WorldWideScience

Sample records for assay techniques

  1. Radioactive wastes assay technique and equipment

    International Nuclear Information System (INIS)

    Lee, K. M.; Hong, D. S; Kim, T. K.; Bae, S. M.; Shon, J. S.; Hong, K. P.

    2004-12-01

    The waste inventory records such as the activities and radio- nuclides contained in the waste packages are to be submitted with the radioactive wastes packages for the final disposal. The nearly around 10,000 drums of waste stocked in KAERI now should be assayed for the preparation of the waste inventory records too. For the successive execution of the waste assay, the investigation into the present waste assay techniques and equipment are to be taken first. Also the installation of the waste assay equipment through the comprehensive design, manufacturing and procurement should be proceeded timely. As the characteristics of the KAERI-stocked wastes are very different from that of the nuclear power plant and those have no regular waste streams, the application of the in-direct waste assay method using the scaling factors are not effective for the KAERI-generated wastes. Considering for the versal conveniency including the accuracy over the wide range of waste forms and the combination of assay time and sensitivity, the TGS(Tomographic Gamma Scanner) is appropriate as for the KAERI -generated radioactive waste assay equipment

  2. Evaluation of three gentamicin serum assay techniques

    International Nuclear Information System (INIS)

    Matzke, G.R.; Gwizdala, C.; Wery, J.; Ferry, D.; Starnes, R.

    1982-01-01

    This investigation was designed to compare the enzyme-modified immunoassay (Syva--EMIT) with a radioimmunoassay (New England Nuclear--RIA) and the radiometric assay (Johnston--BACTEC) to determine the optimal assay for use in our aminoglycoside dosing service. The serum concentration determinations obtained via the three assay methods were analyzed by linear regression analysis. Significant positive correlations were noted between the three assay techniques (p less than 0.005) during both sample collection phases. The coefficients of determination for EMIT vs BACTEC and RIA vs BACTEC were 0.73 and 0.83 during phase 1, respectively, and 0.65 and 0.68 during phase 2, respectively. The slope of the regression lines also varied markedly during the two phases; 0.49 and 0.42 for EMIT and for RIA vs BACTEC, respectively, during phase 1 compound with 1.12 and 0.77, respectively, during phase 2. The differences noted in these relationships during phase 1 and 2 may be related to the alteration of the pH of the control sera utilized in the BACTEC assay. In contrast, RIA vs EMIT regression analysis indicated that existence of a highly significant relationship (p less than 0.0005 and r2 . 0.90). The EMIT technique was the easiest and most accurate for determination of serum gentamicin concentrations, whereas the BACTEC method was judged unacceptable for clinical use

  3. Non destructive assay (NDA) techniques

    International Nuclear Information System (INIS)

    Mafra Guidicini, Olga; Llacer, Carlos D.; Rojo, Marcelo

    2001-01-01

    In the IAEA Safeguards System the basic verification method used is nuclear material accountancy, with containment and surveillance as important complementary measures. If nuclear material accountancy is to be effective, IAEA inspectors have to make independent measurements to verify declared material quantities. Most of the equipment available to the inspectors is designed to measure gamma rays and/or neutrons emitted by various nuclear materials. Equipment is also available to measure the gross weight of an item containing nuclear material. These types of measurement techniques are generally grouped under the title of nondestructive assay (NDA). The paper describes the NDA techniques and instruments used to verify the total amount of nuclear material held at a nuclear facility. (author)

  4. Non destructive assay techniques applied to nuclear materials

    International Nuclear Information System (INIS)

    Gavron, A.

    2001-01-01

    Nondestructive assay is a suite of techniques that has matured and become precise, easily implementable, and remotely usable. These techniques provide elaborate safeguards of nuclear material by providing the necessary information for materials accounting. NDA techniques are ubiquitous, reliable, essentially tamper proof, and simple to use. They make the world a safer place to live in, and they make nuclear energy viable. (author)

  5. Neutron Resonance Transmission Analysis (NRTA): A Nondestructive Assay Technique for the Next Generation Safeguards Initiative’s Plutonium Assay Challenge

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2010-12-01

    This is an end-of-year report for a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The first-year goals for this project were modest and included: 1) developing a zero-order MCNP model for the NRTA technique, simulating data results presented in the literature, 2) completing a preliminary set of studies investigating important design and performance characteristics for the NRTA measurement technique, and 3) documentation of this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes a nine month period of work.

  6. Techniques for laser processing, assay, and examination of spent fuel

    International Nuclear Information System (INIS)

    Gray, J.H.; Mitchell, R.C.; Rogell, M.L.

    1981-11-01

    Fuel examination studies were performed which have application to interim spent fuel storage. These studies were in three areas, i.e., laser drilling and rewelding demonstration, nondestructive assay techniques survey, and fuel examination techniques survey

  7. Development of versatile universal reagent immunoradiometric assay technique

    International Nuclear Information System (INIS)

    Hazra, D.K.

    1982-10-01

    Immunoradiometric assays, which make use of labelled antibodies, potentially offer better sensitivity and specificity than do radioimmunoassays, which use labelled antigens. In addition, they can in principle be performed in a particularly convenient scheme wherein the same labelled reagent may be used for many different analytes - thus serving as a ''universal'' labelled reagent. Thus if the specific antibody for every analyte is raised in rabbits, and an anti-rabbit antibody is labelled, the latter may be added after the specific antibody to quantify the amount of specific antibody bound to analyte and thereby the amount of analyte present. The potential greater sensitivity and specificity of the immunoradiometric procedure, coupled with the potential convenience of the ''universal'' labelled reagent, might allow such immunoradiometric techniques to be used effectively in the study of communicable diseases in developing countries. Development of these procedures was the subject of this investigation. Many components of these procedures had to be explored and provisionally optimized, including coating of assay tubes with ''extraction'' antibody, immunological purification of antibodies, labelling of antibodies, and intermediate steps toward these goals. Applications were thereupon tested using those provisionally optimized components. The ''universal'' labelled reagent, a donkey anti-rabbit antiserum, was successfully used in the assay of TSH; however, cross reactions of the reagent with non-rabbit immunoglobulins and other materials present seriously limited the sensitivity of the method. Using conventional immunoradiometric procedures, circulating TB and amoebic antibodies could be detected in patients suffering from these diseases. Similarly, circulating antigens in the same patients could also be detected, but not with sufficient sensitivity and specificity to provide a reliable analytical system. Numerous improvements will be required before these techniques

  8. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Rackham, Jamie; Weber, Anne-Laure; Chard, Patrick

    2012-01-01

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  9. Performance Values for Non-Destructive Assay (NDA) Technique Applied to Wastes: Evaluation by the ESARDA NDA Working Group

    Energy Technology Data Exchange (ETDEWEB)

    Rackham, Jamie [Babcock International Group, Sellafield, Seascale, Cumbria, (United Kingdom); Weber, Anne-Laure [Institut de Radioprotection et de Surete Nucleaire Fontenay-Aux-Roses (France); Chard, Patrick [Canberra, Forss Business and Technology park, Thurso, Caithness (United Kingdom)

    2012-12-15

    The first evaluation of NDA performance values was undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques and was published in 1993. Almost ten years later in 2002 the Working Group reviewed those values and reported on improvements in performance values and new measurement techniques that had emerged since the original assessment. The 2002 evaluation of NDA performance values did not include waste measurements (although these had been incorporated into the 1993 exercise), because although the same measurement techniques are generally applied, the performance is significantly different compared to the assay of conventional Safeguarded special nuclear material. It was therefore considered more appropriate to perform a separate evaluation of performance values for waste assay. Waste assay is becoming increasingly important within the Safeguards community, particularly since the implementation of the Additional Protocol, which calls for declaration of plutonium and HEU bearing waste in addition to information on existing declared material or facilities. Improvements in the measurement performance in recent years, in particular the accuracy, mean that special nuclear materials can now be accounted for in wastes with greater certainty. This paper presents an evaluation of performance values for the NDA techniques in common usage for the assay of waste containing special nuclear material. The main topics covered by the document are: 1- Techniques for plutonium bearing solid wastes 2- Techniques for uranium bearing solid wastes 3 - Techniques for assay of fissile material in spent fuel wastes. Originally it was intended to include performance values for measurements of uranium and plutonium in liquid wastes; however, as no performance data for liquid waste measurements was obtained it was decided to exclude liquid wastes from this report. This issue of the performance values for waste assay has been evaluated and discussed by the ESARDA

  10. Preliminary report of the comparison of multiple non-destructive assay techniques on LANL Plutonium Facility waste drums

    International Nuclear Information System (INIS)

    Bonner, C.; Schanfein, M.; Estep, R.

    1999-01-01

    Prior to disposal, nuclear waste must be accurately characterized to identify and quantify the radioactive content. The DOE Complex faces the daunting task of measuring nuclear material with both a wide range of masses and matrices. Similarly daunting can be the selection of a non-destructive assay (NDA) technique(s) to efficiently perform the quantitative assay over the entire waste population. In fulfilling its role of a DOE Defense Programs nuclear User Facility/Technology Development Center, the Los Alamos National Laboratory Plutonium Facility recently tested three commercially built and owned, mobile nondestructive assay (NDA) systems with special nuclear materials (SNM). Two independent commercial companies financed the testing of their three mobile NDA systems at the site. Contained within a single trailer is Canberra Industries segmented gamma scanner/waste assay system (SGS/WAS) and neutron waste drum assay system (WDAS). The third system is a BNFL Instruments Inc. (formerly known as Pajarito Scientific Corporation) differential die-away imaging passive/active neutron (IPAN) counter. In an effort to increase the value of this comparison, additional NDA techniques at LANL were also used to measure these same drums. These are comprised of three tomographic gamma scanners (one mobile unit and two stationary) and one developmental differential die-away system. Although not certified standards, the authors hope that such a comparison will provide valuable data for those considering these different NDA techniques to measure their waste as well as the developers of the techniques

  11. Statistical precision of delayed-neutron nondestructive assay techniques

    International Nuclear Information System (INIS)

    Bayne, C.K.; McNeany, S.R.

    1979-02-01

    A theoretical analysis of the statistical precision of delayed-neutron nondestructive assay instruments is presented. Such instruments measure the fissile content of nuclear fuel samples by neutron irradiation and delayed-neutron detection. The precision of these techniques is limited by the statistical nature of the nuclear decay process, but the precision can be optimized by proper selection of system operating parameters. Our method is a three-part analysis. We first present differential--difference equations describing the fundamental physics of the measurements. We then derive and present complete analytical solutions to these equations. Final equations governing the expected number and variance of delayed-neutron counts were computer programmed to calculate the relative statistical precision of specific system operating parameters. Our results show that Poisson statistics do not govern the number of counts accumulated in multiple irradiation-count cycles and that, in general, maximum count precision does not correspond with maximum count as first expected. Covariance between the counts of individual cycles must be considered in determining the optimum number of irradiation-count cycles and the optimum irradiation-to-count time ratio. For the assay system in use at ORNL, covariance effects are small, but for systems with short irradiation-to-count transition times, covariance effects force the optimum number of irradiation-count cycles to be half those giving maximum count. We conclude that the equations governing the expected value and variance of delayed-neutron counts have been derived in closed form. These have been computerized and can be used to select optimum operating parameters for delayed-neutron assay devices

  12. Further Evaluation of the Neutron Resonance Transmission Analysis (NRTA) Technique for Assaying Plutonium in Spent Fuel

    Energy Technology Data Exchange (ETDEWEB)

    J. W. Sterbentz; D. L. Chichester

    2011-09-01

    This is an end-of-year report (Fiscal Year (FY) 2011) for the second year of effort on a project funded by the National Nuclear Security Administration's Office of Nuclear Safeguards (NA-241). The goal of this project is to investigate the feasibility of using Neutron Resonance Transmission Analysis (NRTA) to assay plutonium in commercial light-water-reactor spent fuel. This project is part of a larger research effort within the Next-Generation Safeguards Initiative (NGSI) to evaluate methods for assaying plutonium in spent fuel, the Plutonium Assay Challenge. The second-year goals for this project included: (1) assessing the neutron source strength needed for the NRTA technique, (2) estimating count times, (3) assessing the effect of temperature on the transmitted signal, (4) estimating plutonium content in a spent fuel assembly, (5) providing a preliminary assessment of the neutron detectors, and (6) documenting this work in an end of the year report (this report). Research teams at Los Alamos National Laboratory (LANL), Lawrence Berkeley National Laboratory (LBNL), Pacific Northwest National Laboratory (PNNL), and at several universities are also working to investigate plutonium assay methods for spent-fuel safeguards. While the NRTA technique is well proven in the scientific literature for assaying individual spent fuel pins, it is a newcomer to the current NGSI efforts studying Pu assay method techniques having just started in March 2010; several analytical techniques have been under investigation within this program for two to three years or more. This report summarizes work performed over a nine month period from January-September 2011 and is to be considered a follow-on or add-on report to our previous published summary report from December 2010 (INL/EXT-10-20620).

  13. The effect of varying incubation times for hypotonic treatment of lymphocytes in dicentric assay technique

    International Nuclear Information System (INIS)

    Noraisyah Yusof; Noriah Jamal; Rahimah Abdul Rahim; Juliana Mahamad Napiah

    2010-01-01

    The International Atomic Energy Agency (IAEA) has recommended that incubation time for the hypotonic treatment of lymphocytes in dicentric assay technique to be between 15 to 20 minutes. Incubation time will effect the hypotonic treatment of lymphocytes and thus, the breakage of cytoplasmic membrane. The objective of this study is to examine the effect of varying incubation times for hypotonic treatment of lymphocytes in dicentric assay technique. In this study, we choose to use our standard protocol for dicentric assay technique. However, for the hypotonic treatment of lymphocytes, the incubation times were varied from 10, 15, 20, 25 and 30 minutes respectively. Lymphocytes were then fixed and stained with Giemsa. The cells were then analyzed for clear background that indicates good metaphases. We found that incubation time of 30 minutes gives the best metaphase images. This incubation time is longer than what has been recommended by the IAEA. This maybe explained by the fact that our country's climate is of higher humidity compared with the European countries. (author)

  14. Nondestructive techniques for assaying fuel debris in piping at Three Mile Island Unit 2

    International Nuclear Information System (INIS)

    Vinjamuri, K.; McIsaac, C.V.; Beller, L.S.; Isaacson, L.; Mandler, J.W.; Hobbins, R.R. Jr.

    1981-11-01

    Four major categories of nondestructive techniques - ultrasonic, passive gamma ray, infrared detection, and remote video examination - have been determined to be feasible for assaying fuel debris in the primary coolant system of the Three Mile Island Unit 2 (TMI-2) Reactor. Passive gamma ray detection is the most suitable technique for the TMI-2 piping; however, further development of this technique is needed for specific application to TMI-2

  15. Inspection with non destructive assay techniques of the aluminium coating of the TRIGA Mark III reactor vat

    International Nuclear Information System (INIS)

    Reyes A, A.I.; Gonzalez M, A.; Castaneda J, G.; Rivera M, H.; Sandoval G, I.

    2001-01-01

    In June 2000, the Reactor Department assigned to the Scientific Research Direction of the National Institute of Nuclear Research requested to the Non-destructive Assays Laboratory (LEND), assigned to the Materials Science Management, the inspection and measurement of thickness of the aluminium coating (liner) of the TRIGA Mark III reactor vat with non-destructive assay techniques, due to that the aluminium coating is exposed mainly to undergo slimming on its back side due to corrosion phenomena. Activity that was able to be carried out from april until august 2001. It is worth pointing out that this type of inspection with these techniques was realized by first time. The non-destructive assays (NDA) are techniques which use indirect physical methods for inspecting the sanitation of components in process or in service, for detect lack of continuity or defects which affect their quality or usefulness. The application of those do not alter the physical, chemical, mechanical or dimensional properties of the part subject of inspection. The results of the application of the ultrasound inspection techniques, industrial radiography and penetrating liquids are presented. (Author)

  16. Development of Techniques for Spent Fuel Assay - Differential Dieaway Final Report

    International Nuclear Information System (INIS)

    Swinhoe, Martyn Thomas; Goodsell, Alison; Ianakiev, Kiril Dimitrov; Iliev, Metodi; Desimone, David J.; Rael, Carlos D.; Henzl, Vladimir; Polk, Paul John

    2016-01-01

    This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work covers the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.

  17. Performance values for non destructive assay (NDA) techniques applied to safeguards: the 2002 evaluation by the ESARDA NDA Working Group

    International Nuclear Information System (INIS)

    Guardini, S.

    2003-01-01

    The first evaluation of NDA performance values undertaken by the ESARDA Working Group for Standards and Non Destructive Assay Techniques (WGNDA) was published in 1993. Almost 10 years later the Working Group decided to review those values, to report about improvements and to issue new performance values for techniques which were not applied in the early nineties, or were at that time only emerging. Non-Destructive Assay techniques have become more and more important in recent years, and they are used to a large extent in nuclear material accountancy and control both by operators and control authorities. As a consequence, the performance evaluation for NDA techniques is of particular relevance to safeguards authorities in optimising Safeguards operations and reducing costs. Performance values are important also for NMAC regulators, to define detection levels, limits for anomalies, goal quantities and to negotiate basic audit rules. This paper presents the latest evaluation of ESARDA Performance Values (EPVs) for the most common NDA techniques currently used for the assay of nuclear materials for Safeguards purposes. The main topics covered by the document are: techniques for plutonium bearing materials: PuO 2 and MOX; techniques for U-bearing materials; techniques for U and Pu in liquid form; techniques for spent fuel assay. This issue of the performance values is the result of specific international round robin exercises, field measurements and ad hoc experiments, evaluated and discussed in the ESARDA NDA Working Group. (author)

  18. A comparison of high-throughput techniques for assaying circadian rhythms in plants.

    Science.gov (United States)

    Tindall, Andrew J; Waller, Jade; Greenwood, Mark; Gould, Peter D; Hartwell, James; Hall, Anthony

    2015-01-01

    Over the last two decades, the development of high-throughput techniques has enabled us to probe the plant circadian clock, a key coordinator of vital biological processes, in ways previously impossible. With the circadian clock increasingly implicated in key fitness and signalling pathways, this has opened up new avenues for understanding plant development and signalling. Our tool-kit has been constantly improving through continual development and novel techniques that increase throughput, reduce costs and allow higher resolution on the cellular and subcellular levels. With circadian assays becoming more accessible and relevant than ever to researchers, in this paper we offer a review of the techniques currently available before considering the horizons in circadian investigation at ever higher throughputs and resolutions.

  19. Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level.

    Science.gov (United States)

    Sahoo, P; Ananthanarayanan, R; Malathi, N; Rajiniganth, M P; Murali, N; Swaminathan, P

    2010-06-11

    A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 microg L(-1) levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L(-1) levels, with modification in methodology for accurate detection of end point even at 10.0 microg L(-1) levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 microg L(-1) O(2). Finally, several water samples containing dissolved oxygen from mg L(-1) to microg L(-1) levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 microg L(-1) O(2) level is 0.14 (n=5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 microg L(-1) levels. Copyright 2010 Elsevier B.V. All rights reserved.

  20. Pulsating potentiometric titration technique for assay of dissolved oxygen in water at trace level

    International Nuclear Information System (INIS)

    Sahoo, P.; Ananthanarayanan, R.; Malathi, N.; Rajiniganth, M.P.; Murali, N.; Swaminathan, P.

    2010-01-01

    A simple but high performance potentiometric titration technique using pulsating sensors has been developed for assay of dissolved oxygen (DO) in water samples down to 10.0 μg L -1 levels. The technique involves Winkler titration chemistry, commonly used for determination of dissolved oxygen in water at mg L -1 levels, with modification in methodology for accurate detection of end point even at 10.0 μg L -1 levels DO present in the sample. An indigenously built sampling cum pretreatment vessel has been deployed for collection and chemical fixing of dissolved oxygen in water samples from flowing water line without exposure to air. A potentiometric titration facility using pulsating sensors developed in-house is used to carry out titration. The power of the titration technique has been realised in estimation of very dilute solution of iodine equivalent to 10 μg L -1 O 2 . Finally, several water samples containing dissolved oxygen from mg L -1 to μg L -1 levels were successfully analysed with excellent reproducibility using this new technique. The precision in measurement of DO in water at 10 μg L -1 O 2 level is 0.14 (n = 5), RSD: 1.4%. Probably for the first time a potentiometric titration technique has been successfully deployed for assay of dissolved oxygen in water samples at 10 μg L -1 levels.

  1. Experimental program for development and evaluation of nondestructive assay techniques for plutonium holdup

    International Nuclear Information System (INIS)

    Brumbach, S.B.

    1977-05-01

    An outline is presented for an experimental program to develop and evaluate nondestructive assay techniques applicable to holdup measurement in plutonium-containing fuel fabrication facilities. The current state-of-the-art in holdup measurements is reviewed. Various aspects of the fuel fabrication process and the fabrication facility are considered for their potential impact on holdup measurements. The measurement techniques considered are those using gamma-ray counting, neutron counting, and temperature measurement. The advantages and disadvantages of each technique are discussed. Potential difficulties in applying the techniques to holdup measurement are identified. Experiments are proposed to determine the effects of such problems as variation in sample thickness, in sample distribution, and in background radiation. These experiments are also directed toward identification of techniques most appropriate to various applications. Also proposed are experiments to quantify the uncertainties expected for each measurement

  2. Development of Techniques for Spent Fuel Assay – Differential Dieaway Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Swinhoe, Martyn Thomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Goodsell, Alison [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Ianakiev, Kiril Dimitrov [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Iliev, Metodi [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Desimone, David J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Rael, Carlos D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Henzl, Vladimir [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Polk, Paul John [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-07-28

    This report summarizes the work done under a DNDO R&D funded project on the development of the differential dieaway method to measure plutonium in spent fuel. There are large amounts of plutonium that are contained in spent fuel assemblies, and currently there is no way to make quantitative non-destructive assay. This has led NA24 under the Next Generation Safeguards Initiative (NGSI) to establish a multi-year program to investigate, develop and implement measurement techniques for spent fuel. The techniques which are being experimentally tested by the existing NGSI project do not include any pulsed neutron active techniques. The present work covers the active neutron differential dieaway technique and has advanced the state of knowledge of this technique as well as produced a design for a practical active neutron interrogation instrument for spent fuel. Monte Carlo results from the NGSI effort show that much higher accuracy (1-2%) for the Pu content in spent fuel assemblies can be obtained with active neutron interrogation techniques than passive techniques, and this would allow their use for nuclear material accountancy independently of any information from the operator. The main purpose of this work was to develop an active neutron interrogation technique for spent nuclear fuel.

  3. Logging technique for assaying for uranium in rocks

    International Nuclear Information System (INIS)

    Givens, W.W.

    1973-01-01

    A uranium exploration technique is described for determining the uranium content of a formation traversed by borehole. A delayed fission neutron assay log is obtained by irradiating the formation with repetitive bursts of fast neutrons and detecting delayed neutrons resulting from neutron fission of uranium at time intervals between the fast neutron bursts and after dissipation of the neutrons originating in the bursts. In addition, a response log is obtained by irradiating the formation with a source of fast neutrons whereby the neutrons from this source are moderated in the formation to lower energy levels and are subject to absorption. Secondary radiation attendant to these lower energy neutrons is recorded in order to obtain a log representative of the response of the formation to moderation and absorption of the neutrons. The two logs thus obtained are correlated in order to determine a corrected value of uranium content of the formation. (author)

  4. Random assay in radioimmunoassay: Feasibility and application compared with batch assay

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jung Min; Lee, Hwan Hee; Park, Sohyun; Kim, Tae Sung; Kim, Seok Ki [Dept. of Nuclear MedicineNational Cancer Center, Goyang (Korea, Republic of)

    2016-12-15

    The batch assay has been conventionally used for radioimmunoassay (RIA) because of its technical robustness and practical convenience. However, it has limitations in terms of the relative lag of report time due to the necessity of multiple assays in a small number of samples compared with the random assay technique. In this study, we aimed to verify whether the random assay technique can be applied in RIA and is feasible in daily practice. The coefficients of variation (CVs) of eight standard curves within a single kit were calculated in a CA-125 immunoradiometric assay (IRMA) for the reference of the practically ideal CV of the CA-125 kit. Ten standard curves of 10 kits from 2 prospectively collected lots (pLot) and 85 standard curves of 85 kits from 3 retrospectively collected lots (Lot) were obtained. Additionally, the raw measurement data of both 170 control references and 1123 patients' sera were collected retrospectively between December 2015 and January 2016. A standard curve of the first kit of each lot was used as a master standard curve for a random assay. The CVs of inter-kits were analyzed in each lot, respectively. All raw measurements were normalized by decay and radioactivity. The CA-125 values from control samples and patients' sera were compared using the original batch assay and random assay. In standard curve analysis, the CVs of inter-kits in pLots and Lots were comparable to those within a single kit. The CVs from the random assay with normalization were similar to those from the batch assay in the control samples (CVs % of low/high concentration; Lot1 2.71/1.91, Lot2 2.35/1.83, Lot3 2.83/2.08 vs. Lot1 2.05/1.21, Lot2 1.66/1.48, Lot3 2.41/2.14). The ICCs between the batch assay and random assay using patients' sera were satisfactory (Lot1 1.00, Lot2 0.999, Lot3 1.00). The random assay technique could be successfully applied to the conventional CA-125 IRMA kits. The random assay showed strong agreement with the batch assay. The

  5. Safeguards and Non-destructive Assay

    International Nuclear Information System (INIS)

    Carchon, R.; Bruggeman, M.

    2001-01-01

    SCK-CEN's programme on safeguards and non-destructive assay includes: (1) various activities to assure nuclear materials accountancy; (2) contributes to the implementation of Integrated Safeguards measures in Belgium and to assist the IAEA through the Belgian Support Programme; (3) renders services to internal and external customers in the field of safeguards; (4) improves passive neutron coincidence counting techniques for waste assay and safeguards verification measurements by R and D on correlation algorithms implemented via software or dedicated hardware; (5) improves gamma assay techniques for waste assay by implementing advanced scanning techniques and different correlation algorithms; and (6) develops numerical calibration techniques. Major achievements in these areas in 2000 are reported

  6. Micro-enzyme-linked immunosorbent assay (ELISA) and radioimmunosorbent technique (RIST) for the detection of immunity to clinical tetanus

    Energy Technology Data Exchange (ETDEWEB)

    Layton, G T [Royal Infirmary, Manchester (UK)

    1980-10-01

    Enzyme-linked immunosorbent assay (ELISA), and radioimmunosorbent assay (RIST) techniques for the detection of tetanus toxin antibodies are described. Both methods proved to be highly sensitive, and allowed the measurement of 5 x 10/sup -3/ units/ml tetanus antitoxin in human serum or plasma, sensitivity and reproducibility comparing well with other techniques previously described, and being superior to haemagglutination and latex agglutination tests. Results of the two methods correlated well, and reflected the immunization histories obtained. Micro ELISA and micro RIST would seem to be suitable for the detection of immunity, or non-immunity to clinical tetanus.

  7. A Direct, Competitive Enzyme-Linked Immunosorbent Assay (ELISA) as a Quantitative Technique for Small Molecules

    Science.gov (United States)

    Powers, Jennifer L.; Rippe, Karen Duda; Imarhia, Kelly; Swift, Aileen; Scholten, Melanie; Islam, Naina

    2012-01-01

    ELISA (enzyme-linked immunosorbent assay) is a widely used technique with applications in disease diagnosis, detection of contaminated foods, and screening for drugs of abuse or environmental contaminants. However, published protocols with a focus on quantitative detection of small molecules designed for teaching laboratories are limited. A…

  8. Passive nondestructive assay of nuclear materials

    International Nuclear Information System (INIS)

    Reilly, D.; Ensslin, N.; Smith, H. Jr.; Kreiner, S.

    1991-03-01

    The term nondestructive assay (NDA) is applied to a series of measurement techniques for nuclear fuel materials. The techniques measure radiation induced or emitted spontaneously from the nuclear material; the measurements are nondestructive in that they do not alter the physical or chemical state of the nuclear material. NDA techniques are characterized as passive or active depending on whether they measure radiation from the spontaneous decay of the nuclear material or radiation induced by an external source. This book emphasizes passive NDA techniques, although certain active techniques like gamma-ray absorption densitometry and x-ray fluorescence are discussed here because of their intimate relation to passive assay techniques. The principal NDA techniques are classified as gamma-ray assay, neutron assay, and calorimetry. Gamma-ray assay techniques are treated in Chapters 1--10. Neutron assay techniques are the subject of Chapters 11--17. Chapters 11--13 cover the origin of neutrons, neutron interactions, and neutron detectors. Chapters 14--17 cover the theory and applications of total and coincidence neutron counting. Chapter 18 deals with the assay of irradiated nuclear fuel, which uses both gamma-ray and neutron assay techniques. Chapter 19 covers perimeter monitoring, which uses gamma-ray and neutron detectors of high sensitivity to check that no unauthorized nuclear material crosses a facility boundary. The subject of Chapter 20 is attribute and semiquantitative measurements. The goal of these measurements is a rapid verification of the contents of nuclear material containers to assist physical inventory verifications. Waste and holdup measurements are also treated in this chapter. Chapters 21 and 22 cover calorimetry theory and application, and Chapter 23 is a brief application guide to illustrate which techniques can be used to solve certain measurement problems

  9. Image-based ELISA on an activated polypropylene microtest plate--a spectrophotometer-free low cost assay technique.

    Science.gov (United States)

    Parween, Shahila; Nahar, Pradip

    2013-10-15

    In this communication, we report ELISA technique on an activated polypropylene microtest plate (APPµTP) as an illustrative example of a low cost diagnostic assay. Activated test zone in APPµTP binds a capture biomolecule through covalent linkage thereby, eliminating non-specific binding often prevalent in absorption based techniques. Efficacy of APPµTP is demonstrated by detecting human immunoglobulin G (IgG), human immunoglobulin E (IgE) and Aspergillus fumigatus antibody in patient's sera. Detection is done by taking the image of the assay solution by a desktop scanner and analyzing the color of the image. Human IgE quantification by color saturation in the image-based assay shows excellent correlation with absorbance-based assay (Pearson correlation coefficient, r=0.992). Significance of the relationship is seen from its p value which is 4.087e-11. Performance of APPµTP is also checked with respect to microtiter plate and paper-based ELISA. APPµTP can quantify an analyte as precisely as in microtiter plate with insignificant non-specific binding, a necessary prerequisite for ELISA assay. In contrast, paper-ELISA shows high non-specific binding in control sera (false positive). Finally, we have carried out ELISA steps on APPµTP by ultrasound waves on a sonicator bath and the results show that even in 8 min, it can convincingly differentiate a test sample from a control sample. In short, spectrophotometer-free image-based miniaturized ELISA on APPµTP is precise, reliable, rapid, and sensitive and could be a good substitute for conventional immunoassay procedures widely used in clinical and research laboratories. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A micro-enzyme-linked immunosorbent assay (ELISA) and radioimmunosorbent technique (RIST) for the detection of immunity to clinical tetanus

    International Nuclear Information System (INIS)

    Layton, G.T.

    1980-01-01

    Enzyme-linked immunosorbent assay (ELISA), and radioimmunosorbent assay (RIST) techniques for the detection of tetanus toxin antibodies are described. Both methods proved to be highly sensitive, and allowed the measurement of 5 x 10 -3 units/ml tetanus antitoxin in human serum or plasma, sensitivity and reproducibility comparing well with other techniques previously described, and being superior to haemagglutination and latex agglutination tests. Results of the two methods correlated well, and reflected the immunization histories obtained. Micro ELISA and micro RIST would seem to be suitable for the detection of immunity, or non-immunity to clinical tetanus. (author)

  11. Automation of the dicentric chromosome assay and related assays

    International Nuclear Information System (INIS)

    Balajee, Adayabalam S.; Dainiak, Nicholas

    2016-01-01

    Dicentric Chromosome Assay (DCA) is considered to be the 'gold standard' for personalized dose assessment in humans after accidental or incidental radiation exposure. Although this technique is superior to other cytogenetic assays in terms of specificity and sensitivity, its potential application to radiation mass casualty scenarios is highly restricted because DCA is time consuming and labor intensive when performed manually. Therefore, it is imperative to develop high throughput automation techniques to make DCA suitable for radiological triage scenarios. At the Cytogenetic Biodosimetry Laboratory in Oak Ridge, efforts are underway to develop high throughput automation of DCA. Current status on development of various automated cytogenetic techniques in meeting the biodosimetry needs of radiological/nuclear incident(s) will be discussed

  12. Determining Plutonium Mass in Spent Fuel with Nondestructive Assay Techniques -- Preliminary Modeling Results Emphasizing Integration among Techniques

    International Nuclear Information System (INIS)

    Tobin, S.J.; Fensin, M.L.; Ludewigt, B.A.; Menlove, H.O.; Quiter, B.J.; Sandoval, N.P.; Swinhoe, M.T.; Thompson, S.J.

    2009-01-01

    There are a variety of motivations for quantifying Pu in spent (used) fuel assemblies by means of nondestructive assay (NDA) including the following: strengthen the capabilities of the International Atomic Energy Agencies to safeguards nuclear facilities, quantifying shipper/receiver difference, determining the input accountability value at reprocessing facilities and providing quantitative input to burnup credit determination for repositories. For the purpose of determining the Pu mass in spent fuel assemblies, twelve NDA techniques were identified that provide information about the composition of an assembly. A key point motivating the present research path is the realization that none of these techniques, in isolation, is capable of both (1) quantifying the elemental Pu mass of an assembly and (2) detecting the diversion of a significant number of pins. As such, the focus of this work is determining how to best integrate 2 or 3 techniques into a system that can quantify elemental Pu and to assess how well this system can detect material diversion. Furthermore, it is important economically to down-select among the various techniques before advancing to the experimental phase. In order to achieve this dual goal of integration and down-selection, a Monte Carlo library of PWR assemblies was created and is described in another paper at Global 2009 (Fensin et al.). The research presented here emphasizes integration among techniques. An overview of a five year research plan starting in 2009 is given. Preliminary modeling results for the Monte Carlo assembly library are presented for 3 NDA techniques: Delayed Neutrons, Differential Die-Away, and Nuclear Resonance Fluorescence. As part of the focus on integration, the concept of 'Pu isotopic correlation' is discussed and the role of cooling time determination.

  13. Monoclonal antibody-based dipstick assay: a reliable field applicable technique for diagnosis of Schistosoma mansoni infection using human serum and urine samples.

    Science.gov (United States)

    Demerdash, Zeinab; Mohamed, Salwa; Hendawy, Mohamed; Rabia, Ibrahim; Attia, Mohy; Shaker, Zeinab; Diab, Tarek M

    2013-02-01

    A field applicable diagnostic technique, the dipstick assay, was evaluated for its sensitivity and specificity in diagnosing human Schistosoma mansoni infection. A monoclonal antibody (mAb) against S. mansoni adult worm tegumental antigen (AWTA) was employed in dipstick and sandwich ELISA for detection of circulating schistosome antigen (CSA) in both serum and urine samples. Based on clinical and parasitological examinations, 60 S. mansoni-infected patients, 30 patients infected with parasites other than schistosomiasis, and 30 uninfected healthy individuals were selected. The sensitivity and specificity of dipstick assay in urine samples were 86.7% and 90.0%, respectively, compared to 90.0% sensitivity and 91.7% specificity of sandwich ELISA. In serum samples, the sensitivity and specificity were 88.3% and 91.7% for dipstick assay vs. 91.7% and 95.0% for sandwich ELISA, respectively. The diagnostic efficacy of dipstick assay in urine and serum samples was 88.3% and 90.0%, while it was 90.8% and 93.3% for sandwich ELISA, respectively. The diagnostic indices of dipstick assay and ELISA either in serum or in urine were statistically comparable (P>0.05). In conclusion, the dipstick assay offers an alternative simple, rapid, non-invasive technique in detecting CSA or complement to stool examinations especially in field studies.

  14. Monte carlo feasibility study of an active neutron assay technique for full-volume UF{sub 6} cylinder assay using a correlated interrogation source

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Karen A., E-mail: kamiller@lanl.gov [Los Alamos National Laboratory, Los Alamos, P.O. Box 1663 MS E540, NM 87545 (United States); Menlove, Howard O.; Swinhoe, Martyn T.; Marlow, Johnna B. [Los Alamos National Laboratory, Los Alamos, P.O. Box 1663 MS E540, NM 87545 (United States)

    2013-03-01

    Uranium cylinder assay plays an important role in the nuclear material accounting at gas centrifuge enrichment plants. The Passive Neutron Enrichment Meter (PNEM) was designed to determine uranium mass and enrichment in 30B and 48Y cylinders using total neutron and coincidence counting in the passive mode. 30B and 48Y cylinders are used to hold bulk UF{sub 6} feed, product, and tails at enrichment plants. In this paper, we report the results of a Monte-Carlo-based feasibility study for an active uranium cylinder assay system based on the PNEM design. There are many advantages of the active technique such as a shortened count time and a more direct measure of {sup 235}U content. The active system is based on a modified PNEM design and uses a {sup 252}Cf source as the correlated, active interrogation source. We show through comparison with a random AmLi source of equal strength how the use of a correlated driver significantly boosts the active signal and reduces the statistical uncertainty. We also discuss ways in which an active uranium cylinder assay system can be optimized to minimize background from {sup 238}U fast-neutron induced fission and direct counts from the interrogation source.

  15. Issues in the analyze of low content gold mining samples by fire assay technique

    Science.gov (United States)

    Cetean, Valentina

    2016-04-01

    The classic technique analyze of samples with low gold content - below 0.1 g/t (=100 ppb = parts per billion), either ore or gold sediments, involves the preparation of sample by fire assay extraction, followed by the chemical attack with aqua regia (hydrochloric and nitric acid) and measuring the gold content by atomic absorption spectrometry or inductively coupled mass spectrometry. The issues raised by this analysis are well known for the world laboratories, commercial or research ones. The author's knowledge regarding this method of determining the gold content, accumulated in such laboratory from Romania (with more than 40 years of experience, even if not longer available from 2014) confirms the obtaining of reliable results required a lot of attention, amount of work and the involving of an experienced fire assayer specialist. The analytical conclusion for a research laboratory is that most reliable and statistically valid results are till reached for samples with more than 100 ppb gold content; the degree of confidence below this value is lower than 90%. Usually, for samples below 50 ppb, it does not exceed 50-70 %, unless without very strictly control of each stage, that involve additional percentage of hours allocated for successive extracting tests and knowing more precisely the other compounds that appear in the sample (Cu, Sb, As, sulfur / sulphides, Te, organic matter, etc.) or impurities. The most important operation is the preparation, namely: - grinding and splitting of sample (which can cause uneven distribution of gold flakes in the double samples for analyzed); - pyro-metallurgical recovery of gold = fire assay stage, involving the more precise temperature control in furnace during all stages (fusion and cupellation) and adjusting of the fire assay flux components to produce a successful fusion depending of the sample matrix and content; - reducing the sample weight to decrease the amount of impurities that can be concentrated in the lead button

  16. Nondestructive assay measurements applied to reprocessing plants

    International Nuclear Information System (INIS)

    Ruhter, Wayne D.; Lee, R. Stephen; Ottmar, Herbert; Guardini, Sergio

    1999-01-01

    Nondestructive assay for reprocessing plants relies on passive gamma-ray spectrometry for plutonium isotopic and plutonium mass values of medium-to-low-density samples and holdup deposits; on active x-ray fluorescence and densitometry techniques for uranium and plutonium concentrations in solutions; on calorimetry for plutonium mass in product; and passive neutron techniques for plutonium mass in spent fuel, product, and waste. This paper will describe the radiation-based nondestructive assay techniques used to perform materials accounting measurements. The paper will also discuss nondestructive assay measurements used in inspections of reprocessing plants [ru

  17. Development of an analytical theory to describe the PNAR and CIPN nondestructive assay techniques

    International Nuclear Information System (INIS)

    Bolind, Alan Michael

    2014-01-01

    Highlights: • Neutron albedo is modeled by a discrete and iterative reflection process. • The theory enables the PNAR and CIPN NDA techniques to be compared quantitatively. • Improvements to the data analysis and to the CIPN instrument design are suggested. • A correction to translate real no-reflection PNAR data into ideal data is provided. - Abstract: This paper develops an analytical theory to describe how neutron albedo (reflection) increases the multiplication of neutrons by a used fuel assembly. With this theory, the two nondestructive assay (NDA) techniques of Passive Neutron Albedo Reactivity (PNAR) and Californium-252 Interrogation with Prompt Neutron Detection (CIPN) can be compared directly. Specifically, the theory derives expressions for the PNAR and CIPN metrics in terms of the physical properties of the used fuel assembly, such as the neutron multiplications and fate probabilities. The theory thus clarifies the interpretation of these two NDA techniques and suggests ways to improve both the design of the NDA instruments and the algorithms for analyzing the measurement results

  18. Radioactive waste package assay facility. Volume 1. Application of assay technology

    International Nuclear Information System (INIS)

    Findlay, D.J.S.; Green, T.H.; Molesworth, T.V.; Staniforth, D.; Strachan, N.R.; Rogers, J.D.; Wise, M.O.; Forrest, K.R.

    1992-01-01

    This report, in three volumes, covers the work carried out by Taylor Woodrow Construction Ltd., and two major sub-contractors: Harwell Laboratory (AEA Technology) and Siemens Plessey Controls Ltd., on the development of a radioactive waste package assay facility, for cemented 500 litre intermediate level waste drums. In volume 1, the reasons for assay are considered together with the various techniques that can be used, and the information that can be obtained. The practical problems associated with the use of the various techniques in an integrated assay facility are identified, and the key parameters defined. Engineering and operational features are examined and provisional designs proposed for facilities at three throughput levels: 15,000, 750 and 30 drums per year respectively. The capital and operating costs for such facilities have been estimated. A number of recommendations are made for further work. 16 refs., 14 figs., 13 tabs

  19. Some target assay uncertainties for passive neutron coincidence counting

    International Nuclear Information System (INIS)

    Ensslin, N.; Langner, D.G.; Menlove, H.O.; Miller, M.C.; Russo, P.A.

    1990-01-01

    This paper provides some target assay uncertainties for passive neutron coincidence counting of plutonium metal, oxide, mixed oxide, and scrap and waste. The target values are based in part on past user experience and in part on the estimated results from new coincidence counting techniques that are under development. The paper summarizes assay error sources and the new coincidence techniques, and recommends the technique that is likely to yield the lowest assay uncertainty for a given material type. These target assay uncertainties are intended to be useful for NDA instrument selection and assay variance propagation studies for both new and existing facilities. 14 refs., 3 tabs

  20. Multimodality characterization of nuclear waste drums using emerging techniques for nondestructive examination and assay

    International Nuclear Information System (INIS)

    Bernardi, R.T.

    1993-01-01

    We are developing an x-ray imaging system that incorporates several inspection technologies for complete, nondestructive evaluation of containers of nuclear waste. In Phase I and Phase II SBIR programs for the DOE, we proved the feasibility of using x-ray computed tomography (CT) and digital radiography (DR)-imaging techniques using x-rays transmitted through the object-for container inspection. Now, with further funding from DOE and working with scientists at Lawrence Livermore National Lab., we are designing a mobile inspection system that will use CT and DR as well as two x-ray emission imaging techniques-single photon emission computed tomography and nondestructive assay. This system will provide much more information about the contents of containers than currently used inspection methods, and will provide archiving of digital data. In this paper, we describe inspection system and present recent results from the CT and DR evaluations

  1. Specific binding assay technique; standardization of reagent

    International Nuclear Information System (INIS)

    Huggins, K.G.; Roitt, I.M.

    1979-01-01

    The standardization of a labelled constituent, such as anti-IgE, for use in a specific binding assay method is disclosed. A labelled ligand, such as IgE, is standardized against a ligand reference substance, such as WHO standard IgE, to determine the weight of IgE protein represented by the labelled ligand. Anti-light chain antibodies are contacted with varying concentrations of the labelled ligand. The ligand is then contacted with the labelled constituent which is then quantitated in relation to the amount of ligand protein present. The preparation of 131 I-labelled IgE is described. Also disclosed is an improved specific binding assay test method for determining the potency of an allergen extract in serum from an allergic individual. The improvement involved using a parallel model system of a second complex which consisted of anti-light chain antibodies, labelled ligand and the standardized labelled constituent (anti-IgE). The amount of standardized labelled constituent bound to the ligand in the first complex was determined, as described above, and the weight of ligand inhibited by addition of soluble allergen was then used as a measure of the potency of the allergen extract. (author)

  2. The Attainment of High Sensitivity and Precision in Radioimmunoassay Techniques as Exemplified in a Simple Assay of Serum Insulin

    Energy Technology Data Exchange (ETDEWEB)

    Albano, Janet; Ekins, R. P. [Institute of Nuclear Medicine, Middlesex Hospital Medical School, London (United Kingdom)

    1970-02-15

    Recent controversy has underlined the fundamental confusion surrounding the concepts of assay ''sensitivity'' and ''precision'' and, in particular, their optimization in radioimmunoassay and other saturation assay procedures. Many formal definitions of sensitivity (e.g. that laid down by the American Chemical Society) express this concept in terms of the slope of the ''dose'' response curve; nevertheless, in common usage, the term is normally regarded as a synonym for the detection limit of the measurement technique. However, a technique which is ''sensitive'' in the formal sense may not display a low limit of detection, and it is readily demonstrable that, in radioimmunoassay systems in particular, there are circumstances in which increase in the slope of the response curve may lead to an increase in the detection limit of the assay. The authors have based their insulin assay protocols on mathematical principles specifically designed to lead to the minimization of the detection limit. The method depends on the use of (uncoated) charcoal for the separation of free and bound labelled insulin in incubation mixtures in which insulin-free human serum is used as diluent. The detection limit of the method is approximately 1 pg/ml of incubation mixture, corresponding to roughly 0.25 {mu}U/ml of serum at the serum dilutions used. In a formal comparative study, the method has been shown to be more sensitive, precise and accurate than other methods relying on double antibody or chromato-electrophoietic separation. The relevance of such factors as high specific activity labelled hormone to the attainment of high sensitivity is discussed. (author)

  3. Relative mass resolution technique for optimum design of a gamma nondestructive assay system

    International Nuclear Information System (INIS)

    Koh, Duck Joon

    1995-02-01

    Nondestructive assay(NDA) is a widely used nuclear technology for quantitative elemental and isotopic assay. Nondestructive assay is performed by the detection of an identifying radiation emerging from the sample, which can be unambiguously related to the element or isotope of interest. In every assay we can identify two distinct factors that lead to measurement uncertainty. We refer to these as statistical and spatial uncertainties. If the spatial distribution of the analyte and the matrix material in the sample are known and fairly constant from sample to sample, then the major source of measurement uncertainty is the statistical uncertainty resulting from randomness in the counting process. The spatial uncertainty is independent of the measurement time and therefore sets a lower limit to the measurement uncertainty, which is inherent in the assay system in conjunction with the population of samples to be measured. The only way to minimize the spatial uncertainty is an optimized design of the assay system. Therefore we have to decide on the type and number of detectors to be used, their deployment around the sample, the type of radiation to be measured, the duration of each measurement, the size and shape of the sample drum. The design procedure leading to the optimal assay system should be based on a quantitative(RMR:Relative Mass Resolution) comparison of the performance of each proposed design. For NDA system design of low level radwaste, a specific purpose Monte Carlo code has been developed to simulate point-source responses for sources within an assayed radwaste drum and to analyze the effect of scattered gammas from higher energy gammas on the spectrum of a low energy gamma-ray. We could use the well-known Monte Carlo code, such as MCNP for the simulation of NDA in the case of low level radwaste. But, MCNP is a multi-purpose Monte Carlo transport code for several geometries which requires large memory and long CPU time. For some cases in nuclear

  4. A FIFO based neutron arrival time collection technique for assay of plutonium

    International Nuclear Information System (INIS)

    Parthasarathy, R.; Saisubalakshmi, D.; Venkatasubramani, C.R.

    2004-01-01

    The system assays plutonium by counting the time correlated neutrons emitted by the spontaneous fissions of the even-even Pu isotopes in the presence of random neutron background, originating principally from (a,n) reactions in the material. The correlation technique discussed in this paper utilizes twofold neutron coincidence counting but the system is proposed to be enhanced for neutron multiplicity counting. A microcontroller based data acquisition system has been developed using a couple of fast FIFO 2kX9 bit memory ICs and a 16 bit counter for identifying time-correlated neutrons. Since the neutron pulses are arriving at a rapid rate, the incoming pulses are buffered in the FIFO and then transferred to PC by the microcontroller through the parallel port. The correlation analysis based on this time arrival information is done in the PC off-line. (author)

  5. Determining plutonium mass in spent fuel with non-destructive assay techniques - NGSU research overview and update on 6 NDA techniques

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen J [Los Alamos National Laboratory; Conlin, Jeremy L [Los Alamos National Laboratory; Evans, Louise G [Los Alamos National Laboratory; Hu, Jianwei [Los Alamos National Laboratory; Blanc, Pauline C [Los Alamos National Laboratory; Lafleur, Adrienne M [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Schear, Melissa A [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory; Croft, Stephen [Los Alamos National Laboratory; Fensin, Michael L [Los Alamos National Laboratory; Freeman, Corey R [Los Alamos National Laboratory; Koehler, William E [Los Alamos National Laboratory; Mozin, V [Los Alamos National Laboratory; Sandoval, N P [Los Alamos National Laboratory; Lee, T H [KAERI; Cambell, L W [PNNL; Cheatham, J R [ORNL; Gesh, C J [PNNL; Hunt, A [IDAHO STATE UNIV; Ludewigt, B A [LBNL; Smith, L E [PNNL; Sterbentz, J [INL

    2010-09-15

    This poster is one of two complementary posters. The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel assemblies with non-destructive assay (NDA). This research effort has the goal of quantifying the capability of 14 NDA techniques as well as training a future generation of safeguards practitioners. By November of 2010, we will be 1.5 years into the first phase (2.5 years) of work. This first phase involves primarily Monte Carlo modelling while the second phase (also 2.5 years) will focus on experimental work. The goal of phase one is to quantify the detection capability of the various techniques for the benefit of safeguard technology developers, regulators, and policy makers as well as to determine what integrated techniques merit experimental work, We are considering a wide range of possible technologies since our research horizon is longer term than the focus of most regulator bodies. The capability of all of the NDA techniques will be determined for a library of 64 17 x 17 PWR assemblies [burnups (15, 30, 45, 60 GWd/tU), initial enrichments (2, 3, 4, 5%) and cooling times (1, 5, 20, 80 years)]. The burnup and cooling time were simulated with each fuel pin being comprised of four radial regions. In this paper an overview of the purpose will be given as well as a technical update on the following 6 neutron techniques: {sup 252}Cf Interrogation with Prompt Neutron Detection, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Passive Neutron Albedo Reactivity, Self-Integration Neutron Resonance Densitometry. The technical update will quantify the anticipated performance of each technique for the 64 assemblies of the spent fuel library.

  6. Determining plutonium mass in spent fuel with non-destructive assay techniques - NGSI research overview and update on 6 NDA techniques

    International Nuclear Information System (INIS)

    Tobin, Stephen J.; Conlin, Jeremy L.; Evans, Louise G.; Hu, Kianwei; Blanc, P.C.; Lafleur, Am; Menlove, H.O.; Schear, M.A.; Swinhoe, M.T.; Croft, S.; Fensin, M.L.; Freeman, C.R.; Koehler, W.E.; Mozin, V.; Sandoval, N.P.; Lee, T.H.; Cambell, L.W.; Cheatham, J.R.; Gesh, C.J.; Hunt, A.; Ludewigt, B.A.; Smith, L.E.; Sterbentz, J.

    2010-01-01

    This poster is one of two complementary posters. The Next Generation Safeguards Initiative (NGSI) of the U.S. DOE has initiated a multi-lab/university collaboration to quantify the plutonium (Pu) mass in, and detect the diversion of pins from, spent nuclear fuel assemblies with non-destructive assay (NDA). This research effort has the goal of quantifying the capability of 14 NDA techniques as well as training a future generation of safeguards practitioners. By November of 2010, we will be 1.5 years into the first phase (2.5 years) of work. This first phase involves primarily Monte Carlo modelling while the second phase (also 2.5 years) will focus on experimental work. The goal of phase one is to quantify the detection capability of the various techniques for the benefit of safeguard technology developers, regulators, and policy makers as well as to determine what integrated techniques merit experimental work, We are considering a wide range of possible technologies since our research horizon is longer term than the focus of most regulator bodies. The capability of all of the NDA techniques will be determined for a library of 64 17 x 17 PWR assemblies (burnups (15, 30, 45, 60 GWd/tU), initial enrichments (2, 3, 4, 5%) and cooling times (1, 5, 20, 80 years)). The burnup and cooling time were simulated with each fuel pin being comprised of four radial regions. In this paper an overview of the purpose will be given as well as a technical update on the following 6 neutron techniques: 252 Cf Interrogation with Prompt Neutron Detection, Delayed Neutrons, Differential Die-Away, Differential Die-Away Self-Interrogation, Passive Neutron Albedo Reactivity, Self-Integration Neutron Resonance Densitometry. The technical update will quantify the anticipated performance of each technique for the 64 assemblies of the spent fuel library.

  7. Solid phase radioimmunoassay for quantitation of IgM rheumatoid factor (RF). Comparison with agglutination techniques and radioimmunoprecipitation polyethylene glycol assay (RIPEGA)

    Energy Technology Data Exchange (ETDEWEB)

    Herrmann, D.; Jaeger, L.; Hein, G.; Henzgen, M.; Fiebig, H.; Schlenvoigt, G.; Vogelsang, H. (Friedrich-Schiller-Universitaet, Jena (German Democratic Republic). Bereich Medizin; Karl-Marx-Universitaet, Leipzig (German Democratic Republic). Sektion Biowissenschaften)

    1985-01-01

    A solid-phase radioimmunoassay capable of detecting nanogram quantities of human IgM rheumatoid factor using a monoclonal anti-..mu..-chain antibody is described. Human IgG did not interfere with the detection of IgM RF by this method. The small nonspecific binding of nonRF IgM to the human IgG coated tubes utilized in the assay must be corrected for by assaying samples in parallel bovine serum albumin coated control tubes only in cases of deviation of IgM from normal range. 69 coded and randomly arranged sera from patients with rheumatoid arthritis (RA), nonrheumatic joint diseases and healthy adult control subjects were investigated by this method, agglutination techniques as well as RIPEGA. A good correlation between solid-phase radioimmunoassay and agglutination techniques was found. Patients with seropositive RA had significantly higher concentrations of IgM RF than seronegative RA patients or control subjects.

  8. Arabidopsis seedling flood-inoculation technique: a rapid and reliable assay for studying plant-bacterial interactions

    Directory of Open Access Journals (Sweden)

    Uppalapati Srinivasa R

    2011-10-01

    Full Text Available Abstract Background The Arabidopsis thaliana-Pseudomonas syringae model pathosystem is one of the most widely used systems to understand the mechanisms of microbial pathogenesis and plant innate immunity. Several inoculation methods have been used to study plant-pathogen interactions in this model system. However, none of the methods reported to date are similar to those occurring in nature and amicable to large-scale mutant screens. Results In this study, we developed a rapid and reliable seedling flood-inoculation method based on young Arabidopsis seedlings grown on MS medium. This method has several advantages over conventional soil-grown plant inoculation assays, including a shorter growth and incubation period, ease of inoculation and handling, uniform infection and disease development, requires less growth chamber space and is suitable for high-throughput screens. In this study we demonstrated the efficacy of the Arabidopsis seedling assay to study 1 the virulence factors of P. syringae pv. tomato DC3000, including type III protein secretion system (TTSS and phytotoxin coronatine (COR; 2 the effector-triggered immunity; and 3 Arabidopsis mutants affected in salicylic acid (SA- and pathogen-associated molecular pattern (PAMPs-mediated pathways. Furthermore, we applied this technique to study nonhost resistance (NHR responses in Arabidopsis using nonhost pathogens, such as P. syringae pv. tabaci, pv. glycinea and pv. tomato T1, and confirmed the functional role of FLAGELLIN-SENSING 2 (FLS2 in NHR. Conclusions The Arabidopsis seedling flood-inoculation assay provides a rapid, efficient and economical method for studying Arabidopsis-Pseudomonas interactions with minimal growth chamber space and time. This assay could also provide an excellent system for investigating the virulence mechanisms of P. syringae. Using this method, we demonstrated that FLS2 plays a critical role in conferring NHR against nonhost pathovars of P. syringae, but not to

  9. Biomonitoring of genotoxic risk in radar facility workers: comparison of the comet assay with micronucleus assay and chromatid breakage assay

    International Nuclear Information System (INIS)

    Garaj-Vrhovac, V.; Kopjar, N.

    2003-01-01

    Genotoxic risks of occupational exposure in a radar facility were evaluated by using alkaline comet assay, micronucleus assay and chromatid breakage assay on peripheral blood leukocytes in exposed subjects and corresponding controls. Results show that occupational exposure to microwave radiation correlates with an increase of genome damage in somatic cells. The levels of DNA damage in exposed subjects determined by using alkaline comet assay were increased compared to control and showed interindividual variations. Incidence of micronuclei was also significantly increased compared to baseline control values. After short exposure of cultured lymphocytes to bleomycin, cells of occupationally exposed subjects responded with high numbers of chromatid breaks. Although the level of chromosome damage generated by bleomycin varied greatly between individuals, in exposed subjects a significantly elevated number of chromatid breaks was observed. Our results support data reported in literature indicating that microwave radiation represents a potential DNA-damaging hazard. Alkaline comet assay is confirmed as a sensitive and highly reproducible technique for detection of primary DNA damage inflicted in somatic cells. Micronucleus assay was confirmed as reliable bio-markers of effect and chromatid breakage assay as sensitive bio-marker of individual cancer susceptibility. The results obtained also confirm the necessity to improve measures and to perform accurate health surveillance of individuals occupationally exposed to microwave radiation

  10. Radiometric assays for glycerol, glucose, and glycogen

    International Nuclear Information System (INIS)

    Bradley, D.C.; Kaslow, H.R.

    1989-01-01

    We have developed radiometric assays for small quantities of glycerol, glucose and glycogen, based on a technique described by Thorner and Paulus for the measurement of glycerokinase activity. In the glycerol assay, glycerol is phosphorylated with [32P]ATP and glycerokinase, residual [32P]ATP is hydrolyzed by heating in acid, and free [32P]phosphate is removed by precipitation with ammonium molybdate and triethylamine. Standard dose-response curves were linear from 50 to 3000 pmol glycerol with less than 3% SD in triplicate measurements. Of the substances tested for interference, only dihydroxyacetone gave a slight false positive signal at high concentration. When used to measure glycerol concentrations in serum and in media from incubated adipose tissue, the radiometric glycerol assay correlated well with a commonly used spectrophotometric assay. The radiometric glucose assay is similar to the glycerol assay, except that glucokinase is used instead of glycerokinase. Dose response was linear from 5 to 3000 pmol glucose with less than 3% SD in triplicate measurements. Glucosamine and N-acetylglucosamine gave false positive signals when equimolar to glucose. When glucose concentrations in serum were measured, the radiometric glucose assay agreed well with hexokinase/glucose-6-phosphate dehydrogenase (H/GDH)-based and glucose oxidase/H2O2-based glucose assays. The radiometric method for glycogen measurement incorporates previously described isolation and digestion techniques, followed by the radiometric assay of free glucose. When used to measure glycogen in mouse epididymal fat pads, the radiometric glycogen assay correlated well with the H/GDH-based glycogen assay. All three radiometric assays offer several practical advantages over spectral assays

  11. Magnetic particle separation technique: a reliable and simple tool for RIA/IRMA and quantitative PCR assay

    International Nuclear Information System (INIS)

    Shen Rongsen; Shen Decun

    1998-01-01

    Five types of magnetic particles without or with aldehyde, amino and carboxyl functional groups, respectively were used to immobilize first or second antibody by three models, i. e. physical adsorption, chemical coupling and immuno-affinity, forming four types of magnetic particle antibodies. The second antibody immobilized on polyacrolein magnetic particles through aldehyde functional groups and the first antibodies immobilized on carboxylic polystyrene magnetic particles through carboxyl functional groups were recommended to apply to RIAs and/or IRMAs. Streptavidin immobilized on commercial magnetic particles through amino functional groups was successfully applied to separating specific PCR product for quantification of human cytomegalovirus. In the paper typical data on reliability of these magnetic particle ligands were reported and simplicity of the magnetic particle separation technique was discussed. The results showed that the technique was a reliable and simple tool for RIA/IRMA and quantitative PCR assay. (author)

  12. Time-resolved immunofluorometric assay of serum ferritin

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Yao [China Inst. of Atomic Energy, Beijing (China)

    2007-06-15

    This assay is a solid phase, two-site fluoroimmunometric assay based on the direct sandwish technique. Standards or samples containing ferritin are first reacted with immobilized anti-ferritin antibodies. Then the europium-lablled antibodies are reacted with the bound antigen. The range of this assay is 2-1000 ng/mL. The analytical sentivity is better than 0.05 ng/mL. The intra-assay variation and inter-assay variation are both below 5%; This kit was compared with Wallac DELFIA kit. The correlation is r=0.96. (authors)

  13. Elements of nondestructive assay (NDA) technology

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    This session provides an introduction to nondestructive assay methods and instruments as they are applied to nuclear safeguards. The purpose of the sessions is to enable participants to: (1) discuss the general principles and major applications of NDA; (2) describe situations in which NDA is particularly useful for nuclear safeguards purposes; (3) distinguish between various passive and active gamma-ray and neutron NDA methods; (4) describe several NDA instruments that measure gamma rays, and identify assay situations particularly suited to gamma-ray techniques; (5) describe several NDA instruments that measure neutrons, and identify assay situations particularly suited to neutron techniques; (6) discuss the role of calorimetry in the NDA of plutonium-bearing materials; and (7) compare the advantages and disadvantages of various NDA methods for different types of nuclear materials

  14. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts.

    Science.gov (United States)

    Redmile-Gordon, M A; Armenise, E; White, R P; Hirsch, P R; Goulding, K W T

    2013-12-01

    Soil extracts usually contain large quantities of dissolved humified organic material, typically reflected by high polyphenolic content. Since polyphenols seriously confound quantification of extracted protein, minimising this interference is important to ensure measurements are representative. Although the Bradford colorimetric assay is used routinely in soil science for rapid quantification protein in soil-extracts, it has several limitations. We therefore investigated an alternative colorimetric technique based on the Lowry assay (frequently used to measure protein and humic substances as distinct pools in microbial biofilms). The accuracies of both the Bradford assay and a modified Lowry microplate method were compared in factorial combination. Protein was quantified in soil-extracts (extracted with citrate), including standard additions of model protein (BSA) and polyphenol (Sigma H1675-2). Using the Lowry microplate assay described, no interfering effects of citrate were detected even with concentrations up to 5 times greater than are typically used to extract soil protein. Moreover, the Bradford assay was found to be highly susceptible to two simultaneous and confounding artefacts: 1) the colour development due to added protein was greatly inhibited by polyphenol concentration, and 2) substantial colour development was caused directly by the polyphenol addition. In contrast, the Lowry method enabled distinction between colour development from protein and non-protein origin, providing a more accurate quantitative analysis. These results suggest that the modified-Lowry method is a more suitable measure of extract protein (defined by standard equivalents) because it is less confounded by the high polyphenolic content which is so typical of soil extracts.

  15. Radioreceptor assay: theory and applications to pharmacology

    International Nuclear Information System (INIS)

    Perret, G.; Simon, P.

    1984-01-01

    The aim of the first part of this work is to present the theory of the radioreceptor assay and to compare it to the other techniques of radioanalysis (radioimmunoassay, competitive protein binding assays). The technology of the radioreceptor assay is then presented and its components (preparation of the receptors, radioligand, incubation medium) are described. The analytical characteristics of the radioreceptor assay (specificity, sensitivity, reproductibility, accuracy) and the pharmacological significance of the results are discussed. The second part is devoted to the description of the radioreceptor assays of some pharmacological classes (neuroleptics, tricyclic antidepressants, benzodiazepines, β-blockers, anticholinergic drugs) and to their use in therapeutic drug monitoring. In conclusion, by their nature, radioreceptor assays are highly sensitive, reliable, precise, accurate and simple to perform. Their chief disadvantage relates to specificity, since any substance having an appreciable affinity to the receptor site will displace the specifically bound radioligand. Paradoxically in some cases, this lack of specificity may be advantageous in that it allows for the detection of not only the apparent compound but of active metabolites and endogenous receptor agonists as well and in that radioreceptors assays can be devised for a whole pharmacological class and not only for one drug as it is the case for classical physico-chemical techniques. For all these reasons future of radioreceptor assay in pharmacology appears promising [fr

  16. Clonogenic assay: adherent cells.

    Science.gov (United States)

    Rafehi, Haloom; Orlowski, Christian; Georgiadis, George T; Ververis, Katherine; El-Osta, Assam; Karagiannis, Tom C

    2011-03-13

    The clonogenic (or colony forming) assay has been established for more than 50 years; the original paper describing the technique was published in 1956. Apart from documenting the method, the initial landmark study generated the first radiation-dose response curve for X-ray irradiated mammalian (HeLa) cells in culture. Basically, the clonogenic assay enables an assessment of the differences in reproductive viability (capacity of cells to produce progeny; i.e. a single cell to form a colony of 50 or more cells) between control untreated cells and cells that have undergone various treatments such as exposure to ionising radiation, various chemical compounds (e.g. cytotoxic agents) or in other cases genetic manipulation. The assay has become the most widely accepted technique in radiation biology and has been widely used for evaluating the radiation sensitivity of different cell lines. Further, the clonogenic assay is commonly used for monitoring the efficacy of radiation modifying compounds and for determining the effects of cytotoxic agents and other anti-cancer therapeutics on colony forming ability, in different cell lines. A typical clonogenic survival experiment using adherent cells lines involves three distinct components, 1) treatment of the cell monolayer in tissue culture flasks, 2) preparation of single cell suspensions and plating an appropriate number of cells in petri dishes and 3) fixing and staining colonies following a relevant incubation period, which could range from 1-3 weeks, depending on the cell line. Here we demonstrate the general procedure for performing the clonogenic assay with adherent cell lines with the use of an immortalized human keratinocyte cell line (FEP-1811). Also, our aims are to describe common features of clonogenic assays including calculation of the plating efficiency and survival fractions after exposure of cells to radiation, and to exemplify modification of radiation-response with the use of a natural antioxidant

  17. Nondestructive assay of sale materials

    International Nuclear Information System (INIS)

    Rodenburg, W.W.; Fleissner, J.G.

    1981-01-01

    This paper covers three primary areas: (1) reasons for performing nondestructive assay on SALE materials; (2) techniques used; and (3) discussion of investigators' revised results. The study shows that nondestructive calorimetric assay of plutonium offers a viable alternative to traditional wet chemical techniques. For these samples, the precision ranged from 0.4 to 0.6% with biases less than 0.2%. Thus, for those materials where sampling errors are the predominant source of uncertainty, this technique can provide improved accuracy and precision while saving time and money as well as reducing the amount of liquid wastes to be handled. In addition, high resolution gamma-ray spectroscopy measurements of solids can provide isotopic analysis data in a cost effective and timely manner. The timeliness of the method can be especially useful to the plant operator for production control and quality control measurements

  18. Evalution of NDA techniques and instruments for assay of nuclear waste at a waste terminal storage facility

    International Nuclear Information System (INIS)

    Blakeman, E.D.; Allen, E.J.; Jenkins, J.D.

    1978-05-01

    The use of Nondestructive Assay (NDA) instrumentation at a nuclear waste terminal storage facility for purposes of Special Nuclear Material (SNM) accountability is evaluated. Background information is given concerning general NDA techniques and the relative advantages and disadvantages of active and passive NDA methods are discussed. The projected characteristics and amounts of nuclear wastes that will be delivered to a waste terminal storage facility are presented. Wastes are divided into four categories: High Level Waste, Cladding Waste, Intermediate Level Waste, and Low Level Waste. Applications of NDA methods to the assay of these waste types is discussed. Several existing active and passive NDA instruments are described and, where applicable, results of assays performed on wastes in large containers (e.g., 55-gal drums) are given. It is concluded that it will be difficult to routinely achieve accuracies better than approximately 10--30% with ''simple'' NDA devices or 5--20% with more sohpisticated NDA instruments for compacted wastes. It is recommended that NDA instruments not be used for safeguards accountability at a waste storage facility. It is concluded that item accountability methods be implemented. These conclusions and recommendations are detailed in a concurrent report entitled ''Recommendations on the Safeguards Requirements Related to the Accountability of Special Nuclear Material at Waste Terminal Storage Facilities'' by J.D. Jenkins, E.J. Allen and E.D. Blakeman

  19. Establishment of 60Co dose calibration curve using fluorescent in situ hybridization assay technique: Result of preliminary study

    International Nuclear Information System (INIS)

    Rahimah Abdul Rahim; Noriah Jamal; Noraisyah Mohd Yusof; Juliana Mahamad Napiah; Nelly Bo Nai Lee

    2010-01-01

    This study aims at establishing an in-vitro 60 Co dose calibration curve using Fluorescent In-Situ Hybridization assay technique for the Malaysian National Bio dosimetry Laboratory. Blood samples collected from a female healthy donor were irradiated with several doses of 60 Co radiation. Following culturing of lymphocytes, microscopic slides are prepared, denatured and hybridized. The frequencies of translocation are estimated in the metaphases. A calibration curve was then generated using a regression technique. It shows a good fit to a linear-quadratic model. The results of this study might be useful in estimating absorbed dose for the individual exposed to ionizing radiation retrospectively. This information may be useful as a guide for medical treatment for the assessment of possible health consequences. (author)

  20. Elements of nondestructive assay (NDA) technology

    International Nuclear Information System (INIS)

    Hatcher, C.R.; Smith, H.

    1984-01-01

    A thorough introduction to nondestructive assay methods and instruments as they are applied to nuclear safeguards is presented. The general principles and major applications of NDA are discussed and situations in which NDA is particularly useful for nuclear safeguards purposes are described. Various passive and active γ-ray and neutron methods are examined and assay situations particularly suited to γ-ray techniques, or to neutron techniques are identified. The role of calorimetry in the NDA of plutonium-bearing materials is also discussed. The advantages and disadvantages of various NDA methods for different types of nuclear materials are mentioned

  1. Direct 125I-radioligand assays for serum progesterone compared with assays involving extraction of serum

    International Nuclear Information System (INIS)

    Ratcliffe, W.A.; Corrie, J.E.T.; Dalziel, A.H.; Macpherson, J.S.

    1982-01-01

    Two direct radioimmunoassays for progesterone in 50 μL of unextracted serum or plasma with assays involving extraction of serum were compared. The direct assays include the use of either danazol at pH 7.4 or 8-anilino-1-naphthalenesulfonic acid at pH 4.0 to displace progesterone from serum binding-proteins. Progesterone is then assayed by using an antiserum to a progesterone 11α-hemisuccinyl conjugate and the radioligand 125 I-labeled progesterone 11α-glucuronyl tyramine, with separation by double-antibody techniques. Direct assays with either displacing agent gave good analytical recovery of progesterone added to human serum, and progesterone values for patients' specimens correlated well (r > 0.96) with results of assays involving extraction of serum. Precision was similar with each displacing agent over the working range 2.5-100 nmol/L and superior to that of extraction assays. We conclude that these direct assays of progesterone are analytically valid and more robust, precise, and technically convenient than many conventional methods involving extraction of serum

  2. 233U Assay A Neutron NDA System

    International Nuclear Information System (INIS)

    Hensley, D.C.; Lucero, A.J.; Pierce, L.

    1998-01-01

    The assay of highly enriched 233 U material presents some unique challenges. Techniques which apply to the assay of materials of Pu or enriched 235 U do not convert easily over to the assay of 233 U. A specialized neutron assay device is being fabricated to exploit the singles neutron signal, the weak correlated neutron signal, and an active correlated signal. These pieces of information when combined with γ ray isotopics information should give a good overall determination of 233 U material now stored in bldg. 3019 at the Oak Ridge National Laboratory

  3. Lateral flow assays

    NARCIS (Netherlands)

    Posthuma-Trumpie, G.A.; Amerongen, van A.

    2012-01-01

    A simple version of immunochemical-based methods is the Lateral Flow Assay (LFA). It is a dry chemistry technique (reagents are included); the fluid from the sample runs through a porous membrane (often nitrocellulose) by capillary force. Typically the membrane is cut as a strip of 0.5*5 cm. In most

  4. The use of calorimetry for plutonium assay

    International Nuclear Information System (INIS)

    Mason, J.A.

    1982-12-01

    Calorimetry is a technique for measuring the thermal power of heat-producing substances. The technique may be applied to the measurement of plutonium-bearing materials which evolve heat as a result of alpha and beta decay. A calorimetric measurement of the thermal power of a plutonium sample, combined with a knowledge or measurement of the plutonium isotopic mass ratios of the sample provides a convenient and accurate, non-destructive measure of the total plutonium mass of the sample. The present report provides a description, and an assessment of the calorimetry technique applied to the assay of plutonium-bearing materials. Types and characteristics of plutonium calorimeters are considered, as well as calibration and operating procedures. The instrumentation used with plutonium calorimeters is described and the use of computer control for calorimeter automation is discussed. A critical review and assessment of plutonium calorimetry literature since 1970 is presented. Both fuel element and plutonium-bearing material calorimeters are considered. The different types of plutonium calorimeters are evaluated and their relative merits are discussed. A combined calorimeter and gamma-ray measurement assay system is considered. The design principles of plutonium assay calorimeters are considered. An automatic, computer-based calorimeter control system is proposed in conjunction with a general plutonium assay calorimeter design. (author)

  5. Real-Time, Label-Free Detection of Biomolecular Interactions in Sandwich Assays by the Oblique-Incidence Reflectivity Difference Technique

    Directory of Open Access Journals (Sweden)

    Yung-Shin Sun

    2014-12-01

    Full Text Available One of the most important goals in proteomics is to detect the real-time kinetics of diverse biomolecular interactions. Fluorescence, which requires extrinsic tags, is a commonly and widely used method because of its high convenience and sensitivity. However, in order to maintain the conformational and functional integrality of biomolecules, label-free detection methods are highly under demand. We have developed the oblique-incidence reflectivity difference (OI-RD technique for label-free, kinetic measurements of protein-biomolecule interactions. Incorporating the total internal refection geometry into the OI-RD technique, we are able to detect as low as 0.1% of a protein monolayer, and this sensitivity is comparable with other label-free techniques such as surface plasmon resonance (SPR. The unique advantage of OI-RD over SPR is no need for dielectric layers. Moreover, using a photodiode array as the detector enables multi-channel detection and also eliminates the over-time signal drift. In this paper, we demonstrate the applicability and feasibility of the OI-RD technique by measuring the kinetics of protein-protein and protein-small molecule interactions in sandwich assays.

  6. Radioreceptor assays: plasma membrane receptors and assays for polypeptide and glycoprotein hormones

    International Nuclear Information System (INIS)

    Schulster, D.

    1977-01-01

    Receptors for peptide, protein and glycoprotein hormones, and the catecholamines are located on the plasma membranes of their target cells. Preparations of the receptors may be used as specific, high-affinity binding agents for these hormones in assay methodology akin to that for radioimmunoassay. A particular advantage of the radioreceptor assay is that it has a specificity directed towards the biologically active region of the hormone, rather than to some immunologically active region that may have little (or no) involvement in the expression of hormonal activity. Methods for hormone receptor preparation vary greatly, and range from the use of intact cells (as the source of hormone receptor) to the use of purified or solubilized membrane receptors. Receptors isolated from plasma membranes have proved to be of variable stability, and may be damaged during preparation and/or storage. Moreover, since they are present in relatively low concentration in the cell, their preparation in sufficient quantity for use in a radioreceptor assay may present technical problems. In general, there is good correlation between radioreceptor assays and in-vitro bioassays; differences between results from radioreceptor assays and radioimmunoassays are similar to those noted between in-vitro bioassays and radioimmunoassays. The sensitivity of the method is such that normal plasma concentrations of various hormones have been assayed by this technique. (author)

  7. 233U Assay A Neutron NDA System

    Energy Technology Data Exchange (ETDEWEB)

    Hensley, D.C.; Lucero, A.J.; Pierce, L.

    1998-11-17

    The assay of highly enriched {sup 233}U material presents some unique challenges. Techniques which apply to the assay of materials of Pu or enriched {sup 235}U do not convert easily over to the assay of {sup 233}U. A specialized neutron assay device is being fabricated to exploit the singles neutron signal, the weak correlated neutron signal, and an active correlated signal. These pieces of information when combined with {gamma} ray isotopics information should give a good overall determination of {sup 233}U material now stored in bldg. 3019 at the Oak Ridge National Laboratory.

  8. Electronics system for transuranic waste assays using a photon interrogation technique

    International Nuclear Information System (INIS)

    Johnson, L.O.; Lawrence, R.S.

    1979-12-01

    This report documents the development of electronics for a neutron detection system used in experiments to demonstrate the feasibility of a photon interrogation technique for transuranic (TRU) waste assays. The system consists of the neutron detection and signal conditioning circuits, variable time-gate generators, and a data acquisition system. The data acquisition system is configured using commercially available scalers, timers, teletype, and control components. The remainder of the system, with the exception of the neutron detectors, uses components designed in-house. The neutron detection system consists of 3 He proportional counters installed in a polyethylene moderator assembly. The counters are direct-coupled to a high-count-rate, current-sensitive preamplifier. The preamplifier and an additional two-stage amplifier are also installed in the moderator assembly. Signal conditioning includes baseline restoration and fast discrimination. A variable time-gate generator with logic gates allows for separation of prompt and delayed neutron counts, and generation of prompt and delayed deadtimes. The 3 He proportional counters will detect not only the neutrons from the TRU waste sample, but also the high-energy photons used to induce fission in the sample. The burst of photons (gamma flash) tends to overload and paralyze the electronics. This system has been designed to recover from a worst-case gamma flash overload within 10 microseconds. The system has met all the requirements generated for the photon interrogation experiments

  9. Flow Cytometric Immunobead Assay for Detection of BCR-ABL1 Fusion Proteins in Chronic Myleoid Leukemia: Comparison with FISH and PCR Techniques

    Science.gov (United States)

    Recchia, Anna Grazia; Caruso, Nadia; Bossio, Sabrina; Pellicanò, Mariavaleria; De Stefano, Laura; Franzese, Stefania; Palummo, Angela; Abbadessa, Vincenzo; Lucia, Eugenio; Gentile, Massimo; Vigna, Ernesto; Caracciolo, Clementina; Agostino, Antolino; Galimberti, Sara; Levato, Luciano; Stagno, Fabio; Molica, Stefano; Martino, Bruno; Vigneri, Paolo; Di Raimondo, Francesco; Morabito, Fortunato

    2015-01-01

    Chronic Myeloid Leukemia (CML) is characterized by a balanced translocation juxtaposing the Abelson (ABL) and breakpoint cluster region (BCR) genes. The resulting BCR-ABL1 oncogene leads to increased proliferation and survival of leukemic cells. Successful treatment of CML has been accompanied by steady improvements in our capacity to accurately and sensitively monitor therapy response. Currently, measurement of BCR-ABL1 mRNA transcript levels by real-time quantitative PCR (RQ-PCR) defines critical response endpoints. An antibody-based technique for BCR-ABL1 protein recognition could be an attractive alternative to RQ-PCR. To date, there have been no studies evaluating whether flow-cytometry based assays could be of clinical utility in evaluating residual disease in CML patients. Here we describe a flow-cytometry assay that detects the presence of BCR-ABL1 fusion proteins in CML lysates to determine the applicability, reliability, and specificity of this method for both diagnosis and monitoring of CML patients for initial response to therapy. We show that: i) CML can be properly diagnosed at onset, (ii) follow-up assessments show detectable fusion protein (i.e. relative mean fluorescent intensity, rMFI%>1) when BCR-ABL1IS transcripts are between 1–10%, and (iii) rMFI% levels predict CCyR as defined by FISH analysis. Overall, the FCBA assay is a rapid technique, fully translatable to the routine management of CML patients. PMID:26111048

  10. Flow Cytometric Immunobead Assay for Detection of BCR-ABL1 Fusion Proteins in Chronic Myleoid Leukemia: Comparison with FISH and PCR Techniques.

    Directory of Open Access Journals (Sweden)

    Anna Grazia Recchia

    Full Text Available Chronic Myeloid Leukemia (CML is characterized by a balanced translocation juxtaposing the Abelson (ABL and breakpoint cluster region (BCR genes. The resulting BCR-ABL1 oncogene leads to increased proliferation and survival of leukemic cells. Successful treatment of CML has been accompanied by steady improvements in our capacity to accurately and sensitively monitor therapy response. Currently, measurement of BCR-ABL1 mRNA transcript levels by real-time quantitative PCR (RQ-PCR defines critical response endpoints. An antibody-based technique for BCR-ABL1 protein recognition could be an attractive alternative to RQ-PCR. To date, there have been no studies evaluating whether flow-cytometry based assays could be of clinical utility in evaluating residual disease in CML patients. Here we describe a flow-cytometry assay that detects the presence of BCR-ABL1 fusion proteins in CML lysates to determine the applicability, reliability, and specificity of this method for both diagnosis and monitoring of CML patients for initial response to therapy. We show that: i CML can be properly diagnosed at onset, (ii follow-up assessments show detectable fusion protein (i.e. relative mean fluorescent intensity, rMFI%>1 when BCR-ABL1IS transcripts are between 1-10%, and (iii rMFI% levels predict CCyR as defined by FISH analysis. Overall, the FCBA assay is a rapid technique, fully translatable to the routine management of CML patients.

  11. Thermometric enzyme linked immunosorbent assay: TELISA.

    Science.gov (United States)

    Mattiasson, B; Borrebaeck, C; Sanfridson, B; Mosbach, K

    1977-08-11

    A new method, thermometric enzyme linked immunosorbent assay (TELISA), for the assay of endogenous and exogenous compounds in biological fluids is described. It is based on the previously described enzyme linked immunosorbent assay technique, ELISA, but utilizes enzymic heat formation which is measured in an enzyme thermistor unit. In the model system studied determination of human serum albumin down to a concentration of 10(-10) M (5 ng/ml) was achieved, with both normal and catalase labelled human serum albumin competing for the binding sites on the immunosorbent, which was rabbit antihuman serum albumin immobilized onto Sepharose CL-4B.

  12. Comparison of Enzymatic Assay and Multiple Tube Fermentation Technique in the Assessment of Microbial Quality of the Karoon River

    Directory of Open Access Journals (Sweden)

    Mahnaz Nikaeen

    2010-09-01

    Full Text Available Microbiological monitoring of surface waters designated for use as drinking water is essential by water utilities for the design and operation of drinking water treatment plants. Enzymatic assays have been applied as a rapid alternative approach to assess the microbiological quality of freshwater. In this study, the LMX broth (LMX as an enzymatic assay was compared with the standard method of multiple tube fermentation technique (MTF for the microbial monitoring of the Karoon River. Enumeration of total coliforms and E. coli averaged 9928 and 6684 MPN/ 100 ml by the LMX and 7564 and 6546 MPN/ 100 ml for the MTF, respectively. This difference was statistically significant for TC but the overall analysis revealed no difference between E. coli recoveries on LMX and MTF. In conclusion, LMX can be used for the enumeration of coliforms and E. coli in surface waters as it is less lobar-intensive, yields faster result, and simultaneously detects both total coliforms and E. coli.

  13. Role of SSNTD technique in three-step method for total assay of alpha activity in air effluents

    International Nuclear Information System (INIS)

    Kolekar, R.V.; Joshi, V.B.; Bhanti, D.P.; Bhagwat, A.M.

    2000-01-01

    In the present work, low levels of alpha activity in air effluents were estimated. Currently this essay involves collection of effluent samples and assaying them for the release using ZnS(Ag) based scintillation counter (background=1 cpm). Any activity below 1 cpm (net) therefore goes unreported. Air samples showing activity -6 Bq/m 3 (3.73x10 -17 Ci/m 3 ) to 36.41x10 -6 Bq/m 3 (9.84x10 -16 Ci/m 3 ) for samples studied over twelve months period. The three step procedure helps to measure total activity without significant burden on SSNTD technique thereby improving the acceptability of the methodology. (author)

  14. DNA Comet Assay. A simple screening technique for identification of some irradiated foods

    International Nuclear Information System (INIS)

    Khan, A.A.; Khan, H.M.

    2008-01-01

    DNA Comet Assay method was carried out to detect irradiation treatment of some foods like meat, spices, beans and lentils. The fresh meat of cow and duck were irradiated up to radiation doses of 3 kGy, the spices (cardamoms and cumin black) were irradiated to radiation doses of 5, 10, 15 and 20 kGy while the beans (black beans and white beans) and lentils (red and green lentils) were irradiated to 0.5 and 1 kGy. All the foods were then analyzed for radiation treatment using simple microgel electrophoresis of single cells or nuclei (DNA Comet Assay). Sedimentation, lysis and staining times were adjusted to get optimized conditions for correct and easy analysis of each food. Using these optimized conditions, it was found out that radiation damaged DNA showed comets in case of irradiated food samples, whereas in non-treated food samples, round or conical spots of stained DNA were visible. Shape, length and intensity of these comets were also radiation dose dependent. Screening of unirradiated and irradiated samples by Comet Assay was successful in the case of all the foods under consideration under the optimized conditions of assay. Therefore, for different kinds of irradiated foods studied in the present study, the DNA Comet Assay can be used as a rapid, simple and inexpensive screening test. (author)

  15. Comprehensive analysis of sperm DNA fragmentation by five different assays: TUNEL assay, SCSA, SCD test and alkaline and neutral Comet assay.

    Science.gov (United States)

    Ribas-Maynou, J; García-Peiró, A; Fernández-Encinas, A; Abad, C; Amengual, M J; Prada, E; Navarro, J; Benet, J

    2013-09-01

    Sperm DNA fragmentation (SDF) is becoming an important test to assess male infertility. Several different tests are available, but no consensus has yet been reached as to which tests are most predictive of infertility. Few publications have reported a comprehensive analysis comparing these methods within the same population. The objective of this study was to analyze the differences between the five most common methodologies, to study their correlations and to establish their cut-off values, sensitivity and specificity in predicting male infertility. We found differences in SDF between fertile donors and infertile patients in TUNEL, SCSA, SCD and alkaline Comet assays, but none with the neutral Comet assay. The alkaline COMET assay was the best in predicting male infertility followed by TUNEL, SCD and SCSA, whereas the neutral COMET assay had no predictive power. For our patient population, threshold values for infertility were 20.05% for TUNEL assay, 18.90% for SCSA, 22.75% for the SCD test, 45.37% for alkaline Comet and 34.37% for neutral Comet. This work establishes in a comprehensive study that the all techniques except neutral Comet are useful to distinguish fertile and infertile men. © 2013 American Society of Andrology and European Academy of Andrology.

  16. Aloe vera is non-toxic to cells: A microculture tetrazolium technique colorimetric assay study

    Directory of Open Access Journals (Sweden)

    Devi Gopakumar

    2014-01-01

    Full Text Available Introduction: Aloe vera (Av, a succulent of Liliaceae family is now a widely used medicinal plant. Its′ application covers a wide spectrum of human diseases, including oral mucosa, gastric mucosa and skin. Aloe vera preparations in the form of gel, mouth washes and cream are applied topically for many oral diseases. The applications include oral lichen planus, candidiasis, oral submucous fibrosis, geographic tongue, etc. Aims and Objectives: To evaluate the cytotoxicity of Av on human fibroblasts. Materials and Methods: Aloe vera preparation (70% was applied on the fibroblast cell lineage and the cell viability was evaluated by microculture tetrazolium technique (MTT colorimetric assay. Results: The cell viability at different concentrations was measured. The cells have maintained their viability at different concentrations used in the study. Conclusion: Our study shows the cell viability at different sample concentrations of Av. This could open up wide clinical applications of Av for reactive, inflammatory and potentially malignant oral and other mucocutaneous diseases.

  17. The comet assay: Reflections on its development, evolution and applications.

    Science.gov (United States)

    Singh, Narendra P

    2016-01-01

    The study of DNA damage and its repair is critical to our understanding of human aging and cancer. This review reflects on the development of a simple technique, now known as the comet assay, to study the accumulation of DNA damage and its repair. It describes my journey into aging research and the need for a method that sensitively quantifies DNA damage on a cell-by-cell basis and on a day-by-day basis. My inspirations, obstacles and successes on the path to developing this assay and improving its reliability and sensitivity are discussed. Recent modifications, applications, and the process of standardizing the technique are also described. What was once untried and unknown has become a technique used around the world for understanding and monitoring DNA damage. The comet assay's use has grown exponentially in the new millennium, as emphasis on studying biological phenomena at the single-cell level has increased. I and others have applied the technique across cell types (including germ cells) and species (including bacteria). As it enters new realms and gains clinical relevance, the comet assay may very well illuminate human aging and its prevention. Copyright © 2016. Published by Elsevier B.V.

  18. Competitive binding thyroid assay with improved bound-free separation step

    International Nuclear Information System (INIS)

    1979-01-01

    A competitive binding assay is described for serum thyroid hormone using 125 I-labelled thyroid hormone and exogenous thyroid hormone binding protein. The unbound thyroid hormone is separated from thyroid hormone bound to thyroid hormone binding protein using an intermediate base anion exchange resin. This resin comprises tertiary and quaternary amine groups on a polyalkyleneamine lattice and is compressed with microcrystalline cellulose in a tablet form. The assay technique of the present invention employing an intermediate base anion resin was found to give superior results compared with alternative assay techniques used in serum thyroid hormone estimation. (UK)

  19. 40 CFR 79.64 - In vivo micronucleus assay.

    Science.gov (United States)

    2010-07-01

    ... micronucleus assay. (a) Purpose. The micronucleus assay is an in vivo cytogenetic test which uses erythrocytes... that, because it contains RNA, can be differentiated by appropriate staining techniques from a normochromatic erythrocyte (NCE), which lacks RNA. In one to two days, a PCE matures into a NCE. (c) Test method...

  20. Identification of irradiated pepper with comet assay

    International Nuclear Information System (INIS)

    Prieto Miranda, Enrique Fco.; Moreno Alvarez, Damaris L.; Carro Palacio, Sandra; Iglesia Enriquez, Isora

    2007-01-01

    The treatment of foods with ionizing radiations is a technological process utilized in order to increase the hygienic quality and the storage time of the foods. Several methods of detection of irradiated foods have been recommended. The comet assay of DNA is one fast and economical technique for the qualitative identification of irradiated foods. The objective of the present paper was to identify with the comet assay technique the modifications of the DNA molecule of irradiated pepper storage at environment and refrigeration temperatures and different post-irradiation times for different absorbed dose values, (0.1, 0.3 and 0.5 kGy). It was demonstrated that for the high absorbed dose values was observed a greater break into fragments of the DNA molecule, which shows the application of this technique for the identification of irradiated foods. (author)

  1. Assessment of litter prevalence of Mycoplasma hyopneumoniae in preweaned piglets utilizing an antemortem tracheobronchial mucus collection technique and a real-time polymerase chain reaction assay.

    Science.gov (United States)

    Vangroenweghe, Frédéric; Karriker, Locke; Main, Rodger; Christianson, Eric; Marsteller, Thomas; Hammen, Kristin; Bates, Jessica; Thomas, Paul; Ellingson, Josh; Harmon, Karen; Abate, Sarah; Crawford, Kimberly

    2015-09-01

    The swine industry currently lacks validated antemortem methods of detecting baseline herd prevalence of Mycoplasma hyopneumoniae. The focus of our study was to evaluate alternative antemortem detection techniques and to determine baseline litter prevalence in preweaned pig populations utilizing the selected technique and a real-time polymerase chain reaction (qPCR) assay. Preliminary data was analyzed on weaned piglets with evidence of respiratory disease (n = 32). Five sample types (antemortem nasal swab, tracheobronchial mucus, postmortem deep airway swab, bronchoalveolar lavage, and lung tissue) were collected from each pig. Individual samples were tested for M. hyopneumoniae using qPCR. Compared to nasal swabs, tracheobronchial mucus demonstrated higher test sensitivity (P hyopneumoniae. Two out of 180 litters revealed a positive result (1.1%). Individual qPCR assays were run on the samples collected from sow farm 4. Five out of 30 samples revealed a positive result (16.7%). Tracheobronchial mucus collection in combination with qPCR is a sensitive antemortem sampling technique that can be used to estimate the prevalence of M. hyopneumoniae in preweaned pigs, thus providing insight into the infection dynamics across the entire farrow-to-finish process. © 2015 The Author(s).

  2. Radiometric-microbiologic assay fo vitamin B-6: analysis of plasma samples

    International Nuclear Information System (INIS)

    Guilarte, T.R.; McIntyre, P.A.

    1981-01-01

    A radiometric microbiologic assay for the analysis of vitamin B-6 in plasma was developed. The method is based on the measurement of 14CO2 generated from the metabolism of DL-l-14C-valine (L-l-14C-valine) by Kloeckera brevis. The assay is specific for the biologically active forms of the vitamin, that is, pyridoxine, pyridoxal and pyridoxamine, and their respective phosphorylated forms. The biologically inert vitamin B-6 metabolite (4-pyridoxic acid) did not generate a response at concentrations tested. The radiometric technique was shown to be sensitive to the 1 nanogram level. Reproducibility and recovery studies gave good results. Fifteen plasma samples were assayed using the radiometric and turbidimetric techniques. The correlation coefficient was r . 0.98. Turbid material or precipitated debris did not interfere with the radiometric microbiologic assay, thus allowing for simplification of assay procedure

  3. Widespread nanoparticle-assay interference: implications for nanotoxicity testing.

    Science.gov (United States)

    Ong, Kimberly J; MacCormack, Tyson J; Clark, Rhett J; Ede, James D; Ortega, Van A; Felix, Lindsey C; Dang, Michael K M; Ma, Guibin; Fenniri, Hicham; Veinot, Jonathan G C; Goss, Greg G

    2014-01-01

    The evaluation of engineered nanomaterial safety has been hindered by conflicting reports demonstrating differential degrees of toxicity with the same nanoparticles. The unique properties of these materials increase the likelihood that they will interfere with analytical techniques, which may contribute to this phenomenon. We tested the potential for: 1) nanoparticle intrinsic fluorescence/absorbance, 2) interactions between nanoparticles and assay components, and 3) the effects of adding both nanoparticles and analytes to an assay, to interfere with the accurate assessment of toxicity. Silicon, cadmium selenide, titanium dioxide, and helical rosette nanotubes each affected at least one of the six assays tested, resulting in either substantial over- or under-estimations of toxicity. Simulation of realistic assay conditions revealed that interference could not be predicted solely by interactions between nanoparticles and assay components. Moreover, the nature and degree of interference cannot be predicted solely based on our current understanding of nanomaterial behaviour. A literature survey indicated that ca. 95% of papers from 2010 using biochemical techniques to assess nanotoxicity did not account for potential interference of nanoparticles, and this number had not substantially improved in 2012. We provide guidance on avoiding and/or controlling for such interference to improve the accuracy of nanotoxicity assessments.

  4. Widespread nanoparticle-assay interference: implications for nanotoxicity testing.

    Directory of Open Access Journals (Sweden)

    Kimberly J Ong

    Full Text Available The evaluation of engineered nanomaterial safety has been hindered by conflicting reports demonstrating differential degrees of toxicity with the same nanoparticles. The unique properties of these materials increase the likelihood that they will interfere with analytical techniques, which may contribute to this phenomenon. We tested the potential for: 1 nanoparticle intrinsic fluorescence/absorbance, 2 interactions between nanoparticles and assay components, and 3 the effects of adding both nanoparticles and analytes to an assay, to interfere with the accurate assessment of toxicity. Silicon, cadmium selenide, titanium dioxide, and helical rosette nanotubes each affected at least one of the six assays tested, resulting in either substantial over- or under-estimations of toxicity. Simulation of realistic assay conditions revealed that interference could not be predicted solely by interactions between nanoparticles and assay components. Moreover, the nature and degree of interference cannot be predicted solely based on our current understanding of nanomaterial behaviour. A literature survey indicated that ca. 95% of papers from 2010 using biochemical techniques to assess nanotoxicity did not account for potential interference of nanoparticles, and this number had not substantially improved in 2012. We provide guidance on avoiding and/or controlling for such interference to improve the accuracy of nanotoxicity assessments.

  5. Techniques for improving shuffler assay results for 55-gallon waste drums

    International Nuclear Information System (INIS)

    Rinard, P.M.; Prettyman, T.H.; Stuenkel, D.

    1994-01-01

    Accurate assays of the fissile contents in waste drums are needed to ensure the most proper and economical handling and disposal of the waste. An improvement of accuracy will mean fewer drums disposed as transuranic waste when they really contain low-level waste, saving both money and burial sites. Shufflers are used for assaying waste drums and are very accurate with nonmoderating matrices (such as iron). In the active mode they count delayed neutrons released after fissions are induced by irradiation neutrons from a 252 Cf source. However, as the hydrogen density from matrices such as paper or gloves increases, the accuracy can suffer without proper attention. The neutron transport and fission probabilities change with the hydrogen density, causing the neutron count rate to vary with the position of the fissile material within the drum. The magnitude of this variation grows with the hydrogen density

  6. Immunoradiometric assay for cytomegalovirus-specific IgG antibodies; Assay development and evaluation in blood transfusion practice

    Energy Technology Data Exchange (ETDEWEB)

    Klapper, P.E.; Cleator, G.M.; Prinja-Wolks, D.; Morris, D.J. (Medical School, Manchester (United Kingdom). Department of Medical microbiology, Virology Unit); Morell, G. (Regional Blood Transfusion Centre, manchester (United Kingdom))

    1990-03-01

    An immunoradiometric assay (radio-immunosorbent test; RIST) for the detection of IgG antibodies to human herpesvirus 4 (human cytomegalovirus (CMV)) has been developed. The technique utilizes CMV antigen passively adsorbed to a polyvinyl microtitration plate and a radiolabelled murine monoclonal anti-human IgG antibody to detect binding of human antibody to the 'solid phase' reagent. The assay was optimized, and its specifity confirmed by testing paired acute and convalescent sera from patients with acute CMV or other human herpesvirus infections. To determine the assay's sensitivity 1433 blood donor sera were examined. The RIST was more sensitive than a standard complement fixation (CFT). Use of a monoclonal anti-human IgG antibody in the RIST reduced non-specific binding to the control uninfected cell antigen such that blood donor sera could be tested in the assay using only a CMV antigen without generating an unacceptable false positive rate. (author). 23 refs.; 1 tab.

  7. Development of a plutonium solution-assay instrument with isotopic capability

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marks, T.

    1992-01-01

    A new generation of solution-assay instrument has been developed to satisfy all the assay requirements of an aqueous plutonium-recovery operation. The assay is based on a transmission-corrected passive assay technique. We have demonstrated that the system can cover a concentration range of 0.5--300 g/ell with simultaneous isotopic determination. The system can be used to assay input and eluate streams of the recovery operation. The system can be modified to measure low-concentration effluent solutions from the recovery operation covering 0.01--40 g/ell. The same system has also been modified to assay plutonium solutions enriched in 242 Pu. 6 refs

  8. Techniques for induction of premature chromosome condensation (PCC) by Calyculin-A and micronucleus assay for biodosimetry in Vietnam

    International Nuclear Information System (INIS)

    Pham Ngoc Duy; Tran Que; Hoang Hung Tien; Bui Thi Kim Luyen; Nguyen Thi Kim Anh; Ha Thi Ngoc Lien

    2014-01-01

    The International Atomic Energy Agency (IAEA) and World Health Organization are interested in biological dosimetry method for radiation emergency medicine currently. Some cytogenetic techniques such as premature chromosome condensation (PCC) induced by Calyculin-A and micronucleus (MN) assay are necessary to develop biodosimetry in Vietnam. In this study, we optimized the condition for MN assay with 6 µg/ml Cytochalasin-B concentration and 72.5 hours for peripheral lymphocyte blood culture. The optimization for PCC method is 50 nM Calyculin-A concentration for 45 minutes peripheral lymphocyte blood treatment. For samples exposed to 3.0 Gy gamma 60 Co (dose rate 0.0916 Gy/s), the frequency of MN is 19.02 ± 0.38%, NBP is 1.95 ± 0.28%, dicentric and ring is 41.43 ± 8.12% and frag and min is 63.33 ± 5.16%. For samples exposed to 6.0 Gy gamma 60 Co (dose rate 0.0916 Gy/s), the frequency of ring-PCC is 17.73 ± 2.46%, extra unite is 218.91± 7.58%, dicentric is 83.81 ± 1.09%, ring is 10.75 ± 1.74%, fragment and minute is 193.17 ± 13.10%. MN and ring-PCC are specific marker applying for biodosimetry. (author)

  9. Neutron techniques in Safeguards

    International Nuclear Information System (INIS)

    Zucker, M.S.

    1982-01-01

    An essential part of Safeguards is the ability to quantitatively and nondestructively assay those materials with special neutron-interactive properties involved in nuclear industrial or military technology. Neutron techniques have furnished most of the important ways of assaying such materials, which is no surprise since the neutronic properties are what characterizes them. The techniques employed rely on a wide selection of the many methods of neutron generation, detection, and data analysis that have been developed for neutron physics and nuclear science in general

  10. A technique for combining neutron and gamma-ray data into a single assay value

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Mercer, D.; Sharpe, T.J.

    1998-01-01

    The authors explored the potentials of using both neutron and gamma-ray measurements on a single item and combining these data into a single assay value. The purpose was to improve assay capability for sample matrices that are difficult to measure. They chose an empirical approach because they wanted to address difficult-to-measure items for which the assay problem is complex. They used the tomographic gamma scanner; a passive, high-efficiency neutron counter with add-a-source and multiplicity; and an active neutron, californium shuffler to obtain measurements. Twenty-four 200-L drums were measured with various matrices using all three machines. The matrices were chosen specifically to spain the difficult-to-measure assay problems for some or all of the instruments. For example, the authors measured a drum filled with concrete and another filled with metal. The data from these measurements were analyzed using the alternating conditional expectation algorithm, which is one of a class of generalized additive models. Other data fusion algorithms are also possible and are being explored. The intent was to find ways to combine the data that would reduce the matrix-induced measurement error

  11. Comparison of enzyme-linked immunosorbent assay, radioimmunoassay, complement fixation, anticomplement immunofluorescence and passive haemaglutination techniques for detecting cytomegalovirus IgG antibody

    Energy Technology Data Exchange (ETDEWEB)

    Booth, J C; Hannington, G; Bakir, T M.F.; Stern, H; Kangro, H; Griffiths, P D; Heath, R B [Saint George' s Hospital Medical School, London (UK); Saint Bartholomew' s Hospital, London (UK))

    1982-12-01

    The radioimmunoassay (RIA) and enzyme-linked immunosorbent assay (ELISA) techniques were found to be comparable in sensitivity and specificity for detecting cytomegalovirus IgG antibody, and 10 to 100 times more sensitive than complement-fixation (CF), anticomplement immunofluorescence (ACIF) and passive haemagglutination (PHA). In screening tests for antibody, the frequency of false-positive and -negative results was 0.6% for RIA and ELISA, 1.5% for CF, 1.6% for ACIF and 3.6% for PHA. PHA was the least satisfactory test, largely because of technical problems.

  12. Inspection with non destructive assay techniques of the aluminium coating of the TRIGA Mark III reactor vat; Inspeccion con tecnicas de ensayos no destructivos del recubrimiento de aluminio de la tina del reactor TRIGA Mark III

    Energy Technology Data Exchange (ETDEWEB)

    Reyes A, A.I.; Gonzalez M, A.; Castaneda J, G.; Rivera M, H.; Sandoval G, I. [Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2001-07-01

    In June 2000, the Reactor Department assigned to the Scientific Research Direction of the National Institute of Nuclear Research requested to the Non-destructive Assays Laboratory (LEND), assigned to the Materials Science Management, the inspection and measurement of thickness of the aluminium coating (liner) of the TRIGA Mark III reactor vat with non-destructive assay techniques, due to that the aluminium coating is exposed mainly to undergo slimming on its back side due to corrosion phenomena. Activity that was able to be carried out from april until august 2001. It is worth pointing out that this type of inspection with these techniques was realized by first time. The non-destructive assays (NDA) are techniques which use indirect physical methods for inspecting the sanitation of components in process or in service, for detect lack of continuity or defects which affect their quality or usefulness. The application of those do not alter the physical, chemical, mechanical or dimensional properties of the part subject of inspection. The results of the application of the ultrasound inspection techniques, industrial radiography and penetrating liquids are presented. (Author)

  13. Computer-determined assay time based on preset precision

    International Nuclear Information System (INIS)

    Foster, L.A.; Hagan, R.; Martin, E.R.; Wachter, J.R.; Bonner, C.A.; Malcom, J.E.

    1994-01-01

    Most current assay systems for special nuclear materials (SNM) operate on the principle of a fixed assay time which provides acceptable measurement precision without sacrificing the required throughput of the instrument. Waste items to be assayed for SNM content can contain a wide range of nuclear material. Counting all items for the same preset assay time results in a wide range of measurement precision and wastes time at the upper end of the calibration range. A short time sample taken at the beginning of the assay could optimize the analysis time on the basis of the required measurement precision. To illustrate the technique of automatically determining the assay time, measurements were made with a segmented gamma scanner at the Plutonium Facility of Los Alamos National Laboratory with the assay time for each segment determined by counting statistics in that segment. Segments with very little SNM were quickly determined to be below the lower limit of the measurement range and the measurement was stopped. Segments with significant SNM were optimally assays to the preset precision. With this method the total assay time for each item is determined by the desired preset precision. This report describes the precision-based algorithm and presents the results of measurements made to test its validity

  14. Micro-fluidic module for blood cell separation for gene expression radiobiological assays

    International Nuclear Information System (INIS)

    Brengues, Muriel; Gu, Jian; Zenhausern, Frederic

    2015-01-01

    Advances in molecular techniques have improved discovery of biomarkers associated with radiation exposure. Gene expression techniques have been demonstrated as effective tools for biodosimetry, and different assay platforms with different chemistries are now available. One of the main challenges is to integrate the sample preparation processing of these assays into micro-fluidic platforms to be fully automated for point-of-care medical countermeasures in the case of a radiological event. Most of these assays follow the same workflow processing that comprises first the collection of blood samples followed by cellular and molecular sample preparation. The sample preparation is based on the specific reagents of the assay system and depends also on the different subsets of cells population and the type of biomarkers of interest. In this article, the authors present a module for isolation of white blood cells from peripheral blood as a prerequisite for automation of gene expression assays on a micro-fluidic cartridge. For each sample condition, the gene expression platform can be adapted to suit the requirements of the selected assay chemistry (authors)

  15. Nondestructive assay methods for irradiated nuclear fuels

    International Nuclear Information System (INIS)

    Hsue, S.T.; Crane, T.W.; Talbert, W.L. Jr.; Lee, J.C.

    1978-01-01

    This report is a review of the status of nondestructive assay (NDA) methods used to determine burnup and fissile content of irradiated nuclear fuels. The gamma-spectroscopy method measures gamma activities of certain fission products that are proportional to the burnup. Problems associated with this method are migration of the fission products and gamma-ray attenuation through the relatively dense fuel material. The attenuation correction is complicated by generally unknown activity distributions within the assemblies. The neutron methods, which usually involve active interrogation and prompt or delayed signal counting, are designed to assay the fissile content of the spent-fuel elements. Systems to assay highly enriched spent-fuel assemblies have been tested extensively. Feasibility studies have been reported of systems to assay light-water reactor spent-fuel assemblies. The slowing-down spectrometer and neutron resonance absorption methods can distinguish between the uranium and plutonium fissile contents, but they are limited to the assay of individual rods. We have summarized the status of NDA techniques for spent-fuel assay and present some subjects in need of further investigation. Accuracy of the burnup calculations for power reactors is also reviewed

  16. Studies of food folates and folic acid deficiency by radioligand competitive binding assay techniques. Part of a coordinated programme on in vitro assay techniques

    International Nuclear Information System (INIS)

    Hettiarachchy, N.S.

    1981-01-01

    Conjugese extracted from winged bean or sweet potato leaves was used to release folate from Sri Lankan foodstuffs. Total folate was then estimated by competitive binding assay using goat milk as binding agent. Of 33 foodstuffs investigated, green gram, cow pea, and red gram among the pulses and mukunuvenna, amaranth and centella among the leafy vegetables were shown to be rich sources of folate. Between 20 and 60% of total folate was lost when such foodstuffs were boiled for 60 minutes. It is thus advisable that pulses and leafy vegetables be boiled only for the minimum time necessary for tenderization before consumption

  17. Rapid, radiochemical-ligand binding assay for methotrexate

    International Nuclear Information System (INIS)

    Caston, J.D.

    1976-01-01

    A radiochemical ligand binding assay for methotrexate is provided. A binder factor comprising a partially purified dihydrofolic acid reductase preparation is employed. The binder factor is conveniently prepared by homogenizing a factor containing animal organ such as liver, and extracting with isotonic saline and ammonium sulfate. A binder cofactor, NADPH 2 , is also employed in the binding reaction. The procedure contemplates both direct and sequential assay techniques, and it is not interfered with by vast excesses of many natural folate derivatives. 12 claims, 6 drawing figures

  18. Development of an integrated assay facility

    International Nuclear Information System (INIS)

    Molesworth, T.V.; Bailey, M.; Findlay, D.J.S.; Parsons, T.V.; Sene, M.R.; Swinhoe, M.T.

    1990-01-01

    The I.R.I.S. concept proposed the use of passive examination and active interrogation techniques in an integrated assay facility. A linac would generate the interrogating gamma and neutron beams. Insufficiently detailed knowledge about active neutron and gamma interrogation of 500 litre drums of cement immobilised intermediate level waste led to a research programme which is now in its main experimental stage. Measurements of interrogation responses are being made using simulated waste drums containing actinide samples and calibration sources, in an experimental assay assembly. Results show that responses are generally consistent with theory, but that improvements are needed in some areas. A preliminary appraisal of the engineering and economic aspects of integrated assay shows that correct operational sequencing is required to achieve the short cycle time needed for high throughput. The main engineering features of a facility have been identified

  19. Use of Modern Chemical Protein Synthesis and Advanced Fluorescent Assay Techniques to Experimentally Validate the Functional Annotation of Microbial Genomes

    Energy Technology Data Exchange (ETDEWEB)

    Kent, Stephen [University of Chicago

    2012-07-20

    The objective of this research program was to prototype methods for the chemical synthesis of predicted protein molecules in annotated microbial genomes. High throughput chemical methods were to be used to make large numbers of predicted proteins and protein domains, based on microbial genome sequences. Microscale chemical synthesis methods for the parallel preparation of peptide-thioester building blocks were developed; these peptide segments are used for the parallel chemical synthesis of proteins and protein domains. Ultimately, it is envisaged that these synthetic molecules would be ‘printed’ in spatially addressable arrays. The unique ability of total synthesis to precision label protein molecules with dyes and with chemical or biochemical ‘tags’ can be used to facilitate novel assay technologies adapted from state-of-the art single molecule fluorescence detection techniques. In the future, in conjunction with modern laboratory automation this integrated set of techniques will enable high throughput experimental validation of the functional annotation of microbial genomes.

  20. Developments in plutonium waste assay at AWE

    International Nuclear Information System (INIS)

    Miller, T J

    2009-01-01

    In 2002 a paper was presented at the 43rd Annual Meeting of the Institute of Nuclear Materials Management (INMM) on the assay of low level plutonium (Pu) in soft drummed waste (Miller 2002 INMM Ann. Meeting (Orlando, FL, 23-27 July 2002)). The technique described enabled the Atomic Weapons Establishment (AWE), at Aldermaston in the UK, to meet the stringent Low Level Waste Repository at Drigg (LLWRD) conditions for acceptance for the first time. However, it was initially applied to only low density waste streams because it relied on measuring the relatively low energy (60 keV) photon yield from Am-241 during growth. This paper reviews the results achieved when using the technique to assay over 10 000 waste packages and presents the case for extending the range of application to denser waste streams.

  1. Fluorescence lifetime assays: current advances and applications in drug discovery.

    Science.gov (United States)

    Pritz, Stephan; Doering, Klaus; Woelcke, Julian; Hassiepen, Ulrich

    2011-06-01

    Fluorescence lifetime assays complement the portfolio of established assay formats available in drug discovery, particularly with the recent advances in microplate readers and the commercial availability of novel fluorescent labels. Fluorescence lifetime assists in lowering complexity of compound screening assays, affording a modular, toolbox-like approach to assay development and yielding robust homogeneous assays. To date, materials and procedures have been reported for biochemical assays on proteases, as well as on protein kinases and phosphatases. This article gives an overview of two assay families, distinguished by the origin of the fluorescence signal modulation. The pharmaceutical industry demands techniques with a robust, integrated compound profiling process and short turnaround times. Fluorescence lifetime assays have already helped the drug discovery field, in this sense, by enhancing productivity during the hit-to-lead and lead optimization phases. Future work will focus on covering other biochemical molecular modifications by investigating the detailed photo-physical mechanisms underlying the fluorescence signal.

  2. Using a medium-throughput comet assay to evaluate the global DNA methylation status of single cells

    Science.gov (United States)

    Lewies, Angélique; Van Dyk, Etresia; Wentzel, Johannes F.; Pretorius, Pieter J.

    2014-01-01

    The comet assay is a simple and cost effective technique, commonly used to analyze and quantify DNA damage in individual cells. The versatility of the comet assay allows introduction of various modifications to the basic technique. The difference in the methylation sensitivity of the isoschizomeric restriction enzymes HpaII and MspI are used to demonstrate the ability of the comet assay to measure the global DNA methylation level of individual cells when using cell cultures. In the experiments described here, a medium-throughput comet assay and methylation sensitive comet assay are combined to produce a methylation sensitive medium-throughput comet assay to measure changes in the global DNA methylation pattern in individual cells under various growth conditions. PMID:25071840

  3. Radioreceptor assay for somatomedin A

    Energy Technology Data Exchange (ETDEWEB)

    Takano, K [Tokyo Women' s Medical Coll. (Japan)

    1975-04-01

    Measurement method of somatomedian A by radioreceptor assay using the human placenta membrane was described and discussed. Binding rate of /sup 125/I-somatomedin A to its receptors was studied under various conditions of time and temperature of the incubation, and pH of the system. The influence of somatomedin A, porcine insulin, and porcine calcitonin, on /sup 125/I-somatomedin A bound receptors was studied, and these hormones showed the competitive binding to somatomedin A receptors in some level. The specificity, recovery rate, and clinical applications of somatomedin A were also discussed. Radioreceptor assay for somatomedine A provided easier, faster, and more accurate measurements than conventional bioassay. This technique would be very useful to study somatomedin A receptor and functions of insulin.

  4. Analysis of chromium-51 release assay data using personal computer spreadsheet software

    International Nuclear Information System (INIS)

    Lefor, A.T.; Steinberg, S.M.; Wiebke, E.A.

    1988-01-01

    The Chromium-51 release assay is a widely used technique to assess the lysis of labeled target cells in vitro. We have developed a simple technique to analyze data from Chromium-51 release assays using the widely available LOTUS 1-2-3 spreadsheet software. This package calculates percentage specific cytotoxicity and lytic units by linear regression. It uses all data points to compute the linear regression and can determine if there is a statistically significant difference between two lysis curves. The system is simple to use and easily modified, since its implementation requires neither knowledge of computer programming nor custom designed software. This package can help save considerable time when analyzing data from Chromium-51 release assays

  5. Suitability of a liquid chromatography assay of neomycin sulfate to replace the microbiological assay for neomycin in USP Monographs.

    Science.gov (United States)

    Hanko, Valoran P; Rohrer, Jeffrey S

    2010-01-05

    The current USP National Formulary contains 65 Monographs for drug formulations containing neomycin. All 65 Monographs prescribe a bioassay for neomycin assay. This bioassay, based on cell culture, is labor intensive, has poor precision, and cannot be adapted for purity or identification. High-performance anion-exchange chromatography with integrated pulsed amperometric detection (HPAE-IPAD), a liquid chromatography technique, has been shown to be suitable for neomycin purity analysis and neomycin assay of an over-the-counter first aid cream (Hanko and Rohrer [17]). Here we propose that an HPAE-IPAD assay can replace the bioassay in the 65 neomycin-containing Monographs. We applied the HPAE-IPAD assay to four neomycin-containing drug products representing the four classes of formulations found in the 65 Monographs, liquid, solid, suspension, and cream. Each drug was analyzed with two chromatography systems, and on 3 separate days. For all products, HPAE-IPAD measurements were precise and accurate with respect to the label concentrations. There was also high accuracy for spike recovery of neomycin from the four drug products throughout 70-150% of the labeled concentration. These results suggest that an HPAE-IPAD assay would be an accurate assay for neomycin, and would be faster and more precise than the current bioassay.

  6. Characterizing and improving passive-active shufflers for assays of 208-Liter waste drums

    International Nuclear Information System (INIS)

    Rinard, P.M.; Adams, E.L.; Menlove, H.O.; Sprinkle, J.K. Jr.

    1992-01-01

    A passive and active neutron shuffler for 208-L waste drums has been used to perform over 1500 active and 500 passive measurements on uranium and plutonium samples in 28 different matrices. The shuffler is now better characterized and improvements have been implemented or suggested. An improved correction for the effects of the matrix material was devised from flux-monitor responses. The most important cause of inaccuracies in assays is a localized instead of a uniform distribution of fissile material in a drum; a technique for deducing the distribution from the assay data and then applying a correction is suggested and will be developed further. A technique is given to detect excessive amounts of moderator that could make hundreds of grams of 235 U assay as zero grams. Sensitivities (minimum detectable masses) for 235 U with active assays and for 240 Pu eff with passive assays are presented and the effects of moderators and absorbers on sensitivities noted

  7. The DNA 'comet assay' as a rapid screening technique to control irradiated food

    International Nuclear Information System (INIS)

    Cerda, H.; Delincee, H.; Haine, H.; Rupp, H.

    1997-01-01

    The exposure of food to ionizing radiation is being progressively used in many countries to inactivate food pathogens, to eradicate pests, and to extend shelf-life, thereby contributing to a safer and more plentiful food supply. To ensure free consumer choice, irradiated food will be labelled as such, and to enforce labelling, analytical methods to detect the irradiation treatment in the food product itself are desirable. In particular, there is a need for simple and rapid screening methods for the control of irradiated food. The DNA comet assay offers great potential as a rapid tool to detect whether a wide variety of foodstuffs have been radiation processed. In order to simplify the test, the agarose single-layer set-up has been chosen, using a neutral protocol. Interlaboratory blind trials have been successfully carried out with a number of food products, both of animal and plant origin. This paper presents an overview of the hitherto obtained results and in addition the results of an intercomparison test with seeds, dried fruits and spices are described. In this intercomparison, an identification rate of 95% was achieved. Thus, using this novel technique, an effective screening of radiation-induced DNA fragmentation is obtained. Since other food treatments also may cause DNA fragmentation, samples with fragmented DNA suspected to have been irradiated should be analyzed by other validated methods for irradiated food, if such treatments which damage DNA cannot be excluded

  8. A Fully Automated High-Throughput Zebrafish Behavioral Ototoxicity Assay.

    Science.gov (United States)

    Todd, Douglas W; Philip, Rohit C; Niihori, Maki; Ringle, Ryan A; Coyle, Kelsey R; Zehri, Sobia F; Zabala, Leanne; Mudery, Jordan A; Francis, Ross H; Rodriguez, Jeffrey J; Jacob, Abraham

    2017-08-01

    Zebrafish animal models lend themselves to behavioral assays that can facilitate rapid screening of ototoxic, otoprotective, and otoregenerative drugs. Structurally similar to human inner ear hair cells, the mechanosensory hair cells on their lateral line allow the zebrafish to sense water flow and orient head-to-current in a behavior called rheotaxis. This rheotaxis behavior deteriorates in a dose-dependent manner with increased exposure to the ototoxin cisplatin, thereby establishing itself as an excellent biomarker for anatomic damage to lateral line hair cells. Building on work by our group and others, we have built a new, fully automated high-throughput behavioral assay system that uses automated image analysis techniques to quantify rheotaxis behavior. This novel system consists of a custom-designed swimming apparatus and imaging system consisting of network-controlled Raspberry Pi microcomputers capturing infrared video. Automated analysis techniques detect individual zebrafish, compute their orientation, and quantify the rheotaxis behavior of a zebrafish test population, producing a powerful, high-throughput behavioral assay. Using our fully automated biological assay to test a standardized ototoxic dose of cisplatin against varying doses of compounds that protect or regenerate hair cells may facilitate rapid translation of candidate drugs into preclinical mammalian models of hearing loss.

  9. Detection of Dirofilaria immitis and other arthropod-borne filarioids by an HRM real-time qPCR, blood-concentrating techniques and a serological assay in dogs from Costa Rica.

    Science.gov (United States)

    Rojas, Alicia; Rojas, Diana; Montenegro, Víctor M; Baneth, Gad

    2015-03-23

    Canine filarioids are important nematodes transmitted to dogs by arthropods. Diagnosis of canine filariosis is accomplished by the microscopic identification of microfilariae, serology or PCR for filarial-DNA. The aim of this study was to evaluate a molecular assay for the detection of canine filariae in dog blood, to compare its performance to other diagnostic techniques, and to determine the relationship between microfilarial concentration and infection with other vector-borne pathogens. Blood samples from 146 dogs from Costa Rica were subjected to the detection of canine filarioids by four different methods: the microhematocrit tube test (MCT), Knott's modified test, serology and a high resolution melt and quantitative real-time PCR (HRM-qPCR). Co-infection with other vector-borne pathogens was also evaluated. Fifteen percent of the dogs were positive to Dirofilaria immitis by at least one of the methods. The HRM-qPCR produced distinctive melting plots for the different filarial worms and revealed that 11.6% of dogs were infected with Acanthocheilonema reconditum. The latter assay had a limit of detection of 2.4x10⁻⁴ mf/μl and detected infections with lower microfilarial concentrations in comparison to the microscopic techniques and the serological assay. The MCT and Knott's test only detected dogs with D. immitis microfilaremias above 0.7 mf/μl. Nevertheless, there was a strong correlation between the microfilarial concentration obtained by the Knott's modified test and the HRM-qPCR (r = 0.906, p HRM-qPCR showed the most sensitive and reliable performance in the detection of blood filaroids in comparison to the Knott's modified test, the MCT test and a serological assay.

  10. The assay of encapsulated alpha-bearing waste: feasibility study

    International Nuclear Information System (INIS)

    Curry, R.G.

    1983-09-01

    This report contains a review of potentially applicable techniques for the determination of actinide isotopes in radioactive waste and a summary of results obtained with various prototype instruments. A schematic design of a complete assay station is derived with consideration given to practical aspects like remote handling, maintenance etc. and recommendations for further work are made. The place of waste assay in the overall quality assurance of packaged waste is also considered. (author)

  11. Nondestructive assay instrument for measurement of plutonium in solutions

    International Nuclear Information System (INIS)

    Shirk, D.G.; Hsue, F.; Li, T.K.; Canada, T.R.

    1979-01-01

    A nondestructive assay (NDA) instrument that measures the 239 Pu content in solutions, using a passive gamma-ray spectroscopy technique, has been developed and installed in the LASL Plutonium Processing Facility. A detailed evaluation of this instrument has been performed. The results show that the instrument can routinely determine 239 Pu concentrations of 1 to 500 g/l with accuracies of 1 to 5% and assay times of 1 to 2 x 10 3 s

  12. Reduction of bias in neutron multiplicity assay using a weighted point model

    Energy Technology Data Exchange (ETDEWEB)

    Geist, W. H. (William H.); Krick, M. S. (Merlyn S.); Mayo, D. R. (Douglas R.)

    2004-01-01

    Accurate assay of most common plutonium samples was the development goal for the nondestructive assay technique of neutron multiplicity counting. Over the past 20 years the technique has been proven for relatively pure oxides and small metal items. Unfortunately, the technique results in large biases when assaying large metal items. Limiting assumptions, such as unifoh multiplication, in the point model used to derive the multiplicity equations causes these biases for large dense items. A weighted point model has been developed to overcome some of the limitations in the standard point model. Weighting factors are detemiined from Monte Carlo calculations using the MCNPX code. Monte Carlo calculations give the dependence of the weighting factors on sample mass and geometry, and simulated assays using Monte Carlo give the theoretical accuracy of the weighted-point-model assay. Measured multiplicity data evaluated with both the standard and weighted point models are compared to reference values to give the experimental accuracy of the assay. Initial results show significant promise for the weighted point model in reducing or eliminating biases in the neutron multiplicity assay of metal items. The negative biases observed in the assay of plutonium metal samples are caused by variations in the neutron multiplication for neutrons originating in various locations in the sample. The bias depends on the mass and shape of the sample and depends on the amount and energy distribution of the ({alpha},n) neutrons in the sample. When the standard point model is used, this variable-multiplication bias overestimates the multiplication and alpha values of the sample, and underestimates the plutonium mass. The weighted point model potentially can provide assay accuracy of {approx}2% (1 {sigma}) for cylindrical plutonium metal samples < 4 kg with {alpha} < 1 without knowing the exact shape of the samples, provided that the ({alpha},n) source is uniformly distributed throughout the

  13. Development of a VHH-Based Erythropoietin Quantification Assay

    DEFF Research Database (Denmark)

    Kol, Stefan; Beuchert Kallehauge, Thomas; Adema, Simon

    2015-01-01

    Erythropoietin (EPO) quantification during cell line selection and bioreactor cultivation has traditionally been performed with ELISA or HPLC. As these techniques suffer from several drawbacks, we developed a novel EPO quantification assay. A camelid single-domain antibody fragment directed against...... human EPO was evaluated as a capturing antibody in a label-free biolayer interferometry-based quantification assay. Human recombinant EPO can be specifically detected in Chinese hamster ovary cell supernatants in a sensitive and pH-dependent manner. This method enables rapid and robust quantification...

  14. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    Science.gov (United States)

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screening assays, which has been used as a tool in the identification and characterization of new anti-cancer agents, is discussed. In addition, a critical evaluation of the recently emerged ligands fishing assays in complex mixtures is also discussed. PMID:27306095

  15. Didecanoyl phosphatidylcholine is a superior substrate for assaying mammalian phospholipase D

    DEFF Research Database (Denmark)

    Vinggaard, Anne Marie; Jensen, T.; Morgan, C.P.

    1996-01-01

    Phospholipase D (PLD) activity in crude or solubilized membranes from mammalian tissues is difficult to detect with the current assay techniques, unless a high radioactive concentration of substrate and/or long incubation times are employed. Generally, the enzyme has to be extracted and partially...... purified on one column before easy detection of activity. Furthermore, PLD activity in cultured cells can only be detected by the available assay techniques in the presence of guanosine 5'-[¿-thio]triphosphate (GTP[S]) and a cytosolic factor [usually ADP-ribosylation factor (Arf)]. In this paper we report...... that the use of didecanoyl phosphatidylcholine (C-PC) in mammalian PLD assays considerably increases the detection limit. C-PC was compared with the commonly used dipalmitoyl phosphatidylcholine (C-PC) as a substrate for PLD activity from membranes of human neutrophils, human placenta and pig brain, and from...

  16. Detection of hypoxic fractions in murine tumors by comet assay: Comparison with other techniques

    International Nuclear Information System (INIS)

    Hu, Q.; Kavanagh, M.C.; Newcombe, D.

    1995-01-01

    The alkaline comet assay was used to detect the hypoxic fractions of murine tumors. A total of four tumor types were tested using needle aspiration biopsies taken immediately after a radiation dose of 15 Gy. Initial studies confirmed that the normalized tail moment, a parameter reflecting single-strand DNA breaks induced by the radiation, was linearly related to radiation dose. Further, it was shown that for a mixed population (1:1) of cells irradiated under air-breathing or hypoxic conditions, the histogram of normal tail moment values obtained from analyzing 400 cells in the population had a double peak which, when fitted with two Gaussian distributions, gave a good estimate of the proportion of the two subpopulations. For the four tumor types, the means of the calculated hypoxic fractions from four or five individual tumors were 0.15 ± 0.04 for B16F1, 0.08 ± 0.04 for KHT-LP1, 0.17 ± 0.04 for RIF-1 and 0.04 ± 0.01 for SCCVII. Analysis of variance showed that the hypoxic fraction in KHT-LP1 tumors is significantly lower than those of the other three tumors (P = 0.026) but that there is no significant difference in hypoxic fraction between B16F1, RIF-1 and SCCVII tumors (P = 0.574). Results from multiple samples taken from each of five RIF-1 tumors showed that the intertumor heterogeneity of hypoxic fractions was greater than that within the same tumor. The mean hypoxic fraction obtained using the comet assay for the four tumor types was compared with the hypoxic fraction determined by the clonogenic assay, or median pO 2 values, or [ 3 H]misonidazole binding in the same tumor types. The values of hypoxic fraction obtained with the comet assay were two to four times lower than those measured by the paired survival method. Preliminary results obtained with a dose of 5 Gy were consistent with those obtained using 15 Gy. These results suggest the further development of the comet assay for clinical studies. 21 refs., 7 figs., 5 tabs

  17. Novel double-isotope technique for enzymatic assay of catecholamines, permitting high precision, sensitivity and plasma sample capacity

    International Nuclear Information System (INIS)

    Brown, M.J.; Jenner, D.A.

    1981-01-01

    A novel use of a double-isotope method is described which allows radioenzymatic assays to combine precision and sensitivity. In the catechol O-methyltransferase assay separate portions of each plasma sample are incubated with either S-[ 3 H]- or S-[ 14 C]-adenosyl-L-methionine. Standards of noradrenaline and adrenaline are added to the latter portions and are thus converted into standards of [ 14 C]metadrenalines. These are added to the 3 H-labelled portions after the incubation, where they function as tracers. The final recovery of 14 C radioactivity corrects for (a) the efficiency of methylation in the plasma sample concerned and (b) the recovery of metadrenalines during the extraction procedures. The 3 H/ 14 C ratio is constant in each assay for a given catecholamine concentration and is determined for samples to which standards of noradrenaline and adrenaline are added to the 3 H- (as well as the 14 C-) labelled portions before the initial incubation. The sensitivity of the assay is increased by using high specific radioactivity S-[ 3 H]adenosyl-L-methionine, and low backgrounds are maintained by catecholamine depletion in vivo in the rats used for enzyme preparation. Both catecholamines (1.5 pg/ml; 10 pmol/l) may be detected; the coefficients of variation are 3.0 and 3.2% for noradrenaline and adrenaline respectively (intra-assay) and 4.6 and 5.0% (inter-assay). (author)

  18. MCNP efficiency calculations of INEEL passive active neutron assay system for simulated TRU waste assays

    International Nuclear Information System (INIS)

    Yoon, W.Y.; Meachum, T.R.; Blackwood, L.G.; Harker, Y.D.

    2000-01-01

    The Idaho National Engineering and Environmental Laboratory Stored Waste Examination Pilot Plant (SWEPP) passive active neutron (PAN) radioassay system is used to certify transuranic (TRU) waste drums in terms of quantifying plutonium and other TRU element activities. Depending on the waste form involved, significant systematic and random errors need quantification in addition to the counting statistics. To determine the total uncertainty of the radioassay results, a statistical sampling and verification approach has been developed. In this approach, the total performance of the PAN nondestructive assay system is simulated using the computer models of the assay system, and the resultant output is compared with the known input to assess the total uncertainty. The supporting steps in performing the uncertainty analysis for the passive assay measurements in particular are as follows: (1) Create simulated waste drums and associated conditions; (2) Simulate measurements to determine the basic counting data that would be produced by the PAN assay system under the conditions specified; and (3) Apply the PAN assay system analysis algorithm to the set of counting data produced by simulating measurements to determine the measured plutonium mass. The validity of this simulation approach was verified by comparing simulated output against results from actual measurements using known plutonium sources and surrogate waste drums. The computer simulation of the PAN system performance uses the Monte Carlo N-Particle (MCNP) Code System to produce a neutron transport calculation for a simulated waste drum. Specifically, the passive system uses the neutron coincidence counting technique, utilizing the spontaneous fission of 240 Pu. MCNP application to the SWEPP PAN assay system uncertainty analysis has been very useful for a variety of waste types contained in 208-ell drums measured by a passive radioassay system. The application of MCNP to the active radioassay system is also feasible

  19. Kalman filter analysis of delayed neutron nondestructive assay measurements

    International Nuclear Information System (INIS)

    Aumeier, S. E.

    1998-01-01

    The ability to nondestructively determine the presence and quantity of fissile and fertile nuclei in various matrices is important in several nuclear applications including international and domestics safeguards, radioactive waste characterization and nuclear facility operations. Material irradiation followed by delayed neutron counting is a well known and useful nondestructive assay technique used to determine the fissile-effective content of assay samples. Previous studies have demonstrated the feasibility of using Kalman filters to unfold individual isotopic contributions to delayed neutron measurements resulting from the assay of mixes of uranium and plutonium isotopes. However, the studies in question used simulated measurement data and idealized parameters. We present the results of the Kalman filter analysis of several measurements of U/Pu mixes taken using Argonne National Laboratory's delayed neutron nondestructive assay device. The results demonstrate the use of Kalman filters as a signal processing tool to determine the fissile and fertile isotopic content of an assay sample from the aggregate delayed neutron response following neutron irradiation

  20. Competitive protein binding assay

    International Nuclear Information System (INIS)

    Kaneko, Toshio; Oka, Hiroshi

    1975-01-01

    The measurement of cyclic GMP (cGMP) by competitive protein binding assay was described and discussed. The principle of binding assay was represented briefly. Procedures of our method by binding protein consisted of preparation of cGMP binding protein, selection of 3 H-cyclic GMP on market, and measurement procedures. In our method, binding protein was isolated from the chrysalis of silk worm. This method was discussed from the points of incubation medium, specificity of binding protein, the separation of bound cGMP from free cGMP, and treatment of tissue from which cGMP was extracted. cGMP existing in the tissue was only one tenth or one scores of cGMP, and in addition, cGMP competed with cGMP in binding with binding protein. Therefore, Murad's technique was applied to the isolation of cGMP. This method provided the measurement with sufficient accuracy; the contamination by cAMP was within several per cent. (Kanao, N.)

  1. Analytical applications of MIPs in diagnostic assays: future perspectives.

    Science.gov (United States)

    Bedwell, Thomas S; Whitcombe, Michael J

    2016-03-01

    Many efforts have been made to produce artificial materials with biomimetic properties for applications in binding assays. Among these efforts, the technique of molecular imprinting has received much attention because of the high selectivity obtainable for molecules of interest, robustness of the produced polymers, simple and short synthesis, and excellent cost efficiency. In this review, progress in the field of molecularly imprinted sorbent assays is discussed-with a focus on work conducted from 2005 to date.

  2. Isotope correlation and mass spectrometry techniques for irradiated fuel assay

    International Nuclear Information System (INIS)

    Deron, S.

    1985-01-01

    This paper outlines the methods used to account for fissionable materials in irradiated nuclear fuel elements entering reprocessing plants. Verification is accomplished at three mass balance stations in the plant. Techniques employed fall into two categories: isotopic and isotope dilution analyses by mass spectometry and isotope correlation techniques. These methods are discussed in some detail

  3. Immunoradiometric assay for cytomegalovirus-specific IgG antibodies

    International Nuclear Information System (INIS)

    Klapper, P.E.; Cleator, G.M.; Prinja-Wolks, D.; Morris, D.J.

    1990-01-01

    An immunoradiometric assay (radio-immunosorbent test; RIST) for the detection of IgG antibodies to human herpesvirus 4 [human cytomegalovirus (CMV)] has been developed. The technique utilizes CMV antigen passively adsorbed to a polyvinyl microtitration plate and a radiolabelled murine monoclonal anti-human IgG antibody to detect binding of human antibody to the 'solid phase' reagent. The assay was optimized, and its specifity confirmed by testing paired acute and convalescent sera from patients with acute CMV or other human herpesvirus infections. To determine the assay's sensitivity 1433 blood donor sera were examined. The RIST was more sensitive than a standard complement fixation (CFT). Use of a monoclonal anti-human IgG antibody in the RIST reduced non-specific binding to the control uninfected cell antigen such that blood donor sera could be tested in the assay using only a CMV antigen without generating an unacceptable false positive rate. (author). 23 refs.; 1 tab

  4. Fluorescence in situ hybridization in combination with the comet assay and micronucleus test in genetic toxicology

    Directory of Open Access Journals (Sweden)

    Hovhannisyan Galina G

    2010-09-01

    Full Text Available Abstract Comet assay and micronucleus (MN test are widely applied in genotoxicity testing and biomonitoring. While comet assay permits to measure direct DNA-strand breaking capacity of a tested agent MN test allows estimating the induced amount of chromosome and/or genome mutations. The potential of these two methods can be enhanced by the combination with fluorescence in situ hybridization (FISH techniques. FISH plus comet assay allows the recognition of targets of DNA damage and repairing directly. FISH combined with MN test is able to characterize the occurrence of different chromosomes in MN and to identify potential chromosomal targets of mutagenic substances. Thus, combination of FISH with the comet assay or MN test proved to be promising techniques for evaluation of the distribution of DNA and chromosome damage in the entire genome of individual cells. FISH technique also permits to study comet and MN formation, necessary for correct application of these methods. This paper reviews the relevant literature on advantages and limitations of Comet-FISH and MN-FISH assays application in genetic toxicology.

  5. Rapid identification of tomato Sw-5 resistance-breaking isolates of Tomato spotted wilt virus using high resolution melting and TaqMan SNP Genotyping assays as allelic discrimination techniques.

    Directory of Open Access Journals (Sweden)

    Valentina di Rienzo

    Full Text Available In tomato, resistance to Tomato spotted wilt virus (TSWV is conferred by the dominant gene, designated Sw-5. Virulent Sw-5 resistance breaking (SRB mutants of TSWV have been reported on Sw-5 tomato cultivars. Two different PCR-based allelic discrimination techniques, namely Custom TaqMan™ SNP Genotyping and high-resolution melting (HRM assays, were developed and compared for their ability to distinguish between avirulent (Sw-5 non-infecting, SNI and SRB biotypes. TaqMan assays proved to be more sensitive (threshold of detection in a range of 50-70 TSWV RNA copies and more reliable than HRM, assigning 25 TSWV isolates to their correct genotype with an accuracy of 100%. Moreover, the TaqMan SNP assays were further improved developing a rapid and simple protocol that included crude leaf extraction for RNA template preparations. On the other hand, HRM assays showed higher levels of sensitivity than TaqMan when used to co-detect both biotypes in different artificial mixtures. These diagnostic assays contributed to gain preliminary information on the epidemiology of TSWV isolates in open field conditions. In fact, the presented data suggest that SRB isolates are present as stable populations established year round, persisting on both winter (globe artichoke and summer (tomato crops, in the same cultivated areas of Southern Italy.

  6. Improved laboratory assays of Pu and U for SRP purification and finishing processes

    International Nuclear Information System (INIS)

    Holland, M.K.; Dorsett, R.S.

    1986-01-01

    Significant improvements have been made in routine assay techniques for uranium and plutonium as part of an effort to improve accountability at the Savannah River Plant (SRP). Emphasis was placed on input/output accountability points and key physical inventory tanks associated with purification and finishing processes. Improvements were made in existing assay methods; new methods were implemented; and the application of these methods was greatly expanded. Prior to assays, samples were validated via density measurements. Digital density meters precise to four, five, and six decimal places were used to meet specific requirements. Improved plutonium assay techniques are now in routine use: controlled-potential coulometry, ion-exchange coulometry, and Pu(III) diode-array spectrophotometry. A new state-of-the-art coulometer was fabricated and used to ensure maximum accuracy in verifying standards and in measuring plutonium in product streams. The diode-array spectrophotometer for Pu(III) measurements was modified with fiber optics to facilitate remote measurements; rapid, precise measurements made the technique ideally suited for high-throughput assays. For uranium assays, the isotope-dilution mass spectrometric (IDMS) method was converted to a gravimetric basis. The IDMS method and the existing Davies-Gray titration (gravimetric basis) have met accountability requirements for uranium. More recently, a Pu(VI) diode-array spectrophotometric method was used on a test basis to measure plutonium in shielded-cell input accountability samples. In addition, tests to measure uranium via diode-array spectrophotometry were initiated. This rapid, precise method will replace IDMS for certain key sample points

  7. [Assays of HbA1c and Amadori products in human biology].

    Science.gov (United States)

    Gillery, P

    2014-09-01

    Different Amadori products, formed during the early steps of the non-enzymatic glycation of proteins, may be assayed in current practice in human biology. The most important marker is HbA1c, resulting from the binding of glucose to the N-terminal extremity of HbA beta chains. HbA1c may be evaluated by various techniques (ion exchange or affinity high performance liquid chromatography, capillary electrophoresis, immunoassay, enzymatic technique) and is considered the best marker of diabetic patient survey. Due to its irreversible and cumulative formation, it provides a retrospective information on the glycemic balance over the four to eight weeks preceding blood collection. It benefits from an international standardization, based on a reference method using liquid chromatography coupled to capillary electrophoresis or mass spectrometry, maintained by an international network of reference laboratories. When HbA1c assay cannot be used (anemia, hemolysis, hemoglobinopathy) or when a shorter period of glycemic equilibrium must be evaluated (child and adolescent, pregnancy, therapeutic changes), other Amadori products may be assayed, like plasma fructosamine (all plasma glycated proteins) or glycated albumin. Nevertheless, these assays are less used in practice, because their semiological value has been less evidenced. Besides, fructosamine assay lacks specificity, and glycated albumin assay has been described recently. An expanding use of HbA1c assay is expected, especially for the diagnosis of diabetes mellitus and the evaluation of other risks, especially cardiovascular ones. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Potential development of non-destructive assay for nuclear safeguards

    International Nuclear Information System (INIS)

    Benoit, R.; Cuypers, M.; Guardini, S.

    1983-01-01

    After a brief summary on the role of non-destructive assay in safeguarding the nuclear fuel cycle, its evolution from NDA methods development to other areas is illustrated. These areas are essentially: a) the evaluation of the performances of NDA techniques in field conditions; b) introduction of full automation of measurement instrument operation, using interactive microprocessors and of measurement data handling evaluation and retrieval features; c) introduction of the adequate link and compatibility to assure NDA measurement data transfer in an integrated safeguards data evaluation scheme. In this field, the Joint Research Centre (JRC) of the Commission of the European Communities (CEC) is developing and implementing a number of techniques and methodologies allowing an integrated and rational treatment of the large amount of safeguards data produced. In particular for the non-destructive assay measurements and techniques, the JRC has studied and tested methodologies for the automatic generation and validation of data of inventory verification. In order to apply these techniques successfully in field, the JRC has studied the design requirements of NDA data management and evaluation systems. This paper also discusses the functional requirements of an integrated system for NDA safeguards data evaluation

  9. Nondestructive assay of special nuclear material for uranium fuel-fabrication facilities

    International Nuclear Information System (INIS)

    Smith, H.A. Jr.; Schillebeeckx, P.

    1997-01-01

    A high-quality materials accounting system and effective international inspections in uranium fuel-fabrication facilities depend heavily upon accurate nondestructive assay measurements of the facility's nuclear materials. While item accounting can monitor a large portion of the facility inventory (fuel rods, assemblies, storage items), the contents of all such items and mass values for all bulk materials must be based on quantitative measurements. Weight measurements, combined with destructive analysis of process samples, can provide highly accurate quantitative information on well-characterized and uniform product materials. However, to cover the full range of process materials and to provide timely accountancy data on hard-to-measure items and rapid verification of previous measurements, radiation-based nondestructive assay (NDA) techniques play an important role. NDA for uranium fuel fabrication facilities relies on passive gamma spectroscopy for enrichment and U isotope mass values of medium-to-low-density samples and holdup deposits; it relies on active neutron techniques for U-235 mass values of high-density and heterogeneous samples. This paper will describe the basic radiation-based nondestructive assay techniques used to perform these measurements. The authors will also discuss the NDA measurement applications for international inspections of European fuel-fabrication facilities

  10. Nondestructive assay system development for a plutonium scrap recovery facility

    International Nuclear Information System (INIS)

    Hsue, S.T.; Baker, M.P.

    1984-01-01

    A plutonium scrap recovery facility is being constructed at the Savannah River Plant (SRP). The safeguards groups of the Los Alamos National Laboratory have been working since the early design stage of the facility with SRP and other national laboratories to develop a state-of-the-art assay system for this new facility. Not only will the most current assay techniques be incorporated into the system, but also the various nondestructive assay (NDA) instruments are to be integrated with an Instrument Control Computer (ICC). This undertaking is both challenging and ambitious; an entire assay system of this type has never been done before in a working facility. This paper will describe, in particular, the effort of the Los Alamos Safeguards Assay Group in this endeavor. Our effort in this project can be roughly divided into three phases: NDA development, system integration, and integral testing. 6 references

  11. New Application of the Comet Assay

    Science.gov (United States)

    Cortés-Gutiérrez, Elva I.; Dávila-Rodríguez, Martha I.; Fernández, José Luís; López-Fernández, Carmen; Gosálbez, Altea; Gosálvez, Jaime

    2011-01-01

    The comet assay is a well-established, simple, versatile, visual, rapid, and sensitive tool used extensively to assess DNA damage and DNA repair quantitatively and qualitatively in single cells. The comet assay is most frequently used to analyze white blood cells or lymphocytes in human biomonitoring studies, although other cell types have been examined, including buccal, nasal, epithelial, and placental cells and even spermatozoa. This study was conducted to design a protocol that can be used to generate comets in subnuclear units, such as chromosomes. The new technique is based on the chromosome isolation protocols currently used for whole chromosome mounting in electron microscopy, coupled to the alkaline variant of the comet assay, to detect DNA damage. The results show that migrant DNA fragments can be visualized in whole nuclei and isolated chromosomes and that they exhibit patterns of DNA migration that depend on the level of DNA damage produced. This protocol has great potential for the highly reproducible study of DNA damage and repair in specific chromosomal domains. PMID:21540337

  12. Nondestructive assay technology and automated ''real-time'' materials control

    International Nuclear Information System (INIS)

    Keepin, G.R.

    1977-01-01

    Significant advances in nondestructive assay techniques and instrumentation now enable rapid, accurate and direct in-plant measurement of nuclear material on a continuous or ''real-time'' basis as it progresses through a nuclear facility. A variety of passive and active assay instruments are required for the broad range of materials measurement problems encountered by safeguards inspectors and facility operators in various types of nuclear plants. Representative NDA techniques and instruments are presented and reviewed with special attention to their assay capabilities and areas of applicability in the nuclear fuel cycle. An advanced system of materials control - called ''DYMAC'', for Dynamic Materials Control - is presently under development by the U.S. Energy Research and Development Administration; the DYMAC program integrates new nondestructive assay instrumentation and modern data-processing methods, with the overall objective of demonstrating a workable, cost-effective system of stringent safeguards and materials control in various generic types of facilities found in the nuclear fuel cycle. Throughout the program, emphasis will be placed on devloping practical solutions to generic measurement problems so that resulting techniques and instrumentation will have widespread utility. Projected levels of safeguards assurance, together with other vital - and cost-sensitive - plant operational factors such as process and quality control, criticality safety and waste management are examined in an evaluation of the impact of future advanced materials control systems on overall plant operations, efficiency and productivity. The task of implementing effective and stringent safeguards includes the transfer of new safeguards technology to the nuclear industry. Clearly the training of inspectors (both IAEA and national), plant people, etc., in the effective use of new NDA equipment is of paramount importance; thus in the United States, the Energy Research and Development

  13. Radon assay for SNO+

    Energy Technology Data Exchange (ETDEWEB)

    Rumleskie, Janet [Laurentian University, Greater Sudbury, Ontario (Canada)

    2015-12-31

    The SNO+ experiment will study neutrinos while located 6,800 feet below the surface of the earth at SNOLAB. Though shielded from surface backgrounds, emanation of radon radioisotopes from the surrounding rock leads to back-grounds. The characteristic decay of radon and its daughters allows for an alpha detection technique to count the amount of Rn-222 atoms collected. Traps can collect Rn-222 from various positions and materials, including an assay skid that will collect Rn-222 from the organic liquid scintillator used to detect interactions within SNO+.

  14. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Lago-Cachón, D., E-mail: dlagocachon@gmail.com [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Rivas, M., E-mail: rivas@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Martínez-García, J.C., E-mail: jcmg@uniovi.es [Dpto. de Física, Universidad de Oviedo, Edificio Departamental Este, Campus de Viesques, 33204 Gijón (Spain); Oliveira-Rodríguez, M., E-mail: oliveiramyriam@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); Blanco-López, M.C., E-mail: cblanco@uniovi.es [Dpto. de Química Física y Analítica, Universidad de Oviedo, C/Julián Clavería 8, 33006 Oviedo (Spain); García, J.A., E-mail: joseagd@uniovi.es [Dpto. de Física, Universidad de Oviedo, Escuela de Marina, Campus de Viesques, 33204 Gijón (Spain)

    2017-02-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies. - Highlights: • A method for quantification of Lateral Flow Assays is proposed. • MNP induce an increase of the impedance on a RF-current carrying copper sensor. • Magnetic nanoparticles (MNP) can be detected flowing over the sensing element.

  15. Radioactive waste package assay facility. Final report - V. A

    International Nuclear Information System (INIS)

    Molesworth, T.V.; Strachan, N.R.; Findlay, D.J.S.; Wise, M.O.; Forrest, K.R.; Rogers, J.D.

    1993-01-01

    This report provides a summary of research work carried out in support of the development of an integrated assay system for the quality checking of Intermediate Level Waste encapsulated in cement. Four non-destructive techniques were originally identified as being viable methods for obtaining radiometric inventory data from a cemented 500 litre ILW package. The major part of the programme was devoted to the development of two interrogation techniques; active neutron for measuring the total fissile content and active gamma for measuring the total actinide content. An electron linear accelerator was used to supply the interrogating beam for these two methods. In addition the linear accelerator beam could be used for high energy radiography. The results of this work are described and the performances and limitations of the non-destructive methods are summarised. The main engineering and operational features which influence the design of an integrated assay facility are outlined and a conceptual layout for a facility to inspect 750 ILW drums a year is described. Details of the detection methods, data processing and potential application of the assay facility are given in three associated HMIP reports. (Author)

  16. High frequency lateral flow affinity assay using superparamagnetic nanoparticles

    International Nuclear Information System (INIS)

    Lago-Cachón, D.; Rivas, M.; Martínez-García, J.C.; Oliveira-Rodríguez, M.; Blanco-López, M.C.; García, J.A.

    2017-01-01

    Lateral flow assay is one of the simplest and most extended techniques in medical diagnosis for point-of-care testing. Although it has been traditionally a positive/negative test, some work has been lately done to add quantitative abilities to lateral flow assay. One of the most successful strategies involves magnetic beads and magnetic sensors. Recently, a new technique of superparamagnetic nanoparticle detection has been reported, based on the increase of the impedance induced by the nanoparticles on a RF-current carrying copper conductor. This method requires no external magnetic field, which reduces the system complexity. In this work, nitrocellulose membranes have been installed on the sensor, and impedance measurements have been carried out during the sample diffusion by capillarity along the membrane. The impedance of the sensor changes because of the presence of magnetic nanoparticles. The results prove the potentiality of the method for point-of-care testing of biochemical substances and nanoparticle capillarity flow studies. - Highlights: • A method for quantification of Lateral Flow Assays is proposed. • MNP induce an increase of the impedance on a RF-current carrying copper sensor. • Magnetic nanoparticles (MNP) can be detected flowing over the sensing element.

  17. Enzyme-linked electrochemical DNA ligation assay using magnetic beads.

    Science.gov (United States)

    Stejskalová, Eva; Horáková, Petra; Vacek, Jan; Bowater, Richard P; Fojta, Miroslav

    2014-07-01

    DNA ligases are essential enzymes in all cells and have been proposed as targets for novel antibiotics. Efficient DNA ligase activity assays are thus required for applications in biomedical research. Here we present an enzyme-linked electrochemical assay based on two terminally tagged probes forming a nicked junction upon hybridization with a template DNA. Nicked DNA bearing a 5' biotin tag is immobilized on the surface of streptavidin-coated magnetic beads, and ligated product is detected via a 3' digoxigenin tag recognized by monoclonal antibody-alkaline phosphatase conjugate. Enzymatic conversion of napht-1-yl phosphate to napht-1-ol enables sensitive detection of the voltammetric signal on a pyrolytic graphite electrode. The technique was tested under optimal conditions and various situations limiting or precluding the ligation reaction (such as DNA substrates lacking 5'-phosphate or containing a base mismatch at the nick junction, or application of incompatible cofactor), and utilized for the analysis of the nick-joining activity of a range of recombinant Escherichia coli DNA ligase constructs. The novel technique provides a fast, versatile, specific, and sensitive electrochemical assay of DNA ligase activity.

  18. Application of PINS and GNAT to the assay of 55-gal containers of radioactive waste

    International Nuclear Information System (INIS)

    Gehrke, R.J.; Aryaeinejad, R.; Watts, K.D.; Staples, D.R.; Akers, D.W.

    1994-03-01

    The Portable Isotropic Neutron Spectroscopy (PINS) and Gamma Neutron Assay Technique (GNAT) assay systems that were developed with funding from the office of Research and Development (NN20), were taken to the Stored Waste Examination Pilot Plant (SWEPP) facility at the Radioactive Waste Management Complex (RWMC) and applied to the assay of surrogate and Rocky Flats Plant waste contained in 55-gal drums. PINS, a portable prompt γ neutron activation analysis technique, was able to identify key elements in both the surrogate and real waste so that three-main waste categories: metal, combustible material, and cemented chlorinated sludge wastes could be identified. GNAT, a γ, neutron assay technique for the identification and quantification of fissioning isotopes, was able to identify 240 Pu in surrogate waste in which nine 1-g nuclear accident dosimeters were inserted. GNAT was also able to identify 24O Pu in real 55-gal waste drums containing 15- and 40-g of plutonium even in the presence of high activity concentrations of 241 Am

  19. Computerized low-level waste assay system operation manual

    International Nuclear Information System (INIS)

    Jones, D.F.; Cowder, L.R.; Martin, E.R.

    1976-01-01

    An operation and maintenance manual for the computerized low-level waste box counter is presented, which describes routine assay techniques as well as theory of operation treated in sufficient depth so that an experienced assayist can make nonroutine assays. In addition, complete system schematics are included, along with a complete circuit description to facilitate not only maintenance and troubleshooting, but also reproduction of the instrument if desired. Complete software system descriptions are included so far as calculational algorithms are concerned, although detailed instruction listings would have to be obtained from Group R-1 at LASL in order to make machine-language code changes

  20. Development of an assay for a biomarker of pregnancy and early fetal loss

    International Nuclear Information System (INIS)

    Canfield, R.E.; O'Connor, J.F.; Birken, S.; Krichevsky, A.; Wilcox, A.J.

    1987-01-01

    Human chorionic gonadotropin (hCG) is a glycoprotein hormone, secreted by the syncytiotrophoblast cells of the fertilized ovum, that enters the maternal circulation at the time of endometrial implantation. It is composed of two nonidentical subunits; α and β, with molecular weights of 14 kD and 23 kD, respectively. Human chorionic gonadotropin binds to the same receptor as hLH and displays the same biological response, namely, to stimulate the declining function of the corpus luteum to produce progestins and estrogen late in the menstrual cycle. The differences in the structures of hCG and hLH have been exploited to develop antibodies that can measure hCG specifically in the presence of hLH. Two-site antibody binding assays have been developed, based on a surface immunological concept of hCG epitopes, that involve four distinct regions to which antibodies against hCG can bind simultaneously. Antibody cooperative effects, in conjunction with kinetic advantages derived from the concentration factors by use of the sandwich assay technique (immunoradiometric assay, IRMA), have enabled development of extremely sensitive and specific measurement protocols for urinary hCG. The assay described herein permits the detection of pregnancy on an average 25.4 days after the first day of the preceding menses, as opposed to 29.5 days for conventional radioimmunoassay techniques. In addition, the greater sensitivity and specificity of this assay method has permitted the detection of episodes of fetal loss not detected by radioimmunoassay of urine specimens. A large scale epidemiological study is in progress using this assay technique as a way to identify pregnancies that are lost before becoming clinically apparent

  1. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases.

  2. Proceedings for the nondestructive assay and nondestructive examination waste characterization conference. No. 5

    International Nuclear Information System (INIS)

    1997-01-01

    This report contains paper presented at the 5th Nondestructive Assay and nondestructive Examination Waste Characterization conference. Topics included compliance, neutron NDA techniques, gamma NDA techniques, tomographic methods, and NDA modality and information combination techniques. Individual reports have been processed separately for the United States Department of Energy databases

  3. Immunocapture loop-mediated isothermal amplification assays for the detection of canine parvovirus.

    Science.gov (United States)

    Sun, Yu-Ling; Yen, Chon-Ho; Tu, Ching-Fu

    2017-11-01

    A loop-mediated isothermal amplification (LAMP) assay was used for rapid canine parvovirus (CPV) diagnosis. To reduce the time required and increase the sensitivity of the assay, an immunocapture (IC) technique was developed in this study to exclude the DNA extraction step in molecular diagnostic procedures for CPV. A polyclonal rabbit anti-CPV serum was produced against VP2-EpC that was cloned via DNA recombination. The polyclonal anti-VP2-EpC serum was used for virus capture to prepare microtubes. IC-LAMP was performed to amplify a specific CPV target gene sequence from the CPV viral particles that were captured on the microtubes, and the amplicons were analyzed using agarose electrophoresis or enzyme-linked immunosorbent assay (IC-LAMP-ELISA) and lateral-flow dipstick (IC-LAMP-LFD). The detection sensitivities of IC-LAMP, IC-LAMP-ELISA, and IC-LAMP-LFD were 10 -1 , 10 -1 , and 10 -1 TCID 50 /mL, respectively. Using the IC-LAMP-ELISA and IC-LAMP-LFD assays, the complete CPV diagnostic process can be achieved within 1.5h. Both of the developed IC-LAMP-based assays are simple, direct visual and efficient techniques that are applicable to the detection of CPV. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Development of Rapid Isothermal Amplification Assays for Detection of Phytophthora spp. in Plant Tissue.

    Science.gov (United States)

    Miles, Timothy D; Martin, Frank N; Coffey, Michael D

    2015-02-01

    Several isothermal amplification techniques recently have been developed that are tolerant of inhibitors present in many plant extracts, which can reduce the need for obtaining purified DNA for running diagnostic assays. One such commercially available technique that has similarities with real-time polymerase chain reaction (PCR) for designing primers and a labeled probe is recombinase polymerase amplification (RPA). This technology was used to develop two simple and rapid approaches for detection of Phytophthora spp.: one genus-specific assay multiplexed with a plant internal control and the other species-specific assays for Phytophthora ramorum and P. kernoviae. All assays were tested for sensitivity (ranging from 3 ng to 1 fg of DNA) and specificity using DNA extracted from more than 136 Phytophthora taxa, 21 Pythium spp., 1 Phytopythium sp., and a wide range of plant species. The lower limit of linear detection using purified DNA was 200 to 300 fg of DNA in all pathogen RPA assays. Six different extraction buffers were tested for use during plant tissue maceration and the assays were validated in the field by collecting 222 symptomatic plant samples from over 50 different hosts. Only 56 samples were culture positive for Phytophthora spp. whereas 91 were positive using the Phytophthora genus-specific RPA test and a TaqMan real-time PCR assay. A technique for the generation of sequencing templates from positive RPA amplifications to confirm species identification was also developed. These RPA assays have added benefits over traditional technologies because they are rapid (results can be obtained in as little as 15 min), do not require DNA extraction or extensive training to complete, use less expensive portable equipment than PCR-based assays, and are significantly more specific than current immunologically based methods. This should provide a rapid, field-deployable capability for pathogen detection that will facilitate point-of-sample collection processing

  5. Protein subcellular localization assays using split fluorescent proteins

    Science.gov (United States)

    Waldo, Geoffrey S [Santa Fe, NM; Cabantous, Stephanie [Los Alamos, NM

    2009-09-08

    The invention provides protein subcellular localization assays using split fluorescent protein systems. The assays are conducted in living cells, do not require fixation and washing steps inherent in existing immunostaining and related techniques, and permit rapid, non-invasive, direct visualization of protein localization in living cells. The split fluorescent protein systems used in the practice of the invention generally comprise two or more self-complementing fragments of a fluorescent protein, such as GFP, wherein one or more of the fragments correspond to one or more beta-strand microdomains and are used to "tag" proteins of interest, and a complementary "assay" fragment of the fluorescent protein. Either or both of the fragments may be functionalized with a subcellular targeting sequence enabling it to be expressed in or directed to a particular subcellular compartment (i.e., the nucleus).

  6. Overview of Serological Techniques for Influenza Vaccine Evaluation: Past, Present and Future

    Directory of Open Access Journals (Sweden)

    Claudia Maria Trombetta

    2014-10-01

    Full Text Available Serological techniques commonly used to quantify influenza-specific antibodies include the Haemagglutination Inhibition (HI, Single Radial Haemolysis (SRH and Virus Neutralization (VN assays. HI and SRH are established and reproducible techniques, whereas VN is more demanding. Every new influenza vaccine needs to fulfil the strict criteria issued by the European Medicines Agency (EMA in order to be licensed. These criteria currently apply exclusively to SRH and HI assays and refer to two different target groups—healthy adults and the elderly, but other vaccine recipient age groups have not been considered (i.e., children. The purpose of this timely review is to highlight the current scenario on correlates of protection concerning influenza vaccines and underline the need to revise the criteria and assays currently in use. In addition to SRH and HI assays, the technical advantages provided by other techniques such as the VN assay, pseudotype-based neutralization assay, neuraminidase and cell-mediated immunity assays need to be considered and regulated via EMA criteria, considering the many significant advantages that they could offer for the development of effective vaccines.

  7. A Compton Suppressed Gamma Ray Counter For Radio Assay of Materials

    Science.gov (United States)

    Godfrey, Benjamin

    2016-03-01

    Rare event searches, such as direct dark matter experiments, require materials with ultra-low levels of natural radioactivity. We present a neutron activation analysis (NAA) technique for assaying metals, specifically titanium used for cryostat construction. Earlier attempts at NAA encountered limitations due to bulk activation via (n, p) reactions, which contributed to large continuum backgrounds due to Compton tails. Our method involves a heavy water shielded exposure to minimize (n,p) reactions and a sodium iodide shielded high purity germanium counter for the gamma ray assay. Preliminary results on assays for U/Th/K contamination in titaniumwill be presented.

  8. Gamma aminobutyric acid radioreceptor assay: a confirmatory quantitative assay for toxaphene in environmental and biological samples

    International Nuclear Information System (INIS)

    Saleh, M.A.; Blancato, J.N.

    1993-01-01

    Toxaphene is a complex mixture of polychlorinated monoterpenes, and was found to be acutely and chronically toxic to aquatic and wild life and posed a carcinogenic risk to humans before its ban in 1982. However, it is still found in the environment due to its relative persistence with an estimated half life time of about 10 years in soils. Toxaphenes neurotoxicity is attributed to a few isomers with a mode of action through binding to the chloride channel of the gamma-aminobutyric acid (GABA) receptor ionophore complex. [ 35 S] tertiary butylbicyclophosphorothionate (TBPS) with specific activity higher than 60 Ci/mmole has a high binding affinity to the same sites and is now commercially available and can be used to label the GABA receptor for the development of radioreceptor assay technique. The GABA receptor was prepared by a sequence of ultra centrifugation and dialysis of mammalian (rats, cows, catfish and goats) brain homogenates. The receptor is then labeled with [ 35 S] TBPS and the assay was conducted by measuring the displacement of radioactivity following incubation with the sample containing the analytes. The assay is fast, sensitive and requires very little or no sample preparation prior to the analysis. (Author)

  9. Plutonium assay of large waste burial containers at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Haggard, D.L.; Newman, D.F.

    1987-01-01

    As one phase of an upgrade program at one of the Battelle Pacific Northwest Laboratory facilities, two plutonium glovebox hoods were replaced. They were dismantled, packaged in plastic for contamination control, and loaded into waste burial boxes. All of the plutonium-contaminated waste material from the two glovebox hoods was placed into six stainless steel boxes with identification letters A through F. Boxes A through E have 104.8- x 196.2- x 119.4-cm i.d.'s. Box F has an i.d. of 154.9 x 266.7 x 192.4 cm. The loaded boxes were assayed for plutonium content using both neutron and gamma-ray techniques. The difference between the results were greater than anticipated. Because of the importance of accurate plutonium assay measurements, additional measurements of box contents were made using a variety of techniques and assumptions including downloading of boxes and measurement of individual packages. These measurements have shown that a far-field, gamma-ray assay of a loaded waste box usually provides adequate measurement of low-density plutonium content, such as that found in packages of plastic, cellulose, and clothing. Comparing the far-field assays of the loaded waste boxes to the quantities determined by the assays of the downloaded packages resulted in good agreement between the two methods for boxes with low attenuation. Based on these results, it was concluded that it was valid to use the far-field assay results for the boxes that were not downloaded

  10. Quantitative Fissile Assay In Used Fuel Using LSDS System

    Science.gov (United States)

    Lee, YongDeok; Jeon, Ju Young; Park, Chang-Je

    2017-09-01

    A quantitative assay of isotopic fissile materials (U235, Pu239, Pu241) was done at Korea Atomic Energy Research Institute (KAERI), using lead slowing down spectrometer (LSDS). The optimum design of LSDS was performed based on economics, easy maintenance and assay effectiveness. LSDS system consists of spectrometer, neutron source, detection and control. LSDS system induces fissile fission and fast neutrons are collected at fission chamber. The detected signal has a direct relation to the mass of existing fissile isotopes. Many current commercial assay technologies have a limitation in direct application on isotopic fissile assay of spent fuel, except chemical analysis. In the designed system, the fissile assay model was setup and the correction factor for self-shield was obtained. The isotopic fissile content assay was performed by changing the content of Pu239. Based on the fuel rod, the isotopic content was consistent with 2% uncertainty for Pu239. By applying the covering (neutron absorber), the effective shielding was obtained and the activation was calculated on the target. From the assay evaluation, LSDS technique is very powerful and direct to analyze the isotopic fissile content. LSDS is applicable for nuclear fuel cycle and spent fuel management for safety and economics. Additionally, an accurate fissile content will contribute to the international transparency and credibility on spent fuel.

  11. Monitoring of plutonium contaminated solid waste streams. Chapter IV: Passive neutron assay

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.

    1978-01-01

    The fundamentals of the passive neutron technique for the non destructive assay of plutonium bearing materials are summarized. A reference monitor for the passive neutron assay of Pu contaminated solids is described in terms of instrumental design principles and performances. The theoretical model of this reference monitor with pertinent nuclear data and functions for the interpretation of experimental data is given

  12. GMO detection in food and feed through screening by visual loop-mediated isothermal amplification assays.

    Science.gov (United States)

    Wang, Cong; Li, Rong; Quan, Sheng; Shen, Ping; Zhang, Dabing; Shi, Jianxin; Yang, Litao

    2015-06-01

    Isothermal DNA/RNA amplification techniques are the primary methodology for developing on-spot rapid nucleic acid amplification assays, and the loop-mediated isothermal amplification (LAMP) technique has been developed and applied in the detection of foodborne pathogens, plant/animal viruses, and genetically modified (GM) food/feed contents. In this study, one set of LAMP assays targeting on eight frequently used universal elements, marker genes, and exogenous target genes, such as CaMV35S promoter, FMV35S promoter, NOS, bar, cry1Ac, CP4 epsps, pat, and NptII, were developed for visual screening of GM contents in plant-derived food samples with high efficiency and accuracy. For these eight LAMP assays, their specificity was evaluated by testing commercial GM plant events and their limits of detection were also determined, which are 10 haploid genome equivalents (HGE) for FMV35S promoter, cry1Ac, and pat assays, as well as five HGE for CaMV35S promoter, bar, NOS terminator, CP4 epsps, and NptII assays. The screening applicability of these LAMP assays was further validated successfully using practical canola, soybean, and maize samples. The results suggested that the established visual LAMP assays are applicable and cost-effective for GM screening in plant-derived food samples.

  13. Pertussis serology: assessment of IgG anti-PT ELISA for replacement of the CHO cell assay*

    Science.gov (United States)

    DALBY, TINE; SØRENSEN, CHARLOTTE; PETERSEN, JESPER WESTPHAL; KROGFELT, KAREN ANGELIKI

    2010-01-01

    Dalby T, Sørensen C, Petersen JW, Krogfelt KA. Pertussis serology: assessment of IgG anti-PT ELISA for replacement of the CHO cell assay. APMIS 2010; 118: 968–72. Two types of serological assays are commonly used for the assessment of pertussis vaccine-induced antibodies; the Chinese hamster ovary cell (CHO cell) assay and the immunoglobulin G (IgG) anti pertussis toxin (PT) enzyme-linked immunosorbent assay (IgG anti-PT ELISA). Recently, both the techniques have been modified to improve performance with sera with interfering activity (CHO cell assay) or with heat-treated sera (IgG anti-PT ELISA). These two improved techniques were compared by the analysis of 100 individual serum samples from a previous clinical trial and 213 sera from a longitudinal serum collection from 20 Danish adults recently vaccinated with the Danish acellular pertussis vaccine. The comparison showed a significant linear correlation between the results of the two assays with a p-value of ELISA can be used as a replacement for the often troublesome and time-consuming CHO cell assay for the measurement of vaccine-induced human antibodies to PT. PMID:21091778

  14. Statistical signal processing and artificial intelligence applications in the nondestructive assay of U/Pu bearing materials

    International Nuclear Information System (INIS)

    Aumeier, S.E.; Forsmann, J.H.

    1997-01-01

    Over the years a number of techniques have been developed to determine the quantity and distribution of radiative isotopes contained in given assay samples through the measurement and analysis of penetrating characteristic radiations. An active technique of particular utility when assaying samples containing very small quantities of fissionable material or when high gamma ray backgrounds are encountered is the delayed neutron nondestructive assay (DN-NDA) technique. Typically, analysis of the delayed neutron signal involves relating the gross delayed neutron count observed following neutron irradiation of an assay sample to total fissionable material present via a linear calibration curve. In this way, the technique is capable of yielding the mass of a single dominant fissionable isotope or the total fissionable mass contained in a sample. Using this approach the only way to determine the mass of individual fissionable isotopes contained in a sample is to correlate total fissionable mass to individual isotopics via calculations or other means, yielding an indirect measure of isotopics. However, there is isotope specific information in the temporal delayed neutron signal due to differences in the delayed neutron precursor yields resulting from the fissioning of different isotopes. The authors present the results of an analysis to evaluate the feasibility of using Kalman filters and genetic algorithms to determine multiple specific fissionable isotopic masses contained in an assay sample from a cumulative delayed neutron signal measured following neutron irradiation of the sample

  15. Biotin/avidin sandwich enzyme-linked immunosorbent assay for Culicidae mosquito blood meal identification

    Directory of Open Access Journals (Sweden)

    A. M. Marassá

    2008-01-01

    Full Text Available The knowledge of mosquitoes Culicidae host feeding patterns is basic to understand the roles of different species and to indicate their importance in the epidemiology of arthropod-borne diseases. A laboratory assay was developed aiming at standardizing the biotin-avidin sandwich enzyme-linked immunosorbent assay, which was unprecedented for mosquito blood meal identification. The enzyme-linked immunosorbent assay (ELISA activity was evaluated by the detection of titers on each sample of the 28 blood-fed Culex quinquefasciatus. In light of the high sensitivity that the technique permits, by means of small quantities of specific antibodies commercially provided and phosphatase substrate which reinforces additional dilutions, human and rat blood meals were readily identified in all laboratory-raised Culex quinquefasciatus tested. The assay was effective to detect human blood meal dilutions up to 1:4,096, which enables the technique to be applied in field studies. Additionally, the present results indicate a significant difference between the detection patterns recorded from human blood meal which corroborate the results of host feeding patterns.

  16. Radioreceptor assay for analysis of fentanyl and its analogs in biological samples

    Energy Technology Data Exchange (ETDEWEB)

    Alburges, M.E.

    1988-01-01

    The assay is based on the competition of these drugs with ({sup 3}H) fentanyl for opioid receptors in membrane preparations of rat forebrain in vitro. The binding in stereospecific, reversible and saturable. Scatchard plots of saturation suggest the presence of high and low affinity binding sites. Morphine and hydromorphone complete with ({sup 3}H)fentanyl for the opioid receptor, but other morphine-like compounds were relatively weak displacers of ({sup 3}H)fentanyl. Many other commonly abused drugs do not compete with ({sup 3}H)fentanyl for the opioid receptors. Urine samples from animals injected with fentanyl, ({plus minus})-cis-3-methylfentanyl, alpha-methylfentanyl, butyrylfentanyl and benzylfentanyl were analyzed by radioreceptor assay, radioimmunoassay, and gas chromatography/mass spectrometry. Urinary analysis of fentanyl showed a good correlation with these three methods; however, discrepancies were observed in the analysis of fentanyl analogs. This radioreceptor assay is well-suited as an initial assay for the detection of active analogs of fentanyl in urine with good correlation with other techniques in the analysis of fentanyl; however, there is substantial disagreement between techniques in the quantitation of fentanyl analogs. The implications of these discrepancies are discussed.

  17. Radioreceptor assay for analysis of fentanyl and its analogs in biological samples

    International Nuclear Information System (INIS)

    Alburges, M.E.

    1988-01-01

    The assay is based on the competition of these drugs with [ 3 H] fentanyl for opioid receptors in membrane preparations of rat forebrain in vitro. The binding in stereospecific, reversible and saturable. Scatchard plots of saturation suggest the presence of high and low affinity binding sites. Morphine and hydromorphone complete with [ 3 H]fentanyl for the opioid receptor, but other morphine-like compounds were relatively weak displacers of [ 3 H]fentanyl. Many other commonly abused drugs do not compete with [ 3 H]fentanyl for the opioid receptors. Urine samples from animals injected with fentanyl, (±)-cis-3-methylfentanyl, alpha-methylfentanyl, butyrylfentanyl and benzylfentanyl were analyzed by radioreceptor assay, radioimmunoassay, and gas chromatography/mass spectrometry. Urinary analysis of fentanyl showed a good correlation with these three methods; however, discrepancies were observed in the analysis of fentanyl analogs. This radioreceptor assay is well-suited as an initial assay for the detection of active analogs of fentanyl in urine with good correlation with other techniques in the analysis of fentanyl; however, there is substantial disagreement between techniques in the quantitation of fentanyl analogs. The implications of these discrepancies are discussed

  18. Capability and limitation study of the DDT passive-active neutron waste assay instrument

    International Nuclear Information System (INIS)

    Nicholas, N.J.; Coop, K.L.; Estep, R.J.

    1992-05-01

    The differential-dieaway-technique passive-active neutron assay system is widely used by transuranic waste generators to certify their drummed waste for eventual shipment to the Waste Isolation Pilot Plant (WIPP). Stricter criteria being established for waste emplacement at the WIPP site has led to a renewed interest in improvements to and a better understanding of current nondestructive assay (NDA) techniques. Our study includes the effects of source position, extreme matrices, high neutron backgrounds, and source self-shielding to explore the system's capabilities and limitations and to establish a basis for comparison with other NDA systems. 11 refs

  19. Comparison of the direct enzyme assay method with the membrane ...

    African Journals Online (AJOL)

    Comparison of the direct enzyme assay method with the membrane filtration technique in the quantification and monitoring of microbial indicator organisms – seasonal variations in the activities of coliforms and E. coli, temperature and pH.

  20. Enzyme-Linked Immunosorbent Assay (ELISA).

    Science.gov (United States)

    Konstantinou, George N

    2017-01-01

    Food allergy is a public health concern especially after recognizing its constantly increased prevalence and severity. Despite careful reading of food ingredient statements, food allergic individuals may experience reactions caused by "hidden", "masked", or "contaminated" proteins that are known major allergens. Many techniques have been developed to detect even small traces of food allergens, for clinical or laboratory purposes. Enzyme-linked immunosorbent assay (ELISA) is one of the best validated and most routinely used immunoassay in allergy research, in allergy diagnosis in allergy-related quality control in various industries. Although as a technique it has been implemented for the last 45 years, the evolution in biochemistry allowed the development of ultrasensitive ELISA variations that are capable of measuring quantities in the scale of picograms, rendering ELISA attractive, robust, and very famous.

  1. High-throughput, 384-well, LC-MS/MS CYP inhibition assay using automation, cassette-analysis technique, and streamlined data analysis.

    Science.gov (United States)

    Halladay, Jason S; Delarosa, Erlie Marie; Tran, Daniel; Wang, Leslie; Wong, Susan; Khojasteh, S Cyrus

    2011-08-01

    Here we describe a high capacity and high-throughput, automated, 384-well CYP inhibition assay using well-known HLM-based MS probes. We provide consistently robust IC(50) values at the lead optimization stage of the drug discovery process. Our method uses the Agilent Technologies/Velocity11 BioCel 1200 system, timesaving techniques for sample analysis, and streamlined data processing steps. For each experiment, we generate IC(50) values for up to 344 compounds and positive controls for five major CYP isoforms (probe substrate): CYP1A2 (phenacetin), CYP2C9 ((S)-warfarin), CYP2C19 ((S)-mephenytoin), CYP2D6 (dextromethorphan), and CYP3A4/5 (testosterone and midazolam). Each compound is incubated separately at four concentrations with each CYP probe substrate under the optimized incubation condition. Each incubation is quenched with acetonitrile containing the deuterated internal standard of the respective metabolite for each probe substrate. To minimize the number of samples to be analyzed by LC-MS/MS and reduce the amount of valuable MS runtime, we utilize timesaving techniques of cassette analysis (pooling the incubation samples at the end of each CYP probe incubation into one) and column switching (reducing the amount of MS runtime). Here we also report on the comparison of IC(50) results for five major CYP isoforms using our method compared to values reported in the literature.

  2. A method for assay of special nuclear material in high level liquid waste streams

    International Nuclear Information System (INIS)

    Venkata Subramani, C.R.; Swaminathan, K.; Asuvathraman, R.; Kutty, K.V.G.

    2003-01-01

    The assay of special nuclear material in the high level liquid waste streams assumes importance as this is the first stage in the extraction cycle and considerable losses of plutonium could occur here. This stream contains all the fission products as also the minor actinides and hence normal nuclear techniques cannot be used without prior separation of the special nuclear material. This paper presents the preliminary results carried out using wavelength dispersive x-ray fluorescence as part of the developmental efforts to assay SNM in these streams by instrumental techniques. (author)

  3. A novel behavioral assay for measuring cold sensation in mice.

    Science.gov (United States)

    Brenner, Daniel S; Golden, Judith P; Gereau, Robert W

    2012-01-01

    Behavioral models of cold responses are important tools for exploring the molecular mechanisms of cold sensation. To complement the currently cold behavioral assays and allow further studies of these mechanisms, we have developed a new technique to measure the cold response threshold, the cold plantar assay. In this assay, animals are acclimated on a glass plate and a cold stimulus is applied to the hindpaw through the glass using a pellet of compressed dry ice. The latency to withdrawal from the cooled glass is used as a measure of the cold response threshold of the rodents, and the dry ice pellet provides a ramping cold stimulus on the glass that allows the correlation of withdrawal latency values to rough estimates of the cold response threshold temperature. The assay is highly sensitive to manipulations including morphine-induced analgesia, Complete Freund's Adjuvant-induced inflammatory allodynia, and Spinal Nerve Ligation-induced neuropathic allodynia.

  4. A semiquantitative PCR assay for assessing Perkinsus marinus infections in the eastern oyster, Crassostrea virginica.

    Science.gov (United States)

    Marsh, A G; Gauthier, J D; Vasta, G R

    1995-08-01

    A 3.2-kb fragment of Perkinsus marinus DNA was cloned and sequenced. A noncoding domain was identified and targeted for the development of a semiquantitative polymerase chain reaction (PCR) assay for the presence of P. marinus in eastern oyster tissues. The assay involves extracting total DNA from oyster hemolymph and using 1 microgram of that DNA as template in a stringent PCR amplification with oligonucleotide primers that are specific for the P. marinus 3.2-kb fragment. With this assay, we can detect 10 pg of total P. marinus DNA per 1 microgram of oyster hemocyte DNA with ethidium bromide (EtBr) staining of agarose gels, 100 fg total P. marinus DNA with Southern blot autoradiography, and 10 fg of total P. marinus DNA with dot-blot hybridizations. We have used the sensitivity of the PCR assay to develop a method for estimating the level of P. marinus DNA in oyster hemolymph and have successfully applied this technique to gill tissues. Our semiquantitative assay uses a dilution series to essentially titrate the point at which a P. marinus DNA target is no longer amplified in a sample. We refer to this technique as "dilution endpoint" PCR. Using hemocytes obtained by withdrawing a 1-ml sample of hemolymph, this assay provides a nondestructive methodology for rapidly screening large numbers of adult oysters for the presence and quantification of P. marinus infection levels. This technique is applicable to other tissues (gills) and could potentially be applied to DNA extracts of whole larvae or spat.

  5. TRU assay system and measurements

    International Nuclear Information System (INIS)

    Brodzinski, R.L.

    1984-02-01

    The measurement of the transuranic content of nuclear products or process residues has become increasingly important for the recovery of fissionable material from spent fuel elements, the identification of commercial fuel elements which have not yet reached full burnup, the measurement and recovery of transuranics from discarded or stored waste materials, the determination of the transuranic content in high gamma activity waste material scheduled for disposal, compliance with 10CFR61 by land burial operators/shippers, and the satisfaction of accountability requirements. Active neutron interrogation techniques measure either the prompt neutrons or the beta delayed neutrons from fission products following induced fission. These techniques normally only measure fissile transuranics ( 235 U, 239 Pu, and 241 Pu) and are commonly applied only to contact handleable waste. Passive neutron interrogation techniques, on the other hand, are capable of measuring all transuranics except 235 U with adequate sensitivity and will work on both contact handleable and high gamma activity wastes. Since the passive techniques are senstitive to a wider spectrum of transuranic isotopes than the active techniques, substantially less complex and less expensive than the active systems, and they have proven techniques for measuring small quantities of TRU in high gamma activity packages, the passive neutron TRU assay technology was chosen for development into the instruments discussed in this paper

  6. Radioimmunoassays and 2-site immunoradiometric "sandwich" assays: basic principles.

    Science.gov (United States)

    Rodbard, D

    1988-10-01

    The "sandwich" or noncompetitive reagent-excess, 2-site immunoradiometric assay (2-site IRMA), ELISA, USERIA, and related techniques, have several advantages compared with the traditional or competitive radioimmunoassays. IRMAs can provide improved sensitivity and specificity. However, IRMAs present some practical problems with nonspecific binding, increased consumption of antibody, biphasic dose response curve, (high dose hook effect), and may require special techniques for dose response curve analysis. We anticipate considerable growth in the popularity and importance of 2-site IRMA.

  7. Radioimmunoassays and 2-site immunoradiometric 'sandwich' assays: basic principles

    Energy Technology Data Exchange (ETDEWEB)

    Rodbard, D

    1988-10-01

    The 'sandwich' or noncompetitive reagent-excess, 2-site immunoradiometric assay (2-site IRMA), ELISA, USERIA, and related techniques, have several advantages compared with the traditional or competitive radioimmunoassays. IRMAs can provide improved sensitivity and specificity. However, IRMAs present some practical problems with nonspecific binding, increased consumption of antibody, biphasic dose response curve, (high dose hook effect), and may require special techniques for dose response curve analysis. We anticipate considerable growth in the popularity and importance of 2-site IRMA.

  8. Analysis of Citric Acid in Beverages: Use of an Indicator Displacement Assay

    Science.gov (United States)

    Umali, Alona P.; Anslyn, Eric V.; Wright, Aaron T.; Blieden, Clifford R.; Smith, Carolyne K.; Tian, Tian; Truong, Jennifer A.; Crumm, Caitlin E.; Garcia, Jorge E.; Lee, Soal; Mosier, Meredith; Nguyen, Chester P.

    2010-01-01

    The use of an indicator displacement assay permits the visualization of binding events between host and guest molecules. An undergraduate laboratory experiment is described to demonstrate the technique in the determination of citric acid content in commercially available beverages such as soda pop and fruit juices. Through the technique, students…

  9. Single-cell microgel electrophoresis: an in vitro assay of radiosensitivity

    International Nuclear Information System (INIS)

    Deeley, J.O.T.; Moore, J.L.

    1993-01-01

    The results obtained by a microgel electrophoresis are comparable to conventional gel electrophoresis and elution techniques (Singh et al, 1989), DNA precipitation, alkali unwinding and cell clonogenicity assays (Olive et al, 1990). Since single cells are assessed, microgel electrophoresis is particularly appropriate for end-points such as the intercell variation in response. The simplicity, low cost and rapidity of microgel electrophoresis compared with other assays makes it particularly attractive for assessing the effects on DNA of radiation and other genotoxic agents on the general population. (Author)

  10. Optimization of AFP-radioimmunoassay using Antibody Capture Technique

    International Nuclear Information System (INIS)

    Moustafa, K.A.

    2003-01-01

    Alpha-fetoprotein (AFP) is a substance produced by the unborn baby. When the neural tube is not properly formed large amounts of AFP pass into the amniotic fluid and reach the mother's blood. By measuring AFP in the mother's blood and amniotic fluid, it is possible to tell whether or not there is a chance that the unborn baby has a neural tube defect. AFP also used as a tumor marker for hepatocellular carcinoma. There are many different techniques for measuring AFP in blood, but the most accurate one is the immunoassay technique. The immunoassays can be classified on the basis of methodology into three classes; (1) the antibody capture assays, (2) the antigen capture assay, (3)the two-antibody sandwich assays. In this present study, the antibody capture assay in which the antigen is attached to a solid support, and labeled antibody is allowed to bind, will be optimized

  11. Comparison between optical coherence tomography technique and mechanical compression assay to evaluate ionizing radiation effects in frozen and lyophilized bone Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Santin, Stefany Plumeri; Freitas, Anderson Zanardi de; Martinho Junior, Antonio Carlos; Dias, Djalma Batista; Soares, Fernando Augusto Neves; Pino, Eddy Segura; Veloso, Marcelo Noronha; Mathor, Monica B., E-mail: spsantin@usp.br, E-mail: mathor@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Santos, Luiz Augusto Ubirajara, E-mail: augustosantos@terra.com.br [Universidade de Sao Paulo (IOT/HCFUSP), Sao Paulo, SP (Brazil). Fac. de Medicina. Instituto de Ortopedia e Traumatologia

    2013-07-01

    Currently tissue banks have utilized ionizing radiation to sterilize bone tissues to be used as allograft. This method is advantageous when compared with other techniques, because the tissue is sterilized in its final packaging avoiding later contaminations, another advantage is due to the fact occur only a minimal increase in temperature, in addition to provide a Sterility Assurance Level (SAL) of 10{sup -6}, as recommended by national and international standards. However, there are several studies investigating the modifications that this method of sterilization may cause to the bone matrix, for example, alterations in the resistance to compression force. The compressive mechanical tests are highly used to evaluate the decrease in the mechanical strength; however it is a destructive assay. In this study, we used Optical Coherence Tomography to evaluate these possible changes. This technique is advantageous, for do not destroy the sample and enable the performing of other assays with the same sample. In literature, it is possible to find several studies about mechanical changes occasioned by destructive tests. Therefore, this study aims to compare the results of both techniques. It was selected four donors to obtain eight samples of fibula, through a partnership with the Tissue Bank (Instituto de Traumatologia do Hospital das Clinicas da Universidade de Sao Paulo). From each donor were separated twelve samples for preservation by freezing and twelve samples for preservation by lyophilization. The samples were analyzed by Optical Coherence Tomography (OCT) after irradiation at different doses (15, 25 and 50 kGy), in addition to non-irradiated control. After the samples were analyzed by Optical Coherence Tomography the same were subjected to mechanical testing. The data were analyzed by software developed by Dr. Anderson Zanardi de Freitas to calculate the total attenuation coefficient of photons. Nevertheless, only the preservation method may induce to alterations

  12. Comparison between optical coherence tomography technique and mechanical compression assay to evaluate ionizing radiation effects in frozen and lyophilized bone Tissue

    International Nuclear Information System (INIS)

    Santin, Stefany Plumeri; Freitas, Anderson Zanardi de; Martinho Junior, Antonio Carlos; Dias, Djalma Batista; Soares, Fernando Augusto Neves; Pino, Eddy Segura; Veloso, Marcelo Noronha; Mathor, Monica B.; Santos, Luiz Augusto Ubirajara

    2013-01-01

    Currently tissue banks have utilized ionizing radiation to sterilize bone tissues to be used as allograft. This method is advantageous when compared with other techniques, because the tissue is sterilized in its final packaging avoiding later contaminations, another advantage is due to the fact occur only a minimal increase in temperature, in addition to provide a Sterility Assurance Level (SAL) of 10 -6 , as recommended by national and international standards. However, there are several studies investigating the modifications that this method of sterilization may cause to the bone matrix, for example, alterations in the resistance to compression force. The compressive mechanical tests are highly used to evaluate the decrease in the mechanical strength; however it is a destructive assay. In this study, we used Optical Coherence Tomography to evaluate these possible changes. This technique is advantageous, for do not destroy the sample and enable the performing of other assays with the same sample. In literature, it is possible to find several studies about mechanical changes occasioned by destructive tests. Therefore, this study aims to compare the results of both techniques. It was selected four donors to obtain eight samples of fibula, through a partnership with the Tissue Bank (Instituto de Traumatologia do Hospital das Clinicas da Universidade de Sao Paulo). From each donor were separated twelve samples for preservation by freezing and twelve samples for preservation by lyophilization. The samples were analyzed by Optical Coherence Tomography (OCT) after irradiation at different doses (15, 25 and 50 kGy), in addition to non-irradiated control. After the samples were analyzed by Optical Coherence Tomography the same were subjected to mechanical testing. The data were analyzed by software developed by Dr. Anderson Zanardi de Freitas to calculate the total attenuation coefficient of photons. Nevertheless, only the preservation method may induce to alterations in

  13. Standardization of portable assay instrumentation: the neutron-coincidence tree

    International Nuclear Information System (INIS)

    Menlove, H.O.

    1983-01-01

    Standardization of portable neutron assay instrumentation has been achieved by using the neutron coincidence technique as a common basis for a wide range of instruments and applications. The electronics originally developed for the High-Level Neutron Coincidence Counter has been adapted to both passive- and active-assay instrumentation for field verification of bulk plutonium, inventory samples, pellets, powders, nitrates, high-enriched uranium, and materials-testing-reactor, light-water-reactor, and mixed-oxide fuel assemblies. The family of detectors developed at Los Alamos National Laboratory and their performance under in-field conditions are described. 16 figures, 3 tables

  14. Assaying Cellular Viability Using the Neutral Red Uptake Assay.

    Science.gov (United States)

    Ates, Gamze; Vanhaecke, Tamara; Rogiers, Vera; Rodrigues, Robim M

    2017-01-01

    The neutral red uptake assay is a cell viability assay that allows in vitro quantification of xenobiotic-induced cytotoxicity. The assay relies on the ability of living cells to incorporate and bind neutral red, a weak cationic dye, in lysosomes. As such, cytotoxicity is expressed as a concentration-dependent reduction of the uptake of neutral red after exposure to the xenobiotic under investigation. The neutral red uptake assay is mainly used for hazard assessment in in vitro toxicology applications. This method has also been introduced in regulatory recommendations as part of 3T3-NRU-phototoxicity-assay, which was regulatory accepted in all EU member states in 2000 and in the OECD member states in 2004 as a test guideline (TG 432). The present protocol describes the neutral red uptake assay using the human hepatoma cell line HepG2, which is often employed as an alternative in vitro model for human hepatocytes. As an example, the cytotoxicity of acetaminophen and acetyl salicylic acid is assessed.

  15. A Calorimetric Assay For Enzymatic Saccharification Of Biomass

    DEFF Research Database (Denmark)

    Murphy, Leigh; Borch, Kim; McFarland, K.C.

    2010-01-01

    A limited selection of assay and screening methodologies for cellulolytic enzymes has been stated as a restriction in biomass research. In this report we test the potential of isothermal calorimetry for this purpose. The primary observable in this technique (the heat flow in Watts), scales with t...... of the regulation and functional mechanism of cellulases....

  16. The application of single cell gel electrophoresis or comet assay to human monitoring studies

    Directory of Open Access Journals (Sweden)

    Valverde Mahara

    1999-01-01

    Full Text Available Objective. In the search of new human genotoxic biomarkers, the single cell gel electrophoresis assay has been proposed as a sensible alternative. Material and methods. This technique detects principally single strand breaks as well as alkali-labile and repair-retarded sites. Results. Herein we present our experience using the single cell gel electrophoresis assay in human population studies, both occupationally and environmentally exposed. Conclusions. We discuss the assay feasibility as a genotoxic biomarker.

  17. Nondestructive Assay Options for Spent Fuel Encapsulation

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Jansson, Peter [Uppsala Univ. (Sweden)

    2014-10-02

    This report describes the role that nondestructive assay (NDA) techniques and systems of NDA techniques may have in the context of an encapsulation and deep geological repository. The potential NDA needs of an encapsulation and repository facility include safeguards, heat content, and criticality. Some discussion of the facility needs is given, with the majority of the report concentrating on the capability and characteristics of individual NDA instruments and techniques currently available or under development. Particular emphasis is given to how the NDA techniques can be used to determine the heat production of an assembly, as well as meet the dual safeguards needs of 1) determining the declared parameters of initial enrichment, burn-up, and cooling time and 2) detecting defects (total, partial, and bias). The report concludes with the recommendation of three integrated systems that might meet the combined NDA needs of the encapsulation/repository facility.

  18. Automated immunoradiometric assay of thyrotrophin (TSH) in dried blood filter paper spots

    Energy Technology Data Exchange (ETDEWEB)

    John, R.; Woodhead, J.S. (Welsh National School of Medicine, Cardiff (UK))

    1982-11-10

    An immunoradiometric two-site assay for thyrotrophin (TSH) in dried blood filter paper spots is described. The assay is automated by means of the Kemtek 3000 automated immunoassay system. The technique uses a 6.0 mm disc punched from the dried blood samples collected as part of the screening programme for phenylketonuria. The method is sensitive and precise, and results correlate well with those obtained in TSH assays of serum samples. The procedure is rapid, results being available within 24 h of receipt of samples. Of 25204 specimens so far screened by this assay, 99.9% have TSH levels less than 15 mU/l. One false positive result has been obtained and six confirmed cases of neonatal hypothyroidism detected, giving a prevalence of 1 in 4200.

  19. Improving shuffler assay accuracy

    International Nuclear Information System (INIS)

    Rinard, P.M.

    1995-01-01

    Drums of uranium waste should be disposed of in an economical and environmentally sound manner. The most accurate possible assays of the uranium masses in the drums are required for proper disposal. The accuracies of assays from a shuffler are affected by the type of matrix material in the drums. Non-hydrogenous matrices have little effect on neutron transport and accuracies are very good. If self-shielding is known to be a minor problem, good accuracies are also obtained with hydrogenous matrices when a polyethylene sleeve is placed around the drums. But for those cases where self-shielding may be a problem, matrices are hydrogenous, and uranium distributions are non-uniform throughout the drums, the accuracies are degraded. They can be greatly improved by determining the distributions of the uranium and then applying correction factors based on the distributions. This paper describes a technique for determining uranium distributions by using the neutron count rates in detector banks around the waste drum and solving a set of overdetermined linear equations. Other approaches were studied to determine the distributions and are described briefly. Implementation of this correction is anticipated on an existing shuffler next year

  20. Detection of HLA Antibodies in Organ Transplant Recipients – Triumphs and Challenges of the Solid Phase Bead Assay

    Science.gov (United States)

    Tait, Brian D.

    2016-01-01

    This review outlines the development of human leukocyte antigen (HLA) antibody detection assays and their use in organ transplantation in both antibody screening and crossmatching. The development of sensitive solid phase assays such as the enzyme-linked immunosorbent assay technique, and in particular the bead-based technology has revolutionized this field over the last 10–15 years. This revolution however has created a new paradigm in clinical decision making with respect to the detection of low level pretransplant HLA sensitization and its clinical relevance. The relative sensitivities of the assays used are discussed and the relevance of conflicting inter-assay results. Each assay has its advantages and disadvantages and these are discussed. Over the last decade, the bead-based assay utilizing the Luminex® fluorocytometer instrument has become established as the “gold standard” for HLA antibody testing. However, there are still unresolved issues surrounding this technique, such as the presence of denatured HLA molecules on the beads which reveal cryptic epitopes and the issue of appropriate fluorescence cut off values for positivity. The assay has been modified to detect complement binding (CB) in addition to non-complement binding (NCB) HLA antibodies although the clinical relevance of the CB and NCB IgG isotypes is not fully resolved. The increase sensitivity of the Luminex® bead assay over the complement-dependent cytotoxicity crossmatch has permitted the concept of the “virtual crossmatch” whereby the crossmatch is predicted to a high degree of accuracy based on the HLA antibody specificities detected by the solid phase assay. Dialog between clinicians and laboratory staff on an individual patient basis is essential for correct clinical decision making based on HLA antibody results obtained by the various techniques. PMID:28018342

  1. History of PUQFUA: plutonium body burden (Q) from urine assays

    International Nuclear Information System (INIS)

    Lawrence, J.N.P.

    1978-10-01

    PUQFUA is a FORTRAN computer program that calculates plutonium body burdens (Q) from urine assay data. This report describes the historical development of the program at the Los Alamos Scientific Laboratory (LASL) since 1959. After a review of the basic techniques used in the original PUQFUA, its deficiencies are listed. The procedures used to improve the program and correct the deficiencies are described. Appendixes provide a detailed discussion of the evaluation made of the analytical errors in the plutonium urine assay program at LASL from 1944 to 1978

  2. A novel behavioral assay for measuring cold sensation in mice.

    Directory of Open Access Journals (Sweden)

    Daniel S Brenner

    Full Text Available Behavioral models of cold responses are important tools for exploring the molecular mechanisms of cold sensation. To complement the currently cold behavioral assays and allow further studies of these mechanisms, we have developed a new technique to measure the cold response threshold, the cold plantar assay. In this assay, animals are acclimated on a glass plate and a cold stimulus is applied to the hindpaw through the glass using a pellet of compressed dry ice. The latency to withdrawal from the cooled glass is used as a measure of the cold response threshold of the rodents, and the dry ice pellet provides a ramping cold stimulus on the glass that allows the correlation of withdrawal latency values to rough estimates of the cold response threshold temperature. The assay is highly sensitive to manipulations including morphine-induced analgesia, Complete Freund's Adjuvant-induced inflammatory allodynia, and Spinal Nerve Ligation-induced neuropathic allodynia.

  3. Alkaline Comet Assay for Assessing DNA Damage in Individual Cells.

    Science.gov (United States)

    Pu, Xinzhu; Wang, Zemin; Klaunig, James E

    2015-08-06

    Single-cell gel electrophoresis, commonly called a comet assay, is a simple and sensitive method for assessing DNA damage at the single-cell level. It is an important technique in genetic toxicological studies. The comet assay performed under alkaline conditions (pH >13) is considered the optimal version for identifying agents with genotoxic activity. The alkaline comet assay is capable of detecting DNA double-strand breaks, single-strand breaks, alkali-labile sites, DNA-DNA/DNA-protein cross-linking, and incomplete excision repair sites. The inclusion of digestion of lesion-specific DNA repair enzymes in the procedure allows the detection of various DNA base alterations, such as oxidative base damage. This unit describes alkaline comet assay procedures for assessing DNA strand breaks and oxidative base alterations. These methods can be applied in a variety of cells from in vitro and in vivo experiments, as well as human studies. Copyright © 2015 John Wiley & Sons, Inc.

  4. Comet assay for rapid detection of base damage in foods

    International Nuclear Information System (INIS)

    Al-Zubaidi, I. A.; Abdullah, T. S.; Qasim, S. R.

    2012-12-01

    Single cell gel electrophoresis (SCGE) or comet assay technique a sensitive, reliable and rapid method for DNA double and single strand break, alkali- labile site and delayed repair site detection in individual cells. In recent years, this method has been widely used for studies of DNA repair, genetic toxicology, and environmental biomontoring, however, this technique serves as an important tool for detection of DNA damage in living organism and is increasing being used in genetic testing of industrial chemicals, environmental agent's contaminations. This research paper helps to evaluate the oxidant agent's effects of exposure to organic pollutants by using comet assay techniques. This study used five samples of each food sample (Meat, Chicken, Rice, Fruits, Vegetables and Tea) to evaluate the genotoxic effects of exposure, to environmental agent's pollutants. The experimental data suggest that the DNA damage parameters ( Tail length, Tail width 1 ) were found higher value in exposed population when compared with the ratio of the length to width that cells exhibiting no migration having a ratio of 1. The percentage and distribution of cells in exposed population of cells also increases with the increase in values. This study demonstrates that, using sensitive techniques, it is possible to detect environmental agent's risks at an early stage. (Author)

  5. Integration of electrochemistry in micro-total analysis systems for biochemical assays: recent developments.

    Science.gov (United States)

    Xu, Xiaoli; Zhang, Song; Chen, Hui; Kong, Jilie

    2009-11-15

    Micro-total analysis systems (microTAS) integrate different analytical operations like sample preparation, separation and detection into a single microfabricated device. With the outstanding advantages of low cost, satisfactory analytical efficiency and flexibility in design, highly integrated and miniaturized devices from the concept of microTAS have gained widespread applications, especially in biochemical assays. Electrochemistry is shown to be quite compatible with microanalytical systems for biochemical assays, because of its attractive merits such as simplicity, rapidity, high sensitivity, reduced power consumption, and sample/reagent economy. This review presents recent developments in the integration of electrochemistry in microdevices for biochemical assays. Ingenious microelectrode design and fabrication methods, and versatility of electrochemical techniques are involved. Practical applications of such integrated microsystem in biochemical assays are focused on in situ analysis, point-of-care testing and portable devices. Electrochemical techniques are apparently suited to microsystems, since easy microfabrication of electrochemical elements and a high degree of integration with multi-analytical functions can be achieved at low cost. Such integrated microsystems will play an increasingly important role for analysis of small volume biochemical samples. Work is in progress toward new microdevice design and applications.

  6. Matrix effects of TRU [transuranic] assays using the SWEPP PAN assay system

    International Nuclear Information System (INIS)

    Smith, J.R.

    1990-08-01

    The Drum Assay System (DAS) at the Stored Waste Experimental Pilot Plant (SWEPP) is a second-generation active-passive neutron assay system. It has been used to assay over 5000 208-liter drums of transuranic waste from the Rocky Flats Plant (RFP). Data from these assays have been examined and compared with the assays performed at Rocky Flats, mainly utilize counting of 239 Pu gamma rays. For the most part the passive assays are in very good agreement with the Rocky Flats assays. The active assays are strongly correlated with the results of the other two methods, but require matrix-dependent correction factors beyond those provided by the system itself. A set of matrix-dependent correction factors has been developed from the study of the assay results. 3 refs., 4 figs., 3 tabs

  7. Rapid detection of microbial DNA by a novel isothermal genome exponential amplification reaction (GEAR) assay.

    Science.gov (United States)

    Prithiviraj, Jothikumar; Hill, Vincent; Jothikumar, Narayanan

    2012-04-20

    In this study we report the development of a simple target-specific isothermal nucleic acid amplification technique, termed genome exponential amplification reaction (GEAR). Escherichia coli was selected as the microbial target to demonstrate the GEAR technique as a proof of concept. The GEAR technique uses a set of four primers; in the present study these primers targeted 5 regions on the 16S rRNA gene of E. coli. The outer forward and reverse Tab primer sequences are complementary to each other at their 5' end, whereas their 3' end sequences are complementary to their respective target nucleic acid sequences. The GEAR assay was performed at a constant temperature 60 °C and monitored continuously in a real-time PCR instrument in the presence of an intercalating dye (SYTO 9). The GEAR assay enabled amplification of as few as one colony forming units of E. coli per reaction within 30 min. We also evaluated the GEAR assay for rapid identification of bacterial colonies cultured on agar media directly in the reaction without DNA extraction. Cells from E. coli colonies were picked and added directly to GEAR assay mastermix without prior DNA extraction. DNA in the cells could be amplified, yielding positive results within 15 min. Published by Elsevier Inc.

  8. Comparison of Batch Assay and Random Assay Using Automatic Dispenser in Radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Moon, Seung Hwan; Jang, Su Jin; Kang, Ji Yeon; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul [Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul (Korea, Republic of); Lee, Ho Young; Shin, Sun Young; Min, Gyeong Sun; Lee, Hyun Joo [Seoul National University college of Medicine, Seoul (Korea, Republic of)

    2009-08-15

    Radioimmunoassay (RIA) was usually performed by the batch assay. To improve the efficiency of RIA without increase of the cost and time, random assay could be a choice. We investigated the possibility of the random assay using automatic dispenser by assessing the agreement between batch assay and random assay. The experiments were performed with four items; Triiodothyronine (T3), free thyroxine (fT4), Prostate specific antigen (PSA), Carcinoembryonic antigen (CEA). In each item, the sera of twenty patients, the standard, and the control samples were used. The measurements were done 4 times with 3 hour time intervals by random assay and batch assay. The coefficient of variation (CV) of the standard samples and patients' data in T3, fT4, PSA, and CEA were assessed. ICC (Intraclass correlation coefficient) and coefficient of correlation were measured to assessing the agreement between two methods. The CVs (%) of T3, fT4, PSA, and CEA measured by batch assay were 3.2+-1.7%, 3.9+-2.1%, 7.1+-6.2%, 11.2+-7.2%. The CVs by random assay were 2.1+-1.7%, 4.8+-3.1%, 3.6+-4.8%, and 7.4+-6.2%. The ICC between the batch assay and random assay were 0.9968 (T3), 0.9973 (fT4), 0.9996 (PSA), and 0.9901 (CEA). The coefficient of correlation between the batch assay and random assay were 0.9924(T3), 0.9974 (fT4), 0.9994 (PSA), and 0.9989 (CEA) (p<0.05). The results of random assay showed strong agreement with the batch assay in a day. These results suggest that random assay using automatic dispenser could be used in radioimmunoassay

  9. Comparison of Batch Assay and Random Assay Using Automatic Dispenser in Radioimmunoassay

    International Nuclear Information System (INIS)

    Moon, Seung Hwan; Jang, Su Jin; Kang, Ji Yeon; Lee, Dong Soo; Chung, June Key; Lee, Myung Chul; Lee, Ho Young; Shin, Sun Young; Min, Gyeong Sun; Lee, Hyun Joo

    2009-01-01

    Radioimmunoassay (RIA) was usually performed by the batch assay. To improve the efficiency of RIA without increase of the cost and time, random assay could be a choice. We investigated the possibility of the random assay using automatic dispenser by assessing the agreement between batch assay and random assay. The experiments were performed with four items; Triiodothyronine (T3), free thyroxine (fT4), Prostate specific antigen (PSA), Carcinoembryonic antigen (CEA). In each item, the sera of twenty patients, the standard, and the control samples were used. The measurements were done 4 times with 3 hour time intervals by random assay and batch assay. The coefficient of variation (CV) of the standard samples and patients' data in T3, fT4, PSA, and CEA were assessed. ICC (Intraclass correlation coefficient) and coefficient of correlation were measured to assessing the agreement between two methods. The CVs (%) of T3, fT4, PSA, and CEA measured by batch assay were 3.2±1.7%, 3.9±2.1%, 7.1±6.2%, 11.2±7.2%. The CVs by random assay were 2.1±1.7%, 4.8±3.1%, 3.6±4.8%, and 7.4±6.2%. The ICC between the batch assay and random assay were 0.9968 (T3), 0.9973 (fT4), 0.9996 (PSA), and 0.9901 (CEA). The coefficient of correlation between the batch assay and random assay were 0.9924(T3), 0.9974 (fT4), 0.9994 (PSA), and 0.9989 (CEA) (p<0.05). The results of random assay showed strong agreement with the batch assay in a day. These results suggest that random assay using automatic dispenser could be used in radioimmunoassay

  10. First field trial of an immunoradiometric assay for the detection of malaria sporozoites in mosquitoes

    International Nuclear Information System (INIS)

    Collins, F.H.; Zavala, F.; Graves, P.M.; Cochrane, A.H.; Gwadz, R.W.; Akoh, J.; Nussenzweig, R.S.

    1984-01-01

    An immunoradiometric assay (IRMA) using a monoclonal antibody to the major surface protein of Plasmodium falciparum sporozoites was used to assess the P. falciparum sporozoite rate in a West African population of Anopheles gambiae (s.1.). Unlike current dissection techniques, the IRMA could detect sporozoite antigen in dried as well as fresh mosquitoes. In a controlled comparison, the sensitivity of the IRMA was comparable that of the dissection technique. Additionally, the IRMA was species specific and quantitative. Sensitivity of the assay was sufficient to detect sporozoite infections resulting from the development of a single oocyst

  11. Advanced analytical techniques

    International Nuclear Information System (INIS)

    Mrochek, J.E.; Shumate, S.E.; Genung, R.K.; Bahner, C.T.; Lee, N.E.; Dinsmore, S.R.

    1976-01-01

    The development of several new analytical techniques for use in clinical diagnosis and biomedical research is reported. These include: high-resolution liquid chromatographic systems for the early detection of pathological molecular constituents in physiologic body fluids; gradient elution chromatography for the analysis of protein-bound carbohydrates in blood serum samples, with emphasis on changes in sera from breast cancer patients; electrophoretic separation techniques coupled with staining of specific proteins in cellular isoenzymes for the monitoring of genetic mutations and abnormal molecular constituents in blood samples; and the development of a centrifugal elution chromatographic technique for the assay of specific proteins and immunoglobulins in human blood serum samples

  12. Preliminary Study of the Efficacy of Using Nuclear Resonance Fluorescence with Quasi-Monoenergetic Gamma-Ray Sources for Nuclear Safeguards Assay

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, M S; McNabb, D P; Hall, J M; Gonzalez, J J

    2011-02-17

    We have studied the efficacy of using nuclear resonance fluorescence (NRF)-based techniques to assay spent nuclear fuel for Pu content using quasi-monoenergetic sources. We have developed two techniques to precisely determine the Pu content in a fuel rod/pin. One of our approaches is virtually free of systematic uncertainties. Using analytical models, we have determined the amount of time required to measure the Pu content in spent nuclear fuel rods and spent fuel assemblies to within 1% precision. We note that Pu content can be determined in a fuel assembly about as fast as in a single fuel pin. The performance of NRF-based assay techniques with improved photon sources, which are currently under development, will also estimated. For follow-on research we propose to: (1) Construct research prototype detection systems for both of the NRF-based assay systems proposed in this paper and measure their calibration curves; (2) Determine the systematic errors associated with both assay methods, explore ways to reduce the errors and fold the results into future performance calculations; (3) Develop an algorithm to assay a fuel assembly; (4) Perform validation measurements using a single pin and scaled assemblies; (5) Research and develop current-mode detection and/or threshold detection techniques to improve assay times; (6) Characterize the flux of newly constructed sources and fold the results into the calculations presented here to determine the feasibility of a variety of proposed sources; and (7) Collaborate with others in the safeguards community to build a prototype system and perform an NRF-based assay demonstration on spent fuel.

  13. Radioreceptor opioid assay

    International Nuclear Information System (INIS)

    Miller, R.J.; Chang, K.-J.

    1981-01-01

    A radioreceptor assay is described for assaying opioid drugs in biological fluids. The method enables the assay of total opioid activity, being specific for opioids as a class but lacking specificity within the class. A radio-iodinated opioid and the liquid test sample are incubated with an opiate receptor material. The percentage inhibition of the binding of the radio-iodinated compound to the opiate receptor is calculated and the opioid activity of the test liquid determined from a standard curve. Examples of preparing radio-iodinated opioids and assaying opioid activity are given. A test kit for the assay is described. Compared to other methods, this assay is cheap, easy and rapid. (U.K.)

  14. DOE assay methods used for characterization of contact-handled transuranic waste

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, F.J. (Oak Ridge National Lab., TN (United States)); Caldwell, J.T. (Pajarito Scientific Corp., Los Alamos, NM (United States))

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs.

  15. DOE assay methods used for characterization of contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Schultz, F.J.; Caldwell, J.T.

    1991-08-01

    US Department of Energy methods used for characterization of contact-handled transuranic (CH-TRU) waste prior to shipment to the Waste Isolation Pilot Plant (WIPP) are described and listed by contractor site. The methods described are part of the certification process. All CH-TRU waste must be assayed for determination of fissile material content and decay heat values prior to shipment and prior to storage on-site. Both nondestructive assay (NDA) and destructive assay methods are discussed, and new NDA developments such as passive-action neutron (PAN) crate counter improvements and neutron imaging are detailed. Specifically addressed are assay method physics; applicability to CH-TRU wastes; calibration standards and implementation; operator training requirements and practices; assay procedures; assay precision, bias, and limit of detection; and assay limitation. While PAN is a new technique and does not yet have established American Society for Testing and Materials. American National Standards Institute, or Nuclear Regulatory Commission guidelines or methods describing proper calibration procedures, equipment setup, etc., comparisons of PAN data with the more established assay methods (e.g., segmented gamma scanning) have demonstrated its reliability and accuracy. Assay methods employed by DOE have been shown to reliable and accurate in determining fissile, radionuclide, alpha-curie content, and decay heat values of CH-TRU wastes. These parameters are therefore used to characterize packaged waste for use in certification programs such as that used in shipment of CH-TRU waste to the WIPP. 36 refs., 10 figs., 7 tabs

  16. Low-energy ED-XRF spectrometry application in gold assaying

    International Nuclear Information System (INIS)

    Marucco, Alessandra

    2004-01-01

    The performances of a low-energy dispersive XRF spectrometer in gold assaying are evaluated by a series of analysis on international standards and other certified gold alloys with. Results of standard-free analysis based on fundamental parameters method compared to results of multi-standard method, demonstrate a large gain of accuracy by drawing appropriate calibration curves with use of 1 to 16 matrix-specific standards. The accuracy of gold assaying has improved by a factor of 10, as compared to the conventional touchstone test. This rather economical technique satisfies then numerous precious alloys analyst needs, representing an excellent alternative to the traditional method for quick anti-fraud controls

  17. Improving colorimetric assays through protein enzyme-assisted gold nanoparticle amplification.

    Science.gov (United States)

    Xie, Xiaoji; Xu, Wei; Liu, Xiaogang

    2012-09-18

    and function with high specificity, offering substantial advantages in both sensitivity and specificity over conventional detection methods. The screening of nuclease, methyltransferase, protease, and kinase activities can be colorimetrically performed in a straightforward manner. Finally, we discuss examples of colorimetric assays for metal ions and small molecules that constitute important advances toward visual monitoring of enzyme catalytic functions and gene expression. Although these enzyme-assisted assay methods hold great promise for myriad applications in biomedicine and bioimaging, the application of the described techniques in vivo faces formidable challenges. In addition, researchers do not fully understand the interactions of gold nanoparticles with enzyme molecules. This understanding will require the development of new techniques to probe enzyme substrate dynamics at the particle interface with higher spatial resolution and chemical specificity.

  18. Review and Ranking of NDA Techniques to Determine Plutonium Content in Spent Fuel

    International Nuclear Information System (INIS)

    Cheatham, Jesse R.; Wagner, John C.

    2010-01-01

    A number of efforts are under way to improve nondestructive assay (NDA) techniques for spent nuclear fuel (SNF) safeguard applications. These efforts have largely focused on advancing individual NDA approaches to assay plutonium content. Although significant improvements have been made in NDA techniques, relatively little work has been done to thoroughly and systematically compare the methods. A comparative review of the relative strengths and weaknesses of current NDA techniques brings a new perspective to guide future research. To gauge the practicality and effectiveness of the various relevant NDA approaches, criteria have been developed from two broad categories: functionality and operability. The functionality category includes accuracy estimates, measurement time, plutonium verification capabilities, and assembly or fuel rod assay. Since SNF composition changes with operational history and cooling times, the viability of certain NDA approaches will also change over time. While active interrogation approaches will benefit from reduced background radiation, passive assays will lose the information contained in short-lived isotopes. Therefore, the expected assay accuracy as a function of time is considered. The operability category attempts to gauge the challenges associated with the application of different NDA techniques. This category examines the NDA deploy-ability, measurement capabilities and constraints in spent fuel pools, required on-site facilities, NDA technique synergies, and the extent to which the measurements are obtrusive to the facility. Each topic listed in the categories will be given a numerical score used to rank the different NDA approaches. While the combined numerical score of each technique is informative, the individual-topic scoring will allow for a more-tailored ranking approach. Since the needs and tools of the International Atomic Energy Agency differ from those of a recycling facility, the best assay technique may change with users

  19. Hybrid chemical and nondestructive-analysis technique

    International Nuclear Information System (INIS)

    Hsue, S.T.; Marsh, S.F.; Marks, T.

    1982-01-01

    A hybrid chemical/NDA technique has been applied at the Los Alamos National Laboratory to the assay of plutonium in ion-exchange effluents. Typical effluent solutions contain low concentrations of plutonium and high concentrations of americium. A simple trioctylphosphine oxide (TOPO) separation can remove 99.9% of the americium. The organic phase that contains the separated plutonium can be accurately assayed by monitoring the uranium L x-ray intensities

  20. A force-based, parallel assay for the quantification of protein-DNA interactions.

    Science.gov (United States)

    Limmer, Katja; Pippig, Diana A; Aschenbrenner, Daniela; Gaub, Hermann E

    2014-01-01

    Analysis of transcription factor binding to DNA sequences is of utmost importance to understand the intricate regulatory mechanisms that underlie gene expression. Several techniques exist that quantify DNA-protein affinity, but they are either very time-consuming or suffer from possible misinterpretation due to complicated algorithms or approximations like many high-throughput techniques. We present a more direct method to quantify DNA-protein interaction in a force-based assay. In contrast to single-molecule force spectroscopy, our technique, the Molecular Force Assay (MFA), parallelizes force measurements so that it can test one or multiple proteins against several DNA sequences in a single experiment. The interaction strength is quantified by comparison to the well-defined rupture stability of different DNA duplexes. As a proof-of-principle, we measured the interaction of the zinc finger construct Zif268/NRE against six different DNA constructs. We could show the specificity of our approach and quantify the strength of the protein-DNA interaction.

  1. A force-based, parallel assay for the quantification of protein-DNA interactions.

    Directory of Open Access Journals (Sweden)

    Katja Limmer

    Full Text Available Analysis of transcription factor binding to DNA sequences is of utmost importance to understand the intricate regulatory mechanisms that underlie gene expression. Several techniques exist that quantify DNA-protein affinity, but they are either very time-consuming or suffer from possible misinterpretation due to complicated algorithms or approximations like many high-throughput techniques. We present a more direct method to quantify DNA-protein interaction in a force-based assay. In contrast to single-molecule force spectroscopy, our technique, the Molecular Force Assay (MFA, parallelizes force measurements so that it can test one or multiple proteins against several DNA sequences in a single experiment. The interaction strength is quantified by comparison to the well-defined rupture stability of different DNA duplexes. As a proof-of-principle, we measured the interaction of the zinc finger construct Zif268/NRE against six different DNA constructs. We could show the specificity of our approach and quantify the strength of the protein-DNA interaction.

  2. Nondestructive assay uncertainties - present status and future possibilities

    International Nuclear Information System (INIS)

    Parker, J.L.; Ensslin, N.

    1989-01-01

    Nondestructive assay (NDA) techniques play an important role in nuclear safeguards by providing rapid, noninvasive measurements of many nuclear materials. The development of these techniques has proceeded in parallel with the increasing need for near-real-time accountability and the increasing use of automation and robotics to save time and labor in all aspects of nuclear materials processing. Gamma-ray counting, neutron counting, and calorimetry are the most common NDA techniques. This paper discusses the random and systematic measurement uncertainties associated with the first two. It is worth nothing that the random and systematic error components encountered in NDA often have a very different origin from those encountered in destructive analysis; the random component in NDA, for example, is dominated by counting statistics

  3. Rapid screening assay for calcium bioavailability studies

    International Nuclear Information System (INIS)

    Luhrsen, K.R.; Hudepohl, G.R.; Smith, K.T.

    1986-01-01

    Calcium bioavailability has been studied by numerous techniques. The authors report here the use of the gamma emitting isotope of calcium ( 47 Ca) in a whole body retention assay system. In this system, calcium sources are administered by oral gavage and subsequent counts are determined and corrected for isotopic decay. Unlike iron and zinc retention curves, which exhibit a 2-3 day equilibration period, calcium reaches equilibration after 24 hours. Autoradiographic analysis of the femurs indicate that the newly absorbed calcium is rapidly distributed to the skeletal system. Moreover, the isotope is distributed along the entire bone. Comparisons of calcium bioavailability were made using intrinsic/extrinsic labeled milk from two species i.e. rat and goat as well as CaCO 3 . In addition, extrinsic labeled cow milk was examined. In the rat, the extrinsic labeled calcium from milk was better absorbed than the intrinsic calcium. This was not the case in goat milk or the calcium carbonate which exhibited no significant differences. Chromatographic analysis of the labeled milk indicates a difference in distribution of the 47 Ca. From these data, the authors recommend the use of this assay system in calcium bioavailability studies. The labeling studies and comparisons indicate caution should be used, however, in labeling techniques and species milk comparison

  4. Immunoassays in clinical chemistry (principles of immunoradiometric assays)

    International Nuclear Information System (INIS)

    Chapman, R.S.

    1998-01-01

    The use of antibodies as reagents in clinical chemistry for the quantitation of a wide range of analytes has now become widely established. Initially antibodies were employed in precipitation techniques, usually for the analysis of serum proteins, in solution or in the form of antibody containing gels, e.g. immunoprecipitation, immunodiffusion, and immunoelectrophoresis. Further developments have led to the highly sensitive techniques of radioimmunoassay and recently immunometric assay for the measurement of drugs, tumour markers and hormones. In general, those techniques without the addition of a label e.g. immunoprecipitation, immunodiffusion and immunoturbidimetry are the older techniques used for the measurement of serum proteins. These techniques are relatively insensitive, measuring at the g/L. level, and in the case of immunodiffusion are generally slow. Automation coupled with the development of chemistries to enhance precipitation has, however, reduced measurement times to minutes in modern laboratories. Nevertheless these methods have detection limits of the order of 1 g/L

  5. Isotopic methods or immuno diagnosis: The Radioimmunoassay and immunoradiometric assay

    International Nuclear Information System (INIS)

    Caso, R.

    1997-01-01

    This work offers an explanation about the more used isotopic techniques for immuno diagnosis: the radioimmunoassay (RIA) and immunoradiometric assay (IRMA). It describes the basic principles of these assays, the antigen-antibody reaction, the radioiodination methods with I-125 for antigens and antibodies, the purification and characterization of labelled compounds. On the order hand they present work gives a review of the methods for separate the bound and free fractions. At the end it offers the principles of the quality control of immunoassay and the future lines of research in the field of RIA and IRMA

  6. Selection of non-destructive assay methods: Neutron counting or calorimetric assay?

    International Nuclear Information System (INIS)

    Cremers, T.L.; Wachter, J.R.

    1994-01-01

    The transition of DOE facilities from production to D ampersand D has lead to more measurements of product, waste, scrap, and other less attractive materials. Some of these materials are difficult to analyze by either neutron counting or calorimetric assay. To determine the most efficacious analysis method, variety of materials, impure salts and hydrofluorination residues have been assayed by both calorimetric assay and neutron counting. New data will be presented together with a review of published data. The precision and accuracy of these measurements are compared to chemistry values and are reported. The contribution of the gamma ray isotopic determination measurement to the overall error of the calorimetric assay or neutron assay is examined and discussed. Other factors affecting selection of the most appropriate non-destructive assay method are listed and considered

  7. Measurement of biologically active interleukin-1 by a soluble receptor binding assay

    International Nuclear Information System (INIS)

    Riske, F.; Chizzonite, R.; Nunes, P.; Stern, A.S.

    1990-01-01

    A soluble receptor binding assay has been developed for measuring human interleukin-1 alpha (IL-1 alpha), human IL-1 beta, and mouse IL-1 alpha. The assay is based on a competition between unlabeled IL-1 and 125I-labeled mouse recombinant IL-1 alpha for binding to soluble IL-1 receptor prepared from mouse EL-4 cells. The assay measures only biologically active IL-1 folded in its native conformation. The ratio of human IL-1 alpha to human IL-1 beta can be measured in the same sample by a pretreatment step which removes human IL-1 beta from samples prior to assay. This technique has been used to monitor the purification of recombinant IL-1, and may be utilized to specifically and accurately measure bioactive IL-1 in human serum and cell culture supernatants

  8. Dynamic optical tweezers based assay for monitoring early drug resistance

    International Nuclear Information System (INIS)

    Wu, Xiaojing; Zhu, Siwei; Feng, Jie; Zhang, Yuquan; Min, Changjun; Yuan, X-C

    2013-01-01

    In this letter, a dynamic optical tweezers based assay is proposed and investigated for monitoring early drug resistance with Pemetrexed-resistant non-small cell lung cancer (NSCLC) cell lines. The validity and stability of the method are verified experimentally in terms of the physical parameters of the optical tweezers system. The results demonstrate that the proposed technique is more convenient and faster than traditional techniques when the capability of detecting small variations of the response of cells to a drug is maintained. (letter)

  9. Localized irradiations, Evaluation through ''comet assay''

    International Nuclear Information System (INIS)

    Giorgio, M.D.; Taja, M.R.; Nasazzi, N.B.; Bustos, N.; Cavalieri, H.; Bolgiani, A.

    2000-01-01

    During the last 50 years various radiation accidents involving localized irradiations occurred, resulting mainly from improper handling of sealed sources Co 60 , Cs 137 or Ir 192 at workplaces for industrial gammagraphy. Severe skin reaction may develop at the contact sites. Such inhomogeneous irradiations lead to a differential exposure of lymphocytes in lymphatic tissues or other organs that may recirculate into the peripheral blood producing a mixed irradiated and unirradiated population of lymphocytes. Applying the mathematical models ''Contaminated Poisson'' of Dolphin and Qdr method of Sasaki, a mean dose in the irradiated body area and its size can be estimated from unstable chromosome aberration scoring. This give an indication of the proportion of haemopoietic stem cell compartment involved in the overexposure. There are also different biophysical techniques that can give responses in biological dosimetry. The ''Comet Assay'' (single cell gel electrophoresis) is a sensitive and rapid method for DNA strand break detection in individual cells. The advantages of the technique include: collection of data at the level of individual cell; the need for small numbers of cells per sample; its sensitivity for detecting DNA damage and that virtually any eukaryote cell population is amenable to analysis. The objective of this work is to apply ''Comet Assay'' method to evaluate the effect of radiation on skin and subcutaneous tissues, differentiating irradiated from unirradiated body areas. It could provide a useful tool to estimate the extension and the dose in the irradiated region, contributing with the current techniques. In this first study, we evaluate the alkaline comet assay as a method for detection of DNA radiation induced damage in keratinocytes from primary culture obtained from full thickness skin biopsies of patients requiring grafts. Skin and, particularly, keratinocytes were selected as an appropriate cellular system due to: Skin, the first barrier

  10. Correlation between the genotoxicity endpoints measured by two different genotoxicity assays: comet assay and CBMN assay

    Directory of Open Access Journals (Sweden)

    Carina Ladeira

    2015-06-01

    The results concerning of positive findings by micronuclei and non significant ones by comet assay, are corroborated by Deng et al. (2005 study performed in workers occupationally exposed to methotrexate, also a cytostatic drug. According to Cavallo et al. (2009, the comet assay seems to be more suitable for the prompt evaluation of the genotoxic effects, for instance, of polycyclic aromatic hydrocarbons mixtures containing volatile substances, whereas the micronucleus test seems more appropriate to evaluate the effects of exposure to antineoplastic agents. However, there are studies that observed an increase in both the comet assay and the micronucleus test in nurses handling antineoplastic drugs, although statistical significance was only seen in the comet assay, quite the opposite of our results (Maluf & Erdtmann, 2000; Laffon et al. 2005.

  11. Test plan for Digface Chemical and Radiation Assay System

    International Nuclear Information System (INIS)

    Akers, D.W.

    1993-07-01

    The Digface Chemical and Radiation Assay System (CRAS) Project will develop a sensor using Prompt Gamma Neutron Activation Analysis (PGNAA) that can detect the present of hazardous chemicals and radioactive materials. The CRAS is being designed for in situ assay of closed drums and contaminated soils for gamma-ray emitting radionuclides and hazardous elements. The CRAS is based upon the use of 252 Cf PGNAA with a germanium gamma-ray spectrometer as the analyzer. Tasks being performed include determining detection limits for a number of hazardous chemicals and assessing matrix and transmission effects through soil. Initial analyses suggest that the technique is applicable to a number of hazardous materials such as trichloroethane and carbon tetrachloride

  12. Assay of /sup 32/Si by liquid scintillation counting

    Energy Technology Data Exchange (ETDEWEB)

    Cumming, J B [Brookhaven National Lab., Upton, NY (USA)

    1983-10-03

    Application of the radioactivity of /sup 32/Si to problems of interest in geo- and cosmo-chemistry has been hampered by uncertainties in the half-life of this nuclide. A procedure for the stimulation assay of /sup 32/Si and its /sup 32/P daughter utilizing a liquid scintillation detector in association with a pulse height analyzer is described. The results indicate that /sup 32/Si can be assayed to an accuracy of a few percent by liquid scintillation counting techniques which do not require the preparation of an organic Si derivative. Combination of the mean specific activity with the /sup 32/Si abundance determined by accelerator-based mass spectrometry gave the reported 101+-18 year half-life.

  13. Comparison of Different Promoter Methylation Assays in Breast Cancer

    Directory of Open Access Journals (Sweden)

    Karijn P. M. Suijkerbuijk

    2010-01-01

    Full Text Available Background: Promoter hypermethylation has emerged as a promising cancer biomarker. Currently, a large variety of quantitative and non-quantitative techniques is used to measure methylation in clinical specimens. Here we directly compared three commonly used methylation assays and assessed the influence of tissue fixation, target sequence location and the amount of DNA on their performance.

  14. Detection of irradiated onion by means of the comet assay

    International Nuclear Information System (INIS)

    Moreno Alvarez, Damaris L.; Prieto Miranda, Enrique Fco.; Carro Palacio, Sandra; Iglesia Enriquez, Isora

    2007-01-01

    The ionizing radiations are used as a harmless alternative treatment that it substitutes the employment of chemical treatments, which after their application in the food products can remain residuals not desired that they come to be carcinogenic. With the food irradiation is eliminated microorganisms and the storage time is prolonged, which produces benefits for the Food Industry and the consumers. In many countries the search of sensitive detecting methods of irradiated foods is promoted by the necessity of the assurance of the consumption of foods with nutritional quality and to test directly the radiation processing, for which several techniques have been developed, these are based on the changes that induce the ionizing radiations in the food products. A recommended method is the Comet Assay of DNA, it is approved by the European Committee of Standardization (EN 13784). The DNA molecule is very sensitive to gamma radiations even at low radiation dose, where the modifications produced in the molecule can be monitored for this analytical technique well-known as Comet Assay of DNA or Single Cell Gel Electrophoresis. The objective of the present paper was to evaluate the modifications of the DNA molecule of irradiated onions with the Comet Assay for several dose values, the onions were conserved at environment and refrigeration temperatures. The samples were irradiated in a self-shielding irradiator with 60 Co source, dose rate of 20.45 Gy/min and absorbed dose values of 0.5; 0.6; 0.8 and 1.0 kGy. This detection method demonstrates to be one sensitive and quick technique for the qualitative detection of irradiated onions. (author)

  15. Identification of radiation treatment of foods using novel technique of 'DNA comet assay'

    International Nuclear Information System (INIS)

    Khan, A.A.; Khan, H.M.; Wasim, M.A.

    2005-01-01

    Treatment of food using ionizing radiation is being progressively used in many countries to inactivate food pathogens, to eradicate pests and to extend shelf life thereby contributing to safer and more plentiful food supply. Food control agencies throughout the world need some reliable, simple and rapid methods for the detection foods to ensure free choice of consumer and to enforce labeling. The DNA comet assay offers great potential as a rapid tool to screen irradiated and unirradiated samples of several kinds of foods. In the present study samples of fresh and frozen beef has investigated for the detection of irradiation treatment. The samples were subjected to radiation doses of 0,4.5 and 7 KGy and were stored in freezer before analysis. The cells were extracted into cold PBS solutions, embedded into agarose gel on microscope slides, lysed and eletrophoressed at a voltage of 2V/cm for 2 minutes. The fragmented DNA as a irradiation treatment was stretched in the gel producing the dose dependent comets. These comets were visible using a simple transmission microscope after silver staining. The controlled and irradiation samples of meat were clearly distinguishable on the basis of the stained patterns of DNA in from of round or conical intact cells for unirradiated samples or in from of comets for irradiated samples. It is therefore concluded that DNA comet Assay offers a potential to screen unirradiated and irradiated meat samples. (author)

  16. Detection of radiation treatment of meat by novel techniques of DNA comet assay

    International Nuclear Information System (INIS)

    Khan, A.A.; Khan, H.M.

    2002-01-01

    Treatment of food to ionizing radiation is being progressively used in many countries to inactivate food pathogens, to eradicate pests and to extend shelf life; thereby contributing to safer and more plentiful food supply. Food control agencies throughout the world need some reliable, simple and rapid methods for detection of irradiated foods to ensure free choice of consumer and to enforce labeling. The DNA comet assay offers great potential as a rapid tool to screen irradiated and unirradiated samples of several kinds of foods. In the present study, frozen beef has been investigated for detection of irradiation treatment. The samples were subjected to radiation doses of 0,4,5 and 7.0 kGy and were stored in freezer before analysis. The cells were extracted into cold PBS solutions, embedded into the agarose gel on microscope slides, lysed and electrophoressed at a voltage of 2v/cm for 2 min. The fragmented DNA as a result of irradiation treatment was stretched in the gel producing the dose dependent comets. These comets were visible using a simple transmission microscope after silver staining. The controlled and irradiated samples of meat were clearly distinguishable on the basis of the stained patterns of DNA in form of round or conical intact cells for unirradiated samples or in form of comets for irradiated samples. It is therefore, concluded that 'DNA Comet Assay' offers a potential to screen unirradiated and irradiated meat samples. (author)

  17. Assessment of Genotoxicity of Ionizing radiation using Tradescantia-Comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Han, Min; Ryu, Tae Ho; Hyun, Kyung Man; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of); Wilhelmova, Nad [Institute of Experimental Botany, Prague (Czech Republic)

    2010-05-15

    Over the last two decades, several new methodologies for the detection of DNA damage have been developed. The comet assay is currently used in different areas of biological sciences to detect DNA damage. The comet assay, also called the single cell gel electrophoresis (SCGE) was first introduced by Ostling and Johanson as a microelectrophoretic technique for the direct visualization of DNA damage in individual cells. The comet assay, due to its simplicity, sensitivity and need of a few cells, is ideal as a short-term genotoxicity test. The comet assay can theoretically be applied to every type of eukaryotic cell, including plant cells. Plants are very useful as monitors of genetic effects caused by pollution in the atmosphere, water and soil. Although the genotoxic effects detected by Tradescantia tests cannot be associated with mutagenesis or even carcinogenesis in humans, these bioassays are very useful tools for screening the mutagenic potential in the environment. Experiments were conducted to study the genotoxic effects of ionizing radiations on the genome integrity, particularly of Tradescantia. The increasingly frequent use of Tradescantia as a sensitive environmental bioindicator of genotoxic effects. This study was designed to assess the genotoxicity of ionizing radiation using Tradescnatia-comet assay

  18. An automated immunoradiometric assay of thyrotrophin (TSH) in dried blood filter paper spots

    International Nuclear Information System (INIS)

    John, R.; Woodhead, J.S.

    1982-01-01

    An immunoradiometric two-site assay for thyrotrophin (TSH) in dried blood filter paper spots is described. The assay is automated by means of the Kemtek 3000 automated immunoassay system. The technique uses a 6.0 mm disc punched from the dried blood samples collected as part of the screening programme for phenylketonuria. The method is sensitive and precise, and results correlate well with those obtained in TSH assays of serum samples. The procedure is rapid, results being available within 24 h of receipt of samples. Of 25204 specimens so far screened by this assay, 99.9% have TSH levels less than 15 mU/l. One false positive result has been obtained and six confirmed cases of neonatal hypothyroidism detected, giving a prevalence of 1 in 4200. (Auth.)

  19. Quantitative comparison of in house irma/ria methods using reagents supplied in bulk with assays based on commercial kits

    International Nuclear Information System (INIS)

    Sajid, K.M.; Jafri, S.R.A.

    1997-01-01

    Due to high cost of commercial kit assays, local trials were started to establish low cost immunoassay techniques at MINAR, Multan. First available alternate of commercial kits was the use of matched reagents supplied in bulk by NETRIA through INMOL, Lahore under IAEA assistance. As quality is crucial in RIA estimations this laboratory collected passive quality control data of 50, 51 and 52 in-house assay batches of T3,T4 and TSH to compare with the same number of last Amerlex RIAs(successive lots). A qualitative comparison based on computerized data analysis shows linear correlation between the results of two assay systems with low and acceptable precision in T3 and T4 assays. In TSH assays both systems show high imprecision although Amerlex RIA system is relatively more precise than in-house TSH- IRMA. T3 and T4 assays in both the systems show wide working ranges covering all clinical regions. In TSH, working ranges of both the techniques do not cover all clinical regions. In-house TSH assay excludes below 5.5 mulU/ml, whereas Amerlex excludes levels below 4.5 mulL/ml. This may reduce the clinical efficacy of these tests. Amerlex-M T3 and T4 assays show high negative drift with relatively less between variation, whereas in-house assays show low positive drift with high between batch variation. (author)

  20. Applications of radioimmunoassay techniques in endocrine studies. Part of a coordinated programme on in vitro assay techniques

    International Nuclear Information System (INIS)

    Marusic, E.T.

    1977-04-01

    The final report consists of a description of the research done, a reference to where the abstract of the results obtained was published, and a list of the corresponding publications and of those in preparation. Work has been done on radioimmunoassay techniques for measuring plasma corticoid values, plasma renin activity (with own reagents), and clinical and research studies measuring aldosterone, corticosterone, and cortisol in control and hypophysectomized patients. Diagnosis of primary aldosteronism has been initiated by radioimmunoassay techniques. Another study concerned the mechanism of K ions on aldosterone production

  1. Immunological measurements on the disappearance of creatine kinase MM from the circulation. [Immunoradiometric assay

    Energy Technology Data Exchange (ETDEWEB)

    Wevers, R A; van Landeghem, A A.J.; Mul-Steinbusch, M W.F.J.; Bijdendijk, J G; Weerts, P; Kloeg, P; Soons, J B.J. [Rijksuniversiteit Utrecht (Netherlands)

    1983-07-15

    Both a two-site immunoradiometric assay and a two-site enzyme-linked immunosorbent assay for creatine kinase MM are described. Linearity, reproducibility and cross-reactivity of the assays are satisfactory. Creatine kinase MM incubated in a pH-controlled serum matrix loses its activity, but has its antigenic determinants affected as well. Of all the techniques used, only the immunoradiometric assay is capable of measuring part of the inactivated enzyme. Measurements with this assay on the sera of patients after a myocardial infarction show identical results for enzyme activity and creatine kinase protein quantity. The in vitro disappearance rate of creatine kinase activity is slow compared with the in vivo half-life of the enzyme. These two observations lead to the conclusion that creatine kinase is removed from the circulation long before it is inactivated in the blood stream.

  2. A non-isotopic assay uses bromouridine and RNA synthesis to detect DNA damage responses.

    Science.gov (United States)

    Hasegawa, Mayu; Iwai, Shigenori; Kuraoka, Isao

    2010-06-17

    Individuals with inherited xeroderma pigmentosum (XP) disorder and Cockayne syndrome (CS) are deficient in nucleotide excision repair and experience hypersensitivity to sunlight. Although there are several diagnostic assays for these disorders, the recovery of RNA synthesis (RRS) assay that can discriminate between XP cells and CS cells is very laborious. Here, we report on a novel non-radioisotope RRS assay that uses bromouridine (a uridine analog) as an alternative to (3)H-uridine. This assay can easily detect RNA polymerase I transcription in nucleoli and RNA polymerase II transcription in nuclei. The non-RI RSS assay also can rapidly detect normal RRS activity in HeLa cells. Thus, this assay is useful as a novel and easy technique for CS diagnosis. Because RRS is thought to be related to transcription-coupled DNA repair, which is triggered by the blockage of transcriptional machinery by DNA lesions, this assay may be of use for analysis of DNA repair, transcription, and/or genetic toxicity. Copyright 2010 Elsevier B.V. All rights reserved.

  3. Microfluorometric mithramycin assay for quantitating the effects of immunotoxicants on lymphocyte activation

    International Nuclear Information System (INIS)

    Quattrone, A.J.; Ranney, D.F.

    1981-01-01

    A semiautomated, microfluorometric assay has been developed for the detection of toxicant-induced changes in lymphocyte DNA content at standard intervals after mitogen activation. DNA is quantitated by solubilizing the cells and determining the fluorescence enhancement that results from formation of the highly specific mithramycin:DNA adduct. The limit of detection is 0.21 μg (30,000 resting cell equivalents) per microliter well. Correlation with the less sensitive, nonautomatable, diphenylamine DNA assay give a correlation coefficient r = 0.91. Prototype substances representative of true immunotoxicants (prostaglandin E 2 ) and common interfering substances (thymidine at 14 M) have been tested. The latter substance produces false positive results in the standard [ 3 H] thymidine assay. The mithramycin assay does not inappropriately detect this interfering substance. It has the characteristics of a highly specific, accurate technique of screening and quantitating immunotoxic drugs, agents, and mediators in patient sera and other complex biological fluids

  4. Quantitation of the receptor for urokinase plasminogen activator by enzyme-linked immunosorbent assay

    DEFF Research Database (Denmark)

    Rønne, E; Behrendt, N; Ploug, M

    1994-01-01

    variant of uPAR, suPAR, has been constructed by recombinant technique and the protein content of a purified suPAR standard preparation was determined by amino acid composition analysis. The sensitivity of the assay (0.6 ng uPAR/ml) is strong enough to measure uPAR in extracts of cultured cells and cancer......Binding of the urokinase plasminogen activator (uPA) to a specific cell surface receptor (uPAR) plays a crucial role in proteolysis during tissue remodelling and cancer invasion. An immunosorbent assay for the quantitation of uPAR has now been developed. This assay is based on two monoclonal...... antibodies recognizing the non-ligand binding part of this receptor, and it detects both free and occupied uPAR, in contrast to ligand-binding assays used previously. In a variant of the assay, the occupied fraction of uPAR is selectively detected with a uPA antibody. To be used as a standard, a soluble...

  5. COMPARATIVE ANALYSIS OF BLOOD GROUPING IN HEALTHY BLOOD DONOR USING GEL CARD TECHNIQUE AND TUBE METHOD

    Directory of Open Access Journals (Sweden)

    Muhammad Usman

    2016-12-01

    Full Text Available Blood grouping is a vital test in pre-transfusion testing. Both tube and gel agglutination assays are used for ABO grouping. The main object of this study was to compare ABO grouping and D typing on tube and gel agglutination assay in order to assess the efficacy of each technique. A total of 100 healthy blood donors irrespective of age and sex were included in this study. Results showed that there is no significant difference between these two techniques. However, in 10 samples it was detected that the reaction strength in serum ABO grouping by gel agglutination assay is varied by only one grade when compared to tube agglutination assay. Due to numerous positive effects of gel assay it is more beneficial to implement this technique in the setups where blood banks bear heavy routine work load.

  6. Sensitive microplate assay for the detection of proteolytic enzymes using radiolabeled gelatin

    International Nuclear Information System (INIS)

    Robertson, B.D.; Kwan-Lim, G.E.; Maizels, R.M.

    1988-01-01

    A sensitive, microplate assay is described for the detection of a wide range of proteolytic enzymes, using radio-iodine-labeled gelatin as substrate. The technique uses the Bolton-Hunter reagent to label the substrate, which is then coated onto the wells of polyvinyl chloride microtiter plates. By measuring the radioactivity released the assay is able to detect elastase, trypsin, and collagenase in concentrations of 1 ng/ml or less, while the microtiter format permits multiple sample handling and minimizes sample volumes required for analysis

  7. Microbead agglutination based assays

    KAUST Repository

    Kodzius, Rimantas

    2013-01-21

    We report a simple and rapid room temperature assay for point-of-care (POC) testing that is based on specific agglutination. Agglutination tests are based on aggregation of microbeads in the presence of a specific analyte thus enabling the macroscopic observation. Such tests are most often used to explore antibody-antigen reactions. Agglutination has been used for protein assays using a biotin/streptavidin system as well as a hybridization based assay. The agglutination systems are prone to selftermination of the linking analyte, prone to active site saturation and loss of agglomeration at high analyte concentrations. We investigated the molecular target/ligand interaction, explaining the common agglutination problems related to analyte self-termination, linkage of the analyte to the same bead instead of different microbeads. We classified the agglutination process into three kinds of assays: a two- component assay, a three-component assay and a stepped three- component assay. Although we compared these three kinds of assays for recognizing DNA and protein molecules, the assay can be used for virtually any molecule, including ions and metabolites. In total, the optimized assay permits detecting analytes with high sensitivity in a short time, 5 min, at room temperature. Such a system is appropriate for POC testing.

  8. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases

    Directory of Open Access Journals (Sweden)

    Pravas Ranjan Sahoo

    2016-05-01

    Full Text Available India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  9. Loop mediated isothermal amplification: An innovative gene amplification technique for animal diseases.

    Science.gov (United States)

    Sahoo, Pravas Ranjan; Sethy, Kamadev; Mohapatra, Swagat; Panda, Debasis

    2016-05-01

    India being a developing country mainly depends on livestock sector for its economy. However, nowadays, there is emergence and reemergence of more transboundary animal diseases. The existing diagnostic techniques are not so quick and with less specificity. To reduce the economy loss, there should be a development of rapid, reliable, robust diagnostic technique, which can work with high degree of sensitivity and specificity. Loop mediated isothermal amplification assay is a rapid gene amplification technique that amplifies nucleic acid under an isothermal condition with a set of designed primers spanning eight distinct sequences of the target. This assay can be used as an emerging powerful, innovative gene amplification diagnostic tool against various pathogens of livestock diseases. This review is to highlight the basic concept and methodology of this assay in livestock disease.

  10. An improved autoradiographic technique for the detection of antibody-forming cells

    International Nuclear Information System (INIS)

    Mason, D.W.

    1976-01-01

    An autoradiographic technique for the detection of antibody-forming cells has been developed for the assay of anti-DNP responses. The lymphoid cell suspension to be assayed was allowed to sediment on to a glass slide coated with DNP-conjugated gelatin to which the secreted antibody bound during subsequent incubation. The bound antibody and its Ig class was revealed by a second incubation using 125 I-anti-immunoglobulin reagents followed by autoradiography. Studies on the sensitivity and specificity of the method are presented and its advantages over other techniques described. The technique should be readily applicable to other haptens

  11. Comparison of four techniques for the confirmatory identification of Neisseria gonorrhoeae

    International Nuclear Information System (INIS)

    Jacobs, P.F.

    1980-01-01

    The authors have compared four assay techniques for the confirmatory identification of Neisseria gonorrhoeae. On of these is a radiometric assay, based on the measurement of liberated radiolabelled CO 2 from metabolized carbohydrates which have been tagged with 14 C. The assay uses glucose, maltose and fructose as its differentiating sugars, plus the ONPG reaction, and can be read in three hours. (Auth.)

  12. Low-Level Waste Drum Assay Intercomparison Study

    International Nuclear Information System (INIS)

    Greutzmacher, K.; Kuzminski, J.; Myers, S. C.

    2003-01-01

    Nuclear waste assay is an integral element of programs such as safeguards, waste management, and waste disposal. The majority of nuclear waste is packaged in drums and analyzed by various nondestructive assay (NDA) techniques to identify and quantify the radioactive content. Due to various regulations and the public interest in nuclear issues, the analytical results are required to be of high quality and supported by a rigorous Quality Assurance (QA) program. A valuable QA tool is an intercomparison program in which a known sample is analyzed by a number of different facilities. While transuranic waste (TRU) certified NDA teams are evaluated through the Performance Demonstration Program (PDP), low-level waste (LLW) assay specialists have not been afforded a similar opportunity. NDA specialists from throughout the DOE complex were invited to participate in this voluntary drum assay intercomparison study that was organized and facilitated by the Solid Waste Operations and the Safeguards Science and Technology groups at the Los Alamos National Laboratory and by Eberline Services. Each participating NDA team performed six replicate blind measurements of two 55-gallon drums with relatively low-density matrices (a 19.1 kg shredded paper matrix and a 54.4 kg mixed metal, rubber, paper and plastic matrix). This paper presents the results from this study, with an emphasis on discussing the lessons learned as well as desirable follow up programs for the future. The results will discuss the accuracy and precision of the replicate measurements for each NDA team as well as any issues that arose during the effort

  13. Real‑time, fast neutron detection for stimulated safeguards assay

    International Nuclear Information System (INIS)

    Joyce, Malcolm J.; Adamczyk, Justyna; Plenteda, Romano; Aspinall, Michael D.; Cave, Francis D.

    2015-01-01

    The advent of low‑hazard organic liquid scintillation detectors and real‑time pulse‑shape discrimination (PSD) processing has suggested a variety of modalities by which fast neutrons, as opposed to neutrons moderated prior to detection, can be used directly to benefit safeguards needs. In this paper we describe a development of a fast‑neutron based safeguards assay system designed for the assessment of 235 U content in fresh fuel. The system benefits from real‑time pulse‑shape discrimination processing and auto‑calibration of the detector system parameters to ensure a rapid and effective set‑up protocol. These requirements are essential in optimising the speed and limit of detection of the fast neutron technique, whilst minimising the intervention needed to perform the assay.

  14. Two-monoclonal-antibody sandwich-type assay for thyrotropin, with use of an avidin-biotin separation technique

    International Nuclear Information System (INIS)

    Odell, W.D.; Griffin, J.; Zahradnik, R.

    1986-01-01

    We have developed a sensitive, specific, noncompetitive, sandwich-type radioimmunoassay for human thyrotropin (hTSH), which can be performed in 30 min. The assay involves two monoclonal antibodies, selected for high affinity and specificity and also for reaction against antigenic sites on hTSH that are distal from each other. One of these antibodies is labeled with 125 I; the other is conjugated covalently to biotin. Polystyrene beads were also conjugated covalently to biotin. After conjugation, the beads were incubated with avidin. These beads represent a rapid, simple method for separating hTSH-bound antibody from free antibody. The biotin-antibody-hTSH- 125 I-labeled antibody complexes bind to the beads and hTSH concentration is directly related to counts per minute. This assay can detect hTSH at a concentration of 0.06 milli-unit/L in serum

  15. Development of RIA reagents for detection of serum T3 using magnetic assay method

    International Nuclear Information System (INIS)

    Prasarnleungwirai, P.; Suprarop, P.; Tanjoy, V.; Saraneeyatham, T.

    1992-01-01

    The T3 RIA assay is widely used for diagnosis of the disease caused by malfunction of thyroid organ. The common methods used are: 1. Liquid phase, second antibody and PEG. 2. Solid phase, cellulose or sepharose. Since these two techniques need expensive refrigerated centrifuges to separate the bound from free, small labs in the remote part of the countries whose budgets are limited cannot use this technique. Magnetic assay technique for T3 detection employ strong magnetic plate for separation thus eliminate the use of costly refrigerated centrifuge. Preparation of magnetizable cellulose particles conjugated to proper anti T3 serum is done by activation of selected magnetizable cellulose particle with CDI (1,1 carbonyl dimidazole). The activated magnetic particles are then coupled to specific antibody in borate buffer pH 8. The assessment of prepared magnetic particle capture anti T3 are done by selecting the proper concentration of anti T3 magnetic particles. The result from both magnetic technique and second antibody/PEG are compared, and they show good correlation

  16. Comparison of destructive and nondestructive assay of heterogeneous salt residues

    International Nuclear Information System (INIS)

    Fleissner, J.G.; Hume, M.W.

    1986-01-01

    To study problems associated with nondestructive assay (NDA) measurements of molten salt residues, a joint study was conducted by the Rocky Flats Plant, Golden, CO and Mound Laboratories, Miamisburg, OH. Extensive NDA measurements were made on nine containers of molten salt residues by both Rocky Flats and Mound followed by dissolution and solution quantification at Rocky Flats. Results of this study verify that plutonium and americium can be measured in such salt residues by a new gamma-ray spectral analysis technique coupled with calorimetry. Biases with respect to the segmented gamma-scan technique were noted

  17. An improved in vitro micronucleus assay to biological dosimetry

    International Nuclear Information System (INIS)

    Ocampo, Ivette Z.; Okazaki, Kayo; Vieira, Daniel P.

    2013-01-01

    The biological dosimetry is widely used to estimate the absorbed dose in people occupationally or accidentally exposed to the radiation for a better medical treatment, minimizing the harmful effects. Many techniques and methods have been proposed to detect and quantify the radioinduced lesions in genetic material, among them, the micronucleus (MN) assay. In the present study, we proposed an improved in vitro micronucleus technique that is rapid, sensitive and with minor cell manipulations. Assays were carried out with human tumor cells (MCF-7) seeded (3x10 4 cells) in slides placed into Petri dishes. Adherent cells were maintained with RPMI medium, supplemented with fetal calf serum, 1 % antibiotics, cytochalasin B (2 μg/mL), and incubated at 37 deg C in the presence of 5% CO2 for 72h. Cells were pre-treated for 24h with aminoguanidine, a nitric oxide synthase inhibitor. Nitric oxide is an intracellular free-radical, involved in DNA double-strand break repair mechanisms. After incubation, adherent cells on slides were briefly fixed with paraformaldehyde and stained with acridine orange (100 μg/mL) for analysis through fluorescence microscopy. Dye fluorescence permitted accurate discrimination between nuclei and micronuclei (bright green) and cytoplasm (red), and made possible a faster counting of binucleated cells. Aminoguanidine (2 mM) induced significant increase (p< 0.05) in frequencies of binucleated cells with micronuclei and in the number of micronuclei per binucleated cell. Data showed that proposed modifications permit to understand an early aspect of NO inhibition and suggested an improved protocol to MN assays. (author)

  18. Conceptual design of the special nuclear material nondestructive assay and accountability system for the HTGR fuel refabrication pilot plant

    International Nuclear Information System (INIS)

    Jenkins, J.D.; McNeany, S.R.; Rushton, J.E.

    1975-07-01

    The conceptual design of the fissile material assay and accountability system for the HTGR refabrication pilot plant has been established. The primary feature affecting the design is the high, time varying, gamma activity of the process material due to the unavoidable presence of uranium-232. This imposes stringent requirements for remote operation and remote maintainability of system components. At the same time, the remote operation lends itself to implementation of an automated data collection and processing system for real-time accountability. The high time-varying gamma activity of the material also precludes application of a number of techniques presently employed for light-water reactor fuel assay. The techniques selected for application in the refabrication facility are (1) active thermal neutron interrogation with fast-fission or delayed-neutron counting for fuel-rod and small-sample assay, (2) calorimetry for high-level waste assay, and (3) passive gamma scanning for low-level waste assay, and rapid on-line relative rod-loading measurements. The principal nondestructive assay subsystems are identified as (1) on-line devices for 100 percent product fuel rod assay and quality control, (2) a multipurpose device in the sample inspection laboratory for small- sample assay and secondary standards calibration, and (3) equipment for assay of high- and low-uranium content scrap and waste materials. A data processing system, which coordinates data from these subsystems with information from other process control sensors, is included to provide real-time material balance information. (U.S.)

  19. Microculture virus titration--a simple colourimetric assay for influenza virus titration.

    Science.gov (United States)

    Levi, R; Beeor-Tzahar, T; Arnon, R

    1995-03-01

    Influenza antigens can be detected by several well established methods. However, when it is important to determine the titre of infective virions, a bioassay should be employed. The standard and the most widely used tests for influenza infectivity are titration carried out in embryonated hen eggs, or the plaque assay employing tissue culture techniques. A simple colourimetric assay for influenza virus detection and titration is described. Samples of allantoic fluid or mice lung homogenates were used to infect MDCK cultures in microplate wells. After an incubation period, the tetrazolium (MTT) colourimetric assay was used to determine cell viability, and when compared to untreated culture control enabled the detection and titration of several influenza strains. When samples were assayed simultaneously in embryonated eggs and by the MCVT method, good correlation in determined titres was obtained. The availability of an additional method for influenza titration allows more flexibility in the choice of titration method according to the specific needs of the study. Furthermore, this method lends itself to full automatization. Similar procedures should also be applicable to titration of other cytopathic viruses.

  20. Fluorescence-based assay as a new screening tool for toxic chemicals

    Science.gov (United States)

    Moczko, Ewa; Mirkes, Evgeny M.; Cáceres, César; Gorban, Alexander N.; Piletsky, Sergey

    2016-09-01

    Our study involves development of fluorescent cell-based diagnostic assay as a new approach in high-throughput screening method. This highly sensitive optical assay operates similarly to e-noses and e-tongues which combine semi-specific sensors and multivariate data analysis for monitoring biochemical processes. The optical assay consists of a mixture of environmental-sensitive fluorescent dyes and human skin cells that generate fluorescence spectra patterns distinctive for particular physico-chemical and physiological conditions. Using chemometric techniques the optical signal is processed providing qualitative information about analytical characteristics of the samples. This integrated approach has been successfully applied (with sensitivity of 93% and specificity of 97%) in assessing whether particular chemical agents are irritating or not for human skin. It has several advantages compared with traditional biochemical or biological assays and can impact the new way of high-throughput screening and understanding cell activity. It also can provide reliable and reproducible method for assessing a risk of exposing people to different harmful substances, identification active compounds in toxicity screening and safety assessment of drugs, cosmetic or their specific ingredients.

  1. Comparative Study of Wheatley’s Trichrome Stain and In-vitro Culture against PCR Assay for the Diagnosis of Blastocystis sp. in Stool Samples

    Directory of Open Access Journals (Sweden)

    Nabilah Amelia MOHAMMAD

    2018-03-01

    Full Text Available Background: This study evaluated the performance of routine permanent stain and cultivation method in comparison with polymerase chain reaction assay as the reference technique to detect Blastocystis sp.Methods: A cross-sectional study was conducted among aboriginal populations that reside in Pahang, Peninsular Malaysia in Feb to Mar 2015. A total of 359 stool samples were examined using Wheatley’s trichrome stain, in-vitro cultivation in Jones’ medium and PCR assay. Positive amplicons were subjected to sequencing and phylogenetic analysis.Results: Fifty-six (15.6% samples were detected positive with Blastocystis sp. by Wheatley’s trichrome stain and 73 (20.3% by in-vitro culture, while PCR assay detected 71 (19.8% positive samples. Detection rate of Blastocystis sp. was highest in combination of microscopic techniques (27.9%. The sensitivity and specificity of Wheatley’s trichrome staining and in-vitro culture techniques compared to PCR assay were 49.3% (95% CI: 37.2-61.4 and 92.7% (95% CI: 89.1-95.4 and 39.4% (95% CI: 28.0-51.8 and 84.4% (95% CI: 79.7-88.4, respectively. However, the sensitivity [60.6% (95% CI: 48.3-71.9] of the method increased when both microscopic techniques were performed together. False negative results produced by microscopic techniques were associated with subtype 3. The agreement between Wheatley’s trichrome stain, in-vitro culture and combination of microscopic techniques with PCR assay were statistically significant by Kappa statistics (Wheatley’s trichrome stain: K = 0.456, P<0.001; in-vitro culture: K = 0.236, P<0.001 and combination techniques: K = 0.353, P<0.001.Conclusion: The combination of microscopic technique is highly recommended to be used as a screening method for the diagnosis of Blastocystis infection either for clinical or epidemiological study to ensure better and accurate diagnosis.

  2. Assay-specific decision limits for two new automated parathyroid hormone and 25-hydroxyvitamin D assays.

    Science.gov (United States)

    Souberbielle, Jean-Claude; Fayol, Véronique; Sault, Corinne; Lawson-Body, Ethel; Kahan, André; Cormier, Catherine

    2005-02-01

    The recent development of nonradioactive automated assays for serum parathyroid hormone (PTH) and 25-hydroxyvitamin D (25OHD) has made measurement of these two hormones possible in many laboratories. In this study, we compared two new assays for PTH and 25OHD adapted on an automated analyzer, the LIAISON, with two manual immunoassays used worldwide. We studied 228 osteoporotic patients, 927 healthy individuals, 38 patients with primary hyperparathyroidism, and 167 hemodialyzed patients. Serum PTH was measured with the Allegro and the LIAISON assays, and 25OHD was measured with DiaSorin RIA and the LIAISON assay. Regression analysis was used to calculate decision thresholds for the LIAISON assays that were equivalent to those of the Allegro PTH and DiaSorin 25OHD assays. The 25OHD concentrations obtained with the LIAISON assay and the RIA in osteoporotic patients were well correlated (r = 0.83; P 50 nmol/L as eligible for the reference population for the LIAISON PTH assay. In this group, the 3rd-97th percentile interval for LIAISON PTH was 3-51 ng/L. Considering upper reference limits of 46 and 51 ng/L for the Allegro and LIAISON assays, respectively, the frequency of above-normal PTH concentrations in patients with primary hyperparathyroidism was similar in both assays. Regression analysis between serum PTH measured by the Allegro and LIAISON assays in 167 hemodialyzed patients and the corresponding Bland-Altman analysis of these data suggest that the LIAISON PTH assay tends to read higher than the Allegro assay at low concentrations but lower at high concentrations (>300 ng/L). Because clinical decision limits for both PTH and 25OHD should be assay specific, we propose equivalences between these assays and two manual assays used worldwide. These assay-specific decision limits should help potential users of the LIAISON PTH and 25OHD assays.

  3. Targeting Anti-Cancer Active Compounds: Affinity-Based Chromatographic Assays

    OpenAIRE

    de Moraes, Marcela Cristina; Cardoso, Carmen Lucia; Seidl, Claudia; Moaddel, Ruin; Cass, Quezia Bezerra

    2016-01-01

    Affinity-based chromatography assays encompass the use of solid supports containing immobilized biological targets to monitor binding events in the isolation , identification and/or characterization of bioactive compounds. This powerful bioanalytical technique allows the screening of potential binders through fast analyses that can be directly performed using isolated substances or complex matrices. An overview of the recent researches in frontal and zonal affinity-based chromatography screen...

  4. Localized irradiations, evaluation through 'Comet Assay'

    International Nuclear Information System (INIS)

    Di Giorgio, Marina; Taja, Maria R.; Nasazzi, Nora B.; Bustos, N.; Cavalieri, H.; Bolgiani, A.

    2000-01-01

    During the last 50 years various radiation accidents involving localized irradiations occurred, resulting mainly from improper handling of sealed sources of Cobalt 60, Cesium 137 or Iridium 192 at work placed for industrial gammagraphy and other radiation sources. Severe skin reaction may developed at the contact sites. Such inhomogeneous irradiations lead to a differential exposure of lymphocytes in lymphatic tissues or other organs that may recirculate into the peripheral blood producing a mixed irradiated and unirradiated population of lymphocytes. Applying the mathematical models 'Contaminated Poisson' of Dolphin and Qdr method of Sasaki, a mean dose in the irradiated body area and its size can be estimated from unstable chromosome aberration scoring. There are also different biophysical techniques that can give response in localized irradiations. Biological dosimetry is a necessary complement to physical and clinical dosimetries. Thus, there is increasing interest in the assessment of biological markers that permit the detection of radiation induced damage in the localized irradiations. The 'Comet Assay' (single cell gel electrophoresis) is a sensitive, rapid and relatively inexpensive method for measuring DNA damage in individual cells. Single cells are embedded in agarose on microscope slides, lysed to remove the majority of the proteins, electrophoresed, then stained with ethidium bromide in order to visualize the DNA. When visualized using a fluorescent microscope, DNA of undamaged cells appears as a spherical mass occupying the cavity formed by the lysed cell. Following radiation damage, the smaller the fragment size and the grater the number of fragments of DNA, the grater the percentage of DNA that it is able to migrate in an electric field, forming a comet image. The assay can be performed under alkaline conditions to examine DNA single strand breaks (SSBs), or in non denaturing (neutral) conditions to measure double strand breaks (DSBs) in individual

  5. Application of expert system technology to nondestructive waste assay - initial prototype model

    Energy Technology Data Exchange (ETDEWEB)

    Becker, G.K.; Determan, J.C. [Idaho National Engineering and Environmental Lab., Idaho Falls, ID (United States)

    1997-11-01

    Expert system technology has been identified as a technique useful for filling certain types of technology/capability gaps in existing waste nondestructive assay (NDA) applications. In particular, expert system techniques are being investigated with the intent of providing on-line evaluation of acquired data and/or directed acquisition of data in a manner that mimics the logic and decision making process a waste NDA expert would employ. The space from which information and data sources utilized in this process is much expanded with respect to the algorithmic approach typically utilized in waste NDA. Expert system technology provides a mechanism to manage and reason with this expanded information/data set. The material presented in this paper concerns initial studies and a resultant prototype expert system that incorporates pertinent information, and evaluation logic and decision processes, for the purpose of validating acquired waste NDA measurement assays. 6 refs., 6 figs.

  6. Application of expert system technology to nondestructive waste assay - initial prototype model

    International Nuclear Information System (INIS)

    Becker, G.K.; Determan, J.C.

    1997-01-01

    Expert system technology has been identified as a technique useful for filling certain types of technology/capability gaps in existing waste nondestructive assay (NDA) applications. In particular, expert system techniques are being investigated with the intent of providing on-line evaluation of acquired data and/or directed acquisition of data in a manner that mimics the logic and decision making process a waste NDA expert would employ. The space from which information and data sources utilized in this process is much expanded with respect to the algorithmic approach typically utilized in waste NDA. Expert system technology provides a mechanism to manage and reason with this expanded information/data set. The material presented in this paper concerns initial studies and a resultant prototype expert system that incorporates pertinent information, and evaluation logic and decision processes, for the purpose of validating acquired waste NDA measurement assays. 6 refs., 6 figs

  7. West Valley Demonstration Project low-level and transuranic waste assay and methodology

    International Nuclear Information System (INIS)

    McVay, C.W.

    1987-03-01

    In the decontamination and decommissioning of the West Valley Nuclear Facility, waste materials are being removed and packaged in a variety of waste containers which require classification in accordance with USNRC 10 CFR 61 and DOE 5820.2 criteria. Low-Level and Transuranic waste assay systems have been developed to efficiently assay and classify the waste packages. The waste is assayed by segmented gamma scanning, passive neutron techniques, dose rate conversion, and/or radiochemical laboratory analysis. The systems are capable of handling all the waste forms currently packaged as part of the Project. The above systems produce a list of nuclides present with their concentrations and determines the classification of the waste packages based on criteria outlined in DOE Order 5820.2 and USNRC 10 CFR 61.55. 9 refs., 12 figs., 8 tabs

  8. Validation of the Filovirus Plaque Assay for Use in Preclinical Studies

    Directory of Open Access Journals (Sweden)

    Amy C. Shurtleff

    2016-04-01

    Full Text Available A plaque assay for quantitating filoviruses in virus stocks, prepared viral challenge inocula and samples from research animals has recently been fully characterized and standardized for use across multiple institutions performing Biosafety Level 4 (BSL-4 studies. After standardization studies were completed, Good Laboratory Practices (GLP-compliant plaque assay method validation studies to demonstrate suitability for reliable and reproducible measurement of the Marburg Virus Angola (MARV variant and Ebola Virus Kikwit (EBOV variant commenced at the United States Army Medical Research Institute of Infectious Diseases (USAMRIID. The validation parameters tested included accuracy, precision, linearity, robustness, stability of the virus stocks and system suitability. The MARV and EBOV assays were confirmed to be accurate to ±0.5 log10 PFU/mL. Repeatability precision, intermediate precision and reproducibility precision were sufficient to return viral titers with a coefficient of variation (%CV of ≤30%, deemed acceptable variation for a cell-based bioassay. Intraclass correlation statistical techniques for the evaluation of the assay’s precision when the same plaques were quantitated by two analysts returned values passing the acceptance criteria, indicating high agreement between analysts. The assay was shown to be accurate and specific when run on Nonhuman Primates (NHP serum and plasma samples diluted in plaque assay medium, with negligible matrix effects. Virus stocks demonstrated stability for freeze-thaw cycles typical of normal usage during assay retests. The results demonstrated that the EBOV and MARV plaque assays are accurate, precise and robust for filovirus titration in samples associated with the performance of GLP animal model studies.

  9. NDA technique for the assay of wet plutonium oxalate

    International Nuclear Information System (INIS)

    Marshall, R.S.; Canada, T.R.

    1980-01-01

    A method has been developed to quantitatively measure batches of wet plutonium oxalate. The method is based on a count of coincidence neutrons to which a correction is applied for the effects of neutron moderation by water. A therma-neutron coincidence counter (TNC) with two concentric rings of 3 He detectors provides the signal needed for the water correction. The signal is the ratio of neutron counts between the detector rings that changes with the percent of water in plutonium oxalate. To evaluate the measurement technique, 26 batches of plutonium oxalate were measured in an in-line TNC. The evaluation showed the measurements to be essentially unbiased and precise to 2.2%

  10. Quantification of urinary 5-hydroxyindoleacetic acid by in-house nitrosonaphthol reaction compared with nitrosonaphthol micro column chromatography and enzyme-linked immunosorbent assay

    Directory of Open Access Journals (Sweden)

    Joyce Matie Kinoshita da Silva

    2014-06-01

    Full Text Available The aim of this study was to compare the colorimetric "kit" and enzyme-linked immunosorbent assay (ELISA methods to quantify urinary 5-hydroxyindoleacetic acid through the Goldenberg's technique, exploring the potential of replacing it. 24-hour urine samples were tested by Goldenberg's assay and compared with kits. The agreement was almost perfect for the comparison of Goldenberg's assay with both colorimetric kit, and with ELISA kit, considering ≤ 7.5 mg/24h normal cutoff value. Therefore, both "kits" would be good alternatives to Goldenberg's technique due to practicality and agreement between values.

  11. Solid-phase assay for the phosphorylation of proteins blotted on nitrocellulose membrane filters

    International Nuclear Information System (INIS)

    Valtorta, F.; Schiebler, W.; Jahn, R.; Ceccarelli, B.; Greengard, P.

    1986-01-01

    A new procedure for the phosphorylation and assay of phosphoproteins is described. Proteins are solubilized from tissue samples, separated by polyacrylamide gel electrophoresis, transferred onto nitrocellulose membrane filters, and the blotted polypeptides are phyosphorylated with the catalytic subunit of cyclic AMP (adenosine 3':5'-monophosphate)-dependent protein kinase. The method was developed for the assay of dephosphosynapsin I, but it has also proven suitable for the phosphorylation of other proteins. The patterns of phosphorylation of tissue samples phosphorylated using the new method are similar to those obtained using the conventional test tube assay. Once phosphorylated, the adsorbed proteins can be digested with proteases and subjected to phosphopeptide mapping. The phosphorylated blotted proteins can also be analyzed by overlay techniques for the immunological detection of polypeptides

  12. Evaluation of a PCR assay for identification and differentiation of Campylobacter fetus subspecies

    DEFF Research Database (Denmark)

    Hum, S.; Quinn, K.; Brunner, J.

    1997-01-01

    methods were attributed to methodological differences used in various laboratories. Conclusion Our results indicate that misidentification of C fetus in routine diagnostic laboratories may be relatively common. The PCR assay evaluated gave rapid and reproducible results and is thus a valuable adjunctive......Objective To evaluate a polymerase chain reaction assay for identification of Campylobacter fetus and differentiation of the defined subspecies. Design Characterisation of bacterial strains by traditional phenotyping, polymerase chain reaction, a probabilistic identification scheme...... by traditional phenotypic methods and the PCR assay was found to be 80.8%. The polymerase chain reaction proved to be a reliable technique for the species and subspecies identification of C fetus; equivocal results were obtained in only two instances. Initial misidentifications by conventional phenotyping...

  13. In vitro and in vivo assay of radio-induced damage in Escherichia Coli, DNA labelled on thymidilic fragment

    International Nuclear Information System (INIS)

    Bonicel, A.

    1977-01-01

    A technique of rapid assay for a particular and very important damage, N-formamido (DNA), is described. Using this technique, the importance of radio-induced DNA damage can be evaluated before the repair enzymatic system takes place [fr

  14. Improved assay for thymine base damage in E. coli using high performance liquid chromatography

    International Nuclear Information System (INIS)

    Claycamp, H.G.

    1985-01-01

    A simple high performance liquid chromatography (HPLC) technique has been established for the simultaneous assay of thymine and thymidine radiation damage products. The HPLC procedure uses an isocratic mobile phase of 4% acetonitrile in 0.2 M ammonium dihydrogen phosphate (pH 5.0), a reversed-phase octadecylsilicate (5 micro-spherical packing) 0.45 x 25 cm column, and a variable wavelength UV detector. This procedure affords much better resolution than other published procedures that use 10 micron columns or separate assays for bases and nucleosides. For example, irradiation of 5 x 10 -3 M thymidine solutions have been performed to calibrate the system for base damage assays in E. coli. This yields up to 15 resolvable residues within 20 minutes. Sensitivity of the system (at 2210 nm) for 5,6- dihydrothymine (DHT) is about 10 -10 moles. Preliminary results show that this translates to about 0.4 DHT residues per 10 6 daltons of E. coli DNA. This is comparable to the sensitivities of monoclonal assays to thymine damage products that have recently been reported by others. Since it is feasible that the sensitivity of this system can be improved by 2-3 times, this HPLC technique should provide a simple and rapid means of detecting E. coli base damage release and base damage in nucleoside hydrolysates of DNA

  15. TRU waste-assay instrumentation and application in nuclear-facility decommissioning

    International Nuclear Information System (INIS)

    Umbarger, C.J.

    1982-01-01

    The Los Alamos TRU waste assay program is developing measurement techniques for TRU and other radioactive waste materials generated by the nuclear industry, including decommissioning programs. Systems are now being fielded for test and evaluation purposes at DOE TRU waste generators. The transfer of this technology to other facilities and the commercial instrumentation sector is well in progress. 6 figures

  16. Advances in Proteomic Techniques for Cytokine Analysis: Focus on Melanoma Research

    Directory of Open Access Journals (Sweden)

    Helena Kupcova Skalnikova

    2017-12-01

    Full Text Available Melanoma is a skin cancer with permanently increasing incidence and resistance to therapies in advanced stages. Reports of spontaneous regression and tumour infiltration with T-lymphocytes makes melanoma candidate for immunotherapies. Cytokines are key factors regulating immune response and intercellular communication in tumour microenvironment. Cytokines may be used in therapy of melanoma to modulate immune response. Cytokines also possess diagnostic and prognostic potential and cytokine production may reflect effects of immunotherapies. The purpose of this review is to give an overview of recent advances in proteomic techniques for the detection and quantification of cytokines in melanoma research. Approaches covered span from mass spectrometry to immunoassays for single molecule detection (ELISA, western blot, multiplex assays (chemiluminescent, bead-based (Luminex and planar antibody arrays, ultrasensitive techniques (Singulex, Simoa, immuno-PCR, proximity ligation/extension assay, immunomagnetic reduction assay, to analyses of single cells producing cytokines (ELISpot, flow cytometry, mass cytometry and emerging techniques for single cell secretomics. Although this review is focused mainly on cancer and particularly melanoma, the discussed techniques are in general applicable to broad research field of biology and medicine, including stem cells, development, aging, immunology and intercellular communication.

  17. The use of comet assay in plant toxicology: recent advances

    Directory of Open Access Journals (Sweden)

    Conceição LV Santos

    2015-06-01

    Full Text Available The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g. Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage.

  18. The use of comet assay in plant toxicology: recent advances

    Science.gov (United States)

    Santos, Conceição L. V.; Pourrut, Bertrand; Ferreira de Oliveira, José M. P.

    2015-01-01

    The systematic study of genotoxicity in plants induced by contaminants and other stress agents has been hindered to date by the lack of reliable and robust biomarkers. The comet assay is a versatile and sensitive method for the evaluation of DNA damages and DNA repair capacity at single-cell level. Due to its simplicity and sensitivity, and the small number of cells required to obtain robust results, the use of plant comet assay has drastically increased in the last decade. For years its use was restricted to a few model species, e.g., Allium cepa, Nicotiana tabacum, Vicia faba, or Arabidopsis thaliana but this number largely increased in the last years. Plant comet assay has been used to study the genotoxic impact of radiation, chemicals including pesticides, phytocompounds, heavy metals, nanoparticles or contaminated complex matrices. Here we will review the most recent data on the use of this technique as a standard approach for studying the genotoxic effects of different stress conditions on plants. Also, we will discuss the integration of information provided by the comet assay with other DNA-damage indicators, and with cellular responses including oxidative stress, cell division or cell death. Finally, we will focus on putative relations between transcripts related with DNA damage pathways, DNA replication and repair, oxidative stress and cell cycle progression that have been identified in plant cells with comet assays demonstrating DNA damage. PMID:26175750

  19. Assay strategies and methods for phospholipases

    International Nuclear Information System (INIS)

    Reynolds, L.J.; Washburn, W.N.; Deems, R.A.; Dennis, E.A.

    1991-01-01

    Of the general considerations discussed, the two issues which are most important in choosing an assay are (1) what sensitivity is required to assay a particular enzyme and (2) whether the assay must be continuous. One can narrow the options further by considering substrate availability, enzyme specificity, assay convenience, or the presence of incompatible side reactions. In addition, the specific preference of a particular phospholipase for polar head group, micellar versus vesicular substrates, and anionic versus nonionic detergents may further restrict the options. Of the many assays described in this chapter, several have limited applicability or serious drawbacks and are not commonly employed. The most commonly used phospholipase assays are the radioactive TLC assay and the pH-stat assay. The TLC assay is probably the most accurate, sensitive assay available. These aspects often outweigh the disadvantages of being discontinuous, tedious, and expensive. The radioactive E. coli assay has become popular recently as an alternative to the TLC assay for the purification of the mammalian nonpancreatic phospholipases. The assay is less time consuming and less expensive than the TLC assay, but it is not appropriate when careful kinetics are required. Where less sensitivity is needed, or when a continuous assay is necessary, the pH-stat assay is often employed. With purified enzymes, when free thiol groups are not present, a spectrophotometric thiol assay can be used. This assay is ∼ as sensitive as the pH-stat assay but is more convenient and more reproducible, although the substrate is not available commercially. Despite the many assay choices available, the search continues for a convenient, generally applicable assay that is both sensitive and continuous

  20. Fundamental and clinical evaluation of ''SCC RIABEAD'' kit for immunoradiometric assay of squamous cell carcinoma related antigen

    International Nuclear Information System (INIS)

    Koizumi, Mitsuru; Endo, Keigo; Nakajima, Kotoko

    1987-01-01

    A commercial ''SCC RIABEAD'' kit for immunoradiometric assay of squamous cell carcinoma related antigen (SCC antigen) was fundamentally and clinically evaluated. Laboratory performance was satisfactory for intra-assay and inter-assay reproducibility, recovery, and dilution, with rapid and simple measurement techniques. Seropositivity for SCC antigen was significantly higher for squamous cell carcinoma of the liver and uterine cervix than the other histology types. In the case of cervical squamous cell carcinoma, it increased with progressing disease. Post-treatment serum levels of SCC antigen returned to negative. SCC antigen is considered to be a useful tumor marker for these diseases. There was a good correlation between the measurement values obtained from the present and conventional (SCC RIAKIT) assays. The present assay remarkably decreased false-positive cases of pulmonary benign diseases. The results showed a ''SCC RIABEAD'' to be a favorable kit for immunoradiometric assay of SSC antigen, as compared with conventional assay kit. (Namekawa, K.)

  1. Development and evaluation of a nested-PCR assay for Senecavirus A diagnosis.

    Science.gov (United States)

    Feronato, Cesar; Leme, Raquel A; Diniz, Jaqueline A; Agnol, Alais Maria Dall; Alfieri, Alice F; Alfieri, Amauri A

    2018-02-01

    Senecavirus A (SVA) has been associated with vesicular disease in weaned and adult pigs and with high mortality of newborn piglets. This study aimed to establish a nested-PCR assay for the routine diagnosis of SVA infection. Tissue samples (n = 177) were collected from 37 piglets of 18 pig farms located in four different Brazilian states. For the nested-PCR, a primer set was defined to amplify an internal VP1 fragment of 316 bp of SVA genome. Of the 37 piglets, 15 (40.5%) and 23 (62.2%) were positive for the SVA in the RT-PCR and nested-PCR assays, respectively. The SVA RNA was detected in 61/177 (34.5%) samples with the RT-PCR, while the nested-PCR assay showed 84/177 (47.5%) samples with the virus (p PCR and nested-PCR assays, respectively. Nucleotide sequencing analysis revealed similarities of 98.7-100% among SVA Brazilian strains and of 86.6-98% with SVA strains from other countries. The nested-PCR assay in this study was suitable to recover the SVA RNA in biological specimens, piglets, and/or herds that were considered as negative in the RT-PCR assay, and is proposed for the routine investigation of the SVA infection in piglets, especially when other techniques are not available or when a great number of samples has to be examined.

  2. Detection of knockdown resistance (kdr mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods

    Directory of Open Access Journals (Sweden)

    Ball Amanda

    2007-08-01

    Full Text Available Abstract Background Knockdown resistance (kdr is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular techniques. However, there are few reports comparing the performance of these different assays. In this study, two new high-throughput assays were developed and compared with four established techniques. Methods Fluorescence-based assays based on 1 TaqMan probes and 2 high resolution melt (HRM analysis were developed to detect kdr alleles in An. gambiae. Four previously reported techniques for kdr detection, Allele Specific Polymerase Chain Reaction (AS-PCR, Heated Oligonucleotide Ligation Assay (HOLA, Sequence Specific Oligonucleotide Probe – Enzyme-Linked ImmunoSorbent Assay (SSOP-ELISA and PCR-Dot Blot were also optimized. The sensitivity and specificity of all six assays was then compared in a blind genotyping trial of 96 single insect samples that included a variety of kdr genotypes and African Anopheline species. The relative merits of each assay was assessed based on the performance in the genotyping trial, the length/difficulty of each protocol, cost (both capital outlay and consumable cost, and safety (requirement for hazardous chemicals. Results The real-time TaqMan assay was both the most sensitive (with the lowest number of failed reactions and the most specific (with the lowest number of incorrect scores. Adapting the TaqMan assay to use a PCR machine and endpoint measurement with a fluorimeter showed a slight reduction in sensitivity and specificity. HRM initially gave promising results but was more sensitive to both DNA quality and quantity and consequently showed a higher rate of failure and incorrect scores. The sensitivity and specificity of AS

  3. Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods

    Science.gov (United States)

    Bass, Chris; Nikou, Dimitra; Donnelly, Martin J; Williamson, Martin S; Ranson, Hilary; Ball, Amanda; Vontas, John; Field, Linda M

    2007-01-01

    Background Knockdown resistance (kdr) is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular techniques. However, there are few reports comparing the performance of these different assays. In this study, two new high-throughput assays were developed and compared with four established techniques. Methods Fluorescence-based assays based on 1) TaqMan probes and 2) high resolution melt (HRM) analysis were developed to detect kdr alleles in An. gambiae. Four previously reported techniques for kdr detection, Allele Specific Polymerase Chain Reaction (AS-PCR), Heated Oligonucleotide Ligation Assay (HOLA), Sequence Specific Oligonucleotide Probe – Enzyme-Linked ImmunoSorbent Assay (SSOP-ELISA) and PCR-Dot Blot were also optimized. The sensitivity and specificity of all six assays was then compared in a blind genotyping trial of 96 single insect samples that included a variety of kdr genotypes and African Anopheline species. The relative merits of each assay was assessed based on the performance in the genotyping trial, the length/difficulty of each protocol, cost (both capital outlay and consumable cost), and safety (requirement for hazardous chemicals). Results The real-time TaqMan assay was both the most sensitive (with the lowest number of failed reactions) and the most specific (with the lowest number of incorrect scores). Adapting the TaqMan assay to use a PCR machine and endpoint measurement with a fluorimeter showed a slight reduction in sensitivity and specificity. HRM initially gave promising results but was more sensitive to both DNA quality and quantity and consequently showed a higher rate of failure and incorrect scores. The sensitivity and specificity of AS-PCR, SSOP-ELISA, PCR Dot

  4. Appendix: a solution hybridization assay to detect radioactive globin messenger RNA nucleotide sequences

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J

    1976-09-15

    In view of the sensitivity and specificity of the solution hybridization assay for unlabeled globin mRNA a similar technique has been devised to detect radioactive globin mRNA sequences with unlabeled globin cDNA. Several properties of the hybridization reaction are presented since RNA kinetic experiments reported recently depend on the validity of this assay. Data on hybridization analysis of (/sup 3/H)RNA from mouse fetal liver or erythroleukemia cell cytoplasm are presented. These data indicate that the excess cDNA solution assay for radioactive globin mRNA detection is specific for globin mRNA sequences. It can be performed rapidly and is highly reproducible from experiment. It is at least 500-fold less sensitive than the assay for unlabeled globin mRNA, due to the RNAase backgrounds of 0.05 to 0.15 %. However, this limitation has not affected kinetic experiments with non-dividing fetal liver erythroid cells, which synthesize relatively large quantities of globin mRNA.

  5. Variables affecting viral plaque formation in microculture plaque assays using homologous antibody in a liquid overlay.

    Science.gov (United States)

    Randhawa, A S; Stanton, G J; Green, J A; Baron, S

    1977-05-01

    A liquid antibody microculture plaque assay and the variables that govern its effectiveness are described. The assay is based on the principle that low concentrations of homologous antibody can inhibit secondary plaque formation without inhibiting formation of primary plaques. Thus, clear plaques that followed a linear dose response were produced. The assay was found to be more rapid, less cumbersome, and less expensive than assays using agar overlays and larger tissue culture plates. It was reproducible, quantitative, and had about the same sensitivity as the agar overlay technique in measuring infectious coxsackievirus type B-3. It was more sensitive in assaying adenovirus type 3 and Western equine encephalomyelitis, vesicular stomatitis, Semliki forest, Sendai, Sindbis, and Newcastle disease viruses than were liquid, carboxymethylcellulose, and methylcellulose microculture plaque assays. The variables influencing sensitivity and accuracy, as determined by using coxsackievirus type B-3, were: (i) the inoculum volume of virus; (ii) the incubation period of virus; and (iii) the incubation temperature.

  6. Inter-laboratory and inter-assay comparison on two real-time PCR techniques for quantification of PCV2 nucleic acid extracted from field samples

    DEFF Research Database (Denmark)

    Hjulsager, Charlotte Kristiane; Grau-Roma, L.; Sibila, M.

    2009-01-01

    Several real-time PCR assays for quantification of PCV2 DNA (qPCR) have been described in the literature. and different in-house assays are being used by laboratories around the world. A general threshold of it copies of PCV2 per millilitre serum for postweaning multisystemic wasting syndrome (PMWS......) diagnosis has been suggested. However, neither inter-laboratory nor inter-assay comparisons have been published so far. In the present study two different qPCR probe assays Used routinely in two laboratories were compared on DNA extracted From serum, nasal and rectal swabs. Results showed a significant...

  7. G protein-coupled receptor internalization assays in the high-content screening format.

    Science.gov (United States)

    Haasen, Dorothea; Schnapp, Andreas; Valler, Martin J; Heilker, Ralf

    2006-01-01

    High-content screening (HCS), a combination of fluorescence microscopic imaging and automated image analysis, has become a frequently applied tool to study test compound effects in cellular disease-modeling systems. This chapter describes the measurement of G protein-coupled receptor (GPCR) internalization in the HCS format using a high-throughput, confocal cellular imaging device. GPCRs are the most successful group of therapeutic targets on the pharmaceutical market. Accordingly, the search for compounds that interfere with GPCR function in a specific and selective way is a major focus of the pharmaceutical industry today. This chapter describes methods for the ligand-induced internalization of GPCRs labeled previously with either a fluorophore-conjugated ligand or an antibody directed against an N-terminal tag of the GPCR. Both labeling techniques produce robust assay formats. Complementary to other functional GPCR drug discovery assays, internalization assays enable a pharmacological analysis of test compounds. We conclude that GPCR internalization assays represent a valuable medium/high-throughput screening format to determine the cellular activity of GPCR ligands.

  8. Assays of residual antibiotics after treatment of γ-ray and UV irradiation

    International Nuclear Information System (INIS)

    Shin, Ji Hye; Nam, Ji Hyun; Lee, Dong Hun; Yu, Seung Ho; Lee, Myun Joo

    2010-01-01

    The pollution of antibiotics is a major cause of spreading antibiotics resistant bacteria in the environment. Applications of ozonation, UV, and γ-ray irradiations have been introduced to remove antibiotics in the effluents from wastewater treatment system. In this study, we compared the chemical (HPLC) and biological (antimicrobial susceptibility test, AMS) assays in measuring of the concentrations of residual antibiotics after γ-ray and UV irradiation. Most samples were degraded by γ-ray irradiation (1 ∼ 2 kGy). However, lincomycin and tetracycline were not degraded by UV irradiation. The concentration of residual antibiotics, that was treated with γ-ray and UV irradiation, measuring by bioassay was similar to HPLC. The concentrations of γ-ray irradiated cephradine measured by AMS test were 2 times higher than of HPLC assay, indicating AMS test is more sensitive than HPLC assay. These results indicate that γ-ray irradiation technique is more useful than UV irradiation, and biological assay is more useful to detect the antibiotics and toxic intermediates in antibiotics degradation

  9. Potentiometric titration in a low volume of solution for rapid assay of uranium. Application to quantitative electro-reduction of uranium(VI)

    International Nuclear Information System (INIS)

    Sahoo, P.; Ananthanarayanan, R.; Murali, N.; Mallika, C.; Falix Lawrence; Kamachi Mudali, U.

    2012-01-01

    A simple, inexpensive PC based potentiometric titration technique for the assay of uranium using low volumes of sample aliquot (25-100 μL) along with all reagents (total volume of solution being less than 2.5 mL) is presented. The technique involves modification of the well known Davies and Gray Method recommended for assay of uranium(VI) in nuclear materials by introducing an innovative potentiometric titration device with a mini cell developed in-house. After appropriate chemical conditioning the titration is completed within a couple of minutes with display of online titration plot showing the progress of titration. The first derivative plot generated immediately after titration provides information of end point. The main advantage of using this technique is to carry out titration with minimum volumes of sample and reagents generating minimum volume of wastes after titration. The validity of the technique was evaluated using standard certified samples. This technique was applied for assay of uranium in a typical sample collected from fuel reprocessing laboratory. Further, the present technique was deployed in investigating the optimum conditions for efficient in situ production of U(IV). The precision in the estimation of uranium is highly satisfactory (RSD less than 1.0%). (author)

  10. Solid phase assays

    International Nuclear Information System (INIS)

    Reese, M.G.; Johnson, L.R.; Ransom, D.K.

    1980-01-01

    In a solid phase assay for quantitative determination of biological and other analytes, a sample such as serum is contacted with a receptor for the analyte being assayed, the receptor being supported on a solid support. No tracer for the analyte is added to the sample before contacting with the receptor; instead the tracer is contacted with the receptor after unbound analyte has been removed from the receptor. The assay can be otherwise performed in a conventional manner but can give greater sensitivity. (author)

  11. Labelled antibody techniques in glycoprotein estimation

    International Nuclear Information System (INIS)

    Hazra, D.K.; Ekins, R.P.; Edwards, R.; Williams, E.S.

    1977-01-01

    The problems in the radioimmunoassay of the glycoprotein hormones (pituitary LH, FSH and TSH and human chlorionic gonadotrophin HGG) are reviewed viz: limited specificity and sensitivity in the clinical context, interpretation of disparity between bioassay and radioimmunoassay, and interlaboratory variability. The advantages and limitations of the labelled antibody techniques - classical immonoradiometric methods and 2-site or 125 I-anti-IgG indirect labelling modifications are reviewed in general, and their theoretical potential in glycoprotein assays examined in the light of previous work. Preliminary experiments in the development of coated tube 2-site assay for glycoproteins using 125 I anti-IgG labelling are described, including conditions for maximizing solid phase extraction of the antigen, iodination of anti-IgG, and assay conditions such as effects of temperature of incubation with antigen 'hormonefree serum', heterologous serum and detergent washing. Experiments with extraction and antigen-specific antisera raised in the same or different species are described as exemplified by LH and TSH assay systems, the latter apparently promising greater sensitivity than radioimmunoassay. Proposed experimental and mathematical optimisation and validation of the method as an assay system is outlined, and the areas for further work delineated. (orig.) [de

  12. Detection of induced male germline mutation: Correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays

    Energy Technology Data Exchange (ETDEWEB)

    Singer, Timothy M. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Lambert, Iain B. [Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ont., K1S 5B6 (Canada); Williams, Andrew [Biostatistics and Epidemiology Division, Safe Environments Programme, 6604B, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Douglas, George R. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada); Yauk, Carole L. [Mutagenesis Section, Environmental and Occupational Toxicology Division, Safe Environments Programme, 0803A, Health Canada, Ottawa, Ont., K1A 0K9 (Canada)]. E-mail: carole_yauk@hc-sc.gc.ca

    2006-06-25

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently-the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development.

  13. Detection of induced male germline mutation: Correlations and comparisons between traditional germline mutation assays, transgenic rodent assays and expanded simple tandem repeat instability assays

    International Nuclear Information System (INIS)

    Singer, Timothy M.; Lambert, Iain B.; Williams, Andrew; Douglas, George R.; Yauk, Carole L.

    2006-01-01

    Several rodent assays are capable of monitoring germline mutation. These include traditional assays, such as the dominant lethal (DL) assay, the morphological specific locus (SL) test and the heritable translocation (HT) assay, and two assays that have been developed more recently-the expanded simple tandem repeat (ESTR) and transgenic rodent (TGR) mutation assays. In this paper, we have compiled the limited amount of experimental data that are currently available to make conclusions regarding the comparative ability of the more recently developed assays to detect germline mutations induced by chemical and radiological agents. The data suggest that ESTR and TGR assays are generally comparable with SL in detecting germline mutagenicity induced by alkylating agents and radiation, though TGR offered less sensitivity than ESTR in some cases. The DL and HT assays detect clastogenic events and are most susceptible to mutations arising in post-spermatogonial cells, and they may not provide the best comparisons with TGR and ESTR instability. The measurement of induced ESTR instability represents a relatively sensitive method of identifying agents causing germline mutation in rodents, and may also be useful for bio-monitoring exposed individuals in the human population. Any future use of the TGR and ESTR germline mutation assays in a regulatory testing context will entail more robust and extensive characterization of assay performance. This will require substantially more data, including experiments measuring multiple endpoints, a greatly expanded database of chemical agents and a focus on characterizing stage-specific activity of mutagens in these assays, preferably by sampling epididymal sperm exposed at defined pre-meiotic, meiotic and post-meiotic stages of development

  14. Measurement of immunoglobulin production by peripheral blood mononuclear cells in vitro using a solid-phase immunoradiometric assay

    International Nuclear Information System (INIS)

    Roffe, L.M.; Maini, R.N.; Cohen, M.L.; Meretey, K.

    1981-01-01

    A simple solid-phase immunoradiometric assay for IgG and IgM is described. Supernatants from lymphocyte cultures are incubated in microtitre plates which have been precoated with anti-IgG or anti-IgM. Subsequent binding of 125 I-labelled anti-immunoglobulin is measured and IgG and IgM in supernatants are estimated from the standard curve constructed for each assay. The assay is specific for human IgG and IgM, is able to detect nanogram amounts and offers advantages over other techniques for evaluating in vitro lymphocyte function. (Auth.)

  15. Normalization methods in time series of platelet function assays

    Science.gov (United States)

    Van Poucke, Sven; Zhang, Zhongheng; Roest, Mark; Vukicevic, Milan; Beran, Maud; Lauwereins, Bart; Zheng, Ming-Hua; Henskens, Yvonne; Lancé, Marcus; Marcus, Abraham

    2016-01-01

    Abstract Platelet function can be quantitatively assessed by specific assays such as light-transmission aggregometry, multiple-electrode aggregometry measuring the response to adenosine diphosphate (ADP), arachidonic acid, collagen, and thrombin-receptor activating peptide and viscoelastic tests such as rotational thromboelastometry (ROTEM). The task of extracting meaningful statistical and clinical information from high-dimensional data spaces in temporal multivariate clinical data represented in multivariate time series is complex. Building insightful visualizations for multivariate time series demands adequate usage of normalization techniques. In this article, various methods for data normalization (z-transformation, range transformation, proportion transformation, and interquartile range) are presented and visualized discussing the most suited approach for platelet function data series. Normalization was calculated per assay (test) for all time points and per time point for all tests. Interquartile range, range transformation, and z-transformation demonstrated the correlation as calculated by the Spearman correlation test, when normalized per assay (test) for all time points. When normalizing per time point for all tests, no correlation could be abstracted from the charts as was the case when using all data as 1 dataset for normalization. PMID:27428217

  16. Monitoring Acidophilic Microbes with Real-Time Polymerase Chain Reaction (PCR) Assays

    Energy Technology Data Exchange (ETDEWEB)

    Frank F. Roberto

    2008-08-01

    Many techniques that are used to characterize and monitor microbial populations associated with sulfide mineral bioleaching require the cultivation of the organisms on solid or liquid media. Chemolithotrophic species, such as Acidithiobacillus ferrooxidans and Leptospirillum ferrooxidans, or thermophilic chemolithotrophs, such as Acidianus brierleyi and Sulfolobus solfataricus can grow quite slowly, requiring weeks to complete efforts to identify and quantify these microbes associated with bioleach samples. Real-time PCR (polymerase chain reaction) assays in which DNA targets are amplified in the presence of fluorescent oligonucleotide primers, allowing the monitoring and quantification of the amplification reactions as they progress, provide a means of rapidly detecting the presence of microbial species of interest, and their relative abundance in a sample. This presentation will describe the design and use of such assays to monitor acidophilic microbes in the environment and in bioleaching operations. These assays provide results within 2-3 hours, and can detect less than 100 individual microbial cells.

  17. High-sensitivity measurements for low-level TRU wastes using advanced passive neutron techniques

    International Nuclear Information System (INIS)

    Menlove, H.O.; Eccleston, G.W.

    1992-01-01

    In recent years, both passive- and active-neutron nondestructive assay (NDA) systems have been used to measure the uranium and plutonium content in 200-ell drums. Because of the heterogeneity of the wastes, representative sampling is not possible and NDA methods are preferred over destructive analysis. Active-neutron assay systems are used to measure the fissile isotopes such as 235 U, 23 Pu, and 241 Pu; the isotopic ratios are used to infer the total plutonium content and thus the specific disintegration rate. The active systems include 14-MeV-neutron (DT) generators with delayed-neutron counting, (D,T) generators with the differential die-away technique, and 252 Cf delayed-neutron shufflers. Passive assay systems (for example, segmented gamma-ray scanners)5 have used gamma-ray sessions, while others (for example, passive drum counters) used passive-neutron signals. We have developed a new passive-neutron measurement technique to improve the accuracy and sensitivity of the NDA of plutonium scrap and waste. This new 200-ell-drum assay system combines the classical NDA method of counting passive-neutron totals and coincidences from plutonium with the new features of ''add-a-source'' (AS) and multiplicity counting to improve the accuracy of matrix corrections and statistical techniques that improve the low-level detectability limits. This paper describes the improvements we have made in passive-neutron assay systems and compares the accuracies and detectability limits of passive- and active-neutron assay systems

  18. Production and use of thyroxine antisera in radioimmunoassay technique

    International Nuclear Information System (INIS)

    Abbas, Sumaia Hussein

    2000-06-01

    This study describes the production of antisera from sheep and its use in the determination of thyroxine hormone (T 4 ) level in serum using radioimmunoassay (RIA) technique. In this study two local sheep (Ovis aris) were subjected to immunization against human T 4 immunogen, sera obtained from both sheep after each injection were subjected to evaluation through titration in a purified and non purified form. The produced antibodies were used to assemble a kit for the determination of total human serum thyroxine. Different separation techniques were tried, (second antibody polyethylene glycol (PEG) assisted precipitation, polystyrene beads and magnetisable particles solid phases). For the PEG assisted precipitation, local antiserum and that produced by the North East Thamus Region Immunoassay (NETRIA donkey anti-sheep serum (DASS) as second antibodies) were tried. The final dilutions of the anti-T 4 antibody used were 1/4000 in a liquid phase using second antibody PEG assisted separation, 1/3000 using magnetizable particles and a dilution of 1/10,000 using polystyrene beads solid phase for separation. Optimization of T 4 assay conditions including incubation temperature and reaction time were done. Tests for T 4 assay validation (linearity, recovery and responsibility) were carried out. For linearity and recovery tests, the regression coefficient ranges were found to be from (0.8 to 0.9) and (0.88 to 0.98) respectively. The assay was found to be reproducible where the coefficients of variation within and between assays were less than 10%. The locally developed assay was found to be comparable with NETRIA assay as a reference method with a correlation coefficient of 0.88, 0.93 and 0.87 for PEG assisted separation, magnetizable particles and polystyrene beads techniques respectively. The clinical validation tests showed a reliable sensitivity, specificity and efficiency with values of 97%, 94% and 96% respectively. When the T 4 concentrations measured using the

  19. Quantifying the passive gamma signal from spent nuclear fuel in support of determining the plutonium content in spent nuclear fuel with nondestructive assay

    Energy Technology Data Exchange (ETDEWEB)

    Fensin, Michael L [Los Alamos National Laboratory; Tobin, Steven J [Los Alamos National Laboratory; Menlove, Howard O [Los Alamos National Laboratory; Swinhoe, Martyn T [Los Alamos National Laboratory

    2009-01-01

    The objective of safeguarding nuclear material is to deter diversions of significant quantities of nuclear materials by timely monitoring and detection. There are a variety of motivations for quantifying plutonium in spent fuel (SF), by means of nondestructive assay (NDA), in order to meet this goal. These motivations include the following: strengthening the capabilities of the International Atomic Energy Agencies ability to safeguard nuclear facilities, shipper/receiver difference, input accountability at reprocessing facilities and burnup credit at repositories. Many NDA techniques exist for measuring signatures from SF; however, no single NDA technique can, in isolation, quantify elemental plutonium in SF. A study has been undertaken to determine the best integrated combination of 13 NDA techniques for characterizing Pu mass in spent fuel. This paper focuses on the development of a passive gamma measurement system in support the spent fuel assay system. Gamma ray detection for fresh nuclear fuel focuses on gamma ray emissions that directly coincide with the actinides of interest to the assay. For example, the 186-keV gamma ray is generally used for {sup 235}U assay and the 384-keV complex is generally used for assaying plutonium. In spent nuclear fuel, these signatures cannot be detected as the Compton continuum created from the fission products dominates the signal in this energy range. For SF, the measured gamma signatures from key fission products ({sup 134}Cs, {sup 137}Cs, {sup 154}Eu) are used to ascertain burnup, cooling time, and fissile content information. In this paper the Monte Carlo modeling set-up for a passive gamma spent fuel assay system will be described. The set-up of the system includes a germanium detector and an ion chamber and will be used to gain passive gamma information that will be integrated into a system for determining Pu in SF. The passive gamma signal will be determined from a library of {approx} 100 assemblies that have been

  20. Pu-238 assay performance with the Canberra IQ3 system

    Energy Technology Data Exchange (ETDEWEB)

    Booth, L.; Gillespie, B.; Seaman, G.

    1997-11-01

    Canberra Industries has recently completed a demonstration project at the Westinghouse Savannah River Site (WSRC) to characterize 55-gallon drums containing Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 contaminated waste. The goal of this project was to detect and quantify Pu-238 waste to detection limits of less than 50 nCi/g using gamma assay techniques. This would permit reclassification of these drums from transuranic (TRU) waste to low-level waste (LLW). The instrument used for this assay was a Canberra IQ3 high sensitivity gamma assay system, mounted in a trailer. The results of the measurements demonstrate achievement of detection levels as low as 1 nCi/g for low density waste drums, and good correlation with known concentrations in several test drums. In addition, the data demonstrates significant advantages for using large area low-energy germanium detectors for achieving the lowest possible MDAs for gamma rays in the 80-250 keV range. 1 fig., 2 tabs.

  1. ASTRO Research Fellow Presentation - A comparison of the comet assay and pulsed-field gel electrophoresis as a predictive assay for radiosensitivity in human fibroblasts

    International Nuclear Information System (INIS)

    Sarkaria, Jann N.; Eady, John J.; Peacock, John H.; Steel, G. Gordon

    1996-01-01

    -response relationship from 0 to 100 Gy. In contrast, PFGE was able to detect initial damage after 2 Gy and exhibited a linear dose-response relationship only up to 30-40 Gy. Residual damage was reliably detected after 40 Gy with the comet assay and after 20 Gy with PFGE. Both techniques exhibited a linear dose-response relationship for residual damage. Not only was the comet assay less sensitive in detecting initial and residual damage than PFGE, but the comet assay was also less accurate in detecting small differences in radiosensitivity in the panel of fibroblasts tested. A complete analysis of six cell lines with the comet assay and PFGE is underway and the results will be presented. Conclusions: The comet assay appears to be less sensitive than PFGE for use as a predictive assay for radiosensitivity in non-transformed human fibroblasts

  2. Paper-Based Digital Microfluidic Chip for Multiple Electrochemical Assay Operated by a Wireless Portable Control System

    DEFF Research Database (Denmark)

    Ruecha, Nipapan; Lee, Jumi; Chae, Heedo

    2017-01-01

    for multiple analysis assays are fabricated by affordable printing techniques. For enhanced sensitivity of the sensor, the working electrode is modified through the electrochemical method, namely by reducing graphene with voltammetry and coating gold nanoparticles by amperometry. Detachable sensor and absorber...... designed portable power supply and wireless control system, the active paper-based chip platform can be utilized as an advanced point-of-care device for multiple assays in digital microfluidics....

  3. Performance Assessment of a Trypanosoma cruzi Chimeric Antigen in Multiplex Liquid Microarray Assays.

    Science.gov (United States)

    Santos, Fred Luciano Neves; Celedon, Paola Alejandra Fiorani; Zanchin, Nilson Ivo Tonin; Leitolis, Amanda; Crestani, Sandra; Foti, Leonardo; de Souza, Wayner Vieira; Gomes, Yara de Miranda; Krieger, Marco Aurélio

    2017-10-01

    Diagnosing chronic Chagas disease (CD) requires antibody-antigen detection methods, which are traditionally based on enzymatic assay techniques whose performance depend on the type and quality of antigen used. Previously, 4 recombinant chimeric proteins from the Instituto de Biologia Molecular do Paraná (IBMP-8.1 to 8.4) comprising immuno-dominant regions of diverse Trypanosoma cruzi antigens showed excellent diagnostic performance in enzyme-linked immunosorbent assays. Considering that next-generation platforms offer improved CD diagnostic accuracy with different T. cruzi -specific recombinant antigens, we assessed the performance of these chimeras in liquid microarrays (LMAs). The chimeric proteins were expressed in Escherichia coli and purified by chromatography. Sera from 653 chagasic and 680 healthy individuals were used to assess the performance of these chimeras in detecting specific anti- T. cruzi antibodies. Accuracies ranged from 98.1 to 99.3%, and diagnostic odds ratio values were 3,548 for IBMP-8.3, 4,826 for IBMP-8.1, 7,882 for IBMP-8.2, and 25,000 for IBMP-8.4. A separate sera bank (851 samples) was employed to assess cross-reactivity with other tropical diseases. Leishmania , a pathogen with high similarity to T. cruzi , showed cross-reactivity rates ranging from 0 to 2.17%. Inconclusive results were negligible (0 to 0.71%). Bland-Altman and Deming regression analysis based on 200 randomly selected CD-positive and negative samples demonstrated interchangeability with respect to CD diagnostic performance in both singleplex and multiplex assays. Our results suggested that these chimeras can potentially replace antigens currently used in commercially available assay kits. Moreover, the use of multiplex platforms, such as LMA assays employing 2 or more IBMP antigens, would abrogate the need for 2 different testing techniques when diagnosing CD. Copyright © 2017 American Society for Microbiology.

  4. Antibodies to poliovirus detected by immunoradiometric assay with a monoclonal antibody

    International Nuclear Information System (INIS)

    Spitz, M.; Fossati, C.A.; Schild, G.C.; Spitz, L.; Brasher, M.

    1982-01-01

    An immunoradiometric assay (IRMA) for the assay of antibodies to poliovirus antigens is described. Dilutions of the test sera or whole (finger prick) blood samples were incubated with the poliovirus antigen bound to a solid phase and the specific antibody was detected by the addition of a mouse anti-human IgG monoclonal antibody (McAb), which was itself revealed by iodinated sheep IgG antimouse F(ab). The authors have shown that this technique is suitable for the estimation of IgG anti-poliovirus antibodies induced in children following polio vaccine. The present study shows that SPRIA provides a simple and inexpensive method for serological studies with poliovirus particularly for use in large-scale surveys. (Auth.)

  5. Antibodies to poliovirus detected by immunoradiometric assay with a monoclonal antibody

    Energy Technology Data Exchange (ETDEWEB)

    Spitz, M.; Fossati, C.A.; Schild, G.C.; Spitz, L.; Brasher, M. (National Inst. for Biological Standards and Control, London (UK))

    1982-10-01

    An immunoradiometric assay (IRMA) for the assay of antibodies to poliovirus antigens is described. Dilutions of the test sera or whole (finger prick) blood samples were incubated with the poliovirus antigen bound to a solid phase and the specific antibody was detected by the addition of a mouse anti-human IgG monoclonal antibody (McAb), which was itself revealed by iodinated sheep IgG antimouse F(ab). The authors have shown that this technique is suitable for the estimation of IgG anti-poliovirus antibodies induced in children following polio vaccine. The present study shows that SPRIA provides a simple and inexpensive method for serological studies with poliovirus particularly for use in large-scale surveys.

  6. Evaluation of total PSA assay on vitros ECi and correlation with Kryptor-PSA assay.

    Science.gov (United States)

    Cassinat, B; Wacquet, M; Toubert, M E; Rain, J D; Schlageter, M H

    2001-01-01

    An increasing number of multiparametric immuno-analysers for PSA assays are available. As different immuno-assays may vary in their analytical quality and their accuracy for the follow-up of patients, expertise is necessary for each new assay. The PSA assay on the Vitros-ECi analyser has been evaluated and compared with the PSA assay from the Kryptor analyser. Variation coefficients were 0.91 to 1.98% for within-run assays, and 4.2% to 5.4% for interassay (PSA levels = 0.8 microgram/L to 33.6 micrograms/L). Dilution tests showed 93 to 136% recovery until 70 micrograms/L PSA. Functional sensitivity was estimated at 0.03 microgram/L. Equimolarity of the test was confirmed. Correlation of PSA levels measured with Vitros-ECi and Kryptor analysers displayed a correlation coefficient r2 of 0.9716. The half-lives and doubling times of PSA were similar using both methods. Vitros-ECi PSA assay meets the major criteria for the management of prostate cancer patients.

  7. Miniature silicon electronic biological assay chip and applications for rapid battlefield diagnostics

    Science.gov (United States)

    Cunningham, Brian T.; Regan, Robert A.; Clapp, Christopher; Hildebrant, Eric; Weinberg, Marc S.; Williams, John

    1999-07-01

    Assessing the medical condition of battlefield personnel requires the development of rapid, portable biological diagnostic assays for a wide variety of antigens and enzymes. Ideally, such an assay would be inexpensive, small, and require no added reagents while maintaining the sensitivity and accuracy of laboratory-based assays. In this work, a microelectromechanical (MEMS) based biological assay sensor is presented which is expected to meet the above requirements. The sensor is a thin silicon membrane resonator (SMR) which registers a decrease in resonant frequency when mass is adsorbed onto its surface. By coating the sensor surface with a monolayer of antibody, for example, we have detected the corresponding antigen with a detection resolution of 0.25 ng/ml in phosphate buffer solution. Micromachining techniques are being used to integrate many (64 elements on the first test chip) identical SMR sensors into a single silicon chip which would be capable of simultaneously performing a wide variety of biomedical assays. The sensors require only a small printed circuit board and 8V power supply to operate and provide a readout. The presentation will describe the operation of the SMR sensor, the fabrication of the sensor array, and initial test results using commercially available animal immunoglobulins in laboratory-prepared test solutions.

  8. Hormone assay

    International Nuclear Information System (INIS)

    Eisentraut, A.M.

    1977-01-01

    An improved radioimmunoassay is described for measuring total triiodothyronine or total thyroxine levels in a sample of serum containing free endogenous thyroid hormone and endogenous thyroid hormone bound to thyroid hormone binding protein. The thyroid hormone is released from the protein by adding hydrochloric acid to the serum. The pH of the separated thyroid hormone and thyroid hormone binding protein is raised in the absence of a blocking agent without interference from the endogenous protein. 125 I-labelled thyroid hormone and thyroid hormone antibodies are added to the mixture, allowing the labelled and unlabelled thyroid hormone and the thyroid hormone antibody to bind competitively. This results in free thyroid hormone being separated from antibody bound thyroid hormone and thus the unknown quantity of thyroid hormone may be determined. A thyroid hormone test assay kit is described for this radioimmunoassay. It provides a 'single tube' assay which does not require blocking agents for endogenous protein interference nor an external solid phase sorption step for the separation of bound and free hormone after the competitive binding step; it also requires a minimum number of manipulative steps. Examples of the assay are given to illustrate the reproducibility, linearity and specificity of the assay. (UK)

  9. Reassessing the reliability of the salivary cortisol assay for the diagnosis of Cushing syndrome.

    Science.gov (United States)

    Zhang, Qian; Dou, Jingtao; Gu, Weijun; Yang, Guoqing; Lu, Juming

    2013-10-01

    The cortisol concentration in saliva is 10-fold lower than total serum cortisol and accurately reflects the serum concentration, both levels being lowest around midnight. The salivary cortisol assay measures free cortisol and is unaffected by confounding factors. This study analysed published data on the sensitivity and specificity of salivary cortisol levels in the diagnosis of Cushing syndrome. Data from studies on the use of different salivary cortisol assay techniques in the diagnosis of Cushing syndrome, published between 1998 and 2012 and retrieved using Ovid MEDLINE®, were analysed for variance and correlation. For the 11 studies analysed, mean sensitivity and specificity of the salivary cortisol assay were both >90%. Repeated measurements were easily made with this assay, enabling improved diagnostic accuracy in comparison with total serum cortisol measurements. This analysis confirms the reliability of the saliva cortisol assay as pragmatic tool for the accurate diagnosis of Cushing syndrome. With many countries reporting a rising prevalence of metabolic syndrome, diabetes and obesity--in which there is often a high circulating cortisol level--salivary cortisol measurement will help distinguish these states from Cushing syndrome.

  10. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species.

    Science.gov (United States)

    Liew, P S; Teh, C S J; Lau, Y L; Thong, K L

    2014-12-01

    Shigellosis is a foodborne illness caused by the genus Shigella and is an important global health issue. The development of effective techniques for rapid detection of this pathogen is essential for breaking the chain of transmission. Therefore, we have developed a novel loop-mediated isothermal amplification (LAMP) assay targeting the invasion plasmid antigen H (ipaH) gene to rapidly detect Shigella species. This assay could be performed in 90 min at an optimal temperature of 64ºC, with endpoint results visualized directly. Notably, the method was found to be more sensitive than conventional PCR. Indeed, the detection limit for the LAMP assay on pure bacterial cultures was 5.9 x 10(5) CFU/ml, while PCR displayed a limit of 5.9 x 10(7) CFU/ml. In spiked lettuce samples, the sensitivity of the LAMP assay was 3.6 x 10(4) CFU/g, whereas PCR was 3.6 x 10(5) CFU/g. Overall, the assay accurately identified 32 Shigella spp. with one enteroinvasive Escherichia coli displaying positive reaction while the remaining 32 non-Shigella strains tested were negative.

  11. Comparison of multiple assays for detecting human antibodies directed against antigens on normal and malignant tissue culture cells

    International Nuclear Information System (INIS)

    Rosenberg, S.A.; Schwarz, S.; Anding, H.; Hyatt, C.; Williams, G.M.; Johns Hopkins Univ., Baltimore, Md.

    1977-01-01

    Four separate assays of human antibody reactivity to four separate normal and malignant human tissue culture cells lines from two patients have been evaluated using a single highly-reactive allogeneic serum. The visual end-point cytolysis assay and the chromium-51 release assay were equally sensitive in measuring complement mediated antibody cytotoxicity and both were far more sensitive than a trypan blue dye exclusion assay. The assay of antibody reactivity by hemadsorption technique was about 10 times more sensitive than any of the cytotoxicity assays. This latter assay measures only IgG antibody however. These assays showed that cell lines from different patients may differ greatly in 'reactivity' to an allogeneic serum and emphasized the importance of utilizing tumor and normal cells from the same patient when using tissue culture cells to search for tumor specific reactivity. These observations emphasize the importance of utilizing multiple assays against paired normal and malignant cells from the same patient to be certain of the specificity and magnitude of the measured antibody

  12. Considerations for an active and passive scanner to assay nuclear waste drums

    International Nuclear Information System (INIS)

    Martz, H.E.; Azevedo, S.G.; Roberson, G.P.; Schneberk, D.J.; Koenig, Z.M.; Camp, D.C.

    1990-01-01

    Radioactive wastes are generated at many DOE laboratories, military facilities, fuel fabrication and enrichment plants, reactors, hospitals, and university research facilities. At all of these sites, wastes must be separated, packaged, categorized, and packed into some sort of container--usually 208-L (55-gal) drums--for shipment to waste-storage sites. Prior to shipment, the containers must be labeled, assayed, and certified; the assay value determines the ultimate disposition of the waste containers. An accurate nondestructive assay (NDA) method would identify all the radioisotopes present and provide a quantitative measurement of their activity in the drum. In this way, waste containers could be routed in the most cost-effective manner and without having to reopen them. Currently, the most common gamma-ray method used to assay nuclear waste drums is segmented gamma-ray scanning (SGS) spectrometer that crudely measures only the amount of 235 U or 239 Pu present in the drum. This method uses a spatially-averaged, integrated, emitted gamma-ray-intensity value. The emitted intensity value is corrected by an assumed constant-attenuation value determined by a spatially-averaged, transmission (or active) measurement. Unfortunately, this typically results in an inaccurate determination of the radioactive activities within a waste drum because this measurement technique is valid only for homogeneous-attenuation or known drum matrices. However, since homogeneous-attenuation matrices are not common and may be unknown, other NDA techniques based on active and Passive CT (A ampersand PCT) are under development. The active measurement (ACT) yields a better attenuation matrix for the drum, while the passive measurement (PCT) more accurately determines the identity of the radioisotopes present and their activities. 9 refs., 2 figs

  13. Biochemical techniques for the characterization of G-quadruplex structures: EMSA, DMS footprinting, and DNA polymerase stop assay.

    Science.gov (United States)

    Sun, Daekyu; Hurley, Laurence H

    2010-01-01

    The proximal promoter region of many human growth-related genes contains a polypurine/polypyrimidine tract that serves as multiple binding sites for Sp1 or other transcription factors. These tracts often contain a guanine-rich sequence consisting of four runs of three or more contiguous guanines separated by one or more bases, corresponding to a general motif known for the formation of an intramolecular G-quadruplex. Recent results provide strong evidence that specific G-quadruplex structures form naturally within these polypurine/polypyrimidine tracts in many human promoter regions, raising the possibility that the transcriptional control of these genes can be modulated by G-quadruplex-interactive agents. In this chapter, we describe three general biochemical methodologies, electrophoretic mobility shift assay (EMSA), dimethylsulfate (DMS) footprinting, and the DNA polymerase stop assay, which can be useful for initial characterization of G-quadruplex structures formed by G-rich sequences.

  14. Kinetic Consideration of AFP irma assay

    International Nuclear Information System (INIS)

    Aly, M. A.; Moustafa, K.A.

    2003-01-01

    Alpha-fetoprotein (AFP) is a glycoprotein produced by the yolk sac and later by the fetal liver during pregnancy. When the neural tube is not properly formed, by the fetal liver during pregnancy. When the neural tube is not properly formed, large amounts of AFP pass into the amniotic fluid and reach the mother's blood. During pregnancy, the major interest in AFP determination in maternal serum and amniotic fluid is on the early diagnosis of fetal abnormalities. AFP also used as a tumor marker for hepatocellular carcinoma. There are many different techniques for measuring AFP in blood, but the more accurate one is the immunoassay technique. The kinetics of the interaction between AFP antigen and two matched antibodies, one labeled with radioactive isotope 1 25I (tracer) and the other is unlabelled and attached to a solid support (tube), are studied using the more recently, two sites (sandwich) immunoradiometric assay (IRMA) technique. We present here a method for determining the rate constants, using an advanced computer program (RKY), which based on the nelder-mead optimization principle. The rate constant, at three variable temperatures and three different antigen concentrations, as well as the half time of exchange (t 1/2 ) were calculated

  15. Experimental 233U nondestructive assay with a random driver

    International Nuclear Information System (INIS)

    Goris, P.

    1979-01-01

    Nondestructive assay (NDA) of 233 U in quantities up to 15 grams containing 7 ppM 232 U age 2 years was investigated with a random driver. A passive singles counting technique showed a reproducibility within 0.2% at the 95% confidence level. This technique would be applicable throughout a process in which all of the 233 U had the same 232 U content at the same age. Where the 232 U content varies, determination of 233 U fissile content would require active NDA. Active coincidence counting utilizing a 238 Pu, Li neutron source and a plastic scintillator detector system showed a reproducibility limit within 15% at the 95% confidence limit. The active technique was found to be very dependent on the detector system resolving time in order to make proper random coincidence corrections associated with the high gamma activity from the 232 U decay chain

  16. Titration of a cytoplasmic polyhedrosis virus by a tissue microculture assay: some applications.

    Science.gov (United States)

    Belloncik, S; Chagnon, A

    1980-01-01

    A simple tissue microculture technique was developed for the titration of a cytoplasmic polyhedrosis virus (CPV) from Euxoa scandens. The procedure was similar to the 50% tissue culture infectious dose assay, but a single infected cell, detected by the presence of cytoplasmic polyhedra, was scored rather than the degeneration of cell monolayers. The filtration of CPV suspensions resulted in decreased virus titers under certain conditions. This microculture assay was used to determine the effect of cell disruption methods on virus yields. Sonication of infected cells was more efficient than freeze-thawing for the recovery of nonoccluded virus.

  17. Quantitative radiological characterization of waste. Integration of gamma spectrometry and passive/active neutron assay

    Energy Technology Data Exchange (ETDEWEB)

    Simone, Gianluca; Mauro, Egidio; Gagliardi, Filippo; Gorello, Edoardo [Nucleco S.p.A., Rome (Italy)

    2016-06-15

    The radiological characterization of drums through Non-Destructive Assay (NDA) techniques commonly relies on gamma spectrometry. This paper introduces the procedure developed in Nucleco for the NDA radiological characterization of drums when the presence of Special Nuclear Material (SNM) is expected/observed. The procedure is based on the integration of a gamma spectrometry in SGS mode (Segmented Gamma Scanner) and a passive/active neutron assay. The application of this procedure is discussed on a real case of drums. The extension of the integration procedure to other gamma spectrometry systems is also discussed.

  18. The Comet Assay: Tails of the (Unexpected. Use of the comet assay in pharmaceutical development.

    Directory of Open Access Journals (Sweden)

    Bas-jan Van Der Leede

    2015-08-01

    Full Text Available In genotoxicity testing of pharmaceuticals the rodent alkaline comet assay is being increasingly used as a second in vivo assay in addition to the in vivo micronucleus assay to mitigate in vitro positive results as recommended by regulatory guidance. In this presentation we want to give insight into the circumstances in vivo comet assay is deployed in a Genetic Toxicology Department of a pharmaceutical company. As the in vivo comet assay is a salvage assay, it means that some events have occurred in an in vitro assay and that the compound (or metabolite responsible for this signal is potentially deselected for further development. More than often the decision to perform an in vivo comet assay is at a very early stage in development and the first time that the compound will be tested in vivo at high/toxic dose levels. As almost no toxicokinetic data and tissue distribution data are available a careful design with maximizes the chances for successful mitigation is necessary. Decisions on acute or repeated dosing need to be made and arrangements for combining the in vivo comet assay with the in vivo micronucleus assay are to be considered. Often synthesis methods need to be scaled up fast to provide the required amount of compound and information on suitable formulations needs to be in place. As exposure data is crucial for interpretation of results, analytical methods need to be brought in place rapidly. An experienced multi skilled and communicative team needs to be available to deploy successfully this kind of assays at an early stage of development. We will present a few scenarios on study conduct and demonstrate how this assay can make a difference for the further development of a new drug.

  19. [Use of comet assay for the risk assessment of oil- and chemical-industry workers].

    Science.gov (United States)

    Megyesi, János; Biró, Anna; Wigmond, László; Major, Jenő; Tompa, Anna

    2014-11-23

    The comet assay is a fluorescent microscopic method that is able to detect DNA strand-breaks even in non-proliferative cells in samples with low cell counts. The aim of the authors was to measure genotoxic DNA damage and assess oxidative DNA damage caused by occupational exposure in groups exposed to benzene, polycyclic aromatic carbohydrates and styrene at the workplace in order to clarify whether the comet assay can be used as an effect marker tool in genotoxicology monitoring. In addition to the basic steps of the comet assay, one sample was treated with formamido-pirimidine-DNA-glycolase restriction-enzyme that measures oxidative DNA damage. An increase was observed in tail moments in each group of untreated and Fpg-treated samples compared to the control. It can be concluded that occupational exposure can be detected with the method. The comet assay may prove to be an excellent effect marker and a supplementary technique for monitoring the presence or absence of genotoxic effects.

  20. Enzyme-linked immunosorbent assay for total sennosides using anti-sennside A and anti-sennoside B monoclonal antibodies.

    Science.gov (United States)

    Morinaga, Osamu; Uto, Takuhiro; Sakamoto, Seiichi; Tanaka, Hiroyuki; Shoyama, Yukihiro

    2009-01-01

    Total sennosides concentration is a very important factor when rhubarb and senna will be used as crude drugs. However, one-step analytical technique for total sennosides has not been reported except HPLC. An enzyme-linked immunosorbent assay (ELISA) for total sennosides concentration by using the combination of anti-sennoside A (SA) and anti-sennoside B (SB) monoclonal antibodies (MAbs) in a single assay has been investigated. Total sennosides concentration in rhubarb and senna samples determined by newly developed assay system showed good agreement with those analyzed by ELISA using anti-SA MAb and anti-SB MAb, respectively.

  1. An in vitro assay for compounds toxic to rumen protozoa

    International Nuclear Information System (INIS)

    Campbell, A.J.; Cumming, G.J.; Graham, C.A.; Leng, R.A.

    1982-01-01

    The viability of protozoa in whole rumen fluid was assessed by measuring the incorporation of Me- 14 C-choline in vitro. The use of the technique as an assay for testing antiprotozoal agents was evaluated with a variety of surfactant detergents which have previously been shown to have antiprotozoal activity in vivo. A good correlation was obtained between the potency of these compounds in vitro and in vivo. (auth)

  2. Comparative Analysis of the Dark Ground Buffy Coat Technique (DG ...

    African Journals Online (AJOL)

    The prevalence of typanosome infection in 65 cattle reared under expensive system of management was determined using the dark ground buffy coat (DG) technique and the enzyme-linkedimmunisorbent assay (ELISA). The DG technique showed that there were 18 positive cases (27.69%) of total number of animals, made ...

  3. Pyruvate Decarboxylase Activity Assay in situ of Different Industrial Yeast Strains

    Directory of Open Access Journals (Sweden)

    Dorota Kręgiel

    2009-01-01

    Full Text Available Cytoplasmic pyruvate decarboxylase (PDC, EC 4.1.1.1 is one of the key enzymes of yeast fermentative metabolism. PDC is the first enzyme which, under anaerobic conditions, leads to decarboxylation of pyruvate with acetaldehyde as the end product. The aim of this study is to develop a suitable method for PDC activity assay in situ for different industrial yeast strains. Saccharomyces sp. and Debaryomyces sp. yeast strains grew in fermentative medium with 12 % of glucose. Enzymatic assay was conducted in cell suspension treated with digitonin as permeabilisation agent, and with sodium pyruvate as a substrate, at temperature of 30 °C. Metabolites of PDC pathway were detected using gas chromatographic (GC technique. Various parameters like type and molar concentration of the substrate, minimal effective mass fraction of digitonin, cell concentration, reaction time and effect of pyrazole (alcohol dehydrogenase inhibitor were monitored to optimize PDC enzymatic assay in situ. In the concentration range of yeast cells from 1⋅10^7 to 1⋅10^8 per mL, linear correlation between the produced acetaldehyde and cell density was noticed. Only pyruvate was the specific substrate for pyruvate decarboxylase. In the presence of 0.05 M sodium pyruvate and 0.05 % digitonin, the enzymatic reaction was linear up to 20 min of the assay. During incubation, there was no formation of ethanol and, therefore, pyrazole was not necessary for the assay.

  4. Relationship between the radioisotopic footpad assay and other immunological assays in tumor bearing rats

    International Nuclear Information System (INIS)

    Mizushima, Yutaka; Takeichi, Noritoshi; Minami, Akio; Kasai, Masaharu; Itaya, Toshiyuki

    1981-01-01

    KMT-17, a fibrosarcoma induced by 3-methylcholanthrene in a WKA rat, is a sensitive tumor to various kinds of immunological assays and is a suitable model tumor for the study of the immune status in tumor bearing hosts. The antitumor immune response of KMT-17 bearing rats was studied by a radioisotopic footpad assay (FPA) in comparison with other in vivo and in vitro assays. Delayed hypersensitivity to tumor antigens measured by the FPA was observed from the 8th day after transplantation of KMT-17 cells, reached a peak on the 12 - 15th day, and then declined in the late stage on the 17th day. The kinetics of the FPA correlated well with those of an in vivo Winn assay and of an in vitro lymphocyte cytotoxicity assay ( 51 Cr-release assay). The appearance of an antitumor antibody detected by a complement dependent cytotoxicity test also correlated well with the kinetics of the FPA. A growth inhibition assay (GIA) for non-specific cell-mediated immunity also showed similar kinetics to that of the FPA. The delayed hypersensitivity footpad reaction to tumor cell extracts measured by this FPA was tumor-specific. These results suggest that the FPA is a simple and reliable in vivo assay for evaluating antitumor immunity in tumor bearing hosts. (author)

  5. Performance of a Multiplex Serological Helicobacter pylori Assay on a Novel Microfluidic Assay Platform

    Directory of Open Access Journals (Sweden)

    Angela Filomena

    2017-10-01

    Full Text Available Infection with Helicobacter pylori (H. pylori occurs in 50% of the world population, and is associated with the development of ulcer and gastric cancer. Serological diagnostic tests indicate an H. pylori infection by detecting antibodies directed against H. pylori proteins. In addition to line blots, multiplex assay platforms provide smart solutions for the simultaneous analysis of antibody responses towards several H. pylori proteins. We used seven H. pylori proteins (FliD, gGT, GroEL, HpaA, CagA, VacA, and HP0231 and an H. pylori lysate for the development of a multiplex serological assay on a novel microfluidic platform. The reaction limited binding regime in the microfluidic channels allows for a short incubation time of 35 min. The developed assay showed very high sensitivity (99% and specificity (100%. Besides sensitivity and specificity, the technical validation (intra-assay CV = 3.7 ± 1.2% and inter-assay CV = 5.5 ± 1.2% demonstrates that our assay is also a robust tool for the analysis of the H. pylori-specific antibody response. The integration of the virulence factors CagA and VacA allow for the assessment of the risk for gastric cancer development. The short assay time and the performance of the platform shows the potential for implementation of such assays in a clinical setting.

  6. Utility of a Multiplex PCR Assay for Detecting Herpesvirus DNA in Clinical Samples

    Science.gov (United States)

    Druce, Julian; Catton, Mike; Chibo, Doris; Minerds, Kirsty; Tyssen, David; Kostecki, Renata; Maskill, Bill; Leong-Shaw, Wendy; Gerrard, Marie; Birch, Chris

    2002-01-01

    A multiplex PCR was designed to amplify herpes simplex virus types 1 and 2, cytomegalovirus, and varicella-zoster virus DNA present in a diverse range of clinical material. The susceptibility of these viruses to in vivo inhibition by at least one antiviral drug was an important consideration in their inclusion in the multiplex detection system. An aliquot of equine herpesvirus was introduced into each specimen prior to extraction and served as an indicator of potential inhibitors of the PCR and a detector of suboptimal PCR conditions. Compared to virus isolation and immunofluorescence-based antigen detection, the multiplex assay yielded higher detection rates for all viruses represented in the assay. The turnaround time for performance of the assay was markedly reduced compared to those for the other techniques used to identify these viruses. More than 21,000 tests have been performed using the assay. Overall, the multiplex PCR enabled the detection of substantially increased numbers of herpesviruses, in some cases in specimens or anatomical sites where previously they were rarely if ever identified using traditional detection methods. PMID:11980951

  7. D-dimer assay for deep vein thrombosis: its role with colour Doppler sonography

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, M.; Bladon, J.; Barker, H

    2000-07-01

    AIM: To evaluate the role of a negative D-dimer assay in the initial management of patients with clinically suspected deep venous thrombosis (DVT), using colour Doppler ultrasound as the primary diagnostic technique. MATERIALS AND METHODS: A double-blind prospective trial was performed on 143 patients with clinically suspected DVT. All patients underwent a D-dimer assay prior to anticoagulant therapy. DVT was confirmed or excluded by diagnostic colour Doppler ultrasound within 24 h of presentation. RESULTS: In nearly one-third of the cases (31.8%), Doppler ultrasound was positive. The D-dimer assay demonstrated a sensitivity of 97.7% with only one false-negative, but the specificity was low at 48.9% with 45 false-positive results. The positive predictive value for D-dimer assay was 48.8%, whilst the important negative predictive value was 98%. CONCLUSION: If D-dimer was used to screen for DVT, and patients with negative results were not imaged, then the imaging workload could be reduced by 35%. In this study one small calf vein thrombus would have been missed by adopting this practice. Bradley, M. (2000)

  8. Liquor oligoclonal bands assay: interpretation, correlation with other laboratory assays and importance for diagnostics of neurological disorders

    OpenAIRE

    Bagdonas, Dovydas

    2017-01-01

    Aim: to analyse the possible relationship between liquor IgG oligoclonal bands assay and other laboratory assays in neurological patients. Objectives: to determine the frequency of oligoclonal bands in neurological patients; to compare the results between serum and liquor laboratory assays in dependence of oligoclonal bands assay results; to evaluate the relationships between oligoclonal bands assay and serological-immunological assays for infectious diseases, gender, age and neurological ...

  9. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing

    Directory of Open Access Journals (Sweden)

    Jackson Stuart

    2010-04-01

    Full Text Available Abstract Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value, and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.

  10. Radiometric--microbiologic assay of vitamin B-6: application to food analysis

    International Nuclear Information System (INIS)

    Guilarte, T.R.; Shane, B.; McIntyre, P.A.

    1981-01-01

    A radiometric microbiologic assay for vitamin B-6 was applied to food analysis. The method was shown to be specific, reproducible and simpler than the standard turbidimetric microbiologic technique. The analysis of seven commercially available breakfast cereals was compared to a high performance liquid chromatography method. Three out of the seven cereals agreed when assayed with both methods (P greater than 0.1). Four cereals, however, differed in value considerably (P less than 0.05). Further studies are required to determine whether these differences were due to different extraction procedures used. The study showed that the new radiometric-microbiologic method can be used to measure total vitamin B-6 or, combined with a column separation procedure, to analyze for specific forms of the vitamin

  11. Recent developments at French atomic energy commission relating to non destructive nuclear waste assay by using electron accelerator

    International Nuclear Information System (INIS)

    Lvoussi, A.; Romeyer-Dhebey, J.; Jallu, F.; Passard, C.; Mariani, A.; Recroix, H.; Payan, E.; Denis, C.; Loridon, J.; Buisson, A.; Nurdin, G.; Allano, J.; Jaureguy, J.C.

    2000-01-01

    An important program is currently in progress at several laboratories over the world for the development of sensitive, practical non-destructive assay techniques for the quantification of low level transuranics (TRU) in solid wastes. The wide variety of materials and contaminants, the low concentrations and large volumes involve, all make this kind of assay a complicated affair. Over the last few years, considerable progress has been made in the field of assay techniques for low level contaminated wastes. This report describes the methods being developed at French Atomic Energy Commission (C.E.A.) in Cadarache to assay high density TRU waste packages by using photon, neutron or both photon and neutron as interrogating particles. All of these particles are produced by using a pulsed electron linear accelerator from which the photons are produced following Bremsstrahlung phenomena on a heavy metallic converter and the neutrons are generated in appropriate low level photoneutron threshold target (e.g. Beryllium). The dynamic of photonuclear interactions and photoneutron production, use of an electron linear accelerator as a particle source, experimental and electronics details, experimental results, simulation to experiment performances and future experimental and theoretical studies are discussed. (authors)

  12. Endogenous Locus Reporter Assays.

    Science.gov (United States)

    Liu, Yaping; Hermes, Jeffrey; Li, Jing; Tudor, Matthew

    2018-01-01

    Reporter gene assays are widely used in high-throughput screening (HTS) to identify compounds that modulate gene expression. Traditionally a reporter gene assay is built by cloning an endogenous promoter sequence or synthetic response elements in the regulatory region of a reporter gene to monitor transcriptional activity of a specific biological process (exogenous reporter assay). In contrast, an endogenous locus reporter has a reporter gene inserted in the endogenous gene locus that allows the reporter gene to be expressed under the control of the same regulatory elements as the endogenous gene, thus more accurately reflecting the changes seen in the regulation of the actual gene. In this chapter, we introduce some of the considerations behind building a reporter gene assay for high-throughput compound screening and describe the methods we have utilized to establish 1536-well format endogenous locus reporter and exogenous reporter assays for the screening of compounds that modulate Myc pathway activity.

  13. Immunological Tools: Engaging Students in the Use and Analysis of Flow Cytometry and Enzyme-linked Immunosorbent Assay (ELISA)

    Science.gov (United States)

    Ott, Laura E.; Carson, Susan

    2014-01-01

    Flow cytometry and enzyme-linked immunosorbent assay (ELISA) are commonly used techniques associated with clinical and research applications within the immunology and medical fields. The use of these techniques is becoming increasingly valuable in many life science and engineering disciplines as well. Herein, we report the development and…

  14. [Evaluation of TB-beads assay utilizing the technique of magnetic beads--an innovative assay method for detection of acid fast bacilli].

    Science.gov (United States)

    Ohkuma, Masanori; Ikeda, Katsuyoshi; Obayashi, Konen; Ando, Yukio; Koriyama, Toyoyasu; Kimu, Minhi; Hirose, Nobuyuki; Nagasawa, Zenzo; Miyamoto, Hiroshi

    2012-01-01

    The centrifuge method with the use of Semi-Alkalin Proteinase (SAP) and NALC-NaOH, recommended by the "2007 edition of the assay guideline for detection of Mycobacterium tuberculosis," has significantly contributed to improving the sensitivities and specificities of both smear and culture tests for detection of acid fast bacilli (AFB). However, this method poses some challenges in terms of its cumbersome and time-consuming assay protocol. "TB-beads (Kyokuto Pharmaceutical Industrial Co., Ltd.)" is a newly-developed method for detection of AFB utilizing magnetic beads. We evaluated the quality of this method in comparison with the centrifuge method, focusing on the results of smear and culture tests. This evaluation study was conducted using both 5 positive and 5 negative sputum samples. The sensitivity of TB-beads for fluorescent smear tests, conducted using "Acri-stain," was almost the same as that of the centrifuge method. One advantage of TB-beads, however, was that it was very convenient to practice microscopic observation due to the clear background of the smeared glass slides. The comparison of the contamination rates between the two methods showed that TB-beads suggested significantly lower contamination rates. The centrifuge method resulted in 50% and 60% of contamination rates for HK Semisolid Isolation Medium and BacT/ALERT MP, respectively. On the other hand, the contamination rates of TB-beads for both of the culture methods were only 10%. With regard to the 5 positive sputum samples, the comparison of the detection rates between the centrifuge and TB-Beads method was made utilizing Myco Acid, Ogawa K, and BacT/ALERT MP. The TB-Beads method suggested higher detection rates for Myco Acid and Ogawa K, while there were no significant differences between the two methods for BacT/ALERT MP (16-23 days). TB-beads is an easy method that allows to simplify the process of smear tests, and contributes to significantly reducing the contamination rate of culture

  15. Tumor markers kits development for use in radioimmunometric assays

    International Nuclear Information System (INIS)

    Ahmed, B.

    1997-01-01

    The immunoassays such as RIA and IRMA are now widely used through the world for the quantitation of a variety of substances in the biological fluid for their high sensibility and specificity which required simple equipments. These techniques are also very used in Algeria for an effective amelioration of public heath The assays kits of RIA/IRMA of thyroid hormones are the most used, followed by peptidic hormones, steroids hormones and IRMA Tumor Markers (T.M) kits. In spite of the important demand, of tumor markers kits for the diagnosis and follow up of cancers their use are always insufficient due to the high cost. The research contract programme proposed by IAEA on the theme 'The Developments of IRMA Tumor Markers Kits' of prostate specific Antigen (PSA) and Tissue Polypeptide Specific Antigen (TPS) will allowed us to produce locally with best quality-price, the main reagents for PSA and TPS IRMA assays kits for diagnosis and follow up the prostate and breast cancers which are very spready in the country. This report include the following points: Generalities on the use of tumor markers in Algeria, programme for the Development of the PSA IRMA assay (schedule of protocols applied for each reagents; annual planning for assessing the programme activities) and conclusion

  16. Investigation into the dissolution and direct assay of high-fired plutonium dioxide

    International Nuclear Information System (INIS)

    Patterson, J.K.

    1976-01-01

    A fusion-melt and dissolution assay method has been developed and tested for the quantitative analysis of high-fired plutonium dioxide. The method employs fusion of the plutonium dioxide at temperatures greater than the melting point of an eutectic mixture of potassium pyrosulfate plus sodium peroxide. The resultant melt is then titrated directly by either controlled potential coulometry or a gravimetric titration, using standardized ceric sulfate as the titrant. It has been concluded from these investigations that by using the techniques described, high-fired plutonium dioxide (stochiometric) can be quantitatively dissolved and assayed to a degree heretofore beyond the state-of-the-art, while showing direct traceability to the Federal standards. After fusion, the dissolution and direct assay is applicable to existing routine analytical procedures. The method was designed so as to minimize physical handling, simplify the chemical operations, and maximize the personal safety of the analyst at an appreciable cost savings per analysis

  17. Decomposition techniques

    Science.gov (United States)

    Chao, T.T.; Sanzolone, R.F.

    1992-01-01

    Sample decomposition is a fundamental and integral step in the procedure of geochemical analysis. It is often the limiting factor to sample throughput, especially with the recent application of the fast and modern multi-element measurement instrumentation. The complexity of geological materials makes it necessary to choose the sample decomposition technique that is compatible with the specific objective of the analysis. When selecting a decomposition technique, consideration should be given to the chemical and mineralogical characteristics of the sample, elements to be determined, precision and accuracy requirements, sample throughput, technical capability of personnel, and time constraints. This paper addresses these concerns and discusses the attributes and limitations of many techniques of sample decomposition along with examples of their application to geochemical analysis. The chemical properties of reagents as to their function as decomposition agents are also reviewed. The section on acid dissolution techniques addresses the various inorganic acids that are used individually or in combination in both open and closed systems. Fluxes used in sample fusion are discussed. The promising microwave-oven technology and the emerging field of automation are also examined. A section on applications highlights the use of decomposition techniques for the determination of Au, platinum group elements (PGEs), Hg, U, hydride-forming elements, rare earth elements (REEs), and multi-elements in geological materials. Partial dissolution techniques used for geochemical exploration which have been treated in detail elsewhere are not discussed here; nor are fire-assaying for noble metals and decomposition techniques for X-ray fluorescence or nuclear methods be discussed. ?? 1992.

  18. Isotopic fissile assay of spent fuel in a lead slowing-down spectrometer system

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Deok; Jeon, Ju Young [Dept. of Fuel Cycle Technology, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Chang Je [Dept. of Nuclear Engineering, Sejong University, Seoul (Korea, Republic of)

    2017-04-15

    A lead slowing-down spectrometer (LSDS) system is under development to analyze isotopic fissile content that is applicable to spent fuel and recycled material. The source neutron mechanism for efficient and effective generation was also determined. The source neutron interacts with a lead medium and produces continuous neutron energy, and this energy generates dominant fission at each fissile, below the unresolved resonance region. From the relationship between the induced fissile fission and the fast fission neutron detection, a mathematical assay model for an isotopic fissile material was set up. The assay model can be expanded for all fissile materials. The correction factor for self-shielding was defined in the fuel assay area. The corrected fission signature provides well-defined fission properties with an increase in the fissile content. The assay procedure was also established. The assay energy range is very important to take into account the prominent fission structure of each fissile material. Fission detection occurred according to the change of the Pu239 weight percent (wt%), but the content of U235 and Pu241 was fixed at 1 wt%. The assay result was obtained with 2∼3% uncertainty for Pu239, depending on the amount of Pu239 in the fuel. The results show that LSDS is a very powerful technique to assay the isotopic fissile content in spent fuel and recycled materials for the reuse of fissile materials. Additionally, a LSDS is applicable during the optimum design of spent fuel storage facilities and their management. The isotopic fissile content assay will increase the transparency and credibility of spent fuel storage.

  19. Radioimmunoassay and other related techniques

    International Nuclear Information System (INIS)

    Zarkawi, Moutaz

    1993-04-01

    The article reviews principles, requirements and reliability criteria of radioimmunoassay (RIA). Since basic reactions involved in RIA and related techniques are derived from reactions which take place in the immune system (IS) of humans and animals, the IS and the way it works will be described. In addition to RIA which involves the use of isotopes as tracers (labels), other non-radioisotopic and recent immunoassay techniques i.e. enzyme-linked immunosorbent assay (ELISA), chemiluminescence immunoassay (CLIA) and fluoroimmunoassay (FIA) will be dealt with. Some important and related terms will be defined and explained. (author). 59 refs., 4 figs

  20. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman; Ba Alawi, Wail; Afeef, Moataz A.; Essack, Magbubah; Rodionov, Valentin; Kalnis, Panos; Bajic, Vladimir B.

    2015-01-01

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  1. Mining Chemical Activity Status from High-Throughput Screening Assays

    KAUST Repository

    Soufan, Othman

    2015-12-14

    High-throughput screening (HTS) experiments provide a valuable resource that reports biological activity of numerous chemical compounds relative to their molecular targets. Building computational models that accurately predict such activity status (active vs. inactive) in specific assays is a challenging task given the large volume of data and frequently small proportion of active compounds relative to the inactive ones. We developed a method, DRAMOTE, to predict activity status of chemical compounds in HTP activity assays. For a class of HTP assays, our method achieves considerably better results than the current state-of-the-art-solutions. We achieved this by modification of a minority oversampling technique. To demonstrate that DRAMOTE is performing better than the other methods, we performed a comprehensive comparison analysis with several other methods and evaluated them on data from 11 PubChem assays through 1,350 experiments that involved approximately 500,000 interactions between chemicals and their target proteins. As an example of potential use, we applied DRAMOTE to develop robust models for predicting FDA approved drugs that have high probability to interact with the thyroid stimulating hormone receptor (TSHR) in humans. Our findings are further partially and indirectly supported by 3D docking results and literature information. The results based on approximately 500,000 interactions suggest that DRAMOTE has performed the best and that it can be used for developing robust virtual screening models. The datasets and implementation of all solutions are available as a MATLAB toolbox online at www.cbrc.kaust.edu.sa/dramote and can be found on Figshare.

  2. Matrix and position correction of shuffler assays by application of the alternating conditional expectation algorithm to shuffler data

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Rinard, P.M.

    1992-01-01

    The 252 Cf shuffler assays fissile uranium and plutonium using active neutron interrogation and then counting the induced delayed neutrons. Using the shuffler, we conducted over 1700 assays of 55-gal. drums with 28 different matrices and several different fissionable materials. We measured the drums to dispose the matrix and position effects on 252 Cf shuffler assays. We used several neutron flux monitors during irradiation and kept statistics on the count rates of individual detector banks. The intent of these measurements was to gauge the effect of the matrix independently from the uranium assay. Although shufflers have previously been equipped neutron monitors, the functional relationship between the flux monitor sepals and the matrix-induced perturbation has been unknown. There are several flux monitors so the problem is multivariate, and the response is complicated. Conventional regression techniques cannot address complicated multivariate problems unless the underlying functional form and approximate parameter values are known in advance. Neither was available in this case. To address this problem, we used a new technique called alternating conditional expectations (ACE), which requires neither the functional relationship nor the initial parameters. The ACE algorithm develops the functional form and performs a numerical regression from only the empirical data. We applied the ACE algorithm to the shuffler-assay and flux-monitor data and developed an analytic function for the matrix correction. This function was optimized using conventional multivariate techniques. We were able to reduce the matrix-induced-bias error for homogeneous samples to 12.7%. The bias error for inhomogeneous samples was reduced to 13.5%. These results used only a few adjustable parameters compared to the number of available data points; the data were not ''over fit,'' but rather the results are general and robust

  3. Determination of the folate content in cladodes of nopal (Opuntia ficus indica) by microbiological assay utilizing Lactobacillus casei (ATCC 7469) and enzyme-linked immunosorbent assay.

    Science.gov (United States)

    Ortiz-Escobar, Tania Breshkovskaya; Valverde-González, Maria Elena; Paredes-López, Octavio

    2010-05-26

    Prickly pear cactus has been an important food source in Mexico since ancient times due to its economical and ecological benefits and potential nutraceutical value. Nevertheless, studies on the nutritional aspects and health benefits have been scarce. The purpose of this study was to assess, apparently for the first time, the folate contents of cladodes of nopal by a microbiological assay, using Lactobacillus casei (ATCC 7469) in extracts that were enzymatically treated to release the bound vitamin, employing single, dual, and trienzymatic procedures, and using the enzyme-linked immunosorbent assay (ELISA). We used Opuntia cladodes of different length sizes. The microbiological assay showed some differences among enzyme treatments and sizes of nopal; the trienzyme treatment (alpha-amylase-protease-conjugase) was more efficient in determining the folate content in nopal, giving 5.0 ng/g in the small size cladodes at 54 h of testing time, while ELISA showed no significant differences in the folate content among sizes of cladodes (5.5-5.62 ng/g at 0 min testing time). Both techniques may be used for the assessment of folate content in cladodes, but ELISA is more rapid and reliable.

  4. New closed tube loop mediated isothermal amplification assay for prevention of product cross-contamination.

    Science.gov (United States)

    Karthik, K; Rathore, Rajesh; Thomas, Prasad; Arun, T R; Viswas, K N; Dhama, Kuldeep; Agarwal, R K

    2014-01-01

    Loop mediated isothermal amplification (LAMP) assay, a promising diagnostic test, has been developed for detection of different pathogens of human as well as animals. Various positive points support its use as a field level test but the major problem is product cross contamination leading to false positive results. Different methods were adopted by various researchers to control this false positive amplification due to cross contamination but all have their own advantages and disadvantages. A new closed tube LAMP assay based on agar dye capsule was developed in the present study and this technique has some advantages over the other closed tube technique.•Agar at the concentration of 1.5% was used to sandwich SYBR green dye I with the aid of intradermal syringe. This agar dye capsule was placed over the LAMP reaction mixture before it was amplified.•To eliminate the hazardous nature of Ultra Violet (UV) light during result visualization of LAMP products, the present study demonstrates the use of Light Emitting Diode (LED) lights for result visualization.•LAMP was carried out for Brucella species detection using this modified techniques yielding good results without any cross contamination and LED showed similar fluorescence compared to UV.

  5. Absolute nuclear material assay

    Science.gov (United States)

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. Evaluation of irradiation in foods using DNA comet assay

    International Nuclear Information System (INIS)

    Khawar, Affaf; Bhatti, Ijaz Ahmad; Khan, Q.M.; Ali, T.; Khan, A.I.; Asi, M.R.

    2011-01-01

    Comet assay is a rapid, inexpensive and sensitive biological technique to detect DNA damage in food stuffs by irradiation. In this study the Comet assay is applied on foods of plant and animal origins. Samples were irradiated by using 60 Co gamma-radiation source. The applied doses were 2, 6 and 10 kGy for food of plant origin and 0.5, 1 and 2 kGy for meat items. The un-irradiated and irradiated samples were clearly differentiated on the basis of DNA fragmentation. During the electrophoresis study, it was found that in un-irradiated cells DNA remained intact and appeared as Comets without tail whereas in irradiated cells Comets with tails were visible due to stretching of fragmented DNA. Moreover, it was also revealed that the DNA tail length was dose dependent. Dry food stuffs (seeds) showed good results as compared to moist foods (meat, fruits and vegetables) due to the absence of background damage. (author)

  7. Assay method and compositions

    International Nuclear Information System (INIS)

    1977-01-01

    Methods are described for measuring catecholamine levels in human and animal body fluids and tissues using the catechol-O-methyl-transferase (COMT) radioassay. The assay involves incubating the biological sample with COMT and the tritiated methyl donor, S-adenosyl-L-methionine( 3 H)-methyl. The O-methylated ( 3 H) epinephrine and/or norepinephrine are extracted and oxidised to vanillin- 3 H which in turn is extracted and its radioactivity counted. When analysing dopamine levels the assay is extended by vanillin- 3 H and raising the pH of the aqueous periodate phase from which O-methylated ( 3 H) dopamine is extracted and counted. The assay may be modified depending on whether measurements of undifferentiated total endogenous catecholamine levels or differential analyses of the catecholamine levels are being performed. The sensitivity of the assay can be as low as 5 picograms for norepinephrine and epinephrine and 12 picograms for dopamine. The assemblance of the essential components of the assay into a kit for use in laboratories is also described. (U.K.)

  8. Protein assay structured on paper by using lithography

    Science.gov (United States)

    Wilhelm, E.; Nargang, T. M.; Al Bitar, W.; Waterkotte, B.; Rapp, B. E.

    2015-03-01

    There are two main challenges in producing a robust, paper-based analytical device. The first one is to create a hydrophobic barrier which unlike the commonly used wax barriers does not break if the paper is bent. The second one is the creation of the (bio-)specific sensing layer. For this proteins have to be immobilized without diminishing their activity. We solve both problems using light-based fabrication methods that enable fast, efficient manufacturing of paper-based analytical devices. The first technique relies on silanization by which we create a flexible hydrophobic barrier made of dimethoxydimethylsilane. The second technique demonstrated within this paper uses photobleaching to immobilize proteins by means of maskless projection lithography. Both techniques have been tested on a classical lithography setup using printed toner masks and on a lithography system for maskless lithography. Using these setups we could demonstrate that the proposed manufacturing techniques can be carried out at low costs. The resolution of the paper-based analytical devices obtained with static masks was lower due to the lower mask resolution. Better results were obtained using advanced lithography equipment. By doing so we demonstrated, that our technique enables fabrication of effective hydrophobic boundary layers with a thickness of only 342 μm. Furthermore we showed that flourescine-5-biotin can be immobilized on the non-structured paper and be employed for the detection of streptavidinalkaline phosphatase. By carrying out this assay on a paper-based analytical device which had been structured using the silanization technique we proofed biological compatibility of the suggested patterning technique.

  9. The development of an expert system for the characterization of waste assay data

    Energy Technology Data Exchange (ETDEWEB)

    Bridges, S.; Hodges, J.; Sparrow, C. [Mississippi State Univ., Mississippi State, MS (United States)] [and others

    1997-11-01

    Containers of transuranic and low-level alpha contaminated waste generated as a byproduct of Department of Energy defense-related programs must be characterized before their proper disposition can be determined. Nondestructive assay methods are the most desirable means for assessing the mass and activity of the entrained transuranic radionuclides. However, there are other sources of information that may be useful in the characterization of the entrained waste (e.g., container manifests, information about the generation process, and destructive assay techniques performed on representative samples). This paper describes initial work on an expert system being developed to analyze and characterize containerized radiological waste. This system is being developed by scientists at the Mississippi State University Diagnostic and Instrumentation Laboratory (DIAL) in collaboration with scientists at the Idaho National Engineering Laboratory. The DIAL scientists are responsible for (1) the development of techniques to represent and reason with evidence from a variety of sources, and (2) the development of appropriate method(s) to represent and reason with confidence levels associated with that evidence. This paper describes exploratory versions of the expert system developed to evaluate four techniques for representing and reasoning with the confidence in the evidence: MYCIN-style certainty factors, Dempster-Shafer Theory, Bayesian networks, and fuzzy logic. 16 refs., 8 figs., 4 tabs.

  10. The development of an expert system for the characterization of waste assay data

    International Nuclear Information System (INIS)

    Bridges, S.; Hodges, J.; Sparrow, C.

    1997-01-01

    Containers of transuranic and low-level alpha contaminated waste generated as a byproduct of Department of Energy defense-related programs must be characterized before their proper disposition can be determined. Nondestructive assay methods are the most desirable means for assessing the mass and activity of the entrained transuranic radionuclides. However, there are other sources of information that may be useful in the characterization of the entrained waste (e.g., container manifests, information about the generation process, and destructive assay techniques performed on representative samples). This paper describes initial work on an expert system being developed to analyze and characterize containerized radiological waste. This system is being developed by scientists at the Mississippi State University Diagnostic and Instrumentation Laboratory (DIAL) in collaboration with scientists at the Idaho National Engineering Laboratory. The DIAL scientists are responsible for (1) the development of techniques to represent and reason with evidence from a variety of sources, and (2) the development of appropriate method(s) to represent and reason with confidence levels associated with that evidence. This paper describes exploratory versions of the expert system developed to evaluate four techniques for representing and reasoning with the confidence in the evidence: MYCIN-style certainty factors, Dempster-Shafer Theory, Bayesian networks, and fuzzy logic. 16 refs., 8 figs., 4 tabs

  11. A preliminary evaluation of certain NDA techniques for RH-TRU characterization

    Energy Technology Data Exchange (ETDEWEB)

    Hartwell, J.K.; Yoon, W.Y.; Peterson, H.K. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    This report presents the results of modeling efforts to evaluate selected NDA assay methods for RH-TRU waste characterization. The target waste stream was Content Code 104/107 113-liter waste drums that comprise the majority of the INEL`s RH-TRU waste inventory. Two NDA techniques are treated in detail. One primary NDA technique examined is gamma-ray spectrometry to determine the drum fission and activation product content, and fuel sample inventory calculations using the ORIGEN code to predict the total drum inventory. A heavily shielded and strongly collimated HPGe spectrometer system was designed using MCNP modeling. Detection limits and expected precision of this approach were estimated by a combination of Monte Carlo modeling and synthetic gamma-ray spectrum generation. This technique may allow the radionuclide content of these wastes to be determined with relative standard deviations of 20 to 50% depending on the drum matrix and radionuclide. The INEL Passive/Active Neutron (PAN) assay system is the second primary technique considered. A shielded overpack for the 113-liter CC104/107 RH-TRU drums was designed to shield the PAN detectors from excessive gamma radiation. MCNP modeling suggests PAN detection limits of about 0.06 g {sup 235}U and 0.04 g {sup 239}Pu during active assays. 12 refs., 2 figs., 6 tabs.

  12. Comparing differential tolerance of native and non-indigenous marine species to metal pollution using novel assay techniques

    International Nuclear Information System (INIS)

    Piola, Richard F.; Johnston, Emma L.

    2009-01-01

    Recent research suggests anthropogenic disturbance may disproportionately advantage non-indigenous species (NIS), aiding their establishment within impacted environments. This study used novel laboratory- and field-based toxicity testing to determine whether non-indigenous and native bryozoans (common within marine epibenthic communities worldwide) displayed differential tolerance to the common marine pollutant copper (Cu). In laboratory assays on adult colonies, NIS showed remarkable tolerance to Cu, with strong post-exposure recovery and growth. In contrast, native species displayed negative growth and reduced feeding efficiency across most exposure levels. Field transplant experiments supported laboratory findings, with NIS growing faster under Cu conditions. In field-based larval assays, NIS showed strong recruitment and growth in the presence of Cu relative to the native species. We suggest that strong selective pressures exerted by the toxic antifouling paints used on transport vectors (vessels), combined with metal contamination in estuarine environments, may result in metal tolerant NIS advantaged by anthropogenically modified selection regimes. - Greater tolerance to pollutants in marine NIS may increase the risk of invasion in port and harbours worldwide by providing a competitive advantage over native taxa.

  13. Development of a One-Step Multiplex PCR Assay for Differential Detection of Major Mycobacterium Species.

    Science.gov (United States)

    Chae, Hansong; Han, Seung Jung; Kim, Su-Young; Ki, Chang-Seok; Huh, Hee Jae; Yong, Dongeun; Koh, Won-Jung; Shin, Sung Jae

    2017-09-01

    The prevalence of tuberculosis continues to be high, and nontuberculous mycobacterial (NTM) infection has also emerged worldwide. Moreover, differential and accurate identification of mycobacteria to the species or subspecies level is an unmet clinical need. Here, we developed a one-step multiplex PCR assay using whole-genome analysis and bioinformatics to identify novel molecular targets. The aims of this assay were to (i) discriminate between the Mycobacterium tuberculosis complex (MTBC) and NTM using rv0577 or RD750, (ii) differentiate M. tuberculosis ( M. tuberculosis ) from MTBC using RD9, (iii) selectively identify the widespread M. tuberculosis Beijing genotype by targeting mtbk_20680 , and (iv) simultaneously detect five clinically important NTM ( M. avium , M. intracellulare , M. abscessus , M. massiliense , and M. kansasii ) by targeting IS 1311 , DT1, mass_3210 , and mkan_rs12360 An initial evaluation of the multiplex PCR assay using reference strains demonstrated 100% specificity for the targeted Mycobacterium species. Analytical sensitivity ranged from 1 to 10 pg for extracted DNA and was 10 3 and 10 4 CFU for pure cultures and nonhomogenized artificial sputum cultures, respectively, of the targeted species. The accuracy of the multiplex PCR assay was further evaluated using 55 reference strains and 94 mycobacterial clinical isolates. Spoligotyping, multilocus sequence analysis, and a commercial real-time PCR assay were employed as standard assays to evaluate the multiplex PCR assay with clinical M. tuberculosis and NTM isolates. The PCR assay displayed 100% identification agreement with the standard assays. Our multiplex PCR assay is a simple, convenient, and reliable technique for differential identification of MTBC, M. tuberculosis , M. tuberculosis Beijing genotype, and major NTM species. Copyright © 2017 American Society for Microbiology.

  14. Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of fasciolosis in sheep and its application under field conditions.

    Science.gov (United States)

    Martínez-Valladares, María; Rojo-Vázquez, Francisco Antonio

    2016-02-05

    Loop-mediated isothermal amplification (LAMP) is a very specific, efficient, and rapid gene amplification procedure in which the reaction can run at a constant temperature. In the current study we have developed a LAMP assay to improve the diagnosis of Fasciola spp. in the faeces of sheep. After the optimisation of the LAMP assay we have shown similar results between this technique and the standard PCR using the outer primers of the LAMP reaction. In both cases the limit of detection was 10 pg; also, the diagnosis of fasciolosis was confirmed during the first week post-infection in experimental infected sheep by both techniques. In eight naturally infected sheep, the infection with F. hepatica was confirmed in all animals before a treatment with triclabendazole and on day 30 post treatment in two sheep using the LAMP assay; however, when we carried out the standard PCR with the outer primers, the results before treatment were the same but on day 30 post-treatment the infection was only confirmed in one out of the two sheep. On the other hand, the standard PCR took around 3 h to obtain a result, comparing with 1 h and 10 min for the LAMP assay. The LAMP assay described here could be a good alternative to conventional diagnostic methods to detect F. hepatica in faeces since it solves the drawbacks of the standard PCR.

  15. Microfluidic wound-healing assay to assess the regenerative effect of HGF on wounded alveolar epithelium.

    OpenAIRE

    Felder Marcel; Sallin Pauline; Barbe Laurent; Haenni Beat; Gazdhar Amiq; Geiser Thomas; Guenat Olivier

    2012-01-01

    We present a microfluidic epithelial wound healing assay that allows characterization of the effect of hepatocyte growth factor (HGF) on the regeneration of alveolar epithelium using a flow focusing technique to create a regular wound in the epithelial monolayer. The phenotype of the epithelial cell was characterized using immunostaining for tight junction (TJ) proteins and transmission electron micrographs (TEMs) of cells cultured in the microfluidic system a technique that is reported here ...

  16. Nuclear assay of coal. Volume 4. Moisture determination in coal: survey of electromagnetic techniques. Final report

    International Nuclear Information System (INIS)

    Bevan, R.; Luckie, P.; Gozani, T.; Brown, D.R.; Bozorgmanesh, H.; Elias, E.

    1979-01-01

    This survey consists of two basic parts. The first consists of a survey of various non-nuclear moisture determination techniques. Three techniques are identified as promising for eventual on-line application with coal; these are the capacitance, microwave attenuation, and nuclear magnetic resonance (NMR) techniques. The second part is devoted to an in-depth analysis of these three techniques and the current extent to which they have been applied to coal. With a given coal type, accuracies of +- 1% absolute in moisture content are achievable with all three techniques. The accuracy of the two electromagnetic techniques has been demonstrated in the laboratory and on-line in coal burning plants, whereas only small samples have been analyzed with NMR. The current shortcoming of the simple electromagnetic techniques is the sensitivity of calibrations to physical parameters and coal type. NMR is currently limited by small sample sizes and non-rugged design. These findings are summarized and a list of manufacturers of moisture analyzers is given in the Appendix

  17. Validation of an in vitro contractility assay using canine ventricular myocytes

    Energy Technology Data Exchange (ETDEWEB)

    Harmer, A.R., E-mail: alex.harmer@astrazeneca.com; Abi-Gerges, N.; Morton, M.J.; Pullen, G.F.; Valentin, J.P.; Pollard, C.E.

    2012-04-15

    Measurement of cardiac contractility is a logical part of pre-clinical safety assessment in a drug discovery project, particularly if a risk has been identified or is suspected based on the primary- or non-target pharmacology. However, there are limited validated assays available that can be used to screen several compounds in order to identify and eliminate inotropic liability from a chemical series. We have therefore sought to develop an in vitro model with sufficient throughput for this purpose. Dog ventricular myocytes were isolated using a collagenase perfusion technique and placed in a perfused recording chamber on the stage of a microscope at ∼ 36 °C. Myocytes were stimulated to contract at a pacing frequency of 1 Hz and a digital, cell geometry measurement system (IonOptix™) was used to measure sarcomere shortening in single myocytes. After perfusion with vehicle (0.1% DMSO), concentration–effect curves were constructed for each compound in 4–30 myocytes taken from 1 or 2 dog hearts. The validation test-set was 22 negative and 8 positive inotropes, and 21 inactive compounds, as defined by their effect in dog, cynolomolgous monkey or humans. By comparing the outcome of the assay to the known in vivo contractility effects, the assay sensitivity was 81%, specificity was 75%, and accuracy was 78%. With a throughput of 6–8 compounds/week from 1 cell isolation, this assay may be of value to drug discovery projects to screen for direct contractility effects and, if a hazard is identified, help identify inactive compounds. -- Highlights: ► Cardiac contractility is an important physiological function of the heart. ► Assessment of contractility is a logical part of pre-clinical drug safety testing. ► There are limited validated assays that predict effects of compounds on contractility. ► Using dog myocytes, we have developed an in vitro cardiac contractility assay. ► The assay predicted the in vivo contractility with a good level of accuracy.

  18. Pu abundances, concentrations, and isotopics by x- and gamma-ray spectrometry assay techniques

    International Nuclear Information System (INIS)

    Camp, D.C.; Gunnink, R.; Ruhter, W.D.; Prindle, A.L.; Gomes, R.J.

    1986-01-01

    Two x- and gamma-ray systems were recently installed at-line in gloveboxes and will measure Pu solution concentrations from 5 to 105 g/L. These NDA technique, developed and refined over the past decade, are now used domestically and internationally for nuclear material process monitoring and accountability needs. In off- and at-line installations, they can measure solution concentrations to 0.2%. The K-XRFA systems use a transmission source to correct for solution density. The gamma-ray systems use peaks from 59- to 208-keV to determine solution concentrations and relative isotopics. A Pu check source monitors system stability. These two NDA techniques can be combined to form a new, NDA measurement methodology. With the instrument located outside of a glovebox, both relative Pu isotopics and absolute Pu abundances of a sample located inside a glovebox can be measured. The new technique works with either single or dual source excitation; the former for a detector 6 to 20 cm away with no geometric corrections needed; the latter requires geometric corrections or source movement if the sample cannot be measured at the calibration distance. 4 refs., 7 figs., 2 tabs

  19. A simple clot based assay for detection of procoagulant cell-derived microparticles.

    Science.gov (United States)

    Patil, Rucha; Ghosh, Kanjaksha; Shetty, Shrimati

    2016-05-01

    Cell-derived microparticles (MPs) are important biomarkers in many facets of medicine. However, the MP detection methods used till date are costly and time consuming. The main aim of this study was to standardize an in-house clot based screening method for MP detection which would not only be specific and sensitive, but also inexpensive. Four different methods of MP assessment were performed and the results correlated. Using the flow cytometry technique as the gold standard, 25 samples with normal phosphatidylserine (PS) expressing MP levels and 25 samples with elevated levels were selected, which was cross checked by the commercial STA Procoag PPL clotting time (CT) assay. A simple recalcification time and an in-house clot assay were the remaining two tests. The in-house test measures the CT after the addition of calcium chloride to MP rich plasma, following incubation with Russell viper venom and phospholipid free plasma. The CT obtained by the in-house assay significantly correlated with the results obtained by flow cytometry (R2=0.87, p<0.01). Though preliminary, the in-house assay seems to be efficient, inexpensive and promising. It could definitely be utilized routinely for procoagulant MP assessment in various clinical settings.

  20. The application of reporter gene assays for the detection of endocrine disruptors in sport supplements

    International Nuclear Information System (INIS)

    Plotan, Monika; Elliott, Christopher T.; Scippo, Marie Louise; Muller, Marc; Antignac, Jean-Philippe; Malone, Edward; Bovee, Toine F.H.; Mitchell, Samuel; Connolly, Lisa

    2011-01-01

    The increasing availability and use of sports supplements is of concern as highlighted by a number of studies reporting endocrine disruptor contamination in such products. The health food supplement market, including sport supplements, is growing across the Developed World. Therefore, the need to ensure the quality and safety of sport supplements for the consumer is essential. The development and validation of two reporter gene assays coupled with solid phase sample preparation enabling the detection of estrogenic and androgenic constituents in sport supplements is reported. Both assays were shown to be of high sensitivity with the estrogen and androgen reporter gene assays having an EC 50 of 0.01 ng mL -1 and 0.16 ng mL -1 respectively. The developed assays were applied in a survey of 63 sport supplements samples obtained across the Island of Ireland with an additional seven reference samples previously investigated using LC-MS/MS. Androgen and estrogen bio-activity was found in 71% of the investigated samples. Bio-activity profiling was further broken down into agonists, partial agonists and antagonists. Supplements (13) with the strongest estrogenic bio-activity were chosen for further investigation. LC-MS/MS analysis of these samples determined the presence of phytoestrogens in seven of them. Supplements (38) with androgen bio-activity were also selected for further investigation. Androgen agonist bio-activity was detected in 12 supplements, antagonistic bio-activity was detected in 16 and partial antagonistic bio-activity was detected in 10. A further group of supplements (7) did not present androgenic bio-activity when tested alone but enhanced the androgenic agonist bio-activity of dihydrotestosterone when combined. The developed assays offer advantages in detection of known, unknown and low-level mixtures of endocrine disruptors over existing analytical screening techniques. For the detection and identification of constituent hormonally active compounds the

  1. Progress on the application of ligand receptor binding assays in radiopharmaceuticals

    International Nuclear Information System (INIS)

    Zhou Xue; Qian Jinping; Kong Aiying; Zhu Lin

    2010-01-01

    Receptor binding assay is an important drug screening method, which can quickly and inexpensively study the interactions between the targeted receptor and the potential ligands in vitro and provide the information of the relative binding affinity of ligand-receptor. The imaging of many radiopharmaceuticals is based on highly selective radioligand-receptor binding. The technique plays an important role in the design and screening of receptor-targeting radiopharmaceuticals. (authors)

  2. Computer-assisted image analysis assay of human neutrophil chemotaxis in vitro

    DEFF Research Database (Denmark)

    Jensen, P; Kharazmi, A

    1991-01-01

    We have developed a computer-based image analysis system to measure in-filter migration of human neutrophils in the Boyden chamber. This method is compared with the conventional manual counting techniques. Neutrophils from healthy individuals and from patients with reduced chemotactic activity were....... Another advantage of the assay is that it can be used to show the migration pattern of different populations of neutrophils from both healthy individuals and patients....

  3. Expert system for transuranic waste assay

    Energy Technology Data Exchange (ETDEWEB)

    Zoolalian, M.L.; Gibbs, A.; Kuhns, J.D.

    1989-01-01

    Transuranic wastes are generated at the Savannah River Site (SRS) as a result of routine production of nuclear materials. These wastes contain Pu-238 and Pu-239 and are placed into lined 55-gallon waste drums. The drums are placed on monitored storage pads pending shipment to the Waste Isolation Pilot Plant in New Mexico. A passive-active neutron (PAN) assay system is used to determine the mass of the radioactive material within the waste drums. Assay results are used to classify the wastes as either low-level or transuranic (TRU). During assays, the PAN assay system communicates with an IBM-AT computer. A Fortran computer program, called NEUT, controls and performs all data analyses. Unassisted, the NEUT program cannot adequately interpret assay results. To eliminate this limitation, an expert system shell was used to write a new algorithm, called the Transuranic Expert System (TRUX), to drive the NEUT program and add decision making capabilities for analysis of the assay results. The TRUX knowledge base was formulated by consulting with human experts in the field of neutron assay, by direct experimentation on the PAN assay system, and by observing operations on a daily basis. TRUX, with its improved ability to interpret assay results, has eliminated the need for close supervision by a human expert, allowing skilled technicians to operate the PAN assay system. 4 refs., 1 fig., 4 tabs.

  4. Expert system for transuranic waste assay

    International Nuclear Information System (INIS)

    Zoolalian, M.L.; Gibbs, A.; Kuhns, J.D.

    1989-01-01

    Transuranic wastes are generated at the Savannah River Site (SRS) as a result of routine production of nuclear materials. These wastes contain Pu-238 and Pu-239 and are placed into lined 55-gallon waste drums. The drums are placed on monitored storage pads pending shipment to the Waste Isolation Pilot Plant in New Mexico. A passive-active neutron (PAN) assay system is used to determine the mass of the radioactive material within the waste drums. Assay results are used to classify the wastes as either low-level or transuranic (TRU). During assays, the PAN assay system communicates with an IBM-AT computer. A Fortran computer program, called NEUT, controls and performs all data analyses. Unassisted, the NEUT program cannot adequately interpret assay results. To eliminate this limitation, an expert system shell was used to write a new algorithm, called the Transuranic Expert System (TRUX), to drive the NEUT program and add decision making capabilities for analysis of the assay results. The TRUX knowledge base was formulated by consulting with human experts in the field of neutron assay, by direct experimentation on the PAN assay system, and by observing operations on a daily basis. TRUX, with its improved ability to interpret assay results, has eliminated the need for close supervision by a human expert, allowing skilled technicians to operate the PAN assay system. 4 refs., 1 fig., 4 tabs

  5. Automated 5 ' nuclease PCR assay for identification of Salmonella enterica

    DEFF Research Database (Denmark)

    Hoorfar, Jeffrey; Ahrens, Peter; Rådström, P.

    2000-01-01

    -point fluorescence (FAM) signals for the samples and positive control (TET) signals (relative sensitivity [Delta Rn], >0.6). The diagnostic specificity of the method was assessed using 120 non-Salmonella strains, which all resulted in negative FAM signals (Delta Rn, less than or equal to 0.5). All 100 rough...... Salmonella strains tested resulted in positive FAM and TET signals. In addition, it was found that the complete PCR mixture, predispensed in microwell plates, could be stored for up to 3 months at -20 degrees C, Thus, the diagnostic TaqMan assay developed can be a useful and simple alternative method......A simple and ready-to-go test based on a 5' nuclease (TaqMan) PCR technique was developed for identification of presumptive Salmonella enterica isolates. The results were compared with those of conventional methods. The TaqMan assay was evaluated for its ability to accurately detect 210 S. enterica...

  6. Real-time Quaking-induced Conversion Assay for Detection of CWD Prions in Fecal Material.

    Science.gov (United States)

    Cheng, Yo Ching; Hannaoui, Samia; John, Theodore Ralph; Dudas, Sandor; Czub, Stefanie; Gilch, Sabine

    2017-09-29

    The RT-QuIC technique is a sensitive in vitro cell-free prion amplification assay based mainly on the seeded misfolding and aggregation of recombinant prion protein (PrP) substrate using prion seeds as a template for the conversion. RT-QuIC is a novel high-throughput technique which is analogous to real-time polymerase chain reaction (PCR). Detection of amyloid fibril growth is based on the dye Thioflavin T, which fluoresces upon specific interaction with ᵦ-sheet rich proteins. Thus, amyloid formation can be detected in real time. We attempted to develop a reliable non-invasive screening test to detect chronic wasting disease (CWD) prions in fecal extract. Here, we have specifically adapted the RT-QuIC technique to reveal PrP Sc seeding activity in feces of CWD infected cervids. Initially, the seeding activity of the fecal extracts we prepared was relatively low in RT-QuIC, possibly due to potential assay inhibitors in the fecal material. To improve seeding activity of feces extracts and remove potential assay inhibitors, we homogenized the fecal samples in a buffer containing detergents and protease inhibitors. We also submitted the samples to different methodologies to concentrate PrP Sc on the basis of protein precipitation using sodium phosphotungstic acid, and centrifugal force. Finally, the feces extracts were tested by optimized RT-QuIC which included substrate replacement in the protocol to improve the sensitivity of detection. Thus, we established a protocol for sensitive detection of CWD prion seeding activity in feces of pre-clinical and clinical cervids by RT-QuIC, which can be a practical tool for non-invasive CWD diagnosis.

  7. The comet assay in Folsomia candida: A suitable approach to assess genotoxicity in collembolans.

    Science.gov (United States)

    Cardoso, Diogo N; Silva, Ana Rita R; Cruz, Andreia; Lourenço, Joana; Neves, Joana; Malheiro, Catarina; Mendo, Sónia; Soares, Amadeu M V M; Loureiro, Susana

    2017-09-01

    The present study shows the comet assay technique being successfully applied for the first time to one of the most widely used soil organisms in standardized ecotoxicological tests, Folsomia candida, providing a step forward in assessing the genotoxicity induced by xenobiotics. Because collembolans have a high content of chitin, a new methodology was developed in which the heads of the collembolans were separated from the rest of the body, allowing the hemolymph to leak out. This procedure allows the cells to be released, and after lysis the genetic material is available for the comet assay. Among other key procedures, the use of 30 organisms (20- to 22-d-old adults) per replicate and the correct amount of cells with genetic material (translated as 10 μL of suspension) applied on the agarose gel were determinants for the success of the results obtained. The methodology was validated by exposing F. candida to a representative metallic element (cadmium) and a representative of organophosphates, the insecticide dimethoate, for a shorter time period of 10 d, compared with the 28 d for the International Organization for Standardization 11267 method. Within this method, the relatively low percentage of DNA damage (30%) observed in controls and the significant increase in terms of percentage of DNA damage for almost all the concentrations of dimethoate and Cd (reaching 52% and 56% of damage in the highest concentrations, respectively) confirmed the genotoxic effect of both compounds and validated this technique. The comet assay proved to be a sensitive technique to detect DNA strand breaks in collembolans' cells. Environ Toxicol Chem 2017;36:2514-2520. © 2017 SETAC. © 2017 SETAC.

  8. The states of the art of the nondestructive assay of spent nuclear fuel assemblies. A critical review of the Spent Fuel NDA Project of the U.S. Department of Energy's Next Generation Safeguards Initiative

    International Nuclear Information System (INIS)

    Bolind, Alan Michael; Seya, Michio

    2015-12-01

    The state of the art of the nondestructive assay of spent nuclear fuel assemblies is represented by the results of the Spent Fuel Nondestructive Assay Project of the Next Generation Safeguards Initiative (NGSI) of the U.S. Department of Energy / National Nuclear Security Administration. This report surveys the fourteen advanced nondestructive assay (NDA) techniques that were examined by the NGSI. For each technique, it explains how the technique operates, the NGSI's design of an instrument that uses the technique, how the data are analyzed, and the technique's chief limitations. After this survey of the NDA techniques, the report then discusses and critiques the current paradigm of the practice of NDA of spent fuel assemblies. It shows how the current main problem in the NDA of spent fuel assemblies—namely, an unacceptably large uncertainty in the assay results—is caused primarily by using too few independent NDA measurements. Because the physics of the NDA of spent fuel assemblies is three dimensional, at least three independent NDA measurements are required. Thus, NDA results should be able to be improved dramatically by combining the fourteen advanced NDA techniques plus other existing NDA techniques into appropriate combinations of three techniques. This report evaluates the NGSI's proposed NDA combinations according to these principles. (author)

  9. Standard test method for nondestructive assay of radioactive material by tomographic gamma scanning

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method describes the nondestructive assay (NDA) of gamma ray emitting radionuclides inside containers using tomographic gamma scanning (TGS). High resolution gamma ray spectroscopy is used to detect and quantify the radionuclides of interest. The attenuation of an external gamma ray transmission source is used to correct the measurement of the emission gamma rays from radionuclides to arrive at a quantitative determination of the radionuclides present in the item. 1.2 The TGS technique covered by the test method may be used to assay scrap or waste material in cans or drums in the 1 to 500 litre volume range. Other items may be assayed as well. 1.3 The test method will cover two implementations of the TGS procedure: (1) Isotope Specific Calibration that uses standards of known radionuclide masses (or activities) to determine system response in a mass (or activity) versus corrected count rate calibration, that applies to only those specific radionuclides for which it is calibrated, and (2) Respo...

  10. First results with a radioreceptor-assay (TRAK-Assay) for TSH-receptor-autoantibodies

    International Nuclear Information System (INIS)

    Becker, W.; Reiners, C.; Boerner, W.

    1983-01-01

    A new radioreceptor-assay (TRAK-assay) for autoantibodies against TSH-receptors was tested in 48 untreated thyrotoxic patients (26 regional autonomies, 22 toxic diffuse goiters). None of the 26 patients with regional autonomy showed positive autoantibody-titers. 4 patients with toxic diffuse goiter and thyrotoxic exophthalmos were TRAK-positive. Positive titers of microsomal and thyreoglobulin autoantibodies could be seen in 8 of 9 patients with positive TRAK-titers. In accordance with the conventional methods for detecting thyroid-stimulating immunoglobulins the new TRAK-assay seems to be suited for differentiating between immunogenic toxic diffuse goiter (Graves' disease) and goiter with disseminated autonomy as well as for prediction of relapse. (orig.) [de

  11. Scoping study to expedite development of a field deployable and portable instrument for UF6 enrichment assay

    Energy Technology Data Exchange (ETDEWEB)

    Chan, George; Valentine, John D.; Russo, Richard E.

    2017-09-14

    The primary objective of the present study is to identity the most promising, viable technologies that are likely to culminate in an expedited development of the next-generation, field-deployable instrument for providing rapid, accurate, and precise enrichment assay of uranium hexafluoride (UF6). UF6 is typically involved, and is arguably the most important uranium compound, in uranium enrichment processes. As the first line of defense against proliferation, accurate analytical techniques to determine the uranium isotopic distribution in UF6 are critical for materials verification, accounting, and safeguards at enrichment plants. As nuclear fuel cycle technology becomes more prevalent around the world, international nuclear safeguards and interest in UF6 enrichment assay has been growing. At present, laboratory-based mass spectrometry (MS), which offers the highest attainable analytical accuracy and precision, is the technique of choice for the analysis of stable and long-lived isotopes. Currently, the International Atomic Energy Agency (IAEA) monitors the production of enriched UF6 at declared facilities by collecting a small amount (between 1 to 10 g) of gaseous UF6 into a sample bottle, which is then shipped under chain of custody to a central laboratory (IAEA’s Nuclear Materials Analysis Laboratory) for high-precision isotopic assay by MS. The logistics are cumbersome and new shipping regulations are making it more difficult to transport UF6. Furthermore, the analysis is costly, and results are not available for some time after sample collection. Hence, the IAEA is challenged to develop effective safeguards approaches at enrichment plants. In-field isotopic analysis of UF6 has the potential to substantially reduce the time, logistics and expense of sample handling. However, current laboratory-based MS techniques require too much infrastructure and operator expertise for field deployment and operation. As outlined in the IAEA Department of Safeguards Long

  12. Thermometric enzyme linked immunosorbent assay in continuous flow system: optimization and evaluation using human serum albumin as a model system.

    Science.gov (United States)

    Borrebaeck, C; Börjeson, J; Mattiasson, B

    1978-06-15

    Thermometric enzyme-linked immunosorbent assay (TELISA) is described. After the procedure of optimization, human serum albumin was assayed using anti-human serum albumin bound to Sepharose CL 4-B in the enzyme thermistor unit and catalase as label on the free antigen. The model system was used for assays down to 10(-13)M and the preparation of immobilized antibodies was used repeatedly up to 100 times. Comparative studies of the TELISA technique with bromocresol green, immunoturbidimetric and rocket immunoelectrophoretic methods were carried out and showed that TELISA could be used as an alternative method.

  13. Biosensor-based microRNA detection: techniques, design, performance, and challenges.

    Science.gov (United States)

    Johnson, Blake N; Mutharasan, Raj

    2014-04-07

    The current state of biosensor-based techniques for amplification-free microRNA (miRNA) detection is critically reviewed. Comparison with non-sensor and amplification-based molecular techniques (MTs), such as polymerase-based methods, is made in terms of transduction mechanism, associated protocol, and sensitivity. Challenges associated with miRNA hybridization thermodynamics which affect assay selectivity and amplification bias are briefly discussed. Electrochemical, electromechanical, and optical classes of miRNA biosensors are reviewed in terms of transduction mechanism, limit of detection (LOD), time-to-results (TTR), multiplexing potential, and measurement robustness. Current trends suggest that biosensor-based techniques (BTs) for miRNA assay will complement MTs due to the advantages of amplification-free detection, LOD being femtomolar (fM)-attomolar (aM), short TTR, multiplexing capability, and minimal sample preparation requirement. Areas of future importance in miRNA BT development are presented which include focus on achieving high measurement confidence and multiplexing capabilities.

  14. Systematic random sampling of the comet assay.

    Science.gov (United States)

    McArt, Darragh G; Wasson, Gillian R; McKerr, George; Saetzler, Kurt; Reed, Matt; Howard, C Vyvyan

    2009-07-01

    The comet assay is a technique used to quantify DNA damage and repair at a cellular level. In the assay, cells are embedded in agarose and the cellular content is stripped away leaving only the DNA trapped in an agarose cavity which can then be electrophoresed. The damaged DNA can enter the agarose and migrate while the undamaged DNA cannot and is retained. DNA damage is measured as the proportion of the migratory 'tail' DNA compared to the total DNA in the cell. The fundamental basis of these arbitrary values is obtained in the comet acquisition phase using fluorescence microscopy with a stoichiometric stain in tandem with image analysis software. Current methods deployed in such an acquisition are expected to be both objectively and randomly obtained. In this paper we examine the 'randomness' of the acquisition phase and suggest an alternative method that offers both objective and unbiased comet selection. In order to achieve this, we have adopted a survey sampling approach widely used in stereology, which offers a method of systematic random sampling (SRS). This is desirable as it offers an impartial and reproducible method of comet analysis that can be used both manually or automated. By making use of an unbiased sampling frame and using microscope verniers, we are able to increase the precision of estimates of DNA damage. Results obtained from a multiple-user pooled variation experiment showed that the SRS technique attained a lower variability than that of the traditional approach. The analysis of a single user with repetition experiment showed greater individual variances while not being detrimental to overall averages. This would suggest that the SRS method offers a better reflection of DNA damage for a given slide and also offers better user reproducibility.

  15. Assay of plutonium contaminated waste by gamma spectrometry

    International Nuclear Information System (INIS)

    Adsley, I.; Bull, R.; Davies, M.; Green, M.

    2011-01-01

    The extreme toxicity of plutonium necessitates the segregation of plutonium contaminated materials (PCM) with extremely small (sub-μg) levels of contamination. The driver to measure accurately these small quantities of plutonium within (relatively) large volumes of waste is (in part) financial. In particular the cost of disposal (per unit volume) rises steeply with increasing waste-category. Within the UK, there has been a historical reluctance to use low energy gamma radiation to sentence PCM because of the potential for self attenuation by dense materials. This is unfortunate because the low-energy gamma radiation from PCM offers the only practicable technique for segregating PCM within the various Low Level Waste (LLW) (>0.4Bq/g) and sub-LLW categories. Whilst passive neutron counting techniques have proved successful for assay of waste well into the Intermediate Level Waste (ILW) (>100Bq/g) category, a cursory study reveals that these techniques are barely capable of detecting mg quantities of plutonium -- let alone the sub-μg quantities present in LLW. This paper considers the use of two types of gamma detector for assay of PCM: the thin sodium iodide FIDLER (Field Instrument for the Detection of Low Energy Radiation) and the HPGe (High Purity Germanium) detector. Systems utilising these two types of detector can provide complementary information. FIDLER measurements are conducted by careful, local, systematic monitoring of surfaces. By contrast a HPGe detector can be used to monitor entire walls, or even rooms, in one measurement. Thus, a HPGe detector placed in the centre of room (from which any radioactive hot-spots have previously been removed) could be used to demonstrate that the average activity remaining close to the surface of the walls/floor/ceiling is below a given limit. The Monte Carlo Code MCNP 1 has been used to model both FIDLER probe and HPGe detector in the measurement geometries described above. The MCNP simulations have been validated

  16. Rapid susceptibility testing of Mycobacterium tuberculosis by bioluminescence assay of mycobacterial ATP

    International Nuclear Information System (INIS)

    Nilsson, L.E.; Hoffner, S.E.; Ansehn, S.

    1988-01-01

    Mycobacterial growth was monitored by bioluminescence assay of mycobacterial ATP. Cultures of Mycobacterium tuberculosis H37Rv and of 25 clinical isolates of the same species were exposed to serial dilutions of ethambutol, isoniazid, rifampin, and streptomycin. A suppression of ATP, indicating growth inhibition, occurred for susceptible but not resistant strains within 5 to 7 days of incubation. Breakpoint concentrations between susceptibility and resistance were determined by comparing these results with those obtained by reference techniques. Full agreement was found in 99% of the assays with the resistance ratio method on Lowenstein-Jensen medium, and 98% of the assays were in full agreement with the radiometric system (BACTEC). A main advantage of the bioluminescence method is its rapidity, with results available as fast as with the radiometric system but at a lower cost and without the need for radioactive culture medium. The method provides kinetic data concerning drug effects within available in vivo drug concentrations and has great potential for both rapid routine susceptibility testing and research applications in studies of drug effects on mycobacteria

  17. Biochemical studies of immune RNA using a cell-mediated cytotoxicity assay

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D.; Sellin, H.G.; Novelli, G.D.

    1980-01-01

    Immune RNA (iRNA), a subcellular macromolecular species usually prepared by phenol extraction of lymphoid tissue, can confer some manifestation(s) of cellular immunity on naive lymphocytes. Experiments were done to develop an assay system to detect activation of lymphocytes by iRNA to become cytotoxic toward tumor cells, and to study certain properties of iRNA using this system. Guinea pigs were immunized with human mammary carcinoma cells and the iRNA, prepared from spleens of animals shown by prior assay to have blood lymphocytes highly cytotoxic against the tumor cells, was assayed by ability of iRNA-activated lymphocytes to lyse /sup 51/Cr-labelled tumor cells. The ability of iRNA to activate lymphocytes to tumor cytotoxicity could only be differentiated from a cytotoxic activation by RNA preparations from unimmunized animals at very low doses of RNA. The most active iRNA preparations were from cytoplasmic subcellular fractions, extracted by a cold phenol procedure, while iRNA isolated by hot phenol methods was no more active than control RNA prepared by the same techniques. Attempts to demonstrate poly(A) sequences in iRNA were inconclusive.

  18. New aspects of radioimmunochemical measurement of human parathyroid hormone using the labelled antibody technique

    International Nuclear Information System (INIS)

    Hesch, R.D.; McIntosh, C.H.S.; Woodhead, J.S.; Welsh National School of Medicine, Cardiff

    1975-01-01

    Two forms of heterogeneity of parathyroid hormone (PTH) have given rise to conflicting results: one due to the heterogeneity of the secreted species from the gland and their peripheral metabolism and the other representing the immunochemical heterogeneity of the available antibodies. We have developed sequence specific assays using the technique of labelled antibodies. Therefore, results of assays measuring the C-terminal part and the (1-34)-N-terminal part of the molecule could be compared to those of an assay for hormone bearing both N- and C-terminal antigenic determinants. This assay is supposed to detect predominantly (1-84)-intact hormone. The immunoradiometric assay of (1-34)-PTH has a sensitivity of 0.04 ng/ml. This technique avoids the critical iodination of the hormone fragment containing no tyrosine. There is the expected overlap between normal subjects and patients with primary and secondary hyperparathyroidism. The most important finding are results from patients undergoing neck catheterization. We demonstrated nonuniform secretion of different species of PTH by parathyroid adenomata and normal glands. This supports the hypothesis of cleavage of the (1-84)-molecule in the gland. (orig.) [de

  19. A l-nCi/g sensitivity transuranic waste assay system using pulsed neutron interrogation

    International Nuclear Information System (INIS)

    Kunz, W.E.; Atencio, J.D.; Caldwell, J.T.

    1980-01-01

    We have developed a pulsed thermal neutron interrogation system and have demonstrated a sub-1-nCi/g assay sensitivity for high density TRU wastes contained in 200-liter barrels. We detect prompt fission neutrons, resulting in greatly enhanced sensitivity compared to techniques in which delayed fission neutrons are detected. We observe a linear assay response over at least three orders of magnitude in 235 U (or 239 Pu) mass. We also have measured a flat (to +-10%) interrogation flux profile throughout the volume of a 200-liter barrel filled with 200 kg of sand and vermiculite, which indicates flatness of response to fissile material at different locations within the barrel

  20. Significance of the proportion of binucleate cells in the micronucleus assay

    International Nuclear Information System (INIS)

    Imamura, Masahiro; Edgren, M.R.

    1994-01-01

    Using treatment with cytochalasin-B (Cyt-B) for the induction of a cytokinetic block, the significance of the proportion of binucleate cells (BNC) in the micronucleus (MN) assay was investigated in a methodological study. A Chinese hamster cell line V79 was used in which MN were induced by radiation. In complementary tests the radiation effect in inducing MN was enhanced by depletion of the cellular glutathione content with buthionine sulfoximine (BSO). The data indicated that the concentration of Cyt-B is the major factor which determines the proportion of BNC. This proportion was shown to be independent of radiation dose and of BSO. Furthermore, the MN frequency was not related to the percentage of BNC. Therefore, a high proportion of BNC may be practical for the MN assay, but may not make the technique more accurate. (author)

  1. Antioxidants and the Comet assay.

    Science.gov (United States)

    Cemeli, Eduardo; Baumgartner, Adolf; Anderson, Diana

    2009-01-01

    It is widely accepted that antioxidants, either endogenous or from the diet, play a key role in preserving health. They are able to quench radical species generated in situations of oxidative stress, either triggered by pathologies or xenobiotics, and they protect the integrity of DNA from genotoxicants. Nevertheless, there are still many compounds with unclear or unidentified prooxidant/antioxidant activities. This is of concern since there is an increase in the number of compounds synthesized or extracted from vegetables to which humans might be exposed. Despite the well-established protective effects of fruit and vegetables, the antioxidant(s) responsible have not all been clearly identified. There might also be alternative mechanisms contributing to the protective effects for which a comprehensive description is lacking. In the last two decades, the Comet assay has been extensively used for the investigation of the effects of antioxidants and many reports can be found in the literature. The Comet assay, a relatively fast, simple, and sensitive technique for the analysis of DNA damage in all cell types, has been applied for the screening of chemicals, biomonitoring and intervention studies. In the present review, several of the most well-known antioxidants are considered. These include: catalase, superoxide dismutase, glutathione peroxidase, selenium, iron chelators, melatonin, melanin, vitamins (A, B, C and E), carotenes, flavonoids, isoflavones, tea polyphenols, wine polyphenols and synthetic antioxidants. Investigations showing beneficial as well as non-beneficial properties of the antioxidants selected, either at the in vitro, ex vivo or in vivo level are discussed.

  2. The synchronous active neutron detection assay system

    International Nuclear Information System (INIS)

    Pickrell, M.M.; Kendall, P.K.

    1994-01-01

    We have begun to develop a novel technique for active neutron assay of fissile material in spent nuclear fuel. This approach will exploit a 14-MeV neutron generator developed by Schlumberger. The technique, termed synchronous active neutron detection (SAND), follows a method used routinely in other branches of physics to detect very small signals in presence of large backgrounds. Synchronous detection instruments are widely available commercially and are termed ''lock-in'' amplifiers. We have implemented a digital lock-in amplifier in conjunction with the Schlumberger neutron generator to explore the possibility of synchronous detection with active neutrons. The Schlumberger system can operate at up to a 50% duty factor, in effect, a square wave of neutron yield. Results are preliminary but promising. The system is capable of resolving the fissile material contained in a small fraction of the fuel rods in a cold fuel assembly; it also appears resilient to background neutron interference. The interrogating neutrons appear to be non-thermal and penetrating. Work remains to fully explore relevant physics and optimize instrument design

  3. Development of an integrated assay facility

    International Nuclear Information System (INIS)

    Molesworth, T.V.; Bailey, M.; Findlay, D.J.S.; Sene, M.R.; Swinhoe, M.T.

    1990-01-01

    Initial results of active neutron and active gamma-ray interrogation of a 500 liter cemented simulated CAGR intermediate level radioactive waste drum are described. The basis of the interrogation systems was the Harwell electron linear accelerator HELIOS, which was used to produce the interrogating neutrons and gamma-rays. Several sets of neutron detectors were located around the drum to count signature neutrons. The responses of the system were measured by placing known samples at many different locations within the drum. In general, measured responses confirmed calculated responses. Good agreement was obtained for the azimuthal angle dependences. The absolute responses agreed well for gamma-ray interrogation, but the calculations were apparently over-estimates for neutron interrogation. Those aspects requiring consideration in the practical application of assay techniques are identified. 8 refs., 6 figs

  4. Automation of the ELISpot assay for high-throughput detection of antigen-specific T-cell responses.

    Science.gov (United States)

    Almeida, Coral-Ann M; Roberts, Steven G; Laird, Rebecca; McKinnon, Elizabeth; Ahmed, Imran; Pfafferott, Katja; Turley, Joanne; Keane, Niamh M; Lucas, Andrew; Rushton, Ben; Chopra, Abha; Mallal, Simon; John, Mina

    2009-05-15

    The enzyme linked immunospot (ELISpot) assay is a fundamental tool in cellular immunology, providing both quantitative and qualitative information on cellular cytokine responses to defined antigens. It enables the comprehensive screening of patient derived peripheral blood mononuclear cells to reveal the antigenic restriction of T-cell responses and is an emerging technique in clinical laboratory investigation of certain infectious diseases. As with all cellular-based assays, the final results of the assay are dependent on a number of technical variables that may impact precision if not highly standardised between operators. When studies that are large scale or using multiple antigens are set up manually, these assays may be labour intensive, have many manual handling steps, are subject to data and sample integrity failure and may show large inter-operator variability. Here we describe the successful automated performance of the interferon (IFN)-gamma ELISpot assay from cell counting through to electronic capture of cytokine quantitation and present the results of a comparison between automated and manual performance of the ELISpot assay. The mean number of spot forming units enumerated by both methods for limiting dilutions of CMV, EBV and influenza (CEF)-derived peptides in six healthy individuals were highly correlated (r>0.83, pautomated system compared favourably with the manual ELISpot and further ensured electronic tracking, increased through-put and reduced turnaround time.

  5. Method of assaying uranium with prompt fission and thermal neutron borehole logging adjusted by borehole physical characteristics

    International Nuclear Information System (INIS)

    Barnard, R.W.; Jensen, D.H.

    1982-01-01

    Uranium formations are assayed by prompt fission neutron logging techniques. The uranium in the formation is proportional to the ratio of epithermal counts to thermal or eqithermal dieaway. Various calibration factors enhance the accuracy of the measurement

  6. Preparation of anti-CEA and anti-goat γ-globulin sera for radioimmunologic assay of carcinoembryonic antigen

    International Nuclear Information System (INIS)

    Kusnierczyk-Glazman, H.; Breborowicz, J.

    1977-01-01

    Goats were immunized with purified carcinoembryonic antigen, and the suitability of the antisera for clinical assays of carcinoembryonic antigen was characterized. Reactivity of equine sera to goat γ-globulin as a precipitating factor in the radioimmunologic double antibody technique was also evaluated. (author)

  7. Design of an error-free nondestructive plutonium assay facility

    International Nuclear Information System (INIS)

    Moore, C.B.; Steward, W.E.

    1987-01-01

    An automated, at-line nondestructive assay (NDA) laboratory is installed in facilities recently constructed at the Savannah River Plant. The laboratory will enhance nuclear materials accounting in new plutonium scrap and waste recovery facilities. The advantages of at-line NDA operations will not be realized if results are clouded by errors in analytical procedures, sample identification, record keeping, or techniques for extracting samples from process streams. Minimization of such errors has been a primary design objective for the new facility. Concepts for achieving that objective include mechanizing the administrative tasks of scheduling activities in the laboratory, identifying samples, recording and storing assay data, and transmitting results information to process control and materials accounting functions. These concepts have been implemented in an analytical computer system that is programmed to avoid the obvious sources of error encountered in laboratory operations. The laboratory computer exchanges information with process control and materials accounting computers, transmitting results information and obtaining process data and accounting information as required to guide process operations and maintain current records of materials flow through the new facility

  8. Nondestructive Assay Data Integration with the SKB-50 Assemblies - FY16 Update

    International Nuclear Information System (INIS)

    Tobin, Stephen Joseph; Fugate, Michael Lynn; Trellue, Holly Renee; DeBaere, Paul; Sjoland, Anders; Liljenfeldt, Henrik; Hu, Jianwei; Backstrom, Ulrika; Bengtsson, Martin; Burr, Tomas; Eliasson, Annika; Favalli, Andrea; Gauld, Ian; Grogan, Brandon; Jansson, Peter; Junell, Henrik; Schwalbach, Peter; Vaccaro, Stefano; Vo, Duc Ta; Wildestrand, Henrik

    2016-01-01

    A project to research the application of non-destructive assay (NDA) techniques for spent fuel assemblies is underway at the Central Interim Storage Facility for Spent Nuclear Fuel (for which the Swedish acronym is Clab) in Oskarshamn, Sweden. The research goals of this project contain both safeguards and non-safeguards interests. These nondestructive assay (NDA) technologies are designed to strengthen the technical toolkit of safeguard inspectors and others to determine the following technical goals more accurately; Verify initial enrichment, burnup, and cooling time of facility declaration for spent fuel assemblies; Detect replaced or missing pins from a given spent fuel assembly to confirm its integrity; and Estimate plutonium mass and related plutonium and uranium fissile mass parameters in spent fuel assemblies. Estimate heat content, and measure reactivity (multiplication).

  9. Nondestructive Assay Data Integration with the SKB-50 Assemblies - FY16 Update

    Energy Technology Data Exchange (ETDEWEB)

    Tobin, Stephen Joseph [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Fugate, Michael Lynn [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Trellue, Holly Renee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); DeBaere, Paul [DG Energy, Luxembourg (Germany); Sjoland, Anders [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Liljenfeldt, Henrik [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hu, Jianwei [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Backstrom, Ulrika [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Vattenfall AB, Stockholm (Sweden); Bengtsson, Martin [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Vattenfall AB, Stockholm (Sweden); Burr, Tomas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); International Atomic Energy Agency, Vienna (Austria); Eliasson, Annika [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gauld, Ian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Grogan, Brandon [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jansson, Peter [Uppsala Univ. (Sweden); Junell, Henrik [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Schwalbach, Peter [DG Energy, Luxembourg (Germany); Vaccaro, Stefano [DG Energy, Luxembourg (Germany); Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Wildestrand, Henrik [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Vattenfall AB, Stockholm (Sweden)

    2016-10-28

    A project to research the application of non-destructive assay (NDA) techniques for spent fuel assemblies is underway at the Central Interim Storage Facility for Spent Nuclear Fuel (for which the Swedish acronym is Clab) in Oskarshamn, Sweden. The research goals of this project contain both safeguards and non-safeguards interests. These nondestructive assay (NDA) technologies are designed to strengthen the technical toolkit of safeguard inspectors and others to determine the following technical goals more accurately; Verify initial enrichment, burnup, and cooling time of facility declaration for spent fuel assemblies; Detect replaced or missing pins from a given spent fuel assembly to confirm its integrity; and Estimate plutonium mass and related plutonium and uranium fissile mass parameters in spent fuel assemblies. Estimate heat content, and measure reactivity (multiplication).

  10. Cooking techniques improve the levels of bioactive compounds and antioxidant activity in kale and red cabbage.

    Science.gov (United States)

    Murador, Daniella Carisa; Mercadante, Adriana Zerlotti; de Rosso, Veridiana Vera

    2016-04-01

    The aim of this study is to investigate the effects of different home cooking techniques (boiling, steaming, and stir-frying) in kale and red cabbage, on the levels of bioactive compounds (carotenoids, anthocyanins and phenolic compounds) determined by high-performance liquid chromatography coupled with photodiode array and mass spectrometry detectors (HPLC-DAD-MS(n)), and on the antioxidant activity evaluated by ABTS, ORAC and cellular antioxidant activity (CAA) assays. The steaming technique resulted in a significant increase in phenolic content in kale (86.1%; pkale, steaming resulted in significant increases in antioxidant activity levels in all of the evaluation methods. In the red cabbage, boiling resulted in a significant increase in antioxidant activity using the ABTS assay but resulted in a significant decrease using the ORAC assay. According to the CAA assay, the stir-fried sample displayed the highest levels of antioxidant activity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Surface Enhanced Raman Spectroscopy (SERS) methods for endpoint and real-time quantification of miRNA assays

    Science.gov (United States)

    Restaino, Stephen M.; White, Ian M.

    2017-03-01

    Surface Enhanced Raman spectroscopy (SERS) provides significant improvements over conventional methods for single and multianalyte quantification. Specifically, the spectroscopic fingerprint provided by Raman scattering allows for a direct multiplexing potential far beyond that of fluorescence and colorimetry. Additionally, SERS generates a comparatively low financial and spatial footprint compared with common fluorescence based systems. Despite the advantages of SERS, it has remained largely an academic pursuit. In the field of biosensing, techniques to apply SERS to molecular diagnostics are constantly under development but, most often, assay protocols are redesigned around the use of SERS as a quantification method and ultimately complicate existing protocols. Our group has sought to rethink common SERS methodologies in order to produce translational technologies capable of allowing SERS to compete in the evolving, yet often inflexible biosensing field. This work will discuss the development of two techniques for quantification of microRNA, a promising biomarker for homeostatic and disease conditions ranging from cancer to HIV. First, an inkjet-printed paper SERS sensor has been developed to allow on-demand production of a customizable and multiplexable single-step lateral flow assay for miRNA quantification. Second, as miRNA concentrations commonly exist in relatively low concentrations, amplification methods (e.g. PCR) are therefore required to facilitate quantification. This work presents a novel miRNA assay alongside a novel technique for quantification of nuclease driven nucleic acid amplification strategies that will allow SERS to be used directly with common amplification strategies for quantification of miRNA and other nucleic acid biomarkers.

  12. Development and application of two independent real-time PCR assays to detect clinically relevant Mucorales species.

    Science.gov (United States)

    Springer, Jan; Goldenberger, Daniel; Schmidt, Friderike; Weisser, Maja; Wehrle-Wieland, Elisabeth; Einsele, Hermann; Frei, Reno; Löffler, Jürgen

    2016-03-01

    PCR-based detection of Mucorales species could improve diagnosis of suspected invasive fungal infection, leading to a better patient outcome. This study describes two independent probe-based real-time PCR tests for detection of clinically relevant Mucorales, targeting specific fragments of the 18S and the 28S rRNA genes. Both assays have a short turnaround time, allow fast, specific and very sensitive detection of clinically relevant Mucorales and have the potential to be used as quantitative tests. They were validated on various clinical samples (fresh and formalin-fixed paraffin-embedded specimens, mainly biopsies, n = 17). The assays should be used as add-on tools to complement standard techniques; a combined approach of both real-time PCR assays has 100 % sensitivity. Genus identification by subsequent sequencing is possible for amplicons of the 18S PCR assay. In conclusion, combination of the two independent Mucorales assays described in this study, 18S and 28S, detected all clinical samples associated with proven Mucorales infection (n = 10). Reliable and specific identification of Mucorales is a prerequisite for successful antifungal therapy as these fungi show intrinsic resistance to voriconazole and caspofungin.

  13. Harmonization of radiobiological assays: why and how?

    International Nuclear Information System (INIS)

    Prasanna, Pataje G.

    2014-01-01

    The International Atomic Energy Agency has made available a technical manual for cytogenetic biodosimetry assays (dicentric chromosome aberration (DCA) and cytokinesis-block micronucleus (CBMN) assays) used for radiation dose assessment in radiation accidents. The International Standardization Organization, which develops standards and guidelines, also provides an avenue for laboratory accreditation, has developed guidelines and recommendations for performing cytogenetic biodosimetry assays. Harmonization of DCA and CBMN assays, has improved their accuracy. Double-blinded inter-laboratory comparison studies involving several networks have further validated DCA and CBMN assays and improved the confidence in their potential use for radiation dose assessment in mass casualties. This kind of international harmonization is lacking for pre-clinical radiobiology assays. The widely used pre-clinical assays that are relatively important to set stage for clinical trials include clonogenic assays, flow-cytometry assays, apoptotic assays, and tumor regression and growth delay assays. However, significant inter-laboratory variations occur with respect to data among laboratories. This raises concerns on the reliability and reproducibility of preclinical data that drives further development and translation. Lack of reproducibility may stem from a variety of factors such as poor scientist training, less than optimal experimental design, inadequate description of methodology, and impulse to publish only the positive data etc. Availability of technical manuals, standard operating procedures, accreditation avenues for laboratories performing such assays, inter-laboratory comparisons, and use of standardized protocols are necessary to enhance reliability and reproducibility. Thus, it is important that radiobiological assays are harmonized for laboratory protocols to ensure successful translation of pre-clinical research on radiation effect modulators to help design clinic trials with

  14. Molecular surveillance of true nontypeable Haemophilus influenzae: an evaluation of PCR screening assays.

    Science.gov (United States)

    Binks, Michael J; Temple, Beth; Kirkham, Lea-Ann; Wiertsema, Selma P; Dunne, Eileen M; Richmond, Peter C; Marsh, Robyn L; Leach, Amanda J; Smith-Vaughan, Heidi C

    2012-01-01

    Unambiguous identification of nontypeable Haemophilus influenzae (NTHi) is not possible by conventional microbiology. Molecular characterisation of phenotypically defined NTHi isolates suggests that up to 40% are Haemophilus haemolyticus (Hh); however, the genetic similarity of NTHi and Hh limits the power of simple molecular techniques such as PCR for species discrimination. Here we assess the ability of previously published and novel PCR-based assays to identify true NTHi. Sixty phenotypic NTHi isolates, classified by a dual 16S rRNA gene PCR algorithm as NTHi (n = 22), Hh (n = 27) or equivocal (n = 11), were further characterised by sequencing of the 16S rRNA and recA genes then interrogated by PCR-based assays targeting the omp P2, omp P6, lgtC, hpd, 16S rRNA, fucK and iga genes. The sequencing data and PCR results were used to define NTHi for this study. Two hpd real time PCR assays (hpd#1 and hpd#3) and the conventional iga PCR assay were equally efficient at differentiating study-defined NTHi from Hh, each with a receiver operator characteristic curve area of 0.90 [0.83; 0.98]. The hpd#1 and hpd#3 assays were completely specific against a panel of common respiratory bacteria, unlike the iga PCR, and the hpd#3 assay was able to detect below 10 copies per reaction. Our data suggest an evolutionary continuum between NTHi and Hh and therefore no single gene target could completely differentiate NTHi from Hh. The hpd#3 real time PCR assay proved to be the superior method for discrimination of NTHi from closely related Haemophilus species with the added potential for quantification of H. influenzae directly from specimens. We suggest the hpd#3 assay would be suitable for routine NTHi surveillance and to assess the impact of antibiotics and vaccines, on H. influenzae carriage rates, carriage density, and disease.

  15. Molecular surveillance of true nontypeable Haemophilus influenzae: an evaluation of PCR screening assays.

    Directory of Open Access Journals (Sweden)

    Michael J Binks

    Full Text Available BACKGROUND: Unambiguous identification of nontypeable Haemophilus influenzae (NTHi is not possible by conventional microbiology. Molecular characterisation of phenotypically defined NTHi isolates suggests that up to 40% are Haemophilus haemolyticus (Hh; however, the genetic similarity of NTHi and Hh limits the power of simple molecular techniques such as PCR for species discrimination. METHODOLOGY/PRINCIPAL FINDINGS: Here we assess the ability of previously published and novel PCR-based assays to identify true NTHi. Sixty phenotypic NTHi isolates, classified by a dual 16S rRNA gene PCR algorithm as NTHi (n = 22, Hh (n = 27 or equivocal (n = 11, were further characterised by sequencing of the 16S rRNA and recA genes then interrogated by PCR-based assays targeting the omp P2, omp P6, lgtC, hpd, 16S rRNA, fucK and iga genes. The sequencing data and PCR results were used to define NTHi for this study. Two hpd real time PCR assays (hpd#1 and hpd#3 and the conventional iga PCR assay were equally efficient at differentiating study-defined NTHi from Hh, each with a receiver operator characteristic curve area of 0.90 [0.83; 0.98]. The hpd#1 and hpd#3 assays were completely specific against a panel of common respiratory bacteria, unlike the iga PCR, and the hpd#3 assay was able to detect below 10 copies per reaction. CONCLUSIONS/SIGNIFICANCE: Our data suggest an evolutionary continuum between NTHi and Hh and therefore no single gene target could completely differentiate NTHi from Hh. The hpd#3 real time PCR assay proved to be the superior method for discrimination of NTHi from closely related Haemophilus species with the added potential for quantification of H. influenzae directly from specimens. We suggest the hpd#3 assay would be suitable for routine NTHi surveillance and to assess the impact of antibiotics and vaccines, on H. influenzae carriage rates, carriage density, and disease.

  16. A Comparative Analysis of Uranium Ore using Laser Fluorimetric and gamma Spectrometry Techniques

    International Nuclear Information System (INIS)

    Madbouly, M.; Nassef, M. H.; El-Mongy, S.A.; Diab, A.M.

    2009-01-01

    A developed chemical separation method was used for the analysis of uranium in a standard U-ore (IAEA-RGU-1) by LASER fluorimetric technique. The non-destructive gamma assay technique was also applied to verify and compare the uranium content analyzed using laser technique. The results of the uranium analysis obtained by laser fluorimetry were found to be in the range of 360 - 420 μg/g with an average value of 390 μg/g. The bias between the measured and the certified value does not exceed 9.9%. For gamma-ray spectrometric analysis, the results of the measured uranium content were found to be in the range of 393.8 - 399.4 μg/g with an average value of 396.3 μg/g. The % difference in the case of γ- assay was 1.6 %. In general, the methods of analysis used in this study are applicable for a precise determination of uranium. It can be concluded that, laser analysis is preferred for assay of uranium ore due to the required small sample weight, the low time of sample preparation and cost of analysis.

  17. MS transport assays for γ-aminobutyric acid transporters--an efficient alternative for radiometric assays.

    Science.gov (United States)

    Schmitt, Sebastian; Höfner, Georg; Wanner, Klaus T

    2014-08-05

    Transport assays for neurotransmitters based on radiolabeled substrates are widely spread and often indispensable in basic research and the drug development process, although the use of radioisotopes is inherently coupled to issues concerning radioactive waste and safety precautions. To overcome these disadvantages, we developed mass spectrometry (MS)-based transport assays for γ-aminobutyric acid (GABA), which is the major inhibitory neurotransmitter in the central nervous system (CNS). These "MS Transport Assays" provide all capabilities of [(3)H]GABA transport assays and therefore represent the first substitute for the latter. The performance of our approach is demonstrated for GAT1, the most important GABA transporter (GAT) subtype. As GABA is endogenously present in COS-7 cells employed as hGAT1 expression system, ((2)H6)GABA was used as a substrate to differentiate transported from endogenous GABA. To record transported ((2)H6)GABA, a highly sensitive, short, robust, and reliable HILIC-ESI-MS/MS quantification method using ((2)H2)GABA as an internal standard was developed and validated according to the Center for Drug Evaluation and Research (CDER) guidelines. Based on this LC-MS quantification, a setup to characterize hGAT1 mediated ((2)H6)GABA transport in a 96-well format was established, that enables automated processing and avoids any sample preparation. The K(m) value for ((2)H6)GABA determined for hGAT1 is in excellent agreement with results obtained from [(3)H]GABA uptake assays. In addition, the established assay format enables efficient determination of the inhibitory potency of GAT1 inhibitors, is capable of identifying those inhibitors transported as substrates, and furthermore allows characterization of efflux. The approach described here combines the strengths of LC-MS/MS with the high efficiency of transport assays based on radiolabeled substrates and is applicable to all GABA transporter subtypes.

  18. Genotoxicity testing: Comparison of the γH2AX focus assay with the alkaline and neutral comet assays.

    Science.gov (United States)

    Nikolova, Teodora; Marini, Federico; Kaina, Bernd

    2017-10-01

    Genotoxicity testing relies on the quantitative measurement of adverse effects, such as chromosome aberrations, micronuclei, and mutations, resulting from primary DNA damage. Ideally, assays will detect DNA damage and cellular responses with high sensitivity, reliability, and throughput. Several novel genotoxicity assays may fulfill these requirements, including the comet assay and the more recently developed γH2AX assay. Although they are thought to be specific for genotoxicants, a systematic comparison of the assays has not yet been undertaken. In the present study, we compare the γH2AX focus assay with the alkaline and neutral versions of the comet assay, as to their sensitivities and limitations for detection of genetic damage. We investigated the dose-response relationships of γH2AX foci and comet tail intensities at various times following treatment with four prototypical genotoxicants, methyl methanesulfonate (MMS), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), mitomycin C, and hydrogen peroxide (H 2 O 2 ) and we tested whether there is a correlation between the endpoints, i.e., alkali-labile sites and DNA strand breaks on the one hand and the cell's response to DNA double-strand breaks and blocked replication forks on the other. Induction of γH2AX foci gave a linear dose response and all agents tested were positive in the assay. The increase in comet tail intensity was also a function of dose; however, mitomycin C was almost completely ineffective in the comet assay, and the doses needed to achieve a significant effect were somewhat higher for some treatments in the comet assay than in the γH2AX foci assay, which was confirmed by threshold analysis. There was high correlation between tail intensity and γH2AX foci for MMS and H 2 O 2 , less for MNNG, and none for mitomycin C. From this we infer that the γH2AX foci assay is more reliable, sensitive, and robust than the comet assay for detecting genotoxicant-induced DNA damage. Copyright © 2017 Elsevier

  19. Study of the Efficacy of Real Time-PCR Method for Amikacin Determination Using Microbial Assay

    Directory of Open Access Journals (Sweden)

    Farzaneh Lotfipour

    2015-06-01

    Full Text Available Purpose: Microbial assay is used to determine the potency of antibiotics and vitamins. In spite of its advantages like simplicity and easiness, and to reveal the slight changes in the molecules, the microbial assay suffers from significant limitations; these methods are of lower specificity, accuracy and sensitivity. The objective of the present study is to evaluate the efficacy of real time-PCR technique in comparison with turbidimetric method for microbial assay of amikacin. Methods: Microbial determination of amikacin by turbidimetric method was performed according to USP. Also amikacin concentrations were determined by microbial assay using taq-man quantitative PCR method. Standard curves in different concentration for both methods were plotted and method validation parameters of linearity, precision and accuracy were calculated using statistical procedures. Results: The RT-PCR method was linear in the wider concentration range (5.12 – 38.08 for RT-PCR versus 8.00 – 30.47 for turbidimetric method with a better correlation coefficient (0.976 for RT-PCR versus 0.958 for turbidimetric method. RT-PCR method with LOQ of 5.12 ng/ml was more sensitive than turbidimetric method with LOQ of 8.00 ng/ml and the former could detect and quantify low concentrations of amikacin. The results of accuracy and precision evaluation showed that the RT-PCR method was accurate and precise in all of the tested concentration. Conclusion: The RT-PCR method described here provided an accurate and precise technique for measurement of amikacin potency and it can be a candidate for microbial determination of the antibiotics with the same test organism.

  20. Cyanotoxins: Which detection technique for an optimum risk assessment?

    Science.gov (United States)

    Gaget, Virginie; Lau, Melody; Sendall, Barbara; Froscio, Suzanne; Humpage, Andrew R

    2017-07-01

    The presence of toxigenic cyanobacteria (blue-green algae) in drinking water reservoirs poses a risk to human and animal health worldwide. Guidelines and health alert levels have been issued in the Australian Drinking Water Guidelines for three major toxins, which are therefore the subject of routine monitoring: microcystin, cylindrospermopsin and saxitoxin. While it is agreed that these toxic compounds should be monitored closely, the routine surveillance of these bioactive chemicals can be done in various ways and deciding which technique to use can therefore be challenging. This study compared several assays available for the detection of these toxins and their producers in environmental samples: microscopy (for identification and enumeration of cyanobacteria), ELISA (Enzyme-Linked ImmunoSorbant Assay), PPIA (Protein phosphatase inhibition assay), PSI (Protein synthesis inhibition), chemical analysis and PCR (Polymerase Chain Reaction). Results showed that there was generally a good correlation between the presence of potentially toxigenic cyanobacteria and the detection of the toxin by ELISA. Nevertheless data suggest that cell numbers and toxin concentrations measured in bioassays do not necessarily correlate and that enumeration of potentially toxic cyanobacteria by microscopy, while commonly used for monitoring and risk assessment, is not the best indicator of real toxin exposure. The concentrations of saxitoxins quantified by ELISA were significantly different than those measured by LC-MS, while results were comparable in both assays for microcystin and cylindrospermopsin. The evaluation of these analytical methods led to the conclusion that there is no "gold standard" technique for the detection of the aforementioned cyanotoxins but that the choice of detection assay depends on cost, practicality, reliability and comparability of results and essentially on the question to be answered, notably on toxin exposure potential. Copyright © 2017 Elsevier Ltd. All

  1. Bench-top validation testing of selected immunological and molecular Renibacterium salmoninarum diagnostic assays by comparison with quantitative bacteriological culture

    Science.gov (United States)

    Elliott, D.G.; Applegate, L.J.; Murray, A.L.; Purcell, M.K.; McKibben, C.L.

    2013-01-01

    No gold standard assay exhibiting error-free classification of results has been identified for detection of Renibacterium salmoninarum, the causative agent of salmonid bacterial kidney disease. Validation of diagnostic assays for R. salmoninarum has been hindered by its unique characteristics and biology, and difficulties in locating suitable populations of reference test animals. Infection status of fish in test populations is often unknown, and it is commonly assumed that the assay yielding the most positive results has the highest diagnostic accuracy, without consideration of misclassification of results. In this research, quantification of R. salmoninarum in samples by bacteriological culture provided a standardized measure of viable bacteria to evaluate analytical performance characteristics (sensitivity, specificity and repeatability) of non-culture assays in three matrices (phosphate-buffered saline, ovarian fluid and kidney tissue). Non-culture assays included polyclonal enzyme-linked immunosorbent assay (ELISA), direct smear fluorescent antibody technique (FAT), membrane-filtration FAT, nested polymerase chain reaction (nested PCR) and three real-time quantitative PCR assays. Injection challenge of specific pathogen-free Chinook salmon, Oncorhynchus tshawytscha (Walbaum), with R. salmoninarum was used to estimate diagnostic sensitivity and specificity. Results did not identify a single assay demonstrating the highest analytical and diagnostic performance characteristics, but revealed strengths and weaknesses of each test.

  2. Commissioning of calorimeter in radiochemical laboratory for non-destructive assay of special nuclear materials

    International Nuclear Information System (INIS)

    Patra, S.; Mhatre, A.M.; Agarwal, C.; Chaudhury, S.; Pujari, P.K.

    2017-01-01

    Accounting of special nuclear materials (SNM) in every stages of nuclear fuel cycle is a necessity where one needs the quantitative estimation of SNM in variety of samples like sealed containers or finished products without altering its physical and chemical form. Non-destructive assay (NDA) techniques are capable of assaying such samples by the way of measuring passive/active neutrons/gamma rays or by the measurement of decay heat. Radiochemistry Division has been actively involved in the development and deployment of various NDA methodologies for meeting the demand of nuclear material accounting as and when required. Recently a radiometric calorimeter, developed by Reactor Control Division, E and I Group, BARC, has been installed in Lab C-33, Radiochemistry Division

  3. Lead Slowing-Down Spectrometry for Spent Fuel Assay: FY11 Status Report

    International Nuclear Information System (INIS)

    Warren, Glen A.; Casella, Andrew M.; Haight, R.C.; Anderson, Kevin K.; Danon, Yaron; Hatchett, D.; Becker, Bjorn; Devlin, M.; Imel, G.R.; Beller, D.; Gavron, A.; Kulisek, Jonathan A.; Bowyer, Sonya M.; Gesh, Christopher J.; O'Donnell, J.M.

    2011-01-01

    Executive Summary Developing a method for the accurate, direct, and independent assay of the fissile isotopes in bulk materials (such as used fuel) from next-generation domestic nuclear fuel cycles is a goal of the Office of Nuclear Energy, Fuel Cycle R and D, Material Protection and Control Technology (MPACT) Campaign. To meet this goal, MPACT supports a multi-institutional collaboration to study the feasibility of Lead Slowing Down Spectroscopy (LSDS). This technique is an active nondestructive assay method that has the potential to provide independent, direct measurement of Pu and U isotopic masses in used fuel with an uncertainty considerably lower than the approximately 10% typical of today's confirmatory assay methods. This document is a progress report for FY2011 collaboration activities. Progress made by the collaboration in FY2011 continues to indicate the promise of LSDS techniques applied to used fuel. PNNL developed an empirical model based on calibration of the LSDS to responses generated from well-characterized used fuel. The empirical model demonstrated the potential for the direct and independent assay of the sum of the masses of 239Pu and 241Pu to within approximately 3% over a wide used fuel parameter space. Similar results were obtained using a perturbation approach developed by LANL. Benchmark measurements have been successfully conducted at LANL and at RPI using their respective LSDS instruments. The ISU and UNLV collaborative effort is focused on the fabrication and testing of prototype fission chambers lined with ultra-depleted 238U and 232Th, and uranium deposition on a stainless steel disc using spiked U3O8 from room temperature ionic liquid was successful, with improving thickness obtained. In FY2012, the collaboration plans a broad array of activities. PNNL will focus on optimizing its empirical model and minimizing its reliance on calibration data, as well continuing efforts on developing an analytical model. Additional measurements are

  4. Multicentre comparison of a diagnostic assay

    DEFF Research Database (Denmark)

    Waters, Patrick; Reindl, Markus; Saiz, Albert

    2016-01-01

    ) assays in neuromyelitis optica spectrum disorders (NMOSD). METHODS: Coded samples from patients with neuromyelitis optica (NMO) or NMOSD (101) and controls (92) were tested at 15 European diagnostic centres using 21 assays including live (n=3) or fixed cell-based assays (n=10), flow cytometry (n=4...

  5. An ultrafiltration assay for lysyl oxidase

    International Nuclear Information System (INIS)

    Shackleton, D.R.; Hulmes, D.J.

    1990-01-01

    A modification of the original microdistillation assay for lysyl oxidase is described in which Amicon C-10 microconcentrators are used to separate, by ultrafiltration, the 3H-labeled products released from a [4,5-3H]-lysine-labeled elastin substrate. Enzyme activity is determined by scintillation counting of the ultrafiltrate, after subtraction of radioactivity released in the presence of beta-aminopropionitrile, a specific inhibitor of the enzyme. Conditions are described which optimize both the sensitivity and the efficient use of substrate. The assay shows linear inhibition of activity in up to 1 M urea; hence, as the enzyme is normally diluted in the assay, samples in 6 M urea can be assayed directly, without prior dialysis, and corrected for partial inhibition. Comparable results are obtained when enzyme activity is assayed by ultrafiltration or microdistillation. The assay is simple and convenient and, by using disposable containers throughout, it eliminates the need for time-consuming decontamination of radioactive glassware

  6. Rapid and sensitive detection of Didymella bryoniae by visual loop-mediated isothermal amplification assay

    Directory of Open Access Journals (Sweden)

    Xiefeng Yao

    2016-08-01

    Full Text Available Didymella bryoniae is a pathogenic fungus that causes gummy stem blight (GSB in Cucurbitaceae crops (e.g. cantaloupe, muskmelon, cucumber, and watermelon. GSB produces lesions on the stems and leaves, and can also be spread by seeds. Here, we developed a rapid, visual, and sensitive loop-mediated amplification (LAMP assay for D. bryoniae detection based on sequence-characterized amplified regions (GenBank accession nos GQ872461 and GQ872462 common to the two random amplification of polymorphic DNA group genotypes (RGI and RGII of D. bryoniae; ideal conditions for detection were optimized for completion in 45 min at 63°C. The sensitivity and specificity of the LAMP assay were further analyzed in comparison with those of a conventional polymerase chain reaction (PCR. The sensitivity of the LAMP assay was 1000-fold higher than that of conventional PCR with a detection limit of 0.1 fg μL−1 of targeted DNA. The LAMP assay could be accomplished in about 45 min, with the results visible to the naked eye. The assay showed high specificity in discriminating all D. bryoniae isolates from seven other fungal pathogens that occur in Cucurbitaceae crops. The LAMP assay also detected D. bryoniae infection in young muskmelon leaves with suspected early symptoms of GSB disease. Hence, the technique has great potential for developing rapid and sensitive visual detection methods for the D. bryoniae pathogen in crops and seeds. This method has potential application in early prediction of disease and reducing the risk of epidemics.

  7. A novel double-isotope technique for the enzymatic assay of plasma histamine: application to estimation of mast cell activation assessed by antigen challenge in asthmatics

    International Nuclear Information System (INIS)

    Brown, M.J.; Ind, P.W.; Causon, R.; Lee, T.H.

    1982-01-01

    The concentration of plasma histamine may provide an index of mast cell activation (degranulation) and can be measured by a sensitive radioenzymatic assay based on its specific conversion to (/sup 3/H)-methylhistamine in the presence of histamine-N-methyltransferase and (/sup 3/H)-S-adenosyl-L-methionine. In this assay, the separation of excess (/sup 3/H)-S-adenosyl-L-methionine from (/sup 3/H)-methylhistamine requires several steps, for which a correction factors is necessary to maintain precision. In the present modification, duplicate 50-microliters aliquots of each plasma sample were incubated with histamine-N-methyltransferase and (/sup 3/H)-S-adenosyl-L-methionine. A further aliquot, with an added standard of 200 ng/ml histamine, was incubated with histamine-N-methyl-transferase and (/sup 14/C)-S-adenosyl-L-methionine. This standard was converted to (/sup 14/C)-methylhistamine, and its recovery at the end of the assay corrected both for varying efficiency of methylation among plasma samples and for losses during the subsequent extraction and separation stages. The sensitivity of the assay was 25 pg/ml. The intra-assay and interassay coefficients of variation were 7.2% and 11.6%, respectively. In five asthmatics, antigen challenge caused a 28% fall in FEV1, and this was associated with a twofold to threefold rise in plasma histamine concentration. This assay may thus prove a useful method for assessing the role of mast cell release of mediators in vivo

  8. The cytokinesis-block micronucleus assay: a sensitive technique for measuring radiation-induced chromosome damage

    International Nuclear Information System (INIS)

    Fenech, M.; Morley, A.A.

    1987-01-01

    The sensitivity of the cytokinesis-block micronucleus assay was demonstrated by the detection in human lymphocytes of in vitro exposures of as low as 0.02 Gy of X-rays. To determine the suitability of this new method for measuring in vivo exposure to radiation the authors have performed initial longitudinal studies on (a) cancer patients undergoing partial body fractionated radiotherapy and (b) BALB-C mice following in vivo whole body irradiation with acute single doses of X-rays. The results for radiotherapy patients indicate that the dose fractions have an additive effect on the observed micronucleus frequency which appeared to decline following three months after completion of therapy. Results with irradiated mice showed a sharp increase in micronucleus frequency for splenocytes sampled immediately after treatment and the rate of decline in micronucleus frequency during the first week after treatment was dose-dependent. (author)

  9. Detection of serological biomarkers by proximity extension assay for detection of colorectal neoplasias in symptomatic individuals

    DEFF Research Database (Denmark)

    Buch Thorsen, Stine; Lundberg, Martin; Villablanca, Andrea

    2013-01-01

    of biomarkers from the bench to clinical practice we initiated a biomarker study focusing on a novel technique, the proximity extension assay, with multiplexing capability and the possible additive effect obtained from biomarker panels. We performed a screening of 74 different biomarkers in plasma derived from...

  10. The application of reporter gene assays for the detection of endocrine disruptors in sport supplements

    Energy Technology Data Exchange (ETDEWEB)

    Plotan, Monika; Elliott, Christopher T. [Institute of Agri-Food and Land Use, School of Biological Sciences, Queen' s University Belfast, Belfast BT95AG, Northern Ireland (United Kingdom); Scippo, Marie Louise [Department of Food Sciences, University of Liege, 4000 Liege (Belgium); Muller, Marc [Molecular Biology and Genetic Engineering GIGA-R, University of Liege, 4000 Liege (Belgium); Antignac, Jean-Philippe [LABERCA, ENVN, USC INRA 2013, BP 50707, 44 307, Nantes (France); Malone, Edward [The State Laboratory, Young' s Cross, Celbridge, Co. Kildare (Ireland); Bovee, Toine F.H. [RIKILT Institute of Food Safety, P.O. Box 230, AE Wageningen 6700 (Netherlands); Mitchell, Samuel [Agri-Food and Biosciences Institute, Belfast BT9 5PX (United Kingdom); Connolly, Lisa, E-mail: l.connolly@qub.ac.uk [Institute of Agri-Food and Land Use, School of Biological Sciences, Queen' s University Belfast, Belfast BT95AG, Northern Ireland (United Kingdom)

    2011-08-26

    The increasing availability and use of sports supplements is of concern as highlighted by a number of studies reporting endocrine disruptor contamination in such products. The health food supplement market, including sport supplements, is growing across the Developed World. Therefore, the need to ensure the quality and safety of sport supplements for the consumer is essential. The development and validation of two reporter gene assays coupled with solid phase sample preparation enabling the detection of estrogenic and androgenic constituents in sport supplements is reported. Both assays were shown to be of high sensitivity with the estrogen and androgen reporter gene assays having an EC{sub 50} of 0.01 ng mL{sup -1} and 0.16 ng mL{sup -1} respectively. The developed assays were applied in a survey of 63 sport supplements samples obtained across the Island of Ireland with an additional seven reference samples previously investigated using LC-MS/MS. Androgen and estrogen bio-activity was found in 71% of the investigated samples. Bio-activity profiling was further broken down into agonists, partial agonists and antagonists. Supplements (13) with the strongest estrogenic bio-activity were chosen for further investigation. LC-MS/MS analysis of these samples determined the presence of phytoestrogens in seven of them. Supplements (38) with androgen bio-activity were also selected for further investigation. Androgen agonist bio-activity was detected in 12 supplements, antagonistic bio-activity was detected in 16 and partial antagonistic bio-activity was detected in 10. A further group of supplements (7) did not present androgenic bio-activity when tested alone but enhanced the androgenic agonist bio-activity of dihydrotestosterone when combined. The developed assays offer advantages in detection of known, unknown and low-level mixtures of endocrine disruptors over existing analytical screening techniques. For the detection and identification of constituent hormonally

  11. Identifying Inhibitors of Inflammation: A Novel High-Throughput MALDI-TOF Screening Assay for Salt-Inducible Kinases (SIKs).

    Science.gov (United States)

    Heap, Rachel E; Hope, Anthony G; Pearson, Lesley-Anne; Reyskens, Kathleen M S E; McElroy, Stuart P; Hastie, C James; Porter, David W; Arthur, J Simon C; Gray, David W; Trost, Matthias

    2017-12-01

    Matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry has become a promising alternative for high-throughput drug discovery as new instruments offer high speed, flexibility and sensitivity, and the ability to measure physiological substrates label free. Here we developed and applied high-throughput MALDI TOF mass spectrometry to identify inhibitors of the salt-inducible kinase (SIK) family, which are interesting drug targets in the field of inflammatory disease as they control production of the anti-inflammatory cytokine interleukin-10 (IL-10) in macrophages. Using peptide substrates in in vitro kinase assays, we can show that hit identification of the MALDI TOF kinase assay correlates with indirect ADP-Hunter kinase assays. Moreover, we can show that both techniques generate comparable IC 50 data for a number of hit compounds and known inhibitors of SIK kinases. We further take these inhibitors to a fluorescence-based cellular assay using the SIK activity-dependent translocation of CRTC3 into the nucleus, thereby providing a complete assay pipeline for the identification of SIK kinase inhibitors in vitro and in cells. Our data demonstrate that MALDI TOF mass spectrometry is fully applicable to high-throughput kinase screening, providing label-free data comparable to that of current high-throughput fluorescence assays.

  12. Nondestructive assay technology and in-plant dynamic materials control: ''DYMAC''

    International Nuclear Information System (INIS)

    Keppin, G.R.; Maraman, W.J.

    1975-01-01

    An advanced system of in-plant materials control known as DYMAC, Dynamic Materials Control, is being developed. This major safeguards R and D effort merges state-of-the-art nondestructive assay instrumentation and computer technology, with the clear objective of demonstrating a workable, cost-effective system of stringent, real time control of nuclear materials in a modern plutonium processing facility. Emphasis is placed on developing practical solutions to generic problems of materials measurement and control, so that resulting safeguards techniques and instrumentation will have widespread applicability throughout the nuclear community. (auth)

  13. Radioreceptor assay for insulin

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Kazuo [Tokyo Univ. (Japan). Faculty of Medicine

    1975-04-01

    Radioreceptor assay of insulin was discussed from the aspects of the measuring method, its merits and problems to be solved, and its clinical application. Rat liver 10 x g pellet was used as receptor site, and enzymatic degradation of insulin by the system contained in this fraction was inhibited by adding 1 mM p-CMB. /sup 125/I-labelled porcine insulin was made by lactoperoxidase method under overnight incubation at 4/sup 0/C and later purification by Sephadex G-25 column and Whatman CF-11 cellulose powder. Dog pancreatic vein serum insulin during and after the glucose load was determined by radioreceptor assay and radioimmunoassay resulting that both measurements accorded considerably. Radioreceptor assay would clarify the pathology of disorders of glucose metabolism including diabetes.

  14. Tritium assay of Li/sub 2/O in the LBM/LOTUS experiments

    International Nuclear Information System (INIS)

    Quanci, J.; Azam, S.; Bertone, P.

    1986-01-01

    The Lithium Blanket Module (LBM) is an assembly of over 20,000 cylindrical lithium oxide pellets in an array representative of a limited-coverage breeding zone for a toroidal fusion device. A principal objective of the LBM program is to test the ability of advanced neutronics coding to model the tritium breeding characteristics of a fusion device blanket. The LBM has been irradiated at the Ecole Polytechnique Federale de Lausanne (EPFL) LOTUS facility with a 14 MeV point-neutron source. Princeton Plasma Physics Laboratory (PPPL) and EPFL assayed the tritium bred in lithium oxide diagnostic samples placed at various positions in the LBM. PPPL employed a thermal extraction technique while EPFL used a dissolution method. The results for the assay are reported and compared to MCNP Monte Carlo neutronics calculations for the LBM/LOTUS system

  15. Radiosensitivity evaluation of human tumor cell lines by detecting 4977 bp deletion in mitochondrial DNA and comet assay

    International Nuclear Information System (INIS)

    Chu Liping; Liu Qiang; Wang Qin; Li Jin; Yue Jingyin; Mu Chuanjie; Fan Feiyue

    2008-01-01

    Objective: To explore the feasibility of determining radiosensitivity of human tumor cell lines in vitro using the assay of mtDNA 4977 bp deletion and comet assay. Methods: Three human tumor cell lines were selected in this study, HepG 2 , EC-9706 and MCF-7. The surviving fraction(SF), the ratio of mtDNA 4977 bp deletion and DNA damage were detected by MTY assay, nested PCR technique and comet assay, respectively. Results: The results of MTT assay showed that the radiosensitivity of HepG 2 and EC-9706 was higher than that of MCF-7. The ratio of mtDNA 4977 bp deletion of HepG 2 and EC-9706 was higher significantly than that of MCF-7 (P 2 and EC-9706 was higher than that of MCF-7. The difference of radiosensitivity among these three tumor cell lines was significant after 8 Gy γ-ray irradiation. Conclusions: Combination of many biological parameter is helpful to evaluate the radiosensitivity of tumor cells more accurately. (authors)

  16. Assay reproducibility in clinical studies of plasma miRNA.

    Directory of Open Access Journals (Sweden)

    Jonathan Rice

    Full Text Available There are increasing reports of plasma miRNAs as biomarkers of human disease but few standards in methodologic reporting, leading to inconsistent data. We systematically reviewed plasma miRNA studies published between July 2013-June 2014 to assess methodology. Six parameters were investigated: time to plasma extraction, methods of RNA extraction, type of miRNA, quantification, cycle threshold (Ct setting, and methods of statistical analysis. We compared these data with a proposed standard methodologic technique. Beginning with initial screening for 380 miRNAs using microfluidic array technology and validation in an additional cohort of patients, we compared 11 miRNAs that exhibited differential expression between 16 patients with benign colorectal neoplasms (advanced adenomas and 16 patients without any neoplasm (controls. Plasma was isolated immediately, 12, 24, 48, or 72 h following phlebotomy. miRNA was extracted using two different techniques (Trizol LS with pre-amplification or modified miRNeasy. We performed Taqman-based RT-PCR assays for the 11 miRNAs with subsequent analyses using a variable Ct setting or a fixed Ct set at 0.01, 0.03, 0.05, or 0.5. Assays were performed in duplicate by two different operators. RNU6 was the internal reference. Systematic review yielded 74 manuscripts meeting inclusion criteria. One manuscript (1.4% documented all 6 methodological parameters, while < 5% of studies listed Ct setting. In our proposed standard technique, plasma extraction ≤12 h provided consistent ΔCt. miRNeasy extraction yielded higher miRNA concentrations and fewer non-expressed miRNAs compared to Trizol LS (1/704 miRNAs [0.14%] vs 109/704 miRNAs [15%], not expressed, respectively. A fixed Ct bar setting of 0.03 yielded the most reproducible data, provided that <10% miRNA were non-expressed. There was no significant intra-operator variability. There was significant inter-operator variation using Trizol LS extraction, while this was

  17. Geometry-based multiplication correction for passive neutron coincidence assay of materials with variable and unknown (α,n) neutron rates

    International Nuclear Information System (INIS)

    Langner, D.G.; Russo, P.A.

    1993-02-01

    We have studied the problem of assaying impure plutonium-bearing materials using passive neutron coincidence counting. We have developed a technique to analyze neutron coincidence data from impure plutonium samples that uses the bulk geometry of the sample to correct for multiplication in samples for which the (α,n) neutron production rate is unknown. This technique can be applied to any impure plutonium-bearing material whose matrix constituents are approximately constant, whose self-multiplication is low to moderate, whose plutonium isotopic composition is known and not substantially varying, and whose bulk geometry is measurable or can be derived. This technique requires a set of reference materials that have well-characterized plutonium contents. These reference materials are measured once to derive a calibration that is specific to the neutron detector and the material. The technique has been applied to molten salt extraction residues, PuF 4 samples that have a variable salt matrix, and impure plutonium oxide samples. It is also applied to pure plutonium oxide samples for comparison. Assays accurate to 4% (1 σ) were obtained for impure samples measured in a High-Level Neutron Coincidence Counter II. The effects on the technique of variations in neutron detector efficiency with energy and the effects of neutron capture in the sample are discussed

  18. Nano-immunosafety: issues in assay validation

    International Nuclear Information System (INIS)

    Boraschi, Diana; Italiani, Paola; Oostingh, Gertie J; Duschl, Albert; Casals, Eudald; Puntes, Victor F; Nelissen, Inge

    2011-01-01

    Assessing the safety of engineered nanomaterials for human health must include a thorough evaluation of their effects on the immune system, which is responsible for defending the integrity of our body from damage and disease. An array of robust and representative assays should be set up and validated, which could be predictive of the effects of nanomaterials on immune responses. In a trans-European collaborative work, in vitro assays have been developed to this end. In vitro tests have been preferred for their suitability to standardisation and easier applicability. Adapting classical assays to testing the immunotoxicological effects of nanoparticulate materials has raised a series of issues that needed to be appropriately addressed in order to ensure reliability of results. Besides the exquisitely immunological problem of selecting representative endpoints predictive of the risk of developing disease, assay results turned out to be significantly biased by artefactual interference of the nanomaterials or contaminating agents with the assay protocol. Having addressed such problems, a series of robust and representative assays have been developed that describe the effects of engineered nanoparticles on professional and non-professional human defence cells. Two of such assays are described here, one based on primary human monocytes and the other employing human lung epithelial cells transfected with a reporter gene.

  19. Data transformation methods for multiplexed assays

    Science.gov (United States)

    Tammero, Lance F. Bentley; Dzenitis, John M; Hindson, Benjamin J

    2013-07-23

    Methods to improve the performance of an array assay are described. A correlation between fluorescence intensity-related parameters and negative control values of the assay is determined. The parameters are then adjusted as a function of the correlation. As a result, sensitivity of the assay is improved without changes in its specificity.

  20. DRABAL: novel method to mine large high-throughput screening assays using Bayesian active learning

    KAUST Repository

    Soufan, Othman

    2016-11-10

    Background Mining high-throughput screening (HTS) assays is key for enhancing decisions in the area of drug repositioning and drug discovery. However, many challenges are encountered in the process of developing suitable and accurate methods for extracting useful information from these assays. Virtual screening and a wide variety of databases, methods and solutions proposed to-date, did not completely overcome these challenges. This study is based on a multi-label classification (MLC) technique for modeling correlations between several HTS assays, meaning that a single prediction represents a subset of assigned correlated labels instead of one label. Thus, the devised method provides an increased probability for more accurate predictions of compounds that were not tested in particular assays. Results Here we present DRABAL, a novel MLC solution that incorporates structure learning of a Bayesian network as a step to model dependency between the HTS assays. In this study, DRABAL was used to process more than 1.4 million interactions of over 400,000 compounds and analyze the existing relationships between five large HTS assays from the PubChem BioAssay Database. Compared to different MLC methods, DRABAL significantly improves the F1Score by about 22%, on average. We further illustrated usefulness and utility of DRABAL through screening FDA approved drugs and reported ones that have a high probability to interact with several targets, thus enabling drug-multi-target repositioning. Specifically DRABAL suggests the Thiabendazole drug as a common activator of the NCP1 and Rab-9A proteins, both of which are designed to identify treatment modalities for the Niemann–Pick type C disease. Conclusion We developed a novel MLC solution based on a Bayesian active learning framework to overcome the challenge of lacking fully labeled training data and exploit actual dependencies between the HTS assays. The solution is motivated by the need to model dependencies between existing

  1. Statistical sampling plan for the TRU waste assay facility

    International Nuclear Information System (INIS)

    Beauchamp, J.J.; Wright, T.; Schultz, F.J.; Haff, K.; Monroe, R.J.

    1983-08-01

    Due to limited space, there is a need to dispose appropriately of the Oak Ridge National Laboratory transuranic waste which is presently stored below ground in 55-gal (208-l) drums within weather-resistant structures. Waste containing less than 100 nCi/g transuranics can be removed from the present storage and be buried, while waste containing greater than 100 nCi/g transuranics must continue to be retrievably stored. To make the necessary measurements needed to determine the drums that can be buried, a transuranic Neutron Interrogation Assay System (NIAS) has been developed at Los Alamos National Laboratory and can make the needed measurements much faster than previous techniques which involved γ-ray spectroscopy. The previous techniques are reliable but time consuming. Therefore, a validation study has been planned to determine the ability of the NIAS to make adequate measurements. The validation of the NIAS will be based on a paired comparison of a sample of measurements made by the previous techniques and the NIAS. The purpose of this report is to describe the proposed sampling plan and the statistical analyses needed to validate the NIAS. 5 references, 4 figures, 5 tables

  2. Spectrophotometric Enzyme Assays for High-Throughput Screening

    Directory of Open Access Journals (Sweden)

    Jean-Louis Reymond

    2004-01-01

    Full Text Available This paper reviews high-throughput screening enzyme assays developed in our laboratory over the last ten years. These enzyme assays were initially developed for the purpose of discovering catalytic antibodies by screening cell culture supernatants, but have proved generally useful for testing enzyme activities. Examples include TLC-based screening using acridone-labeled substrates, fluorogenic assays based on the β-elimination of umbelliferone or nitrophenol, and indirect assays such as the back-titration method with adrenaline and the copper-calcein fluorescence assay for aminoacids.

  3. Polystyrene tube radioimmunoabsorbent assay for IgE anti-penicillin antibody

    International Nuclear Information System (INIS)

    Urena, V.; Delgado, R.G.; Daroca, P.; Lahoz, C.

    1977-01-01

    A radioimmunoassay technique has been developed based on the binding capacity of polystyrene for proteins. The method was tested on sera from thirteen patients with suspected penicillin allergy, five healthy controls, and three patients with seasonal pollen reactions. The results were compared with those obtained by the radio-allergoabsorbent method (RAST) and with basophil degranulation by penicillin. A penicillin/ovalbumin conjugate (pen-OA) was prepared and polystyrene tubes were incubated with pen-OA, 3% human serum albumin to block free sites, 1/10 dilution of test serum, anti-IgE antiserum specific for epsilon chains, and 125 I-IgE. The tubes were washed after the incubation period and the empty tubes counted in a γ scintillation counter. The specificity of the method was tested by an inhibition assay. The technique seemed more sensitive than the RAST method, the results were reproducible and in general showed good correlation with those of the RAST method. This polystyrene tube radioimmunoabsorbent method therefore provides a simple, specific and sensitive diagnostic technique for penicillin allergy. (U.K)

  4. Trace metal assay of uranium silicide fuel

    International Nuclear Information System (INIS)

    Kulkarni, M.J.; Argekar, A.A.; Thulasidas, S.K.; Dhawale, B.A.; Rajeswari, B.; Adya, V.C.; Purohit, P.J.; Neelam, G.; Bangia, T.R.; Page, A.G.; Sastry, M.D.; Iyer, R.H.

    1994-01-01

    A comprehensive trace metal assay of uranium silicide, a fuel for nuclear research reactors that employs low-enrichment uranium, is carried out by atomic spectrometry. Of the list of specification elements, 21 metallic elements are determined by a direct current (dc) arc carrier distillation technique; the rare earths yttrium and zirconium are chemically separated from the major matrix followed by a dc arc/inductively coupled argon plasma (ICP) excitation technique in atomic emission spectrometry (AES); silver is determined by electrothermal atomization-atomic absorption spectrometry (ETA-AAS) without prior chemical separation of the major matrix. Gamma radioactive tracers are used to check the recovery of rare earths during the chemical separation procedure. The detection limits for trace metallics vary in the 0.1- to 40-ppm range. The precision of the determinations as evaluated from the analysis of the synthetic sample with intermediate range analyte concentration is better than 25% relative standard deviation (RSD) for most of the elements employing dc arc-AES, while that for silver determination by ETS-AAS is 10% RSD. The precision of the determinations for four crucially important rare earths by ICP-AES is better than 3% RSD

  5. Radioenzymatic assay of DOPA (3,4-dihydroxyphenylalanine)

    International Nuclear Information System (INIS)

    Johnson, G.A.; Gren, J.M.; Kupiecki, R.

    1978-01-01

    We modified the single-isotope radioenzymatic assay for catecholamines [Life Sci. 21, 625(1977)] to assay 3,4-dihydroxyphenylalanine (DOPA). DOPA decarboxylase is used to convert DOPA to dopamine, which concurrently is converted to [ 3 H]-3-O-methyldopamine in the presence of catechol-O-methyltransferase and [methyl- 3 H]-S-adenosylmethionine and assayed radioenzymatically. For assay of plasma DOPA, 50 μl of untreated plasma is added directly into the incubation mixture. A duplicate mixture containing an internal standard requires a second 50-μl aliquot of plasma. Because the assay measures both DOPA and endogenous dopamine, two additional aliquots of plasma must be assayed for dopamine in the absence of the decarboxylase by the differential assay; DOPA is estimated by difference. The assay is sensitive to 25 pg (500 ng/liter of plasma). Analysis of DOPA (DOPA plus dopamine) and the concurrent differential assay of catecholamines in at least 10 samples can be done in a single working day. Plasma DOPA concentrations for 42 normotensive adults were 1430 +- 19 ng/liter (mean +- SEM). In contrast, dopamine concentrations for these same subjects averaged 23 +- 20 ng/liter. Values for the 24 women subjects (1510 +- 62 ng/liter) significantly (P = 0.04) exceeded those for the men

  6. RAS - Screens & Assays - Drug Discovery

    Science.gov (United States)

    The RAS Drug Discovery group aims to develop assays that will reveal aspects of RAS biology upon which cancer cells depend. Successful assay formats are made available for high-throughput screening programs to yield potentially effective drug compounds.

  7. Comparison and validation of ELISA assays for plasma insulin-like growth factor-1 in the horse

    Directory of Open Access Journals (Sweden)

    Courtnay L. Baskerville

    2017-03-01

    Full Text Available Insulin-like growth factor-1 (IGF-1 plays several important physiological roles, and IGF-related pathways have been implicated in developmental osteochondral disease and endocrinopathic laminitis. This factor is also a downstream marker of growth hormone activity and its peptide mimetics. Unfortunately, previously used assays for measuring equine IGF-1 (radioimmunoassays and ELISAs are no longer commercially available, and many of the kits on the market give poor results when used on horse samples. The aim of the present study was to compare three different ELISA assays (two human and one horse-specific. Plasma samples from six Standardbreds, six ponies and six Andalusians were used. The human IGF-1 ELISA kit from Immunodiagnostic Systems (IDS proved to be the most accurate and precise of the three kits; the other two assays gave apparently much lower concentrations, with poor recovery of spiked recombinant human IGF-1 and unacceptably poor intra-assay coefficients of variation (CV. The IDS assay gave an intra-assay CV of 3.59 % and inter-assay CV of 7.31%. Mean percentage recovery of spiked IGF-1 was 88.82%, and linearity and dilutional parallelism were satisfied. The IGF-1 plasma concentrations were 123.21 ±8.24 ng/mL for Standardbreds, 124.95 ±3.69 ng/mL for Andalusians and 174.26 ±1.94 ng/mL for ponies. Therefore of the three assays assessed, the IGF-1 ELISA manufactured by IDS was the most suitable for use with equine plasma samples and may have many useful applications in several different research areas. However, caution should be used when comparing equine studies where different analytical techniques and assays may have been used to measure this growth factor.

  8. The fluorometric microculture cytotoxicity assay.

    Science.gov (United States)

    Lindhagen, Elin; Nygren, Peter; Larsson, Rolf

    2008-01-01

    The fluorometric microculture cytotoxicity assay (FMCA) is a nonclonogenic microplate-based cell viability assay used for measurement of the cytotoxic and/or cytostatic effect of different compounds in vitro. The assay is based on hydrolysis of the probe, fluorescein diacetate (FDA) by esterases in cells with intact plasma membranes. The assay is available as both a semiautomated 96-well plate setup and a 384-well plate version fully adaptable to robotics. Experimental plates are prepared with a small amount of drug solution and can be stored frozen. Cells are seeded on the plates and cell viability is evaluated after 72 h. The protocol described here is applicable both for cell lines and freshly prepared tumor cells from patients and is suitable both for screening in drug development and as a basis for a predictive test for individualization of anticancer drug therapy.

  9. Solution assay instrument operations manual

    International Nuclear Information System (INIS)

    Li, T.K.; Marks, T.; Parker, J.L.

    1983-09-01

    An at-line solution assay instrument (SAI) has been developed and installed in a plutonium purification and americium recovery process area in the Los Alamos Plutonium Processing Facility. The instrument was designed for accurate, timely, and simultaneous nondestructive analysis of plutonium and americium in process solutions that have a wide range of concentrations and americium/plutonium ratios and for routine operation by process technicians who lack instrumentation background. The SAI, based on transmission-corrected, high-resolution gamma-ray spectroscopy, has two measurement stations attached to a single multichannel analyzer/computer system. To ensure the quality of assay results, the SAI has an internal measurement control program, which requires daily and weekly check runs and monitors key aspects of all assay runs. For a 25-ml sample, the assay precision is 5 g/l within a 2000-s count time

  10. Automated image-based assay for evaluation of HIV neutralization and cell-to-cell fusion inhibition.

    Science.gov (United States)

    Sheik-Khalil, Enas; Bray, Mark-Anthony; Özkaya Şahin, Gülsen; Scarlatti, Gabriella; Jansson, Marianne; Carpenter, Anne E; Fenyö, Eva Maria

    2014-08-30

    Standardized techniques to detect HIV-neutralizing antibody responses are of great importance in the search for an HIV vaccine. Here, we present a high-throughput, high-content automated plaque reduction (APR) assay based on automated microscopy and image analysis that allows evaluation of neutralization and inhibition of cell-cell fusion within the same assay. Neutralization of virus particles is measured as a reduction in the number of fluorescent plaques, and inhibition of cell-cell fusion as a reduction in plaque area. We found neutralization strength to be a significant factor in the ability of virus to form syncytia. Further, we introduce the inhibitory concentration of plaque area reduction (ICpar) as an additional measure of antiviral activity, i.e. fusion inhibition. We present an automated image based high-throughput, high-content HIV plaque reduction assay. This allows, for the first time, simultaneous evaluation of neutralization and inhibition of cell-cell fusion within the same assay, by quantifying the reduction in number of plaques and mean plaque area, respectively. Inhibition of cell-to-cell fusion requires higher quantities of inhibitory reagent than inhibition of virus neutralization.

  11. A magnetic bead-based ligand binding assay to facilitate human kynurenine 3-monooxygenase drug discovery.

    Science.gov (United States)

    Wilson, Kris; Mole, Damian J; Homer, Natalie Z M; Iredale, John P; Auer, Manfred; Webster, Scott P

    2015-02-01

    Human kynurenine 3-monooxygenase (KMO) is emerging as an important drug target enzyme in a number of inflammatory and neurodegenerative disease states. Recombinant protein production of KMO, and therefore discovery of KMO ligands, is challenging due to a large membrane targeting domain at the C-terminus of the enzyme that causes stability, solubility, and purification difficulties. The purpose of our investigation was to develop a suitable screening method for targeting human KMO and other similarly challenging drug targets. Here, we report the development of a magnetic bead-based binding assay using mass spectrometry detection for human KMO protein. The assay incorporates isolation of FLAG-tagged KMO enzyme on protein A magnetic beads. The protein-bound beads are incubated with potential binding compounds before specific cleavage of the protein-compound complexes from the beads. Mass spectrometry analysis is used to identify the compounds that demonstrate specific binding affinity for the target protein. The technique was validated using known inhibitors of KMO. This assay is a robust alternative to traditional ligand-binding assays for challenging protein targets, and it overcomes specific difficulties associated with isolating human KMO. © 2014 Society for Laboratory Automation and Screening.

  12. Cell-mediated cytotoxicity for melanome tumor cells: detection by a (3H)proline release assay

    International Nuclear Information System (INIS)

    Saal, J.G.; Rieber, E.P.; Riethmueller, G.

    1976-01-01

    An in vitro lymphocyte-mediated cytotoxicity assay using [ 3 H]proline-labelled target cells is described. The assay, modified from an original procedure of Bean et al., assesses the release of [ 3 H]proline by filtering the total culture fluid containing both trypsinised tumor cells and effector cells. Filtration is performed with a semiautomatic harvesting device using low suction pressure and large-diameter glass filters. Pretreatment of filters with whole serum diminishes adsorption of cell-free radioactive material considerably and thus increases the sensitivity of the assay. Nearly 100% of the radioactivity could be recovered with this harvesting device. The technique allowed the detection of cytolytic activities of lymphocytes after 6 h of incubation. Lymphocytes from patients with primary malignant melanoma showed a significantly higher cytolytic reactivity (p > 0.001) than normal donors' lymphocytes against three different melanoma cell lines. In a series of parallel experiments on 36 patients and 18 normal donors, this modification of the [ 3 ]proline test was compared with three different assays: the conventional microcytotoxicity test of Takasugi and Klein, the original [ 3 H]proline microcytotoxicity test of Bean et al., and the viability count of tumor cells. (Auth.)

  13. Loop-mediated isothermal amplification (LAMP) assay for the diagnosis of fasciolosis in sheep and its application under field conditions

    OpenAIRE

    Mart?nez-Valladares, Mar?a; Rojo-V?zquez, Francisco Antonio

    2016-01-01

    Background Loop-mediated isothermal amplification (LAMP) is a very specific, efficient, and rapid gene amplification procedure in which the reaction can run at a constant temperature. In the current study we have developed a LAMP assay to improve the diagnosis of Fasciola spp. in the faeces of sheep. Findings After the optimisation of the LAMP assay we have shown similar results between this technique and the standard PCR using the outer primers of the LAMP reaction. In both cases the limit o...

  14. A simple and convenient microtiter plate assay for the detection of bactericidal antibodies to Vibrio cholerae O1 and Vibrio cholerae O139.

    Science.gov (United States)

    Boutonnier, Alain; Dassy, Bruno; Duménil, Rémy; Guénolé, Alain; Ratsitorahina, Maherisoa; Migliani, René; Fournier, Jean-Michel

    2003-12-01

    It is believed that the correlate of protection for cholera can be determined by the serum vibriocidal assay. The currently available vibriocidal assays, based on the conventional agar plating technique, are labor intensive. We developed a simple and convenient microtiter plate assay for the detection of vibriocidal antibodies that is equally as efficient for Vibrio cholerae O1 and for V. cholerae O139. The addition of succinate and neotetrazolium made it possible to measure the growth of surviving bacterial target cells by monitoring a color change. We evaluated assay parameters (target strains, growth of target cells, complement source and concentration) that may affect the reproducibility of the method for V. cholerae O139. The results obtained with the microtiter plate assay were uniformly similar to those obtained with the conventional agar plating assay, when testing both the Inaba and Ogawa serotypes of V. cholerae O1. The microtiter plate assay was also convenient for measuring the activity of animal sera and mouse monoclonal antibodies.

  15. Solid-phase peptide quantitation assay using labeled monoclonal antibody and glutaraldehyde fixation

    International Nuclear Information System (INIS)

    Kasprzyk, P.G.; Cuttitta, F.; Avis, I.; Nakanishi, Y.; Treston, A.; Wong, H.; Walsh, J.H.; Mulshine, J.L.

    1988-01-01

    A solid-phase radioimmunoassay utilizing iodinated peptide-specific monoclonal antibody as a detection system instead of labeled peptide has been developed. Regional specific monoclonal antibodies to either gastrin-releasing peptide or gastrin were used as models to validate the general application of our modified assay. Conditions for radioactive labeling of the monoclonal antibody were determined to minimize oxidant damage, which compromises the sensitivity of other reported peptide quantitation assays. Pretreatment of 96-well polyvinyl chloride test plates with a 5% glutaraldehyde solution resulted in consistent retention of sufficient target peptide on the solid-phase matrix to allow precise quantitation. This quantitative method is completed within 1 h of peptide solid phasing. Pretreatment of assay plates with glutaraldehyde increased binding of target peptide and maximized antibody binding by optimizing antigen presentation. The hypothesis that glutaraldehyde affects both peptide binding to the plate and orientation of the peptide was confirmed by analysis of several peptide analogs. These studies indicate that peptide binding was mediated through a free amino group leaving the carboxy-terminal portion of the target peptide accessible for antibody binding. It was observed that the length of the peptide also affects the amount of monoclonal antibody that will bind. Under the optimal conditions, results from quantitation of gastrin-releasing peptide in relevant samples agree well with those from previously reported techniques. Thus, we report here a modified microplate assay which may be generally applied for the rapid and sensitive quantitation of peptide hormones

  16. Detection and serotyping of dengue virus in serum samples by multiplex reverse transcriptase PCR-ligase detection reaction assay.

    Science.gov (United States)

    Das, S; Pingle, M R; Muñoz-Jordán, J; Rundell, M S; Rondini, S; Granger, K; Chang, G-J J; Kelly, E; Spier, E G; Larone, D; Spitzer, E; Barany, F; Golightly, L M

    2008-10-01

    The detection and successful typing of dengue virus (DENV) from patients with suspected dengue fever is important both for the diagnosis of the disease and for the implementation of epidemiologic control measures. A technique for the multiplex detection and typing of DENV serotypes 1 to 4 (DENV-1 to DENV-4) from clinical samples by PCR-ligase detection reaction (LDR) has been developed. A serotype-specific PCR amplifies the regions of genes C and E simultaneously. The two amplicons are targeted in a multiplex LDR, and the resultant fluorescently labeled ligation products are detected on a universal array. The assay was optimized using 38 DENV strains and was evaluated with 350 archived acute-phase serum samples. The sensitivity of the assay was 98.7%, and its specificity was 98.4%, relative to the results of real-time PCR. The detection threshold was 0.017 PFU for DENV-1, 0.004 PFU for DENV-2, 0.8 PFU for DENV-3, and 0.7 PFU for DENV-4. The assay is specific; it does not cross-react with the other flaviviruses tested (West Nile virus, St. Louis encephalitis virus, Japanese encephalitis virus, Kunjin virus, Murray Valley virus, Powassan virus, and yellow fever virus). All but 1 of 26 genotypic variants of DENV serotypes in a global DENV panel from different geographic regions were successfully identified. The PCR-LDR assay is a rapid, sensitive, specific, and high-throughput technique for the simultaneous detection of all four serotypes of DENV.

  17. Making transuranic assay measurements using modern controllers

    International Nuclear Information System (INIS)

    Kuckertz, T.H.; Caldwell, J.T.; Medvick, P.A.; Kunz, W.E.; Hastings, R.D.

    1987-01-01

    This paper describes methodology and computer-controlled instrumentation developed at the Los Alamos National Laboratory that accurately performs nondestructive assays of large containers bearing transuranic wastes and nonradioactive matrix materials. These assay systems can measure fissile isotopes with 1-mg sensitivity and spontaneous neutron-emitting isotopes at a 10-mg sensitivity. The assays are performed by neutron interrogation, detection, and counting in a custom assay chamber. An International Business Machines Personal Computer (IBM-PC) is used to control the CAMAC-based instrumentation system that acquires the assay data. 6 refs., 7 figs

  18. Bremsstrahlung-induced highly penetrating probes for nondestructive assay and defect analysis

    CERN Document Server

    Selim, F A; Harmon, J F; Kwofie, J; Spaulding, R; Erickson, G; Roney, T

    2002-01-01

    Nondestructive assay and defect analysis probes based on bremsstrahlung-induced processes have been developed to identify elements and probe defects in large volume samples. Bremsstrahlung beams from (electron accelerators) with end-point energies both above and below neutron emission threshold have been used. Below neutron emission threshold these beams (from 6 MeV small pulsed linacs), which exhibit high penetration, create positrons via pair production inside the material and produce X-ray fluorescence (XRF) radiation. Chemical assays of heavy elements in thick samples up to 10 g/cm sup 2 thick are provided by energy dispersive XRF measurements. The pair-produced positrons annihilate within the material, thereby emitting 511 keV gamma radiation. Doppler broadening spectroscopy of the 511 keV radiation can be performed to characterize the material and measure defects in samples of any desired thickness. This technique has successfully measured induced strain due to tensile stress in steel samples of 0.64 cm...

  19. Scintillation proximity assay

    International Nuclear Information System (INIS)

    Hart, H.

    1980-01-01

    In a method of immunological assay two different classes of particles which interact at short distances to produce characteristic detectable signals are employed in a modification of the usual latex fixation test. In one embodiment an aqueous suspension of antigen coated tritiated latex particles (LH) and antigen coated polystyrene scintillant particles (L*) is employed to assay antibody in the aqueous medium. The amount of (LH) (L*) dimer formation and higher order aggregation induced and therefore the concentration of antibody (or antigen) present which caused the aggregation can be determined by using standard liquid scintillation counting equipment. (author)

  20. Thermal precipitation fluorescence assay for protein stability screening.

    Science.gov (United States)

    Fan, Junping; Huang, Bo; Wang, Xianping; Zhang, Xuejun C

    2011-09-01

    A simple and reliable method of protein stability assessment is desirable for high throughput expression screening of recombinant proteins. Here we described an assay termed thermal precipitation fluorescence (TPF) which can be used to compare thermal stabilities of recombinant protein samples directly from cell lysate supernatants. In this assay, target membrane proteins are expressed as recombinant fusions with a green fluorescence protein tag and solubilized with detergent, and the fluorescence signals are used to report the quantity of the fusion proteins in the soluble fraction of the cell lysate. After applying a heat shock, insoluble protein aggregates are removed by centrifugation. Subsequently, the amount of remaining protein in the supernatant is quantified by in-gel fluorescence analysis and compared to samples without a heat shock treatment. Over 60 recombinant membrane proteins from Escherichia coli were subject to this screening in the presence and absence of a few commonly used detergents, and the results were analyzed. Because no sophisticated protein purification is required, this TPF technique is suitable to high throughput expression screening of recombinant membrane proteins as well as soluble ones and can be used to prioritize target proteins based on their thermal stabilities for subsequent large scale expression and structural studies. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Evaluation of genotoxicity of the acute gamma radiation on earthworm Eisenia fetida using single cell gel electrophoresis technique (Comet assay).

    Science.gov (United States)

    Sowmithra, K; Shetty, N J; Jha, S K; Chaubey, R C

    2015-12-01

    Earthworms (Eisenia fetida) most suitable biological indicators of radioactive pollution. Radiation-induced lesions in DNA can be considered to be molecular markers for early effects of ionizing radiation. Gamma radiation produces a wide spectrum of DNA. Some of these lesions, i.e., DNA strand breaks and alkali labile sites can be detected by the single-cell gel electrophoresis (SCGE) or comet assay by measuring the migration of DNA from immobilized nuclear DNA. E. fetida were exposed to different doses of gamma radiation, i.e., 1, 5, 10, 20, 30, 40 and 50Gy, and comet assay was performed for all the doses along with control at 1, 3 and 5h post irradiation to evaluate the genotoxicity of gamma radiation in this organism. The DNA damage was measured as percentage of comet tail DNA. A significant increase in DNA damage was observed in samples exposed to 5Gy and above, and the increase in DNA damage was dose dependent i.e., DNA damage was increased with increased doses of radiation. The highest DNA damage was noticed at 1h post irradiation and gradually decreased with time, i.e., at 3 and 5h post irradiation. The present study reveals that gamma radiation induces DNA damage in E. fetida and the comet assay is a sensitive and rapid method for its detection to detect genotoxicity of gamma radiation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Application of the dual-luciferase reporter assay to the analysis of promoter activity in Zebrafish embryos

    Directory of Open Access Journals (Sweden)

    Mulero Victoriano

    2008-10-01

    Full Text Available Abstract Background The dual-luciferase assay has been widely used in cell lines to determine rapidly but accurately the activity of a given promoter. Although this strategy has proved very useful, it does not allow the promoter and gene function to be analyzed in the context of the whole organism. Results Here, we present a rapid and sensitive assay based on the classical dual-luciferase reporter technique which can be used as a new tool to characterize the minimum promoter region of a gene as well as the in vivo response of inducible promoters to different stimuli. We illustrate the usefulness of this system for studying both constitutive (telomerase and inducible (NF-κB-dependent promoters. The flexibility of this assay is demonstrated by induction of the NF-κB-dependent promoters using simultaneous microinjection of different pathogen-associated molecular patterns as well as with the use of morpholino-gene mediated knockdown. Conclusion This assay has several advantages compared with the classical in vitro (cell lines and in vivo (transgenic mice approaches. Among others, the assay allows a rapid and quantitative measurement of the effects of particular genes or drugs in a given promoter in the context of a whole organism and it can also be used in high throughput screening experiments.

  3. High content cell-based assay for the inflammatory pathway

    Science.gov (United States)

    Mukherjee, Abhishek; Song, Joon Myong

    2015-07-01

    Cellular inflammation is a non-specific immune response to tissue injury that takes place via cytokine network orchestration to maintain normal tissue homeostasis. However chronic inflammation that lasts for a longer period, plays the key role in human diseases like neurodegenerative disorders and cancer development. Understanding the cellular and molecular mechanisms underlying the inflammatory pathways may be effective in targeting and modulating their outcome. Tumor necrosis factor alpha (TNF-α) is a pro-inflammatory cytokine that effectively combines the pro-inflammatory features with the pro-apoptotic potential. Increased levels of TNF-α observed during acute and chronic inflammatory conditions are believed to induce adverse phenotypes like glucose intolerance and abnormal lipid profile. Natural products e. g., amygdalin, cinnamic acid, jasmonic acid and aspirin have proven efficacy in minimizing the TNF-α induced inflammation in vitro and in vivo. Cell lysis-free quantum dot (QDot) imaging is an emerging technique to identify the cellular mediators of a signaling cascade with a single assay in one run. In comparison to organic fluorophores, the inorganic QDots are bright, resistant to photobleaching and possess tunable optical properties that make them suitable for long term and multicolor imaging of various components in a cellular crosstalk. Hence we tested some components of the mitogen activated protein kinase (MAPK) pathway during TNF-α induced inflammation and the effects of aspirin in HepG2 cells by QDot multicolor imaging technique. Results demonstrated that aspirin showed significant protective effects against TNF-α induced cellular inflammation. The developed cell based assay paves the platform for the analysis of cellular components in a smooth and reliable way.

  4. Renal artery blood flow assessed by video dilution technique before and after percutaneous transluminal angioplasty

    International Nuclear Information System (INIS)

    Lantz, B.M.T.; Link, D.P.; Lewis, E.L.; Foerster, J.M.; Lee, G.

    1981-01-01

    Successful percutaneous transluminal angioplasty was performed in 3 cases of renal artery stenosis where the effect upon renal blood flow was quantified by video dilution technique. This technique adds important information to pressure gradients and renin assays obtained during the dilatation procedure. (Auth.)

  5. Assessing sediment contamination using six toxicity assays

    Directory of Open Access Journals (Sweden)

    Allen G. BURTON Jr.

    2001-08-01

    Full Text Available An evaluation of sediment toxicity at Lake Orta, Italy was conducted to compare a toxicity test battery of 6 assays and to evaluate the extent of sediment contamination at various sediment depths. Lake Orta received excessive loadings of copper and ammonia during the 1900’s until a large remediation effort was conducted in 1989-90 using lime addition. Since that time, the lake has shown signs of a steady recovery of biological communities. The study results showed acute toxicity still exists in sediments at a depth of 5 cm and greater. Assays that detected the highest levels of toxicity were two whole sediment exposures (7 d using Hyalella azteca and Ceriodaphnia dubia. The MicrotoxR assay using pore water was the third most sensitive assay. The Thamnotox, Rototox, Microtox solid phase, and Seed Germination-Root Elongation (pore and solid phase assays showed occasional to no toxicity. Based on similarity of responses and assay sensitivity, the two most useful assays were the C. dubia (or H. azteca and Microtox pore water. These assays were effective at describing sediment toxicity in a weight-of-evidence approach.

  6. Adaptation of the neutral bacterial comet assay to assess antimicrobial-mediated DNA double-strand breaks in Escherichia coli

    Science.gov (United States)

    SOLANKY, DIPESH; HAYDEL, SHELLEY E.

    2012-01-01

    This study aimed to determine the mechanism of action of a natural antibacterial clay mineral mixture, designated CB, by investigating the induction of DNA double-strand breaks (DSBs) in Escherichia coli. To quantify DNA damage upon exposure to soluble antimicrobial compounds, we modified a bacterial neutral comet assay, which primarily associates the general length of an electrophoresed chromosome, or comet, with the degree of DSB-associated DNA damage. To appropriately account for antimicrobial-mediated strand fragmentation, suitable control reactions consisting of exposures to water, ethanol, kanamycin, and bleomycin were developed and optimized for the assay. Bacterial exposure to the CB clay resulted in significantly longer comet lengths, compared to water and kanamycin exposures, suggesting that the induction of DNA DSBs contributes to the killing activity of this antibacterial clay mineral mixture. The comet assay protocol described herein provides a general technique for evaluating soluble antimicrobial-derived DNA damage and for comparing DNA fragmentation between experimental and control assays. PMID:22940101

  7. Interaction of conjugated bile acids and detergents with a radiosorbent assay of vitamin B-12

    International Nuclear Information System (INIS)

    Andersen, K.-J.; Romslo, I.

    1977-01-01

    The effect of conjugated bile acids and detergents on the radiosorbent technique for the determination of vitamin B-12 activity is reported. It is shown that whereas the non-ionic detergent Triton X-100 has no effect on the vitamin B-12-radiosorbent assay, the addition of ionic detergents, e.g. glycocholic acid, taurocholic acid or sodium lauryl sulfate, results in a falsely-elevated vitamin B-12 activity presumably due to the disruption of the binding of vitamin B-12 to the intrinsic factor-Sephadex complex. This effect may be of importance not only to the radiosorbent assaying of vitamin B-12, but to the in vivo intestinal absorption of vitamin B-12 as well

  8. Requirements for radiation emergency urine bioassay techniques for the public and first responders.

    Science.gov (United States)

    Li, Chunsheng; Vlahovich, Slavica; Dai, Xiongxin; Richardson, Richard B; Daka, Joseph N; Kramer, Gary H

    2010-11-01

    Following a radiation emergency, the affected public and the first responders may need to be quickly assessed for internal contamination by the radionuclides involved. Urine bioassay is one of the most commonly used methods for assessing radionuclide intake and radiation dose. This paper attempts to derive the sensitivity requirements (from inhalation exposure) for the urine bioassay techniques for the top 10 high-risk radionuclides that might be used in a terrorist attack. The requirements are based on a proposed reference dose to adults of 0.1 Sv (CED, committed effective dose). In addition, requirements related to sample turnaround time and field deployability of the assay techniques are also discussed. A review of currently available assay techniques summarized in this paper reveals that method development for ²⁴¹Am, ²²⁶Ra, ²³⁸Pu, and ⁹⁰Sr urine bioassay is needed.

  9. Tannin quantification in red grapes and wine: comparison of polysaccharide- and protein-based tannin precipitation techniques and their ability to model wine astringency.

    Science.gov (United States)

    Mercurio, Meagan D; Smith, Paul A

    2008-07-23

    Quantification of red grape tannin and red wine tannin using the methyl cellulose precipitable (MCP) tannin assay and the Adams-Harbertson (A-H) tannin assay were investigated. The study allowed for direct comparison between the repeatability of the assays and for the assessment of other practical considerations such as time efficiency, ease of practice, and throughput, and assessed the relationships between tannin quantification by both analytical techniques. A strong correlation between the two analytical techniques was observed when quantifying grape tannin (r(2) = 0.96), and a good correlation was observed for wine tannins (r(2) = 0.80). However, significant differences in the reported tannin values for the analytical techniques were observed (approximately 3-fold). To explore potential reasons for the difference, investigations were undertaken to determine how several variables influenced the final tannin quantification for both assays. These variables included differences in the amount of tannin precipitated (monitored by HPLC), assay matrix variables, and the monomers used to report the final values. The relationship between tannin quantification and wine astringency was assessed for the MCP and A-H tannin assays, and both showed strong correlations with perceived wine astringency (r(2) = 0.83 and r(2) = 0.90, respectively). The work described here gives guidance to those wanting to understand how the values between the two assays relate; however, a conclusive explanation for the differences in values between the MCP and A-H tannin assays remains unclear, and further work in this area is required.

  10. Comparison of radioimmunoassay and gas chromatographic mass spectrometric assay for d-amphetamine

    International Nuclear Information System (INIS)

    Powers, K.H.; Ebert, M.H.

    1979-01-01

    Quantification of low levels of psychotropic drugs (10 -7 to 10 -9 g ml -1 ) in small volumes of plasma requires sensitive and accurate methods. Validation of these methods is best achieved by comparing results obtained using several techniques. In this study, amphetamine levels in plasma were measured using gas chromatography mass spectrometry and radioimmunoassay. Correlation of the results obtained by the two methods was found to be positive and high (R = 0.9822). The average coefficient of variation between assays for gas chromatography mass spectrometry was 5.8% and for radioimmunoassay was 12.3%, while the average coefficient of variation within assays for gas chromatography mass spectrometry was 4.9% and for radioimmunoassay 6.9%. Although gas chromatography mass spectrometry was 1.9 times more sensitive than radioimmunoassay, for most purposes, the convenience of the radioimmunoassay method outweighs the technical superiority of gas chromatography mass spectrometry. (author)

  11. Bacteriophage amplification assay for detection of Listeria spp. using virucidal laser treatment

    Directory of Open Access Journals (Sweden)

    I.C. Oliveira

    2012-09-01

    Full Text Available A protocol for the bacteriophage amplification technique was developed for quantitative detection of viable Listeria monocytogenes cells using the A511 listeriophage with plaque formation as the end-point assay. Laser and toluidine blue O (TBO were employed as selective virucidal treatment for destruction of exogenous bacteriophage. Laser and TBO can bring a total reduction in titer phage (ca. 10(8 pfu/mL without affecting the viability of L. monocytogenes cells. Artificially inoculated skimmed milk revealed mean populations of the bacteria as low as between 13 cfu/mL (1.11 log cfu/mL, after a 10-h assay duration. Virucidal laser treatment demonstrated better protection of Listeria cells than the other agents previously tested. The protocol was faster and easier to perform than standard procedures. This protocol constitutes an alternative for rapid, sensitive and quantitative detection of L. monocytogenes.

  12. An improved microculture-hemolytic spot assay for the study of carrier-specific antibody responses.

    Science.gov (United States)

    Kotkes, P; Weisman, Z; Mozes, E; Bentwich, Z

    1984-11-30

    A microculture system based on limiting dilution and a hemolytic spot assay was adapted for study of the carrier-specific anti-hapten response in vitro. Spleen or lymph node cells from normal mice or mice immunized with NIP-ovalbumin (NIP-OVA) or NIP-human thyroglobulin (NIP-Tg) were cultured for 5 days by the microculture technique. The anti-hapten (anti-NIP) response was measured by assaying the supernatants of the microcultures in a hemolytic spot test with NIP coupled to sheep red blood cells. A micro-ELISA reader was adapted to read the degree of lysis in the spot assay which gives an objective quantitation of the degree of lysis and thus reduces the number of culture replicates. In vivo induced specific helper cells in mice immunized with the carrier protein, human thyroglobulin, as well as carrier-specific T cell factors, gave rise to carrier-specific anti-NIP responses. The microculture system may enhance the expression of T-cell helper function when suppressor cells or their precursors are present in the initial cell preparation.

  13. A multiwell format assay for heparanase.

    Science.gov (United States)

    Behzad, Farhad; Brenchley, Paul E C

    2003-09-15

    This assay employs a biotinylated heparan sulfate glycosaminoglycan (HSGAG) substrate that is covalently linked to the surface of 96-well immunoassay plates. The ratio of biotin:HSGAG and the coating concentration of substrate bound to the wells have been optimized and allow removal of biotin HSGAG within 60 min of incubation at 37 degrees C in assay buffer with a standard dilution of bacterial heparitinase or platelet heparanase. Loss of biotin signal from the well surface is detected on incubation with peroxidase-streptavidin followed by color development using 3,3',5,5'-tetramethylbenzidine as the peroxidase substrate. The new assay allows specific detection of heparanase activity in multiple samples in a total time of 3 h including a 1-h substrate digestion step and is a significant improvement with regard to sensitivity, specificity, and ease of handling of multiple samples compared to other described assays. Heparanase specifically degrades the biotinylated HSGAG substrate, when used with an optimized assay buffer. A range of enzymes including collagenase, trypsin, plasmin, pepsin, chondroitinases, hyaluronidase, and neuraminidase show no effect on the substrate under optimized assay conditions. The covalent linkage of the substrate to the well prevents leaching of substrate and allows preparation and long-term storage of substrate-coated plates. The assay can be used to detect heparanase levels in clinical samples and cell culture supernatants and is ideal as a screening method for antagonists of enzyme activity.

  14. Gamma ray scanner systems for nondestructive assay of heterogeneous waste barrels

    International Nuclear Information System (INIS)

    Martz, H.E.; Decman, B.J.; Roberson, G.P.; Levai, F.

    1997-01-01

    Traditional gamma safeguards measurements have usually been performed using a segmented gamma scanning (SGS) system. The accuracy of this technique relies on the assumption that the sample matrix and the activity are both uniform for a segment. Waste barrels are often highly heterogeneous, span a wide range of composition and matrix type. The primary sources of error are all directly or indirectly related to a non-uniform measurement response associated with unknown radioactive source spatial distribution and heterogeneity of the matrix. These errors can be significantly reduced by some imaging techniques that measure exact spatial locations of sources and attenuation maps. In this paper we describe a joint R ampersand D effort between the Lawrence Livermore National Laboratory (LLNL) and the Institute of Nuclear Techniques (INT) of the Technical University, Budapest, to compare results obtained by two different gamma-ray nondestructive assay (NDA) systems used for imaging waste barrels. The basic principles are the same, but the approaches are different. Key factors to judge the adequacy of a method are the detection limit and the accuracy. Test drums representing waste to be measured are used to determine basic parameters of these techniques

  15. Differentiation of herpes simplex virus types 1 and 2 in clinical samples by a real-time taqman PCR assay.

    Science.gov (United States)

    Corey, Lawrence; Huang, Meei-Li; Selke, Stacy; Wald, Anna

    2005-07-01

    While the clinical manifestations of HSV-1 and -2 overlap, the site of CNS infection, complications, response to antivirals, frequency of antiviral resistance, and reactivation rate on mucosal surfaces varies between HSV-1 and -2. Detection of HSV DNA by PCR has been shown to be the most sensitive method for detecting HSV in clinical samples. As such, we developed a PCR-based assay to accurately distinguish HSV-1 from HSV-2. Our initial studies indicated the assay using type specific primers was slightly less efficient for detecting HSV-1 and -2 DNA than the high throughput quantitative PCR assay we utilize that employs type common primers to gB. We subsequently evaluated the type specific assay on 3,131 specimens that had HSV DNA detected in the type common PCR assay. The typing results of these specimens were compared with the monoclonal antibody staining results of culture isolates collected from the same patients at the same time, and the HSV serologic status of the patient. The typing assay accurately identified both HSV-1 and -2 with a specificity of >99.5% and was significantly more sensitive than typing by culture and subsequent monoclonal antibody assays. Complete concordance was seen between the typing assay and HSV serologic status of the patient. Dual (HSV-1 and -2) infection in clinical samples was recognized in 2.6% of clinical samples using the new typing assay. This assay, when used in combination with the type common assay, can now accurately type almost all mucosal and visceral HSV isolates by molecular techniques. Copyright (c) 2005 Wiley-Liss, Inc.

  16. Evaluation of laser diode thermal desorption (LDTD) coupled with tandem mass spectrometry (MS/MS) for support of in vitro drug discovery assays: increasing scope, robustness and throughput of the LDTD technique for use with chemically diverse compound libraries.

    Science.gov (United States)

    Beattie, Iain; Smith, Aaron; Weston, Daniel J; White, Peter; Szwandt, Simon; Sealey, Laura

    2012-02-05

    Within the drug discovery environment, the key process in optimising the chemistry of a structural series toward a potential drug candidate is the design, make and test cycle, in which the primary screens consist of a number of in vitro assays, including metabolic stability, cytochrome P450 inhibition, and time-dependent inhibition assays. These assays are often carried out using multiple drug compounds with chemically diverse structural features, often in a 96 well-plate format for maximum time-efficiency, and are supported using rapid liquid chromatographic (LC) sample introduction with a tandem mass spectrometry (MS/MS) selected reaction monitoring (SRM) endpoint, taking around 6.5 h per plate. To provide a faster time-to-decision at this critical point, there exists a requirement for higher sample throughput and a robust, well-characterized analytical alternative. This paper presents a detailed evaluation of laser diode thermal desorption (LDTD), a relatively new ambient sample ionization technique, for compound screening assays. By systematic modification of typical LDTD instrumentation and workflow, and providing deeper understanding around overcoming a number of key issues, this work establishes LDTD as a practical, rapid alternative to conventional LC-MS/MS in drug discovery, without need for extensive sample preparation or expensive, scope-limiting internal standards. Analysis of both the five and three cytochrome P450 competitive inhibition assay samples by LDTD gave improved sample throughput (0.75 h per plate) and provided comparable data quality as the IC₅₀ values obtained were within 3 fold of those calculated from the LC-MS/MS data. Additionally when applied generically to a chemically diverse library of over 250 proprietary compounds from the AstraZeneca design, make and test cycle, LDTD demonstrated a success rate of 98%. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. A quantitative comet infection assay for influenza virus

    Science.gov (United States)

    Lindsay, Stephen M.; Timm, Andrea; Yin, John

    2011-01-01

    Summary The virus comet assay is a cell-based virulence assay used to evaluate an antiviral drug or antibody against a target virus. The comet assay differs from the plaque assay in allowing spontaneous flows in 6-well plates to spread virus. When implemented quantitatively the comet assay has been shown to have an order-of-magnitude greater sensitivity to antivirals than the plaque assay. In this study, a quantitative comet assay for influenza virus is demonstrated, and is shown to have a 13-fold increase in sensitivity to ribavirin. AX4 cells (MDCK cells with increased surface concentration of α2–6 sialic acid, the influenza virus receptor) have reduced the comet size variability relative to MDCK cells, making them a better host cell for use in this assay. Because of enhanced antiviral sensitivity in flow-based assays, less drug is required, which could lead to lower reagent costs, reduced cytotoxicity, and fewer false-negative drug screen results. The comet assay also serves as a readout of flow conditions in the well. Observations from comets formed at varying humidity levels indicate a role for evaporation in the mechanism of spontaneous fluid flow in wells. PMID:22155578

  18. Assay development status report for total cyanide

    International Nuclear Information System (INIS)

    Simpson, B.C.; Jones, T.E.; Pool, K.H.

    1993-02-01

    A validated cyanide assay that is applicable to a variety of tank waste matrices is necessary to resolve certain waste tank safety issues and for purposes of overall waste characterization. The target for this effort is an assay with an applicable range of greater than 1,000 ppM (0.10 wt%) total cyanide and a confidence level greater than 80%. Figure 1 illustrates the operating regime of the proposed cyanide assay method. The Assay Development Status Report for Total Cyanide will summarize the past experience with cyanide analyses on-tank waste matrices and will rate the status of the analytical methods used to assay total cyanide (CN - ion) in the tank waste matrices as acceptable or unacceptable. This paper will also briefly describe the current efforts for improving analytical resolution of the assays and the attempts at speciation

  19. Prospects for cellular mutational assays in human populations

    International Nuclear Information System (INIS)

    Mendelsohn, M.L.

    1984-01-01

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references

  20. Prospects for cellular mutational assays in human populations

    Energy Technology Data Exchange (ETDEWEB)

    Mendelsohn, M.L.

    1984-06-29

    Practical, sensitive, and effective human cellular assays for detecting somatic and germinal mutations would have great value in environmental mutagenesis and carcinogenesis studies. Such assays would fill the void between human mutagenicity and the data that exist from short-term tests and from mutagenicity in other species. This paper discusses the following possible human cellular assays: (1) HPRT (hypoxanthine phosphoribosyltransferase) somatic cell mutation based on 6-thioguanine resistance; (2) hemoglobin somatic cell mutation assay; (3) glycophorin somatic cell mutation assay; and (4) LDH-X sperm cell mutation assay. 18 references.

  1. A radiochemical assay for biotin in biological materials

    International Nuclear Information System (INIS)

    Hood, R.L.

    1975-01-01

    A radiochemical assay for biotin is described. The assay was sensitive to one nanogram and simple enough for routine biotin analyses. The assay yielded results which were comparable to those obtained from a microbiological assay using Lactobacillus plantarum. (author)

  2. Radioreceptor assay for 1,25-dihydroxyvitamin D3 in serum and its application in the study of rachitis

    International Nuclear Information System (INIS)

    Shi Yuyuan; Zhang Peiyin; Li Yajuan

    1988-01-01

    A modifed radioreceptor assay for 1,25-(OH) 2 -D 3 (1,25-Dihydroxy vitamin D 3 , Dihydroxycholecalciferol, DHCC) in serum was established, which was proved to have high sensitivity, stability and accuracy, and was applied in patients with rachitis. The results showed that DHCC level in serum in rachictic patients was lower than that of the control. The detection rate of DHCC was obviously higher than that through symptoms, laboratory tests and X-ray examination in patients with rachitis. Therefore, this assay technique can be used as a sensitive indicator for diagnosis of rachitis. It was also found that DHCC level in mothers was cor-relative with their infants, so that assay for DHCC level in pregnant mothers has significance in prevention and treatment of rachitis in their infants

  3. Linearization of the Bradford Protein Assay

    OpenAIRE

    Ernst, Orna; Zor, Tsaffrir

    2010-01-01

    Determination of microgram quantities of protein in the Bradford Coomassie brilliant blue assay is accomplished by measurement of absorbance at 590 nm. This most common assay enables rapid and simple protein quantification in cell lysates, cellular fractions, or recombinant protein samples, for the purpose of normalization of biochemical measurements. However, an intrinsic nonlinearity compromises the sensitivity and accuracy of this method. It is shown that under standard assay conditions, t...

  4. New automated pellet/powder assay system

    International Nuclear Information System (INIS)

    Olsen, R.N.

    1975-01-01

    This paper discusses an automated, high precision, pellet/ powder assay system. The system is an active assay system using a small isotopic neutron source and a coincidence detection system. The handling of the pellet powder samples has been automated and a programmable calculator has been integrated into the system to provide control and data analysis. The versatile system can assay uranium or plutonium in either active or passive modes

  5. Comparative study on collagen-binding enzyme-linked immunosorbent assay and ristocetin cofactor activity assays for detection of functional activity of von Willebrand factor.

    Science.gov (United States)

    Turecek, Peter L; Siekmann, Jürgen; Schwarz, Hans Peter

    2002-04-01

    For more than two decades, the ristocetin cofactor (RCo) assay, which measures the von Willebrand factor (vWF)-mediated agglutination of platelets in the presence of the antibiotic ristocetin, has been the most common method for measuring the functional activity of vWF. There is, however, general agreement among clinical analysts that this method has major practical disadvantages in performance and reproducibility. Today, collagen-binding assays (CBA) based on the enzyme-linked immunosorbent assay (ELISA) technique that measure the interaction of vWF and collagen are an alternative analytic procedure based on a more physiological function than that of the RCo procedure. We used both assay systems in a comparative study to assess the functional activity of vWF in plasma as well as in therapeutic preparations. We measured RCo activities of plasma from healthy donors and patients with different types of von Willebrand disease (vWD) and of vWF as a drug substance in factor (F) VIII/vWF concentrates using both the aggregometric and the macroscopic methods. In addition, we measured collagen-binding activity (vWF:CB) using a recently developed commercially available CBA system. To investigate the relation between the structure and the functional activity of vWF, we isolated vWF species with different numbers of multimers from FVIII/vWF concentrates by affinity chromatography on immobilized heparin. The vWF:RCo and vWF:CB of the different fractions were measured, and the multimeric structure of vWF was analyzed by sodium dodecyl sulfate (SDS) agarose gel electrophoresis. (vWF:CB and vWF:RCo are part of the nomenclature proposed by the International Society on Thrombosis and Hemostasis Scientific and Standardization Committee [ISTH SSC] subcommittee on von Willebrand factor, in Maastricht, Germany, June 16, 2000.) Measurement of functional vWF activity by CBA can be carried out with substantially higher interassay reproducibility than can measurement of RCo. Both assay

  6. On the efficiency calibration of a drum waste assay system

    CERN Document Server

    Dinescu, L; Cazan, I L; Macrin, R; Caragheorgheopol, G; Rotarescu, G

    2002-01-01

    The efficiency calibration of a gamma spectroscopy waste assay system, constructed by IFIN-HH, was performed. The calibration technique was based on the assumption of a uniform distribution of the source activity in the drum and also a uniform sample matrix. A collimated detector (HPGe--20% relative efficiency) placed at 30 cm from the drum was used. The detection limit for sup 1 sup 3 sup 7 Cs and sup 6 sup 0 Co is approximately 45 Bq/kg for a sample of about 400 kg and a counting time of 10 min. A total measurement uncertainty of -70% to +40% was estimated.

  7. Development of an enzyme-linked immunosorbent assay for the detection of dicamba.

    Science.gov (United States)

    Clegg, B S; Stephenson, G R; Hall, J C

    2001-05-01

    A competitive indirect enzyme-linked immunosorbent assay (CI-ELISA) was developed to quantitate the herbicide dicamba (3,6-dichloro-2-methoxybenzoic acid) in water. The CI-ELISA has a detection limit of 2.3 microg L(-1) and a linear working range of 10--10000 microg L(-1) with an IC(50) value of 195 microg L(-1). The dicamba polyclonal antisera did not cross-react with a number of other herbicides tested but did cross-react with a dicamba metabolite, 5-hydroxydicamba, and structurally related chlorobenzoic acids. The assay was used to estimate quantitatively dicamba concentrations in water samples. Water samples were analyzed directly, and no sample preparation was required. To improve detection limits, a C(18) (reversed phase) column concentration step was devised prior to analysis, and the detection limits were increased by at least by 10-fold. After the sample preconcentration, the detection limit, IC(50), and linear working range were 0.23, 19.5, and 5-200 microg L(-1), respectively. The CI-ELISA estimations in water correlated well with those from gas chromatography-mass spectrometry (GC-MS) analysis (r(2) = 0.9991). This assay contributes to reducing laboratory costs associated with the conventional GC-MS residue analysis techniques for the quantitation of dicamba in water.

  8. Rover waste assay system

    International Nuclear Information System (INIS)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J.

    1997-01-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched 235 U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for 137 Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs

  9. Assay optimization for molecular detection of Zika virus

    NARCIS (Netherlands)

    Corman, Victor M.; Rasche, Andrea; Baronti, Cecile; Aldabbagh, Souhaib; Cadar, Daniel; Reusken, Chantal Bem; Pas, Suzan D.; Goorhuis, Abraham; Schinkel, Janke; Molenkamp, Richard; Kümmerer, Beate M.; Bleicker, Tobias; Brünink, Sebastian; Eschbach-Bludau, Monika; Eis-Hübinger, Anna M.; Koopmans, Marion P.; Schmidt-Chanasit, Jonas; Grobusch, Martin P.; de Lamballerie, Xavier; Drosten, Christian; Drexler, Jan Felix

    2016-01-01

    To examine the diagnostic performance of real-time reverse transcription (RT)-polymerase chain reaction (PCR) assays for Zika virus detection. We compared seven published real-time RT-PCR assays and two new assays that we have developed. To determine the analytical sensitivity of each assay, we

  10. Multidetection Of Anabolic Androgenic Steroids Using Immunoarrays and Pattern Recognition Techniques

    Science.gov (United States)

    Calvo, D.; Salvador, J. P.; Tort, N.; Centi, F.; Marco, M. P.; Marco, S.

    2009-05-01

    A first step towards the multidetection of anabolic androgenic steroids by Enzyme-linked immunosorbent assays (ELISA) has been performed in this study. This proposal combines an array of classical ELISA assays with different selectivities and multivariate data analysis techniques. Data has been analyzed by principal component analysis in conjunction with a k-nearest line classifier has been used. This proposal allows to detect simultaneously four different compounds in the range of concentration from 10-1.5 to 103 mM with a total rate of 90.6% of correct detection.

  11. Candida albicans Germ-Tube Antibody: Evaluation of a New Automatic Assay for Diagnosing Invasive Candidiasis in ICU Patients.

    Science.gov (United States)

    Parra-Sánchez, Manuel; Zakariya-Yousef Breval, Ismail; Castro Méndez, Carmen; García-Rey, Silvia; Loza Vazquez, Ana; Úbeda Iglesias, Alejandro; Macías Guerrero, Desiree; Romero Mejías, Ana; León Gil, Cristobal; Martín-Mazuelos, Estrella

    2017-08-01

    Testing for Candida albicans germ-tube antibody IFA IgG assay (CAGTA) is used to detect invasive candidiasis infection. However, most suitable assays lack automation and rapid single-sample testing. The CAGTA assay was adapted in an automatic monotest system (invasive candidiasis [CAGTA] VirClia ® IgG monotest (VirClia ® ), a chemiluminescence assay with ready-to-use reagents that provides a rapid objective result. CAGTA assay was compared with the monotest automatic VirClia ® assay in order to establish the diagnostic reliability, accuracy, and usefulness of this method. A prospective study with 361 samples from 179 non-neutropenic critically ill adults patients was conducted, including 21 patients with candidemia, 18 with intra-abdominal candidiasis, 84 with Candida spp. colonization, and 56 with culture-negative samples, as well as samples from ten healthy subjects. Overall agreement between the two assays (CAGTA and VirCLIA) was 85.3%. These assays were compared with the gold-standard method to determine the sensitivity, specificity as well as positive and negative predictive values. In patients with candidemia, values for CAGTA and VirCLIA assays were 76.2 versus 85.7%, 80.3 versus 75.8%, 55.2 versus 52.9%, and 91.4 versus 94.3%, respectively. The corresponding values in patients with intra-abdominal candidiasis were 61.1 versus 66.7%, 80.3 versus 75.8%, 45.8 versus 42.9%, and 88.3 versus 89.3%, respectively. No differences were found according to the species of Candida isolated in culture, except for Candida albicans and C. parapsilosis, for which VirClia ® was better than CAGTA. According to these results, the automated VirClia ® assay was a reliable, rapid, and very easy to perform technique as tool for the diagnosis invasive candidiasis.

  12. Feasibility of Primary Tumor Culture Models and Preclinical Prediction Assays for Head and Neck Cancer: A Narrative Review

    International Nuclear Information System (INIS)

    Dohmen, Amy J. C.; Swartz, Justin E.; Van Den Brekel, Michiel W. M.; Willems, Stefan M.; Spijker, René; Neefjes, Jacques; Zuur, Charlotte L.

    2015-01-01

    Primary human tumor culture models allow for individualized drug sensitivity testing and are therefore a promising technique to achieve personalized treatment for cancer patients. This would especially be of interest for patients with advanced stage head and neck cancer. They are extensively treated with surgery, usually in combination with high-dose cisplatin chemoradiation. However, adding cisplatin to radiotherapy is associated with an increase in severe acute toxicity, while conferring only a minor overall survival benefit. Hence, there is a strong need for a preclinical model to identify patients that will respond to the intended treatment regimen and to test novel drugs. One of such models is the technique of culturing primary human tumor tissue. This review discusses the feasibility and success rate of existing primary head and neck tumor culturing techniques and their corresponding chemo- and radiosensitivity assays. A comprehensive literature search was performed and success factors for culturing in vitro are debated, together with the actual value of these models as preclinical prediction assay for individual patients. With this review, we aim to fill a gap in the understanding of primary culture models from head and neck tumors, with potential importance for other tumor types as well

  13. Feasibility of Primary Tumor Culture Models and Preclinical Prediction Assays for Head and Neck Cancer: A Narrative Review

    Energy Technology Data Exchange (ETDEWEB)

    Dohmen, Amy J. C., E-mail: a.dohmen@nki.nl [Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam 1066 CX (Netherlands); Department of Cell Biology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam 1066 CX (Netherlands); Swartz, Justin E. [Department of Otorhinolaryngology-Head and Neck Surgery, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3508 GA (Netherlands); Van Den Brekel, Michiel W. M. [Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam 1066 CX (Netherlands); Willems, Stefan M. [Department of Pathology, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3508 GA (Netherlands); Spijker, René [Medical library, Academic Medical Center, Amsterdam 1100 DE (Netherlands); Dutch Cochrane Centre, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, Utrecht 3508 GA (Netherlands); Neefjes, Jacques [Department of Cell Biology, the Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam 1066 CX (Netherlands); Zuur, Charlotte L. [Department of Head and Neck Surgery and Oncology, The Netherlands Cancer Institute-Antoni van Leeuwenhoek, Plesmanlaan 121, Amsterdam 1066 CX (Netherlands)

    2015-08-28

    Primary human tumor culture models allow for individualized drug sensitivity testing and are therefore a promising technique to achieve personalized treatment for cancer patients. This would especially be of interest for patients with advanced stage head and neck cancer. They are extensively treated with surgery, usually in combination with high-dose cisplatin chemoradiation. However, adding cisplatin to radiotherapy is associated with an increase in severe acute toxicity, while conferring only a minor overall survival benefit. Hence, there is a strong need for a preclinical model to identify patients that will respond to the intended treatment regimen and to test novel drugs. One of such models is the technique of culturing primary human tumor tissue. This review discusses the feasibility and success rate of existing primary head and neck tumor culturing techniques and their corresponding chemo- and radiosensitivity assays. A comprehensive literature search was performed and success factors for culturing in vitro are debated, together with the actual value of these models as preclinical prediction assay for individual patients. With this review, we aim to fill a gap in the understanding of primary culture models from head and neck tumors, with potential importance for other tumor types as well.

  14. Cytogenetic status and oxidative DNA-damage induced by atorvastatin in human peripheral blood lymphocytes: Standard and Fpg-modified comet assay

    International Nuclear Information System (INIS)

    Gajski, Goran; Garaj-Vrhovac, Vera; Orescanin, Visnja

    2008-01-01

    To investigate the genotoxic potential of atorvastatin on human lymphocytes in vitro standard comet assay was used in the evaluation of basal DNA damage and to investigate possible oxidative DNA damage produced by reactive oxygen species (ROS) Fpg-modified version of comet assay was also conducted. In addition to these techniques the new criteria for scoring micronucleus test were applied for more complete detection of baseline damage in binuclear lymphocytes exposed to atorvastatin 80 mg/day in different time periods by virtue of measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. All parameters obtained with the standard comet assay and Fpg-modified comet assay were significantly higher in the treated than in control lymphocytes. The Fpg-modified comet assay showed a significantly greater tail length, tail intensity, and tail moment in all treated lymphocytes than did the standard comet assay, which suggests that oxidative stress is likely to be responsible for DNA damage. DNA damage detected by the standard comet assay indicates that some other mechanism is also involved. In addition to the comet assay, a total number of micronuclei, nucleoplasmic bridges and nuclear buds were significantly higher in the exposed than in controlled lymphocytes. Regression analyses showed a positive correlation between the results obtained by the comet (Fpg-modified and standard) and micronucleus assay. Overall, the study demonstrated that atorvastatin in its highest dose is capable of producing damage on the level of DNA molecule and cell

  15. Cytogenetic status and oxidative DNA-damage induced by atorvastatin in human peripheral blood lymphocytes: Standard and Fpg-modified comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Gajski, Goran [Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb (Croatia); Garaj-Vrhovac, Vera [Institute for Medical Research and Occupational Health, Mutagenesis Unit, 10000 Zagreb (Croatia); Orescanin, Visnja [Ruder Boskovic Institute, 10000 Zagreb (Croatia)

    2008-08-15

    To investigate the genotoxic potential of atorvastatin on human lymphocytes in vitro standard comet assay was used in the evaluation of basal DNA damage and to investigate possible oxidative DNA damage produced by reactive oxygen species (ROS) Fpg-modified version of comet assay was also conducted. In addition to these techniques the new criteria for scoring micronucleus test were applied for more complete detection of baseline damage in binuclear lymphocytes exposed to atorvastatin 80 mg/day in different time periods by virtue of measuring the frequency of micronuclei, nucleoplasmic bridges and nuclear buds. All parameters obtained with the standard comet assay and Fpg-modified comet assay were significantly higher in the treated than in control lymphocytes. The Fpg-modified comet assay showed a significantly greater tail length, tail intensity, and tail moment in all treated lymphocytes than did the standard comet assay, which suggests that oxidative stress is likely to be responsible for DNA damage. DNA damage detected by the standard comet assay indicates that some other mechanism is also involved. In addition to the comet assay, a total number of micronuclei, nucleoplasmic bridges and nuclear buds were significantly higher in the exposed than in controlled lymphocytes. Regression analyses showed a positive correlation between the results obtained by the comet (Fpg-modified and standard) and micronucleus assay. Overall, the study demonstrated that atorvastatin in its highest dose is capable of producing damage on the level of DNA molecule and cell.

  16. Thyroglobulin (Tg) Testing Revisited: Tg Assays, TgAb Assays, and Correlation of Results With Clinical Outcomes.

    Science.gov (United States)

    Netzel, Brian C; Grebe, Stefan K G; Carranza Leon, B Gisella; Castro, M Regina; Clark, Penelope M; Hoofnagle, Andrew N; Spencer, Carole A; Turcu, Adina F; Algeciras-Schimnich, Alicia

    2015-08-01

    Measurement of thyroglobulin (Tg) by mass spectrometry (Tg-MS) is emerging as a tool for accurate Tg quantification in patients with anti-Tg autoantibodies (TgAbs). The objective of the study was to perform analytical and clinical evaluations of two Tg-MS assays in comparison with immunometric Tg assays (Tg-IAs) and Tg RIAs (Tg-RIAs) in a cohort of thyroid cancer patients. A total of 589 samples from 495 patients, 243 TgAb-/252 TgAb+, were tested by Beckman, Roche, Siemens-Immulite, and Thermo-Brahms Tg and TgAb assays, two Tg-RIAs, and two Tg-MS assays. The frequency of TgAb+ was 58%, 41%, 27%, and 39% for Roche, Beckman, Siemens-Immulite, and Thermo-Brahms, respectively. In TgAb- samples, clinical sensitivities and specificities of 100% and 74%-100%, respectively, were observed across all assays. In TgAb+ samples, all Tg-IAs demonstrated assay-dependent Tg underestimation, ranging from 41% to 86%. In TgAb+ samples, the use of a common cutoff (0.5 ng/mL) for the Tg-MS, three Tg-IAs, and the USC-RIA improved the sensitivity for the Tg-MSs and Tg-RIAs when compared with the Tg-IAs. In up to 20% of TgAb+ cases, Tg-IAs failed to detect Tg that was detectable by Tg-MS. In Tg-RIAs false-high biases were observed in TgAb+ samples containing low Tg concentrations. Tg-IAs remain the method of choice for Tg quantitation in TgAb- patients. In TgAb+ patients with undetectable Tg by immunometric assay, the Tg-MS will detect Tg in up to 20% additional cases. The Tg-RIA will detect Tg in approximately 35% cases, but a significant proportion of these will be clinical false-positive results. The undetectable Tg-MS seen in approximately 40% of TgAb+ cases in patients with disease need further evaluation.

  17. A comparison of two colorimetric assays, based upon Lowry and Bradford techniques, to estimate total protein in soil extracts

    OpenAIRE

    Redmile-Gordon, M.A.; Armenise, E.; White, R.P.; Hirsch, P.R.; Goulding, K.W.T.

    2013-01-01

    Soil extracts usually contain large quantities of dissolved humified organic material, typically reflected by high polyphenolic content. Since polyphenols seriously confound quantification of extracted protein, minimising this interference is important to ensure measurements are representative. Although the Bradford colorimetric assay is used routinely in soil science for rapid quantification protein in soil-extracts, it has several limitations. We therefore investigated an alternative colori...

  18. Serological Assays Based on Recombinant Viral Proteins for the Diagnosis of Arenavirus Hemorrhagic Fevers

    Directory of Open Access Journals (Sweden)

    Masayuki Saijo

    2012-10-01

    Full Text Available The family Arenaviridae, genus Arenavirus, consists of two phylogenetically independent groups: Old World (OW and New World (NW complexes. The Lassa and Lujo viruses in the OW complex and the Guanarito, Junin, Machupo, Sabia, and Chapare viruses in the NW complex cause viral hemorrhagic fever (VHF in humans, leading to serious public health concerns. These viruses are also considered potential bioterrorism agents. Therefore, it is of great importance to detect these pathogens rapidly and specifically in order to minimize the risk and scale of arenavirus outbreaks. However, these arenaviruses are classified as BSL-4 pathogens, thus making it difficult to develop diagnostic techniques for these virus infections in institutes without BSL-4 facilities. To overcome these difficulties, antibody detection systems in the form of an enzyme-linked immunosorbent assay (ELISA and an indirect immunofluorescence assay were developed using recombinant nucleoproteins (rNPs derived from these viruses. Furthermore, several antigen-detection assays were developed. For example, novel monoclonal antibodies (mAbs to the rNPs of Lassa and Junin viruses were generated. Sandwich antigen-capture (Ag-capture ELISAs using these mAbs as capture antibodies were developed and confirmed to be sensitive and specific for detecting the respective arenavirus NPs. These rNP-based assays were proposed to be useful not only for an etiological diagnosis of VHFs, but also for seroepidemiological studies on VHFs. We recently developed arenavirus neutralization assays using vesicular stomatitis virus (VSV-based pseudotypes bearing arenavirus recombinant glycoproteins. The goal of this article is to review the recent advances in developing laboratory diagnostic assays based on recombinant viral proteins for the diagnosis of VHFs and epidemiological studies on the VHFs caused by arenaviruses.

  19. Assessment and reduction of comet assay variation in relation to DNA damage: studies from the European Comet Assay Validation Group

    DEFF Research Database (Denmark)

    Møller, Peter; Möller, Lennart; Godschalk, Roger W L

    2010-01-01

    The alkaline single cell gel electrophoresis (comet) assay has become a widely used method for the detection of DNA damage and repair in cells and tissues. Still, it has been difficult to compare results from different investigators because of differences in assay conditions and because the data...... are reported in different units. The European Comet Assay Validation Group (ECVAG) was established for the purpose of validation of the comet assay with respect to measures of DNA damage formation and its repair. The results from this inter-laboratory validation trail showed a large variation in measured level...... reliability for the measurement of DNA damage by the comet assay but there is still a need for further validation to reduce both assay and inter-laboratory variation....

  20. An extended data mining method for identifying differentially expressed assay-specific signatures in functional genomic studies

    Directory of Open Access Journals (Sweden)

    Rollins Derrick K

    2010-12-01

    Full Text Available Abstract Background Microarray data sets provide relative expression levels for thousands of genes for a small number, in comparison, of different experimental conditions called assays. Data mining techniques are used to extract specific information of genes as they relate to the assays. The multivariate statistical technique of principal component analysis (PCA has proven useful in providing effective data mining methods. This article extends the PCA approach of Rollins et al. to the development of ranking genes of microarray data sets that express most differently between two biologically different grouping of assays. This method is evaluated on real and simulated data and compared to a current approach on the basis of false discovery rate (FDR and statistical power (SP which is the ability to correctly identify important genes. Results This work developed and evaluated two new test statistics based on PCA and compared them to a popular method that is not PCA based. Both test statistics were found to be effective as evaluated in three case studies: (i exposing E. coli cells to two different ethanol levels; (ii application of myostatin to two groups of mice; and (iii a simulated data study derived from the properties of (ii. The proposed method (PM effectively identified critical genes in these studies based on comparison with the current method (CM. The simulation study supports higher identification accuracy for PM over CM for both proposed test statistics when the gene variance is constant and for one of the test statistics when the gene variance is non-constant. Conclusions PM compares quite favorably to CM in terms of lower FDR and much higher SP. Thus, PM can be quite effective in producing accurate signatures from large microarray data sets for differential expression between assays groups identified in a preliminary step of the PCA procedure and is, therefore, recommended for use in these applications.

  1. Multiplexed profiling of GPCR activities by combining split TEV assays and EXT-based barcoded readouts.

    Science.gov (United States)

    Galinski, Sabrina; Wichert, Sven P; Rossner, Moritz J; Wehr, Michael C

    2018-05-25

    G protein-coupled receptors (GPCRs) are the largest class of cell surface receptors and are implicated in the physiological regulation of many biological processes. The high diversity of GPCRs and their physiological functions make them primary targets for therapeutic drugs. For the generation of novel compounds, however, selectivity towards a given target is a critical issue in drug development as structural similarities between members of GPCR subfamilies exist. Therefore, the activities of multiple GPCRs that are both closely and distantly related to assess compound selectivity need to be tested simultaneously. Here, we present a cell-based multiplexed GPCR activity assay, termed GPCRprofiler, which uses a β-arrestin recruitment strategy and combines split TEV protein-protein interaction and EXT-based barcode technologies. This approach enables simultaneous measurements of receptor activities of multiple GPCR-ligand combinations by applying massively parallelized reporter assays. In proof-of-principle experiments covering 19 different GPCRs, both the specificity of endogenous agonists and the polypharmacological effects of two known antipsychotics on GPCR activities were demonstrated. Technically, normalization of barcode reporters across individual assays allows quantitative pharmacological assays in a parallelized manner. In summary, the GPCRprofiler technique constitutes a flexible and scalable approach, which enables simultaneous profiling of compound actions on multiple receptor activities in living cells.

  2. Immune Monitoring in Cancer Vaccine Clinical Trials: Critical Issues of Functional Flow Cytometry-Based Assays

    Directory of Open Access Journals (Sweden)

    Iole Macchia

    2013-01-01

    Full Text Available The development of immune monitoring assays is essential to determine the immune responses against tumor-specific antigens (TSAs and tumor-associated antigens (TAAs and their possible correlation with clinical outcome in cancer patients receiving immunotherapies. Despite the wide range of techniques used, to date these assays have not shown consistent results among clinical trials and failed to define surrogate markers of clinical efficacy to antitumor vaccines. Multiparameter flow cytometry- (FCM- based assays combining different phenotypic and functional markers have been developed in the past decade for informative and longitudinal analysis of polyfunctional T-cells. These technologies were designed to address the complexity and functional heterogeneity of cancer biology and cellular immunity and to define biomarkers predicting clinical response to anticancer treatment. So far, there is still a lack of standardization of some of these immunological tests. The aim of this review is to overview the latest technologies for immune monitoring and to highlight critical steps involved in some of the FCM-based cellular immune assays. In particular, our laboratory is focused on melanoma vaccine research and thus our main goal was the validation of a functional multiparameter test (FMT combining different functional and lineage markers to be applied in clinical trials involving patients with melanoma.

  3. A simplification of the enzyme-linked immunospot technique. Increased sensitivity for cells secreting IgG antibodies to Haemophilus influenzae type b capsular polysaccharide

    DEFF Research Database (Denmark)

    Barington, T; Sparholt, S; Juul, L

    1992-01-01

    A simplified enzyme-linked immunospot (ELISPOT) technique is described for the detection of cells secreting antibodies to tetanus toxoid (TT), diphtheria toxoid (DT) or Haemophilus influenzae type b capsular polysaccharide (PRP). By combining the cell suspension with the enzyme-linked secondary...... antibodies in one incubation, the second incubation and washing procedure could be omitted from the original technique. The simplified assay had the same sensitivity for anti-TT and anti-DT spot-forming cells as the ordinary ELISPOT assay. The IgG anti-PRP spots were, however, improved both in quality...... and in quantity (median: 40% more spots), while the detection of IgM and IgA anti-PRP spot-forming cells was the same in the two techniques. This simplified technique can probably also be used to save time in other antigen systems and should be considered when designing ELISPOT assays for the detection...

  4. A European multicientre study on the comparison of HIV-1 viral loads between VERIS HIV-1 Assay and Roche COBAS® TAQMAN® HIV-1 test, Abbott RealTime HIV-1 Assay, and Siemens VERSANT HIV-1 Assay.

    Science.gov (United States)

    Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Hofmann, Jörg; Izopet, Jacques; Kühn, Sebastian; Lombardi, Alessandra; Mancon, Alessandro; Marcos, Mª Angeles; Mileto, Davide; Sauné, Karine; O'Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel

    2017-07-01

    Viral load monitoring is essential for patients under treatment for HIV. Beckman Coulter has developed the VERIS HIV-1 Assay for use on the novel, automated DxN VERIS Molecular Diagnostics System. ¥ OBJECTIVES: Evaluation of the clinical performance of the new quantitative VERIS HIV-1 Assay at multiple EU laboratories. Method comparison with the VERIS HIV-1 Assay was performed with 415 specimens at 5 sites tested with COBAS ® AmpliPrep/COBAS ® TaqMan ® HIV-1 Test, v2.0, 169 specimens at 3 sites tested with RealTime HIV-1 Assay, and 202 specimens from 2 sites tested with VERSANT HIV-1 Assay. Patient monitoring sample results from 4 sites were also compared. Bland-Altman analysis showed the average bias between VERIS HIV-1 Assay and COBAS HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay to be 0.28, 0.39, and 0.61 log 10 cp/mL, respectively. Bias at low end levels below 1000cp/mL showed predicted bias to be <0.3 log 10 cp/mL for VERIS HIV-1 Assay versus COBAS HIV-1 Test and RealTime HIV-1 Assay, and <0.5 log 10 cp/mL versus VERSANT HIV-1 Assay. Analysis on 174 specimens tested with the 0.175mL volume VERIS HIV-1 Assay and COBAS HIV-1 Test showed average bias of 0.39 log 10 cp/mL. Patient monitoring results using VERIS HIV-1 Assay demonstrated similar viral load trends over time to all comparators. The VERIS HIV-1 Assay for use on the DxN VERIS System demonstrated comparable clinical performance to COBAS ® HIV-1 Test, RealTime HIV-1 Assay, and VERSANT HIV-1 Assay. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Matrix metalloproteinase activity assays: Importance of zymography.

    Science.gov (United States)

    Kupai, K; Szucs, G; Cseh, S; Hajdu, I; Csonka, C; Csont, T; Ferdinandy, P

    2010-01-01

    Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases capable of degrading extracellular matrix, including the basement membrane. MMPs are associated with various physiological processes such as morphogenesis, angiogenesis, and tissue repair. Moreover, due to the novel non-matrix related intra- and extracellular targets of MMPs, dysregulation of MMP activity has been implicated in a number of acute and chronic pathological processes, such as arthritis, acute myocardial infarction, chronic heart failure, chronic obstructive pulmonary disease, inflammation, and cancer metastasis. MMPs are considered as viable drug targets in the therapy of the above diseases. For the development of selective MMP inhibitor molecules, reliable methods are necessary for target validation and lead development. Here, we discuss the major methods used for MMP assays, focusing on substrate zymography. We highlight some problems frequently encountered during sample preparations, electrophoresis, and data analysis of zymograms. Zymography is a widely used technique to study extracellular matrix-degrading enzymes, such as MMPs, from tissue extracts, cell cultures, serum or urine. This simple and sensitive technique identifies MMPs by the degradation of their substrate and by their molecular weight and therefore helps to understand the widespread role of MMPs in different pathologies and cellular pathways. Copyright 2010 Elsevier Inc. All rights reserved.

  6. Immune chromatography: a quantitative radioimmunological assay

    International Nuclear Information System (INIS)

    Davis, J.W.; Demetriades, M.; Bowen, J.M.

    1984-01-01

    Immune chromatography, a radioimmunological binding assay, employs paper chromatography to separate immune complexes from free antigen and antibodies. During chromatography free antigen and antibodies become distributed throughout the paper, while immune complexes remain near the bottoms of the strips. The chromatographic differences can be made quantitative by using either iodinated antigens or antibodies. Under these conditions nanogram quantities of antigen can be detected or antibodies in sera diluted several 1000-fold. The immune chromatography assay can also be performed as an indirect assay, since the paper strips are cut from nitrocellulose paper. In this case the immune components are absorbed by the paper during chromatography. Antigen is then detected with an iodinated second antibody. The indirect immune chromatography assay is particularly useful for identifying different sera that react with the same antigen. Reaction with the first serum before chromatography reduces the amount of antigen available to the second serum following chromatography. In addition to characterizing the immune chromatography procedure, we discuss the possible applications of chromatography assays for the quantitation of other types of molecular binding interactions. (Auth.)

  7. Introducing MINA--The Molecularly Imprinted Nanoparticle Assay.

    Science.gov (United States)

    Shutov, Roman V; Guerreiro, Antonio; Moczko, Ewa; de Vargas-Sansalvador, Isabel Perez; Chianella, Iva; Whitcombe, Michael J; Piletsky, Sergey A

    2014-03-26

    A new ELISA- (enzyme-linked immunosorbent assay)-like assay is demonstrated in which no elements of biological origin are used for molecular recognition or signaling. Composite imprinted nanoparticles that contain a catalytic core and which are synthesized by using a solid-phase approach can simultaneously act as recognition/signaling elements, and be used with minimal modifications to standard assay protocols. This assay provides a new route towards replacement of unstable biomolecules in immunoassays. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Rover waste assay system

    Energy Technology Data Exchange (ETDEWEB)

    Akers, D.W.; Stoots, C.M.; Kraft, N.C.; Marts, D.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1997-11-01

    The Rover Waste Assay System (RWAS) is a nondestructive assay system designed for the rapid assay of highly-enriched {sup 235}U contaminated piping, tank sections, and debris from the Rover nuclear rocket fuel processing facility at the Idaho Chemical Processing Plant. A scanning system translates a NaI(Tl) detector/collimator system over the structural components where both relative and calibrated measurements for {sup 137}Cs are made. Uranium-235 concentrations are in operation and is sufficiently automated that most functions are performed by the computer system. These functions include system calibration, problem identification, collimator control, data analysis, and reporting. Calibration of the system was done through a combination of measurements on calibration standards and benchmarked modeling. A description of the system is presented along with the methods and uncertainties associated with the calibration and analysis of the system for components from the Rover facility. 4 refs., 2 figs., 4 tabs.

  9. Monitoring of plutonium contaminated solid waste streams. Chapter II: principles and theory of radiometric assay

    International Nuclear Information System (INIS)

    Birkhoff, G.; Bondar, L.; Notea, A.; Segal, Y.

    1977-01-01

    The interpretation of a count rate distribution obtained from radiometric assay of a given waste items population in terms of source strength distribution is discussed. A model for the evaluation of errors, arising from non uniform source density distribution (Pu) within the item volume and heterogeneity of matrix materials, is presented. Points concerning calibration procedures and representativity of reference materials are dealt with. Qualification procedures for possible monitoring systems are outlined on the basis of comparison with reference systems. The latter are composed of reference monitors based on high resolution gamma spectrometry and passive and active neutron techniques. The importance of information upon the elemental composition and density distribution of matrix materials for the interpretation of radiometric assay of solid wastes is stressed

  10. Assay system

    International Nuclear Information System (INIS)

    Patzke, J.B.; Rosenberg, B.J.

    1984-01-01

    The accuracy of assays for monitoring concentrations of basic drugs in biological fluids containing a 1 -acid glycoproteins, such as blood (serum or plasma), is improved by the addition of certain organic phosphate compounds to minimize the ''protein effect.'' Kits containing the elements of the invention are also disclosed

  11. Medical Devices; Immunology and Microbiology Devices; Classification of the Assayed Quality Control Material for Clinical Microbiology Assays. Final order.

    Science.gov (United States)

    2017-07-27

    The Food and Drug Administration (FDA, Agency, or we) is classifying the assayed quality control material for clinical microbiology assays into class II (special controls). The special controls that will apply to the device are identified in this order and will be part of the codified language for the assayed quality control material for clinical microbiology assays' classification. The Agency is classifying the device into class II (special controls) to provide a reasonable assurance of safety and effectiveness of the device.

  12. Development of a recombinant DNA assay system for the detection of genetic change in astronauts' cells

    International Nuclear Information System (INIS)

    Atchley, S.V.; Chen, D.J.C.; Strniste, G.F.; Walters, R.A.; Moyzis, R.K.

    1984-01-01

    We are developing a new recombinant DNA system for the detection and measurement of genetic change in humans caused by exposure to low level ionizing radiation. A unique feature of the method is the use of cloned repetitive DNA probes to assay human DNA for structural changes during or after irradiation. Repetitive sequences exist in different families. Collectively they constitute over 25% of the DNA in a human cell. Repeat families have between 10 and 500,000 members. We have constructed repetitive DNA sequence libraries using recombinant DNA techniques. From these libraries we have isolated and characterized individual repeats comprising 75 to 90% of the mass of human repetitive DNA. Repeats used in our assay system exist in tandem arrays in the genome. Perturbation of these sequences in a cell, followed by detection with a repeat probe, produces a new, multimeric ''ladder'' pattern on an autoradiogram. The repeat probe used in our initial study is complementary to 1% of human DNA. Therefore, the sensitivity of this method is several orders of magnitude better than existing assays. Preliminary evidence from human skin cells exposed to acute, low-dose x-ray treatments indicates that DNA is affected at a dose as low as 5R. The radiation doses used in this system are well within the range of doses received by astronauts during spaceflight missions. Due to its small material requirements, this technique could easily be adapted for use in space. 16 refs., 1 fig

  13. Pentobarbital quantitation using EMIT serum barbiturate assay reagents: application to monitoring of high-dose pentobarbital therapy.

    Science.gov (United States)

    Pape, B E; Cary, P L; Clay, L C; Godolphin, W

    1983-01-01

    Pentobarbital serum concentrations associated with a high-dose therapeutic regimen were determined using EMIT immunoassay reagents. Replicate analyses of serum controls resulted in a within-assay coefficient of variation of 5.0% and a between-assay coefficient of variation of 10%. Regression analysis of 44 serum samples analyzed by this technique (y) and a reference procedure (x) were y = 0.98x + 3.6 (r = 0.98; x = ultraviolet spectroscopy) and y = 1.04x + 2.4 (r = 0.96; x = high-performance liquid chromatography). Clinical evaluation of the results indicates the immunoassay is sufficiently sensitive and selective for pentobarbital to allow accurate quantitation within the therapeutic range associated with high-dose therapy.

  14. Rapid identification of drug-type strains in Cannabis sativa using loop-mediated isothermal amplification assay.

    Science.gov (United States)

    Kitamura, Masashi; Aragane, Masako; Nakamura, Kou; Watanabe, Kazuhito; Sasaki, Yohei

    2017-01-01

    In Cannabis sativa L., tetrahydrocannabinol (THC) is the primary psychoactive compound and exists as the carboxylated form, tetrahydrocannabinolic acid (THCA). C. sativa is divided into two strains based on THCA content-THCA-rich (drug-type) strains and THCA-poor (fiber-type) strains. Both strains are prohibited by law in many countries including Japan, whereas the drug-type strains are regulated in Canada and some European countries. As the two strains cannot be discriminated by morphological analysis, a simple method for identifying the drug-type strains is required for quality control in legal cultivation and forensic investigation. We have developed a novel loop-mediated isothermal amplification (LAMP) assay for identifying the drug-type strains of C. sativa. We designed two selective LAMP primer sets for on-site or laboratory use, which target the drug-type THCA synthase gene. The LAMP assay was accomplished within approximately 40 min. The assay showed high specificity for the drug-type strains and its sensitivity was the same as or higher than that of conventional polymerase chain reaction. We also showed the effectiveness of melting curve analysis that was conducted after the LAMP assay. The melting temperature values of the drug-type strains corresponded to those of the cloned drug-type THCA synthase gene, and were clearly different from those of the cloned fiber-type THCA synthase gene. Moreover, the LAMP assay with simple sample preparation could be accomplished within 1 h from sample treatment to identification without the need for special devices or techniques. Our rapid, sensitive, specific, and simple assay is expected to be applicable to laboratory and on-site detection.

  15. Capillary Electrophoresis Analysis of Conventional Splicing Assays

    DEFF Research Database (Denmark)

    de Garibay, Gorka Ruiz; Acedo, Alberto; García-Casado, Zaida

    2014-01-01

    of these assays is often challenging. Here, we explore this issue by conducting splicing assays in 31 BRCA2 genetic variants. All variants were assessed by RT-PCR followed by capillary electrophoresis and direct sequencing. If assays did not produce clear-cut outputs (Class-2 or Class-5 according to analytical...

  16. Controlling variation in the comet assay

    Directory of Open Access Journals (Sweden)

    Andrew Richard Collins

    2014-10-01

    Full Text Available Variability of the comet assay is a serious issue, whether it occurs from experiment to experiment in the same laboratory, or between different laboratories analysing identical samples. Do we have to live with high variability, just because the comet assay is a biological assay rather than analytical chemistry? Numerous attempts have been made to limit variability by standardising the assay protocol, and the critical steps in the assay have been identified; agarose concentration, duration of alkaline incubation, and electrophoresis conditions (time, temperature and voltage gradient are particularly important. Even when these are controlled, variation seems to be inevitable. It is helpful to include in experiments reference standards, i.e. cells with a known amount of specific damage to the DNA. They can be aliquots frozen from a single large batch of cells, either untreated (negative controls or treated with, for example, H2O2 or X-rays to induce strand breaks (positive control for the basic assay, or photosensitiser plus light to oxidise guanine (positive control for Fpg- or OGG1-sensitive sites. Reference standards are especially valuable when performing a series of experiments over a long period - for example, analysing samples of white blood cells from a large human biomonitoring trial - to check that the assay is performing consistently, and to identify anomalous results necessitating a repeat experiment. The reference values of tail intensity can also be used to iron out small variations occurring from day to day. We present examples of the use of reference standards in human trials, both within one laboratory and between different laboratories, and describe procedures that can be used to control variation.

  17. In vitro effects of piracetam on the radiosensitivity of hypoxic cells (adaptation of MTT assay to hypoxic conditions)

    International Nuclear Information System (INIS)

    Gheuens, E.E.O.; Bruijn, E.A. de; Van der Heyden, S.; Van Oosterom, A.T.; Lagarde, P.; Pooter, C.M.J. de; Chomy, F.

    1995-01-01

    This paper describes the adaptation of the MTT assay to hypoxic conditions in order to test the in vitro effect of piracetam on hypoxic cells and particularly on the radiosensitivity of hypoxic cells since this drug has shown clinical effect on acute and chronic hypoxia. The V79 cell line was selected by reference to preliminary hypoxic experiments using clonogenic assay and euoxic experiments using clonogenic and MTT assays. Cell growth and survival in our hypoxic conditions were assessed using MTT assay with an enclosure and special 48-well plates both made of glass. Growth curves on glass plates after 1-hour exposure to nitrogen versus air were comparable, so there is no bias effect due to gas composition. Survival curves using MTT versus reference clonogenic assay were comparable after radiation exposure in eu- and hypoxic conditions, and confirm the validity of our original technique for creating hypoxia. The Oxygen Enhancement Ratio was of about 3 for 1-hour hypoxic exposure. Piracetam gave no cytotoxic effect up to 10 mM of piracetam. Growth curves after continuous drug exposure and 1-hour euoxic versus hypoxic exposure gave no cytotoxic effect up to 10 mM of piracetam. Survival curves after continuous drug exposure to 10 mM of piracetam gave no significant effect on the radiosensitivity of hypoxic V79 cells using MTT or clonogenic assay. (author). 32 refs., 6 figs

  18. Interactions between heavy metals and photosynthetic materials studied by optical techniques.

    Science.gov (United States)

    Ventrella, Andrea; Catucci, Lucia; Piletska, Elena; Piletsky, Sergey; Agostiano, Angela

    2009-11-01

    In this work studies on rapid inhibitory interactions between heavy metals and photosynthetic materials at different organization levels were carried out by optical assay techniques, investigating the possibility of applications in the heavy metal detection field. Spinach chloroplasts, thylakoids and Photosystem II proteins were employed as biotools in combination with colorimetric assays based on dichlorophenol indophenole (DCIP) photoreduction and on fluorescence emission techniques. It was found that copper and mercury demonstrated a strong and rapid photosynthetic activity inhibition, that varied from proteins to membranes, while other metals like nickel, cobalt and manganese produced only slight inhibition effects on all tested photosynthetic materials. By emission measurements, only copper was found to rapidly influence the photosynthetic material signals. These findings give interesting information about the rapid effects of heavy metals on isolated photosynthetic samples, and are in addition to the literature data concerning the effects of growth in heavy metal enriched media.

  19. Novel immunoradiometric assay of thyroglobulin in serum with use of monoclonal antibodies selected for lack of cross-reactivity with autoantibodies

    International Nuclear Information System (INIS)

    Piechaczyk, M.; Baldet, L.; Pau, B.; Bastide, J.M.

    1989-01-01

    A multisite immunoradiometric assay for measurement of serum thyroglobulin (Tg), designated Magnogel-IRMA-Tg, has been developed, involving magnetic microbeads (Magnogel). This assay is based on the use of five anti-Tg monoclonal antibodies (MAbs) directed against three antigenic regions on the Tg molecule that are not recognized by anti-Tg autoantibodies (aAbs). Four of these MAbs, directed against two antigenic domains, were coupled to the magnetic beads and were used to trap the serum antigen. Another MAb, directed against the third region, was iodinated and served as the labeled second antibody. The Magnogel-IRMA-Tg technique is reproducible, rapid, and sensitive (lower detection limit, 3 micrograms/L). The assay reliably measures serum Tg in the presence of anti-Tg aAbs

  20. Dose assessment of SiC nanoparticle dispersions during in vitro assays

    International Nuclear Information System (INIS)

    Mejia, Jorge; Piret, Jean-Pascal; Noël, Florence; Masereel, Bernard; Toussaint, Olivier; Lucas, Stéphane

    2013-01-01

    Here, we show that key physicochemical parameters of commercial Silicon Carbide nanoparticles, such as the primary particles of about 53 nm in size, the agglomerates size, and the surface composition, are considerably modified with respect to the pristine conditions, during in vitro assessment. The use of sample conditioning stages, such as the pre-dispersion in aqueous media and the subsequent dispersion in a culture medium specific to the in vitro assay, produce modifications as the absorption of N, C, and O, from the culture medium, in the nanoparticles surface. Our results show that the sedimented dose, fraction of sedimented NPs during incubation and consequently in contact with cells seeded at the bottom, of Silicon Carbide nanoparticles can be measured from the particle size distribution obtained using a centrifugal liquid sedimentation technique. It is underlined that the variations observed in the physicochemical properties are related to the in vitro assay conditions. Culture medium and incubation time are found to influence the most the sedimented dose and consequently the cells dose uptake

  1. Comparison of immunofluorescence and enzyme-linked immunosorbent assay and immunoglobulin G avidity techniques for screening of anti: Toxoplasma antibodies among single serum sample pregnant women in Tabriz, Iran

    Directory of Open Access Journals (Sweden)

    Mehrangiz Rajaii

    2015-01-01

    Full Text Available Background: Congenital toxoplasmosis is that pregnant women acquire the infection during gestation; diagnosis of the acute infection during pregnancy is a complex subject of maternal toxoplasmosis. Thus, the presence of immunoglobulin G (IgG and/or IgM Toxoplasma antibodies in a single serum sample drawn during gestation cannot be used to define whether the infection was recently acquired or chronic. Materials and Methods: At this cross-sectional descriptive study, sera of 391 pregnant women examined and compared. They were in an age range of 21-35 years, referred by gynecologists and infectious disease specialists, during March 2012-April 2013. They have referred, 215 (54.98%, 102 (26%, 74 (18.92% in the first, second and third trimesters of gestation, respectively. For each of them, a questionnaire was completed and serum samples were prepared in an equal condition, examined according to the procedures of indirect immunofluorescence (IIF, enzyme-linked immunosorbent assay (ELISA and IgG Avidity techniques. Results: We have found 111 (28.38% seronegative and 280 (71.61% seropositive cases by IIF and 124 (31.70% seronegative, 267 (68.28% seropositive cases by ELISA. The IgG avidity test confirmed 45 (69.23% and 7 (10.76% doubtful cases of IgM test in IIF and ELISA techniques. Conclusions: This study highlights how to manage pregnant women with toxoplasmosis, especially in a single serum sample condition.

  2. Serotype determination of Salmonella by xTAG assay.

    Science.gov (United States)

    Zheng, Zhibei; Zheng, Wei; Wang, Haoqiu; Pan, Jincao; Pu, Xiaoying

    2017-10-01

    Currently, no protocols or commercial kits are available to determine the serotypes of Salmonella by using Luminex MAGPIX®. In this study, an xTAG assay for serotype determination of Salmonella suitable for Luminex MAGPIX® is described and 228 Salmonella isolates were serotype determined by this xTAG assay. The xTAG assay consists of two steps: 1) Multiplex PCR to amplify simultaneously O, H and Vi antigen genes of Salmonella, and 2) Magplex-TAG™ microsphere hybridization to identify accurately the specific PCR products of different antigens. Compared with the serotyping results of traditional serum agglutination test, the sensitivity and specificity of the xTAG assay were 95.1% and 100%, respectively. The agreement rate of these two assays was 95.2%. Compared with Luminex xMAP® Salmonella Serotyping Assay (SSA) kit, the advantages of this xTAG assay are: First, the magnetic beads make it applicable to both the Luminex®100/200™ and MAGPIX® systems. Second, only primers rather than both primers and probes are needed in the xTAG assay, and the process of coupling antigen-specific oligonucleotide probes to beads is circumvented, which make the xTAG assay convenient to be utilized by other laboratories. The xTAG assay may serve as a rapid alternative or complementary method for traditional Salmonella serotyping tests, especially for laboratories that utilize the MAGPIX® systems. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. The comet assay: ready for 30 more years.

    Science.gov (United States)

    Møller, Peter

    2018-02-24

    During the last 30 years, the comet assay has become widely used for the measurement of DNA damage and repair in cells and tissues. A landmark achievement was reached in 2016 when the Organization for Economic Co-operation and Development adopted a comet assay guideline for in vivo testing of DNA strand breaks in animals. However, the comet assay has much more to offer than being an assay for testing DNA strand breaks in animal organs. The use of repair enzymes increases the range of DNA lesions that can be detected with the assay. It can also be modified to measure DNA repair activity. Still, despite the long-term use of the assay, there is a need for studies that assess the impact of variation in specific steps of the procedure. This is particularly important for the on-going efforts to decrease the variation between experiments and laboratories. The articles in this Special Issue of Mutagenesis cover important technical issues of the comet assay procedure, nanogenotoxicity and ionising radiation sensitivity on plant cells. The included biomonitoring studies have assessed seasonal variation and certain predictors for the basal level of DNA damage in white blood cells. Lastly, the comet assay has been used in studies on genotoxicity of environmental and occupational exposures in human biomonitoring studies and animal models. Overall, the articles in this Special Issue demonstrate the versatility of the comet assay and they hold promise that the assay is ready for the next 30 years.

  4. Molecular assays for determining Mycobacterium leprae viability in tissues of experimentally infected mice.

    Science.gov (United States)

    Davis, Grace L; Ray, Nashone A; Lahiri, Ramanuj; Gillis, Thomas P; Krahenbuhl, James L; Williams, Diana L; Adams, Linda B

    2013-01-01

    The inability of Mycobacterium leprae to grow on axenic media has necessitated specialized techniques in order to determine viability of this organism. The purpose of this study was to develop a simple and sensitive molecular assay for determining M. leprae viability directly from infected tissues. Two M. leprae-specific quantitative reverse transcription PCR (qRT-PCR) assays based on the expression levels of esxA, encoding the ESAT-6 protein, and hsp18, encoding the heat shock 18 kDa protein, were developed and tested using infected footpad (FP) tissues of both immunocompetent and immunocompromised (athymic nu/nu) mice. In addition, the ability of these assays to detect the effects of anti-leprosy drug treatment on M. leprae viability was determined using rifampin and rifapentine, each at 10 mg/kg for 1, 5, or 20 daily doses, in the athymic nu/nu FP model. Molecular enumeration (RLEP PCR) and viability determinations (qRT-PCR) were performed via Taqman methodology on DNA and RNA, respectively, purified from ethanol-fixed FP tissue and compared with conventional enumeration (microscopic counting of acid fast bacilli) and viability assays (radiorespirometry, viability staining) which utilized bacilli freshly harvested from the contralateral FP. Both molecular and conventional assays demonstrated growth and high viability of M. leprae in nu/nu FPs over a 4 month infection period. In contrast, viability was markedly decreased by 8 weeks in immunocompetent mice. Rifapentine significantly reduced bacterial viability after 5 treatments, whereas rifampin required up to 20 treatments for the same efficacy. Neither drug was effective after a single treatment. In addition, host gene expression was monitored with the same RNA preparations. hsp18 and esxA qRT-PCR are sensitive molecular indicators, reliably detecting viability of M. leprae in tissues without the need for bacterial isolation or immediate processing, making these assays applicable for in vivo drug screening and

  5. Quantitation of microbicidal activity of mononuclear phagocytes: an in vitro technique.

    Directory of Open Access Journals (Sweden)

    Rege N

    1993-01-01

    Full Text Available An in vitro assay technique was set up to determine the phagocytic and microbicidal activity of a monocyte-macrophage cell line using Candida species as test organisms. The norms were determined for the activity of peritoneal macrophages of rats (24.69 +/- 2.6% phagocytosis and 35.4 +/- 5.22% ICK and human (27.89 +/- 3.63% phagocytosis and 50.91 +/- 6.3% ICK. The assay technique was used to test the degree of activation of macrophages induced by metronidazole, Tinospora cordifolia and Asparaqus racemousus and to compare their effects with a standard immunomodulator muramyl-dipeptide. All the three test agents increased the phagocytic and killing capacity of macrophages in a dose dependent manner upto a certain dose, beyond which either these activities were found to have plateaued or decreased. The optimal doses for MDP, Metronidazole, Asparagus racemosus and Tinospora cordifolia were found to be 100 micrograms, 300 mg/kg, 200 mg/kg and 100 mg/kg respectively. Patients with cirrhosis were screened for defects in monocyte function. The depressed monocyte function (20.58 +/- 5% phago and 41.24 +/- 12.19% ICK; P < 0.05 was observed indicating a compromised host defense. The utility of this candidicidal assay in experimental and clinical studies is discussed.

  6. Identification of irradiated refrigerated pork with the DNA comet assay

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, M.M. E-mail: villavic@net.ipen.br; Marin-Huachaca, N.S.; Mancini-Filho, J. E-mail: jmancini@usp.br; Delincee, H.; Villavicencio, A.L.C.H. E-mail: henry.delincee@bfe.uni-karlsruhe.de

    2004-10-01

    Food irradiation can contribute to a safer and more plentiful food supply by inactivating pathogens, eradicating pests and by extending shelf-life. Particularly in the case of pork meat, this process could be a useful way to inactivate harmful parasites such as Trichinella and Taenia solium. Ionizing radiation causes damage to the DNA of the cells (e.g. strand breaks), which can be used to detect irradiated food. Microelectrophoresis of single cells ('Comet Assay') is a simple and rapid test for DNA damage and can be used over a wide dose range and for a variety of products. Refrigerated pork meat was irradiated with a {sup 60}Co source, Gammacell 220 (A.E.C.L.) installed in IPEN (Sao Paulo, Brazil). The doses given were 0, 1.5, 3.0 and 4.5 kGy for refrigerated samples. Immediately after irradiation the samples were returned to the refrigerator (6 deg. C). Samples were kept in the refrigerator after irradiation. Pork meat was analyzed 1, 8 and 10 days after irradiation using the DNA 'Comet Assay'. This method showed to be an inexpensive and rapid technique for qualitative detection of irradiation treatment.

  7. Identification of irradiated refrigerated pork with the DNA comet assay

    Science.gov (United States)

    Araújo, M. M.; Marin-Huachaca, N. S.; Mancini-Filho, J.; Delincée, H.; Villavicencio, A. L. C. H.

    2004-09-01

    Food irradiation can contribute to a safer and more plentiful food supply by inactivating pathogens, eradicating pests and by extending shelf-life. Particularly in the case of pork meat, this process could be a useful way to inactivate harmful parasites such as Trichinella and Taenia solium. Ionizing radiation causes damage to the DNA of the cells (e.g. strand breaks), which can be used to detect irradiated food. Microelectrophoresis of single cells (``Comet Assay'') is a simple and rapid test for DNA damage and can be used over a wide dose range and for a variety of products. Refrigerated pork meat was irradiated with a 60Co source, Gammacell 220 (A.E.C.L.) installed in IPEN (Sa~o Paulo, Brazil). The doses given were 0, 1.5, 3.0 and 4.5kGy for refrigerated samples. Immediately after irradiation the samples were returned to the refrigerator (6°C). Samples were kept in the refrigerator after irradiation. Pork meat was analyzed 1, 8 and 10 days after irradiation using the DNA ``Comet Assay''. This method showed to be an inexpensive and rapid technique for qualitative detection of irradiation treatment.

  8. Challenges in the Development of Functional Assays of Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Sophie Demarche

    2012-11-01

    Full Text Available Lipid bilayers are natural barriers of biological cells and cellular compartments. Membrane proteins integrated in biological membranes enable vital cell functions such as signal transduction and the transport of ions or small molecules. In order to determine the activity of a protein of interest at defined conditions, the membrane protein has to be integrated into artificial lipid bilayers immobilized on a surface. For the fabrication of such biosensors expertise is required in material science, surface and analytical chemistry, molecular biology and biotechnology. Specifically, techniques are needed for structuring surfaces in the micro- and nanometer scale, chemical modification and analysis, lipid bilayer formation, protein expression, purification and solubilization, and most importantly, protein integration into engineered lipid bilayers. Electrochemical and optical methods are suitable to detect membrane activity-related signals. The importance of structural knowledge to understand membrane protein function is obvious. Presently only a few structures of membrane proteins are solved at atomic resolution. Functional assays together with known structures of individual membrane proteins will contribute to a better understanding of vital biological processes occurring at biological membranes. Such assays will be utilized in the discovery of drugs, since membrane proteins are major drug targets.

  9. Rapid extraction and assay of uranium from environmental surface samples

    Energy Technology Data Exchange (ETDEWEB)

    Barrett, Christopher A.; Chouyyok, Wilaiwan; Speakman, Robert J.; Olsen, Khris B.; Addleman, Raymond Shane

    2017-10-01

    Extraction methods enabling faster removal and concentration of uranium compounds for improved trace and low-level assay are demonstrated for standard surface sampling material in support of nuclear safeguards efforts, health monitoring, and other nuclear analysis applications. A key problem with the existing surface sampling swipes is the requirement for complete digestion of sample and sampling matrix. This is a time-consuming and labour-intensive process that limits laboratory throughput, elevates costs, and increases background levels. Various extraction methods are explored for their potential to quickly and efficiently remove different chemical forms of uranium from standard surface sampling material. A combination of carbonate and peroxide solutions is shown to give the most rapid and complete form of uranyl compound extraction and dissolution. This rapid extraction process is demonstrated to be compatible with standard inductive coupled plasma mass spectrometry methods for uranium isotopic assay as well as screening techniques such as x-ray fluorescence. The general approach described has application beyond uranium to other analytes of nuclear forensic interest (e.g., rare earth elements and plutonium) as well as heavy metals for environmental and industrial hygiene monitoring.

  10. Assays for calcitonin receptors

    International Nuclear Information System (INIS)

    Teitelbaum, A.P.; Nissenson, R.A.; Arnaud, C.D.

    1985-01-01

    The assays for calcitonin receptors described focus on their use in the study of the well-established target organs for calcitonin, bone and kidney. The radioligand used in virtually all calcitonin binding studies is 125 I-labelled salmon calcitonin. The lack of methionine residues in this peptide permits the use of chloramine-T for the iodination reaction. Binding assays are described for intact bone, skeletal plasma membranes, renal plasma membranes, and primary kidney cell cultures of rats. Studies on calcitonin metabolism in laboratory animals and regulation of calcitonin receptors are reviewed

  11. Integrated bioassays in microfluidic devices: botulinum toxin assays.

    Science.gov (United States)

    Mangru, Shakuntala; Bentz, Bryan L; Davis, Timothy J; Desai, Nitin; Stabile, Paul J; Schmidt, James J; Millard, Charles B; Bavari, Sina; Kodukula, Krishna

    2005-12-01

    A microfluidic assay was developed for screening botulinum neurotoxin serotype A (BoNT-A) by using a fluorescent resonance energy transfer (FRET) assay. Molded silicone microdevices with integral valves, pumps, and reagent reservoirs were designed and fabricated. Electrical and pneumatic control hardware were constructed, and software was written to automate the assay protocol and data acquisition. Detection was accomplished by fluorescence microscopy. The system was validated with a peptide inhibitor, running 2 parallel assays, as a feasibility demonstration. The small footprint of each bioreactor cell (0.5 cm2) and scalable fluidic architecture enabled many parallel assays on a single chip. The chip is programmable to run a dilution series in each lane, generating concentration-response data for multiple inhibitors. The assay results showed good agreement with the corresponding experiments done at a macroscale level. Although the system has been developed for BoNT-A screening, a wide variety of assays can be performed on the microfluidic chip with little or no modification.

  12. Comet assay on mice testicular cells

    Directory of Open Access Journals (Sweden)

    Anoop Kumar Sharma

    2015-05-01

    Full Text Available Heritable mutations may result in a variety of adverse outcomes including genetic disease in the offspring. In recent years the focus on germ cell mutagenicity has increased and the “Globally Harmonized System of Classification and Labelling of Chemicals (GHS” has published classification criteria for germ cell mutagens (Speit et al., 2009. The in vivo Comet assay is considered a useful tool for investigating germ cell genotoxicity. In the present study DNA strand breaks in testicular cells of mice were investigated. Different classes of chemicals were tested in order to evaluate the sensitivity of the comet assay in testicular cells. The chemicals included environmentally relevant substances such as Bisphenol A, PFOS and Tetrabrombisphenol A. Statistical power calculations will be presented to aid in the design of future Comet assay studies on testicular cells. Power curves were provided with different fold changes in % tail DNA, different number of cells scored and different number of gels (Hansen et al., 2014. An example is shown in Figure 1. A high throughput version of the Comet assay was used. Samples were scored with a fully automatic comet assay scoring system that provided faster scoring of randomly selected cells.

  13. Lectin-enzyme binding assays : development of the technique and applications in biochemistry and medicine

    NARCIS (Netherlands)

    J.M. Pekelharing

    1989-01-01

    textabstractThe aim of this work is to determine if lectins can be used in "sandwich" ELISA techniques so that the glycosylation of specific proteins in mixtures could be characterised in a fast and sensitive way without prior purification of the protein. Furthermore, the feasability of

  14. Market implications of advanced enrichment techniques

    International Nuclear Information System (INIS)

    Rougeau, J.-P.

    1987-01-01

    The only commercial outlet for uranium is for nuclear reactors and the uranium market will be closely linked to the nuclear power market for the forseeable future. Any production cost saving in the uranium cycle clearly, therefore, increases the chances for world-wide expansion of the nuclear industry. Thus, although there is overcapacity in enrichment, development of cheaper, new or more efficient established techniques, is important. The atomic vapour laser isotope separation process is considered and discussed against this background. Separative work units are explained for this technique. The problems of integrating laser isotope separation into the fuel cycle are discussed. The effects on the amount of natural uranium required for different recycling strategies, and for different laser tails assay and time schedules are illustrated. Over the next twenty years laser-based enrichment will have an important effect on the fuel cycle industry. COGEMA is expected to play a part in developing these new techniques. (U.K.)

  15. Nanoparticle-assay marker interaction: effects on nanotoxicity assessment

    International Nuclear Information System (INIS)

    Zhao, Xinxin; Xiong, Sijing; Huang, Liwen Charlotte; Ng, Kee Woei; Loo, Say Chye Joachim

    2015-01-01

    Protein-based cytotoxicity assays such as lactate dehydrogenase (LDH) and tumor necrosis factor-alpha (TNF-α) are commonly used in cytotoxic evaluation of nanoparticles (NPs) despite numerous reports on possible interactions with protein markers in these assays that can confound the results obtained. In this study, conventional cytotoxicity assays where assay markers may (LDH and TNF- α) or may not (PicoGreen and WST-8) come into contact with NPs were used to evaluate the cytotoxicity of NPs. The findings revealed selective interactions between negatively charged protein assay markers (LDH and TNF- α) and positively charged ZnO NPs under abiotic conditions. The adsorption and interaction with these protein assay markers were strongly influenced by surface charge, concentration, and specific surface area of the NPs, thereby resulting in less than accurate cytotoxic measurements, as observed from actual cell viability measurements. An improved protocol for LDH assay was, therefore, proposed and validated by eliminating any effects associated with protein–particle interactions. In view of this, additional measures and precautions should be taken when evaluating cytotoxicity of NPs with standard protein-based assays, particularly when they are of opposite charges

  16. Nanoparticle-assay marker interaction: effects on nanotoxicity assessment

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xinxin; Xiong, Sijing; Huang, Liwen Charlotte; Ng, Kee Woei, E-mail: kwng@ntu.edu.sg; Loo, Say Chye Joachim, E-mail: joachimloo@ntu.edu.sg [Nanyang Technological University, School of Materials Science and Engineering (Singapore)

    2015-01-15

    Protein-based cytotoxicity assays such as lactate dehydrogenase (LDH) and tumor necrosis factor-alpha (TNF-α) are commonly used in cytotoxic evaluation of nanoparticles (NPs) despite numerous reports on possible interactions with protein markers in these assays that can confound the results obtained. In this study, conventional cytotoxicity assays where assay markers may (LDH and TNF- α) or may not (PicoGreen and WST-8) come into contact with NPs were used to evaluate the cytotoxicity of NPs. The findings revealed selective interactions between negatively charged protein assay markers (LDH and TNF- α) and positively charged ZnO NPs under abiotic conditions. The adsorption and interaction with these protein assay markers were strongly influenced by surface charge, concentration, and specific surface area of the NPs, thereby resulting in less than accurate cytotoxic measurements, as observed from actual cell viability measurements. An improved protocol for LDH assay was, therefore, proposed and validated by eliminating any effects associated with protein–particle interactions. In view of this, additional measures and precautions should be taken when evaluating cytotoxicity of NPs with standard protein-based assays, particularly when they are of opposite charges.

  17. Nanoparticle-assay marker interaction: effects on nanotoxicity assessment

    Science.gov (United States)

    Zhao, Xinxin; Xiong, Sijing; Huang, Liwen Charlotte; Ng, Kee Woei; Loo, Say Chye Joachim

    2015-01-01

    Protein-based cytotoxicity assays such as lactate dehydrogenase (LDH) and tumor necrosis factor-alpha (TNF-α) are commonly used in cytotoxic evaluation of nanoparticles (NPs) despite numerous reports on possible interactions with protein markers in these assays that can confound the results obtained. In this study, conventional cytotoxicity assays where assay markers may (LDH and TNF- α) or may not (PicoGreen and WST-8) come into contact with NPs were used to evaluate the cytotoxicity of NPs. The findings revealed selective interactions between negatively charged protein assay markers (LDH and TNF- α) and positively charged ZnO NPs under abiotic conditions. The adsorption and interaction with these protein assay markers were strongly influenced by surface charge, concentration, and specific surface area of the NPs, thereby resulting in less than accurate cytotoxic measurements, as observed from actual cell viability measurements. An improved protocol for LDH assay was, therefore, proposed and validated by eliminating any effects associated with protein-particle interactions. In view of this, additional measures and precautions should be taken when evaluating cytotoxicity of NPs with standard protein-based assays, particularly when they are of opposite charges.

  18. Qualification of standard membrane-feeding assay with Plasmodium falciparum malaria and potential improvements for future assays.

    Directory of Open Access Journals (Sweden)

    Kazutoyo Miura

    Full Text Available Vaccines that interrupt malaria transmission are of increasing interest and a robust functional assay to measure this activity would promote their development by providing a biologically relevant means of evaluating potential vaccine candidates. Therefore, we aimed to qualify the standard membrane-feeding assay (SMFA. The assay measures the transmission-blocking activity of antibodies by feeding cultured P. falciparum gametocytes to Anopheles mosquitoes in the presence of the test antibodies and measuring subsequent mosquito infection. The International Conference on Harmonisation (ICH Harmonised Tripartite Guideline Q2(R1 details characteristics considered in assay validation. Of these characteristics, we decided to qualify the SMFA for Precision, Linearity, Range and Specificity. The transmission-blocking 4B7 monoclonal antibody was tested over 6 feeding experiments at several concentrations to determine four suitable concentrations that were tested in triplicate in the qualification experiments (3 additional feeds to evaluate Precision, Linearity and Range. For Specificity, 4B7 was tested in the presence of normal mouse IgG. We determined intra- and inter-assay variability of % inhibition of mean oocyst intensity at each concentration of 4B7 (lower concentrations showed higher variability. We also showed that % inhibition was dependent on 4B7 concentration and the activity is specific to 4B7. Since obtaining empirical data is time-consuming, we generated a model using data from all 9 feeds and simulated the effects of different parameters on final readouts to improve the assay procedure and analytical methods for future studies. For example, we estimated the effect of number of mosquitoes dissected on variability of % inhibition, and simulated the relationship between % inhibition in oocyst intensity and % inhibition of prevalence of infected mosquitos at different mean oocysts in the control. SMFA is one of the few biological assays used in

  19. Metal-amplified Density Assays, (MADAs), including a Density-Linked Immunosorbent Assay (DeLISA).

    Science.gov (United States)

    Subramaniam, Anand Bala; Gonidec, Mathieu; Shapiro, Nathan D; Kresse, Kayleigh M; Whitesides, George M

    2015-02-21

    This paper reports the development of Metal-amplified Density Assays, or MADAs - a method of conducting quantitative or multiplexed assays, including immunoassays, by using Magnetic Levitation (MagLev) to measure metal-amplified changes in the density of beads labeled with biomolecules. The binding of target analytes (i.e. proteins, antibodies, antigens) to complementary ligands immobilized on the surface of the beads, followed by a chemical amplification of the binding in a form that results in a change in the density of the beads (achieved by using gold nanoparticle-labeled biomolecules, and electroless deposition of gold or silver), translates analyte binding events into changes in density measureable using MagLev. A minimal model based on diffusion-limited growth of hemispherical nuclei on a surface reproduces the dynamics of the assay. A MADA - when performed with antigens and antibodies - is called a Density-Linked Immunosorbent Assay, or DeLISA. Two immunoassays provided a proof of principle: a competitive quantification of the concentration of neomycin in whole milk, and a multiplexed detection of antibodies against Hepatitis C virus NS3 protein and syphilis T. pallidum p47 protein in serum. MADAs, including DeLISAs, require, besides the requisite biomolecules and amplification reagents, minimal specialized equipment (two permanent magnets, a ruler or a capillary with calibrated length markings) and no electrical power to obtain a quantitative readout of analyte concentration. With further development, the method may be useful in resource-limited or point-of-care settings.

  20. Chromosome aberration assays in Allium

    Energy Technology Data Exchange (ETDEWEB)

    Grant, W.F.

    1982-01-01

    The common onion (Allium cepa) is an excellent plant for the assay of chromosome aberrations after chemical treatment. Other species of Allium (A. cepa var. proliferum, A. carinatum, A. fistulosum and A. sativum) have also been used but to a much lesser extent. Protocols have been given for using root tips from either bulbs or seeds of Allium cepa to study the cytological end-points, such as chromosome breaks and exchanges, which follow the testing of chemicals in somatic cells. It is considered that both mitotic and meiotic end-points should be used to a greater extent in assaying the cytogenetic effects of a chemical. From a literature survey, 148 chemicals are tabulated that have been assayed in 164 Allium tests for their clastogenic effect. Of the 164 assays which have been carried out, 75 are reported as giving a positive reaction, 49 positive and with a dose response, 1 positive and temperature-related, 9 borderline positive, and 30 negative; 76% of the chemicals gave a definite positive response. It is proposed that the Allium test be included among those tests routinely used for assessing chromosomal damage induced by chemicals.