WorldWideScience

Sample records for assembly checkpoint protein

  1. A role for mitogen-activated protein kinase in the spindle assembly checkpoint in XTC cells.

    Science.gov (United States)

    Wang, X M; Zhai, Y; Ferrell, J E

    1997-04-21

    The spindle assembly checkpoint prevents cells whose spindles are defective or chromosomes are misaligned from initiating anaphase and leaving mitosis. Studies of Xenopus egg extracts have implicated the Erk2 mitogen-activated protein kinase (MAP kinase) in this checkpoint. Other studies have suggested that MAP kinases might be important for normal mitotic progression. Here we have investigated whether MAP kinase function is required for mitotic progression or the spindle assembly checkpoint in vivo in Xenopus tadpole cells (XTC). We determined that Erk1 and/or Erk2 are present in the mitotic spindle during prometaphase and metaphase, consistent with the idea that MAP kinase might regulate or monitor the status of the spindle. Next, we microinjected purified recombinant XCL100, a Xenopus MAP kinase phosphatase, into XTC cells in various stages of mitosis to interfere with MAP kinase activation. We found that mitotic progression was unaffected by the phosphatase. However, XCL100 rendered the cells unable to remain arrested in mitosis after treatment with nocodazole. Cells injected with phosphatase at prometaphase or metaphase exited mitosis in the presence of nocodazole-the chromosomes decondensed and the nuclear envelope re-formed-whereas cells injected with buffer or a catalytically inactive XCL100 mutant protein remained arrested in mitosis. Coinjection of constitutively active MAP kinase kinase-1, which opposes XCL100's effects on MAP kinase, antagonized the effects of XCL100. Since the only known targets of MAP kinase kinase-1 are Erk1 and Erk2, these findings argue that MAP kinase function is required for the spindle assembly checkpoint in XTC cells.

  2. Bub3 is a spindle assembly checkpoint protein regulating chromosome segregation during mouse oocyte meiosis.

    Directory of Open Access Journals (Sweden)

    Mo Li

    Full Text Available In mitosis, the spindle assembly checkpoint (SAC prevents anaphase onset until all chromosomes have been attached to the spindle microtubules and aligned correctly at the equatorial metaphase plate. The major checkpoint proteins in mitosis consist of mitotic arrest-deficient (Mad1-3, budding uninhibited by benzimidazole (Bub1, Bub3, and monopolar spindle 1(Mps1. During meiosis, for the formation of a haploid gamete, two consecutive rounds of chromosome segregation occur with only one round of DNA replication. To pull homologous chromosomes to opposite spindle poles during meiosis I, both sister kinetochores of a homologue must face toward the same pole which is very different from mitosis and meiosis II. As a core member of checkpoint proteins, the individual role of Bub3 in mammalian oocyte meiosis is unclear. In this study, using overexpression and RNA interference (RNAi approaches, we analyzed the role of Bub3 in mouse oocyte meiosis. Our data showed that overexpressed Bub3 inhibited meiotic metaphase-anaphase transition by preventing homologous chromosome and sister chromatid segregations in meiosis I and II, respectively. Misaligned chromosomes, abnormal polar body and double polar bodies were observed in Bub3 knock-down oocytes, causing aneuploidy. Furthermore, through cold treatment combined with Bub3 overexpression, we found that overexpressed Bub3 affected the attachments of microtubules and kinetochores during metaphase-anaphase transition. We propose that as a member of SAC, Bub3 is required for regulation of both meiosis I and II, and is potentially involved in kinetochore-microtubule attachment in mammalian oocytes.

  3. Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing

    OpenAIRE

    Moura, Margarida; Osswald, Mariana; Le?a, Nelson; Barbosa, Jo?o; Pereira, Ant?nio J; Maiato, Helder; Sunkel, Claudio E; Conde, Carlos

    2017-01-01

    Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation....

  4. Protein Phosphatase 1 inactivates Mps1 to ensure efficient Spindle Assembly Checkpoint silencing.

    Science.gov (United States)

    Moura, Margarida; Osswald, Mariana; Leça, Nelson; Barbosa, João; Pereira, António J; Maiato, Helder; Sunkel, Claudio E; Conde, Carlos

    2017-05-02

    Faithfull genome partitioning during cell division relies on the Spindle Assembly Checkpoint (SAC), a conserved signaling pathway that delays anaphase onset until all chromosomes are attached to spindle microtubules. Mps1 kinase is an upstream SAC regulator that promotes the assembly of an anaphase inhibitor through a sequential multi-target phosphorylation cascade. Thus, the SAC is highly responsive to Mps1, whose activity peaks in early mitosis as a result of its T-loop autophosphorylation. However, the mechanism controlling Mps1 inactivation once kinetochores attach to microtubules and the SAC is satisfied remains unknown. Here we show in vitro and in Drosophila that Protein Phosphatase 1 (PP1) inactivates Mps1 by dephosphorylating its T-loop. PP1-mediated dephosphorylation of Mps1 occurs at kinetochores and in the cytosol, and inactivation of both pools of Mps1 during metaphase is essential to ensure prompt and efficient SAC silencing. Overall, our findings uncover a mechanism of SAC inactivation required for timely mitotic exit.

  5. RNF8 Transduces the DNA-Damage Signal Via Histone Ubiquitylation And Checkpoint Protein Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Huen, M.S.Y.; Grant, R.; Manke, I.; Minn, K.; Yu, X.; Yaffe, M.B.; Chen, J.

    2009-06-01

    DNA-damage signaling utilizes a multitude of posttranslational modifiers as molecular switches to regulate cell-cycle checkpoints, DNA repair, cellular senescence, and apoptosis. Here we show that RNF8, a FHA/RING domain-containing protein, plays a critical role in the early DNA-damage response. We have solved the X-ray crystal structure of the FHA domain structure at 1.35 {angstrom}. We have shown that RNF8 facilitates the accumulation of checkpoint mediator proteins BRCA1 and 53BP1 to the damaged chromatin, on one hand through the phospho-dependent FHA domain-mediated binding of RNF8 to MDC1, on the other hand via its role in ubiquitylating H2AX and possibly other substrates at damage sites. Moreover, RNF8-depleted cells displayed a defective G2/M checkpoint and increased IR sensitivity. Together, our study implicates RNF8 as a novel DNA-damage-responsive protein that integrates protein phosphorylation and ubiquitylation signaling and plays a critical role in the cellular response to genotoxic stress.

  6. Interplay between the DNA Damage Proteins MDC1 and ATM in the Regulation of the Spindle Assembly Checkpoint

    Science.gov (United States)

    Eliezer, Yifat; Argaman, Liron; Kornowski, Maya; Roniger, Maayan; Goldberg, Michal

    2014-01-01

    To avoid genomic instability, cells have developed surveillance mechanisms such as the spindle assembly checkpoint (SAC) and the DNA damage response. ATM and MDC1 are central players of the cellular response to DNA double-strand breaks. Here, we identify a new role for these proteins in the regulation of mitotic progression and in SAC activation. MDC1 localizes at mitotic kinetochores following SAC activation in an ATM-dependent manner. ATM phosphorylates histone H2AX at mitotic kinetochores, and this phosphorylation is required for MDC1 localization at kinetochores. ATM and MDC1 are needed for kinetochore localization of the inhibitory mitotic checkpoint complex components, Mad2 and Cdc20, and for the maintenance of the mitotic checkpoint complex integrity. This probably relies on the interaction of MDC1 with the MCC. In this work, we have established that ATM and MDC1 maintain genomic stability not only by controlling the DNA damage response, but also by regulating SAC activation, providing an important link between these two essential biological processes. PMID:24509855

  7. Stranglehold on the spindle assembly checkpoint: the human papillomavirus E2 protein provokes BUBR1-dependent aneuploidy.

    Science.gov (United States)

    Tan, Chye Ling; Teissier, Sébastien; Gunaratne, Jayantha; Quek, Ling Shih; Bellanger, Sophie

    2015-01-01

    The Human Papillomavirus (HPV) E2 protein, which inhibits the E6 and E7 viral oncogenes, is believed to have anti-oncogenic properties. Here, we challenge this view and show that HPV-18 E2 over-activates the Spindle Assembly Checkpoint (SAC) and induces DNA breaks in mitosis followed by aneuploidy. This phenotype is associated with interaction of E2 with the Mitotic Checkpoint Complex (MCC) proteins Cdc20, MAD2 and BUBR1. While BUBR1 silencing rescues the mitotic phenotype induced by E2, p53 silencing or presence of E6/E7 (inactivating p53 and increasing BUBR1 levels respectively) both amplify it. This work pinpoints E2 as a key protein in the initiation of HPV-induced cervical cancer and identifies the SAC as a target for oncogenic pathogens. Moreover, our results suggest a role of p53 in regulating the mitotic process itself and highlight SAC over-activation in a p53-negative context as a highly pathogenic event.

  8. Spindle assembly checkpoint protein expression correlates with cellular proliferation and shorter time to recurrence in ovarian cancer.

    LENUS (Irish Health Repository)

    McGrogan, Barbara

    2014-07-01

    Ovarian carcinoma (OC) is the most lethal of the gynecological malignancies, often presenting at an advanced stage. Treatment is hampered by high levels of drug resistance. The taxanes are microtubule stabilizing agents, used as first-line agents in the treatment of OC that exert their apoptotic effects through the spindle assembly checkpoint. BUB1-related protein kinase (BUBR1) and mitotic arrest deficient 2 (MAD2), essential spindle assembly checkpoint components, play a key role in response to taxanes. BUBR1, MAD2, and Ki-67 were assessed on an OC tissue microarray platform representing 72 OC tumors of varying histologic subtypes. Sixty-one of these patients received paclitaxel and platinum agents combined; 11 received platinum alone. Overall survival was available for all 72 patients, whereas recurrence-free survival (RFS) was available for 66 patients. Increased BUBR1 expression was seen in serous carcinomas, compared with other histologies (P = .03). Increased BUBR1 was significantly associated with tumors of advanced stage (P = .05). Increased MAD2 and BUBR1 expression also correlated with increased cellular proliferation (P < .0002 and P = .02, respectively). Reduced MAD2 nuclear intensity was associated with a shorter RFS (P = .03), in ovarian tumors of differing histologic subtype (n = 66). In this subgroup, for those women who received paclitaxel and platinum agents combined (n = 57), reduced MAD2 intensity also identified women with a shorter RFS (P < .007). For the entire cohort of patients, irrespective of histologic subtype or treatment, MAD2 nuclear intensity retained independent significance in a multivariate model, with tumors showing reduced nuclear MAD2 intensity identifying patients with a poorer RFS (P = .05).

  9. Mechanisms of Spindle Assembly Checkpoint Silencing

    NARCIS (Netherlands)

    Etemad, Banafsheh

    2017-01-01

    The spindle assembly checkpoint (SAC) is a genome surveillance mechanism that protects against aneuploidization. Over the years, through a combination ofcell biology, evolutionary analysis and top-of-the-nudge biochemical techniques, significant progress has been achieved in unravelling and

  10. The cryo-EM structure of YjeQ bound to the 30S subunit suggests a fidelity checkpoint function for this protein in ribosome assembly

    Science.gov (United States)

    Razi, Aida; Guarné, Alba; Ortega, Joaquin

    2017-01-01

    Recent work suggests that bacterial YjeQ (RsgA) participates in the late stages of assembly of the 30S subunit and aids the assembly of the decoding center but also binds the mature 30S subunit with high affinity. To determine the function and mechanisms of YjeQ in the context of the mature subunit, we determined the cryo-EM structure of the fully assembled 30S subunit in complex with YjeQ at 5.8-Å resolution. We found that binding of YjeQ stabilizes helix 44 into a conformation similar to that adopted by the subunit during proofreading. This finding indicates that, along with acting as an assembly factor, YjeQ has a role as a checkpoint protein, consisting of testing the proofreading ability of the 30S subunit. The structure also informs the mechanism by which YjeQ implements the release from the 30S subunit of a second assembly factor, called RbfA. Finally, it reveals how the 30S subunit stimulates YjeQ GTPase activity and leads to release of the protein. Checkpoint functions have been described for eukaryotic ribosome assembly factors; however, this work describes an example of a bacterial assembly factor that tests a specific translation mechanism of the 30S subunit. PMID:28396444

  11. EZH2 is required for mouse oocyte meiotic maturation by interacting with and stabilizing spindle assembly checkpoint protein BubRI

    OpenAIRE

    Qu, Yi; Lu, Danyu; Jiang, Hao; Chi, Xiaochun; Zhang, Hongquan

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) trimethylates histone H3 Lys 27 and plays key roles in a variety of biological processes. Stability of spindle assembly checkpoint protein BubR1 is essential for mitosis in somatic cells and for meiosis in oocytes. However, the role of EZH2 in oocyte meiotic maturation was unknown. Here, we presented a mechanism underlying EZH2 control of BubR1 stability in the meiosis of mouse oocytes. We identified a methyltransferase activity-independent function of EZH2 ...

  12. Complex Commingling: Nucleoporins and the Spindle Assembly Checkpoint

    Directory of Open Access Journals (Sweden)

    Ikram Mossaid

    2015-11-01

    Full Text Available The segregation of the chromosomes during mitosis is an important process, in which the replicated DNA content is properly allocated into two daughter cells. To ensure their genomic integrity, cells present an essential surveillance mechanism known as the spindle assembly checkpoint (SAC, which monitors the bipolar attachment of the mitotic spindle to chromosomes to prevent errors that would result in chromosome mis-segregation and aneuploidy. Multiple components of the nuclear pore complex (NPC, a gigantic protein complex that forms a channel through the nuclear envelope to allow nucleocytoplasmic exchange of macromolecules, were shown to be critical for faithful cell division and implicated in the regulation of different steps of the mitotic process, including kinetochore and spindle assembly as well as the SAC. In this review, we will describe current knowledge about the interconnection between the NPC and the SAC in an evolutional perspective, which primarily relies on the two mitotic checkpoint regulators, Mad1 and Mad2. We will further discuss the role of NPC constituents, the nucleoporins, in kinetochore and spindle assembly and the formation of the mitotic checkpoint complex during mitosis and interphase.

  13. Localization of checkpoint and repair proteins in eukaryotes

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2005-01-01

    In eukaryotes, the cellular response to DNA damage depends on the type of DNA structure being recognized by the checkpoint and repair machinery. DNA ends and single-stranded DNA are hallmarks of double-strand breaks and replication stress. These two structures are recognized by distinct sets...... is largely controlled by a network of protein-protein interactions, with the Mre11 complex initiating assembly at DNA ends and replication protein A directing recruitment to single-stranded DNA. This review summarizes current knowledge on the cellular organization of DSB repair and checkpoint proteins...... focusing on budding yeast and mammalian cells....

  14. RED, a Spindle Pole-associated Protein, Is Required for Kinetochore Localization of MAD1, Mitotic Progression, and Activation of the Spindle Assembly Checkpoint*

    Science.gov (United States)

    Yeh, Pei-Chi; Yeh, Chang-Ching; Chen, Yi-Cheng; Juang, Yue-Li

    2012-01-01

    The spindle assembly checkpoint (SAC) is essential for ensuring the proper attachment of kinetochores to the spindle and, thus, the precise separation of paired sister chromatids during mitosis. The SAC proteins are recruited to the unattached kinetochores for activation of the SAC in prometaphase. However, it has been less studied whether activation of the SAC also requires the proteins that do not localize to the kinetochores. Here, we show that the nuclear protein RED, also called IK, a down-regulator of human leukocyte antigen (HLA) II, interacts with the human SAC protein MAD1. Two RED-interacting regions identified in MAD1 are from amino acid residues 301–340 and 439–480, designated as MAD1(301–340) and MAD1(439–480), respectively. Our observations reveal that RED is a spindle pole-associated protein that colocalizes with MAD1 at the spindle poles in metaphase and anaphase. Depletion of RED can cause a shorter mitotic timing, a failure in the kinetochore localization of MAD1 in prometaphase, and a defect in the SAC. Furthermore, the RED-interacting peptides MAD1(301–340) and MAD1(439–480), fused to enhanced green fluorescence protein, can colocalize with RED at the spindle poles in prometaphase, and their expression can abrogate the SAC. Taken together, we conclude that RED is required for kinetochore localization of MAD1, mitotic progression, and activation of the SAC. PMID:22351768

  15. EZH2 is required for mouse oocyte meiotic maturation by interacting with and stabilizing spindle assembly checkpoint protein BubRI

    Science.gov (United States)

    Qu, Yi; Lu, Danyu; Jiang, Hao; Chi, Xiaochun; Zhang, Hongquan

    2016-01-01

    Enhancer of zeste homolog 2 (EZH2) trimethylates histone H3 Lys 27 and plays key roles in a variety of biological processes. Stability of spindle assembly checkpoint protein BubR1 is essential for mitosis in somatic cells and for meiosis in oocytes. However, the role of EZH2 in oocyte meiotic maturation was unknown. Here, we presented a mechanism underlying EZH2 control of BubR1 stability in the meiosis of mouse oocytes. We identified a methyltransferase activity-independent function of EZH2 by demonstrating that EZH2 regulates spindle assembly and the polar body I extrusion. EZH2 was increased with the oocyte progression from GVBD to MII, while EZH2 was concentrated on the chromosomes. Interestingly, inhibition of EZH2 methyltranferase activity by DZNep or GSK343 did not affect oocyte meiotic maturation. However, depletion of EZH2 by morpholino led to chromosome misalignment and abnormal spindle assembly. Furthermore, ectopic expression of EZH2 led to oocyte meiotic maturation arrested at the MI stage followed by chromosome misalignment and aneuploidy. Mechanistically, EZH2 directly interacted with and stabilized BubR1, an effect driving EZH2 into the concert of meiosis regulation. Collectively, we provided a paradigm that EZH2 is required for mouse oocyte meiotic maturation. PMID:27226494

  16. Basis of catalytic assembly of the mitotic checkpoint complex.

    Science.gov (United States)

    Faesen, Alex C; Thanasoula, Maria; Maffini, Stefano; Breit, Claudia; Müller, Franziska; van Gerwen, Suzan; Bange, Tanja; Musacchio, Andrea

    2017-02-23

    In mitosis, for each daughter cell to inherit an accurate copy of the genome from the mother cell, sister chromatids in the mother cell must attach to microtubules emanating from opposite poles of the mitotic spindle, a process known as bi-orientation. A surveillance mechanism, termed the spindle assembly checkpoint (SAC), monitors the microtubule attachment process and can temporarily halt the separation of sister chromatids and the completion of mitosis until bi-orientation is complete. SAC failure results in abnormal chromosome numbers, termed aneuploidy, in the daughter cells, a hallmark of many tumours. The HORMA-domain-containing protein mitotic arrest deficient 2 (MAD2) is a subunit of the SAC effector mitotic checkpoint complex (MCC). Structural conversion from the open to the closed conformation of MAD2 is required for MAD2 to be incorporated into the MCC. In vitro, MAD2 conversion and MCC assembly take several hours, but in cells the SAC response is established in a few minutes. Here, to address this discrepancy, we reconstituted a near-complete SAC signalling system with purified components and monitored assembly of the MCC in real time. A marked acceleration in MAD2 conversion and MCC assembly was observed when monopolar spindle 1 (MPS1) kinase phosphorylated the MAD1-MAD2 complex, triggering it to act as the template for MAD2 conversion and therefore contributing to the establishment of a physical platform for MCC assembly. Thus, catalytic activation of the SAC depends on regulated protein-protein interactions that accelerate the spontaneous but rate-limiting conversion of MAD2 required for MCC assembly.

  17. Regulation of mitotic progression by the spindle assembly checkpoint

    DEFF Research Database (Denmark)

    Lischetti, Tiziana; Nilsson, Jakob

    2015-01-01

    Equal segregation of sister chromatids during mitosis requires that pairs of kinetochores establish proper attachment to microtubules emanating from opposite poles of the mitotic spindle. The spindle assembly checkpoint (SAC) protects against errors in segregation by delaying sister separation...

  18. Multiple Duties for Spindle Assembly Checkpoint Kinases in Meiosis

    Science.gov (United States)

    Marston, Adele L.; Wassmann, Katja

    2017-01-01

    Cell division in mitosis and meiosis is governed by evolutionary highly conserved protein kinases and phosphatases, controlling the timely execution of key events such as nuclear envelope breakdown, spindle assembly, chromosome attachment to the spindle and chromosome segregation, and cell cycle exit. In mitosis, the spindle assembly checkpoint (SAC) controls the proper attachment to and alignment of chromosomes on the spindle. The SAC detects errors and induces a cell cycle arrest in metaphase, preventing chromatid separation. Once all chromosomes are properly attached, the SAC-dependent arrest is relieved and chromatids separate evenly into daughter cells. The signaling cascade leading to checkpoint arrest depends on several protein kinases that are conserved from yeast to man. In meiosis, haploid cells containing new genetic combinations are generated from a diploid cell through two specialized cell divisions. Though apparently less robust, SAC control also exists in meiosis. Recently, it has emerged that SAC kinases have additional roles in executing accurate chromosome segregation during the meiotic divisions. Here, we summarize the main differences between mitotic and meiotic cell divisions, and explain why meiotic divisions pose special challenges for correct chromosome segregation. The less-known meiotic roles of the SAC kinases are described, with a focus on two model systems: yeast and mouse oocytes. The meiotic roles of the canonical checkpoint kinases Bub1, Mps1, the pseudokinase BubR1 (Mad3), and Aurora B and C (Ipl1) will be discussed. Insights into the molecular signaling pathways that bring about the special chromosome segregation pattern during meiosis will help us understand why human oocytes are so frequently aneuploid. PMID:29322045

  19. A Systematic RNAi Screen Reveals a Novel Role of a Spindle Assembly Checkpoint Protein BuGZ in Synaptic Transmission in C. elegans

    Directory of Open Access Journals (Sweden)

    Mei Han

    2017-05-01

    Full Text Available Synaptic vesicles (SV store various neurotransmitters that are released at the synapse. The molecular mechanisms of biogenesis, exocytosis, and endocytosis for SV, however, remain largely elusive. In this study, using Complex Object Parametric Analysis and Sorter (COPAS to monitor the fluorescence of synapto-pHluorin (SpH, we performed a whole-genome RNAi screen in C. elegans to identify novel genetic modulators in SV cycling. One hundred seventy six genes that up-regulating SpH fluorescence and 96 genes that down-regulating SpH fluorescence were identified after multi-round screen. Among these genes, B0035.1 (bugz-1 encodes ortholog of mammalian C2H2 zinc-finger protein BuGZ/ZNF207, which is a spindle assembly checkpoint protein essential for mitosis in human cells. Combining electrophysiology, imaging and behavioral assays, we reveal that depletion of BuGZ-1 results in defects in locomotion. We further demonstrate that BuGZ-1 promotes SV recycling by regulating the expression levels of endocytosis-related genes such as rab11.1. Therefore, we have identified a bunch of potential genetic modulators in SV cycling, and revealed an unexpected role of BuGZ-1 in regulating synaptic transmission.

  20. Constitutive Cdk2 activity promotes aneuploidy while altering the spindle assembly and tetraploidy checkpoints

    DEFF Research Database (Denmark)

    Jahn, Stephan C; Corsino, Patrick E; Davis, Bradley J

    2013-01-01

    The cell has many mechanisms for protecting the integrity of its genome. These mechanisms are often weakened or absent in many cancers, leading to high rates of chromosomal instability in tumors. Control of the cell cycle is crucial for the function of these checkpoints, and is frequently lost...... instability. Expression of these complexes in the MCF10A cell line leads to retinoblastoma protein (Rb) hyperphosphorylation, a subsequent increase in proliferation rate, and increased expression of the spindle assembly checkpoint protein Mad2. This results in a strengthening of the spindle assembly...... checkpoint and renders cells more sensitive to the spindle poison paclitaxel. Constitutive Rb phosphorylation also causes a weakening of the p53-dependent tetraploidy checkpoint. Cells with overactive Cdk2 fail to arrest after mitotic slippage in the presence of paclitaxel or cytokinesis failure during...

  1. Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies.

    Science.gov (United States)

    Yuan, Ivan; Leontiou, Ioanna; Amin, Priya; May, Karen M; Soper Ní Chafraidh, Sadhbh; Zlámalová, Eliška; Hardwick, Kevin G

    2017-01-09

    The spindle checkpoint acts as a mitotic surveillance system, monitoring interactions between kinetochores and spindle microtubules and ensuring high-fidelity chromosome segregation [1-3]. The checkpoint is activated by unattached kinetochores, and Mps1 kinase phosphorylates KNL1 on conserved MELT motifs to generate a binding site for the Bub3-Bub1 complex [4-7]. This leads to dynamic kinetochore recruitment of Mad proteins [8, 9], a conformational change in Mad2 [10-12], and formation of the mitotic checkpoint complex (MCC: Cdc20-Mad3-Mad2 [13-15]). MCC formation inhibits the anaphase-promoting complex/cyclosome (Cdc20-APC/C), thereby preventing the proteolytic destruction of securin and cyclin and delaying anaphase onset. What happens at kinetochores after Mps1-dependent Bub3-Bub1 recruitment remains mechanistically unclear, and it is not known whether kinetochore proteins other than KNL1 have significant roles to play in checkpoint signaling and MCC generation. Here, we take a reductionist approach, avoiding the complexities of kinetochores, and demonstrate that co-recruitment of KNL1(Spc7) and Mps1(Mph1) is sufficient to generate a robust checkpoint signal and prolonged mitotic arrest. We demonstrate that a Mad1-Bub1 complex is formed during synthetic checkpoint signaling. Analysis of bub3Δ mutants demonstrates that Bub3 acts to suppress premature checkpoint signaling. This synthetic system will enable detailed, mechanistic dissection of MCC generation and checkpoint silencing. After analyzing several mutants that affect localization of checkpoint complexes, we conclude that spindle checkpoint arrest can be independent of their kinetochore, spindle pole, and nuclear envelope localization. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Generation of a Spindle Checkpoint Arrest from Synthetic Signaling Assemblies

    OpenAIRE

    Yuan, Ivan; Leontiou, Ioanna; Amin, Priya; May, Karen M.; Soper Ní Chafraidh, Sadhbh; Zlámalová, Eliška; Hardwick, Kevin G.

    2017-01-01

    Summary The spindle checkpoint acts as a mitotic surveillance system, monitoring interactions between kinetochores and spindle microtubules and ensuring high-fidelity chromosome segregation [1, 2, 3]. The checkpoint is activated by unattached kinetochores, and Mps1 kinase phosphorylates KNL1 on conserved MELT motifs to generate a binding site for the Bub3-Bub1 complex [4, 5, 6, 7]. This leads to dynamic kinetochore recruitment of Mad proteins [8, 9], a conformational change in Mad2 [10, 11, 1...

  3. bir1 deletion causes malfunction of the spindle assembly checkpoint and apoptosis in yeast

    Directory of Open Access Journals (Sweden)

    Qun eRen

    2012-08-01

    Full Text Available Cell division in yeast is a highly regulated and well studied event. Various checkpoints are placed throughout the cell cycle to ensure faithful segregation of sister chromatids. Unexpected events, such as DNA damage or oxidative stress, cause the activation of checkpoint(s and cell cycle arrest. Malfunction of the checkpoints may induce cell death. We previously showed that under oxidative stress, the budding yeast cohesin Mcd1, a homolog of human Rad21, was cleaved by the caspase-like protease Esp1. The cleaved Mcd1 C-terminal fragment was then translocated to mitochondria, causing apoptotic cell death. In the present study, we demonstrated that Bir1 plays an important role in spindle assembly checkpoint and cell death. Similar to H2O2 treatment, deletion of BIR1 using a BIR1-degron strain caused degradation of the securin Pds1, which binds and inactivates Esp1 until metaphase-anaphase transition in a normal cell cycle. BIR1 deletion caused an increase level of ROS and mis-location of Bub1, a major protein for spindle assembly checkpoint. In wild type, Bub1 was located at the kinetochores, but was primarily in the cytoplasm in bir1 deletion strain. When BIR1 was deleted, addition of nocodazole was unable to retain the Bub1 localization on kietochores, further suggesting that Bir1 is required to activate and maintain the spindle assembly checkpoint. Our study suggests that the BIR1 function in cell cycle regulation works in concert with its anti-apoptosis function.

  4. Unprotected Drosophila melanogaster telomeres activate the spindle assembly checkpoint.

    Science.gov (United States)

    Musarò, Mariarosaria; Ciapponi, Laura; Fasulo, Barbara; Gatti, Maurizio; Cenci, Giovanni

    2008-03-01

    In both yeast and mammals, uncapped telomeres activate the DNA damage response (DDR) and undergo end-to-end fusion. Previous work has shown that the Drosophila HOAP protein, encoded by the caravaggio (cav) gene, is required to prevent telomeric fusions. Here we show that HOAP-depleted telomeres activate both the DDR and the spindle assembly checkpoint (SAC). The cell cycle arrest elicited by the DDR was alleviated by mutations in mei-41 (encoding ATR), mus304 (ATRIP), grp (Chk1) and rad50 but not by mutations in tefu (ATM). The SAC was partially overridden by mutations in zw10 (also known as mit(1)15) and bubR1, and also by mutations in mei-41, mus304, rad50, grp and tefu. As expected from SAC activation, the SAC proteins Zw10, Zwilch, BubR1 and Cenp-meta (Cenp-E) accumulated at the kinetochores of cav mutant cells. Notably, BubR1 also accumulated at cav mutant telomeres in a mei-41-, mus304-, rad50-, grp- and tefu-dependent manner. Our results collectively suggest that recruitment of BubR1 by dysfunctional telomeres inhibits Cdc20-APC function, preventing the metaphase-to-anaphase transition.

  5. Loss of the Greatwall Kinase Weakens the Spindle Assembly Checkpoint.

    Directory of Open Access Journals (Sweden)

    M Kasim Diril

    2016-09-01

    Full Text Available The Greatwall kinase/Mastl is an essential gene that indirectly inhibits the phosphatase activity toward mitotic Cdk1 substrates. Here we show that although Mastl knockout (MastlNULL MEFs enter mitosis, they progress through mitosis without completing cytokinesis despite the presence of misaligned chromosomes, which causes chromosome segregation defects. Furthermore, we uncover the requirement of Mastl for robust spindle assembly checkpoint (SAC maintenance since the duration of mitotic arrest caused by microtubule poisons in MastlNULL MEFs is shortened, which correlates with premature disappearance of the essential SAC protein Mad1 at the kinetochores. Notably, MastlNULL MEFs display reduced phosphorylation of a number of proteins in mitosis, which include the essential SAC kinase MPS1. We further demonstrate that Mastl is required for multi-site phosphorylation of MPS1 as well as robust MPS1 kinase activity in mitosis. In contrast, treatment of MastlNULL cells with the phosphatase inhibitor okadaic acid (OKA rescues the defects in MPS1 kinase activity, mislocalization of phospho-MPS1 as well as Mad1 at the kinetochore, and premature SAC silencing. Moreover, using in vitro dephosphorylation assays, we demonstrate that Mastl promotes persistent MPS1 phosphorylation by inhibiting PP2A/B55-mediated MPS1 dephosphorylation rather than affecting Cdk1 kinase activity. Our findings establish a key regulatory function of the Greatwall kinase/Mastl->PP2A/B55 pathway in preventing premature SAC silencing.

  6. Assembly of checkpoint and repair machineries at DNA damage sites

    Science.gov (United States)

    Huen, Michael S.Y.; Chen, Junjie

    2009-01-01

    The remarkably coordinated nature of the DNA damage response pathway relies on numerous mechanisms that facilitate the assembly of checkpoint and repair factors at DNA breaks. Post-translational modifications on and around chromatin play critical roles in allowing the timely and sequential assembly of DNA damage responsive elements at the vicinity of DNA breaks. Notably, recent advances in forward genetics and proteomics-based approaches have enabled the identification of novel components within the DNA damage response pathway, providing a more comprehensive picture of the molecular network that assists in the detection and propagation of DNA damage signals. PMID:19875294

  7. Smurf2 as a novel mitotic regulator: From the spindle assembly checkpoint to tumorigenesis

    Directory of Open Access Journals (Sweden)

    Moore Finola E

    2009-07-01

    Full Text Available Abstract The execution of the mitotic program with high fidelity is dependent upon precise spatiotemporal regulation of posttranslational protein modifications. For example, the timely polyubiquitination of critical mitotic regulators by Anaphase Promoting Complex/Cyclosome (APC/C is essential for the metaphase to anaphase transition and mitotic exit. The spindle assembly checkpoint prevents unscheduled activity of APC/C-Cdc20 in early mitosis, allowing bipolar attachment of kinetochores to mitotic spindle and facilitating equal segregation of sister chromatids. The critical effector of the spindle checkpoint, Mitotic arrest deficient 2 (Mad2, is recruited to unattached kinetochores forming a complex with other regulatory proteins to efficiently and cooperatively inhibit APC/C-Cdc20. A weakened and/or dysfunctional spindle checkpoint has been linked to the development of genomic instability in both cell culture and animal models, and evidence suggests that aberrant regulation of the spindle checkpoint plays a critical role in human carcinogenesis. Recent studies have illuminated a network of both degradative and non-degradative ubiquitination events that regulate the metaphase to anaphase transition and mitotic exit. Within this context, our recent work showed that the HECT (Homologous to E6-AP C-terminus-family E3 ligase Smurf2 (Smad specific ubiquitin regulatory factor 2, known as a negative regulator of transforming growth factor-beta (TGF-β signaling, is required for a functional spindle checkpoint by promoting the functional localization and stability of Mad2. Here we discuss putative models explaining the role of Smurf2 as a new regulator in the spindle checkpoint. The dynamic mitotic localization of Smurf2 to the centrosome and other critical mitotic structures provides implications about mitotic checkpoint control dependent on various ubiquitination events. Finally, deregulated Smurf2 activity may contribute to carcinogenesis by

  8. In-silico modeling of the mitotic spindle assembly checkpoint.

    Directory of Open Access Journals (Sweden)

    Bashar Ibrahim

    2008-02-01

    Full Text Available The Mitotic Spindle Assembly Checkpoint ((MSAC is an evolutionary conserved mechanism that ensures the correct segregation of chromosomes by restraining cell cycle progression from entering anaphase until all chromosomes have made proper bipolar attachments to the mitotic spindle. Its malfunction can lead to cancer.We have constructed and validated for the human (MSAC mechanism an in silico dynamical model, integrating 11 proteins and complexes. The model incorporates the perspectives of three central control pathways, namely Mad1/Mad2 induced Cdc20 sequestering based on the Template Model, MCC formation, and APC inhibition. Originating from the biochemical reactions for the underlying molecular processes, non-linear ordinary differential equations for the concentrations of 11 proteins and complexes of the (MSAC are derived. Most of the kinetic constants are taken from literature, the remaining four unknown parameters are derived by an evolutionary optimization procedure for an objective function describing the dynamics of the APC:Cdc20 complex. MCC:APC dissociation is described by two alternatives, namely the "Dissociation" and the "Convey" model variants. The attachment of the kinetochore to microtubuli is simulated by a switching parameter silencing those reactions which are stopped by the attachment. For both, the Dissociation and the Convey variants, we compare two different scenarios concerning the microtubule attachment dependent control of the dissociation reaction. Our model is validated by simulation of ten perturbation experiments.Only in the controlled case, our models show (MSAC behaviour at meta- to anaphase transition in agreement with experimental observations. Our simulations revealed that for (MSAC activation, Cdc20 is not fully sequestered; instead APC is inhibited by MCC binding.

  9. Bub3 reads phosphorylated MELT repeats to promote spindle assembly checkpoint signaling.

    Science.gov (United States)

    Primorac, Ivana; Weir, John R; Chiroli, Elena; Gross, Fridolin; Hoffmann, Ingrid; van Gerwen, Suzan; Ciliberto, Andrea; Musacchio, Andrea

    2013-09-24

    Regulation of macromolecular interactions by phosphorylation is crucial in signaling networks. In the spindle assembly checkpoint (SAC), which enables errorless chromosome segregation, phosphorylation promotes recruitment of SAC proteins to tensionless kinetochores. The SAC kinase Mps1 phosphorylates multiple Met-Glu-Leu-Thr (MELT) motifs on the kinetochore subunit Spc105/Knl1. The phosphorylated MELT motifs (MELT(P)) then promote recruitment of downstream signaling components. How MELT(P) motifs are recognized is unclear. In this study, we report that Bub3, a 7-bladed β-propeller, is the MELT(P) reader. It contains an exceptionally well-conserved interface that docks the MELT(P) sequence on the side of the β-propeller in a previously unknown binding mode. Mutations targeting the Bub3 interface prevent kinetochore recruitment of the SAC kinase Bub1. Crucially, they also cause a checkpoint defect, showing that recognition of phosphorylated targets by Bub3 is required for checkpoint signaling. Our data provide the first detailed mechanistic insight into how phosphorylation promotes recruitment of checkpoint proteins to kinetochores. DOI:http://dx.doi.org/10.7554/eLife.01030.001.

  10. Dynein Light Intermediate Chain 2 Facilitates the Metaphase to Anaphase Transition by Inactivating the Spindle Assembly Checkpoint.

    Directory of Open Access Journals (Sweden)

    Sagar P Mahale

    Full Text Available The multi-functional molecular motor cytoplasmic dynein performs diverse essential roles during mitosis. The mechanistic importance of the dynein Light Intermediate Chain homologs, LIC1 and LIC2 is unappreciated, especially in the context of mitosis. LIC1 and LIC2 are believed to exist in distinct cytoplasmic dynein complexes as obligate subunits. LIC1 had earlier been reported to be required for metaphase to anaphase progression by inactivating the kinetochore-microtubule attachment-sensing arm of the spindle assembly checkpoint (SAC. However, the functional importance of LIC2 during mitosis remains elusive. Here we report prominent novel roles for the LIC2 subunit of cytoplasmic dynein in regulating the spindle assembly checkpoint. LIC2 depletion in mammalian cells led to prolonged metaphase arrest in the presence of an active SAC and also to stretched kinetochores, thus implicating it in SAC inactivation. Quantitative fluorescence microscopy of SAC components revealed accumulation of both attachment- and tension-sensing checkpoint proteins at metaphase kinetochores upon LIC2 depletion. These observations support a stronger and more diverse role in checkpoint inactivation for LIC2 in comparison to its close homolog LIC1. Our study uncovers a novel functional hierarchy during mitotic checkpoint inactivation between the closely related but homologous LIC subunits of cytoplasmic dynein. These subtle functional distinctions between dynein subpopulations could be exploited to study specific aspects of the spindle assembly checkpoint, which is a key mediator of fidelity in eukaryotic cell division.

  11. MAP kinase meets mitosis: A role for Raf Kinase Inhibitory Protein in spindle checkpoint regulation

    Directory of Open Access Journals (Sweden)

    Rosner Marsha

    2007-01-01

    Full Text Available Abstract Raf Kinase Inhibitory Protein (RKIP is an evolutionarily conserved protein that functions as a modulator of signaling by the MAP kinase cascade. Implicated as a metastasis suppressor, Raf Kinase Inhibitory Protein depletion correlates with poor prognosis for breast, prostate and melanoma tumors but the mechanism is unknown. Recent evidence indicates that Raf Kinase Inhibitory Protein regulates the mitotic spindle assembly checkpoint by controlling Aurora B Kinase activity, and the mechanism involves Raf/MEK/ERK signaling. In contrast to elevated MAP kinase signaling during the G1, S or G2 phases of the cell cycle that activates checkpoints and induces arrest or senescence, loss of RKIP during M phase leads to bypass of the spindle assembly checkpoint and the generation of chromosomal abnormalities. These results reveal a role for Raf Kinase Inhibitory Protein and the MAP kinase cascade in ensuring the fidelity of chromosome segregation prior to cell division. Furthermore, these data highlight the need for precise titration of the MAP kinase signal to ensure the integrity of the spindle assembly process and provide a mechanism for generating genomic instability in tumors. Finally, these results raise the possibility that RKIP status in tumors could influence the efficacy of treatments such as poisons that stimulate the Aurora B-dependent spindle assembly checkpoint.

  12. Stable MCC binding to the APC/C is required for a functional spindle assembly checkpoint

    DEFF Research Database (Denmark)

    Hein, Jamin B; Nilsson, Jakob

    2014-01-01

    The spindle assembly checkpoint (SAC) delays progression into anaphase until all chromosomes have aligned on the metaphase plate by inhibiting Cdc20, the mitotic co-activator of the APC/C. Mad2 and BubR1 bind and inhibit Cdc20, thereby forming the mitotic checkpoint complex (MCC), which can bind...

  13. Requirement for PLK1 kinase activity in the maintenance of a robust spindle assembly checkpoint

    Directory of Open Access Journals (Sweden)

    Aisling O'Connor

    2016-01-01

    Full Text Available During mitotic arrest induced by microtubule targeting drugs, the weakening of the spindle assembly checkpoint (SAC allows cells to progress through the cell cycle without chromosome segregation occurring. PLK1 kinase plays a major role in mitosis and emerging evidence indicates that PLK1 is also involved in establishing the checkpoint and maintaining SAC signalling. However, mechanistically, the role of PLK1 in the SAC is not fully understood, with several recent reports indicating that it can cooperate with either one of the major checkpoint kinases, Aurora B or MPS1. In this study, we assess the role of PLK1 in SAC maintenance. We find that in nocodazole-arrested U2OS cells, PLK1 activity is continuously required for maintaining Aurora B protein localisation and activity at kinetochores. Consistent with published data we find that upon PLK1 inhibition, phosphoThr3-H3, a marker of Haspin activity, is reduced. Intriguingly, Aurora B inhibition causes PLK1 to relocalise from kinetochores into fewer and much larger foci, possibly due to incomplete recruitment of outer kinetochore proteins. Importantly, PLK1 inhibition, together with partial inhibition of Aurora B, allows efficient SAC override to occur. This phenotype is more pronounced than the phenotype observed by combining the same PLK1 inhibitors with partial MPS1 inhibition. We also find that PLK1 inhibition does not obviously cooperate with Haspin inhibition to promote SAC override. These results indicate that PLK1 is directly involved in maintaining efficient SAC signalling, possibly by cooperating in a positive feedback loop with Aurora B, and that partially redundant mechanisms exist which reinforce the SAC.

  14. Molecular Regulation of the Spindle Assembly Checkpoint by Kinases and Phosphatases.

    Science.gov (United States)

    Manic, G; Corradi, F; Sistigu, A; Siteni, S; Vitale, I

    2017-01-01

    The spindle assembly checkpoint (SAC) is a surveillance mechanism contributing to the preservation of genomic stability by monitoring the microtubule attachment to, and/or the tension status of, each kinetochore during mitosis. The SAC halts metaphase to anaphase transition in the presence of unattached and/or untensed kinetochore(s) by releasing the mitotic checkpoint complex (MCC) from these improperly-oriented kinetochores to inhibit the anaphase-promoting complex/cyclosome (APC/C). The reversible phosphorylation of a variety of substrates at the kinetochore by antagonistic kinases and phosphatases is one major signaling mechanism for promptly turning on or turning off the SAC. In such a complex network, some kinases act at the apex of the SAC cascade by either generating (monopolar spindle 1, MPS1/TTK and likely polo-like kinase 1, PLK1), or contributing to generate (Aurora kinase B) kinetochore phospho-docking sites for the hierarchical recruitment of the SAC proteins. Aurora kinase B, MPS1 and budding uninhibited by benzimidazoles 1 (BUB1) also promote sister chromatid biorientation by modulating kinetochore microtubule stability. Moreover, MPS1, BUB1, and PLK1 seem to play key roles in APC/C inhibition by mechanisms dependent and/or independent on MCC assembly. The protein phosphatase 1 and 2A (PP1 and PP2A) are recruited to kinetochores to oppose kinase activity. These phosphatases reverse the phosphorylation of kinetochore targets promoting the microtubule attachment stabilization, sister kinetochore biorientation and SAC silencing. The kinase-phosphatase network is crucial as it renders the SAC a dynamic, graded-signaling, high responsive, and robust process thereby ensuring timely anaphase onset and preventing the generation of proneoplastic aneuploidy. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. The unstructured C-terminal tail of yeast Dpb11 (human TopBP1) protein is dispensable for DNA replication and the S phase checkpoint but required for the G2/M checkpoint.

    Science.gov (United States)

    Navadgi-Patil, Vasundhara M; Kumar, Sandeep; Burgers, Peter M

    2011-11-25

    Budding yeast Dpb11 (human TopBP1, fission yeast Cut5) is an essential protein required for replisome assembly and for the DNA damage checkpoint. Previous studies with the temperature-sensitive dpb11-1 allele, truncated at amino acid 583 of the 764-amino acid protein, have suggested the model that Dpb11 couples DNA replication to the replication checkpoint. However, the dpb11-1 allele shows distinct replication defects even at permissive temperatures. Here, we determine that the 1-600-amino acid domain of DPB11 is both required and sufficient for full replication function of Dpb11 but that this domain is defective for activation of the principal checkpoint kinase Mec1 (human ataxia telangiectasia and Rad3-related) in vitro and in vivo. Remarkably, mutants of DPB11 that leave its replication function intact but abrogate its ability to activate Mec1 are proficient for the replication checkpoint, but they are compromised for the G(2)/M DNA damage checkpoint. These data suggest that replication checkpoint defects may result indirectly from defects in replisome assembly. Two conserved aromatic amino acids in the C terminus of Dpb11 are critical for Mec1 activation in vitro and for the G(2)/M checkpoint in yeast. Together with aromatic motifs identified previously in the Ddc1 subunit of 9-1-1, another activator of Mec1 kinase, they define a consensus structure for Mec1 activation.

  16. The chromosomal passenger complex and the spindle assembly checkpoint: kinetochore-microtubule error correction and beyond

    Directory of Open Access Journals (Sweden)

    Maia André F

    2008-05-01

    Full Text Available Abstract During mitosis, correct bipolar chromosome attachment to the mitotic spindle is an essential prerequisite for the equal segregation of chromosomes. The spindle assembly checkpoint can prevent chromosome segregation as long as not all chromosome pairs have obtained bipolar attachment to the spindle. The chromosomal passenger complex plays a crucial role during chromosome alignment by correcting faulty chromosome-spindle interactions (e.g. attachments that do not generate tension. In the process of doing so, the chromosomal passenger complex generates unattached chromosomes, a specific situation that is known to promote checkpoint activity. However, several studies have implicated an additional, more direct role for the chromosomal passenger complex in enforcing the mitotic arrest imposed by the spindle assembly checkpoint. In this review, we discuss the different roles played by the chromosomal passenger complex in ensuring proper mitotic checkpoint function. Additionally, we discuss the possibility that besides monitoring the presence of unattached kinetochores, the spindle assembly checkpoint may also be capable of responding to chromosome-microtubule interactions that do not generate tension and we propose experimental set-ups to study this.

  17. KI motifs of human Knl1 enhance assembly of comprehensive spindle checkpoint complexes around MELT repeats.

    Science.gov (United States)

    Krenn, Veronica; Overlack, Katharina; Primorac, Ivana; van Gerwen, Suzan; Musacchio, Andrea

    2014-01-06

    The KMN network, a ten-subunit protein complex, mediates the interaction of kinetochores with spindle microtubules and recruits spindle assembly checkpoint (SAC) constituents to halt cells in mitosis until attainment of sister chromatid biorientation. Two types of motifs in the KMN subunit Knl1 interact with SAC proteins. Lys-Ile (KI) motifs, found in vertebrates, interact with the TPR motifs of Bub1 and BubR1. Met-Glu-Leu-Thr (MELT) repeats, ubiquitous in evolution, recruit the Bub3/Bub1 complex in a phosphorylation-dependent manner. The exact contributions of KI and MELT motifs to SAC signaling and chromosome alignment are unclear. We report here that KI motifs cooperate strongly with the neighboring single MELT motif in the N-terminal 250 residues (Knl1(1-250)) of human Knl1 to seed a comprehensive assembly of SAC proteins. In cells depleted of endogenous Knl1, kinetochore-targeted Knl1(1-250) suffices to restore SAC and chromosome alignment. Individual MELT repeats outside of Knl1(1-250), which lack flanking KI motifs, establish qualitatively similar sets of interactions, but less efficiently. MELT sequences on Knl1 emerge from our analysis as the platforms on which SAC complexes become assembled. Our results show that KI motifs are enhancers of MELT function in assembling SAC signaling complexes, and that they might have evolved to limit the expansion of MELT motifs by providing a more robust mechanism of SAC signaling around a single MELT. We shed light on the mechanism of Bub1 and BubR1 recruitment and identify crucial questions for future studies. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Kinetochore-microtubule attachment is sufficient to satisfy the human spindle assembly checkpoint

    NARCIS (Netherlands)

    Etemad, Banafsheh; Kuijt, Timo E F; Kops, Geert J P L

    2015-01-01

    The spindle assembly checkpoint (SAC) is a genome surveillance mechanism that protects against aneuploidization. Despite profound progress on understanding mechanisms of its activation, it remains unknown what aspect of chromosome-spindle interactions is monitored by the SAC: kinetochore-microtubule

  19. Ablation of the spindle assembly checkpoint by a compound targeting Mps1

    NARCIS (Netherlands)

    Schmidt, M.; Budirahardja, Y.; Klompmaker, R.; Medema, R.H.

    2005-01-01

    The spindle assembly checkpoint ensures accurate chromosome segregation by delaying anaphase initiation until all chromosomes are properly attached to the mitotic spindle. Here, we show that the previously reported c-Jun amino-terminal kinase (JNK) inhibitor SP600125 effectively disrupts spindle

  20. The internal Cdc20 binding site in BubR1 facilitates both spindle assembly checkpoint signalling and silencing

    DEFF Research Database (Denmark)

    Lischetti, Tiziana; Zhang, Gang; Sedgwick, Garry G

    2014-01-01

    Improperly attached kinetochores activate the spindle assembly checkpoint (SAC) and by an unknown mechanism catalyse the binding of two checkpoint proteins, Mad2 and BubR1, to Cdc20 forming the mitotic checkpoint complex (MCC). Here, to address the functional role of Cdc20 kinetochore localization...... in the SAC, we delineate the molecular details of its interaction with kinetochores. We find that BubR1 recruits the bulk of Cdc20 to kinetochores through its internal Cdc20 binding domain (IC20BD). We show that preventing Cdc20 kinetochore localization by removal of the IC20BD has a limited effect...... on the SAC because the IC20BD is also required for efficient SAC silencing. Indeed, the IC20BD can disrupt the MCC providing a mechanism for its role in SAC silencing. We thus uncover an unexpected dual function of the second Cdc20 binding site in BubR1 in promoting both efficient SAC signalling and SAC...

  1. Upregulated Op18/stathmin activity causes chromosomal instability through a mechanism that evades the spindle assembly checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Holmfeldt, Per; Sellin, Mikael E. [Department of Molecular Biology, Umea University, SE-901 87 Umea (Sweden); Gullberg, Martin, E-mail: Martin.Gullberg@molbiol.umu.se [Department of Molecular Biology, Umea University, SE-901 87 Umea (Sweden)

    2010-07-15

    Op18/stathmin (Op18) is a microtubule-destabilizing protein that is phosphorylation-inactivated during mitosis and its normal function is to govern tubulin subunit partitioning during interphase. Human tumors frequently overexpress Op18 and a tumor-associated Q18{yields}E mutation has been identified that confers hyperactivity, destabilizes spindle microtubules, and causes mitotic aberrancies, polyploidization, and chromosome loss in K562 leukemia cells. Here we determined whether wild-type and mutant Op18 have the potential to cause chromosomal instability by some means other than interference with spindle assembly, and thereby bypassing the spindle assembly checkpoint. Our approach was based on Op18 derivatives with distinct temporal order of activity during mitosis, conferred either by differential phosphorylation inactivation or by anaphase-specific degradation through fusion with the destruction box of cyclin B1. We present evidence that excessive Op18 activity generates chromosomal instability through interference occurring subsequent to the metaphase-to-anaphase transition, which reduces the fidelity of chromosome segregation to spindle poles during anaphase. Similar to uncorrected merotelic attachment, this mechanism evades detection by the spindle assembly checkpoint and thus provides an additional route to chromosomal instability.

  2. The Spindle Assembly Checkpoint in Arabidopsis Is Rapidly Shut Off during Severe Stress.

    Science.gov (United States)

    Komaki, Shinichiro; Schnittger, Arp

    2017-10-23

    The spindle assembly checkpoint (SAC) in animals and yeast assures equal segregation of chromosomes during cell division. The prevalent occurrence of polyploidy in flowering plants together with the observation that many plants can be readily forced to double their genomes by application of microtubule drugs raises the question of whether plants have a proper SAC. Here, we provide a functional framework of the core SAC proteins in Arabidopsis. We reveal that Arabidopsis will delay mitosis in a SAC-dependent manner if the spindle is perturbed. However, we also show that the molecular architecture of the SAC is unique in plants. Moreover, the SAC is short-lived and cannot stay active for more than 2 hr, after which the cell cycle is reset. This resetting opens the possibility for genome duplications and raises the hypothesis that a rapid termination of a SAC-induced mitotic arrest provides an adaptive advantage for plants impacting plant genome evolution. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Inhibition of CDK7 bypasses spindle assembly checkpoint via premature cyclin B degradation during oocyte meiosis.

    Science.gov (United States)

    Wang, HaiYang; Jo, Yu-Jin; Sun, Tian-Yi; Namgoong, Suk; Cui, Xiang-Shun; Oh, Jeong Su; Kim, Nam-Hyung

    2016-12-01

    To ensure accurate chromosome segregation, the spindle assembly checkpoint (SAC) delays anaphase onset by preventing the premature activation of anaphase-promoting complex/cyclosome (APC/C) until all kinetochores are attached to the spindle. Although an escape from mitosis in the presence of unsatisfied SAC has been shown in several cancer cells, it has not been reported in oocyte meiosis. Here, we show that CDK7 activity is required to prevent a bypass of SAC during meiosis I in mouse oocytes. Inhibition of CDK7 using THZ1 accelerated the first meiosis, leading to chromosome misalignment, lag of chromosomes during chromosome segregation, and a high incidence of aneuploidy. Notably, this acceleration occurred in the presence of SAC proteins including Mad2 and Bub3 at the kinetochores. However, inhibition of APC/C-mediated cyclin B degradation blocked the THZ1-induced premature polar body extrusion. Moreover, chromosomal defects mediated by THZ1 were rescued when anaphase onset was delayed. Collectively, our results show that CDK7 activity is required to prevent premature anaphase onset by suppressing the bypass of SAC, thus ensuring chromosome alignment and proper segregation. These findings reveal new roles of CDK7 in the regulation of meiosis in mammalian oocytes. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Use of the Protein Ontology (PRO for Multi-Faceted Analysis of Biological Processes: a Case Study of the Spindle Checkpoint

    Directory of Open Access Journals (Sweden)

    Karen E Ross

    2013-04-01

    Full Text Available As a member of the Open Biomedical Ontologies (OBO foundry, the Protein Ontology (PRO provides an ontological representation of protein forms and complexes and their relationships. Annotations in PRO can be assigned to individual protein forms and complexes, each distinguishable down to the level of post-translational modification, thereby allowing for a more precise depiction of protein function than is possible with annotations to the gene as a whole. Moreover, PRO is fully interoperable with other OBO ontologies and integrates knowledge from other protein-centric resources such as UniProt and Reactome. Here we demonstrate the value of the PRO framework in the investigation of the spindle checkpoint, a highly conserved biological process that relies extensively on protein modification and protein complex formation. The spindle checkpoint maintains genomic integrity by monitoring the attachment of chromosomes to spindle microtubules and delaying cell cycle progression until the spindle is fully assembled. Using PRO in conjunction with other bioinformatics tools, we explored the cross-species conservation of spindle checkpoint proteins, including phosphorylated forms and complexes; studied the impact of phosphorylation on spindle checkpoint function; and examined the interactions of spindle checkpoint proteins with the kinetochore, the site of checkpoint activation. Our approach can be generalized to any biological process of interest.

  5. Plk1 and Mps1 Cooperatively Regulate the Spindle Assembly Checkpoint in Human Cells

    Directory of Open Access Journals (Sweden)

    Conrad von Schubert

    2015-07-01

    Full Text Available Equal mitotic chromosome segregation is critical for genome integrity and is monitored by the spindle assembly checkpoint (SAC. We have previously shown that the consensus phosphorylation motif of the essential SAC kinase Monopolar spindle 1 (Mps1 is very similar to that of Polo-like kinase 1 (Plk1. This prompted us to ask whether human Plk1 cooperates with Mps1 in SAC signaling. Here, we demonstrate that Plk1 promotes checkpoint signaling at kinetochores through the phosphorylation of at least two Mps1 substrates, including KNL-1 and Mps1 itself. As a result, Plk1 activity enhances Mps1 catalytic activity as well as the recruitment of the SAC components Mad1:C-Mad2 and Bub3:BubR1 to kinetochores. We conclude that Plk1 strengthens the robustness of SAC establishment at the onset of mitosis and supports SAC maintenance during prolonged mitotic arrest.

  6. BubR1 Promotes Bub3-Dependent APC/C Inhibition during Spindle Assembly Checkpoint Signaling.

    Science.gov (United States)

    Overlack, Katharina; Bange, Tanja; Weissmann, Florian; Faesen, Alex C; Maffini, Stefano; Primorac, Ivana; Müller, Franziska; Peters, Jan-Michael; Musacchio, Andrea

    2017-10-09

    The spindle assembly checkpoint (SAC) prevents premature sister chromatid separation during mitosis. Phosphorylation of unattached kinetochores by the Mps1 kinase promotes recruitment of SAC machinery that catalyzes assembly of the SAC effector mitotic checkpoint complex (MCC). The SAC protein Bub3 is a phospho-amino acid adaptor that forms structurally related stable complexes with functionally distinct paralogs named Bub1 and BubR1. A short motif ("loop") of Bub1, but not the equivalent loop of BubR1, enhances binding of Bub3 to kinetochore phospho-targets. Here, we asked whether the BubR1 loop directs Bub3 to different phospho-targets. The BubR1 loop is essential for SAC function and cannot be removed or replaced with the Bub1 loop. BubR1 loop mutants bind Bub3 and are normally incorporated in MCC in vitro but have reduced ability to inhibit the MCC target anaphase-promoting complex (APC/C), suggesting that BubR1:Bub3 recognition and inhibition of APC/C requires phosphorylation. Thus, small sequence differences in Bub1 and BubR1 direct Bub3 to different phosphorylated targets in the SAC signaling cascade. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  7. Polymer Directed Protein Assemblies

    Directory of Open Access Journals (Sweden)

    Patrick van Rijn

    2013-05-01

    Full Text Available Protein aggregation and protein self-assembly is an important occurrence in natural systems, and is in some form or other dictated by biopolymers. Very obvious influences of biopolymers on protein assemblies are, e.g., virus particles. Viruses are a multi-protein assembly of which the morphology is dictated by poly-nucleotides namely RNA or DNA. This “biopolymer” directs the proteins and imposes limitations on the structure like the length or diameter of the particle. Not only do these bionanoparticles use polymer-directed self-assembly, also processes like amyloid formation are in a way a result of directed protein assembly by partial unfolded/misfolded biopolymers namely, polypeptides. The combination of proteins and synthetic polymers, inspired by the natural processes, are therefore regarded as a highly promising area of research. Directed protein assembly is versatile with respect to the possible interactions which brings together the protein and polymer, e.g., electrostatic, v.d. Waals forces or covalent conjugation, and possible combinations are numerous due to the large amounts of different polymers and proteins available. The protein-polymer interacting behavior and overall morphology is envisioned to aid in clarifying protein-protein interactions and are thought to entail some interesting new functions and properties which will ultimately lead to novel bio-hybrid materials.

  8. Human papillomavirus type 16 E7 oncoprotein engages but does not abrogate the mitotic spindle assembly checkpoint

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Yueyang [Division of Infectious Diseases, Brigham and Women' s Hospital and Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115 (United States); Munger, Karl, E-mail: kmunger@rics.bwh.harvard.edu [Division of Infectious Diseases, Brigham and Women' s Hospital and Biological and Biomedical Sciences Program, Harvard Medical School, Boston, MA 02115 (United States)

    2012-10-10

    The mitotic spindle assembly checkpoint (SAC) ensures faithful chromosome segregation during mitosis by censoring kinetochore-microtubule interactions. It is frequently rendered dysfunctional during carcinogenesis causing chromosome missegregation and genomic instability. There are conflicting reports whether the HPV16 E7 oncoprotein drives chromosomal instability by abolishing the SAC. Here we report that degradation of mitotic cyclins is impaired in cells with HPV16 E7 expression. RNAi-mediated depletion of Mad2 or BubR1 indicated the involvement of the SAC, suggesting that HPV16 E7 expression causes sustained SAC engagement. Mutational analyses revealed that HPV16 E7 sequences that are necessary for retinoblastoma tumor suppressor protein binding as well as sequences previously implicated in binding the nuclear and mitotic apparatus (NuMA) protein and in delocalizing dynein from the mitotic spindle contribute to SAC engagement. Importantly, however, HPV16 E7 does not markedly compromise the SAC response to microtubule poisons.

  9. Synchronization and Desynchronization of Cells by Interventions on the Spindle Assembly Checkpoint.

    Science.gov (United States)

    Jemaà, Mohamed; Manic, Gwenola; Vitale, Ilio

    2017-01-01

    Cell cycle checkpoints are surveillance mechanisms that sequentially and continuously monitor cell cycle progression thereby contributing to the preservation of genetic stability. Among them, the spindle assembly checkpoint (SAC) prevents the occurrence of abnormal divisions by halting the metaphase to anaphase transition following the detection of erroneous microtubules-kinetochore attachment(s). Most synchronization strategies are based on the activation of cell cycle checkpoints to enrich the population of cells in a specific phase of the cell cycle. Here, we develop a two-step protocol of sequential cell synchronization and desynchronization employing antimitotic SAC-inducing agents (i.e., nocodazole or paclitaxel) in combination with the depletion of the SAC kinase MPS1. We describe cytofluorometric and time-lapse videomicroscopy methods to detect cell cycle progression, including the assessment of cell cycle distribution, quantification of mitotic cell fraction, and analysis of single cell fate profile of living cells. We applied these methods to validate the synchronization-desynchronization protocol and to qualitatively and quantitatively determine the impact of SAC inactivation on the activity of antimitotic agents.

  10. Plk1 bound to Bub1 contributes to spindle assembly checkpoint activity during mitosis

    OpenAIRE

    Ikeda, Masanori; Tanaka, Kozo

    2017-01-01

    For faithful chromosome segregation, the formation of stable kinetochore?microtubule attachment and its monitoring by the spindle assembly checkpoint (SAC) are coordinately regulated by mechanisms that are currently ill-defined. Here, we show that polo-like kinase 1 (Plk1), which is instrumental in forming stable kinetochore?microtubule attachments, is also involved in the maintenance of SAC activity by binding to Bub1, but not by binding to CLASP2 or CLIP-170. The effect of Plk1 on the SAC w...

  11. A novel role for the GTPase-activating protein Bud2 in the spindle position checkpoint.

    Directory of Open Access Journals (Sweden)

    Scott A Nelson

    Full Text Available The spindle position checkpoint (SPC ensures correct mitotic spindle position before allowing mitotic exit in the budding yeast Saccharomyces cerevisiae. In a candidate screen for checkpoint genes, we identified bud2Δ as deficient for the SPC. Bud2 is a GTPase activating protein (GAP, and the only known substrate of Bud2 was Rsr1/Bud1, a Ras-like GTPase and a central component of the bud-site-selection pathway. Mutants lacking Rsr1/Bud1 had no checkpoint defect, as did strains lacking and overexpressing Bud5, a guanine-nucleotide exchange factor (GEF for Rsr1/Bud1. Thus, the checkpoint function of Bud2 is distinct from its role in bud site selection. The catalytic activity of the Bud2 GAP domain was required for the checkpoint, based on the failure of the known catalytic point mutant Bud2(R682A to function in the checkpoint. Based on assays of heterozygous diploids, bud2(R682A, was dominant for loss of checkpoint but recessive for bud-site-selection failure, further indicating a separation of function. Tem1 is a Ras-like protein and is the critical regulator of mitotic exit, sitting atop the mitotic exit network (MEN. Tem1 is a likely target for Bud2, supported by genetic analyses that exclude other Ras-like proteins.

  12. Mitotic checkpoint proteins Mad1 and Mad2 - structural and functional relationship with implication in genetic diseases.

    Science.gov (United States)

    Avram, Speranta; Mernea, Maria; Mihailescu, Dan Florin; Seiman, Corina Duda; Seiman, Daniel Duda; Putz, Mihai Viorel

    2014-01-01

    In normal cells, the accuracy of chromosome segregation which assures cells euploidy depends on mitosis mechanics and on proper functioning of a specific complex of proteins represented by the error-checking spindle assembly checkpoint (SAC). SAC proteins are deeply involved in correct cell divisions, but some of these, such as mitotic arrest-deficient proteins (Mad1 and Mad2), are critical. Mad1 and Mad2 are involved in preventing "wrong" cellular divisions which lead to cellular aneuploidy and are recognized as inductors of genetic disorders, as well as activators of oncoproteins. To clarify aneuploidy involvement in the evolution of cancer or other genetic disorders, structural and functional specificity of spindle checkpoint proteins have been analyzed, but the process is still poorly understood. In order to better understand SAC proteins involvement in initiation of cancer and other genetic disorders, here we review studies that conducted to relevant structural and functional information regarding these proteins. The results of these studies suggest that minor changes in structure and functionality of SAC proteins are able to generate aneuploidy. Therefore, a deeper understanding of Mad1 and Mad2 structural changes obtained by experimental and theoretical studies could open new perspectives of genetic medicine.

  13. A tumor suppressor role of the Bub3 spindle checkpoint protein after apoptosis inhibition

    Science.gov (United States)

    Moutinho-Santos, Tatiana

    2013-01-01

    Most solid tumors contain aneuploid cells, indicating that the mitotic checkpoint is permissive to the proliferation of chromosomally aberrant cells. However, mutated or altered expression of mitotic checkpoint genes accounts for a minor proportion of human tumors. We describe a Drosophila melanogaster tumorigenesis model derived from knocking down spindle assembly checkpoint (SAC) genes and preventing apoptosis in wing imaginal discs. Bub3-deficient tumors that were also deficient in apoptosis displayed neoplastic growth, chromosomal aneuploidy, and high proliferative potential after transplantation into adult flies. Inducing aneuploidy by knocking down CENP-E and preventing apoptosis does not induce tumorigenesis, indicating that aneuploidy is not sufficient for hyperplasia. In this system, the aneuploidy caused by a deficient SAC is not driving tumorigenesis because preventing Bub3 from binding to the kinetochore does not cause hyperproliferation. Our data suggest that Bub3 has a nonkinetochore-dependent function that is consistent with its role as a tumor suppressor. PMID:23609535

  14. Plk1 bound to Bub1 contributes to spindle assembly checkpoint activity during mitosis.

    Science.gov (United States)

    Ikeda, Masanori; Tanaka, Kozo

    2017-08-18

    For faithful chromosome segregation, the formation of stable kinetochore-microtubule attachment and its monitoring by the spindle assembly checkpoint (SAC) are coordinately regulated by mechanisms that are currently ill-defined. Here, we show that polo-like kinase 1 (Plk1), which is instrumental in forming stable kinetochore-microtubule attachments, is also involved in the maintenance of SAC activity by binding to Bub1, but not by binding to CLASP2 or CLIP-170. The effect of Plk1 on the SAC was found to be mediated through phosphorylation of Mps1, an essential kinase for the SAC, as well as through phosphorylation of the MELT repeats in Knl1. Bub1 acts as a platform for assembling other SAC components on the phosphorylated MELT repeats. We propose that Bub1-bound Plk1 is important for the maintenance of SAC activity by supporting Bub1 localization to kinetochores in prometaphase, a time when the kinetochore Mps1 level is reduced, until the formation of stable kinetochore-microtubule attachment is completed. Our study reveals an intricate mechanism for coordinating the formation of stable kinetochore-microtubule attachment and SAC activity.

  15. The ESCRT protein Chmp4c regulates mitotic spindle checkpoint signaling.

    Science.gov (United States)

    Petsalaki, Eleni; Dandoulaki, Maria; Zachos, George

    2018-01-23

    The mitotic spindle checkpoint delays anaphase onset in the presence of unattached kinetochores, and efficient checkpoint signaling requires kinetochore localization of the Rod-ZW10-Zwilch (RZZ) complex. In the present study, we show that human Chmp4c, a protein involved in membrane remodeling, localizes to kinetochores in prometaphase but is reduced in chromosomes aligned at the metaphase plate. Chmp4c promotes stable kinetochore-microtubule attachments and is required for proper mitotic progression, faithful chromosome alignment, and segregation. Depletion of Chmp4c diminishes localization of RZZ and Mad1-Mad2 checkpoint proteins to prometaphase kinetochores and impairs mitotic arrest when microtubules are depolymerized by nocodazole. Furthermore, Chmp4c binds to ZW10 through a small C-terminal region, and constitutive Chmp4c kinetochore targeting causes a ZW10-dependent checkpoint metaphase arrest. In addition, Chmp4c spindle functions do not require endosomal sorting complex required for transport-dependent membrane remodeling. These results show that Chmp4c regulates the mitotic spindle checkpoint by promoting localization of the RZZ complex to unattached kinetochores. © 2018 Petsalaki et al.

  16. The Spindle Assembly Checkpoint Safeguards Genomic Integrity of Skeletal Muscle Satellite Cells

    Directory of Open Access Journals (Sweden)

    Swapna Kollu

    2015-06-01

    Full Text Available To ensure accurate genomic segregation, cells evolved the spindle assembly checkpoint (SAC, whose role in adult stem cells remains unknown. Inducible perturbation of a SAC kinase, Mps1, and its downstream effector, Mad2, in skeletal muscle stem cells shows the SAC to be critical for normal muscle growth, repair, and self-renewal of the stem cell pool. SAC-deficient muscle stem cells arrest in G1 phase of the cell cycle with elevated aneuploidy, resisting differentiation even under inductive conditions. p21CIP1 is responsible for these SAC-deficient phenotypes. Despite aneuploidy’s correlation with aging, we find that aged proliferating muscle stem cells display robust SAC activity without elevated aneuploidy. Thus, muscle stem cells have a two-step mechanism to safeguard their genomic integrity. The SAC prevents chromosome missegregation and, if it fails, p21CIP1-dependent G1 arrest limits cellular propagation and tissue integration. These mechanisms ensure that muscle stem cells with compromised genomes do not contribute to tissue homeostasis.

  17. Premature Sister Chromatid Separation Is Poorly Detected by the Spindle Assembly Checkpoint as a Result of System-Level Feedback

    Directory of Open Access Journals (Sweden)

    Mihailo Mirkovic

    2015-10-01

    Full Text Available Sister chromatid cohesion, mediated by the cohesin complex, is essential for faithful mitosis. Nevertheless, evidence suggests that the surveillance mechanism that governs mitotic fidelity, the spindle assembly checkpoint (SAC, is not robust enough to halt cell division when cohesion loss occurs prematurely. The mechanism behind this poor response is not properly understood. Using developing Drosophila brains, we show that full sister chromatid separation elicits a weak checkpoint response resulting in abnormal mitotic exit after a short delay. Quantitative live-cell imaging approaches combined with mathematical modeling indicate that weak SAC activation upon cohesion loss is caused by weak signal generation. This is further attenuated by several feedback loops in the mitotic signaling network. We propose that multiple feedback loops involving cyclin-dependent kinase 1 (Cdk1 gradually impair error-correction efficiency and accelerate mitotic exit upon premature loss of cohesion. Our findings explain how cohesion defects may escape SAC surveillance.

  18. DNA damage response and spindle assembly checkpoint function throughout the cell cycle to ensure genomic integrity.

    Directory of Open Access Journals (Sweden)

    Katherine S Lawrence

    2015-04-01

    Full Text Available Errors in replication or segregation lead to DNA damage, mutations, and aneuploidies. Consequently, cells monitor these events and delay progression through the cell cycle so repair precedes division. The DNA damage response (DDR, which monitors DNA integrity, and the spindle assembly checkpoint (SAC, which responds to defects in spindle attachment/tension during metaphase of mitosis and meiosis, are critical for preventing genome instability. Here we show that the DDR and SAC function together throughout the cell cycle to ensure genome integrity in C. elegans germ cells. Metaphase defects result in enrichment of SAC and DDR components to chromatin, and both SAC and DDR are required for metaphase delays. During persistent metaphase arrest following establishment of bi-oriented chromosomes, stability of the metaphase plate is compromised in the absence of DDR kinases ATR or CHK1 or SAC components, MAD1/MAD2, suggesting SAC functions in metaphase beyond its interactions with APC activator CDC20. In response to DNA damage, MAD2 and the histone variant CENPA become enriched at the nuclear periphery in a DDR-dependent manner. Further, depletion of either MAD1 or CENPA results in loss of peripherally associated damaged DNA. In contrast to a SAC-insensitive CDC20 mutant, germ cells deficient for SAC or CENPA cannot efficiently repair DNA damage, suggesting that SAC mediates DNA repair through CENPA interactions with the nuclear periphery. We also show that replication perturbations result in relocalization of MAD1/MAD2 in human cells, suggesting that the role of SAC in DNA repair is conserved.

  19. Spindle assembly checkpoint signalling is uncoupled from chromosomal position in mouse oocytes.

    Science.gov (United States)

    Gui, Liming; Homer, Hayden

    2012-06-01

    The spindle assembly checkpoint (SAC) averts aneuploidy by coordinating proper bipolar chromosomal attachment with anaphase-promoting complex/cyclosome (APC/C)-mediated securin and cyclin B1 destruction required for anaphase onset. The generation of a Mad2-based signal at kinetochores is central to current models of SAC-based APC/C inhibition. During mitosis, kinetochores of polar-displaced chromosomes, which are at greatest risk of mis-segregating, recruit the highest levels of Mad2, thereby ensuring that SAC activation is proportionate to aneuploidy risk. Paradoxically, although an SAC operates in mammalian oocytes, meiosis I (MI) is notoriously error prone and polar-displaced chromosomes do not prevent anaphase onset. Here we find that Mad2 is not preferentially recruited to the kinetochores of polar chromosomes of wild-type mouse oocytes, in which polar chromosomes are rare, or of oocytes depleted of the kinesin-7 motor CENP-E, in which polar chromosomes are more abundant. Furthermore, in CENP-E-depleted oocytes, although polar chromosomal displacement intensified during MI and the capacity to form stable end-on attachments was severely compromised, all kinetochores nevertheless became devoid of Mad2. Thus, it is possible that the ability of the SAC to robustly discriminate chromosomal position might be compromised by the propensity of oocyte kinetochores to become saturated with unproductive attachments, thereby predisposing to aneuploidy. Our data also reveal novel functions for CENP-E in oocytes: first, CENP-E stabilises BubR1, thereby impacting MI progression; and second, CENP-E mediates bi-orientation by promoting kinetochore reorientation and preventing chromosomal drift towards the poles.

  20. The Nuclear Matrix Protein Megator Regulates Stem Cell Asymmetric Division through the Mitotic Checkpoint Complex in Drosophila Testes.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2015-12-01

    Full Text Available In adult Drosophila testis, asymmetric division of germline stem cells (GSCs is specified by an oriented spindle and cortically localized adenomatous coli tumor suppressor homolog 2 (Apc2. However, the molecular mechanism underlying these events remains unclear. Here we identified Megator (Mtor, a nuclear matrix protein, which regulates GSC maintenance and asymmetric division through the spindle assembly checkpoint (SAC complex. Loss of Mtor function results in Apc2 mis-localization, incorrect centrosome orientation, defective mitotic spindle formation, and abnormal chromosome segregation that lead to the eventual GSC loss. Expression of mitotic arrest-deficient-2 (Mad2 and monopolar spindle 1 (Mps1 of the SAC complex effectively rescued the GSC loss phenotype associated with loss of Mtor function. Collectively our results define a new role of the nuclear matrix-SAC axis in regulating stem cell maintenance and asymmetric division.

  1. Characterization of a putative spindle assembly checkpoint kinase Mps1, suggests its involvement in cell division, morphogenesis and oxidative stress tolerance in Candida albicans.

    Directory of Open Access Journals (Sweden)

    Mohan Kamthan

    Full Text Available In Saccharomyces cerevisiae MPS1 is one of the major protein kinase that governs the spindle checkpoint pathway. The S. cerevisiae structural homolog of opportunistic pathogen Candida albicans CaMPS1, is indispensable for the cell viability. The essentiality of Mps1 was confirmed by Homozygote Trisome test. To determine its biological function in this pathogen conditional mutant was generated through regulatable MET3 promoter. Examination of heterozygous and conditional (+Met/Cys mps1 mutants revealed a mitosis specific arrest phenotype, where mutants showed large buds with undivided nuclei. Flowcytometry analysis revealed abnormal ploidy levels in mps1 mutant. In presence of anti-microtubule drug Nocodazole, mps1 mutant showed a dramatic loss of viability suggesting a role of Mps1 in Spindle Assembly Checkpoint (SAC activation. These mutants were also defective in microtubule organization. Moreover, heterozygous mutant showed defective in-vitro yeast to hyphae morphological transition. Growth defect in heterozygous mutant suggest haploinsufficiency of this gene. qRT PCR analysis showed around 3 fold upregulation of MPS1 in presence of serum. This expression of MPS1 is dependent on Efg1 and is independent of other hyphal regulators like Ras1 and Tpk2. Furthermore, mps1 mutants were also sensitive to oxidative stress. Heterozygous mps1 mutant did not undergo morphological transition and showed 5-Fold reduction in colony forming units in response to macrophage. Thus, the vital checkpoint kinase, Mps1 besides cell division also has a role in morphogenesis and oxidative stress tolerance, in this pathogenic fungus.

  2. A direct role of Mad1 in the spindle assembly checkpoint beyond Mad2 kinetochore recruitment

    DEFF Research Database (Denmark)

    Kruse, Thomas; Larsen, Marie Sofie Yoo; Sedgwick, Garry G

    2014-01-01

    . The conversion of O-Mad2 into C-Mad2 at unattached kinetochores is thought to be a key step in activating the SAC. The "template model" proposes that this is achieved by the recruitment of soluble O-Mad2 to C-Mad2 bound at kinetochores through its interaction with Mad1. Whether Mad1 has additional roles...... in the SAC beyond recruitment of C-Mad2 to kinetochores has not yet been addressed. Here, we show that Mad1 is required for mitotic arrest even when C-Mad2 is artificially recruited to kinetochores, indicating that it has indeed an additional function in promoting the checkpoint. The C-terminal globular...

  3. Bub1 positions Mad1 close to KNL1 MELT repeats to promote checkpoint signalling

    DEFF Research Database (Denmark)

    Zhang, Gang; Kruse, Thomas; López-Méndez, Blanca

    2017-01-01

    Proper segregation of chromosomes depends on a functional spindle assembly checkpoint (SAC) and requires kinetochore localization of the Bub1 and Mad1/Mad2 checkpoint proteins. Several aspects of Mad1/Mad2 kinetochore recruitment in human cells are unclear and in particular the underlying direct ...

  4. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity

    DEFF Research Database (Denmark)

    Wild, Thomas; Larsen, Marie Sofie Yoo; Narita, Takeo

    2016-01-01

    depletion. Reduction of APC/C activity results in loss of switch-like metaphase-to-anaphase transition and, strikingly, renders cells insensitive to chemical inhibition of MPS1 and genetic ablation of MAD2, both of which are essential for the SAC. These results provide insights into the regulation of APC......The anaphase-promoting complex/cyclosome (APC/C) and the spindle assembly checkpoint (SAC), which inhibits the APC/C, are essential determinants of mitotic timing and faithful division of genetic material. Activation of the APC/C is known to depend on two APC/C-interacting E2 ubiquitin......-conjugating enzymes-UBE2C and UBE2S. We show that APC/C activity in human cells is tuned by the combinatorial use of three E2s, namely UBE2C, UBE2S, and UBE2D. Genetic deletion of UBE2C and UBE2S, individually or in combination, leads to discriminative reduction in APC/C function and sensitizes cells to UBE2D...

  5. Zwint-1 is required for spindle assembly checkpoint function and kinetochore-microtubule attachment during oocyte meiosis.

    Science.gov (United States)

    Woo Seo, Dong; Yeop You, Seung; Chung, Woo-Jae; Cho, Dong-Hyung; Kim, Jae-Sung; Su Oh, Jeong

    2015-10-21

    The key step for faithful chromosome segregation during meiosis is kinetochore assembly. Defects in this process result in aneuploidy, leading to miscarriages, infertility and various birth defects. However, the roles of kinetochores in homologous chromosome segregation during meiosis are ill-defined. Here we found that Zwint-1 is required for homologous chromosome segregation during meiosis. Knockdown of Zwint-1 accelerated the first meiosis by abrogating the kinetochore recruitment of Mad2, leading to chromosome misalignment and a high incidence of aneuploidy. Although Zwint-1 knockdown did not affect Aurora C kinase activity, the meiotic defects following Zwint-1 knockdown were similar to those observed with ZM447439 treatment. Importantly, the chromosome misalignment following Aurora C kinase inhibition was not restored after removing the inhibitor in Zwint-1-knockdown oocytes, whereas the defect was rescued after the inhibitor washout in the control oocytes. These results suggest that Aurora C kinase-mediated correction of erroneous kinetochore-microtubule attachment is primarily regulated by Zwint-1. Our results provide the first evidence that Zwint-1 is required to correct erroneous kinetochore-microtubule attachment and regulate spindle checkpoint function during meiosis.

  6. The Spindle Assembly Checkpoint Is Not Essential for Viability of Human Cells with Genetically Lowered APC/C Activity

    Directory of Open Access Journals (Sweden)

    Thomas Wild

    2016-03-01

    Full Text Available The anaphase-promoting complex/cyclosome (APC/C and the spindle assembly checkpoint (SAC, which inhibits the APC/C, are essential determinants of mitotic timing and faithful division of genetic material. Activation of the APC/C is known to depend on two APC/C-interacting E2 ubiquitin-conjugating enzymes—UBE2C and UBE2S. We show that APC/C activity in human cells is tuned by the combinatorial use of three E2s, namely UBE2C, UBE2S, and UBE2D. Genetic deletion of UBE2C and UBE2S, individually or in combination, leads to discriminative reduction in APC/C function and sensitizes cells to UBE2D depletion. Reduction of APC/C activity results in loss of switch-like metaphase-to-anaphase transition and, strikingly, renders cells insensitive to chemical inhibition of MPS1 and genetic ablation of MAD2, both of which are essential for the SAC. These results provide insights into the regulation of APC/C activity and demonstrate that the essentiality of the SAC is imposed by the strength of the APC/C.

  7. Changing Mad2 levels affects chromosome segregation and spindle assembly checkpoint control in female mouse meiosis I.

    Directory of Open Access Journals (Sweden)

    Théodora Niault

    Full Text Available The spindle assembly checkpoint (SAC ensures correct separation of sister chromatids in somatic cells and provokes a cell cycle arrest in metaphase if one chromatid is not correctly attached to the bipolar spindle. Prolonged metaphase arrest due to overexpression of Mad2 has been shown to be deleterious to the ensuing anaphase, leading to the generation of aneuploidies and tumorigenesis. Additionally, some SAC components are essential for correct timing of prometaphase. In meiosis, we and others have shown previously that the Mad2-dependent SAC is functional during the first meiotic division in mouse oocytes. Expression of a dominant-negative form of Mad2 interferes with the SAC in metaphase I, and a knock-down approach using RNA interference accelerates anaphase onset in meiosis I. To prove unambigiously the importance of SAC control for mammalian female meiosis I we analyzed oocyte maturation in Mad2 heterozygote mice, and in oocytes overexpressing a GFP-tagged version of Mad2. In this study we show for the first time that loss of one Mad2 allele, as well as overexpression of Mad2 lead to chromosome missegregation events in meiosis I, and therefore the generation of aneuploid metaphase II oocytes. Furthermore, SAC control is impaired in mad2+/- oocytes, also leading to the generation of aneuploidies in meiosis I.

  8. Multivalent Protein Assembly Using Monovalent Self-Assembling Building Blocks

    Directory of Open Access Journals (Sweden)

    Katja Petkau-Milroy

    2013-10-01

    Full Text Available Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard to streptavidin. Next to tetravalent streptavidin, monovalent streptavidin was used to study the protein assembly along the supramolecular polymer in detail without the interference of cross-linking. Upon self-assembly of the monovalent biotinylated discotics, multivalent proteins can be assembled along the supramolecular polymer. The concentration of discotics, which influences the length of the final polymers at the same time dictates the amount of assembled proteins.

  9. Phosphatases, DNA damage checkpoints and checkpoint deactivation.

    Science.gov (United States)

    Heideker, Johanna; Lis, Ewa T; Romesberg, Floyd E

    2007-12-15

    Cells have evolved intricate and specialized responses to DNA damage, central to which are the DNA damage checkpoints that arrest cell cycle progression and facilitate the repair process. Activation of these damage checkpoints relies heavily on the activity of Ser/Thr kinases, such as Chk1 and Chk2 (Saccharomyces cerevisiae Rad53), which are themselves activated by phosphorylation. Only more recently have we begun to understand how cells disengage the checkpoints to reenter the cell cycle. Here, we review progress toward understanding the functions of phosphatases in checkpoint deactivation in S. cerevisiae, focusing on the non-redundant roles of the type 2A phosphatase Pph3 and the PP2C phosphatases Ptc2 and Ptc3 in the deactivation of Rad53. We discuss how these phosphatases may specifically recognize different phosphorylated forms of Rad53 and how each may independently regulate different facets of the checkpoint response. In conjunction with the independent dephosphorylation of other checkpoint proteins, such regulation may allow a more tailored response to DNA damage that is coordinated with the repair process, ultimately resulting in the resumption of growth.

  10. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation

    Science.gov (United States)

    Batenburg, Nicole L; Thompson, Elizabeth L; Hendrickson, Eric A; Zhu, Xu-Dong

    2015-01-01

    Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs the recruitment of BRCA1, RPA and Rad51 proteins to damaged chromatin but promotes the formation of 53BP1-Rif1 damage foci in S and G2 cells. Depletion of 53BP1 rescues the formation of BRCA1 damage foci in CSB-knockout cells. In addition, knockout of CSB impairs the ATM- and Chk2-mediated DNA damage responses, promoting a premature entry into mitosis. Furthermore, we show that CSB accumulates at sites of DNA double-strand breaks (DSBs) in a transcription-dependent manner. The kinetics of DSB-induced chromatin association of CSB is distinct from that of its UV-induced chromatin association. These results reveal novel, important functions of CSB in regulating the DNA DSB repair pathway choice as well as G2/M checkpoint activation. PMID:25820262

  11. Cockayne syndrome group B protein regulates DNA double-strand break repair and checkpoint activation.

    Science.gov (United States)

    Batenburg, Nicole L; Thompson, Elizabeth L; Hendrickson, Eric A; Zhu, Xu-Dong

    2015-05-12

    Mutations of CSB account for the majority of Cockayne syndrome (CS), a devastating hereditary disorder characterized by physical impairment, neurological degeneration and segmental premature aging. Here we report the generation of a human CSB-knockout cell line. We find that CSB facilitates HR and represses NHEJ. Loss of CSB or a CS-associated CSB mutation abrogating its ATPase activity impairs the recruitment of BRCA1, RPA and Rad51 proteins to damaged chromatin but promotes the formation of 53BP1-Rif1 damage foci in S and G2 cells. Depletion of 53BP1 rescues the formation of BRCA1 damage foci in CSB-knockout cells. In addition, knockout of CSB impairs the ATM- and Chk2-mediated DNA damage responses, promoting a premature entry into mitosis. Furthermore, we show that CSB accumulates at sites of DNA double-strand breaks (DSBs) in a transcription-dependent manner. The kinetics of DSB-induced chromatin association of CSB is distinct from that of its UV-induced chromatin association. These results reveal novel, important functions of CSB in regulating the DNA DSB repair pathway choice as well as G2/M checkpoint activation. © 2015 The Authors.

  12. MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans.

    Science.gov (United States)

    Ahmed, S; Hodgkin, J

    2000-01-13

    The germ line is an immortal cell lineage that is passed indefinitely from one generation to the next. To identify the genes that are required for germline immortality, we isolated Caenorhabditis elegans mutants with mortal germ lines--worms that can reproduce for several healthy generations but eventually become sterile. One of these mortal germline (mrt) mutants, mrt-2, exhibits progressive telomere shortening and accumulates end-to-end chromosome fusions in later generations, indicating that the MRT-2 protein is required for telomere replication. In addition, the germ line of mrt-2 is hypersensitive to X-rays and to transposon activity. Therefore, mrt-2 has defects in responding both to damaged DNA and to normal double-strand breaks present at telomeres. mrt-2 encodes a homologue of a checkpoint gene that is required to sense DNA damage in yeast. These results indicate that telomeres may be identified as a type of DNA damage and then repaired by the telomere-replication enzyme telomerase.

  13. Programming protein self assembly with coiled coils

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, Hendrik; Bornschloegl, Thomas; Heym, Roland; Koenig, Frauke; Rief, Matthias [Physik Department E22, Technische Universitaet Muenchen, James-Franck-Strasse 1, 85748 Garching (Germany)

    2007-11-15

    The controlled assembly of protein domains into supramolecular structures will be an important prerequisite for the use of functional proteins in future nanotechnology applications. Coiled coils are multimerization motifs whose dimerization properties can be programmed by amino acid sequence. Here, we report programmed supramolecular self-assembly of protein molecules using coiled coils and directly demonstrate its potential on the single molecule level by AFM force spectroscopy. We flanked two different model proteins, Ig27 from human cardiac titin and green fluorescent protein (GFP), by coiled coil binding partners and studied the capability of these elementary building blocks to self-assemble into linear chains. Simple sterical constraints are shown to control the assembly process, providing evidence that many proteins can be assembled with this method. An application for this technique is the design of polyproteins for single molecule force spectroscopy with an integrated force-calibration standard.

  14. Fibril assembly in whey protein mixtures

    NARCIS (Netherlands)

    Bolder, S.G.

    2007-01-01

    The objective of this thesis was to study fibril assembly in mixtures of whey proteins. The effect of the composition of the protein mixture on the structures and the resulting phase behaviour was investigated. The current work has shown that beta-lactoglobulin is responsible for the fibril assembly

  15. The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase.

    NARCIS (Netherlands)

    Suijkerbuijk, S.J.; Dam, T.J.P. van; Karagoz, G.E.; Castelmur, E. von; Hubner, N.C.; Duarte, A.M.; Vleugel, M.; Perrakis, A.; Rudiger, S.G.; Snel, B.; Kops, G.J.

    2012-01-01

    Chromosomal stability is safeguarded by a mitotic checkpoint, of which BUB1 and Mad3/BUBR1 are core components. These paralogs have similar, but not identical, domain organization. We show that Mad3/BUBR1 and BUB1 paralogous pairs arose by nine independent gene duplications throughout evolution,

  16. The Vertebrate Mitotic Checkpoint Protein BUBR1 Is an Unusual Pseudokinase

    NARCIS (Netherlands)

    Suijkerbuijk, Saskia J.E.; van Dam, Teunis J.P.; Karagöz, G. Elif; von Castelmur, Eleonore; Hubner, Nina C.; Duarte, Afonso M.S.; Vleugel, Mathijs; Perrakis, Anastassis; Rüdiger, Stefan G.D.|info:eu-repo/dai/nl/314076662; Snel, Berend|info:eu-repo/dai/nl/241508215; Kops, Geert J.P.L.

    2012-01-01

    Chromosomal stability is safeguarded by a mitotic checkpoint, of which BUB1 and Mad3/BUBR1 are core components. These paralogs have similar, but not identical, domain organization. We show that Mad3/BUBR1 and BUB1 paralogous pairs arose by nine independent gene duplications throughout evolution,

  17. Evolution and regulation of mitotic checkpoint protein recruitment by the kinetochore scaffold KNL1

    NARCIS (Netherlands)

    Vleugel, M.

    2014-01-01

    Faithful chromosome segregation in mitosis depends on a tight coordination between the formation of proper kinetochore-microtubule attachments and mitotic checkpoint (MC) activation and silencing. The outer kinetochore scaffold KNL1 plays an essential integrative role in these processes since it

  18. Engineering of protein assemblies within cells.

    Science.gov (United States)

    Nguyen, Tien K; Ueno, Takafumi

    2018-01-06

    Recent achievements in development of protein assembles within cells have extended biosupramolecular composites into a new era with versatile applications in the fields of biomaterial and biotechnology. Using methods with biological and physicochemical routes has made this era of research more interesting and challenging. Further advances in protein engineering have facilitated efficient fabrication of supramolecular complexes within living cells. Here, we provide a review of recent efforts to engineer protein assemblies within cells and describe the promising properties of these assemblies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Self-Assembling Protein Microarrays

    Science.gov (United States)

    Ramachandran, Niroshan; Hainsworth, Eugenie; Bhullar, Bhupinder; Eisenstein, Samuel; Rosen, Benjamin; Lau, Albert Y.; C. Walter, Johannes; LaBaer, Joshua

    2004-07-01

    Protein microarrays provide a powerful tool for the study of protein function. However, they are not widely used, in part because of the challenges in producing proteins to spot on the arrays. We generated protein microarrays by printing complementary DNAs onto glass slides and then translating target proteins with mammalian reticulocyte lysate. Epitope tags fused to the proteins allowed them to be immobilized in situ. This obviated the need to purify proteins, avoided protein stability problems during storage, and captured sufficient protein for functional studies. We used the technology to map pairwise interactions among 29 human DNA replication initiation proteins, recapitulate the regulation of Cdt1 binding to select replication proteins, and map its geminin-binding domain.

  20. S-Layer Protein Self-Assembly

    Science.gov (United States)

    Pum, Dietmar; Toca-Herrera, Jose Luis; Sleytr, Uwe B.

    2013-01-01

    Crystalline S(urface)-layers are the most commonly observed cell surface structures in prokaryotic organisms (bacteria and archaea). S-layers are highly porous protein meshworks with unit cell sizes in the range of 3 to 30 nm, and thicknesses of ~10 nm. One of the key features of S-layer proteins is their intrinsic capability to form self-assembled mono- or double layers in solution, and at interfaces. Basic research on S-layer proteins laid foundation to make use of the unique self-assembly properties of native and, in particular, genetically functionalized S-layer protein lattices, in a broad range of applications in the life and non-life sciences. This contribution briefly summarizes the knowledge about structure, genetics, chemistry, morphogenesis, and function of S-layer proteins and pays particular attention to the self-assembly in solution, and at differently functionalized solid supports. PMID:23354479

  1. Drosophila MOF controls Checkpoint protein2 and regulates genomic stability during early embryogenesis.

    Science.gov (United States)

    Pushpavalli, Sreerangam N C V L; Sarkar, Arpita; Ramaiah, M Janaki; Chowdhury, Debabani Roy; Bhadra, Utpal; Pal-Bhadra, Manika

    2013-01-24

    In Drosophila embryos, checkpoints maintain genome stability by delaying cell cycle progression that allows time for damage repair or to complete DNA synthesis. Drosophila MOF, a member of MYST histone acetyl transferase is an essential component of male X hyperactivation process. Until recently its involvement in G2/M cell cycle arrest and defects in ionizing radiation induced DNA damage pathways was not well established. Drosophila MOF is highly expressed during early embryogenesis. In the present study we show that haplo-insufficiency of maternal MOF leads to spontaneous mitotic defects like mitotic asynchrony, mitotic catastrophe and chromatid bridges in the syncytial embryos. Such abnormal nuclei are eliminated and digested in the yolk tissues by nuclear fall out mechanism. MOF negatively regulates Drosophila checkpoint kinase 2 tumor suppressor homologue. In response to DNA damage the checkpoint gene Chk2 (Drosophila mnk) is activated in the mof mutants, there by causing centrosomal inactivation suggesting its role in response to genotoxic stress. A drastic decrease in the fall out nuclei in the syncytial embryos derived from mof¹/+; mnkp⁶/+ females further confirms the role of DNA damage response gene Chk2 to ensure the removal of abnormal nuclei from the embryonic precursor pool and maintain genome stability. The fact that mof mutants undergo DNA damage has been further elucidated by the increased number of single and double stranded DNA breaks. mof mutants exhibited genomic instability as evidenced by the occurance of frequent mitotic bridges in anaphase, asynchronous nuclear divisions, disruption of cytoskeleton, inactivation of centrosomes finally leading to DNA damage. Our findings are consistent to what has been reported earlier in mammals that; reduced levels of MOF resulted in increased genomic instability while total loss resulted in lethality. The study can be further extended using Drosophila as model system and carry out the interaction of MOF

  2. Inhibition of clathrin by pitstop 2 activates the spindle assembly checkpoint and induces cell death in dividing HeLa cancer cells

    Directory of Open Access Journals (Sweden)

    Smith Charlotte M

    2013-01-01

    Full Text Available Abstract Background During metaphase clathrin stabilises the mitotic spindle kinetochore(K-fibres. Many anti-mitotic compounds target microtubule dynamics. Pitstop 2™ is the first small molecule inhibitor of clathrin terminal domain and inhibits clathrin-mediated endocytosis. We investigated its effects on a second function for clathrin in mitosis. Results Pitstop 2 did not impair clathrin recruitment to the spindle but disrupted its function once stationed there. Pitstop 2 trapped HeLa cells in metaphase through loss of mitotic spindle integrity and activation of the spindle assembly checkpoint, phenocopying clathrin depletion and aurora A kinase inhibition. Conclusions Pitstop 2 is therefore a new tool for investigating clathrin spindle dynamics. Pitstop 2 reduced viability in dividing HeLa cells, without affecting dividing non-cancerous NIH3T3 cells, suggesting that clathrin is a possible novel anti-mitotic drug target.

  3. Gli1 protein regulates the S-phase checkpoint in tumor cells via Bid protein, and its inhibition sensitizes to DNA topoisomerase 1 inhibitors.

    Science.gov (United States)

    Tripathi, Kaushlendra; Mani, Chinnadurai; Barnett, Reagan; Nalluri, Sriram; Bachaboina, Lavanya; Rocconi, Rodney P; Athar, Mohammed; Owen, Laurie B; Palle, Komaraiah

    2014-11-07

    Aberrant expression of hedgehog molecules, particularly Gli1, is common in cancers of many tissues and is responsible for their aggressive behavior and chemoresistance. Here we demonstrate a novel and tumor-specific role for aberrant Gli1 in the regulation of the S-phase checkpoint that suppresses replication stress and resistance to chemotherapy. Inhibition of Gli1 in tumor cells induced replication stress-mediated DNA damage response, attenuated their clonogenic potential, abrogated camptothecin (CPT)-induced Chk1 phosphorylation, and potentiated its cytotoxicity. However, in normal fibroblasts, Gli1 siRNAs showed no significant changes in CPT-induced Chk1 phosphorylation. Further analysis of ataxia telangiectasia and Rad3-related protein (ATR)/Chk1 signaling cascade genes in tumor cells revealed an unexpected mechanism whereby Gli1 regulates ATR-mediated Chk1 phosphorylation by transcriptional regulation of the BH3-only protein Bid. Consistent with its role in DNA damage response, Bid down-regulation in tumor cells abolished CPT-induced Chk1 phosphorylation and sensitized them to CPT. Correspondingly, Gli1 inhibition affected the expression of Bid and the association of replication protein A (RPA) with the ATR- interacting protein (ATRIP)-ATR complex, and this compromised the S-phase checkpoint. Conversely, complementation of Bid in Gli1-deficient cells restored CPT-induced Chk1 phosphorylation. An in silico analysis of the Bid promoter identified a putative Gli1 binding site, and further studies using luciferase reporter assays confirmed Gli1-dependent promoter activity. Collectively, our studies established a novel connection between aberrant Gli1 and Bid in the survival of tumor cells and their response to chemotherapy, at least in part, by regulating the S-phase checkpoint. Importantly, our data suggest a novel drug combination of Gli1 and Top1 inhibitors as an effective therapeutic strategy in treating tumors that expresses Gli1. © 2014 by The American

  4. Gli1 Protein Regulates the S-phase Checkpoint in Tumor Cells via Bid Protein, and Its Inhibition Sensitizes to DNA Topoisomerase 1 Inhibitors*

    Science.gov (United States)

    Tripathi, Kaushlendra; Mani, Chinnadurai; Barnett, Reagan; Nalluri, Sriram; Bachaboina, Lavanya; Rocconi, Rodney P.; Athar, Mohammed; Owen, Laurie B.; Palle, Komaraiah

    2014-01-01

    Aberrant expression of hedgehog molecules, particularly Gli1, is common in cancers of many tissues and is responsible for their aggressive behavior and chemoresistance. Here we demonstrate a novel and tumor-specific role for aberrant Gli1 in the regulation of the S-phase checkpoint that suppresses replication stress and resistance to chemotherapy. Inhibition of Gli1 in tumor cells induced replication stress-mediated DNA damage response, attenuated their clonogenic potential, abrogated camptothecin (CPT)-induced Chk1 phosphorylation, and potentiated its cytotoxicity. However, in normal fibroblasts, Gli1 siRNAs showed no significant changes in CPT-induced Chk1 phosphorylation. Further analysis of ataxia telangiectasia and Rad3-related protein (ATR)/Chk1 signaling cascade genes in tumor cells revealed an unexpected mechanism whereby Gli1 regulates ATR-mediated Chk1 phosphorylation by transcriptional regulation of the BH3-only protein Bid. Consistent with its role in DNA damage response, Bid down-regulation in tumor cells abolished CPT-induced Chk1 phosphorylation and sensitized them to CPT. Correspondingly, Gli1 inhibition affected the expression of Bid and the association of replication protein A (RPA) with the ATR- interacting protein (ATRIP)-ATR complex, and this compromised the S-phase checkpoint. Conversely, complementation of Bid in Gli1-deficient cells restored CPT-induced Chk1 phosphorylation. An in silico analysis of the Bid promoter identified a putative Gli1 binding site, and further studies using luciferase reporter assays confirmed Gli1-dependent promoter activity. Collectively, our studies established a novel connection between aberrant Gli1 and Bid in the survival of tumor cells and their response to chemotherapy, at least in part, by regulating the S-phase checkpoint. Importantly, our data suggest a novel drug combination of Gli1 and Top1 inhibitors as an effective therapeutic strategy in treating tumors that expresses Gli1. PMID:25253693

  5. Rad4 mainly functions in Chk1-mediated DNA damage checkpoint pathway as a scaffold protein in the fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Yue, Ming; Zeng, Li; Singh, Amanpreet; Xu, Yongjie

    2014-01-01

    Rad4/Cut5 is a scaffold protein in the Chk1-mediated DNA damage checkpoint in S. pombe. However, whether it contains a robust ATR-activation domain (AAD) required for checkpoint signaling like its orthologs TopBP1 in humans and Dpb11 in budding yeast has been incompletely clear. To identify the putative AAD in Rad4, we carried out an extensive genetic screen looking for novel mutants with an enhanced sensitivity to replication stress or DNA damage in which the function of the AAD can be eliminated by the mutations. Two new mutations near the N-terminus were identified that caused significantly higher sensitivities to DNA damage or chronic replication stress than all previously reported mutants, suggesting that most of the checkpoint function of the protein is eliminated. However, these mutations did not affect the activation of Rad3 (ATR in humans) yet eliminated the scaffolding function of the protein required for the activation of Chk1. Several mutations were also identified in or near the recently reported AAD in the C-terminus of Rad4. However, all mutations in the C-terminus only slightly sensitized the cells to DNA damage. Interestingly, a mutant lacking the whole C-terminus was found resistant to DNA damage and replication stress almost like the wild type cells. Consistent with the resistance, all known Rad3 dependent phosphorylations of checkpoint proteins remained intact in the C-terminal deletion mutant, indicating that unlike that in Dpb11, the C-terminus of Rad4 does not contain a robust AAD. These results, together with those from the biochemical studies, show that Rad4 mainly functions as a scaffold protein in the Chk1, not the Cds1(CHK2 in humans), checkpoint pathway. It plays a minor role or is functionally redundant with an unknown factor in Rad3 activation.

  6. Rad4 mainly functions in Chk1-mediated DNA damage checkpoint pathway as a scaffold protein in the fission yeast Schizosaccharomyces pombe.

    Directory of Open Access Journals (Sweden)

    Ming Yue

    Full Text Available Rad4/Cut5 is a scaffold protein in the Chk1-mediated DNA damage checkpoint in S. pombe. However, whether it contains a robust ATR-activation domain (AAD required for checkpoint signaling like its orthologs TopBP1 in humans and Dpb11 in budding yeast has been incompletely clear. To identify the putative AAD in Rad4, we carried out an extensive genetic screen looking for novel mutants with an enhanced sensitivity to replication stress or DNA damage in which the function of the AAD can be eliminated by the mutations. Two new mutations near the N-terminus were identified that caused significantly higher sensitivities to DNA damage or chronic replication stress than all previously reported mutants, suggesting that most of the checkpoint function of the protein is eliminated. However, these mutations did not affect the activation of Rad3 (ATR in humans yet eliminated the scaffolding function of the protein required for the activation of Chk1. Several mutations were also identified in or near the recently reported AAD in the C-terminus of Rad4. However, all mutations in the C-terminus only slightly sensitized the cells to DNA damage. Interestingly, a mutant lacking the whole C-terminus was found resistant to DNA damage and replication stress almost like the wild type cells. Consistent with the resistance, all known Rad3 dependent phosphorylations of checkpoint proteins remained intact in the C-terminal deletion mutant, indicating that unlike that in Dpb11, the C-terminus of Rad4 does not contain a robust AAD. These results, together with those from the biochemical studies, show that Rad4 mainly functions as a scaffold protein in the Chk1, not the Cds1(CHK2 in humans, checkpoint pathway. It plays a minor role or is functionally redundant with an unknown factor in Rad3 activation.

  7. Triggered Templated Assembly of Protein Polymersomes

    NARCIS (Netherlands)

    Li, F.; Wolf, de F.A.; Marcelis, A.T.M.; Sudhölter, E.J.R.; Stuart, M.A.C.; Leermakers, F.A.M.

    2010-01-01

    Trigger the block: Stable biocompatible protein polymersomes can be generated by a triggered templated self-assembly route (see picture). Pluronic L121 vesicles (red core with blue corona) take up a biosynthetic triblock copolymer CSXSXC into their unilamellar shell. In response to changes in pH

  8. The vertebrate mitotic checkpoint protein BUBR1 is an unusual pseudokinase.

    Science.gov (United States)

    Suijkerbuijk, Saskia J E; van Dam, Teunis J P; Karagöz, G Elif; von Castelmur, Eleonore; Hubner, Nina C; Duarte, Afonso M S; Vleugel, Mathijs; Perrakis, Anastassis; Rüdiger, Stefan G D; Snel, Berend; Kops, Geert J P L

    2012-06-12

    Chromosomal stability is safeguarded by a mitotic checkpoint, of which BUB1 and Mad3/BUBR1 are core components. These paralogs have similar, but not identical, domain organization. We show that Mad3/BUBR1 and BUB1 paralogous pairs arose by nine independent gene duplications throughout evolution, followed by parallel subfunctionalization in which preservation of the ancestral, amino-terminal KEN box or kinase domain was mutually exclusive. In one exception, vertebrate BUBR1-defined by the KEN box-preserved the kinase domain but allowed nonconserved degeneration of catalytic motifs. Although BUBR1 evolved to a typical pseudokinase in some vertebrates, it retained the catalytic triad in humans. However, we show that putative catalysis by human BUBR1 is dispensable for error-free chromosome segregation. Instead, residues that interact with ATP in conventional kinases are essential for conformational stability in BUBR1. We propose that parallel evolution of BUBR1 orthologs rendered its kinase function dispensable in vertebrates, producing an unusual, triad-containing pseudokinase. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. DNA damage checkpoint recovery and cancer development

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Haiyong [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Zhang, Xiaoshan [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States); Teng, Lisong, E-mail: lsteng@zju.edu.cn [First affiliated hospital, Zhejiang University, School of medicine, Cancer Center, 79 Qingchun Road, Hangzhou 310003 (China); Legerski, Randy J., E-mail: rlegersk@mdanderson.org [Department of Genetics, University of Texas M.D. Anderson Cancer Center, Department of Genetics Unit 1010, 1515 Holcombe Blvd. Houston, TX 77030 (United States)

    2015-06-10

    Cell cycle checkpoints were initially presumed to function as a regulator of cell cycle machinery in response to different genotoxic stresses, and later found to play an important role in the process of tumorigenesis by acting as a guard against DNA over-replication. As a counterpart of checkpoint activation, the checkpoint recovery machinery is working in opposition, aiming to reverse the checkpoint activation and resume the normal cell cycle. The DNA damage response (DDR) and oncogene induced senescence (OIS) are frequently found in precancerous lesions, and believed to constitute a barrier to tumorigenesis, however, the DDR and OIS have been observed to be diminished in advanced cancers of most tissue origins. These findings suggest that when progressing from pre-neoplastic lesions to cancer, DNA damage checkpoint barriers are overridden. How the DDR checkpoint is bypassed in this process remains largely unknown. Activated cytokine and growth factor-signaling pathways were very recently shown to suppress the DDR and to promote uncontrolled cell proliferation in the context of oncovirus infection. In recent decades, data from cell line and tumor models showed that a group of checkpoint recovery proteins function in promoting tumor progression; data from patient samples also showed overexpression of checkpoint recovery proteins in human cancer tissues and a correlation with patients' poor prognosis. In this review, the known cell cycle checkpoint recovery proteins and their roles in DNA damage checkpoint recovery are reviewed, as well as their implications in cancer development. This review also provides insight into the mechanism by which the DDR suppresses oncogene-driven tumorigenesis and tumor progression. - Highlights: • DNA damage checkpoint works as a barrier to cancer initiation. • DDR machinary response to genotoxic and oncogenic stress in similar way. • Checkpoint recovery pathways provide active signaling in cell cycle control. • Checkpoint

  10. A FRET-based study reveals site-specific regulation of spindle position checkpoint proteins at yeast centrosomes

    Science.gov (United States)

    Gryaznova, Yuliya; Caydasi, Ayse Koca; Malengo, Gabriele; Sourjik, Victor; Pereira, Gislene

    2016-01-01

    The spindle position checkpoint (SPOC) is a spindle pole body (SPB, equivalent of mammalian centrosome) associated surveillance mechanism that halts mitotic exit upon spindle mis-orientation. Here, we monitored the interaction between SPB proteins and the SPOC component Bfa1 by FRET microscopy. We show that Bfa1 binds to the scaffold-protein Nud1 and the γ-tubulin receptor Spc72. Spindle misalignment specifically disrupts Bfa1-Spc72 interaction by a mechanism that requires the 14-3-3-family protein Bmh1 and the MARK/PAR-kinase Kin4. Dissociation of Bfa1 from Spc72 prevents the inhibitory phosphorylation of Bfa1 by the polo-like kinase Cdc5. We propose Spc72 as a regulatory hub that coordinates the activity of Kin4 and Cdc5 towards Bfa1. In addition, analysis of spc72∆ cells shows that a mitotic-exit-promoting dominant signal, which is triggered upon elongation of the spindle into the bud, overrides the SPOC. Our data reinforce the importance of daughter-cell-associated factors and centrosome-based regulations in mitotic exit and SPOC control. DOI: http://dx.doi.org/10.7554/eLife.14029.001 PMID:27159239

  11. Cell Cycle Checkpoint Proteins p21 and Hus1 Regulating Intercellular Signaling Induced By Alpha Particle Irradiation

    Science.gov (United States)

    Wu, Lijun; Zhao, Ye; Wang, Jun; Hang, Haiying

    In recent years, the attentions for radiation induced bystander effects (RIBE) have been paid on the intercellular signaling events connecting the irradiated and non-irradiated cells. p21 is a member of the Cip/Kip family and plays essential roles in cell cycle progression arrest after cellular irradiation. DNA damage checkpoint protein Hus1 is a member of the Rad9-Rad1-Hus1 complex and functions as scaffold at the damage sites to facilitate the activation of downstream effectors. Using the medium trasfer method and the cells of MEF, MEF (p21-/-), MEF (p21-/-Hus1-/-) as either medium donor or receptor cells, it was found that with 5cGy alpha particle irradiation, the bystander cells showed a significant induction of -H2AX for normal MEFs (p¡0.05). However, the absence of p21 resulted in deficiency in inducing bystander effects. Further results indicated p21 affected the intercellular DNA damage signaling mainly through disrupting the production or release of the damage signals from irradiated cells. When Hus1 and p21 were both knocked out, an obvious induction of -H2AX recurred in bystander cells and the induction of -H2AX was GJIC (gap junction-mediated intercellular communication) dependent, indicating the interrelationship between p21 and Hus1 regulated the production and relay of DNA damage signals from irradiated cells to non-irradiated bystander cells.

  12. Ddc1 checkpoint protein and DNA polymerase ɛ interact with nick-containing DNA repair intermediate in cell free extracts of Saccharomyces cerevisiae.

    Science.gov (United States)

    Sukhanova, Maria V; D'Herin, Claudine; van der Kemp, Patricia Auffret; Koval, Vladimir V; Boiteux, Serge; Lavrik, Olga I

    2011-08-15

    To characterize proteins that interact with base excision/single-strand interruption repair DNA intermediates in cell free extracts of Saccharomyces cerevisiae, we used a combination of photoaffinity labeling with the protein identification by MALDI-TOF-MS peptide mapping. Photoreactive analogue of dCTP, namely exo-N-[4-(4-azido-2,3,5,6,-tetrafluorobenzylidenehydrazinocarbonyl)-butylcarbamoyl]-2'-deoxycytidine-5'-triphosphate, and [(32)P]-labeled DNA duplex containing one nucleotide gap were used to generate nick-containing DNA with a photoreactive dCMP residue at the 3'-margin of the nick. This photoreactive DNA derivative was incubated with the yeast cell extract and after UV irradiation a number of proteins were labeled. Two of the crosslinked proteins were identified as the catalytic subunit of DNA polymerase ɛ and Ddc1 checkpoint protein. Labeling of DNA polymerase ɛ catalytic subunit with the nick-containing DNA repair intermediate indicates that the DNA polymerase is involved in the DNA repair synthesis in yeast, at least at DNA single-strand interruptions. Crosslinking of Ddc1 to DNA nicks took place independently of the other components of checkpoint clamp, Mec3 and Rad17, suggesting that the protein alone is able to recognize DNA single-strand breaks. Indeed, purified GST-tagged Ddc1 protein was efficiently crosslinked to nick-containing DNA. The interaction of Ddc1 with DNA nicks may provide a link between the DNA damage checkpoint and DNA base excision/single-strand breaks repair pathways in yeast. In addition, we found that absence of Ddc1 protein greatly influences the overall pattern of other proteins crosslinked to DNA nick. We suggested that this last effect of Ddc1 is at least partially due to its capacity to prevent proteolytic degradation of the DNA-protein adducts. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. DNA-directed assembly of protein microarrays.

    Science.gov (United States)

    Tang, Yew Chung; Wan, Guoqiang; Ng, Jin Kiat; Ajikumar, Parayil Kumaran; Too, Heng-Phon

    2008-05-01

    Microarray technology has made it possible to simultaneously study the abundance, interactions, and functions of potentially tens of thousands of biological molecules. From its earliest use in DNA microarrays, where only nucleic acids were captured and detected on the arrays, applications of microarrays now extend to those involving biomolecules such as antibodies, proteins, peptides, and carbohydrates. In contrast to the relative robustness of DNA microarrays, the use of such chemically diverse biomolecules on microarray formats presents many challenges in their fabrication as well as application. Among the many methods that have been proposed to overcome these challenges, DNA-directed assembly (DDA) has emerged as a promising strategy for the high sensitivity and multiplexed capture and detection of various analytes. In this review, we explore the challenges faced during the design, fabrication, and utilization of protein microarrays and highlight how DDA strategies, together with other recent advances in the field, are accelerating the development of platforms available for protein microarray applications.

  14. Bub1 positions Mad1 close to KNL1 MELT repeats to promote checkpoint signalling

    DEFF Research Database (Denmark)

    Zhang, Gang; Kruse, Thomas; López-Méndez, Blanca

    2017-01-01

    Proper segregation of chromosomes depends on a functional spindle assembly checkpoint (SAC) and requires kinetochore localization of the Bub1 and Mad1/Mad2 checkpoint proteins. Several aspects of Mad1/Mad2 kinetochore recruitment in human cells are unclear and in particular the underlying direct...... interactions. Here we show that conserved domain 1 (CD1) in human Bub1 binds directly to Mad1 and a phosphorylation site exists in CD1 that stimulates Mad1 binding and SAC signalling. Importantly, fusion of minimal kinetochore-targeting Bub1 fragments to Mad1 bypasses the need for CD1, revealing that the main...... for spindle assembly checkpoint signalling at kinetochores in human cells....

  15. Synthetic Physical Interactions Map Kinetochore-Checkpoint Activation Regions

    Directory of Open Access Journals (Sweden)

    Guðjón Ólafsson

    2016-08-01

    Full Text Available The spindle assembly checkpoint (SAC is a key mechanism to regulate the timing of mitosis and ensure that chromosomes are correctly segregated to daughter cells. The recruitment of the Mad1 and Mad2 proteins to the kinetochore is normally necessary for SAC activation. This recruitment is coordinated by the SAC kinase Mps1, which phosphorylates residues at the kinetochore to facilitate binding of Bub1, Bub3, Mad1, and Mad2. There is evidence that the essential function of Mps1 is to direct recruitment of Mad1/2. To test this model, we have systematically recruited Mad1, Mad2, and Mps1 to most proteins in the yeast kinetochore, and find that, while Mps1 is sufficient for checkpoint activation, recruitment of either Mad1 or Mad2 is not. These data indicate an important role for Mps1 phosphorylation in SAC activation, beyond the direct recruitment of Mad1 and Mad2.

  16. Extract of bulbus Fritillaria cirrhosa perturbs spindle assembly checkpoint, induces mitotic aberrations and genomic instability in human colon epithelial cell line.

    Science.gov (United States)

    Guo, Xihan; Ni, Juan; Xue, Jinglun; Wang, Xu

    2017-03-02

    Bulbus Fritillaria cirrhosa D. Don (BFC) has been used in China as a folk medicine for the treatment of cough and asthma for more than 2000 years. The antitussive and antiasthmatic effects of BFC have been reported before, nevertheless its toxicity and safety have not been documented. This study investigated the possible effects of BFC on spindle assembly checkpoint (SAC), mitotic fidelity and genomic stability in human NCM460 colon epithelial cells. Cells were treated with BFC (0, 20, 40, 80 and 160μg/ml) for 24, 48 and 72h and harvested differently according to the biomarkers observed. Mitotic aberrations were assessed by the biomarkers of chromosome misalignment (CMA), chromosome lagging (CL) and chromatin bridge (CB). Frequencies of micronuclei (MN), nucleoplasmic bridge and nuclear bud (NB) in cytokinesis-block micronucleus assay were used as indicators of genomic instability (GIN). SAC activity was determined by anaphase to metaphase ratio (AMR) and the expression of several SAC genes, including CENP-E, Mps1, Bub1, Mad-1, BubR1 and Mad-2. Compared with the control, cells in BFC treated groups (80 and 160μg/ml) showed: 1) increased AMR (pMps1, Bub1 and Mad-1 (p<0.05) and down-regulated expression of CENP-E, BubR1 and Mad-2 (p<0.05); 2) increased frequencies of CMA, CL and CB (p<0.01); 3) increased incidences of MN and NB (p<0.01). This study revealed for the first time that BFC causes mitotic aberrations and GIN in human colon epithelial cells and these effects maybe the result of SAC dysfunction. Copyright © 2017 Elsevier GmbH. All rights reserved.

  17. Polo-like Kinase 1 Activated by the Hepatitis B Virus X Protein Attenuates Both the DNA Damage Checkpoint and DNA Repair Resulting in Partial Polyploidy*

    Science.gov (United States)

    Studach, Leo; Wang, Wen-Horng; Weber, Gregory; Tang, Jiabin; Hullinger, Ronald L.; Malbrue, Raphael; Liu, Xiaoqi; Andrisani, Ourania

    2010-01-01

    Hepatitis B virus X protein (pX), implicated in hepatocarcinogenesis, induces DNA damage because of re-replication and allows propagation of damaged DNA, resulting in partial polyploidy and oncogenic transformation. The mechanism by which pX allows cells with DNA damage to continue proliferating is unknown. Herein, we show pX activates Polo-like kinase 1 (Plk1) in the G2 phase, thereby attenuating the DNA damage checkpoint. Specifically, in the G2 phase of pX-expressing cells, the checkpoint kinase Chk1 was inactive despite DNA damage, and protein levels of claspin, an adaptor of ataxia telangiectasia-mutated and Rad3-related protein-mediated Chk1 phosphorylation, were reduced. Pharmacologic inhibition or knockdown of Plk1 restored claspin protein levels, Chk1 activation, and p53 stabilization. Also, protein levels of DNA repair protein Mre11 were decreased in the G2 phase of pX-expressing cells but not with Plk1 knockdown. Interestingly, in pX-expressing cells, Mre11 co-immunoprecipitated with transfected Plk1 Polo-box domain, and inhibition of Plk1 increased Mre11 stability in cycloheximide-treated cells. These results suggest that pX-activated Plk1 by down-regulating Mre11 attenuates DNA repair. Importantly, concurrent inhibition of Plk1, p53, and Mre11 increased the number of pX-expressing cells with DNA damage entering mitosis, relative to Plk1 inhibition alone. By contrast, inhibition or knockdown of Plk1 reduced pX-induced polyploidy while increasing apoptosis. We conclude Plk1, activated by pX, allows propagation of DNA damage by concurrently attenuating the DNA damage checkpoint and DNA repair, resulting in polyploidy. We propose this novel Plk1 mechanism initiates pX-mediated hepatocyte transformation. PMID:20624918

  18. Polo-like kinase 1 activated by the hepatitis B virus X protein attenuates both the DNA damage checkpoint and DNA repair resulting in partial polyploidy.

    Science.gov (United States)

    Studach, Leo; Wang, Wen-Horng; Weber, Gregory; Tang, Jiabin; Hullinger, Ronald L; Malbrue, Raphael; Liu, Xiaoqi; Andrisani, Ourania

    2010-09-24

    Hepatitis B virus X protein (pX), implicated in hepatocarcinogenesis, induces DNA damage because of re-replication and allows propagation of damaged DNA, resulting in partial polyploidy and oncogenic transformation. The mechanism by which pX allows cells with DNA damage to continue proliferating is unknown. Herein, we show pX activates Polo-like kinase 1 (Plk1) in the G(2) phase, thereby attenuating the DNA damage checkpoint. Specifically, in the G(2) phase of pX-expressing cells, the checkpoint kinase Chk1 was inactive despite DNA damage, and protein levels of claspin, an adaptor of ataxia telangiectasia-mutated and Rad3-related protein-mediated Chk1 phosphorylation, were reduced. Pharmacologic inhibition or knockdown of Plk1 restored claspin protein levels, Chk1 activation, and p53 stabilization. Also, protein levels of DNA repair protein Mre11 were decreased in the G(2) phase of pX-expressing cells but not with Plk1 knockdown. Interestingly, in pX-expressing cells, Mre11 co-immunoprecipitated with transfected Plk1 Polo-box domain, and inhibition of Plk1 increased Mre11 stability in cycloheximide-treated cells. These results suggest that pX-activated Plk1 by down-regulating Mre11 attenuates DNA repair. Importantly, concurrent inhibition of Plk1, p53, and Mre11 increased the number of pX-expressing cells with DNA damage entering mitosis, relative to Plk1 inhibition alone. By contrast, inhibition or knockdown of Plk1 reduced pX-induced polyploidy while increasing apoptosis. We conclude Plk1, activated by pX, allows propagation of DNA damage by concurrently attenuating the DNA damage checkpoint and DNA repair, resulting in polyploidy. We propose this novel Plk1 mechanism initiates pX-mediated hepatocyte transformation.

  19. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling

    OpenAIRE

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-01

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1?Bub3 and BubR1?Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1?Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or ...

  20. Directed Supramolecular Surface Assembly of SNAP-tag Fusion Proteins

    NARCIS (Netherlands)

    Uhlenheuer, D.A.; Wasserberg, D.; Haase, C.; Nguyen, Hoang D.; Schenkel, J.H.; Huskens, Jurriaan; Ravoo, B.J.; Jonkheijm, Pascal; Brunsveld, Luc

    2012-01-01

    Supramolecular assembly of proteins on surfaces and vesicles was investigated by site-selective incorporation of a supramolecular guest element on proteins. Fluorescent proteins were site-selectively labeled with bisadamantane by SNAP-tag technology. The assembly of the bisadamantane functionalized

  1. DNA damage response clamp 9-1-1 promotes assembly of ZMM proteins for formation of crossovers and synaptonemal complex

    Science.gov (United States)

    Shinohara, Miki; Hayashihara, Kayoko; Grubb, Jennifer T.; Bishop, Douglas K.; Shinohara, Akira

    2015-01-01

    Formation of crossovers between homologous chromosomes during meiosis is positively regulated by the ZMM proteins (also known as SIC proteins). DNA damage checkpoint proteins also promote efficient formation of interhomolog crossovers. Here, we examined, in budding yeast, the meiotic role of the heterotrimeric DNA damage response clamp composed of Rad17, Ddc1 and Mec3 (known as ‘9-1-1’ in other organisms) and a component of the clamp loader, Rad24 (known as Rad17 in other organisms). Cytological analysis indicated that the 9-1-1 clamp and its loader are not required for the chromosomal loading of RecA homologs Rad51 or Dmc1, but are necessary for the efficient loading of ZMM proteins. Interestingly, the loading of ZMM proteins onto meiotic chromosomes was independent of the checkpoint kinase Mec1 (the homolog of ATR) as well as Rad51. Furthermore, the ZMM member Zip3 (also known as Cst9) bound to the 9-1-1 complex in a cell-free system. These data suggest that, in addition to promoting interhomolog bias mediated by Rad51–Dmc1, the 9-1-1 clamp promotes crossover formation through a specific role in the assembly of ZMM proteins. Thus, the 9-1-1 complex functions to promote two crucial meiotic recombination processes, the regulation of interhomolog recombination and crossover formation mediated by ZMM. PMID:25736290

  2. Distinct domains in Bub1 localize RZZ and BubR1 to kinetochores to regulate the checkpoint

    DEFF Research Database (Denmark)

    Zhang, Gang; Lischetti, Tiziana; Hayward, Daniel G

    2015-01-01

    The spindle assembly checkpoint (SAC) ensures proper chromosome segregation by delaying anaphase onset in response to unattached kinetochores. Checkpoint signalling requires the kinetochore localization of the Mad1-Mad2 complex that in more complex eukaryotes depends on the Rod-Zwilch-ZW10 (RZZ......) complex. The kinetochore protein Zwint has been proposed to be the kinetochore receptor for RZZ, but here we show that Bub1 and not Zwint is required for RZZ recruitment. We find that the middle region of Bub1 encompassing a domain essential for SAC signalling contributes to RZZ localization. In addition......, we show that a distinct region in Bub1 mediates kinetochore localization of BubR1 through direct binding, but surprisingly removal of this region increases checkpoint strength. Our work thus uncovers how Bub1 coordinates checkpoint signalling by distinct domains for RZZ and BubR1 recruitment...

  3. Speculative Memory Checkpointing

    NARCIS (Netherlands)

    Vogt, D.; Portokalidis, G.; Bos, H.J.; Tanenbaum, A.S.; Giuffrida, C.; Miraglia, Armando

    2015-01-01

    High-frequency memory checkpointing is an important technique in several application domains, such as automatic error recovery (where frequent checkpoints allow the system to transparently mask failures) and application debugging (where frequent checkpoints enable fast and accurate time-traveling

  4. Expression of constitutively active CDK1 stabilizes APC-Cdh1 substrates and potentiates premature spindle assembly and checkpoint function in G1 cells.

    Science.gov (United States)

    Ma, Yan; Yuan, Xi; Wyatt, William R; Pomerening, Joseph R

    2012-01-01

    Mitotic progression in eukaryotic cells depends upon the activation of cyclin-dependent kinase 1 (CDK1), followed by its inactivation through the anaphase-promoting complex (APC)/cyclosome-mediated degradation of M-phase cyclins. Previous work revealed that expression of a constitutively active CDK1 (CDK1AF) in HeLa cells permitted their division, but yielded G1 daughter cells that underwent premature S-phase and early mitotic events. While CDK1AF was found to impede the sustained activity of APC-Cdh1, it was unknown if this defect improperly stabilized mitotic substrates and contributed to the occurrence of these premature M phases. Here, we show that CDK1AF expression in HeLa cells improperly stabilized APC-Cdh1 substrates in G1-phase daughter cells, including mitotic kinases and the APC adaptor, Cdc20. Division of CDK1AF-expressing cells produced G1 daughters with an accelerated S-phase onset, interrupted by the formation of premature bipolar spindles capable of spindle assembly checkpoint function. Further characterization of these phenotypes induced by CDK1AF expression revealed that this early spindle formation depended upon premature CDK1 and Aurora B activities, and their inhibition induced rapid spindle disassembly. Following its normal M-phase degradation, we found that the absence of Wee1 in these prematurely cycling daughter cells permitted the endogenous CDK1 to contribute to these premature mitotic events, since expression of a non-degradable Wee1 reduced the number of cells that exhibited premature cyclin B1oscillations. Lastly, we discovered that Cdh1-ablated cells could not be forced into a premature M phase, despite cyclin B1 overexpression and proteasome inhibition. Together, these results demonstrate that expression of constitutively active CDK1AF hampers the destruction of critical APC-Cdh1 targets, and that this type of condition could prevent newly divided cells from properly maintaining a prolonged interphase state. We propose that this more

  5. Expression of constitutively active CDK1 stabilizes APC-Cdh1 substrates and potentiates premature spindle assembly and checkpoint function in G1 cells.

    Directory of Open Access Journals (Sweden)

    Yan Ma

    Full Text Available Mitotic progression in eukaryotic cells depends upon the activation of cyclin-dependent kinase 1 (CDK1, followed by its inactivation through the anaphase-promoting complex (APC/cyclosome-mediated degradation of M-phase cyclins. Previous work revealed that expression of a constitutively active CDK1 (CDK1AF in HeLa cells permitted their division, but yielded G1 daughter cells that underwent premature S-phase and early mitotic events. While CDK1AF was found to impede the sustained activity of APC-Cdh1, it was unknown if this defect improperly stabilized mitotic substrates and contributed to the occurrence of these premature M phases. Here, we show that CDK1AF expression in HeLa cells improperly stabilized APC-Cdh1 substrates in G1-phase daughter cells, including mitotic kinases and the APC adaptor, Cdc20. Division of CDK1AF-expressing cells produced G1 daughters with an accelerated S-phase onset, interrupted by the formation of premature bipolar spindles capable of spindle assembly checkpoint function. Further characterization of these phenotypes induced by CDK1AF expression revealed that this early spindle formation depended upon premature CDK1 and Aurora B activities, and their inhibition induced rapid spindle disassembly. Following its normal M-phase degradation, we found that the absence of Wee1 in these prematurely cycling daughter cells permitted the endogenous CDK1 to contribute to these premature mitotic events, since expression of a non-degradable Wee1 reduced the number of cells that exhibited premature cyclin B1oscillations. Lastly, we discovered that Cdh1-ablated cells could not be forced into a premature M phase, despite cyclin B1 overexpression and proteasome inhibition. Together, these results demonstrate that expression of constitutively active CDK1AF hampers the destruction of critical APC-Cdh1 targets, and that this type of condition could prevent newly divided cells from properly maintaining a prolonged interphase state. We

  6. The checkpoint protein Chfr is a ligase that ubiquitinates Plk1 and inhibits Cdc2 at the G2 to M transition

    OpenAIRE

    Kang, Dongmin; Chen, James; Wong, Jim; Fang, Guowei

    2002-01-01

    The checkpoint protein Chfr delays entry into mitosis, in the presence of mitotic stress (Scolnick, D.M., and T.D. Halazonetis. 2000. Nature. 406:430–435). We show here that Chfr is a ubiquitin ligase, both in vitro and in vivo. When transfected into HEK293T cells, Myc–Chfr promotes the formation of high molecular weight ubiquitin conjugates. The ring finger domain in Chfr is required for the ligase activity; this domain auto-ubiquitinates, and mutations of conserved residues in this domain a...

  7. Properties of Fibrillar Protein Assemblies and their Percolating Networks

    NARCIS (Netherlands)

    Veerman, C.

    2004-01-01

    Properties of Fibrillar Protein Assemblies and their Percolating Networks. PhD thesis, Wageningen University, The Netherlands Keywords: bovine serum albumin, complex fluids, excluded volume, fibrils, gels, innovation, b-lactoglobulin, ovalbumin, percolation, proteins, rheology, rheo-optics,

  8. The architecture of the BubR1 tetratricopeptide tandem repeat defines a protein motif underlying mitotic checkpoint-kinetochore communication.

    Science.gov (United States)

    Bolanos-Garcia, Victor M; Nilsson, Jakob; Blundell, Tom L

    2012-01-01

    The accurate and timely transmission of the genetic material to progeny during successive rounds of cell division is sine qua non for the maintenance of genome stability. Eukaryotic cells have evolved a surveillance mechanism, the mitotic spindle assembly checkpoint (SAC), to prevent premature advance to anaphase before every chromosome is properly attached to microtubules of the mitotic spindle. The architecture of the KNL1-BubR1 complex reveals important features of the molecular recognition between SAC components and the kinetochore. The interaction is important for a functional SAC as substitution of BubR1 residues engaged in KNL1 binding impaired the SAC and BubR1 recruitment into checkpoint complexes in stable cell lines. Here we discuss the implications of the disorder-to-order transition of KNL1 upon BubR1 binding for SAC signaling and propose a mechanistic model of how BUBs binding may affect the recognition of KNL1 by its other interacting partners.

  9. Tetrahymena dynamin-related protein 6 self-assembles ...

    Indian Academy of Sciences (India)

    Usha P Kar

    2017-12-30

    Dec 30, 2017 ... Self-assembly on target membranes is one of the important properties of all dynamin family proteins. Drp6, a dynamin- related protein in Tetrahymena, controls nuclear remodelling and undergoes cycles of assembly/disassembly on the nuclear envelope. To elucidate the mechanism of Drp6 function, we ...

  10. DNA origami as a nanoscale template for protein assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kuzyk, Anton; Laitinen, Kimmo T [Nanoscience Center, Department of Physics, University of Jyvaeskylae, PO Box 35, FIN-40014 (Finland); Toermae, Paeivi [Department of Applied Physics, Helsinki University of Technology, PO Box 5100, FIN-02015 (Finland)], E-mail: paivi.torma@hut.fi

    2009-06-10

    We describe two general approaches to the utilization of DNA origami structures for the assembly of materials. In one approach, DNA origami is used as a prefabricated template for subsequent assembly of materials. In the other, materials are assembled simultaneously with the DNA origami, i.e. the DNA origami technique is used to drive the assembly of materials. Fabrication of complex protein structures is demonstrated by these two approaches. The latter approach has the potential to be extended to the assembly of multiple materials with single attachment chemistry.

  11. C-terminal region of Mad2 plays an important role during mitotic spindle checkpoint in fission yeast Schizosaccharomyces pombe.

    Science.gov (United States)

    Singh, Gaurav Kumar; Karade, Sharanbasappa Shrimant; Ranjan, Rajeev; Ahamad, Nafees; Ahmed, Shakil

    2017-02-01

    The mitotic arrest deficiency 2 (Mad2) protein is an essential component of the spindle assembly checkpoint that interacts with Cdc20/Slp1 and inhibit its ability to activate anaphase promoting complex/cyclosome (APC/C). In bladder cancer cell line the C-terminal residue of the mad2 gene has been found to be deleted. In this study we tried to understand the role of the C-terminal region of mad2 on the spindle checkpoint function. To envisage the role of C-terminal region of Mad2, we truncated 25 residues of Mad2 C-terminal region in fission yeast S.pombe and characterized its effect on spindle assembly checkpoint function. The cells containing C-terminal truncation of Mad2 exhibit sensitivity towards microtubule destabilizing agent suggesting perturbation of spindle assembly checkpoint. Further, the C-terminal truncation of Mad2 exhibit reduced viability in the nda3-KM311 mutant background at non-permissive temperature. Truncation in mad2 gene also affects its foci forming ability at unattached kinetochore suggesting that the mad2-∆CT mutant is unable to maintain spindle checkpoint activation. However, in response to the defective microtubule, only brief delay of mitotic progression was observed in Mad2 C-terminal truncation mutant. In addition we have shown that the deletion of two β strands of Mad2 protein abolishes its ability to interact with APC activator protein Slp1/Cdc20. We purpose that the truncation of two β strands (β7 and β8) of Mad2 destabilize the safety belt and affect the Cdc20-Mad2 interaction leading to defects in the spindle checkpoint activation.

  12. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility

    OpenAIRE

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F.; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L.; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic...

  13. Principles of assembly reveal a periodic table of protein complexes.

    Science.gov (United States)

    Ahnert, Sebastian E; Marsh, Joseph A; Hernández, Helena; Robinson, Carol V; Teichmann, Sarah A

    2015-12-11

    Structural insights into protein complexes have had a broad impact on our understanding of biological function and evolution. In this work, we sought a comprehensive understanding of the general principles underlying quaternary structure organization in protein complexes. We first examined the fundamental steps by which protein complexes can assemble, using experimental and structure-based characterization of assembly pathways. Most assembly transitions can be classified into three basic types, which can then be used to exhaustively enumerate a large set of possible quaternary structure topologies. These topologies, which include the vast majority of observed protein complex structures, enable a natural organization of protein complexes into a periodic table. On the basis of this table, we can accurately predict the expected frequencies of quaternary structure topologies, including those not yet observed. These results have important implications for quaternary structure prediction, modeling, and engineering. Copyright © 2015, American Association for the Advancement of Science.

  14. RNA Seeds Higher-Order Assembly of FUS Protein

    Directory of Open Access Journals (Sweden)

    Jacob C. Schwartz

    2013-11-01

    Full Text Available The abundant nuclear RNA binding protein FUS binds the C-terminal domain (CTD of RNA polymerase II in an RNA-dependent manner, affecting Ser2 phosphorylation and transcription. Here, we examine the mechanism of this process and find that RNA binding nucleates the formation of higher-order FUS ribonucleoprotein assemblies that bind the CTD. Both the low-complexity domain and the arginine-glycine rich domain of FUS contribute to assembly. The assemblies appear fibrous by electron microscopy and have characteristics of β zipper structures. These results support the emerging view that the pathologic protein aggregation seen in neurodegenerative diseases such as amyotrophic lateral sclerosis may occur via the exaggeration of functionally important assemblies of RNA binding proteins.

  15. Engineering Globular Protein Vesicles through Tunable Self-Assembly of Recombinant Fusion Proteins.

    Science.gov (United States)

    Jang, Yeongseon; Choi, Won Tae; Heller, William T; Ke, Zunlong; Wright, Elizabeth R; Champion, Julie A

    2017-09-01

    Vesicles assembled from folded, globular proteins have potential for functions different from traditional lipid or polymeric vesicles. However, they also present challenges in understanding the assembly process and controlling vesicle properties. From detailed investigation of the assembly behavior of recombinant fusion proteins, this work reports a simple strategy to engineer protein vesicles containing functional, globular domains. This is achieved through tunable self-assembly of recombinant globular fusion proteins containing leucine zippers and elastin-like polypeptides. The fusion proteins form complexes in solution via high affinity binding of the zippers, and transition through dynamic coacervates to stable hollow vesicles upon warming. The thermal driving force, which can be tuned by protein concentration or temperature, controls both vesicle size and whether vesicles are single or bi-layered. These results provide critical information to engineer globular protein vesicles via self-assembly with desired size and membrane structure. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Studying protein assembly with reversible Brownian dynamics of patchy particles

    Energy Technology Data Exchange (ETDEWEB)

    Klein, Heinrich C. R. [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); Schwarz, Ulrich S., E-mail: ulrich.schwarz@bioquant.uni-heidelberg.de [Institute for Theoretical Physics, Heidelberg University, 69120 Heidelberg (Germany); BioQuant, Heidelberg University, 69120 Heidelberg (Germany)

    2014-05-14

    Assembly of protein complexes like virus shells, the centriole, the nuclear pore complex, or the actin cytoskeleton is strongly determined by their spatial structure. Moreover, it is becoming increasingly clear that the reversible nature of protein assembly is also an essential element for their biological function. Here we introduce a computational approach for the Brownian dynamics of patchy particles with anisotropic assemblies and fully reversible reactions. Different particles stochastically associate and dissociate with microscopic reaction rates depending on their relative spatial positions. The translational and rotational diffusive properties of all protein complexes are evaluated on-the-fly. Because we focus on reversible assembly, we introduce a scheme which ensures detailed balance for patchy particles. We then show how the macroscopic rates follow from the microscopic ones. As an instructive example, we study the assembly of a pentameric ring structure, for which we find excellent agreement between simulation results and a macroscopic kinetic description without any adjustable parameters. This demonstrates that our approach correctly accounts for both the diffusive and reactive processes involved in protein assembly.

  17. Yeast Interacting Proteins Database: YOL069W, YIL144W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available complex (Ndc80p-Nuf2p-Spc24p-Spc25p); involved in chromosome segregation, spindle checkpoint activity and kinetochore clustering...vity, kinetochore assembly and clustering Rows with this prey as prey (2) Rows with this prey as bait (0) 12...-Nuf2p-Spc24p-Spc25p); involved in chromosome segregation, spindle checkpoint activity and kinetochore clustering...d coiled-coil protein involved in chromosome segregation, spindle checkpoint activity, kinetochore assembly and clustering

  18. Proteins evolve on the edge of supramolecular self-assembly

    Science.gov (United States)

    Garcia-Seisdedos, Hector; Empereur-Mot, Charly; Elad, Nadav; Levy, Emmanuel D.

    2017-08-01

    The self-association of proteins into symmetric complexes is ubiquitous in all kingdoms of life. Symmetric complexes possess unique geometric and functional properties, but their internal symmetry can pose a risk. In sickle-cell disease, the symmetry of haemoglobin exacerbates the effect of a mutation, triggering assembly into harmful fibrils. Here we examine the universality of this mechanism and its relation to protein structure geometry. We introduced point mutations solely designed to increase surface hydrophobicity among 12 distinct symmetric complexes from Escherichia coli. Notably, all responded by forming supramolecular assemblies in vitro, as well as in vivo upon heterologous expression in Saccharomyces cerevisiae. Remarkably, in four cases, micrometre-long fibrils formed in vivo in response to a single point mutation. Biophysical measurements and electron microscopy revealed that mutants self-assembled in their folded states and so were not amyloid-like. Structural examination of 73 mutants identified supramolecular assembly hot spots predictable by geometry. A subsequent structural analysis of 7,471 symmetric complexes showed that geometric hot spots were buffered chemically by hydrophilic residues, suggesting a mechanism preventing mis-assembly of these regions. Thus, point mutations can frequently trigger folded proteins to self-assemble into higher-order structures. This potential is counterbalanced by negative selection and can be exploited to design nanomaterials in living cells.

  19. Protein-directed self-assembly of a fullerene crystal

    Science.gov (United States)

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B.; Acharya, Rudresh; Degrado, William F.; Kim, Yong Ho; Grigoryan, Gevorg

    2016-04-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design.

  20. Role of Human Cytomegalovirus Tegument Proteins in Virion Assembly

    Science.gov (United States)

    Smith, Rebecca Marie; Kosuri, Srivenkat; Kerry, Julie Anne

    2014-01-01

    Like other herpesviruses, human cytomegalovirus (HCMV) contains a unique proteinaceous layer between the virion envelope and capsid, termed the tegument. Upon infection, the contents of the tegument layer are delivered to the host cell, along with the capsid and the viral genome, where they facilitate the initial stages of virus replication. The tegument proteins also play important roles in virion assembly and this dual nature makes them attractive potential targets for antiviral therapies. While our knowledge regarding tegument protein function during the initiation of infection has been the subject of intense study, their roles in assembly are much less well understood. In this review, we will focus on recent studies that highlight the functions of HCMV tegument proteins during assembly, and pose key questions for further investigation. PMID:24509811

  1. Self-assembly of model proteins into virus capsids

    Science.gov (United States)

    Wołek, Karol; Cieplak, Marek

    2017-11-01

    We consider self-assembly of proteins into a virus capsid by the methods of molecular dynamics. The capsid corresponds either to SPMV or CCMV and is studied with and without the RNA molecule inside. The proteins are flexible and described by the structure-based coarse-grained model augmented by electrostatic interactions. Previous studies of the capsid self-assembly involved solid objects of a supramolecular scale, e.g. corresponding to capsomeres, with engineered couplings and stochastic movements. In our approach, a single capsid is dissociated by an application of a high temperature for a variable period and then the system is cooled down to allow for self-assembly. The restoration of the capsid proceeds to various extent, depending on the nature of the dissociated state, but is rarely complete because some proteins depart too far unless the process takes place in a confined space.

  2. Spectromicroscopy of self-assembled protein clusters

    Energy Technology Data Exchange (ETDEWEB)

    Schonschek, O.; Hormes, J.; Herzog, V. [Univ. of Bonn (Germany)

    1997-04-01

    The aim of this project is to use synchrotron radiation as a tool to study biomedical questions concerned with the thyroid glands. The biological background is outlined in a recent paper. In short, Thyroglobulin (TG), the precursor protein of the hormone thyroxine, forms large (20 - 500 microns in diameter) clusters in the extracellular lumen of thyrocytes. The process of the cluster formation is still not well understood but is thought to be a main storage mechanism of TG and therefore thyroxine inside the thyroid glands. For human thyroids, the interconnections of the proteins inside the clusters are mainly disulfide bondings. Normally, sulfur bridges are catalyzed by an enzyme called Protein Disulfide Bridge Isomerase (PDI). While this enzyme is supposed to be not present in any extracellular space, the cluster formation of TG takes place in the lumen between the thyrocytes. A possible explanation is the autocatalysis of TG.

  3. Functional assembly of protein fragments induced by spatial confinement.

    Directory of Open Access Journals (Sweden)

    Yongsheng Yu

    Full Text Available Natural proteins are often confined within their local microenvironments, such as three-dimensional confinement in organelles or two-dimensional confinement in lipid rafts on cytoplasmic membrane. Spatial confinement restricts proteins' entropic freedom, forces their lateral interaction, and induces new properties that the same proteins lack at the soluble state. So far, the phenomenon of environment-induced protein functional alteration still lacks a full illustration. We demonstrate here that engineered protein fragments, although being non-functional in solution, can be re-assembled within the nanometer space to give the full activity of the whole protein. Specific interaction between hexahistidine-tag (His-tag and NiO surface immobilizes protein fragments on NiO nanoparticles to form a self-assembled protein "corona" on the particles inside the nanopores of mesoporous silica. Site-specific assembly forces a shoulder-by-shoulder orientation and promotes fragment-fragment interaction; this interaction together with spatial confinement of the mesopores results in functional re-assembly of the protein half fragments. To our surprise, a single half fragment of luciferase (non-catalytic in solution exhibited luciferase activity when immobilized on NiO in the mesopores, in the absence of the complimentary half. This shows for the first time that spatial confinement can induce the folding of a half fragment, reconstitute the enzyme active site, and re-gain the catalytic capability of the whole protein. Our work thereby highlights the under-documented notion that aside from the chemical composition such as primary sequence, physical environment of a protein also determines its function.

  4. Protein Flexibility Facilitates Quaternary Structure Assembly and Evolution

    Science.gov (United States)

    Marsh, Joseph A.; Teichmann, Sarah A.

    2014-01-01

    The intrinsic flexibility of proteins allows them to undergo large conformational fluctuations in solution or upon interaction with other molecules. Proteins also commonly assemble into complexes with diverse quaternary structure arrangements. Here we investigate how the flexibility of individual protein chains influences the assembly and evolution of protein complexes. We find that flexibility appears to be particularly conducive to the formation of heterologous (i.e., asymmetric) intersubunit interfaces. This leads to a strong association between subunit flexibility and homomeric complexes with cyclic and asymmetric quaternary structure topologies. Similarly, we also observe that the more nonhomologous subunits that assemble together within a complex, the more flexible those subunits tend to be. Importantly, these findings suggest that subunit flexibility should be closely related to the evolutionary history of a complex. We confirm this by showing that evolutionarily more recent subunits are generally more flexible than evolutionarily older subunits. Finally, we investigate the very different explorations of quaternary structure space that have occurred in different evolutionary lineages. In particular, the increased flexibility of eukaryotic proteins appears to enable the assembly of heteromeric complexes with more unique components. PMID:24866000

  5. Reduced dosage of the chromosome axis factor Red1 selectively disrupts the meiotic recombination checkpoint in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Tovah E Markowitz

    2017-07-01

    Full Text Available Meiotic chromosomes assemble characteristic "axial element" structures that are essential for fertility and provide the chromosomal context for meiotic recombination, synapsis and checkpoint signaling. Whether these meiotic processes are equally dependent on axial element integrity has remained unclear. Here, we investigated this question in S. cerevisiae using the putative condensin allele ycs4S. We show that the severe axial element assembly defects of this allele are explained by a linked mutation in the promoter of the major axial element gene RED1 that reduces Red1 protein levels to 20-25% of wild type. Intriguingly, the Red1 levels of ycs4S mutants support meiotic processes linked to axis integrity, including DNA double-strand break formation and deposition of the synapsis protein Zip1, at levels that permit 70% gamete survival. By contrast, the ability to elicit a meiotic checkpoint arrest is completely eliminated. This selective loss of checkpoint function is supported by a RED1 dosage series and is associated with the loss of most of the cytologically detectable Red1 from the axial element. Our results indicate separable roles for Red1 in building the structural axis of meiotic chromosomes and mounting a sustained recombination checkpoint response.

  6. Coronavirus envelope (E) protein remains at the site of assembly

    Energy Technology Data Exchange (ETDEWEB)

    Venkatagopalan, Pavithra [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Daskalova, Sasha M. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); Department of Biochemistry and Chemistry, Arizona State University, Tempe, AZ 85287-5401 (United States); Lopez, Lisa A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Molecular and Cellular Biology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Dolezal, Kelly A. [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States); Microbiology Graduate Program, Arizona State University, Tempe, AZ 85287-5401 (United States); Hogue, Brenda G., E-mail: Brenda.Hogue@asu.edu [The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401 (United States); School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 (United States)

    2015-04-15

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. - Highlights: • Mouse hepatitis coronavirus (MHV-CoV) E protein localizes in the ERGIC and Golgi. • MHV-CoV E does not transport to the cell surface. • MHV-CoV can be genetically engineered with a tetracysteine tag appended to E. • First FRAP and correlative light electron microscopy of a CoV E protein. • Live-cell imaging shows that E is mobile in ERGIC/Golgi membranes.

  7. Sequential assembly of centromeric proteins in male mouse meiosis.

    Directory of Open Access Journals (Sweden)

    María Teresa Parra

    2009-03-01

    Full Text Available The assembly of the mitotic centromere has been extensively studied in recent years, revealing the sequence and regulation of protein loading to this chromosome domain. However, few studies have analyzed centromere assembly during mammalian meiosis. This study specifically targets this approach on mouse spermatocytes. We have found that during prophase I, the proteins of the chromosomal passenger complex Borealin, INCENP, and Aurora-B load sequentially to the inner centromere before Shugoshin 2 and MCAK. The last proteins to be assembled are the outer kinetochore proteins BubR1 and CENP-E. All these proteins are not detected at the centromere during anaphase/telophase I and are then reloaded during interkinesis. The loading sequence of the analyzed proteins is similar during prophase I and interkinesis. These findings demonstrate that the interkinesis stage, regularly overlooked, is essential for centromere and kinetochore maturation and reorganization previous to the second meiotic division. We also demonstrate that Shugoshin 2 is necessary for the loading of MCAK at the inner centromere, but is dispensable for the loading of the outer kinetochore proteins BubR1 and CENP-E.

  8. Rigidity analysis of protein biological assemblies and periodic crystal structures

    Science.gov (United States)

    2013-01-01

    Background We initiate in silico rigidity-theoretical studies of biological assemblies and small crystals for protein structures. The goal is to determine if, and how, the interactions among neighboring cells and subchains affect the flexibility of a molecule in its crystallized state. We use experimental X-ray crystallography data from the Protein Data Bank (PDB). The analysis relies on an effcient graph-based algorithm. Computational experiments were performed using new protein rigidity analysis tools available in the new release of our KINARI-Web server http://kinari.cs.umass.edu. Results We provide two types of results: on biological assemblies and on crystals. We found that when only isolated subchains are considered, structural and functional information may be missed. Indeed, the rigidity of biological assemblies is sometimes dependent on the count and placement of hydrogen bonds and other interactions among the individual subchains of the biological unit. Similarly, the rigidity of small crystals may be affected by the interactions between atoms belonging to different unit cells. We have analyzed a dataset of approximately 300 proteins, from which we generated 982 crystals (some of which are biological assemblies). We identified two types of behaviors. (a) Some crystals and/or biological assemblies will aggregate into rigid bodies that span multiple unit cells/asymmetric units. Some of them create substantially larger rigid cluster in the crystal/biological assembly form, while in other cases, the aggregation has a smaller effect just at the interface between the units. (b) In other cases, the rigidity properties of the asymmetric units are retained, because the rigid bodies did not combine. We also identified two interesting cases where rigidity analysis may be correlated with the functional behavior of the protein. This type of information, identified here for the first time, depends critically on the ability to create crystals and biological assemblies

  9. Toward Modular Analysis of Supramolecular Protein Assemblies.

    Science.gov (United States)

    Kim, Jaehoon; Kim, Jin-Gyun; Yun, Giseok; Lee, Phill-Seung; Kim, Do-Nyun

    2015-09-08

    Despite recent advances in molecular simulation technologies, analysis of high-molecular-weight structures is still challenging. Here, we propose an automated model reduction procedure aiming to enable modular analysis of these structures. It employs a component mode synthesis for the reduction of finite element protein models. Reduced models may consist of real biological subunits or artificial partitions whose dynamics is described using the degrees of freedom at the substructural interfaces and a small set of dominant vibrational modes only. Notably, the proper number of dominant modes is automatically determined using a novel estimator for eigenvalue errors without calculating the reference eigensolutions of the full model. The performance of the proposed approach is thoroughly investigated by analyzing 50 representative structures including a crystal structure of GroEL and an electron density map of a ribosome.

  10. Structure and assembly of scalable porous protein cages

    Science.gov (United States)

    Sasaki, Eita; Böhringer, Daniel; van de Waterbeemd, Michiel; Leibundgut, Marc; Zschoche, Reinhard; Heck, Albert J. R.; Ban, Nenad; Hilvert, Donald

    2017-03-01

    Proteins that self-assemble into regular shell-like polyhedra are useful, both in nature and in the laboratory, as molecular containers. Here we describe cryo-electron microscopy (EM) structures of two versatile encapsulation systems that exploit engineered electrostatic interactions for cargo loading. We show that increasing the number of negative charges on the lumenal surface of lumazine synthase, a protein that naturally assembles into a ~1-MDa dodecahedron composed of 12 pentamers, induces stepwise expansion of the native protein shell, giving rise to thermostable ~3-MDa and ~6-MDa assemblies containing 180 and 360 subunits, respectively. Remarkably, these expanded particles assume unprecedented tetrahedrally and icosahedrally symmetric structures constructed entirely from pentameric units. Large keyhole-shaped pores in the shell, not present in the wild-type capsid, enable diffusion-limited encapsulation of complementarily charged guests. The structures of these supercharged assemblies demonstrate how programmed electrostatic effects can be effectively harnessed to tailor the architecture and properties of protein cages.

  11. Physical principles of filamentous protein self-assembly kinetics

    Science.gov (United States)

    Michaels, Thomas C. T.; Liu, Lucie X.; Meisl, Georg; Knowles, Tuomas P. J.

    2017-04-01

    The polymerization of proteins and peptides into filamentous supramolecular structures is an elementary form of self-organization of key importance to the functioning biological systems, as in the case of actin biofilaments that compose the cellular cytoskeleton. Aberrant filamentous protein self-assembly, however, is associated with undesired effects and severe clinical disorders, such as Alzheimer’s and Parkinson’s diseases, which, at the molecular level, are associated with the formation of certain forms of filamentous protein aggregates known as amyloids. Moreover, due to their unique physicochemical properties, protein filaments are finding extensive applications as biomaterials for nanotechnology. With all these different factors at play, the field of filamentous protein self-assembly has experienced tremendous activity in recent years. A key question in this area has been to elucidate the microscopic mechanisms through which filamentous aggregates emerge from dispersed proteins with the goal of uncovering the underlying physical principles. With the latest developments in the mathematical modeling of protein aggregation kinetics as well as the improvement of the available experimental techniques it is now possible to tackle many of these complex systems and carry out detailed analyses of the underlying microscopic steps involved in protein filament formation. In this paper, we review some classical and modern kinetic theories of protein filament formation, highlighting their use as a general strategy for quantifying the molecular-level mechanisms and transition states involved in these processes.

  12. Self-assembly studies of native and recombinant fibrous proteins

    Science.gov (United States)

    Wilson, Donna Lucille

    The structure of silk proteins consists of alternating amorphous (glycine-rich) and ordered crystalline regions (poly(alanine) and poly(glycine-alanine) repeats), where the organized regions are typically beta-sheet assemblies. In collagen, the basic helical repeat (glycine-proline-hydroxyproline and variants on this repeat) drives hierarchical assembly. Three polypeptide chains form left-handed poly-proline II-like helices, these three chains then self-assemble to form a right-handed triple helix. The focus of this thesis is on these proteins and defined variations thereof to reveal features of fibrous protein self-assembly. The amino acid sequences of native silk and collagen and their respective assembly environments have been systematically manipulated. Spider silk protein, based on the consensus sequence of Nephila clavipes dragline-silk, was genetically engineered to include methionines flanking the beta-sheet forming polyalanine regions. These methionines could be selectively oxidized and reduced, altering the bulkiness and charge of a methionine-based sulfoxide group to control beta-sheet formation by steric hindrance. A second version of the sterical trigger included a recognition site for Protein Kinase A allowing for the selective phosphorylation of a serine. Patterning a monolayer of precursor "director" molecules on length scales ranging from nanometer- to micrometer-length scales simplifies the interpretation of supramolecular assembly. Utilizing the atomic force microscopy (AFM)-based technique of dip-pen nanolithography, thiolated collagen and a collagen-like peptide were patterned at 30--50 nm line widths on evaporated gold surfaces. These are the largest molecules thus far positively printed on a surface at such small-length scales. The method preserved the triple helical structure and biological activity of collagen and even fostered the formation of characteristic higher-levels of structural organization. Nanopatterns were also achieved for

  13. Cenp-meta is required for sustained spindle checkpoint

    Directory of Open Access Journals (Sweden)

    Thomas Rubin

    2014-05-01

    Full Text Available Cenp-E is a kinesin-like motor protein required for efficient end-on attachment of kinetochores to the spindle microtubules. Cenp-E immunodepletion in Xenopus mitotic extracts results in the loss of mitotic arrest and massive chromosome missegregation, whereas its depletion in mammalian cells leads to chromosome segregation defects despite the presence of a functional spindle assembly checkpoint (SAC. Cenp-meta has previously been reported to be the Drosophila homolog of vertebrate Cenp-E. In this study, we show that cenp-metaΔ mutant neuroblasts arrest in mitosis when treated with colchicine. cenp-metaΔ mutant cells display a mitotic delay. Yet, despite the persistence of the two checkpoint proteins Mad2 and BubR1 on unattached kinetochores, these cells eventually enter anaphase and give rise to highly aneuploid daughter cells. Indeed, we find that cenp-metaΔ mutant cells display a slow but continuous degradation of cyclin B, which eventually triggers the mitotic exit observed. Thus, our data provide evidence for a role of Cenp-meta in sustaining the SAC response.

  14. Coronavirus envelope (E) protein remains at the site of assembly.

    Science.gov (United States)

    Venkatagopalan, Pavithra; Daskalova, Sasha M; Lopez, Lisa A; Dolezal, Kelly A; Hogue, Brenda G

    2015-04-01

    Coronaviruses (CoVs) assemble at endoplasmic reticulum Golgi intermediate compartment (ERGIC) membranes and egress from cells in cargo vesicles. Only a few molecules of the envelope (E) protein are assembled into virions. The role of E in morphogenesis is not fully understood. The cellular localization and dynamics of mouse hepatitis CoV A59 (MHV) E protein were investigated to further understanding of its role during infection. E protein localized in the ERGIC and Golgi with the amino and carboxy termini in the lumen and cytoplasm, respectively. E protein does not traffic to the cell surface. MHV was genetically engineered with a tetracysteine tag at the carboxy end of E. Fluorescence recovery after photobleaching (FRAP) showed that E is mobile in ERGIC/Golgi membranes. Correlative light electron microscopy (CLEM) confirmed the presence of E in Golgi cisternae. The results provide strong support that E proteins carry out their function(s) at the site of budding/assembly. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A protein interaction map of the kalimantacin biosynthesis assembly line

    Directory of Open Access Journals (Sweden)

    Birgit Uytterhoeven

    2016-11-01

    Full Text Available The antimicrobial secondary metabolite kalimantacin is produced by a hybrid polyketide/ non-ribosomal peptide system in Pseudomonas fluorescens BCCM_ID9359. In this study, the kalimantacin biosynthesis gene cluster is analyzed by yeast two-hybrid analysis, creating a protein-protein interaction map of the entire assembly line. In total, 28 potential interactions were identified, of which 13 could be confirmed further. These interactions include the dimerization of ketosynthase domains, a link between assembly line modules 9 and 10, and a specific interaction between the trans-acting enoyl reductase BatK and the carrier proteins of modules 8 and 10. These interactions reveal fundamental insight into the biosynthesis of secondary metabolites.This study is the first to reveal interactions in a complete biosynthetic pathway. Similar future studies could build a strong basis for engineering strategies in such clusters.

  16. Protein linguistics - a grammar for modular protein assembly?

    Science.gov (United States)

    Gimona, Mario

    2006-01-01

    The correspondence between biology and linguistics at the level of sequence and lexical inventories, and of structure and syntax, has fuelled attempts to describe genome structure by the rules of formal linguistics. But how can we define protein linguistic rules? And how could compositional semantics improve our understanding of protein organization and functional plasticity?

  17. Symmetry based assembly of a 2 dimensional protein lattice

    Energy Technology Data Exchange (ETDEWEB)

    Poulos, Sandra; Agah, Sayeh; Jallah, Nikardi; Faham, Salem; van Raaij, Mark J.

    2017-04-18

    The design of proteins that self-assemble into higher order architectures is of great interest due to their potential application in nanotechnology. Specifically, the self-assembly of proteins into ordered lattices is of special interest to the field of structural biology. Here we designed a 2 dimensional (2D) protein lattice using a fusion of a tandem repeat of three TelSAM domains (TTT) to the Ferric uptake regulator (FUR) domain. We determined the structure of the designed (TTT-FUR) fusion protein to 2.3 Å by X-ray crystallographic methods. In agreement with the design, a 2D lattice composed of TelSAM fibers interdigitated by the FUR domain was observed. As expected, the fusion of a tandem repeat of three TelSAM domains formed 21 screw axis, and the self-assembly of the ordered oligomer was under pH control. We demonstrated that the fusion of TTT to a domain having a 2-fold symmetry, such as the FUR domain, can produce an ordered 2D lattice. The TTT-FUR system combines features from the rotational symmetry matching approach with the oligomer driven crystallization method. This TTT-FUR fusion was amenable to X-ray crystallographic methods, and is a promising crystallization chaperone.

  18. The DNA damage response and checkpoint adaptation in Saccharomyces cerevisiae: distinct roles for the replication protein A2 (Rfa2) N-terminus.

    Science.gov (United States)

    Ghospurkar, Padmaja L; Wilson, Timothy M; Severson, Amber L; Klein, Sarah J; Khaku, Sakina K; Walther, André P; Haring, Stuart J

    2015-03-01

    In response to DNA damage, two general but fundamental processes occur in the cell: (1) a DNA lesion is recognized and repaired, and (2) concomitantly, the cell halts the cell cycle to provide a window of opportunity for repair to occur. An essential factor for a proper DNA-damage response is the heterotrimeric protein complex Replication Protein A (RPA). Of particular interest is hyperphosphorylation of the 32-kDa subunit, called RPA2, on its serine/threonine-rich amino (N) terminus following DNA damage in human cells. The unstructured N-terminus is often referred to as the phosphorylation domain and is conserved among eukaryotic RPA2 subunits, including Rfa2 in Saccharomyces cerevisiae. An aspartic acid/alanine-scanning and genetic interaction approach was utilized to delineate the importance of this domain in budding yeast. It was determined that the Rfa2 N-terminus is important for a proper DNA-damage response in yeast, although its phosphorylation is not required. Subregions of the Rfa2 N-terminus important for the DNA-damage response were also identified. Finally, an Rfa2 N-terminal hyperphosphorylation-mimetic mutant behaves similarly to another Rfa1 mutant (rfa1-t11) with respect to genetic interactions, DNA-damage sensitivity, and checkpoint adaptation. Our data indicate that post-translational modification of the Rfa2 N-terminus is not required for cells to deal with "repairable" DNA damage; however, post-translational modification of this domain might influence whether cells proceed into M-phase in the continued presence of unrepaired DNA lesions as a "last-resort" mechanism for cell survival. Copyright © 2015 by the Genetics Society of America.

  19. Localizing frustration in native proteins and protein assemblies

    Science.gov (United States)

    Ferreiro, Diego U.; Hegler, Joseph A.; Komives, Elizabeth A.; Wolynes, Peter G.

    2007-01-01

    We propose a method of quantifying the degree of frustration manifested by spatially local interactions in protein biomolecules. This method of localization smoothly generalizes the global criterion for an energy landscape to be funneled to the native state, which is in keeping with the principle of minimal frustration. A survey of the structural database shows that natural proteins are multiply connected by a web of local interactions that are individually minimally frustrated. In contrast, highly frustrated interactions are found clustered on the surface, often near binding sites. These binding sites become less frustrated upon complex formation. PMID:18077414

  20. Protein-directed self-assembly of a fullerene crystal

    Science.gov (United States)

    Kim, Kook-Han; Ko, Dong-Kyun; Kim, Yong-Tae; Kim, Nam Hyeong; Paul, Jaydeep; Zhang, Shao-Qing; Murray, Christopher B.; Acharya, Rudresh; DeGrado, William F.; Kim, Yong Ho; Grigoryan, Gevorg

    2016-01-01

    Learning to engineer self-assembly would enable the precise organization of molecules by design to create matter with tailored properties. Here we demonstrate that proteins can direct the self-assembly of buckminsterfullerene (C60) into ordered superstructures. A previously engineered tetrameric helical bundle binds C60 in solution, rendering it water soluble. Two tetramers associate with one C60, promoting further organization revealed in a 1.67-Å crystal structure. Fullerene groups occupy periodic lattice sites, sandwiched between two Tyr residues from adjacent tetramers. Strikingly, the assembly exhibits high charge conductance, whereas both the protein-alone crystal and amorphous C60 are electrically insulating. The affinity of C60 for its crystal-binding site is estimated to be in the nanomolar range, with lattices of known protein crystals geometrically compatible with incorporating the motif. Taken together, these findings suggest a new means of organizing fullerene molecules into a rich variety of lattices to generate new properties by design. PMID:27113637

  1. Protein complexes are under evolutionary selection to assemble via ordered pathways.

    Science.gov (United States)

    Marsh, Joseph A; Hernández, Helena; Hall, Zoe; Ahnert, Sebastian E; Perica, Tina; Robinson, Carol V; Teichmann, Sarah A

    2013-04-11

    Is the order in which proteins assemble into complexes important for biological function? Here, we seek to address this by searching for evidence of evolutionary selection for ordered protein complex assembly. First, we experimentally characterize the assembly pathways of several heteromeric complexes and show that they can be simply predicted from their three-dimensional structures. Then, by mapping gene fusion events identified from fully sequenced genomes onto protein complex assembly pathways, we demonstrate evolutionary selection for conservation of assembly order. Furthermore, using structural and high-throughput interaction data, we show that fusion tends to optimize assembly by simplifying protein complex topologies. Finally, we observe protein structural constraints on the gene order of fusion that impact the potential for fusion to affect assembly. Together, these results reveal the intimate relationships among protein assembly, quaternary structure, and evolution and demonstrate on a genome-wide scale the biological importance of ordered assembly pathways. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Controlling the self-assembly of protein polymers via heterodimer-forming modules

    NARCIS (Netherlands)

    Domeradzka, Natalia Eliza

    2016-01-01

    Supramolecular assemblies formed by protein polymers are attractive candidates for future biomaterials. Ideally, one would like to be able to define the nanostructure, in which the protein polymers should self-assemble, and then design protein polymer sequences that assemble exactly into such

  3. Assembly of presynaptic filaments. Factors affecting the assembly of RecA protein onto single-stranded DNA

    DEFF Research Database (Denmark)

    Thresher, RJ; Christiansen, Gunna; Griffith, JD

    1988-01-01

    We have previously shown that the assembly of RecA protein onto single-stranded DNA (ssDNA) facilitated by SSB protein occurs in three steps: (1) rapid binding of SSB protein to the ssDNA; (2) nucleation of RecA protein onto this template; and (3) co-operative polymerization of additional Rec......A protein to yield presynaptic filaments. Here, electron microscopy has been used to further explore the parameters of this assembly process. The optimal extent of presynaptic filament formation required at least one RecA protein monomer per three nucleotides, high concentrations of ATP (greater than 3 m......M in the presence of 12 mM-Mg2+), and relatively low concentrations of SSB protein (1 monomer per 18 nucleotides). Assembly was depressed threefold when SSB protein was added to one monomer per nine nucleotides. These effects appeared to be exerted at the nucleation step. Following nucleation, RecA protein...

  4. Validate Mitotic Checkpoint and Kinetochore Motor Proteins in Breast Cancer Cells as Targets for the Development of Novel Anti-Mitotic Drugs

    Science.gov (United States)

    2004-07-01

    cerevlslaoe S. pombe Drosophila C. elegans Xenopus Bubl, Bub3 and Mpsl, that are essen- Aurora-B/ Ip11 Ark1 Aurora B AIR -2 AuroraB tial for cells to arrest in...fixation condition that employed high- pressure freezing and freeze substitution, this interzone was not discernible (McEwen et al., 1998). Emanating from...monotelic merotelic Aurora B BUB/MAD mitotic checkpoint securin-separase SAPC /C separase amphitehc Figure I Mitotic checkpoint as a signal transduction

  5. Filovirus proteins for antiviral drug discovery: Structure/function of proteins involved in assembly and budding.

    Science.gov (United States)

    Martin, Baptiste; Reynard, Olivier; Volchkov, Viktor; Decroly, Etienne

    2018-02-01

    There are no approved medications for the treatment of Marburg or Ebola virus infection. In two previous articles (Martin et al., 2016, Martin et al., 2017), we reviewed surface glycoprotein and replication proteins structure/function relationship to decipher the molecular mechanisms of filovirus life cycle and identify antiviral strategies. In the present article, we recapitulate knowledge about the viral proteins involved in filovirus assembly and budding. First we describe the structural data available for viral proteins associated with virus assembly and virion egress and then, we integrate the structural features of these proteins in the functional context of the viral replication cycle. Finally, we summarize recent advances in the development of innovative antiviral strategies to target filovirus assembly and egress. The development of such prophylactic or post-exposure treatments could help controlling future filovirus outbreaks. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Self-Assembly of Protein Nanostructures to Enhance Biosensor Sensitivity

    Science.gov (United States)

    Olsen, Bradley; Dong, Xuehui; Obermeyer, Allie

    The Langmuir adsorption isotherm predicts that the number of bound species on a surface at a given concentration will be directly proportional to the number of binding sites on the surface. Therefore, the number of binding events in a biosensor may be increased at a given analyte concentration if the surface density of binding domains is increased. Here, we demonstrate the formation of block copolymers where one block is a human IgG antibody or a nanobody and self-assemble these molecules into nanostructured films with a high density of binding sites. The type of nanostructure formed and the rate of transport through the protein-polymer layers are explored as a function of coil fraction of the protein-polymer conjugate block copolymers, showing optima for transport and assembly that depend upon the identity of the protein. For small enough analytes, binding to the antibodies and nanobodies is linear with film thickness, indicating that the entire film is accessible. Consistent with the enhanced number of binding sites and the prediction of the Langmuir isotherm, the films improve sensitivity by several orders of magnitude relative to chemisorbed protein layers used in current sensor designs. Current research is integrating this new material technology into prototype sensors. Work supported by the Air Force Office of Scientific Reesearch (AFOSR).

  7. Mitochondrial Band-7 family proteins: scaffolds for respiratory chain assembly?

    Directory of Open Access Journals (Sweden)

    Bernadette eGehl

    2014-04-01

    Full Text Available The band-7 protein family comprises a diverse set of membrane-bound proteins characterised by the presence of a conserved domain. The exact function of this band-7 domain remains elusive, but examples from animal and bacterial stomatin-type proteins demonstrate binding to lipids and the ability to assemble into membrane-bound oligomers that form putative scaffolds. Some members, such as prohibitins and human stomatin-like protein 2 (HsSLP2, localise to the mitochondrial inner membrane where they function in cristae formation and hyperfusion. In Arabidopsis, the band-7 protein family has diversified and includes plant-specific members. Mitochondrial-localised members include prohibitins (AtPHBs and two stomatin-like proteins (AtSLP1 and -2. Studies into PHB function in plants have demonstrated an involvement in root meristem proliferation and putative scaffold formation for mAAA proteases, but it remains unknown how these roles are achieved at the molecular level. In this minireview we summarise the current status of band-7 protein functions in Arabidopsis, and speculate how the mitochondrial members might recruit specific lipids to form microdomains that could shape the organisation and functioning of the respiratory chain.

  8. Engineering self-assembled bioreactors from protein microcompartments

    Energy Technology Data Exchange (ETDEWEB)

    Savage, David [Univ. of California, Berkeley, CA (United States)

    2016-10-12

    The goals of this research are to understand how organisms such as bacteria segregate certain metabolic processes inside of specific structures, or “microcompartments,” in the cell and apply this knowledge to develop novel engineered microcompartments for use in nanotechnology and metabolic engineering. For example, in some bacteria, self-assembling protein microcompartments called carboxysomes encapsulate the enzymes involved in carbon fixation, enabling the cell to utilize carbon dioxide more effectively than if the enzymes were free in the cell. The proposed research will determine how structures such as carboxysomes assemble and function in bacteria and develop a means for creating novel, synthetic microcompartments for optimizing production of specific energy-rich compounds.

  9. Eye patches: Protein assembly of index-gradient squid lenses

    Energy Technology Data Exchange (ETDEWEB)

    Cai, J.; Townsend, J. P.; Dodson, T. C.; Heiney, P. A.; Sweeney, A. M.

    2017-08-10

    A parabolic relationship between lens radius and refractive index allows spherical lenses to avoid spherical aberration. We show that in squid, patchy colloidal physics resulted from an evolutionary radiation of globular S-crystallin proteins. Small-angle x-ray scattering experiments on lens tissue show colloidal gels of S-crystallins at all radial positions. Sparse lens materials form via low-valence linkages between disordered loops protruding from the protein surface. The loops are polydisperse and bind via a set of hydrogen bonds between disordered side chains. Peripheral lens regions with low particle valence form stable, volume-spanning gels at low density, whereas central regions with higher average valence gel at higher densities. The proteins demonstrate an evolved set of linkers for self-assembly of nanoparticles into volumetric materials.

  10. Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response

    Directory of Open Access Journals (Sweden)

    Nicole A. Najor

    2016-12-01

    Full Text Available In the budding yeast Saccharomyces cerevisiae, unnatural stabilization of the cyclin-dependent kinase inhibitor Sic1 during meiosis can trigger extra rounds of DNA replication. When programmed DNA double-strand breaks (DSBs are generated but not repaired due to absence of DMC1, a pathway involving the checkpoint gene RAD17 prevents this DNA rereplication. Further genetic analysis has now revealed that prevention of DNA rereplication also requires MEC1, which encodes a protein kinase that serves as a central checkpoint regulator in several pathways including the meiotic recombination checkpoint response. Downstream of MEC1, MEK1 is required through its function to inhibit repair between sister chromatids. By contrast, meiotic recombination checkpoint effectors that regulate gene expression and cyclin-dependent kinase activity are not necessary. Phosphorylation of histone H2A, which is catalyzed by Mec1 and the related Tel1 protein kinase in response to DSBs, and can help coordinate activation of the Rad53 checkpoint protein kinase in the mitotic cell cycle, is required for the full checkpoint response. Phosphorylation sites that are targeted by Rad53 in a mitotic S phase checkpoint response are also involved, based on the behavior of cells containing mutations in the DBF4 and SLD3 DNA replication genes. However, RAD53 does not appear to be required, nor does RAD9, which encodes a mediator of Rad53, consistent with their lack of function in the recombination checkpoint pathway that prevents meiotic progression. While this response is similar to a checkpoint mechanism that inhibits initiation of DNA replication in the mitotic cell cycle, the evidence points to a new variation on DNA replication control.

  11. The architecture of the BubR1 tetratricopeptide tandem repeat defines a protein motif underlying mitotic checkpoint-kinetochore communication

    DEFF Research Database (Denmark)

    Bolanos-Garcia, Victor M; Nilsson, Jakob; Blundell, Tom L

    2012-01-01

    as substitution of BubR1 residues engaged in KNL1 binding impaired the SAC and BubR1 recruitment into checkpoint complexes in stable cell lines. Here we discuss the implications of the disorder-to-order transition of KNL1 upon BubR1 binding for SAC signaling and propose a mechanistic model of how BUBs binding may...

  12. The nature of protein interactions governing globular protein-polymer block copolymer self-assembly.

    Science.gov (United States)

    Lam, Christopher N; Kim, Minkyu; Thomas, Carla S; Chang, Dongsook; Sanoja, Gabriel E; Okwara, Chimdimma U; Olsen, Bradley D

    2014-04-14

    The effects of protein surface potential on the self-assembly of protein-polymer block copolymers are investigated in globular proteins with controlled shape through two approaches: comparison of self-assembly of mCherry-poly(N-isopropylacrylamide) (PNIPAM) bioconjugates with structurally homologous enhanced green fluorescent protein (EGFP)-PNIPAM bioconjugates, and mutants of mCherry with altered electrostatic patchiness. Despite large changes in amino acid sequence, the temperature-concentration phase diagrams of EGFP-PNIPAM and mCherry-PNIPAM conjugates have similar phase transition concentrations. Both materials form identical phases at two different coil fractions below the PNIPAM thermal transition temperature and in the bulk. However, at temperatures above the thermoresponsive transition, mCherry conjugates form hexagonal phases at high concentrations while EGFP conjugates form a disordered micellar phase. At lower concentration, mCherry shows a two-phase region while EGFP forms homogeneous disordered micellar structures, reflecting the effect of changes in micellar stability. Conjugates of four mCherry variants with changes to their electrostatic surface patchiness also showed minimal change in phase behavior, suggesting that surface patchiness has only a small effect on the self-assembly process. Measurements of protein/polymer miscibility, second virial coefficients, and zeta potential show that these coarse-grained interactions are similar between mCherry and EGFP, indicating that coarse-grained interactions largely capture the relevant physics for soluble, monomeric globular protein-polymer conjugate self-assembly.

  13. The vaccinia virus E6 protein influences virion protein localization during virus assembly

    Energy Technology Data Exchange (ETDEWEB)

    Condit, Richard C., E-mail: condit@mgm.ufl.edu; Moussatche, Nissin

    2015-08-15

    Vaccinia virus mutants in which expression of the virion core protein gene E6R is repressed are defective in virion morphogenesis. E6 deficient infections fail to properly package viroplasm into viral membranes, resulting in an accumulation of empty immature virions and large aggregates of viroplasm. We have used immunogold electron microscopy and immunofluorescence confocal microscopy to assess the intracellular localization of several virion structural proteins and enzymes during E6R mutant infections. We find that during E6R mutant infections virion membrane proteins and virion transcription enzymes maintain a normal localization within viral factories while several major core and lateral body proteins accumulate in aggregated virosomes. The results support a model in which vaccinia virions are assembled from at least three substructures, the membrane, the viroplasm and a “pre-nucleocapsid”, and that the E6 protein is essential for maintaining proper localization of the seven-protein complex and the viroplasm during assembly. - Highlights: • Mutation of E6 disrupts association of viral membranes with viral core proteins • Mutation of E6 does not perturb viral membrane biosynthesis • Mutation of E6 does not perturb localization of viral transcription enzymes • Mutation of E6 causes mis-localization and aggregation of viral core proteins • Vaccinia assembly uses three subassemblies: membranes, viroplasm, prenucleocapsid.

  14. G protein-coupled receptors self-assemble in dynamics simulations of model bilayers

    NARCIS (Netherlands)

    Periole, Xavier; Huber, Thomas; Marrink, Siewert-Jan; Sakmar, Thomas P.

    2007-01-01

    Many integral membrane proteins assemble to form oligomeric structures in biological membranes. In particular, seven-transmembrane helical G protein-coupled receptors (GPCRs) appear to self-assemble constitutively in membranes, but the mechanism and physiological role of this assembly are unknown.

  15. Investigation of biomacromolecular assembly: replacement occurring on proteins

    Science.gov (United States)

    Gao, Hong-Wen; Hu, Zhang-Jun; Zhao, Jian-Fu

    2003-07-01

    The non-chemical bond interaction between small molecule and macromolecule coming from the electrostatic attraction obeys the Langmuir assembly. The interaction of 1,5-di(2-hydroxyl-5-sulfophenyl-)-3-cyanoformazan (DSPCF) and three kinds of proteins: bovine serum albumin (BSA), α-globulins (Gb) and ovalbumin (OVA) at pH 1.83 has been investigated and then sodium dodecyl benzene sulfonate (SDBS) was added to replace the DSPCF binding in protein. The microsurface adsorption-spectral correction (MSASC) technique and the break point approach were both used to characterize the aggregates. Results showed that the products: SDBS 99BSA, SDBS 50OVA and SDBS 25Gb at 30 °C and SDBS 90BSA, SDBS 40OVA and SDBS 20Gb at 40 °C are formed.

  16. Immune checkpoint inhibitor-related myocarditis.

    Science.gov (United States)

    Tajiri, Kazuko; Aonuma, Kazutaka; Sekine, Ikuo

    2017-10-17

    Immune checkpoint inhibitors have demonstrated significant clinical benefit in many cancers. The clinical benefit afforded by these treatments can be accompanied by a unique and distinct spectrum of adverse events. Recently, several fatal cases of immune checkpoint inhibitor-related myocarditis were reported. Although its frequency is comparatively lower than that of other immune-related adverse events, myocarditis can lead to circulatory collapse and lethal ventricular arrhythmia. Immune checkpoints, cytotoxic T-lymphocyte antigen 4 (CTLA-4) and programmed cell death protein 1 (PD-1), play important roles in establishing peripheral tolerance to the heart. Evidence from studies using genetically engineered mouse models suggests that CTLA-4 signaling terminates proliferation and promotes anergy during the primary response to cardiac self-peptide recognition. PD-1 signaling restrains autoreactive T cells that enter the peripheral tissues and recognize cardiac-peptide, maintaining them in an anergic state. Patients affected by immune checkpoint inhibitor-related myocarditis often experience rapid onset of profound hemodynamic compromise progressing to cardiogenic shock. Early diagnosis is mandatory to address specific therapy and correct the timing of circulatory support. However, the diagnosis of myocarditis is challenging due to the heterogeneity of clinical presentations. Owing to its early onset, nonspecific symptomatology and fulminant progression, especially when these drugs are used in combination, oncologists should be vigilant for immune checkpoint inhibitor-related myocarditis. With many questions yet to be answered, from basic immune biology to clinical management, future research should aim to optimize the use of these drugs by identifying predictive biomarkers of either a response to therapy or the risks of myocarditis development. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  17. Membrane protein architects: the role of the BAM complex in outer membrane protein assembly.

    Science.gov (United States)

    Knowles, Timothy J; Scott-Tucker, Anthony; Overduin, Michael; Henderson, Ian R

    2009-03-01

    The folding of transmembrane proteins into the outer membrane presents formidable challenges to Gram-negative bacteria. These proteins must migrate from the cytoplasm, through the inner membrane and into the periplasm, before being recognized by the beta-barrel assembly machinery, which mediates efficient insertion of folded beta-barrels into the outer membrane. Recent discoveries of component structures and accessory interactions of this complex are yielding insights into how cells fold membrane proteins. Here, we discuss how these structures illuminate the mechanisms responsible for the biogenesis of outer membrane proteins.

  18. The assembly domain of the small capsid protein of Kaposi's sarcoma-associated herpesvirus.

    Science.gov (United States)

    Kreitler, Dale; Capuano, Christopher M; Henson, Brandon W; Pryce, Erin N; Anacker, Daniel; McCaffery, J Michael; Desai, Prashant J

    2012-11-01

    Self-assembly of Kaposi's sarcoma-associated herpesvirus capsids occurs when six proteins are coexpressed in insect cells using recombinant baculoviruses; however, if the small capsid protein (SCP) is omitted from the coinfection, assembly does not occur. Herein we delineate and identify precisely the assembly domain and the residues of SCP required for assembly. Hence, six residues, R14, D18, V25, R46, G66, and R70 in the assembly domain, when changed to alanine, completely abolish or reduce capsid assembly.

  19. Checkpoint Blockade in Lung Cancer and Mesothelioma.

    Science.gov (United States)

    Lievense, Lysanne A; Sterman, Daniel H; Cornelissen, Robin; Aerts, Joachim G

    2017-08-01

    In the last decade, immunotherapy has emerged as a new treatment modality in cancer. The most success has been achieved with the class of checkpoint inhibitors (CPIs), antibodies that unleash the antitumor immune response. After the success in melanoma, numerous clinical trials are being conducted investigating CPIs in lung cancer and mesothelioma. The programmed death protein (PD) 1-PD ligand 1/2 pathway and cytotoxic T lymphocyte-associated protein 4 are currently the most studied immunotherapeutic targets in these malignancies. In non-small cell lung cancer, anti-PD-1 antibodies have become part of the approved treatment arsenal. In small cell lung cancer and mesothelioma, the efficacy of checkpoint inhibition has not yet been proven. In this Concise Clinical Review, an overview of the landmark clinical trials investigating checkpoint blockade in lung cancer and mesothelioma is provided. Because response rates are around 20% in the majority of clinical trials, there is much room for improvement. Predictive biomarkers are therefore essential to fully develop the potential of CPIs. To increase efficacy, multiple clinical trials investigating the combination of cytotoxic T lymphocyte-associated protein 4 inhibitors and PD-1/PD ligand 1 blockade in lung cancer and mesothelioma are being conducted. Given the potential benefit of immunotherapy, implementation of current and new knowledge in trial designs and interpretation of results is essential for moving forward.

  20. Attachment issues : Kinetochore transformations and spindle checkpoint silencing

    NARCIS (Netherlands)

    Etemad, Banafsheh; Kops, Geert J P L|info:eu-repo/dai/nl/226311481

    2016-01-01

    Cell division culminates in the segregation of duplicated chromosomes in opposite directions prior to cellular fission. This process is guarded by the spindle assembly checkpoint (SAC), which prevents the anaphase of cell division until stable connections between spindle microtubules and the

  1. Attachment issues : kinetochore transformations and spindle checkpoint silencing

    NARCIS (Netherlands)

    Etemad, Banafsheh; Kops, Geert Jpl

    Cell division culminates in the segregation of duplicated chromosomes in opposite directions prior to cellular fission. This process is guarded by the spindle assembly checkpoint (SAC), which prevents the anaphase of cell division until stable connections between spindle microtubules and the

  2. Altered Escherichia coli membrane protein assembly machinery allows proper membrane assembly of eukaryotic protein vitamin K epoxide reductase.

    Science.gov (United States)

    Hatahet, Feras; Blazyk, Jessica L; Martineau, Eugenie; Mandela, Eric; Zhao, Yongxin; Campbell, Robert E; Beckwith, Jonathan; Boyd, Dana

    2015-12-08

    Functional overexpression of polytopic membrane proteins, particularly when in a foreign host, is often a challenging task. Factors that negatively affect such processes are poorly understood. Using the mammalian membrane protein vitamin K epoxide reductase (VKORc1) as a reporter, we describe a genetic selection approach allowing the isolation of Escherichia coli mutants capable of functionally expressing this blood-coagulation enzyme. The isolated mutants map to components of membrane protein assembly and quality control proteins YidC and HslV. We show that changes in the VKORc1 sequence and in the YidC hydrophilic groove along with the inactivation of HslV promote VKORc1 activity and dramatically increase its expression level. We hypothesize that such changes correct for mismatches in the membrane topogenic signals between E. coli and eukaryotic cells guiding proper membrane integration. Furthermore, the obtained mutants allow the study of VKORc1 reaction mechanisms, inhibition by warfarin, and the high-throughput screening for potential anticoagulants.

  3. Multiscale modeling and simulation of microtubule-motor-protein assemblies

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A.; Betterton, M. D.; Shelley, Michael J.

    2015-12-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  4. Multiscale modeling and simulation of microtubule-motor-protein assemblies.

    Science.gov (United States)

    Gao, Tong; Blackwell, Robert; Glaser, Matthew A; Betterton, M D; Shelley, Michael J

    2015-01-01

    Microtubules and motor proteins self-organize into biologically important assemblies including the mitotic spindle and the centrosomal microtubule array. Outside of cells, microtubule-motor mixtures can form novel active liquid-crystalline materials driven out of equilibrium by adenosine triphosphate-consuming motor proteins. Microscopic motor activity causes polarity-dependent interactions between motor proteins and microtubules, but how these interactions yield larger-scale dynamical behavior such as complex flows and defect dynamics is not well understood. We develop a multiscale theory for microtubule-motor systems in which Brownian dynamics simulations of polar microtubules driven by motors are used to study microscopic organization and stresses created by motor-mediated microtubule interactions. We identify polarity-sorting and crosslink tether relaxation as two polar-specific sources of active destabilizing stress. We then develop a continuum Doi-Onsager model that captures polarity sorting and the hydrodynamic flows generated by these polar-specific active stresses. In simulations of active nematic flows on immersed surfaces, the active stresses drive turbulent flow dynamics and continuous generation and annihilation of disclination defects. The dynamics follow from two instabilities, and accounting for the immersed nature of the experiment yields unambiguous characteristic length and time scales. When turning off the hydrodynamics in the Doi-Onsager model, we capture formation of polar lanes as observed in the Brownian dynamics simulation.

  5. Engineering Protein Self-Assembly: A New Approach for the Design of Octahedral Cages.

    Science.gov (United States)

    Cougnon, Fabien B L

    2016-12-14

    A new symmetry-based approach allowed the self-assembly of an octahedral protein nanostructure. C3 trimeric and C4 tetrameric oligomerization domains can be combined in an engineered protein to direct assembly into a desired object. This work might provide the basis for a more general and flexible strategy to control protein self-assembly. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Self-assembling protein nanoparticles in the design of vaccines

    Directory of Open Access Journals (Sweden)

    Jacinto López-Sagaseta

    2016-01-01

    Full Text Available For over 100 years, vaccines have been one of the most effective medical interventions for reducing infectious disease, and are estimated to save millions of lives globally each year. Nevertheless, many diseases are not yet preventable by vaccination. This large unmet medical need demands further research and the development of novel vaccines with high efficacy and safety. Compared to the 19th and early 20th century vaccines that were made of killed, inactivated, or live-attenuated pathogens, modern vaccines containing isolated, highly purified antigenic protein subunits are safer but tend to induce lower levels of protective immunity. One strategy to overcome the latter is to design antigen nanoparticles: assemblies of polypeptides that present multiple copies of subunit antigens in well-ordered arrays with defined orientations that can potentially mimic the repetitiveness, geometry, size, and shape of the natural host-pathogen surface interactions. Such nanoparticles offer a collective strength of multiple binding sites (avidity and can provide improved antigen stability and immunogenicity. Several exciting advances have emerged lately, including preclinical evidence that this strategy may be applicable for the development of innovative new vaccines, for example, protecting against influenza, human immunodeficiency virus, and respiratory syncytial virus. Here, we provide a concise review of a critical selection of data that demonstrate the potential of this field. In addition, we highlight how the use of self-assembling protein nanoparticles can be effectively combined with the emerging discipline of structural vaccinology for maximum impact in the rational design of vaccine antigens.

  7. Immune checkpoint proteins PD-1 and TIM-3 are both highly expressed in liver tissues and correlate with their gene polymorphisms in patients with HBV-related hepatocellular carcinoma.

    Science.gov (United States)

    Li, Zhu; Li, Na; Li, Fang; Zhou, Zhihua; Sang, Jiao; Chen, Yanping; Han, Qunying; Lv, Yi; Liu, Zhengwen

    2016-12-01

    Immune checkpoint proteins programmed death-1 (PD-1) and T-cell immunoglobulin domain and mucin domain containing molecule-3 (TIM-3) expression and their gene polymorphisms have separately been shown to be associated with hepatitis B virus (HBV) infection and hepatocellular carcinoma (HCC). This study simultaneously examined PD-1 and TIM-3 expression in liver tissues and PD1 and TIM3 polymorphisms and analyzed their correlations in 171 patients with HBV-related HCC and 34 patients with HBV-related cirrhosis.PD-1 and TIM-3 expression in liver tissues were examined by immunohistochemistry and the genotypes of PD1 rs10204525 and TIM3 rs10053538 polymorphisms were determined using genomic DNA extracted from peripheral blood as template.Both PD-1 and TIM-3 expressions in liver infiltrating lymphocytes of HCC tumor tissues were significantly higher than those in tumor adjacent tissues or cirrhotic tissues. The elevated PD-1 and TIM-3 expressions were significantly associated with higher tumor grades. The levels between PD-1 and TIM-3 expression in tumor tissues and tumor adjacent tissues had a significant positive intercorrelation. The expressions of PD-1 and TIM-3 in tumor tissues, tumor adjacent tissues, and cirrhotic tissues were significantly associated with PD1 and TIM3 polymorphisms, with genotype AA of PD1 rs10204525 and genotypes GT+TT of TIM3 rs10053538 being associated with significantly increased PD-1 and TIM-3 expression, respectively.These findings support the potential to improve the efficiency of immune checkpoint-targeted therapy and reduce resistance to the therapy by blocking both PD-1 and TIM-3 and suggest the potential to apply the genotype determination of PD1 rs10204525 and TIM3 rs10053538 as biomarkers of immune checkpoint-directed therapies.

  8. 14-3-3 checkpoint regulatory proteins interact specifically with DNA repair protein human exonuclease 1 (hEXO1) via a semi-conserved motif

    DEFF Research Database (Denmark)

    Andersen, Sofie Dabros; Keijzers, Guido; Rampakakis, E.

    2012-01-01

    are specifically induced by replication inhibition leading to protein ubiquitination and degradation. We demonstrate direct and robust interaction between hEXO1 and six of the seven 14-3-3 isoforms in vitro, suggestive of a novel protein interaction network between DNA repair and cell cycle control. Binding...... experiments reveal weak affinity of the more selective isoform 14-3-3 sigma but both 14-3-3 isoforms eta and sigma significantly stimulate hEXO1 activity, indicating that these regulatory proteins exert a common regulation mode on hEXO1. Results demonstrate that binding involves the phosphorable amino acid S...

  9. Probing the Composition, Assembly and Activity of Protein Molecular Machines using Native Mass Spectrometry

    NARCIS (Netherlands)

    Waterbeemd, M.J. van de

    2017-01-01

    Native mass spectrometry and mass spectrometry in general, are powerful analytical tools for studying proteins and protein complexes. Native mass spectrometry may provide accurate mass measurements of large macromolecular assemblies enabling the investigation of their composition and stoichiometry.

  10. Kaposi sarcoma herpes virus latency associated nuclear antigen protein release the G2/M cell cycle blocks by modulating ATM/ATR mediated checkpoint pathway.

    Directory of Open Access Journals (Sweden)

    Amit Kumar

    Full Text Available The Kaposi's sarcoma-associated herpesvirus infects the human population and maintains latency stage of viral life cycle in a variety of cell types including cells of epithelial, mesenchymal and endothelial origin. The establishment of latent infection by KSHV requires the expression of an unique repertoire of genes among which latency associated nuclear antigen (LANA plays a critical role in the replication of the viral genome. LANA regulates the transcription of a number of viral and cellular genes essential for the survival of the virus in the host cell. The present study demonstrates the disruption of the host G2/M cell cycle checkpoint regulation as an associated function of LANA. DNA profile of LANA expressing human B-cells demonstrated the ability of this nuclear antigen in relieving the drug (Nocodazole induced G2/M checkpoint arrest. Caffeine suppressed nocodazole induced G2/M arrest indicating involvement of the ATM/ATR. Notably, we have also shown the direct interaction of LANA with Chk2, the ATM/ATR signalling effector and is responsible for the release of the G2/M cell cycle block.

  11. Flexible, Symmetry-Directed Approach To Assembling Protein Cages (Publisher’s Version Open Access)

    Science.gov (United States)

    2016-08-01

    and eHoward Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109 Edited by David Baker, University of Washington, Seattle, WA, and...widespread in nature and confers new biological properties. Engineered protein assemblies have potential applica- tions in nanotechnology and medicine...assemble into the desired structure. Here we demonstrate a simple, generalizable approach to assemble proteins into cage-like structures that uses short

  12. Solution scattering studies on a virus capsid protein as a building block for nanoscale assemblies

    NARCIS (Netherlands)

    Comellas Aragones, M.; Comellas-Aragones, Marta; Sikkema, Friso D.; Delaittre, Guillaume; Terry, Ann E.; King, Stephen M.; Visser, Dirk; Heenan, Richard K.; Nolte, Roeland J.M.; Cornelissen, Jeroen Johannes Lambertus Maria; Feiters, Martin C.

    2011-01-01

    Self-assembled protein cages are versatile building blocks in the construction of biomolecular nanostructures. Because of the defined assembly behaviour the cowpea chlorotic mottle virus (CCMV) protein is often used for such applications. Here we report a detailed solution scattering study of the

  13. A genetic screen identifies BRCA2 and PALB2 as key regulators of G2 checkpoint maintenance

    DEFF Research Database (Denmark)

    Menzel, Tobias; Nähse-Kumpf, Viola; Kousholt, Arne Nedergaard

    2011-01-01

    To identify key connections between DNA-damage repair and checkpoint pathways, we performed RNA interference screens for regulators of the ionizing radiation-induced G2 checkpoint, and we identified the breast cancer gene BRCA2. The checkpoint was also abrogated following depletion of PALB2......, an interaction partner of BRCA2. BRCA2 and PALB2 depletion led to premature checkpoint abrogation and earlier activation of the AURORA A-PLK1 checkpoint-recovery pathway. These results indicate that the breast cancer tumour suppressors and homologous recombination repair proteins BRCA2 and PALB2 are main...

  14. Phosphorylation of Minichromosome Maintenance 3 (MCM3) by Checkpoint Kinase 1 (Chk1) Negatively Regulates DNA Replication and Checkpoint Activation.

    Science.gov (United States)

    Han, Xiangzi; Mayca Pozo, Franklin; Wisotsky, Jacob N; Wang, Benlian; Jacobberger, James W; Zhang, Youwei

    2015-05-08

    Mechanisms controlling DNA replication and replication checkpoint are critical for the maintenance of genome stability and the prevention or treatment of human cancers. Checkpoint kinase 1 (Chk1) is a key effector protein kinase that regulates the DNA damage response and replication checkpoint. The heterohexameric minichromosome maintenance (MCM) complex is the core component of mammalian DNA helicase and has been implicated in replication checkpoint activation. Here we report that Chk1 phosphorylates the MCM3 subunit of the MCM complex at Ser-205 under normal growth conditions. Mutating the Ser-205 of MCM3 to Ala increased the length of DNA replication track and shortened the S phase duration, indicating that Ser-205 phosphorylation negatively controls normal DNA replication. Upon replicative stress treatment, the inhibitory phosphorylation of MCM3 at Ser-205 was reduced, and this reduction was accompanied with the generation of single strand DNA, the key platform for ataxia telangiectasia mutated and Rad3-related (ATR) activation. As a result, the replication checkpoint is activated. Together, these data provide significant insights into the regulation of both normal DNA replication and replication checkpoint activation through the novel phosphorylation of MCM3 by Chk1. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. ECM protein nanofibers and nanostructures engineered using surface-initiated assembly.

    Science.gov (United States)

    Szymanski, John M; Jallerat, Quentin; Feinberg, Adam W

    2014-04-17

    The extracellular matrix (ECM) in tissues is synthesized and assembled by cells to form a 3D fibrillar, protein network with tightly regulated fiber diameter, composition and organization. In addition to providing structural support, the physical and chemical properties of the ECM play an important role in multiple cellular processes including adhesion, differentiation, and apoptosis. In vivo, the ECM is assembled by exposing cryptic self-assembly (fibrillogenesis) sites within proteins. This process varies for different proteins, but fibronectin (FN) fibrillogenesis is well-characterized and serves as a model system for cell-mediated ECM assembly. Specifically, cells use integrin receptors on the cell membrane to bind FN dimers and actomyosin-generated contractile forces to unfold and expose binding sites for assembly into insoluble fibers. This receptor-mediated process enables cells to assemble and organize the ECM from the cellular to tissue scales. Here, we present a method termed surface-initiated assembly (SIA), which recapitulates cell-mediated matrix assembly using protein-surface interactions to unfold ECM proteins and assemble them into insoluble fibers. First, ECM proteins are adsorbed onto a hydrophobic polydimethylsiloxane (PDMS) surface where they partially denature (unfold) and expose cryptic binding domains. The unfolded proteins are then transferred in well-defined micro- and nanopatterns through microcontact printing onto a thermally responsive poly(N-isopropylacrylamide) (PIPAAm) surface. Thermally-triggered dissolution of the PIPAAm leads to final assembly and release of insoluble ECM protein nanofibers and nanostructures with well-defined geometries. Complex architectures are possible by engineering defined patterns on the PDMS stamps used for microcontact printing. In addition to FN, the SIA process can be used with laminin, fibrinogen and collagens type I and IV to create multi-component ECM nanostructures. Thus, SIA can be used to engineer

  16. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A

    NARCIS (Netherlands)

    Wolthuis, Rob; Clay-Farrace, Lori; van Zon, Wouter; Yekezare, Mona; Koop, Lars; Ogink, Janneke; Medema, Rene; Pines, Jonathon

    2008-01-01

    Successful mitosis requires the right protein be degraded at the right time. Central to this is the spindle checkpoint that prevents the destruction of securin and cyclin 131 when there are improperly attached chromosomes. The principal target of the checkpoint is Cdc20, which activates the

  17. Protein capable of self-assembly at a hydrophobic-hydrophilic interface and uses threof

    NARCIS (Netherlands)

    Woesten, Herman Abel Bernard; Claessen, Dennis; Faber, Onno Herben; Meijer, Wilhelmus Gerardus; Dijkhuizen, Lubbert

    2001-01-01

    The invention relates to a hydrophobin-like protein capable of self-assembly at a hydrophobic-hydrophilic interface. The protein according to the present invention belongs to a new class of protein and is an at least partially purified protein comprising a polypeptide having at least 40 % identity

  18. A sequential multi-target Mps1 phosphorylation cascade promotes spindle checkpoint signaling.

    Science.gov (United States)

    Ji, Zhejian; Gao, Haishan; Jia, Luying; Li, Bing; Yu, Hongtao

    2017-01-10

    The master spindle checkpoint kinase Mps1 senses kinetochore-microtubule attachment and promotes checkpoint signaling to ensure accurate chromosome segregation. The kinetochore scaffold Knl1, when phosphorylated by Mps1, recruits checkpoint complexes Bub1-Bub3 and BubR1-Bub3 to unattached kinetochores. Active checkpoint signaling ultimately enhances the assembly of the mitotic checkpoint complex (MCC) consisting of BubR1-Bub3, Mad2, and Cdc20, which inhibits the anaphase-promoting complex or cyclosome bound to Cdc20 (APC/C(Cdc20)) to delay anaphase onset. Using in vitro reconstitution, we show that Mps1 promotes APC/C inhibition by MCC components through phosphorylating Bub1 and Mad1. Phosphorylated Bub1 binds to Mad1-Mad2. Phosphorylated Mad1 directly interacts with Cdc20. Mutations of Mps1 phosphorylation sites in Bub1 or Mad1 abrogate the spindle checkpoint in human cells. Therefore, Mps1 promotes checkpoint activation through sequentially phosphorylating Knl1, Bub1, and Mad1. This sequential multi-target phosphorylation cascade makes the checkpoint highly responsive to Mps1 and to kinetochore-microtubule attachment.

  19. BioAssemblyModeler (BAM): user-friendly homology modeling of protein homo- and heterooligomers.

    Science.gov (United States)

    Shapovalov, Maxim V; Wang, Qiang; Xu, Qifang; Andrake, Mark; Dunbrack, Roland L

    2014-01-01

    Many if not most proteins function in oligomeric assemblies of one or more protein sequences. The Protein Data Bank provides coordinates for biological assemblies for each entry, at least 60% of which are dimers or larger assemblies. BioAssemblyModeler (BAM) is a graphical user interface to the basic steps in homology modeling of protein homooligomers and heterooligomers from the biological assemblies provided in the PDB. BAM takes as input up to six different protein sequences and begins by assigning Pfam domains to the target sequences. The program utilizes a complete assignment of Pfam domains to sequences in the PDB, PDBfam (http://dunbrack2.fccc.edu/protcid/pdbfam), to obtain templates that contain any or all of the domains assigned to the target sequence(s). The contents of the biological assemblies of potential templates are provided, and alignments of the target sequences to the templates are produced with a profile-profile alignment algorithm. BAM provides for visual examination and mouse-editing of the alignments supported by target and template secondary structure information and a 3D viewer of the template biological assembly. Side-chain coordinates for a model of the biological assembly are built with the program SCWRL4. A built-in protocol navigation system guides the user through all stages of homology modeling from input sequences to a three-dimensional model of the target complex. http://dunbrack.fccc.edu/BAM.

  20. Correlation between centromere protein-F autoantibodies and cancer analyzed by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Welner, Simon; Trier, Nicole Hartwig; Morten Frisch, Morten

    2013-01-01

    Centromere protein-F (CENP-F) is a large nuclear protein of 367 kDa, which is involved in multiple mitosis-related events such as proper assembly of the kinetochores, stabilization of heterochromatin, chromosome alignment and mitotic checkpoint signaling. Several studies have shown a correlation...

  1. Alternative DNA Damage Checkpoint Pathways in Eukaryotes

    National Research Council Canada - National Science Library

    Scott, Kenneth

    2001-01-01

    ... (checkpoint bypass pathway) genes that constitute this alterative checkpoint, to isolate the human counterparts of these genes, and to compare their structure and activity in normal and cancer tissues...

  2. Efficient Incremental Checkpointing of Java Programs

    DEFF Research Database (Denmark)

    Lawall, Julia Laetitia; Muller, Gilles

    2000-01-01

    This paper investigates the optimization of language-level checkpointing of Java programs. First, we describe how to systematically associate incremental checkpoints with Java classes. While being safe, the genericness of this solution induces substantial execution overhead. Second, to solve...

  3. Heme-Protein Active Site Models via Self-Assembly in Water

    NARCIS (Netherlands)

    Fiammengo, R.; Wojciechowski, Kamil; Crego Calama, Mercedes; Figoli, A.; Wessling, Matthias; Reinhoudt, David; Timmerman, P.

    2003-01-01

    Water-soluble models of heme-protein active sites are obtained via the self-assembly of cationic porphyrins 1 and tetrasulfonato calix[4]arene 2 (K1·2 = 105 M-1). Selective binding of ligands either outside or inside the cavity of assemblies 1·2 via coordination to the zinc center has been observed.

  4. Reversible Multiparty Sessions with Checkpoints

    Directory of Open Access Journals (Sweden)

    Mariangiola Dezani-Ciancaglini

    2016-08-01

    Full Text Available Reversible interactions model different scenarios, like biochemical systems and human as well as automatic negotiations. We abstract interactions via multiparty sessions enriched with named checkpoints. Computations can either go forward or roll back to some checkpoints, where possibly different choices may be taken. In this way communications can be undone and different conversations may be tried. Interactions are typed with global types, which control also rollbacks. Typeability of session participants in agreement with global types ensures session fidelity and progress of reversible communications.

  5. Network support for system initiated checkpoints

    Science.gov (United States)

    Chen, Dong; Heidelberger, Philip

    2013-01-29

    A system, method and computer program product for supporting system initiated checkpoints in parallel computing systems. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity.

  6. Symmetry of Charge Partitioning in Collisional and UV Photon-Induced Dissociation of Protein Assemblies

    NARCIS (Netherlands)

    Tamara, Sem|info:eu-repo/dai/nl/411923110; Dyachenko, Andrey|info:eu-repo/dai/nl/371569583; Fort, Kyle L|info:eu-repo/dai/nl/412516489; Makarov, Alexander A; Scheltema, Richard A|info:eu-repo/dai/nl/328673056; Heck, Albert J R|info:eu-repo/dai/nl/105189332

    2016-01-01

    Tandem mass spectrometry can provide structural information on intact protein assemblies, generating mass fingerprints indicative of the stoichiometry and quaternary arrangement of the subunits. However, in such experiments, collision-induced dissociation yields restricted information due to

  7. The β-Barrel Outer Membrane Protein Assembly Complex of Neisseria meningitidis▿

    OpenAIRE

    Volokhina, Elena B.; Beckers, Frank; Tommassen, Jan; Bos, Martine P.

    2009-01-01

    The evolutionarily conserved protein Omp85 is required for outer membrane protein (OMP) assembly in gram-negative bacteria and in mitochondria. Its Escherichia coli homolog, designated BamA, functions with four accessory lipoproteins, BamB, BamC, BamD, and BamE, together forming the β-barrel assembly machinery (Bam). Here, we addressed the composition of this machinery and the function of its components in Neisseria meningitidis, a model organism for outer membrane biogenesis studies. Analysi...

  8. Protein Viability on Au Nanoparticles during an Electrospray and Electrostatic-Force-Directed Assembly Process

    Directory of Open Access Journals (Sweden)

    Shun Mao

    2010-01-01

    Full Text Available We study the protein viability on Au nanoparticles during an electrospray and electrostatic-force-directed assembly process, through which Au nanoparticle-antibody conjugates are assembled onto the surface of carbon nanotubes (CNTs to fabricate carbon nanotube field-effect transistor (CNTFET biosensors. Enzyme-linked immunosorbent assay (ELISA and field-effect transistor (FET measurements have been used to investigate the antibody activity after the nanoparticle assembly. Upon the introduction of matching antigens, the colored reaction from the ELISA and the change in the electrical characteristic of the CNTFET device confirm that the antibody activity is preserved during the assembly process.

  9. ϕX174 Procapsid Assembly: Effects of an Inhibitory External Scaffolding Protein and Resistant Coat Proteins In Vitro.

    Science.gov (United States)

    Cherwa, James E; Tyson, Joshua; Bedwell, Gregory J; Brooke, Dewey; Edwards, Ashton G; Dokland, Terje; Prevelige, Peter E; Fane, Bentley A

    2017-01-01

    During ϕX174 morphogenesis, 240 copies of the external scaffolding protein D organize 12 pentameric assembly intermediates into procapsids, a reaction reconstituted in vitro In previous studies, ϕX174 strains resistant to exogenously expressed dominant lethal D genes were experimentally evolved. Resistance was achieved by the stepwise acquisition of coat protein mutations. Once resistance was established, a stimulatory D protein mutation that greatly increased strain fitness arose. In this study, in vitro biophysical and biochemical methods were utilized to elucidate the mechanistic details and evolutionary trade-offs created by the resistance mutations. The kinetics of procapsid formation was analyzed in vitro using wild-type, inhibitory, and experimentally evolved coat and scaffolding proteins. Our data suggest that viral fitness is correlated with in vitro assembly kinetics and demonstrate that in vivo experimental evolution can be analyzed within an in vitro biophysical context. Experimental evolution is an extremely valuable tool. Comparisons between ancestral and evolved genotypes suggest hypotheses regarding adaptive mechanisms. However, it is not always possible to rigorously test these hypotheses in vivo We applied in vitro biophysical and biochemical methods to elucidate the mechanistic details that allowed an experimentally evolved virus to become resistant to an antiviral protein and then evolve a productive use for that protein. Moreover, our results indicate that the respective roles of scaffolding and coat proteins may have been redistributed during the evolution of a two-scaffolding-protein system. In one-scaffolding-protein virus assembly systems, coat proteins promiscuously interact to form heterogeneous aberrant structures in the absence of scaffolding proteins. Thus, the scaffolding protein controls fidelity. During ϕX174 assembly, the external scaffolding protein acts like a coat protein, self-associating into large aberrant spherical

  10. Self-Assembly in the Ferritin Nano-Cage Protein Superfamily

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    2011-08-01

    Full Text Available Protein self-assembly, through specific, high affinity, and geometrically constraining protein-protein interactions, can control and lead to complex cellular nano-structures. Establishing an understanding of the underlying principles that govern protein self-assembly is not only essential to appreciate the fundamental biological functions of these structures, but could also provide a basis for their enhancement for nano-material applications. The ferritins are a superfamily of well studied proteins that self-assemble into hollow cage-like structures which are ubiquitously found in both prokaryotes and eukaryotes. Structural studies have revealed that many members of the ferritin family can self-assemble into nano-cages of two types. Maxi-ferritins form hollow spheres with octahedral symmetry composed of twenty-four monomers. Mini-ferritins, on the other hand, are tetrahedrally symmetric, hollow assemblies composed of twelve monomers. This review will focus on the structure of members of the ferritin superfamily, the mechanism of ferritin self-assembly and the structure-function relations of these proteins.

  11. UV-induced G2 checkpoint depends on p38 MAPK and minimal activation of ATR-Chk1 pathway

    NARCIS (Netherlands)

    D.O. Warmerdam (Daniël); E.K. Brinkman (Eva); J.A. Marteijn (Jurgen); R.H. Medema (Rene); R. Kanaar (Roland); V.A.J. Smits (Veronique)

    2013-01-01

    textabstractIn response to UV light, single-stranded DNA intermediates coated with replication protein A (RPA) are generated, which trigger the ATR-Chk1 checkpoint pathway. Recruitment and/or activation of several checkpoint proteins at the damaged sites is important for the subsequent cell cycle

  12. Tetrahymena dynamin related protein 6 self assembles independent ...

    Indian Academy of Sciences (India)

    eluted as small oligomeric forms. Absence of any peak in the void volume suggests that human dynamin 1 does not form self-assembled structure under high ionic strength condition. Supplementary figure 3: Size exclusion chromatography profile of Drp6-R414A. His6-Drp6-. R414A expressed and purified from bacteria ...

  13. Adeno-associated Virus (AAV) Assembly-Activating Protein Is Not an Essential Requirement for Capsid Assembly of AAV Serotypes 4, 5, and 11.

    Science.gov (United States)

    Earley, Lauriel F; Powers, John M; Adachi, Kei; Baumgart, Joshua T; Meyer, Nancy L; Xie, Qing; Chapman, Michael S; Nakai, Hiroyuki

    2017-02-01

    Adeno-associated virus (AAV) vectors have made great progress in their use for gene therapy; however, fundamental aspects of AAV's capsid assembly remain poorly characterized. In this regard, the discovery of assembly-activating protein (AAP) sheds new light on this crucial part of AAV biology and vector production. Previous studies have shown that AAP is essential for assembly; however, how its mechanistic roles in assembly might differ among AAV serotypes remains uncharacterized. Here, we show that biological properties of AAPs and capsid assembly processes are surprisingly distinct among AAV serotypes 1 to 12. In the study, we investigated subcellular localizations and assembly-promoting functions of AAP1 to -12 (i.e., AAPs derived from AAV1 to -12, respectively) and examined the AAP dependence of capsid assembly processes of these 12 serotypes using combinatorial approaches that involved immunofluorescence and transmission electron microscopy, barcode-Seq (i. e., a high-throughput quantitative method using DNA barcodes and a next-generation sequencing technology), and quantitative dot blot assays. This study revealed that AAP1 to -12 are all localized in the nucleus with serotype-specific differential patterns of nucleolar association; AAPs and assembled capsids do not necessarily colocalize; AAPs are promiscuous in promoting capsid assembly of other serotypes, with the exception of AAP4, -5, -11, and -12; assembled AAV5, -8, and -9 capsids are excluded from the nucleolus, in contrast to the nucleolar enrichment of assembled AAV2 capsids; and, surprisingly, AAV4, -5, and -11 capsids are not dependent on AAP for assembly. These observations highlight the serotype-dependent heterogeneity of the capsid assembly process and challenge current notions about the role of AAP and the nucleolus in capsid assembly. Assembly-activating protein (AAP) is a recently discovered adeno-associated virus (AAV) protein that promotes capsid assembly and provides new opportunities

  14. Human MLH1 protein participates in genomic damage checkpoint signaling in response to DNA interstrand crosslinks, while MSH2 functions in DNA repair.

    Directory of Open Access Journals (Sweden)

    Qi Wu

    2008-09-01

    Full Text Available DNA interstrand crosslinks (ICLs are among the most toxic types of damage to a cell. For this reason, many ICL-inducing agents are effective therapeutic agents. For example, cisplatin and nitrogen mustards are used for treating cancer and psoralen plus UVA (PUVA is useful for treating psoriasis. However, repair mechanisms for ICLs in the human genome are not clearly defined. Previously, we have shown that MSH2, the common subunit of the human MutSalpha and MutSbeta mismatch recognition complexes, plays a role in the error-free repair of psoralen ICLs. We hypothesized that MLH1, the common subunit of human MutL complexes, is also involved in the cellular response to psoralen ICLs. Surprisingly, we instead found that MLH1-deficient human cells are more resistant to psoralen ICLs, in contrast to the sensitivity to these lesions displayed by MSH2-deficient cells. Apoptosis was not as efficiently induced by psoralen ICLs in MLH1-deficient cells as in MLH1-proficient cells as determined by caspase-3/7 activity and binding of annexin V. Strikingly, CHK2 phosphorylation was undetectable in MLH1-deficient cells, and phosphorylation of CHK1 was reduced after PUVA treatment, indicating that MLH1 is involved in signaling psoralen ICL-induced checkpoint activation. Psoralen ICLs can result in mutations near the crosslinked sites; however, MLH1 function was not required for the mutagenic repair of these lesions, and so its signaling function appears to have a role in maintaining genomic stability following exposure to ICL-induced DNA damage. Distinguishing the genetic status of MMR-deficient tumors as MSH2-deficient or MLH1-deficient is thus potentially important in predicting the efficacy of treatment with psoralen and perhaps with other ICL-inducing agents.

  15. Non-volatile memory for checkpoint storage

    Science.gov (United States)

    Blumrich, Matthias A.; Chen, Dong; Cipolla, Thomas M.; Coteus, Paul W.; Gara, Alan; Heidelberger, Philip; Jeanson, Mark J.; Kopcsay, Gerard V.; Ohmacht, Martin; Takken, Todd E.

    2014-07-22

    A system, method and computer program product for supporting system initiated checkpoints in high performance parallel computing systems and storing of checkpoint data to a non-volatile memory storage device. The system and method generates selective control signals to perform checkpointing of system related data in presence of messaging activity associated with a user application running at the node. The checkpointing is initiated by the system such that checkpoint data of a plurality of network nodes may be obtained even in the presence of user applications running on highly parallel computers that include ongoing user messaging activity. In one embodiment, the non-volatile memory is a pluggable flash memory card.

  16. [Clinical research on immune checkpoint and head and neck squamous cell carcinoma].

    Science.gov (United States)

    Yu, D; Qi, X M; Zhao, X; Liu, Y; Xue, K; Jin, C S; Wen, L J

    2017-09-07

    T cell immune checkpoint pathways contribute to tumor immune escape. Many studies have shown that immune checkpoint is demonstrably correlated with tumor grade or prognosis in several types of malignancies and immune checkpoint has become a new biological index for tumor detection and prognosis. Immune checkpoint inhibitors have shown promising tumor outcomes in clinical trials for some advanced solid tumors and it will become a new target for cancer immunotherapy. In this review we will explore the correlation between expressions of immune checkpoint-associated genes and proteins in immune microenviroment and prognosis of head and neck squamous cell carcinoma, and specifically will discuss how this pathway can be manipulated with immune therapeutic drugs.

  17. Nonequilibrium synthesis and assembly of hybrid inorganic-protein nanostructures using an engineered DNA binding protein.

    Science.gov (United States)

    Dai, Haixia; Choe, Woo-Seok; Thai, Corrine K; Sarikaya, Mehmet; Traxler, Beth A; Baneyx, François; Schwartz, Daniel T

    2005-11-09

    We show that a protein with no intrinsic inorganic synthesis activity can be endowed with the ability to control the formation of inorganic nanostructures under thermodynamically unfavorable (nonequilibrium) conditions, reproducing a key feature of biological hard-tissue growth and assembly. The nonequilibrium synthesis of Cu(2)O nanoparticles is accomplished using an engineered derivative of the DNA-binding protein TraI in a room-temperature precursor electrolyte. The functional TraI derivative (TraIi1753::CN225) is engineered to possess a cysteine-constrained 12-residue Cu(2)O binding sequence, designated CN225, that is inserted into a permissive site in TraI. When TraIi1753::CN225 is included in the precursor electrolyte, stable Cu(2)O nanoparticles form, even though the concentrations of [Cu(+)] and [OH(-)] are at 5% of the solubility product (K(sp,Cu2O)). Negative control experiments verify that Cu(2)O formation is controlled by inclusion of the CN225 binding sequence. Transmission electron microscopy and electron diffraction reveal a core-shell structure for the nonequilibrium nanoparticles: a 2 nm Cu(2)O core is surrounded by an adsorbed protein shell. Quantitative protein adsorption studies show that the unexpected stability of Cu(2)O is imparted by the nanomolar surface binding affinity of TraIi1753::CN225 for Cu(2)O (K(d) = 1.2 x 10(-)(8) M), which provides favorable interfacial energetics (-45 kJ/mol) for the core-shell configuration. The protein shell retains the DNA-binding traits of TraI, as evidenced by the spontaneous organization of nanoparticles onto circular double-stranded DNA.

  18. Molecular Dissection of the Forces Responsible for Viral Capsid Assembly and Stabilization by Decoration Proteins.

    Science.gov (United States)

    Lambert, Shannon; Yang, Qin; De Angeles, Rolando; Chang, Jenny R; Ortega, Marcos; Davis, Christal; Catalano, Carlos Enrique

    2017-02-07

    Complex double-stranded DNA viruses utilize a terminase enzyme to package their genomes into a preassembled procapsid shell. DNA packaging triggers a major conformational change in the proteins assembled into the shell and most often subsequent addition of a decoration protein that is required to stabilize the structure. In bacteriophage λ, DNA packaging drives a procapsid expansion transition to afford a larger but fragile shell. The gpD decoration protein adds to the expanded shell as trimeric spikes at each of the 140 three-fold axes. The spikes provide mechanical strength to the shell such that it can withstand the tremendous internal forces generated by the packaged DNA in addition to environmental insults. Hydrophobic, electrostatic, and aromatic-proline noncovalent interactions have been proposed to mediate gpD trimer spike assembly at the expanded shell surface. Here, we directly examine each of these interactions and demonstrate that hydrophobic interactions play the dominant role. In the course of this study, we unexpectedly found that Trp308 in the λ major capsid protein (gpE) plays a critical role in shell assembly. The gpE-W308A mutation affords a soluble, natively folded protein that does not further assemble into a procapsid shell, despite the fact that it retains binding interactions with the scaffolding protein, the shell assembly chaparone protein. The data support a model in which the λ procapsid shell assembles via cooperative interaction of monomeric capsid proteins, as observed in the herpesviruses and phages such as P22. The significance of the results with respect to capsid assembly, maturation, and stability is discussed.

  19. Analyzing DNA replication checkpoint in budding yeast.

    Science.gov (United States)

    Hustedt, Nicole; Shimada, Kenji

    2014-01-01

    Checkpoints are conserved mechanisms that prevent progression into the next phase of the cell cycle when cells are unable to accomplish the previous event properly. Cells also possess a surveillance mechanism called the DNA replication checkpoint, which consists of a conserved kinase cascade that is provoked by insults that block or slow down replication fork progression. In the budding yeast Saccharomyces cerevisiae, the DNA replication checkpoint controls the timing of S-phase events such as origin firing and spindle elongation. This checkpoint also upregulates dNTP pools and maintains the replication fork structure in order to resume DNA replication after replication block. Many replication checkpoint factors have been found to be tumor suppressors, highlighting the importance of this checkpoint pathway in human health. Here we describe a series of protocols to analyze the DNA replication checkpoint in S. cerevisiae.

  20. Kinetic Controlled Tag-Catcher Interactions for Directed Covalent Protein Assembly.

    Science.gov (United States)

    Tan, Lee Ling; Hoon, Shawn S; Wong, Fong T

    2016-01-01

    Over the last few years, a number of different protein assembly strategies have been developed, greatly expanding the toolbox for controlling macromolecular assembly. One of the most promising developments is a rapid protein ligation approach using a short polypeptide SpyTag and its partner, SpyCatcher derived from Streptococcus pyogenes fibronectin-binding protein, FbaB. To extend this technology, we have engineered and characterized a new Tag-Catcher pair from a related fibronectin-binding protein in Streptococcus dysgalactiae. The polypeptide Tag, named SdyTag, was constructed based on the native Cna protein B-type (CnaB) domain and was found to be highly unreactive to SpyCatcher. SpyCatcher has 320-fold specificity for its native SpyTag compared to SdyTag. Similarly, SdyTag has a 75-fold specificity for its optimized Catcher, named SdyCatcherDANG short, compared to SpyCatcher. These Tag-Catcher pairs were used in combination to demonstrate specific sequential assembly of tagged proteins in vitro. We also demonstrated that the in vivo generation of circularized proteins in a Tag-Catcher specific manner where specific Tags can be left unreacted for use in subsequent ligation reactions. From the success of these experiments, we foresee the application of SdyTags and SpyTags, not only, for multiplexed control of protein assembly but also for the construction of novel protein architectures.

  1. Kinetic Controlled Tag-Catcher Interactions for Directed Covalent Protein Assembly.

    Directory of Open Access Journals (Sweden)

    Lee Ling Tan

    Full Text Available Over the last few years, a number of different protein assembly strategies have been developed, greatly expanding the toolbox for controlling macromolecular assembly. One of the most promising developments is a rapid protein ligation approach using a short polypeptide SpyTag and its partner, SpyCatcher derived from Streptococcus pyogenes fibronectin-binding protein, FbaB. To extend this technology, we have engineered and characterized a new Tag-Catcher pair from a related fibronectin-binding protein in Streptococcus dysgalactiae. The polypeptide Tag, named SdyTag, was constructed based on the native Cna protein B-type (CnaB domain and was found to be highly unreactive to SpyCatcher. SpyCatcher has 320-fold specificity for its native SpyTag compared to SdyTag. Similarly, SdyTag has a 75-fold specificity for its optimized Catcher, named SdyCatcherDANG short, compared to SpyCatcher. These Tag-Catcher pairs were used in combination to demonstrate specific sequential assembly of tagged proteins in vitro. We also demonstrated that the in vivo generation of circularized proteins in a Tag-Catcher specific manner where specific Tags can be left unreacted for use in subsequent ligation reactions. From the success of these experiments, we foresee the application of SdyTags and SpyTags, not only, for multiplexed control of protein assembly but also for the construction of novel protein architectures.

  2. Mechanistic overview of immune checkpoints to support the rational design of their combinations in cancer immunotherapy.

    Science.gov (United States)

    Rotte, A; Jin, J Y; Lemaire, V

    2017-10-24

    Checkpoint receptor blockers, known to act by blocking the pathways that inhibit immune cell activation and stimulate immune responses against tumor cells, have been immensely successful in the treatment of cancer. Among several checkpoint receptors of immune cells, cytotoxic T-lymphocyte-associated protein-4 (CTLA-4), programmed cell death protein-1 (PD-1), T-cell immunoglobulin and ITIM domain (TIGIT), T-cell immunoglobulin-3 (TIM-3) and lymphocyte activation gene 3 (LAG-3) are the most commonly targeted checkpoints for cancer immunotherapy. Six drugs including one CTLA-4 blocker (ipilimumab), two PD-1 blockers (nivolumab and pembrolizumab), and three PD-L1 blockers (atezolizumab, avelumab and durvalumab) are approved for the treatment of different types of cancers including both solid tumors such as melanoma, lung cancer, head and neck cancer, bladder cancer and Merkel cell cancer as well as hematological tumors such as classic Hogdkins lymphoma. The main problem with checkpoint blockers is that only a fraction of patients respond to the therapy. Insufficient immune activation is considered as one of the main reason for low response rates and combination of checkpoint blockers has been proposed to increase the response rates. The combination of checkpoint blockers was successful in melanoma but had significant adverse events. A combination that is selected based on the mechanistic differences between checkpoints and the differences in expression of checkpoints and their ligands in the tumor microenvironment (TME) could have a synergistic effect in a given cancer subtype and also have a manageable safety profile. This review aims to help in design of optimal checkpoint blocker combinations by discussing the mechanistic details and outlining the subtle differences between major checkpoints targeted for cancer immunotherapy. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology. [br]All rights reserved. For

  3. The Aurora B kinase in chromosome biorientation and spindle checkpoint signalling

    Directory of Open Access Journals (Sweden)

    Veronica eKrenn

    2015-10-01

    Full Text Available Aurora B, a member of the Aurora family of serine/threonine protein kinases, is a key player in chromosome segregation. As part of a macromolecular complex known as the chromosome passenger complex, Aurora B concentrates early during mitosis in the proximity of centromeres and kinetochores, the sites of attachment of chromosomes to spindle microtubules. There, it contributes to a number of processes that impart fidelity to cell division, including kinetochore stabilization, kinetochore-microtubule attachment, and the regulation of a surveillance mechanism named the spindle assembly checkpoint. In the regulation of these processes, Aurora B is the fulcrum of a remarkably complex network of interactions that feed back on its localization and activation state. In this review we discuss the multiple roles of Aurora B during mitosis, focusing in particular on its role at centromeres and kinetochores. Many details of the network of interactions at these locations remain poorly understood, and we focus here on several crucial outstanding questions.

  4. Acid-induced assembly of a reconstituted silk protein system

    Science.gov (United States)

    Tabatabai, A. Pasha; Weigandt, Katie M.; Blair, Daniel L.

    2017-08-01

    Silk cocoons are reconstituted into an aqueous suspension, and protein stability is investigated by comparing the protein's response to hydrochloric acid and sodium chloride. Aggregation occurs for systems mixed with hydrochloric acid, while sodium chloride over the same range of concentrations does not cause aggregation. We measure the structures present on the protein and aggregate length scales in these solutions using both optical and small-angle neutron scattering, while mass spectrometry techniques shed light on a possible mechanism for aggregate formation. We find that the introduction of acid modulates the aggregate size and pervaded volume of the protein, an effect that is not observed with salt.

  5. Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly.

    Science.gov (United States)

    Soltes, Garner R; Martin, Nicholas R; Park, Eunhae; Sutterlin, Holly A; Silhavy, Thomas J

    2017-10-15

    Outer membrane protein (OMP) biogenesis in Escherichia coli is a robust process essential to the life of the organism. It is catalyzed by the β-barrel assembly machine (Bam) complex, and a number of quality control factors, including periplasmic chaperones and proteases, maintain the integrity of this trafficking pathway. Little is known, however, about how periplasmic proteases recognize and degrade OMP substrates when assembly is compromised or whether different proteases recognize the same substrate at distinct points in the assembly pathway. In this work, we use well-defined assembly-defective mutants of LptD, the essential lipopolysaccharide assembly translocon, to show that the periplasmic protease DegP degrades substrates with assembly defects that prevent or impair initial contact with Bam, causing the mutant protein to accumulate in the periplasm. In contrast, another periplasmic protease, BepA, degrades a LptD mutant substrate that has engaged the Bam complex and formed a nearly complete barrel. Furthermore, we describe the role of the outer membrane lipoprotein YcaL, a protease of heretofore unknown function, in the degradation of a LptD substrate that has engaged the Bam complex but is stalled at an earlier step in the assembly process that is not accessible to BepA. Our results demonstrate that multiple periplasmic proteases monitor OMPs at distinct points in the assembly process.IMPORTANCE OMP assembly is catalyzed by the essential Bam complex and occurs in a cellular environment devoid of energy sources. Assembly intermediates that misfold can compromise this essential molecular machine. Here we demonstrate distinctive roles for three different periplasmic proteases that can clear OMP substrates with folding defects that compromise assembly at three different stages. These quality control factors help ensure the integrity of the permeability barrier that contributes to the intrinsic resistance of Gram-negative organisms to many antibiotics

  6. Coronavirus nucleocapsid proteins assemble constitutively in high molecular oligomers

    NARCIS (Netherlands)

    Cong, Yingying; Kriegenburg, Franziska; de Haan, Cornelis A. M.; Reggiori, Fulvio

    2017-01-01

    Coronaviruses (CoV) are enveloped viruses and rely on their nucleocapsid N protein to incorporate the positive-stranded genomic RNA into the virions. CoV N proteins form oligomers but the mechanism and relevance underlying their multimerization remain to be fully understood. Using in vitro pull-down

  7. The outer membrane protein assembly machinery of Neisseria meningitidis

    NARCIS (Netherlands)

    Volokhina, E.B.

    2009-01-01

    Gram-negative bacteria are characterized by a cell envelope consisting of an inner membrane (IM) and an outer membrane (OM), which are separated by the peptidoglycan-containing periplasm. While the integral IM proteins are alpha-helical, all but one known integral OM proteins (OMPs) are

  8. Self-assembling peptides form nanodiscs that stabilize membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi; Pedersen, Martin Cramer; Kirkensgaard, Jacob Judas Kain

    2014-01-01

    -ray scattering (SAXS) and small-angle neutron scattering (SANS) supported by coarse-grained molecular dynamics simulations. The detailed structure of the discs was determined in unprecedented detail and it was found that they adopt a discoidal structure very similar to the ApoA1 based nanodiscs. We furthermore...... show that, like the ApoA1 and derived nanodiscs, these peptide discs can accommodate and stabilize a membrane protein. Finally, we exploit their dynamic properties and show that the 18A discs may be used for transferring membrane proteins and associated phospholipids directly and gently......New methods to handle membrane bound proteins, e.g. G-protein coupled receptors (GPCRs), are highly desirable. Recently, apoliprotein A1 (ApoA1) based lipoprotein particles have emerged as a new platform for studying membrane proteins, and it has been shown that they can self...

  9. Spotlight: assembly of protein complexes by integrating graph clustering methods.

    Science.gov (United States)

    Chin, Chia-Hao; Chen, Shu-Hwa; Chen, Chun-Yu; Hsiung, Chao A; Ho, Chin-Wen; Ko, Ming-Tat; Lin, Chung-Yen

    2013-04-10

    As is generally assumed, clusters in protein-protein interaction (PPI) networks perform specific, crucial functions in biological systems. Various network community detection methods have been developed to exploit PPI networks in order to identify protein complexes and functional modules. Due to the potential role of various regulatory modes in biological networks, a single method may just apply a single graph property and neglect communities highlighted by other network properties. This work presents a novel integration method to capture protein modules/protein complexes by multiple network features detected by different algorithms. The integration method is further implemented in a web-based platform with a highly effective interactive network analyzer. Conventionally adopted methods with different perspectives on network community detection (e.g., CPM, FastGreedy, HUNTER, MCL, LE, SpinGlass, and WalkTrap) are also executed simultaneously. Analytical results indicate that the proposed method performs better than the conventional ones. The proposed approach can capture the transcription and RNA splicing machineries from the yeast protein network. Meanwhile, proteins that are highly associated with each other, yet not described in both machineries are also identified. In sum, a protein that is closely connected to components of a known module or a complex in the network view implies the functional association among them. Importantly, our method can detect these unique network features, thus facilitating efforts to discover unknown components of functional modules/protein complexes. Spotlight is freely accessible at http://hub.iis.sinica.edu.tw/spotlight. Video clips for a quick view of usage are available in the website online help page. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.

  10. Fanconi anemia cells with unrepaired DNA damage activate components of the checkpoint recovery process.

    Science.gov (United States)

    Rodríguez, Alfredo; Torres, Leda; Juárez, Ulises; Sosa, David; Azpeitia, Eugenio; García-de Teresa, Benilde; Cortés, Edith; Ortíz, Rocío; Salazar, Ana M; Ostrosky-Wegman, Patricia; Mendoza, Luis; Frías, Sara

    2015-09-18

    the transcriptional and protein components of checkpoint recovery that might eventually allow their division with unrepaired DNA damage. This might allow cell survival but increases the genomic instability inherent to FA individuals and promotes cancer.

  11. Protein self-assembly following in situ expression in artificial and mammalian cells.

    Science.gov (United States)

    Migas, Urszula M; Quinn, Michelle K; McManus, Jennifer J

    2017-05-22

    The self-assembly of proteins has been widely studied in controlled in vitro conditions, and more recently in biological environments. The self-assembly of proteins in biology can be a feature of the pathogenesis of protein condensation disease, or can occur during normal physiological function, for example during the formation of intracellular non-membrane bound organelles. To determine the mechanisms for the assembly process fully, controlled in vitro experiments using purified protein solutions are often required. However, making direct connections between insights gathered from controlled experiments and those in complex biological environments remains a challenge. Using the P23T mutant of human γD-crystallin, a protein associated with congenital cataract, we have demonstrated that the equilibrium solubility boundary and solution behavior measured using phase diagrams of purified protein solutions is consistent with the assembly of the protein expressed in cell-free expression medium in artificial cells (without fluorescent labelling) and condensates formed in mammalian cells, thereby directly connecting in vitro measurements with those performed under physiological conditions.

  12. New insights into subcomplex assembly and modifications of centrosomal proteins

    Directory of Open Access Journals (Sweden)

    Habermann Karin

    2012-07-01

    Full Text Available Abstract This review provides a brief overview of the recent work on centrosome proteomics, protein complex identification and functional characterization with an emphasis on the literature of the last three years. Proteomics, genetic screens and comparative genomics studies in different model organisms have almost exhaustively identified the molecular components of the centrosome. However, much knowledge is still missing on the protein-protein interactions, protein modifications and molecular changes the centrosome undergoes throughout the cell cycle and development. The dynamic nature of this large multi-protein complex is reflected in the variety of annotated subcellular locations and biological processes of its proposed components. Some centrosomal proteins and complexes have been studied intensively in different organisms and provided detailed insight into centrosome functions. For example, the molecular, structural and functional characterization of the γ-Tubulin ring complex (γ-TuRC and the the discovery of the Augmin/HAUS complex has advanced our understanding of microtubule (MT capture, nucleation and organization. Surprising findings revealed new functions and localizations of proteins that were previously regarded as bona fide centriolar or centrosome components, e.g. at the kinetochore or in the nuclear pore complex regulating MT plus end capture or mRNA processing. Many centrosome components undergo posttranslational modifications such as phosphorylation, SUMOylation and ubiquitylation that are critical in modulating centrosome function and biology. A wealth of information has recently become available driven by new developments in technologies such as mass spectrometry, light and electron microscopy providing more detailed molecular and structural definition of the centrosome and particular roles of proteins throughout the cell cycle and development.

  13. Immune Checkpoint Inhibitors in Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Herzberg, Benjamin; Campo, Meghan J; Gainor, Justin F

    2017-01-01

    Historically, lung cancer was long considered a poorly immunogenic malignancy. In recent years, however, immune checkpoint inhibitors have emerged as promising therapeutic agents in non-small cell lung cancer (NSCLC). To date, the best characterized and most therapeutically relevant immune checkpoints have been cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and the programmed cell death protein-1 (PD-1) pathway. In early studies, PD-1/programmed cell death ligand-1 (PD-L1) inhibitors demonstrated promising antitumor activity and durable clinical responses in a subset of patients. Based on these encouraging results, multiple different PD-1/PD-L1 inhibitors have entered clinical development, and two agents (nivolumab and pembrolizumab) have gained regulatory approval in the United States for the treatment of NSCLC. In several large, randomized studies, PD-1/PD-L1 inhibitors have produced significant improvements in overall survival compared with single-agent docetaxel delivered in the second-line setting, effectively establishing a new standard of care in NSCLC. In the present report, we provide an overview of the rationale for checkpoint inhibitors in lung cancer, recent clinical trial data, and the need for predictive biomarkers. 2017;22:81-88 IMPLICATIONS FOR PRACTICE: Strategies targeting negative regulators (i.e., checkpoints) of the immune system have demonstrated significant antitumor activity across a range of solid tumors. In non-small cell lung cancer (NSCLC), programmed cell death protein-1 (PD-1) pathway inhibitors have entered routine clinical use because of the results from recent randomized studies demonstrating superiority against single-agent chemotherapy in previously treated patients. The present report provides an overview of immune checkpoint inhibitors in lung cancer for the practicing clinician, focusing on the rationale for immunotherapy, recent clinical trial data, and future directions. © AlphaMed Press 2016.

  14. Conformational Changes in the Hepatitis B Virus Core Protein Are Consistent with a Role for Allostery in Virus Assembly

    Energy Technology Data Exchange (ETDEWEB)

    Packianathan, Charles; Katen, Sarah P.; Dann, III, Charles E.; Zlotnick, Adam (Indiana)

    2010-01-12

    In infected cells, virus components must be organized at the right place and time to ensure assembly of infectious virions. From a different perspective, assembly must be prevented until all components are available. Hypothetically, this can be achieved by allosterically controlling assembly. Consistent with this hypothesis, here we show that the structure of the hepatitis B virus (HBV) core protein dimer, which can spontaneously self-assemble, is incompatible with capsid assembly. Systematic differences between core protein dimer and capsid conformations demonstrate linkage between the intradimer interface and interdimer contact surface. These structures also provide explanations for the capsid-dimer selectivity of some antibodies and the activities of assembly effectors. Solution studies suggest that the assembly-inactive state is more accurately an ensemble of conformations. Simulations show that allostery supports controlled assembly and results in capsids that are resistant to dissociation. We propose that allostery, as demonstrated in HBV, is common to most self-assembling viruses.

  15. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity

    Science.gov (United States)

    Simon, Joseph R.; Carroll, Nick J.; Rubinstein, Michael; Chilkoti, Ashutosh; López, Gabriel P.

    2017-06-01

    Dynamic protein-rich intracellular structures that contain phase-separated intrinsically disordered proteins (IDPs) composed of sequences of low complexity (SLC) have been shown to serve a variety of important cellular functions, which include signalling, compartmentalization and stabilization. However, our understanding of these structures and our ability to synthesize models of them have been limited. We present design rules for IDPs possessing SLCs that phase separate into diverse assemblies within droplet microenvironments. Using theoretical analyses, we interpret the phase behaviour of archetypal IDP sequences and demonstrate the rational design of a vast library of multicomponent protein-rich structures that ranges from uniform nano-, meso- and microscale puncta (distinct protein droplets) to multilayered orthogonally phase-separated granular structures. The ability to predict and program IDP-rich assemblies in this fashion offers new insights into (1) genetic-to-molecular-to-macroscale relationships that encode hierarchical IDP assemblies, (2) design rules of such assemblies in cell biology and (3) molecular-level engineering of self-assembled recombinant IDP-rich materials.

  16. Checkpoint Inhibitors and Their Application in Breast Cancer

    Science.gov (United States)

    Bedognetti, Davide; Maccalli, Cristina; Bader, Salha B.J. Al; Marincola, Francesco M.; Seliger, Barbara

    2016-01-01

    Summary Immune checkpoints are crucial for the maintenance of self-tolerance and for the modulation of immune responses in order to minimize tissue damage. Tumor cells take advantage of these mechanisms to evade immune recognition. A significant proportion of tumors, including breast cancers, can express co-inhibitory molecules that are important formediating the escape from T cell-mediated immune surveillance. The interaction of inhibitory receptors with their ligands can be blocked by specific molecules. Monoclonal antibodies (mAbs) directed against the cytotoxic T lymphocyte-associated antigen-4 (CTLA4) and, more recently, against the programmed cell death protein 1 (PD1), have been approved for the therapy of melanoma (anti-CTLA4 and anti-PD1 mAbs) and non-small cell lung cancer (anti-PD1 mAbs). Moreover, inhibition of PD1 signaling has shown extremely promising signs of activity in breast cancer. An increasing number of molecules directed against other immune checkpoints are currently under clinical development. In this review, we summarize the evidence supporting the implementation of checkpoint inhibition in breast cancer by reviewing in detail data on PD-L1 expression and its regulation. In addition, opportunities to boost anti-tumor immunity in breast cancer with checkpoint inhibitor-based immunotherapies alone and in combination with other treatment options will be discussed. PMID:27239172

  17. Immune checkpoint inhibitors for nonsmall cell lung cancer treatment

    Directory of Open Access Journals (Sweden)

    Yuh-Min Chen

    2017-01-01

    Full Text Available Immune checkpoint inhibition with blocking antibodies that target cytotoxic T-lymphocyte antigen-4 (CTLA-4 and the programmed cell death protein 1 (PD-1 pathway [PD-1/programmed death-ligand 1 (PD-L1] have demonstrated promise in a variety of malignancies. While ipilimumab has been approved as a CTLA-4 blocking antibody by the US Food and Drug Administration for the treatment of advanced melanoma, it is still not approved for lung cancer treatment. In contrast, nivolumab and pembrolizumab, both PD-1 blocking antibodies, have been approved for second-line treatment of nonsmall cell lung cancer in 2015 because of their high potency and long-lasting effects in some patient subgroups. Other PD-1 and PD-L1 monoclonal antibodies are also in active development phase. Treatment with such immune checkpoint inhibitors is associated with a unique pattern of immune-related adverse events or side effects. Combination approaches involving CTLA-4 and PD-1/PD-L1 blockade or checkpoint inhibitors with chemotherapy or radiotherapy are being investigated to determine whether they may enhance the efficacy of treatment. Despite many challenges ahead, immunotherapy with checkpoint inhibitors has already become a new and important treatment modality for lung cancer in the last decade following the discovery of targeted therapy.

  18. Nuclear actin and protein 4.1: Essential interactions during nuclear assembly in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Sharon Wald; Chen, Cynthia; Penman, Sheldon; Heald, Rebecca

    2003-06-11

    Structural protein 4.1, which has crucial interactions within the spectin-actin lattice of the human red cell membrane skeleton, also is widely distributed at diverse intracellular sites in nucleated cells. We previously showed that 4.1 is essential for assembly of functional nuclei in vitro and that the capacity of 4.1 to bind actin is required. Here we report that 4.1 and actin colocalize in mammalian cell nuclei using fluorescence microscopy and, by higher resolution cell whole mount electron microscopy, are associated on nuclear filaments. We also devised a cell-free assay using Xenopus egg extract containing fluorescent actin to follow actin during nuclear assembly. By directly imaging actin under non-perturbing conditions, the total nuclear actin population is retained and is visualized in situ relative to intact chromatin. We detected actin initially when chromatin and nuclear pores began assembling. As the nuclear lamina assembled, but preceding DNA synthesis, a discrete actin network formed throughout the nucleus. Protein 4.1 epitopes also were detected when actin began to accumulate in nuclei, producing a diffuse coincident pattern. As nuclei matured, actin was detected both coincident with and also independent of 4.1 epitopes. To test whether acquisition of nuclear actin is required for nuclear assembly, the actin inhibitor latrunculin A was added to Xenopus egg extracts during nuclear assembly. Latrunculin A strongly perturbed nuclear assembly and produced distorted nuclear structures containing neither actin nor protein 4.1. Our results suggest that actin as well as 4.1 is necessary for nuclear assembly and that 4.1-actin interactions may be critical.

  19. Dynamic protein assemblies in homologous recombination with single DNA molecules

    NARCIS (Netherlands)

    van der Heijden, A.H.

    2007-01-01

    What happens when your DNA breaks? This thesis describes experimental work on the single-molecule level focusing on the interaction between DNA and DNA-repair proteins, in particular bacterial RecA and human Rad51, involved in homologous recombination. Homologous recombination and its central event

  20. Orthogonal Protein Assembly on DNA Nanostructures Using Relaxases.

    Science.gov (United States)

    Sagredo, Sandra; Pirzer, Tobias; Aghebat Rafat, Ali; Goetzfried, Marisa A; Moncalian, Gabriel; Simmel, Friedrich C; de la Cruz, Fernando

    2016-03-18

    DNA-binding proteins are promising reagents for the sequence-specific modification of DNA-based nanostructures. Here, we investigate the utility of a series of relaxase proteins-TrwC, TraI, and MobA-for nanofunctionalization. Relaxases are involved in the conjugative transfer of plasmids between bacteria, and bind to their DNA target sites via a covalent phosphotyrosine linkage. We study the binding of the relaxases to two standard DNA origami structures-rodlike six-helix bundles and flat rectangular origami sheets. We find highly orthogonal binding of the proteins with binding yields of 40-50 % per binding site, which is comparable to other functionalization methods. The yields differ for the two origami structures and also depend on the position of the binding sites. Due to their specificity for a single-stranded DNA target, their orthogonality, and their binding properties, relaxases are a uniquely useful addition to the toolbox available for the modification of DNA nanostructures with proteins. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  1. Across-proteome modeling of dimer structures for the bottom-up assembly of protein-protein interaction networks.

    Science.gov (United States)

    Maheshwari, Surabhi; Brylinski, Michal

    2017-05-12

    Deciphering complete networks of interactions between proteins is the key to comprehend cellular regulatory mechanisms. A significant effort has been devoted to expanding the coverage of the proteome-wide interaction space at molecular level. Although a growing body of research shows that protein docking can, in principle, be used to predict biologically relevant interactions, the accuracy of the across-proteome identification of interacting partners and the selection of near-native complex structures still need to be improved. In this study, we developed a new method to discover and model protein interactions employing an exhaustive all-to-all docking strategy. This approach integrates molecular modeling, structural bioinformatics, machine learning, and functional annotation filters in order to provide interaction data for the bottom-up assembly of protein interaction networks. Encouragingly, the success rates for dimer modeling is 57.5 and 48.7% when experimental and computer-generated monomer structures are employed, respectively. Further, our protocol correctly identifies 81% of protein-protein interactions at the expense of only 19% false positive rate. As a proof of concept, 61,913 protein-protein interactions were confidently predicted and modeled for the proteome of E. coli. Finally, we validated our method against the human immune disease pathway. Protein docking supported by evolutionary restraints and machine learning can be used to reliably identify and model biologically relevant protein assemblies at the proteome scale. Moreover, the accuracy of the identification of protein-protein interactions is improved by considering only those protein pairs co-localized in the same cellular compartment and involved in the same biological process. The modeling protocol described in this communication can be applied to detect protein-protein interactions in other organisms and pathways as well as to construct dimer structures and estimate the confidence of protein

  2. Self-Assembly of Protein Monolayers Engineered for Improved Monoclonal Immunoglobulin G Binding

    Directory of Open Access Journals (Sweden)

    Jeremy H. Lakey

    2011-08-01

    Full Text Available Bacterial outer membrane proteins, along with a filling lipid molecule can be modified to form stable self-assembled monolayers on gold. The transmembrane domain of Escherichia coli outer membrane protein A has been engineered to create a scaffold protein to which functional motifs can be fused. In earlier work we described the assembly and structure of an antibody-binding array where the Z domain of Staphylococcus aureus protein A was fused to the scaffold protein. Whilst the binding of rabbit polyclonal immunoglobulin G (IgG to the array is very strong, mouse monoclonal IgG dissociates from the array easily. This is a problem since many immunodiagnostic tests rely upon the use of mouse monoclonal antibodies. Here we describe a strategy to develop an antibody-binding array that will bind mouse monoclonal IgG with lowered dissociation from the array. A novel protein consisting of the scaffold protein fused to two pairs of Z domains separated by a long flexible linker was manufactured. Using surface plasmon resonance the self-assembly of the new protein on gold and the improved binding of mouse monoclonal IgG were demonstrated.

  3. CALM, a clathrin assembly protein, influences cell surface GluR2 abundance.

    Science.gov (United States)

    Harel, Asaff; Mattson, Mark P; Yao, Pamela J

    2011-03-01

    The clathrin assembly protein, CALM, promotes the assembly of clathrin-coated vesicles. In a previous study, we showed that CALM controls the level of the synaptic vesicle protein VAMP2 at the plasma membrane by regulating VAMP2 endocytosis. Here, we provide evidence that CALM also influences the cell surface level of the AMPA receptor subunit GluR2. Although mechanistic details as well as the physiological relevance of CALM and GluR2 in the neuron have yet to be established, CALM-mediated trafficking could function as a component of a dedicated system for controlling postsynaptic abundance of GluR2.

  4. Prediction of phenotypes of missense mutations in human proteins from biological assemblies.

    Science.gov (United States)

    Wei, Qiong; Xu, Qifang; Dunbrack, Roland L

    2013-02-01

    Single nucleotide polymorphisms (SNPs) are the most frequent variation in the human genome. Nonsynonymous SNPs that lead to missense mutations can be neutral or deleterious, and several computational methods have been presented that predict the phenotype of human missense mutations. These methods use sequence-based and structure-based features in various combinations, relying on different statistical distributions of these features for deleterious and neutral mutations. One structure-based feature that has not been studied significantly is the accessible surface area within biologically relevant oligomeric assemblies. These assemblies are different from the crystallographic asymmetric unit for more than half of X-ray crystal structures. We find that mutations in the core of proteins or in the interfaces in biological assemblies are significantly more likely to be disease-associated than those on the surface of the biological assemblies. For structures with more than one protein in the biological assembly (whether the same sequence or different), we find the accessible surface area from biological assemblies provides a statistically significant improvement in prediction over the accessible surface area of monomers from protein crystal structures (P = 6e-5). When adding this information to sequence-based features such as the difference between wildtype and mutant position-specific profile scores, the improvement from biological assemblies is statistically significant but much smaller (P = 0.018). Combining this information with sequence-based features in a support vector machine leads to 82% accuracy on a balanced dataset of 50% disease-associated mutations from SwissVar and 50% neutral mutations from human/primate sequence differences in orthologous proteins. Copyright © 2012 Wiley Periodicals, Inc.

  5. Immune Checkpoint Modulators: An Emerging Antiglioma Armamentarium.

    Science.gov (United States)

    Kim, Eileen S; Kim, Jennifer E; Patel, Mira A; Mangraviti, Antonella; Ruzevick, Jacob; Lim, Michael

    2016-01-01

    Immune checkpoints have come to the forefront of cancer therapies as a powerful and promising strategy to stimulate antitumor T cell activity. Results from recent preclinical and clinical studies demonstrate how checkpoint inhibition can be utilized to prevent tumor immune evasion and both local and systemic immune suppression. This review encompasses the key immune checkpoints that have been found to play a role in tumorigenesis and, more specifically, gliomagenesis. The review will provide an overview of the existing preclinical and clinical data, antitumor efficacy, and clinical applications for each checkpoint with respect to GBM, as well as a summary of combination therapies with chemotherapy and radiation.

  6. Immune Checkpoint Modulators: An Emerging Antiglioma Armamentarium

    Directory of Open Access Journals (Sweden)

    Eileen S. Kim

    2016-01-01

    Full Text Available Immune checkpoints have come to the forefront of cancer therapies as a powerful and promising strategy to stimulate antitumor T cell activity. Results from recent preclinical and clinical studies demonstrate how checkpoint inhibition can be utilized to prevent tumor immune evasion and both local and systemic immune suppression. This review encompasses the key immune checkpoints that have been found to play a role in tumorigenesis and, more specifically, gliomagenesis. The review will provide an overview of the existing preclinical and clinical data, antitumor efficacy, and clinical applications for each checkpoint with respect to GBM, as well as a summary of combination therapies with chemotherapy and radiation.

  7. Physical modeling of geometrically confined disordered protein assemblies

    Science.gov (United States)

    Ando, David

    2015-08-01

    The transport of cargo across the nuclear membrane is highly selective and accomplished by a poorly understood mechanism involving hundreds of nucleoporins lining the inside of the nuclear pore complex (NPC). Currently, there is no clear picture of the overall structure formed by this collection of proteins within the pore, primarily due to their disordered nature and uncertainty regarding the properties of individual nucleoporins. We first study the defining characteristics of the amino acid sequences of nucleoporins through bioinformatics techniques, although bioinformatics of disordered proteins is especially challenging given high mutation rates for homologous proteins and that functionality may not be strongly related to sequence. Here we have performed a novel bioinformatic analysis, based on the spatial clustering of physically relevant features such as binding motifs and charges within disordered proteins, on thousands of FG motif containing nucleoporins (FG nups). The biophysical mechanism by which the critical FG nups regulate nucleocytoplasmic transport has remained elusive, yet our analysis revealed a set of highly conserved spatial features in the sequence structure of individual FG nups, such as the separation, localization, and ordering of FG motifs and charged residues along the protein chain. These sequence features are likely conserved due to a common functionality between species regarding how FG nups functionally regulate traffic, therefore these results constrain current models and eliminate proposed biophysical mechanisms responsible for regulation of nucleocytoplasmic traffic in the NPC which would not result in such a conserved amino acid sequence structure. Additionally, this method allows us to identify potentially functionally analogous disordered proteins across distantly related species. To understand the physical implications of the sequence features on structure and dynamics of the nucleoporins, we performed coarse-grained simulations

  8. Ceruloplasmin: Macromolecular Assemblies with Iron-Containing Acute Phase Proteins

    Science.gov (United States)

    Samygina, Valeriya R.; Sokolov, Alexey V.; Bourenkov, Gleb; Petoukhov, Maxim V.; Pulina, Maria O.; Zakharova, Elena T.; Vasilyev, Vadim B.; Bartunik, Hans; Svergun, Dmitri I.

    2013-01-01

    Copper-containing ferroxidase ceruloplasmin (Cp) forms binary and ternary complexes with cationic proteins lactoferrin (Lf) and myeloperoxidase (Mpo) during inflammation. We present an X-ray crystal structure of a 2Cp-Mpo complex at 4.7 Å resolution. This structure allows one to identify major protein–protein interaction areas and provides an explanation for a competitive inhibition of Mpo by Cp and for the activation of p-phenylenediamine oxidation by Mpo. Small angle X-ray scattering was employed to construct low-resolution models of the Cp-Lf complex and, for the first time, of the ternary 2Cp-2Lf-Mpo complex in solution. The SAXS-based model of Cp-Lf supports the predicted 1∶1 stoichiometry of the complex and demonstrates that both lobes of Lf contact domains 1 and 6 of Cp. The 2Cp-2Lf-Mpo SAXS model reveals the absence of interaction between Mpo and Lf in the ternary complex, so Cp can serve as a mediator of protein interactions in complex architecture. Mpo protects antioxidant properties of Cp by isolating its sensitive loop from proteases. The latter is important for incorporation of Fe3+ into Lf, which activates ferroxidase activity of Cp and precludes oxidation of Cp substrates. Our models provide the structural basis for possible regulatory role of these complexes in preventing iron-induced oxidative damage. PMID:23843990

  9. Coordination of Hepatitis C Virus Assembly by Distinct Regulatory Regions in Nonstructural Protein 5A.

    Directory of Open Access Journals (Sweden)

    Margarita Zayas

    2016-01-01

    Full Text Available Hepatitis C virus (HCV nonstructural protein (NS5A is a RNA-binding protein composed of a N-terminal membrane anchor, a structured domain I (DI and two intrinsically disordered domains (DII and DIII interacting with viral and cellular proteins. While DI and DII are essential for RNA replication, DIII is required for assembly. How these processes are orchestrated by NS5A is poorly understood. In this study, we identified a highly conserved basic cluster (BC at the N-terminus of DIII that is critical for particle assembly. We generated BC mutants and compared them with mutants that are blocked at different stages of the assembly process: a NS5A serine cluster (SC mutant blocked in NS5A-core interaction and a mutant lacking the envelope glycoproteins (ΔE1E2. We found that BC mutations did not affect core-NS5A interaction, but strongly impaired core-RNA association as well as virus particle envelopment. Moreover, BC mutations impaired RNA-NS5A interaction arguing that the BC might be required for loading of core protein with viral RNA. Interestingly, RNA-core interaction was also reduced with the ΔE1E2 mutant, suggesting that nucleocapsid formation and envelopment are coupled. These findings argue for two NS5A DIII determinants regulating assembly at distinct, but closely linked steps: (i SC-dependent recruitment of replication complexes to core protein and (ii BC-dependent RNA genome delivery to core protein, triggering encapsidation that is tightly coupled to particle envelopment. These results provide a striking example how a single viral protein exerts multiple functions to coordinate the steps from RNA replication to the assembly of infectious virus particles.

  10. Clathrin assembly proteins AP180 and CALM in the embryonic rat brain.

    Science.gov (United States)

    Schwartz, Catherine M; Cheng, Aiwu; Mughal, Mohamed R; Mattson, Mark P; Yao, Pamela J

    2010-09-15

    Clathrin-coated vesicles are known to play diverse and pivotal roles in cells. The proper formation of clathrin-coated vesicles is dependent on, and highly regulated by, a large number of clathrin assembly proteins. These assembly proteins likely determine the functional specificity of clathrin-coated vesicles, and together they control a multitude of intracellular trafficking pathways, including those involved in embryonic development. In this study, we focus on two closely related clathrin assembly proteins, AP180 and CALM (clathrin assembly lymphoid myeloid leukemia protein), in the developing embryonic rat brain. We find that AP180 begins to be expressed at embryonic day 14 (E14), but only in postmitotic cells that have acquired a neuronal fate. CALM, on the other hand, is expressed as early as E12, by both neural stem cells and postmitotic neurons. In vitro loss-of-function studies using RNA interference (RNAi) indicate that AP180 and CALM are dispensable for some aspects of embryonic neurogenesis but are required for the growth of postmitotic neurons. These results identify the developmental stage of AP180 and CALM expression and suggest that each protein has distinct functions in neural development.

  11. Origin of the Reflectin Gene and Hierarchical Assembly of Its Protein.

    Science.gov (United States)

    Guan, Zhe; Cai, Tiantian; Liu, Zhongmin; Dou, Yunfeng; Hu, Xuesong; Zhang, Peng; Sun, Xin; Li, Hongwei; Kuang, Yao; Zhai, Qiran; Ruan, Hao; Li, Xuanxuan; Li, Zeyang; Zhu, Qihui; Mai, Jingeng; Wang, Qining; Lai, Luhua; Ji, Jianguo; Liu, Haiguang; Xia, Bin; Jiang, Taijiao; Luo, Shu-Jin; Wang, Hong-Wei; Xie, Can

    2017-09-25

    Cephalopods, the group of animals including octopus, squid, and cuttlefish, have remarkable ability to instantly modulate body coloration and patterns so as to blend into surrounding environments [1, 2] or send warning signals to other animals [3]. Reflectin is expressed exclusively in cephalopods, filling the lamellae of intracellular Bragg reflectors that exhibit dynamic iridescence and structural color change [4]. Here, we trace the possible origin of the reflectin gene back to a transposon from the symbiotic bioluminescent bacterium Vibrio fischeri and report the hierarchical structural architecture of reflectin protein. Intrinsic self-assembly, and higher-order assembly tightly modulated by aromatic compounds, provide insights into the formation of multilayer reflectors in iridophores and spherical microparticles in leucophores and may form the basis of structural color change in cephalopods. Self-assembly and higher-order assembly in reflectin originated from a core repeating octapeptide (here named protopeptide), which may be from the same symbiotic bacteria. The origin of the reflectin gene and assembly features of reflectin protein are of considerable biological interest. The hierarchical structural architecture of reflectin and its domain and protopeptide not only provide insights for bioinspired photonic materials but also serve as unique "assembly tags" and feasible molecular platforms in biotechnology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Activation of the nimA protein kinase plays a unique role during mitosis that cannot be bypassed by absence of the bimE checkpoint.

    OpenAIRE

    Osmani, A H; O'Donnell, K; Pu, R T; Osmani, S A

    1991-01-01

    Mutation of nimA reversibly arrests cells in late G2 and nimA overexpression promotes premature mitosis. Here we demonstrate that the product of nimA (designated NIMA) has protein kinase activity that can phosphorylate beta-casein but not histone proteins. NIMA kinase activity is cell cycle regulated being 20-fold higher at mitosis when compared to S-phase arrested cells. NIMA activation is normally required in G2 to initiate chromosome condensation, to nucleate spindle pole body microtubules...

  13. The CD47-SIRPα signaling axis as an innate immune checkpoint in cancer.

    Science.gov (United States)

    Matlung, Hanke L; Szilagyi, Katka; Barclay, Neil A; van den Berg, Timo K

    2017-03-01

    Immune checkpoint inhibitors, including those targeting CTLA-4/B7 and the PD-1/PD-L1 inhibitory pathways, are now available for clinical use in cancer patients, with other interesting checkpoint inhibitors being currently in development. Most of these have the purpose to promote adaptive T cell-mediated immunity against cancer. Here, we review another checkpoint acting to potentiate the activity of innate immune cells towards cancer. This innate immune checkpoint is composed of what has become known as the 'don't-eat me' signal CD47, which is a protein broadly expressed on normal cells and often overexpressed on cancer cells, and its counter-receptor, the myeloid inhibitory immunoreceptor SIRPα. Blocking CD47-SIRPα interactions has been shown to promote the destruction of cancer cells by phagocytes, including macrophages and neutrophils. Furthermore, there is growing evidence that targeting of the CD47-SIRPα axis may also promote antigen-presenting cell function and thereby stimulate adaptive T cell-mediated anti-cancer immunity. The development of CD47-SIRPα checkpoint inhibitors and the potential side effects that these may have are discussed. Collectively, this identifies the CD47-SIRPα axis as a promising innate immune checkpoint in cancer, and with data of the first clinical studies with CD47-SIRPα checkpoint inhibitors expected within the coming years, this is an exciting and rapidly developing field. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The effect of zinc on amyloid β-protein assembly and toxicity: A mechanistic investigation

    Science.gov (United States)

    Solomonov, Inna; Sagi, Irit

    2014-10-01

    Neurotoxic assemblies of amyloid β-protein (Aβ) are widely believed to be the cause for Alzheimer's disease (AD). Therefore, understanding the factors and mechanisms that control, modulate, and inhibit formation of these assemblies is crucial for the development of therapeutic intervention of AD. This information also can contribute significantly to our understanding of the mechanisms of other amyloidosis diseases, such as Parkinson's disease, Huntington's disease, type 2 diabetes, amyotrophic lateral sclerosis (Lou Gehrig's disease) and prion diseases (e.g. Mad Cow disease). We have developed a multidisciplinary experimental strategy to study structural and dynamic mechanistic aspects that underlie the Aβ assembly process. Utilizing this strategy, we explored the molecular basis leading to the perturbation of the Aβ assembly process by divalent metal ions, mainly Zn2+ ions. Using Zn2+ as reaction physiological relevant probes, it was demonstrated that Zn2+ rapidly (milliseconds) induce self-assembly of Aβ aggregates and stabilize them in a manner that prevents formation of Aβ fibrils. Importantly, the early-formed intermediates are substantially more neurotoxic than fibrils. Our results suggest that relevant Aβ modulators should be targeted against the rapidly evolved intermediate states of Aβ assembly. The design of such modulators is challenging, as they have to compete with different natural mediators (such as Zn2+) of Aβ aggregation, which diverse Aβ assemblies in both specific and nonspecific manners.

  15. A Structure-Based Assembly Screen of Protein Cage Libraries in Living Cells: Experimentally Repacking a Protein-Protein Interface To Recover Cage Formation in an Assembly-Frustrated Mutant.

    Science.gov (United States)

    Cornell, Thomas A; Ardejani, Maziar S; Fu, Jing; Newland, Stephanie H; Zhang, Yu; Orner, Brendan P

    2018-01-17

    Cage proteins, which assemble into often highly symmetric hollow nanoscale capsules, have great potential in applications as far reaching as drug delivery, hybrid nanomaterial engineering, and catalysis. In addition, they are promising model systems for understanding how cellular nanostructures are constructed through protein-protein interactions, and they are beginning to be used as scaffolds for synthetic biology approaches. Recently, there has been renewed interest in the engineering of protein cages, and in support of these strategies, we have recently described a fluorescence-based assay for protein cage assembly that is specific for certain oligomerization states and symmetry-related protein-protein interfaces. In this work, we expand this assay to living cells and a high-throughput assay for screening protein cage libraries using flow cytometry. As a proof of principle, we apply this technique to the screening of libraries of a double-alanine mutant of the mini-ferritin, DNA-binding protein from starved cells (Dps). This mutant, due to disruption of key protein-protein interactions, is unable to assemble into a cage. Randomization of residues surrounding the double mutation afforded a repacked interface and proteins with recovered cage formation, demonstrating the strength and utility of this approach.

  16. A Protein Involved in the Assembly of an Extracellular Calcium Storage Matrix*

    Science.gov (United States)

    Glazer, Lilah; Shechter, Assaf; Tom, Moshe; Yudkovski, Yana; Weil, Simy; Aflalo, Eliahu David; Pamuru, Ramachandra Reddy; Khalaila, Isam; Bentov, Shmuel; Berman, Amir; Sagi, Amir

    2010-01-01

    Gastroliths, the calcium storage organs of crustaceans, consist of chitin-protein-mineral complexes in which the mineral component is stabilized amorphous calcium carbonate. To date, only three proteins, GAP 65, gastrolith matrix protein (GAMP), and orchestin, have been identified in gastroliths. Here, we report a novel protein, GAP 10, isolated from the gastrolith of the crayfish Cherax quadricarinatus and specifically expressed in its gastrolith disc. The encoding gene was cloned by partial sequencing of the protein extracted from the gastrolith matrix. Based on an assembled microarray cDNA chip, GAP 10 transcripts were found to be highly (12-fold) up-regulated in premolt gastrolith disc and significantly down-regulated in the hypodermis at the same molt stage. The deduced protein sequence of GAP 10 lacks chitin-binding domains and does not show homology to known proteins in the GenBankTM data base. It does, however, have an amino acid composition that has similarity to proteins extracted from invertebrate and ascidian-calcified extracellular matrices. The GAP 10 sequence contains a predicted signal peptide and predicted phosphorylation sites. In addition, the protein is phosphorylated and exhibits calcium-binding ability. Repeated daily injections of GAP 10 double strand RNA to premolt C. quadricarinatus resulted in a prolonged premolt stage and in the development of gastroliths with irregularly rough surfaces. These findings suggest that GAP 10 may be involved in the assembly of the gastrolith chitin-protein-mineral complex, particularly in the deposition of amorphous calcium carbonate. PMID:20150428

  17. Review the role of terminal domains during storage and assembly of spider silk proteins.

    Science.gov (United States)

    Eisoldt, Lukas; Thamm, Christopher; Scheibel, Thomas

    2012-06-01

    Fibrous proteins in nature fulfill a wide variety of functions in different structures ranging from cellular scaffolds to very resilient structures like tendons and even extra-corporal fibers such as silks in spider webs or silkworm cocoons. Despite their different origins and sequence varieties many of these fibrous proteins share a common building principle: they consist of a large repetitive core domain flanked by relatively small non-repetitive terminal domains. Amongst protein fibers, spider dragline silk shows prominent mechanical properties that exceed those of man-made fibers like Kevlar. Spider silk fibers assemble in a spinning process allowing the transformation from an aqueous solution into a solid fiber within milliseconds. Here, we highlight the role of the non-repetitive terminal domains of spider dragline silk proteins during storage in the gland and initiation of the fiber assembly process. Copyright © 2011 Wiley Periodicals, Inc.

  18. Development of immune checkpoint inhibitors.

    Science.gov (United States)

    Kitano, Shigehisa

    2017-01-01

    Immune checkpoint inhibitors are the most striking innovation in the clinical development of immunotherapy. Monoclonal antibodies (mAbs) restore and augment the antitumor immune activities of cytotoxic T cells by mainly blocking immune checkpoint molecules on T cells or their ligands on antigen-presenting and tumor cells. Based on preclinical data, many clinical trials have demonstrated the acceptable safety profiles and efficacies of mAb in various cancers. The A first-in-class approved immune checkpoint inhibitor is ipilimumab, which is a fully humanized mAb that blocks the immunosuppressive signal by cytotoxic T-lymphocyte antigen 4. In 2011, the US Food and Drug Administration approved the use of ipilimumab for the treatment of advanced metastatic melanoma. Then, nivolumab, which is a humanized mAb that blocks programmed death-1 (PD-1), was approved for use in the treatment of advanced melanoma in 2014 and of advanced non-small-cell lung carcinoma (NSCLC) in 2015 in Japan. Pembrolizumab, which is another anti-PD-1 antibody, was approved for use in the treatment of advanced melanoma and advanced NSCLC as the first-line therapy in 2016 in Japan. Thereafter, nivolumab was also approved for use in the treatment of advanced renal cell cancer in August 2016, of Hodgkin's lymphoma in December 2016, and of head and neck cancer in March 2017 in Japan. Moreover, phase III trials of anti-PD-1 mAb and anti-PD-ligand 1 mAb for use in the treatment of cancers, such as gastric, ovarian, bladder, and esophageal cancers, are ongoing. Several clinical trials have investigated new agents, alone and in combination, for use in the treatment of various cancers. Current advances in tumor immunology have unveiled the importance of immunosuppressive cells, such as regulatory T cells, myeloid-derived suppressor cells, and tumor-associated macrophages, especially in a tumor microenvironment (TME). Some data from basic research in mouse models and the immunomonitoring of cancer patients

  19. A mitotic phosphorylation feedback network connects Cdk1, Plk1, 53BP1, and Chk2 to inactivate the G(2/M DNA damage checkpoint.

    Directory of Open Access Journals (Sweden)

    Marcel A T M van Vugt

    2010-01-01

    Full Text Available DNA damage checkpoints arrest cell cycle progression to facilitate DNA repair. The ability to survive genotoxic insults depends not only on the initiation of cell cycle checkpoints but also on checkpoint maintenance. While activation of DNA damage checkpoints has been studied extensively, molecular mechanisms involved in sustaining and ultimately inactivating cell cycle checkpoints are largely unknown. Here, we explored feedback mechanisms that control the maintenance and termination of checkpoint function by computationally identifying an evolutionary conserved mitotic phosphorylation network within the DNA damage response. We demonstrate that the non-enzymatic checkpoint adaptor protein 53BP1 is an in vivo target of the cell cycle kinases Cyclin-dependent kinase-1 and Polo-like kinase-1 (Plk1. We show that Plk1 binds 53BP1 during mitosis and that this interaction is required for proper inactivation of the DNA damage checkpoint. 53BP1 mutants that are unable to bind Plk1 fail to restart the cell cycle after ionizing radiation-mediated cell cycle arrest. Importantly, we show that Plk1 also phosphorylates the 53BP1-binding checkpoint kinase Chk2 to inactivate its FHA domain and inhibit its kinase activity in mammalian cells. Thus, a mitotic kinase-mediated negative feedback loop regulates the ATM-Chk2 branch of the DNA damage signaling network by phosphorylating conserved sites in 53BP1 and Chk2 to inactivate checkpoint signaling and control checkpoint duration.

  20. Assembly of the giant protein projectin during myofibrillogenesis in Drosophila indirect flight muscles

    Directory of Open Access Journals (Sweden)

    Bounaix Christophe

    2004-04-01

    Full Text Available Abstract Background Projectin is a giant modular protein of Drosophila muscles and a key component of the elastic connecting filaments (C-filaments, which are involved in stretch activation in insect Indirect Flight Muscles. It is comparable in its structure to titin, which has been implicated as a scaffold during vertebrate myofibrillogenesis. Methods We performed immunofluorescence studies on Drosophila pupal tissue squashes and isolated myofibrils to identify the pattern of appearance and assembly for projectin and several other myofibrillar proteins, using both wild type and mutant fly stocks. Results and conclusions In the first step of assembly, projectin immunolocalization appears as random aggregates colocalizing with α-actinin, kettin and Z(210, as well as, F-actin. In the second step of assembly, all these proteins become localized within discrete bands, leading ultimately to the regularly spaced I-Z-I regions of myofibrils. This assembly process is not affected in myosin heavy chain mutants, indicating that the anchoring of projectin to the thick filament is not essential for the assembly of projectin into the developing myofibrils. In the actin null mutation, KM88, the early step involving the formation of the aggregates takes place despite the absence of the thin filaments. All tested Z-band proteins including projectin are present and are colocalized over the aggregates. This supports the idea that interactions of projectin with other Z-band associated proteins are sufficient for its initial assembly into the forming myofibrils. In KM88, though, mature Z-bands never form and projectin I-Z-I localization is lost at a later stage during pupal development. In contrast, treatment of adult myofibrils with calpain, which removes the Z-bands, does not lead to the release of projectin. This suggests that after the initial assembly with the Z-bands, projectin also establishes additional anchoring points along the thick and/or thin

  1. Self-assembling of amyloid-like proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sales, E.M.; Barbosa, L.R.S.; Itri, R. [Universidade de Sao Paulo (USP), SP (Brazil); Damalio, J.C.P.; Araujo, A.P.U. [Universidade de Sao Paulo (USP-SC), Sao Carlos, SP (Brazil); Spinozzi, F.; Mariani, P. [Universita Politecnica delle Marche, Ancona (Italy)

    2012-07-01

    Full text: Septins are proteins from the GTP-binding family and participate in cell division cycle performing functions such as secretion and cytoskeletal division. They can also be found in neurodegenerative conditions as Alzheimers and Parkinson's diseases, forming highly organized fiber-like aggregates known as amyloids. In this work, we used small angle x-ray scattering (SAXS) to investigate the formation and time evolution of septins aggregates under the influence of temperature and concentration. The SAXS measurements were performed with the GTPase domain of human Septin 2 (SEPT2G) at 0.5 and 1 mg/mL and temperatures between 4 and 45 deg C. At 0.5 mg/mL and 4 deg C, the protein self-aggregates as a dimer, being stable over one hour of observation. When the temperature was increased to 15 deg C, the results demonstrate that cylinder-like aggregates are formed and coexist with some dimer population and a small amount of larger aggregates. However, the number of very large aggregates increases with time concomitantly with the decrease of cylinder amount in the solution. At 37 deg C cylinder-like aggregates are not longer present in solution, whereas a significant amount of dimers decreases from 50% to 20% in less than 1 hour. At 45 deg C such an effect is even more accentuated: the percentage of dimers is only 6% in solution into a favor of 94% of very larger aggregates. When we analyze the protein at 1 mg/mL, at 4 deg C cylinder-like aggregates (36 nm-long and 12 nm-cross section) are already formed, coexisting with dimers and, as occurred for lower concentration, the two populations remained unchanged over one hour of observation. Out results also indicate that the dimensions of these cylinders increase with the concentration and the percentage of cylinders and larger aggregates are higher than those found for 0.5 mg/mL. In conclusion, our results showed the coexistence of dimers of SEPT2G with small fibers and larger aggregates in solution that evolve

  2. Mechanisms and Components of the DNA Damage Checkpoint

    Science.gov (United States)

    2002-09-01

    indeed phosphorylated in vivo. To directly identify sites of in vivo phosphorylation on Rad9, I planned to use tryptic phosphopeptide mapping ( TPM ...amounts (mCi) of radioactive 32p. Furthermore, TPM is most successful on smaller proteins that yield a simpler tryptic peptide map. Nonetheless, as...Tell-dependent manner, and DNA checkpoints attenuate the mutagenicity , gRad53 specifically interacts with phosphorylated Rad9 instabilityoind

  3. The Plant TPX2 Protein Regulates Prospindle Assembly before Nuclear Envelope Breakdown

    NARCIS (Netherlands)

    Vos, J.W.; Pieuchot, L.; Evrard, J.L.; Janski, N.; Bergdoll, M.; Ronde, de D.

    2008-01-01

    The Targeting Protein for Xklp2 (TPX2) is a central regulator of spindle assembly in vertebrate cells. The absence or excess of TPX2 inhibits spindle formation. We have defined a TPX2 signature motif that is present once in vertebrate sequences but twice in plants. Plant TPX2 is predominantly

  4. Clathrin Assembly Regulated by Adaptor Proteins in Coarse-Grained Models

    NARCIS (Netherlands)

    Giani, M.; den Otter, Wouter K.; Briels, Willem J.

    2016-01-01

    The assembly of clathrin triskelia into polyhedral cages during endocytosis is regulated by adaptor proteins (APs). We explore how APs achieve this by developing coarse-grained models for clathrin and AP2, employing a Monte Carlo click interaction, to simulate their collective aggregation behavior.

  5. Encapsulation of DNA-templated chromophore assemblies within virus protein nanotubes

    NARCIS (Netherlands)

    de la Escosura, Andres; Janssen, Pim G.A.; Schenning, Albertus P.H.J.; Cornelissen, Jeroen Johannes Lambertus Maria; Nolte, Roeland J.M.

    2010-01-01

    A beneficial virus: The hierarchical self-assembly of a three-component system consisting of single-stranded DNA (oligothymines; Tq), chromophores (G), and virus coat proteins (CP) leads to the formation of micrometer-long nanotubes (see picture). Tuning the interaction between the three components

  6. Anchoring of histidine-tagged proteins to molecular printboards : self-assembly, thermodynamic modeling, and patterning

    NARCIS (Netherlands)

    Ludden, Manon J W; Mulder, Alart; Schulze, Katrin; Subramaniam, Vinod; Tampé, Robert; Huskens, Jurriaan

    2008-01-01

    In this paper the multivalent binding of hexahistidine (His6)-tagged proteins to beta-cyclodextrin (beta-CD) self-assembled monolayers (SAMs) by using the nickel(II) complex of a hetero-divalent orthogonal adamantyl nitrilotriacetate linker (4) is described. Nonspecific interactions were suppressed

  7. A kinetic approach to the sequence–aggregation relationship in disease-related protein assembly

    Science.gov (United States)

    Barz, Bogdan; Wales, David J.; Strodel, Birgit

    2014-01-01

    It is generally accepted that oligomers of aggregating proteins play an important role in the onset of neurodegenerative diseases. While in silico aggregation studies of full length amyloidogenic proteins are computationally expensive, the assembly of short protein fragments derived from these proteins with similar aggregating properties has been extensively studied. In the present work molecular dynamics simulations are performed to follow peptide aggregation on the microsecond time scale. By defining aggregation states we identify transition networks, disconnectivity graphs and first passage time distributions to describe the kinetics of the assembly process. This approach unravels differences in the aggregation into hexamers of two peptides with different primary structures. The first is GNNQQNY, a hydrophilic fragment from the prion protein Sup35, and the second is KLVFFAE, a fragment from amyloid β-protein, with a hydrophobic core delimited by two charged amino acids. The assembly of GNNQQNY suggests a mechanism of monomer addition, with a bias towards parallel peptide pairs and a gradual increase in the amount of β-strand content. For KLVFFAE a mechanism involving dimers rather than monomers is revealed, involving a generally higher β-strand content and a transition towards a larger number of antiparallel peptide pairs during the rearrangement of the hexamer. The differences observed for the aggregation of the two peptides suggests the existence of a sequence–aggregation relationship. PMID:24401100

  8. Nanoscale Control of Amyloid Self-Assembly Using Protein Phase Transfer by Host-Guest Chemistry.

    Science.gov (United States)

    Choi, Tae Su; Lee, Hong Hee; Ko, Young Ho; Jeong, Kwang Seob; Kim, Kimoon; Kim, Hugh I

    2017-07-18

    Amyloid fibrils have recently been highlighted for their diverse applications as functional nanomaterials in modern chemistry. However, tight control to obtain a targeted fibril length with low heterogeneity has not been achieved because of the complicated nature of amyloid fibrillation. Herein, we demonstrate that fibril assemblies can be homogeneously manipulated with desired lengths from ~40 nm to ~10 μm by a phase transfer of amyloid proteins based on host-guest chemistry. We suggest that host-guest interactions with cucurbit[6]uril induce a phase transfer of amyloid proteins (human insulin, human islet amyloid polypeptide, hen egg lysozyme, and amyloid-β 1-40 & 1-42) from the soluble state to insoluble state when the amount of cucurbit[6]uril exceeds its solubility limit in solution. The phase transfer of the proteins kinetically delays the nucleation of amyloid proteins, while the nuclei formed in the early stage are homogeneously assembled to fibrils. Consequently, supramolecular assemblies of amyloid proteins with heterogeneous kinetics can be controlled by protein phase transfer based on host-guest interactions.

  9. Intellectual property issues of immune checkpoint inhibitors.

    Science.gov (United States)

    Storz, Ulrich

    2016-01-01

    Immune checkpoint inhibitors are drugs that interfere with tumor escape responses. Some members of this class are already approved, and expected to be blockbusters in the future. Many companies have developed patent activities in this field. This article focuses on the patent landscape, and discusses key players and cases related to immune checkpoint inhibitors.

  10. Analyses of Coronavirus Assembly Interactions with Interspecies Membrane and Nucleocapsid Protein Chimeras.

    Science.gov (United States)

    Kuo, Lili; Hurst-Hess, Kelley R; Koetzner, Cheri A; Masters, Paul S

    2016-05-01

    The coronavirus membrane (M) protein is the central actor in virion morphogenesis. M organizes the components of the viral membrane, and interactions of M with itself and with the nucleocapsid (N) protein drive virus assembly and budding. In order to further define M-M and M-N interactions, we constructed mutants of the model coronavirus mouse hepatitis virus (MHV) in which all or part of the M protein was replaced by its phylogenetically divergent counterpart from severe acute respiratory syndrome coronavirus (SARS-CoV). We were able to obtain viable chimeras containing the entire SARS-CoV M protein as well as mutants with intramolecular substitutions that partitioned M protein at the boundaries between the ectodomain, transmembrane domains, or endodomain. Our results show that the carboxy-terminal domain of N protein, N3, is necessary and sufficient for interaction with M protein. However, despite some previous genetic and biochemical evidence that mapped interactions with N to the carboxy terminus of M, it was not possible to define a short linear region of M protein sufficient for assembly with N. Thus, interactions with N protein likely involve multiple linearly discontiguous regions of the M endodomain. The SARS-CoV M chimera exhibited a conditional growth defect that was partially suppressed by mutations in the envelope (E) protein. Moreover, virions of the M chimera were markedly deficient in spike (S) protein incorporation. These findings suggest that the interactions of M protein with both E and S protein are more complex than previously thought. The assembly of coronavirus virions entails concerted interactions among the viral structural proteins and the RNA genome. One strategy to study this process is through construction of interspecies chimeras that preserve or disrupt particular inter- or intramolecular associations. In this work, we replaced the membrane (M) protein of the model coronavirus mouse hepatitis virus with its counterpart from a

  11. Knockdown of Minichromosome Maintenance Proteins Inhibits Foci Forming of Mediator of DNA-Damage Checkpoint 1 in Response to DNA Damage in Human Esophageal Squamous Cell Carcinoma TE-1 Cells.

    Science.gov (United States)

    Yu, Jinzhong; Wang, Ruijie; Wu, Jinfeng; Dang, Zhongqin; Zhang, Qinsheng; Li, Bo

    2016-10-01

    Esophageal squamous cell carcinoma (ESCC) has a high morbidity in China and its treatment depends greatly on adjuvant chemotherapy. However, DNA damage repair in cancer cells severely affects the outcome of treatment. This study investigated the potential mechanism regarding mediator of DNA-damage checkpoint 1 (MDC1) and minichromosome maintenance proteins (MCMs) during DNA damage in ESCC. Recombinant vectors of MDC1 and MCMs with tags were constructed and transfected into human ESCC cell line TE-1. Immunoprecipitation and mass spectrometry were performed to screen the MCMs interacting with MDC1, and direct interaction was confirmed by glutathione S-transferase (GST) pull-down assay in vitro. MCM2 and MCM6 were knocked down by shRNAs, after which chromatin fraction and foci forming of MDC1 upon bleomycin-induced DNA damage were examined. The results showed that MCM2/3/5/6 were immunoprecipitated by antibodies against the tag of MDC1 in TE-1 nuclei, and the GST pull-down assay indicated the direct interaction. Knockdown of MCM2 or MCM6 reduced the chromatin fraction of MDC1 according to Western blot results. Moreover, knockdown of MCM2 or MCM6 could significantly inhibit foci forming of MDC1 in TE-1 nuclei in response to bleomycin-induced DNA damage (p TE-1 nuclei. Downregulation of MCMs can inhibit chromatin fraction and foci forming of MDC1 in TE-1 cells upon DNA damage, which suggests MCMs and MDC1 as potential targets to improve the outcome of chemotherapy in ESCC.

  12. Overlapped checkpointing with hardware assist

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, Christopher J [Los Alamos National Laboratory; Nunez, James A [Los Alamos National Laboratory; Wang, Jun [U. OF CENTRAL FLORIDA (UCF)

    2009-01-01

    We present a new approach to handling the demanding I/O workload incurred during checkpoint writes encountered in High Performance Computing. Prior efforts to improve performance have been primarily bound by mechanical limitations of the hard drive. Our research surpasses this limitation by providing a method to: (1) write checkpoint data to a high-speed, non-volatile buffer, and (2) asynchronously write this data to permanent storage while resuming computation. This removes the hard drive from the critical data path because our I/O node based buffers isolate the compute nodes from the storage servers. This solution is feasible because of industry declines in cost for high-capacity, non-volatile storage technologies. Testing was conducted on a small-scale cluster to prove the design, and then scaled at Los Alamos National Laboratory. Results show a definitive speedup factor for select workloads over writing directly to a typical global parallel file system; the Panasas ActiveScale File System.

  13. Evolutionary Conservation in Biogenesis of β-Barrel Proteins Allows Mitochondria to Assemble a Functional Bacterial Trimeric Autotransporter Protein*

    Science.gov (United States)

    Ulrich, Thomas; Oberhettinger, Philipp; Schütz, Monika; Holzer, Katharina; Ramms, Anne S.; Linke, Dirk; Autenrieth, Ingo B.; Rapaport, Doron

    2014-01-01

    Yersinia adhesin A (YadA) belongs to a class of bacterial adhesins that form trimeric structures. Their mature form contains a passenger domain and a C-terminal β-domain that anchors the protein in the outer membrane (OM). Little is known about how precursors of such proteins cross the periplasm and assemble into the OM. In the present study we took advantage of the evolutionary conservation in the biogenesis of β-barrel proteins between bacteria and mitochondria. We previously observed that upon expression in yeast cells, bacterial β-barrel proteins including the transmembrane domain of YadA assemble into the mitochondrial OM. In the current study we found that when expressed in yeast cells both the monomeric and trimeric forms of full-length YadA were detected in mitochondria but only the trimeric species was fully integrated into the OM. The oligomeric form was exposed on the surface of the organelle in its native conformation and maintained its capacity to adhere to host cells. The co-expression of YadA with a mitochondria-targeted form of the bacterial periplasmic chaperone Skp, but not with SurA or SecB, resulted in enhanced levels of both forms of YadA. Taken together, these results indicate that the proper assembly of trimeric autotransporter can occur also in a system lacking the lipoproteins of the BAM machinery and is specifically enhanced by the chaperone Skp. PMID:25190806

  14. Protein Structure Determination by Assembling Super-Secondary Structure Motifs Using Pseudocontact Shifts.

    Science.gov (United States)

    Pilla, Kala Bharath; Otting, Gottfried; Huber, Thomas

    2017-03-07

    Computational and nuclear magnetic resonance hybrid approaches provide efficient tools for 3D structure determination of small proteins, but currently available algorithms struggle to perform with larger proteins. Here we demonstrate a new computational algorithm that assembles the 3D structure of a protein from its constituent super-secondary structural motifs (Smotifs) with the help of pseudocontact shift (PCS) restraints for backbone amide protons, where the PCSs are produced from different metal centers. The algorithm, DINGO-PCS (3D assembly of Individual Smotifs to Near-native Geometry as Orchestrated by PCSs), employs the PCSs to recognize, orient, and assemble the constituent Smotifs of the target protein without any other experimental data or computational force fields. Using a universal Smotif database, the DINGO-PCS algorithm exhaustively enumerates any given Smotif. We benchmarked the program against ten different protein targets ranging from 100 to 220 residues with different topologies. For nine of these targets, the method was able to identify near-native Smotifs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Active protein aggregates induced by terminally attached self-assembling peptide ELK16 in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Zhou Bihong

    2011-02-01

    Full Text Available Abstract Background In recent years, it has been gradually realized that bacterial inclusion bodies (IBs could be biologically active. In particular, several proteins including green fluorescent protein, β-galactosidase, β-lactamase, alkaline phosphatase, D-amino acid oxidase, polyphosphate kinase 3, maltodextrin phosphorylase, and sialic acid aldolase have been successfully produced as active IBs when fused to an appropriate partner such as the foot-and-mouth disease virus capsid protein VP1, or the human β-amyloid peptide Aβ42(F19D. As active IBs may have many attractive advantages in enzyme production and industrial applications, it is of considerable interest to explore them further. Results In this paper, we report that an ionic self-assembling peptide ELK16 (LELELKLK2 was able to effectively induce the formation of cytoplasmic inclusion bodies in Escherichia coli (E. coli when attached to the carboxyl termini of four model proteins including lipase A, amadoriase II, β-xylosidase, and green fluorescent protein. These aggregates had a general appearance similar to the usually reported cytoplasmic inclusion bodies (IBs under transmission electron microscopy or fluorescence confocal microscopy. Except for lipase A-ELK16 fusion, the three other fusion protein aggregates retained comparable specific activities with the native counterparts. Conformational analyses by Fourier transform infrared spectroscopy revealed the existence of newly formed antiparallel beta-sheet structures in these ELK16 peptide-induced inclusion bodies, which is consistent with the reported assembly of the ELK16 peptide. Conclusions This has been the first report where a terminally attached self-assembling β peptide ELK16 can promote the formation of active inclusion bodies or active protein aggregates in E. coli. It has the potential to render E. coli and other recombinant hosts more efficient as microbial cell factories for protein production. Our observation might

  16. A viral scaffolding protein triggers portal ring oligomerization and incorporation during procapsid assembly

    Science.gov (United States)

    Motwani, Tina; Lokareddy, Ravi K.; Dunbar, Carmen A.; Cortines, Juliana R.; Jarrold, Martin F.; Cingolani, Gino; Teschke, Carolyn M.

    2017-01-01

    Most double-stranded DNA viruses package genetic material into empty precursor capsids (or procapsids) through a dodecameric portal protein complex that occupies 1 of the 12 vertices of the icosahedral lattice. Inhibiting incorporation of the portal complex prevents the formation of infectious virions, making this step an excellent target for antiviral drugs. The mechanism by which a sole portal assembly is selectively incorporated at the special vertex is unclear. We recently showed that, as part of the DNA packaging process for bacteriophage P22, the dodecameric procapsid portal changes conformation to a mature virion state. We report that preformed dodecameric rings of P22 portal protein, as opposed to portal monomers, incorporate into nascent procapsids, with preference for the procapsid portal conformation. Finally, a novel role for P22 scaffolding protein in triggering portal ring formation from portal monomers is elucidated and validated by incorporating de novo assembled portal rings into procapsids. PMID:28782023

  17. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  18. The Survival of Motor Neuron Protein Acts as a Molecular Chaperone for mRNP Assembly

    Directory of Open Access Journals (Sweden)

    Paul G. Donlin-Asp

    2017-02-01

    Full Text Available Spinal muscular atrophy (SMA is a motor neuron disease caused by reduced levels of the survival of motor neuron (SMN protein. SMN is part of a multiprotein complex that facilitates the assembly of spliceosomal small nuclear ribonucleoproteins (snRNPs. SMN has also been found to associate with mRNA-binding proteins, but the nature of this association was unknown. Here, we have employed a combination of biochemical and advanced imaging methods to demonstrate that SMN promotes the molecular interaction between IMP1 protein and the 3′ UTR zipcode region of β-actin mRNA, leading to assembly of messenger ribonucleoprotein (mRNP complexes that associate with the cytoskeleton to facilitate trafficking. We have identified defects in mRNP assembly in cells and tissues from SMA disease models and patients that depend on the SMN Tudor domain and explain the observed deficiency in mRNA localization and local translation, providing insight into SMA pathogenesis as a ribonucleoprotein (RNP-assembly disorder.

  19. The TATA-binding protein participates in TFIIIB assembly on tRNA genes.

    OpenAIRE

    Huet, J.; Sentenac, A

    1992-01-01

    The TATA-binding protein TBP has been recently recognized as a general class III transcription factor. Using the gel shift assay to monitor initiation complex assembly on a yeast tRNA gene, we show that TBP is required for the TFIIIC-dependent assembly of TFIIIB. TFIIIB depleted of TBP by a simple chromatographic step does not bind stably to the TFIIIC-tDNA complex. Addition of yeast or human recombinant TBP allows the formation of a TFIIIB-TBP-TFIIIC-tDNA complex. The presence of TBP in the ...

  20. An In Vitro Assay for Outer Membrane Protein Assembly by the BAM Complex.

    Science.gov (United States)

    Roman-Hernandez, Giselle; Bernstein, Harris D

    2015-01-01

    To elucidate the mechanism of a biochemical process it is often essential to reconstitute the reaction in vitro using the minimal set of factors required to drive the reaction to completion. Here, we describe a method to reconstitute the folding and membrane integration of bacterial outer membrane (OM) proteins that have a characteristic β-barrel structure. In this method the BAM complex, a heteroligomer that catalyzes the membrane integration of β-barrel proteins, is first purified and inserted into small lipid vesicles. Denatured OM proteins are then assembled and integrated into the vesicles in the presence of a molecular chaperone called SurA.

  1. Engineered Bacterial Metal-binding Proteins for Nanoscale Self-assembly and heavy Metal Tolerance

    Science.gov (United States)

    Hall Sedlak, Ruth Amanda

    Implementing biological principles in material synthesis and assembly is one way to expand our abilities to efficiently assemble nanoscale materials and devices. Specifically, recent advances in identifying peptides that bind inorganic materials with high affinity and specificity has spurred investigation of protein models for nanoscale inorganic assembly. This dissertation presents the results of my studies of several E. coli proteins engineered to bind inorganic materials through simple peptide motifs. I demonstrate that these proteins modulate the self-assembly of DNA-based nanostructures and can introduce heavy metal tolerance into metal-sensitive bacteria. Chapter 2 explores use of the engineered F plasmid DNA relaxase/helicase TraI for the self-assembly of complex DNA-protein-gold nanostructures. The full-length protein is engineered with a gold binding motif at an internal permissive site (TraI369GBP1-7x), while a truncated version of TraI is engineered with the same gold binding motif at the C-terminus (TraI361GBP1-7x). Both constructs bind gold nanoparticles while maintaining their DNA binding activity, and transmission electron microscopy reveals TraI369GBP1-7x utilizes its non-specific DNA binding activity to decorate single-stranded and double-stranded DNA with gold nanoparticles. The self assembly principles demonstrated in this work will be fundamental to constructing higher ordered hybrid nanostructures through DNA-protein-nanoparticle interactions. Chapter 3 studies the effects of expressing inorganic binding peptides within cells. I identified a silver binding peptide that, when fused to the periplasmic maltose binding protein, protects E. coli from silver toxicity in batch culture and reduces silver ions to silver nanoparticles within the bacterial periplasm. Engineered metal-ion tolerant microorganisms such as this E. coli could potentially be used in applications ranging from remediation to interrogation of biomolecule-metal interactions in vivo

  2. Cytoplasmic Motifs in the Nipah Virus Fusion Protein Modulate Virus Particle Assembly and Egress.

    Science.gov (United States)

    Johnston, Gunner P; Contreras, Erik M; Dabundo, Jeffrey; Henderson, Bryce A; Matz, Keesha M; Ortega, Victoria; Ramirez, Alfredo; Park, Arnold; Aguilar, Hector C

    2017-05-15

    Nipah virus (NiV), a paramyxovirus in the genus Henipavirus, has a mortality rate in humans of approximately 75%. While several studies have begun our understanding of NiV particle formation, the mechanism of this process remains to be fully elucidated. For many paramyxoviruses, M proteins drive viral assembly and egress; however, some paramyxoviral glycoproteins have been reported as important or essential in budding. For NiV the matrix protein (M), the fusion glycoprotein (F) and, to a much lesser extent, the attachment glycoprotein (G) autonomously induce the formation of virus-like particles (VLPs). However, functional interactions between these proteins during assembly and egress remain to be fully understood. Moreover, if the F-driven formation of VLPs occurs through interactions with host cell machinery, the cytoplasmic tail (CT) of F is a likely interactive domain. Therefore, we analyzed NiV F CT deletion and alanine mutants and report that several but not all regions of the F CT are necessary for efficient VLP formation. Two of these regions contain YXXØ or dityrosine motifs previously shown to interact with cellular machinery involved in F endocytosis and transport. Importantly, our results showed that F-driven, M-driven, and M/F-driven viral particle formation enhanced the recruitment of G into VLPs. By identifying key motifs, specific residues, and functional viral protein interactions important for VLP formation, we improve our understanding of the viral assembly/egress process and point to potential interactions with host cell machinery.IMPORTANCE Henipaviruses can cause deadly infections of medical, veterinary, and agricultural importance. With recent discoveries of new henipa-like viruses, understanding the mechanisms by which these viruses reproduce is paramount. We have focused this study on identifying the functional interactions of three Nipah virus proteins during viral assembly and particularly on the role of one of these proteins, the fusion

  3. Replication, checkpoint suppression and structure of centromeric DNA.

    Science.gov (United States)

    Romeo, Francesco; Falbo, Lucia; Costanzo, Vincenzo

    2016-11-01

    Human centromeres contain large amounts of repetitive DNA sequences known as α satellite DNA, which can be difficult to replicate and whose functional role is unclear. Recently, we have characterized protein composition, structural organization and checkpoint response to stalled replication forks of centromeric chromatin reconstituted in Xenopus laevis egg extract. We showed that centromeric DNA has high affinity for SMC2-4 subunits of condensins and for CENP-A, it is enriched for DNA repair factors and suppresses the ATR checkpoint to ensure its efficient replication. We also showed that centromeric chromatin forms condensins enriched and topologically constrained DNA loops, which likely contribute to the overall structure of the centromere. These findings have important implications on how chromosomes are organized and genome stability is maintained in mammalian cells.

  4. Classification of self-assembling protein nanoparticle architectures for applications in vaccine design

    Science.gov (United States)

    Indelicato, G.; Burkhard, P.; Twarock, R.

    2017-04-01

    We introduce here a mathematical procedure for the structural classification of a specific class of self-assembling protein nanoparticles (SAPNs) that are used as a platform for repetitive antigen display systems. These SAPNs have distinctive geometries as a consequence of the fact that their peptide building blocks are formed from two linked coiled coils that are designed to assemble into trimeric and pentameric clusters. This allows a mathematical description of particle architectures in terms of bipartite (3,5)-regular graphs. Exploiting the relation with fullerene graphs, we provide a complete atlas of SAPN morphologies. The classification enables a detailed understanding of the spectrum of possible particle geometries that can arise in the self-assembly process. Moreover, it provides a toolkit for a systematic exploitation of SAPNs in bioengineering in the context of vaccine design, predicting the density of B-cell epitopes on the SAPN surface, which is critical for a strong humoral immune response.

  5. Super-resolution imaging of ESCRT-proteins at HIV-1 assembly sites.

    Directory of Open Access Journals (Sweden)

    Jens Prescher

    2015-02-01

    Full Text Available The cellular endosomal sorting complex required for transport (ESCRT machinery is involved in membrane budding processes, such as multivesicular biogenesis and cytokinesis. In HIV-infected cells, HIV-1 hijacks the ESCRT machinery to drive HIV release. Early in the HIV-1 assembly process, the ESCRT-I protein Tsg101 and the ESCRT-related protein ALIX are recruited to the assembly site. Further downstream, components such as the ESCRT-III proteins CHMP4 and CHMP2 form transient membrane associated lattices, which are involved in virus-host membrane fission. Although various geometries of ESCRT-III assemblies could be observed, the actual membrane constriction and fission mechanism is not fully understood. Fission might be driven from inside the HIV-1 budding neck by narrowing the membranes from the outside by larger lattices surrounding the neck, or from within the bud. Here, we use super-resolution fluorescence microscopy to elucidate the size and structure of the ESCRT components Tsg101, ALIX, CHMP4B and CHMP2A during HIV-1 budding below the diffraction limit. To avoid the deleterious effects of using fusion proteins attached to ESCRT components, we performed measurements on the endogenous protein or, in the case of CHMP4B, constructs modified with the small HA tag. Due to the transient nature of the ESCRT interactions, the fraction of HIV-1 assembly sites with colocalizing ESCRT complexes was low (1.5%-3.4%. All colocalizing ESCRT clusters exhibited closed, circular structures with an average size (full-width at half-maximum between 45 and 60 nm or a diameter (determined using a Ripley's L-function analysis of roughly 60 to 100 nm. The size distributions for colocalizing clusters were narrower than for non-colocalizing clusters, and significantly smaller than the HIV-1 bud. Hence, our results support a membrane scission process driven by ESCRT protein assemblies inside a confined structure, such as the bud neck, rather than by large lattices

  6. Layer-by-layer assembled polyaspartamide nanocapsules for pH-responsive protein delivery.

    Science.gov (United States)

    Gu, Xin; Wang, Jingjing; Wang, Yanming; Wang, Yinong; Gao, Hui; Wu, Guolin

    2013-08-01

    Biodegradable shell cross-linked nanocapsules were prepared via layer-by-layer assembly of PADH (tertiary amine and hydrazide grafted polyaspartamide) and PACA (carboxyl and aldehyde grafted polyaspartamide) on silica spheres. Both of the polyaspartamide derivatives are water-soluble and biodegradable polymers with a protein-like structure, and obtained by aminolysis reaction of polysuccinimide. The latter is prepared by thermal polycondensation of aspartic acid. Dynamic light scattering and zeta potential measurements were used to analyze the layer-by-layer assembly process. Bovine serum albumin (BSA), as a model protein, was entrapped in the nanocapsules via electrostatic adsorption. Nanocapsules encapsulating BSA were prepared via layer-by-layer assembly on protein-entrapping amino-functionalized silica spheres, hydrazone cross-linking and silica core removal. The BSA release profiles exhibited a pH-dependent behavior. BSA release rate increased significantly as the ambient pH dropped from the physiological pH to acidic. Cell viability study suggests that the obtained polymeric nanocapsules have good biocompatibility. These kinds of novel composite nanocapsules may offer a promising delivery system for proteins. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Novel Soluble Dietary Fiber-Tannin Self-Assembled Film: A Promising Protein Protective Material.

    Science.gov (United States)

    Song, Guo-Bin; Xu, Juan; Zheng, Hua; Feng, Ying; Zhang, Wen-Wen; Li, Kun; Ge, Shuang-shuang; Li, Kai; Zhang, Hong

    2015-06-24

    In this experiment, a natural promising protein protective film was fabricated through soluble dietary fiber (SDF)-tannin nanocluster self-assembly. FT-IR, XRD, and DSC tests were employed to investigate the interaction between the SDF and tannins before and after cross-linking induced by calcium ion. On the other hand, referring to the SEM and TEM results, the self-assembly process of the protein protective film could be indicated as follows: first, calcium ion, with its cross-ability, served as the "nucleus"; SDF and tannins were combined to prepare the nanoscale SDF-tannin clusters; then, the clusters were homogeneously deposited on the surface of protein to form a protective film by self-assembling hydrogen bond between tannin component of clusters as "adhesive" and protein in aqueous solutions under very mild conditions. Film thickness could also be controlled by tannin of different concentrations ranging from 114 to 1384 μm. Antibacterial test and in vitro cytotoxicity test proved that the film had a broad spectrum of antimicrobial properties and excellent cell biocompatibility, respectively, which might open up new applications in the food preservation and biomedical fields.

  8. Design and self-assembly of simple coat proteins for artificial viruses

    Science.gov (United States)

    Hernandez-Garcia, Armando; Kraft, Daniela J.; Janssen, Anne F. J.; Bomans, Paul H. H.; Sommerdijk, Nico A. J. M.; Thies-Weesie, Dominique M. E.; Favretto, Marco E.; Brock, Roland; de Wolf, Frits A.; Werten, Marc W. T.; van der Schoot, Paul; Stuart, Martien Cohen; de Vries, Renko

    2014-09-01

    Viruses are among the simplest biological systems and are highly effective vehicles for the delivery of genetic material into susceptible host cells. Artificial viruses can be used as model systems for providing insights into natural viruses and can be considered a testing ground for developing artificial life. Moreover, they are used in biomedical and biotechnological applications, such as targeted delivery of nucleic acids for gene therapy and as scaffolds in material science. In a natural setting, survival of viruses requires that a significant fraction of the replicated genomes be completely protected by coat proteins. Complete protection of the genome is ensured by a highly cooperative supramolecular process between the coat proteins and the nucleic acids, which is based on reversible, weak and allosteric interactions only. However, incorporating this type of supramolecular cooperativity into artificial viruses remains challenging. Here, we report a rational design for a self-assembling minimal viral coat protein based on simple polypeptide domains. Our coat protein features precise control over the cooperativity of its self-assembly with single DNA molecules to finally form rod-shaped virus-like particles. We confirm the validity of our design principles by showing that the kinetics of self-assembly of our virus-like particles follows a previous model developed for tobacco mosaic virus. We show that our virus-like particles protect DNA against enzymatic degradation and transfect cells with considerable efficiency, making them promising delivery vehicles.

  9. The proteasome maturation protein POMP increases proteasome assembly and activity in psoriatic lesional skin.

    Science.gov (United States)

    Zieba, Barbara A; Henry, Laurent; Lacroix, Matthieu; Jemaà, Mohamed; Lavabre-Bertrand, Thierry; Meunier, Laurent; Coux, Olivier; Stoebner, Pierre-Emmanuel

    2017-10-01

    The ubiquitin proteasome pathway is involved in the pathogenesis of psoriasis and proteasome subunits are increased in lesional psoriatic skin. Recent works have highlighted that proteasome levels can be regulated through modulation of proteasome assembly notably by the proteasome maturation protein POMP. To investigate whether proteasome assembly and POMP expression are modified in psoriatic skin. Proteasome assembly as well as expression of proteasome regulators were assessed in non-lesional and lesional psoriatic skin using native gel electrophoresis and western blots respectively. The protein and mRNA expression levels of POMP were compared by western blots, immunohistochemistry and quantitative polymerase chain reaction. The role of POMP in keratinocyte proliferation and differentiation was assessed by silencing POMP gene expression by RNA interference in human immortalized keratinocyte HaCaT cells. Both 20S and 26S proteasomes (and their respective proteolytic activities) as well as the main proteasome regulators are increased in lesional psoriatic skin. POMP binds to 20S precursor complexes and is overexpressed in lesional epidermal psoriatic skin, supporting that POMP-mediated proteasome assembly is increased in psoriatic skin. POMP silencing inhibited HaCaT cell proliferation and induced apoptosis through the inhibition of the proteasome assembly. Moreover POMP partial depletion decreased the expression of the differentiation markers keratin 10 and involucrin during the [Ca2+]-induced HaCaT cells differentiation. Altogether these results establish a potential role for POMP and proteasome assembly in psoriasis pathogenesis. Copyright © 2017 Japanese Society for Investigative Dermatology. Published by Elsevier B.V. All rights reserved.

  10. Controlled assembly of artificial protein-protein complexes via DNA duplex formation.

    Science.gov (United States)

    Płoskoń, Eliza; Wagner, Sara C; Ellington, Andrew D; Jewett, Michael C; O'Reilly, Rachel; Booth, Paula J

    2015-03-18

    DNA-protein conjugates have found a wide range of applications. This study demonstrates the formation of defined, non-native protein-protein complexes via the site specific labeling of two proteins of interest with complementary strands of single-stranded DNA in vitro. This study demonstrates that the affinity of two DNA-protein conjugates for one another may be tuned by the use of variable lengths of DNA allowing reversible control of complex formation.

  11. A highly controllable protein self-assembly system with morphological versatility induced by reengineered host-guest interactions.

    Science.gov (United States)

    Li, Xiumei; Bai, Yushi; Huang, Zupeng; Si, Chengye; Dong, Zeyuan; Luo, Quan; Liu, Junqiu

    2017-06-14

    Manipulating proteins to self-assemble into highly ordered nanostructures not only provides insights into the natural protein assembly process but also allows access to advanced biomaterials. Host-guest interactions have been widely used in the construction of artificial protein assemblies in recent years. CB[8] can selectively associate with two tripeptide Phe-Gly-Gly (FGG) tags with an extraordinarily high binding affinity (Kter = 1.5 × 10(11) M(-2)). However, the FGG tags utilized before are all fixed to the N-termini via genetic fusion; this spatial limitation greatly confined the availability of the CB[8]/FGG pair in the construction of more sophisticated protein nanostructures. Here we first designed and synthesized a maleimide-functionalized Phe-Gly-Gly tag as a versatile site-specific protein modification tool; this designed tag can site-selectively introduce desired guest moieties onto protein surfaces for host-guest driven protein assembly. When regulating the self-assembly process of proteins and CB[8], the constructed protein nanosystem can exhibit distinctive morphological diversities ranging from nanorings, nanospirals, nanowires to superwires. This work developed a new strategy for site-specific protein modification of the CB[8] binding tag and provides a possible direction for the construction of 'smart', dynamic self-assembly systems.

  12. Towards understanding of Nipah virus attachment protein assembly and the role of protein affinity and crowding for membrane curvature events.

    Energy Technology Data Exchange (ETDEWEB)

    Stachowiak, Jeanne C.; Hayden, Carl C.; Negrete, Oscar.; Davis, Ryan Wesley; Sasaki, Darryl Y

    2013-10-01

    Pathogenic viruses are a primary threat to our national security and to the health and economy of our world. Effective defense strategies to combat viral infection and spread require the development of understanding of the mechanisms that these pathogens use to invade the host cell. We present in this report results of our research into viral particle recognition and fusion to cell membranes and the role that protein affinity and confinement in lipid domains plays in membrane curvature in cellular fusion and fission events. Herein, we describe 1) the assembly of the G attachment protein of Nipah virus using point mutation studies to define its role in viral particle fusion to the cell membrane, 2) how lateral pressure of membrane bound proteins induce curvature in model membrane systems, and 3) the role of membrane curvature in the selective partitioning of molecular receptors and specific affinity of associated proteins.

  13. Computational 3D imaging to quantify structural components and assembly of protein networks.

    Science.gov (United States)

    Asgharzadeh, Pouyan; Özdemir, Bugra; Reski, Ralf; Röhrle, Oliver; Birkhold, Annette I

    2018-03-15

    Traditionally, protein structures have been described by the secondary structure architecture and fold arrangement. However, the relatively novel method of 3D confocal microscopy of fluorescent-protein-tagged networks in living cells allows resolving the detailed spatial organization of these networks. This provides new possibilities to predict network functionality, as structure and function seem to be linked at various scales. Here, we propose a quantitative approach using 3D confocal microscopy image data to describe protein networks based on their nano-structural characteristics. This analysis is constructed in four steps: (i) Segmentation of the microscopic raw data into a volume model and extraction of a spatial graph representing the protein network. (ii) Quantifying protein network gross morphology using the volume model. (iii) Quantifying protein network components using the spatial graph. (iv) Linking these two scales to obtain insights into network assembly. Here, we quantitatively describe the filamentous temperature sensitive Z protein network of the moss Physcomitrella patens and elucidate relations between network size and assembly details. Future applications will link network structure and functionality by tracking dynamic structural changes over time and comparing different states or types of networks, possibly allowing more precise identification of (mal) functions or the design of protein-engineered biomaterials for applications in regenerative medicine. Protein networks are highly complex and dynamic structures that play various roles in biological environments. Analyzing the detailed spatial structure of these networks may lead to new insight into biological functions and malfunctions. Here, we propose a tool set that extracts structural information at two scales of the protein network and allows therefore to address questions such as "how is the network built?" or "how networks grow?". Copyright © 2018 Acta Materialia Inc. Published by

  14. Functional analysis of the accessory protein TapA in Bacillus subtilis amyloid fiber assembly.

    Science.gov (United States)

    Romero, Diego; Vlamakis, Hera; Losick, Richard; Kolter, Roberto

    2014-04-01

    Bacillus subtilis biofilm formation relies on the assembly of a fibrous scaffold formed by the protein TasA. TasA polymerizes into highly stable fibers with biochemical and morphological features of functional amyloids. Previously, we showed that assembly of TasA fibers requires the auxiliary protein TapA. In this study, we investigated the roles of TapA sequences from the C-terminal and N-terminal ends and TapA cysteine residues in its ability to promote the assembly of TasA amyloid-like fibers. We found that the cysteine residues are not essential for the formation of TasA fibers, as their replacement by alanine residues resulted in only minor defects in biofilm formation. Mutating sequences in the C-terminal half had no effect on biofilm formation. However, we identified a sequence of 8 amino acids in the N terminus that is key for TasA fiber formation. Strains expressing TapA lacking these 8 residues were completely defective in biofilm formation. In addition, this TapA mutant protein exhibited a dominant negative effect on TasA fiber formation. Even in the presence of wild-type TapA, the mutant protein inhibited fiber assembly in vitro and delayed biofilm formation in vivo. We propose that this 8-residue sequence is crucial for the formation of amyloid-like fibers on the cell surface, perhaps by mediating the interaction between TapA or TapA and TasA molecules.

  15. Surface modification and modulation in microstructures: controlling protein adsorption, monolayer desorption and micro-self-assembly

    Science.gov (United States)

    Böhringer, Karl F.

    2003-07-01

    The surface-to-volume ratio increases with decreasing scale, thus, controlling and changing the surface properties of microstructures can be a powerful tool in the design, fabrication and use of microsystems. This paper overviews several recent projects that utilize the modulation of surfaces from hydrophobic to hydrophilic and vice versa, or from protein adsorbing to non-fouling, with applications in biomedical microdevices and self-assembling microelectromechanical systems.

  16. Folding induced supramolecular assembly into pH-responsive nanorods with a protein repellent shell.

    Science.gov (United States)

    Otter, R; Klinker, K; Spitzer, D; Schinnerer, M; Barz, M; Besenius, P

    2018-01-04

    We report the synthesis of ABA' triblock peptide-polysarcosine-peptide conjugates featuring two complementary phenylalanine-histidine pentapeptide strands A/A'. These sequences encode for antiparallel β-sheet formation into folded conjugates, which promote the self-assembly into polysarcosine-shielded core-shell nanorods. These do not cause aggregation of serum proteins in human blood plasma underlining an enhanced stability.

  17. A Self-Assembling Protein Hydrogel Technology for Enzyme Incorporation onto Electrodes in Biofuel Cells

    Science.gov (United States)

    2015-10-26

    AFRL-AFOSR-VA-TR-2015-0369 A Self-Assembling Protein Hydrogel Technology for Enzyme Incorporation onto Electrodes in Biofuel Cells (YIP) Zhilei Chen...Incorporation Onto Electrodes in Biofuel Cells 5a. CONTRACT NUMBER C12-00857 5b. GRANT NUMBER FA9550-12-1-0330 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...activity enzyme immobilization on electrodes in enzymatic biofuel cells. Enzymatic biofuel cells hold great potential for providing flexible, compact

  18. Self-assembling peptide and protein nanodiscs for studies of membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi

    membrane proteins. A minimalistic approach was tested where the ApoA1 protein was mimicked my small amphipathic helical peptides. The resulting discs were very similar to ApoA1 based discs in size and in their ability to stabilize incorporated membrane proteins. Furthermore, due to their enhanced dynamical......Particles containing both lipids and proteins (so-called lipoproteins) are vital to study. They are selfassembling particles that, in the human body, are responsible for the transport of lipids and cholesterol. Due to the increasing problems of obesity and related illnesses in the world, obtaining...... for working with lipoprotein particles are their potential in the study membrane proteins. Membrane proteins are responsible for most of the transport in and out of cells and signaling between cells. As an example G-protein coupled receptors, a class of membrane proteins, are the third largest class...

  19. Centromeric DNA replication reconstitution reveals DNA loops and ATR checkpoint suppression.

    Science.gov (United States)

    Aze, Antoine; Sannino, Vincenzo; Soffientini, Paolo; Bachi, Angela; Costanzo, Vincenzo

    2016-06-01

    Half of the human genome is made up of repetitive DNA. However, mechanisms underlying replication of chromosome regions containing repetitive DNA are poorly understood. We reconstituted replication of defined human chromosome segments using bacterial artificial chromosomes in Xenopus laevis egg extract. Using this approach we characterized the chromatin assembly and replication dynamics of centromeric alpha-satellite DNA. Proteomic analysis of centromeric chromatin revealed replication-dependent enrichment of a network of DNA repair factors including the MSH2-6 complex, which was required for efficient centromeric DNA replication. However, contrary to expectations, the ATR-dependent checkpoint monitoring DNA replication fork arrest could not be activated on highly repetitive DNA due to the inability of the single-stranded DNA binding protein RPA to accumulate on chromatin. Electron microscopy of centromeric DNA and supercoil mapping revealed the presence of topoisomerase I-dependent DNA loops embedded in a protein matrix enriched for SMC2-4 proteins. This arrangement suppressed ATR signalling by preventing RPA hyper-loading, facilitating replication of centromeric DNA. These findings have important implications for our understanding of repetitive DNA metabolism and centromere organization under normal and stressful conditions.

  20. A checkpoint-independent mechanism delays entry into mitosis after UV irradiation.

    Science.gov (United States)

    Rothe, Christiane; Rødland, Gro Elise; Anda, Silje; Stonyte, Vilte; Boye, Erik; Lopez-Aviles, Sandra; Grallert, Beáta

    2017-12-01

    When cells are exposed to stress they delay entry into mitosis. The most extensively studied mechanism behind this delay is the DNA-damage-induced G2/M checkpoint. Here, we show the existence of an additional stress-response pathway in Schizosaccharomyces pombe that is independent of the classic ATR/Rad3-dependent checkpoint. This novel mechanism delays entry mitosis independently of the spindle assembly checkpoint and the mitotic kinases Fin1, Ark1 and Plo1. The pathway delays activation of the mitotic cyclin-dependent kinase (CDK) Cdc2 after UV irradiation. Furthermore, we demonstrate that translation of the mitotic cyclin Cdc13 is selectively downregulated after UV irradiation, and we propose that this downregulation of Cdc13 contributes to the delayed activation of Cdc2 and the delayed mitosis. © 2017. Published by The Company of Biologists Ltd.

  1. Saccharomyces cerevisiae Ribosomal Protein L26 Is Not Essential for Ribosome Assembly and Function

    Science.gov (United States)

    Babiano, Reyes; Gamalinda, Michael

    2012-01-01

    Ribosomal proteins play important roles in ribosome biogenesis and function. Here, we study the evolutionarily conserved L26 in Saccharomyces cerevisiae, which assembles into pre-60S ribosomal particles in the nucle(ol)us. Yeast L26 is one of the many ribosomal proteins encoded by two functional genes. We have disrupted both genes; surprisingly, the growth of the resulting rpl26 null mutant is apparently identical to that of the isogenic wild-type strain. The absence of L26 minimally alters 60S ribosomal subunit biogenesis. Polysome analysis revealed the appearance of half-mers. Analysis of pre-rRNA processing indicated that L26 is mainly required to optimize 27S pre-rRNA maturation, without which the release of pre-60S particles from the nucle(ol)us is partially impaired. Ribosomes lacking L26 exhibit differential reactivity to dimethylsulfate in domain I of 25S/5.8S rRNAs but apparently are able to support translation in vivo with wild-type accuracy. The bacterial homologue of yeast L26, L24, is a primary rRNA binding protein required for 50S ribosomal subunit assembly in vitro and in vivo. Our results underscore potential differences between prokaryotic and eukaryotic ribosome assembly. We discuss the reasons why yeast L26 plays such an apparently nonessential role in the cell. PMID:22688513

  2. Architects of assembly: roles of Flaviviridae non-structural proteins in virion morphogenesis.

    Science.gov (United States)

    Murray, Catherine L; Jones, Christopher T; Rice, Charles M

    2008-09-01

    Viruses of the Flaviviridae family, including hepatitis C, dengue and bovine viral diarrhoea, are responsible for considerable morbidity and mortality worldwide. Recent advances in our understanding of virion assembly have uncovered commonalities among distantly related members of this family. We discuss the emerging hypothesis that physical virion components are not alone in forming the infectious particle, but that non-structural proteins are intimately involved in orchestrating morphogenesis. Pinpointing the roles of Flaviviridae proteins in virion production could reveal new avenues for antiviral therapeutics.

  3. Self-assembling peptide and protein nanodiscs for studies of membrane proteins

    DEFF Research Database (Denmark)

    Midtgaard, Søren Roi

    of proteins encoded by the human genome. G-protein coupled receptors mediate the majority of hormone and neurotransmitter signals as well as being responsible for perception of light, smell and taste in the human body, and a number of Nobel prizes has been awarded based on their study. Structural...... membrane proteins. A minimalistic approach was tested where the ApoA1 protein was mimicked my small amphipathic helical peptides. The resulting discs were very similar to ApoA1 based discs in size and in their ability to stabilize incorporated membrane proteins. Furthermore, due to their enhanced dynamical...

  4. Modular assembly of synthetic proteins that span the plasma membrane in mammalian cells.

    Science.gov (United States)

    Qudrat, Anam; Truong, Kevin

    2016-12-09

    To achieve synthetic control over how a cell responds to other cells or the extracellular environment, it is important to reliably engineer proteins that can traffic and span the plasma membrane. Using a modular approach to assemble proteins, we identified the minimum necessary components required to engineer such membrane-spanning proteins with predictable orientation in mammalian cells. While a transmembrane domain (TM) fused to the N-terminus of a protein is sufficient to traffic it to the endoplasmic reticulum (ER), an additional signal peptidase cleavage site downstream of this TM enhanced sorting out of the ER. Next, a second TM in the synthetic protein helped anchor and accumulate the membrane-spanning protein on the plasma membrane. The orientation of the components of the synthetic protein were determined through measuring intracellular Ca2+ signaling using the R-GECO biosensor and through measuring extracellular quenching of yellow fluorescent protein variants by saturating acidic and salt conditions. This work forms the basis of engineering novel proteins that span the plasma membrane to potentially control intracellular responses to extracellular conditions.

  5. Heat shock protein-90-beta facilitates enterovirus 71 viral particles assembly

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Robert Y.L., E-mail: yuwang@mail.cgu.edu.tw [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Kuo, Rei-Lin [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Ma, Wei-Chieh [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Hsing-I [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yu, Jau-Song [Department of Cell and Molecular Biology, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Tao-Yuan 333, Taiwan (China); Yen, Sih-Min [Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Huang, Chi-Ruei [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333 Taiwan (China); Shih, Shin-Ru [Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China); Department of Medical Biotechnology and Laboratory Science and Graduate Program of Biomedical Sciences, College of Medicine, Chang Gung University, Tao-Yuan 333, Taiwan (China)

    2013-09-01

    Molecular chaperones are reported to be crucial for virus propagation, but are not yet addressed in Human Enterovirus 71 (EV71). Here we describe the specific association of heat shock protein-90-beta (Hsp90β), but not alpha form (Hsp90α), with EV71 viral particles by the co-purification with virions using sucrose density gradient ultracentrifugation, and by the colocalization with viral particles, as assessed by immunogold electron microscopy. The reduction of the Hsp90β protein using RNA interference decreased the correct assembly of viral particles, without affecting EV71 replication levels. Tracking ectopically expressed Hsp90β protein associated with EV71 virions revealed that Hsp90β protein was transmitted to new host cells through its direct association with infectious viral particles. Our findings suggest a new antiviral strategy in which extracellular Hsp90β protein is targeted to decrease the infectivity of EV71 and other enteroviruses, without affecting the broader functions of this constitutively expressed molecular chaperone. - Highlights: • Hsp90β is associated with EV71 virion and is secreted with the release virus. • Hsp90β effects on the correct assembly of viral particles. • Viral titer of cultured medium was reduced in the presence of geldanamycin. • Viral titer was also reduced when Hsp90β was suppressed by siRNA treatment. • The extracellular Hsp90β was also observed in other RNA viruses-infected cells.

  6. Immune Checkpoint in Glioblastoma: Promising and Challenging

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2017-05-01

    Full Text Available Glioblastoma (GBM is a severe malignant brain cancer with poor overall survival. Conventional intervention remains dismal to prevent recurrence and deterioration of GBM cell. Recent years have witnessed exciting breakthroughs in novel immune strategies, especially checkpoint inhibitors, some of which have become adjuvant setting after standard of care in melanoma. Several clinical trials of checkpoint inhibitors are ongoing in glioblastoma and other brain carcinomas. Plus, synergistic combinations of checkpoint inhibitors with conventional therapy strategies—radiotherapy, temozolomide, bevacizumab, and corticosteroids are now being exploited and applied in clinical settings. This review highlights the recent developments of checkpoints in GBM immunotherapy to provide a brief and comprehensive review of current treatment options. Furthermore, we will discuss challenges remained, such as unique immune system of central nervous system (CNS, immune-related toxicities, synergies, and adverse interactions of combination therapies.

  7. Aduana con peineta: OMA en Checkpoint Charlie

    OpenAIRE

    Sainz Avia, Jorge

    1990-01-01

    Matthias Sauerbruch y Elia Zenghelis han construido junto a Checkpoint Charlie un edificio cuyo diseño se inspiraba en la ' ruptura' simbolizada por el Muro de Berlín. Pero ahora el Muro ya no existe.

  8. Skp2 is required for Aurora B activation in cell mitosis and spindle checkpoint.

    Science.gov (United States)

    Wu, Juan; Huang, Yu-Fan; Zhou, Xin-Ke; Zhang, Wei; Lian, Yi-Fan; Lv, Xiao-Bin; Gao, Xiu-Rong; Lin, Hui-Kuan; Zeng, Yi-Xin; Huang, Jian-Qing

    2015-01-01

    The Aurora B kinase plays a critical role in cell mitosis and spindle checkpoint. Here, we showed that the ubiquitin E3-ligase protein Skp2, also as a cell-cycle regulatory protein, was required for the activation of Aurora B and its downstream protein. When we restored Skp2 knockdown Hela cells with Skp2 and Skp2-LRR E3 ligase dead mutant we found that Skp2 could rescue the defect in the activation of Aurora B, but the mutant failed to do so. Furthermore, we discovered that Skp2 could interact with Aurora B and trigger Aurora B Lysine (K) 63-linked ubiquitination. Finally, we demonstrated the essential role of Skp2 in cell mitosis progression and spindle checkpoint, which was Aurora B dependent. Our results identified a novel ubiquitinated substrate of Skp2, and also indicated that Aurora B ubiquitination might serve as an important event for Aurora B activation in cell mitosis and spindle checkpoint.

  9. Monitoring of Enzymatic Proteolysis Using Self-Assembled Quantum Dot-Protein Substrate Sensors

    Directory of Open Access Journals (Sweden)

    Aaron R. Clapp

    2008-07-01

    Full Text Available We have previously utilized hybrid semiconductor quantum dot- (QD- peptide substrates for monitoring of enzymatic proteolysis. In this report, we expand on this sensing strategy to further monitor protein-protease interactions. We utilize QDs self-assembled with multiple copies of dye-labeled proteins as substrates for the sensing of protease activity. Detection of proteolysis is based on changes in the rate of fluorescence resonance energy transfer (FRET between the QDs and the proximal dye-labeled proteins following protein digestion by added enzyme. Our study focused on two representative proteolytic enzymes: the cysteine protease papain and the serine protease endoproteinase K. Analysis of the enzymatic digestion allowed us to estimate minimal values for the enzymatic activities of each enzyme used. Mechanisms of enzymatic inhibition were also inferred from the FRET data collected in the presence of inhibitors. Potential applications of this technology include drug discovery assays and in vivo cellular monitoring of enzymatic activity.

  10. RECOVERY ACT - Thylakoid Assembly and Folded Protein Transport by the Tat Pathway

    Energy Technology Data Exchange (ETDEWEB)

    Dabney-Smith, Carole [Miami Univ., Oxford, OH (United States)

    2016-07-18

    Assembly of functional photosystems complete with necessary intrinsic (membrane-bound) and extrinsic proteins requires the function of at least 3 protein transport pathways in thylakoid membranes. Our research focuses on one of those pathways, a unique and essential protein transport pathway found in the chloroplasts of plants, bacteria, and some archaebacteria, the Twin arginine translocation (Tat) system. The chloroplast Tat (cpTat) system is thought to be responsible for the proper location of ~50% of thylakoid lumen proteins, several of which are necessary for proper photosystem assembly, maintenance, and function. Specifically, cpTat systems are unique because they transport fully folded and assembled proteins across ion tight membranes using only three membrane components, Tha4, Hcf106, and cpTatC, and the protonmotive force generated by photosynthesis. Despite the importance of the cpTat system in plants, the mechanism of transport of a folded precursor is not well known. Our long-term goal is to investigate the role protein transport systems have on organelle biogenesis, particularly the assembly of membrane protein complexes in thylakoids of chloroplasts. The objective of this proposal is to correlate structural changes in the membrane-bound cpTat component, Tha4, to the mechanism of translocation of folded-precursor substrates across the membrane bilayer by using a cysteine accessibility and crosslinking approach. Our central hypothesis is that the precursor passes through a proteinaceous pore of assembled Tha4 protomers that have undergone a conformational or topological change in response to transport. This research is predicated upon the observations that Tha4 exists in molar excess in the membrane relative to the other cpTat components; its regulated assembly to the precursor-bound receptor; and our data showing oligomerization of Tha4 into very large complexes in response to transport. Our rationale for these studies is that understanding cp

  11. Evolutionary conservation in biogenesis of β-barrel proteins allows mitochondria to assemble a functional bacterial trimeric autotransporter protein.

    Science.gov (United States)

    Ulrich, Thomas; Oberhettinger, Philipp; Schütz, Monika; Holzer, Katharina; Ramms, Anne S; Linke, Dirk; Autenrieth, Ingo B; Rapaport, Doron

    2014-10-24

    Yersinia adhesin A (YadA) belongs to a class of bacterial adhesins that form trimeric structures. Their mature form contains a passenger domain and a C-terminal β-domain that anchors the protein in the outer membrane (OM). Little is known about how precursors of such proteins cross the periplasm and assemble into the OM. In the present study we took advantage of the evolutionary conservation in the biogenesis of β-barrel proteins between bacteria and mitochondria. We previously observed that upon expression in yeast cells, bacterial β-barrel proteins including the transmembrane domain of YadA assemble into the mitochondrial OM. In the current study we found that when expressed in yeast cells both the monomeric and trimeric forms of full-length YadA were detected in mitochondria but only the trimeric species was fully integrated into the OM. The oligomeric form was exposed on the surface of the organelle in its native conformation and maintained its capacity to adhere to host cells. The co-expression of YadA with a mitochondria-targeted form of the bacterial periplasmic chaperone Skp, but not with SurA or SecB, resulted in enhanced levels of both forms of YadA. Taken together, these results indicate that the proper assembly of trimeric autotransporter can occur also in a system lacking the lipoproteins of the BAM machinery and is specifically enhanced by the chaperone Skp. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Integrating top-down and self-assembly in the fabrication of peptide and protein-based biomedical materials.

    Science.gov (United States)

    Smith, Katherine H; Tejeda-Montes, Esther; Poch, Marta; Mata, Alvaro

    2011-09-01

    The capacity to create an increasing variety of bioactive molecules that are designed to assemble in specific configurations has opened up tremendous possibilities in the design of materials with an unprecedented level of control and functionality. A particular challenge involves guiding such self-assembling interactions across scales, thus precisely positioning individual molecules within well-organized, highly-ordered structures. Such hierarchical control is essential if peptides and proteins are to serve as both structural and functional building blocks of biomedical materials. To achieve this goal, top-down techniques are increasingly being used in combination with self-assembling systems to reproducibly manipulate, localize, orient and assemble peptides and proteins to form organized structures. In this tutorial review we provide insight into how both standard and novel top-down techniques are being used in combination with peptide or protein self-assembly to create a new generation of functional materials. This journal is © The Royal Society of Chemistry 2011

  13. Assembly of membrane-bound protein complexes: detection and analysis by single molecule diffusion.

    Science.gov (United States)

    Ziemba, Brian P; Knight, Jefferson D; Falke, Joseph J

    2012-02-28

    Protein complexes assembled on membrane surfaces regulate a wide array of signaling pathways and cell processes. Thus, a molecular understanding of the membrane surface diffusion and regulatory events leading to the assembly of active membrane complexes is crucial to signaling biology and medicine. Here we present a novel single molecule diffusion analysis designed to detect complex formation on supported lipid bilayers. The usefulness of the method is illustrated by detection of an engineered, heterodimeric complex in which two membrane-bound pleckstrin homology (PH) domains associate stably, but reversibly, upon Ca(2+)-triggered binding of calmodulin (CaM) to a target peptide from myosin light chain kinase (MLCKp). Specifically, when a monomeric, fluorescent PH-CaM domain fusion protein diffusing on a supported bilayer binds a dark MLCKp-PH domain fusion protein, the heterodimeric complex is observed to diffuse nearly 2-fold more slowly than the monomer because both of its twin PH domains can simultaneously bind to the viscous bilayer. In a mixed population of monomers and heterodimers, the single molecule diffusion analysis resolves, identifies and quantitates the rapidly diffusing monomers and slowly diffusing heterodimers. The affinity of the CaM-MLCKp interaction is measured by titrating dark MLCKp-PH construct into the system, while monitoring the changing ratio of monomers and heterodimers, yielding a saturating binding curve. Strikingly, the apparent affinity of the CaM-MLCKp complex is ~10(2)-fold greater in the membrane system than in solution, apparently due to both faster complex association and slower complex dissociation on the membrane surface. More broadly, the present findings suggest that single molecule diffusion measurements on supported bilayers will provide an important tool for analyzing the 2D diffusion and assembly reactions governing the formation of diverse membrane-bound complexes, including key complexes from critical signaling

  14. EV71 3D Protein Binds with NLRP3 and Enhances the Assembly of Inflammasome Complex

    Science.gov (United States)

    Wan, Pin; Pan, Pan; Zhang, Yecheng; Wu, Kailang; Liu, Yingle; Wu, Jianguo

    2017-01-01

    Activation of NLRP3 inflammasome is important for effective host defense against invading pathogen. Together with apoptosis-associated speck-like protein containing CARD domain (ASC), NLRP3 induces the cleavage of caspase-1 to facilitate the maturation of interleukin-1beta (IL-1β), an important pro-inflammatory cytokine. IL-1β subsequently plays critical roles in inflammatory responses by activating immune cells and inducing many secondary pro-inflammatory cytokines. Although the role of NLRP3 inflammasome in immune response is well defined, the mechanism underlying its assembly modulated by pathogen infection remains largely unknown. Here, we identified a novel mechanism by which enterovirus 71 (EV71) facilitates the assembly of NLRP3 inflammasome. Our results show that EV71 induces production and secretion of IL-1β in macrophages and peripheral blood mononuclear cells (PBMCs) through activation of NLRP3 inflammasome. EV71 replication and protein synthesis are required for NLRP3-mediated activation of IL-1β. Interestingly, EV71 3D protein, a RNA-dependent RNA polymerase (RdRp) was found to stimulate the activation of NLRP3 inflammasome, the cleavage of pro-caspase-1, and the release of IL-1β through direct binding to NLRP3. More importantly, 3D interacts with NLRP3 to facilitate the assembly of inflammasome complex by forming a 3D-NLRP3-ASC ring-like structure, resulting in the activation of IL-1β. These findings demonstrate a new role of 3D as an important player in the activation of inflammatory response, and identify a novel mechanism underlying the modulation of inflammasome assembly and function induced by pathogen invasion. PMID:28060938

  15. Creation of artificial cellulosomes on DNA scaffolds by zinc finger protein-guided assembly for efficient cellulose hydrolysis.

    Science.gov (United States)

    Sun, Qing; Madan, Bhawna; Tsai, Shen-Long; DeLisa, Matthew P; Chen, Wilfred

    2014-02-11

    For the first time, artificial cellulosome structures were created on DNA scaffolds based on zinc finger protein (ZFP)-guided assembly. These resulting two-component cellulosome structures exhibited enhancement in cellulose hydrolysis compared to the non-complexed mixture depending on the number of CBMs and cellulases assembled.

  16. Insights into the variability of nucleated amyloid polymerization by a minimalistic model of stochastic protein assembly

    Energy Technology Data Exchange (ETDEWEB)

    Eugène, Sarah, E-mail: Sarah.Eugene@inria.fr; Doumic, Marie, E-mail: Philippe.Robert@inria.fr, E-mail: Marie.Doumic@inria.fr [INRIA de Paris, 2 Rue Simone Iff, CS 42112, 75589 Paris Cedex 12 (France); Sorbonne Universités, UPMC Université Pierre et Marie Curie, UMR 7598, Laboratoire Jacques-Louis Lions, F-75005 Paris (France); Xue, Wei-Feng, E-mail: W.F.Xue@kent.ac.uk [School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ (United Kingdom); Robert, Philippe, E-mail: Philippe.Robert@inria.fr [INRIA de Paris, 2 Rue Simone Iff, CS 42112, 75589 Paris Cedex 12 (France)

    2016-05-07

    Self-assembly of proteins into amyloid aggregates is an important biological phenomenon associated with human diseases such as Alzheimer’s disease. Amyloid fibrils also have potential applications in nano-engineering of biomaterials. The kinetics of amyloid assembly show an exponential growth phase preceded by a lag phase, variable in duration as seen in bulk experiments and experiments that mimic the small volumes of cells. Here, to investigate the origins and the properties of the observed variability in the lag phase of amyloid assembly currently not accounted for by deterministic nucleation dependent mechanisms, we formulate a new stochastic minimal model that is capable of describing the characteristics of amyloid growth curves despite its simplicity. We then solve the stochastic differential equations of our model and give mathematical proof of a central limit theorem for the sample growth trajectories of the nucleated aggregation process. These results give an asymptotic description for our simple model, from which closed form analytical results capable of describing and predicting the variability of nucleated amyloid assembly were derived. We also demonstrate the application of our results to inform experiments in a conceptually friendly and clear fashion. Our model offers a new perspective and paves the way for a new and efficient approach on extracting vital information regarding the key initial events of amyloid formation.

  17. Structural basis for ebolavirus matrix assembly and budding; protein plasticity allows multiple functions

    Science.gov (United States)

    Bornholdt, Zachary A.; Noda, Takeshi; Abelson, Dafna M.; Halfmann, Peter; Wood, Malcolm; Kawaoka, Yoshihiro; Saphire, Erica Ollmann

    2014-01-01

    Summary Proteins, particularly viral proteins, can be multifunctional, but the mechanism(s) behind this trait are not fully understood. Here, we illustrate through multiple crystal structures, biochemistry and cellular microscopy that VP40 rearranges into different structures, each with a distinct function required for the ebolavirus life cycle. A butterfly-shaped VP40 dimer trafficks to the cellular membrane. There, electrostatic interactions trigger rearrangement of the polypeptide into a linear hexamer. These hexamers construct a multi-layered, filamentous matrix structure that is critical for budding and resembles tomograms of authentic virions. A third structure of VP40, formed by a different rearrangement, is not involved in virus assembly, but instead uniquely binds RNA to regulate viral transcription inside infected cells. These results provide a functional model for ebolavirus matrix assembly and the other roles of VP40 in the virus life cycle, and demonstrate how a single, wild-type, unmodified polypeptide can assemble into different structures for different functions. PMID:23953110

  18. A tractable genotype-phenotype map modelling the self-assembly of protein quaternary structure.

    Science.gov (United States)

    Greenbury, Sam F; Johnston, Iain G; Louis, Ard A; Ahnert, Sebastian E

    2014-06-06

    The mapping between biological genotypes and phenotypes is central to the study of biological evolution. Here, we introduce a rich, intuitive and biologically realistic genotype-phenotype (GP) map that serves as a model of self-assembling biological structures, such as protein complexes, and remains computationally and analytically tractable. Our GP map arises naturally from the self-assembly of polyomino structures on a two-dimensional lattice and exhibits a number of properties: redundancy (genotypes vastly outnumber phenotypes), phenotype bias (genotypic redundancy varies greatly between phenotypes), genotype component disconnectivity (phenotypes consist of disconnected mutational networks) and shape space covering (most phenotypes can be reached in a small number of mutations). We also show that the mutational robustness of phenotypes scales very roughly logarithmically with phenotype redundancy and is positively correlated with phenotypic evolvability. Although our GP map describes the assembly of disconnected objects, it shares many properties with other popular GP maps for connected units, such as models for RNA secondary structure or the hydrophobic-polar (HP) lattice model for protein tertiary structure. The remarkable fact that these important properties similarly emerge from such different models suggests the possibility that universal features underlie a much wider class of biologically realistic GP maps.

  19. Sequence Identification, Recombinant Production, and Analysis of the Self-Assembly of Egg Stalk Silk Proteins from Lacewing Chrysoperla carnea

    Directory of Open Access Journals (Sweden)

    Martin Neuenfeldt

    2017-06-01

    Full Text Available Egg stalk silks of the common green lacewing Chrysoperla carnea likely comprise at least three different silk proteins. Based on the natural spinning process, it was hypothesized that these proteins self-assemble without shear stress, as adult lacewings do not use a spinneret. To examine this, the first sequence identification and determination of the gene expression profile of several silk proteins and various transcript variants thereof was conducted, and then the three major proteins were recombinantly produced in Escherichia coli encoded by their native complementary DNA (cDNA sequences. Circular dichroism measurements indicated that the silk proteins in aqueous solutions had a mainly intrinsically disordered structure. The largest silk protein, which we named ChryC1, exhibited a lower critical solution temperature (LCST behavior and self-assembled into fibers or film morphologies, depending on the conditions used. The second silk protein, ChryC2, self-assembled into nanofibrils and subsequently formed hydrogels. Circular dichroism and Fourier transform infrared spectroscopy confirmed conformational changes of both proteins into beta sheet rich structures upon assembly. ChryC3 did not self-assemble into any morphology under the tested conditions. Thereby, through this work, it could be shown that recombinant lacewing silk proteins can be produced and further used for studying the fiber formation of lacewing egg stalks.

  20. Sequence Identification, Recombinant Production, and Analysis of the Self-Assembly of Egg Stalk Silk Proteins from Lacewing Chrysoperla carnea.

    Science.gov (United States)

    Neuenfeldt, Martin; Scheibel, Thomas

    2017-06-13

    Egg stalk silks of the common green lacewing Chrysoperla carnea likely comprise at least three different silk proteins. Based on the natural spinning process, it was hypothesized that these proteins self-assemble without shear stress, as adult lacewings do not use a spinneret. To examine this, the first sequence identification and determination of the gene expression profile of several silk proteins and various transcript variants thereof was conducted, and then the three major proteins were recombinantly produced in Escherichia coli encoded by their native complementary DNA (cDNA) sequences. Circular dichroism measurements indicated that the silk proteins in aqueous solutions had a mainly intrinsically disordered structure. The largest silk protein, which we named ChryC1, exhibited a lower critical solution temperature (LCST) behavior and self-assembled into fibers or film morphologies, depending on the conditions used. The second silk protein, ChryC2, self-assembled into nanofibrils and subsequently formed hydrogels. Circular dichroism and Fourier transform infrared spectroscopy confirmed conformational changes of both proteins into beta sheet rich structures upon assembly. ChryC3 did not self-assemble into any morphology under the tested conditions. Thereby, through this work, it could be shown that recombinant lacewing silk proteins can be produced and further used for studying the fiber formation of lacewing egg stalks.

  1. Cyclin F suppresses B-Myb activity to promote cell cycle checkpoint control

    DEFF Research Database (Denmark)

    Klein, Ditte Kjærsgaard; Hoffmann, Saskia; Ahlskog, Johanna K

    2015-01-01

    an important role in checkpoint control following ionizing radiation. Cyclin F-depleted cells initiate checkpoint signalling after ionizing radiation, but fail to maintain G2 phase arrest and progress into mitosis prematurely. Importantly, cyclin F suppresses the B-Myb-driven transcriptional programme...... that promotes accumulation of crucial mitosis-promoting proteins. Cyclin F interacts with B-Myb via the cyclin box domain. This interaction is important to suppress cyclin A-mediated phosphorylation of B-Myb, a key step in B-Myb activation. In summary, we uncover a regulatory mechanism linking the F-box protein...

  2. CARTILAGE OLIGOMERIC MATRIX PROTEIN ENHANCES MATRIX ASSEMBLY DURING CHONDROGENESIS OF HUMAN MESENCHYMAL STEM CELLS

    Science.gov (United States)

    Haleem-Smith, Hana; Calderon, Raul; Song, Yingjie; Tuan, Rocky S.; Chen, Faye H.

    2011-01-01

    Cartilage oligomeric matrix protein/thrombospondin-5 (COMP/TSP5) is an abundant cartilage extracellular matrix (ECM) protein that interacts with major cartilage ECM components, including aggrecan and collagens. To test our hypothesis that COMP/TSP5 functions in the assembly of the ECM during cartilage morphogenesis, we have employed mesenchymal stem cell (MSC) chondrogenesis in vitro as a model to examine the effects of COMP over-expression on neo-cartilage formation. Human bone marrow-derived MSCs were transfected with either full-length COMP cDNA or control plasmid, followed by chondrogenic induction in three-dimensional pellet or alginate-hydrogel culture. MSC chondrogenesis and ECM production was estimated based on quantitation of sulfated glycosaminoglycan (sGAG) accumulation, immunohistochemistry of the presence and distribution of cartilage ECM proteins, and real-time RT-PCR analyis of mRNA expression of cartilage markers. Our results showed that COMP over-expression resulted in increased total sGAG content during the early phase of MSC chondrogenesis, and increased immuno-detectable levels of aggrecan and collagen type II in the ECM of COMP-transfected pellet and alginate cultures, indicating more abundant cartilaginous matrix. COMP transfection did not significantly increase the transcript levels of the early chondrogenic marker, Sox9, or aggrecan, suggesting that enhancement of MSC cartilage ECM was effected at post-transcriptional levels. These findings strongly suggest that COMP functions in mesenchymal chondrogenesis by enhancing cartilage ECM organization and assembly. The action of COMP is most likely mediated not via direct changes in cartilage matrix gene expression but via interactions of COMP with other cartilage ECM proteins, such as aggrecan and collagens, that result in enhanced assembly and retention. PMID:22095699

  3. Templated self-assembly of quantum dots from aqueous solution using protein scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Blum, Amy Szuchmacher [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Soto, Carissa M [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Wilson, Charmaine D [Geo-Centers, Incorporated, Newton, MA 02459 (United States); Whitley, Jessica L [Geo-Centers, Incorporated, Newton, MA 02459 (United States); Moore, Martin H [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States); Sapsford, Kim E [George Mason University, 10910 University Boulevard, Manassas, VA 20110 (United States); Lin, Tianwei [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Chatterji, Anju [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Johnson, John E [Department of Molecular Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037 (United States); Ratna, Banahalli R [Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, 4555 Overlook Avenue SW, Washington, DC 20375 (United States)

    2006-10-28

    Short, histidine-containing peptides can be conjugated to lysine-containing protein scaffolds to controllably attach quantum dots (QDs) to the scaffold, allowing for generic attachment of quantum dots to any protein without the use of specially engineered domains. This technique was used to bind quantum dots from aqueous solution to both chicken IgG and cowpea mosaic virus (CPMV), a 30 nm viral particle. These quantum dot-protein assemblies were studied in detail. The IgG-QD complexes were shown to retain binding specificity to their antigen after modification. The CPMV-QD complexes have a local concentration of quantum dots greater than 3000 nmol ml{sup -1}, and show a 15% increase in fluorescence quantum yield over free quantum dots in solution.

  4. Interaction of the cyclic-di-GMP binding protein FimX and the Type 4 pilus assembly ATPase promotes pilus assembly.

    Science.gov (United States)

    Jain, Ruchi; Sliusarenko, Oleksii; Kazmierczak, Barbara I

    2017-08-01

    Type IVa pili (T4P) are bacterial surface structures that enable motility, adhesion, biofilm formation and virulence. T4P are assembled by nanomachines that span the bacterial cell envelope. Cycles of T4P assembly and retraction, powered by the ATPases PilB and PilT, allow bacteria to attach to and pull themselves along surfaces, so-called "twitching motility". These opposing ATPase activities must be coordinated and T4P assembly limited to one pole for bacteria to show directional movement. How this occurs is still incompletely understood. Herein, we show that the c-di-GMP binding protein FimX, which is required for T4P assembly in Pseudomonas aeruginosa, localizes to the leading pole of twitching bacteria. Polar FimX localization requires both the presence of T4P assembly machine proteins and the assembly ATPase PilB. PilB itself loses its polar localization pattern when FimX is absent. We use two different approaches to confirm that FimX and PilB interact in vivo and in vitro, and further show that point mutant alleles of FimX that do not bind c-di-GMP also do not interact with PilB. Lastly, we demonstrate that FimX positively regulates T4P assembly and twitching motility by promoting the activity of the PilB ATPase, and not by stabilizing assembled pili or by preventing PilT-mediated retraction. Mutated alleles of FimX that no longer bind c-di-GMP do not allow rapid T4P assembly in these assays. We propose that by virtue of its high-affinity for c-di-GMP, FimX can promote T4P assembly when intracellular levels of this cyclic nucleotide are low. As P. aeruginosa PilB is not itself a high-affinity c-di-GMP receptor, unlike many other assembly ATPases, FimX may play a key role in coupling T4P mediated motility and adhesion to levels of this second messenger.

  5. Critical role of the fusion protein cytoplasmic tail sequence in parainfluenza virus assembly.

    Directory of Open Access Journals (Sweden)

    Raychel Stone

    Full Text Available Interactions between viral glycoproteins, matrix protein and nucleocapsid sustain assembly of parainfluenza viruses at the plasma membrane. Although the protein interactions required for virion formation are considered to be highly specific, virions lacking envelope glycoprotein(s can be produced, thus the molecular interactions driving viral assembly and production are still unclear. Sendai virus (SeV and human parainfluenza virus type 1 (hPIV1 are highly similar in structure, however, the cytoplasmic tail sequences of the envelope glycoproteins (HN and F are relatively less conserved. To unveil the specific role of the envelope glycoproteins in viral assembly, we created chimeric SeVs whose HN (rSeVhHN or HN and F (rSeVh(HN+F were replaced with those of hPIV1. rSeVhHN grew as efficiently as wt SeV or hPIV1, suggesting that the sequence difference in HN does not have a significant impact on SeV replication and virion production. In sharp contrast, the growth of rSeVh(HN+F was significantly impaired compared to rSeVhHN. rSeVh(HN+Fstail which expresses a chimeric hPIV1 F with the SeV cytoplasmic tail sequence grew similar to wt SeV or rSeVhHN. Further analysis indicated that the F cytoplasmic tail plays a critical role in cell surface expression/accumulation of HN and F, as well as NP and M association at the plasma membrane. Trafficking of nucelocapsids in infected cells was not significantly affected by the origin of F, suggesting that F cytoplasmic tail is not involved in intracellular movement. These results demonstrate the role of the F cytoplasmic tail in accumulation of structural components at the plasma membrane assembly sites.

  6. Nucleosome assembly protein-1 is a linker histone chaperone in Xenopus eggs.

    Science.gov (United States)

    Shintomi, Keishi; Iwabuchi, Mari; Saeki, Hideaki; Ura, Kiyoe; Kishimoto, Takeo; Ohsumi, Keita

    2005-06-07

    In eukaryotic cells, genomic DNA is primarily packaged into nucleosomes through sequential ordered binding of the core and linker histone proteins. The acidic proteins termed histone chaperones are known to bind to core histones to neutralize their positive charges, thereby facilitating their proper deposition onto DNA to assemble the core of nucleosomes. For linker histones, however, little has been known about the regulatory mechanism for deposition of linker histones onto the linker DNA. Here we report that, in Xenopus eggs, the linker histone is associated with the Xenopus homologue of nucleosome assembly protein-1 (NAP-1), which is known to be a chaperone for the core histones H2A and H2B in Drosophila and mammalian cells [Ito, T., Bulger, M., Kobayashi, R. & Kadonaga, J. T. (1996) Mol. Cell Biol. 16, 3112-3124; Chang, L., Loranger, S. S., Mizzen, C., Ernst, S. G., Allis, C. D. & Annunziato, A. T. (1997) Biochemistry 36, 469-480]. We show that NAP-1 acts as the chaperone for the linker histone in both sperm chromatin remodeling into nucleosomes and linker histone binding to nucleosome core dimers. In the presence of NAP-1, the linker histone is properly deposited onto linker DNA at physiological ionic strength, without formation of nonspecific aggregates. These results strongly suggest that NAP-1 functions as a chaperone for the linker histone in Xenopus eggs.

  7. The microtubule-associated protein ASPM regulates spindle assembly and meiotic progression in mouse oocytes.

    Science.gov (United States)

    Xu, Xiao-Ling; Ma, Wei; Zhu, Yu-Bo; Wang, Chao; Wang, Bing-Yuan; An, Na; An, Lei; Liu, Yan; Wu, Zhong-Hong; Tian, Jian-Hui

    2012-01-01

    The microtubule-associated protein ASPM (abnormal spindle-like microcephaly-associated) plays an important role in spindle organization and cell division in mitosis and meiosis in lower animals, but its function in mouse oocyte meiosis has not been investigated. In this study, we characterized the localization and expression dynamics of ASPM during mouse oocyte meiotic maturation and analyzed the effects of the downregulation of ASPM expression on meiotic spindle assembly and meiotic progression. Immunofluorescence analysis showed that ASPM localized to the entire spindle at metaphase I (MI) and metaphase II (MII), colocalizing with the spindle microtubule protein acetylated tubulin (Ac-tubulin). In taxol-treated oocytes, ASPM colocalized with Ac-tubulin on the excessively polymerized microtubule fibers of enlarged spindles and the numerous asters in the cytoplasm. Nocodazole treatment induced the gradual disassembly of microtubule fibers, during which ASPM remained colocalized with the dynamic Ac-tubulin. The downregulation of ASPM expression by a gene-specific morpholino resulted in an abnormal meiotic spindle and inhibited meiotic progression; most of the treated oocytes were blocked in the MI stage with elongated meiotic spindles. Furthermore, coimmunoprecipitation combined with mass spectrometry and western blot analysis revealed that ASPM interacted with calmodulin in MI oocytes and that these proteins colocalized at the spindle. Our results provide strong evidence that ASPM plays a critical role in meiotic spindle assembly and meiotic progression in mouse oocytes.

  8. The microtubule-associated protein ASPM regulates spindle assembly and meiotic progression in mouse oocytes.

    Directory of Open Access Journals (Sweden)

    Xiao-Ling Xu

    Full Text Available The microtubule-associated protein ASPM (abnormal spindle-like microcephaly-associated plays an important role in spindle organization and cell division in mitosis and meiosis in lower animals, but its function in mouse oocyte meiosis has not been investigated. In this study, we characterized the localization and expression dynamics of ASPM during mouse oocyte meiotic maturation and analyzed the effects of the downregulation of ASPM expression on meiotic spindle assembly and meiotic progression. Immunofluorescence analysis showed that ASPM localized to the entire spindle at metaphase I (MI and metaphase II (MII, colocalizing with the spindle microtubule protein acetylated tubulin (Ac-tubulin. In taxol-treated oocytes, ASPM colocalized with Ac-tubulin on the excessively polymerized microtubule fibers of enlarged spindles and the numerous asters in the cytoplasm. Nocodazole treatment induced the gradual disassembly of microtubule fibers, during which ASPM remained colocalized with the dynamic Ac-tubulin. The downregulation of ASPM expression by a gene-specific morpholino resulted in an abnormal meiotic spindle and inhibited meiotic progression; most of the treated oocytes were blocked in the MI stage with elongated meiotic spindles. Furthermore, coimmunoprecipitation combined with mass spectrometry and western blot analysis revealed that ASPM interacted with calmodulin in MI oocytes and that these proteins colocalized at the spindle. Our results provide strong evidence that ASPM plays a critical role in meiotic spindle assembly and meiotic progression in mouse oocytes.

  9. Generation of active protein phosphatase 2A is coupled to holoenzyme assembly.

    Directory of Open Access Journals (Sweden)

    Hans Hombauer

    2007-06-01

    Full Text Available Protein phosphatase 2A (PP2A is a prime example of the multisubunit architecture of protein serine/threonine phosphatases. Until substrate-specific PP2A holoenzymes assemble, a constitutively active, but nonspecific, catalytic C subunit would constitute a risk to the cell. While it has been assumed that the severe proliferation impairment of yeast lacking the structural PP2A subunit, TPD3, is due to the unrestricted activity of the C subunit, we recently obtained evidence for the existence of the C subunit in a low-activity conformation that requires the RRD/PTPA proteins for the switch into the active conformation. To study whether and how maturation of the C subunit is coupled with holoenzyme assembly, we analyzed PP2A biogenesis in yeast. Here we show that the generation of the catalytically active C subunit depends on the physical and functional interaction between RRD2 and the structural subunit, TPD3. The phenotype of the tpd3Delta strain is therefore caused by impaired, rather than increased, PP2A activity. TPD3/RRD2-dependent C subunit maturation is under the surveillance of the PP2A methylesterase, PPE1, which upon malfunction of PP2A biogenesis, prevents premature generation of the active C subunit and holoenzyme assembly by counteracting the untimely methylation of the C subunit. We propose a novel model of PP2A biogenesis in which a tightly controlled activation cascade protects cells from untargeted activity of the free catalytic PP2A subunit.

  10. Assembly of SIV virus-like particles containing envelope proteins using a baculovirus expression system.

    Science.gov (United States)

    Yamshchikov, G V; Ritter, G D; Vey, M; Compans, R W

    1995-12-01

    The requirements for SIV particle assembly and envelope incorporation were investigated using a baculovirus expression system. The Pr56gag precursor protein expressed under control of the polyhedrin promoter (pPolh) produced high levels of immature retrovirus-like particles (VLP) upon expression in Sf9 insect cells. To determine the optimal conditions for envelope protein (Env) incorporation into VLP, two recombinant baculoviruses expressing the SIV envelope protein under control of a very late pPolh or a hybrid late/very late capsid/polyhedrin (Pcap/polh) promoter and a recombinant expressing a truncated form of the SIV envelope protein (Envt) under the hybrid Pcap/polh promoter were compared. We have observed that utilization of the earlier hybrid promoter resulted in higher levels of Env expression on the cell surface and its incorporation into budding virus particles. We have also found that the Envt protein is transported to the cell surface of insect cells and incorporated into VLP more efficiently than full-length Env. In addition, we examined the effect of coexpression of the protease furin, which has been implicated in the proteolytic cleavage of the Env precursor gp160 in mammalian cells. Coexpression of furin in insect cells resulted in more efficient proteolytic cleavage into gp120 and gp41, and the cleaved proteins were incorporated into VLP.

  11. A Rationally Designed Connector for Assembly of Protein-Functionalized DNA Nanostructures.

    Science.gov (United States)

    Koßmann, Katja J; Ziegler, Cornelia; Angelin, Alessandro; Meyer, Rebecca; Skoupi, Marc; Rabe, Kersten S; Niemeyer, Christof M

    2016-06-16

    We report on the rational engineering of the binding interface of the self-ligating HaloTag protein to generate an optimized linker for DNA nanostructures. Five amino acids positioned around the active-site entry channel for the chlorohexyl ligand (CH) of the HaloTag protein were exchanged for positively charged lysine amino acids to produce the HOB (halo-based oligonucleotide binder) protein. HOB was genetically fused with the enzyme cytochrome P450 BM3, as well as with BMR, the separated reductase domain of BM3. The resulting HOB-fusion proteins revealed significantly improved rates in ligation with CH-modified oligonucleotides and DNA origami nanostructures. These results suggest that the efficient self-assembly of protein-decorated DNA structures can be greatly improved by fine-tuning of the electrostatic interactions between proteins and the negatively charged nucleic acid nanostructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Hepatitis C Virus E2 Protein Ectodomain Is Essential for Assembly of Infectious Virions

    Directory of Open Access Journals (Sweden)

    Alessia Bianchi

    2011-01-01

    Full Text Available The Hepatitis C virus E1 and E2 envelope proteins are the major players in all events required for virus entry into target cells. In addition, the recently developed HCV cell culture system has indicated that E1E2 heterodimer formation is a prerequisite for viral particle production. In this paper, we explored a new genetic approach to construct intergenotypic 2a/1b chimeras, maintaining the structural region of the infectious strain JFH1 and substituting the soluble portion of E1 and/or E2 proteins. This strategy provides useful information on the role of the surface-exposed domain of the envelope proteins in virus morphogenesis and allows comparative analysis of different HCV genotypes. We found that substituting the E2 protein ectodomain region abolishes the production of chimeric infectious particles. Our data indicate that the soluble part of the E2 protein is involved in a genotype-specific interplay with remaining viral proteins that affect the HCV assembly process.

  13. Kinetics and structure during self-assembly of oppositely charged proteins in aqueous solution.

    Science.gov (United States)

    Salvatore, Delphine; Croguennec, Thomas; Bouhallab, Saïd; Forge, Vincent; Nicolai, Taco

    2011-05-09

    Self-assembly in aqueous solution of two oppositely charged globular proteins, hen egg white lysozyme (LYS) and bovine calcium-depleted α-lactalbumin (apo α-LA), was investigated at pH 7.5. The aggregation rate of equimolar mixtures of the two proteins was determined using static and dynamic light scattering as a function of the ionic strength (15-70 mM) and protein concentration (0.28-2.8 g/L) at 25 and 45 °C. The morphology of formed supramolecular structures was observed by confocal laser scanning microscopy. When the two proteins are mixed, small aggregates were formed rapidly that subsequently grew by collision and fusion. The aggregation process led on larger length scales to irregularly shaped flocs at 25 °C, but to monodisperse homogeneous spheres at 45 °C. Both the initial rate of aggregation and the fraction of proteins that associated decreased strongly with decreasing protein concentration or increasing ionic strength but was independent of the temperature.

  14. Design and characterization of self-assembled fish sarcoplasmic protein-alginate nanocomplexes

    DEFF Research Database (Denmark)

    Boutrup Stephansen, Karen; Mattebjerg, Maria Ahlm; Wattjes, Jasper

    2015-01-01

    Macrostructures based on natural polymers are subject to large attention, as the application range is wide within the food and pharmaceutical industries. In this study we present nanocomplexes (NCXs) made from electrostatic self-assembly between negatively charged alginate and positively charged...... fish sarcoplasmic proteins (FSP), prepared by bulk mixing. A concentration screening revealed that there was a range of alginate and FSP concentrations where stable NCXs with similar properties were formed, rather than two exact concentrations. The size of the NCXs was 293 +/- 3 nm, and the zeta...

  15. Integrated Self-Assembly of the Mms6 Magnetosome Protein to Form an Iron-Responsive Structure

    Directory of Open Access Journals (Sweden)

    Marit Nilsen-Hamilton

    2013-07-01

    Full Text Available A common feature of biomineralization proteins is their self-assembly to produce a surface consistent in size with the inorganic crystals that they produce. Mms6, a small protein of 60 amino acids from Magnetospirillum magneticum strain AMB-1 that promotes the in vitro growth of superparamagnetic magnetite nanocrystals, assembles in aqueous solution to form spherical micelles that could be visualized by TEM and AFM. The results reported here are consistent with the view that the N and C-terminal domains interact with each other within one polypeptide chain and across protein units in the assembly. From studies to determine the amino acid residues important for self-assembly, we identified the unique GL repeat in the N-terminal domain with additional contributions from amino acids in other positions, throughout the molecule. Analysis by CD spectroscopy identified a structural change in the iron-binding C-terminal domain in the presence of Fe3+. A change in the intrinsic fluorescence of tryptophan in the N-terminal domain showed that this structural change is transmitted through the protein. Thus, self-assembly of Mms6 involves an interlaced structure of intra- and inter-molecular interactions that results in a coordinated structural change in the protein assembly with iron binding.

  16. Human surfactant protein A2 gene mutations impair dimmer/trimer assembly leading to deficiency in protein sialylation and secretion.

    Directory of Open Access Journals (Sweden)

    Yi Song

    Full Text Available Surfactant protein A2 (SP-A2 plays an essential role in surfactant metabolism and lung host defense. SP-A2 mutations in the carbohydrate recognition domain have been related to familial pulmonary fibrosis and can lead to a recombinant protein secretion deficiency in vitro. In this study, we explored the molecular mechanism of protein secretion deficiency and the subsequent biological effects in CHO-K1 cells expressing both wild-type and several different mutant forms of SP-A2. We demonstrate that the SP-A2 G231V and F198S mutants impair the formation of dimmer/trimer SP-A2 which contributes to the protein secretion defect. A deficiency in sialylation, but not N-linked glycosylation, is critical to the observed dimmer/trimer impairment-induced secretion defect. Furthermore, both mutant forms accumulate in the ER and form NP-40-insoluble aggregates. In addition, the soluble mutant SP-A2 could be partially degraded through the proteasome pathway but not the lysosome or autophagy pathway. Intriguingly, 4-phenylbutyrate acid (4-PBA, a chemical chaperone, alleviates aggregate formation and partially rescued the protein secretion of SP-A2 mutants. In conclusion, SP-A2 G231V and F198S mutants impair the dimmer/trimer assembly, which contributes to the protein sialylation and secretion deficiency. The intracellular protein mutants could be partially degraded through the proteasome pathway and also formed aggregates. The treatment of the cells with 4-PBA resulted in reduced aggregation and rescued the secretion of mutant SP-A2.

  17. Complex assembly behavior during the encapsulation of green fluorescent protein analogs in virus derived protein capsules

    NARCIS (Netherlands)

    Minten, Inge J.; Nolte, Roeland J.M.; Cornelissen, Jeroen Johannes Lambertus Maria

    2010-01-01

    Enzymes encapsulated in nanocontainers are a better model of the conditions inside a living cell than free enzymes in solution. In a first step toward the encapsulation of multiple enzymes inside the cowpea chlorotic mottle virus (CCMV) capsid, enhanced green fluorescent protein (EGFP) was attached

  18. Fragile X mental retardation protein stimulates ribonucleoprotein assembly of influenza A virus

    Science.gov (United States)

    Zhou, Zhuo; Cao, Mengmeng; Guo, Yang; Zhao, Lili; Wang, Jingfeng; Jia, Xue; Li, Jianguo; Wang, Conghui; Gabriel, Gülsah; Xue, Qinghua; Yi, Yonghong; Cui, Sheng; Jin, Qi; Wang, Jianwei; Deng, Tao

    2014-02-01

    The ribonucleoprotein (RNP) of the influenza A virus is responsible for the transcription and replication of viral RNA in the nucleus. These processes require interplay between host factors and RNP components. Here, we report that the Fragile X mental retardation protein (FMRP) targets influenza virus RNA synthesis machinery and facilitates virus replication both in cell culture and in mice. We demonstrate that FMRP transiently associates with viral RNP and stimulates viral RNP assembly through RNA-mediated interaction with the nucleoprotein. Furthermore, the KH2 domain of FMRP mediates its association with the nucleoprotein. A point mutation (I304N) in the KH2 domain, identified from a Fragile X syndrome patient, disrupts the FMRP-nucleoprotein association and abolishes the ability of FMRP to participate in viral RNP assembly. We conclude that FMRP is a critical host factor used by influenza viruses to facilitate viral RNP assembly. Our observation reveals a mechanism of influenza virus RNA synthesis and provides insights into FMRP functions.

  19. Myasthenia gravis: An emerging toxicity of immune checkpoint inhibitors.

    Science.gov (United States)

    Makarious, D; Horwood, K; Coward, J I G

    2017-09-01

    The advent of immunotherapy has heralded a number of significant advances in the treatment of particular malignancies associated with poor prognosis (melanoma, non-small-cell lung, renal and head/neck cancers). The success witnessed with therapeutic agents targeting cytotoxic T-lymphocyte-associated protein 4, programmed cell death protein 1 and programmed cell death ligand 1 immune checkpoints has inevitably led to an explosion in their clinical application and the subsequent recognition of specific toxicity profiles distinct from those long recognised with chemotherapy. Consequently, as the utility of such therapies broaden, understanding the nature, timing and management of these immune-related adverse events (irAEs) becomes increasingly significant. Although neurological irAEs are considered relatively rare in comparison with hepatitis, colitis, pneumonitis and endocrinopathies, one emerging side-effect is myasthenia gravis (MG). Among the 23 reported cases of immune checkpoint inhibitor-associated MG, 72.7% were de novo presentations, 18.2% were exacerbations of pre-existing MG and 9.1% were exacerbations of subclinical MG. The average onset of symptoms was within 6 weeks (range 2-12 weeks) of treatment initiation. In addition, there was no consistent association with elevated acetylcholine antibody titres and the development of immune checkpoint inhibitor-related MG. Significantly, there was a 30.4% MG-specific-related mortality, which further emphasises the importance of early recognition and robust treatment of this toxicity. In addition to a review of the existing literature, we present a new case of pembrolizumab-induced MG and provide insights into the underlying mechanisms of action of this phenomenon. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Unraveling protein-protein interactions in clathrin assemblies via atomic force spectroscopy.

    Science.gov (United States)

    Jin, Albert J; Lafer, Eileen M; Peng, Jennifer Q; Smith, Paul D; Nossal, Ralph

    2013-03-01

    Atomic force microscopy (AFM), single molecule force spectroscopy (SMFS), and single particle force spectroscopy (SPFS) are used to characterize intermolecular interactions and domain structures of clathrin triskelia and clathrin-coated vesicles (CCVs). The latter are involved in receptor-mediated endocytosis (RME) and other trafficking pathways. Here, we subject individual triskelia, bovine-brain CCVs, and reconstituted clathrin-AP180 coats to AFM-SMFS and AFM-SPFS pulling experiments and apply novel analytics to extract force-extension relations from very large data sets. The spectroscopic fingerprints of these samples differ markedly, providing important new information about the mechanism of CCV uncoating. For individual triskelia, SMFS reveals a series of events associated with heavy chain alpha-helix hairpin unfolding, as well as cooperative unraveling of several hairpin domains. SPFS of clathrin assemblies exposes weaker clathrin-clathrin interactions that are indicative of inter-leg association essential for RME and intracellular trafficking. Clathrin-AP180 coats are energetically easier to unravel than the coats of CCVs, with a non-trivial dependence on force-loading rate. Published by Elsevier Inc.

  1. Protein degradation corrects for imbalanced subunit stoichiometry in OST complex assembly.

    Science.gov (United States)

    Mueller, Susanne; Wahlander, Asa; Selevsek, Nathalie; Otto, Claudia; Ngwa, Elsy Mankah; Poljak, Kristina; Frey, Alexander D; Aebi, Markus; Gauss, Robert

    2015-07-15

    Protein degradation is essential for cellular homeostasis. We developed a sensitive approach to examining protein degradation rates in Saccharomyces cerevisiae by coupling a SILAC approach to selected reaction monitoring (SRM) mass spectrometry. Combined with genetic tools, this analysis made it possible to study the assembly of the oligosaccharyl transferase complex. The ER-associated degradation machinery compensated for disturbed homeostasis of complex components by degradation of subunits in excess. On a larger scale, protein degradation in the ER was found to be a minor factor in the regulation of protein homeostasis in exponentially growing cells, but ERAD became relevant when the gene dosage was affected, as demonstrated in heterozygous diploid cells. Hence the alleviation of fitness defects due to abnormal gene copy numbers might be an important function of protein degradation. © 2015 Mueller et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Checkpoint triggering in a computer system

    Energy Technology Data Exchange (ETDEWEB)

    Cher, Chen-Yong

    2016-09-06

    According to an aspect, a method for triggering creation of a checkpoint in a computer system includes executing a task in a processing node of the computer system and determining whether it is time to read a monitor associated with a metric of the task. The monitor is read to determine a value of the metric based on determining that it is time to read the monitor. A threshold for triggering creation of the checkpoint is determined based on the value of the metric. Based on determining that the value of the metric has crossed the threshold, the checkpoint including state data of the task is created to enable restarting execution of the task upon a restart operation.

  3. Human cytomegalovirus exploits interferon-induced transmembrane proteins to facilitate morphogenesis of the virion assembly compartment.

    Science.gov (United States)

    Xie, Maorong; Xuan, Baoqin; Shan, Jiaoyu; Pan, Deng; Sun, Yamei; Shan, Zhao; Zhang, Jinping; Yu, Dong; Li, Bin; Qian, Zhikang

    2015-03-01

    Recently, interferon-induced transmembrane proteins (IFITMs) have been identified to be key effector molecules in the host type I interferon defense system. The invasion of host cells by a large range of RNA viruses is inhibited by IFITMs during the entry step. However, the roles of IFITMs in DNA virus infections have not been studied in detail. In this study, we report that human cytomegalovirus (HCMV), a large human DNA virus, exploits IFITMs to facilitate the formation of the virion assembly compartment (vAC) during infection of human fibroblasts. We found that IFITMs were expressed constitutively in human embryonic lung fibroblasts (MRC5 cells). HCMV infection inhibited IFITM protein accumulation in the later stages of infection. Overexpression of an IFITM protein in MRC5 cells slightly enhanced HCMV production and knockdown of IFITMs by RNA interference reduced the virus titer by about 100-fold on day 8 postinfection, according to the findings of a virus yield assay at a low multiplicity of infection. Virus gene expression and DNA synthesis were not affected, but the typical round structure of the vAC was not formed after the suppression of IFITMs, thereby resulting in defective virion assembly and the production of less infectious virion particles. Interestingly, the replication of herpes simplex virus, a human herpesvirus that is closely related to HCMV, was not affected by the suppression of IFITMs in MRC5 cells. These results indicate that IFITMs are involved in a specific pathway required for HCMV replication. HCMV is known to repurpose the interferon-stimulated genes (ISGs) viperin and tetherin to facilitate its replication. Our results expand the range of ISGs that can be exploited by HCMV for its replication. This is also the first report of a proviral function of IFITMs in DNA virus replication. In addition, whereas previous studies showed that IFITMs modulate virus entry, which is a very early stage in the virus life cycle, we identified a new

  4. Encapsulation of Aconitine in Self-Assembled Licorice Protein Nanoparticles Reduces the Toxicity In Vivo

    Science.gov (United States)

    Ke, Li-jing; Gao, Guan-zhen; Shen, Yong; Zhou, Jian-wu; Rao, Ping-fan

    2015-11-01

    Many herbal medicines and compositions are clinically effective but challenged by its safety risks, i.e., aconitine (AC) from aconite species. The combined use of Radix glycyrrhizae (licorice) with Radix aconite L. effectively eliminates toxicity of the later while increasing efficacy. In this study, a boiling-stable 31-kDa protein (namely GP) was purified from licorice and self-assembled into nanoparticles (206.2 ± 2.0 nm) at pH 5.0, 25 °C. The aconitine-encapsulated GP nanoparticles (238.2 ± 1.2 nm) were prepared following the same procedure and tested for its toxicity by intraperitoneal injection on ICR mouse ( n = 8). Injection of GP-AC nanoparticles and the mixed licorice-aconite decoction, respectively, caused mild recoverable toxic effects and no death, while the aconitine, particle-free GP-AC mixture and aconite decoction induced sever toxic effects and 100 % death. Encapsulation of poisonous alkaloids into self-assembled herbal protein nanoparticles contributes to toxicity attenuation of combined use of herbs, implying a prototype nanostructure and a universal principle for the safer clinical applications of herbal medicines.

  5. Involvement of the conserved adaptor protein Alix in actin cytoskeleton assembly.

    Science.gov (United States)

    Pan, Shujuan; Wang, Ruoning; Zhou, Xi; He, Guangan; Koomen, John; Kobayashi, Ryuji; Sun, Le; Corvera, Joe; Gallick, Gary E; Kuang, Jian

    2006-11-10

    The conserved adaptor protein Alix, also called AIP1 or Hp95, promotes flattening and alignment of cultured mammalian fibroblasts; however, the mechanism by which Alix regulates fibroblast morphology is not understood. Here we demonstrate that Alix in WI38 cells, which require Alix expression for maintaining typical fibroblast morphology, associates with filamentous actin (F-actin) and F-actin-based structures lamellipodia and stress fibers. Reducing Alix expression by small interfering RNA (siRNA) decreases F-actin content and inhibits stress fiber assembly. In cell-free systems, Alix directly interacts with F-actin at both the N-terminal Bro1 domain and the C-terminal proline-rich domain. In Alix immunoprecipitates from WI38 cell lysates, actin is the most abundant partner protein of Alix. In addition, the N-terminal half of the middle region of Alix binds cortactin, an activator of the ARP2/3 complex-mediated initiation of actin polymerization. Alix is required for lamellipodial localization of cortactin. The C-terminal half of the middle region of Alix interacts with alpha-actinin, a key factor that bundles F-actin in stress fibers. Alix knockdown decreases the amount of alpha-actinin that associates with F-actin. These findings establish crucial involvement of Alix in actin cytoskeleton assembly.

  6. How to build functional thylakoid membranes: from plastid transcription to protein complex assembly.

    Science.gov (United States)

    Lyska, Dagmar; Meierhoff, Karin; Westhoff, Peter

    2013-02-01

    Chloroplasts are the endosymbiotic descendants of cyanobacterium-like prokaryotes. Present genomes of plant and green algae chloroplasts (plastomes) contain ~100 genes mainly encoding for their transcription-/translation-machinery, subunits of the thylakoid membrane complexes (photosystems II and I, cytochrome b (6) f, ATP synthase), and the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. Nevertheless, proteomic studies have identified several thousand proteins in chloroplasts indicating that the majority of the plastid proteome is not encoded by the plastome. Indeed, plastid and host cell genomes have been massively rearranged in the course of their co-evolution, mainly through gene loss, horizontal gene transfer from the cyanobacterium/chloroplast to the nucleus of the host cell, and the emergence of new nuclear genes. Besides structural components of thylakoid membrane complexes and other (enzymatic) complexes, the nucleus provides essential factors that are involved in a variety of processes inside the chloroplast, like gene expression (transcription, RNA-maturation and translation), complex assembly, and protein import. Here, we provide an overview on regulatory factors that have been described and characterized in the past years, putting emphasis on mechanisms regulating the expression and assembly of the photosynthetic thylakoid membrane complexes.

  7. Structure and self-assembly of the calcium binding matrix protein of human metapneumovirus.

    Science.gov (United States)

    Leyrat, Cedric; Renner, Max; Harlos, Karl; Huiskonen, Juha T; Grimes, Jonathan M

    2014-01-07

    The matrix protein (M) of paramyxoviruses plays a key role in determining virion morphology by directing viral assembly and budding. Here, we report the crystal structure of the human metapneumovirus M at 2.8 Å resolution in its native dimeric state. The structure reveals the presence of a high-affinity Ca²⁺ binding site. Molecular dynamics simulations (MDS) predict a secondary lower-affinity site that correlates well with data from fluorescence-based thermal shift assays. By combining small-angle X-ray scattering with MDS and ensemble analysis, we captured the structure and dynamics of M in solution. Our analysis reveals a large positively charged patch on the protein surface that is involved in membrane interaction. Structural analysis of DOPC-induced polymerization of M into helical filaments using electron microscopy leads to a model of M self-assembly. The conservation of the Ca²⁺ binding sites suggests a role for calcium in the replication and morphogenesis of pneumoviruses. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Correlation profiling of brain sub-cellular proteomes reveals co-assembly of synaptic proteins and subcellular distribution

    NARCIS (Netherlands)

    Pandya, N.J. (Nikhil J.); Koopmans, F. (Frank); J.A. Slotman (Johan A.); Paliukhovich, I. (Iryna); A.B. Houtsmuller (Adriaan); A.B. Smit (August); Li, K.W. (Ka Wan)

    2017-01-01

    textabstractProtein correlation profiling might assist in defining co-assembled proteins and subcellular distribution. Here, we quantified the proteomes of five biochemically isolated mouse brain cellular sub-fractions, with emphasis on synaptic compartments, from three brain regions, hippocampus,

  9. INTERFACIAL SELF-ASSEMBLY OF A HYDROPHOBIN INTO AN AMPHIPATHIC PROTEIN MEMBRANE MEDIATES FUNGAL ATTACHMENT TO HYDROPHOBIC SURFACES

    NARCIS (Netherlands)

    WOSTEN, HAB; SCHUREN, FHJ; WESSELS, JGH

    1994-01-01

    The SC3p hydrophobin of Schizophyllum commune is a small hydrophobic protein (100-101 amino acids with eight cysteine residues) that self-assembles at a water/air interface and coats aerial hyphae with an SDS-insoluble protein membrane, at the outer side highly hydrophobic and with a typical rodlet

  10. FAP positive fibroblasts induce immune checkpoint blockade resistance in colorectal cancer via promoting immunosuppression.

    Science.gov (United States)

    Chen, Lingling; Qiu, Xiangting; Wang, Xinhua; He, Jian

    2017-05-20

    Immune checkpoint blockades that significantly prolonged survival of melanoma patients have been less effective on colorectal cancer (CRC) patients. Growing evidence suggested that fibroblast activation protein-alpha (FAP) on cancer associate fibroblasts (CAFs) has critical roles in regulating antitumor immune response by inducing tumor-promoting inflammation. In this study, we explored the roles of FAP in regulating the tumor immunity and immune checkpoint blockades resistance in CRC experimental systems. We found that CAFs with high FAP expression could induce immune checkpoint blockade resistance in CRC mouse model. Mechanistically, CAFs with high FAP expression promoted immunosuppression in the CRC tumor immune microenvironment by up-regulating CCL2 secretion, recruiting myeloid cells, and decreasing T-cell activity. In human CRC samples, FAP expression was proportional to myeloid cells number, but inversely related to T-cell number. High FAP expression also predicted poor survival of CRC patients. Taken together, our study suggested that high FAP expression in CAFs is one reason leading to immune checkpoint blockades resistance in CRC patients and FAP is an optional target for reversing immune checkpoint blockades resistance. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Caffeine stabilizes Cdc25 independently of Rad3 in Schizosaccharomyces pombe contributing to checkpoint override.

    Science.gov (United States)

    Alao, John P; Sjölander, Johanna J; Baar, Juliane; Özbaki-Yagan, Nejla; Kakoschky, Bianca; Sunnerhagen, Per

    2014-05-01

    Cdc25 is required for Cdc2 dephosphorylation and is thus essential for cell cycle progression. Checkpoint activation requires dual inhibition of Cdc25 and Cdc2 in a Rad3-dependent manner. Caffeine is believed to override activation of the replication and DNA damage checkpoints by inhibiting Rad3-related proteins in both Schizosaccharomyces pombe and mammalian cells. In this study, we have investigated the impact of caffeine on Cdc25 stability, cell cycle progression and checkpoint override. Caffeine induced Cdc25 accumulation in S. pombe independently of Rad3. Caffeine delayed cell cycle progression under normal conditions but advanced mitosis in cells treated with replication inhibitors and DNA-damaging agents. In the absence of Cdc25, caffeine inhibited cell cycle progression even in the presence of hydroxyurea or phleomycin. Caffeine induces Cdc25 accumulation in S. pombe by suppressing its degradation independently of Rad3. The induction of Cdc25 accumulation was not associated with accelerated progression through mitosis, but rather with delayed progression through cytokinesis. Caffeine-induced Cdc25 accumulation appears to underlie its ability to override cell cycle checkpoints. The impact of Cdc25 accumulation on cell cycle progression is attenuated by Srk1 and Mad2. Together our findings suggest that caffeine overrides checkpoint enforcement by inducing the inappropriate nuclear localization of Cdc25. © 2014 The Authors. Molecular Microbiology published by John Wiley & Sons Ltd.

  12. Caffeine stabilizes Cdc25 independently of Rad3 in S chizosaccharomyces pombe contributing to checkpoint override

    Science.gov (United States)

    Alao, John P; Sjölander, Johanna J; Baar, Juliane; Özbaki-Yagan, Nejla; Kakoschky, Bianca; Sunnerhagen, Per

    2014-01-01

    Cdc25 is required for Cdc2 dephosphorylation and is thus essential for cell cycle progression. Checkpoint activation requires dual inhibition of Cdc25 and Cdc2 in a Rad3-dependent manner. Caffeine is believed to override activation of the replication and DNA damage checkpoints by inhibiting Rad3-related proteins in both S chizosaccharomyces pombe and mammalian cells. In this study, we have investigated the impact of caffeine on Cdc25 stability, cell cycle progression and checkpoint override. Caffeine induced Cdc25 accumulation in S . pombe independently of Rad3. Caffeine delayed cell cycle progression under normal conditions but advanced mitosis in cells treated with replication inhibitors and DNA-damaging agents. In the absence of Cdc25, caffeine inhibited cell cycle progression even in the presence of hydroxyurea or phleomycin. Caffeine induces Cdc25 accumulation in S . pombe by suppressing its degradation independently of Rad3. The induction of Cdc25 accumulation was not associated with accelerated progression through mitosis, but rather with delayed progression through cytokinesis. Caffeine-induced Cdc25 accumulation appears to underlie its ability to override cell cycle checkpoints. The impact of Cdc25 accumulation on cell cycle progression is attenuated by Srk1 and Mad2. Together our findings suggest that caffeine overrides checkpoint enforcement by inducing the inappropriate nuclear localization of Cdc25. PMID:24666325

  13. Checkpoint/restart-enabled parallel debugging

    Energy Technology Data Exchange (ETDEWEB)

    Hursey, Joshua [Indiana Univ., Bloomington, IN (United States); January, Chris [Allinea Software Ltd., Warwick (United Kingdom); O' Connor, Mark [Allinea Software Ltd., Warwick (United Kingdom); Hargrove, Paul H. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lecomber, David [Allinea Software Ltd., Warwick (United Kingdom); Squyres, Jeffrey M. [Cisco Systems, Inc., San Jose, CA (United States); Lumsdaine, Andrew [Indiana Univ., Bloomington, IN (United States)

    2010-11-12

    Debugging is often the most time consuming part of software development. HPC applications prolong the debugging process by adding more processes interacting in dynamic ways for longer periods of time. Checkpoint/restart- enabled parallel debugging returns the developer to an intermediate state closer to the bug. This focuses the debugging process, saving developers considerable amounts of time, but requires parallel debuggers cooperating with MPI implementations and checkpointers. This paper presents a design specification for such a cooperative relationship. Additionally, this paper discusses the application of this design to the GDB and DDT debuggers, Open MPI, and BLCR projects. © 2010 Springer-Verlag.

  14. Self-assembling polymeric nanoparticles for enhanced intra-articular anti-inflammatory protein delivery

    Science.gov (United States)

    Whitmire, Rachel Elisabeth

    Osteoarthritis (OA) affects 26 million Americans, or approximately 14% of the adult population. The incidence of OA is predicted to dramatically increase in the next 20 years as the US grows older and the rate of obesity continues to increase. There are currently no clinical interventions that cure OA. Current biomaterial delivery systems exhibit several limitations. First, most drug-delivery particles are hydrophobic, which is not optimal for hydrophilic protein encapsulation. Second, hydrophobic particles, such as PLGA, could cause wear damage to the already-fragile OA cartilage structure. Additionally, these particles usually suffer from non-specific protein adsorption, which causes increased phagocytosis and can lead to increased inflammation. New therapies that increase the effectiveness of OA treatments or reverse OA disease progression will greatly decrease the economic costs and individual pain associated with this disease. The goal of this thesis was to develop a new drug-delivering material to deliver anti-inflammatory protein for treating OA. Our central hypothesis for this work is that a controlled release/presentation system will more effectively deliver anti-inflammatory protein therapies to the OA joint. The primary goal of this work was to synthesize a block copolymer that could self-assemble into injectable, sub-micron-scale particles and would allow an anti-inflammatory protein, IL-1ra, to be tethered to its surface for efficient protein delivery. The block copolymer incorporated an oligo-ethylene monomer for tissue compatibility and non-fouling behavior, a 4-nitrophenol group for efficient protein tethering, and cyclohexyl methacrylate, a hydrophobic monomer, for particle stability. We engineered the copolymer and tested it in both in vitro culture experiments and an in vivo model to evaluate protein retention in the knee joint. The rationale for this project was that the rational design and synthesis of a new drug- and protein

  15. Checkpointing and Recovery in Distributed and Database Systems

    Science.gov (United States)

    Wu, Jiang

    2011-01-01

    A transaction-consistent global checkpoint of a database records a state of the database which reflects the effect of only completed transactions and not the results of any partially executed transactions. This thesis establishes the necessary and sufficient conditions for a checkpoint of a data item (or the checkpoints of a set of data items) to…

  16. YsxC, an essential protein in Staphylococcus aureus crucial for ribosome assembly/stability

    Directory of Open Access Journals (Sweden)

    García-Lara Jorge

    2009-12-01

    Full Text Available Abstract Background Bacterial growth and division requires a core set of essential proteins, several of which are still of unknown function. They are also attractive targets for the development of new antibiotics. YsxC is a member of a family of GTPases highly conserved across eubacteria with a possible ribosome associated function. Results Here, we demonstrate by the creation of a conditional lethal mutant that ysxC is apparently essential for growth in S. aureus. To begin to elucidate YsxC function, a translational fusion of YsxC to the CBP-ProteinA tag in the staphylococcal chromosome was made, enabling Tandem Affinity Purification (TAP of YsxC-interacting partners. These included the ribosomal proteins S2, S10 and L17, as well as the β' subunit of the RNA polymerase. YsxC was then shown to copurify with ribosomes as an accessory protein specifically localizing to the 50 S subunit. YsxC depletion led to a decrease in the presence of mature ribosomes, indicating a role in ribosome assembly and/or stability in S. aureus. Conclusions In this study we demonstrate that YsxC of S. aureus localizes to the ribosomes, is crucial for ribosomal stability and is apparently essential for the life of S. aureus.

  17. The Solution Assembly of Biological Molecules Using Ion Mobility Methods: From Amino Acids to Amyloid β-Protein.

    Science.gov (United States)

    Bleiholder, Christian; Bowers, Michael T

    2017-06-12

    Ion mobility spectrometry-mass spectrometry (IMS-MS) methods are increasingly used to study noncovalent assemblies of peptides and proteins. This review focuses on the noncovalent self-assembly of amino acids and peptides, systems at the heart of the amyloid process that play a central role in a number of devastating diseases. Three different systems are discussed in detail: the 42-residue peptide amyloid-β42 implicated in the etiology of Alzheimer's disease, several amyloid-forming peptides with 6-11 residues, and the assembly of individual amino acids. We also discuss from a more fundamental perspective the processes that determine how quickly proteins and their assemblies denature when the analyte ion has been stripped of its solvent in an IMS-MS measurement and how to soften the measurement so that biologically meaningful data can be recorded.

  18. Absence of a conventional spindle mitotic checkpoint in the binucleated single-celled parasite Giardia intestinalis.

    Science.gov (United States)

    Markova, Kristyna; Uzlikova, Magdalena; Tumova, Pavla; Jirakova, Klara; Hagen, Guy; Kulda, Jaroslav; Nohynkova, Eva

    2016-10-01

    The spindle assembly checkpoint (SAC) joins the machinery of chromosome-to-spindle microtubule attachment with that of the cell cycle to prevent missegregation of chromosomes during mitosis. Although a functioning SAC has been verified in a limited number of organisms, it is regarded as an evolutionarily conserved safeguard mechanism. In this report, we focus on the existence of the SAC in a single-celled parasitic eukaryote, Giardia intestinalis. Giardia belongs to Excavata, a large and diverse supergroup of unicellular eukaryotes in which SAC control has been nearly unexplored. We show that Giardia cells with absent or defective mitotic spindles due to the inhibitory effects of microtubule poisons do not arrest in mitosis; instead, they divide without any delay, enter the subsequent cell cycle and even reduplicate DNA before dying. We identified a limited repertoire of kinetochore and SAC components in the Giardia genome, indicating that this parasite is ill equipped to halt mitosis before the onset of anaphase via SAC control of chromosome-spindle microtubule attachment. Finally, based on overexpression, we show that Giardia Mad2, a core SAC protein in other eukaryotes, localizes along intracytoplasmic portions of caudal flagellar axonemes, but never within nuclei, even in mitotic cells with blocked spindles, where the SAC should be active. These findings are consistent with the absence of a conventional SAC, known from yeast and metazoans, in the parasitic protist Giardia. Copyright © 2016 Elsevier GmbH. All rights reserved.

  19. Protein-protein and protein-lipid interactions in domain-assembly : Lessons from giant unilamellar vesicles

    NARCIS (Netherlands)

    Kahya, Nicoletta

    Giant Unilamellar Vesicles (GUVs) provide a key model membrane system to study lipid-lipid and lipid-protein interactions, which are relevant to vital cellular processes, by (single-molecule) optical microscopy. Here, we review the work on reconstitution techniques for membrane proteins and other

  20. Is CD47 an innate immune checkpoint for tumor evasion?

    Science.gov (United States)

    Liu, Xiaojuan; Kwon, Hyunwoo; Li, Zihai; Fu, Yang-Xin

    2017-01-11

    Cluster of differentiation 47 (CD47) (also known as integrin-associated protein) is a ubiquitously expressed glycoprotein of the immunoglobulin superfamily that plays a critical role in self-recognition. Various solid and hematologic cancers exploit CD47 expression in order to evade immunological eradication, and its overexpression is clinically correlated with poor prognoses. One essential mechanism behind CD47-mediated immune evasion is that it can interact with signal regulatory protein-alpha (SIRPα) expressed on myeloid cells, causing phosphorylation of the SIRPα cytoplasmic immunoreceptor tyrosine-based inhibition motifs and recruitment of Src homology 2 domain-containing tyrosine phosphatases to ultimately result in delivering an anti-phagocytic-"don't eat me"-signal. Given its essential role as a negative checkpoint for innate immunity and subsequent adaptive immunity, CD47-SIRPα axis has been explored as a new target for cancer immunotherapy and its disruption has demonstrated great therapeutic promise. Indeed, CD47 blocking antibodies have been found to decrease primary tumor size and/or metastasis in various pre-clinical models. In this review, we highlight the various functions of CD47, discuss anti-tumor responses generated by both the innate and adaptive immune systems as a consequence of administering anti-CD47 blocking antibody, and finally elaborate on the clinical potential of CD47 blockade. We argue that CD47 is a checkpoint molecule for both innate and adaptive immunity for tumor evasion and is thus a promising target for cancer immunotherapy.

  1. Foot-and-mouth disease virus capsid proteins; analysis of protein processing, assembly and utility as vaccines

    DEFF Research Database (Denmark)

    Belsham, Graham

    precursor enhances the yield of processed capsid proteins and their assembly into empty capsid particles within mammalian cells. Such particles can potentially form the basis of a vaccine but they may only have the same properties as the current inactivated vaccines. We have expressed the FMDV P1-2A alone...... or with FMDV 3Cpro using a “single cycle” alphavirus vector based on Semliki Forest virus (SFV). Cattle vaccinated with these rSFV-FMDV vectors alone, produced anti-FMDV antibodies but the immune response was insufficient to give protection against FMDV challenge. However, vaccination with these vectors primed...... a much stronger immune response against FMDV post-challenge. In subsequent experiments, cattle were sequentially vaccinated with a rSFV-FMDV followed by recombinant FMDV empty capsid particles, or vice versa, prior to challenge. Animals given a primary vaccination with the rSFV-FMDV vector...

  2. Structural assembly of two-domain proteins by rigid-body docking

    Directory of Open Access Journals (Sweden)

    Blundell Tom L

    2008-10-01

    Full Text Available Abstract Background Modelling proteins with multiple domains is one of the central challenges in Structural Biology. Although homology modelling has successfully been applied for prediction of protein structures, very often domain-domain interactions cannot be inferred from the structures of homologues and their prediction requires ab initio methods. Here we present a new structural prediction approach for modelling two-domain proteins based on rigid-body domain-domain docking. Results Here we focus on interacting domain pairs that are part of the same peptide chain and thus have an inter-domain peptide region (so called linker. We have developed a method called pyDockTET (tethered-docking, which uses rigid-body docking to generate domain-domain poses that are further scored by binding energy and a pseudo-energy term based on restraints derived from linker end-to-end distances. The method has been benchmarked on a set of 77 non-redundant pairs of domains with available X-ray structure. We have evaluated the docking method ZDOCK, which is able to generate acceptable domain-domain orientations in 51 out of the 77 cases. Among them, our method pyDockTET finds the correct assembly within the top 10 solutions in over 60% of the cases. As a further test, on a subset of 20 pairs where domains were built by homology modelling, ZDOCK generates acceptable orientations in 13 out of the 20 cases, among which the correct assembly is ranked lower than 10 in around 70% of the cases by our pyDockTET method. Conclusion Our results show that rigid-body docking approach plus energy scoring and linker-based restraints are useful for modelling domain-domain interactions. These positive results will encourage development of new methods for structural prediction of macromolecules with multiple (more than two domains.

  3. Coupling of Human DNA Excision Repair and the DNA Damage Checkpoint in a Defined in Vitro System*

    Science.gov (United States)

    Lindsey-Boltz, Laura A.; Kemp, Michael G.; Reardon, Joyce T.; DeRocco, Vanessa; Iyer, Ravi R.; Modrich, Paul; Sancar, Aziz

    2014-01-01

    DNA repair and DNA damage checkpoints work in concert to help maintain genomic integrity. In vivo data suggest that these two global responses to DNA damage are coupled. It has been proposed that the canonical 30 nucleotide single-stranded DNA gap generated by nucleotide excision repair is the signal that activates the ATR-mediated DNA damage checkpoint response and that the signal is enhanced by gap enlargement by EXO1 (exonuclease 1) 5′ to 3′ exonuclease activity. Here we have used purified core nucleotide excision repair factors (RPA, XPA, XPC, TFIIH, XPG, and XPF-ERCC1), core DNA damage checkpoint proteins (ATR-ATRIP, TopBP1, RPA), and DNA damaged by a UV-mimetic agent to analyze the basic steps of DNA damage checkpoint response in a biochemically defined system. We find that checkpoint signaling as measured by phosphorylation of target proteins by the ATR kinase requires enlargement of the excision gap generated by the excision repair system by the 5′ to 3′ exonuclease activity of EXO1. We conclude that, in addition to damaged DNA, RPA, XPA, XPC, TFIIH, XPG, XPF-ERCC1, ATR-ATRIP, TopBP1, and EXO1 constitute the minimum essential set of factors for ATR-mediated DNA damage checkpoint response. PMID:24403078

  4. IMMUNOBLOT ANALYSIS OF PROTEINS ASSOCIATED WITH SELF-ASSEMBLED MONOLAYER SURFACES OF DEFINED CHEMISTRIES

    Science.gov (United States)

    Cornelius, Rena M.; Shankar, Sucharita P.; Brash, John L.; Babensee, Julia E.

    2011-01-01

    Intact and fragmented proteins, eluted from self assembled monolayer (SAM) surfaces of alkanethiols of different chemistries (-CH3, -OH, -COOH, -NH2 ), following exposure to human plasma (HP) or human serum (HS), were examined using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting techniques. The SAM surfaces were incubated for 1 hour with 10% (v/v) sterile-filtered heat-inactivated (h.i.) HS or 1% (v/v) sterile-filtered h.i. HP preparations [both in phosphate buffered saline (PBS)]. Adsorbed proteins were eluted using 10% SDS/2.3% dithioerythritol for characterization of protein profiles. The type of incubating medium may be an important determinant of adsorbed protein profiles, since some variations were observed in eluates from filtered versus control unfiltered h.i. 10% HS or 1% HP. Albumin and apolipoprotein A1 were consistently detected in both filtered h.i 10% HS and 1% HP eluates from all SAM surfaces and from control tissue culture-treated polystyrene (TCPS). Interestingly, Factor H and Factor I, antithrombin, prothrombin, high molecular weight kininogen (HMWK) and IgG were present in eluates from OH, COOH and NH2 SAM surfaces and in eluates from TCPS, but not in eluates from CH3 SAM surfaces, following exposure to filtered h.i. 10% HS. These results suggest that CH3 SAM surfaces were the least pro-inflammatory of all SAM surfaces. Overall, similar trends were observed in the profiles of proteins eluted from surfaces exposed to filtered 10% HS or 1% HP. However the unique profiles of adsorbed proteins on different SAM surface chemistries may be related to their differential interactions with cells, including immune/inflammatory cells. PMID:21509932

  5. Ab Initio Protein Structure Assembly Using Continuous Structure Fragments and Optimized Knowledge-based Force Field

    Science.gov (United States)

    Xu, Dong; Zhang, Yang

    2012-01-01

    Ab initio protein folding is one of the major unsolved problems in computational biology due to the difficulties in force field design and conformational search. We developed a novel program, QUARK, for template-free protein structure prediction. Query sequences are first broken into fragments of 1–20 residues where multiple fragment structures are retrieved at each position from unrelated experimental structures. Full-length structure models are then assembled from fragments using replica-exchange Monte Carlo simulations, which are guided by a composite knowledge-based force field. A number of novel energy terms and Monte Carlo movements are introduced and the particular contributions to enhancing the efficiency of both force field and search engine are analyzed in detail. QUARK prediction procedure is depicted and tested on the structure modeling of 145 non-homologous proteins. Although no global templates are used and all fragments from experimental structures with template modeling score (TM-score) >0.5 are excluded, QUARK can successfully construct 3D models of correct folds in 1/3 cases of short proteins up to 100 residues. In the ninth community-wide Critical Assessment of protein Structure Prediction (CASP9) experiment, QUARK server outperformed the second and third best servers by 18% and 47% based on the cumulative Z-score of global distance test-total (GDT-TS) scores in the free modeling (FM) category. Although ab initio protein folding remains a significant challenge, these data demonstrate new progress towards the solution of the most important problem in the field. PMID:22411565

  6. Co-evolution of transcriptional silencing proteins and the DNA elements specifying their assembly.

    Directory of Open Access Journals (Sweden)

    Oliver A Zill

    Full Text Available Co-evolution of transcriptional regulatory proteins and their sites of action has been often hypothesized but rarely demonstrated. Here we provide experimental evidence of such co-evolution in yeast silent chromatin, a finding that emerged from studies of hybrids formed between two closely related Saccharomyces species. A unidirectional silencing incompatibility between S. cerevisiae and S. bayanus led to a key discovery: asymmetrical complementation of divergent orthologs of the silent chromatin component Sir4. In S. cerevisiae/S. bayanus interspecies hybrids, ChIP-Seq analysis revealed a restriction against S. cerevisiae Sir4 associating with most S. bayanus silenced regions; in contrast, S. bayanus Sir4 associated with S. cerevisiae silenced loci to an even greater degree than did S. cerevisiae's own Sir4. Functional changes in silencer sequences paralleled changes in Sir4 sequence and a reduction in Sir1 family members in S. cerevisiae. Critically, species-specific silencing of the S. bayanus HMR locus could be reconstituted in S. cerevisiae by co-transfer of the S. bayanus Sir4 and Kos3 (the ancestral relative of Sir1 proteins. As Sir1/Kos3 and Sir4 bind conserved silencer-binding proteins, but not specific DNA sequences, these rapidly evolving proteins served to interpret differences in the two species' silencers presumably involving emergent features created by the regulatory proteins that bind sequences within silencers. The results presented here, and in particular the high resolution ChIP-Seq localization of the Sir4 protein, provided unanticipated insights into the mechanism of silent chromatin assembly in yeast.

  7. Collagen mimetic peptide discs promote assembly of a broad range of natural protein fibers through hydrophobic interactions.

    Science.gov (United States)

    McGuinness, Kenneth; Nanda, Vikas

    2017-07-19

    Collagen mimetic peptides that alone formed two-dimensional nanoscale discs driven by hydrophobic interactions were shown in electron microscopy studies to also co-assemble with natural fibrous proteins to produce discs-on-a-string (DoS) nanostructures. In most cases, peptide discs also facilitated bundling of the protein fibers. This provides insight into how synthetic and natural proteins may be combined to develop multicomponent, multi-dimensional architectures at the nanoscale.

  8. A hydrophobic domain within the small capsid protein of Kaposi's sarcoma-associated herpesvirus is required for assembly.

    Science.gov (United States)

    Capuano, Christopher M; Grzesik, Peter; Kreitler, Dale; Pryce, Erin N; Desai, Keshal V; Coombs, Gavin; McCaffery, J Michael; Desai, Prashant J

    2014-08-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP-GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present - indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP-GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP-His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP-GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP-GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP-MCP interaction. © 2014 The Authors.

  9. A hydrophobic domain within the small capsid protein of Kaposi’s sarcoma-associated herpesvirus is required for assembly

    Science.gov (United States)

    Capuano, Christopher M.; Grzesik, Peter; Kreitler, Dale; Pryce, Erin N.; Desai, Keshal V.; Coombs, Gavin; McCaffery, J. Michael

    2014-01-01

    Kaposi’s sarcoma-associated herpesvirus (KSHV) capsids can be produced in insect cells using recombinant baculoviruses for protein expression. All six capsid proteins are required for this process to occur and, unlike for alphaherpesviruses, the small capsid protein (SCP) ORF65 is essential for this process. This protein decorates the capsid shell by virtue of its interaction with the capsomeres. In this study, we have explored the SCP interaction with the major capsid protein (MCP) using GFP fusions. The assembly site within the nucleus of infected cells was visualized by light microscopy using fluorescence produced by the SCP–GFP polypeptide, and the relocalization of the SCP to these sites was evident only when the MCP and the scaffold protein were also present – indicative of an interaction between these proteins that ensures delivery of the SCP to assembly sites. Biochemical assays demonstrated a physical interaction between the SCP and MCP, and also between this complex and the scaffold protein. Self-assembly of capsids with the SCP–GFP polypeptide was evident. Potentially, this result can be used to engineer fluorescent KSHV particles. A similar SCP–His6 polypeptide was used to purify capsids from infected cell lysates using immobilized affinity chromatography and to directly label this protein in capsids using chemically derivatized gold particles. Additional studies with SCP–GFP polypeptide truncation mutants identified a domain residing between aa 50 and 60 of ORF65 that was required for the relocalization of SCP–GFP to nuclear assembly sites. Substitution of residues in this region and specifically at residue 54 with a polar amino acid (lysine) disrupted or abolished this localization as well as capsid assembly, whereas substitution with non-polar residues did not affect the interaction. Thus, this study identified a small conserved hydrophobic domain that is important for the SCP–MCP interaction. PMID:24824860

  10. The mitotic checkpoint complex (MCC): looking back and forth after 15 years.

    Science.gov (United States)

    Liu, Song-Tao; Zhang, Hang

    2016-01-01

    The mitotic checkpoint is a specialized signal transduction pathway that contributes to the fidelity of chromosome segregation. The signaling of the checkpoint originates from defective kinetochore-microtubule interactions and leads to formation of the mitotic checkpoint complex (MCC), a highly potent inhibitor of the Anaphase Promoting Complex/Cyclosome (APC/C)-the E3 ubiquitin ligase essential for anaphase onset. Many important questions concerning the MCC and its interaction with APC/C have been intensively investigated and debated in the past 15 years, such as the exact composition of the MCC, how it is assembled during a cell cycle, how it inhibits APC/C, and how the MCC is disassembled to allow APC/C activation. These efforts have culminated in recently reported structure models for human MCC:APC/C supra-complexes at near-atomic resolution that shed light on multiple aspects of the mitotic checkpoint mechanisms. However, confusing statements regarding the MCC are still scattered in the literature, making it difficult for students and scientists alike to obtain a clear picture of MCC composition, structure, function and dynamics. This review will comb through some of the most popular concepts or misconceptions about the MCC, discuss our current understandings, present a synthesized model on regulation of CDC20 ubiquitination, and suggest a few future endeavors and cautions for next phase of MCC research.

  11. APE2 is required for ATR-Chk1 checkpoint activation in response to oxidative stress.

    Science.gov (United States)

    Willis, Jeremy; Patel, Yogin; Lentz, Barry L; Yan, Shan

    2013-06-25

    The base excision repair pathway is largely responsible for the repair of oxidative stress-induced DNA damage. However, it remains unclear how the DNA damage checkpoint is activated by oxidative stress at the molecular level. Here, we provide evidence showing that hydrogen peroxide (H2O2) triggers checkpoint kinase 1 (Chk1) phosphorylation in an ATR [ataxia-telangiectasia mutated (ATM) and Rad3-related]-dependent but ATM-independent manner in Xenopus egg extracts. A base excision repair protein, Apurinic/apyrimidinic (AP) endonuclease 2 (APE2, APN2, or APEX2), is required for the generation of replication protein A (RPA)-bound single-stranded DNA, the recruitment of a checkpoint protein complex [ATR, ATR-interacting protein (ATRIP), and Rad9] to damage sites, and H2O2-induced Chk1 phosphorylation. A conserved proliferating cell nuclear antigen interaction protein box of APE2 is important for the recruitment of APE2 to H2O2-damaged chromatin. APE2 3'-phosphodiesterase and 3'-5' exonuclease activity is essential for single-stranded DNA generation in the 3'-5' direction from single-stranded breaks, referred to as single-stranded break end resection. In addition, APE2 associates with Chk1, and a serine residue (S86) in the Chk1-binding motif of APE2 is essential for Chk1 phosphorylation, indicating a Claspin-like but distinct role for APE2 in ATR-Chk1 signaling. Our data indicate that APE2 plays a vital and previously unexpected role in ATR-Chk1 checkpoint signaling in response to oxidative stress. Thus, our findings shed light on a distinct mechanism of how an ATR-Chk1-dependent DNA damage checkpoint is mediated by APE2 in the oxidative stress response.

  12. Design of self-assembling transmembrane helical bundles to elucidate principles required for membrane protein folding and ion transport.

    Science.gov (United States)

    Joh, Nathan H; Grigoryan, Gevorg; Wu, Yibing; DeGrado, William F

    2017-08-05

    Ion transporters and channels are able to identify and act on specific substrates among myriads of ions and molecules critical to cellular processes, such as homeostasis, cell signalling, nutrient influx and drug efflux. Recently, we designed Rocker, a minimalist model for Zn2+/H+ co-transport. The success of this effort suggests that de novo membrane protein design has now come of age so as to serve a key approach towards probing the determinants of membrane protein folding, assembly and function. Here, we review general principles that can be used to design membrane proteins, with particular reference to helical assemblies with transport function. We also provide new functional and NMR data that probe the dynamic mechanism of conduction through Rocker.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'. © 2017 The Author(s).

  13. Multi-colored fibers by self-assembly of DNA, histone proteins, and cationic conjugated polymers.

    Science.gov (United States)

    Wang, Fengyan; Liu, Zhang; Wang, Bing; Feng, Liheng; Liu, Libing; Lv, Fengting; Wang, Yilin; Wang, Shu

    2014-01-07

    The development of biomolecular fiber materials with imaging ability has become more and more useful for biological applications. In this work, cationic conjugated polymers (CCPs) were used to construct inherent fluorescent microfibers with natural biological macromolecules (DNA and histone proteins) through the interfacial polyelectrolyte complexation (IPC) procedure. Isothermal titration microcalorimetry results show that the driving forces for fiber formation are electrostatic and hydrophobic interactions, as well as the release of counterions and bound water molecules. Color-encoded IPC fibers were also obtained based on the co-assembly of DNA, histone proteins, and blue-, green-, or red- (RGB-) emissive CCPs by tuning the fluorescence resonance energy-transfer among the CCPs at a single excitation wavelength. The fibers could encapsulate GFP-coded Escherichia coli BL21, and the expression of GFP proteins was successfully regulated by the external environment of the fibers. These multi-colored fibers show a great potential in biomedical applications, such as biosensor, delivery, and release of biological molecules and tissue engineering. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Host ESCRT proteins are required for bromovirus RNA replication compartment assembly and function.

    Directory of Open Access Journals (Sweden)

    Arturo Diaz

    2015-03-01

    Full Text Available Positive-strand RNA viruses genome replication invariably is associated with vesicles or other rearranged cellular membranes. Brome mosaic virus (BMV RNA replication occurs on perinuclear endoplasmic reticulum (ER membranes in ~70 nm vesicular invaginations (spherules. BMV RNA replication vesicles show multiple parallels with membrane-enveloped, budding retrovirus virions, whose envelopment and release depend on the host ESCRT (endosomal sorting complexes required for transport membrane-remodeling machinery. We now find that deleting components of the ESCRT pathway results in at least two distinct BMV phenotypes. One group of genes regulate RNA replication and the frequency of viral replication complex formation, but had no effect on spherule size, while a second group of genes regulate RNA replication in a way or ways independent of spherule formation. In particular, deleting SNF7 inhibits BMV RNA replication > 25-fold and abolishes detectable BMV spherule formation, even though the BMV RNA replication proteins accumulate and localize normally on perinuclear ER membranes. Moreover, BMV ESCRT recruitment and spherule assembly depend on different sets of protein-protein interactions from those used by multivesicular body vesicles, HIV-1 virion budding, or tomato bushy stunt virus (TBSV spherule formation. These and other data demonstrate that BMV requires cellular ESCRT components for proper formation and function of its vesicular RNA replication compartments. The results highlight growing but diverse interactions of ESCRT factors with many viruses and viral processes, and potential value of the ESCRT pathway as a target for broad-spectrum antiviral resistance.

  15. Profiles of carbohydrate ligands associated with adsorbed proteins on self-assembled monolayers of defined chemistries.

    Science.gov (United States)

    Shankar, Sucharita P; Chen, Inn Inn; Keselowsky, Benjamin G; García, Andrés J; Babensee, Julia E

    2010-03-15

    Conserved protein-carbohydrate-lipid pathogen-associated molecular patterns (PAMPs) interact with cells of the innate immune system to mediate antigen recognition and internalization and activation of immune cells. We examined if analogous "biomaterial-associated molecular patterns" composed of proteins, specifically their carbohydrate modifications, existed on biomaterials, which can play a role in mediating the innate immune response to biomaterials. To probe for these carbohydrates in the adsorbed protein layer, as directed by the underlying biomaterial chemistry, self-assembled monolayers (SAMs) presenting -CH(3), -OH, -COOH, or -NH(2) were preincubated with serum/plasma, and the presence of carbohydrate ligands of C-type lectin receptors (CLRs) was investigated using lectin probes in an enzyme-linked lectin assay (ELLA). Presentation of CLR ligands was detected on control tissue culture polystyrene (TCPS). Absorbances of mannose or N-acetylglucosamine increased with decreasing incubating serum concentration, whereas absorbances of sialylated epitopes or fucose remained unchanged. Absorbances of alpha-galactose or N-acetylgalactosamine decreased with decreasing incubating serum concentration; beta-galactose was undetectable. Among SAM endgroups, preincubation with 10% serum resulted in differential presentation of CLR ligands: higher alpha-galactose on COOH SAMs than NH(2) or CH(3) SAMs, highest complex mannose on NH(2) SAMs, and higher complex mannose on OH SAMs than CH(3) SAMs. Least sialylated groups were detected on CH(3) SAMs. In summary, biomaterial chemistry may regulate protein adsorption and hence unique presentation of associated carbohydrates. The ultimate goal is to identify the effects of protein glycosylations associated with biomaterials in stimulating innate immune responses. (c) 2009 Wiley Periodicals, Inc.

  16. Expression and cytosolic assembly of the S-layer fusion protein mSbsC-EGFP in eukaryotic cells

    Directory of Open Access Journals (Sweden)

    Veenhuis Marten

    2005-10-01

    Full Text Available Abstract Background Native as well as recombinant bacterial cell surface layer (S-layer protein of Geobacillus (G. stearothermophilus ATCC 12980 assembles to supramolecular structures with an oblique symmetry. Upon expression in E. coli, S-layer self assembly products are formed in the cytosol. We tested the expression and assembly of a fusion protein, consisting of the mature part (aa 31–1099 of the S-layer protein and EGFP (enhanced green fluorescent protein, in eukaryotic host cells, the yeast Saccharomyces cerevisiae and human HeLa cells. Results Upon expression in E. coli the recombinant mSbsC-EGFP fusion protein was recovered from the insoluble fraction. After denaturation by Guanidine (Gua-HCl treatment and subsequent dialysis the fusion protein assembled in solution and yielded green fluorescent cylindric structures with regular symmetry comparable to that of the authentic SbsC. For expression in the eukaryotic host Saccharomyces (S. cerevisiae mSbsC-EGFP was cloned in a multi-copy expression vector bearing the strong constitutive GPD1 (glyceraldehyde-3-phosophate-dehydrogenase promoter. The respective yeast transfomants were only slightly impaired in growth and exhibited a needle-like green fluorescent pattern. Transmission electron microscopy (TEM studies revealed the presence of closely packed cylindrical structures in the cytosol with regular symmetry comparable to those obtained after in vitro recrystallization. Similar structures are observed in HeLa cells expressing mSbsC-EGFP from the Cytomegalovirus (CMV IE promoter. Conclusion The mSbsC-EGFP fusion protein is stably expressed both in the yeast, Saccharomyces cerevisiae, and in HeLa cells. Recombinant mSbsC-EGFP combines properties of both fusion partners: it assembles both in vitro and in vivo to cylindrical structures that show an intensive green fluorescence. Fusion of proteins to S-layer proteins may be a useful tool for high level expression in yeast and HeLa cells of

  17. Synergic Investigation Of The Self-Assembly Structure And Mechanism Of Retroviral Capsid Proteins By Solid State NMR, Transmission Electron Microscopy And Multiscale simulation

    Science.gov (United States)

    2017-03-29

    AFRL-AFOSR-VA-TR-2017-0074 Synergic investigation of the self-assembly structure and mechanism of retroviral capsid proteins by solid state NMR...assembly structure and mechanism of retroviral capsid proteins by solid state NMR, transmission electron microscopy and multiscale simulation 5a.  CONTRACT...capsid protein (CA). In vitro, tubular assembly can be obtained with the CA with similar underlying structural properties as the authentic RSV capsid

  18. Integration of Small Angle X-Ray Scattering Data Into Structural Modeling of Proteins And Their Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Forster, F.; Webb, B.; Krukenberg, K.A.; Tsuruta, H.; Agard, D.A.; Sali, A.

    2009-05-18

    A major challenge in structural biology is to determine the configuration of domains and proteins in multidomain proteins and assemblies, respectively. All available data should be considered to maximize the accuracy and precision of these models. Small-angle X-ray scattering (SAXS) efficiently provides low-resolution experimental data about the shapes of proteins and their assemblies. Thus, we integrated SAXS profiles into our software for modeling proteins and their assemblies by satisfaction of spatial restraints. Specifically, we modeled the quaternary structures of multidomain proteins with structurally defined rigid domains as well as quaternary structures of binary complexes of structurally defined rigid proteins. In addition to SAXS profiles and the component structures, we used stereochemical restraints and an atomic distance-dependent statistical potential. The scoring function is optimized by a biased Monte Carlo protocol, including quasi-Newton and simulated annealing schemes. The final prediction corresponds to the best scoring solution in the largest cluster of many independently calculated solutions. To quantify how well the quaternary structures are determined based on their SAXS profiles, we used a benchmark of 12 simulated examples as well as an experimental SAXS profile of the homotetramer D-xylose isomerase. Optimization of the SAXS-dependent scoring function generally results in accurate models if sufficiently precise approximations for the constituent rigid bodies are available; otherwise, the best scoring models can have significant errors. Thus, SAXS profiles can play a useful role in the structural characterization of proteins and assemblies if they are combined with additional data and used judiciously. Our integration of a SAXS profile into modeling by satisfaction of spatial restraints will facilitate further integration of different kinds of data for structure determination of proteins and their assemblies.

  19. Immobilization of iron storage protein on a gold electrode based on self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Won, Keehoon [Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of)], E-mail: keehoon@dongguk.edu; Park, Mi Jin; Yoon, Hyon Hee [Department of Chemical and Bio Engineering, Kyungwon University, Seongnam 461-701 (Korea, Republic of); Kim, Ji Hyeon [Department of Chemical and Biochemical Engineering, Dongguk University, Seoul 100-715 (Korea, Republic of)], E-mail: jihyeon@dongguk.edu

    2008-09-15

    Ferritin is a globular protein consisting of 24 subunits to form a hollow shell and is capable of storing iron in the cavity. Findings that the naturally existing iron core of ferritin can be readily extracted and replaced with a variety of electroactive materials make ferritin suitable for biosensor and biofuel cell applications. The immobilization of ferritin on the electrode surface is essential for various bioelectronic applications. In this work, based on self-assembled monolayers, ferritin was immobilized on a gold electrode through two different methods: chemisorption of thiolated ferritin onto bare gold electrodes and covalent binding of ferritin to succinimidyl alkanedisulfide-modified Au electrodes. Effects of experimental conditions on the ferritin immobilization were investigated. The ferritin immobilized on the gold electrode was characterized by atomic force microscopy and cyclic voltammetry.

  20. Immobilization of iron storage protein on a gold electrode based on self-assembled monolayers.

    Science.gov (United States)

    Won, Keehoon; Park, Mi Jin; Yoon, Hyon Hee; Kim, Ji Hyeon

    2008-09-01

    Ferritin is a globular protein consisting of 24 subunits to form a hollow shell and is capable of storing iron in the cavity. Findings that the naturally existing iron core of ferritin can be readily extracted and replaced with a variety of electroactive materials make ferritin suitable for biosensor and biofuel cell applications. The immobilization of ferritin on the electrode surface is essential for various bioelectronic applications. In this work, based on self-assembled monolayers, ferritin was immobilized on a gold electrode through two different methods: chemisorption of thiolated ferritin onto bare gold electrodes and covalent binding of ferritin to succinimidyl alkanedisulfide-modified Au electrodes. Effects of experimental conditions on the ferritin immobilization were investigated. The ferritin immobilized on the gold electrode was characterized by atomic force microscopy and cyclic voltammetry.

  1. Assembly of Modified Ferritin Proteins on Carbon Nanotubes and its Electrocatalytic Activity for Oxygen Reduction

    Science.gov (United States)

    Kim, Jae-Woo; Lillehei, Peter T.; Park, Cheol

    2012-01-01

    Highly effective dispersions of carbon nanotubes (CNTs) can be made using a commercially available buffer solution. Buffer solutions of 3-(N-morpholino)-propanesulfonic acid (MOPS), which consists of a cyclic ring with nitrogen and oxygen heteroatoms, a charged group, and an alkyl chain greatly enhance the dispersibility and stability of CNTs in aqueous solutions. Additionally, the ability of biomolecules, especially cationized Pt-cored ferritins, to adhere onto the well-dispersed CNTs in the aqueous buffer solution is also improved. This was accomplished without the use of surfactant molecules, which are detrimental to the electrical, mechanical, and other physical properties of the resulting products. The assembled Pt-cored ferritin proteins on the CNTs were used as an electrocatalyst for oxygen reduction

  2. Fluorescence Resonance Energy Transfer in Quantum Dot-Protein Kinase Assemblies

    Directory of Open Access Journals (Sweden)

    Ibrahim Yildiz

    2007-01-01

    Full Text Available In search of viable strategies to identify selective inhibitors of protein kinases, we have designed a binding assay to probe the interactions of human phosphoinositide-dependent protein kinase-1 (PDK1 with potential ligands. Our protocol is based on fluorescence resonance energy transfer (FRET between semiconductor quantum dots (QDs and organic dyes. Specifically, we have expressed and purified the catalytic kinase domain of PDK1 with an N-terminal histidine tag [His6-PDK1(ΔPH]. We have conjugated this construct to CdSe-ZnS core-shell QDs coated with dihydrolipoic acid (DHLA and tested the response of the resulting assembly to a molecular dyad incorporating an ATP ligand and a BODIPY chromophore. The supramolecular association of the BODIPY-ATP dyad with the His6-PDK1(ΔPH-QD assembly encourages the transfer of energy from the QDs to the BODIPY dyes upon excitation. The addition of ATP results in the displacement of BODIPY-ATP from the binding domain of the His6-PDK1(ΔPH conjugated to the nanoparticles. The competitive binding, however, does not prevent the energy transfer process. A control experiment with QDs, lacking the His6-PDK1(ΔPH, indicates that the BODIPY-ATP dyad adsorbs nonspecifically on the surface of the nanoparticles, promoting the transfer of energy from the CdSe core to the adsorbed BODIPY dyes. Thus, the implementation of FRET-based assays to probe the binding domain of PDK1 with luminescent QDs requires the identification of energy acceptors unable to interact nonspecifically with the surface of the nanoparticles.

  3. Toward a detailed understanding of search trajectories in fragment assembly approaches to protein structure prediction.

    Science.gov (United States)

    Kandathil, Shaun M; Handl, Julia; Lovell, Simon C

    2016-04-01

    Energy functions, fragment libraries, and search methods constitute three key components of fragment-assembly methods for protein structure prediction, which are all crucial for their ability to generate high-accuracy predictions. All of these components are tightly coupled; efficient searching becomes more important as the quality of fragment libraries decreases. Given these relationships, there is currently a poor understanding of the strengths and weaknesses of the sampling approaches currently used in fragment-assembly techniques. Here, we determine how the performance of search techniques can be assessed in a meaningful manner, given the above problems. We describe a set of techniques that aim to reduce the impact of the energy function, and assess exploration in view of the search space defined by a given fragment library. We illustrate our approach using Rosetta and EdaFold, and show how certain features of these methods encourage or limit conformational exploration. We demonstrate that individual trajectories of Rosetta are susceptible to local minima in the energy landscape, and that this can be linked to non-uniform sampling across the protein chain. We show that EdaFold's novel approach can help balance broad exploration with locating good low-energy conformations. This occurs through two mechanisms which cannot be readily differentiated using standard performance measures: exclusion of false minima, followed by an increasingly focused search in low-energy regions of conformational space. Measures such as ours can be helpful in characterizing new fragment-based methods in terms of the quality of conformational exploration realized. © 2016 Wiley Periodicals, Inc.

  4. Detailed Modeling and Evaluation of a Scalable Multilevel Checkpointing System

    Energy Technology Data Exchange (ETDEWEB)

    Mohror, Kathryn [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Moody, Adam [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bronevetsky, Greg [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); de Supinski, Bronis R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-01

    High-performance computing (HPC) systems are growing more powerful by utilizing more components. As the system mean time before failure correspondingly drops, applications must checkpoint frequently to make progress. But, at scale, the cost of checkpointing becomes prohibitive. A solution to this problem is multilevel checkpointing, which employs multiple types of checkpoints in a single run. Moreover, lightweight checkpoints can handle the most common failure modes, while more expensive checkpoints can handle severe failures. We designed a multilevel checkpointing library, the Scalable Checkpoint/Restart (SCR) library, that writes lightweight checkpoints to node-local storage in addition to the parallel file system. We present probabilistic Markov models of SCR's performance. We show that on future large-scale systems, SCR can lead to a gain in machine efficiency of up to 35 percent, and reduce the load on the parallel file system by a factor of two. In addition, we predict that checkpoint scavenging, or only writing checkpoints to the parallel file system on application termination, can reduce the load on the parallel file system by 20 × on today's systems and still maintain high application efficiency.

  5. Mutations in the Transmembrane Domain and Cytoplasmic Tail of Hendra Virus Fusion Protein Disrupt Virus-Like-Particle Assembly.

    Science.gov (United States)

    Cifuentes-Muñoz, Nicolás; Sun, Weina; Ray, Greeshma; Schmitt, Phuong Tieu; Webb, Stacy; Gibson, Kathleen; Dutch, Rebecca Ellis; Schmitt, Anthony P

    2017-07-15

    Hendra virus (HeV) is a zoonotic paramyxovirus that causes deadly illness in horses and humans. An intriguing feature of HeV is the utilization of endosomal protease for activation of the viral fusion protein (F). Here we investigated how endosomal F trafficking affects HeV assembly. We found that the HeV matrix (M) and F proteins each induced particle release when they were expressed alone but that their coexpression led to coordinated assembly of virus-like particles (VLPs) that were morphologically and physically distinct from M-only or F-only VLPs. Mutations to the F protein transmembrane domain or cytoplasmic tail that disrupted endocytic trafficking led to failure of F to function with M for VLP assembly. Wild-type F functioned normally for VLP assembly even when its cleavage was prevented with a cathepsin inhibitor, indicating that it is endocytic F trafficking that is important for VLP assembly, not proteolytic F cleavage. Under specific conditions of reduced M expression, we found that M could no longer induce significant VLP release but retained the ability to be incorporated as a passenger into F-driven VLPs, provided that the F protein was competent for endocytic trafficking. The F and M proteins were both found to traffic through Rab11-positive recycling endosomes (REs), suggesting a model in which F and M trafficking pathways converge at REs, enabling these proteins to preassemble before arriving at plasma membrane budding sites. IMPORTANCE Hendra virus and Nipah virus are zoonotic paramyxoviruses that cause lethal infections in humans. Unlike that for most paramyxoviruses, activation of the henipavirus fusion protein occurs in recycling endosomal compartments. In this study, we demonstrate that the unique endocytic trafficking pathway of Hendra virus F protein is required for proper viral assembly and particle release. These results advance our basic understanding of the henipavirus assembly process and provide a novel model for the interplay between

  6. A Robust and Engineerable Self-Assembling Protein Template for the Synthesis and Patterning of Ordered Nanoparticle Arrays

    Science.gov (United States)

    McMillan, R. Andrew; Howard, Jeanie; Zaluzec, Nestor J.; Kagawa, Hiromi K.; Li, Yi-Fen; Paavola, Chad D.; Trent, Jonathan D.

    2004-01-01

    Self-assembling biomolecules that form highly ordered structures have attracted interest as potential alternatives to conventional lithographic processes for patterning materials. Here we introduce a general technique for patterning materials on the nanoscale using genetically modified protein cage structures called chaperonins that self-assemble into crystalline templates. Constrained chemical synthesis of transition metal nanoparticles is specific to templates genetically functionalized with poly-Histidine sequences. These arrays of materials are ordered by the nanoscale structure of the crystallized protein. This system may be easily adapted to pattern a variety of materials given the rapidly growing list of peptide sequences selected by screening for specificity for inorganic materials.

  7. Identification of inhibitors of checkpoint kinase 1 through template screening.

    Science.gov (United States)

    Matthews, Thomas P; Klair, Suki; Burns, Samantha; Boxall, Kathy; Cherry, Michael; Fisher, Martin; Westwood, Isaac M; Walton, Michael I; McHardy, Tatiana; Cheung, Kwai-Ming J; Van Montfort, Rob; Williams, David; Aherne, G Wynne; Garrett, Michelle D; Reader, John; Collins, Ian

    2009-08-13

    Checkpoint kinase 1 (CHK1) is an oncology target of significant current interest. Inhibition of CHK1 abrogates DNA damage-induced cell cycle checkpoints and sensitizes p53 deficient cancer cells to genotoxic therapies. Using template screening, a fragment-based approach to small molecule hit generation, we have identified multiple CHK1 inhibitor scaffolds suitable for further optimization. The sequential combination of in silico low molecular weight template selection, a high concentration biochemical assay and hit validation through protein-ligand X-ray crystallography provided 13 template hits from an initial in silico screening library of ca. 15000 compounds. The use of appropriate counter-screening to rule out nonspecific aggregation by test compounds was essential for optimum performance of the high concentration bioassay. One low molecular weight, weakly active purine template hit was progressed by iterative structure-based design to give submicromolar pyrazolopyridines with good ligand efficiency and appropriate CHK1-mediated cellular activity in HT29 colon cancer cells.

  8. Interactions of main chain in folding and self assembly of unfolded protein structure: Enquiries with a serine solubilized nonapeptide

    Directory of Open Access Journals (Sweden)

    Kinshuk Raj Srivastava

    2014-06-01

    Full Text Available Interactions of the protein main chain are probed for their role in folding and self-assembly. The interactions are assessed with serine nonapeptide Ac-(Ser-Ala4-Ser-NH2 in poly-L and alternating-L,D structure variations. Being a neutral molecule, Serine nonapeptide has been found to display not only folding-unfolding equilibrium, but also association-dissociation equilibrium as a function of solvent and concentration. Thus scrutiny of intra- and inter-molecular interactions have been undertaken in water, methanol, and DMSO solvents. In water, poly-L peptide displays a PPII-helix conformation which unfolds to extended β-conformation with increase of temperature, apparently in a two-state equilibrium. Poly-L peptide at high concentration and on transfer to the low polarity solvent, methanol, displays ordering as a β-hairpin. This implies folding of the peptide by self assembly. Self assembly and ordering possibly as double-stranded β-helix is also evidence for alternating-L,D peptide. Both isomers were observed to be unfolded in high polarity solvent DMSO. Dynamic light scattering suggests that assembly in both isomers may involve large size aggregates. The results have established that folding and self-assembly can be coupled equilibria dependent upon solute structure, concentration, and solvent. The interactions of the protein main chain involved in folding and self assembly of unfolded structure are illuminated and have been discussed.

  9. Nitric oxide and zinc-mediated protein assemblies involved in mu opioid receptor signaling.

    Science.gov (United States)

    Rodríguez-Muñoz, María; Garzón, Javier

    2013-12-01

    Opioids are among the most effective analgesics in controlling the perception of intense pain, although their continuous use decreases their potency due to the development of tolerance. The glutamate N-methyl-D-aspartate (NMDA) receptor system is currently considered to be the most relevant functional antagonist of morphine analgesia. In the postsynapse of different brain regions the C terminus of the mu-opioid receptor (MOR) associates with NR1 subunits of NMDARs, as well as with a series of signaling proteins, such as neural nitric oxide synthase (nNOS)/nitric oxide (NO), protein kinase C (PKC), calcium and calmodulin-dependent kinase II (CaMKII) and the mitogen-activated protein kinases (MAPKs). NO is implicated in redox signaling and PKC falls under the regulation of zinc metabolism, suggesting that these signaling elements might participate in the regulation of MOR activity by the NMDAR. In this review, we discuss the influence of redox signaling in the mechanisms whose plasticity triggers opioid tolerance. Thus, the MOR C terminus assembles a series of signaling proteins around the homodimeric histidine triad nucleotide-binding protein 1 (HINT1). The NMDAR NR1 subunit and the regulator of G protein signaling RGSZ2 bind HINT1 in a zinc-independent manner, with RGSZ2 associating with nNOS and regulating MOR-induced production of NO. This NO acts on the RGSZ2 zinc finger, providing the zinc ions that are required for PKC/Raf-1 cysteine-rich domains to simultaneously bind to the histidines present in the HINT1 homodimer. The MOR-induced activation of phospholipase β (PLCβ) regulates PKC, which increases the reactive oxygen species (ROS) by acting on NOX/NADPH, consolidating the long-term PKC activation required to regulate the Raf-1/MAPK cascade and enhancing NMDAR function. Thus, RGSZ2 serves as a Redox Zinc Switch that converts NO signals into Zinc signals, thereby modulating Redox Sensor Proteins like PKCγ and Raf-1. Accordingly, redox-dependent and

  10. Studies on the biosynthesis, assembly and secretion of vitellogenin, an oestrogen-induced multicomponent protein.

    Science.gov (United States)

    Penning, T M; Merry, A H; Munday, K A; Akhtar, M

    1977-01-15

    1. The process by which the egg-yolk protein precursor vitellogenin is biosynthesized, assembled and secreted by Xenopus laevis (South African clawed toad) liver was studied. It was previously shown in other laboratories that vitellogenin contains the two egg-yolk proteins lipovitellin (mol.wt. 140 000) and phosvitin (mol.wt. 35 000). 2. Evidence is presented which shows that Xenopus liver microsomal fractions synthesize precursors of vitellogenin. These precursors were solubilized from the membranes with detergent and analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. This analysis indicated that there is only one precursor polypeptide, and this has mol.wt. approx. 200 000 +/- 20 000. This demonstrates that the egg-yolk proteins are translated as part of this larger polypeptide. 3. Experiments also demonstrate the existence of a microsomal proteinase which is able to cleave the precursor into smaller fragments. The nature of these fragments provided some indirect evidence that phosvitin and lipovitellin light chains are situated together within the precursor molecule. 4. These precursor data fit in well with structural studies on serum vitellogenin, since it has been shown that the latter protein consists of two identical subunits each with a mobility on sodium dodecyl sulphate/polyacrylamide gels identical with that shown by the microsomal precursor. This indicates that both the intracellular precursor and subunit of vitellogenin have similar (but not necessarily identical) molecular weights. 5. It was also shown that trypsin or chymotrypsin can cleave the serum vitellogenin into leucine- and serine-rich fragments which resemble lipovitellin and phosvitin respectively. Attention is, however, drawn to the fact that the serine-rich fragment is not identical with phosvitin, since it contains eight times more leucine than that expected for the authentic phosvitin molecule [Penning (1976) Ph.D. Thesis, University of Southampton].

  11. A simple and traceless solid phase method simplifies the assembly of large peptides and the access to challenging proteins.

    Science.gov (United States)

    Ollivier, N; Desmet, R; Drobecq, H; Blanpain, A; Boll, E; Leclercq, B; Mougel, A; Vicogne, J; Melnyk, O

    2017-08-01

    Chemical protein synthesis gives access to well-defined native or modified proteins that are useful for studying protein structure and function. The majority of proteins synthesized up to now have been produced using native chemical ligation (NCL) in solution. Although there are significant advantages to assembling large peptides or proteins by solid phase ligation, reports of such approaches are rare. We report a novel solid phase method for protein synthesis which relies on the chemistry of the acetoacetyl group and ketoxime ligation for the attachment of the peptide to the solid support, and on a tandem transoximation/rearrangement process for the detachment of the target protein. Importantly, we show that the combination of solid phase and solution ligation techniques facilitates the production of a challenging and biologically active protein made of 180 amino acids. We show also that the solid phase method enables the purification of complex peptide segments through a chemoselective solid phase capture/release approach.

  12. Caenorhabditis elegans oocyte meiotic spindle pole assembly requires microtubule severing and the calponin homology domain protein ASPM-1.

    Science.gov (United States)

    Connolly, Amy A; Osterberg, Valerie; Christensen, Sara; Price, Meredith; Lu, Chenggang; Chicas-Cruz, Kathy; Lockery, Shawn; Mains, Paul E; Bowerman, Bruce

    2014-04-01

    In many animals, including vertebrates, oocyte meiotic spindles are bipolar but assemble in the absence of centrosomes. Although meiotic spindle positioning in oocytes has been investigated extensively, much less is known about their assembly. In Caenorhabditis elegans, three genes previously shown to contribute to oocyte meiotic spindle assembly are the calponin homology domain protein encoded by aspm-1, the katanin family member mei-1, and the kinesin-12 family member klp-18. We isolated temperature-sensitive alleles of all three and investigated their requirements using live-cell imaging to reveal previously undocumented requirements for aspm-1 and mei-1. Our results indicate that bipolar but abnormal oocyte meiotic spindles assemble in aspm-1(-) embryos, whereas klp-18(-) and mei-1(-) mutants assemble monopolar and apolar spindles, respectively. Furthermore, two MEI-1 functions--ASPM-1 recruitment to the spindle and microtubule severing--both contribute to monopolar spindle assembly in klp-18(-) mutants. We conclude that microtubule severing and ASPM-1 both promote meiotic spindle pole assembly in C. elegans oocytes, whereas the kinesin 12 family member KLP-18 promotes spindle bipolarity.

  13. Caenorhabditis elegans oocyte meiotic spindle pole assembly requires microtubule severing and the calponin homology domain protein ASPM-1

    Science.gov (United States)

    Connolly, Amy A.; Osterberg, Valerie; Christensen, Sara; Price, Meredith; Lu, Chenggang; Chicas-Cruz, Kathy; Lockery, Shawn; Mains, Paul E.; Bowerman, Bruce

    2014-01-01

    In many animals, including vertebrates, oocyte meiotic spindles are bipolar but assemble in the absence of centrosomes. Although meiotic spindle positioning in oocytes has been investigated extensively, much less is known about their assembly. In Caenorhabditis elegans, three genes previously shown to contribute to oocyte meiotic spindle assembly are the calponin homology domain protein encoded by aspm-1, the katanin family member mei-1, and the kinesin-12 family member klp-18. We isolated temperature-sensitive alleles of all three and investigated their requirements using live-cell imaging to reveal previously undocumented requirements for aspm-1 and mei-1. Our results indicate that bipolar but abnormal oocyte meiotic spindles assemble in aspm-1(-) embryos, whereas klp-18(-) and mei-1(-) mutants assemble monopolar and apolar spindles, respectively. Furthermore, two MEI-1 functions—ASPM-1 recruitment to the spindle and microtubule severing—both contribute to monopolar spindle assembly in klp-18(-) mutants. We conclude that microtubule severing and ASPM-1 both promote meiotic spindle pole assembly in C. elegans oocytes, whereas the kinesin 12 family member KLP-18 promotes spindle bipolarity. PMID:24554763

  14. Analysis of uromodulin polymerization provides new insights into the mechanisms regulating ZP domain-mediated protein assembly.

    Science.gov (United States)

    Schaeffer, Céline; Santambrogio, Sara; Perucca, Simone; Casari, Giorgio; Rampoldi, Luca

    2009-01-01

    Uromodulin is the most abundant protein secreted in urine, in which it is found as a high-molecular-weight polymer. Polymerization occurs via its zona pellucida (ZP) domain, a conserved module shared by many extracellular eukaryotic proteins that are able to assemble into matrices. In this work, we identified two motifs in uromodulin, mapping in the linker region of the ZP domain and in between protein cleavage and glycosylphosphatidylinositol (GPI)-anchoring sites, which regulate its polymerization. Indeed, mutations in either module led to premature intracellular polymerization of a soluble uromodulin isoform, demonstrating the inhibitory role of these motifs for ZP domain-mediated protein assembly. Proteolytic cleavage separating the external motif from the mature monomer is necessary to release the inhibitory function and allow protein polymerization. Moreover, we report absent or abnormal assembly into filaments of GPI-anchored uromodulin mutated in either the internal or the external motif. This effect is due to altered processing on the plasma membrane, demonstrating that the presence of the two modules has not only an inhibitory function but also can positively regulate protein polymerization. Our data expand previous knowledge on the control of ZP domain function and suggest a common mechanism regulating polymerization of ZP domain proteins.

  15. Molecular assembly of rhodopsin with G protein-coupled receptor kinases

    Science.gov (United States)

    He, Yuanzheng; Gao, Xiang; Goswami, Devrishi; Hou, Li; Pal, Kuntal; Yin, Yanting; Zhao, Gongpu; Ernst, Oliver P; Griffin, Patrick; Melcher, Karsten; Xu, H Eric

    2017-01-01

    G protein-coupled receptor kinases (GRKs) play pivotal roles in desensitizing GPCR signaling but little is known about how GRKs recognize and phosphorylate GPCRs due to the technical difficulties in detecting the highly dynamic GPCR/GRK interaction. By combining a genetic approach with multiple biochemical assays, we identified the key determinants for the assembly of the prototypical GPCR rhodopsin with its kinase GRK1. Our work reveals that the regulatory G-protein signaling homology (RH) domain of GRKs is the primary binding site to GPCRs and an active conformation of the GRK1 kinase domain is required for efficient interaction with rhodopsin. In addition, we provide a mechanistic solution for the longstanding puzzle about the gain-of-function Q41L mutation in GRK5. This mutation is in the RH domain and increases the capacity of the GRK mutant to interact with and to desensitize GPCRs. Finally we present the principal architecture of a rhodopsin/GRK complex through negative stain electron microscopy reconstruction. Together, these data define the key components for the rhodopsin/GRK1 interaction and provide a framework for understanding GRK-mediated desensitization of GPCRs. PMID:28524165

  16. Munc18-1 Controls SNARE Protein Complex Assembly during Human Sperm Acrosomal Exocytosis*

    Science.gov (United States)

    Rodríguez, Facundo; Zanetti, M. Natalia; Mayorga, Luis S.; Tomes, Claudia N.

    2012-01-01

    The spermatozoon is a very specialized cell capable of carrying out a limited set of functions with high efficiency. Sperm are then excellent model cells to dissect fundamental processes such as regulated exocytosis. The secretion of the single dense-core granule of mammalian spermatozoa relies on the same highly conserved molecules and goes through the same stages as exocytosis in other types of cells. In this study, we describe the presence of Munc18-1 in human sperm and show that this protein has an essential role in acrosomal exocytosis. We observed that inactivation of endogenous Munc18-1 with a specific antibody precluded the stabilization of trans-SNARE complexes and inhibited acrosomal exocytosis. Addition of recombinant Munc18-1 blocked secretion by sequestering monomeric syntaxin, an effect that was rescued by α-soluble NSF attachment protein. By electron microscopy, we observed that both the anti-Munc18-1 antibody and recombinant Munc18-1 inhibited the docking of the acrosome to the plasma membrane. In conclusion, our results indicate that Munc18-1 plays a key role in the dynamics of trans-SNARE complex assembly and/or stabilization, a process that is necessary for the docking of the outer acrosomal membrane to the plasma membrane and subsequent fusion pore opening. PMID:23091057

  17. Organization and expression of the Paramecium caudatum gene encoding nucleosome assembly protein 1.

    Science.gov (United States)

    Nishiyama, N; Sawatsubashi, S; Ishida, M; Yamauchi, K

    2001-12-12

    The complete genomic and partial complementary DNAs encoding the ciliate Paramecium caudatum nucleosome assembly protein 1 (NAP1) have been sequenced. The nap1 gene is situated 1.2 kbp from the hemoglobin (hb) gene, with the 3' end of both genes facing each other. The nap1 gene contains no introns, and encodes a protein of 369 amino acid residues with a calculated molecular weight of 42,627. The P. caudatum NAP1 amino acid sequence shares only 23-27% identity with NAP1 amino acid sequences from other eukaryotes. Although the nap1 transcript was detected in the P. caudatum cells at both the logarithmic and stationary phases, its level increased during the stationary phase. Southern blot analysis and polymerase chain reaction amplification revealed that the P. caudatum macronucleus has a heterogeneous composition at genomic regions around the nap1 gene. The present studies indicate the nap1 and hb genes are closely arranged in the macronucleus with the intergenic region between their sequences heterogeneously composed.

  18. Structure, Function, Self-Assembly and Origin of Simple Membrane Proteins

    Science.gov (United States)

    Pohorille, Andrew

    2003-01-01

    Integral membrane proteins perform such essential cellular functions as transport of ions, nutrients and waste products across cell walls, transduction of environmental signals, regulation of cell fusion, recognition of other cells, energy capture and its conversion into high-energy compounds. In fact, 30-40% of genes in modem organisms codes for membrane proteins. Although contemporary membrane proteins or their functional assemblies can be quite complex, their transmembrane fragments are usually remarkably simple. The most common structural motif for these fragments is a bundle of alpha-helices, but occasionally it could be a beta-barrel. In a series of molecular dynamics computer simulations we investigated self-organizing properties of simple membrane proteins based on these structural motifs. Specifically, we studied folding and insertion into membranes of short, nonpolar or amphiphatic peptides. We also investigated glycophorin A, a peptide that forms sequence-specific dimers, and a transmembrane aggregate of four identical alpha-helices that forms an efficient and selective voltage-gated proton channel was investigated. Many peptides are attracted to water-membrane interfaces. Once at the interface, nonpolar peptides spontaneously fold to a-helices. Whenever the sequence permits, peptides that contain both polar and nonpolar amino also adopt helical structures, in which polar and nonpolar amino acid side chains are immersed in water and membrane, respectively. Specific identity of side chains is less important. Helical peptides at the interface could insert into the membrane and adopt a transmembrane conformation. However, insertion of a single helix is unfavorable because polar groups in the peptide become completely dehydrated upon insertion. The unfavorable free energy of insertion can be regained by spontaneous association of peptides in the membrane. The first step in this process is the formation of dimers, although the most common are aggregates of 4

  19. Yeast Interacting Proteins Database: YGR113W, YIL144W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available indle checkpoint activity, kinetochore assembly and clustering Rows with this prey as prey (2) Rows with thi...heckpoint activity, kinetochore assembly and clustering Rows with this prey as pr

  20. Interrelationships between yeast ribosomal protein assembly events and transient ribosome biogenesis factors interactions in early pre-ribosomes.

    Science.gov (United States)

    Jakob, Steffen; Ohmayer, Uli; Neueder, Andreas; Hierlmeier, Thomas; Perez-Fernandez, Jorge; Hochmuth, Eduard; Deutzmann, Rainer; Griesenbeck, Joachim; Tschochner, Herbert; Milkereit, Philipp

    2012-01-01

    Early steps of eukaryotic ribosome biogenesis require a large set of ribosome biogenesis factors which transiently interact with nascent rRNA precursors (pre-rRNA). Most likely, concomitant with that initial contacts between ribosomal proteins (r-proteins) and ribosome precursors (pre-ribosomes) are established which are converted into robust interactions between pre-rRNA and r-proteins during the course of ribosome maturation. Here we analysed the interrelationship between r-protein assembly events and the transient interactions of ribosome biogenesis factors with early pre-ribosomal intermediates termed 90S pre-ribosomes or small ribosomal subunit (SSU) processome in yeast cells. We observed that components of the SSU processome UTP-A and UTP-B sub-modules were recruited to early pre-ribosomes independently of all tested r-proteins. On the other hand, groups of SSU processome components were identified whose association with early pre-ribosomes was affected by specific r-protein assembly events in the head-platform interface of the SSU. One of these components, Noc4p, appeared to be itself required for robust incorporation of r-proteins into the SSU head domain. Altogether, the data reveal an emerging network of specific interrelationships between local r-protein assembly events and the functional interactions of SSU processome components with early pre-ribosomes. They point towards some of these components being transient primary pre-rRNA in vivo binders and towards a role for others in coordinating the assembly of major SSU domains.

  1. Synthesis and electrochemical characterization of myoglobin-antibody protein immobilized self-assembled gold nanoparticles on ITO-glass plate

    Energy Technology Data Exchange (ETDEWEB)

    Rajesh, E-mail: rajesh_csir@yahoo.com [Polymer and Soft Material Section, National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi 110012 (India); Sharma, Vikash; Mishra, Sujeet K.; Biradar, Ashok M. [Polymer and Soft Material Section, National Physical Laboratory (Council of Scientific and Industrial Research), Dr. K.S. Krishnan Road, New Delhi 110012 (India)

    2012-01-16

    Highlights: Black-Right-Pointing-Pointer The Mb-Ab was covalently bonded to carboxyl groups of the mixed MUA and MPA over self-assembled GNPs. Black-Right-Pointing-Pointer This assembly on ITO-glass plate was used as an impedimetric immunosensor for myoglobin detection. Black-Right-Pointing-Pointer High loading of Mb-Ab, on the GNPs results in a wide range of Mb-Ag detection from 0.01 {mu}g to 1.65 {mu}g mL{sup -1} Black-Right-Pointing-Pointer The simple method and wide range of Mb-Ag detection makes this advantageous over other methods. - Abstract: We report a protein immobilized self-assembled monolayer (SAM) of gold nanoparticles (GNPs) on indium-tin-oxide (ITO) coated glass plate. The protein-antibody, Mb-Ab, was covalently immobilized over the self-assembly of GNPs through a mixed SAM of 11-mercapto undecanoic acid (MUA) and 3-mercapto propionic acid (MPA) via carbodiimide coupling reaction using N-(3-dimethylaminopropyl)-N Prime -ethyl carbodiimide (EDC) and N-hydroxy succinimide (NHS). The whole assembly was constructed on 0.25 cm{sup 2} area of ITO-glass plate (Mb-Ab/MUA-MPA/GNPs/APTES/ITO-glass) and an impedimetric study was carried out for its application in myoglobin detection. This prototype assembly was characterized by scanning electron microscopy, atomic force microscopy and electrochemical techniques. The modified electrode showed an increased electron-transfer resistance on coupling with protein antigen, Mb-Ag, in the presence of a redox probe [Fe(CN){sub 6}]{sup 3-/4-}. Its exhibits an electrochemical impedance response to protein myoglobin-antigen, Mb-Ag, concentration in a linear range from 0.01 {mu}g to 1.65 {mu}g mL{sup -1} with a lowest detection limit of 1.4 ng mL{sup -1}.

  2. INTERFACIAL SELF-ASSEMBLY OF A SCHIZOPHYLLUM-COMMUNE HYDROPHOBIN INTO AN INSOLUBLE AMPHIPATHIC PROTEIN MEMBRANE DEPENDS ON SURFACE HYDROPHOBICITY

    NARCIS (Netherlands)

    WOSTEN, HAB; RUARDY, TG; VANDERMEI, HC; BUSSCHER, HJ; WESSELS, JGH

    1995-01-01

    Hydrophobins are small secreted fungal proteins rich in hydrophobic amino acids with a characteristic hydropathy pattern and conserved location of eight cysteine residues. It was previously shown that purified SC3p hydrophobin of Schizophyllum commune self-assembles at hydrophilic/hydrophobic

  3. Assembly of spikes into coronavirus particles is mediated by the carboxy-terminal domain of the spike protein

    NARCIS (Netherlands)

    Godeke, G J; de Haan, Cornelis A M; Rossen, J W; Vennema, H; Rottier, P J

    The type I glycoprotein S of coronavirus, trimers of which constitute the typical viral spikes, is assembled into virions through noncovalent interactions with the M protein. Here we demonstrate that incorporation is mediated by the short carboxy-terminal segment comprising the transmembrane and

  4. In-capillary self-assembly study of quantum dots and protein using fluorescence coupled capillary electrophoresis.

    Science.gov (United States)

    Wang, Jianhao; Li, Jingyan; Li, Jinchen; Qin, Yuqin; Wang, Cheli; Qiu, Lin; Jiang, Pengju

    2015-07-01

    As a vast number of novel materials in particular inorganic nanoparticles have been invented and introduced to all aspects of life, public concerns about how they might affect our ecosystem and human life continue to arise. Such incertitude roots at a fundamental question of how inorganic nanoparticles self-assemble with biomolecules in solution. Various techniques have been developed to probe the interaction between particles and biomolecules, but very few if any can provide advantages of both rapid and convenient. Herein, we report a systematic investigation on quantum dots (QDs) and protein self-assembly inside a capillary. QDs and protein were injected to a capillary one after another. They were mixed inside the capillary when a high voltage was applied. Online separation and detection were then achieved. This new method can also be used to study the self-assembly kinetics of QDs and protein using the Hill equation, the KD value for the self-assembly of QDs and protein was calculated to be 8.8 μM. The obtained results were compared with the previous out of-capillary method and confirmed the effectiveness of the present method. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Extending the Binomial Checkpointing Technique for Resilience

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Andrea; Narayanan, Sri Hari Krishna

    2016-10-10

    In terms of computing time, adjoint methods offer a very attractive alternative to compute gradient information, re- quired, e.g., for optimization purposes. However, together with this very favorable temporal complexity result comes a memory requirement that is in essence proportional with the operation count of the underlying function, e.g., if algo- rithmic differentiation is used to provide the adjoints. For this reason, checkpointing approaches in many variants have become popular. This paper analyzes an extension of the so-called binomial approach to cover also possible failures of the computing systems. Such a measure of precaution is of special interest for massive parallel simulations and adjoint calculations where the mean time between failure of the large scale computing system is smaller than the time needed to complete the calculation of the adjoint information. We de- scribe the extensions of standard checkpointing approaches required for such resilience, provide a corresponding imple- mentation and discuss numerical results.

  6. Capsid protein expression and adeno-associated virus like particles assembly in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Backovic Ana

    2012-09-01

    Full Text Available Abstract Background The budding yeast Saccharomyces cerevisiae supports replication of many different RNA or DNA viruses (e.g. Tombusviruses or Papillomaviruses and has provided means for up-scalable, cost- and time-effective production of various virus-like particles (e.g. Human Parvovirus B19 or Rotavirus. We have recently demonstrated that S. cerevisiae can form single stranded DNA AAV2 genomes starting from a circular plasmid. In this work, we have investigated the possibility to assemble AAV capsids in yeast. Results To do this, at least two out of three AAV structural proteins, VP1 and VP3, have to be simultaneously expressed in yeast cells and their intracellular stoichiometry has to resemble the one found in the particles derived from mammalian or insect cells. This was achieved by stable co-transformation of yeast cells with two plasmids, one expressing VP3 from its natural p40 promoter and the other one primarily expressing VP1 from a modified AAV2 Cap gene under the control of the inducible yeast promoter Gal1. Among various induction strategies we tested, the best one to yield the appropriate VP1:VP3 ratio was 4.5 hour induction in the medium containing 0.5% glucose and 5% galactose. Following such induction, AAV virus like particles (VLPs were isolated from yeast by two step ultracentrifugation procedure. The transmission electron microscopy analysis revealed that their morphology is similar to the empty capsids produced in human cells. Conclusions Taken together, the results show for the first time that yeast can be used to assemble AAV capsid and, therefore, as a genetic system to identify novel cellular factors involved in AAV biology.

  7. Structural Biology of the Immune Checkpoint Receptor PD-1 and Its Ligands PD-L1/PD-L2

    NARCIS (Netherlands)

    Zak, Krzysztof M.; Grudnik, Przemyslaw; Magiera, Katarzyna; Dömling, Alexander; Dubin, Grzegorz; Holak, Tad A.

    2017-01-01

    Cancer cells can avoid and suppress immune responses through activation of inhibitory immune checkpoint proteins, such as PD-1, PD-L1, and CTLA-4. Blocking the activities of these proteins with monoclonal antibodies, and thus restoring T cell function, has delivered breakthrough therapies against

  8. Improving the Accuracy of Fitted Atomic Models in Cryo-EM Density Maps of Protein Assemblies Using Evolutionary Information from Aligned Homologous Proteins.

    Science.gov (United States)

    Rakesh, Ramachandran; Srinivasan, Narayanaswamy

    2016-01-01

    Cryo-Electron Microscopy (cryo-EM) has become an important technique to obtain structural insights into large macromolecular assemblies. However the resolution of the density maps do not allow for its interpretation at atomic level. Hence they are combined with high resolution structures along with information from other experimental or bioinformatics techniques to obtain pseudo-atomic models. Here, we describe the use of evolutionary conservation of residues as obtained from protein structures and alignments of homologous proteins to detect errors in the fitting of atomic structures as well as improve accuracy of the protein-protein interfacial regions in the cryo-EM density maps.

  9. The Role of Disordered Ribosomal Protein Extensions in the Early Steps of Eubacterial 50 S Ribosomal Subunit Assembly

    Directory of Open Access Journals (Sweden)

    Youri Timsit

    2009-03-01

    Full Text Available Although during the past decade research has shown the functional importance of disorder in proteins, many of the structural and dynamics properties of intrinsically unstructured proteins (IUPs remain to be elucidated. This review is focused on the role of the extensions of the ribosomal proteins in the early steps of the assembly of the eubacterial 50 S subunit. The recent crystallographic structures of the ribosomal particles have revealed the picture of a complex assembly pathway that condenses the rRNA and the ribosomal proteins into active ribosomes. However, little is know about the molecular mechanisms of this process. It is thought that the long basic r-protein extensions that penetrate deeply into the subunit cores play a key role through disorder-order transitions and/or co-folding mechanisms. A current view is that such structural transitions may facilitate the proper rRNA folding. In this paper, the structures of the proteins L3, L4, L13, L20, L22 and L24 that have been experimentally found to be essential for the first steps of ribosome assembly have been compared. On the basis of their structural and dynamics properties, three categories of extensions have been identified. Each of them seems to play a distinct function. Among them, only the coil-helix transition that occurs in a phylogenetically conserved cluster of basic residues of the L20 extension appears to be strictly required for the large subunit assembly in eubacteria. The role of a helix-coil transitions in 23 S RNA folding is discussed in the light of the calcium binding protein calmodulin that shares many structural and dynamics properties with L20.

  10. Cryo-EM structure of the bacteriophage T4 portal protein assembly at near-atomic resolution.

    Science.gov (United States)

    Sun, Lei; Zhang, Xinzheng; Gao, Song; Rao, Prashant A; Padilla-Sanchez, Victor; Chen, Zhenguo; Sun, Siyang; Xiang, Ye; Subramaniam, Sriram; Rao, Venigalla B; Rossmann, Michael G

    2015-07-06

    The structure and assembly of bacteriophage T4 has been extensively studied. However, the detailed structure of the portal protein remained unknown. Here we report the structure of the bacteriophage T4 portal assembly, gene product 20 (gp20), determined by cryo-electron microscopy (cryo-EM) to 3.6 Å resolution. In addition, analysis of a 10 Å resolution cryo-EM map of an empty prolate T4 head shows how the dodecameric portal assembly interacts with the capsid protein gp23 at the special pentameric vertex. The gp20 structure also verifies that the portal assembly is required for initiating head assembly, for attachment of the packaging motor, and for participation in DNA packaging. Comparison of the Myoviridae T4 portal structure with the known portal structures of φ29, SPP1 and P22, representing Podo- and Siphoviridae, shows that the portal structure probably dates back to a time when self-replicating microorganisms were being established on Earth.

  11. The C. elegans RSA complex localizes protein phosphatase 2A to centrosomes and regulates mitotic spindle assembly.

    Science.gov (United States)

    Schlaitz, Anne-Lore; Srayko, Martin; Dammermann, Alexander; Quintin, Sophie; Wielsch, Natalie; MacLeod, Ian; de Robillard, Quentin; Zinke, Andrea; Yates, John R; Müller-Reichert, Thomas; Shevchenko, Andrei; Oegema, Karen; Hyman, Anthony A

    2007-01-12

    Microtubule behavior changes during the cell cycle and during spindle assembly. However, it remains unclear how these changes are regulated and coordinated. We describe a complex that targets the Protein Phosphatase 2A holoenzyme (PP2A) to centrosomes in C. elegans embryos. This complex includes Regulator of Spindle Assembly 1 (RSA-1), a targeting subunit for PP2A, and RSA-2, a protein that binds and recruits RSA-1 to centrosomes. In contrast to the multiple functions of the PP2A catalytic subunit, RSA-1 and RSA-2 are specifically required for microtubule outgrowth from centrosomes and for spindle assembly. The centrosomally localized RSA-PP2A complex mediates these functions in part by regulating two critical mitotic effectors: the microtubule destabilizer KLP-7 and the C. elegans regulator of spindle assembly TPXL-1. By regulating a subset of PP2A functions at the centrosome, the RSA complex could therefore provide a means of coordinating microtubule outgrowth from centrosomes and kinetochore microtubule stability during mitotic spindle assembly.

  12. Smoldering myocarditis following immune checkpoint blockade.

    Science.gov (United States)

    Norwood, Timothy G; Westbrook, Brian C; Johnson, Douglas B; Litovsky, Silvio H; Terry, Nina L; McKee, Svetlana B; Gertler, Alan S; Moslehi, Javid J; Conry, Robert M

    2017-11-21

    Severe myocarditis associated with electrical conduction abnormalities and occasionally heart failure has been well documented following treatment with immune checkpoint blockade with an estimated incidence of less than 1%. However, the incidence, early detection, and management of less severe immune-related myocarditis are unknown since most immunotherapy trials have not included routine cardiac monitoring. Herein, we provide the first description of subclinical or smoldering myocarditis with minimal signs and symptoms following immune checkpoint blockade with a single dose of ipilimumab and nivolumab. Our patient was diagnosed with immune checkpoint blockade-induced myocarditis based upon an acute rise in serum cardiac troponin I beginning 2 weeks after the initial dose of ipilimumab/nivolumab consistent with the reported median onset of clinical myocarditis at 17 days, as well as a lack of other causes despite extensive cardiac evaluation. The patient initially presented with intractable nausea with no known gastrointestinal etiology. High dose glucocorticoid therapy led to rapid resolution of nausea and a four-fold decrease in troponin I over 4 days. Serum troponin I spiked again following a steroid taper to 13 times the upper limit of normal with endomyocardial biopsy revealing collagen fibrosis and lymphocytic inflammation predominantly comprised of CD8+ T cells consistent with chronic smoldering myocarditis. Serum anti-striated muscle antibodies were also detected with no evidence of rhabdomyolysis. Serum cardiac troponin I levels as an indicator of ongoing myocyte damage gradually improved with chronic prednisone at 10 mg daily. Late addition of intravenous immunoglobulin was associated with rapid normalization of creatine kinase-myocardial band. This case demonstrates that subclinical, smoldering myocarditis may occur following immune checkpoint blockade, with evidence of both humoral and cell-mediated immunity responsive to corticosteroid therapy

  13. Template based parallel checkpointing in a massively parallel computer system

    Science.gov (United States)

    Archer, Charles Jens [Rochester, MN; Inglett, Todd Alan [Rochester, MN

    2009-01-13

    A method and apparatus for a template based parallel checkpoint save for a massively parallel super computer system using a parallel variation of the rsync protocol, and network broadcast. In preferred embodiments, the checkpoint data for each node is compared to a template checkpoint file that resides in the storage and that was previously produced. Embodiments herein greatly decrease the amount of data that must be transmitted and stored for faster checkpointing and increased efficiency of the computer system. Embodiments are directed to a parallel computer system with nodes arranged in a cluster with a high speed interconnect that can perform broadcast communication. The checkpoint contains a set of actual small data blocks with their corresponding checksums from all nodes in the system. The data blocks may be compressed using conventional non-lossy data compression algorithms to further reduce the overall checkpoint size.

  14. BCL::Fold - De Novo Prediction of Complex and Large Protein Topologies by Assembly of Secondary Structure Elements

    Science.gov (United States)

    Karakaş, Mert; Woetzel, Nils; Staritzbichler, Rene; Alexander, Nathan; Weiner, Brian E.; Meiler, Jens

    2012-01-01

    Computational de novo protein structure prediction is limited to small proteins of simple topology. The present work explores an approach to extend beyond the current limitations through assembling protein topologies from idealized α-helices and β-strands. The algorithm performs a Monte Carlo Metropolis simulated annealing folding simulation. It optimizes a knowledge-based potential that analyzes radius of gyration, β-strand pairing, secondary structure element (SSE) packing, amino acid pair distance, amino acid environment, contact order, secondary structure prediction agreement and loop closure. Discontinuation of the protein chain favors sampling of non-local contacts and thereby creation of complex protein topologies. The folding simulation is accelerated through exclusion of flexible loop regions further reducing the size of the conformational search space. The algorithm is benchmarked on 66 proteins with lengths between 83 and 293 amino acids. For 61 out of these proteins, the best SSE-only models obtained have an RMSD100 below 8.0 Å and recover more than 20% of the native contacts. The algorithm assembles protein topologies with up to 215 residues and a relative contact order of 0.46. The method is tailored to be used in conjunction with low-resolution or sparse experimental data sets which often provide restraints for regions of defined secondary structure. PMID:23173050

  15. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein

    Energy Technology Data Exchange (ETDEWEB)

    Hoenen, Antje [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Gillespie, Leah [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia); Morgan, Garry; Heide, Peter van der [Institute for Molecular Bioscience, University of Queensland, Brisbane (Australia); Khromykh, Alexander [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Australian Infectious Diseases Research Centre, University of Queensland, Brisbane (Australia); Mackenzie, Jason, E-mail: jason.mackenzie@unimelb.edu.au [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia)

    2014-01-05

    Flaviviruses have evolved means to evade host innate immune responses. Recent evidence suggests this is due to prevention of interferon production and signaling in flavivirus-infected cells. Here we show that the interferon-induced MxA protein can sequester the West Nile virus strain Kunjin virus (WNV{sub KUN}) capsid protein in cytoplasmic tubular structures in an expression-replication system. This sequestering resulted in reduced titers of secreted WNV{sub KUN} particles. We show by electron microscopy, tomography and 3D modeling that these cytoplasmic tubular structures form organized bundles. Additionally we show that recombinant ER-targeted MxA can restrict production of infectious WNV{sub KUN} under conditions of virus infection. Our results indicate a co-ordinated and compartmentalized WNV{sub KUN} assembly process may prevent recognition of viral components by MxA, particularly the capsid protein. This recognition can be exploited if MxA is targeted to intracellular sites of WNV{sub KUN} assembly. This results in further understanding of the mechanisms of flavivirus evasion from the immune system. - Highlights: • We show that the ISG MxA can recognize the West Nile virus capsid protein. • Interaction between WNV C protein and MxA induces cytoplasmic fibrils. • MxA can be retargeted to the ER to restrict WNV particle release. • WNV assembly process is a strategy to avoid MxA recognition.

  16. Vipp1 is required for basic thylakoid membrane formation but not for the assembly of thylakoid protein complexes.

    Science.gov (United States)

    Aseeva, Elena; Ossenbühl, Friederich; Sippel, Claudia; Cho, Won K; Stein, Bernhard; Eichacker, Lutz A; Meurer, Jörg; Wanner, Gerhard; Westhoff, Peter; Soll, Jürgen; Vothknecht, Ute C

    2007-02-01

    Vipp1 (vesicle inducing protein in plastids 1) is found in cyanobacteria and chloroplasts where it is essential for thylakoid formation. Arabidopsis thaliana mutant plants with a reduction of Vipp1 to about 20% of wild type content become albinotic at an early stage. We propose that this drastic phenotype results from an inability of the remaining Vipp1 protein to assemble into a homo-oligomeric complex, indicating that oligomerization is a prerequisite for Vipp1 function. A Vipp1-ProteinA fusion protein, expressed in the Deltavipp1 mutant background, is able to reinstate oligomerization and restore photoautotrophic growth. Plants containing Vipp1-ProteinA in amounts comparable to Vipp1 in the wild type exhibit a wild type phenotype. However, plants with a reduced amount of Vipp1-ProteinA protein are growth-retarded and significantly paler than the wild type. This phenotype is caused by a decrease in thylakoid membrane content and a concomitant reduction in photosynthetic activity. To the extent that thylakoid membranes are made in these plants they are properly assembled with protein-pigment complexes and are photosynthetically active. This strongly supports a function of Vipp1 in basic thylakoid membrane formation and not in the functional assembly of thylakoid protein complexes. Intriguingly, electron microscopic analysis shows that chloroplasts in the mutant plants are not equally affected by the Vipp1 shortage. Indeed, a wide range of different stages of thylakoid development ranging from wild-type-like chloroplasts to plastids nearly devoid of thylakoids can be observed in organelles of one and the same cell.

  17. Kinetic Effects on Self-Assembly and Function of Protein-Polymer Bioconjugates in Thin Films Prepared by Flow Coating

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Dongsook [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Huang, Aaron [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA; Olsen, Bradley D. [Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Ave Cambridge MA 02142 USA

    2016-11-04

    The self-assembly of nanostructured globular protein arrays in thin films is demonstrated using protein–polymer block copolymers based on a model protein mCherry and the polymer poly(oligoethylene glycol acrylate) (POEGA). Conjugates are flow coated into thin films on a poly(ethylene oxide) grafted Si surface, forming self-assembled cylindrical nanostructures with POEGA domains selectively segregating to the air–film interface. Long-range order and preferential arrangement of parallel cylinders templated by selective surfaces are demonstrated by controlling relative humidity. Long-range order increases with coating speed when the film thicknesses are kept constant, due to reduced nucleation per unit area of drying film. Fluorescence emission spectra of mCherry in films prepared at <25% relative humidity shows a small shift suggesting that proteins are more perturbed at low humidity than high humidity or the solution state.

  18. Targeting and assembly of components of the TOC protein import complex at the chloroplast outer envelope membrane.

    Science.gov (United States)

    Richardson, Lynn G L; Paila, Yamuna D; Siman, Steven R; Chen, Yi; Smith, Matthew D; Schnell, Danny J

    2014-01-01

    The translocon at the outer envelope membrane of chloroplasts (TOC) initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β-barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  19. Targeting and Assembly of Components of the TOC Protein Import Complex at the Chloroplast Outer Envelope Membrane

    Directory of Open Access Journals (Sweden)

    Lynn G.L. Richardson

    2014-06-01

    Full Text Available The translocon at the outer envelope membrane of chloroplasts (TOC initiates the import of thousands of nuclear encoded preproteins required for chloroplast biogenesis and function. The multimeric TOC complex contains two GTP-regulated receptors, Toc34 and Toc159, which recognize the transit peptides of preproteins and initiate protein import through a β–barrel membrane channel, Toc75. Different isoforms of Toc34 and Toc159 assemble with Toc75 to form structurally and functionally diverse translocons, and the composition and levels of TOC translocons is required for the import of specific subsets of coordinately expressed proteins during plant growth and development. Consequently, the proper assembly of the TOC complexes is key to ensuring organelle homeostasis. This review will focus on our current knowledge of the targeting and assembly of TOC components to form functional translocons at the outer membrane. Our analyses reveal that the targeting of TOC components involves elements common to the targeting of other outer membrane proteins, but also include unique features that appear to have evolved to specifically facilitate assembly of the import apparatus.

  20. Dynamics of Immune Checkpoints, Immune System, and BCG in the Treatment of Superficial Bladder Cancer

    Directory of Open Access Journals (Sweden)

    Farouk Tijjani Saad

    2017-01-01

    Full Text Available This paper aims to study the dynamics of immune suppressors/checkpoints, immune system, and BCG in the treatment of superficial bladder cancer. Programmed cell death protein-1 (PD-1, cytotoxic T-lymphocyte-associated antigen 4 (CTLA4, and transforming growth factor-beta (TGF-β are some of the examples of immune suppressors/checkpoints. They are responsible for deactivating the immune system and enhancing immunological tolerance. Moreover, they categorically downregulate and suppress the immune system by preventing and blocking the activation of T-cells, which in turn decreases autoimmunity and enhances self-tolerance. In cancer immunotherapy, the immune checkpoints/suppressors prevent and block the immune cells from attacking, spreading, and killing the cancer cells, which leads to cancer growth and development. We formulate a mathematical model that studies three possible dynamics of the treatment and establish the effects of the immune checkpoints on the immune system and the treatment at large. Although the effect cannot be seen explicitly in the analysis of the model, we show it by numerical simulations.

  1. Endocrine-related adverse events associated with immune checkpoint blockade and expert insights on their management.

    Science.gov (United States)

    Sznol, Mario; Postow, Michael A; Davies, Marianne J; Pavlick, Anna C; Plimack, Elizabeth R; Shaheen, Montaser; Veloski, Colleen; Robert, Caroline

    2017-07-01

    Agents that modulate immune checkpoint proteins, such as cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed death receptor-1 (PD-1), have become a mainstay in cancer treatment. The clinical benefit afforded by immune checkpoint inhibitors can be accompanied by immune-related adverse events (irAE) that affect the skin, gastrointestinal tract, liver, and endocrine system. The types of irAEs associated with immune checkpoint inhibitors are generally consistent across tumor types. Immune-related endocrine events can affect the pituitary, thyroid, and adrenal glands, as well as other downstream target organs. These events are unique when compared with other irAEs because the manifestations are often irreversible. Immune-related endocrine events are typically grade 1/2 in severity and often present with non-specific symptoms, making them difficult to diagnose. The mechanisms underlying immune-related target organ damage in select individuals remain mostly undefined. Management includes close patient monitoring, appropriate laboratory testing for endocrine function, replacement of hormones, and consultation with an endocrinologist when appropriate. An awareness of the symptoms and management of immune-related endocrine events may aid in the safe and appropriate use of immune checkpoint inhibitors in clinical practice. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  2. Noncoding RNAs and immune checkpoints-clinical implications as cancer therapeutics.

    Science.gov (United States)

    Smolle, Maria A; Calin, Horatiu N; Pichler, Martin; Calin, George A

    2017-07-01

    A major mechanism of tumor development and progression is silencing of the patient's immune response to cancer-specific antigens. Defects in the so-called cancer immunity cycle may occur at any stage of tumor development. Within the tumor microenvironment, aberrant expression of immune checkpoint molecules with activating or inhibitory effects on T lymphocytes induces immune tolerance and cellular immune escape. Targeting immune checkpoint molecules such as programmed cell death protein 1 (PD-1) and its ligand PD-L1 with specific antibodies has proven to be a major advance in the treatment of several types of cancer. Another way to therapeutically influence the tumor microenvironment is by modulating the levels of microRNAs (miRNAs), small noncoding RNAs that shuttle bidirectionally between malignant and tumor microenvironmental cells. These small RNA transcripts have two features: (a) their expression is quite specific to distinct tumors, and (b) they are involved in early regulation of immune responses. Consequently, miRNAs may be ideal molecules for use in cancer therapy. Many miRNAs are aberrantly expressed in human cancer cells, opening new opportunities for cancer therapy, but the exact functions of these miRNAs and their interactions with immune checkpoint molecules have yet to be investigated. This review summarizes recently reported findings about miRNAs as modulators of immune checkpoint molecules and their potential application as cancer therapeutics in clinical practice. © 2017 Federation of European Biochemical Societies.

  3. Enhancing Immune Checkpoint Inhibitor Therapy In Kidney Cancer

    Science.gov (United States)

    2016-10-01

    AWARD NUMBER: W81XWH-15-1-0141 TITLE: Enhancing Immune Checkpoint Inhibitor therapy in Kidney Cancer PRINCIPAL INVESTIGATOR: Hans-Joerg Hammers...Immune Checkpoint Inhibitor therapy in Kidney Cancer 5a. CONTRACT NUMBER 5b. GRANT NUMBER W81XWH- 15-1-0141 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S...to develop strategies to enhance immune checkpoint inhibition in kidney cancer . The work is designed to test different strategies to induce or

  4. Brittle Culm1, a COBRA-like protein, functions in cellulose assembly through binding cellulose microfibrils.

    Directory of Open Access Journals (Sweden)

    Lifeng Liu

    Full Text Available Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1, a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity.

  5. Mechanism of Assembly of a Substrate Transfer Complex during Tail-anchored Protein Targeting*

    Science.gov (United States)

    Gristick, Harry B.; Rome, Michael E.; Chartron, Justin W.; Rao, Meera; Hess, Sonja; Shan, Shu-ou; Clemons, William M.

    2015-01-01

    Tail-anchored (TA) proteins, defined as having a single transmembrane helix at their C terminus, are post-translationally targeted to the endoplasmic reticulum membrane by the guided entry of TA proteins (GET) pathway. In yeast, the handover of TA substrates is mediated by the heterotetrameric Get4/Get5 complex (Get4/5), which tethers the co-chaperone Sgt2 to the targeting factor, the Get3 ATPase. Binding of Get4/5 to Get3 is critical for efficient TA targeting; however, questions remain about the formation of the Get3·Get4/5 complex. Here we report crystal structures of a Get3·Get4/5 complex from Saccharomyces cerevisiae at 2.8 and 6.0 Å that reveal a novel interface between Get3 and Get4 dominated by electrostatic interactions. Kinetic and mutational analyses strongly suggest that these structures represent an on-pathway intermediate that rapidly assembles and then rearranges to the final Get3·Get4/5 complex. Furthermore, we provide evidence that the Get3·Get4/5 complex is dominated by a single Get4/5 heterotetramer bound to one monomer of a Get3 dimer, uncovering an intriguing asymmetry in the Get4/5 heterotetramer upon Get3 binding. Ultrafast diffusion-limited electrostatically driven Get3·Get4/5 association enables Get4/5 to rapidly sample and capture Get3 at different stages of the GET pathway. PMID:26451041

  6. Brittle Culm1, a COBRA-Like Protein, Functions in Cellulose Assembly through Binding Cellulose Microfibrils

    Science.gov (United States)

    Zhang, Baocai; Liu, Xiangling; Yan, Meixian; Zhang, Lanjun; Shi, Yanyun; Zhang, Mu; Qian, Qian; Li, Jiayang; Zhou, Yihua

    2013-01-01

    Cellulose represents the most abundant biopolymer in nature and has great economic importance. Cellulose chains pack laterally into crystalline forms, stacking into a complicated crystallographic structure. However, the mechanism of cellulose crystallization is poorly understood. Here, via functional characterization, we report that Brittle Culm1 (BC1), a COBRA-like protein in rice, modifies cellulose crystallinity. BC1 was demonstrated to be a glycosylphosphatidylinositol (GPI) anchored protein and can be released into cell walls by removal of the GPI anchor. BC1 possesses a carbohydrate-binding module (CBM) at its N-terminus. In vitro binding assays showed that this CBM interacts specifically with crystalline cellulose, and several aromatic residues in this domain are essential for binding. It was further demonstrated that cell wall-localized BC1 via the CBM and GPI anchor is one functional form of BC1. X-ray diffraction (XRD) assays revealed that mutations in BC1 and knockdown of BC1 expression decrease the crystallite width of cellulose; overexpression of BC1 and the CBM-mutated BC1s caused varied crystallinity with results that were consistent with the in vitro binding assay. Moreover, interaction between the CBM and cellulose microfibrils was largely repressed when the cell wall residues were pre-stained with two cellulose dyes. Treating wild-type and bc1 seedlings with the dyes resulted in insensitive root growth responses in bc1 plants. Combined with the evidence that BC1 and three secondary wall cellulose synthases (CESAs) function in different steps of cellulose production as revealed by genetic analysis, we conclude that BC1 modulates cellulose assembly by interacting with cellulose and affecting microfibril crystallinity. PMID:23990797

  7. The dynamics of signal amplification by macromolecular assemblies for the control of chromosome segregation

    Directory of Open Access Journals (Sweden)

    Semin eLee

    2014-09-01

    Full Text Available The control of chromosome segregation relies on the spindle assembly checkpoint (SAC, a complex regulatory system that ensures the high fidelity of chromosome segregation in higher organisms by delaying the onset of anaphase until each chromosome is properly bi-oriented on the mitotic spindle. Central to this process is the establishment of multiple yet specific protein-protein interactions in a narrow time-space window. Here we discuss the highly dynamic nature of multi-protein complexes that control chromosome segregation in which an intricate network of weak but cooperative interactions modulate signal amplification to ensure a proper SAC response. We also discuss the current structural understanding of the communication between the SAC and the kinetochore; how transient interactions can regulate the assembly and disassembly of the SAC as well as the challenges and opportunities for the definition and the manipulation of the flow of information in SAC signaling.

  8. Modulation of enamel matrix proteins on the formation and nano-assembly of hydroxyapatite in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Li Hong, E-mail: tlihong@jnu.edu.cn [Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong 510630 (China); Department of Bioengineering, Clemson University, Charleston, SC 29425 (United States); Huang Weiya [Department of Chemistry, Jinan University, Guangzhou, Guangdong 510630 (China); Department of Materials Science and Engineering, Taizhou, Taizhou University, Zhejiang 317000 (China); Zhang Yuanming [Department of Chemistry, Jinan University, Guangzhou, Guangdong 510630 (China); Xue Bo [Department of Materials Science and Engineering, Jinan University, Guangzhou, Guangdong 510630 (China); Wen Xuejun [Department of Bioengineering, Clemson University, Charleston, SC 29425 (United States)

    2012-05-01

    Natural enamel has a hierarchically nanoassembled architecture that is regulated by enamel matrix proteins (EMPs) during the formation of enamel crystals. To understand the role of EMPs on enamel mineralization, calcium phosphate (CaP) growth experiments in both the presence and absence of native rat EMPs in a single diffusion system were conducted. The morphology and organization of formed CaP crystals were examined by X-Ray Diffraction (XRD), High-Resolution Transmission Microscopy (HRTEM) and Selected Area Electron Diffraction (SAED). In the system containing the EMPs, hydroxyapatite (HAP) with hierarchical lamellar nanostructure can be formed and the aligned HAP assembly tightly bundled by 3-4 rod-like nanocrystals like an enamel prism. However, in the absence of EMPs, only a sheet-like structure of octacalcium phosphate (OCP) phase was presented. EMPs promote HAP formation and inhibit the growth of OCP on the (010) plane. It is discussed that the organized Amelogenin/Amorphous Calcium Phosphate might be the precursor to the bundled HAP crystal prism. The study benefits the understanding of biomineralization of tooth enamel. - Highlights: Black-Right-Pointing-Pointer An aligned hydroxyapatite crystal bundled by rod-like nanosize crystals was obtained. Black-Right-Pointing-Pointer An organized Amel/ACP would be the precursor of the bundled hydroxyapatite crystal prism. Black-Right-Pointing-Pointer EMPs inhibit the growth of octacalcium phosphate in a defined plane.

  9. Is CD47 an innate immune checkpoint for tumor evasion?

    Directory of Open Access Journals (Sweden)

    Xiaojuan Liu

    2017-01-01

    Full Text Available Abstract Cluster of differentiation 47 (CD47 (also known as integrin-associated protein is a ubiquitously expressed glycoprotein of the immunoglobulin superfamily that plays a critical role in self-recognition. Various solid and hematologic cancers exploit CD47 expression in order to evade immunological eradication, and its overexpression is clinically correlated with poor prognoses. One essential mechanism behind CD47-mediated immune evasion is that it can interact with signal regulatory protein-alpha (SIRPα expressed on myeloid cells, causing phosphorylation of the SIRPα cytoplasmic immunoreceptor tyrosine-based inhibition motifs and recruitment of Src homology 2 domain-containing tyrosine phosphatases to ultimately result in delivering an anti-phagocytic—“don’t eat me”—signal. Given its essential role as a negative checkpoint for innate immunity and subsequent adaptive immunity, CD47-SIRPα axis has been explored as a new target for cancer immunotherapy and its disruption has demonstrated great therapeutic promise. Indeed, CD47 blocking antibodies have been found to decrease primary tumor size and/or metastasis in various pre-clinical models. In this review, we highlight the various functions of CD47, discuss anti-tumor responses generated by both the innate and adaptive immune systems as a consequence of administering anti-CD47 blocking antibody, and finally elaborate on the clinical potential of CD47 blockade. We argue that CD47 is a checkpoint molecule for both innate and adaptive immunity for tumor evasion and is thus a promising target for cancer immunotherapy.

  10. The Caenorhabditis elegans WRN helicase promotes double-strand DNA break repair by mediating end resection and checkpoint activation.

    Science.gov (United States)

    Ryu, Jin-Sun; Koo, Hyeon-Sook

    2017-07-01

    The protein associated with Werner syndrome (WRN), is involved in DNA repair, checkpoint activation, and telomere maintenance. To better understand the involvement of WRN in double-strand DNA break (DSB) repair, we analyzed the combinatorial role of WRN-1, the Caenorhabditis elegans WRN helicase, in conjunction with EXO-1 and DNA-2 nucleases. We found that WRN-1 cooperates with DNA-2 to resect DSB ends in a pathway acting in parallel to EXO-1. The wrn-1 mutants show an aberrant accumulation of replication protein A (RPA) and RAD-51, and the same pattern of accumulation is also observed in checkpoint-defective strains. We conclude that WRN-1 plays a conserved role in the resection of DSB ends and mediates checkpoint signaling, thereby influencing levels of RPA and RAD-51. © 2017 Federation of European Biochemical Societies.

  11. EMODnet MedSea Checkpoint for sustainable Blue Growth

    Science.gov (United States)

    Moussat, Eric; Pinardi, Nadia; Manzella, Giuseppe; Blanc, Frederique

    2016-04-01

    The EMODNET checkpoint is a wide monitoring system assessment activity aiming to support the sustainable Blue Growth at the scale of the European Sea Basins by: 1) Clarifying the observation landscape of all compartments of the marine environment including Air, Water, Seabed, Biota and Human activities, pointing out to the existing programs, national, European and international 2) Evaluating fitness for use indicators that will show the accessibility and usability of observation and modeling data sets and their roles and synergies based upon selected applications by the European Marine Environment Strategy 3) Prioritizing the needs to optimize the overall monitoring Infrastructure (in situ and satellite data collection and assembling, data management and networking, modeling and forecasting, geo-infrastructure) and release recommendations for evolutions to better meet the application requirements in view of sustainable Blue Growth The assessment is designed for : - Institutional stakeholders for decision making on observation and monitoring systems - Data providers and producers to know how their data collected once for a given purpose could fit other user needs - End-users interested in a regional status and possible uses of existing monitoring data Selected end-user applications are of paramount importance for: (i) the blue economy sector (offshore industries, fisheries); (ii) marine environment variability and change (eutrophication, river inputs and ocean climate change impacts); (iii) emergency management (oil spills); and (iv) preservation of natural resources and biodiversity (Marine Protected Areas). End-user applications generate innovative products based on the existing observation landscape. The fitness for use assessment is made thanks to the comparison of the expected product specifications with the quality of the product derived from the selected data. This involves the development of checkpoint information and indicators based on Data quality and

  12. Self-Assembling Peptide Amphiphiles for Therapeutic Delivery of Proteins, Drugs, and Stem Cells

    Science.gov (United States)

    Lee, Sungsoo Seth

    Biomaterials are used to help regenerate or replace the structure and function of damaged tissues. In order to elicit desired therapeutic responses in vivo, biomaterials are often functionalized with bioactive agents, such as growth factors, small molecule drugs, or even stem cells. Therefore, the strategies used to incorporate these bioactive agents in the microstructures and nanostructures of biomaterials can strongly influence the their therapeutic efficacy. Using self-assembling peptide amphiphiles (PAs), this work has investigated supramolecular nanostructures with improved interaction with three types of therapeutic agents: bone morphogenetic protein 2 (BMP-2) which promotes osteogenic differentiation and bone growth, anti-inflammatory drug naproxen which is used to treat osteo- and rheumatoid arthritis, and neural stem cells that could differentiate into neurons to treat neurodegenerative diseases. For BMP-2 delivery, two specific systems were investigated with affinity for BMP-2: 1) heparin-binding nanofibers that display the natural ligand of the osteogenic protein, and 2) nanofibers that display a synthetic peptide ligand discovered in our laboratory through phage display to directly bind BMP-2. Both systems promoted enhanced osteoblast differentiation of pluripotent C2C12 cells and augmented bone regeneration in two in vivo models, a rat critical-size femur defect model and spinal arthrodesis model. The thesis also describes the use of PA nanofibers to improve the delivery of the anti-inflammatory drug naproxen. To promote a controlled release, naproxen was chemically conjugated to the nanofiber surface via an ester bond that would only be cleaved by esterases, which are enzymes found naturally in the body. In the absence of esterases, the naproxen remained conjugated to the nanofibers and was non-bioactive. On the other hand, in the presence of esterases, naproxen was slowly released and inhibited cyclooxygenase-2 (COX-2) activity, an enzyme responsible

  13. Hierarchical self-assembly of designed 2x2-alpha-helix bundle proteins on Au(111) surfaces

    DEFF Research Database (Denmark)

    Wackerbarth, Hainer; Tofteng, A.P.; Jensen, K.J.

    2006-01-01

    -helix bundle protein and its template were studied by X-ray photo electron spectroscopy (XPS), electrochemical methods, and electrochemical in situ scanning tunneling microscopy (in situ STM). XPS showed that the cyclo-DTT opens on adsorption to a gold surface with the integrity of the 2 x 2- R-helix bundle...... proteins retained. The surface properties of the DTT and 2 x 2- R-helix bundle protein adlayer were characterized by interfacial capacitance and impedance techniques. Reductive desorption was used to determine the coverage of the adlayers, giving values of 65 and 16 mu C cm(-2) for DTT and 2 x 2-helix......-DTT) template. The protein was de novo designed to self-assemble in solution to form a 4-alpha-helix bundle, whereas the disulfide moiety enables the formation of a self-assembled monolayer on a Au(111) surface by opening of the disulfide, thus giving rise to a two-step self-assembly process. The 2 x 2-alpha...

  14. Lysosome-associated membrane proteins-1 and -2 (LAMP-1 and LAMP-2) assemble via distinct modes.

    Science.gov (United States)

    Terasawa, Kazue; Tomabechi, Yuri; Ikeda, Mariko; Ehara, Haruhiko; Kukimoto-Niino, Mutsuko; Wakiyama, Motoaki; Podyma-Inoue, Katarzyna A; Rajapakshe, Anupama R; Watabe, Tetsuro; Shirouzu, Mikako; Hara-Yokoyama, Miki

    2016-10-21

    Lysosome-associated membrane proteins 1 and 2 (LAMP-1 and LAMP-2) have a large, heavily glycosylated luminal domain composed of two subdomains, and are the most abundant protein components in lysosome membranes. LAMP-1 and LAMP-2 have distinct functions, and the presence of both proteins together is required for the essential regulation of autophagy to avoid embryonic lethality. However, the structural aspects of LAMP-1 and LAMP-2 have not been elucidated. In the present study, we demonstrated that the subdomains of LAMP-1 and LAMP-2 adopt the unique β-prism fold, similar to the domain structure of the dendritic cell-specific-LAMP (DC-LAMP, LAMP-3), confirming the conserved aspect of this family of lysosome-associated membrane proteins. Furthermore, we evaluated the effects of the N-domain truncation of LAMP-1 or LAMP-2 on the assembly of LAMPs, based on immunoprecipitation experiments. We found that the N-domain of LAMP-1 is necessary, whereas that of LAMP-2 is repressive, for the organization of a multimeric assembly of LAMPs. Accordingly, the present study suggests for the first time that the assembly modes of LAMP-1 and LAMP-2 are different, which may underlie their distinct functions. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. ATR- and ATM-Mediated DNA Damage Response Is Dependent on Excision Repair Assembly during G1 but Not in S Phase of Cell Cycle.

    Science.gov (United States)

    Ray, Alo; Blevins, Chessica; Wani, Gulzar; Wani, Altaf A

    2016-01-01

    Cell cycle checkpoint is mediated by ATR and ATM kinases, as a prompt early response to a variety of DNA insults, and culminates in a highly orchestrated signal transduction cascade. Previously, we defined the regulatory role of nucleotide excision repair (NER) factors, DDB2 and XPC, in checkpoint and ATR/ATM-dependent repair pathway via ATR and ATM phosphorylation and recruitment to ultraviolet radiation (UVR)-induced damage sites. Here, we have dissected the molecular mechanisms of DDB2- and XPC- mediated regulation of ATR and ATM recruitment and activation upon UVR exposures. We show that the ATR and ATM activation and accumulation to UVR-induced damage not only depends on DDB2 and XPC, but also on the NER protein XPA, suggesting that the assembly of an active NER complex is essential for ATR and ATM recruitment. ATR and ATM localization and H2AX phosphorylation at the lesion sites occur as early as ten minutes in asynchronous as well as G1 arrested cells, showing that repair and checkpoint-mediated by ATR and ATM starts early upon UV irradiation. Moreover, our results demonstrated that ATR and ATM recruitment and H2AX phosphorylation are dependent on NER proteins in G1 phase, but not in S phase. We reasoned that in G1 the UVR-induced ssDNA gaps or processed ssDNA, and the bound NER complex promote ATR and ATM recruitment. In S phase, when the UV lesions result in stalled replication forks with long single-stranded DNA, ATR and ATM recruitment to these sites is regulated by different sets of proteins. Taken together, these results provide evidence that UVR-induced ATR and ATM recruitment and activation differ in G1 and S phases due to the existence of distinct types of DNA lesions, which promote assembly of different proteins involved in the process of DNA repair and checkpoint activation.

  16. Analysis of self-assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus.

    Science.gov (United States)

    Liu, Jun; Falke, Sven; Drobot, Bjoern; Oberthuer, Dominik; Kikhney, Alexey; Guenther, Tobias; Fahmy, Karim; Svergun, Dmitri; Betzel, Christian; Raff, Johannes

    2017-01-01

    The formation of stable and functional surface layers (S-layers) via self-assembly of surface-layer proteins on the cell surface is a dynamic and complex process. S-layers facilitate a number of important biological functions, e.g., providing protection and mediating selective exchange of molecules and thereby functioning as molecular sieves. Furthermore, S-layers selectively bind several metal ions including uranium, palladium, gold, and europium, some of them with high affinity. Most current research on surface layers focuses on investigating crystalline arrays of protein subunits in Archaea and bacteria. In this work, several complementary analytical techniques and methods have been applied to examine structure-function relationships and dynamics for assembly of S-layer protein slp-B53 from Lysinibacillus sphaericus: (1) The secondary structure of the S-layer protein was analyzed by circular dichroism spectroscopy; (2) Small-angle X-ray scattering was applied to gain insights into the three-dimensional structure in solution; (3) The interaction with bivalent cations was followed by differential scanning calorimetry; (4) The dynamics and time-dependent assembly of S-layers were followed by applying dynamic light scattering; (5) The two-dimensional structure of the paracrystalline S-layer lattice was examined by atomic force microscopy. The data obtained provide essential structural insights into the mechanism of S-layer self-assembly, particularly with respect to binding of bivalent cations, i.e., Mg2+ and Ca2+. Furthermore, the results obtained highlight potential applications of S-layers in the fields of micromaterials and nanobiotechnology by providing engineered or individual symmetric thin protein layers, e.g., for protective, antimicrobial, or otherwise functionalized surfaces.

  17. Chiral recognition and selection during the self-assembly process of protein-mimic macroanions

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Panchao; Zhang, Zhi-Ming; Lv, Hongjin; Li, Tao; Haso, Fadi; Hu, Lang; Zhang, Baofang; Basca, John; Wei, Yongge; Gao, Yanqing; Hou, Yu; Li, Yang-Guang; Hill, Craig L.; Wang, En-Bo; Liu, Tianbo

    2015-03-01

    The research on chiral recognition and chiral selection is not only fundamental in resolving the puzzle of homochirality, but also instructive in chiral separation and stereoselective catalysis. Here we report the chiral recognition and chiral selection during the self-assembly process of two enantiomeric wheel-shaped macroanions, [Fe28(μ3-O)8(Tart)16(HCOO)24]20- (Tart=D- or L-tartaric acid tetra-anion). The enantiomers are observed to remain self-sorted and self-assemble into their individual assemblies in their racemic mixture solution. The addition of chiral co-anions can selectively suppress the self-assembly process of the enantiomeric macroanions, which is further used to separate the two enantiomers from their mixtures on the basis of the size difference between the monomers and the assemblies. We believe that delicate long-range electrostatic interactions could be responsible for such high-level chiral recognition and selection.

  18. Unusual Self-Assembly of the Recombinant Chlamydia trachomatis Major Outer Membrane Protein (MOMP)-based Fusion Antigen CTH522 into Protein Nanoparticles

    DEFF Research Database (Denmark)

    Rose, Fabrice; Karlsen, Kasper; Jensen, Pernille

    2018-01-01

    and cysteine-free version of MOMP fused to four variable domains from serovars D-G. In the native state, CTH522 did not exist as a monomer, but showed an unusual self-assembly into nanoparticles with a negative zeta-potential. In contrast to the β-barrel structure of MOMP, native CTH522 contained no well......-defined secondary structural elements, and no thermal transitions were measurable. Chemical unfolding resulted monomers that upon removal of the denaturant self-assembled into higher order structures, comparable to the structure of the native protein. The conformation of CTH522 in nanoparticles is thus not entirely...... random and contains structural elements stabilized via denaturant-disruptable hydrophobic interactions. In conclusion, CTH522 has an unusual quaternary structure of supramolecular self-assemblies....

  19. Using iterative fragment assembly and progressive sequence truncation to facilitate phasing and crystal structure determination of distantly related proteins.

    Science.gov (United States)

    Wang, Yan; Virtanen, Jouko; Xue, Zhidong; Tesmer, John J G; Zhang, Yang

    2016-05-01

    Molecular replacement (MR) often requires templates with high homology to solve the phase problem in X-ray crystallography. I-TASSER-MR has been developed to test whether the success rate for structure determination of distant-homology proteins could be improved by a combination of iterative fragmental structure-assembly simulations with progressive sequence truncation designed to trim regions with high variation. The pipeline was tested on two independent protein sets consisting of 61 proteins from CASP8 and 100 high-resolution proteins from the PDB. After excluding homologous templates, I-TASSER generated full-length models with an average TM-score of 0.773, which is 12% higher than the best threading templates. Using these as search models, I-TASSER-MR found correct MR solutions for 95 of 161 targets as judged by having a TFZ of >8 or with the final structure closer to the native than the initial search models. The success rate was 16% higher than when using the best threading templates. I-TASSER-MR was also applied to 14 protein targets from structure genomics centers. Seven of these were successfully solved by I-TASSER-MR. These results confirm that advanced structure assembly and progressive structural editing can significantly improve the success rate of MR for targets with distant homology to proteins of known structure.

  20. Checkpoint inhibitors: a cutting edge in oncology.

    Science.gov (United States)

    Jago, C

    2017-07-01

    The checkpoint inhibitor field, and indeed the whole of immuno-oncology, is fast-paced and fascinating, with huge clinical and commercial potential. The challenge in the coming years will be to define the best type and combination of immunotherapy, and the best target population to receive it. Keytruda's ground-breaking approval for a biomarker-based rather than location-based indication is a solid step in this direction, and is likely to be followed by other such approvals. As the field develops, it is to be hoped that immuno-oncology therapeutics will continue to deliver the significant improvements in patient outcome that have been seen so far.

  1. Iron-sulphur cluster assembly in plants: distinct NFU proteins in mitochondria and plastids from Arabidopsis thaliana.

    Science.gov (United States)

    Léon, Sébastien; Touraine, Brigitte; Ribot, Cécile; Briat, Jean-François; Lobréaux, Stéphane

    2003-01-01

    Recent results are in favour of a role for NFU-like proteins in Fe-S cluster biogenesis. These polypeptides share a conserved CXXC motif in their NFU domain. In the present study, we have characterized Arabidopsis thaliana NFU1-5 genes. AtNFU proteins are separated into two classes. NFU4 and NFU5 are part of the mitochondrial type, presenting a structural organization similar to Saccharomyces cerevisiae Nfu1p. These proteins complement a Delta isu1 Delta nfu1 yeast mutant and NFU4 mitochondrial localization was confirmed by green fluorescent protein fusion analysis. AtNFU1-3 represent a new class of NFU proteins, unique to plants. These polypeptides are made of two NFU domains, the second having lost its CXXC motif. AtNFU1-3 proteins are more related to Synechocystis PCC6803 NFU-like proteins and are localized to plastids when fused with the green fluorescent protein. NFU2 and/or NFU3 were detected in leaf chloroplasts by immunoblotting. NFU1 and NFU2 are functional NFU capable of restoring the growth of a Delta isu1 Delta nfu1 yeast mutant, when addressed to yeast mitochondria. Furthermore, NFU2 recombinant protein is capable of binding a labile 2Fe-2S cluster in vitro. These results demonstrate the presence of distinct NFU proteins in Arabidopsis mitochondria and plastids. Such results suggest the existence of two different Fe-S assembly machineries in plant cells. PMID:12553879

  2. A simple coarse-grained model for self-assembling silk-like protein fibers.

    Science.gov (United States)

    Schor, Marieke; Ensing, Bernd; Bolhuis, Peter G

    2010-01-01

    Collagen-silk-collagen triblock polypeptides can self-assemble at low pH into nanometer thin fibers with a length in the order of micrometers. Previously we predicted, via all-atom simulations, the structure of the folded silk domain to be a beta-roll. In this work we develop a simple coarse-grained model of the silk domain to enable a numerical study of the fiber's properties and formation on a larger length and time scale. As an initial coarse-grained model for the fiber forming protein we chose the model of Brown et al., Proc. Natl. Acad Sci. U.S.A., 2003, 100, 10712-10717. We adapted this model, and optimized its parameters to reproduce the all-atom molecular dynamics simulation structural data. The unknown strength of the attraction between the beads representing the residues is optimized by computing the Potential of Mean Force for unfolding a strand of the beta-roll, using non-equilibrium steered MD simulations in combination with the Jarzynski relation. Using these optimized parameters we observed spontaneous folding of a short peptide. The coarse-grained beta-roll, as well as a much larger stack (a fiber) of beta-rolls, were found to be stable. Moreover, the predicted fiber persistence length is in agreement with experiment. The efficacy of the mapping of a coarse-grained system onto an all-atom simulation is discussed. The approach opens the way for large-scale simulations of fibers, based on molecular structure, and allows investigation of their nucleation, growth, cross-linking mechanism, network dynamics, and rheology.

  3. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    Science.gov (United States)

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids.IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  4. Papillomavirus L1 major capsid protein self-assembles into virus-like particles that are highly immunogenic.

    OpenAIRE

    Kirnbauer, R.; Booy, F; Cheng, N.; Lowy, D R; Schiller, J T

    1992-01-01

    Infection by certain human papillomavirus types is regarded as the major risk factor in the development of cervical cancer, one of the most common cancers of women worldwide. Analysis of the immunogenic and structural features of papillomavirus virions has been hampered by the inability to efficiently propagate the viruses in cultured cells. For instance, it has not been established whether the major capsid protein L1 alone is sufficient for virus particle assembly. In addition, it is not kno...

  5. On the lipid head group hydration of floating surface monolayers bound to self-assembled molecular protein layers

    DEFF Research Database (Denmark)

    Lösche, M.; Erdelen, C.; Rump, E.

    1994-01-01

    with molecular resolution. Emphasis here is placed on the hydration of the lipid head groups in the bound state. For three functionalized lipids with spacers of different lengths between the biotin and their chains it was observed that the head groups were dehydrated in monolayers of the pure lipids, which were...... groups were thus presented further away from the interface, and a hydration layer between the protein and the functionalized interface was observed in the self-assembled supramolecular structures....

  6. Distinct roles for nucleic acid in vitro assembly of purified Mason-Pfizer monkey virus CANC proteins

    Czech Academy of Sciences Publication Activity Database

    Ulbrich, P.; Haubová, Š.; Nermut, M. V.; Hunter, E.; Rumlová, Michaela; Ruml, Tomáš

    2006-01-01

    Roč. 80, č. 14 (2006), s. 7089-7099 ISSN 0022-538X R&D Projects: GA AV ČR(CZ) IAA4055304; GA ČR(CZ) GP203/03/P094; GA MŠk 1M0520 Institutional research plan: CEZ:AV0Z40550506 Keywords : M-PMV * CANC proteins * HIV -1 * in vitro assembly Subject RIV: CE - Biochemistry Impact factor: 5.341, year: 2006

  7. Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Cai Xuepeng

    2010-07-01

    Full Text Available Abstract Background Porcine circovirus 2 (PCV2 is a serious problem to the swine industry and can lead to significant negative impacts on profitability of pork production. Syndrome associated with PCV2 is known as porcine circovirus closely associated with post-weaning multisystemic wasting syndrome (PMWS. The capsid (Cap protein of PCV2 is a major candidate antigen for development of recombinant vaccine and serological diagnostic method. The recombinant Cap protein has the ability to self-assemble into virus-like particles (VLPs in vitro, it is particularly opportunity to develop the PV2 VLPs vaccine in Escherichia coli,(E.coli , because where the cost of the vaccine must be weighed against the value of the vaccinated pig, when it was to extend use the VLPs vaccine of PCV2. Results In this report, a highly soluble Cap-tag protein expressed in E.coli was constructed with a p-SMK expression vector with a fusion tag of small ubiquitin-like modifiers (SUMO. The recombinant Cap was purified using Ni2+ affinity resins, whereas the tag was used to remove the SUMO protease. Simultaneously, the whole native Cap protein was able to self-assemble into VLPs in vitro when viewed under an electron microscope. The Cap-like particles had a size and shape that resembled the authentic Cap. The result could also be applied in the large-scale production of VLPs of PCV2 and could be used as a diagnostic antigen or a potential VLP vaccine against PCV2 infection in pigs. Conclusion we have, for the first time, utilized the SUMO fusion motif to successfully express the entire authentic Cap protein of PCV2 in E. coli. After the cleavage of the fusion motif, the nCap protein has the ability to self-assemble into VLPs, which can be used as as a potential vaccine to protect pigs from PCV2-infection.

  8. An improved design of spiral tube assembly for separation of proteins by high-speed counter-current chromatography.

    Science.gov (United States)

    Dasarathy, Dhweeja; Ito, Yoichiro

    2015-10-30

    A new spiral tube assembly was designed to improve the column capacity and partition efficiency for protein separation. This spiral tube assembly has greater column capacity than the original tubing because of an increase in radial grooves from 4 to 12 to accommodate more spiral layers and 12 narrow spots instead of 4 in each circular loop to interrupt the laminar flow that causes sample band broadening. Standard PTFE tubing (1.6mm ID) and the modified flat-twisted tubing were used as the separation column. The performances of both assemblies were compared for separating three stable test proteins including cytochrome c, myoglobin, and lysozyme using a two phase aqueous-aqueous solvent system composed of polyethylene glycol 1000 (12.5% w/w) and dibasic potassium phosphate (12.5% w/w). All samples were run at 1, 2, 3, and 5mL/min at both 800rpm and 1000rpm. The separation of these three protein samples produced high stationary phase retentions at 1, 2, and 3mL/min, yet separated efficiently at 5mL/min in 40min. After comparing the separation efficiency in terms of the peak resolutions, theoretical plate numbers, and separation times, it was determined that the flat-twisted tubing was more effective in separating these protein samples. In order to validate the efficacy of this novel assembly, a mixture of five protein samples (cytochrome c, myoglobin, ovalbumin, lysozyme, and hemoglobin) were separated, under the optimal conditions established with these three protein samples, at 1mL/min with a revolution speed of 1000rpm. There were high stationary phase retentions of around 60%, with effective separations, demonstrating the efficiency of the flat-twisted spiral tube assembly. The separation time of 6h was a limitation but can potentially be shortened by improving the strength of the column that will permit an increase in revolution speed and flow rate. This novel spiral separation column will allow rapid and efficient separation of mixtures with high yield of the

  9. Assembly of the chloroplast ATP-dependent Clp protease in Arabidopsis is regulated by the ClpT accessory proteins.

    Science.gov (United States)

    Sjögren, Lars L E; Clarke, Adrian K

    2011-01-01

    The ATP-dependent caseinolytic protease (Clp) is an essential housekeeping enzyme in plant chloroplasts. It is by far the most complex of all known Clp proteases, with a proteolytic core consisting of multiple catalytic ClpP and noncatalytic ClpR subunits. It also includes a unique form of Clp protein of unknown function designated ClpT, two of which exist in the model species Arabidopsis thaliana. Inactivation of ClpT1 or ClpT2 significantly reduces the amount of Clp proteolytic core, whereas loss of both proves seedling lethal under autotrophic conditions. During assembly of the Clp proteolytic core, ClpT1 first binds to the P-ring (consisting of ClpP3-6 subunits) followed by ClpT2, and only then does the P-ring combine with the R-ring (ClpP1, ClpR1-4 subunits). Most of the ClpT proteins in chloroplasts exist in vivo as homodimers, which then apparently monomerize prior to association with the P-ring. Despite their relative abundance, however, the availability of both ClpT proteins is rate limiting for the core assembly, with the addition of recombinant ClpT1 and ClpT2 increasing core content up to fourfold. Overall, ClpT appears to regulate the assembly of the chloroplast Clp protease, revealing a new and sophisticated control mechanism on the activity of this vital protease in plants.

  10. Combination Approaches with Immune-Checkpoint Blockade in Cancer Therapy

    NARCIS (Netherlands)

    Swart, M.; Verbrugge, I.; Beltman, J.B.

    2016-01-01

    In healthy individuals, immune-checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune-checkpoint blockade of cytotoxic T lymphocyte antigen-4 and

  11. Anaphase onset before complete DNA replication with intact checkpoint responses

    DEFF Research Database (Denmark)

    Torres-Rosell, Jordi; De Piccoli, Giacomo; Cordon-Preciado, Violeta

    2007-01-01

    Cellular checkpoints prevent mitosis in the presence of stalled replication forks. Whether checkpoints also ensure the completion of DNA replication before mitosis is unknown. Here, we show that in yeast smc5-smc6 mutants, which are related to cohesin and condensin, replication is delayed, most...

  12. Current Advances in Checkpoint Inhibitors: Lessons from Non-Central Nervous System Cancers and Potential for Glioblastoma

    Directory of Open Access Journals (Sweden)

    Natasha Lakin

    2017-07-01

    Full Text Available The adaptive immune system depends on the sequence of antigen presentation, activation, and then inhibition to mount a proportionate response to a threat. Tumors evade the immune response partly by suppressing T-cell activity using immune checkpoints. The use of cytotoxic T-lymphocyte-associated protein 4 (CTLA-4, programmed cell death 1 (PD-1, and programmed cell death ligand 1 (PD-L1 antibodies counteract this suppression, thereby enhancing the antitumor activity of the immune system. This approach has proven efficacy in melanoma, renal cancer, and lung cancer. There is growing evidence that the central nervous system is accessible to the immune system in the diseased state. Moreover, glioblastomas (GBMs attract CTLA-4-expressing T-cells and express PD-L1, which inhibit activation and continuation of a cytotoxic T-cell response, respectively. This may contribute to the evasion of the host immune response by GBM. Trials are in progress to determine if checkpoint inhibitors will be of benefit in GBM. Radiotherapy could also be helpful in promoting inflammation, enhancing the immunogenicity of tumors, disrupting the blood–brain barrier and creating greater antigen release. The combination of radiotherapy and checkpoint inhibitors has been promising in preclinical trials but is yet to show efficacy in humans. In this review, we summarize the mechanism and current evidence for checkpoint inhibitors in gliomas and other solid tumors, examine the rationale of combining radiotherapy with checkpoint inhibitors, and discuss the potential benefits and pitfalls of this approach.

  13. PD-1 Checkpoint Inhibitor Associated Autoimmune Encephalitis

    Directory of Open Access Journals (Sweden)

    Stephanie Schneider

    2017-05-01

    Full Text Available Objective: To report first-hand narrative experience of autoimmune encephalitis and to briefly review currently available evidence of autoimmune encephalitis in cancer patients treated with immune checkpoint inhibitors. Setting: A case study is presented on the management of a patient who developed autoimmune encephalitis during nivolumab monotherapy occurring after 28 weeks on anti-PD-1 monotherapy (nivolumab 3 mg/kg every 2 weeks for non-small cell lung cancer. Results: No substantial improvement was observed by antiepileptic treatment. After administration of 80 mg methylprednisolone, neurologic symptoms disappeared within 24 h and the patient fully recovered. Conclusions: Immune checkpoint inhibitor treatment can lead to autoimmune encephalitis. Clinical trial data indicate a frequency of autoimmune encephalitis of ≥0.1 to <1% with a higher probability during combined or sequential anti-CTLA-4/anti-PD-1 therapy than during anti-PD-1 or anti-PD-L1 monotherapy. Further collection of evidence and translational research is warranted.

  14. Sensitive Western-Blot Analysis of Azide-Tagged Protein Post Translational Modifications Using Thermoresponsive Polymer Self-Assembly.

    Science.gov (United States)

    Liu, Tong; Zhang, Wanjun; Zhang, Zheng; Chen, Mingli; Wang, Jianhua; Qian, Xiaohong; Qin, Weijie

    2018-02-06

    Western-blot (WB) is a powerful analytical technique for protein identification in complex biological samples and has been widely used in biological studies for decades. Detection specificity and sensitivity of WB largely relies on quality of the antibodies and performance of the conjugated HRP. However, the application of WB analysis for the detection of protein post-translational modifications (PTMs) is hampered by the low abundance of protein PTMs and by the limited availability of antibodies that specifically differentiate various kinds of PTMs from their protein substrates. Therefore, new recognition mechanisms and signal amplification strategies for WB analysis of protein PTMs is in high demand. In this work, we prepared a soluble polymer that detects various azide-tagged PTM proteins in WB analysis using triarylphosphine and HRP modified thermoresponsive polymer. Specific and efficient detection of azide-tagged PTM protein is achieved via the bioorthogonal reaction between azide and triarylphosphine. More importantly, the chemiluminiscent signal in the WB analysis is largely amplified by the temperature induced self-assembly of numerous thermoresponsive polymer chains carrying multiple HRPs. As a result, approximately 100 times more sensitive detection than commercial antibodies is achieved by this method using standard PTM proteins. Though, this new reagent does not directly detect native PTMs in cell, tissue or blood samples, it still has important application potential in protein PTM studies, considering the wide availability of azide-tagging techniques to a variety of PTMs.

  15. Structure of a Blinkin-BUBR1 complex reveals an interaction crucial for kinetochore-mitotic checkpoint regulation via an unanticipated binding Site

    DEFF Research Database (Denmark)

    Bolanos-Garcia, Victor M; Lischetti, Tiziana; Matak-Vinković, Dijana

    2011-01-01

    The maintenance of genomic stability relies on the spindle assembly checkpoint (SAC), which ensures accurate chromosome segregation by delaying the onset of anaphase until all chromosomes are properly bioriented and attached to the mitotic spindle. BUB1 and BUBR1 kinases are central for this proc...

  16. Mitotic Checkpoint Kinase Mps1 Has a Role in Normal Physiology which Impacts Clinical Utility.

    Science.gov (United States)

    Martinez, Ricardo; Blasina, Alessandra; Hallin, Jill F; Hu, Wenyue; Rymer, Isha; Fan, Jeffery; Hoffman, Robert L; Murphy, Sean; Marx, Matthew; Yanochko, Gina; Trajkovic, Dusko; Dinh, Dac; Timofeevski, Sergei; Zhu, Zhou; Sun, Peiquing; Lappin, Patrick B; Murray, Brion W

    2015-01-01

    Cell cycle checkpoint intervention is an effective therapeutic strategy for cancer when applied to patients predisposed to respond and the treatment is well-tolerated. A critical cell cycle process that could be targeted is the mitotic checkpoint (spindle assembly checkpoint) which governs the metaphase-to-anaphase transition and insures proper chromosomal segregation. The mitotic checkpoint kinase Mps1 was selected to explore whether enhancement in genomic instability is a viable therapeutic strategy. The basal-a subset of triple-negative breast cancer was chosen as a model system because it has a higher incidence of chromosomal instability and Mps1 expression is up-regulated. Depletion of Mps1 reduces tumor cell viability relative to normal cells. Highly selective, extremely potent Mps1 kinase inhibitors were created to investigate the roles of Mps1 catalytic activity in tumor cells and normal physiology (PF-7006, PF-3837; Kiweight loss, gastrointestinal toxicities, and neutropenia. Mps1 inhibitor toxicities may be mitigated by inducing G1 cell cycle arrest in Rb1-competent cells with the cyclin-dependent kinase-4/6 inhibitor palbociclib. Using an isogenic cellular model system, PF-7006 is shown to be selectively cytotoxic to Rb1-deficient cells relative to Rb1-competent cells (also a measure of kinase selectivity). Human bone marrow cells pretreated with palbociclib have decreased PF-7006-dependent apoptosis relative to cells without palbociclib pretreatment. Collectively, this study raises a concern that single agent therapies inhibiting Mps1 will not be well-tolerated clinically but may be when combined with a selective CDK4/6 drug.

  17. Phosphatidylcholine affects the role of the sorting and assembly machinery in the biogenesis of mitochondrial β-barrel proteins.

    Science.gov (United States)

    Schuler, Max-Hinderk; Di Bartolomeo, Francesca; Böttinger, Lena; Horvath, Susanne E; Wenz, Lena-Sophie; Daum, Günther; Becker, Thomas

    2015-10-30

    Two protein translocases drive the import of β-barrel precursor proteins into the mitochondrial outer membrane: The translocase of the outer membrane (TOM complex) promotes transport of the precursor to the intermembrane space, whereas the sorting and assembly machinery (SAM complex) mediates subsequent folding of the β-barrel and its integration into the target membrane. The non-bilayer-forming phospholipids phosphatidylethanolamine (PE) and cardiolipin (CL) are required for the biogenesis of β-barrel proteins. Whether bilayer-forming phospholipids such as phosphatidylcholine (PC), the most abundant phospholipid of the mitochondrial outer membrane, play a role in the import of β-barrel precursors is unclear. In this study, we show that PC is required for stability and function of the SAM complex during the biogenesis of β-barrel proteins. PC further promotes the SAM-dependent assembly of the TOM complex, indicating a general role of PC for the function of the SAM complex. In contrast to PE-deficient mitochondria precursor accumulation at the TOM complex is not affected by depletion of PC. We conclude that PC and PE affect the function of distinct protein translocases in mitochondrial β-barrel biogenesis. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. Structural and functional features of self-assembling protein nanoparticles produced in endotoxin-free Escherichia coli.

    Science.gov (United States)

    Rueda, Fabián; Céspedes, María Virtudes; Sánchez-Chardi, Alejandro; Seras-Franzoso, Joaquin; Pesarrodona, Mireia; Ferrer-Miralles, Neus; Vázquez, Esther; Rinas, Ursula; Unzueta, Ugutz; Mamat, Uwe; Mangues, Ramón; García-Fruitós, Elena; Villaverde, Antonio

    2016-04-08

    Production of recombinant drugs in process-friendly endotoxin-free bacterial factories targets to a lessened complexity of the purification process combined with minimized biological hazards during product application. The development of nanostructured recombinant materials in innovative nanomedical activities expands such a need beyond plain functional polypeptides to complex protein assemblies. While Escherichia coli has been recently modified for the production of endotoxin-free proteins, no data has been so far recorded regarding how the system performs in the fabrication of smart nanostructured materials. We have here explored the nanoarchitecture and in vitro and in vivo functionalities of CXCR4-targeted, self-assembling protein nanoparticles intended for intracellular delivery of drugs and imaging agents in colorectal cancer. Interestingly, endotoxin-free materials exhibit a distinguishable architecture and altered size and target cell penetrability than counterparts produced in conventional E. coli strains. These variant nanoparticles show an eventual proper biodistribution and highly specific and exclusive accumulation in tumor upon administration in colorectal cancer mice models, indicating a convenient display and function of the tumor homing peptides and high particle stability under physiological conditions. The observations made here support the emerging endotoxin-free E. coli system as a robust protein material producer but are also indicative of a particular conformational status and organization of either building blocks or oligomers. This appears to be promoted by multifactorial stress-inducing conditions upon engineering of the E. coli cell envelope, which impacts on the protein quality control of the cell factory.

  19. Identifying SARS-CoV membrane protein amino acid residues linked to virus-like particle assembly.

    Directory of Open Access Journals (Sweden)

    Ying-Tzu Tseng

    Full Text Available Severe acute respiratory syndrome coronavirus (SARS-CoV membrane (M proteins are capable of self-assembly and release in the form of membrane-enveloped vesicles, and of forming virus-like particles (VLPs when coexpressed with SARS-CoV nucleocapsid (N protein. According to previous deletion analyses, M self-assembly involves multiple M sequence regions. To identify important M amino acid residues for VLP assembly, we coexpressed N with multiple M mutants containing substitution mutations at the amino-terminal ectodomain, carboxyl-terminal endodomain, or transmembrane segments. Our results indicate that a dileucine motif in the endodomain tail (218LL219 is required for efficient N packaging into VLPs. Results from cross-linking VLP analyses suggest that the cysteine residues 63, 85 and 158 are not in close proximity to the M dimer interface. We noted a significant reduction in M secretion due to serine replacement for C158, but not for C63 or C85. Further analysis suggests that C158 is involved in M-N interaction. In addition to mutations of the highly conserved 107-SWWSFNPE-114 motif, substitutions at codons W19, W57, P58, W91, Y94 or F95 all resulted in significantly reduced VLP yields, largely due to defective M secretion. VLP production was not significantly affected by a tryptophan replacement of Y94 or F95 or a phenylalanine replacement of W19, W57 or W91. Combined, these results indicate the involvement of specific M amino acids during SARS-CoV virus assembly, and suggest that aromatic residue retention at specific positions is critical for M function in terms of directing virus assembly.

  20. Gold nanoparticle assisted assembly of a heme protein for enhancement of long-range interfacial electron transfer

    DEFF Research Database (Denmark)

    Jensen, Palle Skovhus; Chi, Qijin; Grumsen, Flemming Bjerg

    2007-01-01

    -defined stoichiometry. The systems were investigated in homogeneous solution and at liquid/solid interface. Conjugation of cyt c results in a small but consistent broadening of the nanoparticle plasmon band. This phenomenon can be explained in terms of long-range electronic interactions between the gold nanoparticle...... and characterization of water-soluble gold nanoparticles (AuNPs) with core diameter 3-4 nm and their application for the enhancement of long-range interfacial ET of a heme protein. Gold nanoparticles were electrostatically conjugated with cyt c to form nanoparticle-protein hybrid ET systems with well...... and the protein molecule. When the nanoparticle-protein conjugates are assembled on Au(111) surfaces, long-range interfacial ET across a physical distance of over 50 A via the nanoparticle becomes feasible. Moreover, significant enhancement of the interfacial ET rate by more than an order of magnitude compared...

  1. Protein adsorption and biomimetic mineralization behaviors of PLL-DNA multilayered films assembled onto titanium

    Energy Technology Data Exchange (ETDEWEB)

    Gao Wenli [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Feng Bo, E-mail: fengbo@swjtu.edu.cn [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Ni Yuxiang [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Yang Yongli [College of Material Science and Engineering, Sichuan University, Chengdu 610054 (China); Lu Xiong; Weng Jie [Key Laboratory of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China)

    2010-11-01

    Titanium and its alloys are frequently used as surgical implants in load bearing situations, such as hip prostheses and dental implants, owing to their biocompatibility, mechanical and physical properties. In this paper, a layer-by-layer (LBL) self-assembly technique, based on the polyelectrolyte-mediated electrostatic adsorption of poly-L-lysine (PLL) and DNA, was used to the formation of multilayer on titanium surfaces. Then bovine serum albumin (BSA) adsorption and biomimetic mineralization of modified surfaces were studied. The chemical composition and wettability of assembled substrates were investigated by X-ray photoelectron spectroscopy (XPS), fluorescence microscopy and water contact angle measurement, respectively. The XPS analysis indicated that the layers were assembled successfully through electrostatic attractions. The measurement with ultraviolet (UV) spectrophotometer revealed that the LBL films enhanced ability of BSA adsorption onto titanium. The adsorption quantity of BSA on the surface terminated with PLL was higher than that of the surface terminated with DNA, and the samples of TiOH/P/D/P absorbed BSA most. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) showed that samples of assembled PLL or/and DNA had better bioactivity in inducing HA formation. Thus the assembling of PLL and DNA onto the surface of titanium in turn via a layer-by-layer self-assembly technology can improve the bioactivity of titanium.

  2. Species-specificity of the BamA component of the bacterial outer membrane protein-assembly machinery.

    Directory of Open Access Journals (Sweden)

    Elena B Volokhina

    Full Text Available The BamA protein is the key component of the Bam complex, the assembly machinery for outer membrane proteins (OMP in gram-negative bacteria. We previously demonstrated that BamA recognizes its OMP substrates in a species-specific manner in vitro. In this work, we further studied species specificity in vivo by testing the functioning of BamA homologs of the proteobacteria Neisseria meningitidis, Neisseria gonorrhoeae, Bordetella pertussis, Burkholderia mallei, and Escherichia coli in E. coli and in N. meningitidis. We found that no BamA functioned in another species than the authentic one, except for N. gonorrhoeae BamA, which fully complemented a N. meningitidis bamA mutant. E. coli BamA was not assembled into the N. meningitidis outer membrane. In contrast, the N. meningitidis BamA protein was assembled into the outer membrane of E. coli to a significant extent and also associated with BamD, an essential accessory lipoprotein of the Bam complex.Various chimeras comprising swapped N-terminal periplasmic and C-terminal membrane-embedded domains of N. meningitidis and E. coli BamA proteins were also not functional in either host, although some of them were inserted in the OM suggesting that the two domains of BamA need to be compatible in order to function. Furthermore, conformational analysis of chimeric proteins provided evidence for a 16-stranded β-barrel conformation of the membrane-embedded domain of BamA.

  3. Separation of assembly-competent tubulin from brain microtubule protein preparations using a fast-performance liquid chromatography procedure.

    Science.gov (United States)

    Roychowdhury, S; Gaskin, F

    1986-05-01

    Fast-performance liquid chromatography was used to purify assembly-competent tubulin from porcine brain microtubule protein prepared by two cycles of assembly-disassembly. Microtubule protein (1-100 mg at 1.5-2.5 mg/ml) in buffer consisting of 0.1 M 2-(N-morpholino)ethanesulfonic acid, 0.5 mM MgCl2, 1 mM EGTA, 0.3 M KCl, and 0.02 mM GTP (pH 6.6) was applied to the Mono Q column (anion exchanger). The microtubule-associated proteins, GTP and GDP, eluted in the void volume. The tubulin fraction eluted at 0.45-0.50 M KCl with 65-80% recovery. The tubulin fraction contained trace enzymatic activities when compared with the starting microtubule protein, i.e., less than 1 versus 60 mU/mg/min of nucleoside diphosphate kinase, 0.2 versus 7.0 nmol/mg/min of Mg-ATPase at pH 6.6, and 0.2 versus 88 mU/mg/min of adenylate kinase. Both the Mono Q-purified tubulin and the pelleted microtubules that were assembled in 0.5 mM [3H]GTP contained 0.77 mol of labeled nucleotide/tubulin dimer. The Mono Q-purified tubulin fraction was competent to assemble, i.e., the critical concentration was 0.1 mg/ml in the presence of 0.03 mM taxol and 1 mM GTP at 37 degrees C. The Mono Q-purified tubulin fraction showed trace high-molecular-weight components, which were removed on Mono S (cation exchanger) columns. Alternatively, microtubule protein in buffer was applied to the Mono S column. Tubulin, trace nontubulin proteins, and several enzymatic activities came off in the void volume. A combination of Mono Q-Mono S or Mono S-Mono Q chromatography resulted in highly purified protein.(ABSTRACT TRUNCATED AT 250 WORDS)

  4. Spindle checkpoint activation at meiosis I advances anaphase II onset via meiosis-specific APC/C regulation

    Science.gov (United States)

    Yamamoto, Ayumu; Kitamura, Kenji; Hihara, Daisuke; Hirose, Yukinobu; Katsuyama, Satoshi; Hiraoka, Yasushi

    2008-01-01

    During mitosis, the spindle assembly checkpoint (SAC) inhibits the Cdc20-activated anaphase-promoting complex/cyclosome (APC/CCdc20), which promotes protein degradation, and delays anaphase onset to ensure accurate chromosome segregation. However, the SAC function in meiotic anaphase regulation is poorly understood. Here, we examined the SAC function in fission yeast meiosis. As in mitosis, a SAC factor, Mad2, delayed anaphase onset via Slp1 (fission yeast Cdc20) when chromosomes attach to the spindle improperly. However, when the SAC delayed anaphase I, the interval between meiosis I and II shortened. Furthermore, anaphase onset was advanced and the SAC effect was reduced at meiosis II. The advancement of anaphase onset depended on a meiosis-specific, Cdc20-related factor, Fzr1/Mfr1, which contributed to anaphase cyclin decline and anaphase onset and was inefficiently inhibited by the SAC. Our findings show that impacts of SAC activation are not confined to a single division at meiosis due to meiosis-specific APC/C regulation, which has probably been evolved for execution of two meiotic divisions. PMID:18644893

  5. The protein-protein interactions involved in the periplasmic components of the β-barrel assembly machinery (BAM) complex of Escherichia coli

    OpenAIRE

    Aulakh, Suraaj Kaur

    2012-01-01

    The β-barrel assembly machinery (BAM) complex plays the essential role of folding and inserting outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria. In Escherichia coli, the BAM complex is comprised of five proteins: BamA, BamB, BamC, BamD, and BamE. This thesis project investigates the interactions between the periplasmic components of the BAM complex by analyzing complex formation using gel-filtration chromatography. Results from the interaction studies have id...

  6. Centromere replication timing determines different forms of genomic instability in Saccharomyces cerevisiae checkpoint mutants during replication stress.

    Science.gov (United States)

    Feng, Wenyi; Bachant, Jeff; Collingwood, David; Raghuraman, M K; Brewer, Bonita J

    2009-12-01

    Yeast replication checkpoint mutants lose viability following transient exposure to hydroxyurea, a replication-impeding drug. In an effort to understand the basis for this lethality, we discovered that different events are responsible for inviability in checkpoint-deficient cells harboring mutations in the mec1 and rad53 genes. By monitoring genomewide replication dynamics of cells exposed to hydroxyurea, we show that cells with a checkpoint deficient allele of RAD53, rad53K227A, fail to duplicate centromeres. Following removal of the drug, however, rad53K227A cells recover substantial DNA replication, including replication through centromeres. Despite this recovery, the rad53K227A mutant fails to achieve biorientation of sister centromeres during recovery from hydroxyurea, leading to secondary activation of the spindle assembly checkpoint (SAC), aneuploidy, and lethal chromosome segregation errors. We demonstrate that cell lethality from this segregation defect could be partially remedied by reinforcing bipolar attachment. In contrast, cells with the mec1-1 sml1-1 mutations suffer from severely impaired replication resumption upon removal of hydroxyurea. mec1-1 sml1-1 cells can, however, duplicate at least some of their centromeres and achieve bipolar attachment, leading to abortive segregation and fragmentation of incompletely replicated chromosomes. Our results highlight the importance of replicating yeast centromeres early and reveal different mechanisms of cell death due to differences in replication fork progression.

  7. Assembly of HE800 exopolysaccharide produced by a deep-sea hydrothermal bacterium into microgels for protein delivery applications.

    Science.gov (United States)

    Zykwinska, Agata; Marquis, Mélanie; Sinquin, Corinne; Cuenot, Stéphane; Colliec-Jouault, Sylvia

    2016-05-20

    Assembly of biopolymers into microgels is an elegant strategy for bioencapsulation with various potential biomedical applications. Such biocompatible and biodegradable microassemblies are developed not only to protect the encapsulated molecule but also to ensure its sustained local delivery. The present study describes the fabrication of microassemblies from a marine HE800 exopolysaccharide (EPS), which displays a glycosaminoglycan (GAG)-like structure and biological properties. HE800 EPS was assembled, through physical cross-linking with divalent ions, into microgel particles and microfibers using microfluidics. The microparticle morphology was highly affected by the polysaccharide concentration and its molecular weight. A model protein, namely Bovine Serum Albumin (BSA) was subsequently encapsulated within HE800 microparticles in one-step process using microfluidics. The protein release was tuned by the microparticle morphology with a lower protein amount released from the most homogeneous structures. Our findings demonstrate the high potential of HE800 EPS based microassemblies as innovative protein microcarriers for further biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. Interactions between Vaccinia Virus IEV Membrane Proteins and Their Roles in IEV Assembly and Actin Tail Formation

    Science.gov (United States)

    Röttger, Sabine; Frischknecht, Friedrich; Reckmann, Inge; Smith, Geoffrey L.; Way, Michael

    1999-01-01

    The intracellular enveloped form of vaccinia virus (IEV) induces the formation of actin tails that are strikingly similar to those seen in Listeria and Shigella infections. In contrast to the case for Listeria and Shigella, the vaccinia virus protein(s) responsible for directly initiating actin tail formation remains obscure. However, previous studies with recombinant vaccinia virus strains have suggested that the IEV-specific proteins A33R, A34R, A36R, B5R, and F13L play an undefined role in actin tail formation. In this study we have sought to understand how these proteins, all of which are predicted to have small cytoplasmic domains, are involved in IEV assembly and actin tail formation. Our data reveal that while deletion of A34R, B5R, or F13L resulted in a severe reduction in IEV particle assembly, IEVs formed by the ΔB5R and ΔF13L deletion strains, but not ΔA34R, were still able to induce actin tails. The ΔA36R deletion strain produced normal amounts of IEV particles, although these were unable to induce actin tails. Using several different approaches, we demonstrated that A36R is a type Ib membrane protein with a large, 195-amino-acid cytoplasmic domain exposed on the surface of IEV particles. Finally, coimmunoprecipitation experiments demonstrated that A36R interacts with A33R and A34R but not with B5R and that B5R forms a complex with A34R but not with A33R or A36R. Using extracts from ΔA34R- and ΔA36R-infected cells, we found that the interaction of A36R with A33R and that of A34R with B5R are independent of A34R and A36R, respectively. We conclude from our observations that multiple interactions between IEV membrane proteins exist which have important implications for IEV assembly and actin tail formation. Furthermore, these data suggest that while A34R is involved in IEV assembly and organization, A36R is critical for actin tail formation. PMID:10074134

  9. Isolation of Endogenously Assembled RNA-Protein Complexes Using Affinity Purification Based on Streptavidin Aptamer S1

    Directory of Open Access Journals (Sweden)

    Yangchao Dong

    2015-09-01

    Full Text Available Efficient isolation of endogenously assembled viral RNA-protein complexes is essential for understanding virus replication mechanisms. We have developed an affinity purification strategy based on an RNA affinity tag that allows large-scale preparation of native viral RNA-binding proteins (RBPs. The streptavidin-binding aptamer S1 sequence was inserted into the 3′ end of dengue virus (DENV 5′–3′ UTR RNA, and the DENV RNA UTR fused to the S1 RNA aptamer was expressed in living mammalian cells. This allowed endogenous viral ribonucleoprotein (RNP assembly and isolation of RNPs from whole cell extract, through binding the S1 aptamer to streptavidin magnetic beads. Several novel host DENV RBPs were subsequently identified by liquid chromatography with tandem mass spectrometry (LC-MS/MS, including RPS8, which we further implicate in DENV replication. We proposed efficient S1 aptamer-based isolation of viral assembled RNPs from living mammalian cells will be generally applicable to the purification of high- and low-affinity RBPs and RNPs under endogenous conditions.

  10. The meiosis-specific nuclear passenger protein is required for proper assembly of forespore membrane in fission yeast.

    Science.gov (United States)

    Takaine, Masak; Imada, Kazuki; Numata, Osamu; Nakamura, Taro; Nakano, Kentaro

    2014-10-15

    Sporulation, gametogenesis in yeast, consists of meiotic nuclear division and spore morphogenesis. In the fission yeast Schizosaccharomyces pombe, the four haploid nuclei produced after meiosis II are encapsulated by the forespore membrane (FSM), which is newly synthesized from spindle pole bodies (SPBs) in the cytoplasm of the mother cell as spore precursors. Although the coordination between meiosis and FSM assembly is vital for proper sporulation, the underlying mechanism remains unclear. In the present study, we identified a new meiosis-specific protein Npg1, and found that it was involved in the efficient formation of spores and spore viability. The accumulation and organization of the FSM was compromised in npg1-null cells, leading to the error-prone envelopment of nuclei. Npg1 was first seen as internuclear dots and translocated to the SPBs before the FSM assembled. Genetic analysis revealed that Npg1 worked in conjunction with the FSM proteins Spo3 and Meu14. These results suggest a possible signaling link from the nucleus to the meiotic SPBs in order to associate the onset of FSM assembly with meiosis II, which ensures the successful partitioning of gametic nuclei. © 2014. Published by The Company of Biologists Ltd.

  11. Immune Checkpoint Inhibitors: A New Opportunity in the Treatment of Ovarian Cancer?

    Directory of Open Access Journals (Sweden)

    Gloria Mittica

    2016-07-01

    Full Text Available Epithelial ovarian cancer (EOC is the leading cause of death for gynecological cancer. The standard treatment for advanced stage is the combination of optimal debulking surgery and platinum-based chemotherapy. Nevertheless, recurrence is frequent (around 70% and prognosis is globally poor. New therapeutic agents are needed to improve survival. Since EOC is strongly immunogenic, immune checkpoint inhibitors are under evaluation for their capacity to contrast the “turn off” signals expressed by the tumor to escape the immune system and usually responsible for self-tolerance maintenance. This article reviews the literature on anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4, anti-PD-1, anti-PD-L1, and anti-PD-L2 antibodies in EOC and highlights their possible lines of development. Further studies are needed to better define the prognostic role of the immune checkpoint inhibitors, to identify predictors of response and the optimal clinical setting in EOC.

  12. Modulations of cell cycle checkpoints during HCV associated disease

    Directory of Open Access Journals (Sweden)

    Jafri Wasim

    2009-08-01

    Full Text Available Abstract Background Impaired proliferation of hepatocytes has been reported in chronic Hepatitis C virus infection. Considering the fundamental role played by cell cycle proteins in controlling cell proliferation, altered regulation of these proteins could significantly contribute to HCV disease progression and subsequent hepatocellular carcinoma (HCC. This study aimed to identify the alterations in cell cycle genes expression with respect to early and advanced disease of chronic HCV infection. Methods Using freshly frozen liver biopsies, mRNA levels of 84 cell cycle genes in pooled RNA samples from patients with early or advanced fibrosis of chronic HCV infection were studied. To associate mRNA levels with respective protein levels, four genes (p27, p15, KNTC1 and MAD2L1 with significant changes in mRNA levels (> 2-fold, p-value Results In the early fibrosis group, increased mRNA levels of cell proliferation genes as well as cell cycle inhibitor genes were observed. In the advanced fibrosis group, DNA damage response genes were up-regulated while those associated with chromosomal stability were down-regulated. Increased expression of CDK inhibitor protein p27 was consistent with its mRNA level detected in early group while the same was found to be negatively associated with liver fibrosis. CDK inhibitor protein p15 was highly expressed in both early and advanced group, but showed no correlation with fibrosis. Among the mitotic checkpoint regulators, expression of KNTC1 was significantly reduced in advanced group while MAD2L1 showed a non-significant decrease. Conclusion Collectively these results are suggestive of a disrupted cell cycle regulation in HCV-infected liver. The information presented here highlights the potential of identified proteins as predictive factors to identify patients with high risk of cell transformation and HCC development.

  13. Nucleic acid encoding a self-assembling split-fluorescent protein system

    Energy Technology Data Exchange (ETDEWEB)

    Waldo, Geoffrey S.; Cabantous, Stephanie

    2015-07-14

    The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.

  14. Envelope protein requirements for the assembly of infectious virions of porcine reproductive and respiratory syndrome virus

    NARCIS (Netherlands)

    Wissink, E.H.J.; Kroese, M.V.; Wijk, van H.A.; Rijsewijk, F.A.M.; Meulenberg, J.J.; Rottier, P.J.M.

    2005-01-01

    Virions of porcine reproductive and respiratory syndrome virus (PRRSV) contain six membrane proteins: the major proteins GP5 and M and the minor proteins GP2a, E, GP3, and GP4. Here, we studied the envelope protein requirements for PRRSV particle formation and infectivity using full-length cDNA

  15. Nucleic acid encoding a self-assembling split-fluorescent protein system

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2011-06-07

    The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.

  16. Nucleic acid encoding a self-assembling split-fluorescent protein system

    Science.gov (United States)

    Waldo, Geoffrey S; Cabantous, Stephanie

    2014-04-01

    The invention provides a protein labeling and detection system based on self-complementing fragments of fluorescent and chromophoric proteins. The system of the invention is exemplified with various combinations of self-complementing fragments derived from Aequorea victoria Green Fluorescent Protein (GFP), which are used to detect and quantify protein solubility in multiple assay formats, both in vitro and in vivo.

  17. The Crystal Structure of a Maxi/Mini-Ferritin Chimera Reveals Guiding Principles for the Assembly of Protein Cages

    Energy Technology Data Exchange (ETDEWEB)

    Cornell, Thomas A. [Department; Division; Srivastava, Yogesh [Genome; Jauch, Ralf [Genome Institute of Singapore, Singapore; Genome; Fan, Rongli [Division; Orner, Brendan P. [Department; Division

    2017-07-19

    Cage proteins assemble into nanoscale structures with large central cavities. They play roles, including those as virus capsids and chaperones, and have been applied to drug delivery and nanomaterials. Furthermore, protein cages have been used as model systems to understand and design protein quaternary structure. Ferritins are ubiquitous protein cages that manage iron homeostasis and oxidative damage. Two ferritin subfamilies have strongly similar tertiary structure yet distinct quaternary structure: maxi-ferritins normally assemble into 24-meric, octahedral cages with C-terminal E-helices centered around 4-fold symmetry axes, and mini-ferritins are 12-meric, tetrahedral cages with 3-fold axes defined by C-termini lacking E-domains. To understand the role E-domains play in ferritin quaternary structure, we previously designed a chimera of a maxi-ferritin E-domain fused to the C-terminus of a mini-ferritin. The chimera is a 12-mer cage midway in size between those of the maxi- and mini-ferritin. The research described herein sets out to understand (a) whether the increase in size over a typical mini-ferritin is due to a frozen state where the E-domain is flipped out of the cage and (b) whether the symmetrical preference of the E-domain in the maxi-ferritin (4-fold axis) overrules the C-terminal preference in the mini-ferritin (3-fold axis). With a 1.99 Å resolution crystal structure, we determined that the chimera assembles into a tetrahedral cage that can be nearly superimposed with the parent mini-ferritin, and that the E-domains are flipped external to the cage at the 3-fold symmetry axes.

  18. AUP1 (Ancient Ubiquitous Protein 1) Is a Key Determinant of Hepatic Very-Low-Density Lipoprotein Assembly and Secretion.

    Science.gov (United States)

    Zhang, Jing; Zamani, Mostafa; Thiele, Christoph; Taher, Jennifer; Amir Alipour, Mohsen; Yao, Zemin; Adeli, Khosrow

    2017-04-01

    AUP1 (ancient ubiquitous protein 1) is an endoplasmic reticulum-associated protein that also localizes to the surface of lipid droplets (LDs), with dual role in protein quality control and LD regulation. Here, we investigated the role of AUP1 in hepatic lipid mobilization and demonstrate critical roles in intracellular biogenesis of apoB100 (apolipoprotein B-100), LD mobilization, and very-low-density lipoprotein (VLDL) assembly and secretion. APPROACH AND RESULTS: siRNA (short/small interfering RNA) knockdown of AUP1 significantly increased secretion of VLDL-sized apoB100-containing particles from HepG2 cells, correcting a key metabolic defect in these cells that normally do not secrete much VLDL. Secreted particles contained higher levels of metabolically labeled triglyceride, and AUP1-deficient cells displayed a larger average size of LDs, suggesting a role for AUP1 in lipid mobilization. Importantly, AUP1 was also found to directly interact with apoB100, and this interaction was enhanced with proteasomal inhibition. Knockdown of AUP1 reduced apoB100 ubiquitination, decreased intracellular degradation of newly synthesized apoB100, and enhanced extracellular apoB100 secretion. Interestingly, the stimulatory effect of AUP1 knockdown on VLDL assembly was reminiscent of the effect previously observed after MEK-ERK (mitogen-activated protein kinase kinase-extracellular signal-regulated kinase) inhibition; however, further studies indicated that the AUP1 effect was independent of MEK-ERK signaling. In summary, our findings reveal an important role for AUP1 as a regulator of apoB100 stability, hepatic LD metabolism, and intracellular lipidation of VLDL particles. AUP1 may be a crucial factor in apoB100 quality control, determining the rate at which apoB100 is degraded or lipidated to enable VLDL particle assembly and secretion. © 2017 American Heart Association, Inc.

  19. Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA

    DEFF Research Database (Denmark)

    Ostergaard, P; Phan, H; Johansen, L B

    1998-01-01

    The six major structural domains of 23 S rRNA from Escherichia coli, and all combinations thereof, were synthesized as separate T7 transcripts and reconstituted with total 50 S subunit proteins. Analysis by one and two-dimensional gel electrophoresis demonstrated the presence of at least one......+VI. This indicates that there are two major protein assembly centres located at the ends of the 23 S rRNA, which is consistent with an earlier view that in vitro protein assembly nucleates around proteins L24 and L3. Although similar protein assembly patterns were observed over a range of temperature and magnesium...... approach was used to map the putative binding regions on domain V of protein L9 and the 5 S RNA-L5-L18 complex....

  20. Effect of Terminal Modification on the Molecular Assembly and Mechanical Properties of Protein-Based Block Copolymers.

    Science.gov (United States)

    Jacobsen, Matthew M; Tokareva, Olena S; Ebrahimi, Davoud; Huang, Wenwen; Ling, Shengjie; Dinjaski, Nina; Li, David; Simon, Marc; Staii, Cristian; Buehler, Markus J; Kaplan, David L; Wong, Joyce Y

    2017-09-01

    Accurate prediction and validation of the assembly of bioinspired peptide sequences into fibers with defined mechanical characteristics would aid significantly in designing and creating materials with desired properties. This process may also be utilized to provide insight into how the molecular architecture of many natural protein fibers is assembled. In this work, computational modeling and experimentation are used in tandem to determine how peptide terminal modification affects a fiber-forming core domain. Modeling shows that increased terminal molecular weight and hydrophilicity improve peptide chain alignment under shearing conditions and promote consolidation of semicrystalline domains. Mechanical analysis shows acute improvements to strength and elasticity, but significantly reduced extensibility and overall toughness. These results highlight an important entropic function that terminal domains of fiber-forming peptides exhibit as chain alignment promoters, which ultimately has notable consequences on the mechanical behavior of the final fiber products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Translation and Assembly of Radiolabeled Mitochondrial DNA-Encoded Protein Subunits from Cultured Cells and Isolated Mitochondria.

    Science.gov (United States)

    Formosa, Luke E; Hofer, Annette; Tischner, Christin; Wenz, Tina; Ryan, Michael T

    2016-01-01

    In higher eukaryotes, the mitochondrial electron transport chain consists of five multi-subunit membrane complexes responsible for the generation of cellular ATP. Of these, four complexes are under dual genetic control as they contain subunits encoded by both the mitochondrial and nuclear genomes, thereby adding another layer of complexity to the puzzle of respiratory complex biogenesis. These subunits must be synthesized and assembled in a coordinated manner in order to ensure correct biogenesis of different respiratory complexes. Here, we describe techniques to (1) specifically radiolabel proteins encoded by mtDNA to monitor the rate of synthesis using pulse labeling methods, and (2) analyze the stability, assembly, and turnover of subunits using pulse-chase methods in cultured cells and isolated mitochondria.

  2. Keeping checkpoint/restart viable for exascale systems.

    Energy Technology Data Exchange (ETDEWEB)

    Riesen, Rolf E.; Bridges, Patrick G. (IBM Research, Ireland, Mulhuddart, Dublin); Stearley, Jon R.; Laros, James H., III; Oldfield, Ron A.; Arnold, Dorian (University of New Mexico, Albuquerque, NM); Pedretti, Kevin Thomas Tauke; Ferreira, Kurt Brian; Brightwell, Ronald Brian

    2011-09-01

    Next-generation exascale systems, those capable of performing a quintillion (10{sup 18}) operations per second, are expected to be delivered in the next 8-10 years. These systems, which will be 1,000 times faster than current systems, will be of unprecedented scale. As these systems continue to grow in size, faults will become increasingly common, even over the course of small calculations. Therefore, issues such as fault tolerance and reliability will limit application scalability. Current techniques to ensure progress across faults like checkpoint/restart, the dominant fault tolerance mechanism for the last 25 years, are increasingly problematic at the scales of future systems due to their excessive overheads. In this work, we evaluate a number of techniques to decrease the overhead of checkpoint/restart and keep this method viable for future exascale systems. More specifically, this work evaluates state-machine replication to dramatically increase the checkpoint interval (the time between successive checkpoint) and hash-based, probabilistic incremental checkpointing using graphics processing units to decrease the checkpoint commit time (the time to save one checkpoint). Using a combination of empirical analysis, modeling, and simulation, we study the costs and benefits of these approaches on a wide range of parameters. These results, which cover of number of high-performance computing capability workloads, different failure distributions, hardware mean time to failures, and I/O bandwidths, show the potential benefits of these techniques for meeting the reliability demands of future exascale platforms.

  3. Fulminant Myocarditis with Combination Immune Checkpoint Blockade

    Science.gov (United States)

    Johnson, Douglas B.; Balko, Justin M.; Compton, Margaret L.; Chalkias, Spyridon; Gorham, Joshua; Xu, Yaomin; Hicks, Mellissa; Puzanov, Igor; Alexander, Matthew R.; Bloomer, Tyler L.; Becker, Jason; Slosky, David A.; Phillips, Elizabeth J.; Pilkinton, Mark A.; Craig-Owens, Laura; Kola, Nina; Plautz, Gregory; Reshef, Daniel S.; Deutsch, Jonathan S.; Deering, Raquel P.; Olenchock, Benjamin A.; Lichtman, Andrew H.; Roden, Dan M.; Seidman, Christine E.; Koralnik, Igor J.; Seidman, Jonathan G.; Hoffman, Robert D.; Taube, Janis M.; Diaz, Luis A.; Anders, Robert A.; Sosman, Jeffrey A.; Moslehi, Javid J.

    2016-01-01

    Summary Immune checkpoint inhibitors significantly improve clinical outcomes in numerous malignancies, but high-grade immune-related adverse events can occur, particularly with combination immunotherapy. Herein, we report two melanoma patients who developed fatal myocarditis following treatment with ipilimumab and nivolumab. Both patients developed myositis with rhabdomyolysis, early progressive and refractory cardiac electrical instability, and myocarditis with robust T-cell and macrophage infiltrates. Selective clonal T-cell populations infiltrating the myocardium were identical to those present in tumor and skeletal muscle. Pharmacovigilance data revealed that myocarditis occurred in 0.27% of patients treated with ipilimumab/nivolumab, suggesting this is a rare, potentially fatal, T-cell-driven drug reaction. PMID:27806233

  4. Selective protein patterning based on the micro-structured organosilane self-assembled monolayer by vacuum ultraviolet light lithography.

    Science.gov (United States)

    Lim, Sung-Hyuk; Yamaguchi, Munehiro; Nishimura, Okio; Mie, Yasuhiro; Tamura, Tomohiro; Kim, Byung-Woo; Suzuki, Masaaki

    2009-12-01

    We have succeeded to immobilize fluorescent proteins selectively using a micro-structured organosilane self-assembled monolayer as a template. An organosilane layer with amino terminal group was formed on a thermally oxidized Si wafer by liquid-phase method and then was pattern-etched by vacuum ultraviolet light (VUV). The second organosilane layer with thiol terminal group was deposited on the etched area by chemical vapor surface modification method (CVSM). These micro-structured organosilane layer containing two reactive terminal groups were chemically modified using bi-functional linkers. Two kinds of fluorescent protein, Enhanced Cyan Fluorescent Protein (ECFP) and R-phycoerythrin were selectively immobilized on the chemically modified surface.

  5. Role of the HIV-1 Matrix Protein in Gag Intracellular Trafficking and Targeting to the Plasma Membrane for Virus Assembly

    Directory of Open Access Journals (Sweden)

    Ruba H Ghanam

    2012-02-01

    Full Text Available Human immunodeficiency virus type-1 (HIV-1 encodes a polypeptide called Gag that is able to form virus-like particles (VLPs in vitro in the absence of any cellular or viral constituents. During the late phase of the HIV-1 infection, Gag polyproteins are transported to the plasma membrane (PM for assembly. In the past two decades, in vivo, in vitro and structural studies have shown that Gag trafficking and targeting to the PM are orchestrated events that are dependent on multiple factors including cellular proteins and specific membrane lipids. The matrix (MA domain of Gag has been the focus of these studies as it appears to be engaged in multiple intracellular interactions that are suggested to be critical for virus assembly and replication. The interaction between Gag and the PM is perhaps the most understood. It is now established that the ultimate localization of Gag on punctate sites on the PM is mediated by specific interactions between the MA domain of Gag and phosphatidylinositol-4,5-bisphosphate (PI(4,5P2, a minor lipid localized on the inner leaflet of the PM. Structure-based studies revealed that binding of PI(4,5P2 to MA induces minor conformational changes, leading to exposure of the myristyl (myr group. Exposure of the myr group is also triggered by binding of calmodulin, enhanced by factors that promote protein self-association like the capsid domain of Gag, and is modulated by pH. Despite the steady progress in defining both the viral and cellular determinants of retroviral assembly and release, Gag’s intracellular interactions and trafficking to its assembly sites in the infected cell are poorly understood. In this review, we summarize the current understanding of the structural and functional role of MA in HIV replication.

  6. Footprints of Optimal Protein Assembly Strategies in the Operonic Structure of Prokaryotes

    Directory of Open Access Journals (Sweden)

    Jan Ewald

    2015-04-01

    Full Text Available In this work, we investigate optimality principles behind synthesis strategies for protein complexes using a dynamic optimization approach. We show that the cellular capacity of protein synthesis has a strong influence on optimal synthesis strategies reaching from a simultaneous to a sequential synthesis of the subunits of a protein complex. Sequential synthesis is preferred if protein synthesis is strongly limited, whereas a simultaneous synthesis is optimal in situations with a high protein synthesis capacity. We confirm the predictions of our optimization approach through the analysis of the operonic organization of protein complexes in several hundred prokaryotes. Thereby, we are able to show that cellular protein synthesis capacity is a driving force in the dissolution of operons comprising the subunits of a protein complex. Thus, we also provide a tested hypothesis explaining why the subunits of many prokaryotic protein complexes are distributed across several operons despite the presumably less precise co-regulation.

  7. Combination approaches with immune checkpoint blockade in cancer therapy

    Directory of Open Access Journals (Sweden)

    Maarten Swart

    2016-11-01

    Full Text Available In healthy individuals, immune checkpoint molecules prevent autoimmune responses and limit immune cell-mediated tissue damage. Tumors frequently exploit these molecules to evade eradication by the immune system. Over the past years, immune checkpoint blockade of cytotoxic T lymphocyte antigen-4 (CTLA-4 and programmed death-1 (PD-1 emerged as promising strategies to activate anti-tumor cytotoxic T cell responses. Although complete regression and long-term survival is achieved in some patients, not all patients respond. This review describes promising, novel combination approaches involving immune checkpoint blockade, aimed at increasing response-rates to the single treatments.

  8. Large-Area Protein Patterns Generated by Ordered Binary Colloidal Assemblies as Templates

    DEFF Research Database (Denmark)

    Singh, Gurvinder; Gohri, Vipul; Pillai, Saju

    2011-01-01

    We demonstrate the use of binary colloidal assemblies as lithographic masks to generate tunable Au patterns on SiO(2) substrates with dimensions ranging from micrometers to nanometers. Such patterns can be modified with different chemistries to create patterns with well-defined sites for selectiv...

  9. A simple coarse-grained model for self-assembling silk-like protein fibers

    NARCIS (Netherlands)

    Schor, M.; Ensing, B.; Bolhuis, P.G.

    2010-01-01

    Collagen-silk-collagen triblock polypeptides can self-assemble at low pH into nanometer thin fibers with a length in the order of micrometers. Previously we predicted, via all-atom simulations, the structure of the folded silk domain to be a beta-roll. In this work we develop a simple coarse-grained

  10. Tomato spotted wilt virus particle assembly : studying the role of the structural proteins in vivo

    NARCIS (Netherlands)

    Snippe, M.

    2006-01-01

    Members of the Bunyaviridae have spherical, enveloped virus particles that acquire their lipid membrane at the Golgi complex. For the animal-infecting bunyaviruses, virus assembly involves budding of ribonucleoprotein particles (RNPs) into vacuolised lumen of the Golgi complex, after which the

  11. Programmable Self-Assembly of DNA-Protein Hybrid Hydrogel for Enzyme Encapsulation with Enhanced Biological Stability.

    Science.gov (United States)

    Wan, Lan; Chen, Qiaoshu; Liu, Jianbo; Yang, Xiaohai; Huang, Jin; Li, Li; Guo, Xi; Zhang, Jue; Wang, Kemin

    2016-04-11

    A DNA-protein hybrid hydrogel was constructed based on a programmable assembly approach, which served as a biomimetic physiologic matrix for efficient enzyme encapsulation. A dsDNA building block tailored with precise biotin residues was fabricated based on supersandwich hybridization, and then the addition of streptavidin triggered the formation of the DNA-protein hybrid hydrogel. The biocompatible hydrogel, which formed a flower-like porous structure that was 6.7 ± 2.1 μm in size, served as a reservoir system for enzyme encapsulation. Alcohol oxidase (AOx), which served as a representative enzyme, was encapsulated in the hybrid hydrogel using a synchronous assembly approach. The enzyme-encapsulated hydrogel was utilized to extend the duration time for ethanol removal in serum plasma and the enzyme retained 78% activity after incubation with human serum for 24 h. The DNA-protein hybrid hydrogel can mediate the intact immobilization on a streptavidin-modified and positively charged substrate, which is very beneficial to solid-phase biosensing applications. The hydrogel-encapsulated enzyme exhibited improved stability in the presence of various denaturants. For example, the encapsulated enzyme retained 60% activity after incubation at 55 °C for 30 min. The encapsulated enzyme also retains its total activity after five freeze-thaw cycles and even suspended in solution containing organic solvents.

  12. Proton-driven assembly of the Rous Sarcoma virus capsid protein results in the formation of icosahedral particles.

    Science.gov (United States)

    Hyun, Jae-Kyung; Radjainia, Mazdak; Kingston, Richard L; Mitra, Alok K

    2010-05-14

    In a mature and infectious retroviral particle, the capsid protein (CA) forms a shell surrounding the genomic RNA and the replicative machinery of the virus. The irregular nature of this capsid shell precludes direct atomic resolution structural analysis. CA hexamers and pentamers are the fundamental building blocks of the capsid, however the pentameric state, in particular, remains poorly characterized. We have developed an efficient in vitro protocol for studying the assembly of Rous sarcoma virus (RSV) CA that involves mild acidification and produces structures modeling the authentic viral capsid. These structures include regular spherical particles with T = 1 icosahedral symmetry, built from CA pentamers alone. These particles were subject to cryoelectron microscopy (cryo-EM) and image processing, and a pseudo-atomic model of the icosahedron was created by docking atomic structures of the constituent CA domains into the cryo-EM-derived three-dimensional density map. The N-terminal domain (NTD) of CA forms pentameric turrets, which decorate the surface of the icosahedron, while the C-terminal domain (CTD) of CA is positioned underneath, linking the pentamers. Biophysical analysis of the icosahedral particle preparation reveals that CA monomers and icosahedra are the only detectable species and that these exist in reversible equilibrium at pH 5. These same acidic conditions are known to promote formation of a RSV CA CTD dimer, present within the icosahedral particle, which facilitates capsid assembly. The results are consistent with a model in which RSV CA assembly is a nucleation-limited process driven by very weak protein-protein interactions.

  13. Proton-driven Assembly of the Rous Sarcoma Virus Capsid Protein Results in the Formation of Icosahedral Particles*

    Science.gov (United States)

    Hyun, Jae-Kyung; Radjainia, Mazdak; Kingston, Richard L.; Mitra, Alok K.

    2010-01-01

    In a mature and infectious retroviral particle, the capsid protein (CA) forms a shell surrounding the genomic RNA and the replicative machinery of the virus. The irregular nature of this capsid shell precludes direct atomic resolution structural analysis. CA hexamers and pentamers are the fundamental building blocks of the capsid, however the pentameric state, in particular, remains poorly characterized. We have developed an efficient in vitro protocol for studying the assembly of Rous sarcoma virus (RSV) CA that involves mild acidification and produces structures modeling the authentic viral capsid. These structures include regular spherical particles with T = 1 icosahedral symmetry, built from CA pentamers alone. These particles were subject to cryoelectron microscopy (cryo-EM) and image processing, and a pseudo-atomic model of the icosahedron was created by docking atomic structures of the constituent CA domains into the cryo-EM-derived three-dimensional density map. The N-terminal domain (NTD) of CA forms pentameric turrets, which decorate the surface of the icosahedron, while the C-terminal domain (CTD) of CA is positioned underneath, linking the pentamers. Biophysical analysis of the icosahedral particle preparation reveals that CA monomers and icosahedra are the only detectable species and that these exist in reversible equilibrium at pH 5. These same acidic conditions are known to promote formation of a RSV CA CTD dimer, present within the icosahedral particle, which facilitates capsid assembly. The results are consistent with a model in which RSV CA assembly is a nucleation-limited process driven by very weak protein-protein interactions. PMID:20228062

  14. Layer-by-layer assembly of DNA- and protein-containing films on microneedles for drug delivery to the skin.

    Science.gov (United States)

    Saurer, Eric M; Flessner, Ryan M; Sullivan, Sean P; Prausnitz, Mark R; Lynn, David M

    2010-11-08

    Microneedle patches contain micrometer-scale needles coated with bioactive agents for minimally invasive drug delivery to the skin. In this study, we introduce layer-by-layer approaches to the fabrication of ultrathin DNA- and protein-containing polyelectrolyte films (or "polyelectrolyte multilayers", PEMs) on the surfaces of stainless steel microneedles. DNA-containing PEMs were fabricated on microneedles by the alternating deposition of plasmid DNA and a hydrolytically degradable poly(β-amino ester). Protein-containing PEMs were fabricated using sodium poly(styrene sulfonate) (SPS) and bovine pancreatic ribonuclease A (RNase A) conjugated to a synthetic protein transduction domain. Layer-by-layer assembly resulted in ultrathin, uniform, and defect-free coatings on the surfaces of the microneedles, as characterized by fluorescence microscopy. These films eroded and thereby released DNA or protein when incubated in saline or when inserted into porcine cadaver skin and deposited DNA or protein along the edges of microneedle tracks to depths of ∼500 to 600 μm. We conclude that PEM-coated microneedles offer a novel and useful approach to the transdermal delivery of DNA- and protein-based therapeutics and could also prove useful in other applications.

  15. A Binary Bivalent Supramolecular Assembly Platform Based on Cucurbit[8]uril and Dimeric Adapter Protein 14‐3‐3

    Science.gov (United States)

    de Vink, Pim J.; Briels, Jeroen M.; Schrader, Thomas; Milroy, Lech‐Gustav

    2017-01-01

    Abstract Interactions between proteins frequently involve recognition sequences based on multivalent binding events. Dimeric 14‐3‐3 adapter proteins are a prominent example and typically bind partner proteins in a phosphorylation‐dependent mono‐ or bivalent manner. Herein we describe the development of a cucurbit[8]uril (Q8)‐based supramolecular system, which in conjunction with the 14‐3‐3 protein dimer acts as a binary and bivalent protein assembly platform. We fused the phenylalanine–glycine–glycine (FGG) tripeptide motif to the N‐terminus of the 14‐3‐3‐binding epitope of the estrogen receptor α (ERα) for selective binding to Q8. Q8‐induced dimerization of the ERα epitope augmented its affinity towards 14‐3‐3 through a binary bivalent binding mode. The crystal structure of the Q8‐induced ternary complex revealed molecular insight into the multiple supramolecular interactions between the protein, the peptide, and Q8. PMID:28510303

  16. Layer-by-Layer Assembly of DNA- and Protein-Containing Films on Microneedles for Drug Delivery to the Skin

    Science.gov (United States)

    Saurer, Eric M.; Flessner, Ryan M.; Sullivan, Sean P.

    2010-01-01

    Microneedle patches contain micron-scale needles coated with bioactive agents for minimally invasive drug delivery to the skin. In this study, we introduce layer-by-layer approaches to the fabrication of ultrathin DNA- and protein-containing polyelectrolyte films (or ‘polyelectrolyte multilayers’, PEMs) on the surfaces of stainless steel microneedles. DNA-containing PEMs were fabricated on microneedles by the alternating deposition of plasmid DNA and a hydrolytically degradable poly(β-amino ester). Protein-containing PEMs were fabricated using sodium poly(styrene sulfonate) (SPS) and bovine pancreatic ribonuclease A (RNase A) conjugated to a synthetic protein transduction domain. Layer-by-layer assembly resulted in ultrathin, uniform, and defect-free coatings on the surfaces of the microneedles, as characterized by fluorescence microscopy. These films eroded and thereby released DNA or protein when incubated in saline or when inserted into porcine cadaver skin, and deposited DNA or protein along the edges of microneedle tracks to depths of ~500 to 600μm. We conclude that PEM-coated microneedles offer a novel and useful approach to the transdermal delivery of DNA- and protein-based therapeutics and could also prove useful in other applications. PMID:20942396

  17. Genome Report: Identification and Validation of Antigenic Proteins from Pajaroellobacter abortibovis Using De Novo Genome Sequence Assembly and Reverse Vaccinology

    Directory of Open Access Journals (Sweden)

    Bryan T. Welly

    2017-02-01

    Full Text Available Epizootic bovine abortion (EBA, or “foothill abortion,” is the leading cause of beef cattle abortion in California and has also been reported in Nevada and Oregon. In the 1970s, the soft-shelled tick Ornithodoros coriaceus, or “pajaroello tick,” was confirmed as the disease-transmitting vector. In 2005, a novel Deltaproteobacterium was discovered as the etiologic agent of EBA (aoEBA, recently named Pajaroellobacter abortibovis. This organism cannot be grown in culture using traditional microbiological techniques; it can only be grown in experimentally-infected severe combined immunodeficient (SCID mice. The objectives of this study were to perform a de novo genome assembly for P. abortibovis and identify and validate potential antigenic proteins as candidates for future recombinant vaccine development. DNA and RNA were extracted from spleen tissue collected from experimentally-infected SCID mice following exposure to P. abortibovis. This combination of mouse and bacterial DNA was sequenced and aligned to the mouse genome. Mouse sequences were subtracted from the sequence pool and the remaining sequences were de novo assembled at 50x coverage into a 1.82 Mbp complete closed circular Deltaproteobacterial genome containing 2250 putative protein-coding sequences. Phylogenetic analysis of P. abortibovis predicts that this bacterium is most closely related to the organisms of the order Myxococcales, referred to as Myxobacteria. In silico prediction of vaccine candidates was performed using a reverse vaccinology approach resulting in the identification and ranking of the top 10 candidate proteins that are likely to be antigenic. Immunologic testing of these candidate proteins confirmed antigenicity of seven of the nine expressed protein candidates using serum from P. abortibovis immunized mice.

  18. Truncated forms of viral VP2 proteins fused to EGFP assemble into fluorescent parvovirus-like particles

    Directory of Open Access Journals (Sweden)

    Vuento Matti

    2006-12-01

    Full Text Available Abstract Fluorescence correlation spectroscopy (FCS monitors random movements of fluorescent molecules in solution, giving information about the number and the size of for example nano-particles. The canine parvovirus VP2 structural protein as well as N-terminal deletion mutants of VP2 (-14, -23, and -40 amino acids were fused to the C-terminus of the enhanced green fluorescent protein (EGFP. The proteins were produced in insect cells, purified, and analyzed by western blotting, confocal and electron microscopy as well as FCS. The non-truncated form, EGFP-VP2, diffused with a hydrodynamic radius of 17 nm, whereas the fluorescent mutants truncated by 14, 23 and 40 amino acids showed hydrodynamic radii of 7, 20 and 14 nm, respectively. These results show that the non-truncated EGFP-VP2 fusion protein and the EGFP-VP2 constructs truncated by 23 and by as much as 40 amino acids were able to form virus-like particles (VLPs. The fluorescent VLP, harbouring VP2 truncated by 23 amino acids, showed a somewhat larger hydrodynamic radius compared to the non-truncated EGFP-VP2. In contrast, the construct containing EGFP-VP2 truncated by 14 amino acids was not able to assemble into VLP-resembling structures. Formation of capsid structures was confirmed by confocal and electron microscopy. The number of fluorescent fusion protein molecules present within the different VLPs was determined by FCS. In conclusion, FCS provides a novel strategy to analyze virus assembly and gives valuable structural information for strategic development of parvovirus-like particles.

  19. Immune checkpoint blockade therapy: The 2014 Tang prize in biopharmaceutical science

    Directory of Open Access Journals (Sweden)

    Ya-Shan Chen

    2015-02-01

    Full Text Available The first Tang Prize for Biopharmaceutical Science has been awarded to Prof. James P. Allison and Prof. Tasuku Honjo for their contributions leading to an entirely new way to treat cancer by blocking the molecules cytotoxic T lymphocyte-associated antigen 4 (CTLA-4 and programmed cell death protein 1 (PD-1 that turn off immune response. The treatment, called "immune checkpoint blockade therapy," has opened a new therapeutic era. Here the discoveries of the immune checkpoints and how they contribute to the maintenance of self-tolerance, as well as how to protect tissues from the excess immune responses causing damage are reviewed. The efforts made by Prof. Allison and Prof. Honjo for developing the most promising approaches to activate therapeutic antitumor immunity are also summarized. Since these certain immune checkpoint pathways appear to be one of the major mechanisms resulting in immune escape of tumors, the presence of anti-CTLA-4 and/or anti-PD-1 should contribute to removal of the inhibition signals for T cell activation. Subsequently, it will enhance specific T cell activation and, therefore, strengthen antitumor immunity.

  20. Survival of the replication checkpoint deficient cells requires MUS81-RAD52 function.

    Directory of Open Access Journals (Sweden)

    Ivana Murfuni

    2013-10-01

    Full Text Available In checkpoint-deficient cells, DNA double-strand breaks (DSBs are produced during replication by the structure-specific endonuclease MUS81. The mechanism underlying MUS81-dependent cleavage, and the effect on chromosome integrity and viability of checkpoint deficient cells is only partly understood, especially in human cells. Here, we show that MUS81-induced DSBs are specifically triggered by CHK1 inhibition in a manner that is unrelated to the loss of RAD51, and does not involve formation of a RAD51 substrate. Indeed, CHK1 deficiency results in the formation of a RAD52-dependent structure that is cleaved by MUS81. Moreover, in CHK1-deficient cells depletion of RAD52, but not of MUS81, rescues chromosome instability observed after replication fork stalling. However, when RAD52 is down-regulated, recovery from replication stress requires MUS81, and loss of both these proteins results in massive cell death that can be suppressed by RAD51 depletion. Our findings reveal a novel RAD52/MUS81-dependent mechanism that promotes cell viability and genome integrity in checkpoint-deficient cells, and disclose the involvement of MUS81 to multiple processes after replication stress.

  1. Radiotherapy and immune checkpoint blockades: a snapshot in 2016

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Tae Yool [Dept. of Radiation Oncology, Hallym University Chuncheon Sacred Heart Hospital, Chuncheon (Korea, Republic of); Kim, In Ah [Dept. of Radiation Oncology, Seoul National University College of Medicine, Seoul (Korea, Republic of)

    2016-12-15

    Immune checkpoint blockades including monoclonal antibodies (mAbs) of cytotoxic T-lymphocyte antigen-4 (CTLA-4), programmed death-1 (PD-1), and programmed death-ligand 1 (PD-L1) have been emerged as a promising anticancer therapy. Several immune checkpoint blockades have been approved by US Food and Drug Administration (FDA), and have shown notable success in clinical trials for patients with advanced melanoma and non-small cell lung cancer. Radiotherapy is a promising combination partner of immune checkpoint blockades due to its potent pro-immune effect. This review will cover the current issue and the future perspectives for combined with radiotherapy and immune checkpoint blockades based upon the available preclinical and clinical data.

  2. A light sensitive self-assembled nanogel as a tecton for protein patterning materials.

    Science.gov (United States)

    Nishimura, Tomoki; Takara, Masahiro; Mukai, Sada-atsu; Sawada, Shin-ichi; Sasaki, Yoshihiro; Akiyoshi, Kazunari

    2016-01-21

    A self-assembled nanogel is constructed from light-sensitive cholesteryl pullulan (Ls-CHP) by using photo-labile ortho-nitrobenzyl (o-NB) units. The nanogel-based film is obtained by evaporation of an Ls-CHP nanogel solution. Exposure of the resulting nanogel-based film to light with a mask resulted in a patterned film that can encapsulate FITC-insulin.

  3. Synthesis and evaluation of 2-pyridinylpyrimidines as inhibitors of HIV-1 structural protein assembly

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Milan; Štěpánek, Ondřej; Parkan, Kamil; Albinana, C. B.; Pávová, Marcela; Weber, Jan; Kräusslich, H. G.; Konvalinka, Jan; Machara, A.

    2016-01-01

    Roč. 26, č. 15 (2016), s. 3487-3490 ISSN 0960-894X R&D Projects: GA ČR GA13-19561S; GA MŠk(CZ) LK11207 Institutional support: RVO:61388963 Keywords : assay * assembly * capsid * inhibition * pyrimidine Subject RIV: CE - Biochemistry Impact factor: 2.454, year: 2016 http://www.sciencedirect.com/science/article/pii/S0960894X16306503

  4. Mps1Mph1 Kinase Phosphorylates Mad3 to Inhibit Cdc20Slp1-APC/C and Maintain Spindle Checkpoint Arrests.

    Directory of Open Access Journals (Sweden)

    Judith Zich

    2016-02-01

    Full Text Available The spindle checkpoint is a mitotic surveillance system which ensures equal segregation of sister chromatids. It delays anaphase onset by inhibiting the action of the E3 ubiquitin ligase known as the anaphase promoting complex or cyclosome (APC/C. Mad3/BubR1 is a key component of the mitotic checkpoint complex (MCC which binds and inhibits the APC/C early in mitosis. Mps1(Mph1 kinase is critical for checkpoint signalling and MCC-APC/C inhibition, yet few substrates have been identified. Here we identify Mad3 as a substrate of fission yeast Mps1(Mph1 kinase. We map and mutate phosphorylation sites in Mad3, producing mutants that are targeted to kinetochores and assembled into MCC, yet display reduced APC/C binding and are unable to maintain checkpoint arrests. We show biochemically that Mad3 phospho-mimics are potent APC/C inhibitors in vitro, demonstrating that Mad3p modification can directly influence Cdc20(Slp1-APC/C activity. This genetic dissection of APC/C inhibition demonstrates that Mps1(Mph1 kinase-dependent modifications of Mad3 and Mad2 act in a concerted manner to maintain spindle checkpoint arrests.

  5. The correlation between the adsorption of adhesive proteins and cell behaviour on hydroxyl-methyl mixed self-assembled monolayers.

    Science.gov (United States)

    Barrias, Cristina C; Martins, M Cristina L; Almeida-Porada, Graça; Barbosa, Mário A; Granja, Pedro L

    2009-01-01

    The objective of this study was to compare the biological effects of two key cell-adhesive proteins, fibronectin (FN) and vitronectin (VN), upon adsorption onto molecularly-designed model surfaces. Single-component and mixed self-assembled monolayers (SAMs) of alkanethiols on gold with OH and CH(3) terminal groups were prepared at 100%, 65%, 36% and 0% of OH at the surface, to generate a range of surfaces with a simple chemistry and a wettability gradient. FN and VN were adsorbed under non-competitive (single-protein solutions) and competitive (multi-protein solutions) conditions, and compared at different levels: adsorbed amount (radiolabelling), elution, functional presentation of cell-binding domains (ELISA), and role in mediating cell adhesion (antibody-based assay). The observed trends were related to mesenchymal stem cell response in terms of adhesion and overall cell morphology. Under non-competitive conditions, adsorption of both proteins increased with surface hydrophobicity. The presence of competitive proteins significantly decreased the adsorbed amounts, although both proteins were still detected in all SAMs. Adsorption of FN followed a trend similar to that of non-competitive conditions, while adsorption of VN was higher on 100%OH-SAMs. Concerning elution, retention of adsorbed VN was always higher than that of FN. For both proteins, functional presentation of cell-binding domains was more effective on the more hydrophilic 100%OH-SAMs. This fact, coupled to the ability of this type of SAMs to selectively recruit and retain VN in the presence of competitive serum proteins, seems to correlate with the better cell response observed on these surfaces, as compared with hydrophobic 0%OH(100%CH(3))-SAMs.

  6. Alterations of Mitochondrial Protein Assembly and Jasmonic Acid Biosynthesis Pathway in Honglian (HL)-type Cytoplasmic Male Sterility Rice*

    Science.gov (United States)

    Liu, Gai; Tian, Han; Huang, Yun-Qing; Hu, Jun; Ji, Yan-Xiao; Li, Shao-Qing; Feng, Yu-Qi; Guo, Lin; Zhu, Ying-Guo

    2012-01-01

    It has been suggested that the mitochondrial chimeric gene orfH79 is the cause for abortion of microspores in Honglian cytoplasmic male sterile rice, yet little is known regarding its mechanism of action. In this study, we used a mass spectrometry-based quantitative proteomics strategy to compare the mitochondrial proteome between the sterile line Yuetai A and its fertile near-isogenic line Yuetai B. We discovered a reduced quantity of specific proteins in mitochondrial complexes in Yuetai A compared with Yuetai B, indicating a defect in mitochondrial complex assembly in the sterile line. Western blotting showed that ORFH79 protein and ATP1 protein, an F1 sector component of complex V, are both associated with large protein complexes of similar size. Respiratory complex activity assays and transmission electron microscopy revealed functional and morphological defects in the mitochondria of Yuetai A when compared with Yuetai B. In addition, we identified one sex determination TASSELSEED2-like protein increased in Yuetai A, leading to the discovery of an aberrant variation of the jasmonic acid pathway during the development of microspores. PMID:23027867

  7. 133 Structural basis for ebolavirus matrix assembly and budding; protein plasticity allows multiple functions

    OpenAIRE

    Bornholdt, Zachary; Noda, Takeshi; Abelson, Dafna; Halfmann, Peter; Wood, Malcolm; Kawaoa, Yoshihiro; Saphire, Erica Ollmann

    2014-01-01

    Proteins, particularly viral proteins, can be multifunctional, but the mechanism(s) behind this trait are not fully understood. Here, we illustrate through multiple crystal structures, biochemistry and cellular microscopy that the Ebola virus VP40 protein rearranges into different st