenase-2 (HO-2 isozyme contains two cys residues that have been implicated in binding of heme and also the regulation of its activity. In this paper, we address the question of a role for cys residues for the HO-2 inhibitors or activators designed in our laboratory. We tested the activity of full length recombinant human heme oxygenase-2 (FL-hHO-2 and its analog in which cys265 and cys282 were both replaced by alanine to determine the effect on activation by menadione (MD and inhibition by QC-2350. Similar inhibition by QC-2350 and almost identical activation by MD was observed for both recombinant FL-hHO-2s. Our findings are interpreted to mean that thiols of FL-hHO-2s are not involved in HO-2 activation or inhibition by the compounds that have been designed and identified by us. Activation or inhibition of HO-2 by our compounds should be attributed to a mechanism other than altering binding affinity of HO-2 for heme through cys265 and cys282.

  19. Ribosome Assembly as Antimicrobial Target

    Directory of Open Access Journals (Sweden)

    Rainer Nikolay

    2016-05-01

    Full Text Available Many antibiotics target the ribosome and interfere with its translation cycle. Since translation is the source of all cellular proteins including ribosomal proteins, protein synthesis and ribosome assembly are interdependent. As a consequence, the activity of translation inhibitors might indirectly cause defective ribosome assembly. Due to the difficulty in distinguishing between direct and indirect effects, and because assembly is probably a target in its own right, concepts are needed to identify small molecules that directly inhibit ribosome assembly. Here, we summarize the basic facts of ribosome targeting antibiotics. Furthermore, we present an in vivo screening strategy that focuses on ribosome assembly by a direct fluorescence based read-out that aims to identify and characterize small molecules acting as primary assembly inhibitors.

  20. Age-related accumulation of non-heme ferric and ferrous iron in mouse ovarian stroma visualized by sensitive non-heme iron histochemistry.

    Science.gov (United States)

    Asano, Yoshiya

    2012-03-01

    Sensitive non-heme iron histochemistry--namely, the perfusion-Perls method and perfusion-Turnbull method--was applied to study the distribution and age-related accumulation of non-heme ferric iron and ferrous iron in mouse ovary. Light and electron microscopic studies revealed that non-heme ferric iron is distributed predominantly in stromal tissue, especially in macrophages. By contrast, the distribution of non-heme ferrous iron was restricted to a few ovoid macrophages. Aged ovaries exhibited remarkable non-heme iron accumulation in all stromal cells. In particular, non-heme ferrous iron level was increased in stromal tissue, suggestive of increased levels of redox-active iron, which can promote oxidative stress. Moreover, intense localization of both non-heme ferric and ferrous iron was observed in aggregated large stromal cells that were then characterized as ceroid-laden enlarged macrophages with frothy cytoplasm. Intraperitoneal iron overload in adult mice resulted in non-heme iron deposition in the entire stroma and generation of enlarged macrophages, suggesting that excessive iron accumulation induced macrophage morphological changes. The data indicated that non-heme iron accumulation in ovarian stromal tissue may be related to aging of the ovary due to increasing oxidative stress.

  1. Identification and characterization of a heme periplasmic-binding protein in Haemophilus ducreyi.

    Science.gov (United States)

    St Denis, Melissa; Sonier, Brigitte; Robinson, Renée; Scott, Fraser W; Cameron, D William; Lee, B Craig

    2011-08-01

    Haemophilus ducreyi, a gram-negative and heme-dependent bacterium, is the causative agent of chancroid, a genital ulcer sexually transmitted infection. Heme acquisition in H. ducreyi proceeds via a receptor mediated process in which the initial event involves binding of hemoglobin and heme to their cognate outer membrane proteins, HgbA and TdhA, respectively. Following this specific interaction, the fate of the periplasmic deposited heme is unclear. Using protein expression profiling of the H. ducreyi periplasmic proteome, a periplasmic-binding protein, termed hHbp, was identified whose expression was enhanced under heme-limited conditions. The gene encoding this protein was situated in a locus displaying genetic characteristics of an ABC transporter. The purified protein bound heme in a dose-dependent and saturable manner and this binding was specifically competitively inhibited by heme. The hhbp gene functionally complemented an Escherichia coli heme uptake mutant. Expression of the heme periplasmic-binding protein was detected in a limited survey of H. ducreyi and H. influenzae clinical strains. These results indicate that the passage of heme into the cytoplasm of H. ducreyi involves a heme dedicated ABC transporter.

  2. Gold nanoparticle assemblies through Hydrogen-bonded supramolecular mediators

    NARCIS (Netherlands)

    Kinge, S.S.; Crego Calama, Mercedes; Reinhoudt, David

    2007-01-01

    The synthesis of spherical gold nanoparticle assemblies with multicomponent double rosette molecular boxes as mediators is presented. These nine-component hydrogen-bonded supramolecular structures held together by 36 hydrogen bonds induce gold nanoparticle assembly. The morphologies of the

  3. Sequence assembly

    DEFF Research Database (Denmark)

    Scheibye-Alsing, Karsten; Hoffmann, S.; Frankel, Annett Maria

    2009-01-01

    Despite the rapidly increasing number of sequenced and re-sequenced genomes, many issues regarding the computational assembly of large-scale sequencing data have remain unresolved. Computational assembly is crucial in large genome projects as well for the evolving high-throughput technologies...... and plays an important role in processing the information generated by these methods. Here, we provide a comprehensive overview of the current publicly available sequence assembly programs. We describe the basic principles of computational assembly along with the main concerns, such as repetitive sequences...... in genomic DNA, highly expressed genes and alternative transcripts in EST sequences. We summarize existing comparisons of different assemblers and provide a detailed descriptions and directions for download of assembly programs at: http://genome.ku.dk/resources/assembly/methods.html....

  4. Dietary heme mediated PPARα activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon

    NARCIS (Netherlands)

    IJssennagger, Noortje; Wit, de Nicole; Muller, Michael; Meer, van der Roelof

    2012-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome

  5. Dietary heme-mediated PPARa activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon

    NARCIS (Netherlands)

    IJssenagger, N.; Wit, de N.J.W.; Muller, M.R.; Meer, van der R.

    2012-01-01

    Red meat consumption is associated with an increased colon cancer risk. Heme, present in red meat, injures the colon surface epithelium by luminal cytotoxicity and reactive oxygen species. This surface injury is overcompensated by hyperproliferation and hyperplasia of crypt cells. Transcriptome

  6. Ibuprofen Impairs Allosterically Peroxynitrite Isomerization by Ferric Human Serum Heme-Albumin*

    Science.gov (United States)

    Ascenzi, Paolo; di Masi, Alessandra; Coletta, Massimo; Ciaccio, Chiara; Fanali, Gabriella; Nicoletti, Francesco P.; Smulevich, Giulietta; Fasano, Mauro

    2009-01-01

    Human serum albumin (HSA) participates in heme scavenging; in turn, heme endows HSA with myoglobin-like reactivity and spectroscopic properties. Here, the allosteric effect of ibuprofen on peroxynitrite isomerization to NO3− catalyzed by ferric human serum heme-albumin (HSA-heme-Fe(III)) is reported. Data were obtained at 22.0 °C. HSA-heme-Fe(III) catalyzes peroxynitrite isomerization in the absence and presence of CO2; the values of the second order catalytic rate constant (kon) are 4.1 × 105 and 4.5 × 105 m−1 s−1, respectively. Moreover, HSA-heme-Fe(III) prevents peroxynitrite-mediated nitration of free added l-tyrosine. The pH dependence of kon (pKa = 6.9) suggests that peroxynitrous acid reacts preferentially with the heme-Fe(III) atom, in the absence and presence of CO2. The HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite has been ascribed to the reactive pentacoordinated heme-Fe(III) atom. In the absence and presence of CO2, ibuprofen impairs dose-dependently peroxynitrite isomerization by HSA-heme-Fe(III) and facilitates the nitration of free added l-tyrosine; the value of the dissociation equilibrium constant for ibuprofen binding to HSA-heme-Fe(III) (L) ranges between 7.7 × 10−4 and 9.7 × 10−4 m. Under conditions where [ibuprofen] is ≫L, the kinetics of HSA-heme-Fe(III)-catalyzed isomerization of peroxynitrite is superimposable to that obtained in the absence of HSA-heme-Fe(III) or in the presence of non-catalytic HSA-heme-Fe(III)-cyanide complex and HSA. Ibuprofen binding impairs allosterically peroxynitrite isomerization by HSA-heme-Fe(III), inducing the hexacoordination of the heme-Fe(III) atom. These results represent the first evidence for peroxynitrite isomerization by HSA-heme-Fe(III), highlighting the allosteric modulation of HSA-heme-Fe(III) reactivity by heterotropic interaction(s), and outlining the role of drugs in modulating HSA functions. The present results could be relevant for the drug-dependent protective role

  7. Transfection of the Human Heme Oxygenase Gene Into Rabbit Coronary Microvessel Endothelial Cells: Protective Effect Against Heme and Hemoglobin Toxicity

    Science.gov (United States)

    Abraham, N. G.; Lavrovsky, Y.; Schwartzman, M. L.; Stoltz, R. A.; Levere, R. D.; Gerritsen, M. E.

    1995-07-01

    Heme oxygenase (HO) is a stress protein and has been suggested to participate in defense mechanisms against agents that may induce oxidative injury such as metals, endotoxin, heme/hemoglobin, and various cytokines. Overexpression of HO in cells might therefore protect against oxidative stress produced by certain of these agents, specifically heme and hemoglobin, by catalyzing their degradation to bilirubin, which itself has antioxidant properties. We report here the successful in vitro transfection of rabbit coronary microvessel endothelial cells with a functioning gene encoding the human HO enzyme. A plasmid containing the cytomegalovirus promoter and the human HO cDNA complexed to cationic liposomes (Lipofectin) was used to transfect rabbit endothelial cells. Cells transfected with human HO exhibited an ≈3.0-fold increase in enzyme activity and expressed a severalfold induction of human HO mRNA as compared with endogenous rabbit HO mRNA. Transfected and nontransfected cells expressed factor VIII antigen and exhibited similar acetylated low-density lipoprotein uptake (two important features that characterize endothelial cells) with >85% of cells staining positive for each marker. Moreover, cells transfected with the human HO gene acquired substantial resistance to toxicity produced by exposure to recombinant hemoglobin and heme as compared with nontransfected cells. The protective effect of HO overexpression against heme/hemoglobin toxicity in endothelial cells shown in these studies provides direct evidence that the inductive response of human HO to such injurious stimuli represents an important tissue adaptive mechanism for moderating the severity of cell damage produced by these blood components.

  8. Metabolite-driven Regulation of Heme Uptake by the Biliverdin IXβ/δ-Selective Heme Oxygenase (HemO) of Pseudomonas aeruginosa.

    Science.gov (United States)

    Mouriño, Susana; Giardina, Bennett J; Reyes-Caballero, Hermes; Wilks, Angela

    2016-09-23

    Pseudomonas aeruginosa acquires extracellular heme via the Phu (Pseudomonas heme uptake) and Has (heme assimilation system) systems. We have previously shown the catalytic actions of heme oxygenase (HemO) along with the cytoplasmic heme transport protein PhuS control heme flux into the cell. To further investigate the role of the PhuS-HemO couple in modulating heme uptake, we have characterized two HemO variants, one that is catalytically inactive (HemO H26A/K34A/K132A or HemOin) and one that has altered regioselectivity (HemO N19K/K34A/F117Y/K132A or HemOα), producing biliverdin IXα (BVIXα). HemOα similar to wild type was able to interact and acquire heme from holo-PhuS. In contrast, the HemOin variant did not interact with holo-PhuS and showed no enzymatic activity. Complementation of a hemO deletion strain with the hemOin or hemOα variants in combination with [(13)C]heme isotopic labeling experiments revealed that the absence of BVIXβ and BVIXδ leads to a decrease in extracellular levels of hemophore HasA. We propose BVIXβ and/or BVIXδ transcriptionally or post-transcriptionally regulates HasA. Thus, coupling the PhuS-dependent flux of heme through HemO to feedback regulation of the cell surface signaling system through HasA allows P. aeruginosa to rapidly respond to fluctuating extracellular heme levels independent of the iron status of the cell. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. Structure of the heme/hemoglobin outer membrane receptor ShuA from Shigella dysenteriae: heme binding by an induced fit mechanism.

    Science.gov (United States)

    Cobessi, David; Meksem, Ahmed; Brillet, Karl

    2010-02-01

    Shigella dysentriae and other Gram-negative human pathogens are able to use iron from heme bound to hemoglobin for growing. We solved at 2.6 A resolution the 3D structure of the TonB-dependent heme/hemoglobin outer membrane receptor ShuA from S. dysenteriae. ShuA binds to hemoglobin and transports heme across the outer membrane. The structure consists of a C-terminal domain that folds into a 22-stranded transmembrane beta-barrel, which is filled by the N-terminal plug domain. One distal histidine ligand of heme is located at the apex of the plug, exposed to the solvent. His86 is situated 9.86 A apart from His420, the second histidine involved in the heme binding. His420 is in the extracellular loop L7. The heme coordination by His86 and His420 involves conformational changes. The comparisons with the hemophore receptor HasR of Serratia marcescens bound to HasA-Heme suggest an extracellular induced fit mechanism for the heme binding. The loop L7 contains hydrophobic residues which could interact with the hydrophobic porphyring ring of heme. The energy required for the transport by ShuA is derived from the proton motive force after interactions between the periplasmic N-terminal TonB-box of ShuA and the inner membrane protein, TonB. In ShuA, the TonB-box is buried and cannot interact with TonB. The structural comparisons with HasR suggest its conformational change upon the heme binding for interacting with TonB. The signaling of the heme binding could involve a hydrogen bond network going from His86 to the TonB-box. (c) 2009 Wiley-Liss, Inc.

  10. Molecularly Imprinted Electropolymer for a Hexameric Heme Protein with Direct Electron Transfer and Peroxide Electrocatalysis

    Science.gov (United States)

    Peng, Lei; Yarman, Aysu; Jetzschmann, Katharina J.; Jeoung, Jae-Hun; Schad, Daniel; Dobbek, Holger; Wollenberger, Ulla; Scheller, Frieder W.

    2016-01-01

    For the first time a molecularly imprinted polymer (MIP) with direct electron transfer (DET) and bioelectrocatalytic activity of the target protein is presented. Thin films of MIPs for the recognition of a hexameric tyrosine-coordinated heme protein (HTHP) have been prepared by electropolymerization of scopoletin after oriented assembly of HTHP on a self-assembled monolayer (SAM) of mercaptoundecanoic acid (MUA) on gold electrodes. Cavities which should resemble the shape and size of HTHP were formed by template removal. Rebinding of the target protein sums up the recognition by non-covalent interactions between the protein and the MIP with the electrostatic attraction of the protein by the SAM. HTHP bound to the MIP exhibits quasi-reversible DET which is reflected by a pair of well pronounced redox peaks in the cyclic voltammograms (CVs) with a formal potential of −184.4 ± 13.7 mV vs. Ag/AgCl (1 M KCl) at pH 8.0 and it was able to catalyze the cathodic reduction of peroxide. At saturation the MIP films show a 12-fold higher electroactive surface concentration of HTHP than the non-imprinted polymer (NIP). PMID:26907299

  11. Synthesis and self-assembly of 2,9,16-tri(tert-butyl)-23-(10-mercaptodecyloxy)phthalocyanine and the application of its self-assembled monolayers in organic light-emitting diodes.

    Science.gov (United States)

    Huang, Xuebin; Liu, Yunqi; Wang, Shuai; Zhou, Shuqin; Zhu, Daoben

    2002-09-16

    2,9,16-Tri(tert-butyl)-23-(10-mercaptodecyloxy)phthalocyanine (8) and its disulfide (9) have been synthesized and characterized, and their self-assembling behaviors on gold substrates have been studied. Characteristic Q-bands were observed at about 630 nm in the UV/visible spectra of the self-assembling monolayers (SAMs). They were broadened and blue-shifted relative to those observed in solution. Binding energies for S2p have the same values (161.70 eV) and are in accord with those for gold thiolates. The application of the SAMs in organic light-emitting diode was investigated. It shows that the SAM promotes the hole injection process from the anode.

  12. Interaction of nitric oxide with human heme oxygenase-1.

    Science.gov (United States)

    Wang, Jinling; Lu, Shen; Moënne-Loccoz, Pierre; Ortiz de Montellano, Paul R

    2003-01-24

    NO and CO may complement each other as signaling molecules in some physiological situations. We have examined the binding of NO to human heme oxygenase-1 (hHO-1), an enzyme that oxidizes heme to biliverdin, CO, and free iron, to determine whether inhibition of hHO-1 by NO can contribute to the signaling interplay of NO and CO. An Fe(3+)-NO hHO-1-heme complex is formed with NO or the NO donors NOC9 or 2-(N,N-diethylamino)-diazenolate-2-oxide.sodium salt. Resonance Raman spectroscopy shows that ferric hHO-1-heme forms a 6-coordinated, low spin complex with NO. The nu(N-O) vibration of this complex detected by Fourier transform IR is only 4 cm(-1) lower than that of the corresponding metmyoglobin (met-Mb) complex but is broader, suggesting a greater degree of ligand conformational freedom. The Fe(3+)-NO complex of hHO-1 is much more stable than that of met-Mb. Stopped-flow studies indicate that k(on) for formation of the hHO-1-heme Fe(3+)-NO complex is approximately 50-times faster, and k(off) 10 times slower, than for met-Mb, resulting in K(d) = 1.4 microm for NO. NO thus binds 500-fold more tightly to ferric hHO-1-heme than to met-Mb. The hHO-1 mutations E29A, G139A, D140A, S142A, G143A, G143F, and K179A/R183A do not significantly diminish the tight binding of NO, indicating that NO binding is not highly sensitive to mutations of residues that normally stabilize the distal water ligand. As expected from the K(d) value, the enzyme is reversibly inhibited upon exposure to pathologically, and possibly physiologically, relevant concentrations of NO. Inhibition of hHO-1 by NO may contribute to the pleiotropic responses to NO and CO.

  13. The dppBCDF gene cluster of Haemophilus influenzae: Role in heme utilization

    Directory of Open Access Journals (Sweden)

    Morton Daniel J

    2009-08-01

    Full Text Available Abstract Background Haemophilus influenzae requires a porphyrin source for aerobic growth and possesses multiple mechanisms to obtain this essential nutrient. This porphyrin requirement may be satisfied by either heme alone, or protoporphyrin IX in the presence of an iron source. One protein involved in heme acquisition by H. influenzae is the periplasmic heme binding protein HbpA. HbpA exhibits significant homology to the dipeptide and heme binding protein DppA of Escherichia coli. DppA is a component of the DppABCDF peptide-heme permease of E. coli. H. influenzae homologs of dppBCDF are located in the genome at a point distant from hbpA. The object of this study was to investigate the potential role of the H. influenzae dppBCDF locus in heme utilization. Findings An insertional mutation in dppC was constructed and the impact of the mutation on the utilization of both free heme and various proteinaceous heme sources as well as utilization of protoporphyrin IX was determined in growth curve studies. The dppC insertion mutant strain was significantly impacted in utilization of all tested heme sources and protoporphyin IX. Complementation of the dppC mutation with an intact dppCBDF gene cluster in trans corrected the growth defects seen in the dppC mutant strain. Conclusion The dppCBDF gene cluster constitutes part of the periplasmic heme-acquisition systems of H. influenzae.

  14. Alteration by irradiation and storage at amount of heme iron in poultry meat; Alteracoes provocadas pela irradiacao e armazenamento nos teores de ferro heme em carne de frango

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Adriana Regia Marques de; Arthur, Valter Arthur [Centro de Energia Nuclear na Agricultura (CENA), Piracicaba, SP (Brazil). Lab. de Irradiacao de Alimentos e Radioentomologia; Canniatti-Brazaca, Solange Guidolin [Escola Superior de Agricultura Luiz de Queiroz (ESALQ/USP), Piracicaba, SP (Brazil). Dept. de Agroindustria, Alimentos e Nutricao]. E-mail: sgcbraza@esalq.usp.br

    2007-04-15

    Studies of irradiation and storage effects in chicken were carried out to discover the influence in iron heme, non-heme amount, color and total pigments. Chicken thighs and chicken breast were studied. These were irradiated to 0, 1 and 2 kGy stored by 14 days to 4 deg C in refrigerator. Determining the heme content and non-heme of meat was done using the colorimeter method and the Ferrozine reagent. The values of iron heme were influenced both by the irradiation and the storage, reducing the amount throughout the course of time. The iron non-heme was also influenced by the doses and the storage time, however the values increased throughout the course of time, because of the conversion of iron heme in non-heme. The color did not show that it was influenced by the studied doses, except for the storage, and the total number of pigments was affected by the irradiation and the time, reducing the values with the increase of storage. Irradiation was shown to be a good method to conserve iron. (author)

  15. Imidazolium ionic liquid induced one-step synthesis of -Fe2O3 nanorods and nanorod assemblies for lithium-ion battery

    Directory of Open Access Journals (Sweden)

    Shuting Xie

    2016-12-01

    Full Text Available α-Fe2O3 nanorods and nanorod assemblies are prepared via a facile one-step method with the assistance of imidazolium-based ionic liquid. The aspect ratio of synthesized nanorods is determined by the alkyl chain length of [Cnmim]+. The inter-molecular π−π interaction and intra-molecular dipole-dipole interaction among imidazole rings of [C4mim]+[PhCOO]− play critical roles in both nucleation and assembly processes of α-Fe2O3 nanorods. The α-Fe2O3 nanorod assemblies show an excellent performance in lithium-ion batteries with a reversible capacity of 1007.3 mA h g−1 at the rate of 500 mA g−1 after 150 cycles.

  16. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Directory of Open Access Journals (Sweden)

    Sam P. de Visser

    2016-04-01

    Full Text Available In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1. This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties.

  17. Using heme as an energy boost for lactic acid bacteria.

    Science.gov (United States)

    Lechardeur, Delphine; Cesselin, Bénédicte; Fernandez, Annabelle; Lamberet, Gilles; Garrigues, Christel; Pedersen, Martin; Gaudu, Philippe; Gruss, Alexandra

    2011-04-01

    Lactic acid bacteria (LAB) are a phylogenetically diverse group named for their main attribute in food fermentations, that is, production of lactic acid. However, several LAB are genetically equipped for aerobic respiration metabolism when provided with exogenous sources of heme (and menaquinones for some species). Respiration metabolism is energetically favorable and leads to less oxidative and acid stress during growth. As a consequence, the growth and survival of several LAB can be dramatically improved under respiration-permissive conditions. Respiration metabolism already has industrial applications for the production of dairy starter cultures. In view of the growth and survival advantages conferred by respiration, and the availability of heme and menaquinones in natural environments, we recommend that respiration be accepted as a part of the natural lifestyle of numerous LAB. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Challenging Density Functional Theory Calculations with Hemes and Porphyrins

    Science.gov (United States)

    de Visser, Sam P.; Stillman, Martin J.

    2016-01-01

    In this paper we review recent advances in computational chemistry and specifically focus on the chemical description of heme proteins and synthetic porphyrins that act as both mimics of natural processes and technological uses. These are challenging biochemical systems involved in electron transfer as well as biocatalysis processes. In recent years computational tools have improved considerably and now can reproduce experimental spectroscopic and reactivity studies within a reasonable error margin (several kcal·mol−1). This paper gives recent examples from our groups, where we investigated heme and synthetic metal-porphyrin systems. The four case studies highlight how computational modelling can correctly reproduce experimental product distributions, predicted reactivity trends and guide interpretation of electronic structures of complex systems. The case studies focus on the calculations of a variety of spectroscopic features of porphyrins and show how computational modelling gives important insight that explains the experimental spectra and can lead to the design of porphyrins with tuned properties. PMID:27070578

  19. Functional imaging: monitoring heme oxygenase-1 gene expression in vivo

    Science.gov (United States)

    Zhang, Weisheng; Reilly-Contag, Pamela; Stevenson, David K.; Contag, Christopher H.

    1999-07-01

    The regulation of genetic elements can be monitored in living animals using photoproteins as reporters. Heme oxygenase (HO) is the key catabolic enzyme in the heme degradation pathway. Here, HO expression serves as a model for in vivo functional imaging of transcriptional regulation of a clinically relevant gene. HO enzymatic activity is inhibited by heme analogs, metalloporphyrins, but many members of this family of compounds also activate transcription of the HO-1 promoter. The degree of transcriptional activation by twelve metalloporphyrins, differing at the central metal and porphyrin ring substituents, was evaluated in both NIH 3T3 stable lines and transgenic animals containing HO-1 promoter-luciferase gene fusions. In the correlative cell culture assays, the metalloporphyrins increased transcription form the full length HO promoter fusion to varying degrees, but none increased transcription from a truncated HO-1 promoter. These results suggested that one or both of the two distal enhancer elements located at -4 and -10 Kb upstream from transcriptional start are required for HO-1 induction by heme and its analogs. The full-length HO-1-luc fusion was then evaluated as a transgene in mice. It was possible to monitor the effects of the metalloporphyrins, SnMP and ZnPP, in living animals over time. This spatiotemporal analyses of gene expression in vivo implied that alterations in porphyrin ring substituents and the central metal may affect the extent of gene activation. These data further indicate that using photoprotein reporters, subtle differences in gene expression can be monitored in living animals.

  20. Cyanide binding to human plasma heme-hemopexin: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Laboratorio Interdipartimentale di Microscopia Elettronica, Universita Roma Tre, Roma (Italy); Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Leboffe, Loris [Istituto Nazionale di Biostrutture e Biosistemi, Roma (Italy); Polticelli, Fabio [Dipartimento di Biologia, Universita Roma Tre, Roma (Italy)

    2012-11-16

    Highlights: Black-Right-Pointing-Pointer Cyanide binding to ferric HHPX-heme-Fe. Black-Right-Pointing-Pointer Cyanide binding to ferrous HHPX-heme-Fe. Black-Right-Pointing-Pointer Dithionite-mediated reduction of ferric HHPX-heme-Fe-cyanide. Black-Right-Pointing-Pointer Cyanide binding to HHPX-heme-Fe is limited by ligand deprotonation. Black-Right-Pointing-Pointer Cyanide dissociation from HHPX-heme-Fe-cyanide is limited by ligand protonation. -- Abstract: Hemopexin (HPX) displays a pivotal role in heme scavenging and delivery to the liver. In turn, heme-Fe-hemopexin (HPX-heme-Fe) displays heme-based spectroscopic and reactivity properties. Here, kinetics and thermodynamics of cyanide binding to ferric and ferrous hexa-coordinate human plasma HPX-heme-Fe (HHPX-heme-Fe(III) and HHPX-heme-Fe(II), respectively), and for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex, at pH 7.4 and 20.0 Degree-Sign C, are reported. Values of thermodynamic and kinetic parameters for cyanide binding to HHPX-heme-Fe(III) and HHPX-heme-Fe(II) are K = (4.1 {+-} 0.4) Multiplication-Sign 10{sup -6} M, k{sub on} = (6.9 {+-} 0.5) Multiplication-Sign 10{sup 1} M{sup -1} s{sup -1}, and k{sub off} = 2.8 Multiplication-Sign 10{sup -4} s{sup -1}; and H = (6 {+-} 1) Multiplication-Sign 10{sup -1} M, h{sub on} = 1.2 Multiplication-Sign 10{sup -1} M{sup -1} s{sup -1}, and h{sub off} = (7.1 {+-} 0.8) Multiplication-Sign 10{sup -2} s{sup -1}, respectively. The value of the rate constant for the dithionite-mediated reduction of the HHPX-heme-Fe(III)-cyanide complex is l = 8.9 {+-} 0.8 M{sup -1/2} s{sup -1}. HHPX-heme-Fe reactivity is modulated by proton acceptor/donor amino acid residue(s) (e.g., His236) assisting the deprotonation and protonation of the incoming and outgoing ligand, respectively.

  1. Dietary Heme Induces Gut Dysbiosis, Aggravates Colitis, and Potentiates the Development of Adenomas in Mice

    Directory of Open Access Journals (Sweden)

    Marco Constante

    2017-09-01

    Full Text Available Dietary heme can be used by colonic bacteria equipped with heme-uptake systems as a growth factor and thereby impact on the microbial community structure. The impact of heme on the gut microbiota composition may be particularly pertinent in chronic inflammation such as in inflammatory bowel disease (IBD, where a strong association with gut dysbiosis has been consistently reported. In this study we investigated the influence of dietary heme on the gut microbiota and inferred metagenomic composition, and on chemically induced colitis and colitis-associated adenoma development in mice. Using 16S rRNA gene sequencing, we found that mice fed a diet supplemented with heme significantly altered their microbiota composition, characterized by a decrease in α-diversity, a reduction of Firmicutes and an increase of Proteobacteria, particularly Enterobacteriaceae. These changes were similar to shifts seen in dextran sodium sulfate (DSS-treated mice to induce colitis. In addition, dietary heme, but not systemically delivered heme, contributed to the exacerbation of DSS-induced colitis and facilitated adenoma formation in the azoxymethane/DSS colorectal cancer (CRC mouse model. Using inferred metagenomics, we found that the microbiota alterations elicited by dietary heme resulted in non-beneficial functional shifts, which were also characteristic of DSS-induced colitis. Furthermore, a reduction in fecal butyrate levels was found in mice fed the heme supplemented diet compared to mice fed the control diet. Iron metabolism genes known to contribute to heme release from red blood cells, heme uptake, and heme exporter proteins, were significantly enriched, indicating a shift toward favoring the growth of bacteria able to uptake heme and protect against its toxicity. In conclusion, our data suggest that luminal heme, originating from dietary components or gastrointestinal bleeding in IBD and, to lesser extent in CRC, directly contributes to microbiota dysbiosis

  2. Nitric oxide heme interactions in nitrophorin from Cimex lectularius

    Energy Technology Data Exchange (ETDEWEB)

    Christmann, R.; Auerbach, H., E-mail: auerbach@physik.uni-kl.de [University of Kaiserslautern, Department of Physics (Germany); Berry, R. E.; Walker, F. A. [The University of Arizona, Department of Chemistry and Biochemistry (United States); Schünemann, V. [University of Kaiserslautern, Department of Physics (Germany)

    2016-12-15

    The nitrophorin from the bedbug Cimex lectularius (cNP) is a nitric oxide (NO) carrying protein. Like the nitrophorins (rNPs) from the kissing bug Rhodnius prolixus, cNP forms a stable heme Fe(III)-NO complex, where the NO can be stored reversibly for a long period of time. In both cases, the NPs are found in the salivary glands of blood-sucking bugs. The insects use the nitrophorins to transport the NO to the victim’s tissues, resulting in vasodilation and reduced blood coagulation. However, the structure of cNP is significantly different to those of the rNPs from Rhodnius prolixus. Furthermore, the cNP can bind a second NO molecule to the proximal heme cysteine when present at higher concentrations. High field Mössbauer spectroscopy on {sup 57}Fe enriched cNP complexed with NO shows reduction of the heme iron and formation of a ferrous nitric oxide (Fe(II)-NO) complex. Density functional theory calculations reproduce the experimental Mössbauer parameters and confirm this observation.

  3. Dual role of the active-center cysteine in human peroxiredoxin 1: Peroxidase activity and heme binding.

    Science.gov (United States)

    Watanabe, Yuta; Ishimori, Koichiro; Uchida, Takeshi

    2017-02-12

    HBP23, a 23-kDa heme-binding protein identified in rats, is a member of the peroxiredoxin (Prx) family, the primary peroxidases involved in hydrogen peroxide catabolism. Although HBP23 has a characteristic Cys-Pro heme-binding motif, the significance of heme binding to Prx family proteins remains to be elucidated. Here, we examined the effect of heme binding to human peroxiredoxin-1 (PRX1), which has 97% amino acid identity to HBP23. PRX1 was expressed in Escherichia coli and purified to homogeneity. Spectroscopic titration demonstrated that PRX1 binds heme with a 1:1 stoichiometry and a dissociation constant of 0.17 μM. UV-vis spectra of heme-PRX1 suggested that Cys52 is the axial ligand of ferric heme. PRX1 peroxidase activity was lost upon heme binding, reflecting the fact that Cys52 is not only the heme-binding site but also the active center of peroxidase activity. Interestingly, heme binding to PRX1 caused a decrease in the toxicity and degradation of heme, significantly suppressing H2O2-dependent heme peroxidase activity and degradation of PRX1-bound heme compared with that of free hemin. By virtue of its cytosolic abundance (∼20 μM), PRX1 thus functions as a scavenger of cytosolic hemin (dual role; Cys-dependent peroxidase activity and cytosolic heme scavenger. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Heme-mediated cell activation: the inflammatory puzzle of sickle cell anemia.

    Science.gov (United States)

    Guarda, Caroline Conceição da; Santiago, Rayra Pereira; Fiuza, Luciana Magalhães; Aleluia, Milena Magalhães; Ferreira, Júnia Raquel Dutra; Figueiredo, Camylla Vilas Boas; Yahouedehou, Setondji Cocou Modeste Alexandre; Oliveira, Rodrigo Mota de; Lyra, Isa Menezes; Gonçalves, Marilda de Souza

    2017-06-01

    Hemolysis triggers the onset of several clinical manifestations of sickle cell anemia (SCA). During hemolysis, heme, which is derived from hemoglobin (Hb), accumulates due to the inability of detoxification systems to scavenge sufficiently. Heme exerts multiple harmful effects, including leukocyte activation and migration, enhanced adhesion molecule expression by endothelial cells and the production of pro-oxidant molecules. Area covered: In this review, we describe the effects of heme on leukocytes and endothelial cells, as well as the features of vascular endothelial cells related to vaso-occlusion in SCA. Expert commentary: Free Hb, heme and iron, potent cytotoxic intravascular molecules released during hemolysis, can exacerbate, modulate and maintain the inflammatory response, a main feature of SCA. Endothelial cells in the vascular environment, as well as leukocytes, can become activated via the molecular signaling effects of heme. Due to the hemolytic nature of SCA, hemolysis represents an interesting therapeutic target for heme-scavenging purposes.

  5. Ionic self-assembled derivative of tetraphenylethylene: Synthesis, enhanced solid-state emission, liquid crystalline structure and Cu2+ detection ability.

    Science.gov (United States)

    Ren, Xiang-Kui; Lu, Lin; Liu, Rui; Jiang, Xu-Qiang; Geng, Lai-Yao; Zheng, Jun-Feng; Feng, Yakai; Chen, Er-Qiang

    2017-10-10

    A novel tetraphenylethylene complex (ETTC-DOAB) with enhanced solid-state emission was designed and synthesized via ionic self-assembly (ISA) strategy. The aggregation-induced emission property, phase behavior, and supramolecular structure of the complex were characterized by a combination of variety experimental measurements. The experimental results reveal that the ISA complex could self-assemble into ordered helical supramolecular structure with enhanced luminescent property though the ETTC cores possess large conjugation and high rigidity. Due to the prolonged conjugation length, the fluorescence quantum yield of ETTC-DOAB is boosted to 66%. Moreover, it is demonstrated that the assemblies of the ISA complex could be an effective sensor for Cu2+. Owing to the disassembly modulation of ETTC-DOAB aggregations, the fluorescence emission of the assemblies can be selectively and sensitively quenched by Cu2+ with the detection limit as low as 12.6 nM. The enhanced emission efficiency, in combination with the liquid crystallinity and superior sensing performance to Cu2+, make the ETTC-DOAB complex a potential candidate for fabrication of luminescent device and chemosensor for Cu2+ detection. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Water-triggered self-assembly polycondensation for the one-pot synthesis of cyclomatrix polyphosphazene nanoparticles from amino acid ester.

    Science.gov (United States)

    Huang, Zhangjun; Chen, Shuangshuang; Lu, Xuemin; Lu, Qinghua

    2015-05-14

    Water-triggered self-assembly polycondensation was proposed for preparation of cyclomatrix polyphosphazene nanoparticles from amino acid esters, and a critical solubility parameter was found to determine whether the nanoparticles were formed. Based on this rule, we also investigated the control of the size of its nanoparticles.

  7. One-pot hydrothermal synthesis of hollow Fe3O4 microspheres assembled with nanoparticles for lithium-ion battery anodes

    DEFF Research Database (Denmark)

    Liu, Yanguo; Wang, Xiaoliang; Ma, Wuming

    2016-01-01

    Hollow Fe3O4 microspheres assembled with nanoparticles were successfully synthesized without the addition of any templates or subsequent treatments. When used as the anode materials for lithium-ion battery (LIB), the products showed good lithium storage properties, demonstrating their promising...

  8. Human and rodent amyloid-beta peptides differentially bind heme: relevance to the human susceptibility to Alzheimer's disease.

    Science.gov (United States)

    Atamna, Hani; Frey, William H; Ko, Novie

    2009-07-01

    Amyloid-beta (Abeta) peptides are implicated in the neurodegeneration of Alzheimer's disease (AD). We previously investigated the mechanism of neurotoxicity of Abeta and found that human Abeta (huAbeta) binds and depletes heme, forming an Abeta-heme complex with peroxidase activity. Rodent Abeta (roAbeta) is identical to huAbeta, except for three amino acids within the proposed heme-binding motif (Site-H). We studied and compared heme-binding between roAbeta and huAbeta. Unlike roAbeta, huAbeta binds heme tightly (K(d)=140+/-60 nM) and forms a peroxidase. The plot of bound (huAbeta-heme) vs. unbound heme fits best to a two site binding hyperbola, suggesting huAbeta possesses two heme-binding sites. Consistently, a second high affinity heme-binding site was identified in the lipophilic region (site-L) of huAbeta (K(d)=210+/-80 nM). The plot of (roAbeta-heme) vs. unbound heme, on the other hand, was different as it fits best to a sigmoidal binding curve, indicating different binding and lower affinity of roAbeta for heme (K(d)=1 microM). The effect of heme-binding to site-H on heme-binding to site-L in roAbeta and huAbeta is discussed. While both roAbeta and huAbeta form aggregates equally, rodents lack AD-like neuropathology. High huAbeta/heme ratio increases the peroxidase activity. These findings suggest that depletion of regulatory heme and formation of Abeta-heme peroxidase contribute to huAbeta's neurotoxicity in the early stages of AD. Phylogenic variations in the amino acid sequence of Abeta explain tight heme-binding to huAbeta and likely contribute to the increased human susceptibility to AD.

  9. Irradiation of bovine meat: effect of heme-iron concentration.; Irradiacao de carne bovina: efeito na concentracao de ferro heme

    Energy Technology Data Exchange (ETDEWEB)

    Mistura, Liliana Perazzini Furtado

    2002-07-01

    The irradiation is often used, nowadays, for meat conservation and it is important to know how much this process interferes with the nutritional quality of the meat. In this study round cut meat, ground and steaks (from a local supermarket) was irradiated with doses of O; 1; 2; 3; 4; 5; 7,5 and 10 kGy (JS-7500 Nordium Inc -Canada) and the interference of irradiation and the process of food preparation on heme-iron (H Fe) content was determined. Half of the sample was kept raw and the other half was grilled in a pre-warmed oven at 250 deg C for 9 min and a controlled humidity of 70%. The chemical composition, the total iron (T Fe) (EM) and the heme iron concentration were determined (Hornsey,1956) and the sensorial quality evaluated. The average T Fe concentration of raw and ground , ground and grilled, raw steaks and grilled steak meat, on dry and degreased basis was 113 mug/g, 121 mug/g , 91 mug/g and 77 mug/g; and the H Fe concentration 105 mug/g (93% of T Fe) , 88 mug/g (73% of T Fe), 90 mug/g (99% of T Fe) and 52 mug/g (68% of T Fe) respectively. Data were evaluated by ANOVA with fixed effects and multiple comparisons. The irradiation neither altered the chemical composition nor the proportion of heme iron of meat. The preparation conditions (temperature, cooking time, environment humidity, meat presentation) of the sample interfered more with the heme iron content than the irradiation. With the sensorial analysis we verified that meats irradiated with doses of 3 kGy were better evaluated in softness and succulency attributes than the others. Meat submitted to irradiation doses up to 3 kGy were accepted by the specialists' panel. (author)

  10. Altered heme catabolism by heme oxygenase-1 caused by mutations in human NADPH cytochrome P450 reductase

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Amit V., E-mail: amit@pandeylab.org [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland); Flueck, Christa E.; Mullis, Primus E. [Pediatric Endocrinology, Diabetology and Metabolism, Department of Clinical Research, University of Bern, Tiefenaustrasse 120c, CH-3004 Bern (Switzerland)

    2010-09-24

    Research highlights: {yields} Mutations in POR identified from patients lead to reduced HO-1 activities. {yields} POR mutation Y181D affecting FMN binding results in total loss of HO-1 activity. {yields} POR mutations A287P, C569Y and V608F, lost 50-70% activity. {yields} Mutations in FAD binding domain, R457H, Y459H and V492E lost all HO-1 activity. {yields} POR polymorphisms P228L, R316W, G413S, A503V and G504R have normal activity. -- Abstract: Human heme oxygenase-1 (HO-1) carries out heme catabolism supported by electrons supplied from the NADPH through NADPH P450 reductase (POR, CPR). Previously we have shown that mutations in human POR cause a rare form of congenital adrenal hyperplasia. In this study, we have evaluated the effects of mutations in POR on HO-1 activity. We used purified preparations of wild type and mutant human POR and in vitro reconstitution with purified HO-1 to measure heme degradation in a coupled assay using biliverdin reductase. Here we show that mutations in POR found in patients may reduce HO-1 activity, potentially influencing heme catabolism in individuals carrying mutant POR alleles. POR mutants Y181D, A457H, Y459H, V492E and R616X had total loss of HO-1 activity, while POR mutations A287P, C569Y and V608F lost 50-70% activity. The POR variants P228L, R316W and G413S, A503V and G504R identified as polymorphs had close to WT activity. Loss of HO-1 activity may result in increased oxidative neurotoxicity, anemia, growth retardation and iron deposition. Further examination of patients affected with POR deficiency will be required to assess the metabolic effects of reduced HO-1 activity in affected individuals.

  11. Resonance Raman Spectra of Five-Coordinate Heme-Nitrosyl Cytochromes c': Effect of the Proximal Heme-NO Environment.

    Science.gov (United States)

    Servid, Amy E; McKay, Alison L; Davis, Cherry A; Garton, Elizabeth M; Manole, Andreea; Dobbin, Paul S; Hough, Michael A; Andrew, Colin R

    2015-06-02

    Five-coordinate heme nitrosyl complexes (5cNO) underpin biological heme-NO signal transduction. Bacterial cytochromes c' are some of the few structurally characterized 5cNO proteins, exhibiting a distal to proximal 5cNO transition of relevance to NO sensing. Establishing how 5cNO coordination (distal vs proximal) depends on the heme environment is important for understanding this process. Recent 5cNO crystal structures of Alcaligenes xylosoxidans cytochrome c' (AXCP) and Shewanella frigidimarina cytochrome c' (SFCP) show a basic residue (Arg124 and Lys126, respectively) near the proximal NO binding sites. Using resonance Raman (RR) spectroscopy, we show that structurally characterized 5cNO complexes of AXCP variants and SFCP exhibit a range of ν(NO) (1651-1671 cm(-1)) and ν(FeNO) (519-536 cm(-1)) vibrational frequencies, depending on the nature of the proximal heme pocket and the sample temperature. While the AXCP Arg124 residue appears to have little impact on 5cNO vibrations, the ν(NO) and ν(FeNO) frequencies of the R124K variant are consistent with (electrostatically) enhanced Fe(II) → (NO)π* backbonding. Notably, RR frequencies for SFCP and R124A AXCP are significantly displaced from the backbonding trendline, which in light of recent crystallographic data and density functional theory modeling may reflect changes in the Fe-N-O angle and/or extent of σ-donation from the NO(π*) to the Fe(II) (dz(2)) orbital. For R124A AXCP, correlation of vibrational and crystallographic data is complicated by distal and proximal 5cNO populations. Overall, this study highlights the complex structure-vibrational relationships of 5cNO proteins that allow RR spectra to distinguish 5cNO coordination in certain electrostatic and steric environments.

  12. Investigations of ultrafast ligand rebinding to heme and heme proteins using temperature and strong magnetic field perturbations

    Science.gov (United States)

    Zhang, Zhenyu

    This thesis is written to summarize investigations of the mechanisms that underlie the kinetics of diatomic ligand rebinding to the iron atom of the heme group, which is chelated inside heme proteins. The family of heme proteins is a major object of studies for several branches of scientific research activity. Understanding the ligand binding mechanisms and pathways is one of the major goals for biophysics. My interests mainly focus on the physics of this ligand binding process. Therefore, to investigate the problem, isolated from the influence of the protein matrix, Fe-protophorphyrin IX is chosen as the prototype system in my studies. Myoglobin, the most extensively and intensively studied protein, is another ideal system that allows coupling the protein polypeptide matrix into the investigation. A technique to synchro-lock two laser pulse trains electronically is applied to our pump-probe spectroscopic studies. Based on this technique, a two color, fs/ps pump-probe system is developed which extends the temporal window for our investigation to 13ns and fills a gap existing in previous pump-probe investigations. In order to apply this newly-developed pump-probe laser system to implement systematic studies on the kinetics of diatomic ligand (NO, CO, O2) rebinding to heme and heme proteins, several experimental setups are utilized. In Chapter 1, the essential background knowledge, which helps to understand the iron-ligand interaction, is briefly described. In Chapter 2, in addition to a description of the preparation protocols of protein samples and details of the method for data analysis, three home-made setups are described, which include: a picosecond laser regenerative amplifier, a pump-probe application along the bore (2-inch in diameter) of a superconducting magnet and a temperature-controllable cryostat for spinning sample cell. Chapter 3 presents high magnetic field studies of several heme-ligand or protein-ligand systems. Pump-probe spectroscopy is used to

  13. Adenoviral transfer of the heme oxygenase-1 gene protects striatal astrocytes from heme-mediated oxidative injury.

    Science.gov (United States)

    Teng, Zhi-Ping; Chen, Jing; Chau, Lee-Young; Galunic, Nicholas; Regan, Raymond F

    2004-11-01

    Heme oxygenase-1 (HO-1) is induced in the CNS after hemorrhage, and may have an effect on injury to surrounding tissue. Hemin, the preferred substrate of HO, is a neurotoxin that is present in intracranial hematomas. In a prior study, we observed that HO inhibitors increased the vulnerability of cultured cortical astrocytes to heme-mediated oxidative injury. To investigate the effect of HO more specifically, we used an adenoviral vector encoding the human HO-1 gene to specifically increase HO-1 expression. Incubation with 100 MOI of the HO-1 adenovirus (Adv-HHO-1) for 24 h increased both HO-1 protein and HO activity; a control adenovirus lacking the HO-1 gene had no effect. Using a DNA probe that was specific for human HO-1, 80.5 +/- 7.2% of astrocytes were observed to be infected by in situ hybridization. The cell death produced by 30-60 microM hemin was significantly reduced by pretreatment with 100 MOI Adv-HHO-1, as assessed by LDH release, propidium iodide exclusion, and MTT reduction assay. The threefold increase in cell protein oxidation produced by hemin was also attenuated in cultures pretreated with Adv-HHO-1. These results support the hypothesis that HO-1 protects astrocytes from heme-mediated oxidative injury. Specifically increasing astrocytic HO-1 by gene transfer may have a beneficial effect on hemorrhagic CNS injury.

  14. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Coelho, Pedro S.; Brustad, Eric M.; Arnold, Frances H.; Wang, Zhan; Lewis, Jared C.

    2016-11-15

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  15. In vivo and in vitro olefin cyclopropanation catalyzed by heme enzymes

    Science.gov (United States)

    Coelho, Pedro S; Brustad, Eric M; Arnold, Frances H; Wang, Zhan; Lewis, Jared C

    2015-03-31

    The present invention provides methods for catalyzing the conversion of an olefin to any compound containing one or more cyclopropane functional groups using heme enzymes. In certain aspects, the present invention provides a method for producing a cyclopropanation product comprising providing an olefinic substrate, a diazo reagent, and a heme enzyme; and admixing the components in a reaction for a time sufficient to produce a cyclopropanation product. In other aspects, the present invention provides heme enzymes including variants and fragments thereof that are capable of carrying out in vivo and in vitro olefin cyclopropanation reactions. Expression vectors and host cells expressing the heme enzymes are also provided by the present invention.

  16. Heme, an Essential Nutrient from Dietary Proteins, Critically Impacts Diverse Physiological and Pathological Processes

    Directory of Open Access Journals (Sweden)

    Jagmohan Hooda

    2014-03-01

    Full Text Available Heme constitutes 95% of functional iron in the human body, as well as two-thirds of the average person’s iron intake in developed countries. Hence, a wide range of epidemiological studies have focused on examining the association of dietary heme intake, mainly from red meat, with the risks of common diseases. High heme intake is associated with increased risk of several cancers, including colorectal cancer, pancreatic cancer and lung cancer. Likewise, the evidence for increased risks of type-2 diabetes and coronary heart disease associated with high heme intake is compelling. Furthermore, recent comparative metabolic and molecular studies of lung cancer cells showed that cancer cells require increased intracellular heme biosynthesis and uptake to meet the increased demand for oxygen-utilizing hemoproteins. Increased levels of hemoproteins in turn lead to intensified oxygen consumption and cellular energy generation, thereby fueling cancer cell progression. Together, both epidemiological and molecular studies support the idea that heme positively impacts cancer progression. However, it is also worth noting that heme deficiency can cause serious diseases in humans, such as anemia, porphyrias, and Alzheimer’s disease. This review attempts to summarize the latest literature in understanding the role of dietary heme intake and heme function in diverse diseases.

  17. Calcium-Dependent Conformation of a Heme and Fingerprint Peptide of the Di-Heme Cytochrome c Peroxidase from Paracoccus Pantotrophus

    Energy Technology Data Exchange (ETDEWEB)

    PAULETA,SOFIA R.; LU,YI; GOODHEW,CELIA F.; MOURA,ISABEL; PETTIGREW,GRAHAM W.; SHELNUTT,JOHN A.

    2000-12-18

    The structural changes in the heme macrocycle and substituents caused by binding of Ca{sup 2+} to the diheme cytochrome c peroxidase from Paracoccuspantotrophus were clarified by resonance Raman spectroscopy of the inactive filly oxidized form of the enzyme. The changes in the macrocycle vibrational modes are consistent with a Ca{sup 2+}-dependent increase in the out-of-plane distortion of the low-potential heme, the proposed peroxidatic heme. Most of the increase in out-of-plane distortion occurs when the high affinity site I is occupied, but a small further increase in distortion occurs when site II is also occupied by Ca{sup 2+}or Mg{sup 2+}. This increase in the heme distortion also explains the red shift in the Soret absorption band that occurs upon Ca{sup 2+} binding. Changes also occur in the low frequency substituent modes of the heme, indicating that a structural change in the covalently attached fingerprint pentapeptide of the LP heme occurs upon CM{sup 2+} binding to site I. These structural changes, possibly enhanced in the semi-reduced form of the enzyme, may lead to loss of the sixth ligand at the peroxidatic heme and activation of the enzyme.

  18. One-step synthesis, self-assembly and bioimaging applications of adenosine triphosphate containing amphiphilies with aggregation-induced emission feature.

    Science.gov (United States)

    Long, Zi; Liu, Meiying; Mao, Liucheng; Zeng, Guangjian; Huang, Qiang; Huang, Hongye; Deng, Fengjie; Wan, Yiqun; Zhang, Xiaoyong; Wei, Yen

    2017-04-01

    Amphiphilic molecules with aggregation-induced emission (AIE) characteristics have attracted intensive interest for biological imaging applications for their self-assembly into nanostructures and obvious enhanced fluorescence intensity in aqueous solution. Although many AIE-active fluorescent organic nanoparticles (FONs) have been fabricated recently, the direct linkage of hydrophilic small molecules and hydrophobic AIE dyes has rarely been reported. In this work, we reported a one-pot strategy for preparation of adenosine triphosphate (ATP) containing molecules that conjugated the amino group of ATP and aldehyde-terminated AIE dye (PhCHO) based on mercaptoacetic acid locking imine (MALI) reaction. These AIE-active ATP-PhCHO showed amphiphilic properties and could self-assemble into micelles, which displayed high water dispersibility, strong yellow fluorescence, good biocompatibility and biological imaging capability. These advantages make ATP-PhCHO FONs promising for biomedical applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Synthesis and self-assembly of large-area Cu nanosheets and their application as an aqueous conductive ink on flexible electronics.

    Science.gov (United States)

    Dang, Rui; Song, Lingling; Dong, Wenjun; Li, Chaorong; Zhang, Xiaobo; Wang, Ge; Chen, Xiaobo

    2014-01-08

    Large-area Cu nanosheets are synthesized by a strategy of Cu nanocrystal self-assembly, and then aqueous conductive Cu nanosheet ink is successfully prepared for direct writing on the conductive circuits of flexible electronics. The Cu nanocrystals, as building blocks, self-assemble along the [111] direction and grow into large-area nanosheets approximately 30-100 μm in diameter and a few hundred nanometers in thickness. The laminar stackable patterns of the Cu nanosheet circuits increase the contact area of the Cu nanosheets and improve the stability of the conductor under stress, the result being that the Cu nanosheet circuits display excellent conductive performance during repeated folding and unfolding. Moreover, heterostructures of Ag nanoparticle-coated Cu nanosheets are created to improve the thermal stability of the nanosheet circuits at high temperatures.

  20. Characterization of the outer membrane receptor ShuA from the heme uptake system of Shigella dysenteriae. Substrate specificity and identification of the heme protein ligands.

    Science.gov (United States)

    Burkhard, Kimberly A; Wilks, Angela

    2007-05-18

    Shigella dysenteriae, like many bacterial pathogens, has evolved outer membrane receptor-mediated pathways for the uptake and utilization of heme as an iron source. As a first step toward understanding the mechanism of heme uptake we have undertaken a site-directed mutagenesis, spectroscopic, and kinetic analysis of the outer membrane receptor ShuA of S. dysenteriae. Purification of the outer membrane receptor gave a single band of molecular mass 73 kDa on SDS-PAGE. Initial spectroscopic analysis of the protein in either detergent micelles or lipid bicelles revealed residual heme bound to the receptor, with a Soret maximum at 413 nm. Titration of the protein with exogenous heme gave a Soret peak at 437 nm in detergent micelles, and 402 nm in lipid bicelles. However, transfer of heme from hemoglobin yields a Soret maximum at 413 nm identical to that of the isolated protein. Further spectroscopic and kinetic analysis revealed that hemoglobin in the oxidized state is the most likely physiological substrate for ShuA. In addition, mutation of the conserved histidines, H86A or H420A, resulted in a loss of the ability of the receptor to efficiently extract heme from hemoglobin. In contrast the double mutant H86A/H420A was unable to extract heme from hemoglobin. These findings taken together confirm that both His-86 and His-420 are essential for substrate recognition, heme coordination, and transfer. Furthermore, the full-length TonB was shown to form a 1:1 complex with either apo-ShuA H86A/H420A or the wild-type ShuA. These observations provide a basis for future studies on the coordination and transport of heme by the TonB-dependent outer membrane receptors.

  1. The five near-iron transporter (NEAT) domain anthrax hemophore, IsdX2, scavenges heme from hemoglobin and transfers heme to the surface protein IsdC.

    Science.gov (United States)

    Honsa, Erin Sarah; Fabian, Marian; Cardenas, Ana Maria; Olson, John S; Maresso, Anthony William

    2011-09-23

    Pathogenic bacteria require iron to replicate inside mammalian hosts. Recent studies indicate that heme acquisition in Gram-positive bacteria is mediated by proteins containing one or more near-iron transporter (NEAT) domains. Bacillus anthracis is a spore-forming, Gram-positive pathogen and the causative agent of anthrax disease. The rapid, extensive, and efficient replication of B. anthracis in host tissues makes this pathogen an excellent model organism for the study of bacterial heme acquisition. B. anthracis secretes two NEAT hemophores, IsdX1 and IsdX2. IsdX1 contains a single NEAT domain, whereas IsdX2 has five, a novel property among hemophores. To understand the functional significance of harboring multiple, non-identical NEAT domains, we purified each individual NEAT domain of IsdX2 as a GST fusion and analyzed the specific function of each domain as it relates to heme acquisition and transport. NEAT domains 1, 3, 4, and 5 all bind heme, with domain 5 having the highest affinity. All NEATs associate with hemoglobin, but only NEAT1 and -5 can extract heme from hemoglobin, seemingly by a specific and active process. NEAT1, -3, and -4 transfer heme to IsdC, a cell wall-anchored anthrax NEAT protein. These results indicate that IsdX2 has all the features required to acquire heme from the host and transport heme to the bacterial cell wall. Additionally, these results suggest that IsdX2 may accelerate iron import rates by acting as a "heme sponge" that enhances B. anthracis replication in iron-starved environments.

  2. The Five Near-iron Transporter (NEAT) Domain Anthrax Hemophore, IsdX2, Scavenges Heme from Hemoglobin and Transfers Heme to the Surface Protein IsdC*

    Science.gov (United States)

    Honsa, Erin Sarah; Fabian, Marian; Cardenas, Ana Maria; Olson, John S.; Maresso, Anthony William

    2011-01-01

    Pathogenic bacteria require iron to replicate inside mammalian hosts. Recent studies indicate that heme acquisition in Gram-positive bacteria is mediated by proteins containing one or more near-iron transporter (NEAT) domains. Bacillus anthracis is a spore-forming, Gram-positive pathogen and the causative agent of anthrax disease. The rapid, extensive, and efficient replication of B. anthracis in host tissues makes this pathogen an excellent model organism for the study of bacterial heme acquisition. B. anthracis secretes two NEAT hemophores, IsdX1 and IsdX2. IsdX1 contains a single NEAT domain, whereas IsdX2 has five, a novel property among hemophores. To understand the functional significance of harboring multiple, non-identical NEAT domains, we purified each individual NEAT domain of IsdX2 as a GST fusion and analyzed the specific function of each domain as it relates to heme acquisition and transport. NEAT domains 1, 3, 4, and 5 all bind heme, with domain 5 having the highest affinity. All NEATs associate with hemoglobin, but only NEAT1 and -5 can extract heme from hemoglobin, seemingly by a specific and active process. NEAT1, -3, and -4 transfer heme to IsdC, a cell wall-anchored anthrax NEAT protein. These results indicate that IsdX2 has all the features required to acquire heme from the host and transport heme to the bacterial cell wall. Additionally, these results suggest that IsdX2 may accelerate iron import rates by acting as a “heme sponge” that enhances B. anthracis replication in iron-starved environments. PMID:21808055

  3. Assembling Metal Ions Induced Cyanide-Bridged Heterometallic 1D and Ion-Pair Complexes: Synthesis, Crystal Structures and Magnetic Properties

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Lingqian [Liaocheng Univ., Liaocheng (China); Zhao, Zengdian; Chen, Kexun; Wang, Ping; Zhang, Daopeng [Shandong Univ. of Technology, Zibo (China)

    2013-07-15

    We obtained a heterobimetallic one-dimensional cyanide-bridged Mn(II)-Ni(II) complex and an Co(III)-Ni(II) ion-pair complex with [Ni(CN){sub 4}]{sup 2-} as building block and M(II)-phenanthroline (M = Mn, Co) compounds as assembling segment. The different structural types of complexes 1 and 2 indicate that the property of the metal ions the assembling segment contained have obvious influence on the structure of the cyanide-bridged complex. Investigation over the magnetic properties of complex 1 reveals an overall weak antiferromagnetic coupling between the adjacent Mn(II) ions bridged by the antiferromagnetic [-NC-Ni-CN-] unit. Among of all the molecular magnetism systems, for the well known reasons, cyanide-containing complexes have been widely employed as bridges to assemble homo/hetero-metallic molecular magnetic materials by using the cyanide bridge transferring magnetic coupling between the neighboring paramagnetic ions, in whichsome showed interesting magnetic properties, such as high-Tc magnets, spin crossover materials, single-molecule magnets (SMMs) and single-chain magnets (SCMs)

  4. Enhanced coercivity in Co-doped α-Fe2O3 cubic nanocrystal assemblies prepared via a magnetic field-assisted hydrothermal synthesis

    Directory of Open Access Journals (Sweden)

    Kinjal Gandha

    2017-05-01

    Full Text Available Ferromagnetic Co-doped α-Fe2O3 cubic shaped nanocrystal assemblies (NAs with a high coercivity of 5.5 kOe have been synthesized via a magnetic field (2 kOe assisted hydrothermal process. The X-ray diffraction pattern and Raman spectra of α-Fe2O3 and Co-doped α-Fe2O3 NAs confirms the formation of single-phase α-Fe2O3 with a rhombohedral crystal structure. Electron microscopy analysis depict that the Co-doped α-Fe2O3 NAs synthesized under the influence of the magnetic field are consist of aggregated nanocrystals (∼30 nm and of average assembly size 2 μm. In contrast to the NAs synthesized with no magnetic field, the average NAs size and coercivity of the Co-doped α-Fe2O3 NAs prepared with magnetic field is increased by 1 μm and 1.4 kOe, respectively. The enhanced coercivity could be related to the well-known spin–orbit coupling strength of Co2+ cations and the redistribution of the cations. The size increment indicates that the small ferromagnetic nanocrystals assemble into cubic NAs with increased size in the magnetic field that also lead to the enhanced coercivity.

  5. Enhanced coercivity in Co-doped α-Fe2O3 cubic nanocrystal assemblies prepared via a magnetic field-assisted hydrothermal synthesis

    Science.gov (United States)

    Gandha, Kinjal; Mohapatra, Jeotikanta; Poudyal, Narayan; Elkins, Kevin; Liu, J. Ping

    2017-05-01

    Ferromagnetic Co-doped α-Fe2O3 cubic shaped nanocrystal assemblies (NAs) with a high coercivity of 5.5 kOe have been synthesized via a magnetic field (2 kOe) assisted hydrothermal process. The X-ray diffraction pattern and Raman spectra of α-Fe2O3 and Co-doped α-Fe2O3 NAs confirms the formation of single-phase α-Fe2O3 with a rhombohedral crystal structure. Electron microscopy analysis depict that the Co-doped α-Fe2O3 NAs synthesized under the influence of the magnetic field are consist of aggregated nanocrystals (˜30 nm) and of average assembly size 2 μm. In contrast to the NAs synthesized with no magnetic field, the average NAs size and coercivity of the Co-doped α-Fe2O3 NAs prepared with magnetic field is increased by 1 μm and 1.4 kOe, respectively. The enhanced coercivity could be related to the well-known spin-orbit coupling strength of Co2+ cations and the redistribution of the cations. The size increment indicates that the small ferromagnetic nanocrystals assemble into cubic NAs with increased size in the magnetic field that also lead to the enhanced coercivity.

  6. Synthesis and self-assembly behavior of amphiphilic diblock copolymer dextran-block-poly(ε-caprolactone (DEX-b-PCL in aqueous media

    Directory of Open Access Journals (Sweden)

    2010-10-01

    Full Text Available An amphiphilic diblock copolymer, dextran-block-poly(ε-caprolactone (DEX-b-PCL, with a series of welldefined chain lengths of each block was prepared by conjugating a dextran chain with a PCL block via aza-Michael addition reaction under mild conditions. For the dextran block, samples with relatively uniform molecular weight, 3.5 and 6.0 kDa, were used, and the PCL blocks were prepared via ring-opening polymerization at defined ratios of ε-caprolactone to initiator in order to give copolymers with mass fraction of dextran (fDEX ranging from 0.16 to 0.45. When these copolymers were allowed to self-assemble in aqueous solution, the morphology of assembled aggregates varied as a function of fDEX when characterized by transmission electron microscope (TEM, fluorescence microscope (FM and dynamic laser scattering (DLS. As fDEX decreases gradually from 0.45 to 0.16, the morphology of the copolymer assembly changes from spherical micelles to worm-like micelles and eventually to polymersomes, together with an increase in particle sizes.

  7. O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin is limited by nitrogen monoxide dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Ascenzi, Paolo, E-mail: ascenzi@uniroma3.it [Interdepartmental Laboratory of Electron Microscopy, University Roma Tre, Via della Vasca Navale 79, I-00146 Roma (Italy); National Institute for Infectious Diseases I.R.C.C.S. ' Lazzaro Spallanzani' , Via Portuense 292, I-00149 Roma (Italy); Gullotta, Francesca; Gioia, Magda; Coletta, Massimo [Department of Experimental Medicine and Biochemical Sciences, University of Roma ' Tor Vergata' , Via Montpellier 1, I-00133 Roma (Italy); Interuniversity Consortium for the Research on the Chemistry of Metals in Biological Systems, Piazza Umberto I 1, I-87100 Bari (Italy); Fasano, Mauro [Department of Structural and Functional Biology, and Center of Neuroscience, University of Insubria, Via Alberto da Giussano 12a, I-21052 Busto Arsizio, VA (Italy)

    2011-03-04

    Research highlights: {yields} Human serum heme-albumin displays globin-like properties. {yields} O{sub 2}-mediated oxidation of ferrous nitrosylated human serum heme-albumin. {yields} Allosteric modulation of human serum heme-albumin reactivity. {yields} Rifampicin is an allosteric effector of human serum heme-albumin. {yields} Human serum heme-albumin is a ROS and NOS scavenger. -- Abstract: Human serum heme-albumin (HSA-heme-Fe) displays globin-like properties. Here, kinetics of O{sub 2}-mediated oxidation of ferrous nitrosylated HSA-heme-Fe (HSA-heme-Fe(II)-NO) is reported. Values of the first-order rate constants for O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO (i.e., for ferric HSA-heme-Fe formation) and for NO dissociation from HSA-heme-Fe(II)-NO (i.e., for NO replacement by CO) are k = 9.8 x 10{sup -5} and 8.3 x 10{sup -4} s{sup -1}, and h = 1.3 x 10{sup -4} and 8.5 x 10{sup -4} s{sup -1}, in the absence and presence of rifampicin, respectively, at pH = 7.0 and T = 20.0 {sup o}C. The coincidence of values of k and h indicates that NO dissociation represents the rate limiting step of O{sub 2}-mediated oxidation of HSA-heme-Fe(II)-NO. Mixing HSA-heme-Fe(II)-NO with O{sub 2} does not lead to the formation of the transient adduct(s), but leads to the final ferric HSA-heme-Fe derivative. These results reflect the fast O{sub 2}-mediated oxidation of ferrous HSA-heme-Fe and highlight the role of drugs in modulating allosterically the heme-Fe-atom reactivity.

  8. Dietary hemoglobin rescues young piglets from severe iron deficiency anemia: Duodenal expression profile of genes involved in heme iron absorption.

    Directory of Open Access Journals (Sweden)

    Robert Staroń

    Full Text Available Heme is an efficient source of iron in the diet, and heme preparations are used to prevent and cure iron deficiency anemia in humans and animals. However, the molecular mechanisms responsible for heme absorption remain only partially characterized. Here, we employed young iron-deficient piglets as a convenient animal model to determine the efficacy of oral heme iron supplementation and investigate the pathways of heme iron absorption. The use of bovine hemoglobin as a dietary source of heme iron was found to efficiently counteract the development of iron deficiency anemia in piglets, although it did not fully rebalance their iron status. Our results revealed a concerted increase in the expression of genes responsible for apical and basolateral heme transport in the duodenum of piglets fed a heme-enriched diet. In these animals the catalytic activity of heme oxygenase 1 contributed to the release of elemental iron from the protoporphyrin ring of heme within enterocytes, which may then be transported by the strongly expressed ferroportin across the basolateral membrane to the circulation. We hypothesize that the well-recognized high bioavailability of heme iron may depend on a split pathway mediating the transport of heme-derived elemental iron and intact heme from the interior of duodenal enterocytes to the bloodstream.

  9. Ordered mesoporous materials based on interfacial assembly and engineering.

    Science.gov (United States)

    Li, Wei; Yue, Qin; Deng, Yonghui; Zhao, Dongyuan

    2013-10-04

    Ordered mesoporous materials have inspired prominent research interest due to their unique properties and functionalities and potential applications in adsorption, separation, catalysis, sensors, drug delivery, energy conversion and storage, and so on. Thanks to continuous efforts over the past two decades, great achievements have been made in the synthesis and structural characterization of mesoporous materials. In this review, we summarize recent progresses in preparing ordered mesoporous materials from the viewpoint of interfacial assembly and engineering. Five interfacial assembly and synthesis are comprehensively highlighted, including liquid-solid interfacial assembly, gas-liquid interfacial assembly, liquid-liquid interfacial assembly, gas-solid interfacial synthesis, and solid-solid interfacial synthesis, basics about their synthesis pathways, princples and interface engineering strategies. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Chlamydomonas reinhardtii LFO1 Is an IsdG Family Heme Oxygenase.

    Science.gov (United States)

    Lojek, Lisa J; Farrand, Allison J; Wisecaver, Jennifer H; Blaby-Haas, Crysten E; Michel, Brian W; Merchant, Sabeeha S; Rokas, Antonis; Skaar, Eric P

    2017-01-01

    Heme is essential for respiration across all domains of life. However, heme accumulation can lead to toxicity if cells are unable to either degrade or export heme or its toxic by-products. Under aerobic conditions, heme degradation is performed by heme oxygenases, enzymes which utilize oxygen to cleave the tetrapyrrole ring of heme. The HO-1 family of heme oxygenases has been identified in both bacterial and eukaryotic cells, whereas the IsdG family has thus far been described only in bacteria. We identified a hypothetical protein in the eukaryotic green alga Chlamydomonas reinhardtii, which encodes a protein containing an antibiotic biosynthesis monooxygenase (ABM) domain consistent with those associated with IsdG family members. This protein, which we have named LFO1, degrades heme, contains similarities in predicted secondary structures to IsdG family members, and retains the functionally conserved catalytic residues found in all IsdG family heme oxygenases. These data establish LFO1 as an IsdG family member and extend our knowledge of the distribution of IsdG family members beyond bacteria. To gain further insight into the distribution of the IsdG family, we used the LFO1 sequence to identify 866 IsdG family members, including representatives from all domains of life. These results indicate that the distribution of IsdG family heme oxygenases is more expansive than previously appreciated, underscoring the broad relevance of this enzyme family. IMPORTANCE This work establishes a protein in the freshwater alga Chlamydomonas reinhardtii as an IsdG family heme oxygenase. This protein, LFO1, exhibits predicted secondary structure and catalytic residues conserved in IsdG family members, in addition to a chloroplast localization sequence. Additionally, the catabolite that results from the degradation of heme by LFO1 is distinct from that of other heme degradation products. Using LFO1 as a seed, we performed phylogenetic analysis, revealing that the IsdG family is

  11. Iron-coordinating tyrosine is a key determinant of NEAT domain heme transfer.

    Science.gov (United States)

    Grigg, Jason C; Mao, Cherry X; Murphy, Michael E P

    2011-10-28

    In humans, heme iron is the most abundant iron source, and bacterial pathogens such as Staphylococcus aureus acquire it for growth. IsdB of S. aureus acquires Fe(III)-protoporphyrin IX (heme) from hemoglobin for transfer to IsdC via IsdA. These three cell-wall-anchored Isd (iron-regulated surface determinant) proteins contain conserved NEAT (near iron transport) domains. The purpose of this work was to delineate the mechanism of heme binding and transfer between the NEAT domains of IsdA, IsdB, and IsdC using a combination of structural and spectroscopic studies. X-ray crystal structures of IsdA NEAT domain (IsdA-N1) variants reveal that removing the native heme-iron ligand Tyr166 is compensated for by iron coordination by His83 on the distal side and that no single mutation of distal loop residues is sufficient to perturb the IsdA-heme complex. Also, alternate heme-iron coordination was observed in structures of IsdA-N1 bound to reduced Fe(II)-protoporphyrin IX and Co(III)-protoporphyrin IX. The IsdA-N1 structural data were correlated with heme transfer kinetics from the NEAT domains of IsdB and IsdC. We demonstrated that the NEAT domains transfer heme at rates comparable to full-length proteins. The second-order rate constant for heme transfer from IsdA-N1 was modestly affected (15-fold (to 100-fold excess IsdC). We propose a heme transfer model wherein NEAT domain complexes pass heme iron directly from an iron-coordinating Tyr of the donor protein to the homologous Tyr residues of the acceptor protein. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Multicopper manganese oxidase accessory proteins bind Cu and heme.

    Science.gov (United States)

    Butterfield, Cristina N; Tao, Lizhi; Chacón, Kelly N; Spiro, Thomas G; Blackburn, Ninian J; Casey, William H; Britt, R David; Tebo, Bradley M

    2015-12-01

    Multicopper oxidases (MCOs) catalyze the oxidation of a diverse group of metal ions and organic substrates by successive single-electron transfers to O2 via four bound Cu ions. MnxG, which catalyzes MnO2 mineralization by oxidizing both Mn(II) and Mn(III), is unique among multicopper oxidases in that it carries out two energetically distinct electron transfers and is tightly bound to accessory proteins. There are two of these, MnxE and MnxF, both approximately 12kDa. Although their sequences are similar to those found in the genomes of several Mn-oxidizing Bacillus species, they are dissimilar to those of proteins with known function. Here, MnxE and MnxF are co-expressed independent of MnxG and are found to oligomerize into a higher order stoichiometry, likely a hexamer. They bind copper and heme, which have been characterized by electron paramagnetic resonance (EPR), X-ray absorption spectroscopy (XAS), and UV-visible (UV-vis) spectrophotometry. Cu is found in two distinct type 2 (T2) copper centers, one of which appears to be novel; heme is bound as a low-spin species, implying coordination by two axial ligands. MnxE and MnxF do not oxidize Mn in the absence of MnxG and are the first accessory proteins to be required by an MCO. This may indicate that Cu and heme play roles in electron transfer and/or Cu trafficking. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Pilot-scale tests of HEME and HEPA dissolution process

    Energy Technology Data Exchange (ETDEWEB)

    Qureshi, Z.H.; Strege, D.K.

    1994-06-01

    A series of pilot-scale demonstration tests for the dissolution of High Efficiency Mist Eliminators (HEME`s) and High Efficiency Particulate Airfilters (HEPA) were performed on a 1/5th linear scale. These fiberglass filters are to be used in the Defense Waste Processing Facility (DWPF) to decontaminate the effluents from the off-gases generated during the feed preparation process and vitrification. When removed, these filters will be dissolved in the Decontamination Waste Treatment Tank (DWTT) using 5 wt% NaOH solution. The contaminated fiberglass is converted to an aqueous stream which will be transferred to the waste tanks. The filter metal structure will be rinsed with process water before its disposal as low-level solid waste. The pilot-scale study reported here successfully demonstrated a simple one step process using 5 wt% NaOH solution. The proposed process requires the installation of a new water spray ring with 30 nozzles. In addition to the reduced waste generated, the total process time is reduced to 48 hours only (66% saving in time). The pilot-scale tests clearly demonstrated that the dissolution process of HEMEs has two stages - chemical digestion of the filter and mechanical erosion of the digested filter. The digestion is achieved by a boiling 5 wt% caustic solutions, whereas the mechanical break down of the digested filter is successfully achieved by spraying process water on the digested filter. An alternate method of breaking down the digested filter by increased air sparging of the solution was found to be marginally successful are best. The pilot-scale tests also demonstrated that the products of dissolution are easily pumpable by a centrifugal pump.

  14. Heme oxygenase-1 accelerates tumor angiogenesis of human pancreatic cancer.

    Science.gov (United States)

    Sunamura, Makoto; Duda, Dan G; Ghattas, Maivel H; Lozonschi, Lucian; Motoi, Fuyuhiko; Yamauchi, Jun-Ichiro; Matsuno, Seiki; Shibahara, Shigeki; Abraham, Nader G

    2003-01-01

    Angiogenesis is necessary for the continued growth of solid tumors, invasion and metastasis. Several studies clearly showed that heme oxygenase-1 (HO-1) plays an important role in angiogenesis. In this study, we used the vital microscope system, transparent skinfold model, lung colonization model and transduced pancreatic cancer cell line (Panc-1)/human heme oxygenase-1 (hHO-1) cells, to precisely analyze, for the first time, the effect of hHO-1 gene on tumor growth, angiogenesis and metastasis. Our results revealed that HO-1 stimulates angiogenesis of pancreatic carcinoma in severe combined immune deficient mice. Overexpression of human hHO-1 after its retroviral transfer into Panc-1 cells did not interfere with tumor growth in vitro. While in vivo the development of tumors was accelerated upon transfection with hHO-1. On the other hand, inhibition of heme oxygenase (HO) activity by stannous mesoporphyrin was able transiently to delay tumor growth in a dose dependent manner. Tumor angiogenesis was markedly increased in Panc-1/hHO-1 compared to mock transfected and wild type. Lectin staining and Ki-67 proliferation index confirmed these results. In addition hHO-1 stimulated in vitro tumor angiogenesis and increased endothelial cell survival. In a lung colonization model, overexpression of hHO-1 increased the occurrence of metastasis, while inhibition of HO activity by stannous mesoporphyrin completely inhibited the occurrence of metastasis. In conclusion, overexpression of HO-1 genes potentiates pancreatic cancer aggressiveness, by increasing tumor growth, angiogenesis and metastasis and that the inhibition of the HO system may be of useful benefit for the future treatment of the disease.

  15. Synthesis of Hierarchically Structured Hybrid Materials by Controlled Self-Assembly of Metal-Organic Framework with Mesoporous Silica for CO2 Adsorption.

    Science.gov (United States)

    Chen, Chong; Li, Bingxue; Zhou, Lijin; Xia, Zefeng; Feng, Nengjie; Ding, Jing; Wang, Lei; Wan, Hui; Guan, Guofeng

    2017-07-12

    The HKUST-1@SBA-15 composites with hierarchical pore structure were constructed by in situ self-assembly of metal-organic framework (MOF) with mesoporous silica. The structure directing role of SBA-15 had an obvious impact on the growth of MOF crystals, which in turn affected the morphologies and structural properties of the composites. The pristine HKUST-1 and the composites with different content of SBA-15 were characterized by XRD, N2 adsorption-desorption, SEM, TEM, FT-IR, TG, XPS, and CO2-TPD techniques. It was found that the composites were assembled by oriented growth of MOF nanocrystals on the surfaces of SBA-15 matrix. The interactions between surface silanol groups and metal centers induced structural changes and resulted in the increases in surface areas as well as micropore volumes of hybrid materials. Besides, the additional constraints from SBA-15 also restrained the expansion of HKUST-1, contributing to their smaller crystal sizes in the composites. The adsorption isotherms of CO2 on the materials were measured and applied to calculate the isosteric heats of adsorption. The HS-1 composite exhibited an increase of 15.9% in CO2 uptake capacity compared with that of HKUST-1. Moreover, its higher isosteric heats of CO2 adsorption indicated the stronger interactions between the surfaces and CO2 molecules. The adsorption rate of the composite was also improved due to the introduction of mesopores. Ten cycles of CO2 adsorption-desorption experiments implied that the HS-1 had excellent reversibility of CO2 adsorption. This study was intended to provide the possibility of assembling new composites with tailored properties based on MOF and mesoporous silica to satisfy the requirements of various applications.

  16. Synthesis and Electrochemical, Photophysical, and Self-Assembly Studies on Water-Soluble pH-Responsive Alkynylplatinum(II) Terpyridine Complexes.

    Science.gov (United States)

    Chung, Clive Yik-Sham; Li, Steve Po-Yam; Lo, Kenneth Kam-Wing; Yam, Vivian Wing-Wah

    2016-05-02

    A series of water-soluble pH-responsive alkynylplatinum(II) terpyridine complexes have been synthesized and characterized. The electronic absorption, emission, and electrochemical properties of the complexes have been studied. The self-assembly processes of representative complexes in aqueous media, presumably through Pt···Pt and/or π-π interactions, have been investigated by concentration- and temperature-dependent UV-vis absorption measurements and dynamic light scattering experiments. Interestingly, some of the complexes have been found to undergo induced self-assembly and disassembly in aqueous media through modulation of the pH value of the solutions, resulting in remarkable UV-vis absorption and emission spectral changes. The emission spectral changes have been rationalized by the change in the hydrophilicity of the complexes, electrostatic repulsion among the complex molecules, and/or the extent of photoinduced electron transfer (PET) quenching upon protonation/deprotonation of the pH-responsive groups on the complexes. By simple modifications of the chemical structures of the complexes, induced self-assembly/disassembly of the complexes can occur at different and/or multiple pH regions, thus allowing the probing of changes at the desired pH region by triplet metal-metal-to-ligand charge-transfer emission of the complexes in the near-infrared (NIR) region. Fixed-cell imaging experiments have further demonstrated the potential of this class of complexes as pH-responsive NIR luminescent probes in vitro, while the NIR emissions of the complexes from live cells have been found to show good differentiation of acidic organelles such as lysosomes from other cellular compartments.

  17. Cloning and Expression of cDNA for Rat Heme Oxygenase

    Science.gov (United States)

    Shibahara, Shigeki; Muller, Rita; Taguchi, Hayao; Yoshida, Tadashi

    1985-12-01

    Two cDNA clones for rat heme oxygenase have been isolated from a rat spleen cDNA library in λ gt11 by immunological screening using a specific polyclonal antibody. One of these clones has an insert of 1530 nucleotides that contains the entire protein-coding region. To confirm that the isolated cDNA encodes heme oxygenase, we transfected monkey kidney cells (COS-7) with the cDNA carried in a simian virus 40 vector. The heme oxygenase was highly expressed in endoplasmic reticulum of transfected cells. The nucleotide sequence of the cloned cDNA was determined and the primary structure of heme oxygenase was deduced. Heme oxygenase is composed of 289 amino acids and has one hydrophobic segment at its carboxyl terminus, which is probably important for the insertion of heme oxygenase into endoplasmic reticulum. The cloned cDNA was used to analyze the induction of heme oxygenase in rat liver by treatment with CoCl2 or with hemin. RNA blot analysis showed that both CoCl2 and hemin increased the amount of hybridizable mRNA, suggesting that these substances may act at the transcriptional level to increase the amount of heme oxygenase.

  18. Stanniocalcin 1 binds hemin through a partially conserved heme regulatory motif

    Energy Technology Data Exchange (ETDEWEB)

    Westberg, Johan A., E-mail: johan.westberg@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Jiang, Ji, E-mail: ji.jiang@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland); Andersson, Leif C., E-mail: leif.andersson@helsinki.fi [Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, P.O. Box 21, Haartmaninkatu 3, FI-00014 Helsinki (Finland)

    2011-06-03

    Highlights: {yields} Stanniocalcin 1 (STC1) binds heme through novel heme binding motif. {yields} Central iron atom of heme and cysteine-114 of STC1 are essential for binding. {yields} STC1 binds Fe{sup 2+} and Fe{sup 3+} heme. {yields} STC1 peptide prevents oxidative decay of heme. -- Abstract: Hemin (iron protoporphyrin IX) is a necessary component of many proteins, functioning either as a cofactor or an intracellular messenger. Hemoproteins have diverse functions, such as transportation of gases, gas detection, chemical catalysis and electron transfer. Stanniocalcin 1 (STC1) is a protein involved in respiratory responses of the cell but whose mechanism of action is still undetermined. We examined the ability of STC1 to bind hemin in both its reduced and oxidized states and located Cys{sup 114} as the axial ligand of the central iron atom of hemin. The amino acid sequence differs from the established (Cys-Pro) heme regulatory motif (HRM) and therefore presents a novel heme binding motif (Cys-Ser). A STC1 peptide containing the heme binding sequence was able to inhibit both spontaneous and H{sub 2}O{sub 2} induced decay of hemin. Binding of hemin does not affect the mitochondrial localization of STC1.

  19. The effect of irradiation and thermal process on beef heme iron concentration and color properties

    Energy Technology Data Exchange (ETDEWEB)

    Mistura, Liliana Perazzini Furtado; Colli, Celia [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Alimentos e Nutricao Experimental], e-mail: cecolli@usp.br

    2009-01-15

    The aim of this study was to evaluate the influence of irradiation and thermal process on the heme iron (heme-Fe) concentration and color properties of Brazilian cattle beef. Beef samples (patties and steaks) were irradiated at 0-10 kGy and cooked in a combination oven at 250 deg C for 9 minutes with 70% humidity. Total iron and heme iron (heme-Fe) concentrations were determined. The data were compared by multiple comparisons and fixed- effects ANOVA. Irradiation at doses higher than 5 kGy significantly altered the heme-Fe concentration. However, the sample preparation conditions interfered more in the heme-Fe content than did the irradiation. Depending on the animal species, meat heme iron levels between 35 and 52% of the total iron are used for dietetic calculations. In this study the percentage of heme-iron was, on average, 70% of the total iron showing that humidity is an important factor for its preservation. The samples were analyzed instrumentally for CIE L{sup *}, a{sup *}, and b{sup *} values. (author)

  20. Dietary heme adversely affects experimental colitis in rats, despite heat-shock protein induction

    NARCIS (Netherlands)

    Schepens, Marloes A. A.; Vink, Carolien; Schonewille, Arjan J.; Dijkstra, Gerard; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M. J.

    Objective: Research on dietary modulation of inflammatory bowel disease is in its infancy. Dietary heme, mimicking red meat, is cytotoxic to colonic epithelium and thus may aggravate colitis. Alternatively, heme-induced colonic stress might also result in potential protective heat-shock proteins

  1. Long-term dietary heme iron and red meat intake in relation to endometrial cancer risk

    NARCIS (Netherlands)

    Genkinger, J.M.; Friberg, E.; Goldbohm, R.A.; Wolk, A.

    2012-01-01

    Background: Heme and total iron, present in meat, have been hypothesized to promote carcinogenesis. Few prospective studies have examined the associations between intakes of heme and total iron, types of meat, and endometrial cancer risk. Objective: We evaluated the associations between intakes of

  2. Unsaturated Glycerophospholipids Mediate Heme Crystallization: Biological Implications for Hemozoin Formation in the Kissing Bug Rhodnius prolixus

    DEFF Research Database (Denmark)

    Stiebler, R.; Majerowicz, David; Knudsen, Jens

    2014-01-01

    Hemozoin (Hz) is a heme crystal produced by some blood-feeding organisms, as an efficient way to detoxify heme derived from hemoglobin digestion. In the triatomine insect Rhodnius prolixus, Hz is essentially produced by midgut extracellular phospholipid membranes known as perimicrovillar membranes...

  3. Dietary heme modulates microbiota and mucosa of mouse colon without significant host-microbe cross talk

    NARCIS (Netherlands)

    IJssennagger, Noortje; Rijnierse, A.; Muller, Michael; Meer, van der Roelof

    2013-01-01

    Previously, we showed that dietary heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. In this study we investigated whether bacteria play a role in this changed signaling. Dietary heme increased the Bacteroidetes and decreased the

  4. Natural chlorophyll but not chlorophyllin prevents heme-induced cytotoxic and hyperproliferative effects in rat colon

    NARCIS (Netherlands)

    Vogel, de J.; Jonker-Termont, D.S.M.L.; Katan, M.B.; Meer, van der R.

    2005-01-01

    Diets high in red meat and low in green vegetables are associated with an increased risk of colon cancer. In rats, dietary heme, mimicking red meat, increases colonic cytotoxicity and proliferation of the colonocytes, whereas addition of chlorophyll from green vegetables inhibits these heme-induced

  5. Heme and chlorophyll intake and risk of colorectal cancer in the Netherlands cohort study

    NARCIS (Netherlands)

    Balder, H.F.; Vogel, J. de; Jansen, M.C.J.F.; Weijenberg, M.P.; Brandt, P.A. van den; Westenbrink, S.; Meer, R.D. van der; Goldbohm, R.A.

    2006-01-01

    Background: The evidence for red meat as a determinant of colorectal cancer remains equivocal, which might be explained by differences in heme content. Heme is the prooxidant, iron-containing porphyrin pigment of meat and its content depends on the type of meat. Chlorophyll from green vegetables

  6. Heme metabolism in stress regulation and protein production: from Cinderella to a key player

    DEFF Research Database (Denmark)

    Martinez Ruiz, José Luis; Petranovic, D.; Nielsen, Jens

    2016-01-01

    Heme biosynthesis is a highly conserved pathway which is present in all kingdoms, from Archaea to higher organisms such as plants and mammals. The heme molecule acts as a prosthetic group for different proteins and enzymes involved in energy metabolism and reactions involved in electron transfer....

  7. Simple synthesis of PbSe nanocrystals and their self-assembly into 2D ‘flakes’ and 1D ‘ribbons’ structures

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Torres, E., E-mail: ediaz@cinvestav.mx [Programa de Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Mexico); Ortega-López, M.; Matsumoto, Y. [Departamento de Ingeniería Eléctrica, Sección de Electrónica del Estado Sólido, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Mexico); Santoyo-Salazar, J. [Departamento de Física, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional, No. 2508, México D.F. C.P. 07360 (Mexico)

    2016-08-15

    Highlights: • PbSe is obtained in a simple way by the co-precipitation method at low-temperature. • The structural, morphological and optical properties of PbSe were studied. • Adding NH{sub 4}OH to the precursor solutions influences on the morphology. • 2D- and 1D-PbSe structures assemble by oriented attachment. • PbSe can be a potential candidate for thermoelectric applications. - Abstract: This work presents a simple and low-temperature method to prepare a variety of Lead selenide (PbSe) nanostructures, using aqueous solutions of Pb(NO{sub 3}){sub 2} and NaHSe. Nanostructures with different morphology were obtained by varying the Pb:Se molar ratio, as well as the mixing sequence of NH{sub 4}OH with either Pb(NO{sub 3}){sub 2} or NaHSe. Nanoparticles with different shapes (spherical and octahedral), and self-assembled structures (flakes and ribbons) were observed by Transmission Electron Microscopy. X-ray results confirmed that the PbSe rock-salt crystalline structure was obtained for all of the prepared samples. The crystal size is in the order of 7.3 to 8.9 nm for single nanocrystals. The absorption spectra of the samples show exciton absorption bands at 1395 nm and 1660 nm. This material could be used to develop more advanced structures for thermoelectric generators.

  8. Synthesis and adsorption properties of polymer-mesoporous SiO2 nanocomposite based on cellulose biomass via self-assembly

    Science.gov (United States)

    Tao, Jin; Xiong, Jiaqing; Jiao, Chenlu; Chen, Yuyue; Lin, Hong

    2017-06-01

    The present work describes the fabrication of an amino hyperbranched polymer (AHP) functionalized mesoporous SiO2 nanocomposite based on cellulose biomass substrate through self-assembly method, obtaining a multi-functional hybrid composite (AM-cotton) as adsorbent for dye pollutions from aqueous medium. Specifically, polymer-functionalized mesoporous SiO2 nanoparticles (AMSNs) was obtained by covalently graft of AHP onto carboxyl-functionalized mesoporous silica nanoparticles (CMSNs) which were prepared via one-pot co-condensation. Subsequently, owing to electrostatic interaction between interfaces, AM-cotton fibers were fabricated via self-assembly of amino coated AMSNs on the surface of anion-modified cotton fiber (AN-cotton). Due to considerate versatile functional groups from hyperbranched polymer on nano-sized mesoporous silica with large surface area per unit mass, the functional fiber AM-cotton exhibits excellent adsorption capabilities for anionic (Congo red, CR) and cationic (Methylene blue, MB) dye pollutant with maximum of 195 mg/g for CR and 144 mg/g for MB, respectively.

  9. Synthesis and self-assembly of dumbbell shaped ZnO sub-micron structures using low temperature chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Borade, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Joshi, K.U. [Anton-Paar India Pvt. Ltd., Thane (W), 400607 (India); Gokarna, A.; Lerondel, G. [Laboratoire de Nanotechnologie et D' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 Rue Marie Curie, BP 2060, 10010 Troyes (France); Walke, P. [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India); Late, D. [National Chemical Laboratory (NCL), Pune 400027 (India); Jejurikar, S.M., E-mail: jejusuhas@gmail.com [National Centre for Nanoscience and Nanotechnology, University of Mumbai, Kalina Campus, Santacruz (E), Mumbai 400098 (India)

    2016-02-01

    We report well dispersed horizontal growth of ZnO sub-micron structures using simplest technique ever known i.e. chemical bath deposition (CBD). A set of samples were prepared under two different cases A) dumbbell shaped ZnO grown in CBD bath and B) tubular ZnO structures evolved from dumbbell shaped structures by dissolution mechanism. Single phase wurtzite ZnO formation is confirmed using X-ray diffraction (XRD) technique in both cases. From the morphological investigations performed using scanning electron microscopy (SEM), sample prepared under case A indicate formation of hex bit tool (HBT) shaped ZnO crystals, which observed to self-organize to form dumbbell structures. Further these microstructures are then converted into tubular structures as a fragment of post CBD process. The possible mechanism responsible for the self-assembly of HBT units to form dumbbell structures is discussed. Observed free excitonic peak located at 370 nm in photoluminescence (PL) spectra recorded at 18 K indicate that the micro/nanostructures synthesized using CBD are of high optical quality. - Highlights: • Controlled growth of Dumbbell shaped ZnO using Chemical Bath Deposition (CBD). • Growth mechanism of dumbbell shaped ZnO by self-assembling was discussed. • Quick Transformation of ZnO dumbbell structures in to tubular structures by dissolution. • Sharp UV Emission at 370 nm from both dumbbell and tubular structures.

  10. Generating highly reflective and conductive metal layers through a light-assisted synthesis and assembling of silver nanoparticles in a polymer matrix.

    Science.gov (United States)

    Zaier, Mohamed; Vidal, Loïc; Hajjar-Garreau, Samar; Balan, Lavinia

    2017-09-29

    The development of metalized surfaces exhibiting mirror properties and/or electric conductivity without heavy equipments and with low metal charge is a big challenge in view of many industrial applications. We report herein on the photo-assembling of silver nanoparticles (AgNPs) in a polymer matrix, carried out within minutes from an acrylate monomer and silver nitrate at room temperature, under air and without any solvents. The top surface of the material gets converted into a continuous silver thin film and a depthwise concentration gradient of AgNPs is created in the polymer, which images the absorption profile of the actinic UV light in the reactive formulation. This specific assembling of the silver@polymer coating induces excellent reflective and conductive properties. The conductance was observed to strongly increase with increasing the exposure from 3 to 30 min due to the formation of a more and more compact metal film. This coating strategy works with a variety of substrates (textile, paper, glass, wood, plastic and stainless steel). Moreover, on flexible surfaces such as textile, the flexibility was preserved. The possibility to use this kind of nanomaterial as a printing ink, with a much lower metal concentration (3 to 5 wt.%) than concurrent inks, was also demonstrated.

  11. Controllable synthesis of Bi2WO6 nanoplate self-assembled hierarchical erythrocyte microspheres via a one-pot hydrothermal reaction with enhanced visible light photocatalytic activity

    Science.gov (United States)

    Yang, Zhenya; Huang, Lin; Xie, Yanyu; Lin, Zheguan; Fan, Yunyan; Liu, Dan; Chen, Lu; Zhang, Zizhong; Wang, Xuxu

    2017-05-01

    This work provides a simple approach of the F--assisted one-pot hydrothermal reaction to successfully synthesize Bi2WO6 hierarchical erythrocyte microspheres. The importance role of F- was systematically investigated by comparing different type of halogen ions, hydrothermal temperature and time. The possible growth mechanism of Bi2WO6 hierarchical structures was proposed. The hierarchical erythrocytes were formed through the well-ordered and oriented self-assembly of thin Bi2WO6 nanoplate primary subunits. F- ions were absorbed on Bi2WO6 nanoplate surface to suppress the nanoplate stack but to induce a self-assembly through the edge interaction of Bi2WO6 nanoplates into erythrocyte-like hierarchical microspheres superstructures. This erythrocyte structure narrowed the band gap energy and enhanced the visible-light photocatalytic activity of Bi2WO6. Moreover, superoxide radical anions and h+ were revealed as the main active species responding for the RhB degradation on Bi2WO6 under visible light irradiation.

  12. Cyanide does more to inhibit heme enzymes, than merely serving as an active-site ligand

    Energy Technology Data Exchange (ETDEWEB)

    Parashar, Abhinav [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Venkatachalam, Avanthika [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India); Gideon, Daniel Andrew [Center for Biomedical Research, VIT University, Vellore, Tamil Nadu, 632014 India (India); Manoj, Kelath Murali, E-mail: satyamjayatu@yahoo.com [REDOx Lab, PSG Institute of Advanced Studies, Avinashi Road, Peelamedu, Coimbatore, Tamil Nadu, 641004 (India)

    2014-12-12

    Highlights: • Cyanide (CN) is a well-studied toxic principle, known to inhibit heme-enzymes. • Inhibition is supposed to result from CN binding at the active site as a ligand. • Diverse heme enzymes’ CN inhibition profiles challenge prevailing mechanism. • Poor binding efficiency of CN at low enzyme concentrations and ligand pressures. • CN-based diffusible radicals cause ‘non-productive electron transfers’ (inhibition). - Abstract: The toxicity of cyanide is hitherto attributed to its ability to bind to heme proteins’ active site and thereby inhibit their activity. It is shown herein that the long-held interpretation is inadequate to explain several observations in heme-enzyme reaction systems. Generation of cyanide-based diffusible radicals in heme-enzyme reaction milieu could shunt electron transfers (by non-active site processes), and thus be detrimental to the efficiency of oxidative outcomes.

  13. Regiospecificity determinants of human heme oxygenase: differential NADPH- and ascorbate-dependent heme cleavage by the R183E mutant.

    Science.gov (United States)

    Wang, Jinling; Lad, Latesh; Poulos, Thomas L; Ortiz de Montellano, Paul R

    2005-01-28

    The ability of the human heme oxygenase-1 (hHO-1) R183E mutant to oxidize heme in reactions supported by either NADPH-cytochrome P450 reductase or ascorbic acid has been compared. The NADPH-dependent reaction, like that of wild-type hHO-1, yields exclusively biliverdin IXalpha. In contrast, the R183E mutant with ascorbic acid as the reductant produces biliverdin IXalpha (79 +/- 4%), IXdelta (19 +/- 3%), and a trace of IXbeta. In the presence of superoxide dismutase and catalase, the yield of biliverdin IXdelta is decreased to 8 +/- 1% with a corresponding increase in biliverdin IXalpha. Spectroscopic analysis of the NADPH-dependent reaction shows that the R183E ferric biliverdin complex accumulates, because reduction of the iron, which is required for sequential iron and biliverdin release, is impaired. Reversal of the charge at position 183 makes reduction of the iron more difficult. The crystal structure of the R183E mutant, determined in the ferric and ferrous-NO bound forms, shows that the heme primarily adopts the same orientation as in wild-type hHO-1. The structure of the Fe(II).NO complex suggests that an altered active site hydrogen bonding network supports catalysis in the R183E mutant. Furthermore, Arg-183 contributes to the regiospecificity of the wild-type enzyme, but its contribution is not critical. The results indicate that the ascorbate-dependent reaction is subject to a lower degree of regiochemical control than the NADPH-dependent reaction. Ascorbate may be able to reduce the R183E ferric and ferrous dioxygen complexes in active site conformations that cannot be reduced by NADPH-cytochrome P450 reductase.

  14. Chemoenzymatic Total Synthesis and Structural Diversification of Tylactone-Based Macrolide Antibiotics through Late-Stage Polyketide Assembly, Tailoring, and C-H Functionalization.

    Science.gov (United States)

    Lowell, Andrew N; DeMars, Matthew D; Slocum, Samuel T; Yu, Fengan; Anand, Krithika; Chemler, Joseph A; Korakavi, Nisha; Priessnitz, Jennifer K; Park, Sung Ryeol; Koch, Aaron A; Schultz, Pamela J; Sherman, David H

    2017-06-14

    Polyketide synthases (PKSs) represent a powerful catalytic platform capable of effecting multiple carbon-carbon bond forming reactions and oxidation state adjustments. We explored the functionality of two terminal PKS modules that produce the 16-membered tylosin macrocycle, using them as biocatalysts in the chemoenzymatic synthesis of tylactone and its subsequent elaboration to complete the first total synthesis of the juvenimicin, M-4365, and rosamicin classes of macrolide antibiotics via late-stage diversification. Synthetic chemistry was employed to generate the tylactone hexaketide chain elongation intermediate that was accepted by the juvenimicin (Juv) ketosynthase of the penultimate JuvEIV PKS module. The hexaketide is processed through two complete modules (JuvEIV and JuvEV) in vitro, which catalyze elongation and functionalization of two ketide units followed by cyclization of the resulting octaketide into tylactone. After macrolactonization, a combination of in vivo glycosylation, selective in vitro cytochrome P450-mediated oxidation, and chemical oxidation was used to complete the scalable construction of a series of macrolide natural products in as few as 15 linear steps (21 total) with an overall yield of 4.6%.

  15. Posttranslational Modification of Heme b in a Bacterial Peroxidase: The Role of Heme to Protein Ester Bonds in Ligand Binding and Catalysis.

    Science.gov (United States)

    Nicolussi, Andrea; Auer, Markus; Weissensteiner, Julia; Schütz, Georg; Katz, Sonja; Maresch, Daniel; Hofbauer, Stefan; Bellei, Marzia; Battistuzzi, Gianantonio; Furtmüller, Paul G; Obinger, Christian

    2017-08-29

    The existence of covalent heme to protein bonds is the most striking structural feature of mammalian peroxidases, including myeloperoxidase and lactoperoxidase (LPO). These autocatalytic posttranslational modifications (PTMs) were shown to strongly influence the biophysical and biochemical properties of these oxidoreductases. Recently, we reported the occurrence of stable LPO-like counterparts with two heme to protein ester linkages in bacteria. This study focuses on the model wild-type peroxidase from the cyanobacterium Lyngbya sp. PCC 8106 (LspPOX) and the mutants D109A, E238A, and D109A/E238A that could be recombinantly produced as apoproteins in Escherichia coli, fully reconstituted to the respective heme b proteins, and posttranslationally modified by hydrogen peroxide. This for the first time allows not only a direct comparison of the catalytic properties of the heme b and PTM forms but also a study of the impact of D109 and E238 on PTM and catalysis, including Compound I formation and the two-electron reduction of Compound I by bromide, iodide, and thiocyanate. It is demonstrated that both heme to protein ester bonds can form independently and that elimination of E238, in contrast to exchange of D109, does not cause significant structural rearrangements or changes in the catalytic properties neither in heme b nor in the PTM form. The obtained findings are discussed with respect to published structural and functional data of human peroxidases.

  16. Direct Tests of Enzymatic Heme Degradation by the Malaria Parasite Plasmodium falciparum*

    Science.gov (United States)

    Sigala, Paul A.; Crowley, Jan R.; Hsieh, Samantha; Henderson, Jeffrey P.; Goldberg, Daniel E.

    2012-01-01

    Malaria parasites generate vast quantities of heme during blood stage infection via hemoglobin digestion and limited de novo biosynthesis, but it remains unclear if parasites metabolize heme for utilization or disposal. Recent in vitro experiments with a heme oxygenase (HO)-like protein from Plasmodium falciparum suggested that parasites may enzymatically degrade some heme to the canonical HO product, biliverdin (BV), or its downstream metabolite, bilirubin (BR). To directly test for BV and BR production by P. falciparum parasites, we DMSO-extracted equal numbers of infected and uninfected erythrocytes and developed a sensitive LC-MS/MS assay to quantify these tetrapyrroles. We found comparable low levels of BV and BR in both samples, suggesting the absence of HO activity in parasites. We further tested live parasites by targeted expression of a fluorescent BV-binding protein within the parasite cytosol, mitochondrion, and plant-like plastid. This probe could detect exogenously added BV but gave no signal indicative of endogenous BV production within parasites. Finally, we recombinantly expressed and tested the proposed heme degrading activity of the HO-like protein, PfHO. Although PfHO bound heme and protoporphyrin IX with modest affinity, it did not catalyze heme degradation in vivo within bacteria or in vitro in UV absorbance and HPLC assays. These observations are consistent with PfHO's lack of a heme-coordinating His residue and suggest an alternative function within parasites. We conclude that P. falciparum parasites lack a canonical HO pathway for heme degradation and thus rely fully on alternative mechanisms for heme detoxification and iron acquisition during blood stage infection. PMID:22992734

  17. Heme Attenuation Ameliorates Irritant Gas Inhalation-Induced Acute Lung Injury.

    Science.gov (United States)

    Aggarwal, Saurabh; Lam, Adam; Bolisetty, Subhashini; Carlisle, Matthew A; Traylor, Amie; Agarwal, Anupam; Matalon, Sadis

    2016-01-10

    Exposure to irritant gases, such as bromine (Br2), poses an environmental and occupational hazard that results in severe lung and systemic injury. However, the mechanism(s) of Br2 toxicity and the therapeutic responses required to mitigate lung damage are not known. Previously, it was demonstrated that Br2 upregulates the heme degrading enzyme, heme oxygenase-1 (HO-1). Since heme is a major inducer of HO-1, we determined whether an increase in heme and heme-dependent oxidative injury underlies the pathogenesis of Br2 toxicity. C57BL/6 mice were exposed to Br2 gas (600 ppm, 30 min) and returned to room air. Thirty minutes postexposure, mice were injected intraperitoneally with a single dose of the heme scavenging protein, hemopexin (Hx) (3 μg/gm body weight), or saline. Twenty-four hours postexposure, saline-treated mice had elevated total heme in bronchoalveolar lavage fluid (BALF) and plasma and acute lung injury (ALI) culminating in 80% mortality after 10 days. Hx treatment significantly lowered heme, decreased evidence of ALI (lower protein and inflammatory cells in BALF, lower lung wet-to-dry weight ratios, and decreased airway hyperreactivity to methacholine), and reduced mortality. In addition, Br2 caused more severe ALI and mortality in mice with HO-1 gene deletion (HO-1-/-) compared to wild-type controls, while transgenic mice overexpressing the human HO-1 gene (hHO-1) showed significant protection. This is the first study delineating the role of heme in ALI caused by Br2. The data suggest that attenuating heme may prove to be a useful adjuvant therapy to treat patients with ALI.

  18. Endogenous Estrogen-Mediated Heme Oxygenase Regulation in Experimental Menopause

    Directory of Open Access Journals (Sweden)

    Anikó Pósa

    2015-01-01

    Full Text Available Estrogen deficiency is one of the main causes of age-associated diseases in the cardiovascular system. Female Wistar rats were divided into four experimental groups: pharmacologically ovariectomized, surgically ovariectomized, and 24-month-old intact aging animals were compared with a control group. The activity and expression of heme oxygenases (HO in the cardiac left ventricle, the concentrations of cardiac interleukin-6 (IL-6 and tumor necrosis factor-α (TNF-α, the myeloperoxidase (MPO activity in the cardiac left ventricle, and the effects of heme oxygenase blockade (by 24-hour and 1-hour pretreatment with tin-protoporphyrin IX, SnPP on the epinephrine and phentolamine-induced electrocardiogram ST segment changes in vivo were investigated. The cardiac HO activity and the expression of HO-1 and HO-2 were significantly decreased in the aged rats and after ovariectomy. Estrogen depletion was accompanied by significant increases in the expression of IL-6 and TNF-α. The aged and ovariectomized animals exhibited a significantly elevated MPO activity and a significant ST segment depression. After pretreatment with SnPP augmented ST segment changes were determined. These findings demonstrate that the sensitivity to cardiac ischemia in estrogen depletion models is associated with suppression of the activity and expression of the HO system and increases in the secretion of proinflammatory cytokines and biomarkers.

  19. Studies of multi-heme cytochromes from Geobacter sulfurreducens

    Energy Technology Data Exchange (ETDEWEB)

    Londer, Yuri; Pokkuluri, P. Raj; Orshonsky, Valerie; Duke, Norma; Schiffer, Marianne

    2004-03-17

    The Geobacteraceae family predominates in the reduction of uranium in subsurface environments. We are focusing on the model organism, Geobacter sulfurreducens; its genome contains a large number (>100) of cytochromes c that function in metal reduction pathways. Intensive functional genomics and physiological studies are in progress in Prof. Derek Lovley's laboratory, and the complete genome sequence of this organism has been determined by Methe et al. 2003. We are studying cytochromes from the c{sub 7} family that are required for the reduction of Fe(III). Previously, we expressed in E. coli (Londer et al., 2002) and determined the three-dimensional structure at 1.45 {angstrom} resolution (Pokkuluri et al., 2004a) of the three-heme cytochrome c{sub 7} (PpcA, coded by ORF01023) characterized by Lloyd et al., 2003. Further we identified in the G. sulfurreducens genome ORFs for several of its homologs (Pokkuluri et al., 2004a). Four of the ORFs are the same size as PpcA; three other ORFs are polymers of c{sub 7}-type domains, two of which consist of four domains and one of nine domains, that contain 12 and 27 hemes respectively.

  20. Endogenous Estrogen-Mediated Heme Oxygenase Regulation in Experimental Menopause

    Science.gov (United States)

    Pósa, Anikó; Veszelka, Médea; Berkó, Anikó Magyariné; Baráth, Zoltán; Ménesi, Rudolf; Pávó, Imre; László, Ferenc; Varga, Csaba

    2015-01-01

    Estrogen deficiency is one of the main causes of age-associated diseases in the cardiovascular system. Female Wistar rats were divided into four experimental groups: pharmacologically ovariectomized, surgically ovariectomized, and 24-month-old intact aging animals were compared with a control group. The activity and expression of heme oxygenases (HO) in the cardiac left ventricle, the concentrations of cardiac interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α), the myeloperoxidase (MPO) activity in the cardiac left ventricle, and the effects of heme oxygenase blockade (by 24-hour and 1-hour pretreatment with tin-protoporphyrin IX, SnPP) on the epinephrine and phentolamine-induced electrocardiogram ST segment changes in vivo were investigated. The cardiac HO activity and the expression of HO-1 and HO-2 were significantly decreased in the aged rats and after ovariectomy. Estrogen depletion was accompanied by significant increases in the expression of IL-6 and TNF-α. The aged and ovariectomized animals exhibited a significantly elevated MPO activity and a significant ST segment depression. After pretreatment with SnPP augmented ST segment changes were determined. These findings demonstrate that the sensitivity to cardiac ischemia in estrogen depletion models is associated with suppression of the activity and expression of the HO system and increases in the secretion of proinflammatory cytokines and biomarkers. PMID:26064421

  1. Disrupted postnatal lung development in heme oxygenase-1 deficient mice

    Directory of Open Access Journals (Sweden)

    Zhang Huayan

    2010-10-01

    Full Text Available Abstract Background Heme oxygenase (HO degrades cellular heme to carbon monoxide, iron and biliverdin. The HO-1 isoform is both inducible and cyto-protective during oxidative stress, inflammation and lung injury. However, little is known about its precise role and function in lung development. We hypothesized that HO-1 is required for mouse postnatal lung alveolar development and that vascular expression of HO-1 is essential and protective during postnatal alveolar development. Methods Neonatal lung development in wildtype and HO-1 mutant mice was evaluated by histological and molecular methods. Furthermore, these newborn mice were treated with postnatal dexamethasone (Dex till postnatal 14 days, and evaluated for lung development. Results Compared to wildtype littermates, HO-1 mutant mice exhibited disrupted lung alveolar structure including simplification, disorganization and reduced secondary crest formation. These defects in alveolar development were more pronounced when these mice were challenged with Dex treatment. Expression levels of both vascular endothelial and alveolar epithelial markers were also further decreased in HO-1 mutants after Dex treatment. Conclusions These experiments demonstrate that HO-1 is required in normal lung development and that HO-1 disruption and dexamethasone exposure are additive in the disruption of postnatal lung growth. We speculate that HO-1 is involved in postnatal lung development through modulation of pulmonary vascular development.

  2. A novel and sensitive assay for heme oxygenase activity.

    Science.gov (United States)

    Iwamori, Saki; Sato, Emiko; Saigusa, Daisuke; Yoshinari, Kouichi; Ito, Sadayoshi; Sato, Hiroshi; Takahashi, Nobuyuki

    2015-10-01

    Heme oxygenase (HO) is a renoprotective protein in the microsome that degrades heme and produces biliverdin. Biliverdin is then reduced to a potent antioxidant bilirubin by biliverdin reductase in the cytosol. Because HO activity does not necessarily correlate with HO mRNA or protein levels, a reliable assay is needed to determine HO activity. Spectrophotometric measurement is tedious and requires a relatively large amount of kidney samples. Moreover, bilirubin is unstable and spontaneously oxidized to biliverdin in vitro. We developed a novel and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify biliverdin to measure HO activity in mice. Biliverdin and its internal standard, a deuterated biliverdin-d4, have MS/MS fragments with m/z transitions of 583 to 297 and 587 to 299, respectively. We prepared lysates of mouse kidneys, and added excess hemin, NADPH, and bilirubin oxidase to convert all bilirubin produced to biliverdin. After 30-min incubation at 37 or 4°C, the samples were analyzed by LC-MS/MS. The difference in the amount of biliverdin between the two temperatures is HO activity. Treating mice with cobalt protoporphyrin, which induces the expression of HO, increased HO activity as determined by biliverdin production. Measuring the production of biliverdin using LC-MS/MS is a more sensitive and specific way to determine HO activity than the spectrophotometric method and allows the detection of subtle changes in renal or other HO activity. Copyright © 2015 the American Physiological Society.

  3. Heme oxygenase-1-generated biliverdin ameliorates experimental murine colitis.

    Science.gov (United States)

    Berberat, Pascal O; A-Rahim, Yousif I; Yamashita, Kenichiro; Warny, Michel M; Csizmadia, Eva; Robson, Simon C; Bach, Fritz H

    2005-04-01

    Heme oxygenase-1 (HO-1) seems to have an important protective role in acute and chronic inflammation. The products of heme catalysis, biliverdin/bilirubin, carbon monoxide (CO), and iron (that induces apoferritin) mediate the beneficial effects of HO-1. Blockade of HO-1 activity results in exacerbation of experimental colitis. We tested whether HO-1 has protective effects in the development of colitis and determined that specific enzymatic products of HO-1 are responsible for these effects. Colitis was induced by oral administration of dextran sodium sulfate (5%) to C57BL/6 mice for 7 days. HO-1 was up-regulated by cobalt-protoporphyrin (5 mg/kg, intraperitoneally). Biliverdin, exogenous CO, or the iron chelator desferrioxamine was administered to other groups. Cobalt-protoporphyrin treatment resulted in significant up-regulation of HO-1 protein in mucosal and submucosal cells. Induction of HO-1 was associated with significantly less loss of body weight in mice with induced colitis (-12% versus -22% in the control animals, P biliverdin administration (50 micromol/kg, 3 times per day, intraperitoneally). We conclude that heightened HO-1 expression or administration of biliverdin ameliorates dextran sodium sulfate-induced experimental colitis. Novel therapeutic strategies based on HO-1 and/or biliverdin administration may have use in inflammatory bowel disease.

  4. Heme oxygenase-1 comes back to endoplasmic reticulum

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hong Pyo [School of Biological Sciences, Ulsan University (Korea, Republic of); Pae, Hyun-Ock [Department of Immunology, Wonkwang University School of Medicine (Korea, Republic of); Back, Sung Hun; Chung, Su Wol [School of Biological Sciences, Ulsan University (Korea, Republic of); Woo, Je Moon [Department of Opthalmology, Ulasn University Hospital (Korea, Republic of); Son, Yong [Department of Anesthesiology and Pain Medicine, Wonkwang University School of Medicine (Korea, Republic of); Chung, Hun-Taeg, E-mail: chung@ulsan.ac.kr [School of Biological Sciences, Ulsan University (Korea, Republic of)

    2011-01-07

    Research highlights: {yields} Although multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. {yields} HO-1 expression at ER is induced by a diverse set of conditions that cause ER stressors. {yields} CO may induce HO-1 expression in human ECs by activating Nrf2 through PERK phosphorylation in a positive-feedback manner. {yields} ER-residing HO-1 and its cytoprotective activity against ER stress is discussed. -- Abstract: Originally identified as a rate-limiting enzyme for heme catabolism, heme oxygenase-1 (HO-1) has expanded its roles in anti-inflammation, anti-apoptosis and anti-proliferation for the last decade. Regulation of protein activity by location is well appreciated. Even though multiple compartmentalization of HO-1 has been documented, the functional implication of this enzyme at these subcellular organelles is only partially elucidated. In this review we discuss the endoplasmic reticulum (ER)-residing HO-1 and its cytoprotective activity against ER stress.

  5. A predictive model of the oxygen and heme regulatory network in yeast.

    Directory of Open Access Journals (Sweden)

    Anshul Kundaje

    2008-11-01

    Full Text Available Deciphering gene regulatory mechanisms through the analysis of high-throughput expression data is a challenging computational problem. Previous computational studies have used large expression datasets in order to resolve fine patterns of coexpression, producing clusters or modules of potentially coregulated genes. These methods typically examine promoter sequence information, such as DNA motifs or transcription factor occupancy data, in a separate step after clustering. We needed an alternative and more integrative approach to study the oxygen regulatory network in Saccharomyces cerevisiae using a small dataset of perturbation experiments. Mechanisms of oxygen sensing and regulation underlie many physiological and pathological processes, and only a handful of oxygen regulators have been identified in previous studies. We used a new machine learning algorithm called MEDUSA to uncover detailed information about the oxygen regulatory network using genome-wide expression changes in response to perturbations in the levels of oxygen, heme, Hap1, and Co2+. MEDUSA integrates mRNA expression, promoter sequence, and ChIP-chip occupancy data to learn a model that accurately predicts the differential expression of target genes in held-out data. We used a novel margin-based score to extract significant condition-specific regulators and assemble a global map of the oxygen sensing and regulatory network. This network includes both known oxygen and heme regulators, such as Hap1, Mga2, Hap4, and Upc2, as well as many new candidate regulators. MEDUSA also identified many DNA motifs that are consistent with previous experimentally identified transcription factor binding sites. Because MEDUSA's regulatory program associates regulators to target genes through their promoter sequences, we directly tested the predicted regulators for OLE1, a gene specifically induced under hypoxia, by experimental analysis of the activity of its promoter. In each case, deletion of

  6. Synthesis, characterization and formaldehyde gas sensitivity of La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanoparticles assembled nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Yao Pengjun [School of Electronic Science and Technology, Dalian University of Technology, Dalian 116023 (China); School of Educational Technology, Shenyang Normal University, Shenyang 110034 (China); Wang Jing, E-mail: wangjing@dlut.edu.cn [School of Electronic Science and Technology, Dalian University of Technology, Dalian 116023 (China); Du Haiying [School of Electronic Science and Technology, Dalian University of Technology, Dalian 116023 (China); Department of Electromechanical Engineering and Information, Dalian Nationalities University, Dalian 116600 (China); Qi Jinqing [School of Electronic Science and Technology, Dalian University of Technology, Dalian 116023 (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer High aspect ratio La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanoparticles assembled nanowires were synthesized by a CTAB assisted hydrothermal method. Black-Right-Pointing-Pointer Formaldehyde with low concentration (0.1-100 ppm) was used for gas sensing study. Black-Right-Pointing-Pointer The growth mechanism of La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanowires was reported. - Abstract: La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanoparticles assembled nanowires were synthesized by a hydrothermal method assisted with cetyltrimethylammonium bromide (CTAB). The hydrothermal temperature was 180 Degree-Sign C and the annealed temperature was 700 Degree-Sign C. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to characterize the morphology, composition and structural properties of the materials. The results showed that the La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanoparticles assembled nanowires had a high aspect ratio (the largest aspect ratio >100); the size of the nanoparticles was about 20 nm and the diameter of the nanowires was about 100-150 nm. The growth mechanism of La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanowires was discussed. Gas sensors were fabricated by using La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanowires. Formaldehyde gas sensing properties were carried out in the concentration range of 0.1-100 ppm at the optimum operating temperature of 280 Degree-Sign C. The response and recovery times to 20 ppm formaldehyde of the sensor were 110 s and 50 s, respectively. The gas sensing mechanism of La{sub 0.7}Sr{sub 0.3}FeO{sub 3} nanowires was investigated.

  7. Synthesis and self-assembly of Chitosan-g-Polystyrene copolymer: A new route for the preparation of heavy metal nanoparticles

    KAUST Repository

    Francis, Raju S.

    2015-01-01

    Amphiphilic graft copolymers made of a Chitosan (CS) backbone and three arm polystyrene (PS) grafts were prepared by "grafting onto" strategy using Toluene Diisocyanate. IR spectroscopy and SEC show the successful grafting process. SEM pictures of Chitosan-g-Polystyrene (CS-g-PS) indicate a spherulite like surface and exhibit properties that result from the disappearance of Chitosan crystallinity. The introduced polystyrene star grafts units improve hydrophobic properties considerably as confirmed by the very high solubility of (CS-g-PS) in organic solvents. The graft copolymer which self-assembles into polymeric micelles in organic media demonstrates much better adsorption of transition and inner transition metal ions than pure Chitosan whose amine groups are not necessarily available due to crystallinity.

  8. One-Step Self-Assembly Synthesis α-Fe2O3 with Carbon-Coated Nanoparticles for Stabilized and Enhanced Supercapacitors Electrode

    Directory of Open Access Journals (Sweden)

    Yizhi Yan

    2017-08-01

    Full Text Available A cocoon-like α-Fe2O3 nanocomposite with a novel carbon-coated structure was synthesized via a simple one-step hydrothermal self-assembly method and employed as supercapacitor electrode material. It was observed from electrochemical measurements that the obtained α-Fe2O3@C electrode showed a good specific capacitance (406.9 Fg−1 at 0.5 Ag−1 and excellent cycling stability, with 90.7% specific capacitance retained after 2000 cycles at high current density of 10 Ag−1. These impressive results, presented here, demonstrated that α-Fe2O3@C could be a promising alternative material for application in high energy density storage.

  9. Studies on the synthesis of bafilomycin A(1): stereochemical aspects of the fragment assembly aldol reaction for construction of the C(13)-C25) segment.

    Science.gov (United States)

    Roush, William R; Bannister, Thomas D; Wendt, Michael D; Jablonowski, Jill A; Scheidt, Karl A

    2002-06-14

    Highly stereoselective syntheses of aldols 8a-c corresponding to the C(13)-C(25) segment of bafilomycin A(1) were developed by routes involving fragment assembly aldol reactions of chiral aldehyde 6a and the chiral methyl ketones 7. A remote chelation effect plays a critical role in determining the stereoselectivity of the key aldol coupling of 6a and the lithium enolate of 7b. The protecting group for C(23)-OH of the chiral aldehyde fragment also influences the selectivity of the lithium enolate aldol reaction. In contrast, the aldol reaction of 6a and the chlorotitanium enolates of 7a,c were much less sensitive to the nature of the C(15)-hydroxyl protecting group. Studies of the reactions of chiral aldehydes with Takai's (gamma-methoxyallyl)chromium reagent 40 are also described. The stereoselectivity of these reactions is also highly dependent on the protecting groups and stereochemistry of the chiral aldehyde substrates.

  10. Facile Synthesis of Wormhole-Like Mesoporous Tin Oxide via Evaporation-Induced Self-Assembly and the Enhanced Gas-Sensing Properties

    Science.gov (United States)

    Li, Xiaoyu; Peng, Kang; Dou, Yewei; Chen, Jiasheng; Zhang, Yue; An, Gai

    2018-01-01

    Wormhole-like mesoporous tin oxide was synthesized via a facile evaporation-induced self-assembly (EISA) method, and the gas-sensing properties were evaluated for different target gases. The effect of calcination temperature on gas-sensing properties of mesoporous tin oxide was investigated. The results demonstrate that the mesoporous tin oxide sensor calcined at 400 °C exhibits remarkable selectivity to ethanol vapors comparison with other target gases and has a good performance in the operating temperature and response/recovery time. This might be attributed to their high specific surface area and porous structure, which can provide more active sites and generate more chemisorbed oxygen spices to promote the diffusion and adsorption of gas molecules on the surface of the gas-sensing material. A possible formation mechanism of the mesoporous tin oxide and the enhanced gas-sensing mechanism are proposed. The mesoporous tin oxide shows prospective detecting application in the gas sensor fields.

  11. Metal-organic and supramolecular networks driven by 5-chloronicotinic acid: Hydrothermal self-assembly synthesis, structural diversity, luminescent and magnetic properties

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhu-Qing, E-mail: zqgao2008@163.com [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Li, Hong-Jin [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Gu, Jin-Zhong, E-mail: gujzh@lzu.edu.cn [College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000 (China); Zhang, Qing-Hua [School of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan 030021 (China); Kirillov, Alexander M. [Centro de Química Estrutural, Complexo I, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisbon (Portugal)

    2016-09-15

    Four new crystalline solids, namely [Co{sub 2}(µ{sub 2}-5-Clnic){sub 2}(µ{sub 3}-5-Clnic){sub 2}(µ{sub 2}-H{sub 2}O)]{sub n} (1), [Co(5-Clnic){sub 2}(H{sub 2}O){sub 4}]·2(5-ClnicH) (2), [Pb(µ{sub 2}-5-Clnic){sub 2}(phen)]{sub n} (3), and [Cd(5-Clnic){sub 2}(phen){sub 2}]·3H{sub 2}O (4) were generated by hydrothermal self-assembly methods from the corresponding metal(II) chlorides, 5-chloronicotinic acid (5-ClnicH) as a principal building block, and 1,10-phenanthroline (phen) as an ancillary ligand (optional). All the products 1–4 were characterized by IR spectroscopy, elemental analysis, thermogravimetric (TGA), powder X-ray diffraction (PXRD) and single-crystal X-ray diffraction. Their structures range from an intricate 3D metal-organic network 1 with the 3,6T7 topology to a ladder-like 1D coordination polymer 3 with the 2C1 topology, whereas compounds 2 and 4 are the discrete 0D monomers. The structures of 2 and 4 are further extended (0D→2D or 0D→3D) by hydrogen bonds, generating supramolecular networks with the 3,8L18 and ins topologies, respectively. Synthetic aspects, structural features, thermal stability, magnetic (for 1) and luminescent (for 3 and 4) properties were also investigated and discussed. - Graphical abstract: A new series of crystalline solids was self-assembled and fully characterized; their structural, topological, luminescent and magnetic features were investigated. Display Omitted.

  12. Synthesis, construction, and evaluation of self-assembled nano-bacitracin A as an efficient antibacterial agent in vitro and in vivo.

    Science.gov (United States)

    Hong, Wei; Gao, Xiang; Qiu, Peng; Yang, Jie; Qiao, Mingxi; Shi, Hong; Zhang, Dexian; Tian, Chunlian; Niu, Shengli; Liu, Mingchun

    2017-01-01

    Bacitracin A (BA) is an excellent polypeptide antibiotic that is active against gram-positive bacteria without triggering multidrug resistance. However, BA is inactive against gram-negative bacteria because of its inability to cross the outer membrane of these cells, and it has strong nephrotoxicity, thus limiting its clinical applications. Nanoantibiotics can effectively localize antibiotics to the periplasmic space of bacteria while decreasing the adverse effects of antibiotics. In this study, biodegradable hydrophobic copolymers of poly (d,l-lactide-co-glycolide) (PLGA) were attached to the N-termini of BA to design a novel class of self-assembled nano-bacitracin A (nano-BAs), and their potential as antibacterial agents was evaluated in vitro and in vivo. Nano-BAs had a core-shell structure with a mean diameter nano-BAs had strong antibacterial properties against both gram-positive and gram-negative bacteria, and the distribution of antibacterial activity as a function of PLGA block length was skewed toward longer PLGA chains. No cytotoxicity against HK-2 cells or human red blood cells (hRBCs) was observed in vitro, suggesting good biocompatibility. A high local density of BA mass on the surface promoted endocytotic cellular uptake, and hydrophobic interactions between the PLGA block and lipopolysaccharide (LPS) facilitated the uptake of nano-BAs, thereby leading to greater antibacterial activities. In addition, Nano-BA5K was found to be effective in vivo, and it served as an anti-infective agent for wound healing. Collectively, this study provides a cost-effective means of developing self-assembling nano-polypeptide antibiotic candidates with a broader antibacterial spectrum and a lower toxicity than commercially available peptide antibiotics, owing to their modification with biodegradable copolymers.

  13. Polypeptide-b-Poly(Phenyl Isocyanide) Hybrid Rod-Rod Copolymers: One-Pot Synthesis, Self-Assembly, and Cell Imaging.

    Science.gov (United States)

    Shi, Sheng-Yu; He, Ya-Guang; Chen, Wei-Wei; Liu, Na; Zhu, Yuan-Yuan; Ding, Yun-Sheng; Yin, Jun; Wu, Zong-Quan

    2015-08-01

    Hybrid rod-rod diblock copolymers, poly(γ-benzyl L-glutamate)-poly(4-cyano-benzoic acid 2-isopropyl-5-methyl-cyclohexyl ester) (PBLG-PPI), with determined chirality are facilely synthesized through sequential copolymerization of γ-benzyl-L-glutamate N-carboxyanhydride (BLG-NCA) and phenyl isocyanide monomers bearing chiral menthyl pendants using a Ni(cod)(bpy) complex as the catalyst in one-pot. Circular dichroism and absorption spectra reveal that each block of the block copolymers possesses a stable helical conformation with controlled helicity in solution due to the induction of chiral pendants. The two diastereomeric polymers self-assemble into helical nanofibrils with opposite handedness due to the different chiral induction of the L- and D-menthyl pendants, confirmed by transmission electron microscopy (TEM). Deprotection of the benzyl groups of the PBLG segment affords biocompatible amphiphilic diblock copolymers, poly(L-glutamic acid)-poly(4-cyano-benzoic acid 2-isopropyl-5-methyl-cyclohexyl ester) (PLGA-PPI), that can self-assemble into well-defined micelles by cosolvent induced aggregation. Very interestingly, a chiral rhodamine chromophores RhB(D) can be selectively encapsulated into the chiral polymeric micelles, which is efficiently internalized into living cells when directly monitored with a confocal microscope. This contribution will be useful for developing novel rod-rod biocompatible hybrid block copolymers with a controlled helicity, and may also provide unique chiral materials for potential bio-medical applications. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Interactive modeling-synthesis-characterization approach towards controllable in situ self-assembly of artificial pinning centers in RE-123 films

    Science.gov (United States)

    Wu, Judy; Shi, Jack

    2017-10-01

    Raising critical current density J c in high temperature superconductors (HTSs) is an important strategy towards performance-cost balanced HTS technology for commercialization. The development of strong nanoscale artificial pinning centers (APCs) in HTS, such as YBa2Cu3O7 or RE-123 in general, represents one of the most exciting progressions in HTS material research in the last decade. Significantly raised J c has been demonstrated in APC/RE-123 nanocomposites by enhanced pinning on magnetic vortices in magnetic fields towards that demanded in practical applications. Among other processes, strain-mediated self-organization has been explored extensively for in situ formation of the APCs based on fundamental physics design rules. The desire in controlling the morphology, dimension, orientation, and concentration of APCs has led to a fundamental question on how strains interact in determining APCs at a macroscopic scale. Answering this question demands an interactive modeling-synthesis-characterization approach towards a thorough understanding of fundamental physics governing the strain-mediated self-organization of the APCs in the APC/RE-123 nanocomposites. Such an understanding is the key for a leap forward from the traditionally empirical method to materials-by-design to enable an optimal APC landscape to be achieved in epitaxial films of APC/YBCO nanocomposites under a precise guidance of fundamental physics. The paper intends to provide a review of recent progress made in the controllable generation of APCs using the interactive modeling-synthesis-characterization approach. The emphasis will be given to the understanding so far achieved using such an approach on the collective effect of the strain field on the morphology, dimension, and orientation of APCs in epitaxial APC/RE-123 nanocomposite films.

  15. Design and synthesis of collagen mimetic peptide derivatives for studying triple helix assembly and collagen mimetic peptide-collagen binding interaction

    Science.gov (United States)

    Mo, Xiao

    2008-10-01

    Collagen is the principal tensile clement of the extra-cellular matrix in mammals and is the basic scaffold for cells and tissues. Collagen molecules are comprised of homo-trimeric helices (e.g. collagen type II and type III), ABB type hetero-trimeric helices (e.g. collagen type I, type IV, and type V), or ABC type hetero-trimeric helices (e.g. type V). Mimicry of collagen structures can help elucidate collagen triple helical conformation and provide insights into making novel collagen-like biomaterials. Our group previously reported a new physical collagen modification method, which was based on non-covalent interaction between collagen mimetic peptide (CMP: -(Pro-Hyp-Gly) x-) and natural collagen. We hypothesized that CMP binds to collagen through a process involving both strand invasion and triple helix assembly. The aim of this dissertation is to study structural formation and stability of collagen triple helix, and to investigate CMP-collagen binding interactions using two types of CMP derivatives: covalently templated CMP trimer and CMP-nanoparticle conjugates. We demonstrated that covalently templated ABB type CMP hetero-trimers could be prepared by a versatile synthetic strategy involving both solid phase and solution peptide coupling. Our thermal melting studies showed that the templated CMP hetero-trimers formed collagen-like triple helices and their folding kinetics correlated with the amino acid compositions of the individual CMP strands. We also studied the thermal melting behavior and folding kinetics of a templated hetero-trimer complex comprised of CMP and a peptide derived from collagen. This synthetic strategy can be readily extended to synthesize other ABB type hetero-trimers to investigate their local melting behavior and biological activity. We also prepared colloidally stable CMP functionalized gold nanoparticles (Au-CMPs) as a TEM marker for investigating the CMP-collagen interaction. Au-CMP showed preferential binding to collagen fiber's gap

  16. Heme Oxygenase, Inflammation, and Fibrosis: The Good, the Bad, and the Ugly?

    Science.gov (United States)

    Lundvig, Ditte M. S.; Immenschuh, Stephan; Wagener, Frank A. D. T. G.

    2012-01-01

    Upon injury, prolonged inflammation and oxidative stress may cause pathological wound healing and fibrosis, leading to formation of excessive scar tissue. Fibrogenesis can occur in most organs and tissues and may ultimately lead to organ dysfunction and failure. The underlying mechanisms of pathological wound healing still remain unclear, and are considered to be multifactorial, but so far, no efficient anti-fibrotic therapies exist. Extra- and intracellular levels of free heme may be increased in a variety of pathological conditions due to release from hemoproteins. Free heme possesses pro-inflammatory and oxidative properties, and may act as a danger signal. Effects of free heme may be counteracted by heme-binding proteins or by heme degradation. Heme is degraded by heme oxygenase (HO) that exists as two isoforms: inducible HO-1 and constitutively expressed HO-2. HO generates the effector molecules biliverdin/bilirubin, carbon monoxide, and free iron/ferritin. HO deficiency in mouse and man leads to exaggerated inflammation following mild insults, and accumulating epidemiological and preclinical studies support the widely recognized notion of the cytoprotective, anti-oxidative, and anti-inflammatory effects of the activity of the HO system and its effector molecules. In this review, we address the potential effects of targeted HO-1 induction or administration of HO-effector molecules as therapeutic targets in fibrotic conditions to counteract inflammatory and oxidative insults. This is exemplified by various clinically relevant conditions, such as hypertrophic scarring, chronic inflammatory liver disease, chronic pancreatitis, and chronic graft rejection in transplantation. PMID:22586396

  17. Regulation of human heme oxygenase-1 gene expression under thermal stress.

    Science.gov (United States)

    Okinaga, S; Takahashi, K; Takeda, K; Yoshizawa, M; Fujita, H; Sasaki, H; Shibahara, S

    1996-06-15

    Heme oxygenase-1 is an essential enzyme in heme catabolism, and its human gene promoter contains a putative heat shock element (HHO-HSE). This study was designed to analyze the regulation of human heme oxygenase-1 gene expression under thermal stress. The amounts of heme oxygenase-1 protein were not increased by heat shock (incubation at 42 degrees C) in human alveolar macrophages and in a human erythroblastic cell line, YN-1-0-A, whereas heat shock protein 70 (HSP70) was noticeably induced. However, heat shock factor does bind in vitro to HHO-HSE and the synthetic HHO-HSE by itself is sufficient to confer the increase in the transient expression of a reporter gene upon heat shock. The deletion of the sequence, located downstream from HHO-HSE, resulted in the activation of a reporter gene by heat shock. These results suggest that HHO-HSE is potentially functional but is repressed in vivo. Interestingly, heat shock abolished the remarkable increase in the levels of heme oxygenase-1 mRNA in YN-1-0-A cells treated with hemin or cadmium, in which HSP70 mRNA was noticeably induced. Furthermore, transient expression assays showed that heat shock inhibits the cadmium-mediated activation of the heme oxygenase-1 promoter, whereas the HSP70 gene promoter was activated upon heat shock. Such regulation of heme oxygenase-1 under thermal stress may be of physiologic significance in erythroid cells.

  18. Heme-induced Trypanosoma cruzi proliferation is mediated by CaM kinase II

    Energy Technology Data Exchange (ETDEWEB)

    Souza, C.F. [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Carneiro, A.B.; Silveira, A.B. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); Laranja, G.A.T. [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); Silva-Neto, M.A.C. [Laboratorio de Sinalizacao Celular, Instituto de Bioquimica Medica, UFRJ (Brazil); INCT, Entomologia Molecular (Brazil); Costa, S.C. Goncalves da [Laboratorio de Imunomodulacao e Protozoologia, Instituto Oswaldo Cruz, Fiocruz (Brazil); Paes, M.C., E-mail: mcpaes@uerj.br [Laboratorio de Interacao Tripanosomatideos e Vetores, Departamento de Bioquimica, IBRAG, UERJ, 20551-030 Rio de Janeiro (Brazil); INCT, Entomologia Molecular (Brazil)

    2009-12-18

    Trypanosoma cruzi, the etiologic agent of Chagas disease, is transmitted through triatomine vectors during their blood-meal on vertebrate hosts. These hematophagous insects usually ingest approximately 10 mM of heme bound to hemoglobin in a single meal. Blood forms of the parasite are transformed into epimastigotes in the crop which initiates a few hours after parasite ingestion. In a previous work, we investigated the role of heme in parasite cell proliferation and showed that the addition of heme significantly increased parasite proliferation in a dose-dependent manner . To investigate whether the heme effect is mediated by protein kinase signalling pathways, parasite proliferation was evaluated in the presence of several protein kinase (PK) inhibitors. We found that only KN-93, a classical inhibitor of calcium-calmodulin-dependent kinases (CaMKs), blocked heme-induced cell proliferation. KN-92, an inactive analogue of KN-93, was not able to block this effect. A T. cruzi CaMKII homologue is most likely the main enzyme involved in this process since parasite proliferation was also blocked when Myr-AIP, an inhibitory peptide for mammalian CaMKII, was included in the cell proliferation assay. Moreover, CaMK activity increased in parasite cells with the addition of heme as shown by immunological and biochemical assays. In conclusion, the present results are the first strong indications that CaMKII is involved in the heme-induced cell signalling pathway that mediates parasite proliferation.

  19. Proinflammatory Responses of Heme in Alveolar Macrophages: Repercussion in Lung Hemorrhagic Episodes

    Directory of Open Access Journals (Sweden)

    Rafael L. Simões

    2013-01-01

    Full Text Available Clinical and experimental observations have supported the notion that free heme released during hemorrhagic and hemolytic episodes may have a major role in lung inflammation. With alveolar macrophages (AM being the main line of defense in lung environments, the influence of free heme on AM activity and function was investigated. We observed that heme in a concentration range found during hemolytic episodes (3–30 μM elicits AM to present a proinflammatory profile, stimulating reactive oxygen species (ROS and nitric oxide (NO generation and inducing IL-1β, IL-6, and IL-10 secretion. ROS production is NADPH oxidase-dependent, being inhibited by DPI and apocynin, and involves p47 subunit phosphorylation. Furthermore, heme induces NF-κB nuclear translocation, iNOS, and also HO-1 expression. Moreover, AM stimulated with free heme show enhanced phagocytic and bactericidal activities. Taken together, the data support a dual role for heme in the inflammatory response associated with lung hemorrhage, acting as a proinflammatory molecule that can either act as both an adjuvant of the innate immunity and as an amplifier of the inflammatory response, leading tissue injury. The understanding of heme effects on pulmonary inflammatory processes can lead to the development of new strategies to ameliorate tissue damage associated with hemorrhagic episodes.

  20. XAS study of the active site of a bacterial heme-sensor

    Energy Technology Data Exchange (ETDEWEB)

    Della Longa, S [Dipartimento di Medicina Sperimentale, Universita dell' Aquila via Vetoio, loc. Coppito II 67100 L' Aquila (Italy); Arcovito, A [Istituto di Biochimica e Biochimica Clinica, Universita Cattolica del Sacro Cuore, Largo F. Vito 1, 00168, Roma (Italy); Brunori, M; Castiglione, N; Cutruzzola, F; Giardina, G; Rinaldo, S [Dipartimento di Scienze Biochimiche ' A. Rossi Fanelli' , Sapienza Universit/a di Roma, P. le A. Moro 5, 00185 Roma (Italy); D' Angelo, P, E-mail: dlonga@caspur.i [Dipartimento di Chimica, Sapienza Universita di Roma, P. le A.Moro 5, 00185 Roma (Italy)

    2009-11-15

    Denitrifying bacteria control NO and NO{sub 2} cytosolic levels by regulating the expression of denitrification gene clusters via REDOX signalling of specific transcriptional factors that may act as NO sensors in vivo. A protein belonging to the subclass DNR (dissimilative nitrate respiration regulator) from Pseudomonas aeruginosa has been recently suggested to be a heme containing protein. Very recently the three dimensional structure of the apo-form of DNR (in the absence of heme) has been determined by X-Ray crystallography, whereas the holo-form (in the presence of heme) has not yet been crystallized. We have investigated the heme local structure in solution of ferric and ferrous holo-DNR by XAS. The Fe K-edge XANES spectrum of the ferric adduct displays typical features of a low-spin hexacoordinate Fe-heme complex, having two histidines ligated. After chemical reduction, relevant changes of the XANES fingerprints suggest a repositioning of the heme inside the hydrophobic core of the protein in agreement with previously reported structural and spectroscopic evidence. Partial release of the axial ligands leaves the Fe(II)heme available, and very reactive, to bind exogenous ligands like NO, thus supporting its role as the cofactor involved in NO sensing activity.

  1. Crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate. Conformational change of the distal helix during the heme cleavage reaction.

    Science.gov (United States)

    Sugishima, Masakazu; Sakamoto, Hiroshi; Higashimoto, Yuichiro; Noguchi, Masato; Fukuyama, Keiichi

    2003-08-22

    The crystal structure of rat heme oxygenase-1 in complex with biliverdin-iron chelate (biliverdin(Fe)-HO-1), the immediate precursor of the final product, biliverdin, has been determined at a 2.4-A resolution. The electron density in the heme pocket clearly showed that the tetrapyrrole ring of heme is cleaved at the alpha-meso edge. Like the heme bound to HO-1, biliverdin-iron chelate is located between the distal and proximal helices, but its accommodation state seems to be less stable in light of the disordering of the solvent-exposed propionate and vinyl groups. The middle of the distal helix is shifted away from the center of the active site in biliverdin(Fe)-HO-1, increasing the size of the heme pocket. The hydrogen-bonding interaction between Glu-29 and Gln-38, considered to restrain the orientation of the proximal helix in the heme-HO-1 complex, was lost in biliverdin(Fe)-HO-1, leading to relaxation of the helix. Biliverdin has a distorted helical conformation; the lactam oxygen atom of its pyrrole ring-A interacted with Asp-140 through a hydrogen-bonding solvent network. Because of the absence of a distal water ligand, the iron atom is five-coordinated with His-25 and four pyrrole nitrogen atoms. The coordination geometry deviates considerably from a square pyramid, suggesting that the iron may be readily dissociated. We speculate that the opened conformation of the heme pocket facilitates sequential product release, first iron then biliverdin, and that because of biliverdin's increased flexibility, iron release triggers its slow dissociation.

  2. Protein expressed by the ho2 gene of the cyanobacterium Synechocystis sp. PCC 6803 is a true heme oxygenase. Properties of the heme and enzyme complex.

    Science.gov (United States)

    Zhang, Xuhong; Migita, Catharina T; Sato, Michihiko; Sasahara, Masanao; Yoshida, Tadashi

    2005-02-01

    Two isoforms of a heme oxygenase gene, ho1 and ho2, with 51% identity in amino acid sequence have been identified in the cyanobacterium Synechocystis sp. PCC 6803. Isoform-1, Syn HO-1, has been characterized, while isoform-2, Syn HO-2, has not. In this study, a full-length ho2 gene was cloned using synthetic DNA and Syn HO-2 was demonstrated to be highly expressed in Escherichia coli as a soluble, catalytically active protein. Like Syn HO-1, the purified Syn HO-2 bound hemin stoichiometrically to form a heme-enzyme complex and degraded heme to biliverdin IXalpha, CO and iron in the presence of reducing systems such as NADPH/ferredoxin reductase/ferredoxin and sodium ascorbate. The activity of Syn HO-2 was found to be comparable to that of Syn HO-1 by measuring the amount of bilirubin formed. In the reaction with hydrogen peroxide, Syn HO-2 converted heme to verdoheme. This shows that during the conversion of hemin to alpha-meso-hydroxyhemin, hydroperoxo species is the activated oxygen species as in other heme oxygenase reactions. The absorption spectrum of the hemin-Syn HO-2 complex at neutral pH showed a Soret band at 412 nm and two peaks at 540 nm and 575 nm, features observed in the hemin-Syn HO-1 complex at alkaline pH, suggesting that the major species of iron(III) heme iron at neutral pH is a hexa-coordinate low spin species. Electron paramagnetic resonance (EPR) revealed that the iron(III) complex was in dynamic equilibrium between low spin and high spin states, which might be caused by the hydrogen bonding interaction between the distal water ligand and distal helix components. These observations suggest that the structure of the heme pocket of the Syn HO-2 is different from that of Syn HO-1.

  3. Synthesis and characterization of self-assembled CdHgTe/gelatin nanospheres as stable near infrared fluorescent probes in vivo.

    Science.gov (United States)

    Wang, Yunqing; Ye, Chao; Wu, Liheng; Hu, Yuzhu

    2010-11-02

    This work presented a kind of novel near infrared emitting CdHgTe/gelatin nanospheres which were synthesized with Cd(NO(3))(2), Hg(NO(3))(2), NaHTe and a thiol stabilizer in gelatin solution. The self-assembled nanospheres were megranate-like and nearly 40 nm in diameter, with CdHgTe QDs uniformly embedded in gelatin matrix. They exhibited strong fluorescence ranging from 580 to 800 nm that could be tuned by molar ratios of Hg(2+) and gelatin. The full widths at half-maximum of the emission spectra were in the range of 60-80 nm. Compared with bare CdHgTe QDs, the photostability of this compact complex nanostructure remarkably improved. Moreover, the fluorescence of CdHgTe/gelatin nanospheres was much more resistant to the interference from certain kinds of endogenous biomolecules such as HSA, transferrin and hemoglobin. Further applications of living cells and mouse imaging were demonstrated with an in vivo near infrared fluorescence imaging system. The inherent advantages of high stability as well as high fluorescence intensity make the nanospheres particular interested NIR bioprobe candidates for in vivo imaging studies. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  4. Synthesis and Relaxivity Studies of a DOTA-Based Nanomolecular Chelator Assembly Supported by an Icosahedral Closo-B122− -Core for MRI: A Click Chemistry Approach

    Directory of Open Access Journals (Sweden)

    Satish S. Jalisatgi

    2013-07-01

    Full Text Available An icosahedral closo-B122− scaffold based nano-sized assembly capable of carrying a high payload of Gd3+-chelates in a sterically crowded configuration is developed by employing the azide-alkyne click reaction. The twelve copies of DO3A-t-Bu-ester ligands were covalently attached to an icosahedral closo-B122− core via suitable linkers through click reaction. This nanomolecular structure supporting a high payload of Gd3+-chelate is a new member of the closomer MRI contrast agents that we are currently developing in our laboratory. The per Gd ion relaxivity (r1 of the newly synthesized MRI contrast agent was obtained in PBS, 2% tween/PBS and bovine calf serum using a 7 Tesla micro MRI instrument and was found to be slightly higher (r1 = 4.7 in PBS at 25 °C compared to the clinically used MRI contrast agents Omniscan (r1 = 4.2 in PBS at 25 °C and ProHance (r1 = 3.1 in PBS at 25 °C.

  5. Synthesis and supramolecular self-assembly of thioxothiazolidinone derivatives driven by H-bonding and diverse π-hole interactions: A combined experimental and theoretical analysis

    Science.gov (United States)

    Andleeb, Hina; Khan, Imtiaz; Bauzá, Antonio; Tahir, Muhammad Nawaz; Simpson, Jim; Hameed, Shahid; Frontera, Antonio

    2017-07-01

    Two new 3-aryl-5-(4-nitrobenzylidene)-2-thioxothiazolidin-4-one derivatives (1 &2) were synthesized by the Knoevenagel condensation reaction of 3-(4-aryl)-2-thioxo-1,3-thiazolidin-4-ones with 4-nitrobenzaldehyde. Both products were isolated as orange crystalline solids in good yields and were fully characterized by analytical, spectroscopic and structural methods. The interesting supramolecular assemblies of the title compounds observed in the solid state were analyzed by Density Functional Theory (DFT) calculations (M06-2X/def2-TZVP), Molecular Electrostatic Potential (MEP) surfaces and characterized by means of the Bader's theory of ;atoms-in-molecules; (AIM) and NCIplot. The computation of the energy features of the diverse noncovalent interactions including Csbnd H⋯π, π⋯π and lp⋯π-hole interactions revealed their conspicuous role in the stabilization of the three-dimensional supramolecular frameworks for both compounds in addition to the Csbnd H⋯O/S H-bonding interactions.

  6. Synthesis and Self-Assembly of Rod2Coil Miktoarm Star Copolymers of Poly(3-dodecxylthiophene) and Poly(methyl methacrylate) with high rod fractions

    Science.gov (United States)

    Park, Jicheol; Moon, Hong Chul; Choi, Chung-Royng; Kim, Jin Kon

    2015-03-01

    Poly(3-dodecylthiophene)-b-poly(methyl methacrylate) diblock copolymer (P3DDT- b-PMMA) can self-assembled into various microdomains such as spheres, cylinders, and lamellae depending on weight fraction of P3DDT. However, only filbril morphology was formed when weight fraction of P3DDT (wP 3 DDT) was major (wP 3 DDT ~ 0.76). Here, we introduce a new approach to obtain microdomain structures even at high wP 3 DDT by using well-defined A2B miktoarm star copolymer composed of P3DDT and PMMA ((P3DDT)2PMMA. We found via small angle X-ray scattering and transmission electron microscopy that (P3DDT)2PMMA showed PMMA cylinder packed hexagonally in the matrix of P3DDT and body-centered-cubic spheres of PMMA for wP 3 DDT of 0.66 and 0.75, respectively. This because of much reduction of the rod-rod interaction in (P3DDT)2PMMA compared with P3DDT- b-PMMA diblock copolymers.

  7. PHEA-g-PMMA Well-Defined Graft Copolymer: ATRP Synthesis, Self-Assembly, and Synchronous Encapsulation of Both Hydrophobic and Hydrophilic Guest Molecules.

    Science.gov (United States)

    Ding, Aishun; Xu, Jie; Gu, Guangxin; Lu, Guolin; Huang, Xiaoyu

    2017-10-03

    A series of well-defined amphiphilic graft copolymer bearing a hydrophilic poly(2-hydroxyethyl acrylate) (PHEA) backbone and hydrophobic poly(methyl methacrylate) (PMMA) side chains was synthesized by successive reversible addition-fragmentation chain transfer (RAFT) polymerization and atom transfer radical polymerization (ATRP) through the grafting-from strategy. A well-defined PHEA-based backbone with Cl-containing ATRP initiating group in every repeated unit (M w /M n  = 1.08), poly(2-hydroxyethyl 2-((2-chloropropanoyloxy)methyl)acrylate) (PHECPMA), was first prepared by RAFT homopolymerization of 2-hydroxyethyl 2-((2-chloropropanoyloxy)methyl)acrylate (HECPMA), a Cl-containing trifunctional acrylate. ATRP of methyl methacrylate was subsequently initiated by PHECPMA homopolymer to afford the target well-defined poly(2-hydroxyethyl acrylate)-graft-poly(methyl methacrylate) (PHEA-g-PMMA) graft copolymers (M w /M n  ≤ 1.36) with 34 PMMA side chains and 34 pendant hydroxyls in PHEA backbone using CuCl/dHbpy as catalytic system. The critical micelle concentration (cmc) of the obtained graft copolymer was determined by fluorescence spectroscopy using N-phenyl-1-naphthylamine as probe while micellar morphologies in aqueous media were visualized by transmission electron microscopy. Interestingly, PHEA-g-PMMA graft copolymer could self-assemble into large compound micelles rather than common spherical micelles, which can encapsulate hydrophilic rhodamine 6 G and hydrophobic pyrene separately or simultaneously.

  8. Self-assembled drug delivery system based on low-molecular-weight bis-amide organogelator: synthesis, properties and in vivo evaluation.

    Science.gov (United States)

    Li, Zhen; Cao, Jinxu; Li, Heran; Liu, Hongzhuo; Han, Fei; Liu, Zhenyun; Tong, Chao; Li, Sanming

    2016-10-01

    Orgnaogels based on amino acid derivatives have been widely used in the area of drug delivery. An organogel system based on l-lysine derivatives was designed and prepared to induce a thermal sensitive implant with higher transition temperature, better mechanical strength, and shorter gelation time. The organogel was prepared by injectable soybean oil and methyl (S)-2,5-ditetradecanamidopentanoate (MDP), which was synthesized for the first time. Candesartan cilexetil (CC) was chosen as model drug. Different formulations were designed and optimized by response surface method. Thermal, rheology properties, and gelation kinetics of the optimized formulation had been characterized. The release behaviors in vitro, as well as in vivo were evaluated in comparison with the oily solution of drugs. Finally, the local inflammation response of in situ organogel was assessed by histological analysis. Results showed that the synthesized gelator, MDP, had a good gelation ability and the organogels obtained via the self-assembly of gelators in vegetable oils exhibited great thermal and rheology properties, which guaranteed their state in body. In vivo pharmacokinetic demonstrated that the organogel formulation could extend the drug release and maintain a therapeutically effective plasma concentration at least 10 d. In addition, this implant showed acceptable moderate inflammation. The in situ forming l-lysine-derivative-based organogel could be a promising matrix for sustained drug delivery of the drugs with low solubility.

  9. Microwave-assisted synthesis of Fe-doped NiO nanofoams assembled by porous nanosheets for fast response and recovery gas sensors

    Science.gov (United States)

    Li, Xiu; Tan, Jian-Feng; Hu, Yan-E.; Huang, Xin-Tang

    2017-04-01

    Fe-doped NiO, a type of p-type gas sensor, has received wide attention for its low cost, environmentally friendliness and excellent gas-sensing performance. However, the operating temperature of Fe-doped NiO is too high (300 °C -500 °C). This study attempts to investigate the possibility of Fe-doped NiO working in relatively low temperature regions. A type of NiO nanofoam assembled by porous nanosheets was synthesized through a normal pressure microwave solvent thermal method by a domestic microwave oven, and Fe doping with different doping concentrations was investigated systematically. The gas-sensing performance was tested at a relatively low temperature (200 °C -280 °C). We found that the Fe-doped NiO still had a good gas-sensing performance, even at a relatively low temperature. In detail, the NiO nanofoams with 3 at% Fe-doping concentration were proven to have the best gas sensing characteristics (the response was 12-100 ppm ethanol at 280 °C), and an especially fast response and recovery (the response time and the recovery time was 1 s and 3.6 s, respectively). The study promoted the research regarding the gas sensing characteristics of Fe-doped NiO at a relatively low temperature.

  10. Synthesis of frost-like CuO combined graphene-TiO2 by self-assembly method and its high photocatalytic performance

    Science.gov (United States)

    Nguyen, Dinh Cung Tien; Cho, Kwang-Youn; Oh, Won-Chun

    2017-08-01

    A novel material, frost-like CuO combined-graphene-TiO2 composite, was successfully synthesized using a self-assembly method. During the reaction, the loading of CuO and TiO2 nanoparticles on graphene sheets was achieved. The obtained CuO-graphene-TiO2 composite photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). The frost-like CuO nanoparticles combined with the small TiO2 rods were successfully loaded on the transparent graphene sheets. The photocatalytic degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) in an aqueous solution under visible light irradiation was observed by UV spectrophotometry after measurement of the decrease of their concentrations. Through the photocatalytic test and TOC results, the CuO-graphene-TiO2 is expected to become a new potential material for photodegradation activity with excellent photodegradation. The scavenging experiments confirmed that rad OH and h+ play a major role in the photocatalytic reaction than O2rad - or both hydroxyl and holes are the active species responsible for the RBB degradation under visible light irradiation. After five repeated cycles to investigate the stability of photocatalytic performance, the CuO-graphene-TiO2 had high stability under visible light irradiation.

  11. Facile Synthesis, Characterization, and Visible-light Photocatalytic Activities of 3D Hierarchical Bi2S3 Architectures Assembled by Nanoplatelets

    Directory of Open Access Journals (Sweden)

    Tiekun Jia

    2016-10-01

    Full Text Available 3D hierarchical Bi2S3 architectures have been successfully synthesized via a simple and effective hydrothermal process. The as-prepared Bi2S3 samples were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption- desorption isotherms, and UV-vis diffuse reflectance spectrum (DRS. The observation of field emission scanning electron microscope (FESEM images showed that numerous nanoplatelets are randomly arranged and interconnected with each other, which are assembled into 3D hierarchical Bi2S3 architectures. The photocatalytic activity of the as-prepared Bi2S3 samples was evaluated by the degradation of Rhodamine B (RhB under visible light irradiation. The effect of hydrothermal temperature, reaction time, pH value and shape on the photocatalytic efficiency of the as-prepared Bi2S3 samples was investigated. The results showed that 3D hierarchical Bi2S3 architectures prepared at 165 °C for 12 h at a pH of 2.4 exhibits high photocatalytic efficiency, which could be ascribed to the synergetic effect of the shape, surface area, crystallinity, band gap and crystalline size.

  12. One-step synthesis and self-assembly behavior of thermo-responsive star-shaped β-cyclodextrin-(P(MEO2MA- co-PEGMA))21 copolymers

    Science.gov (United States)

    Wei, Lulu; Lu, Beibei; Li, Lei; Wu, Jianning; Liu, Zhiyong; Guo, Xuhong

    2017-09-01

    A novel β-cyclodextrin-poly(2-(2-methoxyethoxy)ethyl methacrylate)- co-poly(ethylene glycol) methacrylate (abbreviated as: β-CD-(P(MEO2MA- co-PEGMA))21) was prepared by using the one-step strategy, and then the star-shaped copolymers were used in the atom transfer radical polymerization (ATRP). The structure of star-shaped β-CD-(P(MEO2MA- co-PEGMA))21 copolymers were studied by FTIR, 1H NMR and gel permeation chromatography (GPC). The star-shaped copolymers could self-assembled into micelles in aqueous solution owing to the outer amphiphilic β-CD as a core and the hydrophilic P(MEO2MA- co-PEGMA) segments as a shell. These thermo-responsive starshaped copolymers micelles exhibited lower critical solution temperature (LCST) in water, which could be finely tuned by changing the feed ratio of MEO2MA to PEGMA. The LCST of star-shaped β-CD-(P(MEO2MA- co-PEGMA))21 copolymer micelles were increased from 35°C to 58°C with the increasing content of PEGMA. The results were investigated by DLS and TEM. When the temperature was higher than corresponding LCSTs, the micelles started to associate and form spherical nanoparticles. Therefore, β-CD-(P(MEO2MA- co-PEGMA))21 star-shaped copolymer micelles could be potentially applied in nano-carrier, nano-reactor, smart materials and biomedical fields.

  13. Self-assembly synthesis of 3D graphene-encapsulated hierarchical Fe3O4 nano-flower architecture with high lithium storage capacity and excellent rate capability

    Science.gov (United States)

    Ma, Yating; Huang, Jian; Lin, Liang; Xie, Qingshui; Yan, Mengyu; Qu, Baihua; Wang, Laisen; Mai, Liqiang; Peng, Dong-Liang

    2017-10-01

    Graphene-encapsulated hierarchical metal oxides architectures can efficiently combine the merits of graphene and hierarchical metal oxides, which are deemed as the potential anode material candidates for the next-generation lithium-ion batteries due to the synergistic effect between them. Herein, a cationic surfactant induced self-assembly method is developed to construct 3D Fe3O4@reduction graphene oxide (H-Fe3O4@RGO) hybrid architecture in which hierarchical Fe3O4 nano-flowers (H-Fe3O4) are intimately encapsulated by 3D graphene network. Each H-Fe3O4 particle is constituted of rod-shaped skeletons surrounded by petal-like nano-flakes that are made up of enormous nanoparticles. When tested as the anode material in lithium-ion batteries, a high reversible capacity of 2270 mA h g-1 after 460 cycles is achieved under a current density of 0.5 A g-1. More impressively, even tested at a large current density of 10 A g-1, a decent reversible capacity of 490 mA h g-1 can be retained, which is still higher than the theoretical capacity of traditional graphite anode, demonstrating the remarkable lithium storage properties. The reasons for the excellent electrochemical performance of H-Fe3O4@RGO electrode have been discussed in detail.

  14. Assemblies of BODIPY/Porphyrin, Phthalocyanine, and C60 Moieties as Artificial Models of Photosynthesis. Synthesis, Supramolecular Interactions, and Photophysical Studies.

    Science.gov (United States)

    Ng, Dennis K P; Chen, Xiao-Fei; El-Khouly, Mohamed; Ohkubo, Kei; Fukuzumi, Shunichi

    2018-01-06

    A series of light-harvesting conjugates based on a zinc(II) phthalocyanine core with either two or four boron dipyrromethene (BODIPY) or porphyrin units have been synthesized and characterized. The conjugation of BODIPY/porphyrin units can extend the absorptions of the phthalocyanine core to cover most of the visible region. Upon addition of an imidazole-substituted C60 (C60Im), it can axially bind to the zinc(II) center of the phthalocyanine core via metal-ligand interactions. The resulting complexes form photosynthetic antenna-reaction center mimics in which the BODIPY/porphyrin units serve as the antennas to capture the light and transfer the energy to the phthalocyanine core via efficient excitation energy transfer. The excited phthalocyanine is then quenched by the axially bound C60Im moiety by electron transfer, which has been supported by computational studies. The photoinduced processes of the assemblies have been studied in detail by various steady-state and time-resolved spectroscopic methods. By femtosecond transient absorption spectroscopic studies, the lifetimes of the charge-separated state of the bis(BODIPY) and bis(porphyrin) systems have been determined to be 3.2 ns and 4.0 ns, respectively. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Synthesis and self-assembly of brush-type poly[poly(ethylene glycol)methyl ether methacrylate]-block-poly(pentafluorostyrene) amphiphilic diblock copolymers in aqueous solution.

    Science.gov (United States)

    Tan, B H; Hussain, H; Liu, Y; He, C B; Davis, T P

    2010-02-16

    Well-defined fluorinated brush-like amphiphilic diblock copolymers of poly[poly(ethylene glycol)methyl ether methacrylate] (P(PEGMA)) and poly(pentafluorostyrene) (PPFS) have been successfully synthesized via atom transfer radical polymerization (ATRP). The self-assembly behavior of these polymers in aqueous solutions was studied using (1)H NMR, fluorescence spectrometry, static and dynamic light scattering and transmission electron microscopy techniques. The micellar structure comprised of PPFS as the core and brush-like (hydrophobic main chain and hydrophilic branches) polymers as the coronas. The hydrodynamic radius (R(h)) of the micelles in aqueous solution was in the nanometer range, independent of the polymer concentration, consistent with a closed association model. Diblock copolymers with a longer P(PEGMA) block formed micelles with smaller R(h) and lower aggregation numbers consistent with an improved solubilization of the core. The micelles possessed a thick hydration layer as verified by the ratio of the radius of gyration, R(g) to the hydrodynamic radius, R(h). The aggregation number and ratio of R(g) to R(h) were observed to increase with temperature (20-50 degrees C), while the R(h) of the micelle decreased slightly over the same temperature range. An increase in temperature induced the brush-like PEG segments in the corona to dehydrate and shrink while forming micelles with larger aggregation numbers.

  16. General Assembly

    CERN Multimedia

    Staff Association

    2016-01-01

    5th April, 2016 – Ordinary General Assembly of the Staff Association! In the first semester of each year, the Staff Association (SA) invites its members to attend and participate in the Ordinary General Assembly (OGA). This year the OGA will be held on Tuesday, April 5th 2016 from 11:00 to 12:00 in BE Auditorium, Meyrin (6-2-024). During the Ordinary General Assembly, the activity and financial reports of the SA are presented and submitted for approval to the members. This is the occasion to get a global view on the activities of the SA, its financial management, and an opportunity to express one’s opinion, including taking part in the votes. Other points are listed on the agenda, as proposed by the Staff Council. Who can vote? Only “ordinary” members (MPE) of the SA can vote. Associated members (MPA) of the SA and/or affiliated pensioners have a right to vote on those topics that are of direct interest to them. Who can give his/her opinion? The Ordinary General Asse...

  17. Incorporation of a Metal Oxide Interlayer using a Virus-Templated Assembly for Synthesis of Graphene-Electrode-Based Organic Photovoltaics.

    Science.gov (United States)

    Lee, Yong Man; Kim, Wanjung; Kim, Young Hun; Kim, Jung Kyu; Jang, Ji-Ryang; Choe, Woo-Seok; Park, Jong Hyeok; Yoo, Pil J

    2015-07-20

    Transition metal oxide (TMO) thin films have been exploited as interlayers for charge extraction between electrodes and active layers in organic photovoltaic (OPV) devices. Additionally, graphene-electrode-based OPVs have received considerable attention as a means to enhance device stability. However, the film deposition process of a TMO thin-film layer onto the graphene electrode is highly restricted owing to the hydrophobic nature of the graphene surface; thus, the preparation of the device should rely on a vacuum process that is incompatible with solution processing. In this study, we present a novel means for creating a thin tungsten oxide (WO3 ) interlayer on a graphene electrode by employing an engineered biotemplate of M13 viruses, whereby nondestructive functionalization of the graphene and uniform synthesis of a WO3 thin interlayer are concurrently achieved. As a result, the incorporated virus-templated WO3 interlayer exhibited solar-conversion efficiency that was 20 % higher than that of conventional OPVs based on the use of a (3,4-ethylenedioxythiophene):poly(styrenesulfonate) ( PSS) interlayer. Notably, bilayer-structured OPVs with synergistically integrated WO3 /PEDOT:PSS achieved >60 % enhancement in device performance. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: Synthesis, solvent-dependent structural variation and properties

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhao-Hao [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Xue, Li-Ping, E-mail: lpxue@163.com [College of Food and Drug, Luoyang Normal University, Luoyang 471934 (China); Miao, Shao-Bin [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China); Zhao, Bang-Tun, E-mail: zbt@lynu.edu.cn [College of Chemistry and Chemical Engineering, and Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934 (China)

    2016-08-15

    The reaction of Cd(NO{sub 3}){sub 2}·4H{sub 2}O, 2,5-thiophenedicarboxylic acid (H{sub 2}tdc) and 1,2-bis(imidazol-1′-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd{sub 2}(CO{sub 2}){sub 2}] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1–3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1–3 were also investigated for the first time, and all the complexes emit blue luminescence in the solid state. - Graphical abstract: Key Topic. Different solvent systems modulated three Cd(II) pseudo-polymorphic coordination polymers based on thiophene-2,5-dicarboxylate and 1,2-bis(imidazol-1′-yl)methane mixed ligands. Display Omitted - Highlights: • Three solvent-dependent Cd(II) pseudo-polymorphic coordination polymers have been synthesized. • Structural variation from 4-connected 2D layer, 6-connected 2-fold interpenetrated 3D net to 8-connected 3D net. • All complexes emit blue luminescence.

  19. Identification of Genes for Synthesis of the Blue Pigment, Biliverdin IXα, in the Blue Coral Heliopora coerulea.

    Science.gov (United States)

    Hongo, Yuki; Yasuda, Nina; NagaI, Satoshi

    2017-04-01

    Heliopora coerulea is the only species in the subclass Octocorallia that has a crystalline aragonite skeleton. The skeleton has been reported to contain the blue pigment, biliverdin IXα, which is formed by heme oxygenase (HO) during heme decomposition. There is little information regarding gene expression in H. coerulea; therefore, the biosynthesis pathway for biliverdin IXα is poorly understood. To identify the genes related to heme synthesis and degradation, metatranscripts of H. coerulea and its symbiont Symbiodinium spp. were sequenced and separated from the host- and symbiont-derived sequences. From the metatranscriptome analyses, all genes for heme synthesis and three HOs were isolated from the host and symbiont. From our phylogenetic and amino acid analysis, we noted that one of the HO isoforms in the host coral was predicted to possess HO activity. However, biliverdin reductase, which reduces biliverdin to bilirubin, was not identified in the present study. Similarly, biliverdin reductase was not identified in the transcripts of the red coral Corallium rubrum, a species that also belongs to Octocorallia. However, genes related to heme synthesis and HO were found in C. rubrum. We speculate that Heliopora coerulea can produce biliverdin and accumulate it in the skeleton, while red corals and other Octocorallia species cannot. Further information from molecular studies of H. coerulea will provide insights into the synthesis of biliverdin IXα, the blue pigment in the hard crystalline aragonite skeleton, and will be fundamental to future ecological and physiological studies.

  20. Coordination Chemistry of Linear Oligopyrrolic Fragments Inspired by Heme Metabolites

    Science.gov (United States)

    Gautam, Ritika

    Linear oligopyrroles are degradation products of heme, which is converted in the presence of heme oxygenase to bile pigments, such as biliverdin and bilirubin. These tetrapyrrolic oligopyrroles are ubiquitously present in biological systems and find applications in the fields of catalysis and sensing. These linear tetrapyrrolic scaffolds are further degraded into linear tripyrrolic and dipyrrolic fragments. Although these lower oligopyrroles are abundantly present, their coordination chemistry requires further characterization. This dissertation focuses mainly on two classes of bioinspired linear oligopyrroles, propentdyopent and tripyrrindione, and their transition metal complexes, which present a rich ligand-based redox chemistry. Chapter 1 offers an overview of heme degradation to different classes of linear oligopyrroles and properties of their transition metal complexes. Chapter 2 is focused on the tripyrrin-1,14-dione scaffold of the urinary pigment uroerythrin, which coordinates divalent transition metals palladium and copper with square planar geometry. Specifically, the tripyrrin-1, 14-dione ligand binds Cu(II) and Pd(II) as a dianionic organic radical under ambient conditions. The electrochemical study confirms the presence of ligand based redox chemistry, and one electron oxidation or reduction reactions do not alter the planar geometry around the metal center. The X-Ray analysis and the electron paramagnetic resonance (EPR) studies of the complexes in the solid and solution phase reveals intermolecular interactions between the ligand based unpaired electrons and therefore formation of neutral pi-pi dimers. In Chapter 3, the antioxidant activity and the fluorescence sensor properties of the tripyrrin-1,14-dione ligand in the presence of superoxide are described. We found that the tripyrrindione ligand undergoes one-electron reduction in the presence of the superoxide radical anion (O2•- ) to form highly fluorescent H3TD1•- radical anion, which emits

  1. Heme Oxygenase-1 Promotes Delayed Wound Healing in Diabetic Rats

    Directory of Open Access Journals (Sweden)

    Qing-Ying Chen

    2016-01-01

    Full Text Available Diabetic ulcers are one of the most serious and costly chronic complications for diabetic patients. Hyperglycemia-induced oxidative stress may play an important role in diabetes and its complications. The aim of the study was to explore the effect of heme oxygenase-1 on wound closure in diabetic rats. Diabetic wound model was prepared by making an incision with full thickness in STZ-induced diabetic rats. Wounds from diabetic rats were treated with 10% hemin ointment for 21 days. Increase of HO-1 protein expression enhanced anti-inflammation and antioxidant in diabetic rats. Furthermore, HO-1 increased the levels of VEGF and ICAM-1 and expressions of CBS and CSE protein. In summary, HO-1 promoted the wound closure by augmenting anti-inflammation, antioxidant, and angiogenesis in diabetic rats.

  2. Heme oxygenase system and hypertension: a comprehensive insight.

    Science.gov (United States)

    Tiwari, Shuchita; Ndisang, Joseph Fomusi

    2014-01-01

    Hypertension is a complex interplay of interrelated etiologies, and the leading risk factor for many cardiovascular morbidity and mortality worldwide. Cardinal pathophysiological features of hypertension include enhanced vascular inflammation, vascular remodeling, vascular contractility and increased oxidative stress. In response to oxidative, inflammatory or other noxious stimuli, many physiological pathways like the heme oxygenase (HO) system are activated in an attempt to counteract tissue insults. However, the pathophysiological activation of the HO system only results to a transient increase of HO activity that fall below the necessary threshold capable of activating the downstream signaling components of the HO system like the soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) secondary messenger system. Therefore, a more robust potentiation of the HO system by pharmacological agents such as hemin, heme-arginate, cobalt protoporphyrin or through retroviral HO-1 gene delivery would be needed to surmount the threshold for cytoprotection. The HO system modulates cellular homeostasis. Importantly, the HO system plays a vital role in a wide spectrum of physiologic including the regulation of blood vessel tone. Alterations in the activity and expression of HO has been correlated to pathophysiology of hypertension and related complications such as hypertrophy, myocardial infarction and heart failure. Moreover, the cytoprotection exerted by HO is attributable to its catabolic products namely, carbon monoxide, bilirubin/biliverdin, and ferritin that are known to modulate immune, inflammatory and oxidative insults. The growing incidence of hypertension and associated cardiometabolic complications has prompted the need for the exploration of alternative therapeutic strategies like substances capable of potentiating the HO system. This review briefly, highlights the functional significance of the HO system and its downstream signaling molecules

  3. Heme oxygenase-1 promoter polymorphisms and risk of spina bifida.

    Science.gov (United States)

    Fujioka, Kazumichi; Yang, Wei; Wallenstein, Matthew B; Zhao, Hui; Wong, Ronald J; Stevenson, David K; Shaw, Gary M

    2015-09-01

    Spina bifida is the most common form of neural tube defects (NTDs). Etiologies of NTDs are multifactorial, and oxidative stress is believed to play a key role in NTD development. Heme oxygenase (HO), the rate-limiting enzyme in heme degradation, has multiple protective properties including mediating antioxidant processes, making it an ideal candidate for study. The inducible HO isoform (HO-1) has two functional genetic polymorphisms: (GT)n dinucleotide repeats and A(-413)T SNP (rs2071746), both of which can affect its promoter activity. However, no study has investigated a possible association between HO-1 genetic polymorphisms and risk of NTDs. This case-control study included 152 spina bifida cases (all myelomeningoceles) and 148 non-malformed controls obtained from the California Birth Defects Monitoring Program reflecting births during 1990 to 1999. Genetic polymorphisms were determined by polymerase chain reaction and amplified fragment length polymorphisms/restriction fragment length polymorphisms using genomic DNA extracted from archived newborn blood spots. Genotype and haplotype frequencies of two HO-1 promoter polymorphisms between cases and controls were compared. For (GT)n dinucleotide repeat lengths and the A(-413)T SNP, no significant differences in allele frequencies or genotypes were found. Linkage disequilibrium was observed between the HO-1 polymorphisms (D': 0.833); however, haplotype analyses did not show increased risk of spina bifida overall or by race/ethnicity. Although, an association was not found between HO-1 polymorphisms and risk of spina bifida, we speculate that the combined effect of low HO-1 expression and exposures to known environmental oxidative stressors (low folate status or diabetes), may overwhelm antioxidant defenses and increase risk of NTDs and warrants further study. © 2015 Wiley Periodicals, Inc.

  4. Synthesis of an S T = 7 [Mn 3 ] Mixed-Valence Complex Based on 1,3-Propanediol Ligand Derivatives and Its One-Dimensional Assemblies

    KAUST Repository

    Huang, Jian

    2013-10-07

    Controlled organization of high-spin complexes and single-molecule magnets is a great challenge in molecular magnetism in order to study the effect of the intercomplex magnetic interactions on the intrinsic properties of a given magnetic object. In this work, a new ST = 7 trinuclear mixed-valence Mn complex, [MnIIIMnII 2(LA) 2(Br)4(CH3OH)6] ·Br· (CH3OH)1.5·(H2O)0.5 (1), is reported using a pyridinium-functionalized 1,3-propanediol ligand (H 2LABr = 1-(3-bromo-2,2-bis(hydroxymethyl)propyl)pyridinium bromide). Using azido anions as bridging ligands and different pyridinium-functionalized 1,3-propanediol ligands (H2LBBr = 1-(3-bromo-2,2-bis(hydroxymethyl)propyl)-4-picolinium bromide; H 2LCBr = 1-(3-bromo-2,2-bis(hydroxymethyl)propyl)-3,5- lutidinium bromide), the linear [MnIIIMnII 2L2X4]+ building block has been assembled into one-dimensional coordination networks: [MnIIIMn II 2(LA)2(Br)4(CH 3OH)4(N3)]·((C2H 5)2O)1.25 (2∞), [MnIIIMn II 2(LB)2(Br)4(C 2H5OH)(CH3OH)(H2O) 2(N3)]·(H2O)0.25 (3∞), and [MnIIIMnII 2(LC) 2(Cl)3.8(Br)0.2(C2H 5OH)3(CH3OH)(N3)] (4∞). The syntheses, characterization, crystal structures, and magnetic properties of these new [Mn3]-based materials are reported. © 2013 American Chemical Society.

  5. Self-assembly of peptide-amphiphile forming helical nanofibers and in situ template synthesis of uniform mesoporous single wall silica nanotubes.

    Science.gov (United States)

    Ahmed, Sahnawaz; Mondal, Julfikar Hassan; Behera, Nibedita; Das, Debapratim

    2013-11-19

    A lysine based peptide amphiphile (PA) is designed and synthesized for efficient water immobilization. The PA with a minimum gelation concentration (MGC) of 1% w/v in water shows prolonged stability and can also efficiently immobilize aqueous mixtures of some other organic solvents. The presence of a free amine induced pH dependency of the gelation as the PA could form hydrogel at a pH range of 1-8 but failed to do so above that pH. Various spectroscopic and microscopic experiments such as steady state fluorescence, NMR, IR, CD, and FESEM reveal the presence of hydrophobic interaction, hydrogen bond, and π-π stacking interaction in the self-assembly process. The self-aggregation has been correlated with the design of the molecule to show the involvement of supramolecular forces and the hierarchical pathway. While the L analogue formed left-handed helical nanofibers, the other enantiomer showed opposite helicity. Interestingly the equimolar mixture of the isomers failed to form any fibrous aggregate. Although fibers formed at a subgel concentration, no helical nature was observed at this stage. The length and thickness of the fibers increased with increase in the gelator concentration. The nanofibers formed by the gelator are used as a template to prepare mesoporous single wall silica nanotubes (SWSNTs) in situ in plain water without the requirement of any organic solvent as well as any external hydrolyzing agent. The SWSNTs formed are open at both ends, are few micrometers in length, and have an average diameter of ~10 nm. The BET isotherm showed a type IV hysteresis loop suggesting mesoporous nature of the nanotubes.

  6. Synthesis and luminescent properties of blue sextuple-hydrogen-bond self-assembly molecular duplexes bearing 4-phenoxy-1,8-naphthalimide moieties

    Science.gov (United States)

    Liu, Jingjing; Li, Yanhu; Wang, Yi; Sun, Huiqin; Lu, Zhiyun; Wu, Hongbin; Peng, Junbiao; Huang, Yan

    2012-07-01

    Two novel blue light-emitting sextuple hydrogen-bonding self-assembly molecular duplexes bearing 4-phenoxy-1,8-naphthalimide fluorophores, namely PhNIHB and 2TPhNIHB, have been synthesized and characterized. Compared with their small molecular counterparts PhNI and 2TPhNI, the objective compounds exhibit 13-22 nm blue-shifted fluorescent emission, and much higher photoluminescence quantum yields (0.34 vs 0.18 for PhNIHB; 0.42 vs 0.27 for 2TPhNIHB) in solid state; and their thermal and morphological stability have been improved as well. Employing 2TPhNIHB or 2TPhNI as emitter, non-doped solution-processed light-emitting diodes with structure of ITO/PEDOT: PSS (40 nm)/PVK (40 nm)/blue emitter (70-80 nm)/CsF (1.5 nm)/Al (120 nm) have been fabricated. The 2TPhNI-based device gives yellow emission [CIE (0.38, 0.49)] with poor maximum luminous efficiency (LEmax) of 0.13 cd/A and external quantum efficiency (EQEmax) of 0.06%. The 2TPhNIHB-based device, however, gives blue-green emission [CIE (0.25, 0.34)], with much higher efficiency relative to 2TPhNI-based one (LEmax of 0.37 cd/A and EQEmax of 0.35%). The effective isolation of the naphthalimide fluorescent cores as well as the suppressed formation of exciplex at the PVK/emitter interface by these oligoamide motifs are suggested to be responsible for the improved EL performance.

  7. Peroxide-Dependent Analyte Conversion by the Heme Prosthetic Group, the Heme Peptide “Microperoxidase-11” and Cytochrome c on Chitosan Capped Gold Nanoparticles Modified Electrodes

    Directory of Open Access Journals (Sweden)

    Frieder W. Scheller

    2012-05-01

    Full Text Available In view of the role ascribed to the peroxidatic activity of degradation products of cytochrome c (cyt c in the processes of apoptosis, we investigate the catalytic potential of heme and of the cyt c derived heme peptide MP-11 to catalyse the cathodic reduction of hydrogen peroxide and to oxidize aromatic compounds. In order to check whether cyt c has an enzymatic activity in the native state where the protein matrix should suppress the inherent peroxidatic activity of its heme prosthetic group, we applied a biocompatible immobilization matrix and very low concentrations of the co-substrate H2O2. The biocatalysts were entrapped on the surface of a glassy carbon electrode in a biocompatible chitosan layer which contained gold nanoparticles. The electrochemical signal for the peroxide reduction is generated by the redox conversion of the heme group, whilst a reaction product of the substrate oxidation is cathodically reduced in the substrate indication. The catalytic efficiency of microperoxidase-11 is sufficient for sensors indicating HRP substrates, e.g., p-aminophenol, paracetamol and catechol, but also the hydroxylation of aniline and dehalogenation of 4-fluoroaniline. The lower limit of detection for p-aminophenol is comparable to previously published papers with different enzyme systems. The peroxidatic activity of cyt c immobilized in the chitosan layer for catechol was found to be below 1 per mill and for p-aminophenol about 3% as compared with that of heme or MP-11.

  8. A general chelate-assisted co-assembly to metallic nanoparticles-incorporated ordered mesoporous carbon catalysts for Fischer-Tropsch synthesis.

    Science.gov (United States)

    Sun, Zhenkun; Sun, Bo; Qiao, Minghua; Wei, Jing; Yue, Qin; Wang, Chun; Deng, Yonghui; Kaliaguine, Serge; Zhao, Dongyuan

    2012-10-24

    The organization of different nano objects with tunable sizes, morphologies, and functions into integrated nanostructures is critical to the development of novel nanosystems that display high performances in sensing, catalysis, and so on. Herein, using acetylacetone as a chelating agent, phenolic resol as a carbon source, metal nitrates as metal sources, and amphiphilic copolymers as a template, we demonstrate a chelate-assisted multicomponent coassembly method to synthesize ordered mesoporous carbon with uniform metal-containing nanoparticles. The obtained nanocomposites have a 2-D hexagonally arranged pore structure, uniform pore size (~4.0 nm), high surface area (~500 m(2)/g), moderate pore volume (~0.30 cm(3)/g), uniform and highly dispersed Fe(2)O(3) nanoparticles, and constant Fe(2)O(3) contents around 10 wt %. By adjusting acetylacetone amount, the size of Fe(2)O(3) nanoparticles is readily tunable from 8.3 to 22.1 nm. More importantly, it is found that the metal-containing nanoparticles are partially embedded in the carbon framework with the remaining part exposed in the mesopore channels. This unique semiexposure structure not only provides an excellent confinement effect and exposed surface for catalysis but also helps to tightly trap the nanoparticles and prevent aggregating during catalysis. Fischer-Tropsch synthesis results show that as the size of iron nanoparticles decreases, the mesoporous Fe-carbon nanocomposites exhibit significantly improved catalytic performances with C(5+) selectivity up to 68%, much better than any reported promoter-free Fe-based catalysts due to the unique semiexposure morphology of metal-containing nanoparticles confined in the mesoporous carbon matrix.

  9. Self assembly of interlocked architectures

    CERN Document Server

    Schergna, S

    2002-01-01

    An area of great interest is the synthesis and characterisation of molecules possessing moving parts, with the goal that they can act as 'molecular machine' carrying out tasks that molecules with fixed conventional architectures cannot do. Rotaxanes and catenanes (mechanically interlocked architectures) represent one approach toward achieving these aims as their component wheels and / or threads are connected together but can still move, in certain, controlled directions. This thesis focused on the study of structural rigidity and the preorganisation of thread binding sites as factors of major influence on template efficiency in the synthesis of hydrogen bond assembled supramolecular structures (rotaxanes and catenanes). Chapter One gives a brief outline of the common synthetic approaches to interlocked architectures (catenanes and rotaxanes) that are now being developed to address the problems outlined above. Chapter Two and Chapter Three concerns the synthesis of novel amide-based rotaxanes containing vario...

  10. Assembling consumption

    DEFF Research Database (Denmark)

    Assembling Consumption marks a definitive step in the institutionalisation of qualitative business research. By gathering leading scholars and educators who study markets, marketing and consumption through the lenses of philosophy, sociology and anthropology, this book clarifies and applies...... the investigative tools offered by assemblage theory, actor-network theory and non-representational theory. Clear theoretical explanation and methodological innovation, alongside empirical applications of these emerging frameworks will offer readers new and refreshing perspectives on consumer culture and market...... societies. This is an essential reading for both seasoned scholars and advanced students of markets, economies and social forms of consumption....

  11. Synthesis of frost-like CuO combined graphene-TiO{sub 2} by self-assembly method and its high photocatalytic performance

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Dinh Cung Tien [Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam, 356-706 (Korea, Republic of); Cho, Kwang-Youn [Korea Institutes of Ceramic Engineering and Technology, Soho-ro, Jinju-Si, Gyeongsangnam-do (Korea, Republic of); Oh, Won-Chun, E-mail: wc_oh@hanseo.ac.kr [Department of Advanced Materials Science & Engineering, Hanseo University, Seosan, Chungnam, 356-706 (Korea, Republic of)

    2017-08-01

    Highlights: • The frost-like CuO nanoparticles (3–5 nm) combined with the small TiO{sub 2} rods (50–100 nm) are expected to have a high charge transfer effect from TiO{sub 2} to CuO. • In this study, ·OH and h{sup +} play a major role in the photocatalytic reaction than O{sub 2}·{sup –} or both hydroxyl and holes are the active species responsible under visible light irradiation. • The photocatalytic degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) in an aqueous solution under visible light irradiation was observed by UV spectrophotometry after measurement of the decrease of their concentrations. CuO-graphene-TiO{sub 2} is expected to become a new potential material for photodegradation activity with excellent photodegradation. - Graphical abstract: TEM image of CuO-graphene (a and b), and CuO-graphene-TiO{sub 2} (c and d) composites. - Abstract: A novel material, frost-like CuO combined-graphene-TiO{sub 2} composite, was successfully synthesized using a self-assembly method. During the reaction, the loading of CuO and TiO{sub 2} nanoparticles on graphene sheets was achieved. The obtained CuO-graphene-TiO{sub 2} composite photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX) analysis, transmission electron microscopy (TEM), Raman spectroscopy, ultraviolet-visible diffuse reflectance spectroscopy (UV-vis DRS), and X-ray photoelectron spectroscopy (XPS). The frost-like CuO nanoparticles combined with the small TiO{sub 2} rods were successfully loaded on the transparent graphene sheets. The photocatalytic degradation of rhodamine B (RhB), methylene blue trihydrate (MB), and reactive black B (RBB) in an aqueous solution under visible light irradiation was observed by UV spectrophotometry after measurement of the decrease of their concentrations. Through the photocatalytic test and TOC results, the CuO-graphene-TiO{sub 2} is expected to

  12. Poly(ethylene glycol) conjugated poly(lactide)-based polyelectrolytes: synthesis and formation of stable self-assemblies induced by stereocomplexation.

    Science.gov (United States)

    Li, Zibiao; Yuan, Du; Fan, Xiaoshan; Tan, Beng H; He, Chaobin

    2015-03-03

    A series of pH-responsive amphiphilic poly(N,N-dimethylaminoethyl methacrylate)-block-poly(D-lactic acid)-block-poly(N,N-dimethylaminoethyl methacrylate) conjugated with poly(ethylene glycol) (D-PDLA-D@PEG) and D-PLLA-D@PEG copolymers were synthesized using a combination of ring-opening polymerization and atom-transfer radical polymerization followed by sequential quaternization of PDMAEMA chains and azide-alkyne click reaction with alkyne-end PEG. Gel permeation chromatography, nuclear magnetic resonance, and Fourier transform infrared spectroscopy results demonstrate the successful synthesis of the copolymers, and the conjugated PEG percentages in the copolymers can be tuned by the feeding ratios in the quaternization reaction. Conjugating PEG onto the PDMAEMA segments also successfully facilitated the D-PDLA-D@PEG, D-PLLA-D@PEG, and its corresponding 1:1 D/L mixtures to be dissolved directly in aqueous solution at the desired concentration range without using any organ