WorldWideScience

Sample records for assays transcriptional activity

  1. Development of a fluorescent microsphere-based multiplexed high-throughput assay system for profiling of transcription factor activation.

    Science.gov (United States)

    Yaoi, Takuro; Jiang, Xin; Li, Xianqiang

    2006-06-01

    Transcription factors (TFs), which play crucial roles in the regulation of gene expression in the human genome, are highly regulated by a variety of mechanisms. A single extracellular stimulus can trigger multiple signaling pathways, and these in turn can activate multiple TFs to mediate the inducible expression of target genes. Alterations in the activities of TFs are often associated with human diseases, such as altered activating factor 1, estrogen receptor, and p53 function in cancer, nuclear factor kappaB in inflammatory diseases, and peroxisome proliferator-activated receptor gamma in obesity. A systematic assay for profiling the activation of TFs will aid in elucidating the mechanisms of TF activation, reveal altered TFs associated with human diseases, and aid in developing assays for drug discovery. Here, we developed a 24-plex fluorescent microsphere-based TF activation assay system with a 96-well plate format. The assay system enabled high-throughput profiling of the DNA binding activity of TFs in multiple samples with high sensitivity. PMID:16834534

  2. High throughput assays for analyzing transcription factors.

    Science.gov (United States)

    Li, Xianqiang; Jiang, Xin; Yaoi, Takuro

    2006-06-01

    Transcription factors are a group of proteins that modulate the expression of genes involved in many biological processes, such as cell growth and differentiation. Alterations in transcription factor function are associated with many human diseases, and therefore these proteins are attractive potential drug targets. A key issue in the development of such therapeutics is the generation of effective tools that can be used for high throughput discovery of the critical transcription factors involved in human diseases, and the measurement of their activities in a variety of disease or compound-treated samples. Here, a number of innovative arrays and 96-well format assays for profiling and measuring the activities of transcription factors will be discussed. PMID:16834538

  3. Construction and Activity Assay of the Activating Transcription Factor 3 Reporter Vector pATF/CRE-luc

    Institute of Scientific and Technical Information of China (English)

    Jun-Qing XU; Jing-Lan DENG; You-Sheng WU; Han-Yan FU; Rui-Hua WANG; Jian ZHANG; Fan LU; Zhong-Liang ZHAO

    2006-01-01

    Activating transcription factor 3 (ATF3), a member of the activating transcription factor/cAMP responsive element binding protein (ATF/CREB) family of transcription factors, is induced by many physiological stresses. To investigate the activity of ATF/CREB in cells with physiological stresses, we developed a practical reporter vector, the plasmid pATF/CRE-luc, bearing activating transcription factor/cAMP responsive element (ATF/CRE) binding sites. This plasmid was constructed by inserting three repeats of the ATF/CRE binding element into the plasmid pG51uc, replacing the GAL-4 binding sites. The plasmids pACT/ATF3 and pATF/CRE-luc were transfected into HeLa and NIH3T3 cells, respectively, and the results showed that the expression of luciferase was increased in a dose-dependent manner on plasmid pACT/ATF3. The data suggested that the plasmid pATF/CRE-luc could be used as a sensitive and convenient reporter system of ATF3 activity.

  4. Tartrazine and sunset yellow are xenoestrogens in a new screening assay to identify modulators of human oestrogen receptor transcriptional activity

    International Nuclear Information System (INIS)

    Primary biliary cirrhosis (PBC) is a cholestatic liver disease of unknown cause that occurs most frequently in post-menopausal women. Since the female sex hormone oestrogen can be cholestatic, we hypothesised that PBC may be triggered in part by chronic exposure to xenoestrogens (which may be more active on a background of low endogenous oestrogen levels seen in post-menopausal women). A reporter gene construct employing a synthetic oestrogen response element predicted to specifically interact with oestrogen receptors (ER) was constructed. Co-transfection of this reporter into an ER null cell line with a variety of nuclear receptor expression constructs indicated that the reporter gene was trans-activated by ERα and ERβ, but not by the androgen, thyroid, progesterone, glucocorticoid or vitamin D receptors. Chemicals linked to PBC were then screened for xenoestrogen activity in the human ERα-positive MCF-7 breast cancer cell line. Using this assay, the coal-derived food and cosmetic colourings – sunset yellow and tartrazine – were identified as novel human ERα activators, activating the human ER with an EC50% concentration of 220 and 160 nM, respectively.

  5. In vitro-to-in vivo extrapolation of xenoestrogens using an estrogen responsive in vitro transcriptional activation assay and the in vivo uterotrophic assay

    Science.gov (United States)

    Widespread contamination of waters with both natural and synthetic estrogens is a concern for potential adverse ecological and human health effects. In vitro assays are valuable screening tools for identifying contaminated environmental samples and chemical specific mechanisms o...

  6. In vitro-to-in vivo extrapolation of xenoestrogens using an estrogen responsive in vitro transcriptional activation assay and the in vivo uterotrophic assay##

    Science.gov (United States)

    Widespread contamination of waters with both natural and synthetic estrogens is a concern for potential adverse ecological and human health effects. In vitro assays are valuable screening tools for identifying contaminated environmental samples and chemical specific mechanisms of...

  7. Human reporter gene assays: Transcriptional activity of the androgen receptor is modulated by the cellular environment and promoter context

    International Nuclear Information System (INIS)

    The androgen receptor (AR) is a member of the nuclear receptor superfamily and mediates the physiological effects of androgens. Androgens are essential for male development and disruption of androgen signaling may cause androgen-dependent developmental defects and/or tumors. Here we present a comparative analysis of various model systems for the investigation of endocrine active compounds in human cell lines. We generated reporter plasmids containing androgen response elements derived from the human secretory component or the rat probasin genes as well as the glucocorticoid consensus response element and compared their activities to that of the mouse mammary tumor virus promotor. Additionally, we generated an expression plasmid containing the AR cDNA derived from LNCaP cells. In 22Rv1 cells transiently transfected with human AR, all reporters displayed a dose-dependent, high activity when treated with androgens. Interestingly, the potency of testosterone and its metabolite dihydrotestosterone was very low in HepG2 but not in 22Rv1 cells, independent of the reporter used. The efficacies of the androgens tested were comparable in both cell lines but highly dependent on the reporter used. Based on these results, 22Rv1 cells provide a highly sensitive in vitro test system to analyze endocrine activities of xenobiotics. Furthermore, this study highlights the need to investigate the (anti-) androgenic activity of compounds in dependence of the cellular and promoter context

  8. 转录因子NF-κB 活性检测技术%Techniques for assaying the activity of transcription factor NF-κB

    Institute of Scientific and Technical Information of China (English)

    凌小倩; 王进科

    2013-01-01

    NF-κB 是一种诱导性转录因子,广泛存在于各种细胞,在细胞受到各种刺激时可被激活,调节大量靶基 因,因此在很多重要细胞进程,如细胞生长、分化、凋亡和癌变中均发挥重要作用.自其发现以来的25 年中,NF-κB 是生物医学科学各领域中被持续大量深入研究的前沿热点转录因子,同时也是疾病治疗和药物筛选的重 要靶点.NF-κB 的活性检测是研究其活化和功能首当其冲的实验内容,因此NF-κB 的活性检测技术历来受到重 视和不断发展.特别是近几年来,随着各学科的发展,出现了多种NF-κB 活性检测新技术,如基于双链DNA 修饰微孔板的类ELISA 分析、膜结合分析、各种荧光共振能量转移分析、基于内外切酶保护的荧光报告及核 酸扩增分析、基于免疫微球的质谱及流式细胞分析,以及物理化学分析等.其中有些技术已经对NF-κB 的研究 发挥了重要作用.文章对近年来发展的各种检测技术进行了分类综述,以便从事NF-κB 相关研究的科研人员对 该种转录因子的检测分析技术有一个全貌的了解,并有益于在其研究中选择恰当合适的实验方法.此外,对这 些技术的学习和理解,可能激发研究人员对现有技术的改进和发展新的技术.%NF-κB is a stimulatory transcription factor that is ubiquitous in almost all kinds of cells. When cells are under various stimuli, NF-κB is activated and regulates large numbers of target genes, and thus controls important cellular processes, ranging from cell growth and differentiation to apoptosis and cancer. Therefore, NF-κB is a forefront hotspot transcription factor that is intensively studied in virtually all fields of biomedical sciences, and becomes a promising target for disease therapy and drug screening. The activity detection is the first and inevitable step for the studies of NF-κB activation and function.Therefore, the techniques for detection of

  9. A rice transient assay system identifies a novel domain in NRR required for interaction with NH1/OsNPR1 and inhibition of NH1-mediated transcriptional activation

    Directory of Open Access Journals (Sweden)

    Chern Mawsheng

    2012-02-01

    Full Text Available Abstract Background Arabidopsis NPR1 is a master regulator of systemic acquired resistance. NPR1 binds to TGA transcription factors and functions as a transcriptional co-activator. In rice, NH1/OsNPR1 functions to enhance innate immunity. NRR disrupts NH1 function, when over-expressed. Results We have established a rice transient protoplast assay to demonstrate that NH1 is a transcriptional co-activator and that NRR represses NH1-mediated activation. We identified three NRR homologues (RH1, RH2, and RH3. RH1 and RH3, but not RH2, also effectively repress NH1-mediated transcriptional activation. NRR, RH1, RH2, and RH3 share sequence similarity in a region beyond the previously identified NPR1-interacting domain. This region is required for strong interaction with NH1. A double point mutation, W66A/F70A, in this novel NH1-interacting domain severely reduces interaction with NH1. Mutation W66A/F70A also greatly reduces the ability of NRR to repress NH1-mediated activation. RH2 carries a deviation (amino acids AV in this region as compared to consensus sequences (amino acids ED among NRR, RH1, and RH3. A substitution (AV to ED in RH2 results in strong binding of mutant RH2ED to NH1 and effective repression of NH1-mediated activation. Conclusions The protoplast-based transient system can be used to dissect protein domains associated with their functions. Our results demonstrate that the ability of NRR and its homologues to repress NH1-mediated transcriptional activation is tightly correlated with their ability to bind to NH1. Furthermore, a sequence is identified as a novel NH1-interacting domain. Importantly, this novel sequence is widely present in plant species, from cereals to castor bean plants, to poplar trees, to Arabidopsis, indicating its significance in plants.

  10. Estrogenic Activity of Persistent Organic Pollutants and Parabens Based on the Stably Transfected Human Estrogen Receptor-α Transcriptional Activation Assay (OECD TG 455)

    OpenAIRE

    Kim, Tae Sung; Kim, Chang Yeong; Lee, Hae Kyung; Kang, Il Hyun; Kim, Mi Gyeong; Jung, Ki Kyung; Kwon, Yong Kwan; Nam, Hye-Seon; Hong, Soon Keun; Kim, Hyung Sik; Yoon, Hae Jung; Rhee, Gyu Seek

    2011-01-01

    Screening of estrogenic activity on dichloro diphenyl trichloroethane (DDT), dichloro diphenyl dichloro ethylene (DDE), dieldrin, heptachlor, aldrin, chlordane, lindane, polybrominated diphenyl ethers (PBDE) and parabens was compared using Organization for Economic Cooperation and Development (OECD) test guideline 455 (TG455). The estrogenic activity of DDT was 58,000-fold (PC50, 1.67 × 10−6 M) less than 17β-estradiol(E2) (PC50, 2.88 × 10-11 M) but DDE, dieldrin, heptachlor, aldrin, chlordane...

  11. Isolation of Catharanthus roseus (L.) G. Don Nuclei and Measurement of Rate of Tryptophan decarboxylase Gene Transcription Using Nuclear Run-On Transcription Assay

    OpenAIRE

    Santosh Kumar; Sabhyata Bhatia

    2015-01-01

    Background An accurate assessment of transcription ‘rate’ is often desired to describe the promoter activity. In plants, isolation of transcriptionally active nuclei and their subsequent use in nuclear run-on assays has been challenging and therefore limit an accurate measurement of gene transcription ‘rate’. Catharanthus roseus has emerged as a model medicinal plant as it exhibits an unsurpassed spectrum of chemodiversity, producing over 130 alkaloids through the terpenoid indole alkaloid (T...

  12. Use of the heteroduplex mobility assay and cell sorting to select genome sequences of the CCR5 gene in HEK 293T cells edited by transcription activator-like effector nucleases

    Directory of Open Access Journals (Sweden)

    Arildo Nerys-Junior

    2014-01-01

    Full Text Available Engineered nucleases such as zinc finger nucleases (ZFN and transcription activator-like effector nucleases (TALEN are one of the most promising tools for modifying genomes. These site-specific enzymes cause double- strand breaks that allow gene disruption or gene insertion, thereby facilitating genetic manipulation. The major problem associated with this approach is the labor-intensive procedures required to screen and confirm the cellular modification by nucleases. In this work, we produced a TALEN that targets the human CCR5 gene and developed a heteroduplex mobility assay for HEK 293T cells to select positive colonies for sequencing. This approach provides a useful tool for the quick detection and easy assessment of nuclease activity.

  13. Isolation of Catharanthus roseus (L. G. Don Nuclei and Measurement of Rate of Tryptophan decarboxylase Gene Transcription Using Nuclear Run-On Transcription Assay.

    Directory of Open Access Journals (Sweden)

    Santosh Kumar

    Full Text Available An accurate assessment of transcription 'rate' is often desired to describe the promoter activity. In plants, isolation of transcriptionally active nuclei and their subsequent use in nuclear run-on assays has been challenging and therefore limit an accurate measurement of gene transcription 'rate'. Catharanthus roseus has emerged as a model medicinal plant as it exhibits an unsurpassed spectrum of chemodiversity, producing over 130 alkaloids through the terpenoid indole alkaloid (TIA pathway and therefore serves as a 'molecular hub' to understand gene expression profiles.The protocols presented here streamline, adapt and optimize the existing methods of nuclear run-on assay for use in C. roseus. Here, we fully describe all the steps to isolate transcriptionally active nuclei from C. roseus leaves and utilize them to perform nuclear run-on transcription assay. Nuclei isolated by this method transcribed at a level consistent with their response to external stimuli, as transcription rate of TDC gene was found to be higher in response to external stimuli i.e. when seedlings were subjected to UV-B light or to methyl jasmonate (MeJA. However, the relative transcript abundance measured parallel through qRT-PCR was found to be inconsistent with the synthesis rate indicating that some post transcriptional events might have a role in transcript stability in response to stimuli.Our study provides an optimized, efficient and inexpensive method of isolation of intact nuclei and nuclear 'run-on' transcription assay to carry out in-situ measurement of gene transcription rate in Catharanthus roseus. This would be valuable in investigating the transcriptional and post transcriptional response of other TIA pathway genes in C. roseus. Isolated nuclei may also provide a resource that could be used for performing the chip assay as well as serve as the source of nuclear proteins for in-vitro EMSA studies. Moreover, nascent nuclear run-on transcript could be further

  14. Human cytomegalovirus IE2 protein interacts with transcription activating factors

    Institute of Scientific and Technical Information of China (English)

    徐进平; 叶林柏

    2002-01-01

    The human cytomegalovirus (HCMV) IE86 Cdna was cloned into Pgex-2T and fusion protein GST-IE86 was expressed in E. Coli. SDS-PAGE and Western blot assay indicated that fusion protein GST-IE86 with molecular weight of 92 ku is soluble in the supernatant of cell lysate. Protein GST and fusion protein GST-IE86 were purified by affinity chromatography. The technology of co-separation and specific affinity chromatography was used to study the interactions of HCMV IE86 protein with some transcriptional regulatory proteins and transcriptional factors. The results indicated that IE86 interacts separately with transcriptional factor TFIIB and promoter DNA binding transcription trans-activating factors SP1, AP1 and AP2 to form a heterogenous protein complex. These transcriptional trans-activating factors, transcriptional factor and IE86 protein were adsorbed and retained in the affinity chromatography simultaneously. But IE86 protein could not interact with NF-Кb, suggesting that the function of IE86 protein that can interact with transcriptional factor and transcriptional trans-activating factors has no relevance to protein glycosylation. IE86 protein probably has two domains responsible for binding transcriptional trans-activating regulatory proteins and transcriptional factors respectively, thus activating the transcription of many genes. The interactions accelerated the assembly of the transcriptional initiation complexes.

  15. Establishment of a High-Throughput Assay to Monitor Influenza A Virus RNA Transcription and Replication.

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    Full Text Available Influenza A virus (IAV poses significant threats to public health because of the recent emergence of highly pathogenic strains and wide-spread resistance to available anti-influenza drugs. Therefore, new antiviral targets and new drugs to fight influenza virus infections are needed. Although IAV RNA transcription/replication represents a promising target for antiviral drug development, no assay ideal for high-throughput screening (HTS application is currently available to identify inhibitors targeting these processes. In this work, we developed a novel HTS assay to analyze the transcription and replication of IAV RNA using an A549 cell line stably expressing IAV RNA-dependent RNA polymerase (RdRp complex, NP and a viral mini-genomic RNA. Both secreted Gaussia luciferase (Gluc and blasticidin resistance gene (Bsd were encoded in the viral minigenome and expressed under the control of IAV RdRp. Gluc serves as a reporter to monitor the activity of IAV RdRp, and Bsd is used to maintain the expression of all foreign genes. Biochemical studies and the statistical analysis presented herein demonstrate the high specificity, sensitivity and reproducibility of the assay. This work provides an ideal HTS assay for the identification of inhibitors targeting the function of IAV RdRp and a convenient reporting system for mechanism study of IAV RNA transcription / replication.

  16. Indirect conductimetric assay of antibacterial activities.

    Science.gov (United States)

    Sawai, J; Doi, R; Maekawa, Y; Yoshikawa, T; Kojima, H

    2002-11-01

    The applicability of indirect conductimetric assays for evaluation of antibacterial activity was examined. The minimal inhibitory concentration (MIC) obtained by the indirect method was consistent with that by the direct conductimetric assay and the turbidity method. The indirect assay allows use of growth media, which cannot be used in the direct conductimetric assay, making it possible to evaluate the antibacterial activity of insoluble or slightly soluble materials with high turbidity, such as antibacterial ceramic powders. PMID:12407467

  17. Intrinsic transcript cleavage activity of RNA polymerase.

    OpenAIRE

    Orlova, M; Newlands, J; Das, A; Goldfarb, A; Borukhov, S

    1995-01-01

    The GreA and GreB transcript cleavage factors of Escherichia coli suppress elongation arrest and may have a proofreading role in transcription. With the use of E. coli greA-greB- mutant, RNA polymerase is demonstrated to possess substantial intrinsic transcript cleavage activity. Mildly alkaline pH mimics the effect of the Gre proteins by inducing transcript cleavage in ternary complexes and antagonizing elongation arrest through a cleavage-and-restart reaction. Thus, transcript cleavage cons...

  18. Activity assay of membrane transport proteins

    Institute of Scientific and Technical Information of China (English)

    Hao Xie

    2008-01-01

    Membrane transport proteins are integral membrane proteins and considered as potential drug targets. Activity assay of transport proteins is essential for developing drugs to target these proteins. Major issues related to activity assessment of transport proteins include availability of transporters,transport activity of transporters, and interactions between ligands and transporters. Researchers need to consider the physiological status of proteins (bound in lipid membranes or purified), availability and specificity of substrates, and the purpose of the activity assay (screening, identifying, or comparing substrates and inhibitors) before choosing appropriate assay strategies and techniques. Transport proteins bound in vesicular membranes can be assayed for transporting substrate across membranes by means of uptake assay or entrance counterflow assay. Alternatively, transport proteins can be assayed for interactions with ligands by using techniques such as isothermal titration calorimetry, nuclear magnetic resonance spectroscopy, or surface plasmon resonance. Other methods and techniques such as fluorometry, scintillation proximity assay, electrophysiological assay, or stopped-flow assay could also be used for activity assay of transport proteins. In this paper the major strategies and techniques for activity assessment of membrane transport proteins are reviewed.

  19. New Applications of the Comet Assay: Comet-FISH and Transcription-Coupled DNA Repair

    OpenAIRE

    Spivak, Graciela; Cox, Rachel A.; Hanawalt, Philip C.

    2008-01-01

    Transcription-coupled repair (TCR) is a pathway dedicated to the removal of damage from the template strands of actively transcribed genes. Although the detailed mechanism of TCR is not yet understood, it is believed to be triggered when a translocating RNA polymerase is arrested at a lesion or unusual structure in the DNA. Conventional assays for TCR require high doses of DNA damage for the statistical analysis of repair in the individual strands of DNA sequences ranging in size from a few h...

  20. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription.

    Science.gov (United States)

    Hulme, Amy E; Perez, Omar; Hope, Thomas J

    2011-06-14

    During the early stages of HIV-1 replication the conical capsid composed of p24(CA) protein dissociates from the rest of the cytoplasmic viral complex by a process called uncoating. Although proper uncoating is known to be required for HIV-1 infection, many questions remain about the timing and factors involved in the process. Here we have used two complementary assays to study the process of uncoating in HIV-1-infected cells, specifically looking at the timing of uncoating and its relationship to reverse transcription. We developed a fluorescent microscopy-based uncoating assay that detects the association of p24(CA) with HIV-1 viral complexes in cells. We also used an owl monkey kidney (OMK) cell assay that is based on timed TRIM-CypA-mediated restriction of HIV-1 replication. Results from both assays indicate that uncoating is initiated within 1 h of viral fusion. In addition, treatment with the reverse transcriptase inhibitor nevirapine delayed uncoating in both assays. Analysis of reverse transcription products in OMK cells revealed that the generation of early reverse transcription products coincides with the timing of uncoating in these assays. Collectively, these results suggest that some aspect of reverse transcription has the ability to influence the kinetics of uncoating. PMID:21628558

  1. Endoproteolytic activity assay in malting barley

    Directory of Open Access Journals (Sweden)

    Blanca Gómez Guerrero

    2013-12-01

    Full Text Available Hydrolysis of barley proteins into peptides and amino acids is one of the most important processes during barley germination.The degradation of the endosperm stored proteins facilitates water and enzyme movements, enhances modification, liberates starch granules and increases soluble amino nitrogen. Protease activity is the result of the activities of a mixture of exo- and endo-proteases. The barley proteins are initially solubilized by endo-proteases and the further by exo-proteases. Four classes of endo-proteases have been described: serine-proteases, cysteine-proteases, aspartic-proteases and metallo-proteases. The objective of this work was to develop a rapid and colorimetric enzymatic assay to determine the endo-proteolytic activity of the four endo-protease classes using two different substrates: azo-gelatin and azo-casein. Optimum conditions for the assays such as: pH,reaction time and temperature and absorbance scale were determined. Azo-gelatin presented several difficulties in standardizing an “in solution” assay. On the other hand, azo-casein allowed standardization of the assay for the four enzyme classes to produce consistent results. The endo-proteoteolytic method developed was applied to determine the endo-protease activity in barley, malt and wort.

  2. The CREB Transcription Factor Controls Transcriptional Activity of the Human RIC8B Gene.

    Science.gov (United States)

    Maureira, Alejandro; Sánchez, Rodolfo; Valenzuela, Nicole; Torrejón, Marcela; Hinrichs, María V; Olate, Juan; Gutiérrez, José L

    2016-08-01

    Proper regulation of gene expression is essential for normal development, cellular growth, and differentiation. Differential expression profiles of mRNA coding for vertebrate Ric-8B during embryo and adult stages have been observed. In addition, Ric-8B is expressed in few cerebral nuclei subareas. These facts point to a dynamic control of RIC8B gene expression. In order to understand the transcriptional regulation of this gene, we searched for cis-elements in the sequence of the human RIC8B promoter region, identifying binding sites for the basic/leucine zipper (bZip) CREB transcription factor family (CRE sites) and C/EBP transcription factor family (C/EBP sites). CRE sites were found clustered near the transcription start site, while the C/EBP sites were found clustered at around 300 bp upstream the CRE sites. Here, we demonstrate the ability of CREB1 and C/EBPβ to bind their respective elements identified in the RIC8B promoter. Comparative protein-DNA interaction analyses revealed only the proximal elements as high affinity sites for CREB1 and only the distal elements as high affinity sites for C/EBPβ. Chromatin immunoprecipitation analyses, carried out using a human neuroblastoma cell line, confirmed the preferential association of CREB to the proximal region of the RIC8B promoter. By performing luciferase reporter assays, we found the CRE sites as the most relevant elements for its transcriptional activity. Taken together, these data show the existence of functional CREB and C/EBP binding sites in the human RIC8B gene promoter, a particular distribution of these sites and demonstrate a relevant role of CREB in stimulating transcriptional activity of this gene. J. Cell. Biochem. 117: 1797-1805, 2016. © 2016 Wiley Periodicals, Inc. PMID:26729411

  3. A Quantitative Assay for Aggrecanase Activity

    OpenAIRE

    Will, Horst; Dettloff, Matthias; Bendzkô, Peter; Sveshnikov, Peter

    2005-01-01

    Aggrecanase activities of ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) proteinases were measured with a recombinant aggrecan fragment and two monoclonal antibodies. Recombinant human aggrecan interglobular domain was first incubated in the presence of ADAMTS enzymes. The aggrecan peptide with the N-terminal sequence ARGSVIL released upon hydrolysis was then quantified in an enzyme-linked immunosorbent assay (ELISA) with an anti-neoepitope antibody specific for the N...

  4. Reverse transcription-PCR assays for the differentiation of various US porcine epidemic diarrhea virus strains.

    Science.gov (United States)

    Liu, Xinsheng; Wang, Qiuhong

    2016-08-01

    Concurrently, several porcine epidemic diarrhea virus (PEDV) variants are circulating in US swine farms, including the original US and the spike insertion-deletion (S-INDEL) strains. In this study, reverse transcription (RT)-PCR assays for the detection and differentiation of different US PEDV variants were developed based on the differences in the S1 domain of the spike (S) gene. This assay successfully differentiated three PEDV strains: PC22A (the original US virulent), Iowa106 (S-INDEL), and PC177 (S-197DEL) that was derived from cell culture adaptation and has a 197 amino acid-deletion in the S1 domain. The assays did not amplify the porcine deltacoronavirus OH-FD22 strain or transmissible gastroenteritis virus Miller strain. It is the first report on the development of RT-PCR assays allowing the detection and differentiation of all major types of US PEDV variants. PMID:27134071

  5. Synergistic transcriptional activation by one regulatory protein in response to two metabolites

    OpenAIRE

    Bundy, Becky M.; Collier, Lauren S.; Hoover, Timothy R.; Neidle, Ellen L.

    2002-01-01

    BenM is a LysR-type bacterial transcriptional regulator that controls aromatic compound degradation in Acinetobacter sp. ADP1. Here, in vitro transcription assays demonstrated that two metabolites of aromatic compound catabolism, benzoate and cis,cis-muconate, act synergistically to activate gene expression. The level of BenM-regulated benA transcription was significantly higher in response to both compounds than the combined levels due to each alone. These compounds also were more effective ...

  6. Real-Time Reverse Transcription-PCR Assay for Comprehensive Detection of Human Rhinoviruses▿

    Science.gov (United States)

    Lu, Xiaoyan; Holloway, Brian; Dare, Ryan K.; Kuypers, Jane; Yagi, Shigeo; Williams, John V.; Hall, Caroline B.; Erdman, Dean D.

    2008-01-01

    Human rhinoviruses (HRVs) are important contributors to respiratory disease, but their healthcare burden remains unclear, primarily because of the lack of sensitive, accurate, and convenient means of determining their causal role. To address this, we developed and clinically validated the sensitivity and specificity of a real-time reverse transcription-PCR (RT-PCR) assay targeting the viral 5′ noncoding region defined by sequences obtained from all 100 currently recognized HRV prototype strains and 85 recently circulating field isolates. The assay successfully amplified all HRVs tested and could reproducibly detect 50 HRV RNA transcript copies, with a dynamic range of over 7 logs. In contrast, a quantified RNA transcript of human enterovirus 68 (HEV68) that showed the greatest sequence homology to the HRV primers and probe set was not detected below a concentration of 5 × 105 copies per reaction. Nucleic acid extracts of 111 coded respiratory specimens that were culture positive for HRV or HEV were tested with the HRV real-time RT-PCR assay and by two independent laboratories that used different in-house HRV/HEV RT-PCR assays. Eighty-seven HRV-culture-positive specimens were correctly identified by the real-time RT-PCR assay, and 4 of the 24 HEV-positive samples were positive for HRV. HRV-specific sequences subsequently were identified in these four specimens, suggesting HRV/HEV coinfection in these patients. The assay was successfully applied in an investigation of a coincidental outbreak of HRV respiratory illness among laboratory staff. PMID:18057136

  7. Repressive effects of resveratrol on androgen receptor transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Wen-feng Shi

    Full Text Available BACKGROUND: The chemopreventive effects of resveratrol (RSV on prostate cancer have been well established; the androgen receptor (AR plays pivotal roles in prostatic tumorigenesis. However, the exact underlying molecular mechanisms about the effects of RSV on AR have not been fully elucidated. A model system is needed to determine whether and how RSV represses AR transcriptional activity. METHODOLOGY: The AR cDNA was first cloned into the retroviral vector pOZ-N and then integrated into the genome of AR-negative HeLa cells to generate the AR(+ cells. The constitutively expressed AR was characterized by monitoring hormone-stimulated nuclear translocation, DNA binding, and transcriptional activation, with the AR(- cells serving as controls. AR(+ cells were treated with RSV, and both AR protein levels and AR transcriptional activity were measured simultaneously. Chromatin immunoprecipitation (ChIP assays were used to detect the effects of RSV on the recruitment of AR to its cognate element (ARE. RESULTS: AR in the AR (+ stable cell line functions in a manner similar to that of endogenously expressed AR. Using this model system we clearly demonstrated that RSV represses AR transcriptional activity independently of any effects on AR protein levels. However, neither the hormone-mediated nucleus translocation nor the AR/ARE interaction was affected by RSV treatment. CONCLUSION: We demonstrated unambiguously that RSV regulates AR target gene expression, at least in part, by repressing AR transcriptional activity. Repressive effects of RSV on AR activity result from mechanisms other than the affects of AR nuclear translocation or DNA binding.

  8. Requirement of nuclear localization and transcriptional activity of p53 for its targeting to the yolk syncytial layer (YSL) nuclei in zebrafish embryo and its use for apoptosis assay

    International Nuclear Information System (INIS)

    We expressed zebrafish p53 protein fused to GFP by a neuron-specific HuC promoter in zebrafish embryos. Instead of displaying neuronal expression patterns, p53-GFP was targeted to zebrafish YSL nuclei. This YSL targeting is p53 sequence-specific because GFP fusion proteins of p63 and p73 displayed neuronal-specific patterns. To dissect the underlying mechanisms, various constructs encoding a series of p53 mutant proteins under the control of different promoters were generated. Our results showed that expression of p53, in early zebrafish embryo, is preferentially targeted to the nuclei of YSL, which is mediated by importin. Similarly, this targeting is abrogated when p53 nuclear localization signal is disrupted. In addition, the transcriptional activity of p53 is required for this targeting. We further showed that fusion of pro-apoptotic BAD protein to p53-GFP led to apoptosis of YSL cells, and subsequent imperfect microtubule formation and abnormal blastomere movements

  9. Real-Time Reverse Transcription-PCR Assay for Comprehensive Detection of Human Rhinoviruses▿

    OpenAIRE

    Lu, Xiaoyan; Holloway, Brian; Dare, Ryan K.; Kuypers, Jane; Yagi, Shigeo; Williams, John V.; Hall, Caroline B.; Erdman, Dean D.

    2007-01-01

    Human rhinoviruses (HRVs) are important contributors to respiratory disease, but their healthcare burden remains unclear, primarily because of the lack of sensitive, accurate, and convenient means of determining their causal role. To address this, we developed and clinically validated the sensitivity and specificity of a real-time reverse transcription-PCR (RT-PCR) assay targeting the viral 5′ noncoding region defined by sequences obtained from all 100 currently recognized HRV prototype strai...

  10. Evaluation of the Hologic Panther Transcription-Mediated Amplification Assay for Detection of Mycoplasma genitalium.

    Science.gov (United States)

    Tabrizi, S N; Costa, A M; Su, J; Lowe, P; Bradshaw, C S; Fairley, C K; Garland, S M

    2016-08-01

    The detection of Mycoplasma genitalium was evaluated on 1,080 urine samples by the use of a Panther instrument. Overall sensitivity, specificity, positive predictive values, and negative predictive values were 100%, 99.4%, 93.6%, and 100%, respectively. Detection of M. genitalium by the use of the Panther transcription-mediated amplification assay offers a simple, accurate, and sensitive platform for diagnostic laboratories. PMID:27307453

  11. Rapid and Sensitive Detection of PRRSV by a Reverse Transcription-Loop-mediated Isothermal Amplification Assay

    Institute of Scientific and Technical Information of China (English)

    Lei Zhang; Ye-bing Liu; Lei Chen; Jian-huan Wang; Yi-bao Ning

    2011-01-01

    A real-time monitoring reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed for the sensitive and specific detection of prototypic,prevalent North American porcine reproductive and respiratory syndrome virus (PRRSV)strains.As a higher sensitivity and specificity method than reverse transcription polymerase chain reaction (RT-PCR),the RT-LAMP method only used a turbidimeter,exhibited a detection limit corresponding to a 10-4 dilution of template RNA extracted from 250 μL of 105 of the 50% tissue culture infective dose (TCID50) of PRRSV containing cells,and no cross-reactivity was observed with other related viruses including porcine circovirus type 2,swine influenza virus,porcine rotavirus and classical swine fever virus.From forty-two field samples,33 samples in the RT-LAMP assay was detected positive,whereas three of which were not detected by RT-PCR.Furthermore,in 33 strains of PRRSV,an identical detection rate was observed with the RT-LAMP assay to what were isolated using porcine alveolar macrophages.These findings demonstrated that the RT-LAMP assay has potential clinical applications for the detection of highly pathogenic PRRSV isolates,especially in developing countries.

  12. Chromatin structure near transcriptionally active genes

    International Nuclear Information System (INIS)

    Hypersensitive domains are the most prominent features of transcriptionally active chromatin. In the case of the β/sup A/-globin gene, it seems likely that two or more protein factors are capable of binding to the DNA so tightly that the nucleosome is prevented from binding. We have shown that nucleosomes, once bound in the assembly process in vitro, cannot be displaced. The interaction of the 5S gene transcription factor TFIIIA with its target DNA also is blocked by histones, and it has been suggested that the activation of the gene must occur during replication, before histones are reassembled on the DNA. We suppose that a similar mechanism may govern the binding of the hypersensitivity factors. It should be noted that nucleosomes are excluded not only from the sites to which the factors bind, but also from the regions between the two domains and at either side. 12 refs., 6 figs

  13. Plasminogen activator and its assay of the activity

    International Nuclear Information System (INIS)

    Plasminogen activators (PA) are specific proteolytic enzymes. Which convert the inactive proenzyme to plasmin. The plasmin formed is a potent and nonspecific protease which cleaves blood fibrin clots into soluble polypeptide. The author describes some biochemical characteristic of the different components of the plasminogen activator system, current methods for assay of the activity of the PA. The potential application of PA as diagnostic tools in diseases of the thrombi

  14. Analyte detection using an active assay

    Science.gov (United States)

    Morozov, Victor; Bailey, Charles L.; Evanskey, Melissa R.

    2010-11-02

    Analytes using an active assay may be detected by introducing an analyte solution containing a plurality of analytes to a lacquered membrane. The lacquered membrane may be a membrane having at least one surface treated with a layer of polymers. The lacquered membrane may be semi-permeable to nonanalytes. The layer of polymers may include cross-linked polymers. A plurality of probe molecules may be arrayed and immobilized on the lacquered membrane. An external force may be applied to the analyte solution to move the analytes towards the lacquered membrane. Movement may cause some or all of the analytes to bind to the lacquered membrane. In cases where probe molecules are presented, some or all of the analytes may bind to probe molecules. The direction of the external force may be reversed to remove unbound or weakly bound analytes. Bound analytes may be detected using known detection types.

  15. WRKY Transcription Factors Involved in Activation of SA Biosynthesis Genes

    Directory of Open Access Journals (Sweden)

    Bol John F

    2011-05-01

    Full Text Available Abstract Background Increased defense against a variety of pathogens in plants is achieved through activation of a mechanism known as systemic acquired resistance (SAR. The broad-spectrum resistance brought about by SAR is mediated through salicylic acid (SA. An important step in SA biosynthesis in Arabidopsis is the conversion of chorismate to isochorismate through the action of isochorismate synthase, encoded by the ICS1 gene. Also AVRPPHB SUSCEPTIBLE 3 (PBS3 plays an important role in SA metabolism, as pbs3 mutants accumulate drastically reduced levels of SA-glucoside, a putative storage form of SA. Bioinformatics analysis previously performed by us identified WRKY28 and WRKY46 as possible regulators of ICS1 and PBS3. Results Expression studies with ICS1 promoter::β-glucuronidase (GUS genes in Arabidopsis thaliana protoplasts cotransfected with 35S::WRKY28 showed that over expression of WRKY28 resulted in a strong increase in GUS expression. Moreover, qRT-PCR analyses indicated that the endogenous ICS1 and PBS3 genes were highly expressed in protoplasts overexpressing WRKY28 or WRKY46, respectively. Electrophoretic mobility shift assays indentified potential WRKY28 binding sites in the ICS1 promoter, positioned -445 and -460 base pairs upstream of the transcription start site. Mutation of these sites in protoplast transactivation assays showed that these binding sites are functionally important for activation of the ICS1 promoter. Chromatin immunoprecipitation assays with haemagglutinin-epitope-tagged WRKY28 showed that the region of the ICS1 promoter containing the binding sites at -445 and -460 was highly enriched in the immunoprecipitated DNA. Conclusions The results obtained here confirm results from our multiple microarray co-expression analyses indicating that WRKY28 and WRKY46 are transcriptional activators of ICS1 and PBS3, respectively, and support this in silico screening as a powerful tool for identifying new components of stress

  16. The synchronous active neutron detection assay system

    International Nuclear Information System (INIS)

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ''lock-in'' amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design

  17. Quantitative assay for TALEN activity at endogenous genomic loci

    Directory of Open Access Journals (Sweden)

    Yu Hisano

    2013-02-01

    Artificially designed nucleases such as zinc-finger nucleases (ZFNs and transcription activator-like effector nucleases (TALENs can induce a targeted DNA double-strand break at the specific target genomic locus, leading to the frameshift-mediated gene disruption. However, the assays for their activity on the endogenous genomic loci remain limited. Herein, we describe a versatile modified lacZ assay to detect frameshifts in the nuclease target site. Short fragments of the genome DNA at the target or putative off-target loci were amplified from the genomic DNA of TALEN-treated or control embryos, and were inserted into the lacZα sequence for the conventional blue–white selection. The frequency of the frameshifts in the fragment can be estimated from the numbers of blue and white colonies. Insertions and/or deletions were easily determined by sequencing the plasmid DNAs recovered from the positive colonies. Our technique should offer broad application to the artificial nucleases for genome editing in various types of model organisms.

  18. Environmental phthalate monoesters activate pregnane X receptor-mediated transcription

    International Nuclear Information System (INIS)

    Phthalate esters, widely used as plasticizers in the manufacture of products made of polyvinyl chloride, induce reproductive and developmental toxicities in rodents. The mechanism that underlies these effects of phthalate exposure, including the potential role of members of the nuclear receptor superfamily, is not known. The present study investigates the effects of phthalates on the pregnane X receptor (PXR), which mediates the induction of enzymes involved in steroid metabolism and xenobiotic detoxification. The ability of phthalate monoesters to activate PXR-mediated transcription was assayed in a HepG2 cell reporter assay following transfection with mouse PXR (mPXR), human PXR (hPXR), or the hPXR allelic variants V140M, D163G, and A370T. Mono-2-ethylhexyl phthalate (MEHP) increased the transcriptional activity of both mPXR and hPXR (5- and 15-fold, respectively) with EC50 values of 7-8 μM. mPXR and hPXR were also activated by monobenzyl phthalate (MBzP, up to 5- to 6-fold) but were unresponsive to monomethyl phthalate and mono-n-butyl phthalate (M(n)BP) at the highest concentrations tested (300 μM). hPXR-V140M and hPXR-A370T exhibited patterns of phthalate responses similar to the wild-type receptor. By contrast, hPXR-D163G was unresponsive to all phthalate monoesters tested. Further studies revealed that hPXR-D163G did respond to rifampicin, but required approximately 40-fold higher concentrations than wild-type receptor, suggesting that the ligand-binding domain D163G variant has impaired ligand-binding activity. The responsiveness of PXR to activation by phthalate monoesters demonstrated here suggests that these ubiquitous environmental chemicals may, in part, exhibit their endocrine disruptor activities by altering PXR-regulated steroid hormone metabolism with potential adverse health effects in exposed individuals

  19. Reverse transcription loop-mediated isothermal amplification assay for rapid detection of Papaya ringspot virus.

    Science.gov (United States)

    Shen, Wentao; Tuo, Decai; Yan, Pu; Yang, Yong; Li, Xiaoying; Zhou, Peng

    2014-08-01

    Papaya ringspot virus (PRSV) and Papaya leaf distortion mosaic virus (PLDMV), which causes disease symptoms similar to PRSV, threaten commercial production of both non-transgenic-papaya and PRSV-resistant transgenic papaya in China. A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay to detect PLDMV was developed previously. In this study, the development of another RT-LAMP assay to distinguish among transgenic, PRSV-infected and PLDMV-infected papaya by detection of PRSV is reported. A set of four RT-LAMP primers was designed based on the highly conserved region of the P3 gene of PRSV. The RT-LAMP method was specific and sensitive in detecting PRSV, with a detection limit of 1.15×10(-6)μg of total RNA per reaction. Indeed, the reaction was 10 times more sensitive than one-step RT-PCR. Field application of the RT-LAMP assay demonstrated that samples positive for PRSV were detected only in non-transgenic papaya, whereas samples positive for PLDMV were detected only in commercialized PRSV-resistant transgenic papaya. This suggests that PRSV remains the major limiting factor for non-transgenic-papaya production, and the emergence of PLDMV threatens the commercial transgenic cultivar in China. However, this study, combined with the earlier development of an RT-LAMP assay for PLDMV, will provide a rapid, sensitive and cost-effective diagnostic power to distinguish virus infections in papaya. PMID:24769198

  20. A reverse transcription loop-mediated isothermal amplification assay optimized to detect multiple HIV subtypes.

    Directory of Open Access Journals (Sweden)

    Karen E Ocwieja

    Full Text Available Diagnostic methods for detecting and quantifying HIV RNA have been improving, but efficient methods for point-of-care analysis are still needed, particularly for applications in resource-limited settings. Detection based on reverse-transcription loop-mediated isothermal amplification (RT-LAMP is particularly useful for this, because when combined with fluorescence-based DNA detection, RT-LAMP can be implemented with minimal equipment and expense. Assays have been developed to detect HIV RNA with RT-LAMP, but existing methods detect only a limited subset of HIV subtypes. Here we report a bioinformatic study to develop optimized primers, followed by empirical testing of 44 new primer designs. One primer set (ACeIN-26, targeting the HIV integrase coding region, consistently detected subtypes A, B, C, D, and G. The assay was sensitive to at least 5000 copies per reaction for subtypes A, B, C, D, and G, with Z-factors of above 0.69 (detection of the minor subtype F was found to be unreliable. There are already rapid and efficient assays available for detecting HIV infection in a binary yes/no format, but the rapid RT-LAMP assay described here has additional uses, including 1 tracking response to medication by comparing longitudinal values for a subject, 2 detecting of infection in neonates unimpeded by the presence of maternal antibody, and 3 detecting infection prior to seroconversion.

  1. Activator control of nucleosome occupancy in activation and repression of transcription.

    Directory of Open Access Journals (Sweden)

    Gene O Bryant

    2008-12-01

    Full Text Available The relationship between chromatin structure and gene expression is a subject of intense study. The universal transcriptional activator Gal4 removes promoter nucleosomes as it triggers transcription, but how it does so has remained obscure. The reverse process, repression of transcription, has often been correlated with the presence of nucleosomes. But it is not known whether nucleosomes are required for that effect. A new quantitative assay describes, for any given location, the fraction of DNA molecules in the population that bears a nucleosome at any given instant. This allows us to follow the time courses of nucleosome removal and reformation, in wild-type and mutant cells, upon activation (by galactose and repression (by glucose of the GAL genes of yeast. We show that upon being freed of its inhibitor Gal80 by the action of galactose, Gal4 quickly recruits SWI/SNF to the genes, and that nucleosome "remodeler" rapidly removes promoter nucleosomes. In the absence of SWI/SNF, Gal4's action also results in nucleosome removal and the activation of transcription, but both processes are significantly delayed. Addition of glucose to cells growing in galactose represses transcription. But if galactose remains present, Gal4 continues to work, recruiting SWI/SNF and maintaining the promoter nucleosome-free despite it being repressed. This requirement for galactose is obviated in a mutant in which Gal4 works constitutively. These results show how an activator's recruiting function can control chromatin structure both during gene activation and repression. Thus, both under activating and repressing conditions, the activator can recruit an enzymatic machine that removes promoter nucleosomes. Our results show that whereas promoter nucleosome removal invariably accompanies activation, reformation of nucleosomes is not required for repression. The finding that there are two routes to nucleosome removal and activation of transcription-one that requires the

  2. Hepatocyte nuclear factor 3 activates transcription of thyroid transcription factor 1 in respiratory epithelial cells.

    OpenAIRE

    Ikeda, K.; Shaw-White, J R; Wert, S E; Whitsett, J A

    1996-01-01

    Thyroid transcription factor 1 (TTF-1), hepatocyte nuclear factor 3alpha (HNF-3alpha), and HNF-3beta regulate the transcription of genes expressed in the respiratory epithelium. To test whether members of the HNF-3/forkhead family influence TTF-1 gene expression, deletion constructs containing the 5' region of the human TTF-1 gene were transfected into immortalized mouse lung epithelial (MLE) cells. DNase I protection and electrophoretic mobility shift assays identified elements in the 5' reg...

  3. Reverse transcription genome exponential amplification reaction assay for rapid and universal detection of human rhinoviruses.

    Science.gov (United States)

    Guan, Li; Zhao, Lin-Qing; Zhou, Hang-Yu; Nie, Kai; Li, Xin-Na; Zhang, Dan; Song, Juan; Qian, Yuan; Ma, Xue-Jun

    2016-07-01

    Human rhinoviruses (HRVs) have long been recognized as the cause of more than one-half of acute viral upper respiratory illnesses, and they are associated with more-serious diseases in children, such as asthma, acute otitis media and pneumonia. A rapid and universal test for of HRV infection is in high demand. In this study, a reverse transcription genome exponential amplification reaction (RT-GEAR) assay targeting the HRV 5' untranslated region (UTR) was developed for pan-HRV detection. The reaction was performed in a single tube in one step at 65 °C for 60 min using a real-time fluorometer (Genie(®)II; Optigene). The RT-GEAR assay showed no cross-reactivity with common human enteroviruses, including HEV71, CVA16, CVA6, CVA10, CVA24, CVB5, Echo30, and PV1-3 or with other common respiratory viruses including FluA H3, FluB, PIV1-4, ADV3, RSVA, RSVB and HMPV. With in vitro-transcribed RNA containing the amplified regions of HRV-A60, HRV-B06 and HRV-C07 as templates, the sensitivity of the RT-GEAR assay was 5, 50 and 5 copies/reaction, respectively. Experiments to evaluate the clinical performance of the RT-GEAR assay were also carried out with a panel of 143 previously verified samples, and the results were compared with those obtained using a published semi-nested PCR assay followed by sequencing. The tested panel comprised 91 HRV-negative samples and 52 HRV-positive samples (18 HRV-A-positive samples, 3 HRV-B-positive samples and 31 HRV-C-positive samples). The sensitivity and specificity of the pan-HRVs RT-GEAR assay was 98.08 % and 100 %, respectively. The kappa correlation between the two methods was 0.985. The RT-GEAR assay based on a portable Genie(®)II fluorometer is a sensitive, specific and rapid assay for the universal detection of HRV infection. PMID:27132014

  4. A TATA sequence-dependent transcriptional repressor activity associated with mammalian transcription factor IIA.

    OpenAIRE

    Aso, T.; Serizawa, H; Conaway, R C; Conaway, J W

    1994-01-01

    In the process of characterizing cellular proteins that modulate basal transcription by RNA polymerase II, we identified a novel repressor activity specific for promoters containing consensus TATA boxes. This activity strongly represses TATA-binding protein (TBP)-dependent transcription initiation from core promoter elements containing a consensus TATA sequence, but activates TBP-dependent transcription from core promoter elements lacking a consensus TATA sequence. Purification of this activi...

  5. From an electrophoretic mobility shift assay to isolated transcription factors: a fast genomic-proteomic approach

    Directory of Open Access Journals (Sweden)

    Mechtler Karl

    2010-11-01

    Full Text Available Abstract Background Hypocrea jecorina (anamorph Trichoderma reesei is a filamentous ascomycete of industrial importance due to its hydrolases (e.g., xylanases and cellulases. The regulation of gene expression can influence the composition of the hydrolase cocktail, and thus, transcription factors are a major target of current research. Here, we design an approach for identifying a repressor of a xylanase-encoding gene. Results We used streptavidin affinity chromatography to isolate the Xylanase promoter-binding protein 1 (Xpp1. The optimal conditions and templates for the chromatography step were chosen according to the results of an electrophoretic mobility shift assay performed under repressing conditions, which yielded a DNA-protein complex specific to the AGAA-box (the previously identified, tetranucleotide cis-acting element. After isolating AGAA-box binding proteins, the eluted proteins were identified with Nano-HPLC/tandem MS-coupled detection. We compared the identified peptides to sequences in the H. jecorina genome and predicted in silico the function and DNA-binding ability of the identified proteins. With the results from these analyses, we eliminated all but three candidate proteins. We verified the transcription of these candidates and tested their ability to specifically bind the AGAA-box. In the end, only one candidate protein remained. We generated this protein with in vitro translation and used an EMSA to demonstrate the existence of an AGAA-box-specific protein-DNA complex. We found that the expression of this gene is elevated under repressing conditions relative to de-repressing or inducing conditions. Conclusions We identified a putative transcription factor that is potentially involved in repressing xylanase 2 expression. We also identified two additional potential regulatory proteins that bind to the xyn2 promoter. Thus, we succeeded in identifying novel, putative transcription factors for the regulation of xylanase

  6. Promoter proximal polyadenylation sites reduce transcription activity

    DEFF Research Database (Denmark)

    Andersen, Pia Kjølhede; Lykke-Andersen, Søren; Jensen, Torben Heick

    2012-01-01

    transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ∼500...

  7. Quantitative Analysis of the Relative Transcript Levels of ABC Transporter Atr Genes in Aspergillus nidulans by Real-Time Reverse Transcription-PCR Assay

    OpenAIRE

    Pizeta Semighini, Camile; Marins, Mozart; Goldman, Maria Helena S.; Goldman, Gustavo Henrique

    2002-01-01

    The development of assays for quantitative analysis of the relative transcript levels of ABC transporter genes by real-time reverse transcription-PCR (RT-PCR) might provide important information about multidrug resistance in filamentous fungi. Here, we evaluate the potential of real-time RT-PCR to quantify the relative transcript levels of ABC transporter Atr genes from Aspergillus nidulans. The AtrA to AtrD genes showed different and higher levels in the presence of structurally unrelated dr...

  8. A role of transcriptional activators as antirepressors for the autoinhibitory activity of TATA box binding of transcription factor IID

    OpenAIRE

    Kotani, Tomohiro; Banno, Ken-ichi; Ikura, Mitsuhiko; Hinnebusch, Alan G.; Nakatani, Yoshihiro; Kawaichi, Masashi; Kokubo, Tetsuro

    2000-01-01

    The TATA box-binding activity of transcription factor IID (TFIID) is autoinhibited by the N-terminal domain of the Drosophila TATA box-binding protein- (TBP) associated factor 230/yeast TBP-associated factor 145 subunit, which binds to the TATA box-binding domain of TBP by mimicking the TATA box structure. Here, we propose a mechanism of transcriptional activation that involves antirepression of this autoinhibitory activity by transcriptional activators. Like the autoinhibitory domain of TFII...

  9. A New Microsphere-Based Immunoassay for Measuring the Activity of Transcription Factors

    Directory of Open Access Journals (Sweden)

    Tsai Chueh-Jen

    2010-01-01

    Full Text Available Abstract There are several traditional and well-developed methods for analyzing the activity of transcription factors, such as EMSA, enzyme-linked immunosorbent assay, and reporter gene activity assays. All of these methods have their own distinct disadvantages, but none can analyze the changes in transcription factors in the few cells that are cultured in the wells of 96-well titer plates. Thus, a new microsphere-based immunoassay to measure the activity of transcription factors (MIA-TF was developed. In MIA-TF, NeutrAvidin-labeled microspheres were used as the solid phase to capture biotin-labeled double-strand DNA fragments which contain certain transcription factor binding elements. The activity of transcription factors was detected by immunoassay using a transcription factor-specific antibody to monitor the binding with the DNA probe. Next, analysis was performed by flow cytometry. The targets hypoxia-inducible factor-1α (HIF-1α and nuclear factor-kappa B (NF-κB were applied and detected in this MIA-TF method; the results that we obtained demonstrated that this method could be used to monitor the changes of NF-κB or HIF within 50 or 100 ng of nuclear extract. Furthermore, MIA-TF could detect the changes in NF-κB or HIF in cells that were cultured in wells of a 96-well plate without purification of the nuclear protein, an important consideration for applying this method to high-throughput assays in the future. The development of MIA-TF would support further progress in clinical analysis and drug screening systems. Overall, MIA-TF is a method with high potential to detect the activity of transcription factors.

  10. Recent advances in sulfotransferase enzyme activity assays

    OpenAIRE

    Paul, Priscilla; Suwan, Jiraporn; Liu, Jian; Dordick, Jonathan S.; Linhardt, Robert J.

    2012-01-01

    Sulfotransferases are enzymes that catalyze the transfer of sulfo groups from a donor, for example 3′-phosphoadenosine 5′-phosphosulfate, to an acceptor, for example the amino or hydroxyl groups of a small molecule, xenobiotic, carbohydrate, or peptide. These enzymes are important targets in the design of novel therapeutics for treatment of a variety of diseases. This review examines assays used for this important class of enzyme, paying particular attention to sulfotransferases acting on car...

  11. Inhibition of transcriptional activity of c-JUN by SIRT1

    International Nuclear Information System (INIS)

    c-JUN is a major component of heterodimer transcription factor AP-1 (Activator Protein-1) that activates gene transcription in cell proliferation, inflammation and stress responses. SIRT1 (Sirtuin 1) is a histone deacetylase that controls gene transcription through modification of chromatin structure. However, it is not clear if SIRT1 regulates c-JUN activity in the control of gene transcription. Here, we show that SIRT1 associated with c-JUN in co-immunoprecipitation of whole cell lysate, and inhibited the transcriptional activity of c-JUN in the mammalian two hybridization system. SIRT1 was found in the AP-1 response element in the matrix metalloproteinase-9 (MMP9) promoter DNA leading to inhibition of histone 3 acetylation as shown in a ChIP assay. The SIRT1 signal was reduced by the AP-1 activator PMA, and induced by the SIRT1 activator Resveratrol in the promoter DNA. SIRT1-mediaetd inhibition of AP-1 was demonstrated in the MMP9 gene expression at the gene promoter, mRNA and protein levels. In mouse embryonic fibroblast (MEF) with SIRT1 deficiency (SIRT1-/-), mRNA and protein of MMP9 were increased in the basal condition, and the inhibitory activity of Resveratrol was significantly attenuated. Glucose-induced MMP9 expression was also inhibited by SIRT1 in response to Resveratrol. These data consistently suggest that SIRT1 directly inhibits the transcriptional activity of AP-1 by targeting c-JUN

  12. Enhancer-activated plasmid transcription complexes contain constrained supercoiling.

    OpenAIRE

    Bonilla, P J; Freytag, S O; Lutter, L C

    1991-01-01

    It has been proposed that transcriptionally active chromatin contains totally unconstrained supercoiling. The results of recent studies have raised the possibility that this topological state is the property of highly transcribed genes. Since the transcription rate of RNA polymerase II genes can be dramatically increased by the presence of an enhancer, we have determined if the transcription complex of an enhancer-activated plasmid contains totally unconstrained supercoils. Following transfec...

  13. Human ZCCHC12 activates AP-1 and CREB signaling as a transcriptional co-activator

    Institute of Scientific and Technical Information of China (English)

    Hong Li; Qian Liu; Xiang Hu; Du Feng; Shuanglin Xiang; Zhicheng He; Xingwang Hu; Jianlin Zhou; Xiaofeng Ding; Chang Zhou; Jian Zhang

    2009-01-01

    Mouse zinc finger CCHC domain containing 12 gene (ZCCHC12) has been identified as a transcriptional co-activator of bone morphogenetic protein (BMP) sig-naling,and human ZCCHC12 was reported to be related to non-syndromic X-linked mental retardation (NS-XLMR).However,the details of how human ZCCHCI2 involve in the NS-XLMR still remain unclear.In this study,we identified a novel nuclear localization signal (NLS) in the middle of human ZCCHC12 protein which is responsible for the nuclear localization.Multiple-tissue northern blot analysis indi-cated that ZCCHC12 is highly expressed in human brain.Furthermore,in situ hybridization showed that ZCCHC12 is specifically expressed in neuroepithelium of forebrain,midbrain,and diencephalon regions of mouse E10.5 embryos.Luciferase reporter assays demonstrated that ZCCHC12 enhanced the transcrip-tional activities of activator protein 1 (AP-1) and cAMP response element binding protein (CREB) as a co-activator.In conclusion,we identified a new NLS in ZCCHC12 and figured out that ZCCHC12 functions as a transcriptional co-activator of AP-1 and CREB.

  14. Quantitative Analysis of the Relative Transcript Levels of ABC Transporter Atr Genes in Aspergillus nidulans by Real-Time Reverse Transcription-PCR Assay

    Science.gov (United States)

    Pizeta Semighini, Camile; Marins, Mozart; Goldman, Maria Helena S.; Goldman, Gustavo Henrique

    2002-01-01

    The development of assays for quantitative analysis of the relative transcript levels of ABC transporter genes by real-time reverse transcription-PCR (RT-PCR) might provide important information about multidrug resistance in filamentous fungi. Here, we evaluate the potential of real-time RT-PCR to quantify the relative transcript levels of ABC transporter Atr genes from Aspergillus nidulans. The AtrA to AtrD genes showed different and higher levels in the presence of structurally unrelated drugs, such as camptothecin, imazalil, itraconazole, hygromycin, and 4-nitroquinoline oxide. We also verified the relative transcript levels of the Atr genes in the A. nidulans imazalil-resistant mutants. These genes displayed a very complex pattern in different ima genetic backgrounds. The imaB mutant has higher basal transcript levels of AtrB and -D than those of the wild-type strain. The levels of these two genes are comparable when the imaB mutant is grown in the presence and absence of imazalil. The imaC, -D, and -H mutants have higher basal levels of AtrA than that of the wild type. The same behavior is observed for the relative transcript levels of AtrB in the imaG mutant background. PMID:11872487

  15. Development of a consensus reverse transcription PCR assay for the specific detection of tortoise picornaviruses.

    Science.gov (United States)

    Marschang, Rachel E; Ihász, Katalin; Kugler, Renáta; Lengyel, György; Fehér, Enikő; Marton, Szilvia; Bányai, Krisztián; Aqrawi, Tara; Farkas, Szilvia L

    2016-05-01

    Picornaviruses (PVs) of different terrestrial tortoise species, previously designated as Virus "X," have been frequently detected from various tissues by virus isolation in Terrapene heart cell culture as the preferred laboratory method for diagnosis. Here, we describe the development of 2 diagnostic reverse transcription (RT)-PCR-based assays for the identification and characterization of tortoise PVs belonging to the tentative genus Topivirus To test the novel diagnostic systems, PVs were isolated from swab and tissue samples collected in Germany, Italy, and Hungary between 2000 and 2013. All 25 tested isolates gave positive results with both novel consensus primer sets. Sequencing of the amplified products confirmed that all studied viruses were members of the new proposed genus Topivirus Phylogenetic analyses clearly distinguished 2 lineages within the genus. Based on sequence analysis, no association was observed between the geographic distribution and genetic relatedness. Furthermore, no strict host specificity was indicated. The PCR-based diagnosis may provide a time-saving and sensitive method to detect tortoise PVs, and evaluation of PV presence in these animals may help control virus spread. PMID:27034342

  16. Endoproteolytic activity assay in malting barley

    OpenAIRE

    Blanca Gómez Guerrero; Michael J. Edney

    2013-01-01

    Hydrolysis of barley proteins into peptides and amino acids is one of the most important processes during barley germination.The degradation of the endosperm stored proteins facilitates water and enzyme movements, enhances modification, liberates starch granules and increases soluble amino nitrogen. Protease activity is the result of the activities of a mixture of exo- and endo-proteases. The barley proteins are initially solubilized by endo-proteases and the further by exo-proteases. Four cl...

  17. ASSAYS FOR DETECTION OF TELOMERASE ACTIVITY

    OpenAIRE

    Skvortsov, D.; Zvereva, M.; Shpanchenko, O.; Dontsova, O.

    2011-01-01

    Progressive loss of the telomeric ends of chromosomes caused by the semi-conservative mechanism of DNA replication is an important timing mechanism which controls the number of cells doubling. Telomerase is an enzyme which elongates one chain of the telomeric DNA and compensates for its shortening during replication. Therefore, telomerase activity serves as a proliferation marker. Telomerase activity is not detected in most somatic cells, with the exception of embryonic tissues, stem cells, a...

  18. Validation of a primer optimisation matrix to improve the performance of reverse transcription – quantitative real-time PCR assays

    Directory of Open Access Journals (Sweden)

    Dobrovic Alexander

    2009-06-01

    Full Text Available Abstract Background The development of reverse transcription – quantitative real-time PCR (RT-qPCR platforms that can simultaneously measure the expression of multiple genes is dependent on robust assays that function under identical thermal cycling conditions. The use of a primer optimisation matrix to improve the performance of RT-qPCR assays is often recommended in technical bulletins and manuals. Despite this recommendation, a comprehensive introduction to and evaluation of this approach has been absent from the literature. Therefore, we investigated the impact of varying the primer concentration, leaving all the other reaction conditions unchanged, on a large number of RT-qPCR assays which in this case were designed to be monitored using hydrolysis probes from the Universal Probe Library (UPL library. Findings Optimal RT-qPCR conditions were determined for 60 newly designed assays. The calculated Cq (Quantification Cycle difference, non-specific amplification, and primer dimer formation for a given assay was often dependent on primer concentration. The chosen conditions were further optimised by testing two different probe concentrations. Varying the primer concentrations had a greater effect on the performance of a RT-qPCR assay than varying the probe concentrations. Conclusion Primer optimisation is important for improving the performance of RT-qPCR assays monitored by UPL probes. This approach would also be beneficial to the performance of other RT-qPCR assays such as those using other types of probes or fluorescent intercalating dyes.

  19. Constitutively expressed ERF-VII transcription factors redundantly activate the core anaerobic response in Arabidopsis thaliana.

    Science.gov (United States)

    Bui, Liem T; Giuntoli, Beatrice; Kosmacz, Monika; Parlanti, Sandro; Licausi, Francesco

    2015-07-01

    Plant adaptation to hypoxic conditions is mediated by the transcriptional activation of genes involved in the metabolic reprogramming of plant cells to cope with reduced oxygen availability. Recent studies indicated that members of the group VII of the Ethylene Responsive Transcription Factor (ERFs) family act as positive regulators of this molecular response. In the current study, the five ERF-VII transcription factors of Arabidopsis thaliana were compared to infer a hierarchy in their role with respect to the anaerobic response. When the activity of each transcription factor was tested on a set of hypoxia-responsive promoters, RAP2.2, RAP2.3 and RAP2.12 appeared to be the most powerful activators. RAP2.12 was further dissected in transactivation assays in Arabidopsis protoplasts to identify responsible regions for transcriptional activation. An ultimate C-terminal motif was identified as sufficient to drive gene transcription. Finally, using realtime RT-PCR in single and double mutants for the corresponding genes, we confirmed that RAP2.2 and RAP2.12 exert major control upon the anaerobic response. PMID:26025519

  20. Activation of archaeal transcription mediated by recruitment of transcription factor B.

    Science.gov (United States)

    Ochs, Simon M; Thumann, Sybille; Richau, Renate; Weirauch, Matt T; Lowe, Todd M; Thomm, Michael; Hausner, Winfried

    2012-05-25

    Archaeal promoters consist of a TATA box and a purine-rich adjacent upstream sequence (transcription factor B (TFB)-responsive element (BRE)), which are bound by the transcription factors TATA box-binding protein (TBP) and TFB. Currently, only a few activators of archaeal transcription have been experimentally characterized. The best studied activator, Ptr2, mediates activation by recruitment of TBP. Here, we present a detailed biochemical analysis of an archaeal transcriptional activator, PF1088, which was identified in Pyrococcus furiosus by a bioinformatic approach. Operon predictions suggested that an upstream gene, pf1089, is polycistronically transcribed with pf1088. We demonstrate that PF1088 stimulates in vitro transcription by up to 7-fold when the pf1089 promoter is used as a template. By DNase I and hydroxyl radical footprinting experiments, we show that the binding site of PF1088 is located directly upstream of the BRE of pf1089. Mutational analysis indicated that activation requires the presence of the binding site for PF1088. Furthermore, we show that activation of transcription by PF1088 is dependent upon the presence of an imperfect BRE and is abolished when the pf1089 BRE is replaced with a BRE from a strong archaeal promoter. Gel shift experiments showed that TFB recruitment to the pf1089 operon is stimulated by PF1088, and TFB seems to stabilize PF1088 operator binding even in the absence of TBP. Taken together, these results represent the first biochemical evidence for a transcriptional activator working as a TFB recruitment factor in Archaea, for which the designation TFB-RF1 is suggested. PMID:22496454

  1. One enhancer mediates mafK transcriptional activation in both hematopoietic and cardiac muscle cells

    OpenAIRE

    Katsuoka, Fumiki; Motohashi, Hozumi; Onodera, Ko; Suwabe, Naruyoshi; Engel, James Douglas; Yamamoto, Masayuki

    2000-01-01

    Members of the small Maf family of transcription factors play important roles in hematopoiesis. Using transgenic assays, we discovered a tissue-specific enhancer 3′ to the mafK gene. This enhancer directs mafK transcription in hematopoietic as well as in developing cardiac muscle cells, and was thus designated the hematopoietic and cardiac enhancer of mafK (HCEK). Only two of four GATA consensus motifs identified within HCEK contributed to enhancer activity, and both of these sites were requi...

  2. Staf, a promiscuous activator for enhanced transcription by RNA polymerases II and III.

    OpenAIRE

    Schaub, M; Myslinski, E; Schuster, C.; Krol, A.; Carbon, P

    1997-01-01

    Staf is a zinc finger protein that we recently identified as the transcriptional activator of the RNA polymerase III-transcribed selenocysteine tRNA gene. In this work we demonstrate that enhanced transcription of the majority of vertebrate snRNA and snRNA-type genes, transcribed by RNA polymerases II and III, also requires Staf. DNA binding assays and microinjection of mutant genes into Xenopus oocytes showed the presence of Staf-responsive elements in the genes for human U4C, U6, Y4 and 7SK...

  3. A reverse transcription loop-mediated isothermal amplification assay to rapidly diagnose foot-and-mouth disease virus C

    OpenAIRE

    Ding, Yao-zhong; Zhou, Jian-Hua; Ma, Li-na; Qi, Yan-ni; Wei, Gang; Zhang, Jie; Zhang, Yong-guang

    2014-01-01

    A reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay was developed to rapidly detect foot-and-mouth disease virus serotype C (FMDV C). By testing 10-fold serial dilutions of FMDV C samples, sensitivity of the FMDV C RT-LAMP was found to be 10 times higher than that of conventional reverse transcription-PCR (RT-PCR). No cross-reactivity with A, Asia 1, or O FMDV or swine vesicular disease virus (SVDV) indicated that FMDV C RT-LAMP may be an exciting novel method for d...

  4. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus.

    Directory of Open Access Journals (Sweden)

    Ahmed Abd El Wahed

    Full Text Available Foot-and-mouth disease (FMD is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA assay for the detection of FMD virus (FMDV. The FMDV RT-RPA design targeted the 3D gene of FMDV and a 260 nt molecular RNA standard was used for assay validation. The RT-RPA assay was fast (4-10 minutes and the analytical sensitivity was determined at 1436 RNA molecules detected by probit regression analysis. The FMDV RT-RPA assay detected RNA prepared from all seven FMDV serotypes but did not detect classical swine fever virus or swine vesicular disease virus. The FMDV RT-RPA assay was used in the field during the recent FMD outbreak in Egypt. In clinical samples, reverse transcription polymerase chain reaction (RT-PCR and RT-RPA showed a diagnostic sensitivity of 100% and 98%, respectively. In conclusion, FMDV RT-RPA was quicker and much easier to handle in the field than real-time RT-PCR. Thus RT-RPA could be easily implemented to perform diagnostics at quarantine stations or farms for rapid spot-of-infection detection.

  5. Use of Existing Diagnostic Reverse-Transcription Polymerase Chain Reaction Assays for Detection of Ebola Virus RNA in Semen.

    Science.gov (United States)

    Pettitt, James; Higgs, Elizabeth S; Adams, Rick D; Jahrling, Peter B; Hensley, Lisa E

    2016-04-15

    Sexual transmission of Ebola virus in Liberia has now been documented and associated with new clusters in regions previously declared Ebola free. Assays that have Emergency Use Authorization (EUA) and are routinely used to detect Ebola virus RNA in whole blood and plasma specimens at the Liberian Institute for Biomedical Research were tested for their suitability in detecting the presence of Ebola virus RNA in semen. Qiagen AVL extraction protocols, as well as the Ebola Zaire Target 1 and major groove binder quantitative reverse-transcription polymerase chain reaction assays, were demonstrably suitable for this purpose and should facilitate epidemiologic investigations, including those involving long-term survivors of Ebola. PMID:26374912

  6. The radioenzymatic assay of matrix metalloproteinase-1 activity

    International Nuclear Information System (INIS)

    The radioenzymatic assay method for tissue collagenase, a metalloproteinase, activity in matrix was established. The matrix collagenase is the most vital catabolic enzyme of collagen in tissue. It mainly acts on type- I, II, III matrix collagen and is also called matrix metalloproteinase-1 (MMPs-1). The assay method for the matrix collagenase was as follows: After type-I collagen was prepared from calf skin and identified with HPLC, it was marked with 3H-acetic anhydride as the substrate. Then a series of assays were performed in animal experiments and human cases, which showed that the matrix collagenase (MMPs-1) activity assay is feasible and gives reliable results in clinical biochemistry study

  7. A rapid assay for the biological evaluation of helicase activity.

    OpenAIRE

    sprotocols

    2015-01-01

    Authors: Dimitrios Vlachakis, Andrea Brancale, Colin Berry & Sophia Kossida ### Abstract A new assay for the measurement of helicase enzyme activity was developed for the evaluation of the potency of potential inhibitors. This assay involves the use of a DNA or RNA duplex substrate and recombinant purified helicase. The DNA duplex consists of a pair of oligonucleotides, one of which is biotinylated and the other is digoxygenin (DIG)-labelled, both at their respective 5’ termini. T...

  8. Identification of New Influenza B Virus Variants by Multiplex Reverse Transcription-PCR and the Heteroduplex Mobility Assay

    OpenAIRE

    Zou, Shimian; Stansfield, Carol; Bridge, Jodi

    1998-01-01

    A quick genetic approach for the screening of influenza virus variants was developed in this laboratory (S. Zou, J. Clin. Microbiol. 35:2623–2627, 1997). It uses multiplex reverse transcription and multiplex PCR to amplify and differentiate the variable region of the hemagglutinin genes of different types and subtypes of influenza viruses. Variants within the same type or subtype are then identified by the heteroduplex mobility shift assay of the amplicons. The method was used to screen influ...

  9. Comparison of automated von Willebrand factor activity assays

    DEFF Research Database (Denmark)

    Timm, Annette; Hillarp, Andreas; Philips, Malou;

    2015-01-01

    INTRODUCTION: Von Willebrand Disease (VWD) is the most common inherited bleeding disorder. Measurement of von Willebrand factor (VWF) activity in plasma is often based on platelet agglutination stimulated by the ristocetin cofactor activity. Novel assays, based on latex beads with recombinant...

  10. PEA3activates CXCL12transcription in MCF-7breast cancer cells%PEA3 activates CXCL12 transcription in MCF-7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    CHEN Li; CHEN Bo-bin; LI Jun-jie; JIN Wei; SHAO Zhi-min

    2011-01-01

    Objective To explore the activity of PEA3 ( polyomavirus enhancer activator 3 ) on CXCL12 (Chemokine CXC motif ligand 12) transcription and to reveal the role of PEA3 involved in CXCL12-mediated metastasis and angiogenesis in breast cancer. Methods Methods such as cell transfection, ChIP assay (chromatin immunoprecipitation ), and siRNA (small interfering RNA) were applied to demonstrate and confirm the interaction between PEA3 and CXCL12. Results Over-expression of PEA3 could increase the CXCL12 mRNA level and the CXCL12 promoter activity in human MCF-7 breast cancer cells. ChIP assay demonstrated that PEA3 could bind to the CXCL12 promoter in the cells transfected with PEA3 expression vector. PEA3 siRNA decreased CXCL12 promoter activity and the binding of PEA3 to the CXCL12 promoter in MCF-7 cells. Conclusions PEA3 could activate CXCL12 promoter transcription. It may be a potential mechanism of tumor angiogenesis and metastasis regarding of PEA3 and CXCL12.

  11. Potential Role of Activating Transcription Factor 5 during Osteogenesis

    Directory of Open Access Journals (Sweden)

    Luisa Vicari

    2016-01-01

    Full Text Available Human adipose-derived stem cells are an abundant population of stem cells readily isolated from human adipose tissue that can differentiate into connective tissue lineages including bone, cartilage, fat, and muscle. Activating transcription factor 5 is a transcription factor of the ATF/cAMP response element-binding protein (CREB family. It is transcribed in two types of mRNAs (activating transcription factor 5 isoform 1 and activating transcription factor 5 isoform 2, encoding the same single 30-kDa protein. Although it is well demonstrated that it regulates the proliferation, differentiation, and apoptosis, little is known about its potential role in osteogenic differentiation. The aim of this study was to evaluate the expression levels of the two isoforms and protein during osteogenic differentiation of human adipose-derived stem cells. Our data indicate that activating transcription factor 5 is differentially expressed reaching a peak of expression at the stage of bone mineralization. These findings suggest that activating transcription factor 5 could play an interesting regulatory role during osteogenesis, which would provide a powerful tool to study bone physiology.

  12. Essential role of RelA Ser311 phosphorylation by ζPKC in NF-κB transcriptional activation

    OpenAIRE

    Duran, Angeles; Diaz-Meco, María T.; Moscat, Jorge

    2003-01-01

    The activation of the transcription factor NF-κB is central to the control of the cellular response triggered by many stimuli. Once released from the inhibitory molecule IκB, NF-κB is translocated to the nucleus, and it has to be phosphorylated to activate transcription. In ζ protein kinase C (PKC)-deficient cells, NF-κB is transcriptionally inactive and the phosphorylation of the RelA subunit in response to tumor necrosis factor (TNF-α) is severely impaired. In vitro assays showed that ζPKC ...

  13. First Exon Length Controls Active Chromatin Signatures and Transcription

    Directory of Open Access Journals (Sweden)

    Nicole I. Bieberstein

    2012-07-01

    Full Text Available Here, we explore the role of splicing in transcription, employing both genome-wide analysis of human ChIP-seq data and experimental manipulation of exon-intron organization in transgenic cell lines. We show that the activating histone modifications H3K4me3 and H3K9ac map specifically to first exon-intron boundaries. This is surprising, because these marks help recruit general transcription factors (GTFs to promoters. In genes with long first exons, promoter-proximal levels of H3K4me3 and H3K9ac are greatly reduced; consequently, GTFs and RNA polymerase II are low at transcription start sites (TSSs and exhibit a second, promoter-distal peak from which transcription also initiates. In contrast, short first exons lead to increased H3K4me3 and H3K9ac at promoters, higher expression levels, accuracy in TSS usage, and a lower frequency of antisense transcription. Therefore, first exon length is predictive for gene activity. Finally, splicing inhibition and intron deletion reduce H3K4me3 levels and transcriptional output. Thus, gene architecture and splicing determines transcription quantity and quality as well as chromatin signatures.

  14. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    Science.gov (United States)

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function. PMID:24719561

  15. Centromeric Transcription Regulates Aurora-B Localization and Activation

    Directory of Open Access Journals (Sweden)

    Michael D. Blower

    2016-05-01

    Full Text Available Centromeric transcription is widely conserved; however, it is not clear what role centromere transcription plays during mitosis. Here, I find that centromeres are transcribed in Xenopus egg extracts into a long noncoding RNA (lncRNA; cen-RNA that localizes to mitotic centromeres, chromatin, and spindles. cen-RNAs bind to the chromosomal passenger complex (CPC in vitro and in vivo. Blocking transcription or antisense inhibition of cen-RNA leads to a reduction of CPC localization to the inner centromere and misregulation of CPC component Aurora-B activation independently of known centromere recruitment pathways. Additionally, transcription is required for normal bipolar attachment of kinetochores to the mitotic spindle, consistent with a role for cen-RNA in CPC regulation. This work demonstrates that cen-RNAs promote normal kinetochore function through regulation of the localization and activation of the CPC and confirm that lncRNAs are components of the centromere.

  16. Identification of active transcriptional regulatory elements from GRO-seq data.

    Science.gov (United States)

    Danko, Charles G; Hyland, Stephanie L; Core, Leighton J; Martins, Andre L; Waters, Colin T; Lee, Hyung Won; Cheung, Vivian G; Kraus, W Lee; Lis, John T; Siepel, Adam

    2015-05-01

    Modifications to the global run-on and sequencing (GRO-seq) protocol that enrich for 5'-capped RNAs can be used to reveal active transcriptional regulatory elements (TREs) with high accuracy. Here, we introduce discriminative regulatory-element detection from GRO-seq (dREG), a sensitive machine learning method that uses support vector regression to identify active TREs from GRO-seq data without requiring cap-based enrichment (https://github.com/Danko-Lab/dREG/). This approach allows TREs to be assayed together with gene expression levels and other transcriptional features in a single experiment. Predicted TREs are more enriched for several marks of transcriptional activation—including expression quantitative trait loci, disease-associated polymorphisms, acetylated histone 3 lysine 27 (H3K27ac) and transcription factor binding—than those identified by alternative functional assays. Using dREG, we surveyed TREs in eight human cell types and provide new insights into global patterns of TRE function. PMID:25799441

  17. Isolated HIV-1 core is active for reverse transcription

    OpenAIRE

    Harrich David; Stenzel Deborah; Warrilow David

    2007-01-01

    Abstract Whether purified HIV-1 virion cores are capable of reverse transcription or require uncoating to be activated is currently controversial. To address this question we purified cores from a virus culture and tested for the ability to generate authentic reverse transcription products. A dense fraction (approximately 1.28 g/ml) prepared without detergent, possibly derived from disrupted virions, was found to naturally occur as a minor sub-fraction in our preparations. Core-like particles...

  18. A novel CRE recombinase assay for quantification of GAL10-non coding RNA suppression on transcriptional leakage.

    Science.gov (United States)

    Zacharioudakis, Ioannis; Tzamarias, Dimitris

    2016-05-13

    Eukaryotic promoters are tightly regulated and often securely repressed. However, recent reports indicated that transcripts originating from the strictly regulated GAL1-10 promoter can be detected by single-yeast cell imaging under repressive conditions. Such leaky, noisy transcription events were suppressed by a long non-coding RNA (GAL10-ncRNA) transcribed within the GAL1-10 locus. It was further suggested that GAL10-ncRNA repression of GAL1-10 promoter leakage tunes the bimodal expression pattern of the GAL network. Independent evidence has indicated that GAL10-ncRNA transcription establishes a repressive chromatin structure through the Set2 histone methyl-transferase and the Rpd3s histone deacetylase complex. In this report we set up a novel, simple genetic Cre recombinase assay in order to readily quantify transcriptional leakage from tightly repressed promoters. By applying this method we demonstrate that GAL10-ncRNA, Set2p and Rpd3p all suppress leaky GAL1-10 driven transcription. However, GAL10-ncRNA repression is not mediated by Set2p or Rpd3p. Moreover, as opposed to GAL10-ncRNA transcription, Set2 and Rpd3 do not influence the bimodal expression of GAL genes, despite their effect on GAL1-10 promoter leakage. We suggest that GAL10-ncRNA tunes the expression of GAL genes by additional mechanisms besides suppressing leaky transcription from the GAL1-10 promoter. PMID:27073161

  19. Ectopic expression of the Arabidopsis transcriptional activator Athb-1 alters leaf cell fate in tobacco.

    Science.gov (United States)

    Aoyama, T; Dong, C H; Wu, Y; Carabelli, M; Sessa, G; Ruberti, I; Morelli, G; Chua, N H

    1995-11-01

    The Arabidopsis thaliana Athb-1 is a homeobox gene of unknown function. By analogy with homeobox genes of other organisms, its gene product, Athb-1, is most likely a transcription factor involved in developmental processes. We constructed a series of Athb-1-derived genes to examine the roles of Athb-1 in transcriptional regulation and plant development. Athb-1 was found to transactivate a promoter linked to a specific DNA binding site by transient expression assays. In transgenic tobacco plants, overexpression of Athb-1 or its chimeric derivatives with heterologous transactivating domains of the yeast transcription factor GAL4 or herpes simplex virus transcription factor VP16 conferred deetiolated phenotypes in the dark, including cotyledon expansion, true leaf development, and an inhibition of hypocotyl elongation. Expression of Athb-1 or the two chimeric derivatives also affected the development of palisade parenchyma under normal growth conditions, resulting in light green sectors in leaves and cotyledons, whereas other organs in the transgenic plants remained normal. Both developmental phenotypes were induced by glucocorticoid in transgenic plants expressing a chimeric transcription factor comprising the Athb-1 DNA binding domain, the VP16 transactivating domain, and the glucocorticoid receptor domain. Plants with severe inducible phenotypes showed additional abnormality in cotyledon expansion. Our results suggest that Athb-1 is a transcription activator involved in leaf development. PMID:8535134

  20. Lysine methylation of HIV-1 Tat regulates transcriptional activity of the viral LTR

    Directory of Open Access Journals (Sweden)

    Flynn Elizabeth K

    2008-05-01

    Full Text Available Abstract Background The rate of transcription of the HIV-1 viral genome is mediated by the interaction of the viral protein Tat with the LTR and other transcriptional machinery. These specific interactions can be affected by the state of post-translational modifications on Tat. Previously, we have shown that Tat can be phosphorylated and acetylated in vivo resulting in an increase in the rate of transcription. In the present study, we investigated whether Tat could be methylated on lysine residues, specifically on lysine 50 and 51, and whether this modification resulted in a decrease of viral transcription from the LTR. Results We analyzed the association of Tat with histone methyltransferases of the SUV39-family of SET domain containing proteins in vitro. Tat was found to associate with both SETDB1 and SETDB2, two enzymes which exhibit methyltransferase activity. siRNA against SETDB1 transfected into cell systems with both transient and integrated LTR reporter genes resulted in an increase in transcription of the HIV-LTR in the presence of suboptimal levels of Tat. In vitro methylation assays with Tat peptides containing point mutations at lysines 50 and 51 showed an increased incorporation of methyl groups on lysine 51, however, both residues indicated susceptibility for methylation. Conclusion The association of Tat with histone methyltransferases and the ability for Tat to be methylated suggests an interesting mechanism of transcriptional regulation through the recruitment of chromatin remodeling proteins to the HIV-1 promoter.

  1. Field validation of a transcriptional assay for the prediction of age of uncaged Aedes aegypti mosquitoes in Northern Australia.

    Directory of Open Access Journals (Sweden)

    Leon E Hugo

    Full Text Available BACKGROUND: New strategies to eliminate dengue have been proposed that specifically target older Aedes aegypti mosquitoes, the proportion of the vector population that is potentially capable of transmitting dengue viruses. Evaluation of these strategies will require accurate and high-throughput methods of predicting mosquito age. We previously developed an age prediction assay for individual Ae. aegypti females based on the transcriptional profiles of a selection of age responsive genes. Here we conducted field testing of the method on Ae. aegypti that were entirely uncaged and free to engage in natural behavior. METHODOLOGY/PRINCIPAL FINDINGS: We produced "free-range" test specimens by releasing 8007 adult Ae. aegypti inside and around an isolated homestead in north Queensland, Australia, and recapturing females at two day intervals. We applied a TaqMan probe-based assay design that enabled high-throughput quantitative RT-PCR of four transcripts from three age-responsive genes and a reference gene. An age prediction model was calibrated on mosquitoes maintained in small sentinel cages, in which 68.8% of the variance in gene transcription measures was explained by age. The model was then used to predict the ages of the free-range females. The relationship between the predicted and actual ages achieved an R(2 value of 0.62 for predictions of females up to 29 days old. Transcriptional profiles and age predictions were not affected by physiological variation associated with the blood feeding/egg development cycle and we show that the age grading method could be applied to differentiate between two populations of mosquitoes having a two-fold difference in mean life expectancy. CONCLUSIONS/SIGNIFICANCE: The transcriptional profiles of age responsive genes facilitated age estimates of near-wild Ae. aegypti females. Our age prediction assay for Ae. aegypti provides a useful tool for the evaluation of mosquito control interventions against dengue where

  2. A quantitative reverse transcription-PCR assay for rapid, automated analysis of breast cancer sentinel lymph nodes.

    Science.gov (United States)

    Hughes, Steven J; Xi, Liqiang; Gooding, William E; Cole, David J; Mitas, Michael; Metcalf, John; Bhargava, Rohit; Dabbs, David; Ching, Jesus; Kozma, Lynn; McMillan, William; Godfrey, Tony E

    2009-11-01

    We have previously reported that a quantitative reverse transcription (QRT)-PCR assay accurately analyzes sentinel lymph nodes (SLNs) from breast cancer patients. The aim of this study was to assess a completely automated, cartridge-based version of the assay for accuracy, predictive value, and reproducibility. The triplex (two markers + control) QRT-PCR assay was incorporated into a single-use cartridge for point-of-care use on the GeneXpert system. Three academic centers participated equally. Twenty-nine positive lymph nodes and 30 negative lymph nodes were analyzed to establish classification rules. SLNs from 120 patients were subsequently analyzed by QRT-PCR and histology (including immunohistochemistry), and the predetermined decision rules were used to classify the SLNs; 112 SLN specimens produced an informative result by both QRT-PCR and histology. By histological analysis, 21 SLNs were positive and 91 SLNs were negative for metastasis. QRT-PCR characterization produced a classification with 100% sensitivity, 97.8% specificity, and 98.2% accuracy compared with histology (91.3% positive predictive value and 100% negative predictive value). Interlaboratory reproducibility analyses demonstrated that a 95% prediction interval for a new measurement (DeltaCt) ranged between 0.403 and 0.956. This fully automated QRT-PCR assay accurately characterizes breast cancer SLNs for the presence of metastasis. Furthermore, the assay is not dependent on subjective interpretation, is reproducible across three clinical environments, and is rapid enough to allow intraoperative decision making. PMID:19797614

  3. Toxin activity assays, devices, methods and systems therefor

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Chung-Yan; Schaff, Ulrich Y.; Sommer, Gregory Jon

    2016-04-05

    Embodiments of the present invention are directed toward devices, system and method for conducting toxin activity assay using sedimentation. The toxin activity assay may include generating complexes which bind to a plurality of beads in a fluid sample. The complexes may include a target toxin and a labeling agent, or may be generated due to presence of active target toxin and/or labeling agent designed to be incorporated into complexes responsive to the presence of target active toxin. The plurality of beads including the complexes may be transported through a density media, wherein the density media has a lower density than a density of the beads and higher than a density of the fluid sample, and wherein the transporting occurs, at least in part, by sedimentation. Signal may be detected from the labeling agents of the complexes.

  4. CMYB1 Encoding a MYB Transcriptional Activator Is Involved in Abiotic Stress and Circadian Rhythm in Rice

    Directory of Open Access Journals (Sweden)

    Min Duan

    2014-01-01

    Full Text Available Through analysis of cold-induced transcriptome, a novel gene encoding a putative MYB transcription factor was isolated and designated Cold induced MYB 1 (CMYB1. Tissue-specific gene expression analysis revealed that CMYB1 was highly expressed in rice stems and nodes. qRT-PCR assay indicated that CMYB1 was dramatically induced by cold stress (>100-folds and induced by exogenous ABA and osmotic stress. Interestingly, CMYB1 showed rhythmic expression profile in rice leaves at different developmental stages. Subcellular localization assay suggested that CMYB1-GFP (green fluorescent protein fusion protein was localized in the nuclei. Moreover, CMYB1 exhibited the transcriptional activation activity when transiently expressed in rice protoplast cells. Taken together, CMYB1 probably functions as a transcriptional activator in mediating stress and rhythm responsive gene expression in rice.

  5. Cooperative activation of transcription by autoimmune regulator AIRE and CBP

    International Nuclear Information System (INIS)

    Autoimmune regulator (AIRE) is a transcriptional regulator that is believed to control the expression of tissue-specific genes in the thymus. Mutated AIRE is responsible for onset of the hereditary autoimmune disease APECED. AIRE is able to form nuclear bodies (NBs) and interacts with the ubiquitous transcriptional coactivator CBP. In this paper, we show that CBP and AIRE synergistically activate transcription on different promoter reporters whereas AIRE gene mutation R257X, found in APECED patients, interferes with this coactivation effect. Furthermore, the overexpression of AIRE and CBP collaboratively enhance endogenous IFNβ mRNA expression. The immunohistochemical studies suggest that CBP, depending on the balance of nuclear proteins, is a component of AIRE NBs. We also show that AIRE NBs are devoid of active chromatin and, therefore, not sites of transcription. In addition, we demonstrate by 3D analyses that AIRE and CBP, when colocalizing, are located spatially differently within AIRE NBs. In conclusion, our data suggest that AIRE activates transcription of the target genes, i.e., autoantigens in collaboration with CBP and that this activation occurs outside of AIRE NBs

  6. n-Butyrate inhibits Jun NH(2)-terminal kinase activation and cytokine transcription in mast cells

    International Nuclear Information System (INIS)

    Mast cells are well known to contribute to type I allergic conditions but only recently have been brought in association with chronic relapsing/remitting autoimmune diseases such as celiac disease and ulcerative colitis. Since the bacterial metabolite n-butyrate is considered to counteract intestinal inflammation we investigated the effects of this short chain fatty acid on mast cell activation. Using RNAse protection assays and reporter gene technology we show that n-butyrate downregulates TNF-α transcription. This correlates with an impaired activation of the Jun NH(2)-terminal kinase (JNK) but not other MAP kinases such as ERK and p38 that are largely unaffected by n-butyrate. As a consequence, we observed a decreased nuclear activity of AP-1 and NF-AT transcription factors. These results indicate that n-butyrate inhibits critical inflammatory mediators in mast cells by relatively selectively targeting the JNK signalling

  7. Transcriptional Activation by Wild-Type But Not Transforming Mutants of the p53 Anti-Oncogene

    OpenAIRE

    Raycroft, Loretta; Wu, Hongyun; Lozano, Guillermina

    1990-01-01

    The protein encoded by the wild-type p53 proto-oncogene has been shown to suppress transformation, whereas certain mutations that alter p53 become transformation competent. Fusion proteins between p53 and the GAL4 DNA binding domain were made to anchor p53 to a DNA target sequence and to allow measurement of transcriptional activation of a reporter plasmid. The wild-type p53 stimulated transcription in this assay, but two transforming mutations in p53 were unable to act as transcriptional act...

  8. Model of transcriptional activation by MarA in escherichia coli

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Michael E [Los Alamos National Laboratory; Rosner, Judah L [NATIONAL INSTITUTE OF HEALTH; Martin, Robert G [NATIONAL INSTITUTE OF HEALTH

    2009-01-01

    The AraC family transcription factor MarA activates approximately 40 genes (the marA/soxS/rob regulon) of the Escherichia coli chromosome resulting in different levels of resistance to a wide array of antibiotics and to superoxides. Activation of marA/soxS/rob regulon promoters occurs in a well-defined order with respect to the level of MarA; however, the order of activation does not parallel the strength of MarA binding to promoter sequences. To understand this lack of correspondence, we developed a computational model of transcriptional activation in which a transcription factor either increases or decreases RNA polymerase binding, and either accelerates or retards post-binding events associated with transcription initiation. We used the model to analyze data characterizing MarA regulation of promoter activity. The model clearly explains the lack of correspondence between the order of activation and the MarA-DNA affinity and indicates that the order of activation can only be predicted using information about the strength of the full MarA-polymerase-DNA interaction. The analysis further suggests that MarA can activate without increasing polymerase binding and that activation can even involve a decrease in polymerase binding, which is opposite to the textbook model of activation by recruitment. These findings are consistent with published chromatin immunoprecipitation assays of interactions between polymerase and the E. coli chromosome. We find that activation involving decreased polymerase binding yields lower latency in gene regulation and therefore might confer a competitive advantage to cells. Our model yields insights into requirements for predicting the order of activation of a regulon and enables us to suggest that activation might involve a decrease in polymerase binding which we expect to be an important theme of gene regulation in E. coli and beyond.

  9. Reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid diagnosis of chilli veinal mottle virus.

    Science.gov (United States)

    Banerjee, Amrita; Roy, Somnath; Sharma, Susheel Kumar; Dutta, Sudip Kumar; Chandra, Satish; Ngachan, S V

    2016-07-01

    Chilli veinal mottle virus (ChiVMV) causes significant economic loss to chilli cultivation in northeastern India, as well as in eastern Asia. In this study, we have developed a single-tube one-step reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay for rapid, sensitive and specific diagnosis of ChiVMV. Amplification could be visualized after adding SYBR Green I (1000×) dye within 60 min under isothermal conditions at 63 °C, with a set of four primers designed based on the large nuclear inclusion protein (NIb) domain of ChiVMV (isolate KC-ML1). The RT-LAMP method was 100 times more sensitive than one-step reverse transcription polymerase chain reaction (RT-PCR), with a detection limit of 0.0001 ng of total RNA per reaction. PMID:27063408

  10. Estrogen directly activates AID transcription and function

    OpenAIRE

    Pauklin, Siim; Sernández, Isora V.; Bachmann, Gudrun; Ramiro, Almudena R.; Petersen-Mahrt, Svend K.

    2009-01-01

    The immunological targets of estrogen at the molecular, humoral, and cellular level have been well documented, as has estrogen's role in establishing a gender bias in autoimmunity and cancer. During a healthy immune response, activation-induced deaminase (AID) deaminates cytosines at immunoglobulin (Ig) loci, initiating somatic hypermutation (SHM) and class switch recombination (CSR). Protein levels of nuclear AID are tightly controlled, as unregulated expression can lead to alterations in th...

  11. Trans-dominant inhibition of transcription activator LFB1.

    OpenAIRE

    Nicosia, A.; Tafi, R; Monaci, P

    1992-01-01

    Liver-enriched factor LFB1 (also named HNF1) is a dimeric transcription activator which is essential for the expression of many hepatocyte-specific genes. Here we demonstrate that LFB1 mutants in the POU A-like or in the homeo domains inhibit wild-type DNA binding by forming inactive heterodimeric complexes. Co-transfection of one of these mutants with wild-type LFB1 in HeLa cells eliminated LFB1 DNA binding and transcriptional activities through a trans-dominant mechanism. Expression of the ...

  12. PKG-1α mediates GATA4 transcriptional activity.

    Science.gov (United States)

    Ma, Yanlin; Wang, Jun; Yu, Yanhong; Schwartz, Robert J

    2016-06-01

    GATA4, a zinc-finger transcription factor, is central for cardiac development and diseases. Here we show that GATA4 transcriptional activity is mediated by cell signaling via cGMP dependent PKG-1α activity. Protein kinase G (PKG), a serine/tyrosine specific kinase is the major effector of cGMP signaling. We observed enhanced transcriptional activity elicited by co-expressed GATA4 and PKG-1α. Phosphorylation of GATA4 by PKG-1α was detected on serine 261 (S261), while the C-terminal activation domain of GATA4 associated with PKG-1α. GATA4's DNA binding activity was enhanced by PKG-1α via by both phosphorylation and physical association. More importantly, a number of human disease-linked GATA4 mutants exhibited impaired S261 phosphorylation, pointing to defective S261 phosphorylation in the elaboration of human heart diseases. We showed S261 phosphorylation was favored by PKG-1α but not by PKA, and several other kinase signaling pathways such as MAPK and PKC. Our observations demonstrate that cGMP-PKG signaling mediates transcriptional activity of GATA4 and links defective GATA4 and PKG-1α mutations to the development of human heart disease. PMID:26946174

  13. A portable reverse transcription recombinase polymerase amplification assay for rapid detection of foot-and-mouth disease virus.

    OpenAIRE

    Abd El Wahed, Ahmed; El-Deeb, Ayman; El-Tholoth, Mohamed; Abd El Kader, Hanaa; Ahmed, Abeer; Hassan, Sayed; Hoffmann, Bernd; Haas, Bernd; Shalaby, Mohamed A.; Hufert, Frank T.; Weidmann, Manfred

    2013-01-01

    Foot-and-mouth disease (FMD) is a trans-boundary viral disease of livestock, which causes huge economic losses and constitutes a serious infectious threat for livestock farming worldwide. Early diagnosis of FMD helps to diminish its impact by adequate outbreak management. In this study, we describe the development of a real-time reverse transcription recombinase polymerase amplification (RT-RPA) assay for the detection of FMD virus (FMDV). The FMDV RT-RPA design targeted the 3D gene of FMDV a...

  14. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  15. Individual transcriptional activity of estrogen receptors in primary breast cancer and its clinical significance

    International Nuclear Information System (INIS)

    To predict the efficacy of hormonal therapy at the individual-level, immunohistochemical methods are used to analyze expression of classical molecular biomarkers such as estrogen receptor (ER), progesterone receptor (PgR), and HER2. However, the current diagnostic standard is not perfect for the individualization of diverse cases. Therefore, establishment of more accurate diagnostics is required. Previously, we established a novel method that enables analysis of ER transcriptional activation potential in clinical specimens using an adenovirus estrogen response element–green fluorescence protein (ERE-GFP) assay system. Using this assay, we assessed the ERE transcriptional activity of 62 primary breast cancer samples. In 40% of samples, we observed that ER protein expression was not consistent with ERE activity. Comparison of ERE activity with clinicopathological information revealed that ERE activity was significantly correlated with the ER target gene, PgR, rather than ER in terms of both protein and mRNA expression. Moreover, subgrouping of Luminal A-type breast cancer samples according to ERE activity revealed that ERα mRNA expression correlated with ER target gene mRNA expression in the high-, but not the low-, ERE-activity group. On the other hand, the low-ERE-activity group showed significantly higher mRNA expression of the malignancy biomarker Ki67 in association with disease recurrence in 5% of patients. Thus, these data suggest that ER expression does not always correlate with ER transcriptional activity. Therefore, in addition to ER protein expression, determination of ERE activity as an ER functional marker will be helpful for analysis of a variety of diverse breast cancer cases and the subsequent course of treatment

  16. Novel yeast cell dehydrogenase activity assay in situ.

    Science.gov (United States)

    Berłowska, Joanna; Kregiel, Dorota; Klimek, Leszek; Orzeszyna, Bartosz; Ambroziak, Wojciech

    2006-01-01

    The aim of this research was to develop a suitable method of succinate dehydrogenase activity assay in situ for different industrial yeast strains. For this purpose different compounds: EDTA, Triton X-100, sodium deoxycholate, digitonin, nystatin and beta-mercaptoethanol were used. The permeabilization process was controlled microscopically by primuline staining. Enzyme assay was conducted in whole yeast cells with Na-succinate as substrate, phenazine methosulfate (PMS) as electron carrier and in the presence one of two different tetrazolium salts: tetrazolium blue chloride (BT) or cyanoditolyl tetrazolium chloride (CTC) reduced during the assay. In comparabile studies of yeast vitality the amount of intracellular ATP was determined according to luciferin/luciferase method. During the succinate dehydrogenase assay in intact yeast cells without permeabilization, BT formazans were partially visualized in the cells, but CTC formazans appeared to be totally extracellular or associated with the plasma membrane. Under these conditions there was no linear relationship between formazan color intensity signal and yeast cell density. From all chemical compounds tested, only digitonin was effective in membrane permeabilization without negative influence on cell morphology. Furthermore, with digitonin-treated cells a linear relationship between formazan color intensity signal and yeast cell number was noticed. Significant decreasing of succinate dehydrogenase activity and ATP content were observed during aging of the tested yeast strains. PMID:17419290

  17. Internal Ribosome Entry Site-Based Bicistronic In Situ Reporter Assays for Discovery of Transcription-Targeted Lead Compounds.

    Science.gov (United States)

    Lang, Liwei; Ding, Han-Fei; Chen, Xiaoguang; Sun, Shi-Yong; Liu, Gang; Yan, Chunhong

    2015-07-23

    Although transgene-based reporter gene assays have been used to discover small molecules targeting expression of cancer-driving genes, the success is limited due to the fact that reporter gene expression regulated by incomplete cis-acting elements and foreign epigenetic environments does not faithfully reproduce chemical responses of endogenous genes. Here, we present an internal ribosome entry site-based strategy for bicistronically co-expressing reporter genes with an endogenous gene in the native gene locus, yielding an in situ reporter assay closely mimicking endogenous gene expression without disintegrating its function. This strategy combines the CRISPR-Cas9-mediated genome-editing tool with the recombinase-mediated cassette-exchange technology, and allows for rapid development of orthogonal assays for excluding false hits generated from primary screens. We validated this strategy by developing a screening platform for identifying compounds targeting oncogenic eIF4E, and demonstrated that the novel reporter assays are powerful in searching for transcription-targeted lead compounds with high confidence. PMID:26144883

  18. Benzimidazoles diminish ERE transcriptional activity and cell growth in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Payton-Stewart, Florastina [Department of Chemistry, College of Arts and Sciences, Xavier University of Louisiana, New Orleans, LA (United States); Tilghman, Syreeta L. [Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA (United States); Williams, LaKeisha G. [Division of Clinical and Administrative Sciences, College of Pharmacy Xavier University of Louisiana, New Orleans, LA (United States); Winfield, Leyte L., E-mail: lwinfield@spelman.edu [Department of Chemistry, Spelman College, Atlanta, GA (United States)

    2014-08-08

    Highlights: • The methyl-substituted benzimidazole was more effective at inhibiting growth in MDA-MB 231 cells. • The naphthyl-substituted benzimidazole was more effective at inhibiting growth in MCF-7 cells than ICI. • The benzimidazole molecules demonstrated a dose-dependent reduction in ERE transcriptional activity. • The benzimidazole molecules had binding mode in ERα and ERβ comparable to that of the co-crystallized ligand. - Abstract: Estrogen receptors (ERα and ERβ) are members of the nuclear receptor superfamily. They regulate the transcription of estrogen-responsive genes and mediate numerous estrogen related diseases (i.e., fertility, osteoporosis, cancer, etc.). As such, ERs are potentially useful targets for developing therapies and diagnostic tools for hormonally responsive human breast cancers. In this work, two benzimidazole-based sulfonamides originally designed to reduce proliferation in prostate cancer, have been evaluated for their ability to modulate growth in estrogen dependent and independent cell lines (MCF-7 and MDA-MB 231) using cell viability assays. The molecules reduced growth in MCF-7 cells, but differed in their impact on the growth of MDA-MB 231 cells. Although both molecules reduced estrogen response element (ERE) transcriptional activity in a dose dependent manner, the contrasting activity in the MDA-MB-231 cells seems to suggest that the molecules may act through alternate ER-mediated pathways. Further, the methyl analog showed modest selectivity for the ERβ receptor in an ER gene expression array panel, while the naphthyl analog did not significantly alter gene expression. The molecules were docked in the ligand binding domains of the ERα-antagonist and ERβ-agonist crystal structures to evaluate the potential of the molecules to interact with the receptors. The computational analysis complimented the results obtained in the assay of transcriptional activity and gene expression suggesting that the molecules

  19. First functional polymorphism in CFTR promoter that results in decreased transcriptional activity and Sp1/USF binding

    International Nuclear Information System (INIS)

    Growing evidences show that functionally relevant polymorphisms in various promoters alter both transcriptional activity and affinities of existing protein-DNA interactions, and thus influence disease progression in humans. We previously reported the -94G>T CFTR promoter variant in a female CF patient in whom any known disease-causing mutation has been detected. To investigate whether the -94G>T could be a regulatory variant, we have proceeded to in silico analyses and functional studies including EMSA and reporter gene assays. Our data indicate that the promoter variant decreases basal CFTR transcriptional activity in different epithelial cells and alters binding affinities of both Sp1 and USF nuclear proteins to the CFTR promoter. The present report provides evidence for the first functional polymorphism that negatively affects the CFTR transcriptional activity and demonstrates a cooperative role of Sp1 and USF transcription factors in transactivation of the CFTR gene promoter

  20. TBP domain symmetry in basal and activated archaeal transcription.

    Science.gov (United States)

    Ouhammouch, Mohamed; Hausner, Winfried; Geiduschek, E Peter

    2009-01-01

    The TATA box binding protein (TBP) is the platform for assembly of archaeal and eukaryotic transcription preinitiation complexes. Ancestral gene duplication and fusion events have produced the saddle-shaped TBP molecule, with its two direct-repeat subdomains and pseudo-two-fold symmetry. Collectively, eukaryotic TBPs have diverged from their present-day archaeal counterparts, which remain highly symmetrical. The similarity of the N- and C-halves of archaeal TBPs is especially pronounced in the Methanococcales and Thermoplasmatales, including complete conservation of their N- and C-terminal stirrups; along with helix H'1, the C-terminal stirrup of TBP forms the main interface with TFB/TFIIB. Here, we show that, in stark contrast to its eukaryotic counterparts, multiple substitutions in the C-terminal stirrup of Methanocaldococcus jannaschii (Mja) TBP do not completely abrogate basal transcription. Using DNA affinity cleavage, we show that, by assembling TFB through its conserved N-terminal stirrup, Mja TBP is in effect ambidextrous with regard to basal transcription. In contrast, substitutions in either its N- or the C-terminal stirrup abrogate activated transcription in response to the Lrp-family transcriptional activator Ptr2. PMID:19007415

  1. A global transcriptional view of apoptosis in human T-cell activation

    Directory of Open Access Journals (Sweden)

    Windgassen Dirk

    2008-10-01

    Full Text Available Abstract Background T-cell activation is an essential step of immune response. The process of proper T-cell activation is strictly monitored and regulated by apoptosis signaling. Yet, regulation of apoptosis, an integral and crucial facet during the process of T-cell activation, is not well understood. Methods In this study, a Gene-Ontology driven global gene expression analysis coupled with protein abundance and activity assays identified genes and pathways associated with regulation of apoptosis in primary human CD3+ T cells and separately CD4+ and CD8+ T cells. Results We identified significantly regulated apoptotic genes in several protein families, such as BCL2 proteins, CASPASE proteins, and TNF receptors, and detailed their transcriptional kinetics during the T-cell activation process. Transcriptional patterns of a few select genes (BCL2A1, BBC3 and CASP3 were validated at the protein level. Many of these apoptotic genes are involved in NF-κB signaling pathway, including TNFRSF10A, TNFRSF10B, TRAF4, TRAF1, TRAF3, and TRAF6. Upregulation of NF-κB and IκB family genes (REL, RELA, and RELB, NFKBIA, NFKBIE and NFKB1 at 48 to 96 hours, supported by the increase of phosphorylated RELA (p65, suggests that the involvement of the NF-κB complex in the process of T-cell proliferation is not only regulated at the protein level but also at the transcriptional level. Examination of genes involved in MAP kinase signalling pathway, important in apoptosis, suggests an induction of p38 and ERK1 cascades in T-cell proliferation (at 48 to 96 hours, which was explored using phosphorylation assays for p38 (MAPK14 and ERK1 (MAPK3. An immediate and short-lived increase of AP-1 activity measured by DNA-binding activity suggests a rapid and transient activation of p38 and/or JNK cascades upon T-cell activation. Conclusion This comparative genome-scale, transcriptional analysis of T-cell activation in the CD4+ and CD8+ subsets and the mixed CD3+ population

  2. Effect of protein kinase C inhibitor (PKCI) on radiation sensitivity and c-fos transcription activity

    International Nuclear Information System (INIS)

    The human genetic disorder ataxia-telangiectasia (AT) is a multisystem disease characterized by extreme radiosensitivity. The recent identification of the gene mutated in AT, ATM, and the demonstration that it encodes a homologous domain of phosphatidylinositol 3-kinase (PI3-K), the catalytic subunit of an enzyme involved in transmitting signals from the cell surface to the nucleus, provide support for a role of this gene in signal transduction. Although ionizing radiation was known to induce c-fos transcription, nothing is known about how ATM or PKCI mediated signal transduction pathway modulates the c-fos gene transcription and gene expression. Here we have studied the effect of PKCI on radiation sensitivity and c-fos transcription in normal and AT cells. Normal (LM217) and AT (AT58IVA) cells were transfected with PKCI expression plasmid and the overexpression and integration of PKCI was evaluated by northern blotting and polymerase chain reaction, respectively. 5 Gy of radiation was exposed to LM and AT cells transfected with PKCI expression plasmid and cells were harvested 48 hours after radiation and investigated apoptosis with TUNEL method. The c-fos transcription activity was studied by performing CAT assay of reporter gene after transfection of c-fos CAT plasmid into AT and LM cells. Our results demonstrate for the first time a role of PKCI on. the radiation sensitivity and c-fos expression in LM and AT cells. PKCI increased radiation induced apoptosis in LM cells but reduced apoptosis in AT cells. The basal c-fos transcription activity is 70 times lower in AT cells than that in LM cells. The c-fos transcription activity was repressed by overexpression of PKCI in LM cells but not in AT cells. After induction of c-fos by Ras protein, overexpression of PKCI repressed c-fos transcription in LM cells but not in AT cells. Overexpression of PKCI increased radiation sensitivity and repressed c-fos transcription in LM cells but not in AT cells. The results may be a

  3. Moonlighting transcriptional activation function of a fungal sulfur metabolism enzyme.

    Science.gov (United States)

    Levati, Elisabetta; Sartini, Sara; Bolchi, Angelo; Ottonello, Simone; Montanini, Barbara

    2016-01-01

    Moonlighting proteins, including metabolic enzymes acting as transcription factors (TF), are present in a variety of organisms but have not been described in higher fungi so far. In a previous genome-wide analysis of the TF repertoire of the plant-symbiotic fungus Tuber melanosporum, we identified various enzymes, including the sulfur-assimilation enzyme phosphoadenosine-phosphosulfate reductase (PAPS-red), as potential transcriptional activators. A functional analysis performed in the yeast Saccharomyces cerevisiae, now demonstrates that a specific variant of this enzyme, PAPS-red A, localizes to the nucleus and is capable of transcriptional activation. TF moonlighting, which is not present in the other enzyme variant (PAPS-red B) encoded by the T. melanosporum genome, relies on a transplantable C-terminal polypeptide containing an alternating hydrophobic/hydrophilic amino acid motif. A similar moonlighting activity was demonstrated for six additional proteins, suggesting that multitasking is a relatively frequent event. PAPS-red A is sulfur-state-responsive and highly expressed, especially in fruitbodies, and likely acts as a recruiter of transcription components involved in S-metabolism gene network activation. PAPS-red B, instead, is expressed at low levels and localizes to a highly methylated and silenced region of the genome, hinting at an evolutionary mechanism based on gene duplication, followed by epigenetic silencing of this non-moonlighting gene variant. PMID:27121330

  4. The transcriptionally active regions in the genome of Bacillus subtilis

    DEFF Research Database (Denmark)

    Rasmussen, Simon; Nielsen, Henrik Bjørn; Jarmer, Hanne Østergaard

    2009-01-01

    The majority of all genes have so far been identified and annotated systematically through in silico gene finding. Here we report the finding of 3662 strand-specific transcriptionally active regions (TARs) in the genome of Bacillus subtilis by the use of tiling arrays. We have measured the genome...

  5. A Continuous Kinetic Assay for Adenylation Enzyme Activity and Inhibition

    OpenAIRE

    Daniel J. Wilson; Aldrich, Courtney C.

    2010-01-01

    Adenylation/adenylate-forming enzymes catalyze the activation of a carboxylic acid at the expense of ATP to form an acyl-adenylate intermediate and pyrophosphate (PPi). In a second half-reaction, adenylation enzymes catalyze the transfer of the acyl moiety of the acyl-adenylate onto an acceptor molecule, which can be either a protein or a small molecule. We describe the design, development, and validation of a coupled continuous spectrophotometric assay for adenylation enzymes that employs hy...

  6. Active and passive computed tomography for nondestructive assay

    Energy Technology Data Exchange (ETDEWEB)

    Bernardi, R T; Camp, D E; Clard, D; Jackson, J A; Martz, H E, Decman, D J; Roberson, G P

    1998-10-28

    Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to non-uniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by applying an active and passive tomographic technique (A&PCT) developed at the Lawrence Livermore National Laboratory (LLNL). The technique uses an external radioactive source and active tomography to map the attenuation within a waste barrel as a function of mono-energetic gamma-ray energy. Passive tomography is used to localize and identify specific radioactive waste within the same container. Reconstruction of the passive data using the attenuation maps at specific energies allows internal waste radioactivity to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste activity. LLNL and Bio-Imaging Research, Inc. have collaborated in a technology transfer effort to integrate an A&PCT assay system into a mobile waste characterization trailer. This mobile system has participated in and passed several formal DOE-sponsored performance demonstrations, tests and evaluations. The system is currently being upgraded with multiple detectors to improve throughput, automated gamma-ray analysis code to simplify the assay, and a new emission reconstruction code to improve accuracy

  7. Activating transcription factor 4 regulates osteoclast differentiation in mice

    OpenAIRE

    Cao, Huiling; Yu, Shibing; Yao, Zhi; Galson, Deborah L; Jiang, Yu; Zhang, Xiaoyan; Fan, Jie; Lu, Binfeng; Guan, Youfei; Luo, Min; Lai, Yumei; Zhu, Yibei; Kurihara, Noriyoshi; Patrene, Kenneth; Roodman, G. David

    2010-01-01

    Activating transcription factor 4 (ATF4) is a critical transcription factor for osteoblast (OBL) function and bone formation; however, a direct role in osteoclasts (OCLs) has not been established. Here, we targeted expression of ATF4 to the OCL lineage using the Trap promoter or through deletion of Atf4 in mice. OCL differentiation was drastically decreased in Atf4–/– bone marrow monocyte (BMM) cultures and bones. Coculture of Atf4–/– BMMs with WT OBLs or a high concentration of RANKL failed ...

  8. HAT activity is essential for CBP-1-dependent transcription and differentiation in Caenorhabditis elegans

    OpenAIRE

    Victor, Martin; Bei, Yanxia; Gay, Frédérique; Calvo, Dominica; Mello, Craig; Shi, Yang

    2002-01-01

    The p300/CBP family of transcriptional coactivators possesses multiple functional domains, including a histone acetyltransferase (HAT) and several activation domains. A number of models have been proposed to account for their roles in transcriptional activation, including interactions with basal transcription machinery and chromatin remodeling. However, individual contributions of these domains to transcriptional activation and their significance in living organisms remain unclear. We address...

  9. The Positive Transcription Elongation Factor b Is an Essential Cofactor for the Activation of Transcription by Myocyte Enhancer Factor 2

    OpenAIRE

    Nojima, Masanori; Huang, Yehong; Tyagi, Mudit; Kao, Hung-Ying; Fujinaga, Koh

    2008-01-01

    The positive transcription elongation factor b (P-TEFb), composed of cyclin-dependent kinase 9 and cyclin T1, stimulates the elongation of transcription by hyperphosphorylating the C-terminal region of RNA polymerase II. Aberrant activation of P-TEFb results in manifestations of cardiac hypertrophy in mice, suggesting that P-TEFb is an essential factor for cardiac myocyte function and development. Here, we present evidence that P-TEFb selectively activates transcription mediated by the myocyt...

  10. Enzymatic assay for calmodulins based on plant NAD kinase activity

    Energy Technology Data Exchange (ETDEWEB)

    Harmon, A.C.; Jarrett, H.W.; Cormier, M.J.

    1984-01-01

    NAD kinase with increased sensitivity to calmodulin was purified from pea seedlings (Pisum sativum L., Willet Wonder). Assays for calmodulin based on the activities of NAD kinase, bovine brain cyclic nucleotide phosphodiesterase, and human erythrocyte Ca/sup 2 -/-ATPase were compared for their sensitivities to calmodulin and for their abilities to discriminate between calmodulins from different sources. The activities of the three enzymes were determined in the presence of various concentrations of calmodulins from human erythrocyte, bovine brain, sea pansy (Renilla reniformis), mung bean seed (Vigna radiata L. Wilczek), mushroom (Agaricus bisporus), and Tetrahymena pyriformis. The concentrations of calmodulin required for 50% activation of the NAD kinase (K/sub 0.5/) ranged from 0.520 ng/ml for Tetrahymena to 2.20 ng/ml for bovine brain. The A/sub 0.5/ s ranged from 19.6 ng/ml for bovine brain calmodulin to 73.5 ng/ml for mushroom calmodulin for phosphodiesterase activation. The K/sub 0.5/'s for the activation of Ca/sup 2 +/-ATPase ranged from 36.3 ng/mol for erythrocyte calmodulin to 61.7 ng/ml for mushroom calmodulin. NAD kinase was not stimulated by phosphatidylcholine, phosphatidylserine, cardiolipin, or palmitoleic acid in the absence or presence of Ca/sup 2 +/. Palmitic acid had a slightly stimulatory effect in the presence of Ca/sup 2 +/ (10% of maximum), but no effect in the absence of Ca/sup 2 +/. Palmitoleic acid inhibited the calmodulin-stimulated activity by 50%. Both the NAD kinase assay and radioimmunoassay were able to detect calmodulin in extracts containing low concentrations of calmodulin. Estimates of calmodulin contents of crude homogenates determined by the NAD kinase assay were consistent with amounts obtained by various purification procedures. 30 references, 1 figure, 4 tables.

  11. Transcriptional Regulatory Circuits Controlling Brown Fat Development and Activation

    OpenAIRE

    Seale, Patrick

    2015-01-01

    Brown and beige adipose tissue is specialized for heat production and can be activated to reduce obesity and metabolic dysfunction in animals. Recent studies also have indicated that human brown fat activity levels correlate with leanness. This has revitalized interest in brown fat biology and has driven the discovery of many new regulators of brown fat development and function. This review summarizes recent advances in our understanding of the transcriptional mechanisms that control brown an...

  12. KPC2 relocalizes HOXA2 to the cytoplasm and decreases its transcriptional activity.

    Science.gov (United States)

    Bridoux, Laure; Bergiers, Isabelle; Draime, Amandine; Halbout, Mathias; Deneyer, Noémie; Twizere, Jean-Claude; Rezsohazy, René

    2015-10-01

    Regulation of transcription factor activity relies on molecular interactions or enzymatic modifications which influence their interaction with DNA cis-regulatory sequences, their transcriptional activation or repression, and stability or intracellular distribution of these proteins. Regarding the well-conserved Hox protein family, a restricted number of activity regulators have been highlighted thus far. In the framework of a proteome-wide screening aiming at identifying proteins interacting with Hoxa2, KPC2, an adapter protein constitutive of the KPC ubiquitin-ligase complex, was identified. In this work, KPC2 was confirmed as being a genuine interactor of Hoxa2 by co-precipitation and bimolecular fluorescence complementation assays. At functional level, KPC2 diminishes the transcriptional activity and induces the nuclear exit of Hoxa2. Gene expression analyses revealed that Kpc2 is active in restricted areas of the developing mouse embryo which overlap with the Hoxa2 expression domain. Together, our data support that KPC2 regulates Hoxa2 by promoting its relocation to the cytoplasm. PMID:26303204

  13. Development of a neutralization assay for influenza virus using an endpoint assessment based on quantitative reverse-transcription PCR.

    Directory of Open Access Journals (Sweden)

    Belete Teferedegne

    Full Text Available A microneutralization assay using an ELISA-based endpoint assessment (ELISA-MN is widely used to measure the serological response to influenza virus infection and vaccination. We have developed an alternative microneutralization assay for influenza virus using a quantitative reverse transcription PCR-based endpoint assessment (qPCR-MN in order to improve upon technical limitations associated with ELISA-MN. For qPCR-MN, infected MDCK-London cells in 96-well cell-culture plates are processed with minimal steps such that resulting samples are amenable to high-throughput analysis by downstream one-step quantitative reverse transcription PCR (qRT-PCR; SYBR Green chemistry with primers targeting a conserved region of the M1 gene of influenza A viruses. The growth curves of three recent vaccine strains demonstrated that the qRT-PCR signal detected at 6 hours post-infection reflected an amplification of at least 100-fold over input. Using ferret antisera, we have established the feasibility of measuring virus neutralization at 6 hours post-infection, a duration likely confined to a single virus-replication cycle. The neutralization titer for qPCR-MN was defined as the highest reciprocal serum dilution necessary to achieve a 90% inhibition of the qRT-PCR signal; this endpoint was found to be in agreement with ELISA-MN using the same critical reagents in each assay. qPCR-MN was robust with respect to assay duration (6 hours vs. 12 hours. In addition, qPCR-MN appeared to be compliant with the Percentage Law (i.e., virus neutralization results appear to be consistent over an input virus dose ranging from 500 to 12,000 TCID(50. Compared with ELISA-MN, qPCR-MN might have inherent properties conducive to reducing intra- and inter-laboratory variability while affording suitability for automation and high-throughput uses. Finally, our qRT-PCR-based approach may be broadly applicable to the development of neutralization assays for a wide variety of viruses.

  14. Isolated HIV-1 core is active for reverse transcription

    Directory of Open Access Journals (Sweden)

    Harrich David

    2007-10-01

    Full Text Available Abstract Whether purified HIV-1 virion cores are capable of reverse transcription or require uncoating to be activated is currently controversial. To address this question we purified cores from a virus culture and tested for the ability to generate authentic reverse transcription products. A dense fraction (approximately 1.28 g/ml prepared without detergent, possibly derived from disrupted virions, was found to naturally occur as a minor sub-fraction in our preparations. Core-like particles were identified in this active fraction by electron microscopy. We are the first to report the detection of authentic strong-stop, first-strand transfer and full-length minus strand products in this core fraction without requirement for an uncoating activity.

  15. Isolated HIV-1 core is active for reverse transcription.

    Science.gov (United States)

    Warrilow, David; Stenzel, Deborah; Harrich, David

    2007-01-01

    Whether purified HIV-1 virion cores are capable of reverse transcription or require uncoating to be activated is currently controversial. To address this question we purified cores from a virus culture and tested for the ability to generate authentic reverse transcription products. A dense fraction (approximately 1.28 g/ml) prepared without detergent, possibly derived from disrupted virions, was found to naturally occur as a minor sub-fraction in our preparations. Core-like particles were identified in this active fraction by electron microscopy. We are the first to report the detection of authentic strong-stop, first-strand transfer and full-length minus strand products in this core fraction without requirement for an uncoating activity. PMID:17956635

  16. Impact of Heavy Metals on Transcriptional and Physiological Activity of Nitrifying Bacteria.

    Science.gov (United States)

    Kapoor, Vikram; Li, Xuan; Elk, Michael; Chandran, Kartik; Impellitteri, Christopher A; Santo Domingo, Jorge W

    2015-11-17

    Heavy metals can inhibit nitrification, a key process for nitrogen removal in wastewater treatment. The transcriptional responses of amoA, hao, nirK, and norB were measured in conjunction with specific oxygen uptake rate (sOUR) for nitrifying enrichment cultures exposed to different metals (Ni(II), Zn(II), Cd(II), and Pb(II)). There was significant decrease in sOUR with increasing concentrations for Ni(II) (0.03-3 mg/L), Zn(II) (0.1-10 mg/L), and Cd(II) (0.03-1 mg/L) (p amoA and hao decreased when exposed to Ni(II) dosages. Slight up-regulation of amoA, hao, and nirK (0.5-1.5-fold) occurred after exposure to 0.3-3 mg/L Zn(II), although their expression decreased for 10 mg/L Zn(II). With the exception of 1000 mg/L Pb(II), stimulation of all genes occurred on Cd(II) and Pb(II) exposure. While overall the results show that RNA-based function-specific assays can be used as potential surrogates for measuring nitrification activity, the degree of inhibition inferred from sOUR and gene transcription is different. We suggest that variations in transcription of functional genes may supplement sOUR based assays as early warning indicators of upsets in nitrification. PMID:26501957

  17. A universal assay for detection of oncogenic fusion transcripts by oligo microarray analysis

    Directory of Open Access Journals (Sweden)

    Ribeiro Franclim R

    2009-01-01

    Full Text Available Abstract Background The ability to detect neoplasia-specific fusion genes is important not only in cancer research, but also increasingly in clinical settings to ensure that correct diagnosis is made and the optimal treatment is chosen. However, the available methodologies to detect such fusions all have their distinct short-comings. Results We describe a novel oligonucleotide microarray strategy whereby one can screen for all known oncogenic fusion transcripts in a single experiment. To accomplish this, we combine measurements of chimeric transcript junctions with exon-wise measurements of individual fusion partners. To demonstrate the usefulness of the approach, we designed a DNA microarray containing 68,861 oligonucleotide probes that includes oligos covering all combinations of chimeric exon-exon junctions from 275 pairs of fusion genes, as well as sets of oligos internal to all the exons of the fusion partners. Using this array, proof of principle was demonstrated by detection of known fusion genes (such as TCF3:PBX1, ETV6:RUNX1, and TMPRSS2:ERG from all six positive controls consisting of leukemia cell lines and prostate cancer biopsies. Conclusion This new method bears promise of an important complement to currently used diagnostic and research tools for the detection of fusion genes in neoplastic diseases.

  18. Transcriptional activation of REST by Sp1 in Huntington's disease models.

    Directory of Open Access Journals (Sweden)

    Myriam Ravache

    Full Text Available In Huntington's disease (HD, mutant huntingtin (mHtt disrupts the normal transcriptional program of disease neurons by altering the function of several gene expression regulators such as Sp1. REST (Repressor Element-1 Silencing Transcription Factor, a key regulator of neuronal differentiation, is also aberrantly activated in HD by a mechanism that remains unclear. Here, we show that the level of REST mRNA is increased in HD mice and in NG108 cells differentiated into neuronal-like cells and expressing a toxic mHtt fragment. Using luciferase reporter gene assay, we delimited the REST promoter regions essential for mHtt-mediated REST upregulation and found that they contain Sp factor binding sites. We provide evidence that Sp1 and Sp3 bind REST promoter and interplay to fine-tune REST transcription. In undifferentiated NG108 cells, Sp1 and Sp3 have antagonistic effect, Sp1 acting as an activator and Sp3 as a repressor. Upon neuronal differentiation, we show that the amount and ratio of Sp1/Sp3 proteins decline, as does REST expression, and that the transcriptional role of Sp3 shifts toward a weak activator. Therefore, our results provide new molecular information to the transcriptional regulation of REST during neuronal differentiation. Importantly, specific knockdown of Sp1 abolishes REST upregulation in NG108 neuronal-like cells expressing mHtt. Our data together with earlier reports suggest that mHtt triggers a pathogenic cascade involving Sp1 activation, which leads to REST upregulation and repression of neuronal genes.

  19. Complementary assays reveal a relationship between HIV-1 uncoating and reverse transcription

    OpenAIRE

    Hulme, Amy E.; Perez, Omar; Hope, Thomas J.

    2011-01-01

    During the early stages of HIV-1 replication the conical capsid composed of p24CA protein dissociates from the rest of the cytoplasmic viral complex by a process called uncoating. Although proper uncoating is known to be required for HIV-1 infection, many questions remain about the timing and factors involved in the process. Here we have used two complementary assays to study the process of uncoating in HIV-1–infected cells, specifically looking at the timing of uncoating and its relationship...

  20. p55PIK Transcriptionally Activated by MZF1 Promotes Colorectal Cancer Cell Proliferation

    Directory of Open Access Journals (Sweden)

    Yu Deng

    2013-01-01

    Full Text Available p55PIK, regulatory subunit of class IA phosphatidylinositol 3-kinase (PI3K, plays a crucial role in cell cycle progression by interaction with tumor repressor retinoblastoma (Rb protein. A recent study showed that Rb protein can localize to the mitochondria in proliferative cells. Aberrant p55PIK expression may contribute to mitochondrial dysfunction in cancer progression. To reveal the mechanisms of p55PIK transcriptional regulation, the p55PIK promoter characteristics were analyzed. The data show that myeloid zinc finger 1, MZF1, is necessary for p55PIK gene transcription activation. ChIP (Chromatin immuno-precipitation assay shows that MZF1 binds to the cis-element “TGGGGA” in p55PIK promoter. In MZF1 overexpressed cells, the promoter activity, expression of p55PIK, and cell proliferation rate were observed to be significantly enhanced. Whereas in MZF1-silenced cells, the promoter activity and expression of p55PIK and cell proliferation level was statistically decreased. In CRC tissues, MZF1 and p55PIK mRNA expression were increased (P=0.046, P=0.047, resp.. A strong positive correlation (Rs=0.94 between MZF1 and p55PIK mRNA expression was observed. Taken together, we concluded that p55PIK is transcriptionally activated by MZF1, resulting in increased proliferation of colorectal cancer cells.

  1. Weak estrogenic transcriptional activities of Bisphenol A and Bisphenol S

    OpenAIRE

    GRIGNARD ELISE; Bremer, Susanne; LAPENNA SILVIA

    2011-01-01

    In 2011, the European Commission has restricted the use of Bisphenol A in plastic infant feeding bottles. In a response to this restriction, Bisphenol S is now often used as a component of plastic substitutes for the production of babybottles. One of the major concerns leading to the restriction of Bisphenol A was its weak estrogenic activity. By using two highly standardised transactivation assays, we could demonstrate that the estrogenic activity of Bisphenol A and Bisphenol S i...

  2. Signal transduction and activator of transcription (STAT) protein-dependent activation of angiotensinogen promoter: A cellular signal for hypertrophy in cardiac muscle

    OpenAIRE

    Mascareno, Eduardo; Dhar, Manya; M.A.Q. SIDDIQUI

    1998-01-01

    The role of the peptide hormone angiotensin (AngII) in promoting myocardial hypertrophy is well documented. Our studies demonstrate that AngII uses a signaling pathway in cardiac myocytes in which the promoter of the gene encoding its prohormone, angiotensinogen, serves as the target site for activated signal transduction and activator of transcription (STAT) proteins. Gel mobility-shift assay revealed that STAT3 and STAT6 are selectively activated by AngII treatment of cardiomyocytes in cult...

  3. 24. The transcription factors and the relevant signaling pathways activated by low concentration MNNG

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Aims: To explore the transcription factors and related signal transduction pathways activated in the alkylating agents N-methyl-N'-nitro-N-nitrosoguanindine (MNNG) exposed cells which may involved in the mechanism of MNNG induced changes of gene expression, especially the elevation of DNA polymerase β expression and also the consequence of JNK kinase activation which were reported previously in this lab. Methods: Clontech Mercury pathway profiling system containing 8 different vectors in which a specific response element is located upstream from the SEAP-reporter gene were employed to detect the transcription factor activation in Vero cells treated with 0.2 μmol/L MNNG for 2 hours. Thoroughly, CREB phosphorylation, protein kinase A (PKA) and the cellular cAMP content were also assayed with PhosphoPlus CREB (ser-133) antibody kit, protein kinase assay kit and cAMP RIA kit respectively. Results: Among 8 different response elements, the expression of the reporter gene governed by the transcription factors CREB (cAMP response element binding protein), AP1 (activator protein 1), NF-κB (nuclear factor κ B) were elevated by 1.3, 1.4 and 1.3 times higber than control respectively. The level of activated CREB by Ser-133 phosphorylation was 2.08 times higher than control in cells treated with MNNG for 60 min, as measured by immunoblotting. The activity of CREB upstream kinase protein kinase A (PKA), which can phosphorylate CREB on ser-133 was also activated, and the activation peaked at 60 min (11.03±2.80 arbitrary units vs 0.86±0.43 of control). Also, cAMP levels were significantly raised after 60-minute-treatment, 1.52 times higher vs those in solvent control. Conclusion: In addition of previously reported JNK activation, we show here that low concentration alkylating agent MNNG can also activate the cAMP-PKA and NF-κB pathway. These in consequence induce the activation of transcription factors APl, CREB and NF-κB, which may related to the MNNG induced changes in

  4. Leishmania donovani activates nuclear transcription factor-κB in macrophages through reactive oxygen intermediates

    International Nuclear Information System (INIS)

    Interaction of Leishmania donovani with macrophages antagonizes host defense mechanisms by interfering with a cascade of cell signaling processes in the macrophages. An early intracellular signaling event that follows receptor engagement is the activation of transcription factor NF-κB. It has been reported earlier that NF-κB-dependent signaling pathway regulates proinflammatory cytokine release. We therefore investigated the effect of L. donovani infectivity on this nuclear transcription factor in macrophage cell line J774A.1. Both L. donovani and its surface molecule lipophosphoglycan (LPG) resulted in a dose- and time-dependent activation of NF-κB-DNA binding activity in an electrophoretic mobility shift assay. We also report the involvement of IκB-α and IκB-β in the persistent activation of NF-κB by L. donovani. We demonstrate that the NF-κB activation was independent of viability of the parasite. Electrophoretic mobility supershift assay indicated that the NF-κB complex consists of p65 and c-rel subunits. The interaction of parasite with the macrophages and not the cellular uptake was important for NF-κB activation. Both p38 and ERK mitogen activated protein kinase (MAP) activation appears to be necessary for NF-κB activation by LPG. Preincubation of cells with antioxidants resulted in inhibition of L. donovani induced NF-κB activation, thereby suggesting a potential role of reactive oxygen species in L. donovani induced intracellular signaling. The present data indicate that antioxidants could play an important role in working out various therapeutic modalities to control leishmaniasis

  5. A Sensitive and Versatile Fluorescent Activity Assay for ABHD12.

    Science.gov (United States)

    Savinainen, Juha R; Navia-Paldanius, Dina; Laitinen, Jarmo T

    2016-01-01

    Despite great progress in identifying and deorphanizing members of the human metabolic serine hydrolase (mSH) family, the fundamental role of numerous enzymes in this large protein class has remained unclear. One recently found mSH is α/β-hydrolase domain containing 12 (ABHD12) enzyme, whose natural substrate in vivo appears to be the lysophospholipid lysophosphatidylserine (LPS). In vitro, ABHD12 together with monoacylglycerol lipase (MAGL) and ABHD6 hydrolyzes also monoacylglycerols (MAGs) such as the primary endocannabinoid 2-arachidonoyl glycerol (2-AG). Traditional approaches for determining 2-AG hydrolase activity are rather laborious, and often utilize unnatural substrates. Here, we describe a sensitive fluorescent assay of ABHD12 activity in a 96-well-plate format that allows simultaneous testing of inhibitor activities of up to 40 compounds in a single assay. The method utilizes lysates of HEK293 cells transiently overexpressing human ABHD12 as the enzymatic source, and kinetically monitors glycerol liberated in the hydrolysis of 1(3)-AG, the preferred MAG substrate of this enzyme. Glycerol output is coupled to an enzymatic cascade generating the fluorescent end-product resorufin. This methodology has helped to identify the first class of inhibitors showing selectivity for ABHD12 over the other mSHs. PMID:27245904

  6. Targeted mutagenesis of the human papillomavirus type 16 E2 transactivation domain reveals separable transcriptional activation and DNA replication functions.

    Science.gov (United States)

    Sakai, H; Yasugi, T; Benson, J D; Dowhanick, J J; Howley, P M

    1996-03-01

    The E2 gene products of papillomavirus play key roles in viral replication, both as regulators of viral transcription and as auxiliary factors that act with E1 in viral DNA replication. We have carried out a detailed structure-function analysis of conserved amino acids within the N-terminal domain of the human papillomavirus type 16 (HPV16) E2 protein. These mutants were tested for their transcriptional activation activities as well as transient DNA replication and E1 binding activities. Analysis of the stably expressed mutants revealed that the transcriptional activation and replication activities of HPV16 E2 could be dissociated. The 173A mutant was defective for the transcriptional activation function but retained wild-type DNA replication activity, whereas the E39A mutant wild-type transcriptional activation function but was defective in transient DNA replication assays. The E39A mutant was also defective for HPV16 E1 binding in vitro, suggesting that the ability of E2 protein to form a complex with E1 appears to be essential for its function as an auxiliary replication factor. PMID:8627680

  7. Arabidopsis GARP transcriptional activators interact with the Pro-rich activation domain shared by G-box-binding bZIP factors.

    Science.gov (United States)

    Tamai, Hiroki; Iwabuchi, Masaki; Meshi, Tetsuo

    2002-01-01

    The Pro-rich regions, found in a subset of plant bZIP transcription factors, including G-box-binding factors (GBFs) of Arabidopsis thaliana, are thought to be deeply involved in transcriptional regulation. However, the molecular mechanisms of the Pro-rich region-mediated transcriptional regulation are still largely unknown. Here we report evidence showing that two closely related Arabidopsis proteins, designated GPRI1 and GPRI2, containing a GARP DNA-binding domain, are likely partners of one or more GBFs. The results of yeast two-hybrid assays and in vitro binding assays indicated that GPRI1 can interact with the Pro-rich regions of GBF1 and GBF3. GPRI2 interacted with the Pro-rich region of GBF1. GPRI1 and GPRI2 transactivated transcription in yeast. In GPRI1 the region responsible for this activation was mapped in the N-terminal third of the protein. Transient assays showed that in Arabidopsis cells not only the N-terminal but also the C-terminal regions of GPRI1 can function as a separable activation domain. GPRI1 and GPRI2 may function in some promoters in concert with a GBF through interaction with its Pro-rich region to enhance the transcriptional level of the corresponding genes. PMID:11828027

  8. Assay of contained waste using active and passive computed tomography

    International Nuclear Information System (INIS)

    The US Department of Energy (DOE) has more than 600,000 transuranic waste drums temporarily stored at nearly 40 sites within the US. Contents of these drums must be characterized before they are transported for permanent disposal. Opening drums for examination is expensive mainly because of the safety precautions that must be taken. Current nonintrusive methods of characterizing waste in sealed drums are often inaccurate where assay errors are related to nonuniform measurement responses associated with unknown radioactive-source and waste-matrix-material distributions. These errors can be reduced by the application of imaging techniques that better measure the spatial locations of sources and matrix attenuation. Lawrence Livermore National Laboratory (LLNL) has developed an emerging gamma-ray nondestructive analysis (NDA) technology, called active and passive computed tomography (A and PCT), that identifies and accurately quantifies all detectable radioisotopes in closed containers of waste. The performance of the A and PCT technology has been determined by several open and blind tests. Several 15-replicate studies were completed for three of the four required activity ranges. The three ranges were measured by acquiring A and PCT data for three separate placements of radioactive standards within an empty-matrix drum. The standards had a total mass of 0.93, 9.3, and 33.48 g of 239Pu positioned within the drum and required 4, 0.75, and 0.5 h total assay time per replicate, respectively. The performance results are summarized in Table 1. Additional research is being performed to maintain requirements while decreasing assay time

  9. Nuclear factor I revealed as family of promoter binding transcription activators

    Directory of Open Access Journals (Sweden)

    Plasari Genta

    2011-04-01

    Full Text Available Abstract Background Multiplex experimental assays coupled to computational predictions are being increasingly employed for the simultaneous analysis of many specimens at the genome scale, which quickly generates very large amounts of data. However, inferring valuable biological information from the comparisons of very large genomic datasets still represents an enormous challenge. Results As a study model, we chose the NFI/CTF family of mammalian transcription factors and we compared the results obtained from a genome-wide study of its binding sites with chromatin structure assays, gene expression microarray data, and in silico binding site predictions. We found that NFI/CTF family members preferentially bind their DNA target sites when they are located around transcription start sites when compared to control datasets generated from the random subsampling of the complete set of NFI binding sites. NFI proteins preferably associate with the upstream regions of genes that are highly expressed and that are enriched in active chromatin modifications such as H3K4me3 and H3K36me3. We postulate that this is a causal association and that NFI proteins mainly act as activators of transcription. This was documented for one member of the family (NFI-C, which revealed as a more potent gene activator than repressor in global gene expression analysis. Interestingly, we also discovered the association of NFI with the tri-methylation of lysine 9 of histone H3, a chromatin marker previously associated with the protection against silencing of telomeric genes by NFI. Conclusion Taken together, we illustrate approaches that can be taken to analyze large genomic data, and provide evidence that NFI family members may act in conjunction with specific chromatin modifications to activate gene expression.

  10. Separation of the transcriptional activation and replication functions of the bovine papillomavirus-1 E2 protein.

    Science.gov (United States)

    Winokur, P L; McBride, A A

    1992-11-01

    Replication of bovine papillomavirus-1 (BPV-1) DNA requires two viral gene products, the E1 protein and the full-length E2 protein. The 48 kDa E2 protein is a site-specific DNA-binding protein that binds to several sites which lie adjacent to the BPV-1 origin of replication. The 85 amino acid C-terminal domain contains the specific DNA binding and dimerization properties of the protein. The approximately 200 amino acid N-terminal domain is crucial for transcriptional activation. Both of these domains are highly conserved among different papillomaviruses. An internal hinge region separates the two functional domains. The region varies in amino acid sequence and length among the E2 proteins of different papillomaviruses. A series of mutations were constructed within the E2 open reading frame which delete various regions of the conserved DNA binding and transactivation domains as well as the internal hinge region. Two mutated E2 proteins that lack portions of the conserved DNA-binding domain but which support DNA replication were identified using transient replication assays. These mutated E2 proteins were unable to function as transcriptional activators. Conversely, two E2 proteins containing large deletions of the hinge region were able to activate transcription, but were defective for replication. Thus, the replication and transactivation functions of the E2 protein are separable. PMID:1327758

  11. Binding of the unorthodox transcription activator, Crl, to the components of the transcription machinery.

    Science.gov (United States)

    England, Patrick; Westblade, Lars F; Karimova, Gouzel; Robbe-Saule, Véronique; Norel, Françoise; Kolb, Annie

    2008-11-28

    The small regulatory protein Crl binds to sigmaS, the RNA polymerase stationary phase sigma factor. Crl facilitates the formation of the sigmaS-associated holoenzyme (EsigmaS) and thereby activates sigmaS-dependent genes. Using a real time surface plasmon resonance biosensor, we characterized in greater detail the specificity and mode of action of Crl. Crl specifically forms a 1:1 complex with sigmaS, which results in an increase of the association rate of sigmaS to core RNA polymerase without any effect on the dissociation rate of EsigmaS. Crl is also able to associate with preformed EsigmaS with a higher affinity than with sigmaS alone. Furthermore, even at saturating sigmaS concentrations, Crl significantly increases EsigmaS association with the katN promoter and the productive isomerization of the EsigmaS-katN complex, supporting a direct role of Crl in transcription initiation. Finally, we show that Crl does not bind to sigma70 itself but is able at high concentrations to form a weak and transient 1:1 complex with both core RNA polymerase and the sigma70-associated holoenzyme, leaving open the possibility that Crl might also exert a side regulatory role in the transcriptional activity of additional non-sigmaS holoenzymes. PMID:18818199

  12. Activity-based assay for ricin-like toxins

    Science.gov (United States)

    Keener, William K.; Ward, Thomas E.

    2007-02-06

    A method of detecting N-glycosylase activity in a sample involves incubating an oligodeoxyribonucleotide substrate containing a deoxyadenosine or deoxyuridine residue with the sample to be tested such that the N-glycosylase, if present, hydrolyzes the deoxyadenosine or deoxyuridine residue to result in an N-glycosylase product having an abasic site. A primer is annealed to the N-glycosylase product, and the primer is extended with a DNA polymerase, such as Taq DNA polymerase, that pauses at abasic sites. The resulting extension products are melted from the N-glycosylase product, allowed to form hairpins due to self-complementarity, and further extended in the presence of labeled precursors to result in labeled products. Extension products synthesized from undigested substrate as template do not result in labeled products. Thus, detection of labeled products results in detection of N-glycosylase activity. Oligodeoxyribonucleotide substrates, primer, and positive controls and a kit for N-glycosylase assay are also disclosed.

  13. Post-translational regulation of Oct4 transcriptional activity.

    Directory of Open Access Journals (Sweden)

    Jonathan P Saxe

    Full Text Available Oct4 is a key component of the molecular circuitry which regulates embryonic stem cell proliferation and differentiation. It is essential for maintenance of undifferentiated, pluripotent cell populations, and accomplishes these tasks by binding DNA in multiple heterodimer and homodimer configurations. Very little is known about how formation of these complexes is regulated, or the mechanisms through which Oct4 proteins respond to complex extracellular stimuli which regulate pluripotency. Here, we provide evidence for a phosphorylation-based mechanism which regulates specific Oct4 homodimer conformations. Point mutations of a putative phosphorylation site can specifically abrogate transcriptional activity of a specific homodimer assembly, with little effect on other configurations. Moreover, we performed bioinformatic predictions to identify a subset of Oct4 target genes which may be regulated by this specific assembly, and show that altering Oct4 protein levels affects transcription of Oct4 target genes which are regulated by this assembly but not others. Finally, we identified several signaling pathways which may mediate this phosphorylation and act in combination to regulate Oct4 transcriptional activity and protein stability. These results provide a mechanism for rapid and reversible alteration of Oct4 transactivation potential in response to extracellular signals.

  14. Transcriptional activation of JC virus by human T-lymphotropic virus type I Tax protein in human neuronal cell lines.

    Science.gov (United States)

    Okada, Y; Sawa, H; Tanaka, S; Takada, A; Suzuki, S; Hasegawa, H; Umemura, T; Fujisawa, J; Tanaka, Y; Hall, W W; Nagashima, K

    2000-06-01

    Polyomavirus JC (JCV) causes the human demyelinating disease, progressive multifocal leukoencephalopathy (PML). The recent demonstration of cases of PML in association with human T-lymphotropic virus type I (HTLV-I) infection prompted us to examine whether the HTLV-I-encoded regulatory protein Tax activates JCV transcription. By employing a dual luciferase assay, we initially found that the expression of Tax activated the transcriptional potential of both early and late promoters of JCV in human neuronal but not in non-neuronal cells. We subsequently analyzed the mechanism of Tax-induced activation of the JCV promoter in neuronal cells with the following results: 1) the JCV promoter that lacks the NF-kappaB-binding motif could not be activated by Tax; 2) the overexpression of IkappaBalpha abolished Tax-induced transcriptional activation of the JCV promoter; 3) a Tax mutant (M22) lacking the potential for activation via the NF-kappaB pathway did not activate the JCV promoter. Furthermore, Tax enhances the gene expression of JCV T antigen and VP1. We examined mechanisms of the cell-specific activation of the JCV promoter by Tax. Electrophoretic mobility shift assay demonstrated the presence of Tax-bound protein(s) that were specifically present in non-neuronal cells. This study is the first demonstration of the activation of JCV promoter by HTLV-I Tax in an NF-kappaB-dependent manner. PMID:10828075

  15. The mitochondrial housekeeping gene 16S is inappropriate as an internal standard in comparative studies of rare mitochondrial transcripts using S1-nuclease protection assays

    Directory of Open Access Journals (Sweden)

    Sandra Ebert

    2010-04-01

    Full Text Available The analysis of rare mitochondrial transcripts derived from the L-strand of the mitochondrial genome requires a sensitive method such as the S1-nuclease protection assay. We examined whether the ribosomal mitochon­drial transcript 16S is suitable as an internal standard in a multiplex S1-nuclease protection assay for the measurement of different mitochondrial transcripts. For reliable quantification of rare mitochondrial transcripts with the RNase protection assay, a minimum of 2 μg of total RNA is necessary. Standard curves of 16S RNA produced with total RNA from human kidney, liver, brain, and a human neuroblastoma cell line (SH-SY5Y revealed dose-response relationships that were saturated already at less than 0.5 μg of total RNA. Therefore, 16S is inappropriate as an internal standard for analyzing mitochondrial transcripts with RNase protection assays when more than 0.5 μg of total RNA have to be analyzed.

  16. Dual effects of TGF-β on ERα-mediated estrogenic transcriptional activity in breast cancer

    Directory of Open Access Journals (Sweden)

    Cao Xu

    2009-11-01

    Full Text Available Abstract Background TGF-β resistance often develops in breast cancer cells that in turn overproduce this cytokine to create a local immunosuppressive environment that fosters tumor growth and exacerbates the invasive and metastatic behavior of the tumor cells themselves. Smads-mediated cross-talk with the estrogen receptor has been implied to play an important role in development and/or progression of breast cancer. We investigated how TGF-β regulates ERα-induced gene transcription and potential mechanisms of frequent TGF-β resistance in breast cancer. Methods Effect of TGF-β on ERα-mediated gene transcription was investigated in breast cancer cell lines using transient transfection, real-time PCR, sequential DNA precipitation, and small interfering RNA assays. The expression of Smads on both human breast cancer cell lines and ERα-positive human breast cancer tissue was evaluated by immunofluorescence and immunohistochemical assays. Results A complex of Smad3/4 mediates TGF-β inhibition of ERα-mediated estrogenic activity of gene transcription in breast cancer cells, and Smad4 is essential and sufficient for such repression. Either overexpression of Smad3 or inhibition of Smad4 leads to the "switch" of TGF-β from a repressor to an activator. Down-regulation and abnormal cellular distribution of Smad4 were associated with some ERα-positive infiltrating human breast carcinoma. There appears a dynamic change of Smad4 expression from benign breast ductal tissue to infiltrating ductal carcinoma. Conclusion These results suggest that aberrant expression of Smad4 or disruption of Smad4 activity lead to the loss of TGF-β suppression of ERα transactivity in breast cancer cells.

  17. Single cell multiplexed assay for proteolytic activity using droplet microfluidics.

    Science.gov (United States)

    Ng, Ee Xien; Miller, Miles A; Jing, Tengyang; Chen, Chia-Hung

    2016-07-15

    Cellular enzymes interact in a post-translationally regulated fashion to govern individual cell behaviors, yet current platform technologies are limited in their ability to measure multiple enzyme activities simultaneously in single cells. Here, we developed multi-color Förster resonance energy transfer (FRET)-based enzymatic substrates and use them in a microfluidics platform to simultaneously measure multiple specific protease activities from water-in-oil droplets that contain single cells. By integrating the microfluidic platform with a computational analytical method, Proteolytic Activity Matrix Analysis (PrAMA), we are able to infer six different protease activity signals from individual cells in a high throughput manner (~100 cells/experimental run). We characterized protease activity profiles at single cell resolution for several cancer cell lines including breast cancer cell line MDA-MB-231, lung cancer cell line PC-9, and leukemia cell line K-562 using both live-cell and in-situ cell lysis assay formats, with special focus on metalloproteinases important in metastasis. The ability to measure multiple proteases secreted from or expressed in individual cells allows us to characterize cell heterogeneity and has potential applications including systems biology, pharmacology, cancer diagnosis and stem cell biology. PMID:26995287

  18. Transcriptional activation of melanocortin 2 receptor accessory protein by PPARγ in adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Soo; Kim, Yoon-Jin [Department of Biology, Research Institute for Basic Science, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Cho, Si Young [R and D Center, Amore Pacific Corporation, Yongin-si, Gyeonggi-do 446-729 (Korea, Republic of); Lee, Tae Ryong, E-mail: trlee@amorepacific.com [R and D Center, Amore Pacific Corporation, Yongin-si, Gyeonggi-do 446-729 (Korea, Republic of); Kim, Sang Hoon, E-mail: shkim@khu.ac.kr [Department of Biology, Research Institute for Basic Science, Kyung Hee University, Seoul 130-701 (Korea, Republic of)

    2013-09-27

    Highlights: •MRAP enhanced HSL expression. •ACTH-mediated MRAP reduced glycerol release. •PPARγ induced MRAP expression. •PPARγ bound to the MRAP promoter. -- Abstract: Adrenocorticotropic hormone (ACTH) in rodents decreases lipid accumulation and body weight. Melanocortin receptor 2 (MC2R) and MC2R accessory protein (MRAP) are specific receptors for ACTH in adipocytes. Peroxisome proliferator-activated receptor γ (PPARγ) plays a role in the transcriptional regulation of metabolic pathways such as adipogenesis and β-oxidation of fatty acids. In this study we investigated the transcriptional regulation of MRAP expression during differentiation of 3T3-L1 cells. Stimulation with ACTH affected lipolysis in murine mature adipocytes via MRAP. Putative peroxisome proliferator response element (PPRE) was identified in the MRAP promoter region. In chromatin immunoprecipitation and reporter assays, we observed binding of PPARγ to the MRAP promoter. The mutagenesis experiments showed that the −1209/−1198 region of the MRAP promoter could function as a PPRE site. These results suggest that PPARγ is required for transcriptional activation of the MRAP gene during adipogenesis, which contributes to understanding of the molecular mechanism of lipolysis in adipocytes.

  19. Transcriptional activation of melanocortin 2 receptor accessory protein by PPARγ in adipocytes

    International Nuclear Information System (INIS)

    Highlights: •MRAP enhanced HSL expression. •ACTH-mediated MRAP reduced glycerol release. •PPARγ induced MRAP expression. •PPARγ bound to the MRAP promoter. -- Abstract: Adrenocorticotropic hormone (ACTH) in rodents decreases lipid accumulation and body weight. Melanocortin receptor 2 (MC2R) and MC2R accessory protein (MRAP) are specific receptors for ACTH in adipocytes. Peroxisome proliferator-activated receptor γ (PPARγ) plays a role in the transcriptional regulation of metabolic pathways such as adipogenesis and β-oxidation of fatty acids. In this study we investigated the transcriptional regulation of MRAP expression during differentiation of 3T3-L1 cells. Stimulation with ACTH affected lipolysis in murine mature adipocytes via MRAP. Putative peroxisome proliferator response element (PPRE) was identified in the MRAP promoter region. In chromatin immunoprecipitation and reporter assays, we observed binding of PPARγ to the MRAP promoter. The mutagenesis experiments showed that the −1209/−1198 region of the MRAP promoter could function as a PPRE site. These results suggest that PPARγ is required for transcriptional activation of the MRAP gene during adipogenesis, which contributes to understanding of the molecular mechanism of lipolysis in adipocytes

  20. The JaCVAM / OECD activities on the comet assay

    OpenAIRE

    Hajime Kojima

    2015-01-01

    The in vivo alkaline single cell gel electrophoresis assay, also called alkaline comet assay is a method measuring DNA strand breaks in eukaryotic cells. This assay was adopted in the Organisation for Economic Co-operation and Development (OECD) Test guideline (TG) 489 on September 26, 2014. This TG is part of a series of TGs on genetic toxicology. A formal validation trial of the this assay was performed in 2006-2012, coordinated by the Japanese Center for the Validation of Alternative...

  1. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease.

    Science.gov (United States)

    Naranjo, José R; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C; Arrabal, María D; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-02-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  2. Activating transcription factor 6 derepression mediates neuroprotection in Huntington disease

    Science.gov (United States)

    Naranjo, José R.; Zhang, Hongyu; Villar, Diego; González, Paz; Dopazo, Xose M.; Morón-Oset, Javier; Higueras, Elena; Oliveros, Juan C.; Arrabal, María D.; Prieto, Angela; Cercós, Pilar; González, Teresa; De la Cruz, Alicia; Casado-Vela, Juan; Rábano, Alberto; Valenzuela, Carmen; Gutierrez-Rodriguez, Marta; Li, Jia-Yi; Mellström, Britt

    2016-01-01

    Deregulated protein and Ca2+ homeostasis underlie synaptic dysfunction and neurodegeneration in Huntington disease (HD); however, the factors that disrupt homeostasis are not fully understood. Here, we determined that expression of downstream regulatory element antagonist modulator (DREAM), a multifunctional Ca2+-binding protein, is reduced in murine in vivo and in vitro HD models and in HD patients. DREAM downregulation was observed early after birth and was associated with endogenous neuroprotection. In the R6/2 mouse HD model, induced DREAM haplodeficiency or blockade of DREAM activity by chronic administration of the drug repaglinide delayed onset of motor dysfunction, reduced striatal atrophy, and prolonged life span. DREAM-related neuroprotection was linked to an interaction between DREAM and the unfolded protein response (UPR) sensor activating transcription factor 6 (ATF6). Repaglinide blocked this interaction and enhanced ATF6 processing and nuclear accumulation of transcriptionally active ATF6, improving prosurvival UPR function in striatal neurons. Together, our results identify a role for DREAM silencing in the activation of ATF6 signaling, which promotes early neuroprotection in HD. PMID:26752648

  3. Regulating the regulators: modulators of transcription factor activity.

    Science.gov (United States)

    Everett, Logan; Hansen, Matthew; Hannenhalli, Sridhar

    2010-01-01

    Gene transcription is largely regulated by DNA-binding transcription factors (TFs). However, the TF activity itself is modulated via, among other things, post-translational modifications (PTMs) by specific modification enzymes in response to cellular stimuli. TF-PTMs thus serve as "molecular switchboards" that map upstream signaling events to the downstream transcriptional events. An important long-term goal is to obtain a genome-wide map of "regulatory triplets" consisting of a TF, target gene, and a modulator gene that specifically modulates the regulation of the target gene by the TF. A variety of genome-wide data sets can be exploited by computational methods to obtain a rough map of regulatory triplets, which can guide directed experiments. However, a prerequisite to developing such computational tools is a systematic catalog of known instances of regulatory triplets. We first describe PTM-Switchboard, a recent database that stores triplets of genes such that the ability of one gene (the TF) to regulate a target gene is dependent on one or more PTMs catalyzed by a third gene, the modifying enzyme. We also review current computational approaches to infer regulatory triplets from genome-wide data sets and conclude with a discussion of potential future research. PTM-Switchboard is accessible at http://cagr.pcbi.upenn.edu/PTMswitchboard / PMID:20827600

  4. Nondestructive assay using active and passive computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, G. P. ,LLNL

    1998-07-01

    The United States Department of Energy (DOE) has over 600,000 transuranic (TRU) waste drums temporarily stored at nearly 40 sites within the United States. Contents of these drums must be characterized before they are transported for permanent disposal. Traditional gamma-ray methods used to characterize nuclear waste introduce errors that are related to nonuniform measurement responses associated with unknown radioactive source and matrix material distributions. These errors can be reduced by application of tomographic techniques, that measure these distributions. The Lawrence Livermore National Laboratory (LLNL) has developed two tomographic-based waste assay systems. They use external radioactive sources and tomography-protocol to map the attenuation within a waste drum as a function of mono-energetic gamma-ray energy in waste containers. Passive tomography is used to localize and identify specific radioactive waste contents within the same waste containers. Reconstruction of the passive data via the active images allows internal waste radioactivities in a drum to be corrected for any overlying heterogeneous materials, thus yielding an absolute assay of the waste radioactivities. Calibration of both systems requires only point source measurements and are independent of matrix materials. The first system is housed at LLNL and was developed to study and validate research concepts. The second system is being developed with Bioimaging Research, Inc. (BIR) and is housed within a mobile waste characterization trailer. This system has traveled to three DOE facilities to demonstrate the active and passive computed tomography capability. Both systems have participated in and successfully passed the requirements of formal DOE-sponsored intercomparison studies. The systems have measured approximately 1 to 100 grains of plutonium within a variety of waste matrix materials. Laboratory and field results from these two systems over the past several years show that both systems

  5. Transcriptional activity of acetylcholinesterase gene is regulated by DNA methylation during C2C12 myogenesis.

    Science.gov (United States)

    Lau, Kei M; Gong, Amy G W; Xu, Miranda L; Lam, Candy T W; Zhang, Laura M L; Bi, Cathy W C; Cui, D; Cheng, Anthony W M; Dong, Tina T X; Tsim, Karl W K; Lin, Huangquan

    2016-07-01

    The expression of acetylcholinesterase (AChE), an enzyme hydrolyzes neurotransmitter acetylcholine at vertebrate neuromuscular junction, is regulated during myogenesis, indicating the significance of muscle intrinsic factors in controlling the enzyme expression. DNA methylation is essential for temporal control of myogenic gene expression during myogenesis; however, its role in AChE regulation is not known. The promoter of vertebrate ACHE gene carries highly conserved CG-rich regions, implying its likeliness to be methylated for epigenetic regulation. A DNA methyltransferase inhibitor, 5-azacytidine (5-Aza), was applied onto C2C12 cells throughout the myotube formation. When DNA methylation was inhibited, the promoter activity, transcript expression and enzymatic activity of AChE were markedly increased after day 3 of differentiation, which indicated the putative role of DNA methylation. By bisulfite pyrosequencing, the overall methylation rate was found to peak at day 3 during C2C12 cell differentiation; a SP1 site located at -1826bp upstream of mouse ACHE gene was revealed to be heavily methylated. The involvement of transcriptional factor SP1 in epigenetic regulation of AChE was illustrated here: (i) the SP1-driven transcriptional activity was increased in 5-Aza-treated C2C12 culture; (ii) the binding of SP1 onto the SP1 site of ACHE gene was fully blocked by the DNA methylation; and (iii) the sequence flanking SP1 sites of ACHE gene was precipitated by chromatin immuno-precipitation assay. The findings suggested the role of DNA methylation on AChE transcriptional regulation and provided insight in elucidating the DNA methylation-mediated regulatory mechanism on AChE expression during muscle differentiation. PMID:27021952

  6. Nondestructive assays of 55-gallon drums containing uranium and transuranic waste using passive-active shufflers

    International Nuclear Information System (INIS)

    A passive-active neutron shuffler for 55-gal. drums of waste has been characterized using more than 1500 active and 500 passive assays on drums with 28 different matrices. Flux-monitor corrections have been improved, the assay accuracy with localized fissile materials in a drum has been characterized, and improvements have been suggested. Minimum detectable masses for 235U with active assays and 240Pueff with passive assays are presented for the various amounts of moderators and absorbers studied

  7. A passive-active neutron device for assaying remote-handled transuranic waste

    International Nuclear Information System (INIS)

    A combined passive-active neutron assay device was constructed for assaying remote-handled transuranic waste. A study of matrix and source position effects in active assays showed that a knowledge of the source position alone is not sufficient to correct for position-related errors in highly moderating or absorbing matrices. An alternate function for the active assay of solid fuel pellets was derived, although the efficacy of this approach remains to be established

  8. Development of transcriptional fusions to assess Leptospira interrogans promoter activity.

    Directory of Open Access Journals (Sweden)

    Gustavo M Cerqueira

    Full Text Available BACKGROUND: Leptospirosis is a zoonotic infectious disease that affects both humans and animals. The existing genetic tools for Leptospira spp. have improved our understanding of the biology of this spirochete as well as the interaction of pathogenic leptospires with the mammalian host. However, new tools are necessary to provide novel and useful information to the field. METHODOLOGY AND PRINCIPAL FINDINGS: A series of promoter-probe vectors carrying a reporter gene encoding green fluorescent protein (GFP were constructed for use in L. biflexa. They were tested by constructing transcriptional fusions between the lipL41, Leptospiral Immunoglobulin-like A (ligA and Sphingomyelinase 2 (sph2 promoters from L. interrogans and the reporter gene. ligA and sph2 promoters were the most active, in comparison to the lipL41 promoter and the non-induced controls. The results obtained are in agreement with LigA expression from the L. interrogans Fiocruz L1-130 strain. CONCLUSIONS: The novel vectors facilitated the in vitro evaluation of L. interrogans promoter activity under defined growth conditions which simulate the mammalian host environment. The fluorescence and rt-PCR data obtained closely reflected transcriptional regulation of the promoters, thus demonstrating the suitability of these vectors for assessing promoter activity in L. biflexa.

  9. Pim1 promotes human prostate cancer cell tumorigenicity and c-MYC transcriptional activity

    International Nuclear Information System (INIS)

    The serine/threonine kinase PIM1 has been implicated as an oncogene in various human cancers including lymphomas, gastric, colorectal and prostate carcinomas. In mouse models, Pim1 is known to cooperate with c-Myc to promote tumorigenicity. However, there has been limited analysis of the tumorigenic potential of Pim1 overexpression in benign and malignant human prostate cancer cells in vivo. We overexpressed Pim1 in three human prostate cell lines representing different disease stages including benign (RWPE1), androgen-dependent cancer (LNCaP) and androgen-independent cancer (DU145). We then analyzed in vitro and in vivo tumorigenicity as well as the effect of Pim1 overexpression on c-MYC transcriptional activity by reporter assays and gene expression profiling using an inducible MYC-ER system. To validate that Pim1 induces tumorigenicity and target gene expression by modulating c-MYC transcriptional activity, we inhibited c-MYC using a small molecule inhibitor (10058-F4) or RNA interference. Overexpression of Pim1 alone was not sufficient to convert the benign RWPE1 cell to malignancy although it enhanced their proliferation rates when grown as xenografts in vivo. However, Pim1 expression enhanced the in vitro and in vivo tumorigenic potentials of the human prostate cancer cell lines LNCaP and DU145. Reporter assays revealed increased c-MYC transcriptional activity in Pim1-expressing cells and mRNA expression profiling demonstrated that a large fraction of c-MYC target genes were also regulated by Pim1 expression. The c-MYC inhibitor 10058-F4 suppressed the tumorigenicity of Pim1-expressing prostate cancer cells. Interestingly, 10058-F4 treatment also led to a reduction of Pim1 protein but not mRNA. Knocking-down c-MYC using short hairpin RNA reversed the effects of Pim1 on Pim1/MYC target genes. Our results suggest an in vivo role of Pim1 in promoting prostate tumorigenesis although it displayed distinct oncogenic activities depending on the disease stage of the

  10. The synchronous active neutron detection system for spent fuel assay

    International Nuclear Information System (INIS)

    The authors have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit the unique operating features of a 14-MeV neutron generator developed by Schlumberger. This generator and a novel detection system will be applied to the direct measurement of the fissile material content in spent fuel in place of the indirect measures used at present. The technique they are investigating is termed synchronous active neutron detection (SAND). It closely follows a method that has been used routinely in other branches of physics to detect very small signals in the presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed open-quotes lock-inclose quotes amplifiers. The authors have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. This approach is possible because the Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. The results to date are preliminary but quite promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly. It also appears to be quite resilient to background neutron interference. The interrogating neutrons appear to be nonthermal and penetrating. Although a significant amount of work remains to fully explore the relevant physics and optimize the instrument design, the underlying concept appears sound

  11. Activating transcription factor 4 and X box binding protein 1 of Litopenaeus vannamei transcriptional regulated white spot syndrome virus genes Wsv023 and Wsv083.

    Directory of Open Access Journals (Sweden)

    Xiao-Yun Li

    Full Text Available In response to endoplasmic reticulum (ER stress, the signaling pathway termed unfolded protein response (UPR is activated. To investigate the role of UPR in Litopenaeus vannamei immunity, the activating transcription factor 4 (designated as LvATF4 which belonged to a branch of the UPR, the [protein kinase RNA (PKR-like ER kinase, (PERK]-[eukaryotic initiation factor 2 subunit alpha (eIF2α] pathway, was identified and characterized. The full-length cDNA of LvATF4 was 1972 bp long, with an open reading frame of 1299 bp long that encoded a 432 amino acid protein. LvATF4 was highly expressed in gills, intestines and stomach. For the white spot syndrome virus (WSSV challenge, LvATF4 was upregulated in the gills after 3 hpi and increased by 1.9-fold (96 hpi compared to the mock-treated group. The LvATF4 knock-down by RNA interference resulted in a lower cumulative mortality of L. vannamei under WSSV infection. Reporter gene assays show that LvATF4 could upregulate the expression of the WSSV gene wsv023 based on the activating transcription factor/cyclic adenosine 3', 5'-monophosphate response element (ATF/CRE. Another transcription factor of L. vannamei, X box binding protein 1 (designated as LvXBP1, has a significant function in [inositol-requiring enzyme-1(IRE1 - (XBP1] pathway. This transcription factor upregulated the expression of the WSSV gene wsv083 based on the UPR element (UPRE. These results suggest that in L. vannamei UPR signaling pathway transcription factors are important for WSSV and might facilitate WSSV infection.

  12. Transcriptional activation domains stimulate initiation and elongation at different times and via different residues.

    OpenAIRE

    Brown, S. A.; Weirich, C S; Newton, E M; Kingston, R E

    1998-01-01

    Transcriptional activators can stimulate multiple steps in the transcription process. We have used GAL4 fusion proteins to characterize the ability of different transcriptional activation domains to stimulate transcriptional elongation on the hsp70 gene in vitro. Stimulation of elongation apparently occurs via a mechanistic pathway different from that of stimulation of initiation: the herpes simplex virus VP16, heat shock factor 1 (HSF1) and amphipathic helix (AH) activation domains all stimu...

  13. Generation of HIV-1 and Internal Control Transcripts as Standards for an In-House Quantitative Competitive RT-PCR Assay to Determine HIV-1 Viral Load

    Directory of Open Access Journals (Sweden)

    Anny Armas Cayarga

    2011-01-01

    Full Text Available Human immunodeficiency virus type-1 (HIV-1 viral load is useful for monitoring disease progression in HIV-infected individuals. We generated RNA standards of HIV-1 and internal control (IC by in vitro transcription and evaluated its performance in a quantitative reverse transcription polymerase chain reaction (qRT-PCR assay. HIV-1 and IC standards were obtained at high RNA concentrations, without DNA contamination. When these transcripts were included as standards in a qRT-PCR assay, it was obtained a good accuracy (±0.5 log10 unit of the expected results in the quantification of the HIV-1 RNA international standard and controls. The lower limit detection achieved using these standards was 511.0 IU/mL. A high correlation (=0.925 was obtained between the in-house qRT-PCR assay and the NucliSens easyQ HIV-1 test (bioMerieux for HIV-1 RNA quantitation with clinical samples (=14. HIV-1 and IC RNA transcripts, generated in this study, proved to be useful as standards in an in-house qRT-PCR assay for determination of HIV-1 viral load.

  14. Development and Validation of a Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Three Papaya Viruses

    Directory of Open Access Journals (Sweden)

    Decai Tuo

    2014-10-01

    Full Text Available Papaya ringspot virus (PRSV, Papaya leaf distortion mosaic virus (PLDMV, and Papaya mosaic virus (PapMV produce similar symptoms in papaya. Each threatens commercial production of papaya on Hainan Island, China. In this study, a multiplex reverse transcription PCR assay was developed to detect simultaneously these three viruses by screening combinations of mixed primer pairs and optimizing the multiplex RT-PCR reaction conditions. A mixture of three specific primer pairs was used to amplify three distinct fragments of 613 bp from the P3 gene of PRSV, 355 bp from the CP gene of PLDMV, and 205 bp from the CP gene of PapMV, demonstrating the assay’s specificity. The sensitivity of the multiplex RT-PCR was evaluated by showing plasmids containing each of the viral target genes with 1.44 × 103, 1.79 × 103, and 1.91 × 102 copies for the three viruses could be detected successfully. The multiplex RT-PCR was applied successfully for detection of three viruses from 341 field samples collected from 18 counties of Hainan Island, China. Rates of single infections were 186/341 (54.5%, 93/341 (27.3%, and 3/341 (0.9%, for PRSV, PLDMV, and PapMV, respectively; 59/341 (17.3% of the samples were co-infected with PRSV and PLDMV, which is the first time being reported in Hainan Island. This multiplex RT-PCR assay is a simple, rapid, sensitive, and cost-effective method for detecting multiple viruses in papaya and can be used for routine molecular diagnosis and epidemiological studies in papaya.

  15. Interferon Gamma Release Assays in active Tuberculosis: new medical insights

    Directory of Open Access Journals (Sweden)

    Sandro Pierdomenico

    2011-09-01

    Full Text Available Since first presentation, Interferon γ Release Assays (IGRAs have had basic and wide application to LTBI, in accordance with international consensus and CDC recommendations, leaving their use in active TB to the field of study and research.We reviewed the results of 633 patients investigated from 2004 to 2008 targeting active TB, with the objective to highlight immunological data supporting test performances.We evaluated Quantiferon TB Gold (1st generation IGRA kit in association to Culture (MGIT 960 and Lowenstein Jensen and PCR (Probetec-ET having the positivity of culture plus clinical diagnosis as the standard true value to compare. QTB Gold was studied in 69 TB positive patients (42 pulmonary and 27 extra-pulmonary, with Sensitivity, Specificity, PPV and NPV average to 61.8%, 94.5%, 54.3% and 95.9% respectively, after indeterminate results discharging. Significant statistical differences didn’t emerge between pulmonary and extra-pulmonary infections (CI 95%.The overall indeterminate ratio arose up to 20.3% in patients with active TB vs 2.7% of global population (p<0.001. In 22% of patients with active pulmonary disease, IGRA conversed to positivity after 15 days in replicated tests, in spite of current treatment. 4 patients, with pulmonary TB and Quantiferon persistent negativities, underwent 18 months follow-up as not respondent although SIRE phenotypic susceptibilities and enough DOT compliance. Molecular DST documented hetero resistance for rpoB (MUT 1, MUT 3 plus wild lines and katG (MUT 1 plus wild in association to lack of inhA wild lines (Genotype MTBDR plus, Hain Lifescience. These reports suggest a mutational relationship between Rv3874 – 3875 cassette, encoding ESAT-6 / CFP-10, and rpoB, katG, inhA genes plausibly implying weak or absent selective clonal Th 1 activation to IGRA antigens. Our data seem to point out: 1 positive results are able to match true active TB in less than 50% of patients; 2 negative results could leave

  16. Aurora kinase B activity is modulated by thyroid hormone during transcriptional activation of pituitary genes

    OpenAIRE

    Tardáguila, Manuel; González-Gugel, Elena; Sánchez-Pacheco, Aurora

    2011-01-01

    Covalent histone modifications clearly play an essential role in ligand-dependent transcriptional regulation by nuclear receptors. One of the predominant mechanisms used by nuclear receptors to activate or repress target-gene transcription is the recruitment of coregulatory factors capable of covalently modify the amino terminal ends of histones. Here we show that the thyroid hormone (T3) produces a rapid increase in histone H3Ser10 phosphorylation (H3Ser10ph) concomitant to the rapid displac...

  17. Active transcription and ultrastructural changes during Trypanosoma cruzi metacyclogenesis

    Directory of Open Access Journals (Sweden)

    Ludmila R.P. Ferreira

    2008-03-01

    Full Text Available The differentiation of proliferating epimastigote forms of Trypanosoma cruzi , the protozoan parasite that causes Chagas’ disease, into the infective and non-proliferating metacyclic forms can be reproduced in the laboratory by incubating the cells in a chemically-defined medium that mimics the urine of the insect vector. Epimastigotes have a spherical nucleus, a flagellum protruding from the middle of the protozoan cell, and a disk-shaped kinetoplast - an organelle that corresponds to the mitochondrial DNA. Metacyclic trypomastigotes have an elongated shape with the flagellum protruding from the posterior portion of the cell and associated with a spherical kinetoplast. Here we describe the morphological events of this transformation and characterize a novel intermediate stage by three-dimensional reconstruction of electron microscope serial sections. This new intermediate stage is characterized by a kinetoplast compressing an already elongated nucleus, indicating that metacyclogenesis involves active movements of the flagellar structure relative to the cell body. As transcription occurs more intensely in proliferating epimastigotes than in metacyclics, we also examined the presence of RNA polymerase II and measured transcriptional activity during the differentiation process. Both the presence of the enzyme and transcriptional activity remain unchanged during all steps of metacyclogenesis. RNA polymerase II levels and transcriptional activity only decrease after metacyclics are formed. We suggest that transcription is required during the epimastigote-to-metacyclic trypomastigote differentiation process, until the kinetoplast and flagellum reach the posterior position of the parasites in the infective form.A diferenciação de formas epimastigotas (proliferativas do Trypanosoma cruzi, parasita protozoário causador da doença de Chagas, em formas metacíclicas tripomastigotas (infectivas e não proliferativas, pode ser reproduzida em laborat

  18. Structural Features and Transcriptional Activity of Chicken PPARs (α, β, and γ

    Directory of Open Access Journals (Sweden)

    Ichiro Takada

    2013-01-01

    Full Text Available While an understanding of lipid metabolism in chickens is critical for a further improvement of food production, there are few studies concerning differences in lipid metabolism mechanisms between chickens and other species at a molecular level. Chickens have three PPAR gene subtypes (α, β, and γ that function differently from those present in humans and mice. The chicken PPAR-gamma (cPPARγ gene is shorter than that in humans and lacks a γ2 isoform. Moreover, in serum-free media, cPPARγ shows high transcriptional activity without exogenous ligands. Luciferase reporter assays were used to examine the effect of sera on cPPAR transcriptional activities and showed that adult bovine serum and chicken serum highly activate cPPARα and β functions. Moreover, we found that bezafibrate induces the transactivation function of cPPARβ, but not human PPARδ (human PPARβ ortholog. This ligand selectivity relies on one amino acid residue (chicken: Val419, human: Met444. These results show the possibilities for unique functions of cPPARs on chicken-specific lipid glucose metabolism. As such, a better understanding of the molecular mechanisms of lipid metabolism in chickens could result in higher productivity for the poultry industry.

  19. The cancer gene WWOX behaves as an inhibitor of SMAD3 transcriptional activity via direct binding

    International Nuclear Information System (INIS)

    The WW domain containing protein WWOX has been postulated to behave as a tumor suppressor in breast and other cancers. Expression of this protein is lost in over 70% of ER negative tumors. This prompted us to investigate the phenotypic and gene expression effects of loss of WWOX expression in breast cells. Gene expression microarrays and standard in vitro assays were performed on stably silenced WWOX (shRNA) normal breast cells. Bioinformatic analyses were used to identify gene networks and transcriptional regulators affected by WWOX silencing. Co-immunoprecipitations and GST-pulldowns were used to demonstrate a direct interaction between WWOX and SMAD3. Reporter assays, ChIP, confocal microscopy and in silico analyses were employed to determine the effect of WWOX silencing on TGFβ-signaling. WWOX silencing affected cell proliferation, motility, attachment and deregulated expression of genes involved in cell cycle, motility and DNA damage. Interestingly, we detected an enrichment of targets activated by the SMAD3 transcription factor, including significant upregulation of ANGPTL4, FST, PTHLH and SERPINE1 transcripts. Importantly, we demonstrate that the WWOX protein physically interacts with SMAD3 via WW domain 1. Furthermore, WWOX expression dramatically decreases SMAD3 occupancy at the ANGPTL4 and SERPINE1 promoters and significantly quenches activation of a TGFβ responsive reporter. Additionally, WWOX expression leads to redistribution of SMAD3 from the nuclear to the cytoplasmic compartment. Since the TGFβ target ANGPTL4 plays a key role in lung metastasis development, we performed a meta-analysis of ANGPTL4 expression relative to WWOX in microarray datasets from breast carcinomas. We observed a significant inverse correlation between WWOX and ANGPTL4. Furthermore, the WWOXlo/ANGPTL4hi cluster of breast tumors is enriched in triple-negative and basal-like sub-types. Tumors with this gene expression signature could represent candidates for anti-TGFβ targeted

  20. The HMG-box mitochondrial transcription factor xl-mtTFA binds DNA as a tetramer to activate bidirectional transcription.

    OpenAIRE

    Antoshechkin, I; Bogenhagen, D F; Mastrangelo, I A

    1997-01-01

    The mitochondrial HMG-box transcription factor xl-mtTFA activates bidirectional transcription by binding to a site separating two core promoters in Xenopus laevis mitochondrial DNA (mtDNA). Three independent approaches were used to study the higher order structure of xl-mtTFA binding to this site. First, co-immunoprecipitation of differentially tagged recombinant mtTFA derivatives established that the protein exists as a multimer. Second, in vitro chemical cross-linking experiments provided e...

  1. Activation of Signal Transducer and Activator of Transcription 5 (STAT5) in Splenocyte Proliferation of Asthma Mice Induced by Ovalbumin

    Institute of Scientific and Technical Information of China (English)

    Guoping Li; Zhigang Liu; Peixing Ran; Jing Qiu; Nanshan Zhong

    2004-01-01

    To investigate the role of signal transducer and transcriptional activator 5 (STAT5) activated in ovalbumin (OVA)-induced splenocyte proliferation of asthma mice, an asthma mouse model was set up by intraperitoneal injection and aspiration of OVA with nebulizer. The proliferation of splenocytes isolated from the asthma mice was detected by [3H] thymidine incorporation. The phosphorytation of STAT5 was examined by Western blotting and STAT5-DNA binding was measured by electrophoretic mobility shift assay (EMSA). OVA could pronouncedly induce the splenocyte proliferation of asthma mice in a dose-dependent manner compared with control groups. Phosphorylation of STAT5 and STAT5-DNA binding were observed in splenocytes from asthma mice induced by OVA at 1 h and 3 h. These results indicated that STAT5 signal pathway played an important role in lymphocyte proliferation of asthma mice induced by OVA. Cellular & Molecular Immunology.2004;1(6):471-474.

  2. Transcriptional cofactors exhibit differential preference toward peroxisome proliferator-activated receptors alpha and delta in uterine cells.

    Science.gov (United States)

    Lim, Hyunjung J; Moon, Irene; Han, Kyuyong

    2004-06-01

    We previously showed that peroxisome proliferator-activated receptor delta (PPARdelta) is crucial for embryo implantation as a receptor for cyclooxygenase-2-derived prostacyclin in mice. PPARs belong to the nuclear receptor superfamily. They form heterodimer with a retinoid X receptor, recruit transcriptional cofactors, and bind to a specific recognition element for regulation of target genes. Although cofactors are generally shared by various nuclear receptors, some are involved in cell-specific events. The objective of this investigation was to examine interactions of transcriptional cofactors with PPARdelta in uterine cells for its effectiveness in regulating gene expression. We chose two uterine cellular systems: periimplantation mouse uterus and AN(3)CA human uterine cell line. As examined by in situ hybridization, steroid receptor coactivator (SRC)-2, SRC-3, PPAR-interacting protein, receptor-interacting protein 140 (RIP140), nuclear receptor corepressor (N-CoR), and silencing mediator for retinoid and thyroid hormone receptor (SMRT) exhibit overlapping expression with that of PPARdelta in the periimplantation mouse uterus. Glutathione-S-transferase (GST) pull-down assays show that PPARdelta physically interacts with SRC 1-3, RIP140, PPAR-binding protein, N-CoR, and SMRT in the absence of ligands, suggesting their potent interactions with PPARdelta. Transient transfection assays in AN(3)CA cells show that among members of the SRC family, only SRC-2 serves as a true coactivator for PPARdelta, whereas all SRC members could enhance PPARalpha-induced transcriptional activation. Interestingly, N-CoR and SMRT potently repress PPARdelta-induced transcriptional activation but fail to repress PPARalpha activity. RIP140 is effective in repressing basal and PPAR-induced transcriptional activation. Collectively, the results suggest that gene regulation by PPARdelta in the uterine cells uniquely responds to SRC-2, N-CoR, SMRT, or RIP140, and these interactions may be

  3. MalT, the regulatory protein of the Escherichia coli maltose system, is an ATP-dependent transcriptional activator.

    OpenAIRE

    Richet, E; Raibaud, O

    1989-01-01

    We show that MalT, the transcriptional activator of the Escherichia coli maltose regulon, specifically binds ATP and dATP with a high affinity (Kd = 0.4 microM) and exhibits a weak ATPase activity. Using an abortive initiation assay, we further show that activation of open complex formation by MalT depends on the presence of ATP in addition to that of maltotriose, the inducer of the maltose system. Similar experiments in which ATP was replaced by ADP or AMP-PNP, a non-hydrolysable analogue of...

  4. The 42-kDa coat protein of Andean potato mottle virus acts as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Vidal M.S.

    2002-01-01

    Full Text Available Interactions of viral proteins play an important role in the virus life cycle, especially in capsid assembly. Andean potato mottle comovirus (APMoV is a plant RNA virus with a virion formed by two coat proteins (CP42 and CP22. Both APMoV coat protein open reading frames were cloned into pGBT9 and pGAD10, two-hybrid system vectors. HF7c yeast cells transformed with the p9CP42 construct grew on yeast dropout selection media lacking tryptophan and histidine. Clones also exhibited ß-galactosidase activity in both qualitative and quantitative assays. These results suggest that CP42 protein contains an amino acid motif able to activate transcription of His3 and lacZ reporter genes in Saccharomyces cerevisiae. Several deletions of the CP42 gene were cloned into the pGBT9 vector to locate the region involved in this activation. CP42 constructions lacking 12 residues from the C-terminal region and another one with 267 residues deleted from the N-terminus are still able to activate transcription of reporter genes. However, transcription activation was not observed with construction p9CP42deltaC57, which does not contain the last 57 amino acid residues. These results demonstrate that a transcription activation domain is present at the C-terminus of CP42 between residues 267 and 374.

  5. The Proteasome Activator PA28γ, a Negative Regulator of p53, Is Transcriptionally Up-Regulated by p53

    Directory of Open Access Journals (Sweden)

    Zhen-Xing Wan

    2014-02-01

    Full Text Available PA28γ (also called REGγ, 11Sγ or PSME3 negatively regulates p53 activity by promoting its nuclear export and/or degradation. Here, using the RNA ligase-mediated rapid amplification of cDNA ends (RLM-RACE method, we identified the transcription start site of the PA28γ gene. Assessment with the luciferase assay demonstrated that the sequence −193 to +16 is the basal promoter. Three p53 binding sites were found within the PA28γ promoter utilizing a bioinformatics approach and were confirmed by chromatin immunoprecipitation and biotinylated DNA affinity precipitation experiments. The p53 protein promotes PA28γ transcription, and p53-stimulated transcription of PA28γ can be inhibited by PA28γ itself. Our results suggest that PA28γ and p53 form a negative feedback loop, which maintains the balance of p53 and PA28γ in cells.

  6. Transcriptional and nontranscriptional regulation of NIS activity and radioiodide transport

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Kyung Ho; Lee, Kyung Han [Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of)

    2007-10-15

    Radioiodide transport has been extensively and successfully used in the evaluation and management of thyroid disease. The molecular characterization of the sodium/iodide symporter (NIS) and cloning of the NIS gene has led to the recent expansion of the use of radioiodide to cancers of the breast and other nonthyroidal tissues exogenously transduced with the NIS gene. More recently, discoveries regarding the functional analysis and regulatory processes of the NIS molecule are opening up exciting opportunities for new research and applications for NIS and radioiodide. The success of NIS based cancer therapy is dependent on achievement of maximal radioiodide transport sufficient to allow delivery of effective radiation doses. This in turn relies on high transcription rates of the NIS gene. However, newer discoveries indicate that nontranscriptional processes that regulate NIS trafficking to cell membrane are also critical determinants of radioiodide uptake. In this review, molecular mechanisms that underlie regulation of NIS transcription and stimuli that augment membrane trafficking and functional activation of NIS molecules will be discussed. A better understanding of how the expression and cell surface targeting of NIS proteins is controlled will hopefully aid in optimizing NIS gene based cancer treatment as well as NIS based reporter-gene imaging strategies.

  7. The ERF11 Transcription Factor Promotes Internode Elongation by Activating Gibberellin Biosynthesis and Signaling1[OPEN

    Science.gov (United States)

    Zhou, Xin; Zhang, Zhong-Lin; Tyler, Ludmila; Yusuke, Jikumaru; Qiu, Kai; Lumba, Shelley; Desveaux, Darrell; McCourt, Peter; Sun, Tai-ping

    2016-01-01

    The phytohormone gibberellin (GA) plays a key role in promoting stem elongation in plants. Previous studies show that GA activates its signaling pathway by inducing rapid degradation of DELLA proteins, GA signaling repressors. Using an activation-tagging screen in a reduced-GA mutant ga1-6 background, we identified AtERF11 to be a novel positive regulator of both GA biosynthesis and GA signaling for internode elongation. Overexpression of AtERF11 partially rescued the dwarf phenotype of ga1-6. AtERF11 is a member of the ERF (ETHYLENE RESPONSE FACTOR) subfamily VIII-B-1a of ERF/AP2 transcription factors in Arabidopsis (Arabidopsis thaliana). Overexpression of AtERF11 resulted in elevated bioactive GA levels by up-regulating expression of GA3ox1 and GA20ox genes. Hypocotyl elongation assays further showed that overexpression of AtERF11 conferred elevated GA response, whereas loss-of-function erf11 and erf11 erf4 mutants displayed reduced GA response. In addition, yeast two-hybrid, coimmunoprecipitation, and transient expression assays showed that AtERF11 enhances GA signaling by antagonizing the function of DELLA proteins via direct protein-protein interaction. Interestingly, AtERF11 overexpression also caused a reduction in the levels of another phytohormone ethylene in the growing stem, consistent with recent finding showing that AtERF11 represses transcription of ethylene biosynthesis ACS genes. The effect of AtERF11 on promoting GA biosynthesis gene expression is likely via its repressive function on ethylene biosynthesis. These results suggest that AtERF11 plays a dual role in promoting internode elongation by inhibiting ethylene biosynthesis and activating GA biosynthesis and signaling pathways. PMID:27255484

  8. Versatile assays for high throughput screening for activators or inhibitors of intracellular proteases and their cellular regulators.

    Directory of Open Access Journals (Sweden)

    Hideki Hayashi

    Full Text Available Intracellular proteases constitute a class of promising drug discovery targets. Methods for high throughput screening against these targets are generally limited to in vitro biochemical assays that can suffer many technical limitations, as well as failing to capture the biological context of proteases within the cellular pathways that lead to their activation. METHODS #ENTITYSTARTX00026;We describe here a versatile system for reconstituting protease activation networks in yeast and assaying the activity of these pathways using a cleavable transcription factor substrate in conjunction with reporter gene read-outs. The utility of these versatile assay components and their application for screening strategies was validated for all ten human Caspases, a family of intracellular proteases involved in cell death and inflammation, including implementation of assays for high throughput screening (HTS of chemical libraries and functional screening of cDNA libraries. The versatility of the technology was also demonstrated for human autophagins, cysteine proteases involved in autophagy.Altogether, the yeast-based systems described here for monitoring activity of ectopically expressed mammalian proteases provide a fascile platform for functional genomics and chemical library screening.

  9. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB.

    Science.gov (United States)

    Yu, Zhiyuan; Zhang, Wenzheng; Kone, Bruce C

    2002-01-01

    Prolific generation of NO by inducible nitric oxide synthase (iNOS) can cause unintended injury to host cells during glomerulonephritis and other inflammatory diseases. While much is known about the mechanisms of iNOS induction, few transcriptional repressors have been found. We explored the role of signal transducers and activators of transcription 3 (STAT3) proteins in interleukin (IL)-1beta- and lipopolysaccharide (LPS)+interferon (IFN)-gamma-mediated iNOS induction in murine mesangial cells. Both stimuli induced rapid phosphorylation of STAT3 and sequence-specific STAT3 DNA-binding activity. Supershift assays with a STAT3 element probe demonstrated that nuclear factor kappaB (NF-kappaB) p65 and p50 complexed with STAT3 in the DNA-protein complex. The direct interaction of STAT3 and NF-kappaB p65 was verified in vivo by co-immunoprecipitation and in vitro by pull-down assays with glutathione S-transferase-NF-kappaB p65 fusion protein and in vitro -translated STAT3alpha. Overexpression of STAT3 dramatically inhibited IL-1beta- or LPS+IFN-gamma-mediated induction of iNOS promoter-luciferase constructs that contained the wild-type iNOS promoter or ones harbouring mutated STAT-binding elements. In tests of indirect inhibitory effects of STAT3, overexpression of STAT3 dramatically inhibited the activity of an NF-kappaB-dependent promoter devoid of STAT-binding elements without affecting NF-kappaB DNA-binding activity. Thus STAT3, via direct interactions with NF-kappaB p65, serves as a dominant-negative inhibitor of NF-kappaB activity to suppress indirectly cytokine induction of the iNOS promoter in mesangial cells. These results provide a new model for the termination of NO production by activated iNOS following exposure to pro-inflammatory stimuli. PMID:12057007

  10. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity.

    Directory of Open Access Journals (Sweden)

    Juan Zhang

    Full Text Available Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBPα, peroxisome proliferators-activated receptor γ2 (PPARγ2, and other adipogenic genes in the process of adipogenesis. Berberine decreased cAMP-response element-binding protein (CREB phosphorylation and C/EBPβ expression at the early stage of 3T3-L1 preadipocyte differentiation. In addition, CREB phosphorylation and C/EBPβ expression induced by 3-isobutyl-1-methylxanthine (IBMX and forskolin were also attenuated by berberine. The binding activities of cAMP responsive element (CRE stimulated by IBMX and forskolin were inhibited by berberine. The binding of phosphorylated CREB to the promoter of C/EBPβ was abrogated by berberine after the induction of preadipocyte differentiation. These results suggest that berberine blocks adipogenesis mainly via suppressing CREB activity, which leads to a decrease in C/EBPβ-triggered transcriptional cascades.

  11. Cloned yeast and mammalian transcription factor TFIID gene products support basal but not activated metallothionein gene transcription

    International Nuclear Information System (INIS)

    Transcription factor IID (TFIID), the TATA binding factor, is thought to play a key role in the regulation of eukaryotic transcriptional initiation. The authors studied the role of TFIID in the transcription of the yeast metallothionein gene, which is regulated by the copper-dependent activator protein ACE1. Both basal and induced transcription of the metallothionein gene require TFIID and a functional TATA binding site. Crude human and mouse TFIID fractions, prepared from mammalian cells, respond to stimulation by ACE1, In contrast, human and yeast TFIID proteins expressed from the cloned genes do not respond to ACE1, except in the presence of what germ or yeast total cell extracts. These results indicate that the cloned TFIID gene products lack a component(s) or modifications(s) that is required for regulated as compared to basal transription

  12. A High-Throughput MALDI-TOF Mass Spectrometry-Based Assay of Chitinase Activity

    Science.gov (United States)

    A high-throughput MALDI-TOF mass spectrometric assay is described for assay of chitolytic enzyme activity. The assay uses unmodified chitin oligosaccharide substrates, and is readily achievable on a microliter scale (2 µL total volume, containing 2 µg of substrate and 1 ng of protein). The speed a...

  13. A Nonradioactive Method for Detecting DNA-binding Activity of Nuclear Transcription Factors

    Institute of Scientific and Technical Information of China (English)

    张宁; 徐永健; 张珍祥; 熊维宁

    2003-01-01

    To determine the feasibility of a nonradioactive electrophoresis mobility shift assay fordetecting nuclear transcription factor, double-stranded oligonucleotides encoding the consensus tar-get sequence of NF-κB were labled with DIG by terminal transferase. After nuclear protein stimula-ted with phorbol 12-myristate 13-acetate (PMA) or PMA and pyrrolidine dithiocarbamate (PDT C)electrophoresed on 8 % nondenaturing poliacrylamide gel together with oligeonucleotide probe, theywere electro-blotted nylon membrane positively charged. Anti-DIG-AP antibody catalyzed chemilu-minescent substrate CSPD to image on X-film. The results showed that nuclear proteins binded spe-cifically to the NF-κB consensus sequence in the EMSA by chemiluminescent technique method andthe activity of NF-κB in PMA group was more than that in PMA+PDTC group. It is suggestedthat detection of NF-κB by EMSA with chemiluminescent technique is feasible and simple, whichcan be performed in ordinary laboratories.

  14. Conserved hypothetical BB0462 protein enhances the transcription activity of oppAV promoter

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Borrelia burgdorferi BB0462 ORF encodes an unknown functional protein with 110 amino acids.A BLAST search in protein databases and the secondary structure being predicted by the program JUFO showed that the conserved hypothetical BB0462 protein was similar to the members of the YbaB protein family in both amino acid composition and protein structure.The co-transformation of BB0462 ORF and oppA upstream regulation DNA into E.coli host cells and β-galactosidase activity assay demonstrated that the BB0462 protein enhanced the transcriptional activity of the oppAV promoter,but does not affect those of oppAⅠ,Ⅱ,Ⅲ and Ⅳ promoters.Analysis of DNA retardation and competitive repression also confirmed that the BB0462 protein bound to the 409 bp upstream regulation DNA fragment close to the initiation codon of the oppAV gene.All data in our study suggested that the BB0462 protein was involved in the transcriptional regulation of the oppAV gene

  15. A homogeneous assay to assess GABA transporter activity.

    Science.gov (United States)

    Kopec, Karla K; McKenna, Beth Ann; Pauletti, Daniel

    2005-10-01

    This unit describes a convenient functional uptake assay for GABA transport into cell lines transiently transfected with GABA transporter-1 (GAT-1) and other GAT isoforms. This facile, homogeneous assay allows for the determination of K(m), V(max), and K(i) values. The assay utilizes commercially available microtiter plates that contain scintillant embedded in the bottom of the wells. Whereas a signal is generated as the cell accumulates the labeled neurotransmitter, label in the medium is undetected. While GABA uptake is observed in several cell lines transfected with GAT-1, K(m) values for GABA uptake may vary with the cell line. This indicates that the choice of cell line is an important consideration when conducting uptake assays. PMID:21953387

  16. Honey promotes angiogeneic activity in the rat aortic ring assay

    OpenAIRE

    Rossiter, K.; Cooper, Alan; Voegeli, D.; Lwaleed, B.

    2010-01-01

    Objective: To investigate possible effects of honey on angiogenesis, using in vitro analogues of angiogenesis and an endothelial proliferation assay. Method: Using an in vitro rat aortic ring assay we compared pseudotubule formation by medicinal honey (Activon), supermarket honey (Rowse) and a honey-based ointment (Mesitran), with that of artificial honey (70% w/w sugar glucose/fructose). Pseudotubules were analysed using TCS Cellworks AngioSys software. The Angiokit sytem was used to validat...

  17. Honey promotes angiogenic activity in the rat aortic ring assay

    OpenAIRE

    Rossiter, K.; Cooper, A. J.; Voegeli, D.; Lwaleed, B A

    2010-01-01

    Objective: To investigate possible effects of honey on angiogenesis, using in vitro analogues of angiogenesis and an endothelial proliferation assay. Method: Using an in vitro rat aortic ring assay we compared pseudotubule formation by medicinal honey (Activon), supermarket honey (Rowse) and a honey-based ointment (Mesitran), with that of artificial honey (70% w/w sugar glucose/fructose). Pseudotubules were analysed using TCS Cellworks AngioSys software. The Angiokit sytem was used t...

  18. Dual Combined Real-Time Reverse Transcription Polymerase Chain Reaction Assay for the Diagnosis of Lyssavirus Infection

    Science.gov (United States)

    Lavenir, Rachel; Lepelletier, Anthony; Faouzi, Abdellah; Troupin, Cécile; Nourlil, Jalal; Buchy, Philippe; Bourhy, Herve

    2016-01-01

    The definitive diagnosis of lyssavirus infection (including rabies) in animals and humans is based on laboratory confirmation. The reference techniques for post-mortem rabies diagnosis are still based on direct immunofluorescence and virus isolation, but molecular techniques, such as polymerase chain reaction (PCR) based methods, are increasingly being used and now constitute the principal tools for diagnosing rabies in humans and for epidemiological analyses. However, it remains a key challenge to obtain relevant specificity and sensitivity with these techniques while ensuring that the genetic diversity of lyssaviruses does not compromise detection. We developed a dual combined real-time reverse transcription polymerase chain reaction (combo RT-qPCR) method for pan-lyssavirus detection. This method is based on two complementary technologies: a probe-based (TaqMan) RT-qPCR for detecting the RABV species (pan-RABV RT-qPCR) and a second reaction using an intercalating dye (SYBR Green) to detect other lyssavirus species (pan-lyssa RT-qPCR). The performance parameters of this combined assay were evaluated with a large panel of primary animal samples covering almost all the genetic variability encountered at the viral species level, and they extended to almost all lyssavirus species characterized to date. This method was also evaluated for the diagnosis of human rabies on 211 biological samples (positive n = 76 and negative n = 135) including saliva, skin and brain biopsies. It detected all 41 human cases of rabies tested and confirmed the sensitivity and the interest of skin biopsy (91.5%) and saliva (54%) samples for intra-vitam diagnosis of human rabies. Finally, this method was successfully implemented in two rabies reference laboratories in enzootic countries (Cambodia and Morocco). This combined RT-qPCR method constitutes a relevant, useful, validated tool for the diagnosis of rabies in both humans and animals, and represents a promising tool for lyssavirus

  19. Identification of target genes of transcription factor activator protein 2 gamma in breast cancer cells

    International Nuclear Information System (INIS)

    Activator protein 2 gamma (AP-2γ) is a member of the transcription factor activator protein-2 (AP-2) family, which is developmentally regulated and plays a role in human neoplasia. AP-2γ has been found to be overexpressed in most breast cancers, and have a dual role to inhibit tumor initiation and promote tumor progression afterwards during mammary tumorigensis. To identify the gene targets that mediate its effects, we performed chromatin immunoprecipitation (ChIP) to isolate AP-2γ binding sites on genomic DNA from human breast cancer cell line MDA-MB-453. 20 novel DNA fragments proximal to potential AP-2γ targets were obtained. They are categorized into functional groups of carcinogenesis, metabolism and others. A combination of sequence analysis, reporter gene assays, quantitative real-time PCR, electrophoretic gel mobility shift assays and immunoblot analysis further confirmed the four AP-2γ target genes in carcinogenesis group: ErbB2, CDH2, HPSE and IGSF11. Our results were consistent with the previous reports that ErbB2 was the target gene of AP-2γ. Decreased expression and overexpression of AP-2γ in human breast cancer cells significantly altered the expression of these four genes, indicating that AP-2γ directly regulates them. This suggested that AP-2γ can coordinate the expression of a network of genes, involving in carcinogenesis, especially in breast cancer. They could serve as therapeutic targets against breast cancers in the future

  20. An in vitro investigation on the cytotoxic and nuclear receptor transcriptional activity of the mycotoxins fumonisin B1 and beauvericin.

    Science.gov (United States)

    Fernández-Blanco, Celia; Frizzell, Caroline; Shannon, Maeve; Ruiz, Maria-Jose; Connolly, Lisa

    2016-08-22

    Fumonisin B1 (FB1) and beauvericin (BEA) are secondary metabolites of filamentous fungi, which under appropriate temperature and humidity conditions may develop on various foods and feeds. To date few studies have been performed to evaluate the toxicological and endocrine disrupting effects of FB1 and BEA. The present study makes use of various in vitro bioassays including; oestrogen, androgen, progestagen and glucocorticoid reporter gene assays (RGAs) for the study of nuclear receptor transcriptional activity, the thiazolyl blue tetrazolium bromide (MTT) assay to monitor cytotoxicity and high content analysis (HCA) for the detection of pre-lethal toxicity in the RGA and Caco-2 human colon adenocarcinoma cells. At the receptor level, 0.001-10μM BEA or FB1 did not induce any agonist responses in the RGAs. However at non-cytotoxic concentrations, an antagonistic effect was exhibited by FB1 on the androgen nuclear receptor transcriptional activity at 10μM and BEA on the progestagen and glucocorticoid receptors at 1μM. MTT analysis showed no decrease in cell viability at any concentration of FB1, whereas BEA showed a significant decrease in viability at 10μM. HCA analysis confirmed that the reduction in the progestagen receptor transcriptional activity at 1μM BEA was not due to pre-lethal toxicity. In addition, BEA (10μM) induced significant toxicity in both the TM-Luc (progestagen responsive) and Caco-2 cells. PMID:27234500

  1. Comparison of a Lateral-Flow Immunochromatography Assay with Real-Time Reverse Transcription-PCR for Detection of Human Metapneumovirus▿

    OpenAIRE

    Kikuta, Hideaki; Sakata, Chikako; Gamo, Reiko; Ishizaka, Akihito; Koga, Yasutsugu; Konno, Mutsuko; Ogasawara, Yoshinori; Sawada, Hiroyuki; Taguchi, Yuichi; Takahashi, Yutaka; Yasuda, Kazue; Ishiguro, Nobuhisa; Hayashi, Akio; Ishiko, Hiroaki; Kobayashi, Kunihiko

    2008-01-01

    A lateral-flow immunochromatography (IC) assay for the detection of human metapneumovirus (hMPV) has been developed by using two mouse monoclonal antibodies to the nucleocapsid protein of hMPV. The purpose of this study was to compare the virus detection rate in nasopharyngeal secretions by the IC assay with that by real-time reverse transcription-PCR (RT-PCR). We collected nasopharyngeal swab samples from 247 children with respiratory symptoms in Sapporo, Japan, during the period from April ...

  2. The Cellular Bromodomain Protein Brd4 has Multiple Functions in E2-Mediated Papillomavirus Transcription Activation

    OpenAIRE

    Helfer, Christine M.; Junpeng Yan; Jianxin You

    2014-01-01

    The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb), a functional interaction partner of Brd4 in transcription act...

  3. Establishment and Application of a TaqMan Real-Time Quantitative Reverse Transcription-Polymerase Chain Reaction Assay for Rubella Virus RNA

    Institute of Scientific and Technical Information of China (English)

    Li-Hong ZHAO; Yu-Yan MA; Hong WANG; Shu-Ping ZHAO; Wei-Ming ZHAO; Hua LI; Lei-Yi WANG

    2006-01-01

    The aim of this study was to establish and apply a real-time quantitative reverse transcription polymerase chain reaction (RT-PCR) for rubella virus (RV) RNA. First, the primer and TaqMan probe concentrations, as well as reaction temperatures were optimized to establish an efficient real-time quantitative RT-PCR assay for RV RNA. Next, an RV-specific PCR amplicon was made as an external standard to estimate the linearity, amplification efficiency, analytical sensitivity and reproducibility of the real time quantitative assay. Finally, the assay was applied to quantify RVRNA in clinical samples for rubella diagnosis.The RV-specific PCR amplicon was prepared for evaluation of the assay at 503 bp, and its original concentration was 2.75×109 copies/μl. The real time quantitative assay was shown to have good linearity (R2=0.9920), high amplification efficiency (E=1.91), high sensitivity (275 copies/ml), and high reproducibility (variation coefficient range, from 1.25% to 3.58%). Compared with the gold standard, the specificity and sensitivity of the assay in clinical samples was 96.4% and 86.4%, respectively. Therefore, the established quantitative RT-PCR method is a simple, rapid, less-labored, quantitative, highly specific and sensitive assay for RV RNA.

  4. A Two-Tube Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Sixteen Human Respiratory Virus Types/Subtypes

    OpenAIRE

    2013-01-01

    There is a need for the development of a rapid and sensitive diagnosis of respiratory viral pathogens. With an intended application in provincial Centers for Diseases Control and Prevention, in this study, we present a two-tube multiplex RT-PCR assay (two-tube assay) using automatic electrophoresis to simultaneously detect sixteen common respiratory viruses. The specificity and the sensitivity of the assay were tested. The assay could detect 20–200 copies per reaction when each viral type was...

  5. Aspirin inhibits vascular plasminogen activator activity in vivo. Studies utilizing a new assay to quantify plasminogen activator activity.

    OpenAIRE

    Levin, R I; Harpel, P C; Weil, D; T. S. Chang; Rifkin, D. B.

    1984-01-01

    Vascular or tissue-type plasminogen activator (TPA) is a key enzyme in physiologic fibrinolysis. To study the role of prostaglandins in modulating the synthesis and release of TPA in vivo, we prospectively studied the effect of aspirin (650 mg/d X 2) on TPA activity in 13 human subjects before and after 10 min of forearm venous occlusion. TPA activity was quantified by a newly developed enzyme-linked immunosorbent assay that both measures and differentiates between TPA and urokinase (UK)-like...

  6. Selective modulation of promoter recruitment and transcriptional activity of PPARγ

    International Nuclear Information System (INIS)

    Peroxisome proliferator-activated receptor gamma (PPARγ) is a nuclear receptor regulated by the insulin-sensitizing thiazolidinediones (TZDs). We studied selective modulation of endogenous genes by PPARγ ligands using microarray, RNA expression kinetics, and chromatin immunoprecipitation (ChIP) in 3T3-L1 adipocytes. We found over 300 genes that were significantly regulated the TZDs pioglitazone, rosiglitazone, and troglitazone. TZD-mediated expression profiles were unique but overlapping. Ninety-one genes were commonly regulated by all three ligands. TZD time course and dose-response studies revealed gene- and TZD-specific expression kinetics. PEPCK expression was induced rapidly but PDK4 expression was induced gradually. Troglitazone EC50 values for PEPCK, PDK4, and RGS2 regulation were greater than those for pioglitazone and rosiglitazone. TZDs differentially induced histone acetylation of and PPARγ recruitment to target gene promoters. Selective modulation of PPARγ by TZDs resulted in distinct expression profiles and transcription kinetics which may be due to differential promoter activation and chromatin remodeling of target genes

  7. Role of hippocampal activity-induced transcription in memory consolidation.

    Science.gov (United States)

    Eagle, Andrew L; Gajewski, Paula A; Robison, Alfred J

    2016-08-01

    Experience-dependent changes in the strength of connections between neurons in the hippocampus (HPC) are critical for normal learning and memory consolidation, and disruption of this process drives a variety of neurological and psychiatric diseases. Proper HPC function relies upon discrete changes in gene expression driven by transcription factors (TFs) induced by neuronal activity. Here, we describe the induction and function of many of the most well-studied HPC TFs, including cyclic-AMP response element binding protein, serum-response factor, AP-1, and others, and describe their role in the learning process. We also discuss the known target genes of many of these TFs and the purported mechanisms by which they regulate long-term changes in HPC synaptic strength. Moreover, we propose that future research in this field will depend upon unbiased identification of additional gene targets for these activity-dependent TFs and subsequent meta-analyses that identify common genes or pathways regulated by multiple TFs in the HPC during learning or disease. PMID:27180338

  8. The biphasic redox sensing of SENP3 accounts for the HIF-1 transcriptional activity shift by oxidative stress

    Institute of Scientific and Technical Information of China (English)

    Ying WANG; Jie YANG; Kai YANG; Hui CANG; Xin-zhi HUANG; Hui LI; Jing YI

    2012-01-01

    Aim:To investigate the mechanisms underlying the biphasic redox regulation of hypoxia-inducible factor-1 (HIF-1) transcriptional activity under different levels of oxidative stress caused by reactive oxidative species (ROS).Methods:HeLa cells were exposed to different concentrations of H2O2 as a simple model for mild and severe oxidative stress.Luciferase reporter assay and/or quantitative real-time PCR were used to investigate the transcriptional activity.Immunoblot was used to detect protein expression.Chromatin immunoprecipitation assay was used to detect HIF-1/DNA binding.The interaction of p300with HIF-1α or with SENP3,and the SUMO2/3 conjugation states of p300 were examined by coimmunoprecipitation.Results:HIF-1 transcriptional activity in HeLa cells was enhanced by low doses (0.05-0.5 mmol/L) of H202,but suppressed by high doses (0.75-8.0 mmol/L) of H2O2.The amount of co-activator p300 bound to HIF-1α in HeLa cells was increased under mild oxidative stress,but decreased under severe oxidative stress.The ROS levels differentially modified cysteines 243 and 532 in the cysteine protease SENP3,regulating the interaction of SENP3 with p300 to cause different SUMOylation of p300,thus shifting HIF-1 transcriptional activity.Conclusion:The shift of HIF-1 transactivation by ROS is correlated with and dependent on the biphasic redox sensing of SENP3 that leads to the differential SENP3/p300 interaction and the consequent fluctuation in the p300 SUMOylation status.

  9. A novel high-throughput activity assay for the Trypanosoma brucei editosome enzyme REL1 and other RNA ligases

    Science.gov (United States)

    Zimmermann, Stephan; Hall, Laurence; Riley, Sean; Sørensen, Jesper; Amaro, Rommie E.; Schnaufer, Achim

    2016-01-01

    The protist parasite Trypanosoma brucei causes Human African trypanosomiasis (HAT), which threatens millions of people in sub-Saharan Africa. Without treatment the infection is almost always lethal. Current drugs for HAT are difficult to administer and have severe side effects. Together with increasing drug resistance this results in urgent need for new treatments. T. brucei and other trypanosomatid pathogens require a distinct form of post-transcriptional mRNA modification for mitochondrial gene expression. A multi-protein complex called the editosome cleaves mitochondrial mRNA, inserts or deletes uridine nucleotides at specific positions and re-ligates the mRNA. RNA editing ligase 1 (REL1) is essential for the re-ligation step and has no close homolog in the mammalian host, making it a promising target for drug discovery. However, traditional assays for RELs use radioactive substrates coupled with gel analysis and are not suitable for high-throughput screening of compound libraries. Here we describe a fluorescence-based REL activity assay. This assay is compatible with a 384-well microplate format and sensitive, satisfies statistical criteria for high-throughput methods and is readily adaptable for other polynucleotide ligases. We validated the assay by determining kinetic properties of REL1 and by identifying REL1 inhibitors in a library of small, pharmacologically active compounds. PMID:26400159

  10. Arginase activity in mitochondria - An interfering factor in nitric oxide synthase activity assays

    International Nuclear Information System (INIS)

    Previously, in tightly controlled studies, using three independent, yet complementary techniques, we refuted the claim that a mitochondrial nitric oxide synthase (mtNOS) isoform exists within pure, rat liver mitochondria (MT). Of those techniques, the NOS-catalyzed [14C]-L-arginine to [14C]-L-citrulline conversion assay (NOS assay) with MT samples indicated a weak, radioactive signal that was NOS-independent . Aliquots of samples from the NOS assays were then extracted with acetone, separated by high performance thin-layer chromatography (HPTLC) and exposed to autoradiography. Results obtained from these samples showed no radioactive band for L-citrulline. However, a fast-migrating, diffuse, radioactive band was observed in the TLC lanes loaded with MT samples. In this manuscript, we identify and confirm that this radioactive signal in MT samples is due to the arginase-catalyzed conversion of [14C]-L-arginine to [14C]-urea. The current results, in addition to reconfirming the absence of NOS activity in rat liver MT, also show the need to include arginase inhibitors in studies using MT samples in order to avoid confounding results when using NOS activity assays.

  11. DcE2F, a functional plant E2F-like transcriptional activator from Daucus carota

    DEFF Research Database (Denmark)

    Albani, D; Mariconti, L; Ricagno, S;

    2000-01-01

    In animal cells the progression of the cell cycle through G(1)/S transition and S phase is under the control of the pRB/E2F regulatory pathway. The E2F transcription factors are key activators of genes coding for several regulatory proteins and for enzymes involved in nucleotide and DNA synthesis....... In this report we have detected the presence of E2F-like DNA binding activities in carrot nuclear extracts, and we have isolated a carrot cDNA (DcE2F) encoding a plant E2F homologue. The DcE2F gene is expressed in proliferating cells and is induced during the G(1)/S transition of the cell cycle......, transactivation assays have revealed that DcE2F is a functional transcription factor that can transactivate, together with a DP partner, an E2F-responsive reporter gene in both plant and mammalian cells....

  12. Enterovirus type 71 2A protease functions as a transcriptional activator in yeast

    Directory of Open Access Journals (Sweden)

    Lai Meng-Jiun

    2010-08-01

    Full Text Available Abstract Enterovirus type 71 (EV71 2A protease exhibited strong transcriptional activity in yeast cells. The transcriptional activity of 2A protease was independent of its protease activity. EV71 2A protease retained its transcriptional activity after truncation of 40 amino acids at the N-terminus but lost this activity after truncation of 60 amino acids at the N-terminus or deletion of 20 amino acids at the C-terminus. Thus, the acidic domain at the C-terminus of this protein is essential for its transcriptional activity. Indeed, deletion of amino acids from 146 to 149 (EAME in this acidic domain lost the transcriptional activity of EV71 2A protein though still retained its protease activity. EV71 2A protease was detected both in the cytoplasm and nucleus using confocal microscopy analysis. Coxsackie virus B3 2A protease also exhibited transcriptional activity in yeast cells. As expected, an acidic domain in the C-terminus of Coxsackie virus B3 2A protease was also identified. Truncation of this acidic domain resulted in the loss of transcriptional activity. Interestingly, this acidic region of poliovirus 2A protease is critical for viral RNA replication. The transcriptional activity of the EV71 or Coxsackie virus B3 2A protease should play a role in viral replication and/or pathogenesis.

  13. A transcription factor active on the epidermal growth factor receptor gene

    International Nuclear Information System (INIS)

    The authors have developed an in vitro transcription system for the epidermal growth factor receptor (EGFR) oncogene by using nuclear extracts of A431 human epidermoid carcinoma cells, which overproduce EGFR. They found that a nuclear factor, termed EGFR-specific transcription factor (ETF), specifically stimulated EGFR transcription by 5- to 10-fold. In this report, ETF, purified by using sequence-specific oligonucleotide affinity chromatography, is shown by renaturing material eluted from a NaDodSO4/polyacrylamide gel to be a protein with a molecular mass of 120 kDa. ETF binds to the promoter region, as measured by DNase I footprinting and gel-mobility-shift assays, and specifically stimulates the transcription of the EGFR gene in a reconstituted in vitro transcription system. These results suggest that ETF could play a role in the overexpression of the cellular oncogene EGFR

  14. Inhibition of human insulin gene transcription and MafA transcriptional activity by the dual leucine zipper kinase.

    Science.gov (United States)

    Stahnke, Marie-Jeannette; Dickel, Corinna; Schröder, Sabine; Kaiser, Diana; Blume, Roland; Stein, Roland; Pouponnot, Celio; Oetjen, Elke

    2014-09-01

    Insulin biosynthesis is an essential β-cell function and inappropriate insulin secretion and biosynthesis contribute to the pathogenesis of diabetes mellitus type 2. Previous studies showed that the dual leucine zipper kinase (DLK) induces β-cell apoptosis. Since β-cell dysfunction precedes β-cell loss, in the present study the effect of DLK on insulin gene transcription was investigated in the HIT-T15 β-cell line. Downregulation of endogenous DLK increased whereas overexpression of DLK decreased human insulin gene transcription. 5'- and 3'-deletion human insulin promoter analyses resulted in the identification of a DLK responsive element that mapped to the DNA binding-site for the β-cell specific transcription factor MafA. Overexpression of DLK wild-type but not its kinase-dead mutant inhibited MafA transcriptional activity conferred by its transactivation domain. Furthermore, in the non-β-cell line JEG DLK inhibited MafA overexpression-induced human insulin promoter activity. Overexpression of MafA and DLK or its kinase-dead mutant into JEG cells revealed that DLK but not its mutant reduced MafA protein content. Inhibition of the down-stream DLK kinase c-Jun N-terminal kinase (JNK) by SP600125 attenuated DLK-induced MafA loss. Furthermore, mutation of the serine 65 to alanine, shown to confer MafA protein stability, increased MafA-dependent insulin gene transcription and prevented DLK-induced MafA loss in JEG cells. These data suggest that DLK by activating JNK triggers the phosphorylation and degradation of MafA thereby attenuating insulin gene transcription. Given the importance of MafA for β-cell function, the inhibition of DLK might preserve β-cell function and ultimately retard the development of diabetes mellitus type 2. PMID:24726898

  15. Environmental detection of genogroup I, II, and IV noroviruses by using a generic real-time reverse transcription-PCR assay.

    Science.gov (United States)

    Miura, Takayuki; Parnaudeau, Sylvain; Grodzki, Marco; Okabe, Satoshi; Atmar, Robert L; Le Guyader, Françoise S

    2013-11-01

    Norovirus is the most common agent implicated in food-borne outbreaks and is frequently detected in environmental samples. These viruses are highly diverse, and three genogroups (genogroup I [GI], GII, and GIV) infect humans. Being noncultivable viruses, real-time reverse transcription-PCR (RT-PCR) is the only sensitive method available for their detection in food or environmental samples. Selection of consensus sequences for the design of sensitive assays has been challenging due to sequence diversity and has led to the development of specific real-time RT-PCR assays for each genogroup. Thus, sample screening can require several replicates for amplification of each genogroup (without considering positive and negative controls or standard curves). This study reports the development of a generic assay that detects all three human norovirus genogroups on a qualitative basis using a one-step real-time RT-PCR assay. The generic assay achieved good specificity and sensitivity for all three genogroups, detected separately or in combination. At variance with multiplex assays, the choice of the same fluorescent dye for all three probes specific to each genogroup allows the levels of fluorescence to be added and may increase assay sensitivity when multiple strains from different genogroups are present. When it was applied to sewage sample extracts, this generic assay successfully detected norovirus in all samples found to be positive by the genogroup-specific RT-PCRs. The generic assay also identified all norovirus-positive samples among 157 archived nucleic acid shellfish extracts, including samples contaminated by all three genogroups. PMID:23956397

  16. Thyroid Transcription Factor 1 Reprograms Angiogenic Activities of Secretome.

    Science.gov (United States)

    Wood, Lauren W; Cox, Nicole I; Phelps, Cody A; Lai, Shao-Chiang; Poddar, Arjun; Talbot, Conover; Mu, David

    2016-01-01

    Through both gain- and loss-of-TTF-1 expression strategies, we show that TTF-1 positively regulates vascular endothelial growth factor (VEGF) and that the VEGF promoter element contains multiple TTF-1-responsive sequences. The major signaling receptor for VEGF, i.e VEGFR2, also appears to be under a direct and positive regulation of TTF-1. The TTF-1-dependent upregulation of VEGF was moderately sensitive to rapamycin, implicating a partial involvement of mammalian target of rapamycin (mTOR). However, hypoxia did not further increase the secreted VEGF level of the TTF-1(+) lung cancer cells. The TTF-1-induced VEGF upregulation occurs in both compartments (exosomes and exosome-depleted media (EDM)) of the conditioned media. Surprisingly, the EDM of TTF-1(+) lung cancer cells (designated EDM-TTF-1(+)) displayed an anti-angiogenic activity in the endothelial cell tube formation assay. Mechanistic studies suggest that the increased granulocyte-macrophage colony-stimulating factor (GM-CSF) level in the EDM-TTF-1(+) conferred the antiangiogenic activities. In human lung cancer, the expression of TTF-1 and GM-CSF exhibits a statistically significant and positive correlation. In summary, this study provides evidence that TTF-1 may reprogram lung cancer secreted proteome into an antiangiogenic state, offering a novel basis to account for the long-standing observation of favorable prognosis associated with TTF-1(+) lung adenocarcinomas. PMID:26912193

  17. Direct observation of transcription activator-like effector (TALE) protein dynamics

    Science.gov (United States)

    Cuculis, Luke; Abil, Zhanar; Zhao, Huimin; Schroeder, Charles M.

    2014-03-01

    In this work, we describe a single molecule assay to probe the site-search dynamics of transcription activator-like effector (TALE) proteins along DNA. In modern genetics, the ability to selectively edit the human genome is an unprecedented development, driven by recent advances in targeted nuclease proteins. Specific gene editing can be accomplished using TALE proteins, which are programmable DNA-binding proteins that can be fused to a nuclease domain. In this way, TALENs are a leading technology that has shown great success in the genomic editing of pluripotent stem cells. A major hurdle facing clinical implementation, however, is the potential for deleterious off-target binding events. For these reasons, a molecular-level understanding of TALE binding and target sequence search on DNA is essential. To this end, we developed a single-molecule fluorescence imaging assay that provides a first-of-its-kind view of the 1-D diffusion of TALE proteins along stretched DNA. Taken together with co-crystal structures of DNA-bound TALEs, our results suggest a rotationally-coupled, major groove tracking model for diffusion. We further report diffusion constants for TALE proteins as a function of salt concentration, consistent with previously described models of 1-D protein diffusion.

  18. Intermedin/adrenomedullin 2 is a stress-inducible gene controlled by activating transcription factor 4.

    Science.gov (United States)

    Kovaleva, Irina E; Garaeva, Alisa A; Chumakov, Peter M; Evstafieva, Alexandra G

    2016-09-15

    Intermedin or adrenomedullin 2 is a set of calcitonin-related peptides with a putative tumor angiogenesis promoting activity that are formed by proteolytic processing of the ADM2 gene product. It has been proposed that the ADM2 gene is regulated by the estrogen response element (ERE) and hypoxia response elements (HRE) found within its promoter region. In the present study we reveal a functional mechanism by which ADM2 participates in the unfolded protein response (UPR) and in responses to the mitochondrial respiration chain inhibition. We show that the ADM2 gene is controlled by activating transcription factor 4 (ATF4), the principal regulator of the integrated stress response (ISR). The upregulation of ADM2 mRNA could be prevented by the pharmacological ISR inhibitor ISRIB and by the downregulation of ATF4 with specific shRNA, while ectopic expression of ATF4 cDNA resulted in a notable increase in ADM2 gene transcription. A potential ATF4-binding site was identified in the coding region of the ADM2 gene and the requirement of this site during the ATF4-mediated ADM2 gene promoter activation was validated by the luciferase reporter assay. Mutagenesis of the putative ATF4-response element prevented the induction of luciferase activity in response to ATF4 overproduction, as well as in response to mitochondrial electron transfer chain inhibition by piericidin A and ER stress induction by tunicamycin and brefeldin A. Since ADM2 was shown to inhibit ATF4 expression during myocardial ER stress, a feedback mechanism could be proposed for the ADM2 regulation under ER stress conditions. PMID:27328454

  19. Differential transcription-activating capability of NS1 proteins from different influenza virus subtypes expressed in yeast

    Institute of Scientific and Technical Information of China (English)

    LI WeiZhong; WANG GeFei; ZENG Jun; ZHANG DanGui; ZHANG Heng; CHEN XiaoXuan; CHEN Ying; Li KangSheng

    2009-01-01

    Influenza A virus NS1 protein is an important regulatory factor with multiple functions and contributes greatly to viral pathogenesis. In the present study, transcription-activating potential of NS1 from dif-ferent influenza A virus subtypes was examined in yeast two-hybrid system. The bait vectors contain-ing different NS1 genes, along with an empty prey vector, were transformed into yeast AH109(for growth assay on QDO plate and a-galactosidase assay), and Y187(for β-galactosidase assay). AH109transformants with NS1 gene from H1N1, H5N1, and HgN2 viruses grew vigorously on the QDO plate and secreted high level of a-galactosidase. Also, Y187 bearing the above NS1 genes exhibited en-hanced β-galactosidase activity. Nevertheless, H3N2-NSl-transformed AH109 and Y187 yeasts did not grow on QDO plate and secrete β-galactosidase, respectively. These findings denote the remarkable variation in NS1 proteins from different influenza A virus subtypes on the transcription-stimulating capability in yeast.

  20. Differential transcription-activating capability of NS1 proteins from different influenza virus subtypes expressed in yeast

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Influenza A virus NS1 protein is an important regulatory factor with multiple functions and contributes greatly to viral pathogenesis.In the present study,transcription-activating potential of NS1 from different influenza A virus subtypes was examined in yeast two-hybrid system.The bait vectors contain-ing different NS1 genes,along with an empty prey vector,were transformed into yeast AH109(for growth assay on QDO plate and α-galactosidase assay),and Y187(for β-galactosidase assay).AH109 transformants with NS1 gene from H1N1,H5N1,and H9N2 viruses grew vigorously on the QDO plate and secreted high level of α-galactosidase.Also,Y187 bearing the above NS1 genes exhibited en-hanced β-galactosidase activity.Nevertheless,H3N2-NS1-transformed AH109 and Y187 yeasts did not grow on QDO plate and secrete β-galactosidase,respectively.These findings denote the remarkable variation in NS1 proteins from different influenza A virus subtypes on the transcription-stimulating capability in yeast.

  1. High-throughput screening assays for antibacterial and antifungal activities of Lactobacillus species.

    Science.gov (United States)

    Inglin, Raffael C; Stevens, Marc J A; Meile, Lukas; Lacroix, Christophe; Meile, Leo

    2015-07-01

    We describe high-throughput screening techniques to rapidly detect either antimicrobial activity, using an agar-well diffusion assay in microtiter plates, or antifungal activity using an agar-spot assay in 24-well plates. 504 Lactobacillus isolates were screened with minimal laboratory equipment and screening rates of 2000-5000 individual antimicrobial interactions. PMID:25937247

  2. Transcriptional Regulation of Urokinase-type Plasminogen Activator Receptor by Hypoxia-Inducible Factor 1 Is Crucial for Invasion of Pancreatic and Liver Cancer

    Directory of Open Access Journals (Sweden)

    Peter Büchler

    2009-02-01

    Full Text Available Angioinvasion is critical for metastasis with urokinase-type plasminogen activator receptor (uPAR and tumor hypoxia-activated hypoxia-inducible factor 1 (HIF-1 as key players. Transcriptional control of uPAR expression by HIF has never been reported. The aim of the present study, therefore, was to test whether tumor hypoxia-induced HIF expression may be linked to transcriptional activation of uPAR and dependent angioinvasion. We used human pancreatic cancer cells and a model of parental and derived HIF-1β-deficient mouse liver cancer cell lines and performed Northern blot analysis, nuclear runoff assays, electrophoretic mobility shift assay, polymerase chain reaction-generated deletion mutants, luciferase assays, Matrigel invasion assays, and in vivo angioinvasion assays in the chorioallantoic membrane of fertilized chicken eggs. Urokinase-type plasminogen activator receptor promoter analysis resulted in four putative HIF binding sites. Hypoxia strongly induced de novo transcription of uPAR mRNA. With sequential deletion mutants of the uPAR promoter, it was possible to identify one HIF binding site causing a nearly 200-fold increase in luciferase activity. Hypoxia enhanced the number of invading tumor cells in vitro and in vivo. In contrast, HIF-1β-deficient cells failed to upregulate uPAR expression, to activate luciferase activity, and to invade on hypoxia. Taken together, we show for the first time that uPAR is under transcriptional control of HIF and that this is important for hypoxia-induced metastasis.

  3. Transcription factor PIF4 controls the thermosensory activation of flowering

    KAUST Repository

    Kumar, S. Vinod

    2012-03-21

    Plant growth and development are strongly affected by small differences in temperature. Current climate change has already altered global plant phenology and distribution, and projected increases in temperature pose a significant challenge to agriculture. Despite the important role of temperature on plant development, the underlying pathways are unknown. It has previously been shown that thermal acceleration of flowering is dependent on the florigen, FLOWERING LOCUS T (FT). How this occurs is, however, not understood, because the major pathway known to upregulate FT, the photoperiod pathway, is not required for thermal acceleration of flowering. Here we demonstrate a direct mechanism by which increasing temperature causes the bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4) to activate FT. Our findings provide a new understanding of how plants control their timing of reproduction in response to temperature. Flowering time is an important trait in crops as well as affecting the life cycles of pollinator species. A molecular understanding of how temperature affects flowering will be important for mitigating the effects of climate change. © 2012 Macmillan Publishers Limited. All rights reserved.

  4. The JaCVAM / OECD activities on the comet assay

    Directory of Open Access Journals (Sweden)

    Hajime Kojima

    2015-04-01

    Full Text Available The in vivo alkaline single cell gel electrophoresis assay, also called alkaline comet assay is a method measuring DNA strand breaks in eukaryotic cells. This assay was adopted in the Organisation for Economic Co-operation and Development (OECD Test guideline (TG 489 on September 26, 2014. This TG is part of a series of TGs on genetic toxicology. A formal validation trial of the this assay was performed in 2006-2012, coordinated by the Japanese Center for the Validation of Alternative Methods (JaCVAM, in conjunction with the European Union Reference Laboratory for alternatives to animal testing (EURL ECVAM, the Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM and the NTP Interagency Center for the Evaluation of Alternative Toxicological Methods (NICEATM . The assay was reviewed by the OECD genotoxicity experts based on the JaCVAM trial (2014 and in Rothfuss et al. (2010. This TG includes the recommended use and limitations of the comet assay, and is based on the final protocol used in the validation trial, and on additional relevant published and unpublished (laboratories proprietary data. The outline of this TG describes below: each treated group is composed of a minimum of 5 animals of one sex (or of each sex as appropriate. A positive and a vehicle control group are also used. Administration of the treatment consists of daily doses over duration of 2 days or more, ensuring the test chemical reaches the target tissue which can be the liver, the kidney or other tissues if justified. Tissues of interest are dissected and single cells/nuclei suspensions are prepared and embedded in agarose on slides. Cells/nuclei are treated with lysis buffer to remove cellular and/or nuclear membranes. The nuclear DNA in the agar is then subjected to electrophoresis at high pH. This results in structures resembling comets which by using suitable fluorescent stain, can be observed by fluorescent microscopy. Based on their size

  5. Estrogen Receptor α(ERα) Target Gene LRP16 Interacts with ERα and Enhances Receptor's Transcriptional Activity

    Institute of Scientific and Technical Information of China (English)

    HAN Wei-dong; ZHAO Ya-li; WU Zhi-qing; MENG Yuan-guang; ZANG Li; MU Yi-ming

    2007-01-01

    Objective: It has been shown that LRP16 is an estrogen-induced gene through its receptor (Erα). Although there is evidence demonstrating that inhibition of LRP16 gene expression in MCF-7 human breast cancer cells partially attenuates its estrogen-responsiveness, the underlying molecular mechanism is still unclear. Here, the effect of LRP16 expression on the ER( signaling transduction was investigated. Methods: Cotransfection assays were used to measure the effect of LRP16 on ER(-mediated transcriptional activity. GST-pulldown and immunoprecipitation (CoIP) assays were employed to investigate the physical interaction of LRP16 and Erα. The mammalian two-hybrid method was used to map the functional interaction region. Results: the results of cotransfection assays demonstrated that the transcriptional activities of Erα were enhanced in a LRP16 dose-dependent manner in MCF-7 in the presence of estrogen, however, it was abolished in the absence of E2 in MCF-7 cells. The physical interaction of LRP16 and Erα proteins was confirmed by GST-pulldown in vitro and CoIP in vivo assays, which was enhanced by E2 but not dependent on its presence. Furthermore, the results of the mammalian two-hybrid assays indicated that the binding region of Erα to LRP16 located at the A/B AF-1 functional domain and E2 stimulated the binding of LRP16 to the full-length Erα molecule but not to the A/B region alone. Conclusion: These results support a role for estrogenically regulated LRP16 as an Erα coactivator, providing a positive feedback regulatory loop for Erα signal transduction. Based on this function of LRP16, we propose that Erα-positive breast cancer patients with high expression of LRP16 might benefit from targeting LRP16 therapy.

  6. Functional characterization of NAC55 transcription factor from oilseed rape (Brassica napus L.) as a novel transcriptional activator modulating reactive oxygen species accumulation and cell death.

    Science.gov (United States)

    Niu, Fangfang; Wang, Chen; Yan, Jingli; Guo, Xiaohua; Wu, Feifei; Yang, Bo; Deyholos, Michael K; Jiang, Yuan-Qing

    2016-09-01

    NAC transcription factors (TFs) are plant-specific and play important roles in development, responses to biotic and abiotic cues and hormone signaling. So far, only a few NAC genes have been reported to regulate cell death. In this study, we identified and characterized a NAC55 gene isolated from oilseed rape (Brassica napus L.). BnaNAC55 responds to multiple stresses, including cold, heat, abscisic acid (ABA), jasmonic acid (JA) and a necrotrophic fungal pathogen Sclerotinia sclerotiorum. BnaNAC55 has transactivation activity and is located in the nucleus. BnaNAC55 is able to form homodimers in planta. Unlike ANAC055, full-length BnaNAC55, but not either the N-terminal NAC domain or C-terminal regulatory domain, induces ROS accumulation and hypersensitive response (HR)-like cell death when expressed both in oilseed rape protoplasts and Nicotiana benthamiana. Furthermore, BnaNAC55 expression causes obvious nuclear DNA fragmentation. Moreover, quantitative reverse transcription PCR (qRT-PCR) analysis identified that the expression levels of multiple genes regulating ROS production and scavenging, defense response as well as senescence are significantly induced. Using a dual luciferase reporter assay, we further confirm that BnaNAC55 could activate the expression of a few ROS and defense-related gene expression. Taken together, our work has identified a novel NAC TF from oilseed rape that modulates ROS accumulation and cell death. PMID:27312204

  7. DAX-1 Inhibits Hepatocellular Carcinoma Proliferation by Inhibiting β-Catenin Transcriptional Activity

    Directory of Open Access Journals (Sweden)

    Hong-Lei Jiang

    2014-08-01

    Full Text Available Background/Aims: Hepatocellular carcinoma (HCC represents the most common type of liver cancer. DAX1 (dosage-sensitive sex reversal adrenal hypoplasia congenital critical region on X chromosome, gene 1, an atypical member of the nuclear receptor family due to lack of classical DNA-binding domains, has been known for its fundamental roles in the development, especially in the sex determination and steroidogenesis. Previous studies also showed that DAX-1 played a critical role in endocrine and sex steroid-dependent neoplasms such as adrenocortical, pituitary, endometrial, and ovarian tumors. However, its biological roles in the development of HCC remain largely unexplored. Methods: Real-time PCR and Western blot were used to detect the expression of DAX-1 in HCC tissues and cell lines. Immunoprecipitation (IP assay was used to show the interaction between DAX-1 and β-Catenin. Small interfering RNA (siRNA was used to silence the expression of DAX-1. BrdU incorporation and Cell-cycle assays were used to detect the role of DAX-1 in HCC cells proliferation. Migration and invasion assays were carried out to test the metastasis ability of DAX-1 in HCC cells. Results: In the present study, we found that mRNA and protein levels of DAX-1 were down-regulated in HCC tissues and cell lines. Furthermore, overexpression of DAX-1 could inhibit while its knockdown using small interfering RNA promoted cell proliferation in several HCC cell lines. At the molecular level, we demonstrated that DAX-1 could interact with β-Catenin and attenuate its transcriptional activity. Conclusion: Therefore, our results suggest a previously unknown DAX-1/β-Catenin molecular network controlling HCC development.

  8. Interferon-tau activates multiple signal transducer and activator of transcription proteins and has complex effects on interferon-responsive gene transcription in ovine endometrial epithelial cells.

    Science.gov (United States)

    Stewart, M D; Stewart, D M; Johnson, G A; Vyhlidal, C A; Burghardt, R C; Safe, S H; Yu-Lee, L Y; Bazer, F W; Spencer, T E

    2001-01-01

    Interferon-tau (IFNtau), a type I IFN produced by sheep conceptus trophectoderm, is the signal for maternal recognition of pregnancy. Although it is clear that IFNtau suppresses transcription of the estrogen receptor alpha and oxytocin receptor genes and induces expression of various IFN-stimulated genes within the endometrial epithelium, little is known of the signal transduction pathway activated by the hormone. This study determined the effects of IFNtau on signal transducer and activator of transcription (STAT) activation, expression, DNA binding, and transcriptional activation using an ovine endometrial epithelial cell line. IFNtau induced persistent tyrosine phosphorylation and nuclear translocation of STAT1 and -2 (10 min to 48 h), but transient phosphorylation and nuclear translocation of STAT3, -5a/b, and -6 (10 to gene factor-3 and STAT1 homodimers formed and bound an IFN-stimulated response element (ISRE) and gamma-activated sequence (GAS) element, respectively. IFNtau increased transcription of GAS-driven promoters at 3 h, but suppressed their activity at 24 h. In contrast, the activity of an ISRE-driven promoter was increased at 3 and 24 h. These results indicate that IFNtau activates multiple STATs and has differential effects on ISRE- and GAS-driven gene transcription. PMID:11145571

  9. Detection of the Pandemic H1N1/2009 Influenza A Virus by a Highly Sensitive Quantitative Real-time Reverse-transcription Polymerase Chain Reaction Assay

    Institute of Scientific and Technical Information of China (English)

    Zhu Yang; Guoliang Mao; Yujun Liu; Yuan-Chuan Chen; Chengjing Liu; Jun Luo; Xihan Li

    2013-01-01

    A quantitative real time reverse-transcription polymerase chain reaction (qRT-PCR) assay with specific primers recommended by the World Health Organization (WHO) has been widely used successfully for detection and monitoring of the pandemic H1N 1/2009 influenza A virus.In this study,we report the design and characterization of a novel set of primers to be used in a qRT-PCR assay for detecting the pandemic H1N1/2009 virus.The newly designed primers target three regions that are highly conserved among the hemagglutinin (HA) genes of the pandemic H1N1/2009 viruses and are different from those targeted by the WHO-recommended primers.The qRT-PCR assays with the newly designed primers are highly specific,and as specific as the WHO-recommended primers for detecting pandemic H1N1/2009 viruses and other influenza viruses including influenza B viruses and influenza A viruses of human,swine,and raccoon dog origin.Furthermore,the qRT-PCR assays with the newly designed primers appeared to be at least 10-fold more sensitive than those with the WHO-recommended primers as the detection limits of the assays with our primers and the WHO-recommended primers were 2.5 and 25 copies of target RNA per reaction,respectively.When tested with 83 clinical samples,32 were detected to be positive using the qRT-PCR assays with our designed primers,while only 25 were positive by the assays with the WHO-recommended primers.These results suggest that the qRT-PCR system with the newly designed primers represent a highly sensitive assay for diagnosis of the pandemic H1N1/2009 virus infection.

  10. Reverse transcription loop-mediated isothermal amplification assays for rapid identification of eastern and western strains of bluetongue virus in India.

    Science.gov (United States)

    Maan, S; Maan, N S; Batra, K; Kumar, A; Gupta, A; Rao, Panduranga P; Hemadri, Divakar; Reddy, Yella Narasimha; Guimera, M; Belaganahalli, M N; Mertens, P P C

    2016-08-01

    Bluetongue virus (BTV) infects all ruminants, including cattle, goats and camelids, causing bluetongue disease (BT) that is often severe in naïve deer and sheep. Reverse-transcription-loop-mediated-isothermal-amplification (RT-LAMP) assays were developed to detect eastern or western topotype of BTV strains circulating in India. Each assay uses four primers recognizing six distinct sequences of BTV genome-segment 1 (Seg-1). The eastern (e)RT-LAMP and western (w)RT-LAMP assay detected BTV RNA in all positive isolates that were tested (n=52, including Indian BTV-1, -2, -3, -5, -9, -10, -16, -21 -23, and -24 strains) with high specificity and efficiency. The analytical sensitivity of the RT-LAMP assays is comparable to real-time RT-PCR, but higher than conventional RT-PCR. The accelerated eRT-LAMP and wRT-LAMP assays generated detectable levels of amplified DNA, down to 0.216 fg of BTV RNA template or 108 fg of BTV RNA template within 60-90min respectively. The assays gave negative results with RNA from foot-and-mouth-disease virus (FMDV), peste des petits ruminants virus (PPRV), or DNA from Capripox viruses and Orf virus (n=10), all of which can cause clinical signs similar to BT. Both RT-LAMP assays did not show any cross-reaction among themselves. The assays are rapid, easy to perform, could be adapted as a 'penside' test making them suitable for 'front-line' diagnosis, helping to identify and contain field outbreaks of BTV. PMID:27054888

  11. Improving fold activation of small transcription activating RNAs (STARs) with rational RNA engineering strategies.

    Science.gov (United States)

    Meyer, Sarai; Chappell, James; Sankar, Sitara; Chew, Rebecca; Lucks, Julius B

    2016-01-01

    Regulatory RNAs have become integral components of the synthetic biology and bioengineering toolbox for controlling gene expression. We recently expanded this toolbox by creating small transcription activating RNAs (STARs) that act by disrupting the formation of a target transcriptional terminator hairpin placed upstream of a gene. While STARs are a promising addition to the repertoire of RNA regulators, much work remains to be done to optimize the fold activation of these systems. Here we apply rational RNA engineering strategies to improve the fold activation of two STAR regulators. We demonstrate that a combination of promoter strength tuning and multiple RNA engineering strategies can improve fold activation from 5.4-fold to 13.4-fold for a STAR regulator derived from the pbuE riboswitch terminator. We then validate the generality of our approach and show that these same strategies improve fold activation from 2.1-fold to 14.6-fold for an unrelated STAR regulator, opening the door to creating a range of additional STARs to use in a broad array of biotechnologies. We also establish that the optimizations preserve the orthogonality of these STARs between themselves and a set of RNA transcriptional repressors, enabling these optimized STARs to be used in sophisticated circuits. PMID:26134708

  12. Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular Enzyme Activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soil enzymes originate from a variety of organisms, notably fungi and bacteria...... and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity reflects the functional diversity and activity of the microorganisms involved in decomposition processes which are essential processes for soil...... functioning and soil ecosystem services. The soil enzyme activity has been measured by the use of fluorogenic model substrates e.g. methylumbelliferyl (MUF) substrates for a number of enzymes involved in the degradation of polysaccharides as cellulose, hemicellulose and chitin, while degradation of proteins...

  13. Hypoxia-Inducible Factor 3 Is an Oxygen-Dependent Transcription Activator and Regulates a Distinct Transcriptional Response to Hypoxia

    Directory of Open Access Journals (Sweden)

    Peng Zhang

    2014-03-01

    Full Text Available Hypoxia-inducible factors (HIFs play key roles in the cellular response to hypoxia. It is widely accepted that whereas HIF-1 and HIF-2 function as transcriptional activators, HIF-3 inhibits HIF-1/2α action. Contrary to this idea, we show that zebrafish Hif-3α has strong transactivation activity. Hif-3α is degraded under normoxia. Mutation of P393, P493, and L503 inhibits this oxygen-dependent degradation. Transcriptomics and chromatin immunoprecipitation analyses identify genes that are regulated by Hif-3α, Hif-1α, or both. Under hypoxia or when overexpressed, Hif-3α binds to its target gene promoters and upregulates their expression. Dominant-negative inhibition and knockdown of Hif-3α abolish hypoxia-induced Hif-3α-promoter binding and gene expression. Hif-3α not only mediates hypoxia-induced growth and developmental retardation but also possesses hypoxia-independent activities. Importantly, transactivation activity is conserved and human HIF-3α upregulates similar genes in human cells. These findings suggest that Hif-3 is an oxygen-dependent transcription factor and activates a distinct transcriptional response to hypoxia.

  14. Dynamic transcription factor activity profiles reveal key regulatory interactions during megakaryocytic and erythroid differentiation.

    Science.gov (United States)

    Duncan, Mark T; Shin, Seungjin; Wu, Jia J; Mays, Zachary; Weng, Stanley; Bagheri, Neda; Miller, William M; Shea, Lonnie D

    2014-10-01

    The directed differentiation toward erythroid (E) or megakaryocytic (MK) lineages by the MK-E progenitor (MEP) could enhance the ex vivo generation of red blood cells and platelets for therapeutic transfusions. The lineage choice at the MEP bifurcation is controlled in large part by activity within the intracellular signal transduction network, the output of which determines the activity of transcription factors (TFs) and ultimately gene expression. Although many TFs have been implicated, E or MK differentiation is a complex process requiring multiple days, and the dynamics of TF activities during commitment and terminal maturation are relatively unexplored. Herein, we applied a living cell array for the large-scale, dynamic quantification of TF activities during MEP bifurcation. A panel of hematopoietic TFs (GATA-1, GATA-2, SCL/TAL1, FLI-1, NF-E2, PU.1, c-Myb) was characterized during E and MK differentiation of bipotent K562 cells. Dynamic TF activity profiles associated with differentiation towards each lineage were identified, and validated with previous reports. From these activity profiles, we show that GATA-1 is an important hub during early hemin- and PMA-induced differentiation, and reveal several characteristic TF interactions for E and MK differentiation that confirm regulatory mechanisms documented in the literature. Additionally, we highlight several novel TF interactions at various stages of E and MK differentiation. Furthermore, we investigated the mechanism by which nicotinamide (NIC) promoted terminal MK maturation using an MK-committed cell line, CHRF-288-11 (CHRF). Concomitant with its enhancement of ploidy, NIC strongly enhanced the activity of three TFs with known involvement in terminal MK maturation: FLI-1, NF-E2, and p53. Dynamic profiling of TF activity represents a novel tool to complement traditional assays focused on mRNA and protein expression levels to understand progenitor cell differentiation. PMID:24853077

  15. Screening assays for primary haemophagocytic lymphohistiocytosis in children presenting with suspected macrophage activation syndrome

    OpenAIRE

    Cruikshank, M; Anoop, P; Nikolajeva, O.; Rao, A; Rao, K.; Gilmour, K.; Eleftheriou, D; Brogan, P. A.

    2014-01-01

    Background Primary haemophagocytic lymphohistiocytosis (HLH) screening assays are increasingly being performed in patients presenting with macrophage activation syndrome (MAS). The objective of this study was to describe their diagnostic and prognostic relevance in children who had presented to paediatric rheumatology and had undergone investigative work up for MAS. Methods Data was obtained retrospectively from an existing protein screening assay database and patient records. Assays included...

  16. New Role for Kruppel-like Factor 14 as a Transcriptional Activator Involved in the Generation of Signaling Lipids*

    Science.gov (United States)

    de Assuncao, Thiago M.; Lomberk, Gwen; Cao, Sheng; Yaqoob, Usman; Mathison, Angela; Simonetto, Douglas A.; Huebert, Robert C.; Urrutia, Raul A.; Shah, Vijay H.

    2014-01-01

    Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling. PMID:24759103

  17. New role for Kruppel-like factor 14 as a transcriptional activator involved in the generation of signaling lipids.

    Science.gov (United States)

    de Assuncao, Thiago M; Lomberk, Gwen; Cao, Sheng; Yaqoob, Usman; Mathison, Angela; Simonetto, Douglas A; Huebert, Robert C; Urrutia, Raul A; Shah, Vijay H

    2014-05-30

    Sphingosine kinase 1 (SK1) is an FGF-inducible gene responsible for generation of sphingosine-1-phosphate, a critical lipid signaling molecule implicated in diverse endothelial cell functions. In this study, we identified SK1 as a target of the canonical FGF2/FGF receptor 1 activation pathway in endothelial cells and sought to identify novel transcriptional pathways that mediate lipid signaling. Studies using the 1.9-kb SK1 promoter and deletion mutants revealed that basal and FGF2-stimulated promoter activity occurred through two GC-rich regions located within 633 bp of the transcription start site. Screening for GC-rich binding transcription factors that could activate this site demonstrated that KLF14, a gene implicated in obesity and the metabolic syndrome, binds to this region. Congruently, overexpression of KLF14 increased basal and FGF2-stimulated SK1 promoter activity by 3-fold, and this effect was abrogated after mutation of the GC-rich sites. In addition, KLF14 siRNA transfection decreased SK1 mRNA and protein levels by 3-fold. Congruently, SK1 mRNA and protein levels were decreased in livers from KLF14 knock-out mice. Combined, luciferase, gel shift, and chromatin immunoprecipitation assays showed that KLF14 couples to p300 to increase the levels of histone marks associated with transcriptional activation (H4K8ac and H3K14ac), while decreasing repressive marks (H3K9me3 and H3K27me3). Collectively, the results demonstrate a novel mechanism whereby SK1 lipid signaling is regulated by epigenetic modifications conferred by KLF14 and p300. Thus, this is the first description of the activity and mechanisms underlying the function of KLF14 as an activator protein and novel regulator of lipid signaling. PMID:24759103

  18. A Two-Tube Multiplex Reverse Transcription PCR Assay for Simultaneous Detection of Viral and Bacterial Pathogens of Infectious Diarrhea

    Directory of Open Access Journals (Sweden)

    Ji Wang

    2014-01-01

    Full Text Available Diarrhea caused by viral and bacterial infections is a major health problem in developing countries. The purpose of this study is to develop a two-tube multiplex PCR assay using automatic electrophoresis for simultaneous detection of 13 diarrhea-causative viruses or bacteria, with an intended application in provincial Centers for Diseases Control and Prevention, China. The assay was designed to detect rotavirus A, norovirus genogroups GI and GII, human astrovirus, enteric adenoviruses, and human bocavirus (tube 1, and Salmonella, Vibrio parahaemolyticus, diarrheagenic Escherichia coli, Campylobacter jejuni, Shigella, Yersinia, and Vibrio cholera (tube 2. The analytical specificity was examined with positive controls for each pathogen. The analytical sensitivity was evaluated by performing the assay on serial tenfold dilutions of in vitro transcribed RNA, recombinant plasmids, or bacterial culture. A total of 122 stool samples were tested by this two-tube assay and the results were compared with those obtained from reference methods. The two-tube assay achieved a sensitivity of 20–200 copies for a single virus and 102-103 CFU/mL for bacteria. The clinical performance demonstrated that the two-tube assay had comparable sensitivity and specificity to those of reference methods. In conclusion, the two-tube assay is a rapid, cost-effective, sensitive, specific, and high throughput method for the simultaneous detection of enteric bacteria and virus.

  19. Signal transduction and HIV transcriptional activation after exposure to ultraviolet light and other DNA-damaging agents

    International Nuclear Information System (INIS)

    Short wavelength (254 nm) ultraviolet light (UVC) radiation was much more potent in activating transcription of human immunodeficiency virus 1 (HIV) reporter genes stably integrated into the genomes of human and monkey cells than ionizing radiation (IR) from a 137Cs source at similarly cytotoxic doses. A similar differential was also observed when c-jun transcription levels were examined. However, these transcription levels do not correlate with activation of nuclear factor (NF)-kB and AP-1 measured by band-shift assays, i.e. both types of radiation produce similar increases in NF-kB and AP-1 activity, suggesting existence of additional levels of regulation during these responses. Because of the well-established involvement of cytoplasmic signaling pathways in the cellular response to tumor necrosis factor-α (TNF-α), UVC, and IR using other types of assays, the role of TNF-α in the UVC response of HIV and c-jun was investigated in our cell system. We demonstrate that UVC and TNF-α activate HIV gene expression in a synergistic fashion, suggesting that it is unlikely that TNF-α is involved in UVC activation of HIV transcription in stably transfected HeLa cells. Moreover, maximum TNF-α stimulation resulted in one order of magnitude lower levels of HIV expression than that observed after UVC exposure. We also observed an additive effect of UVC and TNF-α on c-jun steady-state mRNA levels, suggestive of a partial overlap in activation mechanism of c-jun by UVC and TNF-α; yet these responses are distinct to some extent. Our results indicate that the HIV, and to some extent also the c-jun, transcriptional responses to UVC are not the result of TNF-α stimulation and subsequent downstream cytoplasmic signaling events in HeLa cells. In addition to the new data, this report also summarizes our current views regarding UVC-induced activations of HIV gene expression in stably transfected cells. (Author)

  20. Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity

    DEFF Research Database (Denmark)

    Hendriksen, Niels Bohse; Winding, Anne

    2012-01-01

    Extracellular enzyme activity assay as indicator of soil microbial functional diversity and activity Niels Bohse Hendriksen, Anne Winding. Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark Soils provide numerous essential ecosystem services such as carbon cycling......, recycling of nutrients and waste, soil remediation, plant growth support and regulation of above ground biodiversity, resilience, and soil suppressiveness. As such, soil ecosystem services are beneficial and vital for human life and at the same time threatened by anthropogenic activities. Increasing...... of soil microbial functions is still needed. In soil, enzymes originate from a variety of organisms, notably fungi and bacteria and especially hydrolytic extracellular enzymes are of pivotal importance for decomposition of organic substrates and biogeochemical cycling. Their activity will reflect the...

  1. MED16 and MED23 of Mediator are coactivators of lipopolysaccharide- and heat-shock-induced transcriptional activators

    OpenAIRE

    Kim, Tae Whan; Kwon, Yong-Jae; Kim, Jung Mo; Song, Young-Hwa; Kim, Se Nyun; Kim, Young-Joon

    2004-01-01

    Transcriptional activators interact with diverse proteins and recruit transcriptional machinery to the activated promoter. Recruitment of the Mediator complex by transcriptional activators is usually the key step in transcriptional activation. However, it is unclear how Mediator recognizes different types of activator proteins. To systematically identify the subunits responsible for the signal- and activator-specific functions of Mediator in Drosophila melanogaster, each Mediator subunit was ...

  2. EGF activates TTP expression by activation of ELK-1 and EGR-1 transcription factors

    Directory of Open Access Journals (Sweden)

    Florkowska Magdalena

    2012-03-01

    Full Text Available Abstract Background Tristetraprolin (TTP is a key mediator of processes such as inflammation resolution, the inhibition of autoimmunity and in cancer. It carries out this role by the binding and degradation of mRNA transcripts, thereby decreasing their half-life. Transcripts modulated by TTP encode proteins such as cytokines, pro-inflammatory agents and immediate-early response proteins. TTP can also modulate neoplastic phenotypes in many cancers. TTP is induced and functionally regulated by a spectrum of both pro- and anti-inflammatory cytokines, mitogens and drugs in a MAPK-dependent manner. So far the contribution of p38 MAPK to the regulation of TTP expression and function has been best described. Results Our results demonstrate the induction of the gene coding TTP (ZFP36 by EGF through the ERK1/2-dependent pathway and implicates the transcription factor ELK-1 in this process. We show that ELK-1 regulates ZFP36 expression by two mechanisms: by binding the ZFP36 promoter directly through ETS-binding site (+ 883 to +905 bp and by inducing expression of EGR-1, which in turn increases ZFP36 expression through sequences located between -111 and -103 bp. Conclusions EGF activates TTP expression via ELK-1 and EGR-1 transcription factors.

  3. Production of Genetically Engineered Biotinylated Interleukin-2 and Its Application in a Rapid Nonradioactive Assay for T-Cell Activation

    OpenAIRE

    Jordan, Robert A.; Preissler, Mark T.; Banas, Jeffrey A.; Gosselin, Edmund J.

    2003-01-01

    The development of reliable assay systems that can measure lymphocyte activation in vitro has been a major goal of immunodiagnostics. Traditionally, tritiated thymidine incorporation has been used to monitor T-cell activation. Other methods include enzyme-linked immunosorbent assay (ELISA), enzyme-linked immunospot assay, and colorimetric assays. We have established a lymphocyte activation assay that utilizes fluorescein isothiocyanate (FITC)-streptavidin bound to recombinant biotinylated hum...

  4. Exercise-Induced VEGF Transcriptional Activation in Brain, Lung and Skeletal Muscle

    OpenAIRE

    Tang, Kechun; Xia, Feng Cheng; Wagner, Peter D.; Breen, Ellen C.

    2009-01-01

    Muscle VEGF expression is upregulated by exercise. Whether this VEGF response is regulated by transcription and/or post-transcriptional mechanisms is unknown. Hypoxia may be responsible: myocyte PO2 falls greatly during exercise and VEGF is a hypoxia-responsive gene. Whether exercise induces VEGF expression in other organs important to acute physical activity is also unknown. To address these questions, we created a VEGF/Luciferase reporter mouse and measured VEGF transcription, mRNA and prot...

  5. PolyADP-ribose polymerase is a coactivator for AP-2-mediated transcriptional activation.

    OpenAIRE

    Kannan, P; Yu, Y; Wankhade, S; Tainsky, M A

    1999-01-01

    Overexpression of transcription factor AP-2 has been implicated in the tumorigenicity of the human teratocarcinoma cell lines PA-1 that contain an activated ras oncogene. Here we show evidence that overexpression of AP-2 sequesters transcriptional coactivators which results in self-inhibition. We identified AP-2-interacting proteins and determined whether these proteins were coactivators for AP-2-mediated transcription. One such interacting protein is polyADP-ribose polymerase (PARP). PARP su...

  6. Analysis of p53 mutants for transcriptional activity.

    OpenAIRE

    Raycroft, L.; Schmidt, J. R.; Yoas, K; Hao, M M; Lozano, G.

    1991-01-01

    The wild-type p53 protein functions to suppress transformation, but numerous mutant p53 proteins are transformation competent. To examine the role of p53 as a transcription factor, we made fusion proteins containing human or mouse p53 sequences fused to the DNA binding domain of a known transcription factor, GAL4. Human and mouse wild-type p53/GAL4 specifically transactivated expression of a chloramphenicol acetyltransferase reporter in HeLa, CHO, and NIH 3T3 cells. Several mutant p53 protein...

  7. Down syndrome critical region 2 protein inhibits the transcriptional activity of peroxisome proliferator-activated receptor β in HEK293 cells

    International Nuclear Information System (INIS)

    Down syndrome is mainly caused by a trisomy of chromosome 21. The Down syndrome critical region 2 (DSCR2) gene is located within a part of chromosome 21, the Down syndrome critical region (DSCR). To investigate the function of DSCR2, we sought to identify DSCR2-interacting proteins using yeast two-hybrid assays. A human fetal brain cDNA library was screened, and DSCR2 was found to interact with a member of the nuclear receptor superfamily, peroxisome proliferator-activated receptor β, (PPARβ). A co-immunoprecipitation assay demonstrated that DSCR2 physically interacts with PPARβ in mammalian HEK293 cells. DSCR2 also inhibited the ligand-induced transcriptional activity of PPARβ. Furthermore, PPARβ also decreased the solubility of DSCR2, which increased levels of insoluble DSCR2

  8. The cellular bromodomain protein Brd4 has multiple functions in E2-mediated papillomavirus transcription activation.

    Science.gov (United States)

    Helfer, Christine M; Yan, Junpeng; You, Jianxin

    2014-08-01

    The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb), a functional interaction partner of Brd4 in transcription activation, is important for E2's transcription activation activity. Furthermore, chromatin immunoprecipitation (ChIP) analyses demonstrate that P-TEFb is recruited to the actual papillomavirus episomes. We also show that E2's interaction with cellular chromatin through Brd4 correlates with its papillomavirus transcription activation function since JQ1(+), a bromodomain inhibitor that efficiently dissociates E2-Brd4 complexes from chromatin, potently reduces papillomavirus transcription. Our study identifies a specific function of Brd4 in papillomavirus gene transcription and highlights the potential use of bromodomain inhibitors as a method to disrupt the human papillomavirus (HPV) life cycle. PMID:25140737

  9. The Cellular Bromodomain Protein Brd4 has Multiple Functions in E2-Mediated Papillomavirus Transcription Activation

    Directory of Open Access Journals (Sweden)

    Christine M. Helfer

    2014-08-01

    Full Text Available The cellular bromodomain protein Brd4 functions in multiple processes of the papillomavirus life cycle, including viral replication, genome maintenance, and gene transcription through its interaction with the viral protein, E2. However, the mechanisms by which E2 and Brd4 activate viral transcription are still not completely understood. In this study, we show that recruitment of positive transcription elongation factor b (P-TEFb, a functional interaction partner of Brd4 in transcription activation, is important for E2’s transcription activation activity. Furthermore, chromatin immunoprecipitation (ChIP analyses demonstrate that P-TEFb is recruited to the actual papillomavirus episomes. We also show that E2’s interaction with cellular chromatin through Brd4 correlates with its papillomavirus transcription activation function since JQ1(+, a bromodomain inhibitor that efficiently dissociates E2-Brd4 complexes from chromatin, potently reduces papillomavirus transcription. Our study identifies a specific function of Brd4 in papillomavirus gene transcription and highlights the potential use of bromodomain inhibitors as a method to disrupt the human papillomavirus (HPV life cycle.

  10. Large-scale transcriptome data reveals transcriptional activity of fission yeast LTR retrotransposons

    Directory of Open Access Journals (Sweden)

    Willerslev Eske

    2010-03-01

    Full Text Available Abstract Background Retrotransposons are transposable elements that proliferate within eukaryotic genomes through a process involving reverse transcription. The numbers of retrotransposons within genomes and differences between closely related species may yield insight into the evolutionary history of the elements. Less is known about the ongoing dynamics of retrotransposons, as analysis of genome sequences will only reveal insertions of retrotransposons that are fixed - or near fixation - in the population or strain from which genetic material has been extracted for sequencing. One pre-requisite for retrotransposition is transcription of the elements. Given their intrinsic sequence redundancy, transcriptome-level analyses of transposable elements are scarce. We have used recently published transcriptome data from the fission yeast Schizosaccharomyces pombe to assess the ability to detect and describe transcriptional activity from Long Terminal Repeat (LTR retrotransposons. LTR retrotransposons are normally flanked by two LTR sequences. However, the majority of LTR sequences in S. pombe exist as solitary LTRs, i.e. as single terminal repeat sequences not flanking a retrotransposon. Transcriptional activity was analysed for both full-length LTR retrotransposons and solitary LTRs. Results Two independent sets of transcriptome data reveal the presence of full-length, polyadenylated transcripts from LTR retrotransposons in S. pombe during growth phase in rich medium. The redundancy of retrotransposon sequences makes it difficult to assess which elements are transcriptionally active, but data strongly indicates that only a subset of the LTR retrotransposons contribute significantly to the detected transcription. A considerable level of reverse strand transcription is also detected. Equal levels of transcriptional activity are observed from both strands of solitary LTR sequences. Transcriptome data collected during meiosis suggests that transcription

  11. Clinical application of transcriptional activators of bile salt transporters ☆

    OpenAIRE

    Baghdasaryan, Anna; Chiba, Peter; Trauner, Michael

    2014-01-01

    Hepatobiliary bile salt (BS) transporters are critical determinants of BS homeostasis controlling intracellular concentrations of BSs and their enterohepatic circulation. Genetic or acquired dysfunction of specific transport systems causes intrahepatic and systemic retention of potentially cytotoxic BSs, which, in high concentrations, may disturb integrity of cell membranes and subcellular organelles resulting in cell death, inflammation and fibrosis. Transcriptional regulation of canalicular...

  12. Inferring yeast cell cycle regulators and interactions using transcription factor activities

    Directory of Open Access Journals (Sweden)

    Galbraith Simon J

    2005-06-01

    Full Text Available Abstract Background Since transcription factors are often regulated at the post-transcriptional level, their activities, rather than expression levels may provide valuable information for investigating functions and their interactions. The recently developed Network Component Analysis (NCA and its generalized form (gNCA provide a robust framework for deducing the transcription factor activities (TFAs from various types of DNA microarray data and transcription factor-gene connectivity. The goal of this work is to demonstrate the utility of TFAs in inferring transcription factor functions and interactions in Saccharomyces cerevisiae cell cycle regulation. Results Using gNCA, we determined 74 TFAs from both wild type and fkh1 fkh2 deletion mutant microarray data encompassing 1529 ORFs. We hypothesized that transcription factors participating in the cell cycle regulation exhibit cyclic activity profiles. This hypothesis was supported by the TFA profiles of known cell cycle factors and was used as a basis to uncover other potential cell cycle factors. By combining the results from both cluster analysis and periodicity analysis, we recovered nearly 90% of the known cell cycle regulators, and identified 5 putative cell cycle-related transcription factors (Dal81, Hap2, Hir2, Mss11, and Rlm1. In addition, by analyzing expression data from transcription factor knockout strains, we determined 3 verified (Ace2, Ndd1, and Swi5 and 4 putative interaction partners (Cha4, Hap2, Fhl1, and Rts2 of the forkhead transcription factors. Sensitivity of TFAs to connectivity errors was determined to provide confidence level of these predictions. Conclusion By subjecting TFA profiles to analyses based upon physiological signatures we were able to identify cell cycle related transcription factors consistent with current literature, transcription factors with potential cell cycle dependent roles, and interactions between transcription factors.

  13. Evaluation of a Nested Reverse Transcription-PCR Assay Based on the Nucleoprotein Gene for Diagnosis of Spontaneous and Experimental Bovine Respiratory Syncytial Virus Infections

    OpenAIRE

    Valarcher, Jean-François; Bourhy, Hervé; Gelfi, Jacqueline; Schelcher, François

    1999-01-01

    The first nested reverse transcription (RT)-PCR based on the nucleoprotein gene (n RT-PCR-N) of the bovine respiratory syncytial virus (BRSV) has been developed and optimized for the detection of BRSV in bronchoalveolar lavage fluid cells of calves. This test is characterized by a low threshold of detection (0.17 PFU/ml), which is 506 times lower than that obtained by an enzyme immunosorbent assay (EIA) test (RSV TESTPACK ABBOTT). During an experimental infection of 17 immunocompetent calves ...

  14. Fur-mediated activation of gene transcription in the human pathogen Neisseria gonorrhoeae.

    Science.gov (United States)

    Yu, Chunxiao; Genco, Caroline Attardo

    2012-04-01

    It is well established that the ferric uptake regulatory protein (Fur) functions as a transcriptional repressor in diverse microorganisms. Recent studies demonstrated that Fur also functions as a transcriptional activator. In this study we defined Fur-mediated activation of gene transcription in the sexually transmitted disease pathogen Neisseria gonorrhoeae. Analysis of 37 genes which were previously determined to be iron induced and which contained putative Fur boxes revealed that only 30 of these genes exhibited reduced transcription in a gonococcal fur mutant strain. Fur-mediated activation was established by examining binding of Fur to the putative promoter regions of 16 Fur-activated genes with variable binding affinities observed. Only ∼50% of the newly identified Fur-regulated genes bound Fur in vitro, suggesting that additional regulatory circuits exist which may function through a Fur-mediated indirect mechanism. The gonococcal Fur-activated genes displayed variable transcription patterns in a fur mutant strain, which correlated with the position of the Fur box in each (promoter) region. These results suggest that Fur-mediated direct transcriptional activation is fulfilled by multiple mechanisms involving either competing with a repressor or recruiting RNA polymerase. Collectively, our studies have established that gonococcal Fur functions as an activator of gene transcription through both direct and indirect mechanisms. PMID:22287521

  15. Detection of infectious bursal disease virus in various lymphoid tissues of experimentally infected specific pathogen free chickens by different reverse transcription polymerase chain reaction assays

    DEFF Research Database (Denmark)

    Kabell, Susanne; Handberg, Kurt; Kusk, Mette;

    2005-01-01

    transcription polymerase chain reaction (RT-PCR) assays, including two recently developed strain-specific assays, were employed for detection of ribonucleic acid (RNA) from three different IBDV strains in bursa tissue samples from experimentally infected specific pathogen free chickens. The virus strains......Infectious bursal disease (IBD) is a worldwide distributed immunosuppressive viral disease in young chickens, controlled by vaccination. Emergence of several strains of IBD virus (IBDV) has created a demand for strain-specific diagnostic tools. In the present experiment, five different reverse...... included vaccine strain D78, classical strain Faragher 52/70, and the very virulent Danish strain DK01 The presence of the virus infection was confirmed by histopathologic evaluation of bursa lesions. The largest number of positive samples was obtained with a strain-specific two-step multiplex (MPX) RT...

  16. Antioxidant activity assays on-line with liquid chromatography

    NARCIS (Netherlands)

    Niederlander, Harm A. G.; van Beek, Teris A.; Bartasiute, Aiste; Koieva, Irina I.

    2008-01-01

    Screening for antioxidants requires simple in vitro model systems to investigate antioxidant activity. High resolution screening (HRS), combining a separation technique like HPLC with fast post-column (bio)chemical detection can rapidly pinpoint active compounds in complex mixtures. In this paper bo

  17. Disk Diffusion Assay to Assess the Antimicrobial Activity of Marine Algal Extracts.

    Science.gov (United States)

    Desbois, Andrew P; Smith, Valerie J

    2015-01-01

    Marine algae are a relatively untapped source of bioactive natural products, including those with antimicrobial activities. The ability to assess the antimicrobial activity of cell extracts derived from algal cultures is vital to identifying species that may produce useful novel antibiotics. One assay that is used widely for this purpose is the disk diffusion assay due to its simplicity, rapidity, and low cost. Moreover, this assay gives output data that are easy to interpret and can be used to screen many samples at once irrespective of the solvent used during preparation. In this chapter, a step-by-step protocol for performing a disk diffusion assay is described. The assay is particularly well suited to testing algal cell extracts and fractions resulting from separation through bioassay-guided approaches. PMID:26108520

  18. β-Catenin Binds to the Activation Function 2 Region of the Androgen Receptor and Modulates the Effects of the N-Terminal Domain and TIF2 on Ligand-Dependent Transcription

    OpenAIRE

    Song, Liang-Nian; Herrell, Roger; Byers, Stephen; Shah, Salimuddin; Wilson, Elizabeth M.; Gelmann, Edward P.

    2003-01-01

    β-Catenin is a multifunctional molecule that is activated by signaling through WNT receptors. β-Catenin can also enhance the transcriptional activity of some steroid hormone receptors such as the androgen receptor and retinoic acid receptor α. Androgens can affect nuclear translocation of β-catenin and influence its subcellular distribution. Using mammalian two-hybrid binding assays, analysis of reporter gene transcription, and coimmunoprecipitation, we now show that β-catenin binds to the an...

  19. miR-17-5p targets the p300/CBP-associated factor and modulates androgen receptor transcriptional activity in cultured prostate cancer cells

    International Nuclear Information System (INIS)

    Androgen receptor (AR) signalling is critical to the initiation and progression of prostate cancer (PCa). Transcriptional activity of AR involves chromatin recruitment of co-activators, including the p300/CBP-associated factor (PCAF). Distinct miRNA expression profiles have been identified in PCa cells during the development and progression of the disease. Whether miRNAs regulate PCAF expression in PCa cells to regulate AR transcriptional activity is still unclear. Expression of PCAF was investigated in several PCa cell lines by qRT-PCR, Western blot, and immunocytochemistry. The effects of PCAF expression on AR-regulated transcriptional activity and cell growth in PCa cells were determined by chromatin immunoprecipitation, reporter gene construct analysis, and MTS assay. Targeting of PCAF by miR-17-5p was evaluated using the luciferase reporter assay. PCAF was upregulated in several PCa cell lines. Upregulation of PCAF promoted AR transcriptional activation and cell growth in cultured PCa cells. Expression of PCAF in PCa cells was associated with the downregulation of miR-17-5p. Targeting of the 3’-untranslated region of PCAF mRNA by miR-17-5p caused translational suppression and RNA degradation, and, consequently, modulation of AR transcriptional activity in PCa cells. PCAF is upregulated in cultured PCa cells, and upregulation of PCAF is associated with the downregulation of miR-17-5p. Targeting of PCAF by miR-17-5p modulates AR transcriptional activity and cell growth in cultured PCa cells

  20. Development of real-time reverse transcription polymerase chain reaction assays to quantify insulin-like growth factor receptor and insulin receptor expression in equine tissue

    Directory of Open Access Journals (Sweden)

    Stephen B. Hughes

    2013-03-01

    Full Text Available The insulin-like growth factor system (insulin-like growth factor 1, insulin-like growth factor 2, insulin-like growth factor 1 receptor, insulin-like growth factor 2 receptor and six insulin-like growth factor-binding proteins and insulin are essential to muscle metabolism and most aspects of male and female reproduction. Insulin-like growth factor and insulin play important roles in the regulation of cell growth, differentiation and the maintenance of cell differentiation in mammals. In order to better understand the local factors that regulate equine physiology, such as muscle metabolism and reproduction (e.g., germ cell development and fertilisation, real-time reverse transcription polymerase chain reaction assays for quantification of equine insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were developed. The assays were sensitive: 192 copies/µLand 891 copies/µL for insulin-like growth factor 1 receptor, messenger ribonucleic acid and insulin receptor respectively (95%limit of detection, and efficient: 1.01 for the insulin-like growth factor 1 receptor assay and 0.95 for the insulin receptor assay. The assays had a broad linear range of detection (seven logs for insulin-like growth factor 1 receptor and six logs for insulin receptor. This allowed for analysis of very small amounts of messenger ribonucleic acid. Low concentrations of both insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid were detected in endometrium, lung and spleen samples, whilst high concentrations were detected in heart, muscle and kidney samples, this was most likely due to the high level of glucose metabolism and glucose utilisation by these tissues. The assays developed for insulin-like growth factor 1 receptor and insulin receptor messenger ribonucleic acid expression have been shown to work on equine tissue and will contribute to the understanding of insulin and insulin-like growth factor 1

  1. Enhanced transcriptional activation by E2 proteins from the oncogenic human papillomaviruses.

    OpenAIRE

    Kovelman, R; Bilter, G K; Glezer, E; Tsou, A Y; Barbosa, M S

    1996-01-01

    A systematic comparison of transcriptional activation by papillomavirus E2 proteins revealed that the E2 proteins from high-risk human papillomaviruses (human papillomavirus type 16 [HPV-16] and HPV-18) are much more active than are the E2 proteins from low-risk HPVs (HPV-6b and HPV-11). Despite the tropism of HPVs for particular epithelial cell types, this difference in transcriptional activation was observed in a number of different epithelial and nonepithelial cells. The enhanced activitie...

  2. Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes

    OpenAIRE

    Groscurth Peter; Dumrese Claudia; Sundstrom Hanna; Walch Michael; Latinovic-Golic Sonja; Ziegler Urs

    2007-01-01

    Abstract Background Granulysin, a cytotoxic protein expressed in human natural killer cells and activated T lymphocytes, exhibits cytolytic activity against a variety of intracellular microbes. Expression and transcription have been partially characterised in vitro and four transcripts (NKG5, 519, 520, and 522) were identified. However, only a single protein product of 15 kDa was found, which is subsequently processed to an active 9 kDa protein. Results In this study we investigated generatio...

  3. Inhibition of human insulin gene transcription by peroxisome proliferator-activated receptor γ and thiazolidinedione oral antidiabetic drugs

    Science.gov (United States)

    Schinner, S; Krätzner, R; Baun, D; Dickel, C; Blume, R; Oetjen, E

    2009-01-01

    Background and purpose: The transcription factor peroxisome proliferator-activated receptor γ (PPARγ) is essential for glucose homeostasis. PPARγ ligands reducing insulin levels in vivo are used as drugs to treat type 2 diabetes mellitus. Genes regulated by PPARγ have been found in several tissues including insulin-producing pancreatic islet β-cells. However, the role of PPARγ at the insulin gene was unknown. Therefore, the effect of PPARγ and PPARγ ligands like rosiglitazone on insulin gene transcription was investigated. Experimental approach: Reporter gene assays were used in the β-cell line HIT and in primary mature pancreatic islets of transgenic mice. Mapping studies and internal mutations were carried out to locate PPARγ-responsive promoter regions. Key results: Rosiglitazone caused a PPARγ-dependent inhibition of insulin gene transcription in a β-cell line. This inhibition was concentration-dependent and had an EC50 similar to that for the activation of a reporter gene under the control of multimerized PPAR binding sites. Also in normal primary pancreatic islets of transgenic mice, known to express high levels of PPARγ, rosiglitazone inhibited glucose-stimulated insulin gene transcription. Transactivation and mapping experiments suggest that, in contrast to the rat glucagon gene, the inhibition of the human insulin gene promoter by PPARγ/rosiglitazone does not depend on promoter-bound Pax6 and is attributable to the proximal insulin gene promoter region around the transcription start site from −56 to +18. Conclusions and implications: The human insulin gene represents a novel PPARγ target that may contribute to the action of thiazolidinediones in type 2 diabetes mellitus. PMID:19338578

  4. DNA-recognition by a σ54 transcriptional activator from Aquifex aeolicus

    OpenAIRE

    Vidangos, Natasha K.; Heideker, Johanna; Lyubimov, Artem; Lamers, Meindert; Huo, Yixin; Pelton, Jeffrey G.; Ton, Jimmy; Gralla, Jay; Berger, James; Wemmer, David E.

    2014-01-01

    Transcription initiation by bacterial σ54-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain. The structurally characterized DNA-binding domains from activators all belong to the Factor for Inversion Stimulation (Fis) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DNA-binding domain of NtrC4 (4DBD) f...

  5. Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity

    Energy Technology Data Exchange (ETDEWEB)

    Kasim, Vivi, E-mail: vivikasim78@gmail.com [The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Huang, Can; Zhang, Jing; Jia, Huizhen; Wang, Yunxia [The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Yang, Li [The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044 (China); Miyagishi, Makoto [Molecular Composite Medicine Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8566 (Japan); Wu, Shourong, E-mail: shourongwu@hotmail.com [The Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044 (China); The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044 (China)

    2014-07-04

    Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. We further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73.

  6. Synergistic cooperation of MDM2 and E2F1 contributes to TAp73 transcriptional activity

    International Nuclear Information System (INIS)

    Highlights: • MDM2 is a novel positive regulator of TAp73 transcriptional activity. • MDM2 colocalizes together and physically interacts with E2F1. • Synergistic cooperation of MDM2 and E2F1 is crucial for TAp73 transcription. • MDM2 regulates TAp73 transcriptional activity in a p53-independent manner. - Abstract: TAp73, a structural homologue of p53, plays an important role in tumorigenesis. E2F1 had been reported as a transcriptional regulator of TAp73, however, the detailed mechanism remains to be elucidated. Here we reported that MDM2-silencing reduced the activities of the TAp73 promoters and the endogenous TAp73 expression level significantly; while MDM2 overexpression upregulated them. We further revealed that the regulation of TAp73 transcriptional activity occurs as a synergistic effect of MDM2 and E2F1, most probably through their physical interaction in the nuclei. Furthermore, we also suggested that MDM2 might be involved in DNA damage-induced TAp73 transcriptional activity. Finally, we elucidated that MDM2-silencing reduced the proliferation rate of colon carcinoma cells regardless of the p53 status. Our data show a synergistic effect of MDM2 and E2F1 on TAp73 transcriptional activity, suggesting a novel regulation pathway of TAp73

  7. A new formula to calculate activity of superoxide dismutase in indirect assays.

    Science.gov (United States)

    Zhang, Chen; Bruins, Marieke E; Yang, Zhi-Qiang; Liu, Shu-Tao; Rao, Ping-Fan

    2016-06-15

    To calculate superoxide dismutase (SOD) activity rapidly and accurately by indirect SOD assays, a formula based on the ratio of the catalytic speed of SOD to the reaction speed of the indicator with superoxide anion was deduced. The accuracy of this formula was compared with the conventional formula based on inhibition in five indirect SOD assays. The new formula was validated in nearly the entire SOD activity range, whereas the conventional formula was validated only during inhibition of 40-60%. This formula might also be used for the assays of other enzymes. PMID:27033009

  8. A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols.

    Science.gov (United States)

    Kim, Sung-Bae; Naganawa, Ryuichi; Murata, Shingo; Nakayama, Takayoshi; Miller, Simon; Senda, Toshiya

    2016-01-01

    A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants. PMID:27424913

  9. Direct interaction of natural and synthetic catechins with signal transducer activator of transcription 1 affects both its phosphorylation and activity

    KAUST Repository

    Menegazzi, Marta

    2013-12-10

    Our previous studies showed that (-)-epigallocatechin-3-gallate (EGCG) inhibits signal transducer activator of transcription 1 (STAT1) activation. Since EGCG may be a promising lead compound for new anti-STAT1 drug design, 15 synthetic catechins, characterized by the (-)-gallocatechin-3-gallate stereochemistry, were studied in the human mammary MDA-MB-231 cell line to identify the minimal structural features that preserve the anti-STAT1 activity. We demonstrate that the presence of three hydroxyl groups of B ring and one hydroxyl group in D ring is essential to preserve their inhibitory action. Moreover, a possible molecular target of these compounds in the STAT1 pathway was investigated. Our results demonstrate a direct interaction between STAT1 protein and catechins displaying anti-STAT1 activity. In particular, surface plasmon resonance (SPR) analysis and molecular modeling indicate the presence of two putative binding sites (a and b) with different affinity. Based on docking data, site-directed mutagenesis was performed, and interaction of the most active catechins with STAT1 was studied with SPR to test whether Gln518 on site a and His568 on site b could be important for the catechin-STAT1 interaction. Data indicate that site b has higher affinity for catechins than site a as the highest affinity constant disappears in the H568ASTAT1 mutant. Furthermore, Janus kinase 2 (JAK2) kinase assay data suggest that the contemporary presence in vitro of STAT1 and catechins inhibits JAK2-elicited STAT1 phosphorylation. The very tight catechin-STAT1 interaction prevents STAT1 phosphorylation and represents a novel, specific and efficient molecular mechanism for the inhibition of STAT1 activation. © Copyright 2014 Federation of European Biochemical Societies. All rights reserved.

  10. Comparative study of human and mouse pregnane X receptor agonistic activity in 200 pesticides using in vitro reporter gene assays

    International Nuclear Information System (INIS)

    The nuclear receptor, pregnane X receptor (PXR), is a ligand-dependent transcription factor that regulates genes involved in xenobiotic metabolism. Recent studies have shown that PXR activation may affect energy metabolism as well as the endocrine and immune systems. In this study, we characterized and compared the agonistic activities of a variety of pesticides against human PXR (hPXR) and mouse PXR (mPXR). We tested the hPXR and mPXR agonistic activity of 200 pesticides (29 organochlorines, 11 diphenyl ethers, 56 organophosphorus pesticides, 12 pyrethroids, 22 carbamates, 12 acid amides, 7 triazines, 7 ureas, and 44 others) by reporter gene assays using COS-7 simian kidney cells. Of the 200 pesticides tested, 106 and 93 activated hPXR and mPXR, respectively, and a total of 111 had hPXR and/or mPXR agonistic activity with greater or lesser inter-species differences. Although all of the pyrethroids and most of the organochlorines and acid amides acted as PXR agonists, a wide range of pesticides with diverse structures also showed hPXR and/or mPXR agonistic activity. Among the 200 pesticides, pyributicarb, pretilachlor, piperophos and butamifos for hPXR, and phosalone, prochloraz, pendimethalin, and butamifos for mPXR, acted as particularly potent activators at low concentrations in the order of 10-8-10-7 M. In addition, we found that several organophosphorus oxon- and pyributicarb oxon-metabolites decreased PXR activation potency compared to their parent compounds. These results suggest that a large number of structurally diverse pesticides and their metabolites possess PXR-mediated transcriptional activity, and their ability to do so varies in a species-dependent manner in humans and mice.

  11. Affinity-based enrichment strategies to assay methyl-CpG binding activity and DNA methylation in early Xenopus embryos

    Directory of Open Access Journals (Sweden)

    Bogdanović Ozren

    2011-08-01

    Full Text Available Abstract Background DNA methylation is a widespread epigenetic modification in vertebrate genomes. Genomic sites of DNA methylation can be bound by methyl-CpG-binding domain proteins (MBDs and specific zinc finger proteins, which can recruit co-repressor complexes to silence transcription on targeted loci. The binding to methylated DNA may be regulated by post-translational MBD modifications. Findings A methylated DNA affinity precipitation method was implemented to assay binding of proteins to methylated DNA. Endogenous MeCP2 and MBD3 were precipitated from Xenopus oocyte extracts and conditions for methylation-specific binding were optimized. For a reverse experiment, DNA methylation in early Xenopus embryos was assessed by MBD affinity capture. Conclusions A methylated DNA affinity resin can be applied to probe for MBD activity in extracts. This assay has a broad application potential as it can be coupled to downstream procedures such as western blotting, fluorimetric HDAC assays and quantitative mass spectrometry. Methylated DNA affinity capture by methyl-CpG binding proteins produces fractions highly enriched for methylated DNA, suitable for coupling to next generation sequencing technologies. The two enrichment strategies allow probing of methyl-CpG protein interactions in early vertebrate oocytes and embryos.

  12. Thyroid hormone receptor inhibits hepatoma cell migration through transcriptional activation of Dickkopf 4

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Hsiang-Cheng; Liao, Chen-Hsin [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Huang, Ya-Hui [Medical Research Central, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Wu, Sheng-Ming; Tsai, Chung-Ying; Liao, Chia-Jung; Tseng, Yi-Hsin; Lin, Yang-Hsiang; Chen, Cheng-Yi; Chung, I-Hsiao; Wu, Tzu-I [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China); Chen, Wei-Jan [First Cardiovascular Division, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan, ROC (China); Lin, Kwang-Huei, E-mail: khlin@mail.cgu.edu.tw [Department of Biochemistry, School of Medicine, Chang-Gung University, Taoyuan 333, Taiwan, ROC (China)

    2013-09-13

    Highlights: •T{sub 3} affects DKK4 mRNA and protein expression in HepG2-TR cells. •Regulation of DKK4 by T{sub 3} is at transcriptional level. •DKK4 overexpression suppresses hepatoma cell metastasis. -- Abstract: Triiodothyronine (T{sub 3}) is a potent form of thyroid hormone mediates several physiological processes including cellular growth, development, and differentiation via binding to the nuclear thyroid hormone receptor (TR). Recent studies have demonstrated critical roles of T{sub 3}/TR in tumor progression. Moreover, long-term hypothyroidism appears to be associated with the incidence of human hepatocellular carcinoma (HCC), independent of other major HCC risk factors. Dickkopf (DKK) 4, a secreted protein that antagonizes the canonical Wnt signaling pathway, is induced by T{sub 3} at both mRNA and protein levels in HCC cell lines. However, the mechanism underlying T{sub 3}-mediated regulation of DKK4 remains unknown. In the present study, the 5′ promoter region of DKK4 was serially deleted, and the reporter assay performed to localize the T{sub 3} response element (TRE). Consequently, we identified an atypical direct repeat TRE between nucleotides −1645 and −1629 conferring T{sub 3} responsiveness to the DKK4 gene. This region was further validated using chromatin immunoprecipitation (ChIP) and electrophoretic mobility shift assay (EMSA). Stable DKK4 overexpression in SK-Hep-1 cells suppressed cell invasion and metastatic potential, both in vivo andin vitro, via reduction of matrix metalloproteinase-2 (MMP-2) expression. Our findings collectively suggest that DKK4 upregulated by T{sub 3}/TR antagonizes the Wnt signal pathway to suppress tumor cell progression, thus providing new insights into the molecular mechanism underlying thyroid hormone activity in HCC.

  13. Functional analysis of differences in transcriptional activity conferred by genetic variants in the 5' flanking region of the IL12RB2 gene.

    Science.gov (United States)

    Kato-Kogoe, Nahoko; Ohyama, Hideki; Okano, Soichiro; Yamanegi, Koji; Yamada, Naoko; Hata, Masaki; Nishiura, Hiroshi; Abiko, Yoshimitsu; Terada, Nobuyuki; Nakasho, Keiji

    2016-01-01

    Interleukin 12 receptor β chain (IL12RB2) is a crucial regulatory factor involved in cell-mediated immune responses, and genetic variants of the gene encoding IL12RB2 are associated with susceptibility to various immune-related diseases. We previously demonstrated that haplotypes with single nucleotide polymorphisms (SNPs) in the 5' flanking region of IL12RB2, including -1035A>G (rs3762315) and -1023A>G (rs3762316), affect the expression of IL12RB2, thereby altering susceptibility to leprosy and periodontal diseases. In the present study, we identified transcription factors associated with the haplotype-specific transcriptional activity of IL12RB2 in T cells and NK cells. The -1023G polymorphism was found to create a consensus binding site for the transcription factor activating protein (AP)-1, and enzyme-linked immunosorbent assay (ELISA)-based binding assays showed that these SNPs enhanced AP-1 binding to this region. In reporter assays, suppression of JunB expression using siRNA eliminated differences in the -1035G/-1023G and -1035A/-1023A regions containing IL12RB2 promoter activity in Jurkat T cells and NK3.3 cells. These results suggested that the -1035/-1023 polymorphisms created differential binding affinities for JunB that could lead to differential IL12RB2 expression. Moreover, the -1035G and -1035A alleles formed binding sites for GATA-3 and myocyte enhancer factor-2 (MEF-2), respectively. Our data indicated that in addition to JunB, the SNP at -1035/-1023 influenced GATA-3 and MEF-2 binding affinity, potentially altering IL12RB2 transcriptional activity. These findings confirm the effects of rs3762315 and rs3762316 on IL12RB2 transcription. These genetic variants may alter cellular activation of T cells and NK cells and modify cell-mediated immune responses. PMID:26552659

  14. TBP Domain Symmetry in Basal and Activated Archaeal Transcription

    OpenAIRE

    Ouhammouch, Mohamed; Hausner, Winfried; Geiduschek, E Peter

    2008-01-01

    The TATA-box binding protein (TBP) is the platform for assembly of archaeal and eukaryotic transcription preinitiation complexes. Ancestral gene duplication and fusion events have produced the saddle-shaped TBP molecule, with its two direct-repeat subdomains and pseudo-two-fold symmetry. Collectively, eukaryotic TBPs have diverged from their present-day archaeal counterparts, which remain highly symmetrical. The similarity of the N- and C-halves of archaeal TBPs is especially pronounced in th...

  15. Variable Glutamine-Rich Repeats Modulate Transcription Factor Activity

    OpenAIRE

    Gemayel, Rita; Chavali, Sreenivas; Pougach, Ksenia; Legendre, Matthieu; Zhu, Bo; Boeynaems, Steven; van der Zande, Elisa; Gevaert, Kris; Rousseau, Frederic; Schymkowitz, Joost; Babu, M Madan; Verstrepen, Kevin J.

    2015-01-01

    Summary Excessive expansions of glutamine (Q)-rich repeats in various human proteins are known to result in severe neurodegenerative disorders such as Huntington’s disease and several ataxias. However, the physiological role of these repeats and the consequences of more moderate repeat variation remain unknown. Here, we demonstrate that Q-rich domains are highly enriched in eukaryotic transcription factors where they act as functional modulators. Incremental changes in the number of repeats i...

  16. Thioredoxin interacting protein inhibits hypoxia-inducible factor transcriptional activity

    OpenAIRE

    Farrell, Michael R; Rogers, Lynette K.; Liu, Yusen; Welty, Stephen E.; Tipple, Trent E.

    2010-01-01

    Vascular endothelial growth factor (VEGF) is required for proper lung development and is transcriptionally regulated in alveolar epithelial cells by hypoxia inducible factor (HIF). Previous findings in a newborn mouse model of bronchopulmonary dysplasia (BPD) suggest that thioredoxin interacting protein (Txnip) is a novel regulator of VEGF expression. The present studies were designed to test the hypothesis that Txnip negatively regulates VEGF through effects on HIF-mediated gene expression. ...

  17. Proton energy determination using activated yttrium foils and ionization chambers for activity assay

    Energy Technology Data Exchange (ETDEWEB)

    Avila-Rodriguez, M.A. [Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku (Finland); Unidad PET/CT-Ciclotron, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Edificio de Investigacion P.B, Cd. Universitaria, Circ. Interior, C.P. 04510 Mexico D.F. (Mexico)], E-mail: avilarod@uwalumni.com; Rajander, J.; Lill, J.-O. [Turku PET Centre, Abo Akademi University, Porthansg 3, 20500 Turku (Finland); Gagnon, K. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2 (Canada); Schlesinger, J. [Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku (Finland); Wilson, J.S.; McQuarrie, S.A. [Edmonton PET Centre, Cross Cancer Institute, 11560 University Ave., Edmonton, AB, T6G 1Z2 (Canada); Solin, O. [Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, 20520 Turku (Finland)

    2009-05-15

    Excitation functions of the {sup 89}Y(p, xn) nuclear reactions were measured up to 18 MeV by the conventional activation method using the stacked-foil technique, and the irradiation of single foils. Activity assays of the irradiated foils were performed via ionization chamber and gamma spectroscopy methods. Activity ratios of the activation products were measured in two different facilities and evaluated for use as a practical and simple method for proton energy determinations. Cross section values measured in this work were compared with published data and with theoretical values as determined by the nuclear reaction model code EMPIRE II. In general, there was a good agreement between the experimental and theoretical values of the cross section data. Activity ratios of the isomeric and ground state of {sup 89}Zr measured via ionization chamber were found to be useful for proton energy determinations in the energy range from 7 to 15 MeV. Proton energies above 13 MeV were accurately determined using the {sup 89g}Zr/{sup 88}Zr and {sup 89g}Zr/{sup 88}Y activity ratios measured via gamma spectroscopy.

  18. ZIP4 Regulates Pancreatic Cancer Cell Growth by Activating IL-6/STAT3 Pathway via Zinc Finger Transcription Factor CREB

    Science.gov (United States)

    Zhang, Yuqing; Bharadwaj, Uddalak; Logsdon, Craig D.; Chen, Changyi; Yao, Qizhi; Li, Min

    2010-01-01

    Purpose Recent studies indicate a strong correlation of zinc transporter ZIP4 and pancreatic cancer progression; however, the underlying mechanisms are unclear. We have recently found that ZIP4 is overexpressed in pancreatic cancer. In this study, we investigated the signaling pathway through which ZIP4 regulates pancreatic cancer growth. Experimental Design The expression of cyclin D1, IL-6, and STAT3 in pancreatic cancer xenografts and cells were examined by real time PCR, Bio-Plex cytokine assay, and Western blot, respectively. The activity of CREB is examined by a promoter activity assay. Results Cyclin D1 was significantly increased in the ZIP4 overexpressing MIA PaCa-2 cells (MIA-ZIP4)-injected orthotopic xenografts and was downregulated in the ZIP4 silenced ASPC-1 (ASPC-shZIP4) group. The phosphorylation of signal transducer and activator of transcription 3 (STAT3), an upstream activator of cyclin D1, was increased in MIA-ZIP4 cells, and decreased in ASPC-shZIP4 cells. IL-6, a known upstream activator for STAT3, was also found to be significantly increased in the MIA-ZIP4 cells and xenografts, and decreased in the ASPC-shZIP4 group. Overexpression of ZIP4 led to a 75% increase of IL-6 promoter activity, and caused increased phosphorylation of cAMP response element binding protein (CREB). Conclusions Our study suggest that ZIP4 overexpression causes increased IL-6 transcription via CREB, which in turn activates STAT3, and leads to increased cyclin D1 expression, resulting in increased cell proliferation and tumor progression in pancreatic cancer. These results elucidated a novel pathway in ZIP4-mediated pancreatic cancer growth, and suggest new therapeutic targets including ZIP4, IL-6, and STAT3 in pancreatic cancer treatment. PMID:20160059

  19. Analysis of Gal4-directed transcription activation using Tra1 mutants selectively defective for interaction with Gal4

    OpenAIRE

    Lin, Ling; Chamberlain, Lynn; Lihua J Zhu; Green, Michael R.

    2012-01-01

    Promoter-specific transcriptional activators (activators) stimulate transcription through direct interactions with one or more components of the transcription machinery, termed the “target.” The identification of direct in vivo targets of activators has been a major challenge. Previous studies have provided evidence that the Tra1 subunit of the yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) complex is the target of the yeast activator Gal4. However, several other general transcription factors, i...

  20. Are Fish and Standardized FETAX Assays Protective Enough for Amphibians? A Case Study on Xenopus laevis Larvae Assay with Biologically Active Substances Present in Livestock Wastes

    OpenAIRE

    Federica Martini; José V. Tarazona; M. Victoria Pablos

    2012-01-01

    Biologically active substances could reach the aquatic compartment when livestock wastes are considered for recycling. Recently, the standardized FETAX assay has been questioned, and some researchers have considered that the risk assessment performed on fish could not be protective enough to cover amphibians. In the present study a Xenopus laevis acute assay was developed in order to compare the sensitivity of larvae relative to fish or FETAX assays; veterinary medicines (ivermectin, oxytetra...

  1. Polarographic assay based on hydrogen peroxide scavenging in determination of antioxidant activity of strong alcohol beverages.

    Science.gov (United States)

    Gorjanović, Stanislava Z; Novaković, Miroslav M; Vukosavljević, Predrag V; Pastor, Ferenc T; Tesević, Vele V; Suznjević, Desanka Z

    2010-07-28

    Total antioxidant (AO) activity of strong alcohol beverages such as wine and plum brandies, whiskeys, herbal and sweet fruit liqueurs have been assessed using a polarographic assay based on hydrogen peroxide scavenging (HPS). Rank of order of total AO activity, expressed as percentage of decrease of anodic oxidation current of hydrogen peroxide, was found analogous with total phenolic content estimated by Folin-Ciocalteau (FC) assay and radical scavenging capacity against the stable free radical 1,1-diphenyl-2-picrylhydrazyl (DPPH). Application of the assay for surveying of a quarter century long maturation of plum brandy in oak barrel was demonstrated. In addition, influence of different storage conditions on preservation of AO activity of some herbal liqueurs was surveyed. Wide area of application of this simple, fast, low cost and reliable assay in analysis and quality monitoring of various strong alcohol beverages was confirmed. PMID:20604507

  2. PEA3 activates CXCR4 transcription in MDA-MB-231 and MCF7 breast cancer cells

    Institute of Scientific and Technical Information of China (English)

    Shengmei Gu; Li Chen; Qi Hong; Tingting Yan; Zhigang Zhuang; Qiaoqiao wang; Wei Jin; Hua Zhu; Jiong Wu

    2011-01-01

    CXC chemokine receptor 4 (CXCR4) is a cell surface receptor that has been shown to mediate the metastasis of many solid tumors including lung,breast,kidney,and prostate tumors.In this study,we found that overexpression of ets variant gene 4 (PEA3) could elevate CXCR4 mRNA level and CXCR4 promoter activity in human MDA-MB-231 and MCF-7 breast cancer cells.PEA3 promoted CXCR4 expression and breast cancer metastasis.Chromatin immunoprecipitation assay demonstrated that PEA3 could bind to the CXCR4 promoter in the cells transfected with PEA3 expression vector.PEA3 siRNA attenuated CXCR4 promoter activity and the binding of PEA3 to the CXCR4 promoter in MDA-MB-231 and MCF-7 cells.These results indicated that PEA3 could activate CXCR4 promoter transcription and promote breast cancer metastasis.

  3. Sertad1 encodes a novel transcriptional co-activator of SMAD1 in mouse embryonic hearts

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Yin [Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Zhao, Shaomin [Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294 (United States); School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069 (China); Song, Langying [Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294 (United States); Wang, Manyuan [School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069 (China); Jiao, Kai, E-mail: kjiao@uab.edu [Department of Genetics, The University of Alabama at Birmingham, Birmingham, AL 35294 (United States)

    2013-11-29

    Highlights: •SERTAD1 interacts with SMAD1. •Sertad1 is expressed in mouse embryonic hearts. •SERTAD1 is localized in both cytoplasm and nucleus of cardiomyocytes. •SERTAD1 enhances expression of BMP target cardiogenic genes as a SMAD1 co-activator. -- Abstract: Despite considerable advances in surgical repairing procedures, congenital heart diseases (CHDs) remain the leading noninfectious cause of infant morbidity and mortality. Understanding the molecular/genetic mechanisms underlying normal cardiogenesis will provide essential information for the development of novel diagnostic and therapeutic strategies against CHDs. BMP signaling plays complex roles in multiple cardiogenic processes in mammals. SMAD1 is a canonical nuclear mediator of BMP signaling, the activity of which is critically regulated through its interaction partners. We screened a mouse embryonic heart yeast two-hybrid library using Smad1 as bait and identified SERTAD1 as a novel interaction partner of SMAD1. SERTAD1 contains multiple potential functional domains, including two partially overlapping transactivation domains at the C terminus. The SERTAD1-SMAD1 interaction in vitro and in mammalian cells was further confirmed through biochemical assays. The expression of Sertad1 in developing hearts was demonstrated using RT-PCR, western blotting and in situ hybridization analyses. We also showed that SERTAD1 was localized in both the cytoplasm and nucleus of immortalized cardiomyocytes and primary embryonic cardiomyocyte cultures. The overexpression of SERTAD1 in cardiomyocytes not only enhanced the activity of two BMP reporters in a dose-dependent manner but also increased the expression of several known BMP/SMAD regulatory targets. Therefore, these data suggest that SERTAD1 acts as a SMAD1 transcriptional co-activator to promote the expression of BMP target genes during mouse cardiogenesis.

  4. Sertad1 encodes a novel transcriptional co-activator of SMAD1 in mouse embryonic hearts

    International Nuclear Information System (INIS)

    Highlights: •SERTAD1 interacts with SMAD1. •Sertad1 is expressed in mouse embryonic hearts. •SERTAD1 is localized in both cytoplasm and nucleus of cardiomyocytes. •SERTAD1 enhances expression of BMP target cardiogenic genes as a SMAD1 co-activator. -- Abstract: Despite considerable advances in surgical repairing procedures, congenital heart diseases (CHDs) remain the leading noninfectious cause of infant morbidity and mortality. Understanding the molecular/genetic mechanisms underlying normal cardiogenesis will provide essential information for the development of novel diagnostic and therapeutic strategies against CHDs. BMP signaling plays complex roles in multiple cardiogenic processes in mammals. SMAD1 is a canonical nuclear mediator of BMP signaling, the activity of which is critically regulated through its interaction partners. We screened a mouse embryonic heart yeast two-hybrid library using Smad1 as bait and identified SERTAD1 as a novel interaction partner of SMAD1. SERTAD1 contains multiple potential functional domains, including two partially overlapping transactivation domains at the C terminus. The SERTAD1-SMAD1 interaction in vitro and in mammalian cells was further confirmed through biochemical assays. The expression of Sertad1 in developing hearts was demonstrated using RT-PCR, western blotting and in situ hybridization analyses. We also showed that SERTAD1 was localized in both the cytoplasm and nucleus of immortalized cardiomyocytes and primary embryonic cardiomyocyte cultures. The overexpression of SERTAD1 in cardiomyocytes not only enhanced the activity of two BMP reporters in a dose-dependent manner but also increased the expression of several known BMP/SMAD regulatory targets. Therefore, these data suggest that SERTAD1 acts as a SMAD1 transcriptional co-activator to promote the expression of BMP target genes during mouse cardiogenesis

  5. Heavy Water Reduces GFP Expression in Prokaryotic Cell-Free Assays at the Translation Level While Stimulating Its Transcription

    OpenAIRE

    Hohlefelder, Luisa S.; Tobias Stögbauer; Madeleine Opitz; Bayerl, Thomas M.; Joachim O. Rädler

    2013-01-01

    The in vitro proliferation of prokaryotic and eukaryotic cells is remarkably hampered in the presence of heavy water (D2O). Impairment of gene expression at the transcription or translation level can be the base for this effect. However, insights into the underlying mechanisms are lacking. Here, we employ a cell-free expression system for the quantitative analysis of the effect of increasing percentages of D2O on the kinetics of in-vitro GFP expression. Experiments are designed to discriminat...

  6. Identification of transglutaminase 2 kinase substrates using a novel on-chip activity assay.

    Science.gov (United States)

    Jung, Se-Hui; Kong, Deok-Hoon; Jeon, Hye-Yoon; Ji, Su-Hyun; Han, Eun-Taek; Park, Won Sun; Hong, Seok-Ho; Kim, Min-Soo; Kim, Young-Myeong; Ha, Kwon-Soo

    2016-08-15

    Transglutaminase 2 (TG2) is an enzyme that plays a critical role in a wide variety of cellular processes through its multifunctional activities. TG2 kinase has emerged as an important regulator of apoptosis, as well as of chromatin structure and function. However, systematic investigation of TG2 kinase substrates is limited due to a lack of a suitable TG2 kinase activity assays. Thus, we developed a novel on-chip TG2 kinase activity assay for quantitative determination of TG2 kinase activity and for screening TG2 kinase substrate proteins in a high-throughput manner. Quantitative TG2 kinase activity was determined by selective detection of substrate protein phosphorylation on the surface of well-type amine arrays. The limit of detection (LOD) of this assay was 4.34μg/ml. We successfully applied this new activity assay to the kinetic analysis of 27 TG2-related proteins for TG2 kinase activity in a high-throughput manner and determined Michaelis-Menten constants (Km) of these proteins. We used the Km values and cellular locations of the TG2-related proteins to construct a substrate affinity map for TG2 kinase. Therefore, this on-chip TG2 kinase activity assay has a strong potential for the systematic investigation of substrate proteins and will be helpful for studying new physiological functions. PMID:27040940

  7. EBV tegument protein BNRF1 disrupts DAXX-ATRX to activate viral early gene transcription.

    Directory of Open Access Journals (Sweden)

    Kevin Tsai

    2011-11-01

    Full Text Available Productive infection by herpesviruses involve the disabling of host-cell intrinsic defenses by viral encoded tegument proteins. Epstein-Barr Virus (EBV typically establishes a non-productive, latent infection and it remains unclear how it confronts the host-cell intrinsic defenses that restrict viral gene expression. Here, we show that the EBV major tegument protein BNRF1 targets host-cell intrinsic defense proteins and promotes viral early gene activation. Specifically, we demonstrate that BNRF1 interacts with the host nuclear protein Daxx at PML nuclear bodies (PML-NBs and disrupts the formation of the Daxx-ATRX chromatin remodeling complex. We mapped the Daxx interaction domain on BNRF1, and show that this domain is important for supporting EBV primary infection. Through reverse transcription PCR and infection assays, we show that BNRF1 supports viral gene expression upon early infection, and that this function is dependent on the Daxx-interaction domain. Lastly, we show that knockdown of Daxx and ATRX induces reactivation of EBV from latently infected lymphoblastoid cell lines (LCLs, suggesting that Daxx and ATRX play a role in the regulation of viral chromatin. Taken together, our data demonstrate an important role of BNRF1 in supporting EBV early infection by interacting with Daxx and ATRX; and suggest that tegument disruption of PML-NB-associated antiviral resistances is a universal requirement for herpesvirus infection in the nucleus.

  8. Hepatitis C virus nonstructural protein-5A activates sterol regulatory element-binding protein-1c through transcription factor Sp1

    International Nuclear Information System (INIS)

    Research highlights: → A chimeric subgenomic HCV replicon expresses HCV-3a NS5A in an HCV-1b backbone. → HCV-3a NS5A increases mature SREBP-1c protein level. → HCV-3a NS5A activates SREBP-1c transcription. → Domain II of HCV-3a NS5A is more effective in SREBP-1c promoter activation. → Transcription factor Sp1 is required for SREBP-1c activation by HCV-3a NS5A. -- Abstract: Steatosis is an important clinical manifestation of hepatitis C virus (HCV) infection. The molecular mechanisms of HCV-associated steatosis are not well understood. Sterol regulatory element-binding protein-1c (SREBP-1c) is a key transcription factor which activates the transcription of lipogenic genes. Here we showed that the nuclear, mature SREBP-1c level increases in the nucleus of replicon cells expressing HCV-3a nonstructural protein-5A (NS5A). We further showed that HCV-3a NS5A up-regulates SREBP-1c transcription. Additional analysis showed that transcriptional factor Sp1 is involved in SREBP-1c activation by HCV-3a NS5A because inhibition of Sp1 activity by mithramycin A or a dominant-negative Sp1 construct abrogated SREBP-1c promoter activation by HCV-3a NS5A. In addition, chromatin immunoprecipitation (ChIP) assay demonstrated enhanced binding of Sp1 on the SREBP-1c promoter in HCV-3a NS5A replicon cells. These results showed that HCV-3a NS5A activates SREBP-1c transcription through Sp1. Taken together, our results suggest that HCV-3a NS5A is a contributing factor for steatosis caused by HCV-3a infection.

  9. Chemical study of Sinningia allagophylla guided by antiproliferative activity assays

    International Nuclear Information System (INIS)

    Activity guided fractionation of Sinningia allagophylla (Mart.) Wiehler ethanolic extract yielded a new benzochromene 8-methoxylapachenol, besides seven known compounds: lapachenol, sitosteryl oleate, sitosteryl linoleate, stigmasteryl oleate, stigmasteryl linoleate, dunniol and tectoquinone. Extract, fractions, and compounds lapachenol, 8-methoxylapachenol, and dunniol were tested in vitro against human cancer cell lines U251 (glioma, CNS), MCF-7 (breast), NCI-ADR/RES (drug-resistant ovarian), 786-0 (kidney), NCI-H460 (lung, no small cells), PC-3 (prostate), OVCAR-3 (ovarian), HT-29 (colon), K562 (leukemia) and against VERO, a normal cell line. The most active compound was dunniol, which inhibited the growth of U251, MCF-7, NCI-ADR/RES, OVCAR-3 and K562 cell lines. (author)

  10. A radiochemical assay for glycolytic activity in dental plaque

    International Nuclear Information System (INIS)

    A radiochemical technique for the rapid and precise measurement of glucose utilization of fresh samples of dental plaque is described. The method appears to be a sensitive indicator of the actual glycolytic ability of an organized microbial plaque including activity in the Embden-Meyerhof pathway as well as heterolactic fermentation and the Entner-Doudoroff pathway. It was found that the glycolytic rate of plaque associated with periodontal pockets was significantly higher than that for plaque not so associated. (author)

  11. ELK3 Suppresses Angiogenesis by Inhibiting the Transcriptional Activity of ETS-1 on MT1-MMP

    OpenAIRE

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HU...

  12. DNA-PK contributes to the phosphorylation of AIRE: Importance in transcriptional activity

    OpenAIRE

    Liiv, Ingrid; Rebane, Ana; Org, Tõnis; Saare, Mario; Maslovskaja, Julia; Kisand, Kai; Juronen, Erkki; Valmu, Leena; Bottomley, Matthew James; Kalkkinen, Nisse; Peterson, Pärt

    2008-01-01

    The autoimmune regulator (AIRE) protein is a key mediator of the central tolerance for tissue specific antigens and is involved in transcriptional control of many antigens in thymic medullary epithelial cells (mTEC). Mutations in the AIRE gene cause a rare disease named autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Here we report using GST pull-down assay, mass-spectrometry and co-immunoprecipitation that a heterotrimeric complex of DNA-Dependent Protein Kinase (DNA...

  13. Homo- and heterodimers of the retinoid X receptor (RXR) activated transcription in yeast.

    OpenAIRE

    Heery, D M; Pierrat, B.; Gronemeyer, H; P. Chambon; Losson, R

    1994-01-01

    The polymorphic nature of sequences which act as retinoic acid response elements (RAREs and RXREs) in transactivation assays in mammalian cells, suggests that elements consisting of a direct repetition of a half site motif, separated by 1 to 5 base pairs (DR1 to DR5), are targets for retinoic acid (RA) signalling. In a previous report we showed that in yeast cells, heterodimers of the retinoic acid receptors RAR alpha and RXR alpha were required for efficient transcription of a reporter gene ...

  14. Farnesoid X Receptor Inhibits the Transcriptional Activity of Carbohydrate Response Element Binding Protein in Human Hepatocytes

    OpenAIRE

    Caron, Sandrine; Huaman Samanez, Carolina; Dehondt, Hélène; Ploton, Maheul; Briand, Olivier; Lien, Fleur; Dorchies, Emilie; Dumont, Julie; Postic, Catherine; Cariou, Bertrand; Lefebvre, Philippe; Staels, Bart

    2013-01-01

    The glucose-activated transcription factor carbohydrate response element binding protein (ChREBP) induces the expression of hepatic glycolytic and lipogenic genes. The farnesoid X receptor (FXR) is a nuclear bile acid receptor controlling bile acid, lipid, and glucose homeostasis. FXR negatively regulates hepatic glycolysis and lipogenesis in mouse liver. The aim of this study was to determine whether FXR regulates the transcriptional activity of ChREBP in human hepatocytes and to unravel the...

  15. Nuclear factor RIP140 modulates transcriptional activation by the estrogen receptor.

    OpenAIRE

    Cavaillès, V; Dauvois, S; L'Horset, F; Lopez, G; Hoare, S.; Kushner, P J; Parker, M G

    1995-01-01

    A conserved region in the hormone-dependent activation domain AF2 of nuclear receptors plays an important role in transcriptional activation. We have characterized a novel nuclear protein, RIP140, that specifically interacts in vitro with this domain of the estrogen receptor. This interaction was increased by estrogen, but not by anti-estrogens and the in vitro binding capacity of mutant receptors correlates with their ability to stimulate transcription. RIP140 also interacts with estrogen re...

  16. ELISPOT Assay for Monitoring Cytotoxic T Lymphocytes (CTL Activity in Cancer Vaccine Clinical Trials

    Directory of Open Access Journals (Sweden)

    Thomas J. Sayers

    2012-05-01

    Full Text Available The profiling and monitoring of immune responses are key elements in the evaluation of the efficacy and development of new biotherapies, and a number of assays have been introduced for analyzing various immune parameters before, during, and after immunotherapy. The choice of immune assays for a given clinical trial depends on the known or suggested immunomodulating mechanisms associated with the tested therapeutic modality. Cell-mediated cytotoxicity represents a key mechanism in the immune response to various pathogens and tumors. Therefore, the selection of monitoring methods for the appropriate assessment of cell-mediated cytotoxicity is thought to be crucial. Assays that can detect both cytotoxic T lymphocytes (CTL frequency and function, such as the IFN-γ enzyme-linked immunospot assay (ELISPOT have gained increasing popularity for monitoring clinical trials and in basic research. Results from various clinical trials, including peptide and whole tumor cell vaccination and cytokine treatment, have shown the suitability of the IFN-γ ELISPOT assay for monitoring T cell responses. However, the Granzyme B ELISPOT assay and Perforin ELISPOT assay may represent a more direct analysis of cell-mediated cytotoxicity as compared to the IFN-γ ELISPOT, since Granzyme B and perforin are the key mediators of target cell death via the granule-mediated pathway. In this review we analyze our own data and the data reported by others with regard to the application of various modifications of ELISPOT assays for monitoring CTL activity in clinical vaccine trials.

  17. The phzA2-G2 transcript exhibits direct RsmA-mediated activation in Pseudomonas aeruginosa M18.

    Directory of Open Access Journals (Sweden)

    Bin Ren

    Full Text Available In bacteria, RNA-binding proteins of the RsmA/CsrA family act as post-transcriptional regulators that modulate translation initiation at target transcripts. The Pseudomonas aeruginosa genome contains two phenazine biosynthetic (phz gene clusters, phzA1-G1 (phz1 and phzA2-G2 (phz2, each of which is responsible for phenazine-1-carboxylic acid (PCA biosynthesis. In the present study, we show that RsmA exhibits differential gene regulation on two phz clusters in P. aeruginosa M18 at the post-transcriptional level. Based on the sequence analysis, four GGA motifs, the potential RsmA binding sites, are found on the 5'-untranslated region (UTR of the phz2 transcript. Studies with a series of lacZ reporter fusions, and gel mobility shift assays suggest that the third GGA motif (S3, located 21 nucleotides upstream of the Shine-Dalgarno (SD sequence, is involved in direct RsmA-mediated activation of phz2 expression. We therefore propose a novel model in which the binding of RsmA to the target S3 results in the destabilization of the stem-loop structure and the enhancement of ribosome access. This model could be fully supported by RNA structure prediction, free energy calculations, and nucleotide replacement studies. In contrast, various RsmA-mediated translation repression mechanisms have been identified in which RsmA binds near the SD sequence of target transcripts, thereby blocking ribosome access. Similarly, RsmA is shown to negatively regulate phz1 expression. Our new findings suggest that the differential regulation exerted by RsmA on the two phz clusters may confer an advantage to P. aeruginosa over other pseudomonads containing only a single phz cluster in their genomes.

  18. Pim-1 kinase inhibits the activation of reporter gene expression in Elk-1 and c-Fos reporting systems but not the endogenous gene expression: an artifact of the reporter gene assay by transient co-transfection

    Directory of Open Access Journals (Sweden)

    Yan B.

    2006-01-01

    Full Text Available We have studied the molecular mechanism and signal transduction of pim-1, an oncogene encoding a serine-threonine kinase. This is a true oncogene which prolongs survival and inhibits apoptosis of hematopoietic cells. In order to determine whether the effects of Pim-1 occur by regulation of the mitogen-activated protein kinase pathway, we used a transcriptional reporter assay by transient co-transfection as a screening method. In this study, we found that Pim-1 inhibited the Elk-1 and NFkappaB transcriptional activities induced by activation of the mitogen-activated protein kinase cascade in reporter gene assays. However, Western blots showed that the induction of Elk-1-regulated expression of endogenous c-Fos was not affected by Pim-1. The phosphorylation and activation of neither Erk1/2 nor Elk-1 was influenced by Pim-1. Also, in the gel shift assay, the pattern of endogenous NFkappaB binding to its probe was not changed in any manner by Pim-1. These data indicate that Pim-1 does not regulate the activation of Erk1/2, Elk-1 or NFkappaB. These contrasting results suggest a pitfall of the transient co-transfection reporter assay in analyzing the regulation of transcription factors outside of the chromosome context. It ensures that results from reporter gene expression assay should be verified by study of endogenous gene expression.

  19. Transcription Factor ZBED6 Mediates IGF2 Gene Expression by Regulating Promoter Activity and DNA Methylation in Myoblasts

    Science.gov (United States)

    Huang, Yong-Zhen; Zhang, Liang-Zhi; Lai, Xin-Sheng; Li, Ming-Xun; Sun, Yu-Jia; Li, Cong-Jun; Lan, Xian-Yong; Lei, Chu-Zhao; Zhang, Chun-Lei; Zhao, Xin; Chen, Hong

    2014-04-01

    Zinc finger, BED-type containing 6 (ZBED6) is an important transcription factor in placental mammals, affecting development, cell proliferation and growth. In this study, we found that the expression of the ZBED6 and IGF2 were upregulated during C2C12 differentiation. The IGF2 expression levels were negatively associated with the methylation status in beef cattle (P assay for the IGF2 intron 3 and P3 promoter showed that the mutant-type 439 A-SNP-pGL3 in driving reporter gene transcription is significantly higher than that of the wild-type 439 G-SNP-pGL3 construct (P assay revealed that ZBED6 regulate IGF2 expression and promote myoblast differentiation. Furthermore, knockdown of ZBED6 led to IGF2 expression change in vitro. Taken together, these results suggest that ZBED6 inhibits IGF2 activity and expression via a G to A transition disrupts the interaction. Thus, we propose that ZBED6 plays a critical role in myogenic differentiation.

  20. A Highly Sensitive Telomerase Activity Assay that Eliminates False-Negative Results Caused by PCR Inhibitors

    Directory of Open Access Journals (Sweden)

    Hidenobu Yaku

    2013-09-01

    Full Text Available An assay for telomerase activity based on asymmetric polymerase chain reaction (A-PCR on magnetic beads (MBs and subsequent application of cycling probe technology (CPT is described. In this assay, the telomerase reaction products are immobilized on MBs, which are then washed to remove PCR inhibitors that are commonly found in clinical samples. The guanine-rich sequences (5'-(TTAGGGn-3' of the telomerase reaction products are then preferentially amplified by A-PCR, and the amplified products are subsequently detected via CPT, where a probe RNA with a fluorophore at the 5' end and a quencher at the 3' end is hydrolyzed by RNase H in the presence of the target DNA. The catalyst-mediated cleavage of the probe RNA enhances fluorescence from the 5' end of the probe. The assay allowed us to successfully detect HeLa cells selectively over normal human dermal fibroblast (NHDF cells. Importantly, this selectivity produced identical results with regard to detection of HeLa cells in the absence and presence of excess NHDF cells; therefore, this assay can be used for practical clinical applications. The lower limit of detection for HeLa cells was 50 cells, which is lower than that achieved with a conventional telomeric repeat amplification protocol assay. Our assay also eliminated false-negative results caused by PCR inhibitors. Furthermore, we show that this assay is appropriate for screening among G-quadruplex ligands to find those that inhibit telomerase activity.

  1. Active nondestructive assay of nuclear materials: principles and applications

    Energy Technology Data Exchange (ETDEWEB)

    Gozani, Tsahi

    1981-01-01

    The purpose of this book is to present, coherently and comprehensively, the wealth of available but scattered information on the principles and applications of active nondestructive analysis (ANDA). Chapters are devoted to the following: background and overview; interactions of neutrons with matter; interactions of ..gamma..-rays with matter; neutron production and sources; ..gamma..-ray production and sources; effects of neutron and ..gamma..-ray transport in bulk media; signatures of neutron- and photon-induced fissions; neutron and photon detection systems and electronics; representative ANDA systems; and instrument analysis, calibration, and measurement control for ANDA. Each chapter has an introductory section describing the relationship of the topic of that chapter to ANDA. Each chapter ends with a section that summarizes the main results and conclusions of the chapter, and a reference list.

  2. Transcriptional activation of phosphoenolpyruvate carboxylase by phosphorus deficiency in tobacco.

    Science.gov (United States)

    Toyota, Kentaro; Koizumi, Nozomu; Sato, Fumihiko

    2003-03-01

    Phosphoenolpyruvate carboxylase (PEPC), which catalyses the carboxylation of phosphoenolpyruvate using HCO(3)(-) to generate oxaloacetic acid, is an important enzyme in the primary metabolism of plants. Although the PEPC genes (ppc) comprise only a small gene family, the function of each gene is not clear, except for roles in C(4) photosynthesis and CAM. Three PEPC genes (Nsppc1-3) from the C(3) plant Nicotiana sylvestris were used to investigate their roles and regulation in a C(3) plant, and their regulation by phosphorus depletion in particular. First, the induction of PEPC by phosphorus depletion was confirmed. Next, Nsppc1 was determined to be mainly responsive to phosphorus deficiency at the transcriptional level. Further studies using transgenic tobacco harbouring a chimeric gene consisting of the 2.0 kb promoter region of Nsppc1 and the beta-glucuronidase (GUS) reporter showed that PEPC is transcriptionally induced. It was also found that sucrose had a synergistic effect on the induction of PEPC by phosphorus deficiency. A series of transgenic tobacco containing 5'-deletion mutants of Nsppc1 promoter::GUS fusion revealed that the -539 to -442 bp Nsppc1 promoter region, relative to the translation start site, was necessary for the response to phosphorus deficiency. Gain-of-function analysis using a construct containing three tandem repeats of the -539 to -442 bp region confirmed that this region was sufficient to induce the phosphorus-deficiency response in tobacco. PMID:12598567

  3. Nondestructive assay of TRU waste using gamma-ray active and passive computed tomography

    International Nuclear Information System (INIS)

    The authors have developed an active and passive computed tomography (A and PCT) scanner for assaying radioactive waste drums. Here they describe the hardware components of their system and the software used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using ''mock'' waste drums and calibrated radioactive sources. They also describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content. The results are compared with X-ray NDE studies of the same TRU waste drum as well as assay results from segmented gamma scanner (SGS) measurements

  4. Promoter of CaZF, a chickpea gene that positively regulates growth and stress tolerance, is activated by an AP2-family transcription factor CAP2.

    Directory of Open Access Journals (Sweden)

    Deepti Jain

    Full Text Available Plants respond to different forms of stresses by inducing transcription of a common and distinct set of genes by concerted actions of a cascade of transcription regulators. We previously reported that a gene, CaZF encoding a C2H2-zinc finger family protein from chickpea (Cicer arietinum imparted high salinity tolerance when expressed in tobacco plants. We report here that in addition to promoting tolerance against dehydration, salinity and high temperature, the CaZF overexpressing plants exhibited similar phenotype of growth and development like the plants overexpressing CAP2, encoding an AP2-family transcription factor from chickpea. To investigate any relationship between these two genes, we performed gene expression analysis in the overexpressing plants, promoter-reporter analysis and chromatin immunoprecipitation. A number of transcripts that exhibited enhanced accumulation upon expression of CAP2 or CaZF in tobacco plants were found common. Transient expression of CAP2 in chickpea leaves resulted in increased accumulation of CaZF transcript. Gel mobility shift and transient promoter-reporter assays suggested that CAP2 activates CaZF promoter by interacting with C-repeat elements (CRTs in CaZF promoter. Chromatin immunoprecipitation (ChIP assay demonstrated an in vivo interaction of CAP2 protein with CaZF promoter.

  5. Activated AMPK inhibits PPAR-{alpha} and PPAR-{gamma} transcriptional activity in hepatoma cells.

    Science.gov (United States)

    Sozio, Margaret S; Lu, Changyue; Zeng, Yan; Liangpunsakul, Suthat; Crabb, David W

    2011-10-01

    AMP-activated protein kinase (AMPK) and peroxisome proliferator-activated receptor-α (PPAR-α) are critical regulators of short-term and long-term fatty acid oxidation, respectively. We examined whether the activities of these molecules were coordinately regulated. H4IIEC3 cells were transfected with PPAR-α and PPAR-γ expression plasmids and a peroxisome-proliferator-response element (PPRE) luciferase reporter plasmid. The cells were treated with PPAR agonists (WY-14,643 and rosiglitazone), AMPK activators 5-aminoimidazole-4-carboxamide riboside (AICAR) and metformin, and the AMPK inhibitor compound C. Both AICAR and metformin decreased basal and WY-14,643-stimulated PPAR-α activity; compound C increased agonist-stimulated reporter activity and partially reversed the effect of the AMPK activators. Similar effects on PPAR-γ were seen, with both AICAR and metformin inhibiting PPRE reporter activity. Compound C increased basal PPAR-γ activity and rosiglitazone-stimulated activity. In contrast, retinoic acid receptor-α (RAR-α), another nuclear receptor that dimerizes with retinoid X receptor (RXR), was largely unaffected by the AMPK activators. Compound C modestly increased AM580 (an RAR agonist)-stimulated activity. The AMPK activators did not affect PPAR-α binding to DNA, and there was no consistent correlation between effects of the AMPK activators and inhibitor on PPAR and the nuclear localization of AMPK-α subunits. Expression of either a constitutively active or dominant negative AMPK-α inhibited basal and WY-14,643-stimulated PPAR-α activity and basal and rosiglitazone-stimulated PPAR-γ activity. We concluded that the AMPK activators AICAR and metformin inhibited transcriptional activities of PPAR-α and PPAR-γ, whereas inhibition of AMPK with compound C activated both PPARs. The effects of AMPK do not appear to be mediated through effects on RXR or on PPAR/RXR binding to DNA. These effects are independent of kinase activity and instead appear to

  6. Application of gamma-ray active and passive computed tomography to nondestructively assay TRU waste

    International Nuclear Information System (INIS)

    The authors have developed an active and passive computed tomography scanner for assaying radioactive waste drums. They describe the hardware and software components of the system used for data acquisition, gamma-ray spectroscopy analysis, and image reconstruction. They have measured the performance of the system using mock waste drums and calibrated radioactive sources. They describe the results of measurements using this system to assay a real TRU waste drum with relatively low Pu content

  7. Progress in high-throughput assays of MGMT and APE1 activities in cell extracts

    OpenAIRE

    Georgiadis, Panagiotis; Polychronaki, Nektaria; Kyrtopoulos, Soterios A.

    2012-01-01

    DNA repair activity is of interest as a potential biomarker of individual susceptibility to genotoxic agents. In view of the current trend for exploitation of large cohorts in molecular epidemiology projects, there is a pressing need for the development of phenotypic DNA repair assays that are high-throughput, very sensitive, inexpensive and reliable. Towards this goal we have developed and validated two phenotypic assays for the measurement of two DNA repair enzymes in cell extracts: (1) O(6...

  8. Assay of Acetylcholinesterase Activity and Electrochemical Determination of Fenthion in Oil-in-water Emulsion

    Institute of Scientific and Technical Information of China (English)

    Sun Kai; He JingJing; Miao YuQing

    2009-01-01

    @@ Organophosphates (OPs) have been widely used as pesticides,insecticides or even chemical warfare agents.Acetylcholinesterase (ACHE) inhibition has been employed to develop verious assay methods for detection of pesticides with the advantages of low cost,simple procedure and quick assay time.The study of acetylcholinesterase (ACHE) activity and OPs inhibition in the solution containing organic solvent is extremely important owing to poor solubility of Ops in water and a higher solubility in organic solvents.

  9. Voltage-gated Na+ Channel Activity Increases Colon Cancer Transcriptional Activity and Invasion Via Persistent MAPK Signaling

    Science.gov (United States)

    House, Carrie D.; Wang, Bi-Dar; Ceniccola, Kristin; Williams, Russell; Simaan, May; Olender, Jacqueline; Patel, Vyomesh; Baptista-Hon, Daniel T.; Annunziata, Christina M.; Silvio Gutkind, J.; Hales, Tim G.; Lee, Norman H.

    2015-06-01

    Functional expression of voltage-gated Na+ channels (VGSCs) has been demonstrated in multiple cancer cell types where channel activity induces invasive activity. The signaling mechanisms by which VGSCs promote oncogenesis remain poorly understood. We explored the signal transduction process critical to VGSC-mediated invasion on the basis of reports linking channel activity to gene expression changes in excitable cells. Coincidentally, many genes transcriptionally regulated by the SCN5A isoform in colon cancer have an over-representation of cis-acting sites for transcription factors phosphorylated by ERK1/2 MAPK. We hypothesized that VGSC activity promotes MAPK activation to induce transcriptional changes in invasion-related genes. Using pharmacological inhibitors/activators and siRNA-mediated gene knockdowns, we correlated channel activity with Rap1-dependent persistent MAPK activation in the SW620 human colon cancer cell line. We further demonstrated that VGSC activity induces downstream changes in invasion-related gene expression via a PKA/ERK/c-JUN/ELK-1/ETS-1 transcriptional pathway. This is the first study illustrating a molecular mechanism linking functional activity of VGSCs to transcriptional activation of invasion-related genes.

  10. Signals leading to the activation of NF-kappa B transcription factor are stronger in neonatal than adult T lymphocytes.

    Science.gov (United States)

    Kilpinen, S; Henttinen, T; Lahdenpohja, N; Hulkkonen, J; Hurme, M

    1996-07-01

    The molecular background of the defects in the immune reactivity of human neonates has not been fully elucidated. As the NF-kappa B transcription factor has a central role in the control of transcription of several genes involved in immune and inflammatory responses, the authors have analysed the activation of NF-kappa B in human umbilical cord T lymphocytes. The activity was tested by quantitating the nuclear proteins binding to an oligonucleotide containing the consensus kappa B binding sequence (electrophoretic mobility shift assay). The data obtained demonstrate that phorbol dibutyrate/calcium ionophore A23187 (PDBu/iono) combination induced a clearly higher nuclear translocation of NF-kappa B in neonatal than adult T cells. This higher NF-kappa B activity was restricted to the CD4+ T-cell subset. Analysis of the nuclear extracts with antibodies directed against the major components of NF-kappa B the p50 and RelA (p65) proteins, indicated that the composition of NF-kappa B was similar in neonatal and adult cells. These results suggest that neonatal T cells are exposed to oxidative stress-inducing signals during delivery and/or are inherently more sensitive to NF-kappa B activating signals than adult T cells. PMID:8693296

  11. Encoding four gene expression programs in the activation dynamics of a single transcription factor.

    Science.gov (United States)

    Hansen, Anders S; O'Shea, Erin K

    2016-04-01

    Cellular signaling response pathways often exhibit a bow-tie topology [1,2]: multiple upstream stress signals converge on a single shared transcription factor, which is thought to induce different downstream gene expression programs (Figure 1A). However, if several different signals activate the same transcription factor, can each signal then induce a specific gene expression response? A growing body of literature supports a temporal coding theory where information about environmental signals can be encoded, at least partially, in the temporal dynamics of the shared transcription factor [1,2]. For example, in the case of the budding yeast transcription factor Msn2, different stresses induce distinct Msn2 activation dynamics: Msn2 shows pulsatile nuclear activation with dose-dependent frequency under glucose limitation, but sustained nuclear activation with dose-dependent amplitude under oxidative stress [3]. These dynamic patterns can then lead to differential gene expression responses [3-5], but it is not known how much specificity can be obtained. Thus, a major question of this temporal coding theory is how many gene response programs or cellular functions can be robustly encoded by dynamic control of a single transcription factor. Here we provide the first direct evidence that, simply by regulating the activation dynamics of a single transcription factor, it is possible to preferentially induce four distinct gene expression programs. PMID:27046808

  12. DNA Topoisomerases maintain promoters in a state competent for transcriptional activation in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Jakob Madsen Pedersen

    Full Text Available To investigate the role of DNA topoisomerases in transcription, we have studied global gene expression in Saccharomyces cerevisiae cells deficient for topoisomerases I and II and performed single-gene analyses to support our findings. The genome-wide studies show a general transcriptional down-regulation upon lack of the enzymes, which correlates with gene activity but not gene length. Furthermore, our data reveal a distinct subclass of genes with a strong requirement for topoisomerases. These genes are characterized by high transcriptional plasticity, chromatin regulation, TATA box presence, and enrichment of a nucleosome at a critical position in the promoter region, in line with a repressible/inducible mode of regulation. Single-gene studies with a range of genes belonging to this group demonstrate that topoisomerases play an important role during activation of these genes. Subsequent in-depth analysis of the inducible PHO5 gene reveals that topoisomerases are essential for binding of the Pho4p transcription factor to the PHO5 promoter, which is required for promoter nucleosome removal during activation. In contrast, topoisomerases are dispensable for constitutive transcription initiation and elongation of PHO5, as well as the nuclear entrance of Pho4p. Finally, we provide evidence that topoisomerases are required to maintain the PHO5 promoter in a superhelical state, which is competent for proper activation. In conclusion, our results reveal a hitherto unknown function of topoisomerases during transcriptional activation of genes with a repressible/inducible mode of regulation.

  13. A high-throughput assay of NK cell activity in whole blood and its clinical application

    International Nuclear Information System (INIS)

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as 51Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer

  14. A high-throughput assay of NK cell activity in whole blood and its clinical application

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Saet-byul [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Cha, Junhoe [ATGen Co. Ltd., Sungnam (Korea, Republic of); Kim, Im-kyung [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Yoon, Joo Chun [Department of Microbiology, Ewha Womans University School of Medicine, Seoul (Korea, Republic of); Lee, Hyo Joon [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan [ATGen Co. Ltd., Sungnam (Korea, Republic of); Lee, Jae Myun [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of); Lee, Kang Young, E-mail: kylee117@yuhs.ac [Department of Surgery, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul (Korea, Republic of); Kim, Jongsun, E-mail: jkim63@yuhs.ac [Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.

  15. Development of a solid-phase assay for measurement of proteolytic enzyme activity

    International Nuclear Information System (INIS)

    A solid-phase, plate assay was developed for the measurement of proteolytic enzyme activity. In this assay procedure, radiolabeled substrates were dried onto the surface of microtiter wells. Following drying, the wells were washed two times with saline to remove the nonadherent substrate. When proteolytic enzymes were added to the wells, protein hydrolysis occurred, releasing radioactivity into the supernatant fluid. The amount of protein hydrolysis that occurred was reflected by the amount of radioactivity in the supernatant fluid. When 125I-hemoglobin was used as the substrate, it was as susceptible to hydrolysis by trypsin in the solid-phase assay as it was in solution in a standard assay procedure. Protease activity from a variety of sources (including from viable cells as well as from extracellular sources) were also able to hydrolyze the hemoglobin on the plate. 125I-Labeled serum albumen, fibrinogen, and rat pulmonary basement membrane were also susceptible to hydrolysis by trypsin in the solid phase. When [14C]elastin was dried onto the plate, it behaved in a similar manner to elastin in solution. It was resistant to hydrolysis by nonspecific proteases such as trypsin and chymotrypsin but was highly susceptible to hydrolysis by elastase. The solid-phase plate assay has several features which recommended it for routine use. It is as sensitive as standard tube assays (and much more sensitive than routinely used colormetric assays). It is quick and convenient; there are no precipitation, centrifugation, or filtration steps. In addition, very small volumes of radioactive wastes are generated. Another advantage of the solid-phase plate assay is the resistance of the dried substrates to spontaneous breakdown and to microbial contamination. Finally, this assay is suitable for use with viable cells as well as for extracellular proteases

  16. Transcriptional response of genes involved in cell defense system in human cells stressed by H2O2 and pre-treated with (Tunisian) Rhamnus alaternus extracts: combination with polyphenolic compounds and classic in vitro assays.

    Science.gov (United States)

    Ammar, Rebai Ben; Bouhlel, Ines; Valenti, Kita; Sghaier, Mohamed Ben; Kilani, Soumaya; Mariotte, Anne-Marie; Dijoux-Franca, Marie-Geneviève; Laporte, François; Ghedira, Kamel; Chekir-Ghedira, Leila

    2007-07-20

    The ability of three Rhamnus alaternus leaves extracts on antigenotoxic and gene expression level effects was respectively investigated in a bacterial assay system, i.e. the SOS chromotest with Escherichia coli PQ37 and in human K562 lymphoblast cell line. Total oligomers flavonoids (TOF) enriched, methanol and ethyl acetate extracts were prepared from powdered R. alaternus leaves and characterized quantitatively for the presence of polyphenolic compounds. We explored the response to oxidative stress using the transcriptional profile of genes in K562 cells stressed with H2O2 after incubation with plant extracts. For this purpose, we used a cDNA microarrays containing 82 genes related to cell defense, essentially represented by antioxidant and DNA repair genes. Analysis revealed that SOD1, AOE 372, TXN genes involved in the antioxidant defense system and XPC, LIG4, POLD2, PCNA genes implied in the DNA repair system were among the most expressed ones in the presence of the tested extracts. These results were in accordance with those obtained when we tested the antigenotoxic and antioxidant effects of the same extracts with, respectively the SOS chromotest and the xanthine/xanthine oxidase enzymatic assay system. The effect of the tested extracts on SOS response induced by both Aflatoxin B1 (AFB1: 10 microg/assay) and nifuroxazide (20 microg/assay) showed that the TOF extract exhibited the highest antimutagenic level towards the indirect mutagen AFB1. Whereas ethyl acetate extract showed the highest antimutagenic effect towards the direct mutagen, nifuroxazide. None of the tested extracts induced mutagenic activity. However all the tested extracts exhibited xanthine oxidase inhibiting and superoxide anions scavenging effects. R. alaternus extracts contain compounds with significant antioxidant and antigenotoxic activities. These compounds modulate gene expression as detected by using cDNA arrays. PMID:17512922

  17. Withaferin A inhibits activation of signal transducer and activator of transcription 3 in human breast cancer cells

    OpenAIRE

    Lee, Joomin; Hahm, Eun-Ryeong; Singh, Shivendra V

    2010-01-01

    We have shown previously that withaferin A (WA), a promising anticancer constituent of Ayurvedic medicine plant Withania somnifera, inhibits growth of human breast cancer cells in culture and in vivo in association with apoptosis induction. The present study builds on these observations and demonstrates that WA inhibits constitutive as well as interleukin-6 (IL-6)-inducible activation of signal transducer and activator of transcription 3 (STAT3), which is an oncogenic transcription factor act...

  18. Activating Transcription Factor 3 (ATF3 and the Nervous System

    Directory of Open Access Journals (Sweden)

    Patrick Norval Anderson

    2012-02-01

    Full Text Available It has been recognised for over a century that the ability of axons to regenerate in peripheral nerves is fundamentally greater than that of axons in the brain, spinal cord or optic nerves [early literature was reviewed in (Ramon y Cajal, 1928]. One factor that contributes to the successful regeneration of the axons in peripheral nerves is the complex cell body response the neurons show to axotomy. That transcription factors must play an important role in enabling neurons to regrow their axons is implicit to the observation that several hundred genes are regulated in neurons during axonal regeneration (Costigan et al., 2002; Boeshore et al., 2004. In addition, similarly large numbers of genes are regulated in the non-neuronal cells present in injured peripheral nerves [especially Schwann cells (Barrette et al., 2010] and CNS tissue. Of the transcription factors that regulate these changes in gene expression, the function of c-jun is best understood but ATF-3 (also known as LRF-1, LRG-21, CRG-5 and TI-241 is also upregulated in most of the neurons (Fig. 1 and Schwann cells that express c-jun. Indeed, ATF-3 has become a standard marker for neurons axotomised by peripheral nerve injury (Tsuzuki et al., 2001; Yamanaka et al., 2005; Yano et al., 2008; Linda et al., 2011 and its expression by injured neurons is closely correlated with a regenerative response. None the less, surprisingly little is known about the functions of ATF3 in neurons or glia within the injured nervous system, especially when compared with those of its potential binding partner, c-Jun.

  19. PLCz functional haplotypes modulating promoter transcriptional activity are associated with semen quality traits in Chinese Holstein bulls.

    Directory of Open Access Journals (Sweden)

    Qing Pan

    Full Text Available The sperm-specific phospholipase C zeta (PLCz is a candidate sperm-borne oocyte-activating factor that triggers a characteristic series of physiological stimuli via cytoplasmic Ca(2+ oscillations during fertilization. The molecular mechanisms involved in the regulation of PLCz gene expression remain largely unknown. To explore the genetic variations in the 5'-flanking region of the PLCz gene and their common haplotypes in Chinese Holstein bulls, as well as to determine whether these variations affect bovine semen quality traits and transcriptional activity, DNA samples were collected from Chinese Holstein bulls and sequenced for the identification of genetic variants in the 5'-flanking region of PLCz. Two genetic variants were identified, and their haplotypic profiles were constructed. The two novel genetic variations (g. -456 G>A and g. +65 T>C were genotyped in 424 normal Chinese Holstein bulls. Bioinformatics analysis revealed that both loci are in transcription factor binding sites of the core promoter region. The association studies revealed that the two genetic variations and their haplotype combinations significantly affected semen quality traits. Using serially truncated constructs of the bovine PLCz promoters and the luciferase reporter, we found that a 726 bp (-641 nt to +112 nt fragment constitutes the core promoter region. Furthermore, four haplotypes, H1H1 (GTGT, H2H2 (GCGC, H3H3 (ATAT, and H4H4 (ACAC, were significantly associated with semen quality traits and successfully transfected into MLTC-1 cell lines. The luciferase reporter assay showed that the different haplotypes exhibited distinct promoter activities. Maximal promoter activity was demonstrated by the H2H2 haplotypes, as compared with the other haplotypes. To the best of our knowledge, this study is the first report on genetic variants and their respective haplotypes in the 5'-flanking region of PLCz gene that can influence the semen quality of Chinese Holstein bulls as

  20. Transcriptional activation by the thyroid hormone receptor through ligand-dependent receptor recruitment and chromatin remodelling

    DEFF Research Database (Denmark)

    Grøntved, Lars; Waterfall, Joshua J; Kim, Dong Wook;

    2015-01-01

    facilitates recruitment of co-activators to activate transcription. Here we show that in addition to hormone-independent TR occupancy, ChIP-seq against endogenous TR in mouse liver tissue demonstrates considerable hormone-induced TR recruitment to chromatin associated with chromatin remodelling and activated...

  1. How Do Detergents Work? A Qualitative Assay to Measure Amylase Activity

    Science.gov (United States)

    Novo, M. Teresa; Casanoves, Marina; Garcia-Vallvé, Santi; Pujadas, Gerard; Mulero, Miquel; Valls, Cristina

    2016-01-01

    We present a practical activity focusing on two main goals: to give learners the opportunity to experience how the scientific method works and to increase their knowledge about enzymes in everyday situations. The exercise consists of determining the amylase activity of commercial detergents. The methodology is based on a qualitative assay using a…

  2. A novel live cell assay to measure diacylglycerol lipase α activity.

    Science.gov (United States)

    Singh, Praveen K; Markwick, Rachel; Howell, Fiona V; Williams, Gareth; Doherty, Patrick

    2016-06-01

    Diacylglycerol lipase α (DAGLα) hydrolyses DAG to generate the principal endocannabinoid (eCB) 2-arachidonoylglycerol (2-AG) in the central nervous system. DAGLα dependent cannabinoid (CB) signalling has been implicated in numerous processes including axonal growth and guidance, adult neurogenesis and retrograde signalling at the synapse. Recent studies have implicated DAGLα as an emerging drug target for several conditions including pain and obesity. Activity assays are critical to the drug discovery process; however, measurement of diacylglycerol lipase (DAGL) activity using its native substrate generally involves low-throughput MS techniques. Some relatively high-throughput membrane based assays utilizing surrogate substrates have been reported, but these do not take into account the rate-limiting effects often associated with the ability of a drug to cross the cell membrane. In the present study, we report the development of a live cell assay to measure DAGLα activity. Two previously reported DAGLα surrogate substrates, p-nitrophenyl butyrate (PNPB) and 6,8-difluoro-4-methylumbelliferyl octanoate (DiFMUO), were evaluated for their ability to detect DAGLα activity in live cell assays using a human cell line stably expressing the human DAGLα transgene. Following optimization, the small molecule chromogenic substrate PNPB proved to be superior by providing lower background activity along with a larger signal window between transfected and parental cells when compared with the fluorogenic substrate DiFMUO. The assay was further validated using established DAGL inhibitors. In summary, the live cell DAGLα assay reported here offers an economical and convenient format to screen for novel inhibitors as part of drug discovery programmes and compliments previously reported high-throughput membrane based DAGL assays. PMID:27013337

  3. LRP16 integrates into NF-κB transcriptional complex and is required for its functional activation.

    Directory of Open Access Journals (Sweden)

    Zhiqiang Wu

    Full Text Available BACKGROUND: Nuclear factor κB (NF-κB-mediated pathways have been widely implicated in cell survival, development and tumor progression. Although the molecular events of determining NF-κB translocation from cytoplasm to nucleus have been extensively documented, the regulatory mechanisms of NF-κB activity inside the nucleus are still poorly understood. Being a special member of macro domain proteins, LRP16 was previously identified as a coactivator of both estrogen receptor and androgen receptor, and as an interactor of NF-κB coactivator UXT. Here, we investigated the regulatory role of LRP16 on NF-κB activation. METHODOLOGY: GST pull-down and coimmunoprecipitation (CoIP assays assessed protein-protein interactions. The functional activity of NF-κB was assessed by luciferase assays, changes in expression of its target genes, and its DNA binding ability. Annexin V staining and flow cytometry analysis were used to evaluate cell apoptosis. Immunohistochemical staining of LRP16 and enzyme-linked immunosorbent assay-based evaluation of active NF-κB were performed on primary human gastric carcinoma samples. RESULTS: We demonstrate that LRP16 integrates into NF-κB transcriptional complex through associating with its p65 component. RNA interference knockdown of the endogenous LRP16 in cells leads to impaired NF-κB activity and significantly attenuated NF-κB-dependent gene expression. Mechanistic analysis revealed that knockdown of LRP16 did not affect tumor necrosis factor α (TNF-α-induced nuclear translocation of NF-κB, but blunted the formation or stabilization of functional NF-κB/p300/CREB-binding protein transcription complex in the nucleus. In addition, knockdown of LRP16 also sensitizes cells to apoptosis induced by TNF-α. Finally, a positive link between LRP16 expression intensity in nuclei of tumor cells and NF-κB activity was preliminarily established in human gastric carcinoma specimens. CONCLUSIONS: Our findings not only

  4. Targeted HIV-1 Latency Reversal Using CRISPR/Cas9-Derived Transcriptional Activator Systems.

    Directory of Open Access Journals (Sweden)

    Julia K Bialek

    Full Text Available CRISPR/Cas9 technology is currently considered the most advanced tool for targeted genome engineering. Its sequence-dependent specificity has been explored for locus-directed transcriptional modulation. Such modulation, in particular transcriptional activation, has been proposed as key approach to overcome silencing of dormant HIV provirus in latently infected cellular reservoirs. Currently available agents for provirus activation, so-called latency reversing agents (LRAs, act indirectly through cellular pathways to induce viral transcription. However, their clinical performance remains suboptimal, possibly because reservoirs have diverse cellular identities and/or proviral DNA is intractable to the induced pathways. We have explored two CRISPR/Cas9-derived activator systems as targeted approaches to induce dormant HIV-1 proviral DNA. These systems recruit multiple transcriptional activation domains to the HIV 5' long terminal repeat (LTR, for which we have identified an optimal target region within the LTR U3 sequence. Using this target region, we demonstrate transcriptional activation of proviral genomes via the synergistic activation mediator complex in various in culture model systems for HIV latency. Observed levels of induction are comparable or indeed higher than treatment with established LRAs. Importantly, activation is complete, leading to production of infective viral particles. Our data demonstrate that CRISPR/Cas9-derived technologies can be applied to counteract HIV latency and may therefore represent promising novel approaches in the quest for HIV elimination.

  5. Phosphatidylserine enhances IKBKAP transcription by activating the MAPK/ERK signaling pathway.

    Science.gov (United States)

    Donyo, Maya; Hollander, Dror; Abramovitch, Ziv; Naftelberg, Shiran; Ast, Gil

    2016-04-01

    Familial dysautonomia (FD) is a genetic disorder manifested due to abnormal development and progressive degeneration of the sensory and autonomic nervous system. FD is caused by a point mutation in the IKBKAP gene encoding the IKAP protein, resulting in decreased protein levels. A promising potential treatment for FD is phosphatidylserine (PS); however, the manner by which PS elevates IKAP levels has yet to be identified. Analysis of ChIP-seq results of the IKBKAP promoter region revealed binding of the transcription factors CREB and ELK1, which are regulated by the mitogen-activated protein kinase (MAPK)/extracellular-regulated kinase (ERK) signaling pathway. We show that PS treatment enhanced ERK phosphorylation in cells derived from FD patients. ERK activation resulted in elevated IKBKAP transcription and IKAP protein levels, whereas pretreatment with the MAPK inhibitor U0126 blocked elevation of the IKAP protein level. Overexpression of either ELK1 or CREB activated the IKBKAP promoter, whereas downregulation of these transcription factors resulted in a decrease of the IKAP protein. Additionally, we show that PS improves cell migration, known to be enhanced by MAPK/ERK activation and abrogated in FD cells. In conclusion, our results demonstrate that PS activates the MAPK/ERK signaling pathway, resulting in activation of transcription factors that bind the promoter region of IKBKAP and thus enhancing its transcription. Therefore, compounds that activate the MAPK/ERK signaling pathway could constitute potential treatments for FD. PMID:26769675

  6. Suppression of estrogen receptor transcriptional activity by connective tissue growth factor.

    Directory of Open Access Journals (Sweden)

    Long Cheng

    Full Text Available Secreted growth factors have been shown to stimulate the transcriptional activity of estrogen receptors (ER that are responsible for many biological processes. However, whether these growth factors physically interact with ER remains unclear. Here, we show for the first time that connective tissue growth factor (CTGF physically and functionally associates with ER. CTGF interacted with ER both in vitro and in vivo. CTGF interacted with ER DNA-binding domain. ER interaction region in CTGF was mapped to the thrombospondin type I repeat, a cell attachment motif. Overexpression of CTGF inhibited ER transcriptional activity as well as the expression of estrogen-responsive genes, including pS2 and cathepsin D. Reduction of endogenous CTGF with CTGF small interfering RNA enhanced ER transcriptional activity. The interaction between CTGF and ER is required for the repression of estrogen-responsive transcription by CTGF. Moreover, CTGF reduced ER protein expression, whereas the CTGF mutant that did not repress ER transcriptional activity also did not alter ER protein levels. The results suggested the transcriptional regulation of estrogen signaling through interaction between CTGF and ER, and thus may provide a novel mechanism by which cross-talk between secreted growth factor and ER signaling pathways occurs.

  7. Improved somatic mutagenesis in zebrafish using transcription activator-like effector nucleases (TALENs.

    Directory of Open Access Journals (Sweden)

    Finola E Moore

    Full Text Available Zinc Finger Nucleases (ZFNs made by Context-Dependent Assembly (CoDA and Transcription Activator-Like Effector Nucleases (TALENs provide robust and user-friendly technologies for efficiently inactivating genes in zebrafish. These designer nucleases bind to and cleave DNA at particular target sites, inducing error-prone repair that can result in insertion or deletion mutations. Here, we assess the relative efficiencies of these technologies for inducing somatic DNA mutations in mosaic zebrafish. We find that TALENs exhibited a higher success rate for obtaining active nucleases capable of inducing mutations than compared with CoDA ZFNs. For example, all six TALENs tested induced DNA mutations at genomic target sites while only a subset of CoDA ZFNs exhibited detectable rates of mutagenesis. TALENs also exhibited higher mutation rates than CoDA ZFNs that had not been pre-screened using a bacterial two-hybrid assay, with DNA mutation rates ranging from 20%-76.8% compared to 1.1%-3.3%. Furthermore, the broader targeting range of TALENs enabled us to induce mutations at the methionine translation start site, sequences that were not targetable using the CoDA ZFN platform. TALENs exhibited similar toxicity to CoDA ZFNs, with >50% of injected animals surviving to 3 days of life. Taken together, our results suggest that TALEN technology provides a robust alternative to CoDA ZFNs for inducing targeted gene-inactivation in zebrafish, making it a preferred technology for creating targeted knockout mutants in zebrafish.

  8. Conserved interaction of the papillomavirus E2 transcriptional activator proteins with human and yeast TFIIB proteins.

    OpenAIRE

    Benson, J D; Lawande, R; Howley, P M

    1997-01-01

    Papillomavirus early gene expression is regulated by the virus gene-encoded E2 proteins. The best-characterized E2 protein, encoded by bovine papillomavirus type 1 (BPV-1), has been shown to interact with basal transcription factor IIB (TFIIB) and the TATA binding protein basal transcription factor (N. M. Rank and P. F. Lambert, J. Virol. 69:6323-6334, 1995). We demonstrate that the potent E2 transcriptional activator protein encoded by a gene of human PV type 16 also interacts with TFIIB in ...

  9. A Powerful CRISPR/Cas9-Based Method for Targeted Transcriptional Activation.

    Science.gov (United States)

    Katayama, Shota; Moriguchi, Tetsuo; Ohtsu, Naoki; Kondo, Toru

    2016-05-23

    Targeted transcriptional activation of endogenous genes is important for understanding physiological transcriptional networks, synthesizing genetic circuits, and inducing cellular phenotype changes. The CRISPR/Cas9 system has great potential to achieve this purpose, however, it has not yet been successfully used to efficiently activate endogenous genes and induce changes in cellular phenotype. A powerful method for transcriptional activation by using CRISPR/Cas9 was developed. Replacement of a methylated promoter with an unmethylated one by CRISPR/Cas9 was sufficient to activate the expression of the neural cell gene OLIG2 and the embryonic stem cell gene NANOG in HEK293T cells. Moreover, CRISPR/Cas9-based OLIG2 activation induced the embryonic carcinoma cell line NTERA-2 to express the neuronal marker βIII-tubulin. PMID:27079176

  10. NF-Y recruits both transcription activator and repressor to modulate tissue- and developmental stage-specific expression of human γ-globin gene.

    Directory of Open Access Journals (Sweden)

    Xingguo Zhu

    Full Text Available The human embryonic, fetal and adult β-like globin genes provide a paradigm for tissue- and developmental stage-specific gene regulation. The fetal γ-globin gene is expressed in fetal erythroid cells but is repressed in adult erythroid cells. The molecular mechanism underlying this transcriptional switch during erythroid development is not completely understood. Here, we used a combination of in vitro and in vivo assays to dissect the molecular assemblies of the active and the repressed proximal γ-globin promoter complexes in K562 human erythroleukemia cell line and primary human fetal and adult erythroid cells. We found that the proximal γ-globin promoter complex is assembled by a developmentally regulated, general transcription activator NF-Y bound strongly at the tandem CCAAT motifs near the TATA box. NF-Y recruits to neighboring DNA motifs the developmentally regulated, erythroid transcription activator GATA-2 and general repressor BCL11A, which in turn recruit erythroid repressor GATA-1 and general repressor COUP-TFII to form respectively the NF-Y/GATA-2 transcription activator hub and the BCL11A/COUP-TFII/GATA-1 transcription repressor hub. Both the activator and the repressor hubs are present in both the active and the repressed γ-globin promoter complexes in fetal and adult erythroid cells. Through changes in their levels and respective interactions with the co-activators and co-repressors during erythroid development, the activator and the repressor hubs modulate erythroid- and developmental stage-specific transcription of γ-globin gene.

  11. Radioactive waste package assay facility. Volume 2. Investigation of active neutron and active gamma interrogation

    International Nuclear Information System (INIS)

    Volume 2 of this report describes the theoretical and experimental work carried out at Harwell on active neutron and active gamma interrogation of 500 litre cemented intermediate level waste drums. The design of a suitable neutron generating target in conjunction with a LINAC was established. Following theoretical predictions of likely neutron responses, an experimental assay assembly was built. Responses were measured for simulated drums of ILW, based on CAGR, Magnox and PCM wastes. Good correlations were established between quantities of 235-U, nat-U and D2O contained in the drums, and the neutron signals. Expected sensitivities are -1g of fissile actinide and -100g of total actinide. A measure of spatial distribution is obtainable. The neutron time spectra obtained during neutron interrogation were more complex than expected, and more analysis is needed. Another area of discrepancy is the difference between predicted and measured thermal neutron flux in the drum. Clusters of small 3He proportional counters were found to be much superior for fast neutron detection than larger diameter counters. It is necessary to ensure constancy of electron beam position relative to target(s) and drum, and prudent to measure the target neutron or gamma output as appropriate. 59 refs., 77 figs., 11 tabs

  12. The role of proteasome beta subunits in gastrin-mediated transcription of plasminogen activator inhibitor-2 and regenerating protein1.

    Directory of Open Access Journals (Sweden)

    Adrian O'Hara

    Full Text Available The hormone gastrin physiologically regulates gastric acid secretion and also contributes to maintaining gastric epithelial architecture by regulating expression of genes such as plasminogen activator inhibitor 2 (PAI-2 and regenerating protein 1 (Reg1. Here we examine the role of proteasome subunit PSMB1 in the transcriptional regulation of PAI-2 and Reg1 by gastrin, and its subcellular distribution during gastrin stimulation. We used the gastric cancer cell line AGS, permanently transfected with the CCK2 receptor (AGS-GR to study gastrin stimulated expression of PAI-2 and Reg1 reporter constructs when PSMB1 was knocked down by siRNA. Binding of PSMB1 to the PAI-2 and Reg1 promoters was assessed by chromatin immunoprecipitation (ChIP assay. Subcellular distribution of PSMB1 was determined by immunocytochemistry and Western Blot. Gastrin robustly increased expression of PAI-2 and Reg1 in AGS-GR cells, but when PSMB1 was knocked down the responses were dramatically reduced. In ChIP assays, following immunoprecipitation of chromatin with a PSMB1 antibody there was a substantial enrichment of DNA from the gastrin responsive regions of the PAI-2 and Reg1 promoters compared with chromatin precipitated with control IgG. In AGS-GR cells stimulated with gastrin there was a significant increase in the ratio of nuclear:cytoplasmic PSMB1 over the same timescale as recruitment of PSMB1 to the PAI-2 and Reg1 promoters seen in ChIP assays. We conclude that PSMB1 is part of the transcriptional machinery required for gastrin stimulated expression of PAI-2 and Reg1, and that its change in subcellular distribution in response to gastrin is consistent with this role.

  13. Improved sensitivity of an acid sphingomyelinase activity assay using a C6:0 sphingomyelin substrate.

    Science.gov (United States)

    Chuang, Wei-Lien; Pacheco, Joshua; Cooper, Samantha; Kingsbury, Jonathan S; Hinds, John; Wolf, Pavlina; Oliva, Petra; Keutzer, Joan; Cox, Gerald F; Zhang, Kate

    2015-06-01

    Short-chain C6-sphingomyelin is an artificial substrate that was used in an acid sphingomyelinase activity assay for a pilot screening study of patients with Niemann-Pick disease types A and B. Using previously published multiplex and single assay conditions, normal acid sphingomyelinase activity levels (i.e. false negative results) were observed in two sisters with Niemann-Pick B who were compound heterozygotes for two missense mutations, p.C92W and p.P184L, in the SMPD1 gene. Increasing the sodium taurocholate detergent concentration in the assay buffer lowered the activity levels of these two patients into the range observed with other patients with clear separation from normal controls. PMID:26937397

  14. A modified ferrous oxidation-xylenol orange assay for lipoxygenase activity in rice grains.

    Science.gov (United States)

    Timabud, Tarinee; Sanitchon, Jirawat; Pongdontri, Paweena

    2013-12-01

    Ferrous oxidation-xylenol orange assay reagent was reformulated by using spectral analysis of ferric-xylenol orange complex to detect low concentrations of lipoxygenase rice grain products. Reducing the levels of ferrous sulphate and xylenol orange in the FOX reagent enabled the detection of low concentrations of hydroperoxy fatty acid derived from lipoxygenase activity in the range of 0.1-1.5 μM. Protein, substrate and time courses of the modified FOX assay were studied to determine lipoxygenase activity in rice grain. The assay was also applicable as a high throughput technique for comparisons of lipoxygenase activity from various rice varieties. This has important implications for rapid screening for low-lipoxygenase containing rice cultivars in rice breeding program and grain quality during storage. PMID:23870974

  15. In vitro and in vivo assays of protein kinase CK2 activity.

    Science.gov (United States)

    Prudent, Renaud; Sautel, Céline F; Moucadel, Virginie; Laudet, Béatrice; Filhol, Odile; Cochet, Claude

    2010-01-01

    Protein kinase CK2 (formerly casein kinase 2) is recognized as a central component in the control of the cellular homeostasis; however, much remains unknown regarding its regulation and its implication in cellular transformation and carcinogenesis. Moreover, study of CK2 function and regulation in a cellular context is complicated by the dynamic multisubunit architecture of this protein kinase. Although a number of robust techniques are available to assay CK2 activity in vitro, there is a demand for sensitive and specific assays to evaluate its activity in living cells. We hereby provide a detailed description of several assays for monitoring the CK2 activity and its subunit interaction in living cells. The guidelines presented herein should enable researchers in the field to establish strategies for cellular screenings of CK2 inhibitors. PMID:21050938

  16. Microfluorometric mithramycin assay for quantitating the effects of immunotoxicants on lymphocyte activation

    International Nuclear Information System (INIS)

    A semiautomated, microfluorometric assay has been developed for the detection of toxicant-induced changes in lymphocyte DNA content at standard intervals after mitogen activation. DNA is quantitated by solubilizing the cells and determining the fluorescence enhancement that results from formation of the highly specific mithramycin:DNA adduct. The limit of detection is 0.21 μg (30,000 resting cell equivalents) per microliter well. Correlation with the less sensitive, nonautomatable, diphenylamine DNA assay give a correlation coefficient r = 0.91. Prototype substances representative of true immunotoxicants (prostaglandin E2) and common interfering substances (thymidine at 14 M) have been tested. The latter substance produces false positive results in the standard [3H] thymidine assay. The mithramycin assay does not inappropriately detect this interfering substance. It has the characteristics of a highly specific, accurate technique of screening and quantitating immunotoxic drugs, agents, and mediators in patient sera and other complex biological fluids

  17. Measurement of biologically active interleukin-1 by a soluble receptor binding assay

    International Nuclear Information System (INIS)

    A soluble receptor binding assay has been developed for measuring human interleukin-1 alpha (IL-1 alpha), human IL-1 beta, and mouse IL-1 alpha. The assay is based on a competition between unlabeled IL-1 and 125I-labeled mouse recombinant IL-1 alpha for binding to soluble IL-1 receptor prepared from mouse EL-4 cells. The assay measures only biologically active IL-1 folded in its native conformation. The ratio of human IL-1 alpha to human IL-1 beta can be measured in the same sample by a pretreatment step which removes human IL-1 beta from samples prior to assay. This technique has been used to monitor the purification of recombinant IL-1, and may be utilized to specifically and accurately measure bioactive IL-1 in human serum and cell culture supernatants

  18. Creation of reversed phase high-performance liquid chromatographic technique to assay platelet-activating factor

    Institute of Scientific and Technical Information of China (English)

    杨云梅; 曹红翠; 徐哲荣; 陈晓明

    2004-01-01

    Objective: To establish a new assay for platelet-activating factor (PAF), to compare it with bio-assay; and to discuss its significance in some elderly people diseases such as cerebral infarction and coronary heart disease. Methods: To measure PAF levels in 100 controls, 23 elderly patients with cerebral infarction and 65 cases with coronary heart disease by reversed phase high-performance liquid chromatographic technique (rHPLC). Results:rHPLC is more convenient, sensitive,specific, and less confusing, compared with bio-assay. The level of plasma PAF in patients with cerebral infarction was higher than that in the controls (P<0.01), and in patients with coronary heart disease. Conclusion: Detection of PAF with rHPLC is more reliable and more accurate. The new assay has important significance in PAF research.

  19. Creation of reversed phase high-performance liquid chromatographic technique to assay platelet-activating factor

    Institute of Scientific and Technical Information of China (English)

    杨云梅; 曹红翠; 徐哲荣; 陈晓明

    2004-01-01

    Objective: To establish a new assay for platelet-activating factor (PAF), to compare it with bio-assay; and to discuss its significance in some elderly people diseases such as cerebral infarction and coronary heart disease. Methods: To measure PAF levels in 100 controls, 23 elderly patients with cerebral infarction and 65 cases with coronary heart disease by reversed phase high-performance liquid chromatographic technique (rHPLC). Results: rHPLC is more convenient, sensitive, specific, and less confusing, compared with bio-assay. The level of plasma PAF in patients with cerebral infarction was higher than that in the controls (P<0.01), and in patients with coronary heart disease. Conclusion: Detection of PAF with rHPLC is more reliable and more accurate. The new assay has important significance in PAF research.

  20. EBF contains a novel zinc coordination motif and multiple dimerization and transcriptional activation domains.

    OpenAIRE

    Hagman, J; Gutch, M J; H. Lin; Grosschedl, R.

    1995-01-01

    Early B cell factor (EBF) was identified and cloned as a transcription factor expressed specifically in B lymphocytes and adipocytes. This protein was also identified as olfactory factor 1 (Olf-1) in olfactory neurons. In this study, we analyzed the structural requirements for DNA binding, homodimerization and transcriptional activation by EBF. A carboxyl-terminal region, containing a repeat of alpha-helices related to the helix-loop-helix motif, is important for dimerization of EBF in soluti...

  1. Escherichia coli catabolite gene activator protein mutants defective in positive control of lac operon transcription.

    OpenAIRE

    Eschenlauer, A C; Reznikoff, W S

    1991-01-01

    We isolated three Escherichia coli catabolite gene activator protein mutants that are defective in the positive control of transcription initiation from the lac operon promoter region yet retain negative control of transcription from other promoters. One mutant has a substitution of valine for glutamate at residue 72, which lies in the cyclic AMP binding domain and contacts cyclic AMP. The other two mutants have substitutions of asparagine and cysteine for glycine 162, which lies in a surface...

  2. Activating transcription factor 3 is not up-regulated in hypospadias patients in Japan

    OpenAIRE

    Toshiaki Takahashi; Akihiro Shimotakahara; Katsumi Miyahara; Geoffrey J Lane; Atsuyuki Yamataka

    2013-01-01

    Background: The aetiology of hypospadias is largely uncharacterized. Some of the researchers have advocated that activating transcription factor 3 (ATF3), an oestrogen-responsive transcription factor, is up-regulated in patients with hypospadias. The purpose is to evaluate the universality of this fact; we studied the expression of ATF3 protein in prepuce tissue obtained from hypospadias and phimosis patients living in metropolitan Tokyo. Materials and Methods: Prepuce tissue was obtained fro...

  3. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts.

    OpenAIRE

    Keyse, S M; Applegate, L. A.; Tromvoukis, Y; Tyrrell, R M

    1990-01-01

    Treatment of cultured human skin fibroblasts with near-UV radiation, hydrogen peroxide, and sodium arsenite induces accumulation of heme oxygenase mRNA and protein. In this study, these treatments led to a dramatic increase in the rate of RNA transcription from the heme oxygenase gene but had no effect on mRNA stability. Transcriptional activation, therefore, appears to be the major mechanism of stimulation of expression of this gene by either oxidative stress or sulfydryl reagents.

  4. Oxidant stress leads to transcriptional activation of the human heme oxygenase gene in cultured skin fibroblasts

    International Nuclear Information System (INIS)

    Treatment of cultured human skin fibroblasts with near-UV radiation, hydrogen peroxide, and sodium arsenite induces accumulation of heme oxygenase mRNA and protein. In this study, these treatments led to a dramatic increase in the rate of RNA transcription from the heme oxygenase gene but had no effect on mRNA stability. Transcriptional activation, therefore, appears to be the major mechanism of stimulation of expression of this gene by either oxidative stress or sulfydryl reagents

  5. Using targeted transgenic reporter mice to study promoter-specific p53 transcriptional activity

    OpenAIRE

    Goh, Amanda M.; Lim, Chin Yan; Chiam, Poh Cheang; LI, LING; Mann, Michael B.; Mann, Karen M.; Menendez, Sergio; Lane, David P

    2012-01-01

    The p53 transcription factor modulates gene expression programs that induce cell cycle arrest, senescence, or apoptosis, thereby preventing tumorigenesis. However, the mechanisms by which these fates are selected are unclear. Our objective is to understand p53 target gene selection and, thus, enable its optimal manipulation for cancer therapy. We have generated targeted transgenic reporter mice in which EGFP expression is driven by p53 transcriptional activity at a response element from eithe...

  6. The central domain of Rhizobium leguminosarum DctD functions independently to activate transcription.

    OpenAIRE

    Huala, E; Stigter, J; Ausubel, F. M.

    1992-01-01

    Sigma 54-dependent transcriptional activators such as Escherichia coli NtrC, Rhizobium meliloti NifA, and Rhizobium leguminosarum DctD share similar central and carboxy-terminal domains but differ in the structure and function of their amino-terminal domains. We have deleted the amino-terminal and carboxy-terminal domains of R. leguminosarum DctD and have demonstrated that the central domain of DctD, like that of NifA, is transcriptionally competent.

  7. The myogenic regulatory gene Mef2 is a direct target for transcriptional activation by Twist during Drosophila myogenesis

    OpenAIRE

    Cripps, Richard M.; Black, Brian L.; Zhao, Bin; Lien, Ching-Ling; Schulz, Robert A.; Olson, Eric N.

    1998-01-01

    MEF2 is a MADS-box transcription factor required for muscle development in Drosophila. Here, we show that the bHLH transcription factor Twist directly regulates Mef2 expression in adult somatic muscle precursor cells via a 175-bp enhancer located 2245 bp upstream of the transcriptional start site. Within this element, a single evolutionarily conserved E box is essential for enhancer activity. Twist protein can bind to this E box to activate Mef2 transcription, and ectopic expression of twist ...

  8. DREAM controls the on/off switch of specific activity-dependent transcription pathways.

    Science.gov (United States)

    Mellström, Britt; Sahún, Ignasi; Ruiz-Nuño, Ana; Murtra, Patricia; Gomez-Villafuertes, Rosa; Savignac, Magali; Oliveros, Juan C; Gonzalez, Paz; Kastanauskaite, Asta; Knafo, Shira; Zhuo, Min; Higuera-Matas, Alejandro; Errington, Michael L; Maldonado, Rafael; DeFelipe, Javier; Jefferys, John G R; Bliss, Tim V P; Dierssen, Mara; Naranjo, Jose R

    2014-03-01

    Changes in nuclear Ca(2+) homeostasis activate specific gene expression programs and are central to the acquisition and storage of information in the brain. DREAM (downstream regulatory element antagonist modulator), also known as calsenilin/KChIP-3 (K(+) channel interacting protein 3), is a Ca(2+)-binding protein that binds DNA and represses transcription in a Ca(2+)-dependent manner. To study the function of DREAM in the brain, we used transgenic mice expressing a Ca(2+)-insensitive/CREB-independent dominant active mutant DREAM (daDREAM). Using genome-wide analysis, we show that DREAM regulates the expression of specific activity-dependent transcription factors in the hippocampus, including Npas4, Nr4a1, Mef2c, JunB, and c-Fos. Furthermore, DREAM regulates its own expression, establishing an autoinhibitory feedback loop to terminate activity-dependent transcription. Ablation of DREAM does not modify activity-dependent transcription because of gene compensation by the other KChIP family members. The expression of daDREAM in the forebrain resulted in a complex phenotype characterized by loss of recurrent inhibition and enhanced long-term potentiation (LTP) in the dentate gyrus and impaired learning and memory. Our results indicate that DREAM is a major master switch transcription factor that regulates the on/off status of specific activity-dependent gene expression programs that control synaptic plasticity, learning, and memory. PMID:24366545

  9. Cooperation between core promoter elements influences transcriptional activity in vivo.

    OpenAIRE

    Colgan, J.; Manley, J L

    1995-01-01

    Core promoters for RNA polymerase II frequently contain either (or both) of two consensus sequence elements, a TATA box and/or an initiator (Inr). Using test promoters consisting of prototypical TATA and/or Inr elements, together with binding sites for sequence-specific activators, we have analyzed the function of TATA and Inr elements in vivo. In the absence of activators, the TATA element was significantly more active than the Inr, and the combination of elements was only slightly more effe...

  10. Real-Time Reverse Transcription PCR Assay for Detection of Senecavirus A in Swine Vesicular Diagnostic Specimens.

    Directory of Open Access Journals (Sweden)

    Alexa J Bracht

    Full Text Available Senecavirus A (SV-A, formerly, Seneca Valley virus (SVV, has been detected in swine with vesicular lesions and is thought to be associated with swine idiopathic vesicular disease (SIVD, a vesicular disease syndrome that lacks a defined causative agent. The clinical presentation of SIVD resembles that of other more contagious and economically devastating vesicular diseases, such as foot-and-mouth disease (FMD, swine vesicular disease (SVD, and vesicular stomatitis (VS, that typically require immediate rule out diagnostics to lift restrictions on animal quarantine, movement, and trade. This study presents the development of a sensitive, SYBR Green RT-qPCR assay suitable for detection of SV-A in diagnostic swine specimens. After testing 50 pigs with clinical signs consistent with vesicular disease, 44 (88% were found to be positive for SV-A by RT-qPCR as compared to none from a negative cohort of 35 animals without vesicular disease, indicating that the assay is able to successfully detect the virus in an endemic population. SV-A RNA was also detectable at a low level in sera from a subset of pigs that presented with (18% or without (6% vesicular signs. In 2015, there has been an increase in the occurrence of SV-A in the US, and over 200 specimens submitted to our laboratory for vesicular investigation have tested positive for the virus using this method. SV-A RNA was detectable in all common types of vesicular specimens including swabs and tissue from hoof lesions, oral and snout epithelium, oral swabs, scabs, and internal organ tissues such as liver and lymph node. Genome sequencing analysis from recent virus isolates was performed to confirm target amplicon specificity and was aligned to previous isolates.

  11. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    International Nuclear Information System (INIS)

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease

  12. The mitochondrial fatty acid synthesis (mtFASII) pathway is capable of mediating nuclear-mitochondrial cross talk through the PPAR system of transcriptional activation

    Energy Technology Data Exchange (ETDEWEB)

    Parl, Angelika; Mitchell, Sabrina L.; Clay, Hayley B.; Reiss, Sara; Li, Zhen; Murdock, Deborah G., E-mail: deborah.murdock@vanderbilt.edu

    2013-11-15

    Highlights: •The function of the mitochondria fatty acid synthesis pathway is partially unknown. •Overexpression of the pathway causes transcriptional activation through PPARs. •Knock down of the pathway attenuates that activation. •The last enzyme in the pathway regulates its own transcription. •Products of the mtFASII pathway are able to drive nuclear transcription. -- Abstract: Mammalian cells contain two fatty acid synthesis pathways, the cytosolic FASI pathway, and the mitochondrial FASII pathway. The selection behind the conservation of the mitochondrial pathway is not completely understood, given the presence of the cytosolic FAS pathway. In this study, we show through heterologous gene reporter systems and PCR-based arrays that overexpression of MECR, the last step in the mtFASII pathway, causes modulation of gene expression through the PPAR pathway. Electromobility shift assays (EMSAs) demonstrate that overexpression of MECR causes increased binding of PPARs to DNA, while cell fractionation and imaging studies show that MECR remains localized to the mitochondria. Interestingly, knock down of the mtFASII pathway lessens the effect of MECR on this transcriptional modulation. Our data are most consistent with MECR-mediated transcriptional activation through products of the mtFASII pathway, although we cannot rule out MECR acting as a coactivator. Further investigation into the physiological relevance of this communication will be necessary to better understand some of the phenotypic consequences of deficits in this pathway observed in animal models and human disease.

  13. Improved sensitivity of an acid sphingomyelinase activity assay using a C6:0 sphingomyelin substrate

    OpenAIRE

    Wei-Lien Chuang; Joshua Pacheco; Samantha Cooper; Kingsbury, Jonathan S.; John Hinds; Pavlina Wolf; Petra Oliva; Joan Keutzer; Cox, Gerald F.; Kate Zhang

    2015-01-01

    Short-chain C6-sphingomyelin is an artificial substrate that was used in an acid sphingomyelinase activity assay for a pilot screening study of patients with Niemann–Pick disease types A and B. Using previously published multiplex and single assay conditions, normal acid sphingomyelinase activity levels (i.e. false negative results) were observed in two sisters with Niemann–Pick B who were compound heterozygotes for two missense mutations, p.C92W and p.P184L, in the SMPD1 gene. Increasing the...

  14. Zebrafish-based reporter gene assays reveal different estrogenic activities in river waters compared to a conventional human-derived assay.

    Science.gov (United States)

    Sonavane, Manoj; Creusot, Nicolas; Maillot-Maréchal, Emmanuelle; Péry, Alexandre; Brion, François; Aїt-Aïssa, Selim

    2016-04-15

    Endocrine disrupting chemicals (EDCs) act on the endocrine system through multiple mechanisms of action, among them interaction with estrogen receptors (ERs) is a well-identified key event in the initiation of adverse outcomes. As the most commonly used estrogen screening assays are either yeast- or human-cell based systems, the question of their (eco)toxicological relevance when assessing risks for aquatic species can be raised. The present study addresses the use of zebrafish (zf) derived reporter gene assays, both in vitro (i.e. zf liver cell lines stably expressing zfERα, zfERβ1 and zfERβ2 subtypes) and in vivo (i.e. transgenic cyp19a1b-GFP zf embryos), to assess estrogenic contaminants in river waters. By investigating 20 French river sites using passive sampling, high frequencies of in vitro zfER-mediated activities in water extracts were measured. Among the different in vitro assays, zfERβ2 assay was the most sensitive and responsive one, enabling the detection of active compounds at all investigated sites. In addition, comparison with a conventional human-based in vitro assay highlighted sites that were able to active zfERs but not human ER, suggesting the occurrence of zf-specific ER ligands. Furthermore, a significant in vivo estrogenic activity was detected at the most active sites in vitro, with a good accordance between estradiol equivalent (E2-EQ) concentrations derived from both in vitro and in vivo assays. Overall, this study shows the relevance and usefulness of such novel zebrafish-based assays as screening tools to monitor estrogenic activities in complex mixtures such as water extracts. It also supports their preferred use compared to human-based assays to assess the potential risks caused by endocrine disruptive chemicals for aquatic species such as fish. PMID:26851879

  15. The intracellular domain of teneurin-1 induces the activity of microphthalmia-associated transcription factor (MITF) by binding to transcriptional repressor HINT1.

    Science.gov (United States)

    Schöler, Jonas; Ferralli, Jacqueline; Thiry, Stéphane; Chiquet-Ehrismann, Ruth

    2015-03-27

    Teneurins are large type II transmembrane proteins that are necessary for the normal development of the CNS. Although many studies highlight the significance of teneurins, especially during development, there is only limited information known about the molecular mechanisms of function. Previous studies have shown that the N-terminal intracellular domain (ICD) of teneurins can be cleaved at the membrane and subsequently translocates to the nucleus, where it can influence gene transcription. Because teneurin ICDs do not contain any intrinsic DNA binding sequences, interaction partners are required to affect transcription. Here, we identified histidine triad nucleotide binding protein 1 (HINT1) as a human teneurin-1 ICD interaction partner in a yeast two-hybrid screen. This interaction was confirmed in human cells, where HINT1 is known to inhibit the transcription of target genes by directly binding to transcription factors at the promoter. In a whole transcriptome analysis of BS149 glioblastoma cells overexpressing the teneurin-1 ICD, several microphthalmia-associated transcription factor (MITF) target genes were found to be up-regulated. Directly comparing the transcriptomes of MITF versus TEN1-ICD-overexpressing BS149 cells revealed 42 co-regulated genes, including glycoprotein non-metastatic b (GPNMB). Using real-time quantitative PCR to detect endogenous GPNMB expression upon overexpression of MITF and HINT1 as well as promoter reporter assays using GPNMB promoter constructs, we could demonstrate that the teneurin-1 ICD binds HINT1, thus switching on MITF-dependent transcription of GPNMB. PMID:25648896

  16. Redefining the transcriptional regulatory dynamics of classically and alternatively activated macrophages by deepCAGE transcriptomics

    KAUST Repository

    Roy, S.

    2015-06-27

    Classically or alternatively activated macrophages (M1 and M2, respectively) play distinct and important roles for microbiocidal activity, regulation of inflammation and tissue homeostasis. Despite this, their transcriptional regulatory dynamics are poorly understood. Using promoter-level expression profiling by non-biased deepCAGE we have studied the transcriptional dynamics of classically and alternatively activated macrophages. Transcription factor (TF) binding motif activity analysis revealed four motifs, NFKB1_REL_RELA, IRF1,2, IRF7 and TBP that are commonly activated but have distinct activity dynamics in M1 and M2 activation. We observe matching changes in the expression profiles of the corresponding TFs and show that only a restricted set of TFs change expression. There is an overall drastic and transient up-regulation in M1 and a weaker and more sustainable up-regulation in M2. Novel TFs, such as Thap6, Maff, (M1) and Hivep1, Nfil3, Prdm1, (M2) among others, were suggested to be involved in the activation processes. Additionally, 52 (M1) and 67 (M2) novel differentially expressed genes and, for the first time, several differentially expressed long non-coding RNA (lncRNA) transcriptome markers were identified. In conclusion, the finding of novel motifs, TFs and protein-coding and lncRNA genes is an important step forward to fully understand the transcriptional machinery of macrophage activation.

  17. Transcriptional Activity of rRNA Genes in Barley Cells after Mutagenic Treatment.

    Science.gov (United States)

    Kwasniewska, Jolanta; Jaskowiak, Joanna

    2016-01-01

    In the present study, the combination of the micronucleus test with analysis of the activity of the rRNA genes in mutagen-treated Hordeum vulgare (barley) by maleic hydrazide (MH) cells was performed. Simultaneously fluorescence in situ hybridization (FISH) with 25S rDNA as probes and an analysis of the transcriptional activity of 35S rRNA genes with silver staining were performed. The results showed that transcriptional activity is always maintained in the micronuclei although they are eliminated during the next cell cycle. The analysis of the transcriptional activity was extended to barley nuclei. MH influenced the fusion of the nucleoli in barley nuclei. The silver staining enabled detection of the nuclear bodies which arose after MH treatment. The results confirmed the usefulness of cytogenetic techniques in the characterization of micronuclei. Similar analyses can be now extended to other abiotic stresses to study the response of plant cells to the environment. PMID:27257817

  18. Improved Activity Assay Method for Arginine Kinase Based on a Ternary Heteropolyacid System

    Institute of Scientific and Technical Information of China (English)

    陈宝玉; 郭勤; 郭智; 王希成

    2003-01-01

    This paper presents a new system for the activity assay of arginine kinase (AK), based on the spectrophotometric determination of an ascorbic acid-reduced blue ternary heteropolyacid composed of bismuth, molybdate and the released phosphate from N-phospho-L-arginine (PArg) formed in the forward catalysis reaction.The assay conditions, including the formulation of the phosphate determination reagent (PDR), the assay timing, and the linear activity range of the enzyme concentration, have been tested and optimized.For these conditions, the ternary heteropolyacid color is completely developed within 1 min and is stable for at least 15 min, with an absorbance maximum at 700 nm and a molar extinction coefficient of 15.97 (mmol/L)-1 · cm-1 for the phosphate.Standard curves for phosphate show a good linearity of 0.999.Compared with previous activity assay methods for AK, this system exhibits superior sensitivity, reproducibility, and adaptability to various conditions in enzymological studies.This method also reduces the assay time and avoids the use of some expensive instruments and reagents.

  19. Measurement of separase proteolytic activity in single living cells by a fluorogenic flow cytometry assay.

    Directory of Open Access Journals (Sweden)

    Wiltrud Haaß

    Full Text Available ESPL1/Separase, an endopeptidase, is required for centrosome duplication and separation of sister-chromatides in anaphase of mitosis. Overexpression and deregulated proteolytic activity of Separase as frequently observed in human cancers is associated with the occurrence of supernumerary centrosomes, chromosomal missegregation and aneuploidy. Recently, we have hypothesized that increased Separase proteolytic activity in a small subpopulation of tumor cells may serve as driver of tumor heterogeneity and clonal evolution in chronic myeloid leukemia (CML. Currently, there is no quantitative assay to measure Separase activity levels in single cells. Therefore, we have designed a flow cytometry-based assay that utilizes a Cy5- and rhodamine 110 (Rh110-biconjugated Rad21 cleavage site peptide ([Cy5-D-R-E-I-M-R]2-Rh110 as smart probe and intracellular substrate for detection of Separase enzyme activity in living cells. As measured by Cy5 fluorescence the cellular uptake of the fluorogenic peptide was fast and reached saturation after 210 min of incubation in human histiocytic lymphoma U937 cells. Separase activity was recorded as the intensity of Rh110 fluorescence released after intracellular peptide cleavage providing a linear signal gain within a 90-180 min time slot. Compared to conventional cell extract-based methods the flow cytometric assay delivers equivalent results but is more reliable, bypasses the problem of vague loading controls and unspecific proteolysis associated with whole cell extracts. Especially suited for the investigaton of blood- and bone marrow-derived hematopoietic cells the flow cytometric Separase assay allows generation of Separase activity profiles that tell about the number of Separase positive cells within a sample i.e. cells that currently progress through mitosis and about the range of intercellular variation in Separase activity levels within a cell population. The assay was used to quantify Separase proteolytic

  20. A protein chip membrane-capture assay for botulinum neurotoxin activity

    International Nuclear Information System (INIS)

    Botulinum neurotoxins A and B (BoNT/A and B) are neuromuscular blocking agents which inhibit neurotransmission by cleaving the intra-cellular presynaptic SNARE proteins SNAP-25 and VAMP2, localized respectively in plasma membrane and synaptic vesicles. These neurotoxins are both dangerous pathogens and powerful therapeutic agents with numerous clinical and cosmetic applications. Consequently there is a need for in vitro assays of their biological activity to screen for potential inhibitors and to replace the widely used in vivo mouse assay. Surface plasmon resonance (SPR) was used to measure membrane vesicle capture by antibodies against SNAP-25 and VAMP2. Substrate cleavage by BoNTs modified capture providing a method to assay toxin activity. Firstly using synaptic vesicles as a substrate, a comparison of the EC50s for BoNT/B obtained by SPR, ELISA or flow cytometry indicated similar sensitivity although SPR assays were more rapid. Sonication of brain or neuronal cultures generated plasma membrane fragments with accessible intra-cellular epitopes adapted to measurement of BoNT/A activity. SPR responses were proportional to antigen concentration permitting detection of as little as 4 pM SNAP-25 in crude lysates. BoNT/A activity was assayed using monoclonal antibodies that specifically recognize a SNAP-25 epitope generated by the proteolytic action of the toxin. Incubation of intact primary cultured neurons with BoNT/A yielded an EC50 of 0.5 pM. The SPR biosensor method was sensitive enough to monitor BoNT/A and B activity in cells cultured in a 96-well format providing an alternative to experimental animals for toxicological assays

  1. An activator of transcription regulates phage TP901-1 late gene expression

    DEFF Research Database (Denmark)

    Brøndsted, Lone; Pedersen, Margit; Hammer, Karin

    2001-01-01

    A promoter active in the late phase of the lytic cycle of lactococcal bacteriophage TP901-1 has been identified. The promoter is tightly regulated and requires the product of the phage TP901-1 orf29 for activity. A deletion analysis of the late promoter region showed that a fragment as small as 99...... activate transcription of the promoter. Several lactococcal bacteriophages encode ORF29 homologous proteins, indicating that late transcription may be controlled by a similar mechanism in these phages. With the identification of this novel regulator, our results suggest that within the P335 group of...

  2. PU.1 can participate in an active enhancer complex without its transcriptional activation domain

    OpenAIRE

    Pongubala, Jagan M. R.; Atchison, Michael L.

    1997-01-01

    The transcription factor PU.1 is necessary for the development of multiple hematopoietic lineages and contributes to the activity of the immunoglobulin κ 3′ enhancer. A variety of proteins bind to the 3′ enhancer (PU.1, PIP, ATF1, CREM, c-Fos, c-Jun, and E2A), but the mechanism of 3′-enhancer activity and the proteins necessary for its activity are presently unclear. We show here that PU.1 participates with other transcription factors in forming a higher-order complex with 3′-enhancer DNA seq...

  3. Fluorescence-quenching-based homogeneous caspase-3 activity assay using photon upconversion

    Energy Technology Data Exchange (ETDEWEB)

    Vuojola, Johanna, E-mail: johanna.vuojola@utu.fi [Department of Biotechnology, University of Turku, Tykistoekatu 6A, FI-20520 Turku (Finland); Riuttamaeki, Terhi; Kulta, Essi; Arppe, Riikka; Soukka, Tero [Department of Biotechnology, University of Turku, Tykistoekatu 6A, FI-20520 Turku (Finland)

    2012-05-06

    Highlights: Black-Right-Pointing-Pointer We demonstrate the use of photon upconversion in a caspase-3 activity assay. Black-Right-Pointing-Pointer The separation-free assay uses an internally quenched substrate peptide. Black-Right-Pointing-Pointer UCPs enable simple instrumentation and total elimination of autofluorescence. Black-Right-Pointing-Pointer A sensitive assay with high signal-to-background ratios was achieved. Black-Right-Pointing-Pointer Suitable for high-throughput screening through miniaturization and white plates. - Abstract: Caspase proteases are key mediators in apoptosis and thus of great interest in pharmaceutical industry. Enzyme-activity assays are commonly employed in the screening of protease inhibitors that are potential drug candidates. Conventional homogeneous fluorescence-based assays are susceptible to autofluorescence originating from biological material. This background autofluorescence can be eliminated by using upconverting phosphors (UCPs) that emit visible light upon excitation at near-infrared. In the assay energy was transferred from a UCP-donor to a conventional fluorophore acceptor that resided at one end of a caspase-3-specific substrate peptide. Attached to the other end was a quencher molecule that was used to attenuate the acceptor emission through intramolecular energy transfer in an intact peptide. In non-inhibitory conditions the enzyme reaction separated the fluorophore from the quencher and the emission of the fluorophore was recovered. The method was applied for the detection and characterization of a known caspase-3 inhibitor Z-DEVD-FMK, and the assay gave IC{sub 50} values of approximately 13 nM for this inhibitor. We have demonstrated the applicability of UCPs on a fluorescence-quenching-based homogeneous enzyme-activity assay for the detection of caspase-3 inhibitors. The use of near-infrared excitable UCPs enables inexpensive instrumentation and total elimination of autofluorescence, while the use of an

  4. A novel RT-qPCR assay for quantification of the MLL-MLLT3 fusion transcript in acute myeloid leukaemia

    DEFF Research Database (Denmark)

    Abildgaard, Lotte; Ommen, Hans Beier; Lausen, Birgitte Frederiksen;

    2013-01-01

    heterogeneity of translocation break points, the MLL-MLLT3 fusion gene is a challenging target. We hypothesised that MRD monitoring using MLL-MLLT3 as a RT-qPCR marker is feasible in the majority of patients with t(9;11)-positive AML. METHODS: Using a locked nucleic acid probe, we developed a sensitive RT......-qPCR assay for quantification of the most common break point region of the MLL-MLLT3 fusion gene. Five paediatric patients with t(9;11)-positive AML were monitored using the MLL-MLLT3 assay. RESULTS: A total of 43 bone marrow (BM) and 52 Peripheral blood (PB) samples were collected from diagnosis until......OBJECTIVES: Patients with acute myeloid leukaemia (AML) of the monocytic lineage often lack molecular markers for minimal residual disease (MRD) monitoring. The MLL-MLLT3 fusion transcript found in patients with AML harbouring t(9;11) is amenable to RT-qPCR quantification but because of the...

  5. Activity, assay and target data curation and quality in the ChEMBL database.

    Science.gov (United States)

    Papadatos, George; Gaulton, Anna; Hersey, Anne; Overington, John P

    2015-09-01

    The emergence of a number of publicly available bioactivity databases, such as ChEMBL, PubChem BioAssay and BindingDB, has raised awareness about the topics of data curation, quality and integrity. Here we provide an overview and discussion of the current and future approaches to activity, assay and target data curation of the ChEMBL database. This curation process involves several manual and automated steps and aims to: (1) maximise data accessibility and comparability; (2) improve data integrity and flag outliers, ambiguities and potential errors; and (3) add further curated annotations and mappings thus increasing the usefulness and accuracy of the ChEMBL data for all users and modellers in particular. Issues related to activity, assay and target data curation and integrity along with their potential impact for users of the data are discussed, alongside robust selection and filter strategies in order to avoid or minimise these, depending on the desired application. PMID:26201396

  6. The transcriptional activator LdtR from 'Candidatus Liberibacter asiaticus' mediates osmotic stress tolerance.

    Science.gov (United States)

    Pagliai, Fernando A; Gardner, Christopher L; Bojilova, Lora; Sarnegrim, Amanda; Tamayo, Cheila; Potts, Anastasia H; Teplitski, Max; Folimonova, Svetlana Y; Gonzalez, Claudio F; Lorca, Graciela L

    2014-04-01

    The causal agent of Huanglongbing disease, 'Candidatus Liberibacter asiaticus', is a non-culturable, gram negative, phloem-limited α-proteobacterium. Current methods to control the spread of this disease are still limited to the removal and destruction of infected trees. In this study, we identified and characterized a regulon from 'Ca. L. asiaticus' involved in cell wall remodeling, that contains a member of the MarR family of transcriptional regulators (ldtR), and a predicted L,D-transpeptidase (ldtP). In Sinorhizobium meliloti, mutation of ldtR resulted in morphological changes (shortened rod-type phenotype) and reduced tolerance to osmotic stress. A biochemical approach was taken to identify small molecules that modulate LdtR activity. The LdtR ligands identified by thermal shift assays were validated using DNA binding methods. The biological impact of LdtR inactivation by the small molecules was then examined in Sinorhizobium meliloti and Liberibacter crescens, where a shortened-rod phenotype was induced by growth in presence of the ligands. A new method was also developed to examine the effects of small molecules on the viability of 'Ca. Liberibacter asiaticus', using shoots from HLB-infected orange trees. Decreased expression of ldtRLas and ldtPLas was observed in samples taken from HLB-infected shoots after 6 h of incubation with the LdtR ligands. These results provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease. PMID:24763829

  7. The transcriptional activator LdtR from 'Candidatus Liberibacter asiaticus' mediates osmotic stress tolerance.

    Directory of Open Access Journals (Sweden)

    Fernando A Pagliai

    2014-04-01

    Full Text Available The causal agent of Huanglongbing disease, 'Candidatus Liberibacter asiaticus', is a non-culturable, gram negative, phloem-limited α-proteobacterium. Current methods to control the spread of this disease are still limited to the removal and destruction of infected trees. In this study, we identified and characterized a regulon from 'Ca. L. asiaticus' involved in cell wall remodeling, that contains a member of the MarR family of transcriptional regulators (ldtR, and a predicted L,D-transpeptidase (ldtP. In Sinorhizobium meliloti, mutation of ldtR resulted in morphological changes (shortened rod-type phenotype and reduced tolerance to osmotic stress. A biochemical approach was taken to identify small molecules that modulate LdtR activity. The LdtR ligands identified by thermal shift assays were validated using DNA binding methods. The biological impact of LdtR inactivation by the small molecules was then examined in Sinorhizobium meliloti and Liberibacter crescens, where a shortened-rod phenotype was induced by growth in presence of the ligands. A new method was also developed to examine the effects of small molecules on the viability of 'Ca. Liberibacter asiaticus', using shoots from HLB-infected orange trees. Decreased expression of ldtRLas and ldtPLas was observed in samples taken from HLB-infected shoots after 6 h of incubation with the LdtR ligands. These results provide strong proof of concept for the use of small molecules that target LdtR, as a potential treatment option for Huanglongbing disease.

  8. Protease footprinting reveals a surface on transcription factor TFIIB that serves as an interface for activators and coactivators.

    OpenAIRE

    Hori, R; Pyo, S.; Carey, M

    1995-01-01

    Transcriptional stimulation by the model activator GAL4-VP16 (a chimeric protein consisting of the DNA-binding domain of the yeast activator GAL4 and the acidic activation domain of the herpes simplex virus protein VP16) involves a series of poorly understood protein-protein interactions between the VP16 activation domain and components of the RNA polymerase II general transcription machinery. One of these interactions is the VP16-mediated binding and recruitment of transcription factor TFIIB...

  9. Transcriptional regulation of the presenilin-1 gene controls gamma-secretase activity.

    Science.gov (United States)

    Lee, Sebum; Das, Hriday K

    2010-01-01

    Inhibition of basal JNK activity by JNK inhibitor SP600125 or JNK1siRNA repressed presenilin-1 (PS1) expression in SK-N-SH cells by augmenting the level of p53, a repressor of the PS1 gene (1). We now showed that repression of PS1 transcription by JNK inhibitor SP600125 inhibited gamma-secretase mediated processing of amyloid precursor protein (APP) resulting in the accumulation of C99 fragment and the reduction of secreted Abeta40 level without altering the expression of nicastrin (NCT). Co-treatment of cells with SP600125 and p53 inhibitor, pifithrin-alpha, partially nullified the suppressive effects of SP610025 on PS1 expression and secreted Abeta40 level. Suppression of JNK1 by JNK1siRNA also decreased Abeta40 level. Furthermore, overexpression of the repressors p53, ZNF237 and CHD3 of the PS1 gene also suppressed the processing of APP through repression of PS1 transcription by deacetylation of histone at the PS1 promoter. Transcriptional activator Ets2 increased PS1 protein and secreted Abeta40 levels without affecting the expression of NCT by activating PS1 transcription via hyper-acetylation of histone at the PS1 promoter. Therefore, regulation of PS1 transcription modulates gamma-secretase activity. PMID:20036849

  10. Elk3 from hamster--a ternary complex factor with strong transcriptional repressor activity.

    Science.gov (United States)

    Hjortoe, Gertrud Malene; Weilguny, Dietmar; Willumsen, Berthe Marie

    2005-01-01

    Elk3 belongs to the Ets family of transcription factors, which are regulated by the Ras/mitogen-activated protein kinase-signaling pathway. In the absence of Ras, this protein is a strong inhibitor of transcription and may be directly involved in regulation of growth by downregulating the transcription of genes that are activated during entry into G1. We have isolated the Cricetulus griseus Elk3 gene from the Chinese hamster ovary (CHO) cell line and investigated the transcriptional potential of this factor. Transient transfections revealed that, in addition to its regulation of the c-fos promoter, Elk3 from CHO cells seems to inhibit other promoters controlling expression of proteins involved in G1/S phase progression; Cyclin D1 and DHFR. As has been described for the Elk3 homologs Net (Mouse) and Sap-2 (Human), the results of the present study further indicate that hamster Elk3 is a target of the Ras-Raf-MAPK pathway, and cotransfections with constitutively active H-ras relieves its negative transcriptional activity. No cells stably expressing exogenous Elk3 could be obtained, possibly due to an unspecified toxic or growth retarding effect. These findings support a possible role for Elk3 in growth regulation and reveal a high degree of homology for this protein across species. PMID:15684718

  11. Mutations that alter the ability of the Escherichia coli cyclic AMP receptor protein to activate transcription.

    Science.gov (United States)

    Bell, A; Gaston, K; Williams, R; Chapman, K; Kolb, A; Buc, H; Minchin, S; Williams, J; Busby, S

    1990-12-25

    The effects of a number of mutations in the E. coli cyclic AMP receptor protein (CRP) have been determined by monitoring the in vivo expression and in vitro open complex formation at two semi-synthetic promoters that are totally CRP-dependent. At one promoter the CRP-binding site is centered around 41.5 base pairs upstream from the transcription start whilst at the other promoter it is 61.5 base pairs upstream. The CRP mutation E171K reduces expression from both promoters whilst H159L renders CRP totally inactive: neither mutation stops CRP binding at either promoter. The mutations K52N and K52Q reverse the effect of H159L and 'reeducate' CRP to activate transcription. CRP carrying both H159L and K52N activates transcription from the promoter with the CRP site at -41.5 better than wild type CRP. In sharp contrast, this doubly changed CRP is totally inactive with respect to the activation of transcription from the promoter carrying the CRP site at -61.5. Our results suggest that CRP can use different contacts and/or conformations during transcription activation at promoters with different architectures. PMID:2259621

  12. MAML1 enhances the transcriptional activity of Runx2 and plays a role in bone development.

    Directory of Open Access Journals (Sweden)

    Takashi Watanabe

    Full Text Available Mastermind-like 1 (MAML1 is a transcriptional co-activator in the Notch signaling pathway. Recently, however, several reports revealed novel and unique roles for MAML1 that are independent of the Notch signaling pathway. We found that MAML1 enhances the transcriptional activity of runt-related transcription factor 2 (Runx2, a transcription factor essential for osteoblastic differentiation and chondrocyte proliferation and maturation. MAML1 significantly enhanced the Runx2-mediated transcription of the p6OSE2-Luc reporter, in which luciferase expression was controlled by six copies of the osteoblast specific element 2 (OSE2 from the Runx2-regulated osteocalcin gene promoter. Interestingly, a deletion mutant of MAML1 lacking the N-terminal Notch-binding domain also enhanced Runx2-mediated transcription. Moreover, inhibition of Notch signaling did not affect the action of MAML1 on Runx2, suggesting that the activation of Runx2 by MAML1 may be caused in a Notch-independent manner. Overexpression of MAML1 transiently enhanced the Runx2-mediated expression of alkaline phosphatase, an early marker of osteoblast differentiation, in the murine pluripotent mesenchymal cell line C3H10T1/2. MAML1(-/- embryos at embryonic day 16.5 (E16.5 had shorter bone lengths than wild-type embryos. The area of primary spongiosa of the femoral diaphysis was narrowed. At E14.5, extended zone of collagen type II alpha 1 (Col2a1 and Sox9 expression, markers of chondrocyte differentiation, and decreased zone of collagen type X alpha 1 (Col10a1 expression, a marker of hypertrophic chondrocyte, were observed. These observations suggest that chondrocyte maturation was impaired in MAML1(-/- mice. MAML1 enhances the transcriptional activity of Runx2 and plays a role in bone development.

  13. Antioxidant activity evaluation by physiologically relevant assays based on haemoglobin peroxidase activity and cytochrome c-induced oxidation of liposomes.

    Science.gov (United States)

    Mot, Augustin C; Bischin, Cristina; Muresan, Bianca; Parvu, Marcel; Damian, Grigore; Vlase, Laurian; Silaghi-Dumitrescu, Radu

    2016-06-01

    Two new protocols for exploring antioxidant-related chemical composition and reactivity are described: one based on a chronometric variation of a haemoglobin ascorbate peroxidase assay and one based on cytochrome c-induced oxidation of lecithin liposomes. Detailed accounts are given on their design, application, critical correlations with established methods and mechanisms. These assays are proposed to be physiologically relevant and bring new information regarding a real sample, both qualitative and quantitative. The well-known assays used for evaluation of antioxidant (re)activity are revisited and compared with these new methods. Extracts of the Hedera helix L. are examined as test case, with focus on seasonal variation and on leaf, fruit and flower with respect to chromatographic, spectroscopic and reactivity properties. According to the set of assays performed, winter are the most antioxidant, followed by summer leaves, and then by flowers and fruits. PMID:26208459

  14. Activation of Signal Transducer and Activator of Transcription 5 (STAT5) in Splenocyte Proliferation of Asthma Mice Induced by Ovalbumin

    Institute of Scientific and Technical Information of China (English)

    GuopingLi; ZhigangLiu; PeixingRan; JingQiu; NanshanZhong

    2004-01-01

    To investigate the role of signal transducer and transcriptional activator 5 (STAT5) activated in ovalbumin (OVA)-induced splenocyte proliferation of asthma mice, an asthma mouse model was set up by intraperitoneal injection and aspiration of OVA with nebulizer. The proliferation of splenocytes isolated from the asthma mice was detected by [3H] thymidine incorporation. The phosphorytation of STAT5 was examined by Western blotting and STAT5-DNA binding was measured by electrophoretic mobility shift assay (EMSA). OVA could pronouncedly induce the splenocyte proliferation of asthma mice in a dose-dependent manner compared with control groups. Phosphorylation of STAT5 and STAT5-DNA binding were observed in splenocytes from asthma mice induced by OVA at 1 h and 3 h. These results indicated that STAT5 signal pathway played an important role in lymphocyte proliferation of asthma mice induced by OVA. Cellular & Molecular Immunology.2004;1(6):471-474.

  15. Selective activation of tumor growth-promoting Ca2+ channel MS4A12 in colon cancer by caudal type homeobox transcription factor CDX2

    Directory of Open Access Journals (Sweden)

    Huber Christoph

    2009-09-01

    Full Text Available Abstract Colon cancer-associated MS4A12 is a novel colon-specific component of store-operated Ca2+ (SOC entry sensitizing cells for epidermal growth factor (EGF-mediated effects on proliferation and chemotaxis. In the present study, we investigated regulation of the MS4A12 promoter to understand the mechanisms responsible for strict transcriptional restriction of this gene to the colonic epithelial cell lineage. DNA-binding assays and luciferase reporter assays showed that MS4A12 promoter activity is governed by a single CDX homeobox transcription factor binding element. RNA interference (RNAi-mediated silencing of intestine-specific transcription factors CDX1 and CDX2 and chromatin immunoprecipitation (ChIP in LoVo and SW48 colon cancer cells revealed that MS4A12 transcript and protein expression is essentially dependent on the presence of endogenous CDX2. In summary, our findings provide a rationale for colon-specific expression of MS4A12. Moreover, this is the first report establishing CDX2 as transactivator of tumor growth-promoting gene expression in colon cancer, adding to untangle the complex and conflicting biological functions of CDX2 in colon cancer and supporting MS4A12 as important factor for normal colonic development as well as for the biology and treatment of colon cancer.

  16. In vitro peptide cleavage assay for detection of Botulinum Neurotoxin-A activity in food

    Science.gov (United States)

    The gold standard assay for measuring the activity and typing of Clostridium botulinum neurotoxins is the mouse bioassay. The mouse bioassay is sensitive, robust and does not require specialized equipment. However, the mouse bioassay is slow, not practical for many settings and results in the death ...

  17. Krüppel-like factor 4, a novel transcription factor regulates microglial activation and subsequent neuroinflammation

    Directory of Open Access Journals (Sweden)

    Das Sulagna

    2010-10-01

    Full Text Available Abstract Background Activation of microglia, the resident macrophages of the central nervous system (CNS, is the hallmark of neuroinflammation in neurodegenerative diseases and other pathological conditions associated with CNS infection. The activation of microglia is often associated with bystander neuronal death. Nuclear factor-κB (NF-κB is one of the important transcription factors known to be associated with microglial activation which upregulates the expression of inducible nitric oxide synthase (iNOS, cyclooxygenase-2 (Cox-2 and other pro-inflammatory cytokines. Recent studies have focused on the role of Krüppel-like factor 4 (Klf4, one of the zinc-finger transcription factors, in mediating inflammation. However, these studies were limited to peripheral system and its role in CNS is not understood. Our studies focused on the possible role of Klf4 in mediating CNS inflammation. Methods For in vitro studies, mouse microglial BV-2 cell lines were treated with 500 ng/ml Salmonella enterica lipopolysacchride (LPS. Brain tissues were isolated from BALB/c mice administered with 5 mg/kg body weight of LPS. Expressions of Klf4, Cox-2, iNOS and pNF-κB were evaluated using western blotting, quantitative real time PCR, and reverse transcriptase polymerase chain reactions (RT-PCRs. Klf4 knockdown was carried out using SiRNA specific for Klf4 mRNA and luciferase assays and electromobility shift assay (EMSA were performed to study the interaction of Klf4 to iNOS promoter elements in vitro. Co-immunoprecipitation of Klf4 and pNF-κB was done in order to study a possible interaction between the two transcription factors. Results LPS stimulation increased Klf4 expression in microglial cells in a time- and dose-dependent manner. Knockdown of Klf4 resulted in decreased levels of the pro-inflammatory cytokines TNF-α, MCP-1 and IL-6, along with a significant decrease in iNOS and Cox-2 expression. NO production also decreased as a result of Klf4 knockdown

  18. PEA3/ETV4-related transcription factors coupled with active ERK signalling are associated with poor prognosis in gastric adenocarcinoma

    LENUS (Irish Health Repository)

    Keld, R

    2011-06-28

    Background: Transcription factors often play important roles in tumourigenesis. Members of the PEA3 subfamily of ETS-domain transcription factors fulfil such a role and have been associated with tumour metastasis in several different cancers. Moreover, the activity of the PEA3 subfamily transcription factors is potentiated by Ras-ERK pathway signalling, which is itself often deregulated in tumour cells.\\r\

  19. Inhibition of Phosphatase Activity Follows Decline in Sulfatase Activity and Leads to Transcriptional Effects through Sustained Phosphorylation of Transcription Factor MITF.

    Science.gov (United States)

    Bhattacharyya, Sumit; Feferman, Leo; Tobacman, Joanne K

    2016-01-01

    Arylsulfatase B (B-acetylgalactosamine 4-sulfatase; ARSB) is the enzyme that removes 4-sulfate groups from the non-reducing end of the glycosaminoglycans chondroitin 4-sulfate and dermatan sulfate. Decline in ARSB has been shown in malignant prostate, colonic, and mammary cells and tissues, and decline in ARSB leads to transcriptional events mediated by galectin-3 with AP-1 and Sp1. Increased mRNA expression of GPNMB (transmembrane glycoprotein NMB) in HepG2 cells and in hepatic tissue from ARSB-deficient mice followed decline in expression of ARSB and was mediated by the microphthalmia-associated transcription factor (MITF), but was unaffected by silencing galectin-3. Since GPNMB is increased in multiple malignancies, studies were performed to determine how decline in ARSB increased GPNMB expression. The mechanism by which decline in ARSB increased nuclear phospho-MITF was due to reduced activity of SHP2, a protein tyrosine phosphatase with Src homology (SH2) domains that regulates multiple cellular processes. SHP2 activity declined due to increased binding with chondroitin 4-sulfate when ARSB was reduced. When SHP2 activity was inhibited, phosphorylations of p38 mitogen-associated phosphokinase (MAPK) and of MITF increased, leading to GPNMB promoter activation. A dominant negative SHP2 construct, the SHP2 inhibitor PHSP1, and silencing of ARSB increased phospho-p38, nuclear MITF, and GPNMB. In contrast, constitutively active SHP2 and overexpression of ARSB inhibited GPNMB expression. The interaction between chondroitin 4-sulfate and SHP2 is a novel intersection between sulfation and phosphorylation, by which decline in ARSB and increased chondroitin 4-sulfation can inhibit SHP2, thereby regulating downstream tyrosine phosphorylations by sustained phosphorylations with associated activation of signaling and transcriptional events. PMID:27078017

  20. Berberine Suppresses Adipocyte Differentiation via Decreasing CREB Transcriptional Activity

    OpenAIRE

    Juan Zhang; Hongju Tang; Ruyuan Deng; Ning Wang; Yuqing Zhang; Yao Wang; Yun Liu; Fengying Li; Xiao Wang; Libin Zhou

    2015-01-01

    Berberine, one of the major constituents of Chinese herb Rhizoma coptidis, has been demonstrated to lower blood glucose, blood lipid, and body weight in patients with type 2 diabetes mellitus. The anti-obesity effect of berberine has been attributed to its anti-adipogenic activity. However, the underlying molecular mechanism remains largely unknown. In the present study, we found that berberine significantly suppressed the expressions of CCAAT/enhancer-binding protein (C/EBP)α, peroxisome pro...

  1. Alterations in leukocyte transcriptional control pathway activity associated with major depressive disorder and antidepressant treatment.

    Science.gov (United States)

    Mellon, S H; Wolkowitz, O M; Schonemann, M D; Epel, E S; Rosser, R; Burke, H B; Mahan, L; Reus, V I; Stamatiou, D; Liew, C-C; Cole, S W

    2016-01-01

    Major depressive disorder (MDD) is associated with a significantly elevated risk of developing serious medical illnesses such as cardiovascular disease, immune impairments, infection, dementia and premature death. Previous work has demonstrated immune dysregulation in subjects with MDD. Using genome-wide transcriptional profiling and promoter-based bioinformatic strategies, we assessed leukocyte transcription factor (TF) activity in leukocytes from 20 unmedicated MDD subjects versus 20 age-, sex- and ethnicity-matched healthy controls, before initiation of antidepressant therapy, and in 17 of the MDD subjects after 8 weeks of sertraline treatment. In leukocytes from unmedicated MDD subjects, bioinformatic analysis of transcription control pathway activity indicated an increased transcriptional activity of cAMP response element-binding/activating TF (CREB/ATF) and increased activity of TFs associated with cellular responses to oxidative stress (nuclear factor erythroid-derived 2-like 2, NFE2l2 or NRF2). Eight weeks of antidepressant therapy was associated with significant reductions in Hamilton Depression Rating Scale scores and reduced activity of NRF2, but not in CREB/ATF activity. Several other transcriptional regulation pathways, including the glucocorticoid receptor (GR), nuclear factor kappa-B cells (NF-κB), early growth response proteins 1-4 (EGR1-4) and interferon-responsive TFs, showed either no significant differences as a function of disease or treatment, or activities that were opposite to those previously hypothesized to be involved in the etiology of MDD or effective treatment. Our results suggest that CREB/ATF and NRF2 signaling may contribute to MDD by activating immune cell transcriptome dynamics that ultimately influence central nervous system (CNS) motivational and affective processes via circulating mediators. PMID:27219347

  2. Wnt-induced transcriptional activation is exclusively mediated by TCF/LEF

    OpenAIRE

    Schuijers, Jurian; Mokry, Michal; Hatzis, Pantelis; Cuppen, Edwin; Clevers, Hans

    2014-01-01

    Active canonical Wnt signaling results in recruitment of β-catenin to DNA by TCF/LEF family members, leading to transcriptional activation of TCF target genes. However, additional transcription factors have been suggested to recruit β-catenin and tether it to DNA. Here, we describe the genome-wide pattern of β-catenin DNA binding in murine intestinal epithelium, Wnt-responsive colorectal cancer (CRC) cells and HEK293 embryonic kidney cells. We identify two classes of β-catenin binding sites. ...

  3. Silver nanoclusters-based fluorescence assay of protein kinase activity and inhibition.

    Science.gov (United States)

    Shen, Congcong; Xia, Xiaodong; Hu, Shengqiang; Yang, Minghui; Wang, Jianxiu

    2015-01-01

    A simple and sensitive fluorescence method for monitoring the activity and inhibition of protein kinase (PKA) has been developed using polycytosine oligonucleotide (dC12)-templated silver nanoclusters (Ag NCs). Adenosine-5'-triphosphate (ATP) was found to enhance the fluorescence of Ag NCs, while the hydrolysis of ATP to adenosine diphosphate (ADP) by PKA decreased the fluorescence of Ag NCs. Compared to the existing methods for kinase activity assay, the developed method does not involve phosphorylation of the substrate peptides, which significantly simplifies the detection procedures. The method exhibits high sensitivity, good selectivity, and wide linear range toward PKA detection. The inhibition effect of kinase inhibitor H-89 on the activity of PKA was also studied. The sensing protocol was also applied to the assay of drug-stimulated activation of PKA in HeLa cell lysates. PMID:25517425

  4. Data set of optimal parameters for colorimetric red assay of epoxide hydrolase activity.

    Science.gov (United States)

    de Oliveira, Gabriel Stephani; Adriani, Patricia Pereira; Borges, Flavia Garcia; Lopes, Adriana Rios; Campana, Patricia T; Chambergo, Felipe S

    2016-09-01

    The data presented in this article are related to the research article entitled "Epoxide hydrolase of Trichoderma reesei: Biochemical properties and conformational characterization" [1]. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to the corresponding vicinal diols. This article describes the optimal parameters for the colorimetric red assay to determine the enzymatic activity, with an emphasis on the characterization of the kinetic parameters, pH optimum and thermal stability of this enzyme. The effects of reagents that are not resistant to oxidation by sodium periodate on the reactions can generate false positives and interfere with the final results of the red assay. PMID:27366781

  5. Optimized DPPH assay in a detergent-based buffer system for measuring antioxidant activity of proteins

    OpenAIRE

    Nicklisch, Sascha C.T.; Herbert Waite, J.

    2014-01-01

    © 2014 The Authors. (Graph Presented) The free radical method using 1,1-diphenyl-2-picryl-hydrazyl (DPPH) is a well established assay for the in vitro determination of antioxidant activity in food and biological extracts. The standard DPPH assay uses methanol or ethanol as solvents, or buffered alcoholic solutions in a ratio of 40%/60% (buffer/alcohol, v/v) to keep the hydrophobic hydrazyl radical and phenolic test compounds soluble while offering sufficient buffering capacity at different pH...

  6. Transcription of Mammalian cis-Regulatory Elements Is Restrained by Actively Enforced Early Termination.

    Science.gov (United States)

    Austenaa, Liv M I; Barozzi, Iros; Simonatto, Marta; Masella, Silvia; Della Chiara, Giulia; Ghisletti, Serena; Curina, Alessia; de Wit, Elzo; Bouwman, Britta A M; de Pretis, Stefano; Piccolo, Viviana; Termanini, Alberto; Prosperini, Elena; Pelizzola, Mattia; de Laat, Wouter; Natoli, Gioacchino

    2015-11-01

    Upon recruitment to active enhancers and promoters, RNA polymerase II (Pol II) generates short non-coding transcripts of unclear function. The mechanisms that control the length and the amount of ncRNAs generated by cis-regulatory elements are largely unknown. Here, we show that the adaptor protein WDR82 and its associated complexes actively limit such non-coding transcription. WDR82 targets the SET1 H3K4 methyltransferases and the nuclear protein phosphatase 1 (PP1) complexes to the initiating Pol II. WDR82 and PP1 also interact with components of the transcriptional termination and RNA processing machineries. Depletion of WDR82, SET1, or the PP1 subunit required for its nuclear import caused distinct but overlapping transcription termination defects at highly expressed genes and active enhancers and promoters, thus enabling the increased synthesis of unusually long ncRNAs. These data indicate that transcription initiated from cis-regulatory elements is tightly coordinated with termination mechanisms that impose the synthesis of short RNAs. PMID:26593720

  7. Transcriptional activation of nuclear estrogen receptor and progesterone receptor and its regulation.

    Science.gov (United States)

    Xin, Qi-Liang; Qiu, Jing-Tao; Cui, Sheng; Xia, Guo-Liang; Wang, Hai-Bin

    2016-08-25

    Estrogen receptor (ER) and progesterone receptor (PR) are two important members of steroid receptors family, an evolutionarily conserved family of transcription factors. Upon binding to their ligands, ER and PR enter cell nucleus to interact with specific DNA element in the context of chromatin to initiate the transcription of diverse target genes, which largely depends on the timely recruitment of a wide range of cofactors. Moreover, the interactions between steroid hormones and their respective receptors also trigger post-translational modifications on these receptors to fine-tune their transcriptional activities. Besides the well-known phosphorylation modifications on tyrosine and serine/threonine residues, recent studies have identified several other covalent modifications, such as ubiquitylation and sumoylation. These post-translational modifications of steroid receptors affect its stability, subcellular localization, and/or cofactor recruitment; eventually influence the duration and extent of transcriptional activation. This review is to focus on the recent research progress on the transcriptional activation of nuclear ER and PR as well as their physiological functions in early pregnancy, which may help us to better understand related female reproductive diseases. PMID:27546504

  8. SUMOylation can regulate the activity of ETS-like transcription factor 4.

    Science.gov (United States)

    Kaikkonen, Sanna; Makkonen, Harri; Rytinki, Miia; Palvimo, Jorma J

    2010-08-01

    ETS-like transcription factor 4 (ELK4) (a.k.a. serum response factor accessory protein 1) belongs to the ternary complex factor (TCF) subfamily of E twenty-six (ETS) domain transcription factors. Compared to the other TCF subfamily members, ELK1 and ELK3 (NET), there is limited information of the mechanisms regulating the ELK4 activity. Here, we show that the ELK4 can be covalently modified (SUMOylated) by small ubiquitin-related modifier (SUMO) 1 protein, an important regulator of signaling and transcription. SUMOylation of ELK4 was reversed by SUMO-specific proteases (SENP) 1 and 2 and stimulated by SUMO E3 ligase PIAS3. Conserved lysine residue 167 that is located in the NET inhibitory domain of ELK4 was identified as the main site of SUMO-1 conjugation. Interestingly, mutation of the K167 disrupting the SUMOylation markedly enhanced the transcriptional activity of the ELK4, but weakened its repressive function on c-fos promoter. In conclusion, our results suggest that covalent modification by SUMO-1 can regulate the activity of ELK4, contributing to the transcriptional repression by the ELK4. PMID:20637912

  9. Transcription Factor Arabidopsis Activating Factor1 Integrates Carbon Starvation Responses with Trehalose Metabolism.

    Science.gov (United States)

    Garapati, Prashanth; Feil, Regina; Lunn, John Edward; Van Dijck, Patrick; Balazadeh, Salma; Mueller-Roeber, Bernd

    2015-09-01

    Plants respond to low carbon supply by massive reprogramming of the transcriptome and metabolome. We show here that the carbon starvation-induced NAC (for NO APICAL MERISTEM/ARABIDOPSIS TRANSCRIPTION ACTIVATION FACTOR/CUP-SHAPED COTYLEDON) transcription factor Arabidopsis (Arabidopsis thaliana) Transcription Activation Factor1 (ATAF1) plays an important role in this physiological process. We identified TREHALASE1, the only trehalase-encoding gene in Arabidopsis, as a direct downstream target of ATAF1. Overexpression of ATAF1 activates TREHALASE1 expression and leads to reduced trehalose-6-phosphate levels and a sugar starvation metabolome. In accordance with changes in expression of starch biosynthesis- and breakdown-related genes, starch levels are generally reduced in ATAF1 overexpressors but elevated in ataf1 knockout plants. At the global transcriptome level, genes affected by ATAF1 are broadly associated with energy and carbon starvation responses. Furthermore, transcriptional responses triggered by ATAF1 largely overlap with expression patterns observed in plants starved for carbon or energy supply. Collectively, our data highlight the existence of a positively acting feedforward loop between ATAF1 expression, which is induced by carbon starvation, and the depletion of cellular carbon/energy pools that is triggered by the transcriptional regulation of downstream gene regulatory networks by ATAF1. PMID:26149570

  10. Progesterone receptor activation downregulates GATA3 by transcriptional repression and increased protein turnover promoting breast tumor growth

    OpenAIRE

    Izzo, Franco; Mercogliano, Florencia; Venturutti, Leandro; Tkach, Mercedes; Inurrigarro, Gloria; Schillaci, Roxana; Cerchietti, Leandro; Elizalde, Patricia V.; Proietti, Cecilia J.

    2014-01-01

    Introduction The transcription factor GATA3 is involved in mammary gland development and is crucial for the maintenance of the differentiated status of luminal epithelial cells. The role of GATA3 in breast cancer as a tumor suppressor has been established, although insights into the mechanism of GATA3 expression loss are still required. Methods Chromatin immunoprecipitation assays were conducted to study progestin modulation of recruitment of transcription factors to GATA3 promoter. We perfor...

  11. Application of the E-screen assay to test for oestrogenically active substances in swine feed.

    Science.gov (United States)

    Bitsch, N; Körner, W; Postupka, S; Brunn, H

    2001-12-01

    A pig breeder in central Hesse (Germany) noticed the occurrence of enlarged vulvae in female piglets. Intoxication with oestrogenically active substances by contamination of two feed mixes ingested by the mother sows appeared to be a possible cause. Using a combined technique of the DFG analytical method S19 and the E-screen assay, two feed samples were found to contain powerful oestrogenically active compounds. By co-incubation with the anti-oestrogen tamoxifen it could be clearly demonstrated that the oestrogenic activity was mediated by the oestrogen receptor. These results demonstrate that use of the E-screen assay in combination with the DFG analytical method S19 provides a simple and readily usable prescreening method for the routine detection of oestrogenically active compounds in animal feed. The results from the E-screen assay show that the sows ingested 10-80 microg oestradiol equivalents per day in their feed. Because of the bioavailability of these substances, the oestrogenic active compounds seem to be transferred into the milk and passed to the piglets via suckling. The milk of the dam appears to contain this substance in biologically active form and at such high concentrations that the female piglets had enlarged vulvae. PMID:11906561

  12. Nerve growth factor enhances the CRE-dependent transcriptional activity activated by nobiletin in PC12 cells.

    Science.gov (United States)

    Takito, Jiro; Kimura, Junko; Kajima, Koji; Uozumi, Nobuyuki; Watanabe, Makoto; Yokosuka, Akihito; Mimaki, Yoshihiro; Nakamura, Masanori; Ohizumi, Yasushi

    2016-07-01

    Prevention and treatment of Alzheimer disease are urgent problems for elderly people in developed countries. We previously reported that nobiletin, a poly-methoxylated flavone from the citrus peel, improved the symptoms in various types of animal models of memory loss and activated the cAMP responsive element (CRE)-dependent transcription in PC12 cells. Nobiletin activated the cAMP/PKA/MEK/Erk/MAPK signaling pathway without using the TrkA signaling activated by nerve growth factor (NGF). Here, we examined the effect of combination of nobiletin and NGF on the CRE-dependent transcription in PC12 cells. Although NGF alone had little effect on the CRE-dependent transcription, NGF markedly enhanced the CRE-dependent transcription induced by nobiletin. The NGF-induced enhancement was neutralized by a TrkA antagonist, K252a. This effect of NGF was effective on the early signaling event elicited by nobiletin. These results suggested that there was crosstalk between NGF and nobiletin signaling in activating the CRE-dependent transcription in PC12 cells. PMID:27128150

  13. Tip60-mediated acetylation activates transcription independent apoptotic activity of Abl

    Directory of Open Access Journals (Sweden)

    Pandita Tej K

    2011-07-01

    Full Text Available Abstract Background The proto-oncogene, c-Abl encodes a ubiquitously expressed tyrosine kinase that critically governs the cell death response induced by genotoxic agents such as ionizing radiation and cisplatin. The catalytic function of Abl, which is essential for executing DNA damage response (DDR, is normally tightly regulated but upregulated several folds upon IR exposure due to ATM-mediated phosphorylation on S465. However, the mechanism/s leading to activation of Abl's apoptotic activity is currently unknown. Results We investigated the role of acetyl modification in regulating apoptotic activity of Abl and the results showed that DNA strand break-inducing agents, ionizing radiation and bleomycin induced Abl acetylation. Using mass spectrophotometry and site-specific acetyl antibody, we identified Abl K921, located in the DNA binding domain, and conforming to one of the lysine residue in the consensus acetylation motif (KXXK--X3-5--SGS is acetylated following DNA damage. We further observed that the S465 phosphorylated Abl is acetyl modified during DNA damage. Signifying the modification, cells expressing the non acetylatable K921R mutant displayed attenuated apoptosis compared to wild-type in response to IR or bleomycin treatment. WT-Abl induced apoptosis irrespective of new protein synthesis. Furthermore, upon γ-irradiation K921R-Abl displayed reduced chromatin binding compared to wild type. Finally, loss of Abl K921 acetylation in Tip60-knocked down cells and co-precipitation of Abl with Tip60 in DNA damaged cells identified Tip60 as an Abl acetylase. Conclusion Collective data showed that DNA damage-induced K921 Abl acetylation, mediated by Tip60, stimulates transcriptional-independent apoptotic activity and chromatin-associative property thereby defining a new regulatory mechanism governing Abl's DDR function.

  14. Plant Compounds Enhance the Assay Sensitivity for Detection of Active Bacillus cereus Toxin

    Directory of Open Access Journals (Sweden)

    Reuven Rasooly

    2015-03-01

    Full Text Available Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety.

  15. Plant compounds enhance the assay sensitivity for detection of active Bacillus cereus toxin.

    Science.gov (United States)

    Rasooly, Reuven; Hernlem, Bradley; He, Xiaohua; Friedman, Mendel

    2015-03-01

    Bacillus cereus is an important food pathogen, producing emetic and diarrheal syndromes, the latter mediated by enterotoxins. The ability to sensitively trace and identify this active toxin is important for food safety. This study evaluated a nonradioactive, sensitive, in vitro cell-based assay, based on B. cereus toxin inhibition of green fluorescent protein (GFP) synthesis in transduced monkey kidney Vero cells, combined with plant extracts or plant compounds that reduce viable count of B. cereus in food. The assay exhibited a dose dependent GFP inhibition response with ~25% inhibition at 50 ng/mL toxin evaluated in culture media or soy milk, rice milk or infant formula, products associated with food poisonings outbreak. The plant extracts of green tea or bitter almond and the plant compounds epicatechin or carvacrol were found to amplify the assay response to ~90% inhibition at the 50 ng/mL toxin concentration greatly increasing the sensitivity of this assay. Additional studies showed that the test formulations also inhibited the growth of the B. cereus bacteria, likely through cell membrane disruption. The results suggest that the improved highly sensitive assay for the toxin and the rapid inactivation of the pathogen producing the toxin have the potential to enhance food safety. PMID:25767986

  16. Assay of insulator enhancer-blocking activity with the use of transient transfection.

    Science.gov (United States)

    Smirnov, N A; Didych, D A; Akopov, S B; Nikolaev, L G; Sverdlov, E D

    2013-08-01

    We used a transient transfection of cultured cells with linearized plasmids to analyze the enhancer-blocking activity of potential insulators including the standard cHS4 chicken beta-globin insulator and several DNA fragments selected from the human genome sequence. About 60-80% of the potential insulators do reveal the enhancer-blocking activity when probed by the transient transfection assay. The activity of different sequences is characterized by certain tissue specificity and by dependence on the orientation of the fragments relative to the promoter. Thus, the transfection model may be used for quantitative analysis of the enhancer-blocking activity of the potential insulators. PMID:24228877

  17. Glucocorticoid receptor (GR) β has intrinsic, GRα-independent transcriptional activity

    International Nuclear Information System (INIS)

    The human glucocorticoid receptor (GR) gene produces C-terminal GRβ and GRα isoforms through alternative use of specific exons 9β and α, respectively. We explored the transcriptional activity of GRβ on endogenous genes by developing HeLa cells stably expressing EGFP-GRβ or EGFP. Microarray analyses revealed that GRβ had intrinsic gene-specific transcriptional activity, regulating mRNA expression of a large number of genes negatively or positively. Majority of GRβ-responsive genes was distinct from those modulated by GRα, while GRβ and GRα mutually modulated each other's transcriptional activity in a subpopulation of genes. We did not observe in HCT116 cells nuclear translocation of GRβ and activation of this receptor by RU 486, a synthetic steroid previously reported to bind GRβ and to induce nuclear translocation. Our results indicate that GRβ has intrinsic, GRα-independent, gene-specific transcriptional activity, in addition to its previously reported dominant negative effect on GRα-induced transactivation of GRE-driven promoters.

  18. Inflammatory transcription factors as activation markers and functional readouts in immune-to-brain communication.

    Science.gov (United States)

    Rummel, Christoph

    2016-05-01

    Immune-to-brain communication pathways involve humoral mediators, including cytokines, central modulation by neuronal afferents and immune cell trafficking to the brain. During systemic inflammation these pathways contribute to mediating brain-controlled sickness symptoms including fever. Experimentally, activation of these signaling pathways can be mimicked and studied when injecting animals with pathogen associated molecular patterns (PAMPS). One central component of the brain inflammatory response, which leads, for example, to fever induction, is transcriptional activation of brain cells via cytokines and PAMPS. We and others have studied the spatiotemporal activation and the physiological significance of transcription factors for the induction of inflammation within the brain and the manifestation of fever. Evidence has revealed a role of nuclear factor (NF)κB in the initiation, signal transducer and activator of transcription (STAT)3 in the maintenance and NF-interleukin (IL)6 in the maintenance or even termination of brain-inflammation and fever. Moreover, psychological stressors, such as exposure to a novel environment, leads to increased body core temperature and genomic NF-IL6-activation, suggesting a potential use of NF-IL6-immunohistochemistry as a multimodal brain cell activation marker and a role for NF-IL6 for differential brain activity. In addition, the nutritional status, as reflected by circulating levels of the cytokine-like hormone leptin, influence immune-to-brain communication and age-dependent changes in LPS-induced fever. Overall, transcription factors remain therapeutically important targets for the treatment of brain-inflammation and fever induction during infectious/non-infectious inflammatory and psychological stress. However, the exact physiological role and significance of these transcription factors requires to be further investigated. PMID:26348582

  19. Transcriptional activity around bacterial cell death reveals molecular biomarkers for cell viability

    Directory of Open Access Journals (Sweden)

    Schuren Frank H

    2008-12-01

    Full Text Available Abstract Background In bacteriology, the ability to grow in selective media and to form colonies on nutrient agar plates is routinely used as a retrospective criterion for the detection of living bacteria. However, the utilization of indicators for bacterial viability-such as the presence of specific transcripts or membrane integrity-would overcome bias introduced by cultivation and reduces the time span of analysis from initiation to read out. Therefore, we investigated the correlation between transcriptional activity, membrane integrity and cultivation-based viability in the Gram-positive model bacterium Bacillus subtilis. Results We present microbiological, cytological and molecular analyses of the physiological response to lethal heat stress under accurately defined conditions through systematic sampling of bacteria from a single culture exposed to gradually increasing temperatures. We identified a coherent transcriptional program including known heat shock responses as well as the rapid expression of a small number of sporulation and competence genes, the latter only known to be active in the stationary growth phase. Conclusion The observed coordinated gene expression continued even after cell death, in other words after all bacteria permanently lost their ability to reproduce. Transcription of a very limited number of genes correlated with cell viability under the applied killing regime. The transcripts of the expressed genes in living bacteria – but silent in dead bacteria-include those of essential genes encoding chaperones of the protein folding machinery and can serve as molecular biomarkers for bacterial cell viability.

  20. Transcription factor AP-1 in esophageal squamous cell carcinoma: Alterations in activity and expression during Human Papillomavirus infection

    International Nuclear Information System (INIS)

    Esophageal squamous cell carcinoma (ESCC) is a leading cause of cancer-related deaths in Jammu and Kashmir (J&K) region of India. A substantial proportion of esophageal carcinoma is associated with infection of high-risk HPV type 16 and HPV18, the oncogenic expression of which is controlled by host cell transcription factor Activator Protein-1 (AP-1). We, therefore, have investigated the role of DNA binding and expression pattern of AP-1 in esophageal cancer with or without HPV infection. Seventy five histopathologically-confirmed esophageal cancer and an equal number of corresponding adjacent normal tissue biopsies from Kashmir were analyzed for HPV infection, DNA binding activity and expression of AP-1 family of proteins by PCR, gel shift assay and immunoblotting respectively. A high DNA binding activity and elevated expression of AP-1 proteins were observed in esophageal cancer, which differed between HPV positive (19%) and HPV negative (81%) carcinomas. While JunB, c-Fos and Fra-1 were the major contributors to AP-1 binding activity in HPV negative cases, Fra-1 was completely absent in HPV16 positive cancers. Comparison of AP-1 family proteins demonstrated high expression of JunD and c-Fos in HPV positive tumors, but interestingly, Fra-1 expression was extremely low or nil in these tumor tissues. Differential AP-1 binding activity and expression of its specific proteins between HPV - positive and HPV - negative cases indicate that AP-1 may play an important role during HPV-induced esophageal carcinogenesis

  1. Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays.

    Science.gov (United States)

    Legler, Juliette; Dennekamp, Martine; Vethaak, A Dick; Brouwer, Abraham; Koeman, Jan H; van der Burg, Bart; Murk, Albertinka J

    2002-07-01

    Sediments may be the ultimate sink for persistent (xeno-)estrogenic compounds released into the aquatic environment. Sediment-associated estrogenic potency was measured with an estrogen receptor-mediated luciferase reporter gene (ER-CALUX) assay and compared with a recombinant yeast screen. The ER-CALUX assay was more sensitive to 17beta-estradiol (E2) than the recombinant yeast screen, with an EC50 of 6 pM E2 compared to 100 pM in the yeast screen. Yeast cells were unable to distinguish the anti-estrogens ICI 182,780 and (4-hydroxy)tamoxifen, which were agonistic in the yeast. Acetone-soluble fractions of hexane/acetone extracts of sediments showed higher estrogenic potency than hexane-soluble extracts in the ER-CALUX assay. Sediments obtained from industrialized areas such as the Port of Rotterdam showed the highest estrogenic potency of the 12 marine sediments tested (up to 40 pmol estradiol equivalents per gram sediment). The estrogenic activity of individual chemicals that can be found in sediments including: alkylphenol ethoxylates and carboxylates; phthalates; and pesticides, was tested. Increasing sidechain length of various nonylphenol ethoxylates resulted in decreased estrogenic activity. Of the phthalates tested, butylbenzylphthalate was the most estrogenic, though with a potency approximately 100,000 times less than E2. The organochlorine herbicides atrazine and simazine failed to induce reporter gene activity. As metabolic activation may be required to induce estrogenic activity, a metabolic transformation step was added to the ER-CALUX assay using incubation of compounds with liver microsomes obtained from PCB-treated rats. Results indicate that metabolites of E2, NP and bisphenol A were less active than the parent compounds, while metabolites of methoxychlor were more estrogenic following microsomal incubations. PMID:12109482

  2. Measurement of human tissue-type plasminogen activator by a two-site immunoradiometric assay

    International Nuclear Information System (INIS)

    A two-site immunoradiometric assay for human extrinsic (tissue-type) plasminogen activator was developed by using rabbit antibodies raised against plasminogen activator purified from human melanoma cell culture fluid. Samples of 100 μl containing 1 to 100 ng/ml plasminogen activator were incubated in the wells of polyvinyl chloride microtiter plates coated with antibody. The amount of bound extrinsic plasminogen activator was quantitated by the subsequent binding of 125I-labeled affinospecific antibody. The mean level of plasma samples taken at rest was 6.6 +/- 2.9 ng/ml (n = 54). This level increased approximately threefold by exhaustive physical exercise, venous occlusion, or infusion of DDAVP. Extrinsic plasminogen activator in plasma is composed of a fibrin-adsorbable and active component (1.9 +/- 1.1 ng/ml, n = 54, in resting conditions) and an inactive component that does not bind to a fibrin clot (probably extrinsic plasminogen activator-proteinase inhibitor complexes). The fibrin-adsorbable fraction increased approximately fivefold to eightfold after physical exercise, venous occlusion, or DDAVP injections. Potential applications of the immunoradiometric assay are illustrated by the measurement of extrinsic plasminogen activator in different tissue extracts, body fluids, and cell culture fluids and in oocyte translation products after injection with mRNA for plasminogen activator

  3. A novel mass spectrometry-based assay for GSK-3β activity

    Directory of Open Access Journals (Sweden)

    Gan Bing Siang

    2005-12-01

    Full Text Available Abstract Background As a component of the progression from genomic to proteomic analysis, there is a need for accurate assessment of protein post-translational modifications such as phosphorylation. Traditional kinase assays rely heavily on the incorporation of γ-P32 radiolabeled isotopes, monoclonal anti-phospho-protein antibodies, or gel shift analysis of substrate proteins. In addition to the expensive and time consuming nature of these methods, the use of radio-ligands imposes restrictions based on the half-life of the radionucleotides and pose potential health risks to researchers. With the shortcomings of traditional assays in mind, the aim of this study was to develop a high throughput, non-radioactive kinase assay for screening Glycogen Synthase Kinase-3beta (GSK-3β activity. Results Synthetic peptide substrates designed with a GSK-3β phosphorylation site were assayed with both recombinant enzyme and GSK-3β immunoprecipitated from NIH 3T3 fibroblasts. A molecular weight shift equal to that of a single phosphate group (80 Da. was detected by surface enhanced laser desorption/ionization time of flight mass spectrometry (SELDI-TOF-MS in a GSK-3β target peptide (2B-Sp. Not only was there a dose-dependent response in molecular weight shift to the amount of recombinant GSK-3β used in this assay, this shift was also inhibited by lithium chloride (LiCl, in a dose-dependent manner. Conclusion We present here a novel method to sensitively measure peptide phosphorylation by GSK-3β that, due to the incorporation of substrate controls, is applicable to either purified enzyme or cell extracts. Future studies using this method have the potential to elucidate the activity of GSK-3β in vivo, and to screen enzyme activity in relation to a variety of GSK-3β related disorders.

  4. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods.

    Directory of Open Access Journals (Sweden)

    Jiali Xing

    Full Text Available Antioxidant activity of lactic acid bacteria is associated with multiple health-protective effects. Traditional indexes of chemical antioxidant activities poorly reflect the antioxidant effects of these bacteria in vivo. Cellular antioxidant activity (CAA assay was used in this study to determine the antioxidant activity of cell-free supernatants (CFSs of 10 Lactobacillus strains. The performance of the CAA assay was compared with that of four chemical antioxidant activity assays, namely, DPPH radical scavenging, hydroxyl radical scavenging (HRS, reducing power (RP, and inhibition of linoleic acid peroxidation (ILAP. Results of the CAA assay were associated with those of DPPH and ILAP assays, but not with those of RP and HRS assays. The inter- and intra-specific antioxidant activities of CFS were characterized by chemical and CAA assays. L. rhamnosus CCFM 1107 displayed a high antioxidative effect similar to positive control L. rhamnosus GG ATCC 53103 in all of the assays. The CAA assay is a potential method for the detection of antioxidant activities of lactobacilli CFSs.

  5. E2F1-mediated transcriptional inhibition of the plasminogen activator inhibitor type 1 gene

    DEFF Research Database (Denmark)

    Koziczak, M; Müller, H; Helin, K;

    2001-01-01

    -sensitive retinoblastoma protein (pRB), a shift to a permissive temperature induced PAI-1 mRNA expression. In U2OS cells stably expressing an E2F1-estrogen receptor chimeric protein that could be activated by tamoxifen, PAI-1 gene transcription was markedly reduced by tamoxifen even in the presence of cycloheximide. These...

  6. Physiological and transcriptional responses of nitrifying bacteria exposed to copper in activated sludge.

    Science.gov (United States)

    Ouyang, Fan; Zhai, Hongyan; Ji, Min; Zhang, Hongyang; Dong, Zhao

    2016-01-15

    Cu inhibition of gene transcription in ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were rarely studied simultaneously in activated sludge. In this study, the transcription of amoA (for AOB) and nxrB (for NOB), nitrification efficiencies, AOB and NOB respiratory rates, and Cu distribution were simultaneously investigated. Modeling the relationships among the aforementioned parameters revealed that in complex activated sludge systems, nitrification efficiency was an insensitive parameter for showing Cu inhibition. Respiration activities and gene transcription were sensitive to Cu and positively correlated with each other. The transcription of amoA and nxrB genes indicated that the Cu had different inhibitory effects on AOB and NOB. AOB were more susceptible to Cu toxicity than NOB. Moreover, the degree of Cu inhibition on ammonia oxidation was greater than on nitrite oxidation. The analysis and related modeling results indicate that the inhibitory actions of Cu on nitrifying bacteria could mainly be attributed to intracellular Cu. The findings from this study provide insight into the mechanism of Cu inhibition on nitrification in complex activated sludge systems. PMID:26348150

  7. Modulation of CP2 family transcriptional activity by CRTR-1 and sumoylation.

    Directory of Open Access Journals (Sweden)

    Sarah To

    Full Text Available CRTR-1 is a member of the CP2 family of transcription factors. Unlike other members of the family which are widely expressed, CRTR-1 expression shows specific spatio-temporal regulation. Gene targeting demonstrates that CRTR-1 plays a central role in the maturation and function of the salivary glands and the kidney. CRTR-1 has also recently been identified as a component of the complex transcriptional network that maintains pluripotency in embryonic stem (ES cells. CRTR-1 was previously shown to be a repressor of transcription. We examine the activity of CRTR-1 in ES and other cells and show that CRTR-1 is generally an activator of transcription and that it modulates the activity of other family members, CP2, NF2d9 and altNF2d9, in a cell specific manner. We also demonstrate that CRTR-1 activity is regulated by sumoylation at a single major site, residue K30. These findings imply that functional redundancy with other family members may mask important roles for CRTR-1 in other tissues, including the blastocyst stage embryo and embryonic stem cells.

  8. Cloning and Transcriptional Activity of the Mouse Omi/HtrA2 Gene Promoter

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2016-01-01

    Full Text Available HtrA serine peptidase 2 (HtrA2, also named Omi, is a pro-apoptotic protein that exhibits dramatic changes in expression levels in a variety of disorders, including ischemia/reperfusion injury, cancer, and neurodegeneration. In our study, Omi/HtrA2 protein levels were high in the heart, brain, kidney and liver, with elevated heart/brain expression in aging mice. A similar expression pattern was observed at the mRNA level, which suggests that the regulation of Omi/HtrA2 is predominately transcriptional. Promoter binding by transcription factors is the main influencing factor of transcription, and to identify specific promoter elements that contribute to the differential expression of mouse Omi/HtrA2, we constructed truncated Omi/HtrA2 promoter/luciferase reporter vectors and analyzed their relative luciferase activity; it was greatest in the promoter regions at −1205~−838 bp and −146~+93 bp, with the −838~−649 bp region exhibiting negative regulatory activity. Bioinformatics analysis suggested that the Omi/HtrA2 gene promoter contains a CpG island at −709~+37 bp, and eight heat shock transcription factor 1 (HSF1 sites, two Sp1 transcription factor (SP1sites, one activator protein (AP site, seven p53 sites, and four YY1 transcription factor(YY1 sites were predicted in the core areas. Furthermore, we found that p53 and HSF1 specifically binds to the Omi/HtrA2 promoter using chromatin immunoprecipitation analysis. These results provide a foundation for understanding Omi/HtrA2 regulatory mechanisms, which could further understanding of HtrA-associated diseases.

  9. Cloning and Transcriptional Activity of the Mouse Omi/HtrA2 Gene Promoter.

    Science.gov (United States)

    Liu, Dan; Liu, Xin; Wu, Ye; Wang, Wen; Ma, Xinliang; Liu, Huirong

    2016-01-01

    HtrA serine peptidase 2 (HtrA2), also named Omi, is a pro-apoptotic protein that exhibits dramatic changes in expression levels in a variety of disorders, including ischemia/reperfusion injury, cancer, and neurodegeneration. In our study, Omi/HtrA2 protein levels were high in the heart, brain, kidney and liver, with elevated heart/brain expression in aging mice. A similar expression pattern was observed at the mRNA level, which suggests that the regulation of Omi/HtrA2 is predominately transcriptional. Promoter binding by transcription factors is the main influencing factor of transcription, and to identify specific promoter elements that contribute to the differential expression of mouse Omi/HtrA2, we constructed truncated Omi/HtrA2 promoter/luciferase reporter vectors and analyzed their relative luciferase activity; it was greatest in the promoter regions at -1205~-838 bp and -146~+93 bp, with the -838~-649 bp region exhibiting negative regulatory activity. Bioinformatics analysis suggested that the Omi/HtrA2 gene promoter contains a CpG island at -709~+37 bp, and eight heat shock transcription factor 1 (HSF1) sites, two Sp1 transcription factor (SP1)sites, one activator protein (AP) site, seven p53 sites, and four YY1 transcription factor(YY1) sites were predicted in the core areas. Furthermore, we found that p53 and HSF1 specifically binds to the Omi/HtrA2 promoter using chromatin immunoprecipitation analysis. These results provide a foundation for understanding Omi/HtrA2 regulatory mechanisms, which could further understanding of HtrA-associated diseases. PMID:26784188

  10. Rapid, Semiquantitative Assay To Discriminate among Compounds with Activity against Replicating or Nonreplicating Mycobacterium tuberculosis.

    Science.gov (United States)

    Gold, Ben; Roberts, Julia; Ling, Yan; Quezada, Landys Lopez; Glasheen, Jou; Ballinger, Elaine; Somersan-Karakaya, Selin; Warrier, Thulasi; Warren, J David; Nathan, Carl

    2015-10-01

    The search for drugs that can kill replicating and nonreplicating Mycobacterium tuberculosis faces practical bottlenecks. Measurement of CFU and discrimination of bacteriostatic from bactericidal activity are costly in compounds, supplies, labor, and time. Testing compounds against M. tuberculosis under conditions that prevent the replication of M. tuberculosis often involves a second phase of the test in which conditions are altered to permit the replication of bacteria that survived the first phase. False-positive determinations of activity against nonreplicating M. tuberculosis may arise from carryover of compounds from the nonreplicating stage of the assay that act in the replicating stage. We mitigate these problems by carrying out a 96-well microplate liquid MIC assay and then transferring an aliquot of each well to a second set of plates in which each well contains agar supplemented with activated charcoal. After 7 to 10 days-about 2 weeks sooner than required to count CFU-fluorometry reveals whether M. tuberculosis bacilli in each well have replicated extensively enough to reduce a resazurin dye added for the final hour. This charcoal agar resazurin assay (CARA) distinguishes between bacterial biomasses in any two wells that differ by 2 to 3 log10 CFU. The CARA thus serves as a pretest and semiquantitative surrogate for longer, more laborious, and expensive CFU-based assays, helps distinguish bactericidal from bacteriostatic activity, and identifies compounds that are active under replicating conditions, nonreplicating conditions, or both. Results for 14 antimycobacterial compounds, including tuberculosis (TB) drugs, revealed that PA-824 (pretomanid) and TMC207 (bedaquiline) are largely bacteriostatic. PMID:26239979

  11. A continuous spectrophotometric assay that distinguishes between phospholipase A1 and A2 activities.

    Science.gov (United States)

    El Alaoui, Meddy; Soulère, Laurent; Noiriel, Alexandre; Popowycz, Florence; Khatib, Abdallah; Queneau, Yves; Abousalham, Abdelkarim

    2016-08-01

    A new spectrophotometric assay was developed to measure, continuously and specifically, phospholipase A1 (PLA1) or phospholipase A2 (PLA2) activities using synthetic glycerophosphatidylcholines (PCs) containing α-eleostearic acid, either at the sn-1 position [1-α-eleostearoyl-2-octadecyl-rac-glycero-3-phosphocholine (EOPC)] or at the sn-2 position [1-octadecyl-2-α-eleostearoyl-rac-glycero-3-phosphocholine (OEPC)]. The substrates were coated onto the wells of microtiter plates. A nonhydrolyzable ether bond, with a non-UV-absorbing alkyl chain, was introduced at the other sn position to prevent acyl chain migration during lipolysis. Upon enzyme action, α-eleostearic acid is liberated and then solubilized into the micellar phase. The PLA1 or PLA2 activity was measured by the increase in absorbance at 272 nm due to the transition of α-eleostearic acid from the adsorbed to the soluble state. EOPC and OEPC differentiate, with excellent accuracy, between PLA1 and PLA2 activity. Lecitase(®), guinea pig pancreatic lipase-related protein 2 (known to be a PLA1 enzyme), bee venom PLA2, and porcine pancreatic PLA2 were all used to validate the assay. Compared with current assays used for continuously measuring PLA1 or PLA2 activities and/or their inhibitors, the development of this sensitive enzymatic method, using coated PC substrate analogs to natural lipids and based on the UV spectroscopic properties of α-eleostearic acid, is a significant improvement. PMID:27194811

  12. Antioxidant activities of Indigofera cassioides Rottl. Ex. DC. using various in vitro assay models

    Institute of Scientific and Technical Information of China (English)

    R Senthil Kumar; B Rajkapoor; P Perumal

    2012-01-01

    Objective: To evaluate the antioxidant potential of methanolic leaf extract of Indigoferacassioides (MEIC) using various in vitro antioxidant assay systems. Methods: Antioxidant and free radical scavenging activity of MEIC was assayed by using different in vitro models like ABTS, DPPH, nitric oxide, superoxide, hydrogen peroxide and hydroxyl radical. Reductive ability of the extract was tested by the complex formation with potassium ferricyanide. Further total phenol and flavonoid contents of the crude extract were also determined. Rutin and ascorbic acid were used as standards. Results: MEIC exhibited potent and concentration dependent free radical scavenging activity in all the tested models. Reductive ability was also found to increase with increase in MEIC concentration. Total phenol and flavonoid content determination showed that the extract is rich in phenols and flavonoids. Conclusions: All the results of the in vitro antioxidant assays reveal potent antioxidant and free radical scavenging activity of the leaves of Indigofera cassioides, equivalent to that of standard ascorbic acid and rutin. This potent antioxidant activity may be attributed to its high phenolic and flavonoid contents

  13. Parathyroid Hormone Increases Activating Transcription Factor 4 Expression and Activity in Osteoblasts: Requirement for Osteocalcin Gene Expression

    OpenAIRE

    Yu, Shibing; Franceschi, Renny T; Luo, Min; Zhang, Xiaoyan; Jiang, Di; Lai, Yumei; Jiang, Yu; Zhang, Jian; Xiao, Guozhi

    2008-01-01

    PTH is an important peptide hormone regulator of calcium homeostasis and osteoblast function. However, its mechanism of action in osteoblasts is poorly understood. Our previous study demonstrated that PTH activates mouse osteocalcin (Ocn) gene 2 promoter through the osteoblast-specific element 1 site, a recently identified activating transcription factor-4 (ATF4) -binding element. In the present study, we examined effects of PTH on ATF4 expression and activity as well as the requirement for A...

  14. Transcriptional activation of peroxisome proliferator-activated receptor-γ requires activation of both protein kinase A and Akt during adipocyte differentiation

    International Nuclear Information System (INIS)

    Research highlights: → Elevated cAMP activates both PKA and Epac. → PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. → Akt modulates PPAR-γ transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-γ (PPAR-γ) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-γ is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-γ. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-γ was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-γ transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-γ transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-γ, suggesting post-translational activation of PPAR-γ might be critical step for adipogenic gene expression.

  15. Transcriptional activation of peroxisome proliferator-activated receptor-{gamma} requires activation of both protein kinase A and Akt during adipocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang-pil [Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine (Korea, Republic of); Ha, Jung Min; Yun, Sung Ji; Kim, Eun Kyoung [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of); Chung, Sung Woon [Department of Thoracic and Cardiovascular Surgery, Pusan National University School of Medicine (Korea, Republic of); Hong, Ki Whan; Kim, Chi Dae [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of); Bae, Sun Sik, E-mail: sunsik@pusan.ac.kr [MRC for Ischemic Tissue Regeneration, Medical Research Institute, and Department of Pharmacology, Pusan National University School of Medicine (Korea, Republic of)

    2010-08-13

    Research highlights: {yields} Elevated cAMP activates both PKA and Epac. {yields} PKA activates CREB transcriptional factor and Epac activates PI3K/Akt pathway via Rap1. {yields} Akt modulates PPAR-{gamma} transcriptional activity in concert with CREB. -- Abstract: Peroxisome proliferator-activated receptor-{gamma} (PPAR-{gamma}) is required for the conversion of pre-adipocytes. However, the mechanism underlying activation of PPAR-{gamma} is unclear. Here we showed that cAMP-induced activation of protein kinase A (PKA) and Akt is essential for the transcriptional activation of PPAR-{gamma}. Hormonal induction of adipogenesis was blocked by a phosphatidylinositol 3-kinase (PI3K) inhibitor (LY294002), by a protein kinase A (PKA) inhibitor (H89), and by a Rap1 inhibitor (GGTI-298). Transcriptional activity of PPAR-{gamma} was markedly enhanced by 3-isobutyl-1-methylxanthine (IBMX), but not insulin and dexamethasone. In addition, IBMX-induced PPAR-{gamma} transcriptional activity was blocked by PI3K/Akt, PKA, or Rap1 inhibitors. 8-(4-Chlorophenylthio)-2'-O-methyl-cAMP (8-pCPT-2'-O-Me-cAMP) which is a specific agonist for exchanger protein directly activated by cAMP (Epac) significantly induced the activation of Akt. Furthermore, knock-down of Akt1 markedly attenuated PPAR-{gamma} transcriptional activity. These results indicate that both PKA and Akt signaling pathways are required for transcriptional activation of PPAR-{gamma}, suggesting post-translational activation of PPAR-{gamma} might be critical step for adipogenic gene expression.

  16. Elk3 from hamster-a ternary complex factor with strong transcriptional repressor activity

    DEFF Research Database (Denmark)

    Hjortoe, G.M.; Weilguny, D.; Willumsen, Berthe Marie

    2005-01-01

    transcription of genes that are activated during entry into G1. We have isolated the Cricetulus griseus Elk3 gene from the Chinese hamster ovary (CHO) cell line and investigated the transcriptional potential of this factor. Transient transfections revealed that, in addition to its regulation of the c......-fos promoter, Elk3 from CHO cells seems to inhibit other promoters controlling expression of proteins involved in G1/S phase progression; Cyclin D1 and DHFR. As has been described for the Elk3 homologs Net (Mouse) and Sap-2 (Human), the results of the present study further indicate that hamster Elk3 is a...

  17. A transcriptional activator is located in the coding region of the yeast PGK gene.

    OpenAIRE

    Mellor, J; Dobson, M J; Kingsman, A J; Kingsman, S M

    1987-01-01

    Expression of heterologous genes from the PGK promoter on high copy number plasmids in yeast is relatively poor compared to the intact PGK gene because of low steady-state RNA levels. In this paper we show that low levels of heterologous RNA are not due to instability of mRNA but result from inefficient transcription due to a defect in RNA synthesis. A comparison of RNA levels from homologous and heterologous transcription units allowed the identification of a positive activator for transcrip...

  18. Comparative Antimicrobial Activities of Aerosolized Sodium Hypochlorite, Chlorine Dioxide, and Electrochemically Activated Solutions Evaluated Using a Novel Standardized Assay

    OpenAIRE

    Thorn, R. M. S.; G.M. Robinson; Reynolds, D M

    2013-01-01

    The main aim of this study was to develop a standardized experimental assay to enable differential antimicrobial comparisons of test biocidal aerosols. This study represents the first chlorine-matched comparative assessment of the antimicrobial activities of aerosolized sodium hypochlorite, chlorine dioxide, and electrochemically activated solution (ECAS) to determine their relative abilities to decontaminate various surface-associated health care-relevant microbial challenges. Standard micro...

  19. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Benoît Couvigny

    Full Text Available The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor, we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health.

  20. Commensal Streptococcus salivarius Modulates PPARγ Transcriptional Activity in Human Intestinal Epithelial Cells.

    Science.gov (United States)

    Couvigny, Benoît; de Wouters, Tomas; Kaci, Ghalia; Jacouton, Elsa; Delorme, Christine; Doré, Joël; Renault, Pierre; Blottière, Hervé M; Guédon, Eric; Lapaque, Nicolas

    2015-01-01

    The impact of commensal bacteria in eukaryotic transcriptional regulation has increasingly been demonstrated over the last decades. A multitude of studies have shown direct effects of commensal bacteria from local transcriptional activity to systemic impact. The commensal bacterium Streptococcus salivarius is one of the early bacteria colonizing the oral and gut mucosal surfaces. It has been shown to down-regulate nuclear transcription factor (NF-кB) in human intestinal cells, a central regulator of the host mucosal immune system response to the microbiota. In order to evaluate its impact on a further important transcription factor shown to link metabolism and inflammation in the intestine, namely PPARγ (peroxisome proliferator-activated receptor), we used human intestinal epithelial cell-lines engineered to monitor PPARγ transcriptional activity in response to a wide range of S. salivarius strains. We demonstrated that different strains from this bacterial group share the property to inhibit PPARγ activation independently of the ligand used. First attempts to identify the nature of the active compounds showed that it is a low-molecular-weight, DNase-, proteases- and heat-resistant metabolite secreted by S. salivarius strains. Among PPARγ-targeted metabolic genes, I-FABP and Angptl4 expression levels were dramatically reduced in intestinal epithelial cells exposed to S. salivarius supernatant. Both gene products modulate lipid accumulation in cells and down-regulating their expression might consequently affect host health. Our study shows that species belonging to the salivarius group of streptococci impact both host inflammatory and metabolic regulation suggesting a possible role in the host homeostasis and health. PMID:25946041

  1. Inhibition of p53 transcriptional activity by human cytomegalovirus UL44.

    Science.gov (United States)

    Kwon, Yejin; Kim, Mi-Na; Young Choi, Eun; Heon Kim, Jung; Hwang, Eung-Soo; Cha, Chang-Yong

    2012-05-01

    Human cytomegalovirus (HCMV) stimulates cellular synthesis of DNA and proteins and induces transition of the cell cycle from G(1) to S and G(2) /M phase, in spite of increased amounts of p53 in the infected cells. The immediate early protein IE2-86  kDa (IE86) tethers a transcriptional repression domain to p53; however, its repression of p53 function is not enough to abrogate the G(1) checkpoint function of p53. Other HCMV proteins that suppress the activity of p53 were investigated in this study. Of the HCMV proteins that bind to p53 when assessed by immunoprecipitation and immunoblot analysis, HCMV UL44 was chosen as a candidate protein. It was found that reporter gene containing p53 consensus sequence was activated by transfection with wild type p53, but when plasmids of p53 with IE86 or UL44 were co-transfected, p53 transcriptional activity was decreased to 3-7% of the p53 control in a dose-dependent manner. When the deletion mutant of UL44 was co-transected with p53, the carboxyl one-third portion of UL44 had little effect on inhibition of p53 transcriptional activity. The amount of mRNA p21 was measured in H1299 by real time PCR after transfection of the combination of p53 and UL44 vectors and it was found that p21 transcription by p53 was inhibited dose-dependently by UL44. Increased G0/G1 and decreased S phases in p53 wild type-transfected H1299 cells were recovered to the level of p53 mutant type-transfected ones by the additional transfection of UL44 in a dose-dependent manner. In conclusion, the transcriptional activity of p53 is suppressed by UL44 as well as by IE86. PMID:22376288

  2. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Saquib, Quaiser [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Attia, Sabry M. [Department of Pharmacology, College of Pharmacy, King Saud University, Riyadh (Saudi Arabia); Siddiqui, Maqsood A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Aboul-Soud, Mourad A.M. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Biochemistry Department, Faculty of Agriculture, Cairo University, 12613 Giza (Egypt); Al-Khedhairy, Abdulaziz A. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Giesy, John P. [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Biomedical and Veterinary Biosciences and Toxicology Centre, University of Saskatchewan, Saskatoon, Canada S7N 5B3 (Canada); Zoology Department and Center for Integrative Toxicology, Michigan State University, East Lansing 48824 (United States); Musarrat, Javed, E-mail: musarratj1@yahoo.com [Department of Zoology, College of Science, King Saud University, Riyadh (Saudi Arabia); Department of Microbiology, Faculty of Agricultural Sciences, AMU, Aligarh (India)

    2012-02-15

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G{sub 2}/M arrest and appearance of a distinctive SubG{sub 1} peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced

  3. Phorate-induced oxidative stress, DNA damage and transcriptional activation of p53 and caspase genes in male Wistar rats

    International Nuclear Information System (INIS)

    Male Wistar rats exposed to a systemic organophosphorus insecticide, phorate [O,O-diethyl S-[(ethylthio) methyl] phosphorothioate] at varying oral doses of 0.046, 0.092 or 0.184 mg phorate/kg bw for 14 days, exhibited substantial oxidative stress, cellular DNA damage and activation of apoptosis-related p53, caspase 3 and 9 genes. The histopathological changes including the pyknotic nuclei, inflammatory leukocyte infiltrations, renal necrosis, and cardiac myofiber degeneration were observed in the liver, kidney and heart tissues. Biochemical analysis of catalase and glutathione revealed significantly lesser activities of antioxidative enzymes and lipid peroxidation in tissues of phorate exposed rats. Furthermore, generation of intracellular reactive oxygen species and reduced mitochondrial membrane potential in bone marrow cells confirmed phorate-induced oxidative stress. Significant DNA damage was measured through comet assay in terms of the Olive tail moment in bone marrow cells of treated animals as compared to control. Cell cycle analysis also demonstrated the G2/M arrest and appearance of a distinctive SubG1 peak, which signified induction of apoptosis. Up-regulation of tumor suppressor p53 and caspase 3 and 9 genes, determined by quantitative real-time PCR and enzyme-linked immunosorbent assay, elucidated the activation of intrinsic apoptotic pathways in response to cellular stress. Overall, the results suggest that phorate induces genetic alterations and cellular toxicity, which can adversely affect the normal cellular functioning in rats. -- Highlights: ► This is the first report on molecular toxicity of phorate in an in vivo test system. ► Phorate induces biochemical and histological changes in liver, kidney and heart. ► Rats treated with phorate exhibited DNA damage in bone marrow cells. ► Phorate induces apoptosis, oxidative stress and alters mitochondrial fluorescence. ► Phorate induces transcriptional changes and enhanced activities of

  4. Effects of currently used pesticides in assays for estrogenicity, androgenicity, and aromatase activity in vitro

    DEFF Research Database (Denmark)

    Andersen, Helle Raun; Vinggaard, Anne; Rasmussen, Thomas Høj;

    2002-01-01

    Twenty-four pesticides were tested for interactions with the estrogen receptor (ER) and the androgen receptor (AR) in transactivation assays. Estrogen-like effects on MCF-7 cell proliferation and effects on CYP19 aromatase activity in human placental microsomes were also investigated. Pesticides ...... to the natural ligands, the integrated response in the organism might be amplified by the ability of the pesticides to act via several mechanism and the frequent simultaneous exposure to several pesticides.......Twenty-four pesticides were tested for interactions with the estrogen receptor (ER) and the androgen receptor (AR) in transactivation assays. Estrogen-like effects on MCF-7 cell proliferation and effects on CYP19 aromatase activity in human placental microsomes were also investigated. Pesticides...... to their frequent use in Danish greenhouses. In addition, the metabolite mercaptodimethur sulfoxide, the herbicide tribenuron-methyl, and the organochlorine dieldrin, were included. Several of the pesticides, dieldrin, endosulfan, methiocarb, and fenarimol, acted both as estrogen agonists and...

  5. Activation of Wnt/β-catenin signaling by hydrogen peroxide transcriptionally inhibits NaV1.5 expression.

    Science.gov (United States)

    Wang, Ning; Huo, Rong; Cai, Benzhi; Lu, Yan; Ye, Bo; Li, Xiang; Li, Faqian; Xu, Haodong

    2016-07-01

    Oxidants and canonical Wnt/β-catenin signaling have been shown to decrease cardiac Na(+) channel activity by suppressing NaV1.5 expression. Our aims are to determine if hydrogen peroxide (H2O2), one oxidant of reactive oxygen species (ROS), activates Wnt/β-catenin signaling and promotes β-catenin nuclear activity, leading to suppression of NaV1.5 expression and if this suppression requires the interaction of β-catenin with its nuclear partner, TCF4 (also called TCF7L2) to decrease SCN5a promoter activity. The results demonstrated that H2O2 increased β-catenin, but not TCF4 nuclear localization determined by immunofluorescence without affecting total β-catenin protein level. Furthermore, H2O2 exerted a dose- and time-dependent suppressive effect on NaV1.5 expression. RT-PCR and/or Western blot analyses revealed that overexpressing active form of β-catenin or stabilizing β-catenin by GSK-3β inhibitors, LiCl and Bio, suppressed NaV1.5 expression in HL-1 cells. In contrast, destabilization of β-catenin by a constitutively active GSK-3β mutant (S9A) upregulated NaV1.5 expression. Whole-cell recording showed that LiCl significantly inhibited Na(+) channel activity in these cells. Using immunoprecipitation (IP), we showed that β-catenin interacted with TCF4 indicating that β-catenin as a co-transfactor, regulates NaV1.5 expression through TCF4. Analyses of the SCN5a promoter sequences among different species by using VISTA tools indicated that SCN5a promoter harbors TCF4 binding sites. Chromatin IP assays demonstrated that both β-catenin and TCF4 were recruited in the SCN5a promoter, and regulated its activity. Luciferase promoter assays exhibited that β-catenin inhibited the SCN5a promoter activity at a dose-dependent manner and this inhibition required TCF4. Small interfering (Si) RNA targeting β-catenin significantly increased SCN5a promoter activity, leading to enhanced NaV1.5 expression. As expected, β-catenin SiRNA prevents H2O2 suppressive effects

  6. Occludin controls HIV transcription in brain pericytes via regulation of SIRT-1 activation.

    Science.gov (United States)

    Castro, Victor; Bertrand, Luc; Luethen, Mareen; Dabrowski, Sebastian; Lombardi, Jorge; Morgan, Laura; Sharova, Natalia; Stevenson, Mario; Blasig, Ingolf E; Toborek, Michal

    2016-03-01

    HIV invades the brain early after infection; however, its interactions with the cells of the blood-brain barrier (BBB) remain poorly understood. Our goal was to evaluate the role of occludin, one of the tight junction proteins that regulate BBB functions in HIV infection of BBB pericytes. We provide evidence that occludin levels largely control the metabolic responses of human pericytes to HIV. Occludin in BBB pericytes decreased by 10% during the first 48 h after HIV infection, correlating with increased nuclear translocation of the gene repressor C-terminal-binding protein (CtBP)-1 and NFκB-p65 activation. These changes were associated with decreased expression and activation of the class III histone deacetylase sirtuin (SIRT)-1. Occludin levels recovered 96 h after infection, restoring SIRT-1 and reducing HIV transcription to 20% of its highest values. We characterized occludin biochemically as a novel NADH oxidase that controls the expression and activation of SIRT-1. The inverse correlation between occludin and HIV transcription was then replicated in human primary macrophages and differentiated monocytic U937 cells, in which occludin silencing resulted in 75 and 250% increased viral transcription, respectively. Our work shows that occludin has previously unsuspected metabolic properties and is a target of HIV infection, opening the possibility of designing novel pharmacological approaches to control HIV transcription. PMID:26601824

  7. The transcription factor DBP affects circadian sleep consolidation and rhythmic EEG activity

    OpenAIRE

    Franken, Paulus; Lopez Molina, Luis; Marcacci, Lysiane; Schibler, Ulrich; Tafti, Mehdi

    2000-01-01

    Albumin D-binding protein (DBP) is a PAR leucine zipper transcription factor that is expressed according to a robust circadian rhythm in the suprachiasmatic nuclei, harboring the circadian master clock, and in most peripheral tissues. Mice lacking DBP display a shorter circadian period in locomotor activity and are less active. Thus, although DBP is not essential for circadian rhythm generation, it does modulate important clock outputs. We studied the role of DBP in the circadian and homeosta...

  8. Structural and biochemical studies of sigma54 transcriptional activation in Aquifex aeolicus

    OpenAIRE

    Vidangos, Natasha Keith

    2010-01-01

    This thesis addresses a diversity of questions regarding the structural details of sigma54 transcriptional activation, and the function of sigma54 activation in the hyperthermophile Aquifex aeolicus. In order to place each topic in its appropriate context, a general introduction is provided in the first chapter, and supplemented with additional, more detailed introductions in each subsequent chapter. The second chapter reflects the central project of this thesis, the determination of the s...

  9. High-efficiency and heritable gene targeting in mouse by transcription activator-like effector nucleases

    OpenAIRE

    Qiu, Zhongwei; Liu, Meizhen; Chen, Zhaohua; Shao, Yanjiao; Pan, Hongjie; Wei, Gaigai; Yu, Chao; Zhang, Long; Li, Xia; Ping WANG; Fan, Heng-Yu; Du, Bing; Liu, Bin; Liu, Mingyao; Li, Dali

    2013-01-01

    Transcription activator-like effector nucleases (TALENs) are a powerful new approach for targeted gene disruption in various animal models, but little is known about their activities in Mus musculus, the widely used mammalian model organism. Here, we report that direct injection of in vitro transcribed messenger RNA of TALEN pairs into mouse zygotes induced somatic mutations, which were stably passed to the next generation through germ-line transmission. With one TALEN pair constructed for ea...

  10. A Transcriptional Mechanism Integrating Inputs from Extracellular Signals to Activate Hippocampal Stem Cells

    OpenAIRE

    Andersen, Jimena; Urbán, Noelia; Achimastou, Angeliki; Ito, Ayako; Simic, Milesa; Ullom, Kristy; Martynoga, Ben; Lebel, Mélanie; Göritz, Christian; Frisén, Jonas; Nakafuku, Masato; Guillemot, François

    2014-01-01

    Summary The activity of adult stem cells is regulated by signals emanating from the surrounding tissue. Many niche signals have been identified, but it is unclear how they influence the choice of stem cells to remain quiescent or divide. Here we show that when stem cells of the adult hippocampus receive activating signals, they first induce the expression of the transcription factor Ascl1 and only subsequently exit quiescence. Moreover, lowering Ascl1 expression reduces the proliferation rate...

  11. A Soil-free System for Assaying Nematicidal Activity of Chemicals

    OpenAIRE

    Preiser, F. A.; Babu, J. R.; Haidri, A. A.

    1981-01-01

    A biological assay system for studying the nematicidal activity of chemicals has been devised using a model consisting of cucumber (Cucumis sativus L. cv. Long Marketer) seedlings growing in the diSPo® growth-pouch apparatus. Meloidogyne incognita was used as the test organism. The response was quantified in terms of the numbers of galls produced. Statistical procedures were applied to estimate the ED50 values of currently available nematicides. This system permits accurate quantification of ...

  12. Reconciling Apparent Variability in Effects of Biochar Amendment on Soil Enzyme Activities by Assay Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Bailey, Vanessa L.; Fansler, Sarah J.; Smith, Jeffery L.; Bolton, Harvey

    2011-02-01

    Applying biochar to soils as an ameliorative substance and mechanism for C sequestration has received a great deal of interest in light of the sustained fertility observed in the Terra Preta soils of Brazil. The effects of synthetic biochars on biochemical processes needs to be better understood in order to determine if this is a reasonable practice in managed systems. The biochar studied was formed from the fast-pyrolysis of a switchgrass feedstock. Four soil enzymes were studied: β-glucosidase, β-N-acetylglucosaminidase, lipase, and leucine aminopeptidase. Both colorimetric and fluorescent assays were used for β-glucosidase and β-N-acetylglucosaminidase. Seven days after biochar was added to microcosms of a Palouse silt loam, the fluorescence-based assays indicated increased activities of the four enzymes, compared to non-amended soil. To clarify the mechanisms of the observed effects,in the absence of soil, purified enzymes or substrates were briefly exposed to biochar and then assayed. Except for β-N-acetylglucosaminidase, the exposure of substrate to biochar reduced the apparent activity of the remaining three enzymes in vitro, suggesting that sorption reactions between the substrate and biochar either removed the substrate from the assays or impeded the enzyme binding. The activity of purified β-N-acetylglucosaminidase increased significantly following biochar exposure, suggesting a chemical stimulation of enzyme functioning. We conclude that biochar added to soil acts as a substrate that can stimulate the soil microbial biomass and its activity. Our in vitro study suggests that biochar is not biochemically inert. Biochar amendments are likely to have effects that are currently difficult to predict, and that could impact overall soil function.

  13. Evaluation of the antioxidant activity of rice bran extracts using different antioxidant assays

    OpenAIRE

    Rehman Bajwa, Jawad -ur-; Manzoor, Maleeha; Anwar, Farooq; Shahid Chatha, Shahzad Ali

    2006-01-01

    In the present work the antioxidant activity of different solvent (100% methanol, 80% methanol, 100% acetone, 80% acetone) extracts of rice bran was evaluated following different antioxidant assays and using sunflower oil as oxidation substrate. The rice bran extracts were evaluated from the estimate of % inhibition of peroxidation in linoleic acid system, total phenolics content (TPC) and loss of β-carotene in a linoleic acid system. Additionally, crude concentrated rice bran extracts w...

  14. Using targeted transgenic reporter mice to study promoter-specific p53 transcriptional activity

    Science.gov (United States)

    Goh, Amanda M.; Lim, Chin Yan; Chiam, Poh Cheang; Mann, Michael B.; Mann, Karen M.; Menendez, Sergio; Lane, David P.

    2012-01-01

    The p53 transcription factor modulates gene expression programs that induce cell cycle arrest, senescence, or apoptosis, thereby preventing tumorigenesis. However, the mechanisms by which these fates are selected are unclear. Our objective is to understand p53 target gene selection and, thus, enable its optimal manipulation for cancer therapy. We have generated targeted transgenic reporter mice in which EGFP expression is driven by p53 transcriptional activity at a response element from either the p21 or Puma promoter, which induces cell cycle arrest/senescence and apoptosis, respectively. We demonstrate that we could monitor p53 activity in vitro and in vivo and detect variations in p53 activity depending on the response element, tissue type, and stimulus, thereby validating our reporter system and illustrating its utility for preclinical drug studies. Our results also show that the sequence of the p53 response element itself is sufficient to strongly influence p53 target gene selection. Finally, we use our reporter system to provide evidence for p53 transcriptional activity during early embryogenesis, showing that p53 is active as early as embryonic day 3.5 and that p53 activity becomes restricted to embryonic tissue by embryonic day 6.5. The data from this study demonstrate that these reporter mice could serve as powerful tools to answer questions related to basic biology of the p53 pathway, as well as cancer therapy and drug discovery. PMID:22307631

  15. EGF activates TTP expression by activation of ELK-1 and EGR-1 transcription factors

    OpenAIRE

    Florkowska Magdalena; Tymoszuk Piotr; Balwierz Aleksandra; Skucha Anna; Kochan Jakub; Wawro Mateusz; Stalinska Krystyna; Kasza Aneta

    2012-01-01

    Abstract Background Tristetraprolin (TTP) is a key mediator of processes such as inflammation resolution, the inhibition of autoimmunity and in cancer. It carries out this role by the binding and degradation of mRNA transcripts, thereby decreasing their half-life. Transcripts modulated by TTP encode proteins such as cytokines, pro-inflammatory agents and immediate-early response proteins. TTP can also modulate neoplastic phenotypes in many cancers. TTP is induced and functionally regulated by...

  16. Estimation of the dermal carcinogenic activity of petroleum fractions using a modified Ames assay.

    Science.gov (United States)

    Blackburn, G R; Deitch, R A; Schreiner, C A; Mehlman, M A; Mackerer, C R

    1984-10-01

    The Ames Salmonella/microsomal activation mutagenesis assay has been adapted to improve sensitivity to complex hydrocarbon mixtures produced by the refining of petroleum. Extraction of oil samples with dimethyl sulfoxide produces aqueous-compatible solutions that more easily interact with the tester bacteria. These extracts, therefore, produce higher revertant values than do equivalent volumes of oil delivered neat or dissolved in organic solvent. Parallel increases in the liver microsomal S-9 concentration further improve the sensitivity of the assay, allowing detection of mutagenicity in otherwise inactive samples. The effect of increased microsomal fraction from rodent liver is apparently attributable to the higher levels of activating enzymes rather than to the concomitant increase in the overall hydrophobicity of the test system. The modified assay has been used to rank thirteen petroleum-derived oils and a corn oil control for relative mutagenic activity. This ranking closely correlates (r = 0.97) with potency rankings of the same samples previously determined from dermal carcinogenicity bioassays. PMID:6401126

  17. Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes

    Directory of Open Access Journals (Sweden)

    Groscurth Peter

    2007-06-01

    Full Text Available Abstract Background Granulysin, a cytotoxic protein expressed in human natural killer cells and activated T lymphocytes, exhibits cytolytic activity against a variety of intracellular microbes. Expression and transcription have been partially characterised in vitro and four transcripts (NKG5, 519, 520, and 522 were identified. However, only a single protein product of 15 kDa was found, which is subsequently processed to an active 9 kDa protein. Results In this study we investigated generation of granulysin in lymphokine activated killer (LAK cells and antigen (Listeria specific T-cells. Semiquantitative RT-PCR revealed NKG5 to be the most prominent transcript. It was found to be up-regulated in a time-dependent manner in LAK cells and antigen specific T-cells and their subsets. Two isoforms of 519 mRNA were up-regulated under IL-2 and antigen stimulation. Moreover, two novel transcripts, without any known function, comprising solely parts of the 5 prime region of the primary transcript, were detected. A significant increase of granulysin expressing LAK cells as well as antigen specific T-cells was shown by fluorescence microscopy. On the subset level, increase in CD4+ granulysin expressing cells was found only under antigen stimulation. Immunoblotting showed the 15 kDa form of granulysin to be present in the first week of stimulation either with IL-2 or with bacterial antigen. Substantial processing to the 9 kDa form was detected during the first week in LAK cells and in the second week in antigen specific T-cells. Conclusion This first comprehensive study of granulysin gene regulation in primary cultured human lymphocytes shows that the regulation of granulysin synthesis in response to IL-2 or bacterial antigen stimulation occurs at several levels: RNA expression, extensive alternative splicing and posttranslational processing.

  18. Advantages of assaying telomerase activity in ascites for diagnosis of digestive tract malignancies

    Institute of Scientific and Technical Information of China (English)

    Chung-Pin Li; Tze-Sing Huang; Yee Chao; Full-Young Chang; Jacquline Whang-Peng; Shou-Dong Lee

    2004-01-01

    AIM: To evaluate the diagnostic value of assaying telomerase activity in ascites cells for the differential diagnosis of malignant and non-malignant ascites.METHODS: Ascites from 40 patients with hepatocellular carcinoma (HCC), 31 with non-HCC gastrointestinal carcinoma (CA), and 24 with liver cirrhosis (LC) were analyzed for telomerase activity. The telomerase activities in cell pellets from ascites were measured according to the Telomeric Repeat Amplification Protocol (TRAP) and quantified with a densitometer.RESULTS: Positive telomerase activity was detected in 16 of 31 (52%) CA patients, 10 of 40 (25%) HCC patients, and 1 of 24 (4%) LC patients (P<0.001). The telomerase activity was higher in the ascites of CA patients than in the ascites of HCC or LC patients (CA: 22.9±5.8, HCC: 6.7±2.5, LC:1.3±1.3, P= 0.001). Cytology was positive in 18 CA patients (58%) and 1 HCC patient (2.5%), respectively. The positive telomerase activity was not related to patients' age, gender,and ascitic protein concentration, but to white blood count (r= 0.31, P= 0.002), neutrophil count (r= 0.29, P= 0.005),and the C-reactive protein level (r= 0.29, P= 0.018). When the results of both cytological examination and telomerase assay were considered together, the sensitivity increased to 77% for CA patients, 25% for HCC patients, and 48% for all 71 gastrointestinal cancer patients.CONCLUSION: Combining cytological examination of ascites with telomerase activity assay significantly improves the differential diagnosis between malignant and non-malignant ascites.

  19. Nuclear factor-κB p65 (RelA) transcription factor is constitutively activated in human colorectal carcinoma tissue

    Institute of Scientific and Technical Information of China (English)

    Liang-Liang Yu; Hong-Gang Yu; Jie-Ping Yu; He-Sheng Luo; Xi-Ming Xu; Jun-Hua Li

    2004-01-01

    AIM: Activation of transcription factor nuclear factor-κB (NF-κB) has been shown to play a role in cell proliferation,apoptosis, cytokine production, and oncogenesis. The purpose of this study was to determine whether NF-κB was constitutively activated in human colorectal tumor tissues and, if so, to determine the role of NF-κB in colorectal tumorigenesis, and furthermore, to determine the association of RelA expression with tumor cell apoptosis and the expression of Bcl-2 and Bcl-xL.METHODS: Paraffin sections of normal epithelial, adenomatous and adenocarcinoma tissues were analysed immunohistochemically for expression of RelA, Bcl-2 and Bcl-xL proteins.Electrophoretic mobility shift assay (EMSA) was used to confirm the increased nuclear translocation of RelA in colorectal tumor tissues. The mRNA expressions of Bcl-2 and Bcl-xL were determined by reverse transcription polymerase chain reaction (RT-PCR) analysis. Apoptotic cells were detected by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate fluorescence nick end labeling (TUNEL) method.RESULTS: The activity of NF-κB was significantly higher in adenocarcinoma tissue in comparison with that in adenomatous and normal epithelial tissues. The apoptotic index (AI)significantly decreased in the transition from adenoma to adenocarcinoma. Meanwhile, the expressions of Bcl-2 and Bcl-xL protein and their mRNAs were significantly higher in adenocarcinoma tissues than that in adenomatous and normal epithelial tissues.CONCLUSION: NF-κB may inhibit apoptosis via enhancing the expression of the apoptosis genes Bcl-2 and BCl-xL. And the increased expression of RelA/nuclear factor-κB plays an important rote in the pathogenesis of colorectal carcinoma.

  20. A nanostructure-initiator mass spectrometry-based enzyme activity assay

    Energy Technology Data Exchange (ETDEWEB)

    Siuzdak, Gary; Northen, Trent R.; Lee, Jinq-Chyi; Hoang, Linh; Raymond, Jason; Hwang, Der-Ren; Yannone, Steven M.; Wong, Chi-Huey; Siuzdak, Gary

    2008-03-10

    We describe a Nanostructure-Initiator Mass Spectrometry (NIMS) enzymatic (Nimzyme) assay in which enzyme substrates are immobilized on the mass spectrometry surface by using fluorous-phase interactions. This 'soft' immobilization allows efficient desorption/ionization while also enabling the use of surface-washing steps to reduce signal suppression from complex biological samples, which results from the preferential retention of the tagged products and reactants. The Nimzyme assay is sensitive to subpicogram levels of enzyme, detects both addition and cleavage reactions (sialyltransferase and galactosidase), is applicable over a wide range of pHs and temperatures, and can measure activity directly from crude cell lysates. The ability of the Nimzyme assay to analyze complex mixtures is illustrated by identifying and directly characterizing {beta}-1,4-galactosidase activity from a thermophilic microbial community lysate. The optimal enzyme temperature and pH were found to be 65 C and 5.5, respectively, and the activity was inhibited by both phenylethyl-{beta}-d-thiogalactopyranoside and deoxygalactonojirimycin. Metagenomic analysis of the community suggests that the activity is from an uncultured, unsequenced {gamma}-proteobacterium. In general, this assay provides an efficient method for detection and characterization of enzymatic activities in complex biological mixtures prior to sequencing or cloning efforts. More generally, this approach may have important applications for screening both enzymatic and inhibitor libraries, constructing and screening glycan microarrays, and complementing fluorous-phase organic synthesis. The interest in leveraging mass spectrometry for studying enzyme activities in complex biological samples derives from its high sensitivity and specificity; however, signal suppression and significant sample preparation requirements limit its overall utility (1). Here we describe a Nanostructure-Initiator Mass Spectrometry (NIMS

  1. Deactivation of signal transducer and activator of transcription 3 reverses chemotherapeutics resistance of leukemia cells via down-regulating P-gp.

    Directory of Open Access Journals (Sweden)

    Xulong Zhang

    Full Text Available Multidrug resistance (MDR caused by overexpression of p-glycoprotein is a major obstacle in chemotherapy of malignant cancer, which usually is characterized by constitutive activation of signal transducer and activator of transcription 3 (STAT3, but their relation between MDR and STAT3 remains unclear. Here, we showed that STAT3 was overexpressed and highly activated in adriamycin-resistant K562/A02 cells compared with its parental K562 cells. Blockade of activation of STAT3 by STAT3 decoy oligodeoxynucleotide (ODN promoted the accumulation and increased their sensitivity to adriamycin by down-regulating transcription of mdr1 and expression of P-gp, which were further confirmed by using STAT3-specific inhibitor JSI-124. Inhibition of STAT3 could also decrease mdr1 promoter mediated luciferase expression by using mdr1 promoter luciferase reporter construct. Otherwise, activation of STAT3 by STAT3C improved mdr1 transcription and P-gp expression. The ChIP results demonstrated that STAT3 could bind to the potential promoter region of mdr1, and STAT3 decoy depressed the binding. Further mutation assay show +64∼+72 region could be the STAT3 binding site. Our data demonstrate a role of STAT3 in regulation of mdr1 gene expression in myeloid leukemia and suggest that STAT3 may be a promising therapeutic target for overcoming MDR resistance in myeloid leukemia.

  2. Adaptation of the Agrobacterium tumefaciens VirG response regulator to activate transcription in plants.

    Science.gov (United States)

    Czarnecka-Verner, Eva; Salem, Tarek A; Gurley, William B

    2016-02-01

    The Agrobacterium tumefaciens VirG response regulator of the VirA/VirG two-component system was adapted to function in tobacco protoplasts. The subcellular localization of VirG and VirA proteins transiently expressed in onion cells was determined using GFP fusions. Preliminary studies using Gal4DBD-VP16 fusions with VirG and Escherichia coli UhpA, and NarL response regulators indicated compatibility of these bacterial proteins with the eukaryotic transcriptional apparatus. A strong transcriptional activator based on tandem activation domains from the Drosophila fushi tarazu and Herpes simplex VP16 was created. Selected configurations of the two-site Gal4-vir box GUS reporters were activated by chimeric effectors dependent on either the yeast Gal4 DNA-binding domain or that of VirG. Transcriptional induction of the GUS reporter was highest for the VirE19-element promoter with both constitutive and wild-type VirG-tandem activation domain effectors. Multiple VirE19 elements increased the reporter activity proportionately, indicating that the VirG DNA binding domain was functional in plants. The VirG constitutive-Q-VP16 effector was more active than the VirG wild-type. In both the constitutive and wild-type forms of VirG, Q-VP16 activated transcription of the GUS reporter best when located at the C-terminus, i.e. juxtaposed to the VirG DNA binding domain. These results demonstrate the possibility of using DNA binding domains from bacterial response regulators and their cognate binding elements in the engineering of plant gene expression. PMID:26646288

  3. Modulatory role of phospholipase D in the activation of signal transducer and activator of transcription (STAT-3 by thyroid oncogenic kinase RET/PTC

    Directory of Open Access Journals (Sweden)

    Kim Dong Wook

    2008-05-01

    Full Text Available Abstract Background RET/PTC (rearranged in transformation/papillary thyroid carcinomas gene rearrangements are the most frequent genetic alterations identified in papillary thyroid carcinoma. Although it has been established that RET/PTC kinase plays a crucial role in intracellular signaling pathways that regulate cellular transformation, growth, and proliferation in thyroid epithelial cells, the upstream signaling that leads to the activation of RET/PTC is largely unknown. Based on the observation of high levels of PLD expression in human papillary thyroid cancer tissues, we investigated whether PLD plays a role in the regulating the RET/PTC-induced STAT3 activation. Methods Cancer tissue samples were obtained from papillary thyroid cancer patients (n = 6. The expression level of PLD was examined using immunohistochemistry and western blotting. Direct interaction between RET/PTC and PLD was analyzed by co-immunoprecipitation assay. PLD activity was assessed by measuring the formation of [3H]phosphatidylbutanol, the product of PLD-mediated transphosphatidylation, in the presence of n-butanol. The transcriptional activity of STAT3 was assessed by m67 luciferase reporter assay. Results In human papillary thyroid cancer, the expression levels of PLD2 protein were higher than those in the corresponding paired normal tissues. PLD and RET/PTC could be co-immunoprecipitated from cells where each protein was over-expressed. In addition, the activation of PLD by pervanadate triggered phosphorylation of tyrosine 705 residue on STAT-3, and its phosphorylation was dramatically higher in TPC-1 cells (from papillary carcinoma that have an endogenous RET/PTC1 than in ARO cells (from anaplastic carcinoma without alteration of total STAT-3 expression. Moreover, the RET/PTC-mediated transcriptional activation of STAT-3 was synergistically increased by over-expression of PLD, whereas the PLD activity as a lipid hydrolyzing enzyme was not affected by RET

  4. The Calmodulin-Binding Transcription Activator CAMTA1 Is Required for Long-Term Memory Formation in Mice

    Science.gov (United States)

    Bas-Orth, Carlos; Tan, Yan-Wei; Oliveira, Ana M. M.; Bengtson, C. Peter; Bading, Hilmar

    2016-01-01

    The formation of long-term memory requires signaling from the synapse to the nucleus to mediate neuronal activity-dependent gene transcription. Synapse-to-nucleus communication is initiated by influx of calcium ions through synaptic NMDA receptors and/or L-type voltage-gated calcium channels and involves the activation of transcription factors by…

  5. Exercise induces transient transcriptional activation of the PGC-1a gene in human skeletal muscle

    DEFF Research Database (Denmark)

    Pilegaard, Henriette; Saltin, Bengt; Neufer, P. Darrell

    Endurance exercise training induces mitochondrial biogenesis in skeletal muscle. The peroxisome proliferator activated receptor co-activator 1a (PGC-1a) has recently been identified as a nuclear factor critical for coordinating the activation of genes required for mitochondrial biogenesis in cell...... despite the lower relative workload. Interestingly, exercise did not affect nuclear respiratory factor 1 (NRF-1) mRNA, a gene induced by PGC-1a in cell culture. HKII, mitochondrial transcription factor A, peroxisome proliferator activated receptor a, and calcineurin Aa and Aß mRNA were elevated (˜2- to 6...

  6. A simple liposome assay for the screening of zinc ionophore activity of polyphenols.

    Science.gov (United States)

    Clergeaud, Gael; Dabbagh-Bazarbachi, Husam; Ortiz, Mayreli; Fernández-Larrea, Juan B; O'Sullivan, Ciara K

    2016-04-15

    An efficient liposomal system for screening the zinc ionophore activity of a selected library consisting of the most relevant dietary polyphenols is presented. The zinc ionophore activity was demonstrated by exploring the use of zinc-specific fluorophore FluoZin-3 loaded liposomes as simple membrane tools that mimic the cell membrane. The zinc ionophore activity was demonstrated as the capacity of polyphenols to transport zinc cations across the liposome membrane and increase the zinc-specific fluorescence of the encapsulated fluorophore FluoZin-3. In addition, the zinc chelation strength of the polyphenols was also tested in a competition assay based on the fluorescence quenching of zinc-dependent fluorescence emitted by zinc-FluoZin-3 complex. Finally, the correlation between the chelation capacity and ionophore activity is demonstrated, thus underlining the sequestering or ionophoric activity that the phenolic compounds can display, thus, providing better knowledge of the importance of the structural conformation versus their biological activity. Furthermore, the assays developed can be used as tools for rapid, high-throughput screening of families of polyphenols towards different biometals. PMID:26617034

  7. The isolation of transcription factors from lambda gt11 cDNA expression libraries: human steroid 5 alpha-reductase 1 has sequence-specific DNA binding activity.

    OpenAIRE

    Gaston, K; Fried, M

    1992-01-01

    The Surf-1/Surf-2 bi-directional promoter contains binding sites for at least three transcription factors (Su1, Su2, and Su3). By screening a lambda gt11 HeLa cell cDNA expression library with a concatenated Su2 factor binding site, we isolated a cDNA which encodes a protein with sequence-specific DNA binding activity. Gel retardation assays showed that the cloned factor binds specifically to the Su2 factor binding site present in the human Surf-1/Surf-2 promoter but not to an Su2 site contai...

  8. "Singing in the Tube"--audiovisual assay of plant oil repellent activity against mosquitoes (Culex pipiens).

    Science.gov (United States)

    Adams, Temitope F; Wongchai, Chatchawal; Chaidee, Anchalee; Pfeiffer, Wolfgang

    2016-01-01

    Plant essential oils have been suggested as a promising alternative to the established mosquito repellent DEET (N,N-diethyl-meta-toluamide). Searching for an assay with generally available equipment, we designed a new audiovisual assay of repellent activity against mosquitoes "Singing in the Tube," testing single mosquitoes in Drosophila cultivation tubes. Statistics with regression analysis should compensate for limitations of simple hardware. The assay was established with female Culex pipiens mosquitoes in 60 experiments, 120-h audio recording, and 2580 estimations of the distance between mosquito sitting position and the chemical. Correlations between parameters of sitting position, flight activity pattern, and flight tone spectrum were analyzed. Regression analysis of psycho-acoustic data of audio files (dB[A]) used a squared and modified sinus function determining wing beat frequency WBF ± SD (357 ± 47 Hz). Application of logistic regression defined the repelling velocity constant. The repelling velocity constant showed a decreasing order of efficiency of plant essential oils: rosemary (Rosmarinus officinalis), eucalyptus (Eucalyptus globulus), lavender (Lavandula angustifolia), citronella (Cymbopogon nardus), tea tree (Melaleuca alternifolia), clove (Syzygium aromaticum), lemon (Citrus limon), patchouli (Pogostemon cablin), DEET, cedar wood (Cedrus atlantica). In conclusion, we suggest (1) disease vector control (e.g., impregnation of bed nets) by eight plant essential oils with repelling velocity superior to DEET, (2) simple mosquito repellency testing in Drosophila cultivation tubes, (3) automated approaches and room surveillance by generally available audio equipment (dB[A]: ISO standard 226), and (4) quantification of repellent activity by parameters of the audiovisual assay defined by correlation and regression analyses. PMID:26412058

  9. Suppression of epithelial signal transducer and activator of transcription 1 activation by extracts of Aspergillus fumigatus.

    Science.gov (United States)

    Bhushan, Bharat; Homma, Tetsuya; Norton, James E; Sha, Quan; Siebert, Jason; Gupta, Dave S; Schroeder, James W; Schleimer, Robert P

    2015-07-01

    Aspergillus fumigatus (AF) is often pathogenic in immune-deficient individuals and can cause life-threatening infections such as invasive aspergillosis. The pulmonary epithelial response to AF infection and the signaling pathways associated with it have not been completely studied. BEAS-2B cells or primary human bronchial epithelial cells were exposed to extracts of AF and challenged with IFN-β or the Toll-like receptor 3 agonist double-stranded RNA (dsRNA). Cytokine release (B-cell activating factor of the TNF family [BAFF], IFN-γ-induced protein-10 [IP-10], etc.) was assessed. AF extract was separated into low-molecular-weight (LMW) and high-molecular-weight (HMW) fractions using ultra 4 centrifugal force filters to characterize the activity. Real-time PCR was performed with a TaqMan method, and protein estimation was performed using ELISA techniques. Western blot was performed to assess phosphorylation of signal transducer and activator of transcription 1 (STAT1). IFN-β and dsRNA induced messenger RNA (mRNA) expression of BAFF (350- and 452-fold, respectively [n = 3]) and IP-10 (1,081- and 3,044-fold, respectively [n = 3]) in BEAS-2B cells. When cells were pretreated with AF extract for 1 hour and then stimulated with IFN-β or dsRNA for 6 hours, induction of BAFF and IP-10 mRNA was strongly suppressed relative to levels produced by IFN-β and dsRNA alone. When compared with control, soluble BAFF and IP-10 protein levels were maximally suppressed in dsRNA-stimulated wells treated with 1:320 wt/vol AF extract (P < 0.005). Upon molecular size fractionation, a LMW fraction of AF extract had no measurable suppressive effect on IP-10 mRNA expression. However, a HMW fraction of the AF extract significantly suppressed IP-10 expression in BEAS-2B cells that were stimulated with dsRNA or IFN-β. When BEAS-2B cells were pretreated with AF extract and then stimulated with IFN-β, reduced levels of pSTAT1 were observed, with maximum suppression at 4 and 6

  10. Telomerase activates transcription of cyclin D1 gene through an interaction with NOL1.

    Science.gov (United States)

    Hong, Juyeong; Lee, Ji Hoon; Chung, In Kwon

    2016-04-15

    Telomerase is a ribonucleoprotein enzyme that is required for the maintenance of telomere repeats. Although overexpression of telomerase in normal human somatic cells is sufficient to overcome replicative senescence, the ability of telomerase to promote tumorigenesis requires additional activities that are independent of its role in telomere extension. Here, we identify proliferation-associated nucleolar antigen 120 (NOL1, also known as NOP2) as a telomerase RNA component (TERC)-binding protein that is found in association with catalytically active telomerase. Although NOL1 is highly expressed in the majority of human tumor cells, the molecular mechanism by which NOL1 contributes to tumorigenesis remained unclear. We show that NOL1 binds to the T-cell factor (TCF)-binding element of the cyclin D1 promoter and activates its transcription. Interestingly, telomerase is also recruited to the cyclin D1 promoter in a TERC-dependent manner through the interaction with NOL1, further enhancing transcription of the cyclin D1 gene. Depletion of NOL1 suppresses cyclin D1 promoter activity, thereby leading to induction of growth arrest and altered cell cycle distributions. Collectively, our findings suggest that NOL1 represents a new route by which telomerase activates transcription of cyclin D1 gene, thus maintaining cell proliferation capacity. PMID:26906424

  11. Dimer formation and transcription activation in the sporulation response regulator Spo0A.

    Science.gov (United States)

    Lewis, Richard J; Scott, David J; Brannigan, James A; Ladds, Joanne C; Cervin, Marguerite A; Spiegelman, George B; Hoggett, James G; Barák, Imrich; Wilkinson, Anthony J

    2002-02-15

    The response regulator Spo0A is the master control element in the initiation of sporulation in Bacillus subtilis. Like many other multi-domain response regulators, the latent activity of the effector, C-terminal domain is stimulated by phosphorylation on a conserved aspartic acid residue in the regulatory, N-terminal domain. If a threshold concentration of phosphorylated Spo0A is achieved, the transcription of genes required for sporulation is activated, whereas the genes encoding stationary phase sentinels are repressed, and sporulation proceeds. Despite detailed genetic, biochemical and structural characterisation, it is not understood how the phosphorylation signal in the receiver domain is transduced into DNA binding and transcription activation in the distal effector domain. An obstacle to our understanding of Spo0A function is the uncertainty concerning changes in quaternary structure that accompany phosphorylation. Here we have revisited this question and shown unequivocally that Spo0A forms dimers upon phosphorylation and that the subunit interactions in the dimer are mediated principally by the receiver domain. Purified dimers of two mutants of Spo0A, in which the phosphorylatable aspartic acid residue has been substituted, activate transcription from the spoIIG promoter in vitro, whereas monomers do not. This suggests that dimers represent the activated form of Spo0A. PMID:11851334

  12. Notch-1 activates estrogen receptor-α-dependent transcription via IKKα in breast cancer cells

    Science.gov (United States)

    Hao, L; Rizzo, P; Osipo, C; Pannuti, A; Wyatt, D; Cheung, LW-K; Sonenshein, G; Osborne, BA; Miele, L

    2016-01-01

    Approximately 80% of breast cancers express the estrogen receptor-α (ERα) and are treated with anti-estrogens. Resistance to these agents is a major cause of mortality. We have shown that estrogen inhibits Notch, whereas anti-estrogens or estrogen withdrawal activate Notch signaling. Combined inhibition of Notch and estrogen signaling has synergistic effects in ERα-positive breast cancer models. However, the mechanisms whereby Notch-1 promotes the growth of ERα-positive breast cancer cells are unknown. Here, we demonstrate that Notch-1 increases the transcription of ERα-responsive genes in the presence or absence of estrogen via a novel chromatin crosstalk mechanism. Our data support a model in which Notch-1 can activate the transcription of ERα-target genes via IKKα-dependent cooperative chromatin recruitment of Notch–CSL–MAML1 transcriptional complexes (NTC) and ERα, which promotes the recruitment of p300. CSL binding elements frequently occur in close proximity to estrogen-responsive elements (EREs) in the human and mouse genomes. Our observations suggest that a hitherto unknown Notch-1/ERα chromatin crosstalk mediates Notch signaling effects in ERα-positive breast cancer cells and contributes to regulate the transcriptional functions of ERα itself. PMID:19838210

  13. The AP-1 transcription factor homolog Pf-AP-1 activates transcription of multiple biomineral proteins and potentially participates in Pinctada fucata biomineralization

    OpenAIRE

    Xiangnan Zheng; Minzhang Cheng; Liang Xiang; Jian Liang; Liping Xie; Rongqing Zhang

    2015-01-01

    Activator protein-1 (AP-1) is an important bZIP transcription factor that regulates a series of physiological processes by specifically activating transcription of several genes, and one of its well-chartered functions in mammals is participating in bone mineralization. We isolated and cloned the complete cDNA of a Jun/AP-1 homolog from Pinctada fucata and called it Pf-AP-1. Pf-AP-1 had a highly conserved bZIP region and phosphorylation sites compared with those from mammals. A tissue distrib...

  14. Histone acetylation influences the transcriptional activation of POX in Beta vulgaris L. and Beta maritima L. under salt stress.

    Science.gov (United States)

    Yolcu, Seher; Ozdemir, Filiz; Güler, Aybüke; Bor, Melike

    2016-03-01

    Acetylation of histone proteins is a type of chromatin modification which facilitates the activation of genes. Recent studies brought up the importance of this reversible and rapid process for the regulation of gene expression especially in plant defense against a variety of environmental stresses. Deciphering the exact mechanisms of chromatin modifications under abiotic stress conditions is important for improving crop plants' performance and yield. In a previous study we compared the salt stress responses of Beta vulgaris (sugar beet) and Beta maritima (wild beet). In accordance with those results we suggested that chromatin remodeling can be an active process in the regulation of genes related to salt stress tolerance of these plants. Therefore we performed ChIP assay in control and salt stressed (250 and 500 mM NaCl) plants and compared the enrichment of acetylation in the associated chromatin sites. We found that the transcriptional activation of one peroxidase (POX) encoding gene was associated with the elevated levels of acetylation in H3K9 and H3K27 sites. The acetylation patterns were remarkably different between two species in which the highest acetylation levels were found at H3K9 and H3K27 in wild beet and sugar beet respectively. PMID:26773543

  15. Sleep loss activates cellular inflammation and signal transducer and activator of transcription (STAT) family proteins in humans

    OpenAIRE

    Irwin, DE; Witarama, T; Caudill, M; Olmstead, R; Breen, EC

    2015-01-01

    © 2014 Elsevier Inc.. Sleep disturbance and short sleep duration are associated with inflammation and related disorders including cardiovascular disease, arthritis, diabetes mellitus, and certain cancers. This study was undertaken to test the effects of experimental sleep loss on spontaneous cellular inflammation and activation of signal transducer and activator of transcription (STAT) family proteins, which together promote an inflammatory microenvironment. In 24 healthy adults (16 females; ...

  16. Assaying Ceramide Synthase Activity In Vitro and in Living Cells Using Liquid Chromatography-Mass Spectrometry.

    Science.gov (United States)

    Lim, Xin Ying; Pickford, Russell; Don, Anthony S

    2016-01-01

    Sphingolipids are one the major lipid families in eukaryotes, incorporating a diverse array of structural and signaling lipids such as sphingomyelin and gangliosides. The core lipid component for all complex sphingolipids is ceramide, a diacyl lipid consisting of a variable length fatty acid linked through an amide bond to a long chain base such as sphingosine or dihydrosphingosine. This reaction is catalyzed by a family of six ceramide synthases (CERS1-6), each of which preferentially catalyzes the synthesis of ceramides with different fatty acid chain lengths. Ceramides are themselves potent cellular and physiological signaling molecules heavily implicated in diabetes and neurodegenerative diseases, making it important for researchers to have access to sensitive and accurate assays for ceramide synthase activity. This chapter describes methods for assaying ceramide synthase activity in cell or tissue lysates, or in cultured cells (in situ), using liquid chromatography-tandem mass spectrometry (LC-MS/MS) as the readout. LC-MS/MS is a very sensitive and accurate means for assaying ceramide synthase reaction products. PMID:26552671

  17. Expression of human endostatin in larvae of silkworm (Bombyx mori) and in vitro activity assays.

    Science.gov (United States)

    Yongfeng, Jin; Yingfei, Wang; Zhenhong, Zhu; Yaozhou, Zhang

    2002-08-01

    Human endostatin is a novel antiangiogenic molecule, which can inhibit the proliferation and development of new blood vessels, and experimentally can cause nearly complete regression of established tumors. In this paper, the cDNA encoding human endostatin was cloned into a baculovirus shuttle vector pBacPAK8 and co-infected with linearized Bm-BacPAK6 DNA into and BmN cells. The recombinant virus was screened and identified by PCR, DNA and RNA dot hybridization, and ELISA assay. The recombinant endostatin was expressed in culture cells, and the larvae and pupa of silkworm by inoculation of recombinant virus. The biological activity assay showed that the expression product in larvae was over 150 microg/ml, about 50-fold higher than that expressed in cultured cells. SDS-PAGE and Western blotting analysis showed a pattern of molecular weight of about 20 kDa. The bio-activity of the protein product was determined by human umbilical vein endothelial cells (ECV304) proliferation test in vitro and the chick chorioallantoic membrane (CAM) vascular inhibition test. Endostatin showed significant inhibitory effect on endothelial cells in a dose-dependent manner. Silkworm-produced endostatin induced apoptosis of endothelial cells and also inhibited angiogenesis in the CAM assay. Combination regimen using angiostatin and endostatin showed more than additive effect in angiogenic inhibition and increasing apoptosis when compared with treatment with the individual antiangiogenic protein. PMID:12186748

  18. Visualizing repetitive diffusion activity of double-strand RNA binding proteins by single molecule fluorescence assays.

    Science.gov (United States)

    Koh, Hye Ran; Wang, Xinlei; Myong, Sua

    2016-08-01

    TRBP, one of double strand RNA binding proteins (dsRBPs), is an essential cofactor of Dicer in the RNA interference pathway. Previously we reported that TRBP exhibits repetitive diffusion activity on double strand (ds)RNA in an ATP independent manner. In the TRBP-Dicer complex, the diffusion mobility of TRBP facilitates Dicer-mediated RNA cleavage. Such repetitive diffusion of dsRBPs on a nucleic acid at the nanometer scale can be appropriately captured by several single molecule detection techniques. Here, we provide a step-by-step guide to four different single molecule fluorescence assays by which the diffusion activity of dsRBPs on dsRNA can be detected. One color assay, termed protein induced fluorescence enhancement enables detection of unlabeled protein binding and diffusion on a singly labeled RNA. Two-color Fluorescence Resonance Energy Transfer (FRET) in which labeled dsRBPs is applied to labeled RNA, allows for probing the motion of protein along the RNA axis. Three color FRET reports on the diffusion movement of dsRBPs from one to the other end of RNA. The single molecule pull down assay provides an opportunity to collect dsRBPs from mammalian cells and examine the protein-RNA interaction at single molecule platform. PMID:27012177

  19. Activation of transcription factor CREB and NF-kB in murine immune cells after WBI with 75 mGy X-rays

    International Nuclear Information System (INIS)

    Alterations in transcription factors NF-kB, CREB, AP1, SP1, GRE and OCT1 binding to specific known promoter DNA consensus sequences of immune cells from irradiated and sham-irradiated mice 4 hours after whole body irradiation (WBI) with 75 mGy X-rays were investigated with gel mobility shift assay. Increased binding to NF-kB and CREB consensus sequence was found with nuclear extracts prepared from thymocytes and splenocytes of irradiated versus sham-irradiated mice. Protein binding to the NF-kB consensus sequence by nuclear extracts derived from irradiated mice was 5-fold in splenocytes and 4.3-fold in thymocytes higher than that from sham-irradiated. Competition with the cold oligonucleotide containing the consensus sequence for NF-kB resulted in loss of the shifted band at 25-fold excess concentration, indicating specific binding. DNA mobility shift assay using CREB consensus sequence showed 7-fold increase in splenocytes and 6-fold increase in thymocytes after low dose radiation (LDR). Competition assays using cold oligonucleotide containing the CREB site eliminated the shift band at 50-fold excess concentration. The binding of AP1 consensus sequence showed a 2-fold increase in thymocyte nuclear extracts after LDR. No changes in protein binding to SP1, GRE and OCT1 consensus sequences were noted. The results indicate that activation of selective transcription factors NF-kB, CREB and AP1 of the immune cells in mice occurred after LDR

  20. A miniaturized assay to quantify effects of chemicals or physical stimuli upon locust activity

    Institute of Scientific and Technical Information of China (English)

    BRUNO HOSTE; FILIP SAS; TIM VANDERSMISSEN; ARNOLD DE LOOF; MICHAEL BREUER; JURGEN HUYBRECHTS

    2006-01-01

    Solitary and gregarious locusts differ in many traits, such as body color,morphometrics and behavior. With respect to behavior, solitary animals shun each other,while gregarious animals seek each other's company, hence their crowding behavior.General activity, depending on the temperature, occurs throughout the day but is much lower in solitary locusts. Solitary locusts occasionally fly by night while gregarious locusts fly regularly during daytime (swarming). In search of new assays to identify substances that control or modify aspects of (phase) behavior, we designed a simple activity assay, meant to complement existing behavioral measurement tools. The general activity is reflected in the number of wall hits, that is, the number of contacts between the locust and the vertical walls of a small arena. Using this single parameter we were able to quantify differences in total activity of both nymphs and adults of isolation-reared (solitary), regrouped- and crowdreared (gregarious) locusts under different conditions. Furthermore, we demonstrate that there are inter- and intra-phase dependent differences in activities of 5th instar nymphs after injections of the three different adipokinetic hormones.

  1. A novel protease activity assay using a protease-responsive chaperone protein

    International Nuclear Information System (INIS)

    Protease activity assays are important for elucidating protease function and for developing new therapeutic agents. In this study, a novel turbidimetric method for determining the protease activity using a protease-responsive chaperone protein is described. For this purpose, a recombinant small heat-shock protein (sHSP) with an introduced Factor Xa protease recognition site was synthesized in bacteria. This recombinant mutant, FXa-HSP, exhibited chaperone-like activity at high temperatures in cell lysates. However, the chaperone-like activity of FXa-HSP decreased dramatically following treatment with Factor Xa. Protein precipitation was subsequently observed in the cell lysates. The reaction was Factor Xa concentration-dependent and was quantitatively suppressed by a specific inhibitor for Factor Xa. Protein aggregation was detected by a simple method based on turbidimetry. The results clearly demonstrate that this assay is an effective, easy-to-use method for determining protease activities without the requirement of labeling procedures and the use of radioisotopes.

  2. P53 and p73 differ in their ability to inhibit glucocorticoid receptor (GR transcriptional activity

    Directory of Open Access Journals (Sweden)

    Nie Linghu

    2006-12-01

    Full Text Available Abstract Background p53 is a tumor suppressor and potent inhibitor of cell growth. P73 is highly similar to p53 at both the amino acid sequence and structural levels. Given their similarities, it is important to determine whether p53 and p73 function in similar or distinct pathways. There is abundant evidence for negative cross-talk between glucocorticoid receptor (GR and p53. Neither physical nor functional interactions between GR and p73 have been reported. In this study, we examined the ability of p53 and p73 to interact with and inhibit GR transcriptional activity. Results We show that both p53 and p73 can bind GR, and that p53 and p73-mediated transcriptional activity is inhibited by GR co-expression. Wild-type p53 efficiently inhibited GR transcriptional activity in cells expressing both proteins. Surprisingly, however, p73 was either unable to efficiently inhibit GR, or increased GR activity slightly. To examine the basis for this difference, a series of p53:p73 chimeric proteins were generated in which corresponding regions of either protein have been swapped. Replacing N- and C-terminal sequences in p53 with the corresponding sequences from p73 prevented it from inhibiting GR. In contrast, replacing p73 N- and C-terminal sequences with the corresponding sequences from p53 allowed it to efficiently inhibit GR. Differences in GR inhibition were not related to differences in transcriptional activity of the p53:p73 chimeras or their ability to bind GR. Conclusion Our results indicate that both N- and C-terminal regions of p53 and p73 contribute to their regulation of GR. The differential ability of p53 and p73 to inhibit GR is due, in part, to differences in their N-terminal and C-terminal sequences.

  3. DNA recognition by a σ(54) transcriptional activator from Aquifex aeolicus.

    Science.gov (United States)

    Vidangos, Natasha K; Heideker, Johanna; Lyubimov, Artem; Lamers, Meindert; Huo, Yixin; Pelton, Jeffrey G; Ton, Jimmy; Gralla, Jay; Berger, James; Wemmer, David E

    2014-10-23

    Transcription initiation by bacterial σ(54)-polymerase requires the action of a transcriptional activator protein. Activators bind sequence-specifically upstream of the transcription initiation site via a DNA-binding domain (DBD). The structurally characterized DBDs from activators all belong to the Fis (factor for inversion stimulation) family of helix-turn-helix DNA-binding proteins. We report here structures of the free and DNA-bound forms of the DBD of NtrC4 (4DBD) from Aquifex aeolicus, a member of the NtrC family of σ(54) activators. Two NtrC4-binding sites were identified upstream (-145 and -85bp) from the start of the lpxC gene, which is responsible for the first committed step in lipid A biosynthesis. This is the first experimental evidence for σ(54) regulation in lpxC expression. 4DBD was crystallized both without DNA and in complex with the -145-binding site. The structures, together with biochemical data, indicate that NtrC4 binds to DNA in a manner that is similar to that of its close homolog, Fis. The greater sequence specificity for the binding of 4DBD relative to Fis seems to arise from a larger number of base-specific contacts contributing to affinity than for Fis. PMID:25158097

  4. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation

    Directory of Open Access Journals (Sweden)

    Gourlay Campbell W

    2010-11-01

    Full Text Available Abstract Background Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. Results We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. Conclusions We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast.

  5. SUMOylation regulates the transcriptional repression activity of FOG-2 and its association with GATA-4.

    Directory of Open Access Journals (Sweden)

    José Perdomo

    Full Text Available Friend of GATA 2 (FOG-2, a co-factor of several GATA transcription factors (GATA-4, -5 and 6, is a critical regulator of coronary vessel formation and heart morphogenesis. Here we demonstrate that FOG-2 is SUMOylated and that this modification modulates its transcriptional activity. FOG-2 SUMOylation occurs at four lysine residues (K324, 471, 915, 955 [corrected]. Three of these residues are part of the characteristic SUMO consensus site (ψKXE, while K955 is found in the less frequent TKXE motif. Absence of SUMOylation did not affect FOG-2's nuclear localization. However, mutation of the FOG-2 SUMOylation sites, or de-SUMOylation, with SENP-1 or SENP-8 resulted in stronger transcriptional repression activity in both heterologous cells and cardiomyocytes. Conversely, increased FOG-2 SUMOylation by overexpression of SUMO-1 or expression of a SUMO-1-FOG-2 fusion protein rendered FOG-2 incapable of repressing GATA-4-mediated activation of the B-type natriuretic peptide (BNP promoter. Moreover, we demonstrate both increased interaction between a FOG-2 SUMO mutant and GATA-4 and enhanced SUMOylation of wild-type FOG-2 by co-expression of GATA-4. These data suggest a new dynamics in which GATA-4 may alter the activity of FOG-2 by influencing its SUMOylation status.

  6. Effects of a methanolic fraction of soybean seeds on the transcriptional activity of peroxisome proliferator-activated receptors (PPAR

    Directory of Open Access Journals (Sweden)

    V.S. Carrara

    2009-06-01

    Full Text Available Since the anti-inflammatory, antidiabetic and hypolipidemic effects of soy isoflavones may be mediated by activation of peroxisome proliferator-activated receptors (PPAR, the present study investigated whether the methanolic fractions obtained from soybean seeds (E1 and soybean seed coats with hypocotyls (E2 could influence PPARα, PPARγ and PPARβ/δ transcriptional activity. The isoflavones from E1 and E2 were quantified by HPLC analysis. E1 and E2 were rich in isoflavones (daidzin, glycitin, genistin, malonyldaidzin, malonylglycitin, malonylgenistin, daidzein, glycitein, and genistein. Moreover, E1 and E2 showed no evidence of genetically modified material containing the gene CP4 EPSPS. To investigate PPAR transcriptional activity, human promonocytic U-937 cells were treated with E1 and E2 (200, 400, 800, and 1600 µg/mL, positive controls or vehicle. Data are reported as fold-activation of the luciferase reporter driven by the PPAR-responsive element. Dose-response analysis revealed that E1 and E2 induced the transcriptional activity of PPARα (P < 0.001, with activation comparable to that obtained with 0.1 mM bezafibrate (positive control at 1600 µg/mL (4-fold and 800 µg/mL (9-fold, respectively. In addition, dose-response analysis revealed that E1 and E2 activated PPARβ/δ (P < 0.05, and the activation at 800 µg/mL (4- and 9-fold, respectively was comparable to that of 0.1 mM bezafibrate (positive control. However, no effect on PPARγ was observed. Activation of PPARα is consistent with the lipid-lowering activity of soy isoflavones in vivo, but further studies are needed to determine the physiological significance of PPARβ/δ activation.

  7. Transcriptional activity of human endogenous retrovirus in Albanian children with autism spectrum disorders.

    Science.gov (United States)

    Balestrieri, Emanuela; Cipriani, Chiara; Matteucci, Claudia; Capodicasa, Natale; Pilika, Anita; Korca, Ina; Sorrentino, Roberta; Argaw-Denboba, Ayele; Bucci, Ilaria; Miele, Martino Tony; Coniglio, Antonella; Alessandrelli, Riccardo; Sinibaldi Vallebona, Paola

    2016-09-01

    Recent studies suggest that autism spectrum disorders (ASD) result from interactions between genetic and environmental factors, whose possible links could be represented by epigenetic mechanisms. Here, we investigated the transcriptional activity of three human endogenous retrovirus (HERV) families, in peripheral blood mononuclear cells (PBMCs) from Albanian ASD children, by quantitative real-time PCR. We aimed to confirm the different expression profile already found in Italian ASD children, and to highlight any social and family health condition emerging from information gathered through a questionnaire, to be included among environmental risk factors. The presence of increased HERV-H transcriptional activity in all autistic patients could be understood as a constant epigenetic imprinting of the disease, potentially useful for early diagnosis and for the development of effective novel therapeutic strategies. PMID:27602423

  8. Using in vivo electroporation to identify hepatic LDL receptor promoter elements and transcription factors mediating activation of transcription by T3

    Directory of Open Access Journals (Sweden)

    Dayami Lopez

    2012-12-01

    Full Text Available The technique of in vivo electroporation was adapted to investigate the promoter elements and transcription factors mediating the rapid induction of hepatic LDL receptor expression in response to thyroid hormone. Direct comparisons between wild type and mutant promoter constructs were made within the same animal. It was demonstrated that both TREs at bp −612 and −156 were required for the l-triiodothyronine (T3 response. ChIP analysis showed that binding of TRβ1 to the −612 and −156 TREs was markedly stimulated by T3 in vivo. Introduction of siRNAs against TRβ1/RXRα with LDL receptor promoter-luciferase construct by in vivo electroporation demonstrated that these transcription factors play the major physiological role in the activation of hepatic LDL receptor transcription. The findings agree with those made by transfecting H4IIE cells in vitro thus validating this technique for in vivo studies of mechanisms of transcriptional regulation. The findings reported herein also indicated, for the first time, that PPARα and USF-2 were required for maximum transcriptional activation of the LDL receptor in response to T3 treatment.

  9. Cooperative activation of transcription by bovine papillomavirus type 1 E2 can occur over a large distance.

    OpenAIRE

    Thierry, F; Dostatni, N; Arnos, F; Yaniv, M

    1990-01-01

    The viral transcriptional factors encoded by the E2 open reading frame bind to the specific DNA sequence elements ACCGNNNNCGGT, allowing activation or repression of transcription. We have analyzed bovine papillomavirus type 1 E2 transactivation using recombinant genes containing E2-binding sites inserted at either 3' or 5' positions relative to the heterologous transcriptional initiation site of the herpes simplex virus thymidine kinase gene. In these hybrid plasmids, strong transactivation r...

  10. Activation of AML1-mediated transcription by MOZ and inhibition by the MOZ–CBP fusion protein

    OpenAIRE

    Kitabayashi, Issay; Aikawa, Yukiko; Nguyen, Lan Anh; Yokoyama, Akihiko; Ohki, Misao

    2001-01-01

    The AML1–CBFβ transcription factor complex is the most frequent target of specific chromosome translocations in human leukemia. The MOZ gene, which encodes a histone acetyltransferase (HAT), is also involved in some leukemia-associated translocations. We report here that MOZ is part of the AML1 complex and strongly stimulates AML1-mediated transcription. The stimulation of AML1-mediated transcription is independent of the inherent HAT activity of MOZ. Rather, a potent transactivation domain w...

  11. Structure, function, and tethering of DNA-binding domains in σ⁵⁴ transcriptional activators.

    Science.gov (United States)

    Vidangos, Natasha; Maris, Ann E; Young, Anisa; Hong, Eunmi; Pelton, Jeffrey G; Batchelor, Joseph D; Wemmer, David E

    2013-12-01

    We compare the structure, activity, and linkage of DNA-binding domains (DBDs) from σ(54) transcriptional activators and discuss how the properties of the DBDs and the linker to the neighboring domain are affected by the overall properties and requirements of the full proteins. These transcriptional activators bind upstream of specific promoters that utilize σ(54)-polymerase. Upon receiving a signal the activators assemble into hexamers, which then, through adenosine triphosphate (ATP) hydrolysis, drive a conformational change in polymerase that enables transcription initiation. We present structures of the DBDs of activators nitrogen regulatory protein C 1 (NtrC1) and Nif-like homolog 2 (Nlh2) from the thermophile Aquifex aeolicus. The structures of these domains and their relationship to other parts of the activators are discussed. These structures are compared with previously determined structures of the DBDs of NtrC4, NtrC, ZraR, and factor for inversion stimulation. The N-terminal linkers that connect the DBDs to the central domains in NtrC1 and Nlh2 were studied and found to be unstructured. Additionally, a crystal structure of full-length NtrC1 was solved, but density of the DBDs was extremely weak, further indicating that the linker between ATPase and DBDs functions as a flexible tether. Flexible linking of ATPase and DBDs is likely necessary to allow assembly of the active hexameric ATPase ring. The comparison of this set of activators also shows clearly that strong dimerization of the DBD only occurs when other domains do not dimerize strongly. PMID:23818155

  12. FATS is a transcriptional target of p53 and associated with antitumor activity

    Directory of Open Access Journals (Sweden)

    Zhang Xifeng

    2010-09-01

    Full Text Available Abstract Frequent mutations of p53 in human cancers exemplify its crucial role as a tumor suppressor transcription factor, and p21, a transcriptional target of p53, plays a central role in surveillance of cell-cycle checkpoints. Our previous study has shown that FATS stabilize p21 to preserve genome integrity. In this study we identified a novel transcript variant of FATS (GenBank: GQ499374 through screening a cDNA library from mouse testis, which uncovered the promoter region of mouse FATS. Mouse FATS was highly expressed in testis. The p53-responsive elements existed in proximal region of both mouse and human FATS promoters. Functional study indicated that the transcription of FATS gene was activated by p53, whereas such effect was abolished by site-directed mutagenesis in the p53-RE of FATS promoter. Furthermore, the expression of FATS increased upon DNA damage in a p53-dependent manner. FATS expression was silent or downregulated in human cancers, and overexpression of FATS suppressed tumorigenicity in vivo independently of p53. Our results reveal FATS as a p53-regulated gene to monitor genomic stability.

  13. Insight into GATA1 transcriptional activity through interrogation of cis elements disrupted in human erythroid disorders.

    Science.gov (United States)

    Wakabayashi, Aoi; Ulirsch, Jacob C; Ludwig, Leif S; Fiorini, Claudia; Yasuda, Makiko; Choudhuri, Avik; McDonel, Patrick; Zon, Leonard I; Sankaran, Vijay G

    2016-04-19

    Whole-exome sequencing has been incredibly successful in identifying causal genetic variants and has revealed a number of novel genes associated with blood and other diseases. One limitation of this approach is that it overlooks mutations in noncoding regulatory elements. Furthermore, the mechanisms by which mutations in transcriptionalcis-regulatory elements result in disease remain poorly understood. Here we used CRISPR/Cas9 genome editing to interrogate three such elements harboring mutations in human erythroid disorders, which in all cases are predicted to disrupt a canonical binding motif for the hematopoietic transcription factor GATA1. Deletions of as few as two to four nucleotides resulted in a substantial decrease (>80%) in target gene expression. Isolated deletions of the canonical GATA1 binding motif completely abrogated binding of the cofactor TAL1, which binds to a separate motif. Having verified the functionality of these three GATA1 motifs, we demonstrate strong evolutionary conservation of GATA1 motifs in regulatory elements proximal to other genes implicated in erythroid disorders, and show that targeted disruption of such elements results in altered gene expression. By modeling transcription factor binding patterns, we show that multiple transcription factors are associated with erythroid gene expression, and have created predictive maps modeling putative disruptions of their binding sites at key regulatory elements. Our study provides insight into GATA1 transcriptional activity and may prove a useful resource for investigating the pathogenicity of noncoding variants in human erythroid disorders. PMID:27044088

  14. Activation-induced deoxycytidine deaminase (AID) co-transcriptional scanning at single-molecule resolution

    Science.gov (United States)

    Senavirathne, Gayan; Bertram, Jeffrey G.; Jaszczur, Malgorzata; Chaurasiya, Kathy R.; Pham, Phuong; Mak, Chi H.; Goodman, Myron F.; Rueda, David

    2015-12-01

    Activation-induced deoxycytidine deaminase (AID) generates antibody diversity in B cells by initiating somatic hypermutation (SHM) and class-switch recombination (CSR) during transcription of immunoglobulin variable (IgV) and switch region (IgS) DNA. Using single-molecule FRET, we show that AID binds to transcribed dsDNA and translocates unidirectionally in concert with RNA polymerase (RNAP) on moving transcription bubbles, while increasing the fraction of stalled bubbles. AID scans randomly when constrained in an 8 nt model bubble. When unconstrained on single-stranded (ss) DNA, AID moves in random bidirectional short slides/hops over the entire molecule while remaining bound for ~5 min. Our analysis distinguishes dynamic scanning from static ssDNA creasing. That AID alone can track along with RNAP during transcription and scan within stalled transcription bubbles suggests a mechanism by which AID can initiate SHM and CSR when properly regulated, yet when unregulated can access non-Ig genes and cause cancer.

  15. The activity-dependent transcription factor NPAS4 regulates domain-specific inhibition

    OpenAIRE

    Bloodgood, Brenda L.; Sharma, Nikhil; Browne, Heidi Adlman; Trepman, Alissa Z.; Greenberg, Michael E.

    2013-01-01

    A heterogeneous population of inhibitory neurons controls the flow of information through a neural circuit1–3. Inhibitory synapses that form on pyramidal neuron dendrites modulate the summation of excitatory synaptic potentials4–6 and prevent the generation of dendritic calcium spikes7,8. Precisely timed somatic inhibition limits both the number of action potentials and the time window during which firing can occur8,9. The activity-dependent transcription factor NPAS4 regulates inhibitory syn...

  16. Inhibition of NF-kappa B specific transcriptional activation by PNA strand invasion.

    OpenAIRE

    Vickers, T A; Griffith, M C; K. Ramasamy; Risen, L M; Freier, S M

    1995-01-01

    Peptide nucleic acid (PNA) strand invasion offers an attractive alternative to DNA oligonucleotide directed triplex formation as a potential tool for gene inhibition. Peptide nucleic acid has been shown to interact with duplex DNA in a process which involves strand invasion of the duplex and binding of one of the DNA strands with two PNA oligomers. By blocking the interaction of a transcription factor with 5' regulatory sequences, PNA might specifically down-regulate gene activity. Here we de...

  17. DREAM Controls the On/Off Switch of Specific Activity-Dependent Transcription Pathways

    OpenAIRE

    Mellstr??m, Britt; Sah??n, Ignasi; Ruiz Nu??o, Ana; Murtra, Patricia; G??mez Villafuertes, Rosa; Savignac, Magal??; Oliveros, Juan C.; Gonz??lez, Paz; Kastanauskaite, Asta; Knafo, Shira; Zhuo, Min; Higuera Matas, Alejandro; Errington, Michael L.; Maldonado, Rafael; De Felipe, Javier

    2014-01-01

    Changes in nuclear Ca(2+) homeostasis activate specific gene expression programs and are central to the acquisition and storage of information in the brain. DREAM (downstream regulatory element antagonist modulator), also known as calsenilin/KChIP-3 (K(+) channel interacting protein 3), is a Ca(2+)-binding protein that binds DNA and represses transcription in a Ca(2+)-dependent manner. To study the function of DREAM in the brain, we used transgenic mice expressing a Ca(2+)-insensitive/CREB-in...

  18. Role of activated transcription factor 4 (ATF4) in learning and memory

    OpenAIRE

    Pasini

    2011-01-01

    The aim of this study is to understand the role of Activated Transcription Factor 4 (ATF4) in the processes of learning and memory. The topic of learning and memory has always aroused great interest from time immemorial and although a lot of researches have been focused on this subject for a long time, many mechanisms have not yet been fully understood. Identifying the players and the mechanisms involved in learning and memory is of utmost importance because deficits in these cognitive fu...

  19. A chromatin activity based chemoproteomic approach reveals a transcriptional repressome for gene-specific silencing

    OpenAIRE

    Liu, Cui; Yu, Yanbao; Liu, Feng; Wei, Xin; Wrobel, John A; Gunawardena, Harsha P.; Zhou, Li; Jin, Jian; Chen, Xian

    2014-01-01

    Immune cells develop endotoxin tolerance (ET) after prolonged stimulation. ET increases the level of a repression mark H3K9me2 in the transcriptional-silent chromatin specifically associated with pro-inflammatory genes. However, it is not clear what proteins are functionally involved in this process. Here we show that a novel chromatin activity based chemoproteomic (ChaC) approach can dissect the functional chromatin protein complexes that regulate ET-associated inflammation. Using UNC0638 th...

  20. Green Tea Polyphenols Function as Prooxidants To Activate Oxidative-Stress-Responsive Transcription Factors in Yeasts▿

    OpenAIRE

    Maeta, Kazuhiro; Nomura, Wataru; Takatsume, Yoshifumi; Izawa, Shingo; Inoue, Yoshiharu

    2006-01-01

    Epigallocatechin gallate (EGCG) is the most abundant polyphenolic flavonoid in green tea. Catechin and its derivatives, including EGCG, are widely believed to function as antioxidants. Here we demonstrate that both EGCG and green tea extract (GTE) cause oxidative stress-related responses in the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe under weak alkaline conditions in terms of the activation of oxidative-stress-responsive transcription factors. GT...

  1. Variable Transcriptional Activity of Endogenous Retroviruses in Human Breast Cancer▿ †

    OpenAIRE

    Frank, Oliver; Verbeke, Caroline; Schwarz, Norbert; Mayer, Jens; Fabarius, Alice; Hehlmann, Rüdiger; Leib-Mösch, Christine; Seifarth, Wolfgang

    2007-01-01

    Human endogenous retroviruses (HERVs) account for up to 9% of the human genome and include more than 800 elements related to betaretroviruses. While mouse mammary tumor virus (MMTV) is the accepted etiological agent of mammary tumors in mice, the role of retroviral elements in human breast cancer remains elusive. Here, we performed a comprehensive microarray-based analysis of overall retroviral transcriptional activities in 46 mammary gland tissue specimens representing pairs of nonmalignant ...

  2. Transcriptionally Active Regions Are the Preferred Targets for Chromosomal HPV Integration in Cervical Carcinogenesis

    OpenAIRE

    Christiansen, Irene Kraus; Sandve, Geir Kjetil; Schmitz, Martina; Dürst, Matthias; Hovig, Eivind

    2015-01-01

    Integration of human papillomavirus (HPV) into the host genome is regarded as a determining event in cervical carcinogenesis. However, the exact mechanism for integration, and the role of integration in stimulating cancer progression, is not fully characterized. Although integration sites are reported to appear randomly distributed over all chromosomes, fragile sites, translocation break points and transcriptionally active regions have all been suggested as being preferred sites for integrati...

  3. Activating transcription factor 3 is a negative regulator of allergic pulmonary inflammation

    OpenAIRE

    Gilchrist, Mark; Henderson, William R.; Clark, April E.; Simmons, Randi M.; Ye, Xin; Smith, Kelly D.; Aderem, Alan

    2008-01-01

    We recently demonstrated the pivotal role of the transcription factor (TF) activating TF 3 (ATF3) in dampening inflammation. We demonstrate that ATF3 also ameliorates allergen-induced airway inflammation and hyperresponsiveness in a mouse model of human asthma. ATF3 expression was increased in the lungs of mice challenged with ovalbumin allergen, and this was associated with its recruitment to the promoters of genes encoding Th2-associated cytokines. ATF3-deficient mice developed significantl...

  4. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward Rhizoctonia solani, the causing agent of rice sheath blight.

    Science.gov (United States)

    Wang, Haihua; Meng, Jiao; Peng, Xixu; Tang, Xinke; Zhou, Pinglan; Xiang, Jianhua; Deng, Xiaobo

    2015-09-01

    WRKY transcription factors have been implicated in the regulation of transcriptional reprogramming associated with various plant processes but most notably with plant defense responses to pathogens. Here we demonstrate that expression of rice WRKY4 gene (OsWRKY4) was rapidly and strongly induced upon infection of Rhizoctonia solani, the causing agent of rice sheath blight, and exogenous jasmonic acid (JA) and ethylene (ET). OsWRKY4 is localized to the nucleus of plant cells and possesses transcriptional activation ability. Modulation of OsWRKY4 transcript levels by constitutive overexpression increases resistance to the necrotrophic sheath blight fungus, concomitant with elevated expression of JA- and ET-responsive pathogenesis-related (PR) genes such as PR1a, PR1b, PR5 and PR10/PBZ1. Suppression by RNA interference (RNAi), on the other hand, compromises resistance to the fungal pathogen. Yeast one-hybrid assay and transient expression in tobacco cells reveal that OsWRKY4 specifically binds to the promoter regions of PR1b and PR5 which contain W-box (TTGAC[C/T]), or W-box like (TGAC[C/T]) cis-elements. In conclusion, we propose that OsWRKY4 functions as an important positive regulator that is implicated in the defense responses to rice sheath blight via JA/ET-dependent signal pathway. PMID:26275661

  5. Serial interferon-gamma release assays during treatment of active tuberculosis in young adults

    Directory of Open Access Journals (Sweden)

    Lee Choon-Taek

    2010-10-01

    Full Text Available Abstract Background The role of interferon-γ release assay (IGRA in monitoring responses to anti-tuberculosis (TB treatment is not clear. We evaluated the results of the QuantiFERON-TB Gold In-tube (QFT-GIT assay over time during the anti-TB treatment of adults with no underlying disease. Methods We enrolled soldiers who were newly diagnosed with active TB and admitted to the central referral military hospital in South Korea between May 1, 2008 and September 30, 2009. For each participant, we preformed QFT-GIT assay before treatment (baseline and at 1, 3, and 6 months after initiating anti-TB medication. Results Of 67 eligible patients, 59 (88.1% completed the study protocol. All participants were males who were human immunodeficiency virus (HIV-negative and had no chronic diseases. Their median age was 21 years (range, 20-48. Initially, 57 (96.6% patients had positive QFT-GIT results, and 53 (89.8%, 42 (71.2%, and 39 (66.1% had positive QFT-GIT results at 1, 3, and 6 months, respectively. The IFN-γ level at baseline was 5.31 ± 5.34 IU/ml, and the levels at 1, 3, and 6 months were 3.95 ± 4.30, 1.82 ± 2.14, and 1.50 ± 2.12 IU/ml, respectively. All patients had clinical and radiologic improvements after treatment and were cured. A lower IFN-γ level, C-reactive protein ≥ 3 mg/dl, and the presence of fever (≥ 38.3°C at diagnosis were associated with negative reversion of the QFT-GIT assay. Conclusion Although the IFN-γ level measured by QFT-GIT assay decreased after successful anti-TB treatment in most participants, less than half of them exhibited QFT-GIT reversion. Thus, the reversion to negativity of the QFT-GIT assay may not be a good surrogate for treatment response in otherwise healthy young patients with TB.

  6. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release

    Directory of Open Access Journals (Sweden)

    Florence P. Varodayan

    2013-12-01

    Full Text Available Many central synapses are highly sensitive to alcohol, and it is now accepted that short-term alterations in synaptic function may lead to longer term changes in circuit function. The regulation of postsynaptic receptors by alcohol has been well studied, but the mechanisms underlying the effects of alcohol on the presynaptic terminal are relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter release, we recently investigated the mechanism by which ethanol induces the Vamp2 gene, but not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE protein required for synaptic vesicle fusion. We found that alcohol activates the transcription factor heat shock factor 1 (HSF1 to induce Vamp2 gene expression, while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE protein, we then investigated whether ethanol exposure and HSF1 transcriptional activity alter neurotransmitter release using electrophysiology. We found that alcohol increased the frequency of γ-aminobutyric acid (GABA-mediated miniature IPSCs via HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could explain some of the changes in synaptic function that occur soon after alcohol exposure, and may underlie some of the more enduring effects of chronic alcohol intake on local circuit function.

  7. Pim-1 kinase phosphorylates RUNX family transcription factors and enhances their activity

    Directory of Open Access Journals (Sweden)

    Peltola Katriina J

    2006-05-01

    Full Text Available Abstract Background The pim family genes encode oncogenic serine/threonine kinases which in hematopoietic cells have been implicated in cytokine-dependent signaling as well as in lymphomagenesis, especially in cooperation with other oncogenes such as myc, bcl-2 or Runx family genes. The Runx genes encode α-subunits of heterodimeric transcription factors which regulate cell proliferation and differentiation in various tissues during development and which can become leukemogenic upon aberrant expression. Results Here we have identified novel protein-protein interactions between the Pim-1 kinase and the RUNX family transcription factors. Using the yeast two-hybrid system, we were able to show that the C-terminal part of human RUNX3 associates with Pim-1. This result was confirmed in cell culture, where full-length murine Runx1 and Runx3 both coprecipitated and colocalized with Pim-1. Furthermore, catalytically active Pim-1 kinase was able to phosphorylate Runx1 and Runx3 proteins and enhance the transactivation activity of Runx1 in a dose-dependent fashion. Conclusion Altogether, our results suggest that mammalian RUNX family transcription factors are novel binding partners and substrates for the Pim-1 kinase, which may be able to regulate their activities during normal hematopoiesis as well as in leukemogenesis.

  8. Superoxide Dismutase (SOD Enzyme Activity Assay in Fasciola spp. Para-sites and Liver Tissue Extract

    Directory of Open Access Journals (Sweden)

    M Assady

    2011-09-01

    Full Text Available Background: The purpose of this comparative study was to detect superoxide dismutase (SOD activities in Fasciola hepatica, F. gigantica parasites, infected and healthy liver tissues in order to determine of species effects and liver infection on SODs activity level.Methods: Fasciola spp. parasites and sheep liver tissues (healthy and infected liver tissues, 10 samples for each, were collected, homogenized and investigated for protein measurement, protein detection and SOD enzyme activity assay. Protein concentration was measured by Bradford method and SODs band protein was detected on SDS-PAGE. SODs activity was determined by iodonitrotetrazolium chloride, INT, and xanthine substrates. Independent samples t-test was conducted for analysis of SODs activities difference.Results: Protein concentration means were detected for F. hepatica 1.3 mg/ ml, F. gigantica 2.9 mg/ml, healthy liver tissue 5.5 mg/ml and infected liver tissue 1.6 mg/ml (with similar weight sample mass. Specific enzyme activities in the samples were obtained 0.58, 0.57, 0.51, 1.43 U/mg for F. hepatica, F. gigantica, healthy liver and infected liver respectively. Gel electrophoresis of Fasciola spp. and sheep liver tissue extracts revealed a band protein with MW of 60 kDa. The statistical analysis revealed significant difference between SOD activities of Fasciola species and also between SOD activity of liver tissues (P<.05.Conclusion: Fasciola species and liver infection are effective causes on SOD enzyme activity level.

  9. The B-subdomain of the Xenopus laevis XFIN KRAB-AB domain is responsible for its weaker transcriptional repressor activity compared to human ZNF10/Kox1.

    Directory of Open Access Journals (Sweden)

    Nadine Born

    Full Text Available The Krüppel-associated box (KRAB domain interacts with the nuclear hub protein TRIM28 to initiate or mediate chromatin-dependent processes like transcriptional repression, imprinting or suppression of endogenous retroviruses. The prototype KRAB domain initially identified in ZNF10/KOX1 encompasses two subdomains A and B that are found in hundreds of zinc finger transcription factors studied in human and murine genomes. Here we demonstrate for the first time transcriptional repressor activity of an amphibian KRAB domain. After sequence correction, the updated KRAB-AB domain of zinc finger protein XFIN from the frog Xenopus laevis was found to confer transcriptional repression in reporter assays in Xenopus laevis A6 kidney cells as well as in human HeLa, but not in the minnow Pimephales promelas fish cell line EPC. Binding of the XFIN KRAB-AB domain to human TRIM28 was demonstrated in a classical co-immunoprecipitation approach and visualized in a single-cell compartmentalization assay. XFIN-AB displayed reduced potency in repression as well as lower strength of interaction with TRIM28 compared to ZNF10 KRAB-AB. KRAB-B subdomain swapping between the two KRAB domains indicated that it was mainly the KRAB-B subdomain of XFIN that was responsible for its lower capacity in repression and binding to human TRIM28. In EPC fish cells, ZNF10 and XFIN KRAB repressor activity could be partially restored to low levels by adding exogenous human TRIM28. In contrast to XFIN, we did not find any transcriptional repression activity for the KRAB-like domain of human PRDM9 in HeLa cells. PRDM9 is thought to harbor an evolutionary older domain related to KRAB whose homologs even occur in invertebrates. Our results support the notion that functional bona fide KRAB domains which confer transcriptional repression and interact with TRIM28 most likely co-evolved together with TRIM28 at the beginning of tetrapode evolution.

  10. A Simple Assay to Screen Antimicrobial Compounds Potentiating the Activity of Current Antibiotics

    Science.gov (United States)

    Iqbal, Junaid; Kazmi, Shahana Urooj; Khan, Naveed Ahmed

    2013-01-01

    Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract of Juglans regia tree bark was tested against representative multiple drug-resistant bacteria in the aforementioned assay to determine whether it potentiates the activity of selected antibiotics. The aqueous extract of J. regia bark was added to Mueller-Hinton agar, followed by a lawn of multiple drug-resistant bacteria, Salmonella typhi or enteropathogenic E. coli. Next, filter paper discs impregnated with different classes of antibiotics were placed on the agar surface. Bacteria incubated with extract or antibiotics alone were used as controls. The results showed a significant increase (>30%) in the zone of inhibition around the aztreonam, cefuroxime, and ampicillin discs compared with bacteria incubated with the antibiotics/extract alone. In conclusion, our assay is able to detect either synergistic or additive action of J. regia extract against multiple drug-resistant bacteria when tested with a range of antibiotics. PMID:23865073

  11. A Simple Assay to Screen Antimicrobial Compounds Potentiating the Activity of Current Antibiotics

    Directory of Open Access Journals (Sweden)

    Junaid Iqbal

    2013-01-01

    Full Text Available Antibiotic resistance continues to pose a significant problem in the management of bacterial infections, despite advances in antimicrobial chemotherapy and supportive care. Here, we suggest a simple, inexpensive, and easy-to-perform assay to screen antimicrobial compounds from natural products or synthetic chemical libraries for their potential to work in tandem with the available antibiotics against multiple drug-resistant bacteria. The aqueous extract of Juglans regia tree bark was tested against representative multiple drug-resistant bacteria in the aforementioned assay to determine whether it potentiates the activity of selected antibiotics. The aqueous extract of J. regia bark was added to Mueller-Hinton agar, followed by a lawn of multiple drug-resistant bacteria, Salmonella typhi or enteropathogenic E. coli. Next, filter paper discs impregnated with different classes of antibiotics were placed on the agar surface. Bacteria incubated with extract or antibiotics alone were used as controls. The results showed a significant increase (>30% in the zone of inhibition around the aztreonam, cefuroxime, and ampicillin discs compared with bacteria incubated with the antibiotics/extract alone. In conclusion, our assay is able to detect either synergistic or additive action of J. regia extract against multiple drug-resistant bacteria when tested with a range of antibiotics.

  12. A Cell-Based Fluorescent Assay to Detect the Activity of Shiga Toxin and Other Toxins That Inhibit Protein Synthesis

    Science.gov (United States)

    Escherichia coli O157:H7, a major cause of food-borne illness, produces Shiga toxins that block protein synthesis by inactivating the ribosome. In this chapter we describe a simple cell-based fluorescent assay to detect Shiga toxins and inhibitors of toxin activity. The assay can also be used to d...

  13. SCREENING COMPLEX HAZARDOUS WASTES FOR MUTAGENIC ACTIVITY USING A MODIFIED VERSION OF THE TLC/SALMONELLA ASSAY

    Science.gov (United States)

    Ten complex hazardous wastes were tested for mutagenic activity using a modified version of the TLC/Ames assay developed by Bjorseth et al. (1982). This fractionation/bioassay scheme couples thin layer chromatography (TLC) with the Salmonella/mammalian-microsome (Ames) assay for ...

  14. Enhanced NFκB and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer

    International Nuclear Information System (INIS)

    Signaling pathways that converge on two different transcription factor complexes, NFκB and AP-1, have been identified in estrogen receptor (ER)-positive breast cancers resistant to the antiestrogen, tamoxifen. Two cell line models of tamoxifen-resistant ER-positive breast cancer, MCF7/HER2 and BT474, showing increased AP-1 and NFκB DNA-binding and transcriptional activities, were studied to compare tamoxifen effects on NFκB and AP-1 regulated reporter genes relative to tamoxifen-sensitive MCF7 cells. The model cell lines were treated with the IKK inhibitor parthenolide (PA) or the proteasome inhibitor bortezomib (PS341), alone and in combination with tamoxifen. Expression microarray data available from 54 UCSF node-negative ER-positive breast cancer cases with known clinical outcome were used to search for potential genes signifying upregulated NFκB and AP-1 transcriptional activity in association with tamoxifen resistance. The association of these genes with patient outcome was further evaluated using node-negative ER-positive breast cancer cases identified from three other published data sets (Rotterdam, n = 209; Amsterdam, n = 68; Basel, n = 108), each having different patient age and adjuvant tamoxifen treatment characteristics. Doses of parthenolide and bortezomib capable of sensitizing the two endocrine resistant breast cancer models to tamoxifen were capable of suppressing NFκB and AP-1 regulated gene expression in combination with tamoxifen and also increased ER recruitment of the transcriptional co-repressor, NCoR. Transcript profiles from the UCSF breast cancer cases revealed three NFκB and AP-1 upregulated genes – cyclin D1, uPA and VEGF – capable of dichotomizing node-negative ER-positive cases into early and late relapsing subsets despite adjuvant tamoxfien therapy and most prognostic for younger age cases. Across the four independent sets of node-negative ER-positive breast cancer cases (UCSF, Rotterdam, Amsterdam, Basel), high expression of

  15. Enhanced NFκB and AP-1 transcriptional activity associated with antiestrogen resistant breast cancer

    Directory of Open Access Journals (Sweden)

    Moore Dan H

    2007-04-01

    Full Text Available Abstract Background Signaling pathways that converge on two different transcription factor complexes, NFκB and AP-1, have been identified in estrogen receptor (ER-positive breast cancers resistant to the antiestrogen, tamoxifen. Methods Two cell line models of tamoxifen-resistant ER-positive breast cancer, MCF7/HER2 and BT474, showing increased AP-1 and NFκB DNA-binding and transcriptional activities, were studied to compare tamoxifen effects on NFκB and AP-1 regulated reporter genes relative to tamoxifen-sensitive MCF7 cells. The model cell lines were treated with the IKK inhibitor parthenolide (PA or the proteasome inhibitor bortezomib (PS341, alone and in combination with tamoxifen. Expression microarray data available from 54 UCSF node-negative ER-positive breast cancer cases with known clinical outcome were used to search for potential genes signifying upregulated NFκB and AP-1 transcriptional activity in association with tamoxifen resistance. The association of these genes with patient outcome was further evaluated using node-negative ER-positive breast cancer cases identified from three other published data sets (Rotterdam, n = 209; Amsterdam, n = 68; Basel, n = 108, each having different patient age and adjuvant tamoxifen treatment characteristics. Results Doses of parthenolide and bortezomib capable of sensitizing the two endocrine resistant breast cancer models to tamoxifen were capable of suppressing NFκB and AP-1 regulated gene expression in combination with tamoxifen and also increased ER recruitment of the transcriptional co-repressor, NCoR. Transcript profiles from the UCSF breast cancer cases revealed three NFκB and AP-1 upregulated genes – cyclin D1, uPA and VEGF – capable of dichotomizing node-negative ER-positive cases into early and late relapsing subsets despite adjuvant tamoxfien therapy and most prognostic for younger age cases. Across the four independent sets of node-negative ER-positive breast cancer cases

  16. Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters.

    Science.gov (United States)

    Rivas-Marín, Elena; Floriano, Belén; Santero, Eduardo

    2016-01-01

    Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators. PMID:27087658

  17. Transcriptionally active regions are the preferred targets for chromosomal HPV integration in cervical carcinogenesis.

    Directory of Open Access Journals (Sweden)

    Irene Kraus Christiansen

    Full Text Available Integration of human papillomavirus (HPV into the host genome is regarded as a determining event in cervical carcinogenesis. However, the exact mechanism for integration, and the role of integration in stimulating cancer progression, is not fully characterized. Although integration sites are reported to appear randomly distributed over all chromosomes, fragile sites, translocation break points and transcriptionally active regions have all been suggested as being preferred sites for integration. In addition, more recent studies have reported integration events occurring within or surrounding essential cancer-related genes, raising the question whether these may reflect key events in the molecular genesis of HPV induced carcinomas. In a search for possible common denominators of the integration sites, we utilized the chromosomal coordinates of 121 viral-cellular fusion transcripts, and examined for statistical overrepresentation of integration sites with various features of ENCODE chromatin information data, using the Genomic HyperBrowser. We find that integration sites coincide with DNA that is transcriptionally active in mucosal epithelium, as judged by the relationship of integration sites to DNase hypersensitivity and H3K4me3 methylation data. Finding an association between integration and transcription is highly informative with regard to the spatio-temporal characteristics of the integration process. These results suggest that integration is an early event in carcinogenesis, more than a late product of chromosomal instability. If the viral integrations were more likely to occur in destabilized regions of the DNA, a completely random distribution of the integration sites would be expected. As a by-product of integration in actively transcribing DNA, a tendency of integration in or close to genes is likely to be observed. This increases the possibility of viral signals to modulate the expression of these genes, potentially contributing to the

  18. Molecular genetics of blood-fleshed peach reveals activation of anthocyanin biosynthesis by NAC transcription factors.

    Science.gov (United States)

    Zhou, Hui; Lin-Wang, Kui; Wang, Huiliang; Gu, Chao; Dare, Andrew P; Espley, Richard V; He, Huaping; Allan, Andrew C; Han, Yuepeng

    2015-04-01

    Anthocyanin pigmentation is an important consumer trait in peach (Prunus persica). In this study, the genetic basis of the blood-flesh trait was investigated using the cultivar Dahongpao, which shows high levels of cyanidin-3-glucoside in the mesocarp. Elevation of anthocyanin levels in the flesh was correlated with the expression of an R2R3 MYB transcription factor, PpMYB10.1. However, PpMYB10.1 did not co-segregate with the blood-flesh trait. The blood-flesh trait was mapped to a 200-kb interval on peach linkage group (LG) 5. Within this interval, a gene encoding a NAC domain transcription factor (TF) was found to be highly up-regulated in blood-fleshed peaches when compared with non-red-fleshed peaches. This NAC TF, designated blood (BL), acts as a heterodimer with PpNAC1 which shows high levels of expression in fruit at late developmental stages. We show that the heterodimer of BL and PpNAC1 can activate the transcription of PpMYB10.1, resulting in anthocyanin pigmentation in tobacco. Furthermore, silencing the BL gene reduces anthocyanin pigmentation in blood-fleshed peaches. The transactivation activity of the BL-PpNAC1 heterodimer is repressed by a SQUAMOSA promoter-binding protein-like TF, PpSPL1. Low levels of PpMYB10.1 expression in fruit at early developmental stages is probably attributable to lower levels of expression of PpNAC1 plus the presence of high levels of repressors such as PpSPL1. We present a mechanism whereby BL is the key gene for the blood-flesh trait in peach via its activation of PpMYB10.1 in maturing fruit. Partner TFs such as basic helix-loop-helix proteins and NAC1 are required, as is the removal of transcriptional repressors. PMID:25688923

  19. Contact activation of blood coagulation on a defined kaolin/collagen surface in a microfluidic assay

    OpenAIRE

    Zhu, Shu; Diamond, Scott L.

    2014-01-01

    Generation of active Factor XII (FXIIa) triggers blood clotting on artificial surfaces and may also enhance intravascular thrombosis. We developed a patterned kaolin (0 to 0.3 pg/μm2)/type 1 collagen fibril surface for controlled microfluidic clotting assays. Perfusion of whole blood (treated only with a low level of 4 μg/mL of the XIIa inhibitor, corn trypsin inhibitor) drove platelet deposition followed by fibrin formation. At venous wall shear rate (100 s−1), kaolin accelerated onset of fi...

  20. Serum acetaminophen assay using activated charcoal adsorption and gas chromatography without derivatization.

    Science.gov (United States)

    Jeevanandam, M; Novic, B; Savich, R; Wagman, E

    1980-01-01

    A quantitative assay of acetaminophen in serum has been developed. The drug, together with an internal standard 2-acetamidophenol, is adsorbed on activated charcoal and then extracted into a mixture of ethyl acetate and isopropanol. This extract is then analyzed, without any derivatization, by gas chromatography. The isothermal analysis yielded a good, highly reproducible separation. The drug peak was symmetrical and without any tailing. The peak height response ratio was found to be linear with concentrations ranging from 25-500 ng/L. No interference was observed with the various drugs or metabolites which are commonly encountered in human serum. PMID:7421146

  1. A simple assay for determining activities of phosphopentomutase from a hyperthermophilic bacterium Thermotoga maritima.

    Science.gov (United States)

    Moustafa, Hanan M A; Zaghloul, Taha I; Zhang, Y-H Percival

    2016-05-15

    Phosphopentomutase (PPM) catalyzes the interconversion of α-d-(deoxy)-ribose 1-phosphate and α-d-(deoxy)-ribose 5-phosphate. We developed a coupled or uncoupled enzymatic assay with an enzyme nucleoside phosphorylase for determining PPM activities on d-ribose 5-phosphate at a broad temperature range from 30 to 90 °C. This assay not only is simple and highly sensitive but also does not require any costly special instrument. Via this technology, an open reading frame TM0167 from a thermophilic bacterium Thermotoga maritima putatively encoding PPM was cloned. The recombinant PPM was overexpressed in Escherichia coli Rosetta. This enzyme has the highest activity at 90 °C. MnCl2 (0.1 mM) and 50 μM α-d-glucose 1,6-bisphosphate are cofactors. The kinetic parameters of Km and kcat are 1.2 mM and 185 s(-1) at 90 °C, respectively. The enzyme has a half-life time of up to 156 min at 90 °C. This enzyme is the most active and thermostable PPM reported to date. PMID:26924489

  2. MrkH, a novel c-di-GMP-dependent transcriptional activator, controls Klebsiella pneumoniae biofilm formation by regulating type 3 fimbriae expression.

    Directory of Open Access Journals (Sweden)

    Jonathan J Wilksch

    2011-08-01

    Full Text Available Klebsiella pneumoniae causes significant morbidity and mortality worldwide, particularly amongst hospitalized individuals. The principle mechanism for pathogenesis in hospital environments involves the formation of biofilms, primarily on implanted medical devices. In this study, we constructed a transposon mutant library in a clinical isolate, K. pneumoniae AJ218, to identify the genes and pathways implicated in biofilm formation. Three mutants severely defective in biofilm formation contained insertions within the mrkABCDF genes encoding the main structural subunit and assembly machinery for type 3 fimbriae. Two other mutants carried insertions within the yfiN and mrkJ genes, which encode GGDEF domain- and EAL domain-containing c-di-GMP turnover enzymes, respectively. The remaining two isolates contained insertions that inactivated the mrkH and mrkI genes, which encode for novel proteins with a c-di-GMP-binding PilZ domain and a LuxR-type transcriptional regulator, respectively. Biochemical and functional assays indicated that the effects of these factors on biofilm formation accompany concomitant changes in type 3 fimbriae expression. We mapped the transcriptional start site of mrkA, demonstrated that MrkH directly activates transcription of the mrkA promoter and showed that MrkH binds strongly to the mrkA regulatory region only in the presence of c-di-GMP. Furthermore, a point mutation in the putative c-di-GMP-binding domain of MrkH completely abolished its function as a transcriptional activator. In vivo analysis of the yfiN and mrkJ genes strongly indicated their c-di-GMP-specific function as diguanylate cyclase and phosphodiesterase, respectively. In addition, in vitro assays showed that purified MrkJ protein has strong c-di-GMP phosphodiesterase activity. These results demonstrate for the first time that c-di-GMP can function as an effector to stimulate the activity of a transcriptional activator, and explain how type 3 fimbriae

  3. Sp1/Sp3 and DNA-methylation contribute to basal transcriptional activation of human podoplanin in MG63 versus Saos-2 osteoblastic cells

    Directory of Open Access Journals (Sweden)

    Puri Christina

    2007-03-01

    Full Text Available Abstract Background Podoplanin is a membrane mucin that, among a series of tissues, is expressed on late osteoblasts and osteocytes. Since recent findings have focussed on podoplanin's potential role as a tumour progression factor, we aimed at identifying regulatory elements conferring PDPN promoter activity. Here, we characterized the molecular mechanism controlling basal PDPN transcription in human osteoblast-like MG63 versus Saos-2 cells. Results We cloned and sequenced 2056 nucleotides from the 5'-flanking region of the PDPN gene and a computational search revealed that the TATA and CAAT box-lacking promoter possesses features of a growth-related gene, such as a GC-rich 5' region and the presence of multiple putative Sp1, AP-4 and NF-1 sites. Reporter gene assays demonstrated a functional promoter in MG63 cells exhibiting 30-fold more activity than in Saos-2 cells. In vitro DNase I footprinting revealed eight protected regions flanked by DNaseI hypersensitive sites within the region bp -728 to -39 present in MG63, but not in Saos-2 cells. Among these regions, mutation and supershift electrophoretic mobility shift assays (EMSA identified four Sp1/Sp3 binding sites and two binding sites for yet unknown transcription factors. Deletion studies demonstrated the functional importance of two Sp1/Sp3 sites for PDPN promoter activity. Overexpression of Sp1 and Sp3 independently increased the stimulatory effect of the promoter and podoplanin mRNA levels in MG63 and Saos-2 cells. In SL2 cells, Sp3 functioned as a repressor, while Sp1 and Sp3 acted positively synergistic. Weak PDPN promoter activity of Saos-2 cells correlated with low Sp1/Sp3 nuclear levels, which was confirmed by Sp1/Sp3 chromatin immunoprecipitations in vivo. Moreover, methylation-sensitive Southern blot analyses and bisulfite sequencing detected strong methylation of CpG sites upstream of bp -464 in MG63 cells, but hypomethylation of these sites in Saos-2 cells. Concomitantly

  4. Histone H4 Lys 20 methyltransferase SET8 promotes androgen receptor-mediated transcription activation in prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Lushuai [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Yanyan; Du, Fengxia [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Han, Xiao [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Li, Xiaohua [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China); Niu, Yuanjie [Chawnshang Chang Sex Hormone Research Center, Tianjin Institute of Urology, Tianjin Medical University, Tianjin 300070 (China); Ren, Shancheng, E-mail: renshancheng@gmail.com [Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai 200433 (China); Sun, Yingli, E-mail: sunyl@big.ac.cn [Laboratory of Genome Variations and Precision Bio-Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101 (China)

    2014-07-18

    Highlights: • Dihydrotestosterone stimulates H4K20me1 enrichment at the PSA promoter. • SET8 promotes AR-mediated transcription activation. • SET8 interacts with AR and promotes cell proliferation. - Abstract: Histone methylation status in different lysine residues has an important role in transcription regulation. The effect of H4K20 monomethylation (H4K20me1) on androgen receptor (AR)-mediated gene transcription remains unclear. Here we show that AR agonist stimulates the enrichment of H4K20me1 and SET8 at the promoter of AR target gene PSA in an AR dependent manner. Furthermore, SET8 is crucial for the transcription activation of PSA. Co-immunoprecipitation analyses demonstrate that SET8 interacts with AR. Therefore, we conclude that SET8 is involved in AR-mediated transcription activation, possibly through its interaction with AR and H4K20me1 modification.

  5. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Wen Min; Doucet, Michele; Huang, David; Weber, Kristy L.; Kominsky, Scott L., E-mail: kominsc@jhmi.edu

    2013-07-26

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co-activator

  6. CITED2 modulates estrogen receptor transcriptional activity in breast cancer cells

    International Nuclear Information System (INIS)

    Highlights: •The effects of elevated CITED2 on ER function in breast cancer cells are examined. •CITED2 enhances cell growth in the absence of estrogen and presence of tamoxifen. •CITED2 functions as a transcriptional co-activator of ER in breast cancer cells. -- Abstract: Cbp/p300-interacting transactivator with Glu/Asp-rich carboxy-terminal domain 2 (CITED2) is a member of the CITED family of non-DNA binding transcriptional co-activators of the p300/CBP-mediated transcription complex. Previously, we identified CITED2 as being overexpressed in human breast tumors relative to normal mammary epithelium. Upon further investigation within the estrogen receptor (ER)-positive subset of these breast tumor samples, we found that CITED2 mRNA expression was elevated in those associated with poor survival. In light of this observation, we investigated the effect of elevated CITED2 levels on ER function. While ectopic overexpression of CITED2 in three ER-positive breast cancer cell lines (MCF-7, T47D, and CAMA-1) did not alter cell proliferation in complete media, growth was markedly enhanced in the absence of exogenous estrogen. Correspondingly, cells overexpressing CITED2 demonstrated reduced sensitivity to the growth inhibitory effects of the selective estrogen receptor modulator, 4-hydroxytamoxifen. Subsequent studies revealed that basal ER transcriptional activity was elevated in CITED2-overexpressing cells and was further increased upon the addition of estrogen. Similarly, basal and estrogen-induced expression of the ER-regulated genes trefoil factor 1 (TFF1) and progesterone receptor (PGR) was higher in cells overexpressing CITED2. Concordant with this observation, ChIP analysis revealed higher basal levels of CITED2 localized to the TFF-1 and PGR promoters in cells with ectopic overexpression of CITED2, and these levels were elevated further in response to estrogen stimulation. Taken together, these data indicate that CITED2 functions as a transcriptional co-activator

  7. BTG2 is an LXXLL-dependent co-repressor for androgen receptor transcriptional activity

    International Nuclear Information System (INIS)

    Research highlights: → BTG2 associates with AR, androgen causes an increase of the interaction. → BTG2 as a co-repressor inhibits the AR-mediated transcription activity. → BTG2 inhibits the transcription activity and expression of PSA. → An intact 92LxxLL96 motif is essential and necessary for these activities of BTG2, while the 20LxxLL24 motif is not required. → Ectopic expression of BTG2 reduces proliferation of prostate cancer cells. -- Abstract: The tumor suppressor gene, BTG2 has been down-regulated in prostate cancer and the ectopic expression of this gene has been shown to inhibit prostate cancer cell growth. Sequence analysis revealed that the BTG2 protein contains two leucine-rich motifs (20LxxLL24 and 92LxxLL96), which are usually found in nuclear receptor co-factors. Based on this, we postulated that there will be an association between BTG2 and AR. In this study, we discovered that BTG2 directly bound to the androgen receptor (AR) in the absence of 5α-dihydrotestosterone (DHT), and in the presence of the androgen, this interaction was increased. BTG2 bearing the mutant 20LxxLL24 motif bound to AR equally efficient as the wild-type BTG2, while BTG2 bearing the mutant 92LxxLL96 motif failed to interact with AR. Functional studies indicated that ectopic expression of BTG2 caused a significant inhibition of AR-mediated transcriptional activity and a decreased growth of prostate cancer cells. Androgen-induced promoter activation and expression of prostate-specific antigen (PSA) are significantly attenuated by BTG2. The intact 92LxxLL96 motif is required for these activities. These findings, for the first time, demonstrate that BTG2 complexes with AR via an LxxLL-dependent mechanism and may play a role in prostate cancer via modulating the AR signaling pathway.

  8. Transcriptional co-activator PGC-1 alpha drives the formation of slow-twitch muscle fibres.

    Science.gov (United States)

    Lin, Jiandie; Wu, Hai; Tarr, Paul T; Zhang, Chen-Yu; Wu, Zhidan; Boss, Olivier; Michael, Laura F; Puigserver, Pere; Isotani, Eiji; Olson, Eric N; Lowell, Bradford B; Bassel-Duby, Rhonda; Spiegelman, Bruce M

    2002-08-15

    The biochemical basis for the regulation of fibre-type determination in skeletal muscle is not well understood. In addition to the expression of particular myofibrillar proteins, type I (slow-twitch) fibres are much higher in mitochondrial content and are more dependent on oxidative metabolism than type II (fast-twitch) fibres. We have previously identified a transcriptional co-activator, peroxisome-proliferator-activated receptor-gamma co-activator-1 (PGC-1 alpha), which is expressed in several tissues including brown fat and skeletal muscle, and that activates mitochondrial biogenesis and oxidative metabolism. We show here that PGC-1 alpha is expressed preferentially in muscle enriched in type I fibres. When PGC-1 alpha is expressed at physiological levels in transgenic mice driven by a muscle creatine kinase (MCK) promoter, a fibre type conversion is observed: muscles normally rich in type II fibres are redder and activate genes of mitochondrial oxidative metabolism. Notably, putative type II muscles from PGC-1 alpha transgenic mice also express proteins characteristic of type I fibres, such as troponin I (slow) and myoglobin, and show a much greater resistance to electrically stimulated fatigue. Using fibre-type-specific promoters, we show in cultured muscle cells that PGC-1 alpha activates transcription in cooperation with Mef2 proteins and serves as a target for calcineurin signalling, which has been implicated in slow fibre gene expression. These data indicate that PGC-1 alpha is a principal factor regulating muscle fibre type determination. PMID:12181572

  9. The role of RNA polymerase I transcription and embryonic genome activation in nucleolar development in bovine preimplantation embryos

    DEFF Research Database (Denmark)

    Østrup, Olga; Strejcek, F.; Petrovicova, I.;

    2008-01-01

    The aim of the present study was to investigate the role of RNA polymerase I (RPI) transcription in nucleolar development during major transcriptional activation (MTA) in cattle. Late eight-cell embryos were cultured in the absence (control group) or presence of actinomycin D (AD) (RPI inhibition...

  10. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription

    OpenAIRE

    Lai, F; Ørom, U.; M. Cesaroni; Beringer, M.; Taatjes, D.; Blobel, G; Shiekhattar, R.

    2013-01-01

    Recent advances in genomic research have revealed the existence of a large number of transcripts devoid of protein-coding potential in multiple organisms 1-8 . While the functional role for long non-coding RNAs (lncRNAs) has been best defined in epigenetic phenomena such as X inactivation and imprinting, different classes of lncRNAs may have varied biological functions 8-13 . We and others have identified a class of lncRNAs, termed ncRNA-activating (ncRNA-a), that function to activate their n...

  11. Transcriptional activities of mammalian genomes at sites of recombination with foreign DNA

    International Nuclear Information System (INIS)

    The nucleotide sequences of several sites of recombination between adenovirus DNA and hamster, mouse, or human cell DNAs were determined. These sites of recombination had been cloned from adenovirus type 2 (Ad2)- or type 12 (Ad12)-transformed cells, from Ad12-induced tumor cells, or from a symmetric recombinant between Ad12 DNA and human cell DNA. One important precondition for the generation of recombinants between host and foreign DNAs might be the establishment of a chromatin configuration that permits access of foreign DNA and of the recombination machinery to cellular DNA. Such favorable chromatin structures might arise during cellular DNA replication or transcription or both. As a first approach toward investigating these more complex problems of foreign DNA insertion. The authors determined transcriptional activities of cellular DNA sequences at viral junction sites. The results presented demonstrate that the cellular DNA sequences involved in linkage to viral DNA at five completely different sites in DNA from three different species are transcribed into RNAs even in cells which have not been transformed or infected by adenovirus. These results are consistent with the notion that at least some of the cellular DNA sequences at sites of insertion of adenovirus (foreign) DNA are transcriptionally active and thus provide an opportunity for recombination

  12. Bromodomain protein 4 mediates the papillomavirus E2 transcriptional activation function.

    Science.gov (United States)

    Schweiger, Michal-Ruth; You, Jianxin; Howley, Peter M

    2006-05-01

    The papillomavirus E2 regulatory protein has essential roles in viral transcription and the initiation of viral DNA replication as well as for viral genome maintenance. Brd4 has recently been identified as a major E2-interacting protein and, in the case of the bovine papillomavirus type 1, serves to tether E2 and the viral genomes to mitotic chromosomes in dividing cells, thus ensuring viral genome maintenance. We have explored the possibility that Brd4 is involved in other E2 functions. By analyzing the binding of Brd4 to a series of alanine-scanning substitution mutants of the human papillomavirus type 16 E2 N-terminal transactivation domain, we found that amino acids required for Brd4 binding were also required for transcriptional activation but not for viral DNA replication. Functional studies of cells expressing either the C-terminal domain of Brd4 that can bind E2 and compete its binding to Brd4 or short interfering RNA to knock down Brd4 protein levels revealed a role for Brd4 in the transcriptional activation function of E2 but not for its viral DNA replication function. Therefore, these studies establish a broader role for Brd4 in the papillomavirus life cycle than as the chromosome tether for E2 during mitosis. PMID:16611886

  13. FBXL5 modulates HIF-1α transcriptional activity by degradation of CITED2.

    Science.gov (United States)

    Machado-Oliveira, Gisela; Guerreiro, Eduarda; Matias, Ana Catarina; Facucho-Oliveira, João; Pacheco-Leyva, Ivette; Bragança, José

    2015-06-15

    CITED2 is a ubiquitously expressed nuclear protein exhibiting a high affinity for the cysteine-histidine-rich domain 1 (CH1) of the transcriptional co-activators CBP/p300. CITED2 is particularly efficient in the inhibition of the hypoxia-inducible factor-1α (HIF-1α) dependent transcription by competing with it for the interaction with the CH1 domain. Here we report a direct and specific interaction between CITED2 and the F-box and leucine rich repeat protein 5 (FBXL5), a substrate adaptor protein which is part of E3 ubiquitin ligase complexes mediating protein degradation by the proteasome. We demonstrated that depletion of FBXL5 by RNA interference led to an increase of CITED2 protein levels. Conversely, overexpression of FBXL5 caused the decrease of CITED2 protein levels in a proteasome-dependent manner, and impaired the interaction between CITED2 and the CH1 domain of p300 in living cells. In undifferentiated mouse embryonic stem cells, the overexpression of FBXL5 also reduced Cited2 protein levels. Finally, we evidenced that FBXL5 overexpression and the consequent degradation of CITED2 enabled the transcriptional activity of the N-terminal transactivation domain of HIF-1α. Collectively, our results highlighted a novel molecular interaction between CITED2 and FBXL5, which might regulate the steady state CITED2 protein levels and contribute to the modulation of gene expression by HIF-1α. PMID:25956243

  14. Combinatorial activation and repression by seven transcription factors specify Drosophila odorant receptor expression.

    Directory of Open Access Journals (Sweden)

    Shadi Jafari

    Full Text Available The mechanism that specifies olfactory sensory neurons to express only one odorant receptor (OR from a large repertoire is critical for odor discrimination but poorly understood. Here, we describe the first comprehensive analysis of OR expression regulation in Drosophila. A systematic, RNAi-mediated knock down of most of the predicted transcription factors identified an essential function of acj6, E93, Fer1, onecut, sim, xbp1, and zf30c in the regulation of more than 30 ORs. These regulatory factors are differentially expressed in antennal sensory neuron classes and specifically required for the adult expression of ORs. A systematic analysis reveals not only that combinations of these seven factors are necessary for receptor gene expression but also a prominent role for transcriptional repression in preventing ectopic receptor expression. Such regulation is supported by bioinformatics and OR promoter analyses, which uncovered a common promoter structure with distal repressive and proximal activating regions. Thus, our data provide insight into how combinatorial activation and repression can allow a small number of transcription factors to specify a large repertoire of neuron classes in the olfactory system.

  15. Cyclin D3 interacts with vitamin D receptor and regulates its transcription activity

    International Nuclear Information System (INIS)

    D-type cyclins are essential for the progression through the G1 phase of the cell cycle. Besides serving as cell cycle regulators, D-type cyclins were recently reported to have transcription regulation functions. Here, we report that cyclin D3 is a new interacting partner of vitamin D receptor (VDR), a member of the superfamily of nuclear receptors for steroid hormones, thyroid hormone, and the fat-soluble vitamins A and D. The interaction was confirmed with methods of yeast two-hybrid system, in vitro binding analysis and in vivo co-immunoprecipitation. Cyclin D3 interacted with VDR in a ligand-independent manner, but treatment of the ligand, 1,25-dihydroxyvitamin D3, strengthened the interaction. Confocal microscopy analysis showed that ligand-activated VDR led to an accumulation of cyclin D3 in the nuclear region. Cyclin D3 up-regulated transcriptional activity of VDR and this effect was counteracted by overexpression of CDK4 and CDK6. These findings provide us a new clue to understand the transcription regulation functions of D-type cyclins

  16. Sorafenib Inhibits Signal Transducer and Activator of Transcription-3 Signaling in Cholangiocarcinoma Cells by Activating the Phosphatase Shatterproof 2

    OpenAIRE

    Blechacz, Boris R. A.; Smoot, Rory L.; Bronk, Steven F; Werneburg, Nathan W.; Sirica, Alphonse E.; Gores, Gregory J.

    2009-01-01

    The Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway is one of the key signaling cascades in cholangiocarcinoma (CCA) cells, mediating their resistance to apoptosis. Our aim was to ascertain if sorafenib, a multikinase inhibitor, may also inhibit JAK/STAT signaling and, therefore, be efficacious for CCA. Sorafenib treatment of three human CCA cell lines resulted in Tyr705 phospho-STAT3 dephosphorylation. Similar results were obtained with the Raf-kinase inhibit...

  17. Two-dimensional electrophoretic mobility shift assay: identification and mapping of transcription factor CTCF target sequences within an FXYD5-COX7A1 region of human chromosome 19.

    Science.gov (United States)

    Vetchinova, Anna S; Akopov, Sergey B; Chernov, Igor P; Nikolaev, Lev G; Sverdlov, Eugene D

    2006-07-01

    An approach for fast identification and mapping of transcription factor binding sites within long genomic sequences is proposed. Using this approach, 10 CCCTC-binding factor (CTCF) binding sites were identified within a 1-Mb FXYD5-COX7A1 human chromosome 19 region. In vivo bind