WorldWideScience

Sample records for asporogenic recombinant strain

  1. Caenorhabditis briggsae recombinant inbred line genotypes reveal inter-strain incompatibility and the evolution of recombination.

    Directory of Open Access Journals (Sweden)

    Joseph A Ross

    2011-07-01

    Full Text Available The nematode Caenorhabditis briggsae is an emerging model organism that allows evolutionary comparisons with C. elegans and exploration of its own unique biological attributes. To produce a high-resolution C. briggsae recombination map, recombinant inbred lines were generated from reciprocal crosses between two strains and genotyped at over 1,000 loci. A second set of recombinant inbred lines involving a third strain was also genotyped at lower resolution. The resulting recombination maps exhibit discrete domains of high and low recombination, as in C. elegans, indicating these are a general feature of Caenorhabditis species. The proportion of a chromosome's physical size occupied by the central, low-recombination domain is highly correlated between species. However, the C. briggsae intra-species comparison reveals striking variation in the distribution of recombination between domains. Hybrid lines made with the more divergent pair of strains also exhibit pervasive marker transmission ratio distortion, evidence of selection acting on hybrid genotypes. The strongest effect, on chromosome III, is explained by a developmental delay phenotype exhibited by some hybrid F2 animals. In addition, on chromosomes IV and V, cross direction-specific biases towards one parental genotype suggest the existence of cytonuclear epistatic interactions. These interactions are discussed in relation to surprising mitochondrial genome polymorphism in C. briggsae, evidence that the two strains diverged in allopatry, the potential for local adaptation, and the evolution of Dobzhansky-Muller incompatibilities. The genetic and genomic resources resulting from this work will support future efforts to understand inter-strain divergence as well as facilitate studies of gene function, natural variation, and the evolution of recombination in Caenorhabditis nematodes.

  2. Hydrogen production by recombinant Escherichia coli strains

    Science.gov (United States)

    Maeda, Toshinari; Sanchez‐Torres, Viviana; Wood, Thomas K.

    2012-01-01

    Summary The production of hydrogen via microbial biotechnology is an active field of research. Given its ease of manipulation, the best‐studied bacterium Escherichia coli has become a workhorse for enhanced hydrogen production through metabolic engineering, heterologous gene expression, adaptive evolution, and protein engineering. Herein, the utility of E. coli strains to produce hydrogen, via native hydrogenases or heterologous ones, is reviewed. In addition, potential strategies for increasing hydrogen production are outlined and whole‐cell systems and cell‐free systems are compared. PMID:21895995

  3. Immunosuppression with cyclophosphamide favors reinfection with recombinant Toxoplasma gondii strains

    Directory of Open Access Journals (Sweden)

    Silva L.A.

    2012-08-01

    Full Text Available The aim of this study was to verify the effect of immunosuppression by cyclophosphamide (Cy on susceptibility of BALB/c mice subjected to challenge with recombinant strains of Toxoplasma gondii. Animals were prime infected with the D8 (recombinant I/III or the ME49 (type II non-virulent strains, weekly immunosuppressed with Cy and challenged with the CH3 or EGS virulent strains (I/III. Parasites recovered from surviving mice were submitted to PCR-RFLP analysis to confirm co-infection. Prime-infection with the D8 strain conferred more protection against challenge with the CH3 and EGS strains when compared with ME49 prime infection. Cy treatment caused significant leukopenia in the infected mice, what probably favors reinfection after challenge. Reinfection was associated with increased levels of IgA. Otherwise, Cy-treated mice presented significantly lower IgA levels after challenge, suggesting involvement of this immunoglobulin on protection against reinfection. In conclusion, BALB/c mice susceptibility to reinfection by T. gondii is related to genetic differences among the strains used for primary and challenge infections. Alteration of the host’s immune integrity by Cy probably compromises the protection previously established by primary infection.

  4. Hemodynamic Characterization of Recombinant Inbred Strains: Twenty Years Later

    Czech Academy of Sciences Publication Activity Database

    Kuneš, Jaroslav; Dobešová, Zdenka; Musilová, Alena; Zídek, Václav; Vorlíček, Jaroslav; Pravenec, Michal; Křen, Vladimír; Zicha, Josef

    2008-01-01

    Roč. 31, č. 8 (2008), s. 1659-1668 ISSN 0916-9636 R&D Projects: GA MŠk(CZ) 1M0510; GA ČR(CZ) GA305/08/0139; GA AV ČR(CZ) IAA500110604 Institutional research plan: CEZ:AV0Z50110509 Keywords : recombinant inbred strains * blood pressure * telemetry Subject RIV: ED - Physiology Impact factor: 3.146, year: 2008

  5. Sequential acquisition of Potato virus Y strains by Myzus persicae favors the transmission of the emerging recombinant strains

    Science.gov (United States)

    In the past decade recombinant strains of potato virus Y (PVY) have overtaken the ordinary strain, PVYO, as the predominant viruses affecting the US seed potato crop. Aphids may be a contributing factor in the emergence of the recombinant strains, but studies indicate that differences in transmissio...

  6. Redox balancing in recombinant strains of Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Anderlund, M.

    1998-09-01

    In metabolically engineered Saccharomyces cerevisiae expressing Pichia stipitis XYL1 and XYL2 genes, encoding xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, xylitol is excreted as the major product during anaerobic xylose fermentation and only low yields of ethanol are produced. This has been interpreted as a result of the dual cofactor dependence of XR and the exclusive use of NAD{sup +} by XDH. The excretion of xylitol was completely stopped and the formation of glycerol and acetic acid were reduced in xylose utilising S. cerevisiae strains cultivated in oxygen-limited conditions by expressing lower levels of XR than of XDH. The expression level of XYL1 and XYL2 were controlled by changing the promoters and transcription directions of the genes. A new functional metabolic pathway was established when Thermus thermophilus xylA gene was expressed in S. cerevisiae. The recombinant strain was able to ferment xylose to ethanol when cultivated on a minimal medium containing xylose as only carbon source. In order to create a channeled metabolic transfer in the two first steps of the xylose metabolism, XYL1 and XYL2 were fused in-frame and expressed in S. cerevisiae. When the fusion protein, containing a linker of three amino acids, was co expressed together with native XR and XDH monomers, enzyme complexes consisting of chimeric and native subunits were formed. The total activity of these complexes exhibited 10 and 9 times higher XR and XDH activity, respectively, than the original conjugates, consisting of only chimeric subunits. This strain produced less xylitol and the xylitol yield was lower than with strains only expressing native XR and XDH monomers. In addition, more ethanol and less acetic acid were formed. A new gene encoding the cytoplasmic transhydrogenase from Azotobacter vinelandii was cloned. The enzyme showed high similarity to the family of pyridine nucleotide-disulphide oxidoreductase. To analyse the physiological effect of

  7. Improved Eco-Friendly Recombinant Anabaena sp. Strain PCC7120 with Enhanced Nitrogen Biofertilizer Potential▿

    Science.gov (United States)

    Chaurasia, Akhilesh Kumar; Apte, Shree Kumar

    2011-01-01

    Photosynthetic, nitrogen-fixing Anabaena strains are native to tropical paddy fields and contribute to the carbon and nitrogen economy of such soils. Genetic engineering was employed to improve the nitrogen biofertilizer potential of Anabaena sp. strain PCC7120. Constitutive enhanced expression of an additional integrated copy of the hetR gene from a light-inducible promoter elevated HetR protein expression and enhanced functional heterocyst frequency in the recombinant strain. The recombinant strain displayed consistently higher nitrogenase activity than the wild-type strain and appeared to be in homeostasis with compatible modulation of photosynthesis and respiration. The enhanced combined nitrogen availability from the recombinant strain positively catered to the nitrogen demand of rice seedlings in short-term hydroponic experiments and supported better growth. The engineered strain is stable, eco-friendly, and useful for environmental application as nitrogen biofertilizer in paddy fields. PMID:21057013

  8. Improved eco-friendly recombinant Anabaena sp. strain PCC7120 with enhanced nitrogen biofertilizer potential.

    Science.gov (United States)

    Chaurasia, Akhilesh Kumar; Apte, Shree Kumar

    2011-01-01

    Photosynthetic, nitrogen-fixing Anabaena strains are native to tropical paddy fields and contribute to the carbon and nitrogen economy of such soils. Genetic engineering was employed to improve the nitrogen biofertilizer potential of Anabaena sp. strain PCC7120. Constitutive enhanced expression of an additional integrated copy of the hetR gene from a light-inducible promoter elevated HetR protein expression and enhanced functional heterocyst frequency in the recombinant strain. The recombinant strain displayed consistently higher nitrogenase activity than the wild-type strain and appeared to be in homeostasis with compatible modulation of photosynthesis and respiration. The enhanced combined nitrogen availability from the recombinant strain positively catered to the nitrogen demand of rice seedlings in short-term hydroponic experiments and supported better growth. The engineered strain is stable, eco-friendly, and useful for environmental application as nitrogen biofertilizer in paddy fields.

  9. Morphological characterization of recombinant strains of Aspergillus oryzae producing alpha-amylase during batch cultivations

    DEFF Research Database (Denmark)

    Spohr, Anders Bendsen; Carlsen, Morten; Nielsen, Jens Bredal

    1997-01-01

    Three alpha-amylase producing strains of Aspergillus oryzae used for recombinant protein production have been studied with respect to growth and protein production. By comparing the three strains with respect to morphology and protein production it is shown that a morphological mutant with a more...... dense mycelium is more efficient in producing alpha-amylase....

  10. [Characterization of a recombinant Listeria monocytogenes strain containing the fusion protein gene of Newcastle disease virus].

    Science.gov (United States)

    Xu, Jing-Jing; Jiang, Ling-Li; Chen, Ning; Shuai, Jiang-Bing; Fang, Wei-Huan

    2006-06-01

    Homologous recombination was utilized for construction of a recombinant strain of L. monocytogenes carrying a gene from the Newcastle diseases virus by insertional mutation targeting its listeriolysin O gene (hly). The gene encoding fusion protein of the Newcastle disease virus (NDV-F) was used as the model heterologous gene. The F gene was inserted into hly downstream to its promoter and signal sequence by overlapping extension polymerase chain reaction, which was then subcloned into the shuttle plasmid pKSV7 for allelic exchange with L. monocytogenes chromosome. PCR amplification of the target genes indicated insertion of the F gene into the chromosome DNA of L. monocytogenes. RT-PCR showed transcription of F gene from the recombinant L. monocytogenes strain. Comparisons were then made between the recombinant strain and its wild parent strain in terms of the hemolytic activity, adhesion and invasiveness to cultured HeLa cells, virulence to mice and chicken embryos, and growth kinetics in broth medium as well as its stability upon repeated subculturing and serial passages in mice. The recombinant L. monocytogenes lost its hemolytic activity on the blood agar and had no hemolytic titer from its culture supernatants as compared with the titer of 24 in the supernatant from the wild parent strain. The recombinant strain also had lower adhesiveness (P > 0.05) and significantly lower relative invasiveness to the HeLa cells than its wild type strain (P gene NDV-F from its genomic DNA after subculturing in BHI broth or in mice for 5 times.

  11. Evidence of a recombinant wild-type human astrovirus strain from a Kenyan child with gastroenteritis.

    Science.gov (United States)

    Wolfaardt, Marianne; Kiulia, Nicholas M; Mwenda, Jason M; Taylor, Maureen B

    2011-02-01

    A human astrovirus (HAstV) strain from Kenya was characterized by nucleotide sequence analysis. Sequences from open reading frame 1a (ORF1a) clustered with genotype 6/7, those from ORF1b clustered with genotype 3, and those from ORF2 clustered with genotype 2. A recombination point in the ORF1b-ORF2 junction was identified, with a second possible recombination point within the ORF1a region.

  12. Antagonistic properties of two recombinant strains of Streptomyces melanosporofaciens obtained by intraspecific protoplast fusion.

    Science.gov (United States)

    Agbessi, S; Beauséjour, J; Déry, C; Beaulieu, C

    2003-08-01

    Intraspecific protoplast fusion was used to produce stable prototrophic recombinants of Streptomyces melanosporofaciens EF-76, a biocontrol agent of plant disease producing geldanamycin. Two recombinant strains (FP-54 and FP-60) that differed with regard to their antagonistic properties against Bacillus cereus ATCC 14579, Streptomyces scabies EF-35 and Phytophthora fragariae var. rubi 390 were characterized. FP-60 lost the ability to inhibit the in vitro growth of these microbial strains while FP-54 exhibited higher antagonistic activities against them. FP-60 was deficient in geldanamycin biosynthesis whereas FP-54 was shown to produce, in addition to geldanamycin, at least two other antimicrobial compounds that were absent in the culture supernatants of strain EF-76. Like the wild-type strain EF-76, strain FP-54 reduced common scab symptoms on potato tuber but no significant difference was observed between the disease index attributed to tubers treated with strain EF-76 or with strain FP-54. Strain FP-60 showed no protective effect against common scab. The disease index of tubers treated with this recombinant was worse than the index associated with potato tubers from control treatments.

  13. Radiative and non-radiative recombinations in tensile strained Ge microstrips: Photoluminescence experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Virgilio, M., E-mail: virgilio@df.unipi.it [Dip. di Fisica “E. Fermi,” Università di Pisa, Largo Pontecorvo 3, 56127 Pisa (Italy); NEST, Istituto Nanoscienze-CNR, P.za San Silvestro 12, 56127 Pisa (Italy); Schroeder, T.; Yamamoto, Y. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Capellini, G. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Dip. di scienze, Università Roma Tre, viale G. Marconi 446, 00146 Roma (Italy)

    2015-12-21

    Tensile germanium microstrips are candidate as gain material in Si-based light emitting devices due to the beneficial effect of the strain field on the radiative recombination rate. In this work, we thoroughly investigate their radiative recombination spectra by means of micro-photoluminescence experiments at different temperatures and excitation powers carried out on samples featuring different tensile strain values. For sake of comparison, bulk Ge(001) photoluminescence is also discussed. The experimental findings are interpreted in light of a numerical modeling based on a multi-valley effective mass approach, taking in to account the depth dependence of the photo-induced carrier density and of the self-absorption effect. The theoretical modeling allowed us to quantitatively describe the observed increase of the photoluminescence intensity for increasing values of strain, excitation power, and temperature. The temperature dependence of the non-radiative recombination time in this material has been inferred thanks to the model calibration procedure.

  14. Correlation of mutations and recombination with growth kinetics of poliovirus vaccine strains.

    Science.gov (United States)

    Pliaka, V; Kyriakopoulou, Z; Tsakogiannis, D; Ruether, I G A; Gartzonika, C; Levidiotou-Stefanou, S; Krikelis, A; Markoulatos, P

    2010-12-01

    Attenuated strains of Sabin poliovirus vaccine replicate in the human gut and, in rare cases, may cause vaccine-associated paralytic poliomyelitis (VAPP). The genetic instability of Sabin strains constitutes one of the main causes of VAPP, a disease that is most frequently associated with type 3 and type 2 Sabin strains, and more rarely with type 1 Sabin strains. In the present study, the growth phenotype of eight oral poliovirus vaccine (OPV) isolates (two non-recombinants and six recombinants), as well as of Sabin vaccine strains, was evaluated using two different assays, the reproductive capacity at different temperatures (Rct) test and the one-step growth curve test in Hep-2 cells at two different temperatures (37°C and 40°C). The growth phenotype of isolates was correlated with genomic modifications in order to identify the determinants and mechanisms of reversion towards neurovirulence. All of the recombinant OPV isolates showed a thermoresistant phenotype in the Rct test. Moreover, both recombinant Sabin-3 isolates showed significantly higher viral yield than Sabin 3 vaccine strain at 37°C and 40°C in the one-step growth curve test. All of the OPV isolates displayed mutations at specific sites of the viral genome, which are associated with the attenuated and temperature-sensitive phenotype of Sabin strains. The results showed that both mutations and recombination events could affect the phenotype traits of Sabin derivatives and may lead to the reversion of vaccinal strains to neurovirulent ones. The use of phenotypic markers along with the genomic analysis may shed additional light on the molecular determinants of the reversed neurovirulent phenotype of Sabin derivatives.

  15. A recombinant lactobacillus strain expressing genes coding for ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... Using genetically engineered endogenous lactobacillus strains colonizing the vagina mucosa to express heterogenous proteins has of late joined the novel strategies aimed at developing a microbicides against HIV. Using the lactobacillus metabolic genome pathway, we found that these bacteria do not ...

  16. A recombinant lactobacillus strain expressing genes coding for ...

    African Journals Online (AJOL)

    Using genetically engineered endogenous lactobacillus strains colonizing the vagina mucosa to express heterogenous proteins has of late joined the novel ... role of restriction modification systems (RMS), we searched for enzymes that cleave HIV-1, 2 and other SIV genomes using theoretical computational methods.

  17. A new recombined porcine reproductive and respiratory syndrome virus virulent strain in China.

    Science.gov (United States)

    Dong, Jian-Guo; Yu, Lin-Yang; Wang, Pei-Pei; Zhang, Le-Yi; Liu, Yan-Ling; Liang, Peng-Shuai; Song, Chang-Xu

    2018-01-31

    Porcine reproductive and respiratory syndrome (PRRS) is one of the most important swine diseases worldwide. In the present study, a new virulent strain of PRRS virus (PRRSV), GDsg, was isolated in Guangdong province, China, and caused high fever, high morbidity, and high mortality in sows and piglets. The genome of this new strain was 15,413 nucleotides (nt) long, and comparative analysis revealed that GDsg shared 82.4% to 94% identity with type 2 PRRSV strains, but only 61.5% identity with type 1 PRRSV Lelystad virus strain. Phylogenetic analysis indicated that type 2 PRRSV isolates include five subgenotypes (I, II, III, IV, and V), which are represented by NADC30, VR-2332, GM2, CH-1a, and HuN4, respectively. Moreover, GDsg belongs to a newly emerging type 2 PRRSV subgenotype III. More interestingly, the newly isolated GDsg strain has multiple discontinuous nt deletions, 131 (19 + 18 + 94) at position 1404-1540 and a 107 nt insertion in the NSP2 region. Most importantly, the GDsg strain was identified as a virus recombined between low pathogenic field strain QYYZ and vaccine strain JXA1-P80. In conclusion, a new independent subgenotype and recombinant PRRSV strain has emerged in China and could be a new threat to the swine industry of China.

  18. ASSESMENT OF CRYOPRESERVATION SYSTEMS INFLUENCE ON THE SURVAVIAL OF E. COLI RECOMBINANT STRAINS

    Directory of Open Access Journals (Sweden)

    CLAUDIA TEREZIA SOCOL

    2008-05-01

    Full Text Available The cryopreservation systems of recombinant bacterial cells based on glycerol were studied in these experiments according to the hypothesis that glycerol is one of the widely used cryoprotective additives in microbiology and a multitude of factors affecting the effectiveness of cryopreservation in microorganisms; the best cryoprotective additive and the optimum concentration for a particular microorganism has to be determined empirically. The results obtained in this experiment are showing that the freezing procedure at -80°C in LB 40% glycerol is the optimum system for the cryopreservation of E. coli DH5α recombinant cells. The use of SOC medium supplemented with 10g/l NaCl provided more proper conditions of culture for the defrosted E. coli DH5α recombinant cells, reducing the osmotic stress during the recovery after thawing. The utilization of this optimum cryopreservation system offer the possibility of preserving the large volume of work and time involved by the recombinant DNA technology procedures applied for obtaining a recombinant strain, avoiding the storage of recombinant strains by costly and time consuming microbiology culturing techniques.

  19. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains

    Science.gov (United States)

    2009-01-01

    Background Homologous recombination mediated by the λ-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the λ-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these λ-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains. Results Our goal was to develop a high-throughput recombineering system, primarily for the coupling of genes to epitope tags, which could also be used for deletion of genes in both pathogenic and K-12 E. coli strains. To that end we have designed a series of donor plasmids for use with the λ-Red recombination system, which when cleaved in vivo by the I-SceI meganuclease generate a discrete linear DNA fragment, allowing for C-terminal tagging of chromosomal genes with a 6 × His, 3 × FLAG, 4 × ProteinA or GFP tag or for the deletion of chromosomal regions. We have enhanced existing protocols and technologies by inclusion of a cassette conferring kanamycin resistance and, crucially, by including the sacB gene on the donor plasmid, so that all but true recombinants are counter-selected on kanamycin and sucrose containing media, thus eliminating the need for extensive screening. This method has the added advantage of limiting the exposure of cells to the potential damaging effects of the λ-Red system, which can lead to unwanted secondary

  20. Gene doctoring: a method for recombineering in laboratory and pathogenic Escherichia coli strains

    Directory of Open Access Journals (Sweden)

    Penn Charles W

    2009-12-01

    Full Text Available Abstract Background Homologous recombination mediated by the λ-Red genes is a common method for making chromosomal modifications in Escherichia coli. Several protocols have been developed that differ in the mechanisms by which DNA, carrying regions homologous to the chromosome, are delivered into the cell. A common technique is to electroporate linear DNA fragments into cells. Alternatively, DNA fragments are generated in vivo by digestion of a donor plasmid with a nuclease that does not cleave the host genome. In both cases the λ-Red gene products recombine homologous regions carried on the linear DNA fragments with the chromosome. We have successfully used both techniques to generate chromosomal mutations in E. coli K-12 strains. However, we have had limited success with these λ-Red based recombination techniques in pathogenic E. coli strains, which has led us to develop an enhanced protocol for recombineering in such strains. Results Our goal was to develop a high-throughput recombineering system, primarily for the coupling of genes to epitope tags, which could also be used for deletion of genes in both pathogenic and K-12 E. coli strains. To that end we have designed a series of donor plasmids for use with the λ-Red recombination system, which when cleaved in vivo by the I-SceI meganuclease generate a discrete linear DNA fragment, allowing for C-terminal tagging of chromosomal genes with a 6 × His, 3 × FLAG, 4 × ProteinA or GFP tag or for the deletion of chromosomal regions. We have enhanced existing protocols and technologies by inclusion of a cassette conferring kanamycin resistance and, crucially, by including the sacB gene on the donor plasmid, so that all but true recombinants are counter-selected on kanamycin and sucrose containing media, thus eliminating the need for extensive screening. This method has the added advantage of limiting the exposure of cells to the potential damaging effects of the λ-Red system, which can lead

  1. [Genomic characteristics and recombination of enterovirus 71 strains isolated in Henan Province between 2008 and 2010].

    Science.gov (United States)

    Wei, Hai-Yan; Xu, Yu-Ling; Huang, Xue-Yong; Ma, Hong; Chen, Hao-Min; Xu, Bian-Li

    2011-09-01

    To reveal the genetic features and recombination of enterovirus 71 isolates between 2008 and 2010. A total of 5 enterovirus 71 isolates were sequenced completely and phylogenetic analysis and recombination were performed. Phylogenetic analysis based on VP1 regions revealed that the Henan enterovirus 71 between 2008 and 2010 belonged to C4a in subgenotype C4. Bootscan analyses and phylogenetic analysis based on the 5'UTR, P1, P2, P3 genomic regions revealed the recombinations between EV71 genotypes B and C at the 2A-2B junction, and between EV71 genotype B and CA16 strain G-10 at the 3B-3C junction. Henan enterovirus 71 isolates between 2008 and 2010 belonged to C4a in subgenotype C4 which was the predominant virus genotype circulating in mainland China since 2004, a combination of intratypic and intertypic recombination were found in EV71 subgenotype C4.

  2. Evolved Lactococcus lactis Strains for Enhanced Expression of Recombinant Membrane Proteins

    NARCIS (Netherlands)

    Martinez Linares, Daniel; Geertsma, Eric R.; Poolman, Bert

    2010-01-01

    The production of complex multidomain (membrane) proteins is a major hurdle in structural genomics and a generic approach for optimizing membrane protein expression is still lacking. We have devised a selection method to isolate mutant strains with improved functional expression of recombinant

  3. [Construction and Fluorescence Analysis of the RecombinantListeria ivanoviiStrain Expressing Green Fluorescent Protein].

    Science.gov (United States)

    Zhang, Xiang; Su, Lin; Liu, Si-Jing; Li, Yong-Yu; Jiang, Ming-Juan; Huang, Huan; Wang, Chuan

    2017-11-01

    Constructing the recombinant Listeria ivanovii strain expressing green fluorescent protein to provide an important tool for study of Listeria ivanovii. The promoter of Listeria monocytogenes Listeriolysin O ( phly ) and the green fluorescent protein (GFP) gene were fused by SOEing PCR,and then ligated the fusion gene into plasmid pCW to result in recombinant plasmid pCW- phly-GFP. Recombinant plasmid was electroporated into Listeria ivanovii ,and fluorescence microscope was used to analyze the expression of GFP. To observe the stability of recombinant plasmid and the stable expression of GFP in Listeria ivanovii ,bacteria were cultured in the BHI broth with or without erythromycin for several generations. The stability of recombinant plasmid pCW- phly-GFP and fluorescent protein in each generation of bacteriawas studied by extracting plasmids and observing fluorescence. The exactness of recombinant plasmid pCW- phly-GFP was confirmed with restrictive endonuclease assay and sequence analysis. Under the fluorescence microscope,the green fluorescence was obvious in Listeria ivanovii carried with pCW- phly-GFP. The recombinant plasmid pCW- phly-GFP was stable in Listeria ivanovii and the GFP kept expressing in a high level under the pressure of erythromycin. The prokaryotic expression plasmid pCW- phly-GFP containing GFP gene was successfully constructed. Listeria ivanovii carried with the plasmid efficiently expressed GFP. This research provides an important tool for further study of Listeria ivanovii as a vaccine carrier.

  4. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway.

    Science.gov (United States)

    Krainer, Florian W; Dietzsch, Christian; Hajek, Tanja; Herwig, Christoph; Spadiut, Oliver; Glieder, Anton

    2012-02-13

    ΒACKGROUND: The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein production. Co-overexpressing enzymes of the

  5. Recombinant protein expression in Pichia pastoris strains with an engineered methanol utilization pathway

    Science.gov (United States)

    2012-01-01

    Βackground The methylotrophic yeast Pichia pastoris has become an important host organism for recombinant protein production and is able to use methanol as a sole carbon source. The methanol utilization pathway describes all the catalytic reactions, which happen during methanol metabolism. Despite the importance of certain key enzymes in this pathway, so far very little is known about possible effects of overexpressing either of these key enzymes on the overall energetic behavior, the productivity and the substrate uptake rate in P. pastoris strains. Results A fast and easy-to-do approach based on batch cultivations with methanol pulses was used to characterize different P. pastoris strains. A strain with MutS phenotype was found to be superior over a strain with Mut+ phenotype in both the volumetric productivity and the efficiency in expressing recombinant horseradish peroxidase C1A. Consequently, either of the enzymes dihydroxyacetone synthase, transketolase or formaldehyde dehydrogenase, which play key roles in the methanol utilization pathway, was co-overexpressed in MutS strains harboring either of the reporter enzymes horseradish peroxidase or Candida antarctica lipase B. Although the co-overexpression of these enzymes did not change the stoichiometric yields of the recombinant MutS strains, significant changes in the specific growth rate, the specific substrate uptake rate and the specific productivity were observed. Co-overexpression of dihydroxyacetone synthase yielded a 2- to 3-fold more efficient conversion of the substrate methanol into product, but also resulted in a reduced volumetric productivity. Co-overexpression of formaldehyde dehydrogenase resulted in a 2-fold more efficient conversion of the substrate into product and at least similar volumetric productivities compared to strains without an engineered methanol utilization pathway, and thus turned out to be a valuable strategy to improve recombinant protein production. Conclusions Co

  6. Genome characterization of Turkey Rotavirus G strains from the United States identifies potential recombination events with human Rotavirus B strains.

    Science.gov (United States)

    Chen, Fangzhou; Knutson, Todd P; Porter, Robert E; Ciarlet, Max; Mor, Sunil Kumar; Marthaler, Douglas G

    2017-12-01

    Rotavirus G (RVG) strains have been detected in a variety of avian species, but RVG genomes have been published from only a single pigeon and two chicken strains. Two turkey RVG strains were identified and characterized, one in a hatchery with no reported health issues and the other in a hatchery with high embryo/poult mortality. The two turkey RVG strains shared only an 85.3 % nucleotide sequence identity in the VP7 gene while the other genes possessed high nucleotide identity among them (96.3-99.9 %). Low nucleotide percentage identities (31.6-87.3 %) occurred among the pigeon and chicken RVG strains. Interestingly, potential recombination events were detected between our RVG strains and a human RVB strain, in the VP6 and NSP3 segments. The epidemiology of RVG in avian flocks and the pathogenicity of the two different RVG strains should be further investigated to understand the ecology and impact of RVG in commercial poultry flocks.

  7. Industrial PE-2 strain of Saccharomyces cerevisiae: from alcoholic fermentation to the production of recombinant proteins.

    Science.gov (United States)

    Soares-Costa, Andrea; Nakayama, Darlan Gonçalves; Andrade, Letícia de Freitas; Catelli, Lucas Ferioli; Bassi, Ana Paula Guarnieri; Ceccato-Antonini, Sandra Regina; Henrique-Silva, Flavio

    2014-01-25

    Saccharomyces cerevisiae is the most important microorganism used in the ethanol fermentation process. The PE-2 strain of this yeast is widely used to produce alcohol in Brazil due to its high fermentation capacity. The aim of the present study was to develop an expression system for recombinant proteins using the industrial PE-2 strain of S. cerevisiae during the alcoholic fermentation process. The protein chosen as a model for this system was CaneCPI-1, a cysteine peptidase inhibitor. A plasmid containing the CaneCPI-1 gene was constructed and yeast cells were transformed with the pYADE4_CaneCPI-1 construct. To evaluate the effect on fermentation ability, the transformed strain was used in the fermentation process with cell recycling. During the nine-hour fermentative cycles the transformed strain did not have its viability and fermentation ability affected. In the last cycle, when the fermentation lasted longer, the protein was expressed probably at the expense of ethanol once the sugars were exhausted. The recombinant protein was expressed in yeast cells, purified and submitted to assays of activity that demonstrated its functionality. Thus, the industrial PE-2 strain of S. cerevisiae can be used as a viable system for protein expression and to produce alcohol simultaneously. The findings of the present study demonstrate the possibility of producing recombinant proteins with biotechnological applications during the ethanol fermentation process. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Oxalate-Degrading Enzyme Recombined Lactic Acid Bacteria Strains Reduce Hyperoxaluria.

    Science.gov (United States)

    Zhao, Chenming; Yang, Huan; Zhu, Xiaojing; Li, Yang; Wang, Ning; Han, Shanfu; Xu, Hua; Chen, Zhiqiang; Ye, Zhangqun

    2017-12-02

    To develop recombinant lactic acid bacteria (LAB) strains that express oxalate-degrading enzymes through biotechnology-based approach for the treatment of hyperoxaluria by oral administration. The coding gene of oxalate decarboxylase (ODC) and oxalate oxidase (OxO) was transformed into Lactococcus lactis MG1363. The oxalate degradation ability in vitro was evaluated in media with high concentration of oxalate. Hyperoxaluria rat models through high oxalate diet were given recombinant LAB through oral administration. Twenty-four-hour urinary oxalate was measured, and kidney stone formation was investigated. LAB recombined with the coding gene of ODC could effectively decrease the amount of oxalate in the media and in the urine of rats. Moreover, the formation of calcium oxalate crystals in kidneys was also inhibited. The acid-induced promoter p170 significantly enhanced the reduction of hyperoxaluria. However, recombinant LAB expressing heterologous OxO showed less efficiency in oxalate degradation even in the presence of p170. LAB expressing ODC is more efficient in degradation of oxalate in vitro and in vivo than that expressing OxO. This present study provided novel recombinant probiotic strains as a potential treatment tool against oxalosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Mini review: Recombinant production of tailored bio-pharmaceuticals in different Bacillus strains and future perspectives.

    Science.gov (United States)

    Lakowitz, Antonia; Godard, Thibault; Biedendieck, Rebekka; Krull, Rainer

    2018-05-01

    Bio-pharmaceuticals like antibodies, hormones and growth factors represent about one-fifth of commercial pharmaceuticals. Host candidates of growing interest for recombinant production of these proteins are strains of the genus Bacillus, long being established for biotechnological production of homologous and heterologous proteins. Bacillus strains benefit from development of efficient expression systems in the last decades and emerge as major industrial workhorses for recombinant proteins due to easy cultivation, non-pathogenicity and their ability to secrete recombinant proteins directly into extracellular medium allowing cost-effective downstream processing. Their broad product portfolio of pharmaceutically relevant recombinant proteins described in research include antibody fragments, growth factors, interferons and interleukins, insulin, penicillin G acylase, streptavidin and different kinases produced in various cultivation systems like microtiter plates, shake flasks and bioreactor systems in batch, fed-batch and continuous mode. To further improve production and secretion performance of Bacillus, bottlenecks and limiting factors concerning proteases, chaperones, secretion machinery or feedback mechanisms can be identified on different cell levels from genomics and transcriptomics via proteomics to metabolomics and fluxomics. For systematical identification of recurring patterns characteristic of given regulatory systems and key genetic targets, systems biology and omics-technology provide suitable and promising approaches, pushing Bacillus further towards industrial application for recombinant pharmaceutical protein production. Copyright © 2017. Published by Elsevier B.V.

  10. Whole genome sequence of Treponema pallidum ssp. pallidum, strain Mexico A, suggests recombination between yaws and syphilis strains.

    Directory of Open Access Journals (Sweden)

    Helena Pětrošová

    Full Text Available Treponema pallidum ssp. pallidum (TPA, the causative agent of syphilis, and Treponema pallidum ssp. pertenue (TPE, the causative agent of yaws, are closely related spirochetes causing diseases with distinct clinical manifestations. The TPA Mexico A strain was isolated in 1953 from male, with primary syphilis, living in Mexico. Attempts to cultivate TPA Mexico A strain under in vitro conditions have revealed lower growth potential compared to other tested TPA strains.The complete genome sequence of the TPA Mexico A strain was determined using the Illumina sequencing technique. The genome sequence assembly was verified using the whole genome fingerprinting technique and the final sequence was annotated. The genome size of the Mexico A strain was determined to be 1,140,038 bp with 1,035 predicted ORFs. The Mexico A genome sequence was compared to the whole genome sequences of three TPA (Nichols, SS14 and Chicago and three TPE (CDC-2, Samoa D and Gauthier strains. No large rearrangements in the Mexico A genome were found and the identified nucleotide changes occurred most frequently in genes encoding putative virulence factors. Nevertheless, the genome of the Mexico A strain, revealed two genes (TPAMA_0326 (tp92 and TPAMA_0488 (mcp2-1 which combine TPA- and TPE- specific nucleotide sequences. Both genes were found to be under positive selection within TPA strains and also between TPA and TPE strains.The observed mosaic character of the TPAMA_0326 and TPAMA_0488 loci is likely a result of inter-strain recombination between TPA and TPE strains during simultaneous infection of a single host suggesting horizontal gene transfer between treponemal subspecies.

  11. Novel hepatitis B virus strain developing due to recombination between genotypes H and B strains isolated from a Japanese patient.

    Science.gov (United States)

    Uchida, Yoshihito; Kouyama, Jun-Ichi; Naiki, Kayoko; Sugawara, Kayoko; Inao, Mie; Nakayama, Nobuaki; Mochida, Satoshi

    2014-10-01

    In Japan, genotypes B and C are the predominant genotypes isolated from patients with chronic hepatitis B, while genotype A predominates in patients with acute hepatitis B. Globalization, however, appears to have changed the distribution of the hepatitis B virus (HBV) genotypes. Thus, the viral characteristics of HBV genotypes other than genotypes A, B and C were examined. Screening of genotypes was performed by enzyme immunoassay and/or polymerase chain reaction INVADER method in 222 patients with HBV. The full-length nucleotide sequences of unusual strains were compared to those in the database, followed by construction of a phylogenetic tree. Unusual HBV strains were isolated from two patients: a 27-year-old Japanese bisexual man with acute hepatitis B with HIV co-infection and a 52-year-old Japanese man with chronic hepatitis B. The former strain was classified as genotype H, showing an overall identity of 99.8% to the Thailand strain (EU498228), while the nucleotide sequence of the latter strain showed similarity to the genotype B strains isolated in Malaysia (JQ027316) and Indonesia (JQ429079) between DR2 and DR1 in the X region, with identities of 96.9%. However, this strain was classified as genotype H by full-length sequence analysis, and the sequence between nt2023 and nt2262 showed no similarity to that in any previously reported strains. HBV strains showing recombination between genotype B and H strains were found even in chronic hepatitis patients in Japan. Globalization may yield HBV strains of possible novel genotypes containing novel nucleotide sequences in the precore/core region. © 2013 The Japan Society of Hepatology.

  12. Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain

    Energy Technology Data Exchange (ETDEWEB)

    Katahira, Satoshi; Fukuda, Hideki [Kobe Univ. (Japan). Div. of Molecular Science; Mizuike, Atsuko; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2006-10-15

    The sulfuric acid hydrolysate of lignocellulosic biomass, such as wood chips, from the forest industry is an important material for fuel bioethanol production. In this study, we constructed a recombinant yeast strain that can ferment xylose and cellooligosaccharides by integrating genes for the intercellular expressions of xylose reductase and xylitol dehydrogenase from Pichia stipitis, and xylulokinase from Saccharomyces cerevisiae and a gene for displaying ss-glucosidase from Aspergillus acleatus on the cell surface. In the fermentation of the sulfuric acid hydrolysate of wood chips, xylose and cellooligosaccharides were completely fermented after 36 h by the recombinant strain, and then about 30 g/l ethanol was produced from 73 g/l total sugar added at the beginning. In this case, the ethanol yield of this recombinant yeast was much higher than that of the control yeast. These results demonstrate that the fermentation of the lignocellulose hydrolysate is performed efficiently by the recombinant Saccharomyces strain with abilities for xylose assimilation and cellooligosaccharide degradation. (orig.)

  13. Control of apple blue mold by Pichia pastoris recombinant strains expressing cecropin A.

    Science.gov (United States)

    Ren, Xueyan; Kong, Qingjun; Wang, Huili; Yu, Ting; Tang, Ya-Jie; Zhou, Wen-Wen; Zheng, Xiaodong

    2012-06-01

    Recombinant Pichia pastoris yeasts expressing cecropin A (GS115/CEC), was evaluated for the control of the blue mold of apple caused by Penicillium expansum due to cecropin A peptide's effective antimicrobial effects on P. expansum spores by the thiazolyl blue (MTT) assay. Then, the protein concentration was determined and it was expressed at high levels up to 14.2 mg/L in the culture medium. Meanwhile, the population growth was assayed in vivo. The population growth of recombinant strain GS115/CEC was higher than that of non-transformed strain GS115 in red Fuji apples wounds. Recombinant yeast strains GS115/CEC significantly inhibited growth of germinated P. expansum spores in vitro and inhibited decay development caused by P. expansum in apple fruits in vivo when compared with apple fruits inoculated with sterile water or the yeast strain GS115/pPIC (plasmid pPIC9k transformed in GS115). This study demonstrated the potential of expression of the antifungal peptide in yeast for the control of postharvest blue mold infections on pome fruits.

  14. Ethanol production from lignocellulosic biomass by recombinant Escherichia coli strain FBR5.

    Science.gov (United States)

    Saha, Badal; Cotta, Michael A

    2012-01-01

    Lignocellulosic biomass, upon pretreatment and enzymatic hydrolysis, generates a mixture of hexose and pentose sugars such as glucose, xylose, arabinose and galactose. While Escherichia coli utilizes all these sugars it lacks the ability to produce ethanol from them. Recombinant ethanologenic E. coli strains have been created with a goal to produce ethanol from both hexose and pentose sugars. Herein, we review the current state of the art on the production of ethanol from lignocellulosic hydrolyzates by an ethanologenic recombinant E. coli strain (FBR5). The bacterium is stable without antibiotics and can tolerate ethanol up to 50 gL(-1). It produces up to 45 g ethanol per L and has the potential to be used for industrial production of ethanol from lignocellulosic hydrolyzates.

  15. Recombinant Production of an Inulinase in a Saccharomyces cerevisiae gal80 Strain.

    Science.gov (United States)

    Lim, Seok-Hwan; Lee, Hongweon; Sok, Dai-Eun; Choi, Eui-Sung

    2010-11-01

    The inulinase gene (INU1) from Kluyveromyces marxianus NCYC2887 strain was overexpressed by using GAL10 promotor in a △gal80 strain of Saccharomyces cerevisiae. The inulinase gene lacking the original signal sequence was fused in-frame to mating factor alpha signal sequence for secretory expression. Use of the △gal80 strain allowed the galactose-free induction of inulinase expression using a glucose-only medium. Shake flask cultivation in YPD medium produced 34.6 U/ml of the recombinant inulinase, which was approximately 13-fold higher than that produced by K. marxianus NCYC2887. It was found that the use of the △gal80 strain improved the expression of inulinase in the recombinant S. cerevisiae in both the aerobic and the anaerobic condition by about 2.9- and 1.7-fold, respectively. 5 L fed-batch fermentation using YPD medium was performed under aerobic condition with glucose feeding, which resulted in the inulinase production of 31.7 U/ml at OD600 of 67. Ethanol fermentation of dried powder of Jerusalem artichoke, an inulin-rich biomass, was also performed using the recombinant S. cerevisiae expressing INU1 and K. marxianus NCYC2887. Fermentation in a 5L scale fermentor was carried out at an aeration rate of 0.2 vvm, an agitation rate of 300 rpm, and the pH was controlled at 5.0. The temperature was maintained at 30degrees C and 37degrees C, respectively, for the recombinant S. cerevisiae and K. marxianus. The maximum productivities of ethanol were 59.0 and 53.5 g/L, respectively.

  16. Unique Safety Issues Associated with Virus Vectored Vaccines: Potential for and Theoretical Consequences of Recombination with Wild Type Virus Strains

    Science.gov (United States)

    Condit, Richard C.; Williamson, Anna-Lise; Sheets, Rebecca; Seligman, Stephen J.; Monath, Thomas P.; Excler, Jean-Louis; Gurwith, Marc; Bok, Karin; Robertson, James S.; Kim, Denny; Hendry, Michael; Singh, Vidisha; Mac, Lisa M.; Chen, Robert T.

    2016-01-01

    In 2003 and 2013, the World Health Organization convened informal consultations on characterization and quality aspects of vaccines based on live virus vectors. In the resulting reports, one of several issues raised for future study was the potential for recombination of virus-vectored vaccines with wild type pathogenic virus strains. This paper presents an assessment of this issue formulated by the Brighton Collaboration. To provide an appropriate context for understanding the potential for recombination of virus-vectored vaccines, we review briefly the current status of virus vectored vaccines, mechanisms of recombination between viruses, experience with recombination involving live attenuated vaccines in the field, and concerns raised previously in the literature regarding recombination of virus-vectored vaccines with wild type virus strains. We then present a discussion of the major variables that could influence recombination between a virus-vectored vaccine and circulating wild type virus and the consequences of such recombination, including intrinsic recombination properties of the parent virus used as a vector; sequence relatedness of vector and wild virus; virus host range, pathogenesis and transmission; replication competency of vector in target host; mechanism of vector attenuation; additional factors potentially affecting virulence; and circulation of multiple recombinant vectors in the same target population. Finally, we present some guiding principles for vector design and testing intended to anticipate and mitigate the potential for and consequences of recombination of virus-vectored vaccines with wild type pathogenic virus strains. PMID:27346303

  17. Construction of leaky strains and extracellular production of exogenous proteins in recombinant Escherichia coli.

    Science.gov (United States)

    Chen, Zhao-Yuan; Cao, Jie; Xie, Li; Li, Xiao-Fei; Yu, Zhen-Hai; Tong, Wang-Yu

    2014-07-01

    In this study, a strategy of the construction of leaky strains for the extracellular production of target proteins was exploited, in which the genes mrcA, mrcB, pal and lpp (as a control) from Escherichia coli were knocked out by using single- and/or double-gene deletion methods. Then the recombinant strains for the expression of exogenous target proteins including Trx-hPTH (human parathyroid hormone 1-84 coupled with thioredoxin as a fusion partner) and reteplase were reconstructed to test the secretory efficiency of the leaky strains. Finally, the fermentation experiments of the target proteins from these recombinant leaky strains were carried out in basic media (Modified R media) and complex media (Terrific Broth media) in flasks or fermenters. The results demonstrated that the resultant leaky strains were genetically stable and had a similar growth profile in the complex media as compared with the original strain, and the secretory levels of target proteins into Modified R media from the strains with double-gene deletion (up to 88.9%/mrcA lpp-pth) are higher than the excretory levels from the strains with single-gene deletion (up to 71.1%/lpp-pth) and the host E. coli JM109 (DE3) (near zero). The highest level of extracellular production of Trx-hPTH in fermenters is up to 680 mg l(-1). © 2014 The Authors. Microbial Biotechnology published by John Wiley & Sons Ltd and Society for Applied Microbiology.

  18. Construction of a recombinant Bacillus velezensis strain as an integrated control agent against plant diseases and insect pests.

    Science.gov (United States)

    Roh, Jong Yul; Liu, Qin; Choi, Jae Young; Wang, Yong; Shim, Hee Jin; Xu, Hong Guang; Choi, Gyung Ja; Kim, Jin-Cheol; Je, Yeon Ho

    2009-10-01

    To construct a new recombinant strain of Bacillus velezensis that has antifungal and insecticidal activity via the expression of the insecticidal Bacillus thuringiensis crystal protein, a B. thuringiensis expression vector (pHT1K-1Ac) was generated that contained the B. thuringiensis cry1Ac gene under the control of its endogenous promoter in a minimal E. coli-B. thuringiensis shuttle vector (pHT1K). This vector was introduced into a B. velezensis isolate that showed high antifungal activities against several plant diseases, including rice blast (Magnaporthe grisea), rice sheath blight (Rhizotonia solani), tomato gray mold (Botrytis cinerea), tomato late blight (Phytophthora infestans), and wheat leaf rust (Puccinia recondita), by electroporation. The recombinant B. velezensis strain was confirmed by PCR using cry1Ac-specific primers. Additionally, the recombinant strain produced a protein approximately 130 kDa in size and parasporal inclusion bodies similar to B. thuringiensis. The in vivo antifungal activity assay demonstrated that the activity of the recombinant B. velezensis strain was maintained at the same level as that of wild-type B. velezensis. Furthermore, it exhibited high insecticidal activity against a lepidopteran pest, Plutella xylostella, although its activity was lower than that of a recombinant B. thuringiensis strain, whereas wild-type B. velezensis strain did not show any insecticidal activity. These results suggest that this recombinant B. velezensis strain can be used to control harmful insect pests and fungal diseases simultaneously in one crop.

  19. Improved xylose and arabinose utilization by an industrial recombinant Saccharomyces cerevisiae strain using evolutionary engineering

    Directory of Open Access Journals (Sweden)

    Almeida João RM

    2010-06-01

    Full Text Available Abstract Background Cost-effective fermentation of lignocellulosic hydrolysate to ethanol by Saccharomyces cerevisiae requires efficient mixed sugar utilization. Notably, the rate and yield of xylose and arabinose co-fermentation to ethanol must be enhanced. Results Evolutionary engineering was used to improve the simultaneous conversion of xylose and arabinose to ethanol in a recombinant industrial Saccharomyces cerevisiae strain carrying the heterologous genes for xylose and arabinose utilization pathways integrated in the genome. The evolved strain TMB3130 displayed an increased consumption rate of xylose and arabinose under aerobic and anaerobic conditions. Improved anaerobic ethanol production was achieved at the expense of xylitol and glycerol but arabinose was almost stoichiometrically converted to arabitol. Further characterization of the strain indicated that the selection pressure during prolonged continuous culture in xylose and arabinose medium resulted in the improved transport of xylose and arabinose as well as increased levels of the enzymes from the introduced fungal xylose pathway. No mutation was found in any of the genes from the pentose converting pathways. Conclusion To the best of our knowledge, this is the first report that characterizes the molecular mechanisms for improved mixed-pentose utilization obtained by evolutionary engineering of a recombinant S. cerevisiae strain. Increased transport of pentoses and increased activities of xylose converting enzymes contributed to the improved phenotype.

  20. Fitness of Streptococcus pneumoniae fluoroquinolone-resistant strains with topoisomerase IV recombinant genes.

    Science.gov (United States)

    Balsalobre, Luz; de la Campa, Adela G

    2008-03-01

    The low prevalence of ciprofloxacin-resistant (Cp r) Streptococcus pneumoniae isolates carrying recombinant topoisomerase IV genes could be attributed to a fitness cost imposed by the horizontal transfer, which often implies the acquisition of larger-than-normal parE-parC intergenic regions. A study of the transcription of these genes and of the fitness cost for 24 isogenic Cp r strains was performed. Six first-level transformants were obtained either with PCR products containing the parC quinolone resistance-determining regions (QRDRs) of S. pneumoniae Cp r mutants with point mutations or with a PCR product that includes parE-QRDR-ant-parC-QRDR from a Cp r Streptococcus mitis isolate. The latter yielded two strains, T6 and T11, carrying parC-QRDR and parE-QRDR-ant-parC-QRDR, respectively. These first-level transformants were used as recipients in further transformations with the gyrA-QRDR PCR products to obtain 18 second-level transformants. In addition, strain Tr7 (which contains the GyrA E85K change) was used. Reverse transcription-PCR experiments showed that parE and parC were cotranscribed in R6, T6, and T11; and a single promoter located upstream of parE was identified in R6 by primer extension. The fitness of the transformants was estimated by pairwise competition with R6 in both one-cycle and two-cycle experiments. In the one-cycle experiments, most strains carrying the GyrA E85K change showed a fitness cost; the exception was recombinant T14. In the two-cycle experiments, a fitness cost was observed in most first-level transformants carrying the ParC changes S79F, S79Y, and D83Y and the GyrA E85K change; the exceptions were recombinants T6 and T11. The results suggest that there is no impediment due to a fitness cost for the spread of recombinant Cp r S. pneumoniae isolates, since some recombinants (T6, T11, and T14) exhibited an ability to compensate for the cost.

  1. Isolation and characterization of a mutant recombinant Saccharomyces cerevisiae strain with high efficiency xylose utilization.

    Science.gov (United States)

    Tomitaka, Masataka; Taguchi, Hisataka; Fukuda, Kohsai; Akamatsu, Takashi; Kida, Kenji

    2013-12-01

    A recombinant xylose-utilizing Saccharomyces cerevisiae strain carrying one copy of heterologous XYL1 and XYL2 from Pichia stipitis and endogenous XKS1 under the control of the TDH3 promoter in the chromosomal DNA was constructed from the industrial haploid yeast strain NAM34-4C, which showed thermotolerance and acid tolerance. The recombinant S. cerevisiae strain SCB7 grew in minimal medium containing xylose as the sole carbon source, and its shortest generation time (G(short)) was 5 h. From this strain, four mutants showing rapid growth (G(short) = 2.5 h) in the minimal medium were isolated. The mutants carried four mutations that were classified into three linkage groups. Three mutations were dominant and one mutation was recessive to the wild type allele. The recessive mutation was in the PHO13 gene encoding para-nitrophenyl phosphatase. The other mutant genes were not linked to TAL1 gene encoding transaldolase. When the mutants and their parental strain were used for the batch fermentation in a complex medium at pH 4.0 containing 30 g/L xylose at 35 °C with shaking (60 rpm) and an initial cell density (Absorbance at 660 nm) of 1.0, all mutants showed efficient ethanol production and xylose consumption from the early stage of the fermentation culture. In two mutants, within 24 h, 4.8 g/L ethanol was produced, and the ethanol yield was 47%, which was 1.4 times higher than that achieved with the parental strain. The xylose concentration in the medium containing the mutant decreased linearly at a rate of 1 g/L/h until 24 h. Copyright © 2013 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  2. Controlled Autolysis and Enzyme Release in a Recombinant Lactococcal Strain Expressing the Metalloendopeptidase Enterolysin A

    Science.gov (United States)

    Hickey, Rita M.; Ross, R. Paul; Hill, Colin

    2004-01-01

    This study concerns the exploitation of the lytic enzyme enterolysin A (EntL), produced by Enterococcus faecalis strain DPC5280, to elicit the controlled autolysis of starter lactococci. EntL, a cell wall metalloendopeptidase secreted by some E. faecalis strains, can kill a wide range of gram-positive bacteria, including lactococci. The controlled expression of entL, which encodes EntL, was achieved using a nisin-inducible expression system in a lactococcal host. Zymographic analysis of EntL activity demonstrated that active enzyme is produced by the recombinant lactococcal host. Indeed, expression of EntL resulted in almost complete autolysis of the host strain 2 h after induction with nisin. Model cheese experiments using a starter strain in addition to the inducible enterolysin-producing strain showed a 27-fold increase in activity with respect to the release of lactate dehydrogenase in the strain overexpressing EntL, demonstrating the potential of EntL production in large-scale cheese production systems. Indeed, the observation that a wide range of lactic bacteria are sensitive to EntL suggests that EntL-induced autolysis has potential applications with a variety of lactic acid bacteria and could be a basis for probiotic delivery systems. PMID:15006800

  3. New emerging recombinant HIV-1 strains and close transmission linkage of HIV-1 strains in the Chinese MSM population indicate a new epidemic risk.

    Directory of Open Access Journals (Sweden)

    Jianjun Wu

    Full Text Available In recent years, the population of men who have sex with men (MSM have become the most significant increasing group of HIV-1 transmission in China. To identify new recombinant strains and transmission patterns of HIV-1 in Chinese MSM population, a cross-sectional investigation of MSM in Anhui Province (in south-eastern China was performed in 2011. The diagnosed AIDS case rate, CD4 T-cell counts, HIV subtypes, and origin of the recombinant strains were investigated in 138 collected samples. The phylogenetic and bootscan analyses demonstrated that, apart from three previously reported circulating strains (CRF07_BC, CRF01_AE, subtype B, various recombinant strains among subtype B, subtype C, CRF01_AE, and CRF07_BC were simultaneously identified in Chinese MSM for the first time. The introducing time of B subtype in Chinese MSM populations was estimated in 1985, CRF01_AE in 2000, and CRF07_BC in 2003; the latter two account for more than 85% of MSM infections. Notably, in comparison with B subtype infections in Anhui MSM, CRF01_AE, with the highest prevalence rate, may accelerate AIDS progression. Over half of patients (56% infected with new recombinant strains infection are diagnosed as progression into AIDS. Both Bayes and phylogenetic analyses indicated that there was active HIV transmission among MSM nationwide, which may facilitate the transmission of the new 01B recombinant strains in MSM. In conclusion, new recombinant strains and active transmission were identified in the Chinese MSM population, which may lead to a new alarming HIV pandemic in this population due to the increased pathogenesis of the newly emerging strains.

  4. Genetic analysis of resistance to radiation lymphomagenesis with recombinant inbred strains of mice

    International Nuclear Information System (INIS)

    Okumoto, M.; Nishikawa, R.; Imai, S.; Hilgers, J.

    1990-01-01

    Induction of lymphomas by radiation in mice is controlled by genetic factors. We analyzed the genetic control of radiation lymphomagenesis using the CXS series of recombinant inbred strains derived from two progenitor strains: one highly susceptible to radiation induction of lymphoma [BALB/cHeA (C)] and one extremely resistant [STS/A (S)]. The best concordances between strain distribution patterns of genetic markers and resistance (or susceptibility) to radiation lymphomagenesis were observed in a region with the b and Ifa genes on chromosome 4. This indicates that one major locus controls the incidence of radiogenic lymphomas in mice. We designated this locus as the Lyr (lymphoma resistance) locus. Backcrosses of (CXS)F1 to the two progenitor strains showed an intermediate incidence of lymphomas between their parental mice and did not significantly differ from (CXS)F1 mice. This and previous observations that (CXS)F1 mice also showed an intermediate incidence, differing from both progenitor strains, indicate that more genes are involved in the resistance (or susceptibility) to lymphoma induced by irradiation

  5. Identification of enzymes and quantification of metabolic fluxes in the wild type and in a recombinant Aspergillus oryzae strain

    DEFF Research Database (Denmark)

    Pedersen, Henrik; Carlsen, Morten; Nielsen, Jens Bredal

    1999-01-01

    Two alpha-amylase-producing strains of Aspergillus oryzae, a wild-type strain and a recombinant containing additional copies of the alpha-amylase gene, were characterized,vith respect to enzyme activities, localization of enzymes to the mitochondria or cytosol, macromolecular composition...

  6. [Immobilization of a recombinant strain producing glucose isomerase on SiO2-xerogel and properties of prepared biocatalysts].

    Science.gov (United States)

    Kovalenko, G A; Perminova, L V; Chuenko, T V; Sapunova, L I; Shliakhotko, E A; Lobanok, A G

    2011-01-01

    An original method of immobilization of nongrowing microorganism cells on xerogel of silicon dioxide containing insoluble hydroxyl compounds of cobalt(III) has been developed. A recombinant strain producing glucose isomerase has been constructed on the basis of Escherichia coli with the use of a gene of Arthrobacter nicotianae. It was revealed that glucose isomerase activity and stability of biocatalysts prepared on the basis of the recombinant E. coli strain was 3-5 times greater compared with the biocatalysts prepared with the use of the donor strain A. nicotianae. Under conditions of continuous hydrolysis of 3 M fructose at 62-65 degrees C in a fixed bed reactor, time of half-inactivation of the biocatalysts prepared from the recombinant strain and A. nicotianae was -60 and -25 days, respectively.

  7. Genomic sequence of a mutant strain of Caenorhabditis elegans with an altered recombination pattern

    Directory of Open Access Journals (Sweden)

    Marra Marco

    2010-02-01

    Full Text Available Abstract Background The original sequencing and annotation of the Caenorhabditis elegans genome along with recent advances in sequencing technology provide an exceptional opportunity for the genomic analysis of wild-type and mutant strains. Using the Illumina Genome Analyzer, we sequenced the entire genome of Rec-1, a strain that alters the distribution of meiotic crossovers without changing the overall frequency. Rec-1 was derived from ethylmethane sulfonate (EMS-treated strains, one of which had a high level of transposable element mobility. Sequencing of this strain provides an opportunity to examine the consequences on the genome of altering the distribution of meiotic recombination events. Results Using Illumina sequencing and MAQ software, 83% of the base pair sequence reads were aligned to the reference genome available at Wormbase, providing a 21-fold coverage of the genome. Using the software programs MAQ and Slider, we observed 1124 base pair differences between Rec-1 and the reference genome in Wormbase (WS190, and 441 between the mutagenized Rec-1 (BC313 and the wild-type N2 strain (VC2010. The most frequent base-substitution was G:C to A:T, 141 for the entire genome most of which were on chromosomes I or X, 55 and 31 respectively. With this data removed, no obvious pattern in the distribution of the base differences along the chromosomes was apparent. No major chromosomal rearrangements were observed, but additional insertions of transposable elements were detected. There are 11 extra copies of Tc1, and 8 of Tc2 in the Rec-1 genome, most likely the remains of past high-hopper activity in a progenitor strain. Conclusion Our analysis of high-throughput sequencing was able to detect regions of direct repeat sequences, deletions, insertions of transposable elements, and base pair differences. A subset of sequence alterations affecting coding regions were confirmed by an independent approach using oligo array comparative genome

  8. Construction and application of recombinant strain for the production of an alkaline protease from Bacillus licheniformis.

    Science.gov (United States)

    Lin, Songyi; Zhang, Meishuo; Liu, Jingbo; Jones, Gregory S

    2015-03-01

    The alkaline protease gene, Apr, from Bacillus licheniformis 2709 was cloned into an expression vector pET - 28b (+), to yield the recombinant plasmid pET-28b (+) - Apr. The pET-28b (+) - Apr was expressed in a high expression strain E. coli BL21. The amino acid sequence deduced from the DNA sequence analysis revealed a 98% identity to that of Bacillus licheniformis 2709. Sodium salt-Polyacrylamide gel electrophoresis (SDS-PAGE) was used to access the protein expression. SDS-PAGE analysis indicated a protein of Mr of 38.8 kDa. The medium components and condition of incubation were optimized for the growth state of a recombinant strain. The optimal composition of production medium was composed of glucose 8 g/L, peptone 8 g/L and salt solution 10 mL. The samples were incubated on a rotary shaker of 180 r/min at 37°C for 24 h. Copyright © 2014. Published by Elsevier B.V.

  9. Pathogenicity of a newly emerged recombined porcine reproductive and respiratory syndrome virus strain (subgenotype III) in China.

    Science.gov (United States)

    Dong, Jianguo; Wang, Yanwu; Yu, Linyang; Zhang, Pengfei; Liu, Xiangcong; Zhang, Leyi; Liu, Yanling; Liang, Pengshuai; Wang, Lei; Song, Changxu

    2017-10-01

    Porcine reproductive and respiratory syndrome virus (PRRSV) is a severe pathogen that causes enormous economic losses to the swine industry worldwide. Since its first report in the 1980s, PRRSV has undergone extensive variation. In the previous study, we demonstrated that the GDsg strain was a new recombined virus between the low pathogenic field strain QYYZ and the vaccine strain JXA1-P80, belonging to the newly emerging type 2 PRRSV subgenotype III. In this study, the pathogenicity of a new recombined strain GDsg for pigs was analyzed. The results of in vivo experiments indicated that GDsg could cause persistently high fever, severe interstitial pneumonia, and high viremia and antibody levels in inoculated piglets. In particular, the brains of inoculated pigs exhibited serious hemorrhage and microscopic lesions. These results suggested that compared with the low pathogenic field strain QYYZ and the vaccine strain JXA1-P80, the new recombined GDsg strain had higher virulence in pigs. This study will help to characterize the relationship between recombination and evolution of PRRSV. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Novel escherichia coli strain allows efficient recombinant protein production using lactose as inducer.

    Science.gov (United States)

    Menzella, Hugo G; Ceccarelli, Eduardo A; Gramajo, Hugo C

    2003-06-30

    An important characteristic of promoters used in recombinant protein production in Escherichi coli is their inducibility in a simple and cost-effective manner. The IPTG inducible promoters lac, tac, and trc are powerful and widely used for basic research. However, the use of IPTG in large-scale production is undesirable due to its high cost and toxicity. The promoters mentioned above can also be induced by the addition of lactose, which has the double role of inducer and carbon and energy source. Nevertheless, the use of this sugar in industrial processes has several drawbacks, which result in low volumetric yields and difficulties in process control. We have genetically engineered a BL21 strain to allow the efficient use of lactose as inducer in fed-batch cultures. Two modifications were introduced, the exchange of the wild-type lac operator by a constitutive one (lacO(c)) and the replacement of the gal alleles to recover the Gal(+) phenotype. The constitutive expression of the lac operon overcame the negative effects that the Lac nongenetic heterogeneity of wild-type E. coli introduces when lactose is used as inducer. The gal(+) genotype allowed the complete use of the lactose as carbon and energy source. The relevance of these two modifications in the efficient utilization of lactose as inducer was demonstrated in fed-batch cultures of the novel recombinant strain MP101 harboring expression vectors containing the calf prochymosin gene or the pccB gene, which encodes for the carboxyltransferase component of a propionyl-CoA carboxylase complex from Streptomyces coelicolor. Similar levels of recombinant protein production (up to 16 g/L) were obtained by using either lactose or IPTG as inducers, which confirmed the success of the genetics modifications introduced. Copyright 2003 Wiley Periodicals, Inc. Biotechnol Bioeng 82: 809-817, 2003.

  11. Upscale of recombinant α-L-rhamnosidase production by Pichia pastoris MutS strain

    Directory of Open Access Journals (Sweden)

    Kristína eMarkošová

    2015-10-01

    Full Text Available Pichia pastoris is currently one of the most preferred microorganisms for recombinant enzyme production due to its efficient expression system. The advantages include the production of high amounts of recombinant proteins containing the appropriate posttranslational modifications and easy cultivation conditions. α-L-Rhamnosidase is a biotechnologically important enzyme in food and pharmaceutical industry, used for example in debittering of citrus fruit juices, rhamnose pruning from naringin or enhancement of wine aromas, creating a demand for the production of an active and stable enzyme. The production of recombinant α-L-rhamnosidase cloned in the MutS strain of Pichia pastoris KM71H was optimized. The encoding gene is located under the control of the AOX promoter, which is induced by methanol whose concentration is instrumental for these strain types. Fermentation was upscaled in bioreactors employing various media and several methanol-feeding strategies. It was found that fed batch with BSM media was more effective compared to BMMH media due to lower cost and improved biomass formation. In BSM medium, the dry cell weight reached approximately 60 g/L, while in BMMH it was only 8.3 g/L, without additional glycerol, which positively influenced the amount of enzyme produced. New methanol feeding strategy, based on the level of dissolved oxygen was developed in this study. This protocol that is entirely independent on methanol monitoring was up scaled to a 19.5-L fermenter with 10-L working volume with the productivity of 13.34 mgprot/L/h and specific activity of α-L-rhamnosidase of 82 U/mg. The simplified fermentation protocol was developed for easy and effective fermentation of Pichia pastoris MutS based on dissolved oxygen monitoring in the induction phase of an enzyme production.

  12. A fast approach to determine a fed batch feeding profile for recombinant Pichia pastoris strains

    Directory of Open Access Journals (Sweden)

    Herwig Christoph

    2011-10-01

    Full Text Available Abstract Background The microorganism Pichia pastoris is a commonly used microbial host for the expression of recombinant proteins in biotechnology and biopharmaceutical industry. To speed up process development, a fast methodology to determine strain characteristic parameters, which are needed to subsequently set up fed batch feeding profiles, is required. Results Here, we show the general applicability of a novel approach to quantify a certain minimal set of bioprocess-relevant parameters, i.e. the adaptation time of the culture to methanol, the specific substrate uptake rate during the adaptation phase and the maximum specific substrate uptake rate, based on fast and easy-to-do batch cultivations with repeated methanol pulses in a batch culture. A detailed analysis of the adaptation of different P. pastoris strains to methanol was conducted and revealed that each strain showed very different characteristics during adaptation, illustrating the need of individual screenings for an optimal parameter definition during this phase. Based on the results obtained in batch cultivations, dynamic feeding profiles based on the specific substrate uptake rate were employed for different P. pastoris strains. In these experiments the maximum specific substrate uptake rate, which had been defined in batch experiments, also represented the upper limit of methanol uptake, underlining the validity of the determined process-relevant parameters and the overall experimental strategy. Conclusion In this study, we show that a fast approach to determine a minimal set of strain characteristic parameters based on easy-to-do batch cultivations with methanol pulses is generally applicable for different P. pastoris strains and that dynamic fed batch strategies can be designed on the specific substrate uptake rate without running the risk of methanol accumulation.

  13. Construction of Potent Recombinant Strain Through Intergeneric Protoplast Fusion in Endophytic Fungi for Anticancerous Enzymes Production Using Rice Straw.

    Science.gov (United States)

    El-Gendy, Mervat Morsy Abbas Ahmed; Al-Zahrani, Salha Hassan Mastour; El-Bondkly, Ahmed Mohamed Ahmed

    2017-09-01

    Among all fungal endophytes isolates derived from different ethno-medical plants, the hyper-yield L-asparaginase and L-glutaminase wild strains Trichoderma sp. Gen 9 and Cladosporium sp. Gen 20 using rice straw under solid-state fermentation (SSF) were selected. The selected strains were used as parents for the intergeneric protoplast fusion program to construct recombinant strain for prompt improvement production of these enzymes in one recombinant strain. Among 21 fusants obtained, the recombinant strain AYA 20-1, with 2.11-fold and 2.58-fold increase in L-asparaginase and L-glutaminase activities more than the parental isolates Trichoderma sp. Gen 9 and Cladosporium sp. Gen 20, respectively, was achieved using rice straw under SSF. Both therapeutic enzymes L-asparaginase and L-glutaminase were purified and characterized from the culture supernatant of the recombinant AYA 20-1 strain with molecular weights of 50.6 and 83.2 kDa, respectively. Both enzymes were not metalloenzymes. Whereas thiol group blocking reagents such as p-chloromercurybenzoate and iodoacetamide totally inhibited L-asparaginase activity, which refer to sulfhydryl groups and cysteine residues involved in its catalytic activity, they have no effect toward L-glutaminase activity. Interestingly, potent anticancer, antioxidant, and antimicrobial activities were detected for both enzymes.

  14. Recombination in JXA1-R vaccine and NADC30-like strain of porcine reproductive and respiratory syndrome viruses.

    Science.gov (United States)

    Liu, Jiankui; Zhou, Xia; Zhai, Junqiong; Wei, Chunhua; Dai, Ailing; Yang, Xiaoyan; Luo, Manlin

    2017-05-01

    Porcine reproductive and respiratory syndrome (PRRS) is considered one of the most devastating swine diseases worldwide, resulting in immense economic losses. PRRS virus (PRRSV) has undergone rapid evolution since its first recognition in 1990s. In the present study, a PRRSV strain named FJXS15 causing high morbidity and mortality was isolated from piglets and sows from a farm participating in vaccination in China. Phylogenetic and molecular evolutionary analyses revealed that FJXS15 was highly similar to the JXA1-R vaccine strain (a live attenuated virus vaccine strain derived from the highly pathogenic PRRSV JXA1) in the ORF1a (nt 901-)-ORF4 (-nt 419) coding regions, as well as to FJZ03 (lineage 1, NADC30-like) in the 5'-UTR, ORF5a-ORF7 coding regions, and 3'-UTR, suggestive of a natural recombination event. Recombination analyses showed that recombination events occurred in two inter-lineage recombination events between Lineages 1 and 8 based on based on classification system (Shi et al., 2010), and two recombination breakpoints at positions 1-1092 and 13771-15537 of the sequence alignment (with reference to the VR-2332 strain). Animal experiments demonstrated that FJXS15-infected animals had more severe histopathological lung lesions than did JXA1-R-infected and control groups. A 25% mortality rate was found in FJXS15-infected piglets, which was similar to that found with other Chinese HP-PRRSV strains. Thus, the recombinant virus is a highly virulent PRRSV. Moreover, this report provides evidence for inter-subgenotypic recombination between the JXA1-R vaccine virus and a circulating Lineage 1 virus. Copyright © 2017. Published by Elsevier B.V.

  15. Chlamydia trachomatis Strain Types Have Diversified Regionally and Globally with Evidence for Recombination across Geographic Divides

    Directory of Open Access Journals (Sweden)

    Vitaly Smelov

    2017-11-01

    Full Text Available Chlamydia trachomatis (Ct is the leading cause of bacterial sexually transmitted diseases worldwide. The Ct Multi Locus Sequence Typing (MLST scheme is effective in differentiating strain types (ST, deciphering transmission patterns and treatment failure, and identifying recombinant strains. Here, we analyzed 323 reference and clinical samples, including 58 samples from Russia, an area that has not previously been represented in Ct typing schemes, to expand our knowledge of the global diversification of Ct STs. The 323 samples resolved into 84 unique STs, a 3.23 higher typing resolution compared to the gold standard single locus ompA genotyping. Our MLST scheme showed a high discriminatory index, D, of 0.98 (95% CI 0.97–0.99 confirming the validity of this method for typing. Phylogenetic analyses revealed distinct branches for the phenotypic diseases of lymphogranuloma venereum, urethritis and cervicitis, and a sub-branch for ocular trachoma. Consistent with these findings, single nucleotide polymorphisms were identified that significantly correlated with each phenotype. While the overall number of unique STs per region was comparable across geographies, the number of STs was greater for Russia with a significantly higher ST/sample ratio of 0.45 (95% CI: 0.35–0.53 compared to Europe or the Americas (p < 0.009, which may reflect a higher level of sexual mixing with the introduction of STs from other regions and/or reassortment of alleles. Four STs were found to be significantly associated with a particular geographic region. ST23 [p = 0.032 (95% CI: 1–23], ST34 [p = 0.019 (95% CI: 1.1–25]; and ST19 [p = 0.001 (95% CI: 1.7–34.7] were significantly associated with Netherlands compared to Russia or the Americas, while ST 30 [p = 0.031 (95% CI: 1.1–17.8] was significantly associated with the Americas. ST19 was significantly associated with Netherlands and Russia compared with the Americans [p = 0.001 (95% CI: 1.7–34.7 and p = 0.006 (95

  16. Evaluation of Recombinant Attenuated Salmonella Vaccine Strains for Broad Protection against Extraintestinal Pathogenic Escherichia coli

    Directory of Open Access Journals (Sweden)

    Jacob T. Maddux

    2017-10-01

    Full Text Available Antibiotic-resistant bacterial infections are difficult to treat, producing a burden on healthcare and the economy. Extraintestinal pathogenic Escherichia coli (ExPEC strains frequently carry antibiotic resistance genes, cause infections outside of the intestine, and are causative agents of hospital-acquired infections. Developing a prevention strategy against this pathogen is challenging due to its antibiotic resistance and antigenic diversity. E. coli common pilus (ECP is frequently found in ExPEC strains and may serve as a common antigen to induce protection against several ExPEC serotypes. In addition, live recombinant attenuated Salmonella vaccine (RASV strains have been used to prevent Salmonella infection and can also be modified to deliver foreign antigens. Thus, the objective of this study was to design a RASV to produce ECP on its surface and assess its ability to provide protection against ExPEC infections. To constitutively display ECP in a RASV strain, we genetically engineered a vector (pYA4428 containing aspartate-β-semialdehyde dehydrogenase and E. coli ecp genes and introduced it into RASV χ9558. RASV χ9558 containing an empty vector (pYA3337 was used as a control to assess protection conferred by the RASV strain without ECP. We assessed vaccine efficacy in in vitro bacterial inhibition assays and mouse models of ExPEC-associated human infections. We found that RASV χ9558(pYA4428 synthesized the major pilin (EcpA and tip pilus adhesin (EcpD on the bacterial surface. Mice orally vaccinated with RASV χ9558(pYA3337 without ECP or χ9558(pYA4428 with ECP, produced anti-Salmonella LPS and anti-E. coli EcpA and EcpD IgG and IgA antibodies. RASV strains showed protective potential against some E. coli and Salmonella strains as assessed using in vitro assays. In mouse sepsis and urinary tract infection challenge models, both vaccines had significant protection in some internal organs. Overall, this work showed that RASVs can elicit

  17. Improved protein synthesis and secretion through medium enrichment in a stable recombinant yeast strain.

    Science.gov (United States)

    Wang, Z; Da Silva, N A

    1993-06-05

    Two Saccharomyces cerevisiae strains were employed to investigate the effects of medium enrichment on the expression and secretion of a recombinant protein. One was a stable autoselection strain with mutations in the ura3, fur1, and urid-k genes. The combination of these three mutations blocks both the pyrimidine nucleotide biosynthetic and salvage pathways and is lethal to the cells. Retention of the plasmid, which carries a URA3 gene, was essential for cell viability. Therefore, all media were selective, allowing cultivation of the strain in complex medium. The second strain was a nonautoselection (control) strain and is isogenic to the first except for the fur1 and urid-k mutations. The plasmid utilized contains the yeast invertase gene under the control of the MFalpha1 promoter and leader sequence. The expression and secretion of invertase for the autoselection strain were examined in batch culture for three media: a minimal medium (SD), a semidefined medium (SDC), and a rich complex medium (YPD). Biomass yields and invertase productivity (volumetric activity) increased with the complexity of the medium; total invertase volumetric activity in YPD was 100% higher than in SDC and 180% higher than in SD. Specific activity, however, was lowest in the SDC medium. Secretion efficiency was extremely high in all three media; for the majority of the culture, 80-90% of the invertase was secreted into the periplasmic space and/or culture medium. A glucose pulse at the end of batch culture in YPD facilitated the transport of residual cytoplasmic invertase. For the nonautoselection strain, invertase productivity did not improve as the medium was enriched from SDC to YPD, and plasmid stability in the complex YPD medium dropped from 54% to 34% during one batch fermentation. During long-term sequential batch culture in YPD, invertase activity decreased by 90% and the plasmid-containing fraction dropped from 56% to 8.8% over 44 generations of growth. The expression level for

  18. Phylogenetic evidence for multiple intertypic recombinations in enterovirus B81 strains isolated in Tibet, China.

    Science.gov (United States)

    Hu, Lan; Zhang, Yong; Hong, Mei; Zhu, Shuangli; Yan, Dongmei; Wang, Dongyan; Li, Xiaolei; Zhu, Zhen; Tsewang; Xu, Wenbo

    2014-08-12

    Enterovirus B81 (EV-B81) is a newly identified serotype within the species enterovirus B (EV-B). To date, only eight nucleotide sequences of EV-B81 have been published and only one full-length genome sequence (the prototype strain) has been made available in the GenBank database. Here, we report the full-length genome sequences of two EV-B81 strains isolated in the Tibet Autonomous Region of China during acute flaccid paralysis surveillance activities, and we also conducted an antibody seroprevalence study in two prefectures of Tibet. The sequence comparison and phylogenetic dendrogram analysis revealed high variability among the global EV-B81 strains and frequent intertypic recombination in the non-structural protein region of EV-B serotypes, suggesting high genetic diversity of EV-B81. However, low positive rates and low titers of neutralizing antibodies against EV-B81 were detected. Nearly 68% of children under the age of five had no neutralizing antibodies against EV-B81. Hence, the extent of transmission and the exposure of the population to this EV type are very limited. Although little is known about the biological and pathogenic properties of EV-B81 because of few research in this field owing to the limited number of isolates, our study provides basic information for further studies of EV-B81.

  19. Genetic diversity and recombination of enterovirus G strains in Japanese pigs: High prevalence of strains carrying a papain-like cysteine protease sequence in the enterovirus G population.

    Science.gov (United States)

    Tsuchiaka, Shinobu; Naoi, Yuki; Imai, Ryo; Masuda, Tsuneyuki; Ito, Mika; Akagami, Masataka; Ouchi, Yoshinao; Ishii, Kazuo; Sakaguchi, Shoichi; Omatsu, Tsutomu; Katayama, Yukie; Oba, Mami; Shirai, Junsuke; Satani, Yuki; Takashima, Yasuhiro; Taniguchi, Yuji; Takasu, Masaki; Madarame, Hiroo; Sunaga, Fujiko; Aoki, Hiroshi; Makino, Shinji; Mizutani, Tetsuya; Nagai, Makoto

    2018-01-01

    To study the genetic diversity of enterovirus G (EV-G) among Japanese pigs, metagenomics sequencing was performed on fecal samples from pigs with or without diarrhea, collected between 2014 and 2016. Fifty-nine EV-G sequences, which were >5,000 nucleotides long, were obtained. By complete VP1 sequence analysis, Japanese EV-G isolates were classified into G1 (17 strains), G2 (four strains), G3 (22 strains), G4 (two strains), G6 (two strains), G9 (six strains), G10 (five strains), and a new genotype (one strain). Remarkably, 16 G1 and one G2 strain identified in diarrheic (23.5%; four strains) or normal (76.5%; 13 strains) fecal samples possessed a papain-like cysteine protease (PL-CP) sequence, which was recently found in the USA and Belgium in the EV-G genome, at the 2C-3A junction site. This paper presents the first report of the high prevalence of viruses carrying PL-CP in the EV-G population. Furthermore, possible inter- and intragenotype recombination events were found among EV-G strains, including G1-PL-CP strains. Our findings may advance the understanding of the molecular epidemiology and genetic evolution of EV-Gs.

  20. Genetic diversity and recombination of enterovirus G strains in Japanese pigs: High prevalence of strains carrying a papain-like cysteine protease sequence in the enterovirus G population.

    Directory of Open Access Journals (Sweden)

    Shinobu Tsuchiaka

    Full Text Available To study the genetic diversity of enterovirus G (EV-G among Japanese pigs, metagenomics sequencing was performed on fecal samples from pigs with or without diarrhea, collected between 2014 and 2016. Fifty-nine EV-G sequences, which were >5,000 nucleotides long, were obtained. By complete VP1 sequence analysis, Japanese EV-G isolates were classified into G1 (17 strains, G2 (four strains, G3 (22 strains, G4 (two strains, G6 (two strains, G9 (six strains, G10 (five strains, and a new genotype (one strain. Remarkably, 16 G1 and one G2 strain identified in diarrheic (23.5%; four strains or normal (76.5%; 13 strains fecal samples possessed a papain-like cysteine protease (PL-CP sequence, which was recently found in the USA and Belgium in the EV-G genome, at the 2C-3A junction site. This paper presents the first report of the high prevalence of viruses carrying PL-CP in the EV-G population. Furthermore, possible inter- and intragenotype recombination events were found among EV-G strains, including G1-PL-CP strains. Our findings may advance the understanding of the molecular epidemiology and genetic evolution of EV-Gs.

  1. Cloning and Expression of Recombinant Plasmid Containing P36/LACK Gene of Leishmania infantum Iranian Strain.

    Directory of Open Access Journals (Sweden)

    Saloomeh Shirali

    2015-06-01

    Full Text Available There are several methods, such as vaccination, to control visceral leishmaniasis. Although there is no efficient vaccine, it seem DNA vaccination with stimulates both cellular and humoral immunity apparently is the best way. The aim of this study was cloning and expression of LACK gene, a 36kD protein, as a candidate protein for vaccination against Iranian L. infantum.Iranian strain of L. infantum [MCAN/IR/07/Moheb-gh] was used as a template for PCR to amplify LACK gene. The LACK gene was cloned in pTZ57R/T vector and after confirmation it was digested by restriction enzymes (BamH1 and cloned in pcDNA3.1 expression vector. Recombinant plasmid was extracted and analyzed by sequencing, restriction digestion analysis and PCR reaction. The pc- LACK recombinant plasmid was purified from transformed E.coli (DH5α and its expression was analyzed by SDS-PAGE and Western blot.The results of sequencing, restriction digestion analysis and PCR reaction revealed that LACK gene was cloned correctly in pcDNA3.1 vector and the results of SDS PAGE and Western blot emphasized that LACK protein of Iranian L. infantum is a well-expressed protein.We amplified, cloned and expressed Iranian L. infantum LACK gene successfully.

  2. Cloning and Expression of Recombinant Plasmid Containing P36/LACK Gene of Leishmania infantum Iranian Strain.

    Science.gov (United States)

    Shirali, Saloomeh; Haddadzadeh, Hamidreza; Mohebali, Mehdi; Kazemi, Bahram; Amini, Narges

    2015-01-01

    There are several methods, such as vaccination, to control visceral leishmaniasis. Although there is no efficient vaccine, it seem DNA vaccination with stimulates both cellular and humoral immunity apparently is the best way. The aim of this study was cloning and expression of LACK gene, a 36kD protein, as a candidate protein for vaccination against Iranian L. infantum. Iranian strain of L. infantum [MCAN/IR/07/Moheb-gh] was used as a template for PCR to amplify LACK gene. The LACK gene was cloned in pTZ57R/T vector and after confirmation it was digested by restriction enzymes (BamH1) and cloned in pcDNA3.1 expression vector. Recombinant plasmid was extracted and analyzed by sequencing, restriction digestion analysis and PCR reaction. The pc- LACK recombinant plasmid was purified from transformed E.coli (DH5α) and its expression was analyzed by SDS-PAGE and Western blot. The results of sequencing, restriction digestion analysis and PCR reaction revealed that LACK gene was cloned correctly in pcDNA3.1 vector and the results of SDS PAGE and Western blot emphasized that LACK protein of Iranian L. infantum is a well-expressed protein. We amplified, cloned and expressed Iranian L. infantum LACK gene successfully.

  3. Novel recombinant GII.P16_GII.13 and GII.P16_GII.3 norovirus strains in Italy.

    Science.gov (United States)

    Medici, Maria Cristina; Tummolo, Fabio; Martella, Vito; Giammanco, Giovanni Maurizio; De Grazia, Simona; Arcangeletti, Maria Cristina; De Conto, Flora; Chezzi, Carlo; Calderaro, Adriana

    2014-08-08

    Novel norovirus strains are continuously emerging worldwide. Molecular investigation and phylogenetic analysis identified GII.P16 recombinant noroviruses from the stools of four Italian children with gastroenteritis. The capsid gene was characterized as either GII.13 or GII.3. The GII.P16_GII.13 Italian strains were closely related to German strains involved in a large outbreak in the second half of 2012 and the Italian strains are the first recorded occurrence of GII.P16_GII.13 in Europe. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Recombinant Streptomyces clavuligerus strain including cas2 gene production and analysis its antibiotic overproduction by bioassay

    Directory of Open Access Journals (Sweden)

    Zohreh Hojati

    2014-03-01

    Full Text Available Background: Streptomyces clavuligerus is one of the most important strain that produce clavulanic acid that wildly used in combination of strong but sensitive to β-lactamase antibiotics in clinics. The cas2 is one of the important genes in the biosynthesis pathway of clavulanic acid. Materials and Methods: The recombinant construct pMTcas2 which contain cas2 gene is obtained from Isfahan University. Recombinant plasmid extracts from streptomyces lividans and confirm by enzyme digestion. The streptomyces clavuligerus protoplast was prepared and transformation was done by using polyethylene glycol. Transformation was confirmed by plasmid extraction and PCR using cas2 specific primers. Finally, bioassay method was used to survey the effect of extra copy of cas2 on clavulanic acid production. Result: Plasmid extraction was initially carried out and the structure of plasmid was confirmed by digestion. The typical white colony was seen on protoplast recovery culture containing thiostrepton antibiotic and gray spores were detected after one week. Plasmid extraction was done from transformed strain and transformation was confirmed by PCR. The results of the bioassay show that amplification of the cas2 gene in multicopy plasmids resulted in a 4.1 fold increase in clavulanic acid production. Conclusion: The bioassay was done and the diameters of zone of inhibition in control and sample were compared. The results of the bioassay show that amplification of the cas2 gene in multicopy plasmids resulted in a 4.1 fold increase in clavulanic acid production. Overproduction of clavulanic acid decreases the cost of its dependent drug production.

  5. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing.

    Science.gov (United States)

    Ivask, Angela; Rõlova, Taisia; Kahru, Anne

    2009-05-08

    Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis) and Gram-negative (Escherichia coli, Pseudomonas fluorescens) bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens) as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains) or in a constitutive manner ("lights-off" constructs, 6 strains). The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (microg l-1): 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO3)2, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i) metal sensor strains with similar metal-response elements in different host bacteria; ii) metal sensor strains with metal-response elements in different copies and iii) a "lights-off" construct (control) for every

  6. A suite of recombinant luminescent bacterial strains for the quantification of bioavailable heavy metals and toxicity testing

    Directory of Open Access Journals (Sweden)

    Kahru Anne

    2009-05-01

    Full Text Available Abstract Background Recombinant whole-cell sensors have already proven useful in the assessment of the bioavailability of environmental pollutants like heavy metals and organic compounds. In this work 19 recombinant bacterial strains representing various Gram-positive (Staphylococcus aureus and Bacillus subtilis and Gram-negative (Escherichia coli, Pseudomonas fluorescens bacteria were constructed to express the luminescence encoding genes luxCDABE (from Photorhabdus luminescens as a response to bioavailable heavy metals ("lights-on" metal sensors containing metal-response elements, 13 strains or in a constitutive manner ("lights-off" constructs, 6 strains. Results The bioluminescence of all 13 "lights-on" metal sensor strains was expressed as a function of the sub-toxic metal concentrations enabling the quantitative determination of metals bioavailable for these strains. Five sensor strains, constructed for detecting copper and mercury, proved to be target metal specific, whereas eight other sensor strains were simultaneously induced by Cd2+, Hg2+, Zn2+and Pb2+. The lowest limits of determination of the "lights-on" sensor strains for the metals tested in this study were (μg l-1: 0.002 of CH3HgCl, 0.03 of HgCl2, 1.8 of CdCl2, 33 of Pb(NO32, 1626 of ZnSO4, 24 of CuSO4 and 340 of AgNO3. In general, the sensitivity of the "lights-on" sensor strains was mostly dependent on the metal-response element used while the selection of host bacterium played a relatively minor role. In contrast, toxicity of metals to the "lights-off" strains was only dependent on the bacterial host so that Gram-positive strains were remarkably more sensitive than Gram-negative ones. Conclusion The constructed battery of 19 recombinant luminescent bacterial strains exhibits several novel aspects as it contains i metal sensor strains with similar metal-response elements in different host bacteria; ii metal sensor strains with metal-response elements in different copies and iii

  7. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus

    DEFF Research Database (Denmark)

    Prathumpai, Wai; Flitter, S.J.; Mcintyre, Mhairi

    2004-01-01

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on differe...... shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall....

  8. Co-infection with two strains of Brome mosaic bromovirus reveals common RNA recombination sites in different hosts.

    Science.gov (United States)

    Kolondam, Beivy; Rao, Parth; Sztuba-Solinska, Joanna; Weber, Philipp H; Dzianott, Aleksandra; Johns, Mitrick A; Bujarski, Jozef J

    2015-01-01

    We have previously reported intra-segmental crossovers in Brome mosaic virus (BMV) RNAs. In this work, we studied the homologous recombination of BMV RNA in three different hosts: barley ( Hordeum vulgare) , Chenopodium quinoa , and Nicotiana benthamiana that were co-infected with two strains of BMV: Russian (R) and Fescue (F). Our work aimed at (1) establishing the frequency of recombination, (2) mapping the recombination hot spots, and (3) addressing host effects. The F and R nucleotide sequences differ from each other at many translationally silent nucleotide substitutions. We exploited this natural variability to track the crossover sites. Sequencing of a large number of cDNA clones revealed multiple homologous crossovers in each BMV RNA segment, in both the whole plants and protoplasts. Some recombination hot spots mapped at similar locations in different hosts, suggesting a role for viral factors, but other sites depended on the host. Our results demonstrate the chimeric ('mosaic') nature of the BMV RNA genome.

  9. Evaluation of a Recombinant Escherichia coli Strain that Uses the Sarin Simulant Isopropylmethylphosphonic Acid (IMPA) as a Sole Carbon and Phosphate Source

    Science.gov (United States)

    2016-04-01

    Fisher Scientific, Inc.; Waltham, MA). Protein samples were electrophoresed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS...EVALUATION OF A RECOMBINANT ESCHERICHIA COLI STRAIN THAT USES THE SARIN SIMULANT ISOPROPYLMETHYLPHOSPHONIC ACID (IMPA) AS A SOLE CARBON AND...COVERED (From - To) Mar 2015 – Oct 2015 4. TITLE AND SUBTITLE Evaluation of a Recombinant Escherichia coli Strain that Uses the Sarin Simulant

  10. [Properties of alkaline pectate lyase from recombinant strain E. coli JM109 (pHsh PL)].

    Science.gov (United States)

    Zhuge, Bin; Du, Guocheng; Zhuge, Jian; Chen, Jian

    2008-01-01

    Alkaline pectate lyase (PL) from recombinant strain E. coli JM109 (pHsh PL) was purified by a three-step process including (NH4)2SO4 precipitation followed by dialysis and chromatography. The purified enzyme appeared homologous on SDS-PAGE. The specific activity of the purified enzyme reached 1079 U/mg. The optimal pH and temperature were in the ranges of pH 9.0 to 10.0 and 50 degrees C to 66 degrees C. The enzyme was preferable in optimal pH range in enzymatic retting of flax. Enzyme activity slightly increased in the presence of Mg2+ ion, whereas decreased in the presence of other ions, especially Fe2+. The K(m) of the purified enzyme for polygalacturonic acid was 20.93 mg/L, the V(max) for polygalacturonic acid hydrolysis was 105.3 micromol of unsaturated products per min and Ea was 21.74 kJ/mol. The results of the decay constant (k(d)) analysis on condition of PL bonding polygalacturonic acid (k(d) = 0.02 min(-1)) and PL without polygalacturonic acid (k(d) = 0.0342 min(-1)) showed the substrate was helpful to decrease thermal inactivation of PL. The products (unsaturated oligomers) from polygalacturonic acid degraded by PL were analyzed by electrospray ionization mass spectrometry(ESI-MS). The following data were obtained: ESI-MS m/z, 350.82 (unsaturated bigalacturonic acid, uG2), 527.04 (unsaturated trigalacturonic acid, uG3). However, m/z 175 (unsaturated galacturonic acid, uGI) was not found. These results indicate that the final PGA degradation products was a mixture of unsaturated oligo-galacturonides including uG3 and uG2 except for uG1. It suggests that the recombinant PL cannot degrade uG3 and uG2.

  11. Enhanced alcohol self-administration and reinstatement in a highly impulsive, inattentive recombinant inbred mouse strain

    Directory of Open Access Journals (Sweden)

    Maarten eLoos

    2013-10-01

    Full Text Available Deficits in executive control have frequently been associated with alcohol use disorder. Here we investigated to what extent pre-existing genetically encoded levels of impulsive/inattentive behavior associate with motivation to take alcohol and vulnerability to cue-induced reinstatement of alcohol seeking in an operant self-administration paradigm. We took advantage of BXD16, a recombinant inbred strain previously shown to have enhanced impulsivity and poor attentional control. We compared BXD16 with C57BL/6J mice in a simple choice reaction time task (SCRTT and confirmed its impulsive/inattentive phenotype. BXD16 mice were less active in a novel open field, and were equally active in an automated home cage environment, showing that increased impulsive responding of BXD16 mice could not be explained by enhanced general activity compared to C57BL/6J mice. After training in a sucrose/alcohol fading self-administration procedure, BXD16 showed increased motivation to earn 10% alcohol solution, both under fixed ratio (FR1 and progressive ratio (PR2 schedules of reinforcement. Responding on the active lever readily decreased during extinction training with no apparent differences between strains. However, upon re-exposure to alcohol-associated cues, alcohol seeking was reinstated to a larger extent in BXD16 than in C57BL/6J mice. Although further studies are needed to determine whether impulsivity/inattention and alcohol seeking depend on common or separate genetic loci, these data show that in mice enhanced impulsivity coincides with increased motivation to take alcohol, as well as relapse vulnerability.

  12. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Jeppsson, M.; Johansson, B.; Jensen, Peter Ruhdal

    2003-01-01

    Disruption of the ZWF1 gene encoding glucose-6-phosphate dehydrogenase (G6PDH) has been shown to reduce the xylitol yield and the xylose consumption in the xylose-utilizing recombinant Saccharomyces cerevisiae strain TMB3255. In the present investigation we have studied the influence of different...... consumption, respectively, compared with the ZWF1-disrupted strain. Both strains exhibited decreased xylitol yields (0.13 and 0.19 g/g xylose) and enhanced ethanol yields (0.36 and 0.34 g/g xylose) compared with the control strain TMB3001 (0.29 g xylitol/g xylose, 0.31 g ethanol/g xylose). Cytoplasmic...... transhydrogenase (TH) from Azotobacter vinelandii has previously been shown to transfer NADPH and NAD(+) into NADP(+) and NADH, and TH-overproduction resulted in lower xylitol yield and enhanced glycerol yield during xylose utilization. Strains with low G6PDH-activity grew slower in a lignocellulose hydrolysate...

  13. Protection from lethal herpes simplex virus type 1 infection by vaccination with a UL41-deficient recombinant strain.

    Science.gov (United States)

    Koshizuka, Tetsuo; Ishioka, Ken; Kobayashi, Takahiro; Ikuta, Kazufumi; Suzutani, Tatsuo

    2016-06-08

    The UL41 gene of herpes simplex virus type 1 (HSV-1) encodes a virion host shut off protein which is involved in immune evasion. The growth and virulence of HSV-1 is markedly reduced by the deletion of UL41. In this report, the UL41-deleted recombinant HSV-1 strain VR∆41 was evaluated as a prophylactic live attenuated vaccine against lethal HSV-1 infection in a mouse model. Intraperitoneal (i.p.) inoculation with the VR∆41 strain clearly inhibited lethal wild-type HSV-1 (VR-3 strain) infection after both i.p. and intracerebral (i.c.) inoculations. Vaccination with the VR∆41 strain was safer than VR-3 vaccination and was able to protect against a wild-type challenge to the same degree as VR-3 vaccination. In contrast, i.p. inoculation with ultraviolet-irradiated VR-3 induced resistance against i.p. infection, but not against i.c. Although replication of the VR∆41 strain in mice was greatly reduced compared to that of the VR-3 strain, VR∆41 strain maintained the ability to spread to the central nervous system (CNS) from a peripheral inoculation site. These results indicated that the VR∆41 strain evoked a potent immune reaction through viral protein expression within CNS without the induction of lethal encephalitis. The entry of antigens into the CNS was essential for the establishment of protective immunity against the lethal HSV encephalitis. We concluded that only a live attenuated vaccine is able to afford a prophylactic effect against CNS infection with HSV. In order to fulfill this requirement, UL41-deleted viruses provide a strong candidate for use as a recombinant live vaccine.

  14. A cautionary note on ignoring polygenic background when mapping quantitative trait loci via recombinant congenic strains.

    Science.gov (United States)

    Loredo-Osti, J Concepción

    2014-01-01

    In gene mapping, it is common to test for association between the phenotype and the genotype at a large number of loci, i.e., the same response variable is used repeatedly to test a large number of non-independent and non-nested hypotheses. In many of these genetic problems, the underlying model is a mixed model consistent of one or very few major genes concurrently with a genetic background effect, usually thought as of polygenic nature and, consequently, modeled through a random effects term with a well-defined covariance structure dependent upon the kinship between individuals. Either because the interest lies only on the major genes or to simplify the analysis, it is habitual to drop the random effects term and use a simple linear regression model, sometimes complemented with testing via resampling as an attempt to minimize the consequences of this practice. Here, it is shown that dropping the random effects term has not only extreme negative effects on the control of the type I error rate, but it is also unlikely to be fixed by resampling because, whenever the mixed model is correct, this practice does not allow to meet some basic requirements of resampling in a gene mapping context. Furthermore, simulations show that the type I error rates when the random term is ignored can be unacceptably high. As an alternative, this paper introduces a new bootstrap procedure to handle the specific case of mapping by using recombinant congenic strains under a linear mixed model. A simulation study showed that the type I error rates of the proposed procedure are very close to the nominal ones, although they tend to be slightly inflated for larger values of the random effects variance. Overall, this paper illustrates the extent of the adverse consequences of ignoring random effects term due to polygenic factors while testing for genetic linkage and warns us of potential modeling issues whenever simple linear regression for a major gene yields multiple significant linkage

  15. Analysis of the efficiency of recombinant Escherichia coli strain cultivation in a gas-vortex bioreactor.

    Science.gov (United States)

    Savelyeva, Anna V; Nemudraya, Anna A; Podgornyi, Vladimir F; Laburkina, Nadezhda V; Ramazanov, Yuriy A; Repkov, Andrey P; Kuligina, Elena V; Richter, Vladimir A

    2017-09-01

    The levels of aeration and mass transfer are critical parameters required for an efficient aerobic bioprocess, and directly depend on the design features of exploited bioreactors. A novel apparatus, using gas vortex for aeration and mass transfer processes, was constructed in the Center of Vortex Technologies (Novosibirsk, Russia). In this paper, we compared the efficiency of recombinant Escherichia coli strain cultivation using novel gas-vortex technology with conventional bioprocess technologies such as shake flasks and bioreactors with mechanical stirrers. We demonstrated that the system of aeration and agitation used in gas-vortex bioreactors provides 3.6 times higher volumetric oxygen transfer coefficient in comparison with mechanical bioreactor. The use of gas-vortex bioreactor for recombinant E. coli strain cultivation allows to increase the efficiency of target protein expression at 2.2 times for BL21(DE3)/pFK2 strain and at 3.5 times for auxotrophic C600/pRT strain (in comparison with stirred bioreactor). © 2016 International Union of Biochemistry and Molecular Biology, Inc.

  16. Simultaneous lactic acidification and coagulation by using recombinant Lactococcus lactis strain.

    Science.gov (United States)

    Raftari, M; Ghafourian, S; Abu Bakar, F

    2017-04-01

    This study was an attempt to create a novel milk clotting procedure using a recombinant bacterium capable of milk coagulation. The Rhizomucor pusillus proteinase (RPP) gene was sub-cloned into a pALF expression vector. The recombinant pALF-RPP vector was then electro-transferred into Lactococcus lactis. Finally, the milk coagulation ability of recombinant L. lactis carrying a RPP gene was evaluated. Nucleotide sequencing of DNA insertion from the clone revealed that the RPP activity corresponded to an open reading frame consisting of 1218 bp coding for a 43·45 kDa RPP protein. The RPP protein assay results indicated that the highest RPP enzyme expression with 870 Soxhlet units (SU) per ml and 7914 SU/OD were obtained for cultures which were incubated at pH 5·5 and 30°C. Interestingly, milk coagulation was observed after 205 min of inoculating milk with recombinant L. lactis carrying the RPP gene. The recombinant L. lactis carrying RPP gene has the ability to function as a starter culture for acidifying and subsequently coagulating milk by producing RPP as a milk coagulant agent. Creating a recombinant starter culture bacterium that is able to coagulate milk. It is significant because the recombinant L. lactis has the ability to work as a starter culture and milk coagulation agent. © 2016 The Society for Applied Microbiology.

  17. A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis

    Directory of Open Access Journals (Sweden)

    Krijger Jorrit-Jan

    2012-08-01

    Full Text Available Abstract Background The Crabtree-negative yeast species Kluyveromyces lactis has been established as an attractive microbial expression system for recombinant proteins at industrial scale. Its LAC genes allow for utilization of the inexpensive sugar lactose as a sole source of carbon and energy. Lactose efficiently induces the LAC4 promoter, which can be used to drive regulated expression of heterologous genes. So far, strain manipulation of K. lactis by homologous recombination was hampered by the high rate of non-homologous end-joining. Results Selection for growth on lactose was applied to target the insertion of heterologous genes downstream of the LAC4 promoter into the K. lactis genome and found to yield high numbers of positive transformants. Concurrent reconstitution of the β-galactosidase gene indicated the desired integration event of the expression cassette, and β-galactosidase activity measurements were used to monitor gene expression for strain improvement and fermentation optimization. The system was particularly improved by usage of a cell lysis resistant strain, VAK367-D4, which allowed for protein accumulation in long-term fermentation. Further optimization was achieved by increased gene dosage of KlGAL4 encoding the activator of lactose and galactose metabolic genes that led to elevated transcription rates. Pilot experiments were performed with strains expressing a single-chain antibody fragment (scFvox and a viral envelope protein (BVDV-E2, respectively. scFvox was shown to be secreted into the culture medium in an active, epitope-binding form indicating correct processing and protein folding; the E2 protein could be expressed intracellularly. Further data on the influence of protein toxicity on batch fermentation and potential post-transcriptional bottlenecks in protein accumulation were obtained. Conclusions A novel Kluyveromyces lactis host-vector system was developed that places heterologous genes under the control of

  18. Cross-Protection against Marburg Virus Strains by Using a Live, Attenuated Recombinant Vaccine

    National Research Council Canada - National Science Library

    Daddario-DiCaprio, Kathleen M; Geisbert, Thomas W; Geisbert, Joan B; Stroeher, Ute; Hensley, Lisa E; Grolla, Allen; Fritz, Elizabeth A; Feldmann, Friederike; Feldmann, Heinz; Jones, Steven M

    2006-01-01

    .... MARV is also considered to have potential as a biological weapon. Recently, we reported the development of a promising attenuated, replication-competent vaccine against MARV based on recombinant vesicular stomatitis virus (VSV...

  19. Proteome analysis of a recombinant Bacillus megaterium strain during heterologous production of a glucosyltransferase

    Directory of Open Access Journals (Sweden)

    Jahn Dieter

    2005-05-01

    Full Text Available Abstract A recombinant B. megaterium strain was used for the heterologous production of a glucosyltransferase (dextransucrase. To better understand the physiological and metabolic responses of the host cell to cultivation and induction conditions, proteomic analysis was carried out by combined use of two-dimensional gel electrophoresis and mass spectrometry (2-DE/MS for protein separation and identification. 2-DE method was optimized for the separation of intracellular proteins. Since the genome of B. megaterium is not yet available, peptide sequencing using peptide fragment information obtained from nanoelectrospray ionization quadrupole-time-of-flight tandem mass spectrometry (ESI-QqTOF MS/MS was applied for protein identification. 167 protein spots were identified as 149 individual proteins, including most enzymes involved in the central carbon metabolic pathways and many enzymes related to amino acid synthesis and protein synthesis. Based on the results a 2-DE reference map and a corresponding protein database were constructed for further proteomic approaches on B. megaterium. For the first time it became possible to perform comparative proteomic analysis on B. megaterium in a batch culture grown on glucose with xylose induction for dextrasucrase production. No significant differences were observed in the expression changes of enzymes of the glycolysis and TCA cycle, indicating that dextransucrase production, which amounted to only 2 % of the entire protein production, did not impose notable metabolic or energetic burdens on the central carbon metabolic pathway of the cells. However, a short-term up-regulation of aspartate aminotransferase, an enzyme closely related to dextransucrase production, in the induced culture demonstrated the feasibility to use 2-DE method for monitoring dextransucrase production. It was also observed that under the cultivation conditions used in this study B. megaterium tended to channel acetyl-CoA into pathways of

  20. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Science.gov (United States)

    Mestre, Olga; Luo, Tao; Dos Vultos, Tiago; Kremer, Kristin; Murray, Alan; Namouchi, Amine; Jackson, Céline; Rauzier, Jean; Bifani, Pablo; Warren, Rob; Rasolofo, Voahangy; Mei, Jian; Gao, Qian; Gicquel, Brigitte

    2011-01-20

    The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R) genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes. A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs). A recent Beijing genotype (Bmyc10), which included 60% of strains from distinct parts of the world, appeared to be predominant. We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  1. Phylogeny of Mycobacterium tuberculosis Beijing strains constructed from polymorphisms in genes involved in DNA replication, recombination and repair.

    Directory of Open Access Journals (Sweden)

    Olga Mestre

    2011-01-01

    Full Text Available The Beijing family is a successful group of M. tuberculosis strains, often associated with drug resistance and widely distributed throughout the world. Polymorphic genetic markers have been used to type particular M. tuberculosis strains. We recently identified a group of polymorphic DNA repair replication and recombination (3R genes. It was shown that evolution of M. tuberculosis complex strains can be studied using 3R SNPs and a high-resolution tool for strain discrimination was developed. Here we investigated the genetic diversity and propose a phylogeny for Beijing strains by analyzing polymorphisms in 3R genes.A group of 3R genes was sequenced in a collection of Beijing strains from different geographic origins. Sequence analysis and comparison with the ones of non-Beijing strains identified several SNPs. These SNPs were used to type a larger collection of Beijing strains and allowed identification of 26 different sequence types for which a phylogeny was constructed. Phylogenetic relationships established by sequence types were in agreement with evolutionary pathways suggested by other genetic markers, such as Large Sequence Polymorphisms (LSPs. A recent Beijing genotype (Bmyc10, which included 60% of strains from distinct parts of the world, appeared to be predominant.We found SNPs in 3R genes associated with the Beijing family, which enabled discrimination of different groups and the proposal of a phylogeny. The Beijing family can be divided into different groups characterized by particular genetic polymorphisms that may reflect pathogenic features. These SNPs are new, potential genetic markers that may contribute to better understand the success of the Beijing family.

  2. Analysis of sperm quality in recombinant inbred mouse strains: correlation of sperm head shape with sperm abnormalities and with the incidence of supplementary spermatozoa in the perivitelline space.

    Science.gov (United States)

    Krzanowska, H; Styrna, J; Wabik-Sliz, B

    1995-07-01

    Recombinant inbred strains were developed from reciprocal crosses between two inbred strains of mice (CBA and KE) differing in sperm head shape, proportion of normal sperm heads (CBA, 95%; KE, 78%) and fertilization efficiency (CBA, 100% of fertilized ova; KE, 72%), to determine whether the indices of sperm morphology and function were correlated. The following parameters were analysed in recombinant inbred and progenitor strains: index of sperm head shape (head width in the middle of its length/head length), percentage of abnormal sperm heads, percentage of spermatozoa with progressive movements, efficiency of penetration of hyaluronic acid polymer (Sperm Select) and percentage of fertilized ova after mating males from the tested strains with females from an outbred stock. For each investigated character, recombinant inbred strains, recombinant inbred EXCB and CBXE, could be divided into at least three categories: KE-like, CBA-like and intermediate, suggesting that in each case a minimum of two genes was involved. Recombinant strains derived from the reciprocal crosses of progenitor strains differed only with respect to the proportion of abnormal sperm heads, showing the involvement of the Y chromosome in determining this character. Penetration into Sperm Select was significantly correlated both with fertilization efficiency and sperm motility, while correlation with the proportion of normal spermatozoa did not reach the level of significance. However, there was a significant negative correlation of both sperm abnormalities and the incidence of supplementary spermatozoa in the perivitelline space with the index of sperm head shape.(ABSTRACT TRUNCATED AT 250 WORDS)

  3. Genetic relationship between placental and fetal weights and markers of the metabolic syndrome in rat recombinant inbred strains

    Czech Academy of Sciences Publication Activity Database

    Burešová, M.; Zídek, Václav; Musilová, Alena; Šimáková, Miroslava; Fučíková, A.; Bílá, V.; Křen, Vladimír; Kazdová, L.; Di Nicolantonio, R.; Pravenec, Michal

    2006-01-01

    Roč. 26, č. 3 (2006), s. 226-231 ISSN 1094-8341 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA301/04/0390; GA MZd(CZ) NR8495 Grant - others:Sixth Framework Programme(XE) LSHG-CT-2005-019015 Institutional research plan: CEZ:AV0Z50110509 Keywords : genetic analysis * thrifty phenotype * recombinant inbred strains Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.789, year: 2006

  4. Whole-gene analysis of two groups of hepatitis B virus C/D inter-genotype recombinant strains isolated in Tibet, China.

    Directory of Open Access Journals (Sweden)

    Tiezhu Liu

    Full Text Available Tibet is a highly hepatitis B virus (HBV endemic area. Two types of C/D recombinant HBV are commonly isolated in Tibet and have been previously described. In an effort to better understand the molecular characteristic of these C/D recombinant strains from Tibet, we undertook a multistage random sampling project to collect HBsAg positive samples. Molecular epidemiological and bio-informational technologies were used to analyze the characteristics of the sequences found in this study. There were 60 samples enrolled in the survey, and we obtained 19 whole-genome sequences. 19 samples were all C/D recombinant, and could be divided into two sub-types named C/D1 and C/D2 according to the differences in the location of the recombinant breakpoint. The recombination breakpoint of the 10 strains belonging to the C/D1 sub-type was located at nt750, while the 9 stains belonging to C/D2 had their recombination break point at nt1530. According to whole-genome sequence analysis, the 19 identified strains belong to genotype C, but the nucleotide distance was more than 5% between the 19 strains and sub-genotypes C1 to C15. The distance between C/D1with C2 was 5.8±2.1%, while the distance between C/D2 with C2 was 6.4±2.1%. The parental strain was most likely sub-genotype C2. C/D1 strains were all collected in the middle and northern areas of Tibet including Lhasa, Linzhi and Ali, while C/D2 was predominant in Shannan in southern Tibet. This indicates that the two recombinant genotypes are regionally distributed in Tibet. These results provide important information for the study of special HBV recombination events, gene features, virus evolution, and the control and prevention policy of HBV in Tibet.

  5. Whole-gene analysis of two groups of hepatitis B virus C/D inter-genotype recombinant strains isolated in Tibet, China.

    Science.gov (United States)

    Liu, Tiezhu; Wang, Fuzhen; Zhang, Shuang; Wang, Feng; Meng, Qingling; Zhang, Guomin; Cui, Fuqiang; Dunzhu, Dorji; Yin, Wenjiao; Bi, Shengli; Shen, Liping

    2017-01-01

    Tibet is a highly hepatitis B virus (HBV) endemic area. Two types of C/D recombinant HBV are commonly isolated in Tibet and have been previously described. In an effort to better understand the molecular characteristic of these C/D recombinant strains from Tibet, we undertook a multistage random sampling project to collect HBsAg positive samples. Molecular epidemiological and bio-informational technologies were used to analyze the characteristics of the sequences found in this study. There were 60 samples enrolled in the survey, and we obtained 19 whole-genome sequences. 19 samples were all C/D recombinant, and could be divided into two sub-types named C/D1 and C/D2 according to the differences in the location of the recombinant breakpoint. The recombination breakpoint of the 10 strains belonging to the C/D1 sub-type was located at nt750, while the 9 stains belonging to C/D2 had their recombination break point at nt1530. According to whole-genome sequence analysis, the 19 identified strains belong to genotype C, but the nucleotide distance was more than 5% between the 19 strains and sub-genotypes C1 to C15. The distance between C/D1with C2 was 5.8±2.1%, while the distance between C/D2 with C2 was 6.4±2.1%. The parental strain was most likely sub-genotype C2. C/D1 strains were all collected in the middle and northern areas of Tibet including Lhasa, Linzhi and Ali, while C/D2 was predominant in Shannan in southern Tibet. This indicates that the two recombinant genotypes are regionally distributed in Tibet. These results provide important information for the study of special HBV recombination events, gene features, virus evolution, and the control and prevention policy of HBV in Tibet.

  6. Near full-length genomic characterization of a novel HIV type 1 subtype B/C recombinant strain from Yunnan, China.

    Science.gov (United States)

    Li, Lin; Chen, Lili; Yang, Shaomin; Liu, Yongjian; Li, Hanping; Bao, Zuoyi; Wang, Zheng; Zhuang, Daomin; Liu, Siyang; Li, Jingyun

    2010-06-01

    Recombination contributes substantially to the genetic diversity of HIV-1, and mosaic strains arise frequently, especially in populations in which multiple subtypes circulate. Yunnan, which borders the "Golden triangle" region of Southeast Asia in the south, was considered as the epicenter of China. B, CRF01_AE, CRF07_BC, and CRF08_BC are all currently involved in the HIV-1 epidemiology in the area, which suggested the possible emergence of a new recombination. This study presented a near full-length genomic analysis of a novel HIV-1 recombination involving B and C. Different from the reported CRF07_BC and CRF08_BC, the new recombination revealed more breakpoints. This is the first report of a novel recombination involving subtype B and C in Yunnan, China. More work is needed to determine the epidemiologic significance of the new recombination.

  7. Fermentation of oat and soybean hull hydrolysates into ethanol and xylitol by recombinant industrial strains of Saccharomyces cerevisiae under diverse oxygen environments

    Science.gov (United States)

    In this study, we evaluated the capacity of recombinant industrial Saccharomyces cerevisiae YRH 396 and YRH 400 strains to ferment sugars from oat hull and soybean hull hydrolysates into ethanol and xylitol. The strains were genetically modified by chromosomal integration of Pichia stipitis XYLI/XYL...

  8. Recurrent isolation of poliovirus 3 strains with chimeric capsid protein Vp1 suggests a recombination hot-spot site in Vp1.

    Science.gov (United States)

    Blomqvist, Soile; Savolainen-Kopra, Carita; Paananen, Anja; El Bassioni, Laila; El Maamoon Nasr, Eman M; Firstova, Larisa; Zamiatina, Natalia; Kutateladze, Tamar; Roivainen, Merja

    2010-08-01

    Five oral poliovirus vaccine (OPV) strains carrying an intertypic PV3/PV2 recombination in VP1 capsid protein were isolated during poliovirus surveillance. These five PV3 strains had altogether four diverse recombination crossover points near the 3' end of the VP1 coding region. The complete antigenic site IIIa was replaced by PV2-specific amino acids in four of the studied PV3 strains. Low overall number of nucleotide substitutions in VP1 indicated that the predicted replication time, "age", of the PV3 strains was short, 6 months or less. The nucleotide 472-T in the 5' non-coding region, associated to the attenuated phenotype of PV3/Sabin, was reverted to wild-type C in all studied PV3/PV2 recombinant strains. Three of the PV3 strains had at least a tripartite genome deduced from the partial 3D polymerase-coding region sequences. Our results suggest that there exists a PV3/PV2 recombination hot-spot site in the 3' partial region of the VP1 capsid protein and that the recombination may occur within weeks or a few months after the administration of OPV. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Upscale of recombinant alpha-L-rhamnosidase production by Pichia pastoris Mut(S) strain

    Czech Academy of Sciences Publication Activity Database

    Markošová, K.; Weignerová, Lenka; Rosenberg, M.; Křen, Vladimír; Rebroš, M.

    2015-01-01

    Roč. 6, OCT 2015 (2015), s. 1-10 ISSN 1664-302X R&D Projects: GA MŠk(CZ) 7E11010; GA MŠk(CZ) LD15085 Institutional support: RVO:61388971 Keywords : Pichia pastoris * alpha-L-rhamnosidase * recombinant enzyme Subject RIV: CE - Biochemistry Impact factor: 4.165, year: 2015

  10. Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation.

    Science.gov (United States)

    Li, Yun-Cheng; Gou, Zi-Xi; Zhang, Ying; Xia, Zi-Yuan; Tang, Yue-Qin; Kida, Kenji

    Lignocellulose-derived inhibitors have negative effects on the ethanol fermentation capacity of Saccharomyces cerevisiae. In this study, the effects of eight typical inhibitors, including weak acids, furans, and phenols, on glucose and xylose co-fermentation of the recombinant xylose-fermenting flocculating industrial S. cerevisiae strain NAPX37 were evaluated by batch fermentation. Inhibition on glucose fermentation, not that on xylose fermentation, correlated with delayed cell growth. The weak acids and the phenols showed additive effects. The effect of inhibitors on glucose fermentation was as follows (from strongest to weakest): vanillin>phenol>syringaldehyde>5-HMF>furfural>levulinic acid>acetic acid>formic acid. The effect of inhibitors on xylose fermentation was as follows (from strongest to weakest): phenol>vanillin>syringaldehyde>furfural>5-HMF>formic acid>levulinic acid>acetic acid. The NAPX37 strain showed substantial tolerance to typical inhibitors and showed good fermentation characteristics, when a medium with inhibitor cocktail or rape straw hydrolysate was used. This research provides important clues for inhibitors tolerance of recombinant industrial xylose-fermenting S. cerevisiae. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  11. Inhibitor tolerance of a recombinant flocculating industrial Saccharomyces cerevisiae strain during glucose and xylose co-fermentation

    Directory of Open Access Journals (Sweden)

    Yun-Cheng Li

    Full Text Available ABSTRACT Lignocellulose-derived inhibitors have negative effects on the ethanol fermentation capacity of Saccharomyces cerevisiae. In this study, the effects of eight typical inhibitors, including weak acids, furans, and phenols, on glucose and xylose co-fermentation of the recombinant xylose-fermenting flocculating industrial S. cerevisiae strain NAPX37 were evaluated by batch fermentation. Inhibition on glucose fermentation, not that on xylose fermentation, correlated with delayed cell growth. The weak acids and the phenols showed additive effects. The effect of inhibitors on glucose fermentation was as follows (from strongest to weakest: vanillin > phenol > syringaldehyde > 5-HMF > furfural > levulinic acid > acetic acid > formic acid. The effect of inhibitors on xylose fermentation was as follows (from strongest to weakest: phenol > vanillin > syringaldehyde > furfural > 5-HMF > formic acid > levulinic acid > acetic acid. The NAPX37 strain showed substantial tolerance to typical inhibitors and showed good fermentation characteristics, when a medium with inhibitor cocktail or rape straw hydrolysate was used. This research provides important clues for inhibitors tolerance of recombinant industrial xylose-fermenting S. cerevisiae.

  12. Cloning and recombinant expression of a cellulase from the cellulolytic strain Streptomyces sp. G12 isolated from compost

    Directory of Open Access Journals (Sweden)

    Amore Antonella

    2012-12-01

    Full Text Available Abstract Background The use of lignocellulosic materials for second generation ethanol production would give several advantages such as minimizing the conflict between land use for food and fuel production, providing less expensive raw materials than conventional agricultural feedstock, allowing lower greenhouse gas emissions than those of first generation ethanol. However, cellulosic biofuels are not produced at a competitive level yet, mainly because of the high production costs of the cellulolytic enzymes. Therefore, this study was aimed at discovering new cellulolytic microorganisms and enzymes. Results Different bacteria isolated from raw composting materials obtained from vegetable processing industry wastes were screened for their cellulolytic activity on solid medium containing carboxymethylcellulose. Four strains belonging to the actinomycetes group were selected on the basis of their phenotypic traits and cellulolytic activity on solid medium containing carboxymethylcellulose. The strain showing the highest cellulolytic activity was identified by 16S rRNA sequencing as belonging to Streptomyces genus and it was designated as Streptomyces sp. strain G12. Investigating the enzymes responsible for cellulase activity produced by Streptomyces G12 by proteomic analyses, two endoglucanases were identified. Gene coding for one of these enzymes, named CelStrep, was cloned and sequenced. Molecular analysis showed that the celstrep gene has an open reading frame encoding a protein of 379 amino acid residues, including a signal peptide of 37 amino acid residues. Comparison of deduced aminoacidic sequence to the other cellulases indicated that the enzyme CelStrep can be classified as a family 12 glycoside hydrolase. Heterologous recombinant expression of CelStrep was carried out in Escherichia coli, and the active recombinant enzyme was purified from culture supernatant and characterized. It catalyzes the hydrolysis of carboxymethylcellulose

  13. Transcription analysis of recombinant industrial and laboratory Saccharomyces cerevisiae strains reveals the molecular basis for fermentation of glucose and xylose.

    Science.gov (United States)

    Matsushika, Akinori; Goshima, Tetsuya; Hoshino, Tamotsu

    2014-01-28

    There has been much research on the bioconversion of xylose found in lignocellulosic biomass to ethanol by genetically engineered Saccharomyces cerevisiae. However, the rate of ethanol production from xylose in these xylose-utilizing yeast strains is quite low compared to their glucose fermentation. In this study, two diploid xylose-utilizing S. cerevisiae strains, the industrial strain MA-R4 and the laboratory strain MA-B4, were employed to investigate the differences between anaerobic fermentation of xylose and glucose, and general differences between recombinant yeast strains, through genome-wide transcription analysis. In MA-R4, many genes related to ergosterol biosynthesis were expressed more highly with glucose than with xylose. Additionally, these ergosterol-related genes had higher transcript levels in MA-R4 than in MA-B4 during glucose fermentation. During xylose fermentation, several genes related to central metabolic pathways that typically increase during growth on non-fermentable carbon sources were expressed at higher levels in both strains. Xylose did not fully repress the genes encoding enzymes of the tricarboxylic acid and respiratory pathways, even under anaerobic conditions. In addition, several genes involved in spore wall metabolism and the uptake of ammonium, which are closely related to the starvation response, and many stress-responsive genes mediated by Msn2/4p, as well as trehalose synthase genes, increased in expression when fermenting with xylose, irrespective of the yeast strain. We further observed that transcript levels of genes involved in xylose metabolism, membrane transport functions, and ATP synthesis were higher in MA-R4 than in MA-B4 when strains were fermented with glucose or xylose. Our transcriptomic approach revealed the molecular events underlying the response to xylose or glucose and differences between MA-R4 and MA-B4. Xylose-utilizing S. cerevisiae strains may recognize xylose as a non-fermentable carbon source, which

  14. Analysis of Spleen-Induced Fimbria Production in Recombinant Attenuated Salmonella enterica Serovar Typhimurium Vaccine Strains

    Directory of Open Access Journals (Sweden)

    Paweł Łaniewski

    2017-08-01

    Full Text Available Salmonella enterica serovar Typhimurium genome encodes 13 fimbrial operons. Most of the fimbriae encoded by these operons are not produced under laboratory conditions but are likely to be synthesized in vivo. We used an in vivo expression technology (IVET strategy to identify four fimbrial operons, agf, saf, sti, and stc that are expressed in the spleen. When any three of these operons were deleted, the strain retained wild-type virulence. However, when all four operons were deleted, the resulting strain was completely attenuated, indicating that these four fimbriae play functionally redundant roles critical for virulence. In mice, oral doses of as low as 1 × 105 CFU of the strain with four fimbrial operons deleted provided 100% protection against challenge with 1 × 109 CFU of wild-type S. Typhimurium. We also examined the possible effect of these fimbriae on the ability of a Salmonella vaccine strain to deliver a guest antigen. We modified one of our established attenuated vaccine strains, χ9088, to delete three fimbrial operons while the fourth operon was constitutively expressed. Each derivative was modified to express the Streptococcus pneumoniae antigen PspA. Strains that constitutively expressed saf or stc elicited a strong Th1 response with significantly greater levels of anti-PspA serum IgG and greater protective efficacy than strains carrying saf or stc deletions. The isogenic strain in which all four operons were deleted generated the lowest anti-PspA levels and did not protect against challenge with virulent S. pneumoniae. Our results indicate that these fimbriae play important roles, as yet not understood, in Salmonella virulence and immunogenicity.

  15. Characterization of Recombinant B. abortus Strain RB51SOD Toward Understanding the Uncorrelated Innate and Adaptive Immune Responses Induced by RB51SOD Compared to Its Parent Vaccine Strain RB51

    OpenAIRE

    Zhu, Jianguo; Larson, Charles B.; Ramaker, Megan Ann; Quandt, Kimberly; Wendte, Jered M.; Ku, Kimberly P.; Chen, Fang; Jourdian, George W.; Vemulapalli, Ramesh; Schurig, Gerhardt G.; He, Yongqun

    2011-01-01

    Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD) in a recombinant strain of RB51 (strain RB51SOD) significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. ...

  16. Characterization of recombinant B. abortus strain RB51SOD towards understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51

    OpenAIRE

    Jianguo eZhu; Jianguo eZhu; Charles Bradford Larson; Megan Ann Ramaker; Kimberly eQuandt; Jered eWendte; Kimberly eKu; Fang eChen; George eJourdian; Ramesh eVemulapalli; Gerhardt G. Schurig; Yongqun Oliver eHe

    2011-01-01

    Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD) in a recombinant strain of RB51 (strain RB51SOD) significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. ...

  17. Genomic Investigation Reveals Highly Conserved, Mosaic, Recombination Events Associated with Capsular Switching among Invasive Neisseria meningitidis Serogroup W Sequence Type (ST)-11 Strains.

    Science.gov (United States)

    Mustapha, Mustapha M; Marsh, Jane W; Krauland, Mary G; Fernandez, Jorge O; de Lemos, Ana Paula S; Dunning Hotopp, Julie C; Wang, Xin; Mayer, Leonard W; Lawrence, Jeffrey G; Hiller, N Luisa; Harrison, Lee H

    2016-07-03

    Neisseria meningitidis is an important cause of meningococcal disease globally. Sequence type (ST)-11 clonal complex (cc11) is a hypervirulent meningococcal lineage historically associated with serogroup C capsule and is believed to have acquired the W capsule through a C to W capsular switching event. We studied the sequence of capsule gene cluster (cps) and adjoining genomic regions of 524 invasive W cc11 strains isolated globally. We identified recombination breakpoints corresponding to two distinct recombination events within W cc11: A 8.4-kb recombinant region likely acquired from W cc22 including the sialic acid/glycosyl-transferase gene, csw resulted in a C→W change in capsular phenotype and a 13.7-kb recombinant segment likely acquired from Y cc23 lineage includes 4.5 kb of cps genes and 8.2 kb downstream of the cps cluster resulting in allelic changes in capsule translocation genes. A vast majority of W cc11 strains (497/524, 94.8%) retain both recombination events as evidenced by sharing identical or very closely related capsular allelic profiles. These data suggest that the W cc11 capsular switch involved two separate recombination events and that current global W cc11 meningococcal disease is caused by strains bearing this mosaic capsular switch. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Lipase production by recombinant strains of Aspergillus niger expressing a lipase-encoding gene from Thermomyces lanuginosus.

    Science.gov (United States)

    Prathumpai, Wai; Flitter, Simon J; McIntyre, Mhairi; Nielsen, Jens

    2004-11-01

    Two recombinant strains of Aspergillus niger (NW 297-14 and NW297-24) producing a heterologous lipase from Thermomyces lanuginosus were constructed. The heterologous lipase was expressed using the TAKA amylase promoter from Aspergillus oryzae. The production kinetics of the two strains on different carbon sources in batch and carbon-limited chemostat cultivations were evaluated. In batch cultivations, the highest total product yield coefficient (Y(xp total)), given as the sum of extracellular and intracellular yields, was obtained during growth on glucose for the transformant strain NW297-24 (5.7+/-0.65 KU/g DW), whereas the highest total product yield coefficient was obtained during growth on maltose for the transformant strain NW297-14 (6.3+/-0.02 KU/g DW). Both transformants were evaluated in glucose-limited chemostat cultures. Strain NW297-14 was found to be the best producer and was thus employed for further analysis of the influence of carbon source in chemostat cultures. Here, the highest total specific lipase productivity (r(p total), the sum of extracellular and intracellular lipase productivity) was found to be 1.60+/-0.81 KU/g DW/h in maltose-limited chemostats at a dilution rate of 0.08 h(-1), compared with a total specific lipase productivity of 1.10+/-0.41 KU/g DW/h in glucose-limited chemostats. At the highest specific productivity obtained in this study, the heterologous enzyme accounted for about 1% of all cellular protein being produced by the cells, which shows that it is possible to obtain high productivities of heterologous fungal enzymes in A. niger. However, SDS-PAGE analysis showed that most of the produced lipase was bound to the cell wall.

  19. Circulation of a type 1 recombinant vaccine-derived poliovirus strain in a limited area in Romania.

    Science.gov (United States)

    Combiescu, M; Guillot, S; Persu, A; Baicus, A; Pitigoi, D; Balanant, J; Oprisan, G; Crainic, R; Delpeyroux, F; Aubert-Combiescu, A

    2007-01-01

    After intensive immunisation campaigns with the oral polio vaccine (OPV) as part of the Global Polio Eradication Initiative, poliomyelitis due to wild viruses has disappeared from most parts of the world, including Europe. Here, we report the characterization of a serotype 1 vaccine-derived poliovirus (VDPV) isolated from one acute flaccid paralysis (AFP) case with tetraplegia and eight healthy contacts belonging to the same small socio-cultural group having a low vaccine coverage living in a small town in Romania. The genomes of the isolated strains appeared to be tripartite type 1/type 2/type 1 vaccine intertypic recombinant genomes derived from a common ancestor strain. The presence of 1.2% nucleotide substitutions in the VP1 capsid protein coding region of most of the strains indicated a circulation time of about 14 months. These VDPVs were thermoresistant and, in transgenic mice expressing the human poliovirus receptor, appeared to have lost the attenuated phenotype. These results suggest that small populations with low vaccine coverage living in globally well-vaccinated countries can be the origin of VDPV emergence and circulation. These results reaffirm the importance of active surveillance for acute flaccid paralysis and poliovirus in both polio-free and polio-endemic countries.

  20. Harnessing eugenol as a substrate for production of aromatic compounds with recombinant strains of Amycolatopsis sp. HR167.

    Science.gov (United States)

    Overhage, Jörg; Steinbüchel, Alexander; Priefert, Horst

    2006-09-18

    To harness eugenol as cheap substrate for the biotechnological production of aromatic compounds, the vanillyl alcohol oxidase gene (vaoA) from Penicillium simplicissimum CBS 170.90 was cloned in an expression vector suitable for Gram-positive bacteria and expressed in the vanillin-tolerant Gram-positive strain Amycolatopsis sp. HR167. Recombinant strains harboring hybrid plasmid pRLE6SKvaom exhibited a specific vanillyl alcohol oxidase activity of 1.1U/g protein. Moreover, this strain had gained the ability to grow on eugenol as sole carbon source. The intermediates coniferyl alcohol, coniferyl aldehyde, ferulic acid, guajacol, and vanillic acid were detected as excreted compounds during growth on eugenol, whereas vanillin could only be detected in trace amounts. Resting cells of Amycolatopsis sp. HR167 (pRLE6SKvaom) produced coniferyl alcohol from eugenol with a maximum conversion rate of about 2.3 mmol/h/l of culture, and a maximum coniferyl alcohol concentration of 4.7 g/1 was obtained after 16 h biotransformation without further optimization. Beside coniferyl alcohol, traces of coniferyl aldehyde and ferulic acid were also detected.

  1. Co-cultivation of Aspergillus nidulans recombinant strains produces an enzymatic cocktail as alternative to alkaline sugarcane bagasse pretreatment

    Directory of Open Access Journals (Sweden)

    Matheus Sanita Lima

    2016-04-01

    Full Text Available Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60 % - 80 % of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA, GH11 endo-1,4-xylanase (XlnA, GH43 endo-1,5-arabinanase (AbnA and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA. This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.

  2. Reduced cerebral infection of Neospora caninum in BALB/c mice vaccinated with recombinant Brucella abortus RB51 strains expressing N. caninum SRS2 and GRA7 proteins.

    Science.gov (United States)

    Vemulapalli, Ramesh; Sanakkayala, Neelima; Gulani, Jatinder; Schurig, Gerhardt G; Boyle, Stephen M; Lindsay, David S; Sriranganathan, Nammalwar

    2007-09-30

    Neospora caninum, an obligate intracellular protozoan parasite, is the causative agent of bovine neosporosis, an important disease affecting the reproductive performance of cattle worldwide. Currently there is no effective vaccine available to prevent N. caninum infection in cattle. In this study, we examined the feasibility of developing a live, recombinant N. caninum vaccine using Brucella abortus vaccine strain RB51 as the expression and delivery vector. We generated two recombinant RB51 strains each expressing SRS2 (RB51/SRS2) or GRA7 (RB51/GRA7) antigens of N. caninum. BALB/c mice immunized by single intraperitoneal inoculation of the recombinant RB51 strains developed IgG antibodies specific to the respective N. caninum antigen. In vitro stimulation of splenocytes from the vaccinated mice with specific antigen resulted in the production of interferon-gamma, but not IL-5 or IL-10, suggesting the development of a Th1 type immune response. Upon challenge with N. caninum tachyzoites, mice vaccinated with strain RB51/SRS2, but not RB51/GRA7, showed significant resistance to cerebral infection when compared to the RB51 vaccinated mice, as determined by the tissue parasite load using a real-time quantitative TaqMan assay. Interestingly, mice vaccinated with either strain RB51 or RB51/GRA7 also contained significantly lower parasite burden in their brains compared to those inoculated with saline. Mice vaccinated with strain RB51/SRS2 or RB51/GRA7 were protected to the same extent as the strain RB51 vaccinated mice against challenge with B. abortus virulent strain 2308. These results suggest that a recombinant RB51 strain expressing an appropriate protective antigen(s), such as SRS2 of N. caninum, can confer protection against both neosporosis and brucellosis.

  3. Xylose fermentation efficiency and inhibitor tolerance of the recombinant industrial Saccharomyces cerevisiae strain NAPX37.

    Science.gov (United States)

    Li, Yun-Cheng; Mitsumasu, Kanako; Gou, Zi-Xi; Gou, Min; Tang, Yue-Qin; Li, Guo-Ying; Wu, Xiao-Lei; Akamatsu, Takashi; Taguchi, Hisataka; Kida, Kenji

    2016-02-01

    Industrial yeast strains with good xylose fermentation ability and inhibitor tolerance are important for economical lignocellulosic bioethanol production. The flocculating industrial Saccharomyces cerevisiae strain NAPX37, harboring the xylose reductase-xylitol dehydrogenase (XR-XDH)-based xylose metabolic pathway, displayed efficient xylose fermentation during batch and continuous fermentation. During batch fermentation, the xylose consumption rates at the first 36 h were similar (1.37 g/L/h) when the initial xylose concentrations were 50 and 75 g/L, indicating that xylose fermentation was not inhibited even when the xylose concentration was as high as 75 g/L. The presence of glucose, at concentrations of up to 25 g/L, did not affect xylose consumption rate at the first 36 h. Strain NAPX37 showed stable xylose fermentation capacity during continuous ethanol fermentation using xylose as the sole sugar, for almost 1 year. Fermentation remained stable at a dilution rate of 0.05/h, even though the xylose concentration in the feed was as high as 100 g/L. Aeration rate, xylose concentration, and MgSO4 concentration were found to affect xylose consumption and ethanol yield. When the xylose concentration in the feed was 75 g/L, a high xylose consumption rate of 6.62 g/L/h and an ethanol yield of 0.394 were achieved under an aeration rate of 0.1 vvm, dilution rate of 0.1/h, and 5 mM MgSO4. In addition, strain NAPX37 exhibited good tolerance to inhibitors such as weak acids, furans, and phenolics during xylose fermentation. These findings indicate that strain NAPX37 is a promising candidate for application in the industrial production of lignocellulosic bioethanol.

  4. High-throughput behavioral phenotyping of drug and alcohol susceptibility traits in the expanded panel of BXD recombinant inbred strains

    Energy Technology Data Exchange (ETDEWEB)

    Philip, Vivek M [ORNL; Ansah, T [University of Tennessee Health Science Center, Memphis; Blaha, C, [University of Tennessee Health Science Center, Memphis; Cook, Melloni N. [University of Memphis; Hamre, Kristin M. [University of Tennessee Health Science Center, Memphis; Lariviere, William R [University of Pittsburgh; Matthews, Douglas B [Baylor University; Goldowitz, Daniel [University of British Columbia, Vancouver; Chesler, Elissa J [ORNL

    2010-01-01

    Genetic reference populations, particularly the BXD recombinant inbred strains, are a valuable resource for the discovery of the bio-molecular substrates and genetic drivers responsible for trait variation and co- ariation. This approach can be profitably applied in the analysis of susceptibility and mechanisms of drug and alcohol use disorders for which many predisposing behaviors may predict occurrence and manifestation of increased preference for these substances. Many of these traits are modeled by common mouse behavioral assays, facilitating the detection of patterns and sources of genetic co-regulation of predisposing phenotypes and substance consumption. Members of the Tennessee Mouse Genome Consortium have obtained behavioral phenotype data from 260 measures related to multiple behavioral assays across several domains: self-administration, response to, and withdrawal from cocaine, MDMA, morphine and alcohol; novelty seeking; behavioral despair and related neurological phenomena; pain sensitivity; stress sensitivity; anxiety; hyperactivity; and sleep/wake cycles. All traits have been measured in both sexes and the recently expanded panel of 69 additional BXD recombinant inbred strains (N=69). Sex differences and heritability estimates were obtained for each trait, and a comparison of early (N = 32) and recent BXD RI lines was performed. Primary data is publicly available for heritability, sex difference and genetic analyses using www.GeneNetwork.org. These analyses include QTL detection and genetic analysis of gene expression. Stored results from these analyses are available at http://ontologicaldiscovery.org for comparison to other genomic analysis results. Together with the results of related studies, these data form a public resource for integrative systems genetic analysis of neurobehavioral traits.

  5. Gene sequencing, cloning, and expression of the recombinant L- Asparaginase of Pseudomonas aeruginosa SN4 strain in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Arastoo Badoei-dalfard

    2016-03-01

    Full Text Available Introduction: L- asparaginase is in an excessive demand in medical applications and in food treating industries, the request for this therapeutic enzyme is growing several folds every year. Materials and methods: In this study, a L- asparaginase gene from Pseudomonas aeruginosa strain SN4 was sequenced and cloned in E. coli. Primers were designed based on L- asparaginase from P. aeruginosa DSM 50071, which show high similarity to SN4 strain, according to 16S rRNA sequence. The L- asparaginase gene was exposed to restriction digestion with NdeI and XhoI enzymes and then ligated into pET21a plasmid. The ligated sample was transformed into competent E. coli (DE3 pLysS DH5a cells, according to CaCl2 method. The transformed E. coli cells were grown into LB agar plate containing 100 µg/ml ampicillin, IPTG (1 mM. Results: Recombinant L- asparaginase from E. coli BL21 induced after 9 h of incubation and showed high L- asparaginase activity about 93.4 IU/ml. Recombinant L- asparaginase sequencing and alignments showed that the presumed amino acid sequence composed of 350 amino acid residues showed high similarity with P. aeruginosa L- asparaginases about 99%. The results also indicated that SN4 L- asparaginase has the catalytic residues and conserve region similar to other L- asparaginases. Discussion and conclusion: This is the first report on cloning and expression of P. aeruginosa L- asparaginases in Escherichia coli. These results indicated a potent source of L- asparaginase for in vitro and in vivio anticancer consideration. 

  6. Cloning and expression of Clostridium perfringens type D vaccine strain epsilon toxin gene in E. coli as a recombinant vaccine candidate

    Science.gov (United States)

    Aziminia, Parastoo; Pilehchian-Langroudi, Reza; Esmaeilnia, Kasra

    2016-01-01

    Background and Objectives: Clostridium perfringens, a Gram-positive obligate anaerobic bacterium, is able to form resistant spores which are widely distributed in the environment. C. perfringens is subdivided into five types A to E based on its four major alpha, beta, epsilon and iota toxins. The aim of the present study was cloning and expression of C. perfringens type D vaccine strain epsilon toxin gene. Materials and Methods: Genomic DNA was extracted and the epsilon toxin gene was amplified using Pfu DNA polymerase. The PCR product was cloned into pJET1.2/blunt cloning vector. The recombinant vector (pJETε) was sequenced using universal primers. At the next step epsilon toxin gene was subcloned into pET22b(+) expression vector and transformed into E. coli Rosetta (DE3) host strain. Results: The recombinant protein has been expressed in E. coli Rosetta (DE3) cells after subcloning of C. perfringens etx gene (1008 bp) into the expression vector. Conclusion: We concluded that E. coli Rosetta strain was suitable for the expression of recombinant C. perfringens epsilon toxin protein from pET22ε expression vector. This recombinant cell can be used for further research on recombinant vaccine development. PMID:28210460

  7. Crystallization and preliminary X-ray diffraction analysis of recombinant phosphoribosylpyrophosphate synthetase from the Thermophilic thermus thermophilus strain HB27

    Energy Technology Data Exchange (ETDEWEB)

    Abramchik, Yu. A. [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Timofeev, V. I., E-mail: tostars@mail.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation); Muravieva, T. I.; Sinitsyna, E. V.; Esipov, R. S., E-mail: esipov@mx.ibch.ru [Russian Academy of Sciences, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry (Russian Federation); Kuranova, I. P., E-mail: inna@ns.crys.ras.ru [Russian Academy of Sciences, Shubnikov Institute of Crystallography of Federal Scientific Research Centre “Crystallography and Photonics” (Russian Federation)

    2017-01-15

    Phosphoribosylpyrophosphate synthetases (PRPP synthetases) are among the key enzymes essential for vital functions of organisms and are involved in the biosynthesis of purine and pyrimidine nucleotides, coenzymes, and the amino acids histidine and tryptophan. These enzymes are used in biotechnology for the combined chemoenzymatic synthesis of natural nucleotide analogs. Recombinant phosphoribosylpyrophosphate synthetase I from the thermophilic strain HB27 of the bacterium Thermus thermophilus (T. th HB27) has high thermal stability and shows maximum activity at 75°Ð¡, due to which this enzyme holds promise for biotechnological applications. In order to grow crystals and study them by X-ray crystallography, an enzyme sample, which was produced using a highly efficient producer strain, was purified by affinity and gel-filtration chromatography. The screening of crystallization conditions was performed by the vapor-diffusion technique. The crystals of the enzyme suitable for X-ray diffraction were grown by the counter-diffusion method through a gel layer. These crystals were used to collect the X-ray diffraction data set at the SPring-8 synchrotron radiation facility (Japan) to 3-Å resolution. The crystals belong to sp. gr. P2{sub 1} and have the following unitcell parameters: a = 107.7 Å, b = 112.6 Å, c = 110.2 Å, α = γ = 90°, β = 116.6°. The X-ray diffraction data set is suitable for determining the three-dimensional structure of the enzyme at 3.0-Å resolution.

  8. Transcriptional profiling of thymidine-producing strain recombineered from Escherichia coli BL21

    Directory of Open Access Journals (Sweden)

    Jin-Sook Kim

    2015-12-01

    Full Text Available DNA microarrays were used to compare the expression profiles of a thymidine overproducing strain (BLT013 and its isogenic parent, Escherichia coli BL21(DE3, when each was grown under well-defined thymidine production conditions with glycerol as carbon source. Here we describe the experimental procedures and methods in detail to reproduce the results and provide resource to be applied to similar engineering approach (available at Gene Expression Omnibus database under GSE69963. Taken together, the microarray data provide a basis for new testable hypotheses regarding enhancement of thymidine productivity and attaining a more complete understanding of nucleotide metabolism in bacteria.

  9. Feline coronavirus type II strains 79-1683 and 79-1146 originate from a double recombination between feline coronavirus type I and canine coronavirus

    NARCIS (Netherlands)

    Horzinek, M.C.; Herrewegh, A.A.; Rottier, P.J.M.; Groot, R.J. de

    1998-01-01

    Recent evidence suggests that the type II feline coronavirus (FCoV) strains 79-1146 and 79-1683 have arisen from a homologous RNA recombination event between FCoV type I and canine coronavirus (CCV). In both cases, the template switch apparently took place between the S and M genes, giving rise to

  10. Wide variety of recombinant strains of norovirus GII in pediatric patients hospitalized with acute gastroenteritis in Thailand during 2005 to 2015.

    Science.gov (United States)

    Supadej, Kanittapon; Khamrin, Pattara; Kumthip, Kattareeya; Kochjan, Pakawat; Yodmeeklin, Arpaporn; Ushijima, Hiroshi; Maneekarn, Niwat

    2017-08-01

    Norovirus (NoV) has been reported as being a common cause of acute gastroenteritis both in children and adults worldwide. Of the many variants, NoV GII.4 is the most predominant genotype. One of the mechanisms that drives the evolution and emergence of new variants of NoV is homologous recombination. This study describes the genetic recombination involved in cases of NoV GII detected in pediatric patients with acute gastroenteritis in Chiang Mai, Thailand during 2005 to 2015. From a total of 1938 stool samples, 3 (0.15%) were positive for NoV GI and 298 (15.38%) were identified as NoV GII. The genotypes detected in this study were GI.6, GI.14, GII.1, GII.2, GII.3, GII.4, GII.6, GII.7, GII.12, GII.13, GII.14, GII.15, GII.16, GII.17, GII.20, and GII.21. The NoV recombinant strains were verified by analysis of the partial sequence of ORF1 (RdRp)/ORF2 (capsid) junction. Phylogenetic analyses of partial ORF1 and ORF2 regions resulted in the identification of 21 (6.98%) NoV recombinant strains. Among these, 9 recombination patterns were detected in this study; GII.Pe/GII.4, GII.Pg/GII.1, GII.Pg/GII.12, GII.P7/GII.6, GII.P7/GII.14, GII.P12/GII.4, GII.P16/GII.2, GII.P16/GII.13, and GII.P21/GII.3. The findings demonstrated the wide variety of recombinant strains of NoV GII strains detected in pediatric patients admitted to the hospitals with acute gastroenteritis in Chiang Mai, Thailand during the past decade. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Identification of five novel modifier loci of ApcMin harbored in the BXH14 recombinant inbred strain

    Science.gov (United States)

    Siracusa, Linda D.

    2012-01-01

    Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc Min mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc Min mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc Min mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc Min males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene–gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies. Abbreviations:APCadenomatous polyposis coliGWASgenome-wide association studiesQTLquantitative trait lociSNPsingle-nucleotide polymorphism. PMID:22637734

  12. Identification of five novel modifier loci of Apc(Min) harbored in the BXH14 recombinant inbred strain.

    Science.gov (United States)

    Nnadi, Stephanie C; Watson, Rayneisha; Innocent, Julie; Gonye, Gregory E; Buchberg, Arthur M; Siracusa, Linda D

    2012-08-01

    Every year thousands of people in the USA are diagnosed with small intestine and colorectal cancers (CRC). Although environmental factors affect disease etiology, uncovering underlying genetic factors is imperative for risk assessment and developing preventative therapies. Familial adenomatous polyposis is a heritable genetic disorder in which individuals carry germ-line mutations in the adenomatous polyposis coli (APC) gene that predisposes them to CRC. The Apc ( Min ) mouse model carries a point mutation in the Apc gene and develops polyps along the intestinal tract. Inbred strain background influences polyp phenotypes in Apc ( Min ) mice. Several Modifier of Min (Mom) loci that alter tumor phenotypes associated with the Apc ( Min ) mutation have been identified to date. We screened BXH recombinant inbred (RI) strains by crossing BXH RI females with C57BL/6J (B6) Apc ( Min ) males and quantitating tumor phenotypes in backcross progeny. We found that the BXH14 RI strain harbors five modifier loci that decrease polyp multiplicity. Furthermore, we show that resistance is determined by varying combinations of these modifier loci. Gene interaction network analysis shows that there are multiple networks with proven gene-gene interactions, which contain genes from all five modifier loci. We discuss the implications of this result for studies that define susceptibility loci, namely that multiple networks may be acting concurrently to alter tumor phenotypes. Thus, the significance of this work resides not only with the modifier loci we identified but also with the combinations of loci needed to get maximal protection against polyposis and the impact of this finding on human disease studies.

  13. Highly Efficient Biotransformation of Eugenol to Ferulic Acid and Further Conversion to Vanillin in Recombinant Strains of Escherichia coli

    Science.gov (United States)

    Overhage, Jörg; Steinbüchel, Alexander; Priefert, Horst

    2003-01-01

    The vaoA gene from Penicillium simplicissimum CBS 170.90, encoding vanillyl alcohol oxidase, which also catalyzes the conversion of eugenol to coniferyl alcohol, was expressed in Escherichia coli XL1-Blue under the control of the lac promoter, together with the genes calA and calB, encoding coniferyl alcohol dehydrogenase and coniferyl aldehyde dehydrogenase of Pseudomonas sp. strain HR199, respectively. Resting cells of the corresponding recombinant strain E. coli XL1-Blue(pSKvaomPcalAmcalB) converted eugenol to ferulic acid with a molar yield of 91% within 15 h on a 50-ml scale, reaching a ferulic acid concentration of 8.6 g liter−1. This biotransformation was scaled up to a 30-liter fermentation volume. The maximum production rate for ferulic acid at that scale was 14.4 mmol per h per liter of culture. The maximum concentration of ferulic acid obtained was 14.7 g liter−1 after a total fermentation time of 30 h, which corresponded to a molar yield of 93.3% with respect to the added amount of eugenol. In a two-step biotransformation, E. coli XL1-Blue(pSKvaomPcalAmcalB) was used to produce ferulic acid from eugenol and, subsequently, E. coli(pSKechE/Hfcs) was used to convert ferulic acid to vanillin (J. Overhage, H. Priefert, and A. Steinbüchel, Appl. Environ. Microbiol. 65:4837-4847, 1999). This process led to 0.3 g of vanillin liter−1, besides 0.1 g of vanillyl alcohol and 4.6 g of ferulic acid liter−1. The genes ehyAB, encoding eugenol hydroxylase of Pseudomonas sp. strain HR199, and azu, encoding the potential physiological electron acceptor of this enzyme, were shown to be unsuitable for establishing eugenol bioconversion in E. coli XL1-Blue. PMID:14602615

  14. Highly efficient biotransformation of eugenol to ferulic acid and further conversion to vanillin in recombinant strains of Escherichia coli.

    Science.gov (United States)

    Overhage, Jörg; Steinbüchel, Alexander; Priefert, Horst

    2003-11-01

    The vaoA gene from Penicillium simplicissimum CBS 170.90, encoding vanillyl alcohol oxidase, which also catalyzes the conversion of eugenol to coniferyl alcohol, was expressed in Escherichia coli XL1-Blue under the control of the lac promoter, together with the genes calA and calB, encoding coniferyl alcohol dehydrogenase and coniferyl aldehyde dehydrogenase of Pseudomonas sp. strain HR199, respectively. Resting cells of the corresponding recombinant strain E. coli XL1-Blue(pSKvaomPcalAmcalB) converted eugenol to ferulic acid with a molar yield of 91% within 15 h on a 50-ml scale, reaching a ferulic acid concentration of 8.6 g liter(-1). This biotransformation was scaled up to a 30-liter fermentation volume. The maximum production rate for ferulic acid at that scale was 14.4 mmol per h per liter of culture. The maximum concentration of ferulic acid obtained was 14.7 g liter(-1) after a total fermentation time of 30 h, which corresponded to a molar yield of 93.3% with respect to the added amount of eugenol. In a two-step biotransformation, E. coli XL1-Blue(pSKvaomPcalAmcalB) was used to produce ferulic acid from eugenol and, subsequently, E. coli(pSKechE/Hfcs) was used to convert ferulic acid to vanillin (J. Overhage, H. Priefert, and A. Steinbüchel, Appl. Environ. Microbiol. 65:4837-4847, 1999). This process led to 0.3 g of vanillin liter(-1), besides 0.1 g of vanillyl alcohol and 4.6 g of ferulic acid liter(-1). The genes ehyAB, encoding eugenol hydroxylase of Pseudomonas sp. strain HR199, and azu, encoding the potential physiological electron acceptor of this enzyme, were shown to be unsuitable for establishing eugenol bioconversion in E. coli XL1-Blue.

  15. Cocirculation of Two env Molecular Variants, of Possible Recombinant Origin, in Gorilla and Chimpanzee Simian Foamy Virus Strains from Central Africa.

    Science.gov (United States)

    Richard, Léa; Rua, Réjane; Betsem, Edouard; Mouinga-Ondémé, Augustin; Kazanji, Mirdad; Leroy, Eric; Njouom, Richard; Buseyne, Florence; Afonso, Philippe V; Gessain, Antoine

    2015-12-01

    Simian foamy virus (SFV) is a ubiquitous retrovirus in nonhuman primates (NHPs) that can be transmitted to humans, mostly through severe bites. In the past few years, our laboratory has identified more than 50 hunters from central Africa infected with zoonotic SFVs. Analysis of the complete sequences of five SFVs obtained from these individuals revealed that env was the most variable gene. Furthermore, recombinant SFV strains, some of which involve sequences in the env gene, were recently identified. Here, we investigated the variability of the env genes of zoonotic SFV strains and searched for possible recombinants. We sequenced the complete env gene or its surface glycoprotein region (SU) from DNA amplified from the blood of (i) a series of 40 individuals from Cameroon or Gabon infected with a gorilla or chimpanzee foamy virus (FV) strain and (ii) 1 gorilla and 3 infected chimpanzees living in the same areas as these hunters. Phylogenetic analyses revealed the existence of two env variants among both the gorilla and chimpanzee FV strains that were present in zoonotic and NHP strains. These variants differ greatly (>30% variability) in a 753-bp-long region located in the receptor-binding domain of SU, whereas the rest of the gene is very conserved. Although the organizations of the Env protein sequences are similar, the potential glycosylation patterns differ between variants. Analysis of recombination suggests that the variants emerged through recombination between different strains, although all parental strains could not be identified. SFV infection in humans is a great example of a zoonotic retroviral infection that has not spread among human populations, in contrast to human immunodeficiency viruses (HIVs) and human T-lymphotropic viruses (HTLVs). Recombination was a major mechanism leading to the emergence of HIV. Here, we show that two SFV molecular envelope gene variants circulate among ape populations in Central Africa and that both can be transmitted to

  16. Emergence of novel recombinant GII.P16_GII.2 and GII. P16_GII.4 Sydney 2012 norovirus strains in Italy, winter 2016/2017.

    Science.gov (United States)

    Medici, Maria Cristina; Tummolo, Fabio; Martella, Vito; De Conto, Flora; Arcangeletti, Maria Cristina; Pinardi, Federica; Ferraglia, Francesca; Chezzi, Carlo; Calderaro, Adriana

    2018-01-01

    In the winter season 2014/15, the GII.P17_GII.17 norovirus strain Kawasaki 2014 emerged in Italy, cocirculating with pandemic GII.4 strains. In March 2016, molecular investigation identified novel GII.P16 recombinant noroviruses in children with gastroenteritis in Italy. In 43.10% of the genotyped noroviruses GII.P16 strains were identified: 12 were characterized as GII.2 and 13 as GII.4 Sydney 2012 capsid genotypes. The GII.P16 genotype became predominant in January- February 2017 along with an increase in norovirus activity. The capsid gene was characterized as GII.2 or GII.4 Sydney 2012 variant. The emergence of two different recombinant GII.P16 viruses, of which one harboring a pandemic GII.4 capsid sequence, suggests the potential for a future pandemic.

  17. Improved sugar co-utilisation by encapsulation of a recombinant Saccharomyces cerevisiae strain in alginate-chitosan capsules.

    Science.gov (United States)

    Westman, Johan O; Bonander, Nicklas; Taherzadeh, Mohammad J; Franzén, Carl Johan

    2014-01-01

    Two major hurdles for successful production of second-generation bioethanol are the presence of inhibitory compounds in lignocellulosic media, and the fact that Saccharomyces cerevisiae cannot naturally utilise pentoses. There are recombinant yeast strains that address both of these issues, but co-utilisation of glucose and xylose is still an issue that needs to be resolved. A non-recombinant way to increase yeast tolerance to hydrolysates is by encapsulation of the yeast. This can be explained by concentration gradients occuring in the cell pellet inside the capsule. In the current study, we hypothesised that encapsulation might also lead to improved simultaneous utilisation of hexoses and pentoses because of such sugar concentration gradients. In silico simulations of encapsulated yeast showed that the presence of concentration gradients of inhibitors can explain the improved inhibitor tolerance of encapsulated yeast. Simulations also showed pronounced concentration gradients of sugars, which resulted in simultaneous xylose and glucose consumption and a steady state xylose consumption rate up to 220-fold higher than that found in suspension culture. To validate the results experimentally, a xylose-utilising S. cerevisiae strain, CEN.PK XXX, was constructed and encapsulated in semi-permeable alginate-chitosan liquid core gel capsules. In defined media, encapsulation not only increased the tolerance of the yeast to inhibitors, but also promoted simultaneous utilisation of glucose and xylose. Encapsulation of the yeast resulted in consumption of at least 50% more xylose compared with suspended cells over 96-hour fermentations in medium containing both sugars. The higher consumption of xylose led to final ethanol titres that were approximately 15% higher. In an inhibitory dilute acid spruce hydrolysate, freely suspended yeast cells consumed the sugars in a sequential manner after a long lag phase, whereas no lag phase was observed for the encapsulated yeast, and

  18. Increasing cell biomass in Saccharomyces cerevisiae increases recombinant protein yield: the use of a respiratory strain as a microbial cell factory

    Directory of Open Access Journals (Sweden)

    Hedfalk Kristina

    2010-06-01

    Full Text Available Abstract Background Recombinant protein production is universally employed as a solution to obtain the milligram to gram quantities of a given protein required for applications as diverse as structural genomics and biopharmaceutical manufacture. Yeast is a well-established recombinant host cell for these purposes. In this study we wanted to investigate whether our respiratory Saccharomyces cerevisiae strain, TM6*, could be used to enhance the productivity of recombinant proteins over that obtained from corresponding wild type, respiro-fermentative strains when cultured under the same laboratory conditions. Results Here we demonstrate at least a doubling in productivity over wild-type strains for three recombinant membrane proteins and one recombinant soluble protein produced in TM6* cells. In all cases, this was attributed to the improved biomass properties of the strain. The yield profile across the growth curve was also more stable than in a wild-type strain, and was not further improved by lowering culture temperatures. This has the added benefit that improved yields can be attained rapidly at the yeast's optimal growth conditions. Importantly, improved productivity could not be reproduced in wild-type strains by culturing them under glucose fed-batch conditions: despite having achieved very similar biomass yields to those achieved by TM6* cultures, the total volumetric yields were not concomitantly increased. Furthermore, the productivity of TM6* was unaffected by growing cultures in the presence of ethanol. These findings support the unique properties of TM6* as a microbial cell factory. Conclusions The accumulation of biomass in yeast cell factories is not necessarily correlated with a proportional increase in the functional yield of the recombinant protein being produced. The respiratory S. cerevisiae strain reported here is therefore a useful addition to the matrix of production hosts currently available as its improved biomass

  19. Insights into the evolution of the new variant rabbit haemorrhagic disease virus (GI.2) and the identification of novel recombinant strains.

    Science.gov (United States)

    Silvério, D; Lopes, A M; Melo-Ferreira, J; Magalhães, M J; Monterroso, P; Serronha, A; Maio, E; Alves, P C; Esteves, P J; Abrantes, J

    2018-02-11

    Rabbit haemorrhagic disease (RHD) is a viral disease that affects the European rabbit. RHD was detected in 1984 in China and rapidly disseminated worldwide causing a severe decline in wild rabbit populations. The aetiological agent, rabbit haemorrhagic disease virus (RHDV), is an RNA virus of the family Caliciviridae, genus Lagovirus. Pathogenic (G1-G6 or variants GI.1a-GI.1d) and non-pathogenic strains (GI.4) have been characterized. In 2010, a new variant of RHDV, RHDV2/RHDVb/GI.2, was detected in France. GI.2 arrived to the Iberian Peninsula in 2011, and several recombination events were reported. Here, we sequenced full genomes of 19 samples collected in Portugal between 2014 and 2016. New GI.2 recombinant strains were detected, including triple recombinants. These recombinants possess a non-structural protein p16 related to a non-pathogenic strain. Evolutionary analyses were conducted on GI.2 VP60 sequences. Estimated time to the most recent common ancestor (tMRCA) suggests an emergence of GI.2 in July 2008, not distant from its first detection in 2010. This is the first study on GI.2 evolution and highlights the need of continued monitoring and characterization of complete genome sequences when studying lagoviruses' evolution. © 2018 Blackwell Verlag GmbH.

  20. Salivary sIg-A response against the recombinant Ag38 antigen of Mycobacterium tuberculosis Indonesian strain.

    Science.gov (United States)

    Raras, Tri Yudani Mardining; Sholeh, Gamal; Lyrawati, Diana

    2014-01-01

    An evaluation of the humoral response based on secretory immunoglobulin A levels in the saliva of pulmonary tuberculosis (TB) acid-fast bacillus-positive (TB-AFB+) patients against a recombinant 38 kDa antigen (Ag38-rec) is reported. A total of 60 saliva samples consist of 30 TB-AFB+ patients and 30 healthy controls were tested against 500 ng of semi-purified antigen using the dot blot method. Results showed that the protein antigen could differentiate between healthy individuals and TB-AFB(+) patients. Whole saliva demonstrated better reactivity than centrifuged saliva. The Ag38-rec protein indicated statistically comparable sensitivity (80% versus 90%), but lower specificity (36.6% versus 70%) compared with purified protein derivative (PPD). Surprisingly, both antigens similarly recognized secretory immunoglobulin A in the saliva of the healthy group (50% versus 50%, respectively). These findings suggest that the Ag38-rec protein originating from a local strain of Mycobacterium tuberculosis may be used for TB screening, however require purity improvement.

  1. Recombinant BCG: Innovations on an old vaccine. Scope of BCG strains and strategies to improve long lasting memory

    Directory of Open Access Journals (Sweden)

    Adeliane C da Costa

    2014-04-01

    Full Text Available BCG (Bacille Calmette-Guérin, an attenuated vaccine derived from Mycobacterium bovis, is the current vaccine of choice against tuberculosis (TB. Despite its protection against active TB in children, BCG has failed to protect adults against TB infection and active disease development, especially in developing countries where the disease is endemic. Currently, there is a significant effort towards the development of a new TB vaccine. This review article aims to address publications on recombinant BCG (rBCG published in the last 5 years, to highlight the strategies used to develop rBCG, with a focus on the criteria used to improve immunological memory and protection compared with BCG. The literature review was done in April 2013, using the key words tuberculosis, rBCG vaccine and memory. This review discusses the BCG strains and strategies currently used for the modification of BCG, including: overexpression of M. tuberculosis (Mtb immunodominant antigens already present in BCG; gene insertion of immunodominant antigens from Mtb absent in the BCG vaccine; combination of introduction and over expression of genes that are lost during the attenuation process of BCG; BCG modifications for the induction of CD8+ T cell immune responses and cytokines expressing rBCG. Among the vaccines discussed, VPM1002, also called rBCGΔureC::hly, is currently in human clinical trials. Much progress has been made in the effort to improve BCG, with some promising candidates, but considerable work is still required to address functional long-lasting memory.

  2. Enrichment of intersubtype HIV-1 recombinants in a dual infection system using HIV-1 strain-specific siRNAs

    Science.gov (United States)

    2011-01-01

    Background Intersubtype HIV-1 recombinants in the form of unique or stable circulating recombinants forms (CRFs) are responsible for over 20% of infections in the worldwide epidemic. Mechanisms controlling the generation, selection, and transmission of these intersubtype HIV-1 recombinants still require further investigation. All intersubtype HIV-1 recombinants are generated and evolve from initial dual infections, but are difficult to identify in the human population. In vitro studies provide the most practical system to study mechanisms, but the recombination rates are usually very low in dual infections with primary HIV-1 isolates. This study describes the use of HIV-1 isolate-specific siRNAs to enrich intersubtype HIV-1 recombinants and inhibit the parental HIV-1 isolates from a dual infection. Results Following a dual infection with subtype A and D primary HIV-1 isolates and two rounds of siRNA treatment, nearly 100% of replicative virus was resistant to a siRNA specific for an upstream target sequence in the subtype A envelope (env) gene as well as a siRNA specific for a downstream target sequence in the subtype D env gene. Only 20% (10/50) of the replicating virus had nucleotide substitutions in the siRNA-target sequence whereas the remaining 78% (39/50) harbored a recombination breakpoint that removed both siRNA target sequences, and rendered the intersubtype D/A recombinant virus resistant to the dual siRNA treatment. Since siRNAs target the newly transcribed HIV-1 mRNA, the siRNAs only enrich intersubtype env recombinants and do not influence the recombination process during reverse transcription. Using this system, a strong bias is selected for recombination breakpoints in the C2 region, whereas other HIV-1 env regions, most notably the hypervariable regions, were nearly devoid of intersubtype recombination breakpoints. Sequence conservation plays an important role in selecting for recombination breakpoints, but the lack of breakpoints in many conserved

  3. Immune responses to recombinants of the South African vaccine strain of lumpy skin disease virus generated by using thymidine kinase gene insertion.

    Science.gov (United States)

    Wallace, David B; Viljoen, Gerrit J

    2005-04-27

    The South African vaccine strain of lumpy skin disease virus (type SA-Neethling) is currently being developed as a vector for recombinant vaccines of economically important livestock diseases throughout Africa. In this study, the feasibility of using the viral thymidine kinase gene as the site of insertion was investigated and recombinant viruses were evaluated in animal trials. Two separate recombinants were generated and selected for homogeneity expressing either the structural glycoprotein gene of bovine ephemeral fever virus (BEFV) or the two structural glycoprotein genes of Rift Valley fever virus (RVFV). Both recombinants incorporate the enhanced green fluorescent protein (EGFP) as a visual marker and the Escherichia coli guanine phosphoribosyl transferase (gpt) gene for dominant positive selection. The LSDV-RVFV recombinant construct (rLSDV-RVFV) protected mice against virulent RVFV challenge. In a small-scale BEFV-challenge cattle trial the rLSDV-BEFV construct failed to fully protect the cattle against virulent challenge, although both a humoral and cellular BEFV-specific immune response was elicited.

  4. Construction of a Recombinant Allergen-Producing Probiotic Bacterial Strain: Introduction of a New Line for a Live Oral Vaccine Against Chenopodium album Pollen Allergy

    Directory of Open Access Journals (Sweden)

    Leila Roozbeh Nasiraie

    2013-10-01

    Full Text Available Background: During the last two decades, significant advances have been made in the fields of lactococcal genetics and protein expression. Lactococcus lactis (L. lactis is an effective vector for protein expression and can be used as an antigen delivery system. Hence, L. lactis is an ideal candidate for mucosal immunotherapy. Profilin (Che a 2, the major allergen in Chenopodium album, is one of the most important causes of allergic diseases in desert and semi-desert areas, especially in Iran, Saudi Arabia, and Kuwait that was cloned and expressed in L. lactis for the first time. Methods: To construct L. lactis that expressed Che a 2, a DNA sequence was cloned and used to transform bacteria. Expression of Che a 2 was analyzed via monitoring of related RNA and protein. Hydrophobicity, adherence to HT-29 cells, antibiotic resistance, resistance to gastrointestinal contents, pH, and bile salt in recombinant and native L. lactis were evaluated. Results: Immunoblot analyses demonstrated that recombinant Che a 2 is expressed as a 32 kDa dimeric protein immunological studies showed it can bind human IgE. Both native and recombinant bacteria were sensitive to low pH and simulated gastric conditions. Bacterial survival was reduced 80-100% after 2 h of exposure to pH 1.5-2. Both native and recombinant bacteria were able to grow in 0.3 and 2% bile salts. After incubation of recombinant L. lactis in simulated gastric and intestinal juices for one and two hours, respectively, cell survival was reduced by 100%. Adhesion capability in both strains was minimal and there were no significant differences in any of our tests between native and recombinant bacteria. Conclusion: Successfully recombinant L. lactis with capability of expression Che a 2 was produced and revealed it is sensitive to gastrointestinal contents.

  5. Development of Escherichia coli Strains That Withstand Membrane Protein-Induced Toxicity and Achieve High-Level Recombinant Membrane Protein Production.

    Science.gov (United States)

    Gialama, Dimitra; Kostelidou, Kalliopi; Michou, Myrsini; Delivoria, Dafni Chrysanthi; Kolisis, Fragiskos N; Skretas, Georgios

    2017-02-17

    Membrane proteins perform critical cellular functions in all living organisms and constitute major targets for drug discovery. Escherichia coli has been the most popular overexpression host for membrane protein biochemical/structural studies. Bacterial production of recombinant membrane proteins, however, is typically hampered by poor cellular accumulation and severe toxicity for the host, which leads to low final biomass and minute volumetric yields. In this work, we aimed to rewire the E. coli protein-producing machinery to withstand the toxicity caused by membrane protein overexpression in order to generate engineered bacterial strains with the ability to achieve high-level membrane protein production. To achieve this, we searched for bacterial genes whose coexpression can suppress membrane protein-induced toxicity and identified two highly potent effectors: the membrane-bound DnaK cochaperone DjlA, and the inhibitor of the mRNA-degrading activity of the E. coli RNase E, RraA. E. coli strains coexpressing either djlA or rraA, termed SuptoxD and SuptoxR, respectively, accumulated markedly higher levels of final biomass and produced dramatically enhanced yields for a variety of prokaryotic and eukaryotic recombinant membrane proteins. In all tested cases, either SuptoxD, or SuptoxR, or both, outperformed the capabilities of commercial strains frequently utilized for recombinant membrane protein production purposes.

  6. Recombinant BCG: Innovations on an Old Vaccine. Scope of BCG Strains and Strategies to Improve Long-Lasting Memory

    Science.gov (United States)

    da Costa, Adeliane Castro; Nogueira, Sarah Veloso; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2014-01-01

    Bacille Calmette–Guérin (BCG), an attenuated vaccine derived from Mycobacterium bovis, is the current vaccine of choice against tuberculosis (TB). Despite its protection against active TB in children, BCG has failed to protect adults against TB infection and active disease development, especially in developing countries where the disease is endemic. Currently, there is a significant effort toward the development of a new TB vaccine. This review article aims to address publications on recombinant BCG (rBCG) published in the last 5 years, to highlight the strategies used to develop rBCG, with a focus on the criteria used to improve immunological memory and protection compared with BCG. The literature review was done in April 2013, using the key words TB, rBCG vaccine, and memory. This review discusses the BCG strains and strategies currently used for the modification of BCG, including: overexpression of Mycobacterium tuberculosis (Mtb) immunodominant antigens already present in BCG; gene insertion of immunodominant antigens from Mtb absent in the BCG vaccine; combination of introduction and overexpression of genes that are lost during the attenuation process of BCG; BCG modifications for the induction of CD8+ T-cell immune responses and cytokines expressing rBCG. Among the vaccines discussed, VPM1002, also called rBCGΔureC:hly, is currently in human clinical trials. Much progress has been made in the effort to improve BCG, with some promising candidates, but considerable work is still required to address functional long-lasting memory. PMID:24778634

  7. Physiological characterisation of recombinant Aspergillus nidulans strains with different creA genotypes expressing A-oryzae alpha-amylase

    DEFF Research Database (Denmark)

    Agger, Teit; Petersen, J.B.; O'Connor, S.M.

    2002-01-01

    The physiology of three strains of Aspergillus nidulans was examined-a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations and the biom...

  8. Generation and evaluation of a LaSota strain-based recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of avian metapneumovirus subgroup C (aMPV-C) as a bivalent vaccine

    Science.gov (United States)

    To develop a bivalent vaccine, a recombinant Newcastle disease virus was generated by using the NDV LaSota strain with insertion of the G gene of aMPV-C. The biological assessments of the recombinant virus, rLS/aMPV-CG, by conducting the mean death time, intracerebral pathogenicity index, and growth...

  9. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c.

    Science.gov (United States)

    Wanarska, Marta; Kur, Józef

    2012-08-23

    D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield of lactose hydrolysis, the complete utilization

  10. A method for the production of D-tagatose using a recombinant Pichia pastoris strain secreting β-D-galactosidase from Arthrobacter chlorophenolicus and a recombinant L-arabinose isomerase from Arthrobacter sp. 22c

    Directory of Open Access Journals (Sweden)

    Wanarska Marta

    2012-08-01

    Full Text Available Abstract Background D-Tagatose is a natural monosaccharide which can be used as a low-calorie sugar substitute in food, beverages and pharmaceutical products. It is also currently being tested as an anti-diabetic and obesity control drug. D-Tagatose is a rare sugar, but it can be manufactured by the chemical or enzymatic isomerization of D-galactose obtained by a β-D-galactosidase-catalyzed hydrolysis of milk sugar lactose and the separation of D-glucose and D-galactose. L-Arabinose isomerases catalyze in vitro the conversion of D-galactose to D-tagatose and are the most promising enzymes for the large-scale production of D-tagatose. Results In this study, the araA gene from psychrotolerant Antarctic bacterium Arthrobacter sp. 22c was isolated, cloned and expressed in Escherichia coli. The active form of recombinant Arthrobacter sp. 22c L-arabinose isomerase consists of six subunits with a combined molecular weight of approximately 335 kDa. The maximum activity of this enzyme towards D-galactose was determined as occurring at 52°C; however, it exhibited over 60% of maximum activity at 30°C. The recombinant Arthrobacter sp. 22c L-arabinose isomerase was optimally active at a broad pH range of 5 to 9. This enzyme is not dependent on divalent metal ions, since it was only marginally activated by Mg2+, Mn2+ or Ca2+ and slightly inhibited by Co2+ or Ni2+. The bioconversion yield of D-galactose to D-tagatose by the purified L-arabinose isomerase reached 30% after 36 h at 50°C. In this study, a recombinant Pichia pastoris yeast strain secreting β-D-galactosidase Arthrobacter chlorophenolicus was also constructed. During cultivation of this strain in a whey permeate, lactose was hydrolyzed and D-glucose was metabolized, whereas D-galactose was accumulated in the medium. Moreover, cultivation of the P. pastoris strain secreting β-D-galactosidase in a whey permeate supplemented with Arthrobacter sp. 22c L-arabinose isomerase resulted in a 90% yield

  11. Effect of genomic location on horizontal transfer of a recombinant gene cassette between Pseudomonas strains in the rhizosphere and spermosphere of barley seedlings

    DEFF Research Database (Denmark)

    Sengelov, G.; Kristensen, K. J.; Sørensen, Anders Morten Hay

    2001-01-01

    The use of genetically engineered bacteria in natural environments constitutes a risk of transfer of recombinant DNA to the indigenous bacteria. However, chromosomal genes are believed to be less likely to transfer than genes on mobilizable and conjugative plasmids. To study this assumption......, horizontal transfer of a recombinant gene cassette inserted into the chromosome of a Pseudomonas strutzeri strain, into a mobilizable plasmid (pAGM42), and into a conjugative plasmid (pKJK5) isolated from barley rhizosphere was investigated. Horizontal transfer efficiencies of the gene cassette inserted...... into a conjugative plasmid was 8.20 x 10(-3) transconjugants/(donors x recipients)(1/2) in the rhizosphere and 4.57 x 10(-2) transconjugants/(donors x recipients)(1/2) in the spermosphere. Mobilization of the plasmid pAGM42 by the plasmids RP4 and pKJK5 was also detected at high levels in the microcosms, transfer...

  12. Genetic control of the radiosensitivity of lymphoid cells for antibody-forming ability in CXS series of recombinant inbred mouse strains

    International Nuclear Information System (INIS)

    Okumoto, M.; Mori, N.; Nishikawa, R.; Imai, S.; Hilgers, J.; Takamori, Y.; Yagasaki, O.

    1992-01-01

    Incidence of radiation-induced lymphomas differs remarkably among various mouse strains. BALB/cHeA (C) mice are highly susceptible to radiation induction of lymphomas, while STS/A (S) mice are resistant. Thus, the induction of the disease is controlled by some genetic factors. To examine an involvement of radiosensitivity of lymphoid cells in lymphomagenesis, we have compared genetic control of the radiosensitivity for antibody-forming ability with that of lymphoma development in BALB/cHeA, STS/A, (CXS)F 1 hybrids and CXS series of recombinant inbred strains. Decrease of number of splenic plaque-forming cell (PFC) in Jerne's method by 3 Gy of X-irradiation for BALB/cHeA mice was larger than that for STS/A mice by more than one order of magnitude. (CXS)F 1 hybrid mice showed small number of decrease of PFC similar to STS/A mice suggesting that phenotype of radioresistance was dominant over sensitivity. The best concordance between genetic markers and radiosensitivities of antibody-forming ability in recombinant inbred strains was observed in a region containing Igh locus on chromosome 12. The results show that one locus controlling the radioresistance of lymphoid cells for antibody-forming ability might exist in the region containing Igh locus, and that this region clearly differ from a region with Ifa locus on chromosome 4 which regulate the susceptibility to radiation-induced lymphomagenesis. (author)

  13. Molecular diversity of Chickpea chlorotic dwarf virus in Sudan: high rates of intra-species recombination - a driving force in the emergence of new strains.

    Science.gov (United States)

    Kraberger, Simona; Kumari, Safaa G; Hamed, Abdelmagid A; Gronenborn, Bruno; Thomas, John E; Sharman, Murray; Harkins, Gordon W; Muhire, Brejnev M; Martin, Darren P; Varsani, Arvind

    2015-01-01

    In Sudan Chickpea chlorotic dwarf virus (CpCDV, genus Mastrevirus, family Geminiviridae) is an important pathogen of pulses that are grown both for local consumption, and for export. Although a few studies have characterised CpCDV genomes from countries in the Middle East, Africa and the Indian subcontinent, little is known about CpCDV diversity in any of the major chickpea production areas in these regions. Here we analyse the diversity of 146 CpCDV isolates characterised from pulses collected across the chickpea growing regions of Sudan. Although we find that seven of the twelve known CpCDV strains are present within the country, strain CpCDV-H alone accounted for ∼73% of the infections analysed. Additionally we identified four new strains (CpCDV-M, -N, -O and -P) and show that recombination has played a significant role in the diversification of CpCDV, at least in this region. Accounting for observed recombination events, we use the large amounts of data generated here to compare patterns of natural selection within protein coding regions of CpCDV and other dicot-infecting mastrevirus species. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Genomic and Phylogenetic Characterization of Novel, Recombinant H5N2 Avian Influenza Virus Strains Isolated from Vaccinated Chickens with Clinical Symptoms in China

    Directory of Open Access Journals (Sweden)

    Huaiying Xu

    2015-02-01

    Full Text Available Infection of poultry with diverse lineages of H5N2 avian influenza viruses has been documented for over three decades in different parts of the world, with limited outbreaks caused by this highly pathogenic avian influenza virus. In the present study, three avian H5N2 influenza viruses, A/chicken/Shijiazhuang/1209/2013, A/chicken/Chiping/0321/2014, and A/chicken/Laiwu/0313/2014, were isolated from chickens with clinical symptoms of avian influenza. Complete genomic and phylogenetic analyses demonstrated that all three isolates are novel recombinant viruses with hemagglutinin (HA and matrix (M genes derived from H5N1, and remaining genes derived from H9N2-like viruses. The HA cleavage motif in all three strains (PQIEGRRRKR/GL is characteristic of a highly pathogenic avian influenza virus strain. These results indicate the occurrence of H5N2 recombination and highlight the importance of continued surveillance of the H5N2 subtype virus and reformulation of vaccine strains.

  15. Recombinant infectious bronchitis virus (IBV) H120 vaccine strain expressing the hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) protects chickens against IBV and NDV challenge.

    Science.gov (United States)

    Yang, Xin; Zhou, Yingshun; Li, Jianan; Fu, Li; Ji, Gaosheng; Zeng, Fanya; Zhou, Long; Gao, Wenqian; Wang, Hongning

    2016-05-01

    Infectious bronchitis (IB) and Newcastle disease (ND) are common viral diseases of chickens, which are caused by infectious bronchitis virus (IBV) and Newcastle disease virus (NDV), respectively. Vaccination with live attenuated strains of IBV-H120 and NDV-LaSota are important for the control of IB and ND. However, conventional live attenuated vaccines are expensive and result in the inability to differentiate between infected and vaccinated chickens. Therefore, there is an urgent need to develop new efficacious vaccines. In this study, using a previously established reverse genetics system, we generated a recombinant IBV virus based on the IBV H120 vaccine strain expressing the haemagglutinin-neuraminidase (HN) protein of NDV. The recombinant virus, R-H120-HN/5a, exhibited growth dynamics, pathogenicity and viral titers that were similar to those of the parental IBV H120, but it had acquired hemagglutination activity from NDV. Vaccination of SPF chickens with the R-H120-HN/5a virus induced a humoral response at a level comparable to that of the LaSota/H120 commercial bivalent vaccine and provided significant protection against challenge with virulent IBV and NDV. In summary, the results of this study indicate that the IBV H120 strain could serve as an effective tool for designing vaccines against IB and other infectious diseases, and the generation of IBV R-H120-HN/5a provides a solid foundation for the development of an effective bivalent vaccine against IBV and NDV.

  16. Intersubspecific recombination in Xylella fastidiosa Strains native to the United States: infection of novel hosts associated with an unsuccessful invasion.

    Science.gov (United States)

    Nunney, Leonard; Hopkins, Donald L; Morano, Lisa D; Russell, Stephanie E; Stouthamer, Richard

    2014-02-01

    The bacterial pathogen Xylella fastidiosa infects xylem and causes disease in many plant species in the Americas. Different subspecies of this bacterium and different genotypes within subspecies infect different plant hosts, but the genetics of host adaptation are unknown. Here we examined the hypothesis that the introduction of novel genetic variation via intersubspecific homologous recombination (IHR) facilitates host shifts. We investigated IHR in 33 X. fastidiosa subsp. multiplex isolates previously identified as recombinant based on 8 loci (7 multilocus sequence typing [MLST] loci plus 1 locus). We found significant evidence of introgression from X. fastidiosa subsp. fastidiosa in 4 of the loci and, using published data, evidence of IHR in 6 of 9 additional loci. Our data showed that IHR regions in 2 of the 4 loci were inconsistent (12 mismatches) with X. fastidiosa subsp. fastidiosa alleles found in the United States but consistent with alleles from Central America. The other two loci were consistent with alleles from both regions. We propose that the recombinant forms all originated via genomewide recombination of one X. fastidiosa subsp. multiplex ancestor with one X. fastidiosa subsp. fastidiosa donor from Central America that was introduced into the United States but subsequently disappeared. Using all of the available data, 5 plant hosts of the recombinant types were identified, 3 of which also supported non-IHR X. fastidiosa subsp. multiplex, but 2 were unique to recombinant types from blueberry (7 isolates from Georgia, 3 from Florida); and blackberry (1 each from Florida and North Carolina), strongly supporting the hypothesis that IHR facilitated a host shift to blueberry and possibly blackberry.

  17. Evaluation of the infection and transmission of wild type and recombinant strains of Newcastle disease virus in Japanese Quail

    Science.gov (United States)

    Newcastle disease virus (NDV) causes a range of clinical disease ranging from asymptomatic infection to severe disease with high mortality. Vaccination for NDV is practiced almost worldwide in commercial chickens. Attenuated live vaccines are most commonly used, with recombinant vaccines becoming ...

  18. Genomic sequences of two novel Levivirus single-stranded RNA coliphages (family Leviviridae): Evidence for recombination in environmental strains

    Science.gov (United States)

    Bacteriophages are likely the most abundant entities in the aquatic environment, yet knowledge of their ecology is limited. During a fecal source-tracking study, two genetically novel Leviviridae strains were discovered. Although the novel strains were isolated from coastal wat...

  19. Physiological characterisation of recombinant Aspergillus nidulans strains with different creA genotypes expressing A-oryzae alpha-amylase

    DEFF Research Database (Denmark)

    Agger, Teit; Petersen, J.B.; O'Connor, S.M.

    2002-01-01

    The physiology of three strains of Aspergillus nidulans was examined-a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations and the biom......The physiology of three strains of Aspergillus nidulans was examined-a creA deletion strain, a wild type creA genotype and a strain containing extra copies of the creA gene, all producing Aspergillus oryzae alpha-amylase. The strains were cultured in batch and continuous cultivations...... and the biomass formation and alpha-amylase production was characterised. Overexpression of the creA gene resulted in a lower maximum specific growth rate and a slightly higher repression of the alpha-amylase production during conditions with high glucose concentration. No expression of creA also resulted...... in a decreased maximum specific growth rate, but also in drastic changes in morphology. Furthermore, the expression of alpha-amylase was completely derepressed and creA thus seems to be the only regulatory protein responsible for glucose repression of alpha-amylase expression. The effect of different carbon...

  20. Enhancement of 2,3-butanediol production from Jerusalem artichoke tuber extract by a recombinant Bacillus sp. strain BRC1 with increased inulinase activity.

    Science.gov (United States)

    Park, Jang Min; Oh, Baek-Rock; Kang, In Yeong; Heo, Sun-Yeon; Seo, Jeong-Woo; Park, Seung-Moon; Hong, Won-Kyung; Kim, Chul Ho

    2017-07-01

    A Bacillus sp. strain named BRC1 is capable of producing 2,3-butanediol (2,3-BD) using hydrolysates of the Jerusalem artichoke tuber (JAT), a rich source of the fructose polymer inulin. To enhance 2,3-BD production, we undertook an extensive analysis of the Bacillus sp. BRC1 genome, identifying a putative gene (sacC) encoding a fructan hydrolysis enzyme and characterizing the activity of the resulting recombinant protein expressed in and purified from Escherichia coli. Introduction of the sacC gene into Bacillus sp. BRC1 using an expression vector increased enzymatic activity more than twofold. Consistent with this increased enzyme expression, 2,3-BD production from JAT was also increased from 3.98 to 8.10 g L -1 . Fed-batch fermentation of the recombinant strain produced a maximal level of 2,3-BD production of 28.6 g L -1 , showing a high theoretical yield of 92.3%.

  1. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42.

    Science.gov (United States)

    Aparicio, Tomás; Jensen, Sheila I; Nielsen, Alex T; de Lorenzo, Victor; Martínez-García, Esteban

    2016-10-01

    Some strains of the soil bacterium Pseudomonas putida have become in recent years platforms of choice for hosting biotransformations of industrial interest. Despite availability of many genetic tools for this microorganism, genomic editing of the cell factory P. putida EM42 (a derivative of reference strain KT2440) is still a time-consuming endeavor. In this work we have investigated the in vivo activity of the Ssr protein encoded by the open reading frame T1E_1405 from Pseudomonas putida DOT-T1E, a plausible functional homologue of the β protein of the Red recombination system of λ phage of Escherichia coli. A test based on the phenotypes of pyrF mutants of P. putida (the yeast's URA3 ortholog) was developed for quantifying the ability of Ssr to promote invasion of the genomic DNA replication fork by synthetic oligonucleotides. The efficiency of the process was measured by monitoring the inheritance of the changes entered into pyrF by oligonucleotides bearing mutated sequences. Ssr fostered short and long genomic deletions/insertions at considerable frequencies as well as single-base swaps not affected by mismatch repair. These results not only demonstrate the feasibility of recombineering in P. putida, but they also enable a suite of multiplexed genomic manipulations in this biotechnologically important bacterium. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Yu; Chen, Xiao; Peng, Bingyin; Chen, Liyuan; Hou, Jin; Bao, Xiaoming [Shandong Univ., Jinan (China). State Key Lab. of Microbial Technology

    2012-11-15

    Factors related to ethanol production from xylose in engineered Saccharomyces cerevisiae that contain an exogenous initial metabolic pathway are still to be elucidated. In the present study, a strain that expresses the xylose isomerase gene of Piromyces sp. Pi-xylA and overexpresses XKS1, RPE1, RKI1, TAL1, and TKL1, with deleted GRE3 and COX4 genes was constructed. The xylose utilization capacity of the respiratory deficiency strain was poor but improved via adaptive evolution in xylose. The {mu}{sub max} of the evolved strain in 20 gl{sup -1} xylose is 0.11 {+-} 0.00 h{sup -1}, and the evolved strain consumed 17.83 gl{sup -1} xylose within 72 h, with an ethanol yield of 0.43 gg{sup -1} total consumed sugars during glucose-xylose cofermentation. Global transcriptional changes and effect of several specific genes were studied. The result revealed that the increased xylose isomerase activity, the upregulation of enzymes involved in glycolysis and glutamate synthesis, and the downregulation of trehalose and glycogen synthesis, may have contributed to the improved xylose utilization of the strain. Furthermore, the deletion of PHO13 decreased the xylose growth in the respiration deficiency strain although deleting PHO13 can improve the xylose metabolism in other strains. (orig.)

  3. Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity.

    Science.gov (United States)

    Crawford, L; Stepan, A M; McAda, P C; Rambosek, J A; Conder, M J; Vinci, V A; Reeves, C D

    1995-01-01

    We demonstrate a novel and efficient bioprocess for production of the cephalosporin intermediates, 7-aminocephalosporanic acid (7-ACA) or 7-amino deacetoxycephalosporanic acid (7-ADCA). The Streptomyces clavuligerus expandase gene or the Cephalosporium acremonium expandase-hydroxylase gene, with and without the acetyltransferase gene, were expressed in a penicillin production strain of Penicillium chrysogenum. Growth of these transformants in media containing adipic acid as the side chain precursor resulted in efficient production of cephalosporins having an adipyl side chain, proving that adipyl-6-APA is a substrate for either enzyme in vivo. Strains expressing expandase produced adipyl-7-ADCA, whereas strains expressing expandase-hydroxylase produced both adipyl-7-ADCA and adipyl-7-ADAC (aminodeacetylcephalosporanic acid). Strains expressing expandase-hydroxylase and acetyltransferase produced adipyl-7-ADCA, adipyl-7-ADAC and adipyl-7-ACA. The adipyl side chain of these cephalosporins was easily removed with a Pseudomonas-derived amidase to yield the cephalosporin intermediates.

  4. A strain-specific multiplex RT-PCR for Australian rabbit haemorrhagic disease viruses uncovers a new recombinant virus variant in rabbits and hares.

    Science.gov (United States)

    Hall, R N; Mahar, J E; Read, A J; Mourant, R; Piper, M; Huang, N; Strive, T

    2018-04-01

    Rabbit haemorrhagic disease virus (RHDV, or GI.1) is a calicivirus in the genus Lagovirus that has been widely utilized in Australia as a biological control agent for the management of overabundant wild European rabbit (Oryctolagus cuniculus) populations since 1996. Recently, two exotic incursions of pathogenic lagoviruses have been reported in Australia; GI.1a-Aus, previously called RHDVa-Aus, is a GI.1a virus detected in January 2014, and the novel lagovirus GI.2 (previously known as RHDV2). Furthermore, an additional GI.1a strain, GI.1a-K5 (also known as 08Q712), was released nationwide in March 2017 as a supplementary tool for wild rabbit management. To discriminate between these lagoviruses, a highly sensitive strain-specific multiplex RT-PCR assay was developed, which allows fast, cost-effective and sensitive detection of the four pathogenic lagoviruses currently known to be circulating in Australia. In addition, we developed a universal RT-qPCR assay to be used in conjunction with the multiplex assay that broadly detects all four viruses and facilitates quantification of viral RNA load in samples. These assays enable rapid detection, identification and quantification of pathogenic lagoviruses in the Australian context. Using these assays, a novel recombinant lagovirus was detected in rabbit tissue samples, which contained the non-structural genes of GI.1a-Aus and the structural genes of GI.2. This variant was also recovered from the liver of a European brown hare (Lepus europaeus). The impact of this novel recombinant on Australian wild lagomorph populations and its competitiveness in relation to circulating field strains, particularly GI.2, requires further studies. © 2017 Blackwell Verlag GmbH.

  5. Recombinant Bacillus thuringiensis subsp. kurstaki HD73 strain that synthesizes Cry1Ac and chimeric ChiA74∆sp chitinase inclusions.

    Science.gov (United States)

    González-Ponce, Karen S; Casados-Vázquez, Luz E; Salcedo-Hernández, Rubén; Bideshi, Dennis K; Del Rincón-Castro, María C; Barboza-Corona, José E

    2017-05-01

    In this study, the endochitinase chiA74 gene lacking its secretion signal peptide sequence (chiA74∆sp) was fused in frame with the sequence coding for the C-terminal crystallization domain and transcription terminator of cry1Ac. The chimeric gene was expressed under the strong pcytA-p/STAB-SD promoter system in an acrystalliferous Cry - B strain of Bacillus thuringiensis and B. thuringiensis subsp. kurstaki HD73. We showed that the chimeric ChiA74∆sp produced amorphous inclusions in both Cry - B and HD73. In addition to the amorphous inclusions putatively composed of the chimera, bipyramidal Cry1Ac crystals, smaller than the wild-type crystal, were observed in recombinant HD73, and chitinase activity was remarkably higher (75-fold) in this strain when compared with parental HD73. Moreover, we observed that lyophilized samples of a mixture containing Cry1Ac, amorphous inclusions, and spores maintained chitinase activity. Amorphous inclusions could not be separated from Cry1Ac crystals by sucrose gradient centrifugation. Interestingly, the chitinase activity of purified Cry1Ac/amorphous inclusions was 51-fold higher compared to purified Cry1Ac inclusions of parental HD73, indicating that the increased enzymatic activity was due primarily to the presence of the atypical amorphous component. The possibility that the chimera is occluded with the Cry1Ac crystal, thereby contributing to the increased endochitinolytic activity, cannot be excluded. Finally, bioassays against larvae of Spodoptera frugiperda with spore/crystals of HD73 or spore-crystal ChiA74∆sp chimeric inclusions of recombinant HD73 strain showed LC 50 s of 396.86 and 290.25 ng/cm 2 , respectively. Our study suggests a possible practical application of the chimera in formulations of B. thuringiensis-based lepidopteran larvicides.

  6. Use of a recombinant Salmonella enterica serovar Typhimurium strain expressing C-Raf for protection against C-Raf induced lung adenoma in mice

    International Nuclear Information System (INIS)

    Gentschev, Ivaylo; Fensterle, Joachim; Schmidt, Andreas; Potapenko, Tamara; Troppmair, Jakob; Goebel, Werner; Rapp, Ulf R

    2005-01-01

    Serine-threonine kinases of the Raf family (A-Raf, B-Raf, C-Raf) are central players in cellular signal transduction, and thus often causally involved in the development of cancer when mutated or over-expressed. Therefore these proteins are potential targets for immunotherapy and a possible basis for vaccine development against tumors. In this study we analyzed the functionality of a new live C-Raf vaccine based on an attenuated Salmonella enterica serovar Typhimurium aroA strain in two Raf dependent lung tumor mouse models. The antigen C-Raf has been fused to the C-terminal secretion signal of Escherichia coli α-hemolysin and expressed in secreted form by an attenuated aroA Salmonella enterica serovar Typhimurium strain via the α-hemolysin secretion pathway. The effect of the immunization with this recombinant C-Raf strain on wild-type C57BL/6 or lung tumor bearing transgenic BxB mice was analyzed using western blot and FACS analysis as well as specific tumor growth assays. C-Raf antigen was successfully expressed in secreted form by an attenuated Salmonella enterica serovar Typhimurium aroA strain using the E. coli hemolysin secretion system. Immunization of wild-type C57BL/6 or tumor bearing mice provoked specific C-Raf antibody and T-cell responses. Most importantly, the vaccine strain significantly reduced tumor growth in two transgenic mouse models of Raf oncogene-induced lung adenomas. The combination of the C-Raf antigen, hemolysin secretion system and Salmonella enterica serovar Typhimurium could form the basis for a new generation of live bacterial vaccines for the treatment of Raf dependent human malignancies

  7. Identification of genetic defects in the atoxigenic biocontrol strain Aspergillus flavus K49 reveals the presence of a competitive recombinant group in field populations.

    Science.gov (United States)

    Chang, Perng-Kuang; Abbas, Hamed K; Weaver, Mark A; Ehrlich, Kenneth C; Scharfenstein, Leslie L; Cotty, Peter J

    2012-03-15

    Contamination of corn, cotton, peanuts and tree nuts by aflatoxins is a severe economic burden for growers. A current biocontrol strategy is to use non-aflatoxigenic Aspergillus flavus strains to competitively exclude field toxigenic Aspergillus species. A. flavus K49 does not produce aflatoxins and cyclopiazonic acid (CPA) and is currently being tested in corn-growing fields in Mississippi. We found that its lack of production of aflatoxins and CPA resulted from single nucleotide mutations in the polyketide synthase gene and hybrid polyketide-nonribosomal peptide synthase gene, respectively. Furthermore, based on single nucleotide polymorphisms of the aflatoxin biosynthesis omtA gene and the CPA biosynthesis dmaT gene, we conclude that K49, AF36 and previously characterized TX9-8 form a biocontrol group. These isolates appear to be derived from recombinants of typical large and small sclerotial morphotype strains. This finding provides an easy way to select future biocontrol strains from the reservoir of non-aflatoxigenic populations in agricultural fields. Published by Elsevier B.V.

  8. Employing a Recombinant Strain of Advenella mimigardefordensis for Biotechnical Production of Homopolythioesters from 3,3′-Dithiodipropionic Acid

    Science.gov (United States)

    Xia, Yongzhen; Wübbeler, Jan Hendrik; Qi, Qingsheng

    2012-01-01

    Advenella mimigardefordensis strain DPN7T was genetically modified to produce poly(3-mercaptopropionic acid) (PMP) homopolymer by exploiting the recently unraveled process of 3,3′-dithiodipropionic acid (DTDP) catabolism. Production was achieved by systematically engineering the metabolism of this strain as follows: (i) deletion of its inherent 3MP dioxygenase-encoding gene (mdo), (ii) introduction of the buk-ptb operon (genes encoding the butyrate kinase, Buk, and the phosphotransbutyrylase, Ptb, from Clostridium acetobutylicum), and (iii) overexpression of its own polyhydroxyalkanoate synthase (phaCAm). These measures yielded the potent PMP production strain A. mimigardefordensis strain SHX22. The deletion of mdo was required for adequate synthesis of PMP due to the resulting accumulation of 3MP during utilization of DTDP. Overexpression of the plasmid-borne buk-ptb operon caused a severe growth repression. This effect was overcome by inserting this operon into the genome. Polyhydroxyalkanoate (PHA) synthases from different origins were compared. The native PHA synthase of A. mimigardefordensis (phaCAm) was obviously the best choice to establish homopolythioester production in this strain. In addition, the cultivation conditions, including an appropriate provision of the carbon source, were further optimized to enhance PMP production. The engineered strain accumulated PMP up to approximately 25% (wt/wt) of the cell dry weight when cultivated in mineral salts medium containing glycerol as the carbon source in addition to DTDP as the sulfur-providing precursor. According to our knowledge, this is the first report of PMP homopolymer production by a metabolically engineered bacterium using DTDP, which is nontoxic, as the precursor substrate. PMID:22344658

  9. Recombinant Gallid herpesvirus 2 with interrupted meq genes confers safe and efficacious protection against virulent field strains.

    Science.gov (United States)

    Zhang, Yanping; Liu, Changjun; Yan, Fuhai; Liu, Ailing; Cheng, Yun; Li, Zhijie; Sun, Guorong; Lv, Hongchao; Wang, Xiaomei

    2017-08-24

    Gallid herpesvirus 2 (GaHV-2) continuously evolves, which reduces the effectiveness of existing vaccines. To construct new GaHV-2 candidate vaccines, LMS, which is a virulent GaHV-2 field strain isolated from diseased chicken flocks in Southwest China in 2007, was modified such that both copies of its meq oncogene were partially deleted. The resulting virus, i.e., rMSΔmeq, was characterized using PCR and sequencing. To evaluate the safety and protective efficacy of rMSΔmeq, specific pathogen-free (SPF) chickens were inoculated with 2000 plaque forming units (pfu) and 20,000pfu of rMSΔmeq immediately after hatching. All birds grew well during the experimental period, and none of the challenged chickens developed Marek's disease-associated lymphoma. In addition, the rMSΔmeq- and CVI988/Rispens-vaccinated SPF chickens were challenged with 1000 pfu and 5000 pfu of the representative virulent GaHV-2 Md5 strain and 1000 pfu of the variant GaHV-2 strains LCC or LTS. The results showed that the rMSΔmeq strain provided complete protection, which was similar to that provided by the CVI988/Rispens vaccine (protective index (PI) of 95.5) when challenged with a conventional dose of the Md5 strain. However, rMSΔmeq provided a PI of 90.9 when challenged with 5000 pfu of the Md5 strain, which was significantly higher than that provided by the CVI988/Rispens vaccine (54.5). rMSΔmeq provided a PI of 86.4 against LCC, which was equal to that provided by the CVI988/Rispens vaccine (81.8). In addition, rMSΔmeq provided a PI of 100 against LTS, which was significantly higher than that provided by the CVI988/Rispens vaccine (68.2). Altogether, the rMSΔmeq virus provided efficient protection against representative and variant GaHV-2 strains. In conclusion, the rMSΔmeq virus is a safe and effective vaccine candidate for the prevention of Marek's disease and is effective against the Chinese variant GaHV-2 strains. Copyright © 2017. Published by Elsevier Ltd.

  10. Recombinant canine distemper virus strain snyder hill expressing green or red fluorescent proteins causes meningoencephalitis in the ferret

    NARCIS (Netherlands)

    M. Ludlow (Martin); D.T. Nguyen (Tien); D. Silin; O. Lyubomska; R.D. de Vries (Rory); V. von Messling; S. McQuaid (Stephen); R.L. de Swart (Rik); W.P. Duprex (Paul)

    2012-01-01

    textabstractThe propensity of canine distemper virus (CDV) to spread to the central nervous system is one of the primary features of distemper. Therefore, we developed a reverse genetics system based on the neurovirulent Snyder Hill (SH) strain of CDV (CDVSH) and show that this virus rapidly

  11. Complete genome sequence of two tomato-infecting begomoviruses in Venezuela: evidence of a putative novel species and a novel recombinant strain.

    Science.gov (United States)

    Romay, Gustavo; Chirinos, Dorys T; Geraud-Pouey, Francis; Gillis, Annika; Mahillon, Jacques; Bragard, Claude

    2018-02-01

    At least six begomovirus species have been reported infecting tomato in Venezuela. In this study the complete genomes of two tomato-infecting begomovirus isolates (referred to as Trujillo-427 and Zulia-1084) were cloned and sequenced. Both isolates showed the typical genome organization of New World bipartite begomoviruses, with DNA-A genomic components displaying 88.8% and 90.3% similarity with established begomoviruses, for isolates Trujillo-427 and Zulia-1084, respectively. In accordance to the guidelines for begomovirus species demarcation, the Trujillo-427 isolate represents a putative new species and the name "Tomato wrinkled mosaic virus" is proposed. Meanwhile, Zulia-1084 represents a putative new strain classifiable within species Tomato chlorotic leaf distortion virus, for which a recombinant origin is suggested.

  12. Determination of Silver Ions Toxicity in Short-Term and Long-Term Experiments Using a Luminescent Recombinant Strain of E. coli

    Directory of Open Access Journals (Sweden)

    Tatiana P. Yudina

    2013-01-01

    Full Text Available The effects of silver ions on the luminescent recombinant strain of Escherichia coli carrying luxCDABE operon of Vibrio fischeri were investigated. The toxicity of silver ions was determined in 30 minutes and in chronic 24 hours experiments. Changes in the luminescence intensity and in the growth rate of bacteria were considered as a measure of silver ions toxicity within the range of concentrations applied. The effect of silver ions was demonstrated to be strongly dependent on the concentration of bacteria and on the medium composition. EC50 values were 0.018 mg/l after 30 min exposure and 0.014 mg/l after 10 hours of bacterial growth. Comparison of two modifications of the experiment showed that silver ions have a strong non-specific toxicity, as well as a specific effect on bacterial cells

  13. Systemically administered DNA and fowlpox recombinants expressing four vaccinia virus genes although immunogenic do not protect mice against the highly pathogenic IHD-J vaccinia strain.

    Science.gov (United States)

    Bissa, Massimiliano; Pacchioni, Sole Maria; Zanotto, Carlo; De Giuli Morghen, Carlo; Illiano, Elena; Granucci, Francesca; Zanoni, Ivan; Broggi, Achille; Radaelli, Antonia

    2013-12-26

    The first-generation smallpox vaccine was based on live vaccinia virus (VV) and it successfully eradicated the disease worldwide. Therefore, it was not administered any more after 1980, as smallpox no longer existed as a natural infection. However, emerging threats by terrorist organisations has prompted new programmes for second-generation vaccine development based on attenuated VV strains, which have been shown to cause rare but serious adverse events in immunocompromised patients. Considering the closely related animal poxviruses that might also be used as bioweapons, and the increasing number of unvaccinated young people and AIDS-affected immunocompromised subjects, a safer and more effective smallpox vaccine is still required. New avipoxvirus-based vectors should improve the safety of conventional vaccines, and protect from newly emerging zoonotic orthopoxvirus diseases and from the threat of deliberate release of variola or monkeypox virus in a bioterrorist attack. In this study, DNA and fowlpox recombinants expressing the L1R, A27L, A33R and B5R genes were constructed and evaluated in a pre-clinical trial in mouse, following six prime/boost immunisation regimens, to compare their immunogenicity and protective efficacy against a challenge with the lethal VV IHD-J strain. Although higher numbers of VV-specific IFNγ-producing T lymphocytes were observed in the protected mice, the cytotoxic T-lymphocyte response and the presence of neutralising antibodies did not always correlate with protection. In spite of previous successful results in mice, rabbits and monkeys, where SIV/HIV transgenes were expressed by the fowlpox vector, the immune response elicited by these recombinants was low, and most of the mice were not protected. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis

    Science.gov (United States)

    Morrison, Cheryl L.; Iwanowicz, Luke; Work, Thierry M.; Fahsbender, Elizabeth; Breitbart, Mya; Adams, Cynthia; Iwanowicz, Deborah; Sanders, Lakyn; Ackermann, Mathias; Cornman, Robert S.

    2018-01-01

    Chelonid alphaherpesvirus 5 (ChHV5) is a herpesvirus associated with fibropapillomatosis (FP) in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%), and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent) co-infection of individuals by well-differentiated geographic variants.

  15. Genomic evolution, recombination, and inter-strain diversity of chelonid alphaherpesvirus 5 from Florida and Hawaii green sea turtles with fibropapillomatosis

    Directory of Open Access Journals (Sweden)

    Cheryl L. Morrison

    2018-02-01

    Full Text Available Chelonid alphaherpesvirus 5 (ChHV5 is a herpesvirus associated with fibropapillomatosis (FP in sea turtles worldwide. Single-locus typing has previously shown differentiation between Atlantic and Pacific strains of this virus, with low variation within each geographic clade. However, a lack of multi-locus genomic sequence data hinders understanding of the rate and mechanisms of ChHV5 evolutionary divergence, as well as how these genomic changes may contribute to differences in disease manifestation. To assess genomic variation in ChHV5 among five Hawaii and three Florida green sea turtles, we used high-throughput short-read sequencing of long-range PCR products amplified from tumor tissue using primers designed from the single available ChHV5 reference genome from a Hawaii green sea turtle. This strategy recovered sequence data from both geographic regions for approximately 75% of the predicted ChHV5 coding sequences. The average nucleotide divergence between geographic populations was 1.5%; most of the substitutions were fixed differences between regions. Protein divergence was generally low (average 0.08%, and ranged between 0 and 5.3%. Several atypical genes originally identified and annotated in the reference genome were confirmed in ChHV5 genomes from both geographic locations. Unambiguous recombination events between geographic regions were identified, and clustering of private alleles suggests the prevalence of recombination in the evolutionary history of ChHV5. This study significantly increased the amount of sequence data available from ChHV5 strains, enabling informed selection of loci for future population genetic and natural history studies, and suggesting the (possibly latent co-infection of individuals by well-differentiated geographic variants.

  16. Multiple antigens of Yersinia pestis delivered by live recombinant attenuated Salmonella vaccine strains elicit protective immunity against plague.

    Science.gov (United States)

    Sanapala, Shilpa; Rahav, Hannah; Patel, Hetal; Sun, Wei; Curtiss, Roy

    2016-05-05

    Based on our improved novel Salmonella vaccine delivery platform, we optimized the recombinant attenuated Salmonella typhimurium vaccine (RASV) χ12094 to deliver multiple Yersinia pestis antigens. These included LcrV196 (amino acids, 131-326), Psn encoded on pYA5383 and F1 encoded in the chromosome, their synthesis did not cause adverse effects on bacterial growth. Oral immunization with χ12094(pYA5383) simultaneously stimulated high antibody titers to LcrV, Psn and F1 in mice and presented complete protection against both subcutaneous (s.c.) and intranasal (i.n.) challenges with high lethal doses of Y. pestis CO92. Moreover, no deaths or other disease symptoms were observed in SCID mice orally immunized with χ12094(pYA5383) over a 60-day period. Therefore, the trivalent S. typhimurium-based live vaccine shows promise for a next-generation plague vaccine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Time-dependent Toxicity in Long-term Analysis of Luminescence Inhibition with Recombinant Escherichia Coli Strain

    Directory of Open Access Journals (Sweden)

    Tatiana Yudina

    2014-03-01

    Full Text Available We have investigated the effect of streptomycin simultaneously on the luminescence and the growth of bacteria of luminescent recombinant Escherichia coli stain with the operon luxCDABE from Vibrio fischeri. Experiments were performed to determine the toxicity in the 30-minute experiment and in the chronic 24-hour variant. The level of toxicity in the tested concentration range was determined judging by the change of intensity of bioluminescence and by the growth of cells in the presence of antibiotic. Toxicity parameter ЕС50 was 26.44 mg / l at 30 min exposure, and 0.30 mg / l during 8 hours of growth of bacteria. Dynamics of changes in toxicity, depending on the concentration of streptomycin in the long-term experiment, shows the difficulty in the choice of the end point of the experiment.

  18. Characterization of recombinant B. abortus strain RB51SOD towards understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51

    Directory of Open Access Journals (Sweden)

    Jianguo eZhu

    2011-11-01

    Full Text Available Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD in a recombinant strain of RB51 (strain RB51SOD significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte (CTL activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS. Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.

  19. Characterization of recombinant B. abortus strain RB51SOD toward understanding the uncorrelated innate and adaptive immune responses induced by RB51SOD compared to its parent vaccine strain RB51.

    Science.gov (United States)

    Zhu, Jianguo; Larson, Charles B; Ramaker, Megan Ann; Quandt, Kimberly; Wendte, Jered M; Ku, Kimberly P; Chen, Fang; Jourdian, George W; Vemulapalli, Ramesh; Schurig, Gerhardt G; He, Yongqun

    2011-01-01

    Brucella abortus is a Gram-negative, facultative intracellular pathogen for several mammals, including humans. Live attenuated B. abortus strain RB51 is currently the official vaccine used against bovine brucellosis in the United States and several other countries. Overexpression of protective B. abortus antigen Cu/Zn superoxide dismutase (SOD) in a recombinant strain of RB51 (strain RB51SOD) significantly increases its vaccine efficacy against virulent B. abortus challenge in a mouse model. An attempt has been made to better understand the mechanism of the enhanced protective immunity of RB51SOD compared to its parent strain RB51. We previously reported that RB51SOD stimulated enhanced Th1 immune response. In this study, we further found that T effector cells derived from RB51SOD-immunized mice exhibited significantly higher cytotoxic T lymphocyte activity than T effector cells derived from RB51-immunized mice against virulent B. abortus-infected target cells. Meanwhile, the macrophage responses to these two strains were also studied. Compared to RB51, RB51SOD cells had a lower survival rate in macrophages and induced lower levels of macrophage apoptosis and necrosis. The decreased survival of RB51SOD cells correlates with the higher sensitivity of RB51SOD, compared to RB51, to the bactericidal action of either Polymyxin B or sodium dodecyl sulfate (SDS). Furthermore, a physical damage to the outer membrane of RB51SOD was observed by electron microscopy. Possibly due to the physical damage, overexpressed Cu/Zn SOD in RB51SOD was found to be released into the bacterial cell culture medium. Therefore, the stronger adaptive immunity induced by RB51SOD did not correlate with the low level of innate immunity induced by RB51SOD compared to RB51. This unique and apparently contradictory profile is likely associated with the differences in outer membrane integrity and Cu/Zn SOD release.

  20. Direct Ethanol Production from Lignocellulosic Sugars and Sugarcane Bagasse by a Recombinant Trichoderma reesei Strain HJ48

    Science.gov (United States)

    Huang, Jun; Chen, Dong; Wei, Yutuo; Wang, Qingyan; Li, Zhenchong; Chen, Ying; Huang, Ribo

    2014-01-01

    Trichoderma reesei can be considered as a candidate for consolidated bioprocessing (CBP) microorganism. However, its ethanol yield needs to be improved significantly. Here the ethanol production of T. reesei CICC 40360 was improved by genome shuffling while simultaneously enhancing the ethanol resistance. The initial mutant population was generated by nitrosoguanidine treatment of the spores, and an improved population producing more than fivefold ethanol than wild type was obtained by genome shuffling. The results show that the shuffled strain HJ48 can efficiently convert lignocellulosic sugars to ethanol under aerobic conditions. Furthermore, it was able to produce ethanol directly from sugarcane bagasse, demonstrating that the shuffled strain HJ48 is a suitable microorganism for consolidated bioprocessing. PMID:24995362

  1. Crystallization and preliminary X-ray diffraction study of recombinant adenine phosphoribosyltransferase from the thermophilic bacterium Thermus thermophilus strain HB27

    Science.gov (United States)

    Sinitsyna, E. V.; Timofeev, V. I.; Tuzova, E. S.; Kostromina, M. A.; Murav'eva, T. I.; Esipov, R. S.; Kuranova, I. P.

    2017-07-01

    Adenine phosphoribosyltransferase (APRT) belongs to the type I phosphoribosyltransferase family and catalyzes the formation of adenosine monophosphate via transfer of the 5-phosphoribosyl group from phosphoribosyl pyrophosphate to the nitrogen atom N9 of the adenine base. Proteins of this family are involved in a salvage pathway of nucleotide synthesis, thus providing purine base utilization and maintaining the optimal level of purine bases in the body. Adenine phosphoribosyltransferase from the extremely thermophilic Thermus thermophilus strain HB27 was produced using a highly efficient E. coli producer strain and was then purified by affinity and gel-filtration chromatography. This enzyme was successfully employed as a catalyst for the cascade biosynthesis of biologically important nucleotides. The screening of crystallization conditions for recombinant APRT from T. thermophilus HB27 was performed in order to determine the enzyme structure by X-ray diffraction. The crystallization conditions, which were found by the vapor-diffusion technique, were then optimized to apply the counter-diffusion technique. The crystals of the enzyme were grown by the capillary counter-diffusion method. The crystals belong to sp. gr. P1211 and have the following unitcell parameters: a = 69.86 Å, b = 82.16 Å, c = 91.39 Å, α = γ = 90°, β = 102.58°. The X-ray diffraction data set suitable for the determination of the APRT structure at 2.6 Å resolution was collected from the crystals at the SPring-8 synchrotron facility (Japan).

  2. Evaluation of a LaSota strain-based recombinant Newcastle disease virus (NDV) expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subgroup A or B as a bivalent vaccine in turkeys

    Science.gov (United States)

    To develop a bivalent vaccine candidate, a LaSota strain-based recombinant Newcastle disease virus (NDV) clone expressing the glycoprotein (G) of avian metapneumovirus (aMPV) subgroup A or B was generated using reverse genetics. Vaccination of turkeys with the NDV/aMPV-A G or NDV/aMPV-B G recombinan...

  3. Optimising expression of the recombinant fusion protein biopesticide ω-hexatoxin-Hv1a/GNA in Pichia pastoris: sequence modifications and a simple method for the generation of multi-copy strains.

    Science.gov (United States)

    Pyati, Prashant; Fitches, Elaine; Gatehouse, John A

    2014-08-01

    Production of recombinant protein bio-insecticides on a commercial scale can only be cost effective if host strains with very high expression levels are available. A recombinant fusion protein containing an arthropod toxin, ω-hexatoxin-Hv1a, (from funnel web spider Hadronyche versuta) linked to snowdrop lectin (Galanthus nivalis agglutinin; GNA) is an effective oral insecticide and candidate biopesticide. However, the fusion protein was vulnerable to proteolysis during production in the yeast Pichia pastoris. To prevent proteolysis, the Hv1a/GNA fusion expression construct was modified by site-directed mutagenesis to remove a potential Kex2 cleavage site at the C-terminus of the Hv1a peptide. To obtain a high expressing clone of P. pastoris to produce recombinant Hv1a/GNA, a straightforward method was used to produce multi-copy expression plasmids, which does not require multiple integrations to give clones of P. pastoris containing high copy numbers of the introduced gene. Removal of the Kex2 site resulted in increased levels of intact fusion protein expressed in wild-type P. pastoris strains, improving levels of intact recombinant protein recoverable. Incorporation of a C-terminal (His)6 tag enabled single step purification of the fusion protein. These modifications did not affect the insecticidal activity of the recombinant toxin towards lepidopteran larvae. Introduction of multiple expression cassettes increased the amount of secreted recombinant fusion protein in a laboratory scale fermentation by almost tenfold on a per litre of culture basis. Simple modifications in the expression construct can be advantageous for the generation of high expressing P. pastoris strains for production of a recombinant protein, without altering its functional properties.

  4. Effect of acute swim stress on plasma corticosterone and brain monoamine levels in bidirectionally selected DxH recombinant inbred mouse strains differing in fear recall and extinction.

    Science.gov (United States)

    Browne, Caroline A; Hanke, Joachim; Rose, Claudia; Walsh, Irene; Foley, Tara; Clarke, Gerard; Schwegler, Herbert; Cryan, John F; Yilmazer-Hanke, Deniz

    2014-12-01

    Stress-induced changes in plasma corticosterone and central monoamine levels were examined in mouse strains that differ in fear-related behaviors. Two DxH recombinant inbred mouse strains with a DBA/2J background, which were originally bred for a high (H-FSS) and low fear-sensitized acoustic startle reflex (L-FSS), were used. Levels of noradrenaline, dopamine, and serotonin and their metabolites 3,4-dihydroxyphenyacetic acid (DOPAC), homovanillic acid (HVA), and 5-hydroxyindoleacetic acid (5-HIAA) were studied in the amygdala, hippocampus, medial prefrontal cortex, striatum, hypothalamus and brainstem. H-FSS mice exhibited increased fear levels and a deficit in fear extinction (within-session) in the auditory fear-conditioning test, and depressive-like behavior in the acute forced swim stress test. They had higher tissue noradrenaline and serotonin levels and lower dopamine and serotonin turnover under basal conditions, although they were largely insensitive to stress-induced changes in neurotransmitter metabolism. In contrast, acute swim stress increased monoamine levels but decreased turnover in the less fearful L-FSS mice. L-FSS mice also showed a trend toward higher basal and stress-induced corticosterone levels and an increase in noradrenaline and serotonin in the hypothalamus and brainstem 30 min after stress compared to H-FSS mice. Moreover, the dopaminergic system was activated differentially in the medial prefrontal cortex and striatum of the two strains by acute stress. Thus, H-FSS mice showed increased basal noradrenaline tissue levels compatible with a fear phenotype or chronic stressed condition. Low corticosterone levels and the poor monoamine response to stress in H-FSS mice may point to mechanisms similar to those found in principal fear disorders or post-traumatic stress disorder.

  5. Genetic diversity of Chlamydia pecorum strains in wild koala locations across Australia and the implications for a recombinant C. pecorum major outer membrane protein based vaccine.

    Science.gov (United States)

    Kollipara, Avinash; Polkinghorne, Adam; Wan, Charles; Kanyoka, Pride; Hanger, Jon; Loader, Joanne; Callaghan, John; Bell, Alicia; Ellis, William; Fitzgibbon, Sean; Melzer, Alistar; Beagley, Kenneth; Timms, Peter

    2013-12-27

    The long term survival of the koala (Phascolarctos cinereus) is at risk due to a range of threatening processes. A major contributing factor is disease caused by infection with Chlamydia pecorum, which has been detected in most mainland koala populations and is associated with ocular and genital tract infections. A critical aspect for the development of vaccines against koala chlamydial infections is a thorough understanding of the prevalence and strain diversity of C. pecorum infections across wild populations. In this study, we describe the largest survey (403 koalas from eight wild populations and three wildlife hospitals) examining the diversity of C. pecorum infections. 181 of the 403 koalas tested (45%) positive for C. pecorum by species-specific quantitative PCR with infection rates ranging from 20% to 61% in the eight wild populations sampled. The ompA gene, which encodes the chlamydial major outer membrane protein (MOMP), has been the major target of several chlamydial vaccines. Based on our analysis of the diversity of MOMP amino types in the infected koalas, we conclude that, (a) there exists significant diversity of C. pecorum strains in koalas, with 10 distinct, full length C. pecorum MOMP amino types identified in the 11 koala locations sampled, (b) despite this diversity, there are predicted T and B cell epitopes in both conserved as well as variable domains of MOMP which suggest cross-amino type immune responses, and (c) a recombinant MOMP-based vaccine consisting of MOMP "F" could potentially induce heterotypic protection against a range of C. pecorum strains. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  6. Evaluation of estrogenic potential of flavonoids using a recombinant yeast strain and MCF7/BUS cell proliferation assay.

    Directory of Open Access Journals (Sweden)

    Flávia A Resende

    Full Text Available Phytoestrogens are of interest because of their reported beneficial effects on many human maladies including cancer, neurodegeneration, cardiovascular disease and diabetes. Furthermore, there is a search for compounds with estrogenic activity that can replace estrogen in hormone replacement therapy during menopause, without the undesirable effects of estrogen, such as the elevation of breast cancer occurrence. Thus, the principal objective of this study was to assess the estrogenic activity of flavonoids with different hydroxylation patterns: quercetin, kaempferol, luteolin, fisetin, chrysin, galangin, flavone, 3-hydroxyflavone, 5-hydroxyflavone and 7-hydroxyflavone via two different in vitro assays, the recombinant yeast assay (RYA and the MCF-7 proliferation assay (E-screen, since the most potent phytoestrogens are members of the flavonoid family. In these assays, kaempferol was the only compound that showed ERα-dependent transcriptional activation activity by RYA, showing 6.74±1.7 nM EEQ, besides acting as a full agonist for the stimulation of proliferation of MCF-7/BUS cells. The other compounds did not show detectable levels of interaction with ER under the conditions used in the RYA. However, in the E-screen assay, compounds such as galangin, luteolin and fisetin also stimulated the proliferation of MCF-7/BUS cells, acting as partial agonists. In the evaluation of antiestrogenicity, the compounds quercetin, chrysin and 3-hydroxyflavone significantly inhibited the cell proliferation induced by 17-β-estradiol in the E-screen assay, indicating that these compounds may act as estrogen receptor antagonists. Overall, it became clear in the assay results that the estrogenic activity of flavonoids was affected by small structural differences such as the number of hydroxyl groups, especially those on the B ring of the flavonoid.

  7. Recombinant HA1 produced in E. coli forms functional oligomers and generates strain-specific SRID potency antibodies for pandemic influenza vaccines.

    Science.gov (United States)

    Khurana, Surender; Larkin, Christopher; Verma, Swati; Joshi, Manju B; Fontana, Juan; Steven, Alasdair C; King, Lisa R; Manischewitz, Jody; McCormick, William; Gupta, Rajesh K; Golding, Hana

    2011-08-05

    Vaccine production and initiation of mass vaccination is a key factor in rapid response to new influenza pandemic. During the 2009-2010 H1N1 pandemic, several bottlenecks were identified, including the delayed availability of vaccine potency reagents. Currently, antisera for the single-radial immunodiffusion (SRID) potency assay are generated in sheep immunized repeatedly with HA released and purified after bromelain-treatment of influenza virus grown in eggs. This approach was a major bottleneck for pandemic H1N1 (H1N1pdm09) potency reagent development in 2009. Alternative approaches are needed to make HA immunogens for generation of SRID reagents in the shortest possible time. In this study, we found that properly folded recombinant HA1 globular domain (rHA1) from several type A viruses including H1N1pdm09 and two H5N1 viruses could be produced efficiently using a bacterial expression system and subsequent purification. The rHA1 proteins were shown to form functional oligomers of trimers, similar to virus derived HA, and elicited high titer of neutralizing antibodies in rabbits and sheep. Importantly, the immune sera formed precipitation rings with reference antigens in the SRID assay in a dose-dependent manner. The HA contents in multiple H1N1 vaccine products from different manufacturers (and in several lots) as determined with the rHA1-generated sheep sera were similar to the values obtained with a traditionally generated sheep serum from NIBSC. We conclude that bacterially expressed recombinant HA1 proteins can be produced rapidly and used to generate SRID potency reagents shortly after new influenza strains with pandemic potential are identified. Published by Elsevier Ltd.

  8. Production of 3-hydroxypropionic acid via the malonyl-CoA pathway using recombinant fission yeast strains.

    Science.gov (United States)

    Suyama, Akiko; Higuchi, Yujiro; Urushihara, Masahiro; Maeda, Yuka; Takegawa, Kaoru

    2017-10-01

    3-Hydroxypropionic acid (3-HP) can be converted into derivatives such as acrylic acid, a source for producing super absorbent polymers. Although Escherichia coli has often been used for 3-HP production, it exhibits low tolerance to 3-HP. To circumvent this problem, we selected the fission yeast Schizosaccharomyces pombe as this microorganism has higher tolerance to 3-HP than E. coli. Therefore, we constructed S. pombe transformants overexpressing two genes, one encoding the S. pombe acetyl-CoA carboxylase (Cut6p) and the other encoding the malonyl-CoA reductase derived from Chloroflexus aurantiacus (CaMCR). To prevent the degradation of these expressed proteins, we employed an S. pombe protease-deficient strain. Moreover, to increase the cytosolic concentration of acetyl-CoA, we supplemented acetate to the medium, which improved 3-HP production. To further produce 3-HP by overexpressing Cut6p and CaMCR, we exploited the highly expressing S. pombe hsp9 promoter. Finally, culturing in high-density reached 3-HP production to 7.6 g/L at 31 h. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  9. Functional Requirements for DjlA- and RraA-Mediated Enhancement of Recombinant Membrane Protein Production in the Engineered Escherichia coli Strains SuptoxD and SuptoxR.

    Science.gov (United States)

    Gialama, Dimitra; Delivoria, Dafni Chrysanthi; Michou, Myrsini; Giannakopoulou, Artemis; Skretas, Georgios

    2017-06-16

    In previous work, we have generated the engineered Escherichia coli strains SuptoxD and SuptoxR, which upon co-expression of the effector genes djlA or rraA, respectively, are capable of suppressing the cytotoxicity caused by membrane protein (MP) overexpression and of producing dramatically enhanced yields for a variety of recombinant MPs of both prokaryotic and eukaryotic origin. Here, we investigated the functional requirements for DnaJ-like protein A (DjlA)- and regulator of ribonuclease activity A (RraA)-mediated enhancement of recombinant MP production in these strains and show that: (i) DjlA and RraA act independently, that is, the beneficial effects of each protein on recombinant MP production occur through a mechanism that does not involve the other, and in a non-additive manner; (ii) full-length and membrane-bound DjlA is required for exerting its beneficial effects on recombinant MP production in E. coli SuptoxD; (iii) the MP production-promoting properties of DjlA in SuptoxD involve the action of the molecular chaperone DnaK but do not rely on the activation of the regulation of capsular synthesis response, a well-established consequence of djlA overexpression; (iv) the observed RraA-mediated effects in E. coli SuptoxR involve the ribonucleolytic activity of RNase E, but not that of its paralogous ribonuclease RNase G; and (v) DjlA and RraA are unique among similar E. coli proteins in their ability to promote bacterial recombinant MP production. These observations provide important clues about the molecular requirements for suppressed toxicity and enhanced MP accumulation in SuptoxD/SuptoxR and will guide future studies aiming to decipher the exact mechanism of DjlA- and RraA-mediated enhancement of recombinant MP production in these strains. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Vanillin production by recombinant strains of Escherichia coli Produção de vanilina por linhagens recombinantes de Escherichia coli

    Directory of Open Access Journals (Sweden)

    Attilio Converti

    2003-11-01

    Full Text Available Vanillin production from ferulate was studied using different recombinant strains of Escherichia coli. To prevent the occurrence of aerobic conditions and then possible product oxidation, tests were performed in Erlenmeyer flasks under mild mixing (150 rpm. Among other transformants, E. coli JM109(pBB1 appeared to be the best vanillin producer, being able to convert no less than 95% of starting ferulate to the product within 1h. This yield decreased down to 72% after 72h, likely because of a non-specific oxidase activity responsible for vanillin oxidation to vanillate.A produção de vanilina a partir de ácido ferúlico foi estudada utilizando-se diferentes linhagens recombinantes de Escherichia coli. Para prevenir a ocorrência de condições de aerobiose e a possível oxidação do produto, os ensaios foram realizados em frascos Erlenmeyer sob agitação moderada (150 rpm. E. coli JM109 (pBBI mostrou-se o melhor produtor de vanilina entre os demais agentes transformantes, sendo capaz de converter 95% do ácido ferúlico inicial em produto após 1h, rendimento este que decresceu para 72% após 72h, provavelmente devido à atividade de uma oxidase não-específica responsável pela oxidação de vanilina a ácido vanílico.

  11. Association of H2A{sup b} with resistance to collagen-induced arthritis in H2-recombinant mouse strains: An allele associated with reduction of several apparently unrelated responses

    Energy Technology Data Exchange (ETDEWEB)

    Mitchison, N.A.; Brunner, M.C. [Deutsches Rheuma-Forschungszentrum, Berlin (Germany)

    1995-02-01

    HLA class II alleles can protect against immunological diseases. Seeking an animal model for a naturally occurring protective allele, we screened a panel of H2-congenic and recombinant mouse strains for ability to protect against collagen-induced arthritis. The strains were crossed with the susceptible strain DBA/1, and the F{sub 1} hybrids immunized with cattle and chicken type II collagen. Hybrids having the H2A{sup b} allele displayed a reduced incidence and duration of the disease. They also had a reduced level of pre-disease inflammation, but not of anti-collagen antibodies. The allele is already known to be associated with reduction of other apparently unrelated immune responses, suggesting that some form of functional differentiation may operate that is not exclusively related to epitope-binding. It is suggested that this may reflect allelic variation in the class II major histocompatibility complex promoter region. 42 refs., 7 figs., 1 tab.

  12. Genetic variation in hippocampal microRNA expression differences in C57BL/6 J X DBA/2 J (BXD recombinant inbred mouse strains

    Directory of Open Access Journals (Sweden)

    Parsons Michael J

    2012-09-01

    Full Text Available Abstract Background miRNAs are short single-stranded non-coding RNAs involved in post-transcriptional gene regulation that play a major role in normal biological functions and diseases. Little is currently known about how expression of miRNAs is regulated. We surveyed variation in miRNA abundance in the hippocampus of mouse inbred strains, allowing us to take a genetic approach to the study of miRNA regulation, which is novel for miRNAs. The BXD recombinant inbred panel is a very well characterized genetic reference panel which allows quantitative trait locus (QTL analysis of miRNA abundance and detection of correlates in a large store of brain and behavioural phenotypes. Results We found five suggestive trans QTLs for the regulation of miRNAs investigated. Further analysis of these QTLs revealed two genes, Tnik and Phf17, under the miR-212 regulatory QTLs, whose expression levels were significantly correlated with miR-212 expression. We found that miR-212 expression is correlated with cocaine-related behaviour, consistent with a reported role for this miRNA in the control of cocaine consumption. miR-31 is correlated with anxiety and alcohol related behaviours. KEGG pathway analysis of each miRNA’s expression correlates revealed enrichment of pathways including MAP kinase, cancer, long-term potentiation, axonal guidance and WNT signalling. Conclusions The BXD reference panel allowed us to establish genetic regulation and characterize biological function of specific miRNAs. QTL analysis enabled detection of genetic loci that regulate the expression of these miRNAs. eQTLs that regulate miRNA abundance are a new mechanism by which genetic variation influences brain and behaviour. Analysis of one of these QTLs revealed a gene, Tnik, which may regulate the expression of a miRNA, a molecular pathway and a behavioural phenotype. Evidence of genetic covariation of miR-212 abundance and cocaine related behaviours is strongly supported by previous

  13. High genetic diversity of Vibrio cholerae in the European lake Neusiedler See is associated with intensive recombination in the reed habitat and the long-distance transfer of strains

    Science.gov (United States)

    Amaro, Carmen; Benediktsdóttir, Eva; Hedenström, Ingela; Hervio-Heath, Dominique; Huhulescu, Steliana; Schets, Franciska M.; Farnleitner, Andreas H.; Kirschner, Alexander K. T.

    2017-01-01

    Coastal marine Vibrio cholerae populations usually exhibit high genetic diversity. To assess the genetic diversity of abundant V. cholerae non-O1/non-O139 populations in the Central European lake Neusiedler See, we performed a phylogenetic analysis based on recA, toxR, gyrB and pyrH loci sequenced for 472 strains. The strains were isolated from three ecologically different habitats in a lake that is a hot-spot of migrating birds and an important bathing water. We also analyzed 76 environmental and human V. cholerae non-O1/non-O139 isolates from Austria and other European countries and added sequences of seven genome-sequenced strains. Phylogenetic analysis showed that the lake supports a unique endemic diversity of V. cholerae that is particularly rich in the reed stand. Phylogenetic trees revealed that many V. cholerae isolates from European countries were genetically related to the strains present in the lake belonging to statistically supported monophyletic clades. We hypothesize that the observed phenomena can be explained by the high degree of genetic recombination that is particularly intensive in the reed stand, acting along with the long distance transfer of strains most probably via birds and/or humans. Thus, the Neusiedler See may serve as a bioreactor for the appearance of new strains with new (pathogenic) properties. PMID:27871138

  14. The Number and Complexity of Pure and Recombinant HIV-1 Strains Observed within Incident Infections during the HIV and Malaria Cohort Study Conducted in Kericho, Kenya, from 2003 to 2006.

    Directory of Open Access Journals (Sweden)

    Erik Billings

    Full Text Available Characterization of HIV-1 subtype diversity in regions where vaccine trials are conducted is critical for vaccine development and testing. This study describes the molecular epidemiology of HIV-1 within a tea-plantation community cohort in Kericho, Kenya. Sixty-three incident infections were ascertained in the HIV and Malaria Cohort Study conducted in Kericho from 2003 to 2006. HIV-1 strains from 58 of those individuals were full genome characterized and compared to two previous Kenyan studies describing 41 prevalent infections from a blood bank survey (1999-2000 and 21 infections from a higher-risk cohort containing a mix of incident and prevalent infections (2006. Among the 58 strains from the community cohort, 43.1% were pure subtypes (36.2% A1, 5.2% C, and 1.7% G and 56.9% were inter-subtype recombinants (29.3% A1D, 8.6% A1CD, 6.9% A1A2D, 5.2% A1C, 3.4% A1A2CD, and 3.4% A2D. This diversity and the resulting genetic distance between the observed strains will need to be addressed when vaccine immunogens are chosen. In consideration of current vaccine development efforts, the strains from these three studies were compared to five candidate vaccines (each of which are viral vectored, carrying inserts corresponding to parts of gag, pol, and envelope, which have been developed for possible use in sub-Saharan Africa. The sequence comparison between the observed strains and the candidate vaccines indicates that in the presence of diverse recombinants, a bivalent vaccine is more likely to provide T-cell epitope coverage than monovalent vaccines even when the inserts of the bivalent vaccine are not subtype-matched to the local epidemic.

  15. The Number and Complexity of Pure and Recombinant HIV-1 Strains Observed within Incident Infections during the HIV and Malaria Cohort Study Conducted in Kericho, Kenya, from 2003 to 2006

    Science.gov (United States)

    Billings, Erik; Sanders-Buell, Eric; Bose, Meera; Bradfield, Andrea; Lei, Esther; Kijak, Gustavo H.; Arroyo, Miguel A.; Kibaya, Rukia M.; Scott, Paul T.; Wasunna, Monique K.; Sawe, Frederick K.; Shaffer, Douglas N.; Birx, Deborah L.; McCutchan, Francine E.; Michael, Nelson L.; Robb, Merlin L.; Kim, Jerome H.; Tovanabutra, Sodsai

    2015-01-01

    Characterization of HIV-1 subtype diversity in regions where vaccine trials are conducted is critical for vaccine development and testing. This study describes the molecular epidemiology of HIV-1 within a tea-plantation community cohort in Kericho, Kenya. Sixty-three incident infections were ascertained in the HIV and Malaria Cohort Study conducted in Kericho from 2003 to 2006. HIV-1 strains from 58 of those individuals were full genome characterized and compared to two previous Kenyan studies describing 41 prevalent infections from a blood bank survey (1999–2000) and 21 infections from a higher-risk cohort containing a mix of incident and prevalent infections (2006). Among the 58 strains from the community cohort, 43.1% were pure subtypes (36.2% A1, 5.2% C, and 1.7% G) and 56.9% were inter-subtype recombinants (29.3% A1D, 8.6% A1CD, 6.9% A1A2D, 5.2% A1C, 3.4% A1A2CD, and 3.4% A2D). This diversity and the resulting genetic distance between the observed strains will need to be addressed when vaccine immunogens are chosen. In consideration of current vaccine development efforts, the strains from these three studies were compared to five candidate vaccines (each of which are viral vectored, carrying inserts corresponding to parts of gag, pol, and envelope), which have been developed for possible use in sub-Saharan Africa. The sequence comparison between the observed strains and the candidate vaccines indicates that in the presence of diverse recombinants, a bivalent vaccine is more likely to provide T-cell epitope coverage than monovalent vaccines even when the inserts of the bivalent vaccine are not subtype-matched to the local epidemic. PMID:26287814

  16. Genetic map of AFLP markers in the rat (Rattus norvegicus) derived from the H x B/Ipcv and B x H/cub sets of recombinant inbred strains

    Czech Academy of Sciences Publication Activity Database

    Bonné, A. C. M.; den Bieman, M. G.; Gillissen, G. F.; Křen, Vladimír; Křenová, D.; Bílá, V.; Zídek, Václav; Kostka, Vlastimil; Musilová, Alena; Pravenec, Michal; Van Zutphen, B. F. M.; Van Lith, H. A.

    2003-01-01

    Roč. 41, 3-4 (2003), s. 77-89 ISSN 0006-2928 R&D Projects: GA MŠk LN00A079; GA MŠk LN00A079; GA ČR GV204/98/K015; GA ČR GA305/00/1646 Grant - others:European Commission(XE) BIO4CT960562 Institutional research plan: CEZ:AV0Z5011922 Keywords : AFLP technique * rat * recombinant inbred strains Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.569, year: 2003

  17. The Ssr protein (T1E_1405) from Pseudomonas putida DOT-T1E enables oligonucleotide-based recombineering in platform strain P. putida EM42

    DEFF Research Database (Denmark)

    Aparicio, Tomás; Ingemann Jensen, Sheila; Nielsen, Alex Toftgaard

    2016-01-01

    of reference strain KT2440) is still a time-consuming endeavor. In this work we have investigated the in vivo activity of the Ssr protein encoded by the open reading frame T1E_1405 from Pseudomonas putida DOT-T1E, a plausible functional homologue of the β protein of the Red recombination system of λ phage...... of Escherichia coli. A test based on the phenotypes of pyrF mutants of P. putida (the yeast’s URA3 ortholog) was developed for quantifying the ability of Ssr to promote invasion of the genomic DNA replication fork by synthetic oligonucleotides. The efficiency of the process was measured by monitoring...

  18. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    Science.gov (United States)

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  19. ROOT TRAITS AND NODULATION OF RECOMBINANT INBRED BEAN LINES FROM A ‘JAMAPA × CALIMA’ POPULATION INOCULATED WITH TWO STRAINS OF RHIZOBIUM

    Science.gov (United States)

    Bean cultivars of Andean and Middle American origin often have contrasting above-ground traits. Less is known, however, of possible differences in root traits of beans from different gene pools. Recombinant inbred lines (RIL) derived from a cross between the Andean cultivar ‘Calima’ and the Middle A...

  20. Identification of nucleotides in the 5'UTR and amino acids substitutions that are essential for the infectivity of 5'UTR-NS5A recombinant of hepatitis C virus genotype 1b (strain Con1).

    Science.gov (United States)

    Li, Jinqian; Feng, Shengjun; Liu, Xi; Guo, Mingzhe; Chen, Mingxiao; Chen, Yiyi; Rong, Liang; Xia, Jinyu; Zhou, Yuanping; Zhong, Jin; Li, Yi-Ping

    2018-03-14

    Genotype 1b strain Con1 represents an important reference in the study of hepatitis C virus (HCV). Here, we aimed to develop an advanced infectious Con1 recombinant. We found that previously identified mutations A1226G/F1464L/A1672S/Q1773H permitted culture adaption of Con1 Core-NS5A (C-5A) recombinant containing 5'UTR and NS5B-3'UTR from JFH1 (genotype 2a), thus acquired additional mutations L725H/F886L/D2415G. C-5A containing all seven mutations (C-5A_7m) replicated efficiently in Huh7.5 and Huh7.5.1 cells and had an increased infectivity in SEC14L2-expressing Huh7.5.1 cells. Incorporation of Con1 NS5B was deleterious to C-5A_7m, however Con1 5'UTR was permissive but attenuated the virus. Nucleotides G1, A4, and G35 primarily accounted for the viral attenuation without affecting RNA translation. C-5A_7m was inhibited dose-dependently by simeprevir and daclatasvir, and substitutions at A4, A29, A34, and G35 conferred resistance to miR-122 antagonism. The novel Con1 5'UTR-NS5A recombinant, adaptive mutations, and critical nucleotides described here will facilitate future studies of HCV culture systems and virus-host interaction. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Genetic Recombination

    Science.gov (United States)

    Whitehouse, H. L. K.

    1973-01-01

    Discusses the mechanisms of genetic recombination with particular emphasis on the study of the fungus Sordaria brevicollis. The study of recombination is facilitated by the use of mutants of this fungus in which the color of the ascospores is affected. (JR)

  2. Recombination and Insertion Events Involving the Botulinum Neurotoxin Complex Genes in Clostridium botulinum Types A, B, E and F and Clostridium butyricum Type E Strains

    Science.gov (United States)

    2009-10-05

    Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains Karen K Hill*1, Gary Xie2, Brian T Foley3, Theresa J Smith4, Amy C Munk2...ornl.gov; John C Detter - cdetter@lanl.gov * Corresponding author Abstract Background: Clostridium botulinum is a taxonomic designation for at least... botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains. BMC Genomics 7:1-18 5a

  3. Recombination-deficient mutant of Streptococcus faecalis

    International Nuclear Information System (INIS)

    Yagi, Y.; Clewell, D.B.

    1980-01-01

    An ultraviolet radiation-sensitive derivative of Streptococcus faecalis strain JH2-2 was isolated and found to be deficient in recombination, using a plasmid-plasmid recombination system. The strain was sensitive to chemical agents which interact with deoxyribonucleic acid and also underwent deoxyribonucleic acid degradation after ultraviolet irradiation. Thus, the mutant has properties similar to those of recA strains of Escherichia coli

  4. The highly pathogenic H7N3 avian influenza strain from July 2012 in Mexico acquired an extended cleavage site through recombination with host 28S rRNA.

    Science.gov (United States)

    Maurer-Stroh, Sebastian; Lee, Raphael T C; Gunalan, Vithiagaran; Eisenhaber, Frank

    2013-05-01

    A characteristic difference between highly and non-highly pathogenic avian influenza strains is the presence of an extended, often multibasic, cleavage motif insertion in the hemagglutinin protein. Such motif is found in H7N3 strains from chicken farm outbreaks in 2012 in Mexico. Through phylogenetic, sequence and structural analysis, we try to shed light on the role, prevalence, likelihood of appearance and origin of the inserted cleavage motifs in these H7N3 avian influenza strains. The H7N3 avian influenza strain which caused outbreaks in chicken farms in June/July 2012 in Mexico has a new extended cleavage site which is the likely reason for its high pathogenicity in these birds. This cleavage site appears to have been naturally acquired and was not present in the closest low pathogenic precursors. Structural modeling shows that insertion of a productive cleavage site is quite flexible to accept insertions of different length and with sequences from different possible origins. Different from recent cleavage site insertions, the origin of the insert here is not from the viral genome but from host 28S ribosomal RNA (rRNA) instead. This is a novelty for a natural acquisition as a similar insertion has so far only been observed in a laboratory strain before. Given the abundance of viral and host RNA in infected cells, the acquisition of a pathogenicity-enhancing extended cleavage site through a similar route by other low-pathogenic avian strains in future does not seem unlikely. Important for surveillance of these H7N3 strains, the structural sites known to enhance mammalian airborne transmission are dominated by the characteristic avian residues and the risk of human to human transmission should currently be low but should be monitored for future changes accordingly. This highly pathogenic H7N3 avian influenza strain acquired a novel extended cleavage site which likely originated from recombination with 28S rRNA from the avian host. Notably, this new virus can

  5. Construction and immunogenicity of replication-competent adenovirus 5 host range mutant recombinants expressing HIV-1 gp160 of SF162 and TV1 strains.

    Science.gov (United States)

    Hidajat, Rachmat; Kuate, Seraphin; Venzon, David; Kalyanaraman, Vaniambadi; Kalisz, Irene; Treece, James; Lian, Ying; Barnett, Susan W; Robert-Guroff, Marjorie

    2010-05-21

    An HIV Env immunogen capable of eliciting broad immunity is critical for a successful vaccine. We constructed and characterized adenovirus 5 host range mutant (Ad5hr) recombinants encoding HIV(SF162) gp160 (subtype B) and HIV(TV1) gp160 (subtype C). Immunization of mice with one or both induced cellular immunity to subtype B and C peptides by ELISpot, and antibody responses with high binding titers to HIV Env of subtypes A, B, C, and E. Notably, Ad5hr-HIV(TV1) gp160 induced better cellular immunity than Ad5hr-HIV(SF162) gp160, either alone or following co-administration. Thus, the TV1 Env recombinant alone may be sufficient for eliciting immune responses against both subtype B and C envelopes. Further studies of Ad5hr-HIV(TV1) gp160 in rhesus macaques will evaluate the suitability of this insert for a future phase I clinical trial using a replication-competent Ad4 vector. Published by Elsevier Ltd.

  6. Immunogenicity and protective effect of recombinant Brucella abortus Ndk (rNdk) against a virulent strain B. abortus 544 infection in BALB/c mice.

    Science.gov (United States)

    Hop, Huynh Tan; Simborio, Hannah Leah; Reyes, Alisha Wehdnesday Bernardo; Arayan, Lauren Togonon; Min, WonGi; Lee, Hu Jang; Kim, Dong Hee; Chang, Hong Hee; Kim, Suk

    2015-02-01

    In this study, we particularly evaluated the protective effect of recombinant protein encoded by Brucella abortus 544 ndk (nucleoside diphosphate kinase) gene against B. abortus infection in the BALB/c mice. Cloning and expression of B. abortus Ndk was accomplished by PCR amplification into a pMAL expression system, and purification of a recombinant Ndk (rNdk). As for the determination of IgG responses, rNdk induced vigorous IgG production, especially higher in IgG2a compared to IgG1 with titers of 5.2 and 4.8, respectively, whereas titers of these in mice immunized with MBP were 2.4 of IgG2a and 2.6 of IgG1. The analysis of cytokine has revealed that rNdk can strongly induce production of IFN-γ as well as proinflammatory cytokines (TNF, MCP1 and IL-6) but not much IL-10, suggesting rNdk elicited predominantly cell-mediated immune responses. Furthermore, the spleen proliferation and bacterial burden in the spleen of rNdk immunized mice were significantly lower than those of MBP-immunized mice against virulent B. abortus challenge (P abortus might be a useful candidate for subunit vaccine for brucellosis in animals. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Cloning of the genome of a goose parvovirus vaccine strain SYG61v and rescue of infectious virions from recombinant plasmid in embryonated goose eggs.

    Science.gov (United States)

    Wang, Jianye; Duan, Jinkun; Meng, Xia; Gong, Jiansen; Jiang, Zhiwei; Zhu, Guoqiang

    2014-05-01

    The SYG61v is an attenuated goose parvovirus (GPV) that has been used as a vaccine strain in China. The genome of SYG61v was sequenced to attempt to identify the genetic basis for the attenuation of this strain. The entire genome consists of 5102 nucleotides (nts), with four nt deletions compared to that of virulent strain B. The inverted terminal repeats (ITR) are 442 nts in length, of which 360 nts form a stem region, and 43 nts constitute the bubble region. Although mutations were observed throughout the ITR, no mismatch was found in the stem. Alignment with other pathogenic GPV strains (B, 82-0321, 06-0329, and YZ99-5) indicated that there are 10 and 11 amino acid mutations in the Rep1 and VP1 proteins of SYG61v, respectively. The complete genome of SYG61v was cloned into the pBluescript II vector and an infectious plasmid pSYG61v was generated. Infectious progeny virus was successfully rescued through transfection of the plasmid pSYG61v in embryonated goose eggs and yielded viral titers similar to its parental virus, as evaluated by ELD50. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Introduction of an Aliphatic Ketone into Recombinant Proteins in a Bacterial Strain that Overexpresses an Editing-Impaired Leucyl-tRNA Synthetase

    Science.gov (United States)

    Tang, Yi; Wang, Pin; Van Deventer, James A.; Link, A. James; Tirrell, David A.

    2011-01-01

    A leucine analog containing a ketone has been incorporated into proteins in E. coli. Only E. coli strains overexpressing an editing-deficient leucyl-tRNA synthetase were capable of synthesizing proteins with the aliphatic ketone amino acid. Modification of ketone-containing proteins under mild conditions has been demonstrated. PMID:19670197

  9. The ACEII recombinant Trichoderma reesei QM9414 strains with enhanced xylanase production and its applications in production of xylitol from tree barks.

    Science.gov (United States)

    Xiong, Lili; Kameshwar, Ayyappa Kumar Sista; Chen, Xi; Guo, Zhiyun; Mao, Canquan; Chen, Sanfeng; Qin, Wensheng

    2016-12-28

    ACEII transcription factor plays a significant role in regulating the expression of cellulase and hemicellulase encoding genes. Apart from ACEII, transcription factors such as XYR1, CRE1, HAP2/3/5 complex and ACEI function in a coordinated pattern for regulating the gene expression of cellulases and hemicellulases. Studies have demonstrated that ACEII gene deletion results in decreased total cellulase and xylanase activities with reduced transcript levels of lignocellulolytic enzymes. In this study, we have successfully transformed the ACEII transcription factor encoding gene in Trichoderma reesei to significantly improve its degrading abilities. Transformation experiments on parental strain T. reesei QM9414 has resulted in five genetically engineered strains T/Ace2-2, T/Ace2-5, T/Ace2-8, T/Ace5-4 and T/Ace10-1. Among which, T/Ace2-2 has exhibited significant increase in enzyme activity by twofolds, when compared to parental strain. The T/Ace2-2 was cultured on growth substrates containing 2% bark supplemented with (a) sugar free + MA medium (b) glucose + MA medium and (c) xylose + MA medium. The bark degradation efficiency of genetically modified T/Ace2-2 strain was assessed by analyzing the xylitol production yield using HPAEC. By 6th day, about 10.52 g/l of xylitol was produced through enzymatic conversion of bark (2% bark + MA + xylose) by the T/Ace2-2 strain and by 7th day the conversion rate was found to be 0.21 g/g. Obtained results confirmed that bark growth medium supplemented with D-xylose has profoundly increased the conversion rate of bark by T/Ace2-2 strain when compared to sugar free and glucose supplemented growth media. Results obtained from scanning electron microscopy has endorsed our current results. Bark samples inoculated with T/Ace2-2 strain has showed large number of degraded cells with clearly visible cavities and fractures, by exposing the microfibrillar interwoven complex. We propose a cost effective and ecofriendly method for

  10. Protection against Multiple Influenza A Virus Strains Induced by Candidate Recombinant Vaccine Based on Heterologous M2e Peptides Linked to Flagellin

    Science.gov (United States)

    Kovaleva, Anna A.; Potapchuk, Marina V.; Korotkov, Alexandr V.; Sergeeva, Mariia V.; Kasianenko, Marina A.; Kuprianov, Victor V.; Ravin, Nikolai V.; Tsybalova, Liudmila M.; Skryabin, Konstantin G.; Kiselev, Oleg I.

    2015-01-01

    Matrix 2 protein ectodomain (M2e) is considered a promising candidate for a broadly protective influenza vaccine. M2e-based vaccines against human influenza A provide only partial protection against avian influenza viruses because of differences in the M2e sequences. In this work, we evaluated the possibility of obtaining equal protection and immune response by using recombinant protein on the basis of flagellin as a carrier of the M2e peptides of human and avian influenza A viruses. Recombinant protein was generated by the fusion of two tandem copies of consensus M2e sequence from human influenza A and two copies of M2e from avian A/H5N1 viruses to flagellin (Flg-2M2eh2M2ek). Intranasal immunisation of Balb/c mice with recombinant protein significantly elicited anti-M2e IgG in serum, IgG and sIgA in BAL. Antibodies induced by the fusion protein Flg-2M2eh2M2ek bound efficiently to synthetic peptides corresponding to the human consensus M2e sequence as well as to the M2e sequence of A/Chicken/Kurgan/05/05 RG (H5N1) and recognised native M2e epitopes exposed on the surface of the MDCK cells infected with A/PR/8/34 (H1N1) and A/Chicken/Kurgan/05/05 RG (H5N1) to an equal degree. Immunisation led to both anti-M2e IgG1 and IgG2a response with IgG1 prevalence. We observed a significant intracellular production of IL-4, but not IFN-γ, by CD4+ T-cells in spleen of mice following immunisation with Flg-2M2eh2M2ek. Immunisation with the Flg-2M2eh2M2ek fusion protein provided similar protection from lethal challenge with human influenza A viruses (H1N1, H3N2) and avian influenza virus (H5N1). Immunised mice experienced significantly less weight loss and decreased lung viral titres compared to control mice. The data obtained show the potential for the development of an M2e-flagellin candidate influenza vaccine with broad spectrum protection against influenza A viruses of various origins. PMID:25799221

  11. Protection against multiple influenza A virus strains induced by candidate recombinant vaccine based on heterologous M2e peptides linked to flagellin.

    Directory of Open Access Journals (Sweden)

    Liudmila A Stepanova

    Full Text Available Matrix 2 protein ectodomain (M2e is considered a promising candidate for a broadly protective influenza vaccine. M2e-based vaccines against human influenza A provide only partial protection against avian influenza viruses because of differences in the M2e sequences. In this work, we evaluated the possibility of obtaining equal protection and immune response by using recombinant protein on the basis of flagellin as a carrier of the M2e peptides of human and avian influenza A viruses. Recombinant protein was generated by the fusion of two tandem copies of consensus M2e sequence from human influenza A and two copies of M2e from avian A/H5N1 viruses to flagellin (Flg-2M2eh2M2ek. Intranasal immunisation of Balb/c mice with recombinant protein significantly elicited anti-M2e IgG in serum, IgG and sIgA in BAL. Antibodies induced by the fusion protein Flg-2M2eh2M2ek bound efficiently to synthetic peptides corresponding to the human consensus M2e sequence as well as to the M2e sequence of A/Chicken/Kurgan/05/05 RG (H5N1 and recognised native M2e epitopes exposed on the surface of the MDCK cells infected with A/PR/8/34 (H1N1 and A/Chicken/Kurgan/05/05 RG (H5N1 to an equal degree. Immunisation led to both anti-M2e IgG1 and IgG2a response with IgG1 prevalence. We observed a significant intracellular production of IL-4, but not IFN-γ, by CD4+ T-cells in spleen of mice following immunisation with Flg-2M2eh2M2ek. Immunisation with the Flg-2M2eh2M2ek fusion protein provided similar protection from lethal challenge with human influenza A viruses (H1N1, H3N2 and avian influenza virus (H5N1. Immunised mice experienced significantly less weight loss and decreased lung viral titres compared to control mice. The data obtained show the potential for the development of an M2e-flagellin candidate influenza vaccine with broad spectrum protection against influenza A viruses of various origins.

  12. Effect of genomic location on horizontal transfer of a recombinant gene cassette between Pseudomonas strains in the rhizosphere and spermosphere of barley seedlings

    DEFF Research Database (Denmark)

    Sengelov, G.; Kristensen, K. J.; Sørensen, Anders Morten Hay

    2001-01-01

    efficiencies were up to 4.36 x 10(-3) transconjugants/(donors x recipients)(1/2). Transfer of chromosomal encoded genes could not be detected in the microcosms by conjugation or transformation. However, transformation did occur by using the same bacterial strains under laboratory conditions. The rhizosphere...... and especially the spermosphere thus proved to be hot spot environments providing favorable conditions for gene transfer by mobilization and conjugation, but these environments did not support transformation at a detectable level....

  13. Strain-specific and recessive QTLs involved in the control of partial resistance to Fusarium oxysporum f. sp. melonis race 1.2 in a recombinant inbred line population of melon.

    Science.gov (United States)

    Perchepied, L; Dogimont, C; Pitrat, M

    2005-06-01

    Fusarium oxysporum f. sp. melonis (FOM) causes serious economic losses in melon (Cucumis melo L.). Two dominant resistance genes have been identified, Fom-1 and Fom-2, which provide resistance to races 0 and 2 and races 0 and 1, respectively, however FOM race 1.2 overcomes these resistance genes. A partial resistance to FOM race 1.2 that has been found in some Far East accessions is under polygenic control. A genetic map of melon was constructed to tag FOM race 1.2 resistance with DNA markers on a recombinant inbred line population derived from a cross between resistant (Isabelle) and susceptible (cv. Védrantais) lines. Artificial root inoculations on plantlets of this population using two strains, one that causes wilting (FOM 1.2w) and one that causes yellowing (FOM 1.2y), resulted in phenotypic and genotypic data that enabled the identification of nine quantitative trait loci (QTLs). These QTLs were detected on five linkage groups by composite interval mapping and explained between 41.9% and 66.4% of the total variation. Four digenic epistatic interactions involving seven loci were detected and increased the total phenotypic variation that was explained. Co-localizations between QTLs and resistance gene homologs or resistance genes, such as Fom-2 and Vat, were observed. A strain-specific QTL was detected, and some QTLs appeared to be recessive.

  14. Construction of a recombinant Lactococcus lactis strain expressing a fusion protein of Omp22 and HpaA from Helicobacter pylori for oral vaccine development.

    Science.gov (United States)

    Zhang, Rongguang; Duan, Guangcai; Shi, Qingfeng; Chen, Shuaiyin; Fan, Qingtang; Sun, Nan; Xi, Yuanlin

    2016-11-01

    To develop orally administrated anti-Helicobacter pylori vaccination, a Lactococcus lactis strain was genetically constructed for fusion expression of H. pylori protective antigens HpaA and Omp22. The fusion gene of omp22 and hpaA with an adapter encoding three glycines was cloned from a plasmid pMAL-c2x-omp22-hpaA into Escherichia coli MC1061 and L. lactis NZ3900 successively using a shutter vector pNZ8110. Expression of the fusion gene in L. lactis was induced with nisin resulting in production of proteins with molecular weights of 50 and 28 kDa. Both of them were immunoreactive with mouse anti-H. pylori sera as determined via western blotting. Oral vaccination of BALB/c mice using the L. lactis strain carrying pNZ8110-omp22-hpaA elicited significant systematic humoral immune response (P lactis with immunogenicity. This is a considerable step towards H. pylori vaccines.

  15. Recombination of strain O segments to HCpro-encoding sequence of strain N of Potato virus Y modulates necrosis induced in tobacco and in potatoes carrying resistance genes Ny or Nc.

    Science.gov (United States)

    Tian, Yan-Ping; Valkonen, Jari P T

    2015-09-01

    Hypersensitive resistance (HR) to strains O and C of Potato virus Y (PVY, genus Potyvirus) is conferred by potato genes Ny(tbr) and Nc(tbr), respectively; however, PVY N strains overcome these resistance genes. The viral helper component proteinases (HCpro, 456 amino acids) from PVY(N) and PVY(O) are distinguished by an eight-amino-acid signature sequence, causing HCpro to fold into alternative conformations. Substitution of only two residues (K269R and R270K) of the eight-amino-acid signature in PVY(N) HCpro was needed to convert the three-dimensional (3D) model of PVY(N) HCpro to a PVY(O) -like conformation and render PVY(N) avirulent in the presence of Ny(tbr), whereas four amino acid substitutions were necessary to change PVY(O) HCpro to a PVY(N) -like conformation. Hence, the HCpro conformation rather than other features ascribed to the sequence were essential for recognition by Ny(tbr). The 3D model of PVY(C) HCpro closely resembled PVY(O), but differed from PVY(N) HCpro. HCpro of all strains was structurally similar to β-catenin. Sixteen PVY(N) 605-based chimeras were inoculated to potato cv. Pentland Crown (Ny(tbr)), King Edward (Nc(tbr)) and Pentland Ivory (Ny(tbr)/Nc(tbr)). Eleven chimeras induced necrotic local lesions and caused no systemic infection, and thus differed from both parental viruses that infected King Edward systemically, and from PVY(N) 605 that infected Pentland Crown and Pentland Ivory systemically. These 11 chimeras triggered both Ny(tbr) and Nc(tbr) and, in addition, six induced veinal necrosis in tobacco. Further, specific amino acid residues were found to have an additive impact on necrosis. These results shed new light on the causes of PVY-related necrotic symptoms in potato. © 2014 BSPP AND JOHN WILEY & SONS LTD.

  16. Improvement of LysM-Mediated Surface Display of Designed Ankyrin Repeat Proteins (DARPins) in Recombinant and Nonrecombinant Strains of Lactococcus lactis and Lactobacillus Species

    Science.gov (United States)

    Zadravec, Petra; Štrukelj, Borut

    2015-01-01

    Safety and probiotic properties make lactic acid bacteria (LAB) attractive hosts for surface display of heterologous proteins. Protein display on nonrecombinant microorganisms is preferred for therapeutic and food applications due to regulatory requirements. We displayed two designed ankyrin repeat proteins (DARPins), each possessing affinity for the Fc region of human IgG, on the surface of Lactococcus lactis by fusing them to the Usp45 secretion signal and to the peptidoglycan-binding C terminus of AcmA, containing lysine motif (LysM) repeats. Growth medium containing a secreted fusion protein was used to test its heterologous binding to 10 strains of species of the genus Lactobacillus, using flow cytometry, whole-cell enzyme-linked immunosorbent assay (ELISA), and fluorescence microscopy. The fusion proteins bound to the surfaces of all lactobacilli; however, binding to the majority of bacteria was only 2- to 5-fold stronger than that of the control. Lactobacillus salivarius ATCC 11741 demonstrated exceptionally strong binding (32- to 55-fold higher than that of the control) and may therefore be an attractive host for nonrecombinant surface display. Genomic comparison of the species indicated the exopolysaccharides of Lb. salivarius as a possible reason for the difference. Additionally, a 15-fold concentration-dependent increase in nonrecombinant surface display on L. lactis was demonstrated by growing bacteria with sublethal concentrations of the antibiotics chloramphenicol and erythromycin. Nonrecombinant surface display on LAB, based on LysM repeats, was optimized by selecting Lactobacillus salivarius ATCC 11741 as the optimal host and by introducing antibiotics as additives for increasing surface display on L. lactis. Additionally, effective display of DARPins on the surfaces of nonrecombinant LAB has opened up several new therapeutic possibilities. PMID:25576617

  17. Self-Assembly of the Recombinant Capsid Protein of a Swine Norovirus into Virus-Like Particles and Evaluation of Monoclonal Antibodies Cross-Reactive with a Human Strain from Genogroup II▿

    Science.gov (United States)

    Almanza, Horacio; Cubillos, Carolina; Angulo, Iván; Mateos, Francisco; Castón, José R.; van der Poel, Wim H. M.; Vinje, Jan; Bárcena, Juan; Mena, Ignacio

    2008-01-01

    Noroviruses (NoVs) are responsible for the majority of gastroenteritis outbreaks in humans. Recently, NoV strains which are genetically closely related to human genogroup II (GII) NoVs have been detected in fecal specimens from swine. These findings have raised concern about the possible role of pigs as reservoirs for NoVs that could infect humans. To better understand the epidemiology of swine NoVs in both the swine and the human populations, rapid immunoassays are needed. In this study, baculovirus recombinants were generated to express the capsid gene of a swine NoV GII genotype 11 (GII.11) strain which self-assembled into virus-like particles (VLPs). Subsequently, the purified VLPs were used to evoke monoclonal antibodies (MAbs) in mice. A panel of eight promising MAbs was obtained and evaluated for their ability to bind to heterologous VLPs, denaturated antigens, and truncated capsid proteins. The MAbs could be classified into two groups: two MAbs that recognized linear epitopes located at the amino-terminal half (shell domain) of the swine NoV GII.11 VLPs and that cross-reacted with human GII.4 NoV VLPs. The other six MAbs bound to conformational epitopes and did not cross-react with the human GII.4 VLPs. To our knowledge, this is the first report on the characterization of MAbs against swine NoVs. The swine NoV VLPs and the MAbs described here may be further used for the design of diagnostic reagents that could help increase our knowledge of the prevalence of NoV infections in pigs and the possible role of pigs as reservoirs for NoVs. PMID:18842943

  18. Isolation of recombinant strains with enhanced pectinase production by protoplast fusion between Penicillium expansum and Penicillium griseoroseum Isolamento de linhagens recombinantes com maior produção de pectinases por meio de fusão de protoplastos entre Penicillium expansum e Penicillium griseoroseum

    Directory of Open Access Journals (Sweden)

    Maurilio Antonio Varavallo

    2007-03-01

    Full Text Available Protoplast fusion between complementary auxotrophic and morphological mutant strains of Penicillium griseoroseum and P. expansum was induced by polyethylene glycol and calcium ions (Ca2+. Fusant strains were obtained in minimal medium and a prototrophic strain, possibly diploid, was chosen for haplodization with the fungicide benomyl. Different recombinant strains were isolated and characterized for occurrence of auxotrophic mutations and pectinolytic enzyme production. The fusant prototrophic did not present higher pectinase production than the parental strains, but among 29 recombinants analyzed, four presented enhanced enzyme activities. The recombinant RGE27, which possesses the same auxotrophic and morphologic mutations as the P. griseoroseum parental strain, presented a considerable increase in polygalacturonase (3-fold and pectin lyase production (1.2-fold.Fusões de protoplastos entre linhagens mutantes auxotróficas e morfológicas complementares de Penicillium griseoroseum e P. expansum foram induzidas por polietilenoglicol e íons cálcio (Ca2+. Fusionantes foram obtidos em meio mínimo e uma linhagem prototrófica, possivelmente diplóide, foi selecionada para a haploidização com o fungicida benomil. Diferentes linhagens recombinantes foram isoladas e caracterizadas quanto à presença de mutações auxotróficas e a produção de enzimas pectinolíticas. O fusionante prototrófico não apresentou maior atividade de pectinases em relação às linhagens parentais, entretanto, entre 29 recombinantes analisados, quatro apresentaram maiores atividades enzimáticas. O recombinante RGE27, o qual possui as mesmas mutações auxotróficas e morfológicas que a linhagem parental de P. griseoroseum, apresentou um aumento considerável na produção de poligalacturonase (3 vezes e de pectina liase (1,2 vezes.

  19. Recombination in hepatitis C virus.

    Science.gov (United States)

    González-Candelas, Fernando; López-Labrador, F Xavier; Bracho, María Alma

    2011-10-01

    Hepatitis C virus (HCV) is a Flavivirus with a positive-sense, single-stranded RNA genome of about 9,600 nucleotides. It is a major cause of liver disease, infecting almost 200 million people all over the world. Similarly to most RNA viruses, HCV displays very high levels of genetic diversity which have been used to differentiate six major genotypes and about 80 subtypes. Although the different genotypes and subtypes share basic biological and pathogenic features they differ in clinical outcomes, response to treatment and epidemiology. The first HCV recombinant strain, in which different genome segments derived from parentals of different genotypes, was described in St. Petersburg (Russia) in 2002. Since then, there have been only a few more than a dozen reports including descriptions of HCV recombinants at all levels: between genotypes, between subtypes of the same genotype and even between strains of the same subtype. Here, we review the literature considering the reasons underlying the difficulties for unequivocally establishing recombination in this virus along with the analytical methods necessary to do it. Finally, we analyze the potential consequences, especially in clinical practice, of HCV recombination in light of the coming new therapeutic approaches against this virus.

  20. Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution

    Directory of Open Access Journals (Sweden)

    Monjane Adérito L

    2011-12-01

    Full Text Available Abstract Background Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae, the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Results Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots

  1. Recombination hotspots and host susceptibility modulate the adaptive value of recombination during maize streak virus evolution.

    Science.gov (United States)

    Monjane, Adérito L; van der Walt, Eric; Varsani, Arvind; Rybicki, Edward P; Martin, Darren P

    2011-12-02

    Maize streak virus -strain A (MSV-A; Genus Mastrevirus, Family Geminiviridae), the maize-adapted strain of MSV that causes maize streak disease throughout sub-Saharan Africa, probably arose between 100 and 200 years ago via homologous recombination between two MSV strains adapted to wild grasses. MSV recombination experiments and analyses of natural MSV recombination patterns have revealed that this recombination event entailed the exchange of the movement protein - coat protein gene cassette, bounded by the two genomic regions most prone to recombination in mastrevirus genomes; the first surrounding the virion-strand origin of replication, and the second around the interface between the coat protein gene and the short intergenic region. Therefore, aside from the likely adaptive advantages presented by a modular exchange of this cassette, these specific breakpoints may have been largely predetermined by the underlying mechanisms of mastrevirus recombination. To investigate this hypothesis, we constructed artificial, low-fitness, reciprocal chimaeric MSV genomes using alternating genomic segments from two MSV strains; a grass-adapted MSV-B, and a maize-adapted MSV-A. Between them, each pair of reciprocal chimaeric genomes represented all of the genetic material required to reconstruct - via recombination - the highly maize-adapted MSV-A genotype, MSV-MatA. We then co-infected a selection of differentially MSV-resistant maize genotypes with pairs of reciprocal chimaeras to determine the efficiency with which recombination would give rise to high-fitness progeny genomes resembling MSV-MatA. Recombinants resembling MSV-MatA invariably arose in all of our experiments. However, the accuracy and efficiency with which the MSV-MatA genotype was recovered across all replicates of each experiment depended on the MSV susceptibility of the maize genotypes used and the precise positions - in relation to known recombination hotspots - of the breakpoints required to re-create MSV

  2. Evaluation of Strains Derived from Escherichia coli W as Hosts for the Expression of Penicillin G-Acylase-Encoding Gene Cloned on the Recombinant Plasmid pKA18

    Czech Academy of Sciences Publication Activity Database

    Grafková, J.; Sobotková, Lenka; Kyslík, Pavel

    2002-01-01

    Roč. 47, č. 2 (2002), s. 189-192 ISSN 0015-5632 Institutional research plan: CEZ:AV0Z5020903 Keywords : penicillin * recombinant * plasmid Subject RIV: EE - Microbiology, Virology Impact factor: 0.979, year: 2002

  3. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens.

    Science.gov (United States)

    Wang, Jichun; Ge, Aimin; Xu, Mengwei; Wang, Zhisheng; Qiao, Yongfeng; Gu, Yiqi; Liu, Chang; Liu, Yamei; Hou, Jibo

    2015-08-13

    Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates. To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEV(C-KCE)). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacterial artificial chromosome (BAC) by inserting a synthesized HA(H5) expression cassette with a pMCMV IE promoter and a consensus HA sequence into the noncoding area between UL55 and LORF11. The immunogenicity and protective efficacy of the resulting recombinant vaccine against DEV and AIV H5N1 were evaluated in both ducks and chickens. The successful construction of DEV BAC and DEV-H5(UL55) was verified by restriction fragment length polymorphism analysis. Recovered virus from the BAC or mutants showed similar growth kinetics to their parental viruses. The robust expression of HA in chicken embryo fibroblasts infected with the DEV-vectored vaccine was confirmed by indirect immunofluorescence and western blotting analyses. A single dose of 10(6) TCID50 DEV-vectored vaccine provided 100 % protection against duck viral enteritis in ducks, and the hemagglutination inhibition (HI) antibody titer of AIV H5N1 with a peak of 8.2 log2 was detected in 3-week-old layer chickens. In contrast, only very weak HI titers were observed in ducks immunized with 10(7) TCID50 DEV-vectored vaccine. A mortality rate of 60 % (6/10) was observed in 1-week-old specific pathogen free chickens inoculated with 10(6) TCID50 DEV-vectored vaccine. We demonstrate the following in this study. (i) The constructed BAC is a whole genome clone of DEV(C-KCE). (ii) The insertion of an HA expression cassette sequence into the noncoding area between UL55 and LORF11 of DEV(C-KCE) affects neither the growth kinetics of the virus nor its

  4. Heterogeneity in recombinant protein production

    DEFF Research Database (Denmark)

    Schalén, Martin; Johanson, Ted; Lundin, Luisa

    2012-01-01

    contribute to make a population in a fermenter heterogeneous, resulting in cell-to-cell variation in physiological parameters of the microbial culture. Our study aims at investigating how population heterogeneity and recombinant protein production is affected by environmental gradients in bioreactors....... For this purpose, a Saccharomyces cerevisiae strain, that functions as a protein production reporter, has been developed. A heterologous protein has been tagged with a fluorescent protein providing a way to measure the amount of heterologous protein produced by the cells on single cell level. Gradients...... are simulated in small bioreactors and the population heterogeneity can be visualised by analysing single cells with flow cytometry. This can give new insights to cell physiology and recombinant protein production at the industrial scale....

  5. Recombinant protein production technology

    Science.gov (United States)

    Recombinant protein production is an important technology for antibody production, biochemical activity study, and structural determination during the post-genomic era. Limiting factors in recombinant protein production include low-level protein expression, protein precipitation, and loss of protein...

  6. Mitochondrial recombination increases with age in Podospora anserina

    NARCIS (Netherlands)

    van Diepeningen, Anne D; Goedbloed, Daniël J; Slakhorst, S Marijke; Koopmanschap, A Bertha; Maas, Marc F P M; Hoekstra, Rolf F; Debets, Alfons J M

    With uniparental inheritance of mitochondria, there seems little reason for homologous recombination in mitochondria, but the machinery for mitochondrial recombination is quite well-conserved in many eukaryote species. In fungi and yeasts heteroplasmons may be formed when strains fuse and transfer

  7. Expression of recombinant Streptokinase from local Egyptian ...

    African Journals Online (AJOL)

    We reported for the first time the expression of a recombinant SK from a local Streptococcus strain. When produced on industrial scale this r-SK may substantially contribute to reducing the costs of thrombolytic therapy in developing countries. In this study, a highly purified r-SK from Streptococcus sp. isolated from Egyptian ...

  8. Profiling of the reactive oxygen species-related ecotoxicity of CuO, ZnO, TiO2, silver and fullerene nanoparticles using a set of recombinant luminescent Escherichia coli strains: differentiating the impact of particles and solubilised metals.

    Science.gov (United States)

    Ivask, A; Bondarenko, O; Jepihhina, N; Kahru, A

    2010-09-01

    We propose a novel combination of high-throughput luminescent bacterial tests for the evaluation of the reactive oxygen species (ROS)-generating potential of engineered nanoparticles (eNPs) and the role of solubilised metal ions in this process. The set of tests consists of differently engineered recombinant Escherichia coli strains: (1) a new sensor strain, which bioluminescence is induced by superoxide anions; (2) six recombinant E. coli strains (superoxide dismutase (sod) single, double and triple mutants and a respective wild-type strain), transformed with luxCDABE genes responding to toxic compounds by decreasing their luminescence; and (3) three strains in which bioluminescence is specifically induced by bioavailable metals (Cu, Zn and Ag). The applicability of this battery of tests in profiling oxidative potential of eNPs was evaluated on nTiO(2), nCuO, nZnO and nAg (25, 30, 70 and metal sensor bacteria showed that the ROS formation by CuO NPs was caused by solubilised Cu ions, but in case of nAg, particles also had an effect. nZnO was remarkably more toxic to sod triple mutant than to wild type strain (2-h EC(50) were 4.5 and 54 mg Zn l(-1), respectively). Fullerenes inhibited the bioluminescence of sod triple mutant at 3,882 mg l(-1) but had no effect on the wild-type strain even at 20,800 mg l(-1). Nano and bTiO(2) showed some effect on viability of bacteria only at high concentrations (>4,000 mg l(-1)) although nTiO(2) (but not bTiO(2)) induced the bioluminescence of the superoxide anion sensing bacteria starting from 100 mg l(-1). Thus, our innovative combined approach is expected to provide more consistent and informative data concerning the general toxicity, ROS-production potential and also solubilisation of metals in the case of metallic NPs.

  9. Intragastric immunization with recombinant Lactobacillus casei expressing flagellar antigen confers antibody-independent protective immunity against Salmonella enterica serovar Enteritidis

    NARCIS (Netherlands)

    Kajikawa, A.; Satoh, E.; Leer, R.J.; Yamamoto, S.; Igimi, S.

    2007-01-01

    A recombinant Lactobacillus casei expressing a flagellar antigen from Salmonella enterica serovar Enteritidis was constructed and evaluated as a mucosal vaccine. Intragastric immunization of the recombinant strain conferred protective immunity against Salmonella infection in mice. This immunization

  10. Vaccine platform recombinant measles virus.

    Science.gov (United States)

    Mühlebach, Michael D

    2017-10-01

    The classic development of vaccines is lengthy, tedious, and may not necessarily be successful as demonstrated by the case of HIV. This is especially a problem for emerging pathogens that are newly introduced into the human population and carry the inherent risk of pandemic spread in a naïve population. For such situations, a considerable number of different platform technologies are under development. These are also under development for pathogens, where directly derived vaccines are regarded as too complicated or even dangerous due to the induction of inefficient or unwanted immune responses causing considerable side-effects as for dengue virus. Among platform technologies are plasmid-based DNA vaccines, RNA replicons, single-round infectious vector particles, or replicating vaccine-based vectors encoding (a) critical antigen(s) of the target pathogens. Among the latter, recombinant measles viruses derived from vaccine strains have been tested. Measles vaccines are among the most effective and safest life-attenuated vaccines known. Therefore, the development of Schwarz-, Moraten-, or AIK-C-strain derived recombinant vaccines against a wide range of mostly viral, but also bacterial pathogens was quite straightforward. These vaccines generally induce powerful humoral and cellular immune responses in appropriate animal models, i.e., transgenic mice or non-human primates. Also in the recent first clinical phase I trial, the results have been quite encouraging. The trial indicated the expected safety and efficacy also in human patients, interestingly independent from the level of prevalent anti-measles immunity before the trial. Thereby, recombinant measles vaccines expressing additional antigens are a promising platform for future vaccines.

  11. Recombinant clotting factors.

    Science.gov (United States)

    Pipe, Steven W

    2008-05-01

    The recombinant era for haemophilia began in the early 1980s with the cloning and subsequent expression of functional proteins for both factors VIII and IX. Efficient production of recombinant clotting factors in mammalian cell culture systems required overcoming significant challenges due to the complex post-translational modifications that were integral to their pro-coagulant function. The quick development and commercialization of recombinant clotting factors was, in part, facilitated by the catastrophic impact of viral contamination of plasma-derived clotting factor concentrates at the time. Since their transition into the clinic, the recombinant versions of both factor VIII and IX have proven to be remarkable facsimiles of their plasma-derived counterparts. The broad adoption of recombinant therapy throughout the developed world has significantly increased the supply of clotting factor concentrates and helped advance aggressive therapeutic interventions such as prophylaxis. The development of recombinant VIIa was a further advance bringing a recombinant option to haemophilia patients with inhibitors. Recombinant DNA technology remains the platform to address ongoing challenges in haemophilia care such as reducing the costs of therapy, increasing the availability to the developing world, and improving the functional properties of these proteins. In turn, the ongoing development of new recombinant clotting factor concentrates is providing alternatives for patients with other inherited bleeding disorders.

  12. Genetic analysis of poliovirus strains isolated from sewage in Poland.

    Science.gov (United States)

    Kuryk, Ł; Wieczorek, M; Diedrich, S; Böttcher, S; Witek, A; Litwińska, B

    2014-07-01

    The study describes genetic characterization of poliovirus (PV) strains isolated from sewage samples in Poland. The analyses were performed for the detection of any putative polio revertants and recombinants in three genomic regions by sequencing analysis. Thirty-six strains were analyzed. The analyzed strains were identified by neutralization assay as 7 strains of serotype P1, 10 strains of serotype P2, and 19 strains of serotype P3. Sewage isolates were sequenced in 5'UTR, VP1, and 3D genomic regions. All detected PVs were classified as vaccine strains on the basis of VP1 sequence. Mutational differences in the VP1 sequences of isolated viruses ranged from 0.0% to 0.4%, indicating a limited replication period. The genetic analysis of the 3D region showed that some strains have recombinant genomes. Nine strains were found as dipartite recombinants (seven strains--S3/S2, one strain--S2/S1, one strain--S3/S1), while one strain was found as tripartite recombinant (S3/S2/S1). No recombinants with non-PV enteroviruses were identified. None of wild-type PVs or vaccine-derived polioviruses (VDPVs) were detected. This study showed the absence of wild or VDPV circulation in the country and demonstrated the usefulness of environmental surveillance in addition to acute flaccid paralysis (AFP) surveillance in support of polio eradication initiatives. © 2013 Wiley Periodicals, Inc.

  13. Genetic recombination in Actinoplanes brasiliensis by protoplast fusion.

    OpenAIRE

    Palleroni, N J

    1983-01-01

    Protoplast formation, fusion, and cell regeneration have been achieved with mutant strains of Actinoplanes brasiliensis. Three-, four-, and five-factor crosses have shown genetic recombination among the markers, and a five-factor cross is analyzed and discussed. Possibilities of using protoplast fusion for gene mapping and strain improvement are suggested.

  14. Statistical Analysis on Detecting Recombination Sites in DNA-β Satellites Associated with Old World Geminiviruses

    Science.gov (United States)

    Xu, Kai; Yoshida, Ruriko

    2010-01-01

    Although exchange of genetic information by recombination plays an important role in the evolution of viruses, it is not clear how it generates diversity. Understanding recombination events helps with the study of the evolution of new virus strains or new viruses. Geminiviruses are plant viruses which have ambisense single-stranded circular DNA genomes and are one of the most economically important plant viruses in agricultural production. Small circular single-stranded DNA satellites, termed DNA-β, have recently been found to be associated with some geminivirus infections. In this paper we analyze several DNA-β sequences of geminiviruses for recombination events using phylogenetic and statistical analysis and we find that one strain from ToLCMaB has a recombination pattern and is a recombinant molecule between two strains from two species, PaLCuB-[IN:Chi:05] (major parent) and ToLCB-[IN:CP:04] (minor parent). We propose that this recombination event contributed to the evolution of the strain of ToLCMaB in South India. The Hidden Markov Chain (HMM) method developed by Webb et al. (2009) estimating phylogenetic tree through out the whole alignment provide us a recombination history of these DNA-β strains. It is the first time that this statistic method has been used on DNA-β recombination study and give a clear recombination history of DNA-β recombination. PMID:21423447

  15. Recombinant gene expression protocols

    National Research Council Canada - National Science Library

    Tuan, Rocky S

    1997-01-01

    .... A fundamental requirement for successful recombinant gene expression is the design of the cloning vector and the choice of the host organism for expression. Recombinant Gene Expression Protocols grows out of the need for a laboratory manual that provides the reader the background and rationale, as well as the practical protocols for the preparation of...

  16. ReCombine: a suite of programs for detection and analysis of meiotic recombination in whole-genome datasets.

    Directory of Open Access Journals (Sweden)

    Carol M Anderson

    Full Text Available In meiosis, the exchange of DNA between chromosomes by homologous recombination is a critical step that ensures proper chromosome segregation and increases genetic diversity. Products of recombination include reciprocal exchanges, known as crossovers, and non-reciprocal gene conversions or non-crossovers. The mechanisms underlying meiotic recombination remain elusive, largely because of the difficulty of analyzing large numbers of recombination events by traditional genetic methods. These traditional methods are increasingly being superseded by high-throughput techniques capable of surveying meiotic recombination on a genome-wide basis. Next-generation sequencing or microarray hybridization is used to genotype thousands of polymorphic markers in the progeny of hybrid yeast strains. New computational tools are needed to perform this genotyping and to find and analyze recombination events. We have developed a suite of programs, ReCombine, for using short sequence reads from next-generation sequencing experiments to genotype yeast meiotic progeny. Upon genotyping, the program CrossOver, a component of ReCombine, then detects recombination products and classifies them into categories based on the features found at each location and their distribution among the various chromatids. CrossOver is also capable of analyzing segregation data from microarray experiments or other sources. This package of programs is designed to allow even researchers without computational expertise to use high-throughput, whole-genome methods to study the molecular mechanisms of meiotic recombination.

  17. Two novel porcine epidemic diarrhea virus (PEDV) recombinants from a natural recombinant and distinct subtypes of PEDV variants.

    Science.gov (United States)

    Chen, Nanhua; Li, Shuangjie; Zhou, Rongyun; Zhu, Meiqin; He, Shan; Ye, Mengxue; Huang, Yucheng; Li, Shuai; Zhu, Cong; Xia, Pengpeng; Zhu, Jianzhong

    2017-10-15

    Porcine epidemic diarrhea virus (PEDV) causes devastating impact on global pig-breeding industry and current vaccines have become not effective against the circulating PEDV variants since 2011. During the up-to-date investigation of PEDV prevalence in Fujian China 2016, PEDV was identified in vaccinated pig farms suffering severe diarrhea while other common diarrhea-associated pathogens were not detected. Complete genomes of two PEDV representatives (XM1-2 and XM2-4) were determined. Genomic comparison showed that these two viruses share the highest nucleotide identities (99.10% and 98.79%) with the 2011 ZMDZY strain, but only 96.65% and 96.50% nucleotide identities with the attenuated CV777 strain. Amino acid alignment of spike (S) proteins indicated that they have the similar mutation, insertion and deletion pattern as other Chinese PEDV variants but also contain several unique substitutions. Phylogenetic analysis showed that 2016 PEDV variants belong to the cluster of recombination strains but form a new branch. Recombination detection suggested that both XM1-2 and XM2-4 are inter-subgroup recombinants with breakpoints within ORF1b. Remarkably, the natural recombinant HNQX-3 isolate serves as a parental virus for both natural recombinants identified in this study. This up-to-date investigation provides the direct evidence that natural recombinants may serve as parental viruses to generate recombined PEDV progenies that are probably associated with the vaccination failure. Copyright © 2017. Published by Elsevier B.V.

  18. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance.

    Science.gov (United States)

    Kempf, Brian J; Peersen, Olve B; Barton, David J

    2016-10-01

    RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3D(pol), as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3D(pol) may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3D(pol)-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3D(pol) decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3D(pol) increased the frequency of recombination. The 3D(pol) Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3D(pol) Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a polymerase

  19. Strain-dependent induction of cytokine profiles in the gut by orally administered Lactobacillus strains

    NARCIS (Netherlands)

    Maassen, C.B.M.; Holten-Neelen, C. van; Balk, F.; Bak-Glashouwer, M.-J.H. den; Leer, R.J.; Laman, J.D.; Boersma, W.J.A.; Claassen, E.

    2000-01-01

    Different Lactobacillus strains are frequently used in consumer food products. In addition, recombinant lactobacilli which contain novel expression vectors can now be used in immunotherapeutic applications such as oral vaccination strategies and in T cell tolerance induction approaches for

  20. RNA recombination in Hepatitis delta virus: Identification of a novel naturally occurring recombinant

    Directory of Open Access Journals (Sweden)

    Chia-Chi Lin

    2017-12-01

    Full Text Available Background/Purpose: Hepatitis delta virus (HDV is the only animal RNA virus that has an unbranched rod-like genome with ribozyme activity. It replicates in the nucleus by host RNA polymerase via a rolling circle mechanism. Similar to many RNA viruses encoding their own RNA-dependent RNA polymerases, homologous recombination of HDV occurs in mixed-genotype infections and in cultured cells cotransfected with two HDV sequences, as demonstrated by molecular analyses. Methods: Among 237 published complete genomic sequences, 34 sequences were reported from the small and isolated Miyako Island, Japan, and belonged to the Asia-specific genotypes, HDV-2 and HDV-4 (the majority of them belonged to the known Miyako Island-specific subgroup, HDV-4M. We investigated the presence of naturally occurring HDV recombinant in Miyako Island using phylogenetic and recombination analyses. Results: We identified a two-switch HDV-4/4M intersubtype recombinant with an unbranched rod-like RNA genome. Conclusion: Our data suggest that RNA recombination plays an important role in the rapid evolution of HDV, allowing the production of new HDV strains with correct genomic structures. Keywords: hepatitis delta virus, RNA recombination

  1. Hadron correlations from recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    Quark recombination is a successful model to describe the hadronization of a deconfined quark gluon plasma. Jet-like dihadron correlations measured at RHIC provide a challenge for this picture. We discuss how correlations between hadrons can arise from correlations between partons before hadronization. An enhancement of correlations through the recombination process, similar to the enhancement of elliptic flow is found. Hot spots from completely or partially quenched jets are a likely source of such parton correlations.

  2. Multiple genomic recombination events in the evolution of saffold cardiovirus.

    Directory of Open Access Journals (Sweden)

    Lili Ren

    Full Text Available BACKGROUND: Saffold cardiovirus (SAFV is a new human cardiovirus with 11 identified genotypes. Little is known about the natural history and pathogenicity of SAFVs. METHODOLOGY/PRINCIPAL FINDINGS: We sequenced the genome of five SAFV-1 strains which were identified from fecal samples taken from children with viral diarrhea in Beijing, China between March 2006 and November 2007, and analyzed the phylogenetic and phylodynamic properties of SAFVs using the genome sequences of every known SAFV genotypes. We identified multiple recombination events in our SAFV-1 strains, specifically recombination between SAFV-2, -3, -4, -9, -10 and the prototype SAFV-1 strain in the VP4 region and recombination between SAFV-4, -6, -8, -10, -11 and prototype SAFV-1 in the VP1/2A region. Notably, recombination in the structural gene VP4 is a rare event in Cardiovirus. The ratio of nonsynonymous substitutions to synonymous substitutions indicates a purifying selection of the SAFV genome. Phylogenetic and molecular clock analysis indicates the existence of at least two subclades of SAFV-1 with different origins. Subclade 1 includes two strains isolated from Pakistan, whereas subclade 2 includes the prototype strain and strains isolated in China, Pakistan, and Afghanistan. The most recent common ancestor of all SAFV genotypes dates to the 1710s, and SAFV-1, -2, and -3 to the 1940s, 1950s, and 1960s, respectively. No obvious relationship between variation and pathogenicity exists in the critical domains of the CD and EF loops of viral capsid proteins or the multi-functional proteins L based on amino acid sequence identity comparison between SAFV genotypes. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that intertypic recombination plays an important role in the diversity of SAFVs, highlighting the diversity of the five strains with the previously described SAFV-1 strains.

  3. Construction of a recombinant duck enteritis virus (DEV) expressing hemagglutinin of H5N1 avian influenza virus based on an infectious clone of DEV vaccine strain and evaluation of its efficacy in ducks and chickens

    OpenAIRE

    Wang, Jichun; Ge, Aimin; Xu, Mengwei; Wang, Zhisheng; Qiao, Yongfeng; Gu, Yiqi; Liu, Chang; Liu, Yamei; Hou, Jibo

    2015-01-01

    Background Highly pathogenic avian influenza virus (AIV) subtype H5N1 remains a threat to poultry. Duck enteritis virus (DEV)-vectored vaccines expressing AIV H5N1 hemagglutinin (HA) may be viable AIV and DEV vaccine candidates. Methods To facilitate the generation and further improvement of DEV-vectored HA(H5) vaccines, we first constructed an infectious clone of DEV Chinese vaccine strain C-KCE (DEVC-KCE). Then, we generated a DEV-vectored HA(H5) vaccine (DEV-H5(UL55)) based on the bacteria...

  4. Revised genomic consensus for the hypermethylated CpG island region of the human L1 transposon and integration sites of full length L1 elements from recombinant clones made using methylation-tolerant host strains

    DEFF Research Database (Denmark)

    Crowther, P J; Doherty, J P; Linsenmeyer, M E

    1991-01-01

    from the 5' end of full length L1 elements. Such potential transcripts are likely to exhibit a high degree of secondary structure. In addition, we have determined the flanking sequences for 6 full length L1 elements. The majority of full length L1 clones show no convincing evidence for target site......Efficient recovery of clones from the 5' end of the human L1 dispersed repetitive elements necessitates the use of deletion mcr- host strains since this region contains a CpG island which is hypermethylated in vivo. Clones recovered with conventional mcr+ hosts seem to have been derived...

  5. Recombination in feline immunodeficiency virus from feral and companion domestic cats

    Directory of Open Access Journals (Sweden)

    Rodrigo Allen G

    2008-06-01

    Full Text Available Abstract Background Recombination is a relatively common phenomenon in retroviruses. We investigated recombination in Feline Immunodeficiency Virus from naturally-infected New Zealand domestic cats (Felis catus by sequencing regions of the gag, pol and env genes. Results The occurrence of intragenic recombination was highest in env, with evidence of recombination in 6.4% (n = 156 of all cats. A further recombinant was identified in each of the gag (n = 48 and pol (n = 91 genes. Comparisons of phylogenetic trees across genes identified cases of incongruence, indicating intergenic recombination. Three (7.7%, n = 39 of these incongruencies were found to be significantly different using the Shimodaira-Hasegawa test. Surprisingly, our phylogenies from the gag and pol genes showed that no New Zealand sequences group with reference subtype C sequences within intrasubtype pairwise distances. Indeed, we find one and two distinct unknown subtype groups in gag and pol, respectively. These observations cause us to speculate that these New Zealand FIV strains have undergone several recombination events between subtype A parent strains and undefined unknown subtype strains, similar to the evolutionary history hypothesised for HIV-1 "subtype E". Endpoint dilution sequencing was used to confirm the consensus sequences of the putative recombinants and unknown subtype groups, providing evidence for the authenticity of these sequences. Endpoint dilution sequencing also resulted in the identification of a dual infection event in the env gene. In addition, an intrahost recombination event between variants of the same subtype in the pol gene was established. This is the first known example of naturally-occurring recombination in a cat with infection of the parent strains. Conclusion Evidence of intragenic recombination in the gag, pol and env regions, and complex intergenic recombination, of FIV from naturally-infected domestic cats in New Zealand was found. Strains

  6. Regulation of Meiotic Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Gregory p. Copenhaver

    2011-11-09

    Meiotic recombination results in the heritable rearrangement of DNA, primarily through reciprocal exchange between homologous chromosome or gene conversion. In plants these events are critical for ensuring proper chromosome segregation, facilitating DNA repair and providing a basis for genetic diversity. Understanding this fundamental biological mechanism will directly facilitate trait mapping, conventional plant breeding, and development of genetic engineering techniques that will help support the responsible production and conversion of renewable resources for fuels, chemicals, and the conservation of energy (1-3). Substantial progress has been made in understanding the basal recombination machinery, much of which is conserved in organisms as diverse as yeast, plants and mammals (4, 5). Significantly less is known about the factors that regulate how often and where that basal machinery acts on higher eukaryotic chromosomes. One important mechanism for regulating the frequency and distribution of meiotic recombination is crossover interference - or the ability of one recombination event to influence nearby events. The MUS81 gene is thought to play an important role in regulating the influence of interference on crossing over. The immediate goals of this project are to use reverse genetics to identify mutants in two putative MUS81 homologs in the model plant Arabidopsis thaliana, characterize those mutants and initiate a novel forward genetic screen for additional regulators of meiotic recombination. The long-term goal of the project is to understand how meiotic recombination is regulated in higher eukaryotes with an emphasis on the molecular basis of crossover interference. The ability to monitor recombination in all four meiotic products (tetrad analysis) has been a powerful tool in the arsenal of yeast geneticists. Previously, the qrt mutant of Arabidopsis, which causes the four pollen products of male meiosis to remain attached, was developed as a facile system

  7. Recombination in Avian Gamma-Coronavirus Infectious Bronchitis Virus

    Directory of Open Access Journals (Sweden)

    Mark W. Jackwood

    2011-09-01

    Full Text Available Recombination in the family Coronaviridae has been well documented and is thought to be a contributing factor in the emergence and evolution of different coronaviral genotypes as well as different species of coronavirus. However, there are limited data available on the frequency and extent of recombination in coronaviruses in nature and particularly for the avian gamma-coronaviruses where only recently the emergence of a turkey coronavirus has been attributed solely to recombination. In this study, the full-length genomes of eight avian gamma-coronavirus infectious bronchitis virus (IBV isolates were sequenced and along with other full-length IBV genomes available from GenBank were analyzed for recombination. Evidence of recombination was found in every sequence analyzed and was distributed throughout the entire genome. Areas that have the highest occurrence of recombination are located in regions of the genome that code for nonstructural proteins 2, 3 and 16, and the structural spike glycoprotein. The extent of the recombination observed, suggests that this may be one of the principal mechanisms for generating genetic and antigenic diversity within IBV. These data indicate that reticulate evolutionary change due to recombination in IBV, likely plays a major role in the origin and adaptation of the virus leading to new genetic types and strains of the virus.

  8. Evidence of recombination in intrapatient populations of hepatitis C virus.

    Science.gov (United States)

    Sentandreu, Vicente; Jiménez-Hernández, Nuria; Torres-Puente, Manuela; Bracho, María Alma; Valero, Ana; Gosalbes, María José; Ortega, Enrique; Moya, Andrés; González-Candelas, Fernando

    2008-09-18

    Hepatitis C virus (HCV) is a major cause of liver disease worldwide and a potential cause of substantial morbidity and mortality in the future. HCV is characterized by a high level of genetic heterogeneity. Although homologous recombination has been demonstrated in many members of the family Flaviviridae, to which HCV belongs, there are only a few studies reporting recombination on natural populations of HCV, suggesting that these events are rare in vivo. Furthermore, these few studies have focused on recombination between different HCV genotypes/subtypes but there are no reports on the extent of intra-genotype or intra-subtype recombination between viral strains infecting the same patient. Given the important implications of recombination for RNA virus evolution, our aim in this study has been to assess the existence and eventually the frequency of intragenic recombination on HCV. For this, we retrospectively have analyzed two regions of the HCV genome (NS5A and E1-E2) in samples from two different groups: (i) patients infected only with HCV (either treated with interferon plus ribavirin or treatment naïve), and (ii) HCV-HIV co-infected patients (with and without treatment against HIV). The complete data set comprised 17712 sequences from 136 serum samples derived from 111 patients. Recombination analyses were performed using 6 different methods implemented in the program RDP3. Recombination events were considered when detected by at least 3 of the 6 methods used and were identified in 10.7% of the amplified samples, distributed throughout all the groups described and the two genomic regions studied. The resulting recombination events were further verified by detailed phylogenetic analyses. The complete experimental procedure was applied to an artificial mixture of relatively closely viral populations and the ensuing analyses failed to reveal artifactual recombination. From these results we conclude that recombination should be considered as a potentially

  9. Gateway Recombinational Cloning.

    Science.gov (United States)

    Reece-Hoyes, John S; Walhout, Albertha J M

    2018-01-02

    The Gateway recombinatorial cloning system was developed for cloning multiple DNA fragments in parallel (e.g., in 96-well formats) in a standardized manner using the same enzymes. Gateway cloning is based on the highly specific integration and excision reactions of bacteriophage λ into and out of the Escherichia coli genome. Because the sites of recombination (" att " sites) are much longer (25-242 bp) than restriction sites, they are extremely unlikely to occur by chance in DNA fragments. Therefore, the same recombination enzyme can be used to robustly clone many different fragments of variable size in parallel reactions. © 2018 Cold Spring Harbor Laboratory Press.

  10. Fundamental Studies of Recombinant Hydrogenases

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael W. [Univ. of Georgia, Athens, GA (United States)

    2014-01-25

    This research addressed the long term goals of understanding the assembly and organization of hydrogenase enzymes, of reducing them in size and complexity, of determining structure/function relationships, including energy conservation via charge separation across membranes, and in screening for novel H2 catalysts. A key overall goal of the proposed research was to define and characterize minimal hydrogenases that are produced in high yields and are oxygen-resistant. Remarkably, in spite of decades of research carried out on hydrogenases, it is not possible to readily manipulate or design the enzyme using molecular biology approaches since a recombinant form produced in a suitable host is not available. Such resources are essential if we are to understand what constitutes a “minimal” hydrogenase and design such catalysts with certain properties, such as resistance to oxygen, extreme stability and specificity for a given electron donor. The model system for our studies is Pyrococcus furiosus, a hyperthermophile that grows optimally at 100°C, which contains three different nickel-iron [NiFe-] containing hydrogenases. Hydrogenases I and II are cytoplasmic while the other, MBH, is an integral membrane protein that functions to both evolve H2 and pump protons. Three important breakthroughs were made during the funding period with P. furiosus soluble hydrogenase I (SHI). First, we produced an active recombinant form of SHI in E. coli by the co-expression of sixteen genes using anaerobically-induced promoters. Second, we genetically-engineered P. furiosus to overexpress SHI by an order of magnitude compared to the wild type strain. Third, we generated the first ‘minimal’ form of SHI, one that contained two rather than four subunits. This dimeric form was stable and active, and directly interacted with a pyruvate-oxidizing enzyme with any intermediate electron carrier. The research resulted in five peer-reviewed publications.

  11. Recombinant renewable polyclonal antibodies.

    Science.gov (United States)

    Ferrara, Fortunato; D'Angelo, Sara; Gaiotto, Tiziano; Naranjo, Leslie; Tian, Hongzhao; Gräslund, Susanne; Dobrovetsky, Elena; Hraber, Peter; Lund-Johansen, Fridtjof; Saragozza, Silvia; Sblattero, Daniele; Kiss, Csaba; Bradbury, Andrew R M

    2015-01-01

    Only a small fraction of the antibodies in a traditional polyclonal antibody mixture recognize the target of interest, frequently resulting in undesirable polyreactivity. Here, we show that high-quality recombinant polyclonals, in which hundreds of different antibodies are all directed toward a target of interest, can be easily generated in vitro by combining phage and yeast display. We show that, unlike traditional polyclonals, which are limited resources, recombinant polyclonal antibodies can be amplified over one hundred million-fold without losing representation or functionality. Our protocol was tested on 9 different targets to demonstrate how the strategy allows the selective amplification of antibodies directed toward desirable target specific epitopes, such as those found in one protein but not a closely related one, and the elimination of antibodies recognizing common epitopes, without significant loss of diversity. These recombinant renewable polyclonal antibodies are usable in different assays, and can be generated in high throughput. This approach could potentially be used to develop highly specific recombinant renewable antibodies against all human gene products.

  12. Sexual recombination and increased mutation rate expedite evolution of Escherichia coli in varied fitness landscapes

    OpenAIRE

    Peabody V, George L.; Li, Hao; Kao, Katy C.

    2017-01-01

    Sexual recombination and mutation rate are theorized to play different roles in adaptive evolution depending on the fitness landscape; however, direct experimental support is limited. Here we examine how these factors affect the rate of adaptation utilizing a “genderless” strain of Escherichia coli capable of continuous in situ sexual recombination. The results show that the populations with increased mutation rate, and capable of sexual recombination, outperform all the other populations. We...

  13. Development of Recombinant Newcastle Disease Viruses Expressing the Glycoprotein (G) of Avian Metapneumovirus as Bivalent Vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, B or C, as bivalent vaccines. These recombinant viruses were slightly attenuated in vivo, yet maintaine...

  14. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Chandrasekhar Natarajan

    Full Text Available Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species.As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus, a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications.Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  15. Expression and purification of recombinant hemoglobin in Escherichia coli.

    Science.gov (United States)

    Natarajan, Chandrasekhar; Jiang, Xiaoben; Fago, Angela; Weber, Roy E; Moriyama, Hideaki; Storz, Jay F

    2011-01-01

    Recombinant DNA technologies have played a pivotal role in the elucidation of structure-function relationships in hemoglobin (Hb) and other globin proteins. Here we describe the development of a plasmid expression system to synthesize recombinant Hbs in Escherichia coli, and we describe a protocol for expressing Hbs with low intrinsic solubilities. Since the α- and β-chain Hbs of different species span a broad range of solubilities, experimental protocols that have been optimized for expressing recombinant human HbA may often prove unsuitable for the recombinant expression of wildtype and mutant Hbs of other species. As a test case for our expression system, we produced recombinant Hbs of the deer mouse (Peromyscus maniculatus), a species that has been the subject of research on mechanisms of Hb adaptation to hypoxia. By experimentally assessing the combined effects of induction temperature, induction time and E. coli expression strain on the solubility of recombinant deer mouse Hbs, we identified combinations of expression conditions that greatly enhanced the yield of recombinant protein and which also increased the efficiency of post-translational modifications. Our protocol should prove useful for the experimental study of recombinant Hbs in many non-human animals. One of the chief advantages of our protocol is that we can express soluble recombinant Hb without co-expressing molecular chaperones, and without the need for additional reconstitution or heme-incorporation steps. Moreover, our plasmid construct contains a combination of unique restriction sites that allows us to produce recombinant Hbs with different α- and β-chain subunit combinations by means of cassette mutagenesis.

  16. A molecular recombination map of Antirrhinum majus

    Directory of Open Access Journals (Sweden)

    Hudson Andrew

    2010-12-01

    Full Text Available Abstract Background Genetic recombination maps provide important frameworks for comparative genomics, identifying gene functions, assembling genome sequences and for breeding. The molecular recombination map currently available for the model eudicot Antirrhinum majus is the result of a cross with Antirrhinum molle, limiting its usefulness within A. majus. Results We created a molecular linkage map of A. majus based on segregation of markers in the F2 population of two inbred lab strains of A. majus. The resulting map consisted of over 300 markers in eight linkage groups, which could be aligned with a classical recombination map and the A. majus karyotype. The distribution of recombination frequencies and distorted transmission of parental alleles differed from those of a previous inter-species hybrid. The differences varied in magnitude and direction between chromosomes, suggesting that they had multiple causes. The map, which covered an estimated of 95% of the genome with an average interval of 2 cM, was used to analyze the distribution of a newly discovered family of MITE transposons and tested for its utility in positioning seven mutations that affect aspects of plant size. Conclusions The current map has an estimated interval of 1.28 Mb between markers. It shows a lower level of transmission ratio distortion and a longer length than the previous inter-species map, making it potentially more useful. The molecular recombination map further indicates that the IDLE MITE transposons are distributed throughout the genome and are relatively stable. The map proved effective in mapping classical morphological mutations of A. majus.

  17. Benefits of a Recombination-Proficient Escherichia coli System for Adaptive Laboratory Evolution

    Science.gov (United States)

    Peabody, George; Winkler, James; Fountain, Weston; Castro, David A.; Leiva-Aravena, Enzo

    2016-01-01

    ABSTRACT Adaptive laboratory evolution typically involves the propagation of organisms asexually to select for mutants with the desired phenotypes. However, asexual evolution is prone to competition among beneficial mutations (clonal interference) and the accumulation of hitchhiking and neutral mutations. The benefits of horizontal gene transfer toward overcoming these known disadvantages of asexual evolution were characterized in a strain of Escherichia coli engineered for superior sexual recombination (genderless). Specifically, we experimentally validated the capacity of the genderless strain to reduce the mutational load and recombine beneficial mutations. We also confirmed that inclusion of multiple origins of transfer influences both the frequency of genetic exchange throughout the chromosome and the linkage of donor DNA. We built a simple kinetic model to estimate recombination frequency as a function of transfer size and relative genotype enrichment in batch transfers; the model output correlated well with the experimental data. Our results provide strong support for the advantages of utilizing the genderless strain over its asexual counterpart during adaptive laboratory evolution for generating beneficial mutants with reduced mutational load. IMPORTANCE Over 80 years ago Fisher and Muller began a debate on the origins of sexual recombination. Although many aspects of sexual recombination have been examined at length, experimental evidence behind the behaviors of recombination in many systems and the means to harness it remain elusive. In this study, we sought to experimentally validate some advantages of recombination in typically asexual Escherichia coli and determine if a sexual strain of E. coli can become an effective tool for strain development. PMID:27613685

  18. Efforts towards the development of recombinant Vaccines against ...

    African Journals Online (AJOL)

    Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida. In this review an ...

  19. Efforts Towards The Development Of Recombinant Vaccines Against

    African Journals Online (AJOL)

    ABSTRACT. Hemorrhagic septicemia is caused by gram-negative bacterium of Pasteurella multocida (P. multocida) strains. Most of the current vaccines against P. multocida have shortcomings. Presently, there is increasing efforts towards construction of recombinant clone for vaccine development against P. multocida.

  20. Isolation and Identification of a Novel Rabies Virus Lineage in China with Natural Recombinant Nucleoprotein Gene

    OpenAIRE

    He, Cheng-Qiang; Meng, Sheng-Li; Yan, Hong-Yan; Ding, Nai-Zheng; He, Hong-Bin; Yan, Jia-Xin; Xu, Ge-Lin

    2012-01-01

    Rabies virus (RABV) causes severe neurological disease and death. As an important mechanism for generating genetic diversity in viruses, homologous recombination can lead to the emergence of novel virus strains with increased virulence and changed host tropism. However, it is still unclear whether recombination plays a role in the evolution of RABV. In this study, we isolated and sequenced four circulating RABV strains in China. Phylogenetic analyses identified a novel lineage of hybrid origi...

  1. Homologous plasmid recombination is elevated in immortally transformed cells.

    Science.gov (United States)

    Finn, G K; Kurz, B W; Cheng, R Z; Shmookler Reis, R J

    1989-09-01

    The levels of intramolecular plasmid recombination, following transfection of a plasmid substrate for homologous recombination into normal and immortally transformed cells, have been examined by two independent assays. In the first assay, recovered plasmid was tested for DNA rearrangements which regenerate a functional neomycin resistance gene from two overlapping fragments. Following transformation of bacteria, frequencies of recombinationlike events were determined from the ratio of neomycin-resistant (recombinant) colonies to ampicillin-resistant colonies (indicating total plasmid recovery). Such events, yielding predominantly deletions between the directly repeated sequences, were substantially more frequent in five immortal cell lines than in any of three normal diploid cell strains tested. Effects of plasmid replication or interaction with T antigen and of bacterially mediated rejoining of linear molecules generated in mammalian cells were excluded by appropriate controls. The second assay used limited coamplification of a control segment of plasmid DNA, and of the predicted recombinant DNA region, primed by two sets of flanking oligonucleotides. Each amplified band was quantitated by reference to a near-linear standard curve generated concurrently, and recombination frequencies were determined from the ratio of recombinant/control DNA regions. The results confirmed that recombinant DNA structures were generated within human cells at direct repeats in the transfected plasmid and were markedly more abundant in an immortal cell line than in the diploid normal cells from which that line was derived.

  2. Site directed recombination

    Science.gov (United States)

    Jurka, Jerzy W.

    1997-01-01

    Enhanced homologous recombination is obtained by employing a consensus sequence which has been found to be associated with integration of repeat sequences, such as Alu and ID. The consensus sequence or sequence having a single transition mutation determines one site of a double break which allows for high efficiency of integration at the site. By introducing single or double stranded DNA having the consensus sequence flanking region joined to a sequence of interest, one can reproducibly direct integration of the sequence of interest at one or a limited number of sites. In this way, specific sites can be identified and homologous recombination achieved at the site by employing a second flanking sequence associated with a sequence proximal to the 3'-nick.

  3. Nonradiative recombination in semiconductors

    CERN Document Server

    Abakumov, VN; Yassievich, IN

    1991-01-01

    In recent years, great progress has been made in the understandingof recombination processes controlling the number of excessfree carriers in semiconductors under nonequilibrium conditions. As a result, it is now possible to give a comprehensivetheoretical description of these processes. The authors haveselected a number of experimental results which elucidate theunderlying physical problems and enable a test of theoreticalmodels. The following topics are dealt with: phenomenological theory ofrecombination, theoretical models of shallow and deep localizedstates, cascade model of carrier captu

  4. Functional bottlenecks for generation of HIV-1 intersubtype Env recombinants.

    Science.gov (United States)

    Bagaya, Bernard S; Vega, José F; Tian, Meijuan; Nickel, Gabrielle C; Li, Yuejin; Krebs, Kendall C; Arts, Eric J; Gao, Yong

    2015-05-23

    Intersubtype recombination is a powerful driving force for HIV evolution, impacting both HIV-1 diversity within an infected individual and within the global epidemic. This study examines if viral protein function/fitness is the major constraint shaping selection of recombination hotspots in replication-competent HIV-1 progeny. A better understanding of the interplay between viral protein structure-function and recombination may provide insights into both vaccine design and drug development. In vitro HIV-1 dual infections were used to recombine subtypes A and D isolates and examine breakpoints in the Env glycoproteins. The entire env genes of 21 A/D recombinants with breakpoints in gp120 were non-functional when cloned into the laboratory strain, NL4-3. Likewise, cloning of A/D gp120 coding regions also produced dead viruses with non-functional Envs. 4/9 replication-competent viruses with functional Env's were obtained when just the V1-V5 regions of these same A/D recombinants (i.e. same A/D breakpoints as above) were cloned into NL4-3. These findings on functional A/D Env recombinants combined with structural models of Env suggest a conserved interplay between the C1 domain with C5 domain of gp120 and extracellular domain of gp41. Models also reveal a co-evolution within C1, C5, and ecto-gp41 domains which might explain the paucity of intersubtype recombination in the gp120 V1-V5 regions, despite their hypervariability. At least HIV-1 A/D intersubtype recombination in gp120 may result in a C1 from one subtype incompatible with a C5/gp41 from another subtype.

  5. Recombinant host cells and media for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Brent E; Ingram, Lonnie O; Yomano, Lorraine P; York, Sean W

    2014-02-18

    Disclosed are recombinant host cells suitable for degrading an oligosaccharide that have been optimized for growth and production of high yields of ethanol, and methods of making and using these cells. The invention further provides minimal media comprising urea-like compounds for economical production of ethanol by recombinant microorganisms. Recombinant host cells in accordance with the invention are modified by gene mutation to eliminate genes responsible for the production of unwanted products other than ethanol, thereby increasing the yield of ethanol produced from the oligosaccharides, relative to unmutated parent strains. The new and improved strains of recombinant bacteria are capable of superior ethanol productivity and yield when grown under conditions suitable for fermentation in minimal growth media containing inexpensive reagents. Systems optimized for ethanol production combine a selected optimized minimal medium with a recombinant host cell optimized for use in the selected medium. Preferred systems are suitable for efficient ethanol production by simultaneous saccharification and fermentation (SSF) using lignocellulose as an oligosaccharide source. The invention also provides novel isolated polynucleotide sequences, polypeptide sequences, vectors and antibodies.

  6. Recombinant Collagenlike Proteins

    Science.gov (United States)

    Fertala, Andzej

    2007-01-01

    A group of collagenlike recombinant proteins containing high densities of biologically active sites has been invented. The method used to express these proteins is similar to a method of expressing recombinant procollagens and collagens described in U. S. Patent 5,593,859, "Synthesis of human procollagens and collagens in recombinant DNA systems." Customized collagenous proteins are needed for biomedical applications. In particular, fibrillar collagens are attractive for production of matrices needed for tissue engineering and drug delivery. Prior to this invention, there was no way of producing customized collagenous proteins for these and other applications. Heretofore, collagenous proteins have been produced by use of such biological systems as yeasts, bacteria, and transgenic animals and plants. These products are normal collagens that can also be extracted from such sources as tendons, bones, and hides. These products cannot be made to consist only of biologically active, specific amino acid sequences that may be needed for specific applications. Prior to this invention, it had been established that fibrillar collagens consist of domains that are responsible for such processes as interaction with cells, binding of growth factors, and interaction with a number of structural proteins present in the extracellular matrix. A normal collagen consists of a sequence of domains that can be represented by a corresponding sequence of labels, e.g., D1D2D3D4. A collagenlike protein of the present invention contains regions of collagen II that contain multiples of a single domain (e.g., D1D1D1D1 or D4D4D4D4) chosen for its specific biological activity. By virtue of the multiplicity of the chosen domain, the density of sites having that specific biological activity is greater than it is in a normal collagen. A collagenlike protein according to this invention can thus be made to have properties that are necessary for tissue engineering.

  7. Recent Recombination Events in the Core Genome Are Associated with Adaptive Evolution in Enterococcus faecium

    Science.gov (United States)

    de Been, Mark; van Schaik, Willem; Cheng, Lu; Corander, Jukka; Willems, Rob J.

    2013-01-01

    Reasons for the rising clinical impact of the bacterium Enterococcus faecium include the species’ rapid acquisition of adaptive genetic elements. Here, we focused on the impact of recombination on the evolution of E. faecium. We used the recently developed BratNextGen algorithm to detect recombinant regions in the core genome of 34 E. faecium strains, including three newly sequenced clinical strains. Recombination was found to have a significant impact on the E. faecium genome: of the original 1.2 million positions in the core genome, 0.5 million were predicted to have been affected by recombination in at least one strain. Importantly, strains in one of the two major E. faecium clades (clade B), which contains most of the E. faecium human gut commensals, formed the most important reservoir for donating foreign DNA to the second major E. faecium clade (clade A), which contains most of the clinical isolates. Also, several genomic regions were found to mainly recombine in specific hospital-associated E. faecium strains. One of these regions (the epa-like locus) likely encodes the biosynthesis of cell wall polysaccharides. These findings suggest a crucial role for recombination in the emergence of E. faecium as a successful hospital-associated pathogen. PMID:23882129

  8. Comparison of poliovirus recombinants: accumulation of point mutations provides further advantages.

    Science.gov (United States)

    Savolainen-Kopra, Carita; Samoilovich, Elena; Kahelin, Heidi; Hiekka, Anna-Kaisa; Hovi, Tapani; Roivainen, Merja

    2009-08-01

    The roles of recombination and accumulation of point mutations in the origin of new poliovirus (PV) characteristics have been hypothesized, but it is not known which are essential to evolution. We studied phenotypic differences between recombinant PV strains isolated from successive stool specimens of an oral PV vaccine recipient. The studied strains included three PV2/PV1 recombinants with increasing numbers of mutations in the VP1 gene, two of the three with an amino acid change I-->T in the DE-loop of VP1, their putative PV1 parent and strains Sabin 1 and 2. Growth of these viruses was examined in three cell lines: colorectal adenocarcinoma, neuroblastoma and HeLa. The main observation was a higher growth rate between 4 and 6 h post-infection of the two recombinants with the I-->T substitution. All recombinants grew at a higher rate than parental strains in the exponential phase of the replication cycle. In a temperature sensitivity test, the I-->T-substituted recombinants replicated equally well at an elevated temperature. Complete genome sequencing of the three recombinants revealed 12 (3), 19 (3) and 27 (3) nucleotide (amino acid) differences from Sabin. Mutations were located in regions defining attenuation, temperature sensitivity, antigenicity and the cis-acting replicating element. The recombination site was in the 5' end of 3D. In a competition assay, the most mutated recombinant beat parental Sabin in all three cell lines, strongly suggesting that this virus has an advantage. Two independent intertypic recombinants, PV3/PV1 and PV3/PV2, also showed similar growth advantages, but they also contained several point mutations. Thus, our data defend the hypothesis that accumulation of certain advantageous mutations plays a key role in gaining increased fitness.

  9. Production of recombinant proteins from Plasmodium falciparum in Escherichia coli.

    Science.gov (United States)

    Guerra, Ángela Patricia; Calvo, Eliana Patricia; Wasserman, Moisés; Chaparro-Olaya, Jacqueline

    2016-02-23

    The production of recombinant proteins is essential for the characterization and functional study of proteins from Plasmodium falciparum. However, the proteins of P. falciparum are among the most challenging to express, and when expression is achieved, the recombinant proteins usually fold incorrectly and lead to the formation of inclusion bodies.  To obtain and purify four recombinant proteins and to use them as antigens to produce polyclonal antibodies. The production efficiency and solubility were evaluated as the proteins were expressed in two genetically modified strains of Escherichia coli to favor the production of heterologous proteins (BL21-CodonPlus (DE3)-RIL and BL21-pG-KJE8).  The four recombinant P. falciparum proteins corresponding to partial sequences of PfMyoA (Myosin A) and PfGAP50 (gliding associated protein 50), and the complete sequences of PfMTIP (myosin tail interacting protein) and PfGAP45 (gliding associated protein 45), were produced as glutathione S-transferase-fusion proteins, purified and used for immunizing mice.  The protein expression was much more efficient in BL21-CodonPlus, the strain that contains tRNAs that are rare in wild-type E. coli, compared to the expression in BL21-pG-KJE8. In spite of the fact that BL21-pG-KJE8 overexpresses chaperones, this strain did not minimize the formation of inclusion bodies.  The use of genetically modified strains of E. coli was essential to achieve high expression levels of the four evaluated P. falciparum proteins and lead to improved solubility of two of them. The approach used here allowed us to obtain and purify four P. falciparum proteins in enough quantity to produce polyclonal antibodies in mice, and a fair amount of two pure and soluble recombinant proteins for future assays.

  10. Generation and Selection of Orf Virus (ORFV) Recombinants.

    Science.gov (United States)

    Rziha, Hanns-Joachim; Rohde, Jörg; Amann, Ralf

    2016-01-01

    Orf virus (ORFV) is an epitheliotropic poxvirus, which belongs to the genus Parapoxvirus. Among them the highly attenuated, apathogenic strain D1701-V is regarded as a promising candidate for novel virus vector vaccines. Our recent work demonstrated that those ORFV-based recombinants were able to induce protective, long-lasting immunity in various hosts that are non-permissive for ORFV. In this chapter we describe procedures for the generation, selection, propagation, and titration of ORFV recombinants as well as transgene detection by PCR or immunohistochemical staining.

  11. Recombinant protein expression in Escherichia coli: advances and challenges

    Science.gov (United States)

    Rosano, Germán L.; Ceccarelli, Eduardo A.

    2014-01-01

    Escherichia coli is one of the organisms of choice for the production of recombinant proteins. Its use as a cell factory is well-established and it has become the most popular expression platform. For this reason, there are many molecular tools and protocols at hand for the high-level production of heterologous proteins, such as a vast catalog of expression plasmids, a great number of engineered strains and many cultivation strategies. We review the different approaches for the synthesis of recombinant proteins in E. coli and discuss recent progress in this ever-growing field. PMID:24860555

  12. Genetic characterization of somatic recombination in Trichoderma pseudokoningii

    Directory of Open Access Journals (Sweden)

    Barcellos Fernando Gomes

    2003-01-01

    Full Text Available Crossing experiments via hyphal anastomosis between two strains contrasting for auxotrophic markers of Trichoderma pseudokoningii were conducted to characterize the somatic recombination process in this specie. Four crossings were made and a total of 1052 colonies obtained from conidial suspensions of the heterokaryotic colonies were analyzed. Sixty-eight recombinant colonies, from four growing generations, were analyzed for the auxotrophic markers. Of the 68 colonies analyzed, 58 were stable after four generations and the remainders were unstable, reverting to one of the parentals. Most of the recombinant colonies were unstable through subculture and after four growing generations they showed the leu ino met markers (auxotrophic for leucin, inositol and metionin respectively. The unstable recombinant colonies showed irregular growing borders, sparse sporulation and frequent sector formation. The results suggest the occurrence of recombination mechanisms in the heterokaryon (somatic recombination, different from those described for the parasexual cycle or parameiosis. Therefore, we proposed the ocurrence of nuclei degradation from one parental (non prevalent parental in the heterokaryon and that the resulting chromosomal fragments may be incorporated into whole nuclei of the another parental (prevalent parental. However the parameiosis as originally described cannot be excluded.

  13. Designed construction of recombinant DNA at the ura3Δ0 locus in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Fukunaga, Tomoaki; Cha-Aim, Kamonchai; Hirakawa, Yuki; Sakai, Ryota; Kitagawa, Takao; Nakamura, Mikiko; Nonklang, Sanom; Hoshida, Hisashi; Akada, Rinji

    2013-06-01

    Recombinant DNAs are traditionally constructed using Escherichia coli plasmids. In the yeast Saccharomyces cerevisiae, chromosomal gene targeting is a common technique, implying that the yeast homologous recombination system could be applied for recombinant DNA construction. In an attempt to use a S. cerevisiae chromosome for recombinant DNA construction, we selected the single ura3Δ0 locus as a gene targeting site. By selecting this single locus, repeated recombination using the surrounding URA3 sequences can be performed. The recombination system described here has several advantages over the conventional plasmid system, as it provides a method to confirm the selection of correct recombinants because transformation of the same locus replaces the pre-existing selection marker, resulting in the loss of the marker in successful recombinations. In addition, the constructed strains can serve as both PCR templates and hosts for preparing subsequent recombinant strains. Using this method, several yeast strains that contained selection markers, promoters, terminators and target genes at the ura3Δ0 locus were successfully generated. The system described here can potentially be applied for the construction of any recombinant DNA without the requirement for manipulations in E. coli. Interestingly, we unexpectedly found that several G/C-rich sequences used for fusion PCR lowered gene expression when located adjacent to the start codon. Copyright © 2013 John Wiley & Sons, Ltd.

  14. Nonhomologous recombination between defective poliovirus and coxsackievirus genomes suggests a new model of genetic plasticity for picornaviruses.

    Science.gov (United States)

    Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line; Delpeyroux, Francis

    2014-08-05

    Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3' end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. Importance: The multiplication of circulating vaccine-derived polioviruses (cVDPVs) in poorly immunized human populations can render these viruses pathogenic, causing poliomyelitis outbreaks. Most cVDPVs are intertypic recombinants between a poliovirus (PV) strain and another human enterovirus, such as type 17 coxsackie A viruses (CA17). For further studies of the genetic exchanges

  15. Cell biology of mitotic recombination

    DEFF Research Database (Denmark)

    Lisby, Michael; Rothstein, Rodney

    2015-01-01

    Homologous recombination provides high-fidelity DNA repair throughout all domains of life. Live cell fluorescence microscopy offers the opportunity to image individual recombination events in real time providing insight into the in vivo biochemistry of the involved proteins and DNA molecules...... as well as the cellular organization of the process of homologous recombination. Herein we review the cell biological aspects of mitotic homologous recombination with a focus on Saccharomyces cerevisiae and mammalian cells, but will also draw on findings from other experimental systems. Key topics...

  16. The recent recombinant evolution of a major crop pathogen, potato virus Y.

    Directory of Open Access Journals (Sweden)

    Johan Christiaan Visser

    Full Text Available Potato virus Y (PVY is a major agricultural disease that reduces crop yields worldwide. Different strains of PVY are associated with differing degrees of pathogenicity, of which the most common and economically important are known to be recombinant. We need to know the evolutionary origins of pathogens to prevent further escalations of diseases, but putatively reticulate genealogies are challenging to reconstruct with standard phylogenetic approaches. Currently available phylogenetic hypotheses for PVY are either limited to non-recombinant strains, represent only parts of the genome, and/or incorrectly assume a strictly bifurcating phylogenetic tree. Despite attempts to date potyviruses in general, no attempt has been made to date the origins of pathogenic PVY. We test whether diversification of the major strains of PVY and recombination between them occurred within the time frame of the domestication and modern cultivation of potatoes. In so doing, we demonstrate a novel extension of a phylogenetic approach for reconstructing reticulate evolutionary scenarios. We infer a well resolved phylogeny of 44 whole genome sequences of PVY viruses, representative of all known strains, using recombination detection and phylogenetic inference techniques. Using Bayesian molecular dating we show that the parental strains of PVY diverged around the time potatoes were first introduced to Europe, that recombination between them only occurred in the last century, and that the multiple recombination events that led to highly pathogenic PVY(NTN occurred within the last 50 years. Disease causing agents are often transported across the globe by humans, with disastrous effects for us, our livestock and crops. Our analytical approach is particularly pertinent for the often small recombinant genomes involved (e.g. HIV/influenza A. In the case of PVY, increased transport of diseased material is likely to blame for uniting the parents of recombinant pathogenic strains

  17. A recombinant lactobacillus strain expressing genes coding for ...

    African Journals Online (AJOL)

    SERVER

    2007-08-06

    Aug 6, 2007 ... ... however, overshadowed by the foresight of immunologic rejection and unpredictable safety (Web cutter Version 2.0. http://rna.lund- berg.gu.se/cutter2/; Perelson et al., 1996; Perelson et al.,. 1997; Miller et al., 1993; Jolly, 1994; Weissman et al.,. 1995). We have hypothesized that through ex-vivo deli- ...

  18. Emergence of recombinant forms in geographic regions with co-circulating HIV subtypes in the dynamic HIV-1 epidemic

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Ming [Los Alamos National Laboratory; Letiner, Thomas K [Los Alamos National Laboratory; Korber, Bette T [Los Alamos National Laboratory; Foley, Brian [Los Alamos National Laboratory

    2009-01-01

    We have reexamined the subtype designations of {approx}10,000 subtype A, B, C, G, and AG, BC, BF recombinant sequences, and compared the results of the new analysis with their published designations. Intersubtype recombinants dominate HIV epidemics in three different geographical regions. The circulating recombinant from (CRF) CRF02-AG, common in West Central Africa, appears to result from a recombination event that occurred early in the divergence between subtypes A and G, although additional more recent recombination events may have contributed to the breakpoint pattern in this recombinant lineage as well. The Chinese recombinant epidemic strains CRF07 and CRF08, in contrast, result from recent recombinations between more contemporary strains. Nevertheless, CRF07 and CRF08 contributed to many subsequent recombination events. The BF recombinant epidemics in two HIV-1 epicenters in South America are not independent and BF epidemics in South America have an unusually high fraction of unique recombinant forms (URFs) that have each been found only once and carry distinctive breakpoints. Taken together, these analyses reveal a complex and dynamic picture of the current HIV-1 epidemic, and suggest a means of grouping and tracking relationships between viruses through preservation of shared breakpints.

  19. Identifying recombinants in human and primate immunodeficiency virus sequence alignments using quartet scanning

    Directory of Open Access Journals (Sweden)

    Martin Darren P

    2009-04-01

    Full Text Available Abstract Background Recombination has a profound impact on the evolution of viruses, but characterizing recombination patterns in molecular sequences remains a challenging endeavor. Despite its importance in molecular evolutionary studies, identifying the sequences that exhibit such patterns has received comparatively less attention in the recombination detection framework. Here, we extend a quartet-mapping based recombination detection method to enable identification of recombinant sequences without prior specifications of either query and reference sequences. Through simulations we evaluate different recombinant identification statistics and significance tests. We compare the quartet approach with triplet-based methods that employ additional heuristic tests to identify parental and recombinant sequences. Results Analysis of phylogenetic simulations reveal that identifying the descendents of relatively old recombination events is a challenging task for all methods available, and that quartet scanning performs relatively well compared to the triplet based methods. The use of quartet scanning is further demonstrated by analyzing both well-established and putative HIV-1 recombinant strains. In agreement with recent findings, we provide evidence that the presumed circulating recombinant CRF02_AG is a 'pure' lineage, whereas the presumed parental lineage subtype G has a recombinant origin. We also demonstrate HIV-1 intrasubtype recombination, confirm the hybrid origin of SIV in chimpanzees and further disentangle the recombinant history of SIV lineages in a primate immunodeficiency virus data set. Conclusion Quartet scanning makes a valuable addition to triplet-based methods for identifying recombinant sequences without prior specifications of either query and reference sequences. The new method is available in the VisRD v.3.0 package http://www.cmp.uea.ac.uk/~vlm/visrd.

  20. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  1. Obscured phylogeny and possible recombinational dormancy in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Sawyer Stanley A

    2011-06-01

    Full Text Available Abstract Background Escherichia coli is one of the best studied organisms in all of biology, but its phylogenetic structure has been difficult to resolve with current data and analytical techniques. We analyzed single nucleotide polymorphisms in chromosomes of representative strains to reconstruct the topology of its emergence. Results The phylogeny of E. coli varies according to the segment of chromosome analyzed. Recombination between extant E. coli groups is largely limited to only three intergroup pairings. Conclusions Segment-dependent phylogenies most likely are legacies of a complex recombination history. However, E. coli are now in an epoch in which they no longer broadly share DNA. Using the definition of species as organisms that freely exchange genetic material, this recombinational dormancy could reflect either the end of E. coli as a species, or herald the coalescence of E. coli groups into new species.

  2. Evidence of recombination in Hepatitis C Virus populations infecting a hemophiliac patient

    Directory of Open Access Journals (Sweden)

    Cristina Juan

    2009-11-01

    Full Text Available Abstract Background/Aim Hepatitis C virus (HCV infection is an important cause of morbidity and mortality in patients affected by hereditary bleeding disorders. HCV, as others RNA virus, exploit all possible mechanisms of genetic variation to ensure their survival, such as recombination and mutation. In order to gain insight into the genetic variability of HCV virus strains circulating in hemophiliac patients, we have performed a phylogenetic analysis of HCV strains isolated from 10 patients with this kind of pathology. Methods Putative recombinant sequence was identified with the use of GARD program. Statistical support for the presence of a recombination event was done by the use of LARD program. Results A new intragenotypic recombinant strain (1b/1a was detected in 1 out of the 10 hemophiliac patient studied. The recombination event was located at position 387 of the HCV genome (relative to strain AF009606, sub-type 1a corresponding to the core gene region. Conclusion Although recombination may not appear to be common among natural populations of HCV it should be considered as a possible mechanism for generating genetic diversity in hemophiliacs patients.

  3. Genomic lineages of Rhizobium etli revealed by the extent of nucleotide polymorphisms and low recombination

    Directory of Open Access Journals (Sweden)

    González Víctor

    2011-10-01

    Full Text Available Abstract Background Most of the DNA variations found in bacterial species are in the form of single nucleotide polymorphisms (SNPs, but there is some debate regarding how much of this variation comes from mutation versus recombination. The nitrogen-fixing symbiotic bacteria Rhizobium etli is highly variable in both genomic structure and gene content. However, no previous report has provided a detailed genomic analysis of this variation at nucleotide level or the role of recombination in generating diversity in this bacterium. Here, we compared draft genomic sequences versus complete genomic sequences to obtain reliable measures of genetic diversity and then estimated the role of recombination in the generation of genomic diversity among Rhizobium etli. Results We identified high levels of DNA polymorphism in R. etli, and found that there was an average divergence of 4% to 6% among the tested strain pairs. DNA recombination events were estimated to affect 3% to 10% of the genomic sample analyzed. In most instances, the nucleotide diversity (π was greater in DNA segments with recombinant events than in non-recombinant segments. However, this degree of recombination was not sufficiently large to disrupt the congruence of the phylogenetic trees, and further evaluation of recombination in strains quartets indicated that the recombination levels in this species are proportionally low. Conclusion Our data suggest that R. etli is a species composed of separated lineages with low homologous recombination among the strains. Horizontal gene transfer, particularly via the symbiotic plasmid characteristic of this species, seems to play an important role in diversity but the lineages maintain their evolutionary cohesiveness.

  4. [Whole-sequence Analyses for 12 HBV C/D Recombinants from a Population in Tibet (China)].

    Science.gov (United States)

    Liu, Tiezhu; Shen, Liping; Yin, Wenjiao; Wang, Feng; Wang, Fuzhen; Zhang, Guomin; Zheng, Hui; Dunzhu, Duoji; Bi, Shengli; Cui, Fuqiang

    2016-03-01

    We wished to undertake molecular genetic typing and evaluate recombinants of the hepatitis-B virus (HBV) in Tibet (China). Multistage random sampling was used to collect HBsAg-positive samples. Nested polymerase chain reactions were used to amplify the whole sequence of the HBV. DNAstar, MEGA6 and SimPlot were used to assemble sequences, create phylogenetic trees, and undertake recombination analyses. Twelve whole sequences of the HBV of a Tibetan population were collected using these methods. Results showed that all 12 strains were C/D recombinants. Nine of the recombinations were at nt750, and the other three at nt1526. Therefore, the 12 strains could be divided into two types of recombinants: C/Da and C/Db. Analyses of the sequence of the whole genome revealed that the 12 strains belonged to genotype C, and that the nucleotide distance was > 4% between the 12 strains and sub-genotypes C1 to C15 in Genbank. The most likely sub-genotype was C1. Individuals with C/Da were from central and northern Tibet (e.g., Lasa, Linzhi, Ali) and those with C/Db recombinants were from Shannan in southern Tibet. These data suggest that the two types of recombinants had a good distribution in Tibet. Also, they can provide important information for studies on HBV recombination, gene features, virus evolution, as well as the control and prevention of HBV infection in Tibet.

  5. Construction of recombinant DNA clone for bovine viral diarrhea virus

    International Nuclear Information System (INIS)

    Yeo, S.G.; Cho, H.J.; Masri, S.A.

    1992-01-01

    Molecular cloning was carried out on the Danish strain of bovine viral diarrhea virus (BVDV) to construct strategy for the diagnostic tools and effective vaccine of BVD afterwards. A recombinant DNA clone (No. 29) was established successfully from cDNA for viral RNA tailed with adenine homopolymer at 3 -end. 32 P-labeled DNA probes of 300~1, 800bp fragments, originating from the clone 29, directed specific DNA-RNA hybridization results with BVDV RNA. Recombinant DNA of the clone 29 was about 5,200bp representing 41.6% of the full length of Danish strain's RNA, and restriction sites were recognized for EooR I, Sst I, Hind III and Pst I restriction enzymes in the DNA fragment

  6. A Novel Recombined Potato virus Y Isolate in China

    Science.gov (United States)

    Han, Shuxin; Gao, Yanling; Fan, Guoquan; Zhang, Wei; Qiu, Cailing; Zhang, Shu; Bai, Yanju; Zhang, Junhua; Spetz, Carl

    2017-01-01

    This study reports the findings of a distinct Potato virus Y (PVY) isolate found in Northeast China. One hundred and ten samples (leaves and tubers) were collected from potato plants showing mosaic symptoms around the city of Harbin in Heilongjiang province of China. The collected tubers were planted and let to grow in a greenhouse. New potato plants generated from these tubers showed similar symptoms, except for one plant. Subsequent serological analyses revealed PVY as the causing agent of the disease. A novel PVY isolate (referred to as HLJ-C-44 in this study) was isolated from this sample showing unique mild mosaic and crisped leaf margin symptoms. The complete genome of this isolate was analyzed and determined. The results showed that HLJ-C-44 is a typical PVY isolate. Phylogenetic analysis indicated that this isolate belongs to the N-Wi strain group of PVY recombinants (PVYN-Wi) and also shared the highest overall sequence identity (nucleotide and amino acid) with other members of this strain group. However, recombination analysis of isolate HLJ-C-44 revealed a recombination pattern that differed from that of other PVYN-Wi isolates. Moreover, biological assays in four different potato cultivars and in Nicotiana tabacum also revealed a different phenotypic response than that of a typical PVYN-Wi isolate. This data, combined, suggest that HLJ-C-44 is a novel PVY recombinant with distinct biological properties. PMID:28811755

  7. A Novel RecombinedPotato virus YIsolate in China.

    Science.gov (United States)

    Han, Shuxin; Gao, Yanling; Fan, Guoquan; Zhang, Wei; Qiu, Cailing; Zhang, Shu; Bai, Yanju; Zhang, Junhua; Spetz, Carl

    2017-08-01

    This study reports the findings of a distinct Potato virus Y (PVY) isolate found in Northeast China. One hundred and ten samples (leaves and tubers) were collected from potato plants showing mosaic symptoms around the city of Harbin in Heilongjiang province of China. The collected tubers were planted and let to grow in a greenhouse. New potato plants generated from these tubers showed similar symptoms, except for one plant. Subsequent serological analyses revealed PVY as the causing agent of the disease. A novel PVY isolate (referred to as HLJ-C-44 in this study) was isolated from this sample showing unique mild mosaic and crisped leaf margin symptoms. The complete genome of this isolate was analyzed and determined. The results showed that HLJ-C-44 is a typical PVY isolate. Phylogenetic analysis indicated that this isolate belongs to the N-Wi strain group of PVY recombinants (PVY N-Wi ) and also shared the highest overall sequence identity (nucleotide and amino acid) with other members of this strain group. However, recombination analysis of isolate HLJ-C-44 revealed a recombination pattern that differed from that of other PVY N-Wi isolates. Moreover, biological assays in four different potato cultivars and in Nicotiana tabacum also revealed a different phenotypic response than that of a typical PVY N-Wi isolate. This data, combined, suggest that HLJ-C-44 is a novel PVY recombinant with distinct biological properties.

  8. Fast Dissemination of New HIV-1 CRF02/A1 Recombinants in Pakistan.

    Directory of Open Access Journals (Sweden)

    Yue Chen

    Full Text Available A number of HIV-1 subtypes are identified in Pakistan by characterization of partial viral gene sequences. Little is known whether new recombinants are generated and how they disseminate since whole genome sequences for these viruses have not been characterized. Near full-length genome (NFLG sequences were obtained by amplifying two overlapping half genomes or next generation sequencing from 34 HIV-1-infected individuals in Pakistan. Phylogenetic tree analysis showed that the newly characterized sequences were 16 subtype As, one subtype C, and 17 A/G recombinants. Further analysis showed that all 16 subtype A1 sequences (47%, together with the vast majority of sequences from Pakistan from other studies, formed a tight subcluster (A1a within the subtype A1 clade, suggesting that they were derived from a single introduction. More in-depth analysis of 17 A/G NFLG sequences showed that five shared similar recombination breakpoints as in CRF02 (15% but were phylogenetically distinct from the prototype CRF02 by forming a tight subcluster (CRF02a while 12 (38% were new recombinants between CRF02a and A1a or a divergent A1b viruses. Unique recombination patterns among the majority of the newly characterized recombinants indicated ongoing recombination. Interestingly, recombination breakpoints in these CRF02/A1 recombinants were similar to those in prototype CRF02 viruses, indicating that recombination at these sites more likely generate variable recombinant viruses. The dominance and fast dissemination of new CRF02a/A1 recombinants over prototype CRF02 suggest that these recombinant have more adapted and may become major epidemic strains in Pakistan.

  9. Cis- and trans-acting elements regulate the mouse Psmb9 meiotic recombination hotspot.

    Directory of Open Access Journals (Sweden)

    Frédéric Baudat

    2007-06-01

    Full Text Available In most eukaryotes, the prophase of the first meiotic division is characterized by a high level of homologous recombination between homologous chromosomes. Recombination events are not distributed evenly within the genome, but vary both locally and at large scale. Locally, most recombination events are clustered in short intervals (a few kilobases called hotspots, separated by large intervening regions with no or very little recombination. Despite the importance of regulating both the frequency and the distribution of recombination events, the genetic factors controlling the activity of the recombination hotspots in mammals are still poorly understood. We previously characterized a recombination hotspot located close to the Psmb9 gene in the mouse major histocompatibility complex by sperm typing, demonstrating that it is a site of recombination initiation. With the goal of uncovering some of the genetic factors controlling the activity of this initiation site, we analyzed this hotspot in both male and female germ lines and compared the level of recombination in different hybrid mice. We show that a haplotype-specific element acts at distance and in trans to activate about 2,000-fold the recombination activity at Psmb9. Another haplotype-specific element acts in cis to repress initiation of recombination, and we propose this control to be due to polymorphisms located within the initiation zone. In addition, we describe subtle variations in the frequency and distribution of recombination events related to strain and sex differences. These findings show that most regulations observed act at the level of initiation and provide the first analysis of the control of the activity of a meiotic recombination hotspot in the mouse genome that reveals the interactions of elements located both in and outside the hotspot.

  10. Evidence of recombination in natural populations of hepatitis A virus

    International Nuclear Information System (INIS)

    Costa-Mattioli, Mauro; Ferre, Virginie; Casane, Didier; Perez-Bercoff, Raoul; Coste-Burel, Marianne; Imbert-Marcille, Berthe-Marie; Andre, Elisabeth Claude Monique; Bressollette-Bodin, Celine; Billaudel, Sylviane; Cristina, Juan

    2003-01-01

    Genetic analysis of selected genome regions of hepatitis A virus (HAV) suggested that distinct genotypes of HAV could be found in different geographical regions. At least seven HAV genotypes have been identified all over the world, including four human genotypes (I, II, III, and VII) and three simian strains (IV, V, and VI). Phylogenetic analysis using full-length VP1 sequences revealed that human strain 9F94 has a close genetic relation with strain SLF-88 (sub-genotype VII). Nevertheless, the same analysis using full-length VP2 or VP3 sequences revealed that strain 9F94 has a close genetic relation with strain MBB (sub-genotype IB). To test the possibility of genetic recombination, phylogenetic studies were carried out, revealing that a crossing over had taken place in the VP1 capsid protein. These findings indicate that capsid-recombination can play a significant role in shaping the genetic diversity of HAV and, as such, can have important implications for its evolution, biology, and control

  11. Phylogenetic and recombination analysis of human bocavirus 2

    Directory of Open Access Journals (Sweden)

    Li Huiying

    2011-02-01

    Full Text Available Abstract Background Human bocavirus 2(HBoV2 and other human bocavirus species (HBoV, HBoV3, and HBoV4 have been discovered recently. But the precise phylogenetic relationships among these viruses are not clear yet. Methods We collected 632 diarrhea and 162 healthy children in Lanzhou, China. Using PCR, Human bocavirus (HBoV, HBoV2, HBoV3 and HBoV4 were screened. The partial genes of NS, NP1 and VP, and two nearly complete sequences of HBoV2 were obtained. Result Phylogenetic analysis showed the different genes of HBoV2 strain were homogenous with different reference strains. HBoV3 may be a recombinant derived from HBoV and HBoV4. We also observed that the VP1 and VP2 region of HBoV3 is as similar to HBoV2 as to HBoV4. Conclusions A single genetic lineage of HBoV2 is circulating in children with and without gastroenteritis in Lanzhou, China. Current evidence in this study was not enough to support recombination between HBoV2 strains, and HBoV3 may be a recombinant between HBoV and the common ancestor of HBoV2 and HBoV4.

  12. Constraints from protein structure and intra-molecular coevolution influence the fitness of HIV-1 recombinants.

    Science.gov (United States)

    Woo, Jeongmin; Robertson, David L; Lovell, Simon C

    2014-04-01

    A major challenge for developing effective treatments for HIV-1 is the viruses' ability to generate new variants. Inter-strain recombination is a major contributor to this high evolutionary rate, since at least 20% of viruses are observed to be recombinant. However, the patterns of recombination vary across the viral genome. A number of factors influence recombination, including sequence identity and secondary RNA structure. In addition the recombinant genome must code for a functional virus, and expressed proteins must fold to stable and functional structures. Any intragenic recombination that disrupts internal residue contacts may therefore produce an unfolded protein. Here we find that contact maps based on protein structures predict recombination breakpoints observed in the HIV-1 pandemic. Moreover, many pairs of contacting residues that are unlikely to be disrupted by recombination are coevolving. We conclude that purifying selection arising from protein structure and intramolecular coevolutionary changes shapes the observed patterns of recombination in HIV-1. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. Controlled Release from Recombinant Polymers

    Science.gov (United States)

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  14. Hydrogen recombiner development at AECL

    International Nuclear Information System (INIS)

    Dewit, W.A.; Koroll, G.W.; Loesel Sitar, J.; Graham, W.R.C.

    1997-01-01

    Catalytic recombiners have been developed at AECL for the purpose of hydrogen removal in post-accident nuclear containment buildings. The recombiners are based on a particular catalyst designed by AECL which has extraordinary resistance to fouling from water and water vapour and a large thermodynamic range of operation. The catalysts were developed, originally, for the purpose of heavy water manufacturing by way of a catalytic exchange process. Application of these catalyst materials in recombiners for containment applications began in the late 1980's. The first application was a passive recombiner, qualified for use in control of radiolytic hydrogen in the headspace of a pool-type experimental reactor of AECL design in 1988. The passive, or natural convection recombiner concept has continued development to commercial stage for application in power reactor containments. This paper reviews the AECL recombiner development, describes the current model and shows results from tests of full-scale recombiners in the Large Scale Vented Combustion Test Facility at AECL-WL. The AECL recombiner is designed for compactness and ease of engineering into containment. The design is a simple, open-ended rectangular enclosure with catalyst elements arranged inside to promote optimum convective flow driven by heat of recombination at the catalyst surface. Self start, as evidenced by catalyst heating and initiation of flow, is achieved in less than 1% hydrogen, with available oxygen, at room temperature and 100% relative humidity. This low temperature start-up in condensing atmospheres is viewed as the most challenging condition for wet-proofing effectiveness. Cold start-up is a vital performance requirement in containments, such as CANDU, where engineered air-cooling systems are operating and where long-term hydrogen control is required, after containment atmospheres have cooled. Once started, the removal capacity scales linearly with the inlet cross-section area and the partial

  15. Review of Parton Recombination Models

    International Nuclear Information System (INIS)

    Bass, Steffen A

    2006-01-01

    Parton recombination models have been very successful in explaining data taken at RHIC on hadron spectra and emission patterns in Au+Au collisions at transverse momenta above 2 GeV/c, which have exhibited features which could not be understood in the framework of basic perturbative QCD. In this article I will review the current status on recombination models and outline which future challenges need to be addressed by this class of models

  16. Recombinant snake venom prothrombin activators

    OpenAIRE

    L?vgren, Ann

    2012-01-01

    Three prothrombin activators; ecarin, which was originally isolated from the venom of the saw-scaled viper Echis carinatus, trocarin from the rough-scaled snake Tropidechis carinatus, and oscutarin from the Taipan snake Oxyuranus scutellatus, were expressed in mammalian cells with the purpose to obtain recombinant prothrombin activators that could be used to convert prothrombin to thrombin. We have previously reported that recombinant ecarin can efficiently generate thrombin without the need ...

  17. Genetic recombination in bacteria: horizon of the beginnings of sexuality in living organisms

    OpenAIRE

    Rahela Carpa

    2010-01-01

    The current paper reviews the bacterian genetic recombination. Bacteria can transfergenes from one strain to another by three different mechanisms: transformation, conjugation andtransduction, these events showing the universality of sexuality in the living world. Besides geneticrecombination in bacteria, recent evidences of genetic recombination in some superior animals (suchas: fish, birds, mammals and humans) at the sex-chromosomes level support the ‘gene concept ofsexuality’ as a general ...

  18. Detection of homologous recombination between yeast artificial chromosomes with overlapping inserts.

    OpenAIRE

    Cellini, A; Lacatena, R M; Tocchini-Valentini, G P

    1991-01-01

    We have developed a system which facilitates the detection of recombination between Yeast Artificial Chromosomes (YAC's) carrying homologous inserts. The system consists of a classical YAC vector, a new YAC vector and two appropriately labelled yeast strains of opposite mating type. The new YAC vector differs in markers from the canonical YAC vector. To test whether homologous recombination takes place, phage lambda DNA was cloned in the two vectors to provide a region of homology. The two co...

  19. Identification of a natural recombinant transmissible gastroenteritis virus between Purdue and Miller clusters in China.

    Science.gov (United States)

    Zhang, Xin; Zhu, Yunnuan; Zhu, Xiangdong; Shi, Hongyan; Chen, Jianfei; Shi, Da; Yuan, Jing; Cao, Liyan; Liu, Jianbo; Dong, Hui; Jing, Zhaoyang; Zhang, Jialin; Wang, Xiaobo; Feng, Li

    2017-08-23

    Transmissible gastroenteritis virus (TGEV) is an infective coronavirus (CoV) that causes diarrhea-related morbidity and mortality in piglets. For the first time, a natural recombination strain of a TGEV Anhui Hefei (AHHF) virus between the Purdue and the Miller clusters was isolated from the small intestine content of piglets in China. A phylogenetic tree based on a complete genome sequence placed the TGEV AHHF strain between the Purdue and the Miller clusters. The results of a computational analysis of recombination showed that the TGEV AHHF strain is a natural recombinant strain between these clusters. Two breakpoints located in the open reading frame 1a (ORF1a) and spike (S) genes were identified. The pathogenicity of the TGEV AHHF strain was evaluated in piglets, and the results show that TGEV AHHF is an enteric pathogenic strain. These results provide valuable information about the recombination and evolution of CoVs and will facilitate future investigations of the molecular pathogenesis of TGEV.

  20. Identification of Glomerella cingulata f. sp phaseoli recombinants by RAPD markers.

    Science.gov (United States)

    Camargo, O A; Souza, E A; Mendes-Costa, M C; Santos, J B; Soares, M A

    2007-09-30

    We examined the capacity of strains of Glomerella cingulata f. sp phaseoli fungus (Colletotrichum lindemuthianum sexual stage) to form recombinants, using random amplified polymorphic DNA (RAPD). Crosses of all possible combinations between strains 40, 42, 20, 21, 22, 23, 24, 25, and 26 were made on Petri dishes using M3 culture medium. The 42 x 21 cross produced the largest number of perithecia and five asci; the respective ascospores were isolated. RAPD analysis was performed on the parents and descendants. The 62 polymorphic RAPD bands obtained were used to assess the genetic similarity using the method of Sorence and Dice and clustering analysis in the form of a dendrogram by the UPGMA method. The RAPD markers allowed identification of recombinants from the cross between strains 42 and 21 of G. cingulata f. sp phaseoli and 40 ascospores presented 63 and 49% genetic similarity with parents 2 (strain 42) and 1 (strain 21), respectively.

  1. Isolation and identification of a novel rabies virus lineage in China with natural recombinant nucleoprotein gene.

    Directory of Open Access Journals (Sweden)

    Cheng-Qiang He

    Full Text Available Rabies virus (RABV causes severe neurological disease and death. As an important mechanism for generating genetic diversity in viruses, homologous recombination can lead to the emergence of novel virus strains with increased virulence and changed host tropism. However, it is still unclear whether recombination plays a role in the evolution of RABV. In this study, we isolated and sequenced four circulating RABV strains in China. Phylogenetic analyses identified a novel lineage of hybrid origin that comprises two different strains, J and CQ92. Analyses revealed that the virus 3' untranslated region (UTR and part of the N gene (approximate 500 nt in length were likely derived from Chinese lineage I while the other part of the genomic sequence was homologous to Chinese lineage II. Our findings reveal that homologous recombination can occur naturally in the field and shape the genetic structure of RABV populations.

  2. Biological characterization of bovine herpesvirus 1 recombinants possessing the vaccine glycoprotein E negative phenotype.

    Science.gov (United States)

    Muylkens, Benoît; Meurens, François; Schynts, Frédéric; de Fays, Katalin; Pourchet, Aldo; Thiry, Julien; Vanderplasschen, Alain; Antoine, Nadine; Thiry, Etienne

    2006-03-31

    Intramolecular recombination is a frequent event during the replication cycle of bovine herpesvirus 1 (BoHV-1). Recombinant viruses frequently arise and survive in cattle after concomitant nasal infections with two BoHV-1 mutants. The consequences of this process, related to herpesvirus evolution, have to be assessed in the context of large use of live marker vaccines based on glycoprotein E (gE) gene deletion. In natural conditions, double nasal infections by vaccine and wild-type strains are likely to occur. This situation might generate virulent recombinant viruses inducing a serological response indistinguishable from the vaccine one. This question was addressed by generating in vitro BoHV-1 recombinants deleted in the gE gene from seven wild-type BoHV-1 strains and one mutant strain deleted in the genes encoding gC and gE. In vitro growth properties were assessed by virus production, one step growth kinetics and plaque size assay. Heterogeneity in the biological properties was shown among the investigated recombinant viruses. The results demonstrated that some recombinants, in spite of their gE minus phenotype, have biological characteristics close to wild-type BoHV-1.

  3. Phylogenetic and molecular epidemiological studies reveal evidence of multiple past recombination events between infectious laryngotracheitis viruses.

    Directory of Open Access Journals (Sweden)

    Sang-Won Lee

    Full Text Available In contrast to the RNA viruses, the genome of large DNA viruses such as herpesviruses have been considered to be relatively stable. Intra-specific recombination has been proposed as an important, but underestimated, driving force in herpesvirus evolution. Recently, two distinct field strains of infectious laryngotracheitis virus (ILTV have been shown to have arisen from independent recombination events between different commercial ILTV vaccines. In this study we sequenced the genomes of additional ILTV strains and also utilized other recently updated complete genome sequences of ILTV to confirm the existence of a number of ILTV recombinants in nature. Multiple recombination events were detected in the unique long and repeat regions of the genome, but not in the unique short region. Most recombinants contained a pair of crossover points between two distinct lineages of ILTV, corresponding to the European origin and the Australian origin vaccine strains of ILTV. These results suggest that there are two distinct genotypic lineages of ILTV and that these commonly recombine in the field.

  4. Exploring optimization parameters to increase ssDNA recombineering in Lactococcus lactis and Lactobacillus reuteri.

    Science.gov (United States)

    Van Pijkeren, Jan-Peter; Neoh, Kar Mun; Sirias, Denise; Findley, Anthony S; Britton, Robert A

    2012-01-01

    Single-stranded DNA (ssDNA) recombineering is a technology which is used to make subtle changes in the chromosome of several bacterial genera. Cells which express a single-stranded DNA binding protein (RecT or Bet) are transformed with an oligonucleotide which is incorporated via an annealing and replication-dependent mechanism. By in silico analysis we identified ssDNA binding protein homologs in the genus Lactobacillus and Lactococcus lactis. To assess whether we could further improve the recombineering efficiency in Lactobacillus reuteri ATCC PTA 6475 we expressed several RecT homologs in this strain. RecT derived from Enterococcus faecalis CRMEN 19 yielded comparable efficiencies compared with a native RecT protein, but none of the other proteins further increased the recombineering efficiency. We successfully improved recombineering efficiency 10-fold in L. lactis by increasing oligonucleotide concentration combined with the use of oligonucleotides containing phosphorothioate-linkages (PTOs). Surprisingly, neither increased oligonucleotide concentration nor PTO linkages enhanced recombineering in L. reuteri 6475. To emphasize the utility of this technology in improving probiotic features we modified six bases in a transcriptional regulatory element region of the pdu-operon of L. reuteri 6475, yielding a 3-fold increase in the production of the antimicrobial compound reuterin. Directed genetic modification of lactic acid bacteria through ssDNA recombineering will simplify strain improvement in a way that, when mutating a single base, is genetically indistinguishable from strains obtained through directed evolution.

  5. Recombinant Protein Expression in Escherichia coli (E.coli): What We Need to Know.

    Science.gov (United States)

    Hayat, Seyed Mohammad Gheibi; Farahani, Najmeh; Golichenari, Behrouz; Sahebkar, Amir Hosein

    2018-01-31

    Host, vector, and culture conditions (including cultivation media) are considered among the three main elements contributing to a successful production of recombinant proteins. Accordingly, one of the most common hosts to produce recombinant therapeutic proteins is Escherichia coli. A comprehensive literature review was performed to identify important factors affecting production of recombinant proteins in Escherichia coli. Escherichia coli is taken into account as the easiest, quickest, and cheapest host with a fully known genome. Thus, numerous modifications have been carried out on Escherichia coli to optimize it as a good candidate for protein expression and; as a result, several engineered strains of Escherichia coli have been designed. In general; host strain, vector, and cultivation parameters are recognized as crucial ones determining success of recombinant protein expression in Escherichia coli. In this review, the role of host, vector, and culture conditions along with current pros and cons of different types of these factors leading to success of recombinant protein expression in Escherichia coli were discussed. Successful protein expression in Escherichia coli necessitates a broad knowledge about physicochemical properties of recombinant proteins, selection among common strains of Escherichia coli and vectors, as well as factors related to media including time, temperature, and inducer. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Enhanced efficacy of recombinant Brucella abortus RB51 vaccines against B. melitensis infection in mice.

    Science.gov (United States)

    Vemulapalli, Ramesh; Contreras, Andrea; Sanakkayala, Neelima; Sriranganathan, Nammalwar; Boyle, Stephen M; Schurig, Gerhardt G

    2004-09-08

    Brucella abortus strain RB51 is an attenuated rough strain, currently being used as the official live vaccine for bovine brucellosis in the USA and several other countries. In strain RB51, the wboA gene, encoding a glycosyltransferase required for the O-side chain synthesis, is disrupted by an IS711 element. Recently, we have demonstrated that strain RB51WboA, RB51 complemented with a functional wboA gene, remains rough but expresses low quantities of O-side chain in the cytoplasm. Mice vaccinated with strain RB51WboA develop greatly enhanced resistance against challenge with B. abortus virulent strain 2308. We have also demonstrated that overexpression of Cu/Zn superoxide dismutase (SOD) in strain RB51 (RB51SOD) significantly increases its vaccine efficacy against strain 2308 challenge. In this study, we constructed a new recombinant strain, RB51SOD/WboA, that over expresses SOD with simultaneous expression of O-side chain in the cytoplasm. We tested the vaccine potential of strains RB51SOD, RB51WboA, RB51SOD/WboA against challenge with virulent Brucella melitensis 16M and B. abortus 2308 in mice. In comparison with strain RB51, strain RB51SOD induced better protection against strain 2308, but not strain 16M, challenge. Similar to strain RB51WboA, vaccination with strain RB51SOD/WboA resulted in complete protection of the mice from infection with strain 2308. When challenged with strain 16M, mice vaccinated with either strain RB51WboA or strain RB51SOD/WboA were significantly better protected than those vaccinated with strain RB51 or RB51SOD. These results suggest that strains RB51WboA and RB51SOD/WboA are good vaccine candidates for inducing enhanced protection against B. melitensis infection.

  7. Productive homologous and non-homologous recombination of hepatitis C virus in cell culture

    DEFF Research Database (Denmark)

    Scheel, Troels K H; Galli, Andrea; Li, Yi-Ping

    2013-01-01

    Genetic recombination is an important mechanism for increasing diversity of RNA viruses, and constitutes a viral escape mechanism to host immune responses and to treatment with antiviral compounds. Although rare, epidemiologically important hepatitis C virus (HCV) recombinants have been reported......) lacking functional envelope genes and strain J6 (2a), which has functional envelope genes but does not replicate in culture. After an initial decrease in the number of HCV positive cells, infection spread after 13-36 days. Sequencing of recovered viruses revealed non-homologous recombinants with J6...

  8. First identification of a recombinant form of hepatitis C virus in Austrian patients by full-genome next generation sequencing.

    Directory of Open Access Journals (Sweden)

    Evelyn Stelzl

    Full Text Available Hepatitis C virus (HCV intergenotypic recombinant forms have been reported for various HCV genotypes/subtypes in several countries worldwide. In a recent study, four patients living in Austria had been identified to be possibly infected with a recombinant HCV strain. To clarify results and determine the point of recombination, full-genome next-generation sequencing using the Illumina MiSeq v2 300 cycle kit (Illumina, San Diego, CA, USA was performed in the present study. Samples of all of the patients contained the recombinant HCV strain 2k/1b. The point of recombination was found to be within the HCV NS2 gene between nucleotide positions 3189-3200 based on H77 numbering. While three of four patients were male and had migration background from Chechnya (n = 2 and Azerbaijan (n = 1, the forth patient was a female born in Austria. Three of the four patients including the female had intravenous drug abuse as a risk factor for HCV transmission. While sequencing techniques are limited to a few specialized laboratories, a genotyping assay that uses both ends of the HCV genome should be employed to identify patients infected with a recombinant HCV strain. The correct identification of recombinant strains also has an impact considering the tailored choice of anti-HCV treatment.

  9. Production of Xylanase by Recombinant Bacillus subtilis DB104 Cultivated in Agroindustrial Waste Medium

    Directory of Open Access Journals (Sweden)

    Is Helianti

    2016-07-01

    Full Text Available A recombinant Bacillus subtilis DB104 strain harbouring recombinant plasmid pSKE194 containing an Open Reading Frame (ORF of endoxylanase and its indigenous promoter from the wild-type B. subtilis AQ1 strain was constructed. This recombinant B. subtilis DB104 strain had higher endoxylanase activity than the nonrecombinant B. subtilis DB104 strain in standard media, such as Luria Bertani (LB and LB with xylan. The agroindustrial wastes corncobs and tofu liquid waste were chosen as cost-effective carbon and nitrogen sources, respectively, to test the economics of xylanase production using the recombinant B. subtilis DB104 at a larger scale. Submerged fermentation using a 4.5 L working volume fermentor with tofu liquid waste and 4% corncobs produced maximum xylanase activity of 1296 ± 1.2 U/mg (601.7 ± 0.6 U/mL after 48-hour fermentation at 37°C with 150 rpm agitation; this is more than twofold higher than the activity produced in an Erlenmeyer flask. This is the first report of high xylanase activity produced from recombinant B. subtilis using inexpensive medium. During fermentation, the xylanase degrades corncobs into xylooligosaccharides, showing its potential as an enzyme feed additive or in xylooligosaccharide production.

  10. Reemergence of recombinant vaccine-derived poliovirus outbreak in Madagascar.

    Science.gov (United States)

    Rakoto-Andrianarivelo, Mala; Gumede, Nicksy; Jegouic, Sophie; Balanant, Jean; Andriamamonjy, Seta N; Rabemanantsoa, Sendraharimanana; Birmingham, Maureen; Randriamanalina, Bakolalao; Nkolomoni, Léon; Venter, Marietjie; Schoub, Barry D; Delpeyroux, Francis; Reynes, Jean-Marc

    2008-05-15

    After the 2001-2002 poliomyelitis outbreak due to recombinant vaccine-derived polioviruses (VDPVs) in the Toliara province of Madagascar, another outbreak reoccurred in the same province in 2005. We conducted epidemiological and virological investigations for each polio case patient and for their contacts. From May to August 2005, a total of 5 cases of acute flaccid paralysis were reported among unvaccinated or partially vaccinated children 2-3 years old. Type-3 or type-2 VDPV was isolated from case patients and from healthy contacts. These strains were classified into 4 recombinant lineages that showed complex mosaic genomic structures originating from different vaccine strain serotypes and probably from human enterovirus C (HEV-C) species. Genetic relatedness could be observed among these 4 lineages. Vaccination coverage of the population was very low (vaccine strains and of their related HEV-C strains. The occurrence of an outbreak due to VDPV 3 years after a previous outbreak indicates that a short period with low vaccination coverage is enough to create favorable conditions for the emergence of VDPV in this setting.

  11. Recombinant canine coronaviruses in dogs, Europe.

    Science.gov (United States)

    Decaro, Nicola; Mari, Viviana; Elia, Gabriella; Addie, Diane D; Camero, Michele; Lucente, Maria Stella; Martella, Vito; Buonavoglia, Canio

    2010-01-01

    Coronaviruses of potential recombinant origin with porcine transmissible gastroenteritis virus (TGEV), referred to as a new subtype (IIb) of canine coronavirus (CCoV), were recently identified in dogs in Europe. To assess the distribution of the TGEV-like CCoV subtype, during 2001-2008 we tested fecal samples from dogs with gastroenteritis. Of 1,172 samples, 493 (42.06%) were positive for CCoV. CCoV-II was found in 218 samples, and CCoV-I and CCoV-II genotypes were found in 182. Approximately 20% of the samples with CCoV-II had the TGEV-like subtype; detection rates varied according to geographic origin. The highest and lowest rates of prevalence for CCoV-II infection were found in samples from Hungary and Greece (96.87% and 3.45%, respectively). Sequence and phylogenetic analyses showed that the CCoV-IIb strains were related to prototype TGEV-like strains in the 5' and the 3' ends of the spike protein gene.

  12. HIV-1 CRF_BC recombinants infection in China: molecular epidemic and characterizations.

    Science.gov (United States)

    Ouyang, Yabo; Shao, Yiming; Ma, Liying

    2012-03-01

    CRF_BC recombinant strains were first identified in China and are one of the most prevalent and characteristically unique HIV-1 subtypes across China. Here we aim to review the published data about HIV-1 CRF_BC recombinant strains epidemic in China and to characterize the genetics, biology and drug resistance of this virus. This study may help to better understand the current situation of HIV-1 CRF_BC prevalence and facilitate the development of vaccines and more efficient anti-HIV-1 regimens in China.

  13. Identification of a recombinant Muscovy Duck parvovirus (MDPV) in Shanghai, China.

    Science.gov (United States)

    Zhu, Yumin; Zhou, Zongqing; Huang, Yu; Yu, Ruisong; Dong, Shijuan; Li, Zhen; Zhang, Yuanshu

    2014-12-05

    The full-length genome of strain SAAS-SHNH, a MDPV isolated from Muscovy Duck in Shanghai, has been sequenced and shown to share 93.7% nucleotide identity with MDPV strain FM (NC_006147). Two putative genetic recombination events were identified as occurring within the 419-610 nt and 3113-4241 nt regions of the SAAS-SHNH genome which, for the first time, provide evidence of recombination between MDPVs and GPVs. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Ethanol production by recombinant and natural xylose-utilising yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Eliasson, Anna

    2000-07-01

    The xylose-fermenting capacity of recombinant Saccharomyces cerevisiae carrying XYL1 and XYL2 from Pichia stipitis, which encode xylose reductase (XR) and xylitol dehydrogenase (XDH), respectively, is poor due to high xylitol formation. Whereas, P. stipitis exhibits high ethanol yield on xylose, the tolerance towards inhibitors in the lignocellulosic hydrolysate is low. A recombinant strain possessing the advantageous characteristics of both S. cerevisiae and P. stipitis would constitute a biocatalyst capable of efficient ethanol production from lignocellulosic hydrolysate. In the work presented in this thesis, factors influencing xylose fermentation in recombinant S. cerevisiae and in the natural xylose-fermenting yeast P. stipitis have been identified and investigated. Anaerobic xylulose fermentation was compared in strains of Zygosaccharomyces and S. cerevisiae, mutants and wild-type strains to identify host strain background and genetic modifications beneficial for xylose fermentation. The greatest positive effect was found for over-expression of the gene XKS1 for the pentose phosphate pathway (PPP) enzyme xylulokinase (XK), which increased the ethanol yield by almost 85%. The Zygosaccharomyces strains tested formed large amounts of polyols, making them unsuitable as host strains. The XR/XDH/XK ratio was found to determine whether carbon accumulated in a xylitol pool or was further utilised for ethanol production in recombinant xylose-utilising S. cerevisiae. Simulations, based on a kinetic model, and anaerobic xylose cultivation experiments implied that a 1:{>=}10:{>=}4 relation was optimal in minimising xylitol formation. Ethanol formation increased with decreasing XR/XDH ratio, whereas xylitol formation decreased and XK overexpression was necessary for adequate ethanol formation. Based on the knowledge of optimal enzyme ratios, a stable, xylose-utilising strain, S. cerevisiae TMB 3001, was constructed by chromosomal integration of the XYL1 and XYL2 genes

  15. Continuous cultivations of a Penicillium chrysogenum strain expressing the expandase gene from Streptomyces clavuligerus: Kinetics of adipoyl-7-aminodeacetoxycephalosporanic acid and byproduct formations

    DEFF Research Database (Denmark)

    Robin, Jarno Jacky Christian; Bruheim, P.; Nielsen, M.L.

    2003-01-01

    The production kinetics of a transformed strain of Penicillium chrysogenum expressing the expandase gene from Streptomyces clavuligerus was investigated in chemostat cultivations. The recombinant strain produces adipoyl-7-aminodeacetoxycephalosporanic acid (ad-7-ADCA) as the major product; howeve...

  16. Amerindian Helicobacter pylori strains go extinct, as european strains expand their host range.

    Directory of Open Access Journals (Sweden)

    Maria G Domínguez-Bello

    Full Text Available We studied the diversity of bacteria and host in the H. pylori-human model. The human indigenous bacterium H. pylori diverged along with humans, into African, European, Asian and Amerindian groups. Of these, Amerindians have the least genetic diversity. Since niche diversity widens the sets of resources for colonizing species, we predicted that the Amerindian H. pylori strains would be the least diverse. We analyzed the multilocus sequence (7 housekeeping genes of 131 strains: 19 cultured from Africans, 36 from Spanish, 11 from Koreans, 43 from Amerindians and 22 from South American Mestizos. We found that all strains that had been cultured from Africans were African strains (hpAfrica1, all from Spanish were European (hpEurope and all from Koreans were hspEAsia but that Amerindians and Mestizos carried mixed strains: hspAmerind and hpEurope strains had been cultured from Amerindians and hpEurope and hpAfrica1 were cultured from Mestizos. The least genetically diverse H. pylori strains were hspAmerind. Strains hpEurope were the most diverse and showed remarkable multilocus sequence mosaicism (indicating recombination. The lower genetic structure in hpEurope strains is consistent with colonization of a diversity of hosts. If diversity is important for the success of H. pylori, then the low diversity of Amerindian strains might be linked to their apparent tendency to disappear. This suggests that Amerindian strains may lack the needed diversity to survive the diversity brought by non-Amerindian hosts.

  17. A trans-Complementing Recombination Trap Demonstrates a Low Propensity of Flaviviruses for Intermolecular Recombination▿

    Science.gov (United States)

    Taucher, Christian; Berger, Angelika; Mandl, Christian W.

    2010-01-01

    Intermolecular recombination between the genomes of closely related RNA viruses can result in the emergence of novel strains with altered pathogenic potential and antigenicity. Although recombination between flavivirus genomes has never been demonstrated experimentally, the potential risk of generating undesirable recombinants has nevertheless been a matter of concern and controversy with respect to the development of live flavivirus vaccines. As an experimental system for investigating the ability of flavivirus genomes to recombine, we developed a “recombination trap,” which was designed to allow the products of rare recombination events to be selected and amplified. To do this, we established reciprocal packaging systems consisting of pairs of self-replicating subgenomic RNAs (replicons) derived from tick-borne encephalitis virus (TBEV), West Nile virus (WNV), and Japanese encephalitis virus (JEV) that could complement each other in trans and thus be propagated together in cell culture over multiple passages. Any infectious viruses with intact, full-length genomes that were generated by recombination of the two replicons would be selected and enriched by end point dilution passage, as was demonstrated in a spiking experiment in which a small amount of wild-type virus was mixed with the packaged replicons. Using the recombination trap and the JEV system, we detected two aberrant recombination events, both of which yielded unnatural genomes containing duplications. Infectious clones of both of these genomes yielded viruses with impaired growth properties. Despite the fact that the replicon pairs shared approximately 600 nucleotides of identical sequence where a precise homologous crossover event would have yielded a wild-type genome, this was not observed in any of these systems, and the TBEV and WNV systems did not yield any viable recombinant genomes at all. Our results show that intergenomic recombination can occur in the structural region of flaviviruses

  18. Electric hydrogen recombiner special tests

    International Nuclear Information System (INIS)

    Wilson, J.F.

    1975-12-01

    Westinghouse has produced an electric hydrogen recombiner to control hydrogen levels in reactor containments following a postulated loss-of-coolant accident. The recombiner underwent extensive testing for NRC qualification (see WCAP 7709-L and Supplements 1, 2, 3, 4). As a result, WCAP 7709-L and Supplements 1, 2, 3, and 4 have been accepted by the NRC for reference in applications not committed to IEEE-323-1974. Supplement 5 and the next supplement will demonstrate conformance to IEEE-323-1974. This supplement describes additional tests, beyond those necessary to qualify the system, which will be referenced in supplement 6. Each test has demonstrated a considerable margin of safety over required performance. Concurrently, the test results increased the fund of technical information on the electric hydrogen recombiner

  19. Inferring genome-wide recombination landscapes from advanced intercross lines: application to yeast crosses.

    Directory of Open Access Journals (Sweden)

    Christopher J R Illingworth

    Full Text Available Accurate estimates of recombination rates are of great importance for understanding evolution. In an experimental genetic cross, recombination breaks apart and rejoins genetic material, such that the genomes of the resulting isolates are comprised of distinct blocks of differing parental origin. We here describe a method exploiting this fact to infer genome-wide recombination profiles from sequenced isolates from an advanced intercross line (AIL. We verified the accuracy of the method against simulated data. Next, we sequenced 192 isolates from a twelve-generation cross between West African and North American yeast Saccharomyces cerevisiae strains and inferred the underlying recombination landscape at a fine genomic resolution (mean segregating site distance 0.22 kb. Comparison was made with landscapes inferred for a similar cross between four yeast strains, and with a previous single-generation, intra-strain cross (Mancera et al., Nature 2008. Moderate congruence was identified between landscapes (correlation 0.58-0.77 at 5 kb resolution, albeit with variance between mean genome-wide recombination rates. The multiple generations of mating undergone in the AILs gave more precise inference of recombination rates than could be achieved from a single-generation cross, in particular in identifying recombination cold-spots. The recombination landscapes we describe have particular utility; both AILs are part of a resource to study complex yeast traits (see e.g. Parts et al., Genome Res 2011. Our results will enable future applications of this resource to take better account of local linkage structure heterogeneities. Our method has general applicability to other crossing experiments, including a variety of experimental designs.

  20. Genome-Wide Patterns of Recombination in the Opportunistic Human Pathogen Pseudomonas aeruginosa

    Science.gov (United States)

    Dettman, Jeremy R.; Rodrigue, Nicolas; Kassen, Rees

    2015-01-01

    The bacterium Pseudomonas aeruginosa is a significant cause of acute nosocomial infections as well as chronic respiratory infections in patients with cystic fibrosis (CF). Recent reports of the intercontinental spread of a CF-specific epidemic strain, combined with high intrinsic levels of antibiotic resistance, have made this opportunistic pathogen an important public health concern. Strain-specific differences correlate with variation in clinical outcomes of infected CF patients, increasing the urgency to understand the evolutionary origin of genetic factors conferring important phenotypes that enable infection, virulence, or resistance. Here, we describe the genome-wide patterns of homologous and nonhomologous recombination in P. aeruginosa, and the extent to which the genomes are affected by these diversity-generating processes. Based on whole-genome sequence data from 32 clinical isolates of P. aeruginosa, we examined the rate and distribution of recombination along the genome, and its effect on the reconstruction of phylogenetic relationships. Multiple lines of evidence suggested that recombination was common and usually involves short stretches of DNA (200–300 bp). Although mutation was the main source of nucleotide diversity, the import of polymorphisms by homologous recombination contributed nearly as much. We also identified the genomic regions with frequent recombination, and the specific sequences of recombinant origin within epidemic strains. The functional characteristics of the genes contained therein were examined for potential associations with a pathogenic lifestyle or adaptation to the CF lung environment. A common link between many of the high-recombination genes was their functional affiliation with the cell wall, suggesting that the products of recombination may be maintained by selection for variation in cell-surface molecules that allows for evasion of the host immune system. PMID:25480685

  1. The effect of a single recombination event

    DEFF Research Database (Denmark)

    Schierup, Mikkel Heide; Jensen, Thomas Mailund; Wiuf, Carsten

    We investigate the variance in how visible a single recombination event is in a SNP data set as a function of the type of recombination event and its age. Data is simulated under the coalescent with recombination and inference is by the popular composite likelihood methods. The major determinant...... of the effect of a recombination event is the genealogical type of the event and whether SNP variation is present that can reveal the genealogical consequences of the recombination event. Recombination events that only change some branch lengths in the genealogy have a very small, but detectable, effect....... The more lineages left when the recombination event occurs, the larger effect it has, implying that it is mainly young recombination events that we detect when estimating the rate. If the population is growing, though, more lineages are present back in time and relatively more ancient recombination events...

  2. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  3. Nonhomologous Recombination between Defective Poliovirus and Coxsackievirus Genomes Suggests a New Model of Genetic Plasticity for Picornaviruses

    Science.gov (United States)

    Holmblat, Barbara; Jégouic, Sophie; Muslin, Claire; Blondel, Bruno; Joffret, Marie-Line

    2014-01-01

    ABSTRACT Most of the circulating vaccine-derived polioviruses (cVDPVs) implicated in poliomyelitis outbreaks in Madagascar have been shown to be recombinants between the type 2 poliovirus (PV) strain of the oral polio vaccine (Sabin 2) and another species C human enterovirus (HEV-C), such as type 17 coxsackie A virus (CA17) in particular. We studied intertypic genetic exchanges between PV and non-PV HEV-C by developing a recombination model, making it possible to rescue defective type 2 PV RNA genomes with a short deletion at the 3′ end by the cotransfection of cells with defective or infectious CA17 RNAs. We isolated over 200 different PV/CA17 recombinants, using murine cells expressing the human PV receptor (PVR) and selecting viruses with PV capsids. We found some homologous (H) recombinants and, mostly, nonhomologous (NH) recombinants presenting duplications of parental sequences preferentially located in the regions encoding proteins 2A, 2B, and 3A. Short duplications appeared to be stable, whereas longer duplications were excised during passaging in cultured cells or after multiplication in PVR-transgenic mice, generating H recombinants with diverse sites of recombination. This suggests that NH recombination events may be a transient, intermediate step in the generation and selection of the fittest H recombinants. In addition to the classical copy-choice mechanism of recombination thought to generate mostly H recombinants, there may also be a modular mechanism of recombination, involving NH recombinant precursors, shaping the genomes of recombinant enteroviruses and other picornaviruses. PMID:25096874

  4. Enhanced production of recombinant proteins with Corynebacterium glutamicum by deletion of insertion sequences (IS elements).

    Science.gov (United States)

    Choi, Jae Woong; Yim, Sung Sun; Kim, Min Jeong; Jeong, Ki Jun

    2015-12-29

    In most bacteria, various jumping genetic elements including insertion sequences elements (IS elements) cause a variety of genetic rearrangements resulting in harmful effects such as genome and recombinant plasmid instability. The genetic stability of a plasmid in a host is critical for high-level production of recombinant proteins, and in this regard, the development of an IS element-free strain could be a useful strategy for the enhanced production of recombinant proteins. Corynebacterium glutamicum, which is a workhorse in the industrial-scale production of various biomolecules including recombinant proteins, also has several IS elements, and it is necessary to identify the critical IS elements and to develop IS element deleted strain. From the cultivation of C. glutamicum harboring a plasmid for green fluorescent protein (GFP) gene expression, non-fluorescent clones were isolated by FACS (fluorescent activated cell sorting). All the isolated clones had insertions of IS elements in the GFP coding region, and two major IS elements (ISCg1 and ISCg2 families) were identified. By co-cultivating cells harboring either the isolated IS element-inserted plasmid or intact plasmid, it was clearly confirmed that cells harboring the IS element-inserted plasmids became dominant during the cultivation due to their growth advantage over cells containing intact plasmids, which can cause a significant reduction in recombinant protein production during cultivation. To minimize the harmful effects of IS elements on the expression of heterologous genes in C. glutamicum, two IS element free C. glutamicum strains were developed in which each major IS element was deleted, and enhanced productivity in the engineered C. glutamicum strain was successfully demonstrated with three models: GFP, poly(3-hydroxybutyrate) [P(3HB)] and γ-aminobutyrate (GABA). Our findings clearly indicate that the hopping of IS elements could be detrimental to the production of recombinant proteins in C

  5. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States.

    Science.gov (United States)

    Brueggemann, Angela B; Pai, Rekha; Crook, Derrick W; Beall, Bernard

    2007-11-01

    The heptavalent pneumococcal conjugate vaccine (PCV7) was introduced in the United States (US) in 2000 and has significantly reduced invasive pneumococcal disease; however, the incidence of nonvaccine serotype invasive disease, particularly due to serotype 19A, has increased. The serotype 19A increase can be explained in part by expansion of a genotype that has been circulating in the US prior to vaccine implementation (and other countries since at least 1990), but also by the emergence of a novel "vaccine escape recombinant" pneumococcal strain. This strain has a genotype that previously was only associated with vaccine serotype 4, but now expresses a nonvaccine serotype 19A capsule. Based on prior evidence for capsular switching by recombination at the capsular locus, the genetic event that resulted in this novel serotype/genotype combination might be identifiable from the DNA sequence of individual pneumococcal strains. Therefore, the aim of this study was to characterise the putative recombinational event(s) at the capsular locus that resulted in the change from a vaccine to a nonvaccine capsular type. Sequencing the capsular locus flanking regions of 51 vaccine escape (progeny), recipient, and putative donor pneumococci revealed a 39 kb recombinational fragment, which included the capsular locus, flanking regions, and two adjacent penicillin-binding proteins, and thus resulted in a capsular switch and penicillin nonsusceptibility in a single genetic event. Since 2003, 37 such vaccine escape strains have been detected, some of which had evolved further. Furthermore, two new types of serotype 19A vaccine escape strains emerged in 2005. To our knowledge, this is the first time a single recombinational event has been documented in vivo that resulted in both a change of serotype and penicillin nonsusceptibility. Vaccine escape by genetic recombination at the capsular locus has the potential to reduce PCV7 effectiveness in the longer term.

  6. Vaccine escape recombinants emerge after pneumococcal vaccination in the United States.

    Directory of Open Access Journals (Sweden)

    Angela B Brueggemann

    2007-11-01

    Full Text Available The heptavalent pneumococcal conjugate vaccine (PCV7 was introduced in the United States (US in 2000 and has significantly reduced invasive pneumococcal disease; however, the incidence of nonvaccine serotype invasive disease, particularly due to serotype 19A, has increased. The serotype 19A increase can be explained in part by expansion of a genotype that has been circulating in the US prior to vaccine implementation (and other countries since at least 1990, but also by the emergence of a novel "vaccine escape recombinant" pneumococcal strain. This strain has a genotype that previously was only associated with vaccine serotype 4, but now expresses a nonvaccine serotype 19A capsule. Based on prior evidence for capsular switching by recombination at the capsular locus, the genetic event that resulted in this novel serotype/genotype combination might be identifiable from the DNA sequence of individual pneumococcal strains. Therefore, the aim of this study was to characterise the putative recombinational event(s at the capsular locus that resulted in the change from a vaccine to a nonvaccine capsular type. Sequencing the capsular locus flanking regions of 51 vaccine escape (progeny, recipient, and putative donor pneumococci revealed a 39 kb recombinational fragment, which included the capsular locus, flanking regions, and two adjacent penicillin-binding proteins, and thus resulted in a capsular switch and penicillin nonsusceptibility in a single genetic event. Since 2003, 37 such vaccine escape strains have been detected, some of which had evolved further. Furthermore, two new types of serotype 19A vaccine escape strains emerged in 2005. To our knowledge, this is the first time a single recombinational event has been documented in vivo that resulted in both a change of serotype and penicillin nonsusceptibility. Vaccine escape by genetic recombination at the capsular locus has the potential to reduce PCV7 effectiveness in the longer term.

  7. Improving recombinant protein purification yield

    Science.gov (United States)

    Production of adequate amounts of recombinant proteins is essential for antibody production, biochemical activity study, and structural determination during the post-genomic era. It’s technologically challenging and a limiting factor for tung oil research because analytical reagents such as high qua...

  8. A recombinant protein expression system

    African Journals Online (AJOL)

    Aghomotsegin

    2015-06-23

    Jun 23, 2015 ... Serum free cultivation of Leishmania is cost-effective and improves large scale production of well- defined parasite material. Moreover, the production of recombinant pharmaceutical proteins requires cultivation of the host in a culture medium free of animal materials, so several culture media for.

  9. Production and recombination of gluons

    International Nuclear Information System (INIS)

    Temiraliev, A.T.

    2006-01-01

    Full text: Nonlinear Markov process of parton production has been considered. The Kolmogorov equation is applied for the evolution equation based on the approximation of independent gluons production in every decay act. We introduced a 'crossing' parameter and used the combination relations to obtain nonlinear recombination equation for the evolution of gluon structure function. (author)

  10. Vaccinia virus vectors: new strategies for producing recombinant vaccines.

    Science.gov (United States)

    Hruby, D E

    1990-01-01

    The development and continued refinement of techniques for the efficient insertion and expression of heterologous DNA sequences from within the genomic context of infectious vaccinia virus recombinants are among the most promising current approaches towards effective immunoprophylaxis against a variety of protozoan, viral, and bacterial human pathogens. Because of its medical relevance, this area is the subject of intense research interest and has evolved rapidly during the past several years. This review (i) provides an updated overview of the technology that exists for assembling recombinant vaccinia virus strains, (ii) discusses the advantages and disadvantages of these approaches, (iii) outlines the areas of outgoing research directed towards overcoming the limitations of current techniques, and (iv) provides some insight (i.e., speculation) about probable future refinements in the use of vaccinia virus as a vector. PMID:2187593

  11. Fed-batch bioreactor process with recombinant Saccharomyces cerevisiae growing on cheese whey

    OpenAIRE

    Rech, Rosane; Ayub, Marco Antônio Záchia

    2006-01-01

    Saccharomyces cerevisiae strain W303 was transformed with two yeast integrative plasmids containing Kluyveromyces lactis LAC4 and LAC12 genes that codify beta-galactosidase and lactose permease respectively. The BLR030 recombinant strain was selected due to its growth and beta-galactosidase production capacity. Different culture media based on deproteinized cheese whey (DCW) were tested and the best composition (containing DCW, supplemented with yeast extract 1 %, and peptone 3 % (w/v)) was c...

  12. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs.

    Directory of Open Access Journals (Sweden)

    Ryuichi Miura

    Full Text Available Canine distemper virus (CDV vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively. Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.

  13. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Kathryn M. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States); Hoffmann, George R. [Department of Biology, College of the Holy Cross, One College Street, Worcester, MA 01610-2395 (United States)]. E-mail: ghoffmann@holycross.edu

    2007-03-01

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, {beta}-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv{sup +} revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state.

  14. Frequencies of mutagen-induced coincident mitotic recombination at unlinked loci in Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Freeman, Kathryn M.; Hoffmann, George R.

    2007-01-01

    Frequencies of coincident genetic events were measured in strain D7 of Saccharomyces cerevisiae. This diploid strain permits the detection of mitotic gene conversion involving the trp5-12 and trp5-27 alleles, mitotic crossing-over and gene conversion leading to the expression of the ade2-40 and ade2-119 alleles as red and pink colonies, and reversion of the ilv1-92 allele. The three genes are on different chromosomes, and one might expect that coincident (simultaneous) genetic alterations at two loci would occur at frequencies predicted by those of the single alterations acting as independent events. Contrary to this expectation, we observed that ade2 recombinants induced by bleomycin, β-propiolactone, and ultraviolet radiation occur more frequently among trp5 convertants than among total colonies. This excess among trp5 recombinants indicates that double recombinants are more common than expected for independent events. No similar enrichment was found among Ilv + revertants. The possibility of an artifact in which haploid yeasts that mimic mitotic recombinants are generated by a low frequency of cryptic meiosis has been excluded. Several hypotheses that can explain the elevated incidence of coincident mitotic recombination have been evaluated, but the cause remains uncertain. Most evidence suggests that the excess is ascribable to a subset of the population being in a recombination-prone state

  15. Efficacy of Recombinant Canine Distemper Virus Expressing Leishmania Antigen against Leishmania Challenge in Dogs.

    Science.gov (United States)

    Miura, Ryuichi; Kooriyama, Takanori; Yoneda, Misako; Takenaka, Akiko; Doki, Miho; Goto, Yasuyuki; Sanjoba, Chizu; Endo, Yasuyuki; Fujiyuki, Tomoko; Sugai, Akihiro; Tsukiyama-Kohara, Kyoko; Matsumoto, Yoshitsugu; Sato, Hiroki; Kai, Chieko

    2015-01-01

    Canine distemper virus (CDV) vaccination confers long-term protection against CDV reinfection. To investigate the utility of CDV as a polyvalent vaccine vector for Leishmania, we generated recombinant CDVs, based on an avirulent Yanaka strain, that expressed Leishmania antigens: LACK, TSA, or LmSTI1 (rCDV-LACK, rCDV-TSA, and rCDV-LmSTI1, respectively). Dogs immunized with rCDV-LACK were protected against challenge with lethal doses of virulent CDV, in the same way as the parental Yanaka strain. To evaluate the protective effects of the recombinant CDVs against cutaneous leishmaniasis in dogs, dogs were immunized with one recombinant CDV or a cocktail of three recombinant CDVs, before intradermal challenge (in the ears) with infective-stage promastigotes of Leishmania major. Unvaccinated dogs showed increased nodules with ulcer formation after 3 weeks, whereas dogs immunized with rCDV-LACK showed markedly smaller nodules without ulceration. Although the rCDV-TSA- and rCDV-LmSTI1-immunized dogs showed little protection against L. major, the cocktail of three recombinant CDVs more effectively suppressed the progression of nodule formation than immunization with rCDV-LACK alone. These results indicate that recombinant CDV is suitable for use as a polyvalent live attenuated vaccine for protection against both CDV and L. major infections in dogs.

  16. Recombination between polioviruses and co-circulating Coxsackie A viruses: role in the emergence of pathogenic vaccine-derived polioviruses.

    Science.gov (United States)

    Jegouic, Sophie; Joffret, Marie-Line; Blanchard, Claire; Riquet, Franck B; Perret, Céline; Pelletier, Isabelle; Colbere-Garapin, Florence; Rakoto-Andrianarivelo, Mala; Delpeyroux, Francis

    2009-05-01

    Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs) have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17) and that sequences in the 3' half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3' half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3' portion of the cVDPV genome was replaced by the 3' half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence.

  17. Recombination between polioviruses and co-circulating Coxsackie A viruses: role in the emergence of pathogenic vaccine-derived polioviruses.

    Directory of Open Access Journals (Sweden)

    Sophie Jegouic

    2009-05-01

    Full Text Available Ten outbreaks of poliomyelitis caused by pathogenic circulating vaccine-derived polioviruses (cVDPVs have recently been reported in different regions of the world. Two of these outbreaks occurred in Madagascar. Most cVDPVs were recombinants of mutated poliovaccine strains and other unidentified enteroviruses of species C. We previously reported that a type 2 cVDPV isolated during an outbreak in Madagascar was co-circulating with coxsackieviruses A17 (CA17 and that sequences in the 3' half of the cVDPV and CA17 genomes were related. The goal of this study was to investigate whether these CA17 isolates can act as recombination partners of poliovirus and subsequently to evaluate the major effects of recombination events on the phenotype of the recombinants. We first cloned the infectious cDNA of a Madagascar CA17 isolate. We then generated recombinant constructs combining the genetic material of this CA17 isolate with that of the type 2 vaccine strain and that of the type 2 cVDPV. Our results showed that poliovirus/CA17 recombinants are viable. The recombinant in which the 3' half of the vaccine strain genome had been replaced by that of the CA17 genome yielded larger plaques and was less temperature sensitive than its parental strains. The virus in which the 3' portion of the cVDPV genome was replaced by the 3' half of the CA17 genome was almost as neurovirulent as the cVDPV in transgenic mice expressing the poliovirus cellular receptor gene. The co-circulation in children and genetic recombination of viruses, differing in their pathogenicity for humans and in certain other biological properties such as receptor usage, can lead to the generation of pathogenic recombinants, thus constituting an interesting model of viral evolution and emergence.

  18. A Bacillus megaterium System for the Production of Recombinant Proteins and Protein Complexes.

    Science.gov (United States)

    Biedendieck, Rebekka

    2016-01-01

    For many years the Gram-positive bacterium Bacillus megaterium has been used for the production and secretion of recombinant proteins. For this purpose it was systematically optimized. Plasmids with different inducible promoter systems, with different compatible origins, with small tags for protein purification and with various specific signals for protein secretion were combined with genetically improved host strains. Finally, the development of appropriate cultivation conditions for the production strains established this organism as a bacterial cell factory even for large proteins. Along with the overproduction of individual proteins the organism is now also used for the simultaneous coproduction of up to 14 recombinant proteins, multiple subsequently interacting or forming protein complexes. Some of these recombinant strains are successfully used for bioconversion or the biosynthesis of valuable components including vitamins. The titers in the g per liter scale for the intra- and extracellular recombinant protein production prove the high potential of B. megaterium for industrial applications. It is currently further enhanced for the production of recombinant proteins and multi-subunit protein complexes using directed genetic engineering approaches based on transcriptome, proteome, metabolome and fluxome data.

  19. Live recombinant BHV/BRSV vaccine

    NARCIS (Netherlands)

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the

  20. Hadron production at RHIC: recombination of quarks

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-01-01

    We discuss quark recombination applied to the hadronization of a quark gluon plasma. It has been shown that the quark recombination model can explain essential features of hadron production measured in high energy heavy ion collisions.

  1. Intraspecific bovine herpesvirus 1 recombinants carrying glycoprotein E deletion as a vaccine marker are virulent in cattle.

    Science.gov (United States)

    Muylkens, Benoît; Meurens, François; Schynts, Frédéric; Farnir, Frédéric; Pourchet, Aldo; Bardiau, Marjorie; Gogev, Sacha; Thiry, Julien; Cuisenaire, Adeline; Vanderplasschen, Alain; Thiry, Etienne

    2006-08-01

    Vaccines used in control programmes of Bovine herpesvirus 1 (BoHV-1) utilize highly attenuated BoHV-1 strains marked by a deletion of the glycoprotein E (gE) gene. Since BoHV-1 recombinants are obtained at high frequency in experimentally coinfected cattle, the consequences of recombination on the virulence of gE-negative BoHV-1 were investigated. Thus, gE-negative BoHV-1 recombinants were generated in vitro from several virulent BoHV-1 and one mutant BoHV-1 deleted in the gC and gE genes. Four gE-negative recombinants were tested in the natural host. All the recombinants were more virulent than the gE-negative BoHV-1 vaccine and the gC- and gE-negative parental BoHV-1. The gE-negative recombinant isolated from a BoHV-1 field strain induced the highest severe clinical score. Latency and reactivation studies showed that three of the recombinants were reexcreted. Recombination can therefore restore virulence of gE-negative BoHV-1 by introducing the gE deletion into a different virulence background.

  2. Instruments for oral disease-intervention strategies : recombinant Lactobacillus casei expressing tetanus toxin fragment C for vaccination or myelin proteins for oral tolerance induction in multiple sclerosis

    NARCIS (Netherlands)

    Maassen, C.B.M.; Laman, J.D.; Heijne den Bak-Glashouwer, M.J.; Tielen, F.J.; Holten-Neelen, J.C.P.A. van; Hoogteijling, L.; Antonissen, C.; Leer, R.J.; Pouwels, P.H.; Boersma, W.J.A.; Shaw, D.M.

    1999-01-01

    Lactobacillus strains possess properties that make them attractive candidates as vehicles for oral administration of therapeutics. In this report we describe the construction and analysis of recombinant Lactobacillus casei applicable in oral vaccination against an infectious disease (tetanus) and in

  3. Generation of recombinant newcastle disease viruses, expressing the glycoprotein (G) of avian metapneumovirus, subtype A, or B, for use as bivalent vaccines

    Science.gov (United States)

    Using reverse genetics technology, Newcastle disease virus (NDV) LaSota strain-based recombinant viruses were engineered to express the glycoprotein (G) of avian metapneumovirus (aMPV), subtype A, or B, as bivalent vaccines. These recombinant viruses, rLS/aMPV-A G and rLS/aMPV-B G, were slightly att...

  4. High efficiency recombineering in lactic acid bacteria

    OpenAIRE

    van Pijkeren, Jan-Peter; Britton, Robert A.

    2012-01-01

    The ability to efficiently generate targeted point mutations in the chromosome without the need for antibiotics, or other means of selection, is a powerful strategy for genome engineering. Although oligonucleotide-mediated recombineering (ssDNA recombineering) has been utilized in Escherichia coli for over a decade, the successful adaptation of ssDNA recombineering to Gram-positive bacteria has not been reported. Here we describe the development and application of ssDNA recombineering in lact...

  5. Population inversion in recombining hydrogen plasma

    International Nuclear Information System (INIS)

    Furukane, Utaro; Yokota, Toshiaki; Oda, Toshiatsu.

    1978-11-01

    The collisional-radiative model is applied to a recombining hydrogen plasma in order to investigate the plasma condition in which the population inversion between the energy levels of hydrogen can be generated. The population inversion is expected in a plasma where the three body recombination has a large contribution to the recombining processes and the effective recombination rate is beyond a certain value for a given electron density and temperature. Calculated results are presented in figures and tables. (author)

  6. Detection of homologous recombination between yeast artificial chromosomes with overlapping inserts.

    Science.gov (United States)

    Cellini, A; Lacatena, R M; Tocchini-Valentini, G P

    1991-03-11

    We have developed a system which facilitates the detection of recombination between Yeast Artificial Chromosomes (YAC's) carrying homologous inserts. The system consists of a classical YAC vector, a new YAC vector and two appropriately labelled yeast strains of opposite mating type. The new YAC vector differs in markers from the canonical YAC vector. To test whether homologous recombination takes place, phage lambda DNA was cloned in the two vectors to provide a region of homology. The two constructs were then introduced into yeast strains of opposite mating type in which the endogenous genes for the selective markers present in the vectors are not expressed. Artificial chromosomes obtained by meiotic recombination are detected in the spores resulting from the mating.

  7. Cloning, purification and characterization of recombinant silkworm ...

    African Journals Online (AJOL)

    The recombinant His-tagged BmAK protein was expressed in soluble form in Escherichia coli Rosetta and purified by metal chelating affinity chromatography. The amino acid sequence of recombinant protein was confirmed by mass spectroscopic analysis and the enzyme activity assay that indicated the recombinant ...

  8. Determination of recombination in Mycoplasma hominis

    DEFF Research Database (Denmark)

    Jacobsen, Iben Søgaard; Boesen, Thomas; Mygind, Tina

    2002-01-01

    indicating the presence of recombination. In order to test for intergenic recombination, phylogenetic trees were reconstructed for each of the genes but no well-supported bifurcating phylogenetic trees could be obtained. The genes were tested for intragenic recombination using the correlation between linkage...

  9. High frequency intergenomic recombination of suid herpesvirus 1 (SHV-1, Aujeszkys-disease virus)

    DEFF Research Database (Denmark)

    Christensen, Laurids Siig; Lomniczi, B.

    1993-01-01

    Examples are given of observations made with field isolates of suid herpesvirus 1 (SHV-1) which indicate that intergenomic recombination is a common phenomenon associated with the virus. This was further confirmed by experimental co-infection of a pig with 2 virus strains with different, stable a...

  10. Schizosaccharomyces pombe Mms1 channels repair of perturbed replication into Rhp51 independent homologous recombination

    DEFF Research Database (Denmark)

    Vejrup-Hansen, Rasmus; Mizuno, Ken'Ichi; Miyabe, Izumi

    2011-01-01

    -specific replication fork barrier and that, in a ¿mms1 strain, Rad22(Rad52) and RPA recruitment to blocked forks are reduced, whereas Rhp51 recruitment is unaffected. In addition, Mms1 appears to specifically promote chromosomal rearrangements in a recombination assay. These observations suggest that Mms1 acts...

  11. Sequence evidence for RNA recombination in field isolates of avian coronavirus infectious bronchitis virus

    NARCIS (Netherlands)

    Kusters, J G; Jager, E J; Niesters, H G; van der Zeijst, B A

    1990-01-01

    Under laboratory conditions coronaviruses were shown to have a high frequency of recombination. In The Netherlands, vaccination against infectious bronchitis virus (IBV) is performed with vaccines that contain several life-attenuated virus strains. These highly effective vaccines may create ideal

  12. Mucosal immune response in broilers following vaccination with inactivated influenza and recombinant Bacillus subtilis

    Science.gov (United States)

    Mucosal and systemic immunity were observed in broilers vaccinated with mannosylated chitosan adjuvated (MCA) inactivated A/Turkey/Virginia/158512/2002 (H7N2) and administered with and without recombinant Bacillus subtilis to elicit heterologous influenza strain protection. Previously, mucosal immu...

  13. Systems and methods for the secretion of recombinant proteins in gram negative bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Withers, III, Sydnor T.; Dominguez, Miguel A.; DeLisa, Matthew P.; Haitjema, Charles H.

    2017-02-21

    Disclosed herein are systems and methods for producing recombinant proteins utilizing mutant E. coli strains containing expression vectors carrying nucleic acids encoding the proteins, and secretory signal sequences to direct the secretion of the proteins to the culture medium. Host cells transformed with the expression vectors are also provided.

  14. Recombinant cold-adapted attenuated influenza A vaccines for use in children: reactogenicity and antigenic activity of cold-adapted recombinants and analysis of isolates from the vaccinees.

    OpenAIRE

    Alexandrova, G I; Polezhaev, F I; Budilovsky, G N; Garmashova, L M; Topuria, N A; Egorov, A Y; Romejko-Gurko, Y R; Koval, T A; Lisovskaya, K V; Klimov, A I

    1984-01-01

    Reactogenicity and antigenic activity of recombinants obtained by crossing cold-adapted donor of attenuation A/Leningrad/134/47/57 with wild-type influenza virus strains A/Leningrad/322/79(H1N1) and A/Bangkok/1/79(H3N2) were studied. The recombinants were areactogenic when administered as an intranasal spray to children aged 3 to 15, including those who lacked or had only low titers of pre-existing anti-hemagglutinin and anti-neuraminidase antibody in their blood. After two administrations of...

  15. Recombination in Streptococcus pneumoniae Lineages Increase with Carriage Duration and Size of the Polysaccharide Capsule

    Directory of Open Access Journals (Sweden)

    Chrispin Chaguza

    2016-09-01

    Full Text Available Streptococcus pneumoniae causes a high burden of invasive pneumococcal disease (IPD globally, especially in children from resource-poor settings. Like many bacteria, the pneumococcus can import DNA from other strains or even species by transformation and homologous recombination, which has allowed the pneumococcus to evade clinical interventions such as antibiotics and pneumococcal conjugate vaccines (PCVs. Pneumococci are enclosed in a complex polysaccharide capsule that determines the serotype; the capsule varies in size and is associated with properties including carriage prevalence and virulence. We determined and quantified the association between capsule and recombination events using genomic data from a diverse collection of serotypes sampled in Malawi. We determined both the amount of variation introduced by recombination relative to mutation (the relative rate and how many individual recombination events occur per isolate (the frequency. Using univariate analyses, we found an association between both recombination measures and multiple factors associated with the capsule, including duration and prevalence of carriage. Because many capsular factors are correlated, we used multivariate analysis to correct for collinearity. Capsule size and carriage duration remained positively associated with recombination, although with a reduced P value, and this effect may be mediated through some unassayed additional property associated with larger capsules. This work describes an important impact of serotype on recombination that has been previously overlooked. While the details of how this effect is achieved remain to be determined, it may have important consequences for the serotype-specific response to vaccines and other interventions.

  16. Extensive recombination rate variation in the house mouse species complex inferred from genetic linkage maps.

    Science.gov (United States)

    Dumont, Beth L; White, Michael A; Steffy, Brian; Wiltshire, Tim; Payseur, Bret A

    2011-01-01

    The rate of recombination is a key genomic parameter that displays considerable variation among taxa. Species comparisons have demonstrated that the rate of evolution in recombination rate is strongly dependent on the physical scale of measurement. Individual recombination hotspots are poorly conserved among closely related taxa, whereas genomic-scale recombination rate variation bears a strong signature of phylogenetic history. In contrast, the mode and tempo of evolution in recombination rates measured on intermediate physical scales is poorly understood. Here, we conduct a detailed statistical comparison between two whole-genome F₂ genetic linkage maps constructed from experimental intercrosses between closely related house mouse subspecies (Mus musculus). Our two maps profile a common wild-derived inbred strain of M. m. domesticus crossed to distinct wild-derived inbred strains representative of two other house mouse subspecies, M. m. castaneus and M. m. musculus. We identify numerous orthologous genomic regions with significant map length differences between these two crosses. Because the genomes of these recently diverged house mice are highly collinear, observed differences in map length (centimorgans) are suggestive of variation in broadscale recombination rate (centimorgans per megabase) within M. musculus. Collectively, these divergent intervals span 19% of the house mouse genome, disproportionately aggregating on the X chromosome. In addition, we uncover strong statistical evidence for a large effect, sex-linked, site-specific modifier of recombination rate segregating within M. musculus. Our findings reveal considerable variation in the megabase-scale recombination landscape among recently diverged taxa and underscore the continued importance of genetic linkage maps in the post-genome era.

  17. Mechanisms of sister chromatid recombination

    International Nuclear Information System (INIS)

    Nakai, Sayaka; Machida, Isamu; Tsuji, Satsuki

    1985-01-01

    Studies using T948 as a model system have been carried out aimed at elucidating the mechanism of sister chromatid recombination (SCR). Characterization of U.V. light- and x-ray-induced SCR, the relationiship between SCR induction and DNA repair using rad mutations, and the relationship between SCR induction and the time of cell division using cdc mutations are presented. It has been supposed that SCR is induced at the phase of S-G 2 following DNA replication, that postreplication break of DNA strands is strongly involved in the induction of SCR, and that induction type of SCR, i.e., conversion type or recombination type, is dependent upon the type of molecular damage of DNA. (Namekawa, K.)

  18. Workshop on Radio Recombination Lines

    CERN Document Server

    1980-01-01

    Since their first detection 15 years ago, radio recombination lines from several elements have been observed in a wide variety of objects including HII regions, planetary nebulae, molecular clouds, the diffuse interstellar medium, and recently, other galaxies. The observations span almost the entire range from 0.1 to 100 GHz, and employ both single­ djsh and aperture synthesis techniques. The theory of radio recombination lines has also advanced strongly, to the point where it is perhaps one of the best-understood in astro­ physics. In a parallel development, it has become possible over the last decade to study these same highly-excited atoms in the laboratory; this work provides further confirmation of the theoretical framework. However there has been continuing controversy over the astrophysical interpre­ tation of radio recombination line observations, especially regarding the role of stimulated emission. A workshop was held in Ottawa on 24-25 August, 1979, bringing together many of the active scientist...

  19. Pediocin production by recombinant lactic acid bacteria.

    Science.gov (United States)

    Somkuti, G A; Steinberg, D H

    2003-03-01

    Production of the anti-listerial bacteriocin, pediocin, by lactic acid bacteria (LAB) transformed with the cloning vector pPC418 (Ped+, 9.1 kb) was influenced by composition of media and incubation temperature. Maximum pediocin production, tested against Listeria innocua, by electrotransformants of Lactococcus lactis ssp. lactis was measured in tryptone/lactose/yeast extract medium after 24 h growth at 30 degrees C, while incubation at 40 degrees C was optimum for Ped+ transformants of Streptococcus thermophilus and Enterococcus faecalis. The amount of pediocin produced by S. thermophilus in skim milk and cheese whey supplemented with 0.5% yeast extract was estimated as 51,000 units ml(-1) and 25,000 units ml(-1), respectively. Pediocin production remained essentially unchanged in reconstituted skim milk or whey media diluted up to 10-fold. The results demonstrate the capacity of recombinant strains of LAB to produce pediocin in a variety of growth media including skim milk and inexpensive cheese whey-based media, requiring minimum nutritional supplementation.

  20. Nondisjunction of chromosome 15: Origin and recombination

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, W.P.; Bernasconi, F.; Schinzel, A.A.; Mutirangura, A.; Ledbetter, D.H. (Baylor College of Medicine, Houston, TX (United States)); Langlois, S. (Univ. of Britisch Columbia, Vancouver (Canada)); Morris, M.A.; Malcolm, S.

    1993-09-01

    Thirty-two cases of uniparental disomy (UPD), ascertained from Prader-Willi syndrome patients (N=27) and Angelman syndrome patients (N-5), are used to investigate the pattern of recombination associated with nondisjunction of chromosome 15. In addition, the meiotic stage of nondisjunction is inferred by using markers mapping near the centromere. Two basic approaches to the analysis of recombination in specific pairwise intervals along the chromosome. This method shows a significant reduction in recombination for two of five intervals examined. Second, the observed frequency of each recombinant class (i.e., zero, one, two, three, or more observable crossovers) is compared with expected values. This is useful for testing whether the reduction in recombination can be attributed solely to a proportion of cases with no recombination at all (because of asynapsis), with the remaining groups showing normal recombination (or even excess recombination), or whether recombination is uniformly reduced. Analysis of maternal UPD(15) data shows a slight reduction in the multiple-recombinant classes, with a corresponding increase in both the zero- and one-recombinant classes over expected values. The majority, more than 82%, of the extra chromosomes in maternal UPD(15) cases are due to meiotic I nondisjunction events. In contrast, more paternal UPD(15) cases so far examined appear to have a postzygotic origin of the extra paternal chromosome. 33 refs., 1 fig., 7 tabs.

  1. Consequences of recombination on traditional phylogenetic analysis

    DEFF Research Database (Denmark)

    Schierup, M H; Hein, J

    2000-01-01

    We investigate the shape of a phylogenetic tree reconstructed from sequences evolving under the coalescent with recombination. The motivation is that evolutionary inferences are often made from phylogenetic trees reconstructed from population data even though recombination may well occur (mt......DNA or viral sequences) or does occur (nuclear sequences). We investigate the size and direction of biases when a single tree is reconstructed ignoring recombination. Standard software (PHYLIP) was used to construct the best phylogenetic tree from sequences simulated under the coalescent with recombination....... With recombination present, the length of terminal branches and the total branch length are larger, and the time to the most recent common ancestor smaller, than for a tree reconstructed from sequences evolving with no recombination. The effects are pronounced even for small levels of recombination that may...

  2. Influence of vaccine strains on the evolution of canine distemper virus.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; Streck, André Felipe; Nunes Weber, Matheus; Maboni Siqueira, Franciele; Muniz Guedes, Rafael Lucas; Wageck Canal, Cláudio

    2016-07-01

    Canine distemper virus (CDV) is a major dog pathogen belonging to the genus Morbillivirus of the family Paramyxoviridae. CDV causes disease and high mortality in dogs and wild carnivores. Although homologous recombination has been demonstrated in many members of Paramyxoviridae, these events have rarely been reported for CDV. To detect potential recombination events, the complete CDV genomes available in GenBank up to June 2015 were screened using distinct algorithms to detect genetic conversions and incongruent phylogenies. Eight putative recombinant viruses derived from different CDV genotypes and different hosts were detected. The breakpoints of the recombinant strains were primarily located on fusion and hemagglutinin glycoproteins. These results suggest that homologous recombination is a frequent phenomenon in morbillivirus populations under natural replication, and CDV vaccine strains might play an important role in shaping the evolution of this virus.

  3. Conventional and real time RT-PCR assays for the detection and differentiation of variant rabbit hemorrhagic disease virus (RHDVb) and its recombinants.

    Science.gov (United States)

    Dalton, K P; Arnal, J L; Benito, A A; Chacón, G; Martín Alonso, J M; Parra, F

    2018-01-01

    Since its emergence, variant RHDV (RHDVb/RHDV2) has spread throughout the Iberian Peninsula aided by the apparent lack of cross protection provided by classic (genogroup 1; G1) strain derived vaccines. In addition to RHDVb, full-length genome sequencing of RHDV strains has recently revealed the circulation of recombinant viruses on the Iberian Peninsula. These recombinant viruses contain the RHDVb structural protein encoding sequences and the non-structural coding regions of either pathogenic RHDV-G1 strains or non-pathogenic (np) rabbit caliciviruses. The aim of the work was twofold: firstly to validate a diagnostic real time RT-PCR developed in 2012 for the detection of RHDVb strains and secondly, to design a conventional RT-PCR for the differentiation of RHDVb strains from RHDVb recombinants by subsequent sequencing of the amplicon. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Hybrid Sterility Locus on Chromosome X Controls Meiotic Recombination Rate in Mouse.

    Directory of Open Access Journals (Sweden)

    Maria Balcova

    2016-04-01

    Full Text Available Meiotic recombination safeguards proper segregation of homologous chromosomes into gametes, affects genetic variation within species, and contributes to meiotic chromosome recognition, pairing and synapsis. The Prdm9 gene has a dual role, it controls meiotic recombination by determining the genomic position of crossover hotspots and, in infertile hybrids of house mouse subspecies Mus m. musculus (Mmm and Mus m. domesticus (Mmd, it further functions as the major hybrid sterility gene. In the latter role Prdm9 interacts with the hybrid sterility X 2 (Hstx2 genomic locus on Chromosome X (Chr X by a still unknown mechanism. Here we investigated the meiotic recombination rate at the genome-wide level and its possible relation to hybrid sterility. Using immunofluorescence microscopy we quantified the foci of MLH1 DNA mismatch repair protein, the cytological counterparts of reciprocal crossovers, in a panel of inter-subspecific chromosome substitution strains. Two autosomes, Chr 7 and Chr 11, significantly modified the meiotic recombination rate, yet the strongest modifier, designated meiotic recombination 1, Meir1, emerged in the 4.7 Mb Hstx2 genomic locus on Chr X. The male-limited transgressive effect of Meir1 on recombination rate parallels the male-limited transgressive role of Hstx2 in hybrid male sterility. Thus, both genetic factors, the Prdm9 gene and the Hstx2/Meir1 genomic locus, indicate a link between meiotic recombination and hybrid sterility. A strong female-specific modifier of meiotic recombination rate with the effect opposite to Meir1 was localized on Chr X, distally to Meir1. Mapping Meir1 to a narrow candidate interval on Chr X is an important first step towards positional cloning of the respective gene(s responsible for variation in the global recombination rate between closely related mouse subspecies.

  5. Experimental evidence that RNA recombination occurs in the Japanese encephalitis virus

    International Nuclear Information System (INIS)

    Chuang, C.-K.; Chen, W.-J.

    2009-01-01

    Due to the lack of a proofreading function and error-repairing ability of genomic RNA, accumulated mutations are known to be a force driving viral evolution in the genus Flavivirus, including the Japanese encephalitis (JE) virus. Based on sequencing data, RNA recombination was recently postulated to be another factor associated with genomic variations in these viruses. We herein provide experimental evidence to demonstrate the occurrence of RNA recombination in the JE virus using two local pure clones (T1P1-S1 and CJN-S1) respectively derived from the local strains, T1P1 and CJN. Based on results from a restriction fragment length polymorphism (RFLP) assay on the C/preM junction comprising a fragment of 868 nucleotides (nt 10-877), the recombinant progeny virus was primarily formed in BHK-21 cells that had been co-infected with the two clones used in this study. Nine of 20 recombinant forms of the JE virus had a crossover in the nt 123-323 region. Sequencing data derived from these recombinants revealed that no nucleotide deletion or insertion occurred in this region favoring crossovers, indicating that precisely, not aberrantly, homologous recombination was involved. With site-directed mutagenesis, three stem-loop secondary structures were destabilized and re-stabilized in sequence, leading to changes in the frequency of recombination. This suggests that the conformation, not the free energy, of the secondary structure is important in modulating RNA recombination of the virus. It was concluded that because RNA recombination generates genetic diversity in the JE virus, this must be considered particularly in studies of viral evolution, epidemiology, and possible vaccine safety.

  6. Radiation induced asymmetries in mitotic recombination: evidence for a directional bias in the formation of asymmetric hybrid DNA in yeast

    International Nuclear Information System (INIS)

    Friedman, L.R.; Sobell, H.M.

    We have examined radiation-induced mitotic recombination using two alleles (his1-36, his1-49) in the his1 gene. When the haploid containing his1-36 is irradiated with varying doses of γ rays and then mated with the unirradiated strain containing his1-49, analyses of the selected prototrophs show them to be primarily + +/+ 49. If, on the other hand, the haploid strain containing his1-49 is the irradiated parent, the prototrophic diploids are primarily + +/36 +. In control experiments, where either both strains are irradiated or not irradiated, no such asymmetries are found. These data indicate that the irradiated haploid chromosome tends to be the recipient of genetic information. We interpret these results as indicating a directional bias in the formation of hybrid DNA in radiation-induced mitotic recombination, and discuss these results in terms of current models of genetic recombination

  7. A novel complex A/C/G intergenotypic recombinant of hepatitis B virus isolated in southern China.

    Directory of Open Access Journals (Sweden)

    Heling Su

    Full Text Available Hepatitis B virus (HBV genotypes and subgenotypes may vary in geographical distribution and virological features. Previous investigations, including ours, showed that HBV genotypes B and C were respectively predominant in South and North China, while genotypes A and D were infrequently detected and genotype G was not found. In this study, a novel A/C/G intergenotype was identified in patients with chronic HBV infection in Guilin, a city in southern China. Initial phylogenetic analysis based on the S gene suggested the HBV recombinant to be genotype G. However, extended genotyping based on the entire HBV genome indicated it to be an A/C/G intergenotype with a closer relation to genotype C. Breakpoint analysis using the SIMPLOT program revealed that the recombinant had a recombination with a arrangement of genotypes A, G, A and C fragments. Compared with the HBV recombinants harboring one or two genotype G fragments found in Asian countries, this Guilin recombinant was highly similar to the Vietnam (98-99% and Long An recombinants (96-99%, but had a relatively low similarity to the Thailand one (89%. Unlike those with the typical genotype G of HBV, the patients with the Guilin recombinant were seropositive for HBeAg. Moreover, a relatively high HBV DNA viral load (>2 × 10(6 IU/ml was detected in the patients, and the analysis of viral replication capacity showed that the Guilin recombinant strains had a competent replication capacity similar to genotypes B and C strains. These findings can aid in not only the clarification of the phylogenetic origin of the HBV recombinants with the genotype G fragment found in Asian countries, but also the understanding of the virological properties of these complicated HBV recombinants.

  8. Recombination between poliovirus and coxsackie A viruses of species C: a model of viral genetic plasticity and emergence.

    Science.gov (United States)

    Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis

    2011-08-01

    Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  9. A novel complex A/C/G intergenotypic recombinant of hepatitis B virus isolated in southern China.

    Science.gov (United States)

    Su, Heling; Liu, Yan; Xu, Zhihui; Cheng, Shuquan; Ye, Haiyan; Xu, Qing; Liu, Qingbo; Tan, Shuhong; Xu, Dongping; Liu, Yongming

    2014-01-01

    Hepatitis B virus (HBV) genotypes and subgenotypes may vary in geographical distribution and virological features. Previous investigations, including ours, showed that HBV genotypes B and C were respectively predominant in South and North China, while genotypes A and D were infrequently detected and genotype G was not found. In this study, a novel A/C/G intergenotype was identified in patients with chronic HBV infection in Guilin, a city in southern China. Initial phylogenetic analysis based on the S gene suggested the HBV recombinant to be genotype G. However, extended genotyping based on the entire HBV genome indicated it to be an A/C/G intergenotype with a closer relation to genotype C. Breakpoint analysis using the SIMPLOT program revealed that the recombinant had a recombination with a arrangement of genotypes A, G, A and C fragments. Compared with the HBV recombinants harboring one or two genotype G fragments found in Asian countries, this Guilin recombinant was highly similar to the Vietnam (98-99%) and Long An recombinants (96-99%), but had a relatively low similarity to the Thailand one (89%). Unlike those with the typical genotype G of HBV, the patients with the Guilin recombinant were seropositive for HBeAg. Moreover, a relatively high HBV DNA viral load (>2 × 10(6) IU/ml) was detected in the patients, and the analysis of viral replication capacity showed that the Guilin recombinant strains had a competent replication capacity similar to genotypes B and C strains. These findings can aid in not only the clarification of the phylogenetic origin of the HBV recombinants with the genotype G fragment found in Asian countries, but also the understanding of the virological properties of these complicated HBV recombinants.

  10. Recombination between Poliovirus and Coxsackie A Viruses of Species C: A Model of Viral Genetic Plasticity and Emergence

    Directory of Open Access Journals (Sweden)

    Francis Delpeyroux

    2011-08-01

    Full Text Available Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV, an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs, which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C, in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs.

  11. Recombination between Poliovirus and Coxsackie A Viruses of Species C: A Model of Viral Genetic Plasticity and Emergence

    Science.gov (United States)

    Combelas, Nicolas; Holmblat, Barbara; Joffret, Marie-Line; Colbère-Garapin, Florence; Delpeyroux, Francis

    2011-01-01

    Genetic recombination in RNA viruses was discovered many years ago for poliovirus (PV), an enterovirus of the Picornaviridae family, and studied using PV or other picornaviruses as models. Recently, recombination was shown to be a general phenomenon between different types of enteroviruses of the same species. In particular, the interest for this mechanism of genetic plasticity was renewed with the emergence of pathogenic recombinant circulating vaccine-derived polioviruses (cVDPVs), which were implicated in poliomyelitis outbreaks in several regions of the world with insufficient vaccination coverage. Most of these cVDPVs had mosaic genomes constituted of mutated poliovaccine capsid sequences and part or all of the non-structural sequences from other human enteroviruses of species C (HEV-C), in particular coxsackie A viruses. A study in Madagascar showed that recombinant cVDPVs had been co-circulating in a small population of children with many different HEV-C types. This viral ecosystem showed a surprising and extensive biodiversity associated to several types and recombinant genotypes, indicating that intertypic genetic recombination was not only a mechanism of evolution for HEV-C, but an usual mode of genetic plasticity shaping viral diversity. Results suggested that recombination may be, in conjunction with mutations, implicated in the phenotypic diversity of enterovirus strains and in the emergence of new pathogenic strains. Nevertheless, little is known about the rules and mechanisms which govern genetic exchanges between HEV-C types, as well as about the importance of intertypic recombination in generating phenotypic variation. This review summarizes our current knowledge of the mechanisms of evolution of PV, in particular recombination events leading to the emergence of recombinant cVDPVs. PMID:21994791

  12. Efficient generation of recombinant RNA viruses using targeted recombination-mediated mutagenesis of bacterial artificial chromosomes containing full-length cDNA

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Risager, Peter Christian; Fahnøe, Ulrik

    2013-01-01

    . This strategy allows manipulation of viral cDNA by targeted recombination-mediated mutagenesis within bacteria. Results A new CSFV-BAC (pBeloR26) derived from the Riems vaccine strain has been constructed and subsequently modified in the E2 coding sequence, using the targeted recombination strategy to enable...... rescue of chimeric pestiviruses (vR26_E2gif and vR26_TAV) with potential as new marker vaccine candidates. Sequencing of the BACs revealed a high genetic stability during passages within bacteria. The complete genome sequences of rescued viruses, after extensive passages in mammalian cells showed...... recombination-mediated mutagenesis provides a powerful tool for expediting the construction of novel RNA genomes and should be applicable to the manipulation of other RNA viruses....

  13. Immunoassays of fungal laccases for screening of natural enzymes and control of recombinant enzyme production.

    Science.gov (United States)

    Loginov, Dmitry S; Vavilova, Ekaterina A; Savinova, Оlga S; Abyanova, Alfia R; Chulkin, Andrey M; Vasina, Daria V; Zherdev, Anatoly V; Koroleva, Olga V

    2014-01-01

    Because of the wide application of laccases in different biotechnological processes and intense studies of the enzymes from different sources, the development of efficient techniques for monitoring laccase level is a task of significant importance. Enzyme-linked immunosorbent assay (ELISA) and Western blotting techniques were developed to control total content and isoform composition of laccases, including their recombinant preparations. Because glycosylated and nonglycosylated forms have different structures and sets of epitopes, two kinds of polyclonal antibodies were obtained and applied. The first antibody recognized the native (glycosylated) laccase purified from Trametes hirsuta and the second one reacted with recombinant (nonglycosylated) laccase expressed in Escherichia coli. Titers of the antibodies were analyzed by indirect ELISA with laccases isolated from several strains of basidiomycetes. The obtained cross-reactivity data for both antibodies demonstrated a correspondence with sequence homology of the laccases. The antibodies raised against recombinant (nonglycosylated) laccase had higher titers and thus were preferable for screening of recombinant laccase in cultural media. Thus, optimal antibody preparations were selected for screening of laccase-producing strains, and the control of recombinant enzymes and the efficiency of their use in immunochemical control of laccase levels were confirmed. © 2013 International Union of Biochemistry and Molecular Biology, Inc.

  14. Pressure for Pattern-Specific Intertypic Recombination between Sabin Polioviruses: Evolutionary Implications

    Directory of Open Access Journals (Sweden)

    Ekaterina Korotkova

    2017-11-01

    Full Text Available Complete genomic sequences of a non-redundant set of 70 recombinants between three serotypes of attenuated Sabin polioviruses as well as location (based on partial sequencing of crossover sites of 28 additional recombinants were determined and compared with the previously published data. It is demonstrated that the genomes of Sabin viruses contain distinct strain-specific segments that are eliminated by recombination. The presumed low fitness of these segments could be linked to mutations acquired upon derivation of the vaccine strains and/or may have been present in wild-type parents of Sabin viruses. These “weak” segments contribute to the propensity of these viruses to recombine with each other and with other enteroviruses as well as determine the choice of crossover sites. The knowledge of location of such segments opens additional possibilities for the design of more genetically stable and/or more attenuated variants, i.e., candidates for new oral polio vaccines. The results also suggest that the genome of wild polioviruses, and, by generalization, of other RNA viruses, may harbor hidden low-fitness segments that can be readily eliminated only by recombination.

  15. Effects of virus and host genes on recombination among ultraviolet-irradiated bacteriophage T4

    International Nuclear Information System (INIS)

    Priemer, M.M.; Chan, V.L.

    1978-01-01

    The influence of the polA, uvrA, and recA genes of Escherichia coli on recombination among ultraviolet-irradiated T4 bacteriophages was determined with respect to recombination between rII markers and phage yield. The polA and uvrA gene products have no effect on these two aspects of phage DNA metabolism. A recA mutation does not significantly alter rII recombination frequencies in irradiated phage crosses, nor does it greatly change the yield of infectious particles in wild-type phage crosses or crosses in which the phage strains possess the v mutation. However, the same cross experiment performed with a pair of T4x mutants in a recA host demonstrates an 84% reduction in the phage yield in an unirradiated control cross. Furthermore, with increasing doses of uv irradiation, phage productivity of the T4x mutant declines at an accelerated rate compared to T4x + strains crossed in recA cells. Multiplicity reactivation experiments in which wild-type or recombination-deficient (x or y) T4 phages infect wild-type or recombination-deficient (recA) host cells show that irradiated phages can only be reactivated in recA + hosts, regardless of the bacteriophage genotype. These results indicate the involvement of the E. coli recA gene product in normal T4 replication and multiplicity reactivation

  16. CRMAGE: CRISPR Optimized MAGE Recombineering

    DEFF Research Database (Denmark)

    Ronda, Carlotta; Pedersen, Lasse Ebdrup; Sommer, Morten Otto Alexander

    2016-01-01

    A bottleneck in metabolic engineering and systems biology approaches is the lack of efficient genome engineering technologies. Here, we combine CRISPR/Cas9 and λ Red recombineering based MAGE technology (CRMAGE) to create a highly efficient and fast method for genome engineering of Escherichia coli...... that are assembled by a USER-cloning approach enabling quick and cost efficient gRNA replacement. CRMAGE furthermore utilizes CRISPR/Cas9 for efficient plasmid curing, thereby enabling multiple engineering rounds per day. To facilitate the design process, a web-based tool was developed to predict both the λ Red...

  17. Enhanced Delignification of Lignocellulosic Biomass by Recombinant Fungus Phanerochaete chrysosporium Overexpressing Laccases and Peroxidases.

    Science.gov (United States)

    Coconi Linares, Nancy; Fernández, Francisco; Loske, Achim M; Gómez-Lim, Miguel A

    2018-02-27

    Ligninolytic enzyme production and lignin degradation are typically the rate-limiting steps in the biofuel industry. To improve the efficiency of simultaneous bio-delignification and enzyme production, Phanerochaete chrysosporium was transformed by shock wave-induced acoustic cavitation to co-overexpress 3 peroxidases and 1 laccase and test it on the degradation of sugarcane bagasse and wheat bran. Lignin depolymerization was enhanced by up to 25% in the presence of recombinant fungi in comparison with the wild-type strain. Sugar release on lignocellulose was 2- to 6-fold higher by recombinant fungi as compared with the control. Wheat bran ostensibly stimulated the production of ligninolytic enzymes. The highest peroxidase activity from the recombinant strains was 2.6-fold higher, whereas the increase in laccase activity was 4-fold higher in comparison to the control. The improvement of lignin degradation was directly proportional to the highest peroxidase and laccase activity. Because various phenolic compounds released during lignocellulose degradation have proven to be toxic to cells and to inhibit enzyme activity, a significant reduction (over 40%) of the total phenolic content in the samples treated with recombinant strains was observed. To our knowledge, this is the first report that engineering P. chrysosporium enhances biodegradation of lignocellulosic biomass. © 2018 S. Karger AG, Basel.

  18. Construction of heterologous gene expression cassettes for the development of recombinant Clostridium beijerinckii.

    Science.gov (United States)

    Oh, Young Hoon; Eom, Gyeong Tae; Kang, Kyoung Hee; Joo, Jeong Chan; Jang, Young-Ah; Choi, Jae Woo; Song, Bong Keun; Lee, Seung Hwan; Park, Si Jae

    2016-04-01

    Gene-expression cassettes for the construction of recombinant Clostridium beijerinckii were developed as potential tools for metabolic engineering of C. beijerinckii. Gene expression cassettes containing ColE1 origin and pAMB origin along with the erythromycin resistance gene were constructed, in which promoters from Escherichia coli, Lactococcus lactis, Ralstonia eutropha, C. acetobutylicum, and C. beijerinckii are examined as potential promoters in C. beijerinckii. Zymogram analysis of the cell extracts and comparison of lipase activities of the recombinant C. beijerinckii strains expressing Pseudomonas fluorescens tliA gene suggested that the tliA gene was functionally expressed by all the examined promoters with different expression level. Also, recombinant C. beijerinckii expressing C. beijerinckii secondary alcohol dehydrogenase by the constructed expression cassettes successfully produced 2-propanol from glucose. The best promoter for TliA expression was the R. eutropha phaP promoter while that for 2-propanol production was the putative C. beijerinckii pta promoter. Gene expression cassettes developed in this study may be useful tools for the construction of recombinant C. beijerinckii strains as host strains for the valuable chemicals and fuels from renewable resources.

  19. Phylogenetic and recombination analysis of the herpesvirus genus varicellovirus.

    Science.gov (United States)

    Kolb, Aaron W; Lewin, Andrew C; Moeller Trane, Ralph; McLellan, Gillian J; Brandt, Curtis R

    2017-11-21

    The varicelloviruses comprise a genus within the alphaherpesvirus subfamily, and infect both humans and other mammals. Recently, next-generation sequencing has been used to generate genomic sequences of several members of the Varicellovirus genus. Here, currently available varicellovirus genomic sequences were used for phylogenetic, recombination, and genetic distance analysis. A phylogenetic network including genomic sequences of individual species, was generated and suggested a potential restriction between the ungulate and non-ungulate viruses. Intraspecies genetic distances were higher in the ungulate viruses (pseudorabies virus (SuHV-1) 1.65%, bovine herpes virus type 1 (BHV-1) 0.81%, equine herpes virus type 1 (EHV-1) 0.79%, equine herpes virus type 4 (EHV-4) 0.16%) than non-ungulate viruses (feline herpes virus type 1 (FHV-1) 0.0089%, canine herpes virus type 1 (CHV-1) 0.005%, varicella-zoster virus (VZV) 0.136%). The G + C content of the ungulate viruses was also higher (SuHV-1 73.6%, BHV-1 72.6%, EHV-1 56.6%, EHV-4 50.5%) compared to the non-ungulate viruses (FHV-1 45.8%, CHV-1 31.6%, VZV 45.8%), which suggests a possible link between G + C content and intraspecies genetic diversity. Varicellovirus clade nomenclature is variable across different species, and we propose a standardization based on genomic genetic distance. A recent study reported no recombination between sequenced FHV-1 strains, however in the present study, both splitstree, bootscan, and PHI analysis indicated recombination. We also found that the recently sequenced Brazilian CHV-1 strain BTU-1 may contain a genetic signal in the UL50 gene from an unknown varicellovirus. Together, the data contribute to a greater understanding of varicellovirus genomics, and we also suggest a new clade nomenclature scheme based on genetic distances.

  20. Atomic excitation and recombination in external fields

    International Nuclear Information System (INIS)

    Nayfeh, M.H.; Clark, C.W.

    1985-01-01

    This volume offers a timely look at Rydberg states of atoms in external fields and dielectronic recombination. Each topic provides authoritative coverage, presents a fresh account of a flourishing field of current atomic physics and introduces new opportunities for discovery and development. Topics considered include electron-atom scattering in external fields; observations of regular and irregular motion as exemplified by the quadratic zeeman effect and other systems; Rydberg atoms in external fields and the Coulomb geometry; crossed-field effects in the absorption spectrum of lithium in a magnetic field; precise studies of static electric field ionization; widths and shapes of stark resonances in sodium above the saddle point; studies of electric field effects and barium autoionizing resonances; autoionization and dielectronic recombination in plasma electric microfields; dielectronic recombination measurements on multicharged ions; merged beam studies of dielectronic recombination; Rydberg atoms and dielectronic recombination in astrophysics; and observations on dielectronic recombination

  1. Construction of an oral recombinant DNA vaccine from H pylori neutrophil activating protein and its immunogenicity.

    Science.gov (United States)

    Sun, Bo; Li, Zhao-Shen; Tu, Zhen-Xing; Xu, Guo-Ming; Du, Yi-Qi

    2006-11-21

    To construct a live attenuated Salmonella typhimurium (S. typhimurium) strain harboring the H pylori neutrophil activating protein (HP-NAP) gene as an oral recombinant DNA vaccine, and to evaluate its immunogenicity. By genetic engineering methods, the genomic DNA of H pylori was extracted as a template. The total length of the HP-NAP gene was amplified by polymerase chain reaction (PCR) and cloned into pBT vector for sequencing and BLAST analysis, then subcloned into a eukaryotic expression vector pIRES followed by PCR identification and restriction enzyme digestion. The identified recombinant plasmid pIRES-NAP was transfected into COS-7 cells for target fusion protein expression, and its antigenicity was detected by Western blotting. Then the recombinant plasmid was transformed into a live attenuated S. typhimurium strain SL7207 as an oral vaccine strain, and its immunogenicity was evaluated with animal experiments. A 435 bp product was cloned using high homology with HP-NAP gene in GenBank (more than 98%). With identification by PCR and restriction enzyme digestion, a recombinant eukaryotic expression plasmid pIRES-NAP containing the HP-NAP gene of H pylori was successfully constructed. The expressed target protein had a specific reaction with H pylorii whole cell antibody and showed a single strip result detected by Western blotting. Oral immunization of mice with recombinant DNA vaccine strain SL7207 (pIRES-NAP) also induced a specific immune response. The successful construction of HP-NAP oral DNA vaccine with good immunogenicity may help to further investigate its immunoprotection effects and develop vaccine against H pylori infection.

  2. Inactivated Recombinant Rabies Viruses Displaying Canine Distemper Virus Glycoproteins Induce Protective Immunity against Both Pathogens.

    Science.gov (United States)

    da Fontoura Budaszewski, Renata; Hudacek, Andrew; Sawatsky, Bevan; Krämer, Beate; Yin, Xiangping; Schnell, Matthias J; von Messling, Veronika

    2017-04-15

    The development of multivalent vaccines is an attractive methodology for the simultaneous prevention of several infectious diseases in vulnerable populations. Both canine distemper virus (CDV) and rabies virus (RABV) cause lethal disease in wild and domestic carnivores. While RABV vaccines are inactivated, the live-attenuated CDV vaccines retain residual virulence for highly susceptible wildlife species. In this study, we developed recombinant bivalent vaccine candidates based on recombinant vaccine strain rabies virus particles, which concurrently display the protective CDV and RABV glycoprotein antigens. The recombinant viruses replicated to near-wild-type titers, and the heterologous glycoproteins were efficiently expressed and incorporated in the viral particles. Immunization of ferrets with beta-propiolactone-inactivated recombinant virus particles elicited protective RABV antibody titers, and animals immunized with a combination of CDV attachment protein- and fusion protein-expressing recombinant viruses were protected from lethal CDV challenge. However, animals that were immunized with only a RABV expressing the attachment protein of CDV vaccine strain Onderstepoort succumbed to infection with a more recent wild-type strain, indicating that immune responses to the more conserved fusion protein contribute to protection against heterologous CDV strains. IMPORTANCE Rabies virus and canine distemper virus (CDV) cause high mortality rates and death in many carnivores. While rabies vaccines are inactivated and thus have an excellent safety profile and high stability, live-attenuated CDV vaccines can retain residual virulence in highly susceptible species. Here we generated recombinant inactivated rabies viruses that carry one of the CDV glycoproteins on their surface. Ferrets immunized twice with a mix of recombinant rabies viruses carrying the CDV fusion and attachment glycoproteins were protected from lethal CDV challenge, whereas all animals that received

  3. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  4. Quantum mechanical theory of collisional recombination rates

    International Nuclear Information System (INIS)

    Miller, W.H.

    1995-01-01

    Quantum mechanical expressions for the pressure-dependent recombination rate (within the strong collision assumption) are presented which have a very similar form to those developed recently for rate constants of chemical reactions: eqs. 11 and 12 express the recombination rate in terms of a flux autocorrelation function, and eqs. 14-16 in terms of a cumulative recombination probability. The qualitative behavior of these functions is illustrated by several pedagogical examples. 24 refs., 1 fig

  5. Recombination chambers for BNCT dosimetry

    International Nuclear Information System (INIS)

    Tulik, Piotr

    2006-01-01

    Parallel plate recombination ionization chambers are known as the detectors which can be used for determination of gamma and high-LET dose components and for characterization of radiation quality of mixed radiation fields. Specially designed chambers can operate correctly even at dose rates of therapeutic beams. In this work the investigations were extended to a set of cylindrical chambers including a TE chamber and three graphite chambers filled with different gases - CO 2 , N 2 and 10 BF 3 , in order to determine the thermal neutrons, 14 N capture, gamma, and fast neutron dose components. The separation of the dose components is based on differences of the shape of the saturation curve, in dependence on LET spectrum of the investigated radiation. The measurements using all the chambers and a parallel plate recombination chamber were performed in a reactor beam of NRI Rez (Czech Republic). The gamma component was determined with accuracy of about 5%, while the variations of its value could be monitored with accuracy of about 0.5%. Relative changes of the beam components could be detected with accuracy of about 5% using the parallel plate chamber. The use of the chambers filled with different gases considerably improved the resolution of the method. (author)

  6. Rapid purification of recombinant histones.

    Science.gov (United States)

    Klinker, Henrike; Haas, Caroline; Harrer, Nadine; Becker, Peter B; Mueller-Planitz, Felix

    2014-01-01

    The development of methods to assemble nucleosomes from recombinant histones decades ago has transformed chromatin research. Nevertheless, nucleosome reconstitution remains time consuming to this day, not least because the four individual histones must be purified first. Here, we present a streamlined purification protocol of recombinant histones from bacteria. We termed this method "rapid histone purification" (RHP) as it circumvents isolation of inclusion bodies and thereby cuts out the most time-consuming step of traditional purification protocols. Instead of inclusion body isolation, whole cell extracts are prepared under strongly denaturing conditions that directly solubilize inclusion bodies. By ion exchange chromatography, the histones are purified from the extracts. The protocol has been successfully applied to all four canonical Drosophila and human histones. RHP histones and histones that were purified from isolated inclusion bodies had similar purities. The different purification strategies also did not impact the quality of octamers reconstituted from these histones. We expect that the RHP protocol can be readily applied to the purification of canonical histones from other species as well as the numerous histone variants.

  7. The Red Queen theory of recombination hotspots.

    Science.gov (United States)

    Ubeda, F; Wilkins, J F

    2011-03-01

    Recombination hotspots are small chromosomal regions, where meiotic crossover events happen with high frequency. Recombination is initiated by a double-strand break (DSB) that requires the intervention of the molecular repair mechanism. The DSB repair mechanism may result in the exchange of homologous chromosomes (crossover) and the conversion of the allelic sequence that breaks into the one that does not break (biased gene conversion). Biased gene conversion results in a transmission advantage for the allele that does not break, thus preventing recombination and rendering recombination hotspots transient. How is it possible that recombination hotspots persist over evolutionary time (maintaining the average chromosomal crossover rate) when they are self-destructive? This fundamental question is known as the recombination hotspot paradox and has attracted much attention in recent years. Yet, that attention has not translated into a fully satisfactory answer. No existing model adequately explains all aspects of the recombination hotspot paradox. Here, we formulate an intragenomic conflict model resulting in Red Queen dynamics that fully accounts for all empirical observations regarding the molecular mechanisms of recombination hotspots, the nonrandom targeting of the recombination machinery to hotspots and the evolutionary dynamics of hotspot turnover. © 2010 The Authors. Journal of Evolutionary Biology © 2010 European Society For Evolutionary Biology.

  8. Expression of a mineral phosphate solubilizing gene from Erwinia herbicola in two rhizobacterial strains.

    Science.gov (United States)

    Rodríguez, H; Gonzalez, T; Selman, G

    2001-11-30

    A genetic construction was carried out using the broad host range vector pKT230 and plasmid pMCG898, which encodes the Erwinia herbicola pyrroloquinoline quinone (PQQ) synthase, a gene involved in mineral phosphate solubilization (mps). The final construction was transformed and expressed in Escherichia coli MC1061, and the recombinant plasmids were transferred to Burkholderia cepacia IS-16 and Pseudomonas sp. PSS recipient cells by conjugation. Clones containing recombinant plasmids produced higher clearing halos in plates with insoluble phosphate as the unique (P) source, in comparison with those of strains without plasmids, demonstrating the heterologous expression of the E. herbicola gene in the recipient strains. This genetic manipulation allowed the increase in mps ability of both strains, enhancing their potentialities as growth promoters of agricultural crops. These results represent the first report on the application of the recombinant DNA methodology for the obtaining of improved phosphate solubilizing ability from rhizobacterial strains for biofertilization purposes.

  9. Studies on Drosophila radiosensitivity strains

    International Nuclear Information System (INIS)

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.U.

    1985-01-01

    Fertility of radiosensitive mutant drosophila female strain rad (2) 201 61 after irradiation and frequency of dominant lethal mutations (DLM), induced by γ-radiation for 0-5 h and 5-7 days, are investigated. It is shown, that oocytes of the mutant strain are more radiosensitive as compared with cells of mongrel flies as to criterion of DLM appearance over the period of maturing. Early oocytes of stages 2-7 are the most sensitive, i.e. at the stages, corresponding to the manifestation of previously established recombination-defective properties of mutations rad (2) 201 61 . It is also sown, that doses of γ-rays, exceeding 10 Gy produce a strong sterilizing effect on mutant females due to destruction and resorption of egg chambers, irradiated at the stages of previtellogenetic growth of oocytes. In females, carrying mutation of radiosensitivity there is no direct correlation betwen sensitivity of oocytes proper to DLM induction and sensitivity of egg folleicles to resorbing effect of γ-rays. The ways of possible involvement of mutant locus studied into genetic processes in various specialized cells of drosophila

  10. Profiling of external metabolites during production of hantavirus nucleocapsid protein with recombinant Saccharomyces cerevisiae.

    Science.gov (United States)

    Antoniukas, Linas; Grammel, Hartmut; Sasnauskas, Kestutis; Reichl, Udo

    2008-03-01

    Recombinant strains of Saccharomyces cerevisiae, producing hantavirus Puumala nucleocapsid protein for diagnostics and as a candidate vaccine were analyzed for uptake and excretion of intermediary metabolites during process optimization studies of fed-batch bioreactor cultures. Concentrations of glucose, maltose, galactose, pyruvate, acetaldehyde, ethanol, acetate, succinate and formaldehyde (used as a selection agent) were measured in the culture medium in order to find a metabolite pattern, indicative for the physiological state of the producer culture. When the inducer galactose was employed as a growth substrate, the metabolite profile of recombinant yeast cells was different from those of the non-recombinant original strain which excreted considerable amounts of metabolites with this substrate. In contrast, galactose-induced heterologous gene expression was indicated by the absence of excreted intermediary metabolites, except succinate. A model strain expressing a GFP fusion of hantavirus nucleocapsid protein differed in the excretion of metabolites from strains without GFP. In addition, the influence of alkali ions, employed for pH control is also demonstrated.

  11. Screening strategy to generate cell specific recombination: a case report with the RIP-Cre mice.

    Science.gov (United States)

    Spinelli, Valeria; Martin, Céline; Dorchies, Emilie; Vallez, Emmanuelle; Dehondt, Hélène; Trabelsi, Mohamed-Sami; Tailleux, Anne; Caron, Sandrine; Staels, Bart

    2015-10-01

    Conditional gene knockout technology is a powerful tool to study the function of a gene in a specific tissue, organ or cell lineage. The most commonly used procedure applies the Cre-LoxP strategy, where the choice of the Cre driver promoter is critical to determine the efficiency and specificity of the system. However, a considered choice of an appropriate promoter does not always protect against the risk of unwanted recombination and the consequent deletion of the gene in other tissues than the desired one(s), due to phenomena of non-specific activation of the Cre transgene. Furthermore, the causes of these phenomena are not completely understood and this can potentially affect every strain of Cre-mice. In our study on the deletion of a same gene in two different tissues, we show that the incidence rate of non-specific recombination in unwanted tissues depends on the Cre driver strain, ranging from 100%, rendering it useless (aP2-Cre strain), to ~5%, which is still compatible with their use (RIP-Cre strain). The use of a simple PCR strategy conceived to detect this occurrence is indispensable when producing a tissue-specific knockout mouse. Therefore, when choosing the Cre-driver promoter, researchers not only have to be careful about its tissue-specificity and timing of activation, but should also include a systematical screening in order to exclude mice in which atypical recombination has occurred and to limit the unnecessary use of laboratory animals in uninterpretable experiments.

  12. Investigating the dynamics of recombinant protein secretion from a microalgal host.

    Science.gov (United States)

    Lauersen, Kyle J; Huber, Isabel; Wichmann, Julian; Baier, Thomas; Leiter, Andreas; Gaukel, Volker; Kartushin, Viktor; Rattenholl, Anke; Steinweg, Christian; von Riesen, Lena; Posten, Clemens; Gudermann, Frank; Lütkemeyer, Dirk; Mussgnug, Jan H; Kruse, Olaf

    2015-12-10

    Production of recombinant proteins with microalgae represents an alternative platform over plant- or bacterial-based expression systems for certain target proteins. Secretion of recombinant proteins allows accumulation of the target product physically separate from the valuable algal biomass. To date, there has been little investigation into the dynamics of recombinant protein secretion from microalgal hosts-the culture parameters that encourage secreted product accumulation and stability, while encouraging biomass production. In this work, the efficiency of recombinant protein production was optimized by adjusting cultivation parameters for a strain of Chlamydomonas reinhardtii previously engineered to secrete a functional recombinant Lolium perenne ice binding protein (LpIBP), which has applications as a frozen food texturing and cryopreservation additive, into its culture medium. Three media and several cultivation styles were investigated for effects on secreted LpIBP titres and culture growth. A combination of acetate and carbon dioxide feeding with illumination resulted in the highest overall biomass and recombinant protein titres up to 10mgL(-1) in the culture medium. Pure photoautotrophic production was possible using two media types, with recombinant protein accumulation in all cultivations correlating to culture cell density. Two different cultivation systems were used for scale-up to 10L cultivations, one of which produced yields of secreted recombinant protein up to 12mgL(-1) within six cultivation days. Functional ice recrystallization inhibition (IRI) of the LpIBP from total concentrated extracellular protein extracts was demonstrated in a sucrose solution used as a simplified ice cream model. IRI lasted up to 7 days, demonstrating the potential of secreted products from microalgae for use as food additives. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Electronic recombination in some physics problems

    International Nuclear Information System (INIS)

    Guzman, O.

    1988-01-01

    This work is related to calculations of electronic recombination rates, as a function of electronic density, electronic temperature, and ion nuclear charge. Recombination times can be calculated and compared to cooling time, in cooling processes of ion beans by electrons from storage rings. (A.C.A.S.) [pt

  14. Electron-ion recombination at low energy

    International Nuclear Information System (INIS)

    Andersen, L.H.

    1993-01-01

    The work is based on results obtained with a merged-beams experiment. A beam of electronics with a well characterized density and energy distribution was merged with a fast, monoenergetic ion beam. Results have been obtained for radiative recombination and dielectronic recombination at low relative energies (0 to ∼70eV). The obtained energy resolution was improved by about a factor of 30. High vacuum technology was used to suppress interactions with electrons from the environments. The velocity distribution of the electron beam was determined. State-selective dielectronic-recombination measurements were performable. Recombination processes were studied. The theoretical background for radiative recombination and Kramers' theory are reviewed. The quantum mechanical result and its relation to the semiclassical theory is discussed. Radiative recombination was also measured with several different non-bare ions, and the applicability of the semiclassical theory to non-bare ions was investigated. The use of an effective charge is discussed. For dielectronic recombination, the standard theoretical approach in the isolated resonance and independent-processes approximation is debated. The applicability of this method was tested. The theory was able to reproduce most of the experimental data except when the recombination process was sensitive to couplings between different electronic configurations. The influence of external perturbing electrostatic fields is discussed. (AB) (31 refs.)

  15. Recombinant human endostatin reduces hypertrophic scar ...

    African Journals Online (AJOL)

    Background: Recombinant human endostatin (Endostar) has been widely used to suppress angiogenesis in carcinoma patients. ... Cite as: Wang P, Jiang L-Z, Xue B. Recombinant human endostatin reduces hypertrophic scar formation in rabbit ear model through ... wounds on the tail of each ear were discarded because.

  16. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  17. Generation of Modified Pestiviruses by Targeted Recombination

    DEFF Research Database (Denmark)

    Rasmussen, Thomas Bruun; Friis, Martin Barfred; Risager, Peter Christian

    involves targeted modification of viral cDNA genomes, cloned within BACs, by Red/ET recombination-mediated mutagenesis in E.coli DH10B cells. Using recombination-mediated mutagenesis for the targeted design, the work can be expedited and focused in principal on any sequence within the viral genome...

  18. Molecular requirements for radiation-activated recombination

    International Nuclear Information System (INIS)

    Stevens, Craig W.; Zeng Ming; Stamato, Thomas; Cerniglia, George

    1997-01-01

    Purpose/Objective: The major stumbling block to successful gene therapy today is poor gene transfer. We hypothesized that ionizing radiation might activate cellular recombination, and so improve stable gene transfer. We further hypothesized that known DNA-damage-repair proteins might also be important in radiation-activated recombination. Materials and Methods: The effect of irradiation on stable gene transfer efficiency was determined in human (A549 and 39F) and rodent (NIH/3T3) cell lines. Continuous low dose rate and multiple radiation fractions were also tested. Nuclear extracts were made and the effect of irradiation on inter-plasmid recombination/ligation determined. Multiple DNA damage-repair deficient cell lines were tested for radiation-activated recombination. Results: A significant radiation dose-dependent improvement in stable plasmid transfection (by as much as 1300 fold) is demonstrated in neoplastic and primary cells. An improvement in transient plasmid transfection is also seen, with as much as 85% of cells transiently expressing b-galactosidase (20-50 fold improvement). Stable transfection is only improved for linearized or nicked plasmids. Cells have improved gene transfer for at least 96 hours after irradiation. Both fractionated and continuous low dose rate irradiation are effective at improving stable gene transfer in mammalian cells, thus making relatively high radiation dose delivery clinically feasible. Inter-plasmid recombination is radiation dose dependent in nuclear extract assays, and the type of overhang (3', 5' or blunt end) significantly affects recombination efficiency and the type of product. The most common end-joining activity involves filling-in of the overhang followed by blunt end ligation. Adenovirus is a linear, double stranded DNA virus. We demonstrate that adenoviral infection efficiency is increased by irradiation. The duration of transgene expression is lengthened because the virus integrates with high efficiency (∼10

  19. Effects of UV radiation on genetic recombination

    International Nuclear Information System (INIS)

    Vlahovic, K.; Zahradka, D.; Petranovic, M.; Petranovic, D.

    1996-01-01

    We have used the model consisting of Escherichia coli cells and l phage to study the effects of UV radiation on genetic recombination. We found two radiation induced processes that reduce or inhibit genetic recombination. One such process leads to the inability of prophage to excise itself from the irradiated bacterial chromosome by the site-specific recombination. The other process was shown to inhibit a type of general recombination by which the prophage transfers one of its genetic markers to the infecting homologous phage. Loss of the prophage ability to take part in both site-specific and general recombination was shown to develop in recB + but not in recB cells. From this we infer that the loss of prophage recombinogenicity in irradiated cells is a consequence of one process in which RecBCD enzyme (the product of recB, recC and recD genes) plays an essential role. (author)

  20. RNAi and heterochromatin repress centromeric meiotic recombination

    DEFF Research Database (Denmark)

    Ellermeier, Chad; Higuchi, Emily C; Phadnis, Naina

    2010-01-01

    to genetic disabilities, including birth defects. The basis by which centromeric meiotic recombination is repressed has been largely unknown. We report here that, in fission yeast, RNAi functions and Clr4-Rik1 (histone H3 lysine 9 methyltransferase) are required for repression of centromeric recombination....... Surprisingly, one mutant derepressed for recombination in the heterochromatic mating-type region during meiosis and several mutants derepressed for centromeric gene expression during mitotic growth are not derepressed for centromeric recombination during meiosis. These results reveal a complex relation between...... types of repression by heterochromatin. Our results also reveal a previously undemonstrated role for RNAi and heterochromatin in the repression of meiotic centromeric recombination and, potentially, in the prevention of birth defects by maintenance of proper chromosome segregation during meiosis....

  1. Rapid RT-PCR amplification of full-length poliovirus genomes allows rapid discrimination between wild-type and recombinant vaccine-derived polioviruses.

    Science.gov (United States)

    Boot, Hein J; Schepp, Rutger M; van Nunen, Femke J H B; Kimman, Tjeerd G

    2004-03-01

    Poliomyelitis outbreaks in areas that were free for a long time of wild-type polioviruses have been reported. Characterization at nucleotide level of the causative agents showed that the isolated viruses were recombinant oral polio vaccine (OPV)-derived polioviruses. To allow rapid identification and detailed analysis of such recombinant polioviruses, a robust full-length reverse transcriptase-PCR (RT-PCR) was developed using SuperScript II (RT) and expand (PCR). Without extensive purification, it was possible to amplify and characterize the full-length genomes of all selected vaccine, wild-type, and recombinant vaccine-derived polioviruses within a week. Endonuclease nuclease analysis (SpeI) of the full-length amplicons allowed easy discrimination between recombinant and non-recombinant polioviruses. Furthermore, sequence analysis of cloned full-length amplicons of a recombinant vaccine-derived poliovirus strain showed that the quasi-species nature of a viral stock is preserved during the RT-PCR procedure. This robust and rapid RT-PCR method will allow rapid characterization of (recombinant) poliovirus strains in case of a local poliomyelitis outbreak, and will help to assess the risk of the appearance of such strains after wild-type poliovirus has been eradicated globally.

  2. Companion Protease Inhibitors for the In Situ Protection of Recombinant Proteins in Plants.

    Science.gov (United States)

    Robert, Stéphanie; Jutras, Philippe V; Khalf, Moustafa; D'Aoust, Marc-André; Goulet, Marie-Claire; Sainsbury, Frank; Michaud, Dominique

    2016-01-01

    We previously described a procedure for the use of plant protease inhibitors as "companion" accessory proteins to prevent unwanted proteolysis of clinically useful recombinant proteins in leaf crude protein extracts (Benchabane et al. Methods Mol Biol 483:265-273, 2009). Here we describe the use of these inhibitors for the protection of recombinant proteins in planta, before their extraction from leaf tissues. A procedure is first described involving inhibitors co-expressed along-and co-migrating-with the protein of interest in host plant cells. An alternative, single transgene scheme is then described involving translational fusions of the recombinant protein and companion inhibitor. These approaches may allow for a significant improvement of protein steady-state levels in leaves, comparable to yield improvements observed with protease-deficient strains of less complex protein expression hosts such as E. coli or yeasts.

  3. The construction of recombinant Lactobacillus casei expressing BVDV E2 protein and its immune response in mice.

    Science.gov (United States)

    Bhuyan, Anjuman Ara; Memon, Atta Muhammad; Bhuiyan, Ali Akbar; Zhonghua, Li; Zhang, Bingzhou; Ye, Shiyi; Mengying, Li; He, Qi-Gai

    2018-03-20

    Bovine viral diarrhea virus (BVDV) is the etiological agent of BVD causes substantial economic losses and endemic in world-wide cattle population. Mucosal immunity plays an important role in protection against BVDV infection and Lactobacillus casei is believed as an excellent live vaccine vector for expressing foreign genes. In this study, we have constructed a novel recombinant L. casei/pELX1-E2 strain expressing the most immunogenic E2 antigen of BVDV; using growth phage dependent surface expression system pELX1. The expression of E2 protein was verified by SDS-PAGE, Western blotting, and Immunofluorescence microscopic analysis. The immune responses triggered by the E2 producing recombinant L. casei were evaluated in BALB/c mice revealed that oral and intranasal (IN) administration of the recombinant strain was able to induce a significantly higher level of specific anti-E2 mucosal IgA and serum IgG as well as the greater level of cellular response by IFN-γ and IL-12 than those of intramuscular (IM) and control groups of mice. However, IN inoculation was found the most potent route of immunization. The ability of the recombinant strain to induce serum neutralizing antibody against BVDV and reduced viral load after viral challenge indicated better protection of BVDV infection. Therefore, this recombinant L. casei expressing E2 could be a safe and promising mucosal vaccine candidate against BVD. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Near-Full Genome Characterisation of Two Natural Intergenotypic 2k/1b Recombinant Hepatitis C Virus Isolates

    Directory of Open Access Journals (Sweden)

    Victoria L. Demetriou

    2011-01-01

    Full Text Available Few natural intergenotypic hepatitis C virus (HCV recombinants have been characterised, and only RF1_2k/1b has demonstrated widespread transmission. The near-full length genome sequences for two cases of 2k/1b recombinants (CYHCV037 and CYHCV093 sampled in Cyprus were obtained using strain-specific RT-PCR amplification and sequencing protocols. Sequence analysis confirmed their similarity with the original RF1_2k/1b strain from St. Petersburg, N687. These two isolates significantly contribute to the sequence data available on this recombinant and confirm its increasing spread among individuals from Eastern Europe, and its association with transmission through intravenous drug use. Phylogenetic analyses reveal clustering of the sequence 3′ to the recombination point, not seen in the topology of the 5′ sequences, implying a more complicated evolutionary history than that held to date. The increasing cases of HCV recombinant strains underline the requirement of their contribution to the standardised rules of HCV classification and nomenclature, molecular epidemiology, diagnosis, and treatment.

  5. Containment air circulation for optimal hydrogen recombination

    International Nuclear Information System (INIS)

    Spinks, N.; Krause, M.

    1997-01-01

    An accepted first-line defense for hydrogen mitigation is to design for the hydrogen to be rapidly mixed with the containment atmosphere and diluted to below flammability concentrations. Then, as hydrogen continues to be produced in the longer term, recombiners can be used to remove hydrogen: recombiners can be located in forced-air ducts or passive recombiners can be distributed within containment and the heat of recombination used to promote local air circulation. However, this principle does not eliminate the possibility of high hydrogen concentrations at locations removed from the recombiners. An improvement on this strategy is to arrange for a specific, buoyancy-driven, overall circulation of the containment atmosphere such that the recombiners can be located within the recirculation flow, immediately downstream of the hydrogen source. This would make the mixing process more predictable and solve the mass-transfer problem associated with distributed recombiners. Ideally, the recombiners would be located just above the hydrogen source so that the heat of recombination would assist the overall circulation. In this way, the hydrogen would be removed as close as possible to the source, thereby minimizing the amount of hydrogen immediately downstream of the source and reducing the hydrogen concentration to acceptable levels at other locations. Such a strategy requires the containment volume to be divided into an upflow path, past the hydrogen source and the recombiner, and a downflow path to complete the circuit. The flow could be generated actively using fans or passively using buoyancy forces arising from the difference in density of gases in the upfiow and downflow paths; the gases in the downflow path being cooled at an elevated heat sink. (author)

  6. The recombinational anatomy of a mouse chromosome.

    Directory of Open Access Journals (Sweden)

    Kenneth Paigen

    2008-07-01

    Full Text Available Among mammals, genetic recombination occurs at highly delimited sites known as recombination hotspots. They are typically 1-2 kb long and vary as much as a 1,000-fold or more in recombination activity. Although much is known about the molecular details of the recombination process itself, the factors determining the location and relative activity of hotspots are poorly understood. To further our understanding, we have collected and mapped the locations of 5,472 crossover events along mouse Chromosome 1 arising in 6,028 meioses of male and female reciprocal F1 hybrids of C57BL/6J and CAST/EiJ mice. Crossovers were mapped to a minimum resolution of 225 kb, and those in the telomere-proximal 24.7 Mb were further mapped to resolve individual hotspots. Recombination rates were evolutionarily conserved on a regional scale, but not at the local level. There was a clear negative-exponential relationship between the relative activity and abundance of hotspot activity classes, such that a small number of the most active hotspots account for the majority of recombination. Females had 1.2x higher overall recombination than males did, although the sex ratio showed considerable regional variation. Locally, entirely sex-specific hotspots were rare. The initiation of recombination at the most active hotspot was regulated independently on the two parental chromatids, and analysis of reciprocal crosses indicated that parental imprinting has subtle effects on recombination rates. It appears that the regulation of mammalian recombination is a complex, dynamic process involving multiple factors reflecting species, sex, individual variation within species, and the properties of individual hotspots.

  7. Escherichia coli MW005: lambda Red-mediated recombineering and copy-number induction of oriV-equipped constructs in a single host

    Directory of Open Access Journals (Sweden)

    Hope Ian A

    2010-03-01

    Full Text Available Abstract Background Escherichia coli strain EL350 contains chromosomally integrated phage lambda Red recombinase genes enabling this strain to be used for modifying the sequence of resident clones via recombineering. BAC and fosmid clones are highly suitable for modification by recombineering but, because they are present at low (1-2 copies per cell, the DNA is difficult to isolate in high yield and purity. To overcome this limitation vectors, e.g. pCC1FOS, have been constructed that contain the additional replication origin, oriV, which permits copy-number to be induced transiently when propagated in a suitable host strain, e.g. EPI300, that supplies the cognate trans-replication protein TrfA. Previously, we used EL350 and EPI300 sequentially to recombineer oriV-equipped fosmid genomic clones and, subsequently, to induce copy-number of the resulting recombinant clone. To eliminate these intervening DNA isolation and transformation steps we retrofitted EL350 with a PBAD-driven trfA gene generating strain MW005 that supports, independently, both recombineering and copy-number induction. Results The PBAD-driven copy of cre in EL350 was replaced seamlessly with a copy of trfA, PCR-amplified from EPI300 chromosomal DNA, to generate MW005. This new strain has been used to both generate, via recombineering, a number of reporter gene fusions directly from pCC1FOS-based Caenorhabditis elegans genomic clones and to transiently induce copy-number of fosmid and BAC clones prior to DNA preparation. Conclusions By retrofitting EL350, an established 'recombineering' E. coli strain, with a tightly regulated copy of trfA we have produced a new strain, MW005, which combines recombineering capacity with the useful ability to transiently induce copy-number of oriV-equipped clones. By coupling these two steps in a single strain, use of MW005 will enable the more rapid recombineering-mediated production of recombinant clones in the yield and quality necessary for

  8. Commonly administered BCG strains including an evolutionarily early strain and evolutionarily late strains of disparate genealogy induce comparable protective immunity against tuberculosis.

    Science.gov (United States)

    Horwitz, Marcus A; Harth, Günter; Dillon, Barbara Jane; Maslesa-Galić, Sasa

    2009-01-14

    BCG has been administered to over 4 billion persons worldwide, but its efficacy in preventing tuberculosis in adults has been highly variable. One hypothesis for its variability is that different strains of BCG vary in protective efficacy, and moreover, that evolutionarily early strains are more efficacious than the more attenuated evolutionarily late strains, which lack region of deletion 2. To examine this hypothesis, we tested six widely used BCG strains--the evolutionarily early strain BCG Japanese, two evolutionarily late strains in DU2 Group III (BCG Danish and Glaxo), and three evolutionarily late strains in DU2 Group IV (BCG Connaught, Pasteur, and Tice)--in the guinea pig model of pulmonary tuberculosis. With the exception of BCG Glaxo, which had relatively poor efficacy, we found no substantial differences in efficacy between the early strain and the late strains, and only small differences in efficacy among late strains. BCG Tice was the most efficacious BCG vaccine, with significantly fewer Mycobacterium tuberculosis in the lung and spleen than BCG Danish and BCG Japanese, although absolute differences in the organ burden of M. tuberculosis among these three vaccines were small (Pasteur were not significantly different. rBCG30, a recombinant BCG Tice vaccine overexpressing the M. tuberculosis 30 kDa major secretory protein (Antigen 85B), was more potent than any BCG vaccine (P < 0.0001 for differences in organ burden). Our study shows that late strains are not less potent than an early strain and argues against strain differences as a major factor in the variability of outcomes in BCG vaccine trials.

  9. Genetic heterogeneity and recombination in type-3 human astroviruses.

    Science.gov (United States)

    Medici, Maria Cristina; Tummolo, Fabio; Martella, Vito; Banyai, Krisztián; Bonerba, Elisabetta; Chezzi, Carlo; Arcangeletti, Maria Cristina; De Conto, Flora; Calderaro, Adriana

    2015-06-01

    Human astroviruses (HAstVs) are important enteric pathogens and can be classified genetically and antigenically into eight types. During molecular surveillance for HAstVs in Italy, sequence analysis of the diagnostic region C (about 400 nucleotide in length), located on the capsid (ORF2) gene, identified a novel type-3 strain. Upon sequencing of the full-length ORF2, the type-3 HAstV strain was characterized as a novel ORF2 genetic lineage, designated as 3c. By converse, in the ORF1b the virus was more similar to type-1 HAstVs, rather than to type-3 strains, suggesting a recombination nature, with the crossover site being mapped to the ORF1b/ORF2 junction region. Region C sequences of similar type-3 HAstV identified from European and extra-European countries were retrieved in the databases, suggesting the global distribution of this novel type-3 lineage. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Reciprocality of Recombination Events That Rearrange the Chromosome

    OpenAIRE

    Mahan, M. J.; Roth, J. R.

    1988-01-01

    We describe a genetic system for studying the reciprocality of chromosomal recombination; all substrates and recombination functions involved are provided exclusively by the bacterial chromosome. The genetic system allows the recovery of both recombinant products from a single recombination event. The system was used to demonstrate the full reciprocality of three different types of recombination events: (1) intrachromosomal recombination between direct repeats, causing deletions; (2) intrachr...

  11. High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp.

    Science.gov (United States)

    Kilian, Oliver; Benemann, Christina S. E.; Niyogi, Krishna K.; Vick, Bertrand

    2011-01-01

    Algae have reemerged as potential next-generation feedstocks for biofuels, but strain improvement and progress in algal biology research have been limited by the lack of advanced molecular tools for most eukaryotic microalgae. Here we describe the development of an efficient transformation method for Nannochloropsis sp., a fast-growing, unicellular alga capable of accumulating large amounts of oil. Moreover, we provide additional evidence that Nannochloropsis is haploid, and we demonstrate that insertion of transformation constructs into the nuclear genome can occur by high-efficiency homologous recombination. As examples, we generated knockouts of the genes encoding nitrate reductase and nitrite reductase, resulting in strains that were unable to grow on nitrate and nitrate/nitrite, respectively. The application of homologous recombination in this industrially relevant alga has the potential to rapidly advance algal functional genomics and biotechnology. PMID:22123974

  12. Fed-batch bioreactor process with recombinant Saccharomyces cerevisiae growing on cheese whey

    Directory of Open Access Journals (Sweden)

    R. Rech

    2006-12-01

    Full Text Available Saccharomyces cerevisiae strain W303 was transformed with two yeast integrative plasmids containing Kluyveromyces lactis LAC4 and LAC12 genes that codify beta-galactosidase and lactose permease respectively. The BLR030 recombinant strain was selected due to its growth and beta-galactosidase production capacity. Different culture media based on deproteinized cheese whey (DCW were tested and the best composition (containing DCW, supplemented with yeast extract 1 %, and peptone 3 % (w/v was chosen for bioreactor experiments. Batch, and fed-batch cultures with linear ascending feeding for 25 (FB25, 35 (FB35, and 50 (FB50 hours, were performed. FB35 and FB50 produced the highest beta-galactosidase specific activities (around 1,800 U/g cells, and also the best productivities (180 U/L.h. Results show the potential use of fed-batch cultures of recombinant S. cerevisiae on industrial applications using supplemented whey as substrate.

  13. Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins.

    Science.gov (United States)

    Mamat, Uwe; Wilke, Kathleen; Bramhill, David; Schromm, Andra Beate; Lindner, Buko; Kohl, Thomas Andreas; Corchero, José Luis; Villaverde, Antonio; Schaffer, Lana; Head, Steven Robert; Souvignier, Chad; Meredith, Timothy Charles; Woodard, Ronald Wesley

    2015-04-16

    Lipopolysaccharide (LPS), also referred to as endotoxin, is the major constituent of the outer leaflet of the outer membrane of virtually all Gram-negative bacteria. The lipid A moiety, which anchors the LPS molecule to the outer membrane, acts as a potent agonist for Toll-like receptor 4/myeloid differentiation factor 2-mediated pro-inflammatory activity in mammals and, thus, represents the endotoxic principle of LPS. Recombinant proteins, commonly manufactured in Escherichia coli, are generally contaminated with endotoxin. Removal of bacterial endotoxin from recombinant therapeutic proteins is a challenging and expensive process that has been necessary to ensure the safety of the final product. As an alternative strategy for common endotoxin removal methods, we have developed a series of E. coli strains that are able to grow and express recombinant proteins with the endotoxin precursor lipid IVA as the only LPS-related molecule in their outer membranes. Lipid IVA does not trigger an endotoxic response in humans typical of bacterial LPS chemotypes. Hence the engineered cells themselves, and the purified proteins expressed within these cells display extremely low endotoxin levels. This paper describes the preparation and characterization of endotoxin-free E. coli strains, and demonstrates the direct production of recombinant proteins with negligible endotoxin contamination.

  14. FLP recombinase-mediated site-specific recombination in silkworm, Bombyx mori.

    Directory of Open Access Journals (Sweden)

    Ding-Pei Long

    Full Text Available A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In this study, we achieved site-specific excision of a target gene at predefined chromosomal sites in the silkworm using a FLP/FRT site-specific recombination system. We first constructed two stable transgenic target silkworm strains that both contain a single copy of the transgene construct comprising a target gene expression cassette flanked by FRT sites. Using pre-blastoderm microinjection of a FLP recombinase helper expression vector, 32 G3 site-specific recombinant transgenic individuals were isolated from five of 143 broods. The average frequency of FLP recombinase-mediated site-specific excision in the two target strains genome was approximately 3.5%. This study shows that it is feasible to achieve site-specific recombination in silkworms using the FLP/FRT system. We conclude that the FLP/FRT system is a useful tool for genome manipulation in the silkworm. Furthermore, this is the first reported use of the FLP/FRT system for the genetic manipulation of a lepidopteran genome and thus provides a useful reference for the establishment of genome manipulation technologies in other lepidopteran species.

  15. The recombinant EHV-1 vector producing CDV hemagglutinin as potential vaccine against canine distemper.

    Science.gov (United States)

    Pan, Zihao; Liu, Jin; Ma, Jiale; Jin, Qiuli; Yao, Huochun; Osterrieder, Nikolaus

    2017-10-01

    Canine distemper virus (CDV), is a pantropic agent of morbillivirus that causes fetal disease in dogs. Base on a broad host rang of CDV, the continued vaccines inoculation is unavoidable to pose gene recombination risk in vaccine virus and wild virus. The current study presents the construction of novel vectors, using equine herpesvirus type 1 (EHV-1) expressing the canine distemper virus (CDV). The recent field strain hemagglutinin protein and nucleoprotein were used for the construction of the viral vector vaccines. Based on the Bacterial artificial chromosome (BAC) genomes of EHV-1 RacH strain, the recombinant EHV-1 vaccine virus encoding CDV hemagglutinin protein (EHV-H) or CDV nucleoprotein (EHV-N) was constructed separately. The constructed BACs were rescued after 72 h post infection, and the expression of H or N in the recombinant viruses was confirmed by western-blotting. Furthermore, high levels of neutralizing antibodies were induced persistently following vaccination in the groups EHV-H&EHV-N and EHV-H, but the EHV-N group. The groups of vaccinated EHV-H and EHV-H&EHV-N pups were monitored for clinical signs, whereas the vaccinated EHV-N group developed moderate symptoms. The present study demonstrated that EHV-1 based recombinant virus carrying CDV H could be a promising vaccine candidate against canine distemper. Copyright © 2017. Published by Elsevier Ltd.

  16. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.

    Science.gov (United States)

    Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, V Venkata

    2018-03-28

    Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Despite of producing high protein titers, various cellular and process level bottlenecks hinders the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. FLP Recombinase-Mediated Site-Specific Recombination in Silkworm, Bombyx mori

    Science.gov (United States)

    Long, Ding-Pei; Zhao, Ai-Chun; Chen, Xue-Jiao; Zhang, Yang; Lu, Wei-Jian; Guo, Qing; Handler, Alfred M.; Xiang, Zhong-Huai

    2012-01-01

    A comprehensive understanding of gene function and the production of site-specific genetically modified mutants are two major goals of genetic engineering in the post-genomic era. Although site-specific recombination systems have been powerful tools for genome manipulation of many organisms, they have not yet been established for use in the manipulation of the silkworm Bombyx mori genome. In this study, we achieved site-specific excision of a target gene at predefined chromosomal sites in the silkworm using a FLP/FRT site-specific recombination system. We first constructed two stable transgenic target silkworm strains that both contain a single copy of the transgene construct comprising a target gene expression cassette flanked by FRT sites. Using pre-blastoderm microinjection of a FLP recombinase helper expression vector, 32 G3 site-specific recombinant transgenic individuals were isolated from five of 143 broods. The average frequency of FLP recombinase-mediated site-specific excision in the two target strains genome was approximately 3.5%. This study shows that it is feasible to achieve site-specific recombination in silkworms using the FLP/FRT system. We conclude that the FLP/FRT system is a useful tool for genome manipulation in the silkworm. Furthermore, this is the first reported use of the FLP/FRT system for the genetic manipulation of a lepidopteran genome and thus provides a useful reference for the establishment of genome manipulation technologies in other lepidopteran species. PMID:22768245

  18. The impact of respiration and oxidative stress response on recombinant α-amylase production by Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Martinez Ruiz, José Luis; Meza, Eugenio; Petranovic, Dina

    2016-01-01

    Studying protein production is important for fundamental research on cell biology and applied research for biotechnology. Yeast Saccharomyces cerevisiae is an attractive workhorse for production of recombinant proteins as it does not secrete many endogenous proteins and it is therefore easy...... to purify a secreted product. However, recombinant production at high rates represents a significant metabolic burden for the yeast cells, which results in oxidative stress and ultimately affects the protein production capacity. Here we describe a method to reduce the overall oxidative stress...... by overexpressing the endogenous HAP1 gene in a S. cerevisiae strain overproducing recombinant α-amylase. We demonstrate how Hap1p can activate a set of oxidative stress response genes and meanwhile contribute to increase the metabolic rate of the yeast strains, therefore mitigating the negative effect of the ROS...

  19. A rapid method for recombination and site-specific mutagenesis by placing homologous ends on DNA using polymerase chain reaction.

    Science.gov (United States)

    Jones, D H; Howard, B H

    1991-01-01

    We have developed a novel polymerase chain reaction (PCR) method that permits the rapid generation of site-specific mutants and recombinant DNA constructs with a minimum number of steps and primers. DNA segments are modified by using amplifying primers that add homologous ends to the polymerase chain reaction product(s). These homologous ends undergo recombination in vivo following transformation of recA-E. coli strains used routinely in cloning. In vivo circularization of PCR products containing plasmid sequences with a selective marker permits the rapid cloning of the desired mutant or recombinant. In the mutagenesis protocol, 7 of the 12 clones contained the product of interest, and 6 of these clones had no detected error (50% of the clones without detected errors). In each of several recombination protocols, at least 50% of the clones tested contained the insert of interest without detected errors.

  20. Recombination-mediated genetic engineering of a bacterial artificial chromosome clone of modified vaccinia virus Ankara (MVA)

    DEFF Research Database (Denmark)

    Cottingham, Matthew G; Andersen, Rikke F; Spencer, Alexandra J

    2008-01-01

    to infectious virus using a Fowlpox virus helper to supply transcriptional machinery. We apply here a similar approach to the attenuated strain Modified Vaccinia virus Ankara (MVA), now widely used as a safe non-replicating recombinant vaccine vector in mammals, including humans. Four apparently full......-length, rescuable clones were obtained, which had indistinguishable immunogenicity in mice. One clone was shotgun sequenced and found to be identical to the parent. We employed GalK recombination-mediated genetic engineering (recombineering) of MVA-BAC to delete five selected viral genes. Deletion of C12L, A44L, A......K counterselection to insert an antigen expression cassette lacking a tandem marker gene into the traditional thymidine kinase locus of MVA-BAC. MVA continues to feature prominently in clinical trials of recombinant vaccines against diseases such as HIV-AIDS, malaria and tuberculosis. Here we demonstrate in proof...

  1. Impact of overexpressing NADH kinase on glucose and xylose metabolism in recombinant xylose-utilizing Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hou, Jin; Vemuri, G. N.; Bao, X. M.

    2009-01-01

    of overexpressing the native NADH kinase (encoded by the POS5 gene) in xylose-consuming recombinant S. cerevisiae directed either into the cytosol or to the mitochondria was evaluated. The physiology of the NADH kinase containing strains was also evaluated during growth on glucose. Overexpressing NADH kinase...

  2. 21 CFR 173.115 - Alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation derived from a recombinant Bacillus...

    Science.gov (United States)

    2010-04-01

    ... preparation derived from a recombinant Bacillus subtilis. 173.115 Section 173.115 Food and Drugs FOOD AND DRUG... Bacillus subtilis. The food additive alpha-acetolactate decarboxylase (α-ALDC) enzyme preparation, may be... derived from a modified Bacillus subtilis strain that contains the gene coding for α-ALDC from Bacillus...

  3. The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilising Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Eliasson, Anna; Hofmeyr, J.H.S.; Pedler, S.

    2001-01-01

    utilisation in yeast. The steady-state level of the intermediary xylitol depended also, to a great extent, on the NADH and NAD(+) concentrations. Anaerobic xylose utilisation was investigated for three different recombinant. XR-, XDH- and XK-expressing Saccharomyces cerevisiae strains, TMB 3002, TMB 3003....../XDH/XK ratio corresponding to the theoretical optimal ratio, fermented xylose to ethanol most efficiently....

  4. Infection and transmission of live recombinant Newcastle disease virus vaccines in Rock Pigeons, European House Sparrows, and Japanese Quail

    Science.gov (United States)

    In China and Mexico, engineered recombinant Newcastle disease virus (rNDV) strains are used as live vaccines for the control of Newcastle disease and as vectors to express the avian influenza virus hemagglutinin (HA) gene to control avian influenza in poultry. In this study, non-target species wer...

  5. Phylogenetic incongruence in E. coli O104: understanding the evolutionary relationships of emerging pathogens in the face of homologous recombination.

    Directory of Open Access Journals (Sweden)

    Weilong Hao

    Full Text Available Escherichia coli O104:H4 was identified as an emerging pathogen during the spring and summer of 2011 and was responsible for a widespread outbreak that resulted in the deaths of 50 people and sickened over 4075. Traditional phenotypic and genotypic assays, such as serotyping, pulsed field gel electrophoresis (PFGE, and multilocus sequence typing (MLST, permit identification and classification of bacterial pathogens, but cannot accurately resolve relationships among genotypically similar but pathotypically different isolates. To understand the evolutionary origins of E. coli O104:H4, we sequenced two strains isolated in Ontario, Canada. One was epidemiologically linked to the 2011 outbreak, and the second, unrelated isolate, was obtained in 2010. MLST analysis indicated that both isolates are of the same sequence type (ST678, but whole-genome sequencing revealed differences in chromosomal and plasmid content. Through comprehensive phylogenetic analysis of five O104:H4 ST678 genomes, we identified 167 genes in three gene clusters that have undergone homologous recombination with distantly related E. coli strains. These recombination events have resulted in unexpectedly high sequence diversity within the same sequence type. Failure to recognize or adjust for homologous recombination can result in phylogenetic incongruence. Understanding the extent of homologous recombination among different strains of the same sequence type may explain the pathotypic differences between the ON2010 and ON2011 strains and help shed new light on the emergence of this new pathogen.

  6. Hamstring strain - aftercare

    Science.gov (United States)

    Pulled hamstring muscle; Sprain - hamstring ... There are 3 levels of hamstring strains: Grade 1 -- mild muscle strain or pull Grade 2 -- partial muscle tear Grade 3 -- complete muscle tear Recovery time depends ...

  7. Practical protocols for production of very high yields of recombinant proteins using Escherichia coli

    OpenAIRE

    Sivashanmugam, Arun; Murray, Victoria; Cui, Chunxian; Zhang, Yonghong; Wang, Jianjun; Li, Qianqian

    2009-01-01

    The gram-negative bacterium Escherichia coli offers a mean for rapid, high yield, and economical production of recombinant proteins. However, high-level production of functional eukaryotic proteins in E. coli may not be a routine matter, sometimes it is quite challenging. Techniques to optimize heterologous protein overproduction in E. coli have been explored for host strain selection, plasmid copy numbers, promoter selection, mRNA stability, and codon usage, significantly enhancing the yield...

  8. Profiling of external metabolites during production of hantavirus nucleocapsid protein with recombinant Saccharomyces cerevisiae

    OpenAIRE

    Antoniukas, Linas; Grammel, Hartmut; Sasnauskas, Kestutis; Reichl, Udo

    2007-01-01

    Recombinant strains of Saccharomyces cerevisiae, producing hantavirus Puumala nucleocapsid protein for diagnostics and as a candidate vaccine were analyzed for uptake and excretion of intermediary metabolites during process optimization studies of fed-batch bioreactor cultures. Concentrations of glucose, maltose, galactose, pyruvate, acetaldehyde, ethanol, acetate, succinate and formaldehyde (used as a selection agent) were measured in the culture medium in order to find a metabolite pattern,...

  9. Activities of Fluoroquinolones against Streptococcus pneumoniae Type II Topoisomerases Purified as Recombinant Proteins

    OpenAIRE

    Morrissey, Ian; George, John

    1999-01-01

    Streptococcus pneumoniae topoisomerase IV and DNA gyrase have been purified from a fluoroquinolone-susceptible Streptococcus pneumoniae strain, from first-step mutants showing low-level resistance to ciprofloxacin, sparfloxacin, levofloxacin, and ofloxacin, and from two clinical isolates showing intermediate- and high-level fluoroquinolone resistance by a gene cloning method that produces recombinant proteins from Escherichia coli. The concentrations of ciprofloxacin, sparfloxacin, levofloxac...

  10. Co-production of hydrogen and ethanol by Escherichia coli SS1 and its recombinant

    Directory of Open Access Journals (Sweden)

    Chiu-Shyan Soo

    2017-11-01

    Conclusions: HybC could improve glycerol consumption rate and ethanol productivity of E. coli despite lower hydrogen and ethanol yields. Higher glycerol consumption rate of recombinant hybC could be an advantage for bioconversion of glycerol into biofuels. This study could serve as a useful guidance for dissecting the role of hydrogenase in glycerol metabolism and future development of effective strain for biofuels production.

  11. Identification of a Novel Recombinant Type 2 Porcine Reproductive and Respiratory Syndrome Virus in China

    Directory of Open Access Journals (Sweden)

    Long Zhou

    2018-03-01

    Full Text Available Since the emergence of NADC30-like porcine reproductive and respiratory syndrome virus (PRRSV in China in 2013, PRRSVs have undergone rapid evolution. In this study, a novel variant of PRRSV strain (designated SCcd17 was successfully isolated from piglets with clinical signs in Sichuan Province in China in 2017, and the complete genomic sequence was determined. The genome of this new isolate was 15,015 nucleotides (nt long, and comparative analysis revealed that SCcd17 exhibited 90.2%, 85.2%, 84.9%, and 84.0% nucleotide similarity to PRRSVs NADC30, JXA1, CH-1a, and VR-2332, respectively. Phylogenetic analysis indicated that the SCcd17 strain was classified into the NADC30-like sub-genotype, in which all the strains contained the unique discontinuous 131-amino acid deletion in nonstructural protein 2 (nsp2 when compared to VR-2332-like viruses. Notably, extensive amino acid substitutions were observed in nsp2 and a unique single amino acid deletion at position 33 of the GP5 is being described for the first time. Strikingly, recombination analysis revealed that SCcd17 was the result of recombination between the NADC30-like, JXA1-like, and VR-2332-like strains at five recombination breakpoints: nsp1α (nt 641, nsp3 (nt 5141, nsp10 (nt 9521, open reading frame 3 (ORF3 (nt 12,581, and ORF4 (nt 13,021. The genomic data of SCcd17 will be helpful for understanding the role of genomic recombination in the evolution of PRRSV.

  12. Recombination analysis of Maize dwarf mosaic virus (MDMV) in the Sugarcane mosaic virus (SCMV) subgroup of potyviruses.

    Science.gov (United States)

    Gell, Gyöngyvér; Sebestyén, Endre; Balázs, Ervin

    2015-02-01

    Recombination among RNA viruses is a natural phenomenon that appears to have played a significant role in the species development and the evolution of many strains. It also has particular significance for the risk assessment of plants which have been genetically modified for disease resistance by incorporating viral sequences into their genomes. However, the exact recombination events taking place in viral genomes are not investigated in detail for many virus groups. In this analysis, different single-stranded positive-sense RNA potyviruses were compared using various in silico recombination detection methods and new recombination events in the Sugarcane mosaic virus (SCMV) subgroup were detected. For an extended in silico recombination analysis, two of the analyzed Maize dwarf mosaic virus full-length genomes were sequenced additionally during this work. These results strengthen the evidence that recombination is a major driving force in virus evolution, and the emergence of new virus variants in the SCMV subgroup, paired with mutations, could generate viruses with altered biological properties. The intra- and interspecific homolog recombinations seem to be a general trait in this virus group, causing little or no changes to the amino acid of the progenies. However, we found a few breakpoints between the members of SCMV subgroup and the weed-infecting distant relatives, but only a few methods of the RDP3 package predicted these events with low significance level.

  13. A novel computational method identifies intra- and inter-species recombination events in Staphylococcus aureus and Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Lisa Sanguinetti

    Full Text Available Advances in high-throughput DNA sequencing technologies have determined an explosion in the number of sequenced bacterial genomes. Comparative sequence analysis frequently reveals evidences of homologous recombination occurring with different mechanisms and rates in different species, but the large-scale use of computational methods to identify recombination events is hampered by their high computational costs. Here, we propose a new method to identify recombination events in large datasets of whole genome sequences. Using a filtering procedure of the gene conservation profiles of a test genome against a panel of strains, this algorithm identifies sets of contiguous genes acquired by homologous recombination. The locations of the recombination breakpoints are determined using a statistical test that is able to account for the differences in the natural rate of evolution between different genes. The algorithm was tested on a dataset of 75 genomes of Staphylococcus aureus and 50 genomes comprising different streptococcal species, and was able to detect intra-species recombination events in S. aureus and in Streptococcus pneumoniae. Furthermore, we found evidences of an inter-species exchange of genetic material between S. pneumoniae and Streptococcus mitis, a closely related commensal species that colonizes the same ecological niche. The method has been implemented in an R package, Reco, which is freely available from supplementary material, and provides a rapid screening tool to investigate recombination on a genome-wide scale from sequence data.

  14. Isolation of Specific Clones from Nonarrayed BAC Libraries through Homologous Recombination

    Directory of Open Access Journals (Sweden)

    Mikhail Nefedov

    2011-01-01

    Full Text Available We have developed a new approach to screen bacterial artificial chromosome (BAC libraries by recombination selection. To test this method, we constructed an orangutan BAC library using an E. coli strain (DY380 with temperature inducible homologous recombination (HR capability. We amplified one library segment, induced HR at 42∘C to make it recombination proficient, and prepared electrocompetent cells for transformation with a kanamycin cassette to target sequences in the orangutan genome through terminal recombineering homologies. Kanamycin-resistant colonies were tested for the presence of BACs containing the targeted genes by the use of a PCR-assay to confirm the presence of the kanamycin insertion. The results indicate that this is an effective approach for screening clones. The advantage of recombination screening is that it avoids the high costs associated with the preparation, screening, and archival storage of arrayed BAC libraries. In addition, the screening can be conceivably combined with genetic engineering to create knockout and reporter constructs for functional studies.

  15. Production of Recombinant Trichoderma reesei Cellobiohydrolase II in a New Expression System Based on Wickerhamomyces anomalus

    Directory of Open Access Journals (Sweden)

    Dennis J. Díaz-Rincón

    2017-01-01

    Full Text Available Cellulase is a family of at least three groups of enzymes that participate in the sequential hydrolysis of cellulose. Recombinant expression of cellulases might allow reducing their production times and increasing the low proteins concentrations obtained with filamentous fungi. In this study, we describe the production of Trichoderma reesei cellobiohydrolase II (CBHII in a native strain of Wickerhamomyces anomalus. Recombinant CBHII was expressed in W. anomalus 54-A reaching enzyme activity values of up to 14.5 U L−1. The enzyme extract showed optimum pH and temperature of 5.0–6.0 and 40°C, respectively. Enzyme kinetic parameters (KM of 2.73 mM and Vmax of 23.1 µM min−1 were between the ranges of values reported for other CBHII enzymes. Finally, the results showed that an enzymatic extract of W. anomalus 54-A carrying the recombinant T. reesei CBHII allows production of reducing sugars similar to that of a crude extract from cellulolytic fungi. These results show the first report on the use of W. anomalus as a host to produce recombinant proteins. In addition, recombinant T. reesei CBHII enzyme could potentially be used in the degradation of lignocellulosic residues to produce bioethanol, based on its pH and temperature activity profile.

  16. Regulation of Recombination between gtfB/gtfC Genes in Streptococcus mutans by Recombinase A

    Directory of Open Access Journals (Sweden)

    Satoko Inagaki

    2013-01-01

    Full Text Available Streptococcus mutans produces 3 types of glucosyltransferases (GTFs, whose cooperative action is essential for cellular adhesion. The recombinase A (RecA protein is required for homologous recombination. In our previous study, we isolated several strains with a smooth colony morphology and low GTF activity, characteristics speculated to be derived from the GTF fusions. The purpose of the present study was to investigate the mechanism of those fusions. S. mutans strain MT8148 was grown in the presence of recombinant RecA (rRecA protein, after which smooth colonies were isolated. The biological functions and sequences of the gtfB and gtfC genes of this as well as other clinical strains were determined. The sucrose-dependent adherence rates of those strains were reduced as compared to that of MT8148. Determination of the sequences of the gtfB and gtfC genes showed that an approximately 3500 bp region was deleted from the area between them. Furthermore, expression of the recA gene was elevated in those strains as compared to MT8148. These results suggest that RecA has an important role in fusions of gtfB and gtfC genes, leading to alteration of colony morphology and reduction in sucrose-dependent adhesion.

  17. Family outbreak of an infection with a recombinant Coxsackie A virus in eastern Switzerland.

    Science.gov (United States)

    Butsch, R; Tapparel, C; Keller, P; Herzog, K; Krause, M; Wunderli, W; Kaiser, L; Bossart, W

    2013-02-01

    We report on an unusual familial outbreak of a coxsackie virus infection in Switzerland in which five family members were affected. Most of the patients presented with signs of meningitis, and four were hospitalized. In three individuals, the virus was detected in the cerebrospinal fluid, pharynx, and stool, respectively. The genome was sequenced in specimens of two patients. The nucleotide sequences of both virus strains were identical. Blast search revealed that the first half of the sequence was 88 % homologous to Enterovirus 75 (EV-75), 87 % with Echovirus 11 (E-11), and 84 % homologous to Coxsackie virus A9 (CV-A9). The second half of the sequence was 77 % homologous to EV-75, 75 % to E-11, and 91 % to CV-A9. We propose that the isolated virus strain is a recombinant strain with a 5' untranslated region and with the start of the VP4 sequence originating from E-11/EV-75 and the rest of the genome originating from CV-A9. Interestingly, this novel virus strain showed an exceptional virulence and rapid spread. Two weeks after the initial outbreak in this family, a similar outbreak was observed in a second geographic area roughly 100 km distant to the primary identification site, and another 2 months later this virus strain was found to circulate in the western part of Switzerland some 250 km distant to the primary locus. These findings suggest that genetic recombination has resulted in a novel enterovirus with features of high virulence, contagiosity, and spreading.

  18. Integrative Expression of Glucoamylase Gene in a Brewer’s Yeast Saccharomyces pastorianus Strain

    Directory of Open Access Journals (Sweden)

    Guangyi Zhang

    2008-01-01

    Full Text Available The recombinant brewer’s yeast Saccharomyces pastorianus strain was constructed byintroducing the ilv2:GLA fragment released from pMGI6, carrying glucoamylase gene (GLA and using the yeast α-acetolactate synthase gene (ILV2 as the recombination sequence. The strain was able to utilise starch as the sole carbon source, its glucoamylase activity was 6.3 U/mL and its α-acetolactate synthase activity was lowered by 33.3 %. The introduced GLA gene was integrated at the recipient genomic ILV2 gene, one copy of ILV2 gene was disrupted and the other copy remained intact. Primary wort fermentation test confirmed that the diacetyl and residual sugar concentration in the wort fermented by the recombinant strain were reduced by 65.6 and 34.2 % respectively, compared to that of the recipient strain. Under industrial operating conditions, the maturation time of beer fermented by the recombinant strain was reduced from 7 to 4 days, there were no significant differences in the appearance and mouthfeel, and the beer satisfied the high quality demands. That is why the strain could be used in beer production safely.

  19. Effects of mutagen-sensitive mus mutations on spontaneous mitotic recombination in Aspergillus.

    Science.gov (United States)

    Zhao, P; Kafer, E

    1992-04-01

    Methyl methane-sulfonate (MMS)-sensitive, radiation-induced mutants of Aspergillus were shown to define nine new DNA repair genes, musK to musS. To test mus mutations for effects on mitotic recombination, intergenic crossing over was assayed between color markers and their centromeres, and intragenic recombination between two distinguishable adE alleles. Of eight mutants analyzed, four showed significant deviations from mus+ controls in both tests. Two mutations, musK and musL, reduced recombination, while musN and musQ caused increases. In contrast, musO diploids produced significantly higher levels only for intragenic recombination. Effects were relatively small, but averages between hypo- and hyperrec mus differed 15-20-fold. In musL diploids, most of the rare color segregants resulted from mitotic malsegregation rather than intergenic crossing over. This indicates that the musL gene product is required for recombination and that DNA lesions lead to chromosome loss when it is deficient. In addition, analysis of the genotypes of intragenic (ad+) recombinants showed that the musL mutation specifically reduced single allele conversion but increased complex conversion types (especially recombinants homozygous for ad+). Similar analysis revealed differences between the effects of two hyperrec mutations; musN apparently caused high levels solely of mitotic crossing over, while musQ increased various conversion types but not reciprocal crossovers. These results suggest that mitotic gene conversion and crossing over, while generally associated, are affected differentially in some of the mus strains of Aspergillus nidulans.

  20. Toxicological evaluation of lactase derived from recombinant Pichia pastoris.

    Directory of Open Access Journals (Sweden)

    Shiying Zou

    Full Text Available A recombinant lactase was expressed in Pichia pastoris, resulting in enzymatic activity of 3600 U/mL in a 5 L fermenter. The lactase product was subjected to a series of toxicological tests to determine its safety for use as an enzyme preparation in the dairy industry. This recombinant lactase had the highest activity of all recombinant strains reported thus far. Acute oral toxicity, mutagenicity, genotoxic, and subchronic toxicity tests performed in rats and mice showed no death in any groups. The lethal dose 50% (LD50 based on the acute oral toxicity study is greater than 30 mL/kg body weight, which is in accordance with the 1500 L milk consumption of a 50 kg human daily. The lactase showed no mutagenic activity in the Ames test or a mouse sperm abnormality test at levels of up to 5 mg/plate and 1250 mg/kg body weight, respectively. It also showed no genetic toxicology in a bone marrow cell micronucleus test at levels of up to 1250 mg/kg body weight. A 90-day subchronic repeated toxicity study via the diet with lactase levels up to 1646 mg/kg (1000-fold greater than the mean human exposure did not show any treatment-related significant toxicological effects on body weight, food consumption, organ weights, hematological and clinical chemistry, or histopathology compared to the control groups. This toxicological evaluation system is comprehensive and can be used in the safety evaluation of other enzyme preparations. The lactase showed no acute, mutagenic, genetic, or subchronic toxicity under our evaluation system.

  1. Obturator internus muscle strains

    Directory of Open Access Journals (Sweden)

    Caoimhe Byrne, MB BCh, BAO

    2017-03-01

    Full Text Available We report 2 cases of obturator internus muscle strains. The injuries occurred in young male athletes involved in kicking sports. Case 1 details an acute obturator internus muscle strain with associated adductor longus strain. Case 2 details an overuse injury of the bilateral obturator internus muscles. In each case, magnetic resonance imaging played a crucial role in accurate diagnosis.

  2. Expression of protein engineered NADP{sup +}-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Matsushika, Akinori; Inoue, Hiroyuki; Murakami, Katsuji; Takimura, Osamu; Sawayama, Shigeki [National Institute of Advanced Industrial Science and Technology, Hiroshima (Japan). Biomass Technology Research Center; Watanabe, Seiya; Kodaki, Tsutomu; Makino, Keisuke [Kyoto Univ. (Japan). Inst. of Advanced Energy

    2008-11-15

    A recombinant Saccharomyces cerevisiae strain transformed with xylose reductase (XR) and xylitol dehydrogenase (XDH) genes from Pichia stipitis has the ability to convert xylose to ethanol together with the unfavorable excretion of xylitol, which may be due to cofactor imbalance between NADPH-preferring XR and NAD{sup +}-dependent XDH. To reduce xylitol formation, we have already generated several XDH mutants with a reversal of coenzyme specificity toward NADP{sup +}. In this study, we constructed a set of recombinant S. cerevisiae strains with xylose-fermenting ability, including protein-engineered NADP{sup +}-dependent XDH-expressing strains. The most positive effect on xylose-to-ethanol fermentation was found by using a strain named MA-N5, constructed by chromosomal integration of the gene for NADP{sup +}-dependent XDH along with XR and endogenous xylulokinase genes. The MA-N5 strain had an increase in ethanol production and decrease in xylitol excretion compared with the reference strain expressing wild-type XDH when fermenting not only xylose but also mixed sugars containing glucose and xylose. Furthermore, the MA-N5 strain produced ethanol with a high yield of 0.49 g of ethanol/g of total consumed sugars in the nonsulfuric acid hydrolysate of wood chips. The results demonstrate that glucose and xylose present in the lignocellulosic hydrolysate can be efficiently fermented by this redox-engineered strain. (orig.)

  3. Antigenic structures stably expressed by recombinant TGEV-derived vectors.

    Science.gov (United States)

    Becares, Martina; Sanchez, Carlos M; Sola, Isabel; Enjuanes, Luis; Zuñiga, Sonia

    2014-09-01

    Coronaviruses (CoVs) are positive-stranded RNA viruses with potential as immunization vectors, expressing high levels of heterologous genes and eliciting both secretory and systemic immune responses. Nevertheless, its high recombination rate may result in the loss of the full-length foreign gene, limiting their use as vectors. Transmissible gastroenteritis virus (TGEV) was engineered to express porcine reproductive and respiratory syndrome virus (PRRSV) small protein domains, as a strategy to improve heterologous gene stability. After serial passage in tissue cultures, stable expression of small PRRSV protein antigenic domains was achieved. Therefore, size reduction of the heterologous genes inserted in CoV-derived vectors led to the stable expression of antigenic domains. Immunization of piglets with these TGEV vectors led to partial protection against a challenge with a virulent PRRSV strain, as immunized animals showed reduced clinical signs and lung damage. Further improvement of TGEV-derived vectors will require the engineering of vectors with decreased recombination rate. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Recombinant Lactococcus lactis fails to secrete bovine chymosine

    Science.gov (United States)

    Luerce, Tessália Diniz; Azevedo, Marcela Santiago Pacheco; LeBlanc, Jean Guy; Azevedo, Vasco; Miyoshi, Anderson; Pontes, Daniela Santos

    2014-01-01

    Bovine chymosin is an important milk-clotting agent used in the manufacturing of cheeses. Currently, the production of recombinant proteins by genetically modified organisms is widespread, leading to greatly reduced costs. Lactococcus (L.) lactis, the model lactic acid bacterium, was considered a good candidate for heterologous chymosin production for the following reasons: (1) it is considered to be a GRAS (generally regarded as safe) microorganism, (2) only one protease is present on its surface, (3) it can secrete proteins of different sizes, and (4) it allows for the direct production of protein in fermented food products. Thus, three genetically modified L. lactis strains were constructed to produce and target the three different forms of bovine chymosin, prochymosin B, chymosin A and chymosin B to the extracellular medium. Although all three proteins were stably produced in L. lactis, none of the forms were detected in the extracellular medium or showed clotting activity in milk. Our hypothesis is that this secretion deficiency and lack of clotting activity can be explained by the recombinant protein being attached to the cell envelope. Thus, the development of other strategies is necessary to achieve both production and targeting of chymosin in L. lactis, which could facilitate the downstream processing and recovery of this industrially important protein. PMID:25482140

  5. Sex and recombination in aflatoxigenic Aspergilli: global implications

    Directory of Open Access Journals (Sweden)

    Geromy G Moore

    2014-02-01

    Full Text Available For most of the half century that aflatoxigenic species have been intensively studied, these molds were known only to reproduce asexually, with parasexuality found only in the laboratory between certain mutant strains. Therefore, the fairly recent discovery of their sexual (teleomorphic states creates a new wrinkle in our understanding of the field behavior of these agriculturally significant fungi. Sex within populations of these fungi, and attendant genetic recombination, eventually may create difficulties for their control; and subsequently for the protection of important human and animal food supplies. Moreover, if fungal sex is a form of response to ecological and environmental stressors, then perhaps human influence and climate change could accelerate this phenomenon. This article will explore scientific research into sexuality and recombination in aflatoxigenic Aspergillus species; the potential impacts these phenomena could have on a popular method of pre-harvest prevention of aflatoxin contamination (i.e., use of non-aflatoxigenic A. flavus for biocontrol; and the outlook for maintaining control of aflatoxin contamination in an era of changing global climate.

  6. Invariant Measures of Genetic Recombination Processes

    Science.gov (United States)

    Akopyan, Arseniy V.; Pirogov, Sergey A.; Rybko, Aleksandr N.

    2015-07-01

    We construct a non-linear Markov process connected with a biological model of a bacterial genome recombination. The description of invariant measures of this process gives us the solution of one problem in elementary probability theory.

  7. Ultramicroscopic observation of recombinant adenoassociated virus ...

    African Journals Online (AJOL)

    Ultramicroscopic observation of recombinant adenoassociated virus type 2 on the surface of formvarcarbon coated copper grids under different relative humidity and incubation time using negative stain transmission electron microscopy.

  8. Recombinant Human Papillomavirus (HPV) Bivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) bivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  9. Recombinant Human Papillomavirus (HPV) Nonavalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) nonavalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  10. Recombinant Human Papillomavirus (HPV) Quadrivalent Vaccine

    Science.gov (United States)

    This page contains brief information about recombinant human papillomavirus (HPV) quadrivalent vaccine and a collection of links to more information about the use of this vaccine, research results, and ongoing clinical trials.

  11. Recombinant vaccines: experimental and applied aspects

    DEFF Research Database (Denmark)

    Lorenzen, Niels

    1999-01-01

    Development of vaccines for aquaculture fish represent an important applied functional aspect of fish immunology research. Particularly in the case of recombinant vaccines, where a single antigen is usually expected to induce immunity to a specific pathogen, knowledge of mechanisms involved...... in induction of a protective immune response may become vital. The few recombinant vaccines licensd so far, despite much research during the last decade, illustrate that this is not a straightforward matter. However, as vaccine technology as well as our knowledge of the fish immune system is steadily improved......, these fields will open up a number of interesting research objectives of mutual benefit. Recent aspects of recombinant protein vaccines, live recombinant vaccines and DNA vaccines are discussed....

  12. Recombinant aequorin and recombinant semi-synthetic aequorins. Cellular Ca2+ ion indicators.

    OpenAIRE

    Shimomura, O; Inouye, S; Musicki, B; Kishi, Y

    1990-01-01

    Properties of a recombinant aequorin were investigated in comparison with those of natural aequorin. In chromatographic behaviour the recombinant aequorin did not match any of ten isoaequorins tested, although it was very similar to aequorin J. Its sensitivity to Ca2+ was found to be higher than that of any isoaequorin except aequorin D. The recombinant aequorin exhibited no toxicity when tested in various kinds of cells, even where samples of natural aequorin had been found to be toxic. Prop...

  13. A strain gauge

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....

  14. Live recombinant BHV/BRSV vaccine

    OpenAIRE

    Keil, G.M.; Rijsewijk, F.A.M.

    1998-01-01

    The present invention refers to synthetic Bovine Respiratory Syncytium virus genes. Also the invention relates to live attenuated Bovine Herpesvirus recombinants carrying such synthetic genes. Furthermore, the invention relates to vaccines based on these live attenuated recombinants, for the protection of cattle against both Bovine herpesvirus infection and against Bovine Respiratory Syncytium virus infection. Also the invention relates to methods for the preparation of such live attenuated r...

  15. Hadron correlations from recombination and fragmentation

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Rainer J [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)

    2005-04-01

    We review the formalism of quark recombination applied to the hadronization of a quark-gluon plasma. Evidence in favour of the quark recombination model is outlined. Recent work on parton correlations, leading to detectable correlations between hadrons, is discussed. Hot spots from completely quenched jets are a likely source of such correlations which appear to be jet like. It will be discussed how such a picture compares with measurement of associated hadron yields at RHIC.

  16. Construction of an artificial recombinant bicistronic plasmid DNA vaccine against porcine rotavirus

    Directory of Open Access Journals (Sweden)

    Tingting Cui

    2013-03-01

    Full Text Available The attenuated Salmonella typhimurium χ4550 strain was used to harbour a reconstructed bicistronic DNA vaccine against porcine rotavirus, which carried the rotavirus nonstructural protein 4 (NSP4 and VP7 genes simultaneously. Using a balanced lethal system, the kanamycin resistance gene of expressing eukaryotic plasmids pVAX1 and pVAXD were replaced by the aspartate β-semialdehyde dehydrogenase (asd gene. The NSP4 cleavage product (259–525 of rotavirus OSU strain and VP7 full-length genes were amplified by reverse transcription polymerase chain reaction and then inserted into the eukaryotic single-expression plasmid, pVAX1-asd, and the eukaryotic dual-expression plasmid, pVAXD-asd, respectively. The recombinant plasmids pVAX1-asd-NSP4, pVAX1-asd-VP7 and pVAXD-asd-NSP4-VP7 were transformed into the attenuated S. typhimurium χ4550 strain by electrotransformation. An indirect immunofluorescence assay of the expressed COS-7 cell suggested that the recombinant S. typhimurium χ4550 strain was constructed successfully. The recombinant S. typhimurium χ4550 strain was orally administered to BALB/c mice. The group immunised with dual- expression plasmids produced a significantly higher level of serum Immunoglobulin G (IgG and intestinal Immunoglobulin A (IgA than the group immunised with single-expression plasmids. These results indicated that eukaryotic bicistronic plasmid DNA vaccines could be successfully constructed to enhance humoural, mucosal and cellular immune response against rotavirus infection.

  17. Splicing landscape of the eight collaborative cross founder strains.

    Science.gov (United States)

    Zheng, Christina L; Wilmot, Beth; Walter, Nicole Ar; Oberbeck, Denesa; Kawane, Sunita; Searles, Robert P; McWeeney, Shannon K; Hitzemann, Robert

    2015-02-05

    The Collaborative Cross (CC) is a large panel of genetically diverse recombinant inbred mouse strains specifically designed to provide a systems genetics resource for the study of complex traits. In part, the utility of the CC stems from the extensive genome-wide annotations of founder strain sequence and structural variation. Still missing, however, are transcriptome-specific annotations of the CC founder strains that could further enhance the utility of this resource. We provide a comprehensive survey of the splicing landscape of the 8 CC founder strains by leveraging the high level of alternative splicing within the brain. Using deep transcriptome sequencing, we found that a majority of the splicing landscape is conserved among the 8 strains, with ~65% of junctions being shared by at least 2 strains. We, however, found a large number of potential strain-specific splicing events as well, with an average of ~3000 and ~500 with ≥3 and ≥10 sequence read coverage, respectively, within each strain. To better understand strain-specific splicing within the CC founder strains, we defined criteria for and identified high-confidence strain-specific splicing events. These splicing events were defined as exon-exon junctions 1) found within only one strain, 2) with a read coverage ≥10, and 3) defined by a canonical splice site. With these criteria, a total of 1509 high-confidence strain-specific splicing events were identified, with the majority found within two of the wild-derived strains, CAST and PWK. Strikingly, the overwhelming majority, 94%, of these strain-specific splicing events are not yet annotated. Strain-specific splicing was also located within genomic regions recently reported to be over- and under-represented within CC populations. Phenotypic characterization of CC populations is increasing; thus these results will not only aid in further elucidating the transcriptomic architecture of the individual CC founder strains, but they will also help in guiding

  18. A radioresistant Gram-positive asporogenous rod isolated from the faeces of a giant panda (Ailuropoda melanoleuca).

    Science.gov (United States)

    Kobatake, M; Kurata, H; Komagata, K

    1977-05-01

    A highly radioresistant bacterium was isolated from the faeces of a giant panda (Ailuropoda melanoleuca). When the organism was subjected to gamma irradiation in phosphate buffer, the induction dose and D10 values were 846 and 345 krad, respectively, for cells grown on PCNZ agar, and 700 and 460 krad, respectively, for the enlarged cells grown on 5% (v/v) horse blood brain heart infusion agar. The D10 value of the former cells was about 1.8 times higher than that of Micrococcus radiodurans grown on PCNZ agar.

  19. Conjugation by Mosquito Pathogenic Strains of Bacillus sphaericus

    Directory of Open Access Journals (Sweden)

    Margarita Correa

    1997-05-01

    Full Text Available A mosquito pathogenic strain of Bacillus sphaericus carried out the conjugal transfer of plasmid pAMß1 to other strains of its own and two other serotypes. However, it was unable to conjugate with mosquito pathogens from three other serotypes, with B. sphaericus of other DNA homology groups or with three other species of Bacillus. Conjugation frequency was highest with a strain having an altered surface layer (S layer. Conjugal transfer of pAMß1 was not detected in mosquito larval cadavers. B. sphaericus 2362 was unable to mobilize pUB110 for transfer to strains that had served as recipients of pAMß1. These observations suggest that it is unlikely that genetically engineered B. sphaericus carrying a recombinant plasmid could pass that plasmid to other bacteria

  20. Utilisation of wheat bran as a substrate for bioethanol production using recombinant cellulases and amylolytic yeast

    International Nuclear Information System (INIS)

    Cripwell, Rosemary; Favaro, Lorenzo; Rose, Shaunita H.; Basaglia, Marina; Cagnin, Lorenzo; Casella, Sergio; Zyl, Willem van

    2015-01-01

    Highlights: • A cocktail of recombinant cellulases was proposed for wheat bran hydrolysis. • Optimal conditions for enzymatic hydrolysis of wheat bran were determined. • Recombinant amylolytic strains completely hydrolysed the starch in wheat bran. • Addition of cellulases to SSF with amylolytic strains enhanced ethanol yield. - Abstract: Wheat bran, generated from the milling of wheat, represents a promising feedstock for the production of bioethanol. This substrate consists of three main components: starch, hemicellulose and cellulose. The optimal conditions for wheat bran hydrolysis have been determined using a recombinant cellulase cocktail (RCC), which contains two cellobiohydrolases, an endoglucanase and a β-glucosidase. The 10% (w/v, expressed in terms of dry matter) substrate loading yielded the most glucose, while the 2% loading gave the best hydrolysis efficiency (degree of saccharification) using unmilled wheat bran. The ethanol production of two industrial amylolytic Saccharomyces cerevisiae strains, MEL2[TLG1-SFA1] and M2n[TLG1-SFA1], were compared in a simultaneous saccharification and fermentation (SSF) for 10% wheat bran loading with or without the supplementation of optimised RCC. The recombinant yeast S. cerevisiae MEL2[TLG1-SFA1] and M2n[TLG1-SFA1] completely hydrolysed wheat bran’s starch producing similar amounts of ethanol (5.3 ± 0.14 g/L and 5.0 ± 0.09 g/L, respectively). Supplementing SSF with RCC resulted in additional ethanol production of about 2.0 g/L. Scanning electron microscopy confirmed the effectiveness of both RCC and engineered amylolytic strains in terms of cellulose and starch depolymerisation. This study demonstrated that untreated wheat bran could be a promising ready-to-use substrate for ethanol production. The addition of crude recombinant cellulases improved ethanol yields in the SSF process and S. cerevisiae MEL2[TLG1-SFA1] and M2n[TLG1-SFA1] strains can efficiently convert wheat bran’s starch to ethanol.

  1. Active Expression of Human Tissue Plasminogen Activator (t-PA) c-DNA from Pulmonary Metastases in the Methylotrophic Yeast Pichia Pastoris KM71H Strain

    Science.gov (United States)

    Mohseni, Amir Hossein; Soleimani, Mohammad; Majidzadeh-A, Keivan; Taghinezhad-S, Sedigheh; Keyvani, Hossein

    2017-08-27

    Background: Human tissue-type plasminogen activator (t-PA) is a key protease of the trypsin family. It catalyzes the activation of zymogen plasminogen to the fibrin-degrading proteinase, plasmin, leading to digestion of fibrin clots. The recombinant enzyme produced by recombinant technology issued to dissolve blood clots in treatment of various human diseases such as coronary artery thrombosis, pulmonary embolism, acute ischemic stroke (AIS). Pichia pastoris expression system is a unique system for the production of high level of recombinant proteins. GS115 and KM71H are two kinds of Pichia pastoris strains whilst production of recombinant proteins in these strains is not predictable. The aim of the study was evaluation of t-PA expression in KM71H strains. Methods: In this study, the cDNA of the t-PA gene was amplified by PCR, sequenced and cloned into Pichia pastoris KM71H host strain using pPICZalphaA expression vector that allows methanol-induced expression and secretion of the protein. Results: Dot blotting results confirmed the presence oft-PA in the cell supernatant. Western blotting test revealed the approximate size of 70 KDa for recombinant t-PA. Quantitative ELISA experiment showed 810 μg/L of t-PA in the supernatant samples. Zymography analysis confirmed the proteolytic activity and biological function of the expressed recombinant t-PA. Conclusions: Correspondingly, Pichia pastoris KM71H is an appropriate strain for production of active recombinant protein. Creative Commons Attribution License

  2. Genital immunization of heifers with a glycoprotein Edeleted, recombinant bovine herpesvirus 1 strain confers protection upon challenge with a virulent isolate Imunização genital de bezerras com uma cepa recombinante do herpesvírus bovino tipo 1 defectiva na glicoproteína E confere proteção frente a desafio com um isolado virulento

    Directory of Open Access Journals (Sweden)

    Marcelo Weiss

    2010-01-01

    Full Text Available Venereal infection of seronegative heifers and cows with bovine herpesvirus type 1.2 (BoHV-1.2 frequently results in vulvovaginitis and transient infertility. Parenteral immunization with inactivated or modified live BoHV-1 vaccines often fails in conferring protection upon genital challenge. We herein report an evaluation of the immune response and protection conferred by genital vaccination of heifers with a glycoprotein E-deleted recombinant virus (SV265gE-. A group of six seronegative heifers was vaccinated with SV265gE- (0,2mL containing 10(6.9TCID50 in the vulva submucosa (group IV; four heifers were vaccinated intramuscularly (group IM, 1mL containing 10(7.6TCID50 and four heifers remained as non-vaccinated controls. Heifers vaccinated IV developed mild, transient local edema and hyperemia and shed low amounts of virus for a few days after vaccination, yet a sentinel heifer maintained in close contact did not seroconvert. Attempts to reactivate the vaccine virus in two IV vaccinated heifers by intravenous administration of dexamethasone (0.5mg/kg at day 70 pv failed since no virus shedding, recrudescence of genital signs or seroconversion were observed. At day 70 pv, all vaccinated and control heifers were challenged by genital inoculation of a highly virulent BoHV-1.2 isolate (SV56/90, 10(7.1TCID50/animal. After challenge, virus shedding was detected in genital secretions of control animals for 8.2 days (8-9; in the IM group for 6.2 days (4-8 days and during 5.2 days (5-6 days in the IV group. Control non-vaccinated heifers developed moderate (2/4 or severe (2/4 vulvovaginitis lasting 9 to 13 days (x: 10.7 days. The disease was characterized by vulvar edema, vulvo-vestibular congestion, vesicles progressing to coalescence and erosions, fibrino-necrotic plaques and fibrinopurulent exudate. IM vaccinated heifers developed mild (1/3 or moderate (3/4 genital lesions, lasting 10 to 12 days (x: 10.7 days; and IV vaccinated heifers developed

  3. Evaluating Recombinant Antigen ROP1 Efficacy in Diagnosis of Toxoplasma Gondii Infection

    Directory of Open Access Journals (Sweden)

    F Keshavarzi

    2015-07-01

    Full Text Available Introduction:Toxoplasma gondii is a ubiquitous obligate intracellular parasite with a relatively broad host range infecting both mammals and birds. Toxoplasma proteins are strong antigens that can begin strong immune reactions, among which Rhoptry protein 1 (ROP1 can be named discharging from rhoptry cell-organ. ROP1 is regarded as a competitor for recombinant vaccines against toxoplasmosis. Therefore, the main objective of the current study was to evaluate the cloning and expression of ROP1 Toxoplasma gondii in a cloning vector as well as to create this recombinant antigen in order to be applied for later uses. Methods:Genomic DNA of Toxoplasma gondii was removed and reproduced by PCR, then the PCR product was cloned into the EcoR1 and BamH1 sites of cloning vector, pUET1, and transformed into Escherichia coli BL21 plysS strain. Moreover, pcROP1 was sub-cloned into the HindIII and EcoRI sites of the pcDNA3 in order to produce recombining eukaryotic declaration vector. The cloned ROP1 was verified by PCR, limitation enzymes (HindIII and BglΙ digestion and nucleotide sequencing. Then, this recombinant antigen was covered applying IgM and ELISAIgG. Results:The study results demonstrated that a fragment of 757 bp was separated. In addition, nucleotide sequence analysis of the ROP1 cloned in pUET1vector revealed high homology (96% with RH strain Gene Bank Accession (No. M71274. Conclusion:The recombinant ROP1 antigen in an IgM Rec-ELISA test can be replaced with the tachyzoite antigen in IgG and IgM serologic tests.

  4. Using Whole Genome Analysis to Examine Recombination across Diverse Sequence Types of Staphylococcus aureus.

    Directory of Open Access Journals (Sweden)

    Elizabeth M Driebe

    Full Text Available Staphylococcus aureus is an important clinical pathogen worldwide and understanding this organism's phylogeny and, in particular, the role of recombination, is important both to understand the overall spread of virulent lineages and to characterize outbreaks. To further elucidate the phylogeny of S. aureus, 35 diverse strains were sequenced using whole genome sequencing. In addition, 29 publicly available whole genome sequences were included to create a single nucleotide polymorphism (SNP-based phylogenetic tree encompassing 11 distinct lineages. All strains of a particular sequence type fell into the same clade with clear groupings of the major clonal complexes of CC8, CC5, CC30, CC45 and CC1. Using a novel analysis method, we plotted the homoplasy density and SNP density across the whole genome and found evidence of recombination throughout the entire chromosome, but when we examined individual clonal lineages we found very little recombination. However, when we analyzed three branches of multiple lineages, we saw intermediate and differing levels of recombination between them. These data demonstrate that in S. aureus, recombination occurs across major lineages that subsequently expand in a clonal manner. Estimated mutation rates for the CC8 and CC5 lineages were different from each other. While the CC8 lineage rate was similar to previous studies, the CC5 lineage was 100-fold greater. Fifty known virulence genes were screened in all genomes in silico to determine their distribution across major clades. Thirty-three genes were present variably across clades, most of which were not constrained by ancestry, indicating horizontal gene transfer or gene loss.

  5. The Neuroinvasive Profiles of H129 (Herpes Simplex Virus Type 1) Recombinants with Putative Anterograde-Only Transneuronal Spread Properties

    Science.gov (United States)

    Wojaczynski, Gregory J.; Engel, Esteban A.; Steren, Karina E.; Enquist, Lynn W.; Card, J. Patrick

    2014-01-01

    The use of viruses as transneuronal tracers has become an increasingly powerful technique for defining the synaptic organization of neural networks. Although a number of recombinant alpha herpesviruses are known to spread selectively in the retrograde direction through neural circuits only one strain, the H129 strain of herpes simplex virus type 1, is reported to selectively spread in the anterograde direction. However, it is unclear from the literature whether there is an absolute block or an attenuation of retrograde spread of H129. Here we demonstrate efficient anterograde spread, and temporally delayed retrograde spread, of H129 and three novel recombinants. In vitro studies revealed no differences in anterograde and retrograde spread of parental H129 and its recombinants through superior cervical ganglion neurons. In vivo injections of rat striatum revealed a clear bias of anterograde spread, although evidence of deficient retrograde transport was also present. Evidence of temporally delayed retrograde transneuronal spread of H129 in the retina was observed following injection of the lateral geniculate nucleus. The data also demonstrated that three novel recombinants efficiently express unique fluorescent reporters and have the capacity to infect the same neurons in dual infection paradigms. From these experiments we conclude that H129 and its recombinants efficiently infect neurons through anterograde transneuronal passage, but also are capable of temporally delayed retrograde transneuronal spread. In addition, the capacity to produce dual infection of projection targets following anterograde transneuronal passage provides an important addition to viral transneuronal tracing technology. PMID:24585022

  6. Use of homologous recombination in yeast to create chimeric bovine viral diarrhea virus cDNA clones

    Directory of Open Access Journals (Sweden)

    Sandra Arenhart

    Full Text Available Abstract The open reading frame of a Brazilian bovine viral diarrhea virus (BVDV strain, IBSP4ncp, was recombined with the untranslated regions of the reference NADL strain by homologous recombination in Saccharomyces cerevisiae, resulting in chimeric full-length cDNA clones of BVDV (chi-NADL/IBSP4ncp#2 and chi-NADL/IBSP4ncp#3. The recombinant clones were successfully recovered, resulting in viable viruses, having the kinetics of replication, focus size, and morphology similar to those of the parental virus, IBSP4ncp. In addition, the chimeric viruses remained stable for at least 10 passages in cell culture, maintaining their replication efficiency unaltered. Nucleotide sequencing revealed a few point mutations; nevertheless, the phenotype of the rescued viruses was nearly identical to that of the parental virus in all experiments. Thus, genetic stability of the chimeric clones and their phenotypic similarity to the parental virus confirm the ability of the yeast-based homologous recombination to maintain characteristics of the parental virus from which the recombinant viruses were derived. The data also support possible use of the yeast system for the manipulation of the BVDV genome.

  7. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge.

    Directory of Open Access Journals (Sweden)

    Xiaohui Liu

    Full Text Available The rabies virus (RABV glycoprotein (G is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG. The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain. The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines.

  8. A recombinant rabies virus encoding two copies of the glycoprotein gene confers protection in dogs against a virulent challenge.

    Science.gov (United States)

    Liu, Xiaohui; Yang, Youtian; Sun, Zhaojin; Chen, Jing; Ai, Jun; Dun, Can; Fu, Zhen F; Niu, Xuefeng; Guo, Xiaofeng

    2014-01-01

    The rabies virus (RABV) glycoprotein (G) is the principal antigen responsible for the induction of virus neutralizing antibodies (VNA) and is the major modality of protective immunity in animals. A recombinant RABV HEP-Flury strain was generated by reverse genetics to encode two copies of the G-gene (referred to as HEP-dG). The biological properties of HEP-dG were compared to those of the parental virus (HEP-Flury strain). The HEP-dG recombinant virus grew 100 times more efficiently in BHK-21 cell than the parental virus, yet the virulence of the dG recombinant virus in suckling mice was lower than the parental virus. The HEP-dG virus can improve the expression of G-gene mRNA and the G protein and produce more offspring viruses in cells. The amount of G protein revealed a positive relationship with immunogenicity in mice and dogs. The inactivated HEP-dG recombinant virus induced higher levels of VNA and conferred better protection against virulent RABV in mice and dogs than the inactivated parental virus and a commercial vaccine. The protective antibody persisted for at least 12 months. These data demonstrate that the HEP-dG is stable, induces a strong VNA response and confers protective immunity more effectively than the RABV HEP-Flury strain. HEP-dG could be a potential candidate in the development of novel inactivated rabies vaccines.

  9. Alcoholic fermentation of xylose and mixed sugars using recombinant Saccharomyces cerevisiae engineered for xylose utilization.

    Science.gov (United States)

    Madhavan, Anjali; Tamalampudi, Sriappareddy; Srivastava, Aradhana; Fukuda, Hideki; Bisaria, Virendra S; Kondo, Akihiko

    2009-04-01

    Previously, a Saccharomyces cerevisiae strain was engineered for xylose assimilation by the constitutive overexpression of the Orpinomyces xylose isomerase, the S. cerevisiae xylulokinase, and the Pichia stipitis SUT1 sugar transporter genes. The recombinant strain exhibited growth on xylose, under aerobic conditions, with a specific growth rate of 0.025 h(-1), while ethanol production from xylose was achieved anaerobically. In the present study, the developed recombinant yeast was adapted for enhanced growth on xylose by serial transfer in xylose-containing minimal medium under aerobic conditions. After repeated batch cultivations, a strain was isolated which grew with a specific growth rate of 0.133 h(-1). The adapted strain could ferment 20 g l(-1) of xylose to ethanol with a yield of 0.37 g g(-1) and production rate of 0.026 g l(-1) h(-1). Raising the fermentation temperature from 30 degrees C to 35 degrees C resulted in a substantial increase in the ethanol yield (0.43 g g(-1)) and production rate (0.07 g l(-1) h(-1)) as well as a significant reduction in the xylitol yield. By the addition of a sugar complexing agent, such as sodium tetraborate, significant improvement in ethanol production and reduction in xylitol accumulation was achieved. Furthermore, ethanol production from xylose and a mixture of glucose and xylose was also demonstrated in complex medium containing yeast extract, peptone, and borate with a considerably high yield of 0.48 g g(-1).

  10. Recombination of electrons with an anisotropic velocity distribution. Continuation of recombination continuum to series lines

    International Nuclear Information System (INIS)

    Fujimoto, Takashi; Imaida, Takashi

    1998-01-01

    For ions in recombination with electrons with directional motion, the recombination continuum to a J = 0 state is π polarized, and this polarization characteristic should continue across the ionization threshold down to the series lines. A Monte Carlo calculation has been performed for electron collisions on a classical atom in excited states. No evidence is found to support the above conclusion. (author)

  11. Strain-engineered MOSFETs

    CERN Document Server

    Maiti, CK

    2012-01-01

    Currently strain engineering is the main technique used to enhance the performance of advanced silicon-based metal-oxide-semiconductor field-effect transistors (MOSFETs). Written from an engineering application standpoint, Strain-Engineered MOSFETs introduces promising strain techniques to fabricate strain-engineered MOSFETs and to methods to assess the applications of these techniques. The book provides the background and physical insight needed to understand new and future developments in the modeling and design of n- and p-MOSFETs at nanoscale. This book focuses on recent developments in st

  12. Evaluation of the recombinant protein TpF1 of Treponema pallidum for serodiagnosis of syphilis.

    Science.gov (United States)

    Jiang, Chuanhao; Zhao, Feijun; Xiao, Jinhong; Zeng, Tiebing; Yu, Jian; Ma, Xiaohua; Wu, Haiying; Wu, Yimou

    2013-10-01

    Syphilis is a chronic infection caused by Treponema pallidum subsp. pallidum, and diagnosis with sensitive and specific methods is a challenging process that is important for its prevention and treatment. In the present study, we established a recombinant protein TpF1-based indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and a Western blot assay for human and rabbit sera. The 20-kDa recombinant protein TpF1 was detected by Western blotting performed with sera from rabbits immunized with recombinant TpF1 and infected with the T. pallidum Nichols strain and T. pallidum clinical isolates but was not detected by Western blotting with sera from uninfected rabbits. The sensitivity of the recombinant protein was determined by screening sera from individuals with primary, secondary, latent, and congenital syphilis (n = 82). The specificity of the recombinant protein was determined by screening sera from uninfected controls (n = 30) and individuals with potentially cross-reactive infections, including Lyme disease (n = 30) and leptospirosis (n = 5). The sensitivities of TpF1-based ELISAs were 93.3%, 100%, 100%, and 100% for primary, secondary, latent, and congenital syphilis, respectively, and the specificities were all 100% for sera from uninfected controls and individuals with potentially cross-reactive infections. In Western blot assays, the sensitivities and specificities of TpF1 for human sera were all 100%. The reactivities of TpF1 with syphilitic sera were proportional to the titers of the T. pallidum particle agglutination (TPPA) assay. These data indicate that the recombinant protein TpF1 is a highly immunogenic protein in human and rabbit infections and a promising marker for the screening of syphilis.

  13. Evaluation of the Recombinant Protein TpF1 of Treponema pallidum for Serodiagnosis of Syphilis

    Science.gov (United States)

    Jiang, Chuanhao; Zhao, Feijun; Xiao, Jinhong; Zeng, Tiebing; Yu, Jian; Ma, Xiaohua; Wu, Haiying

    2013-01-01

    Syphilis is a chronic infection caused by Treponema pallidum subsp. pallidum, and diagnosis with sensitive and specific methods is a challenging process that is important for its prevention and treatment. In the present study, we established a recombinant protein TpF1-based indirect immunoglobulin G (IgG) enzyme-linked immunosorbent assay (ELISA) and a Western blot assay for human and rabbit sera. The 20-kDa recombinant protein TpF1 was detected by Western blotting performed with sera from rabbits immunized with recombinant TpF1 and infected with the T. pallidum Nichols strain and T. pallidum clinical isolates but was not detected by Western blotting with sera from uninfected rabbits. The sensitivity of the recombinant protein was determined by screening sera from individuals with primary, secondary, latent, and congenital syphilis (n = 82). The specificity of the recombinant protein was determined by screening sera from uninfected controls (n = 30) and individuals with potentially cross-reactive infections, including Lyme disease (n = 30) and leptospirosis (n = 5). The sensitivities of TpF1-based ELISAs were 93.3%, 100%, 100%, and 100% for primary, secondary, latent, and congenital syphilis, respectively, and the specificities were all 100% for sera from uninfected controls and individuals with potentially cross-reactive infections. In Western blot assays, the sensitivities and specificities of TpF1 for human sera were all 100%. The reactivities of TpF1 with syphilitic sera were proportional to the titers of the T. pallidum particle agglutination (TPPA) assay. These data indicate that the recombinant protein TpF1 is a highly immunogenic protein in human and rabbit infections and a promising marker for the screening of syphilis. PMID:23945159

  14. Spontaneous radiative recombination and nonradiative Auger recombination in quantum-confined heterostructures

    International Nuclear Information System (INIS)

    Asryan, L V

    2005-01-01

    General approach is described to the rates, fluxes and current densities associated with spontaneous radiative and nonradiative Auger recombinations in heterostructure lasers with different types of a quantum-confined active region (quantum wells, quantum wires, and quantum dots). The proper way of defining the spontaneous radiative and Auger recombination coefficients and their dimensionality are discussed. It is shown that only in a quantum dot, true time constants can be introduced for spontaneous radiative and nonradiative Auger recombinations, which are independent of the injection level. Closed-form elegant expressions are presented for the radiative recombination coefficient as an explicit function of temperature and parameters in bulk and quantum-confined structures. These expressions clearly demonstrate inappropriateness of the common practice of deriving the recombination coefficients in low-dimensional heterostructures from the bulk values. (lasers)

  15. Graded Recombination Layers for Multijunction Photovoltaics

    KAUST Repository

    Koleilat, Ghada I.

    2012-06-13

    Multijunction devices consist of a stack of semiconductor junctions having bandgaps tuned across a broad spectrum. In solar cells this concept is used to increase the efficiency of photovoltaic harvesting, while light emitters and detectors use it to achieve multicolor and spectrally tunable behavior. In series-connected current-matched multijunction devices, the recombination layers must allow the hole current from one cell to recombine, with high efficiency and low voltage loss, with the electron current from the next cell. We recently reported a tandem solar cell in which the recombination layer was implemented using a progression of n-type oxides whose doping densities and work functions serve to connect, with negligible resistive loss at solar current densities, the constituent cells. Here we present the generalized conditions for design of efficient graded recombination layer solar devices. We report the number of interlayers and the requirements on work function and doping of each interlayer, to bridge an work function difference as high as 1.6 eV. We also find solutions that minimize the doping required of the interlayers in order to minimize optical absorption due to free carriers in the graded recombination layer (GRL). We demonstrate a family of new GRL designs experimentally and highlight the benefits of the progression of dopings and work functions in the interlayers. © 2012 American Chemical Society.

  16. [Modified vaccinia virus ankara (MVA)--development as recombinant vaccine and prospects for use in veterinary medicine].

    Science.gov (United States)

    Volz, Asisa; Fux, Robert; Langenmayer, Martin C; Sutter, Gerd

    2015-01-01

    Poxviruses as expression vectors are widely used in medical research for the development of recombinant vaccines and molecular therapies. Here we review recent accomplishments in vaccine research using recombinant modified vaccinia virus ankara (MVA). MVA is a highly attenuated vaccinia virus strain that originated from serial tissue culture passage in chicken embryo fibroblasts more than 40 years ago. Growth adaptation to avian host cells caused deletions and mutations in the viral genome affecting about 15% of the original genetic information. In consequence, MVA is replication-deficient in cells of mammalian origin and fails to produce many of the virulence factors encoded by conventional vaccinia virus. Because of its safety for the general environment MVA can be handled under conditions of biosafety level one. Non-replicating MVA can enter any target cell and activate its molecular life cycle to express all classes of viral and recombinant genes. Therefore, recombinant MVA have been established as an extremely safe and efficient vector system for vaccine development in medical research. By now, various recombinant MVA vaccines have been found safe and immunogenic when used for phase I/II clinical testing in humans, and suitable for industrial scale production following good practice of manufacturing. Thus, there is an obvious usefulness of recombinant MVA vaccines for novel prophylactic and therapeutic approaches also in veterinary medicine. Results from first studies in companion and farm animals are highly promising.

  17. CRISPR-Cas and Contact-Dependent Secretion Systems Present on Excisable Pathogenicity Islands with Conserved Recombination Modules.

    Science.gov (United States)

    Carpenter, Megan R; Kalburge, Sai S; Borowski, Joseph D; Peters, Molly C; Colwell, Rita R; Boyd, E Fidelma

    2017-05-15

    Pathogenicity islands (PAIs) are mobile integrated genetic elements that contain a diverse range of virulence factors. PAIs integrate into the host chromosome at a tRNA locus that contains their specific bacterial attachment site, attB , via integrase-mediated site-specific recombination generating attL and attR sites. We identified conserved recombination modules (integrases and att sites) previously described in choleragenic Vibrio cholerae PAIs but with novel cargo genes. Clustered regularly interspaced short palindromic repeat (CRISPR)-associated proteins (Cas proteins) and a type VI secretion system (T6SS) gene cluster were identified at the Vibrio pathogenicity island 1 (VPI-1) insertion site in 19 V. cholerae strains and contained the same recombination module. Two divergent type I-F CRISPR-Cas systems were identified, which differed in Cas protein homology and content. The CRISPR repeat sequence was identical among all V. cholerae strains, but the CRISPR spacer sequences and the number of spacers varied. In silico analysis suggests that the CRISPR-Cas systems were active against phages and plasmids. A type III secretion system (T3SS) was present in 12 V. cholerae strains on a 68-kb island inserted at the same tRNA-serine insertion site as VPI-2 and contained the same recombination module. Bioinformatics analysis showed that two divergent T3SSs exist among the strains examined. Both the CRISPR and T3SS islands excised site specifically from the bacterial chromosome as complete units, and the cognate integrases were essential for this excision. These data demonstrated that identical recombination modules that catalyze integration and excision from the chromosome can acquire diverse cargo genes, signifying a novel method of acquisition for both CRISPR-Cas systems and T3SSs. IMPORTANCE This work demonstrated the presence of CRISPR-Cas systems and T3SSs on PAIs. Our work showed that similar recombination modules can associate with different cargo genes and

  18. Selection, Recombination and History in a Parasitic Flatworm (Echinococcus Inferred from Nucleotide Sequences

    Directory of Open Access Journals (Sweden)

    KL Haag

    1998-09-01

    Full Text Available Three species of flatworms from the genus Echinococcus (E. granulosus, E. multilocularis and E. vogeli and four strains of E. granulosus (cattle, horse, pig and sheep strains were analysed by the PCR-SSCP method followed by sequencing, using as targets two non-coding and two coding (one nuclear and one mitochondrial genomic regions. The sequencing data was used to evaluate hypothesis about the parasite breeding system and the causes of genetic diversification. The calculated recombination parameters suggested that cross-fertilisation was rare in the history of the group. However, the relative rates of substitution in the coding sequences showed that positive selection (instead of purifying selection drove the evolution of an elastase and neutrophil chemotaxis inhibitor gene (AgB/1. The phylogenetic analyses revealed several ambiguities, indicating that the taxonomic status of the E. granulosus horse strain should be revised

  19. Constraints from jet calculus on quark recombination

    International Nuclear Information System (INIS)

    Jones, L.M.; Lassila, K.E.; Willen, D.

    1979-01-01

    Within the QCD jet calculus formalism, we deduce an equation describing recombination of quarks and antiquarks into mesons within a quark or gluon jet. This equation relates the recombination function R(x 1 ,x 2 ,x) used in current literature to the fragmentation function for producing that same meson out of the parton initiating the jet. We submit currently used recombination functions to our consistency test, taking as input mainly the u-quark fragmentation data into π + mesons, but also s-quark fragmentation into K - mesons. The constraint is well satisfied at large Q 2 for large moments. Our results depend on one parameter, Q 0 2 , the constraint equation being satisfied for small values of this parameter

  20. Recombinant human erythropoietin in sports: a review

    Directory of Open Access Journals (Sweden)

    Rafael Maia de Almeida Bento

    2003-06-01

    Full Text Available Erythropoietin is an endogenous hormone of glicoproteic nature secreted by the kidneys and is the main regulator of the erythropoiesis. An alteration in its production generates a disturbance in the plasmatic concentration giving rise to several types of pathologies related to the hematopoietic system. The recombinant forms of erythropoietin have indiscriminately been used by athletes, mainly in endurance sports, by increasing the erythrocytes concentration, generating a better delivery of oxygen to the muscle tissue. The administration of recombinant erythropoietin was prohibited by the International Olympic Committee and its use considered as doping. This review has the intention to describe the physical, biological and pharmacokinetic properties of the endogenous erythropoietin, as well as its recombinant form, describing also its use in sports and the process of searching methodologies for its detection in doping control.

  1. A strain gauge

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... relates to a method for manufacturing a strain gauge as mentioned above....

  2. Purification and functional motifs of the recombinant ATPase of orf virus.

    Science.gov (United States)

    Lin, Fong-Yuan; Chan, Kun-Wei; Wang, Chi-Young; Wong, Min-Liang; Hsu, Wei-Li

    2011-10-01

    Our previous study showed that the recombinant ATPase encoded by the A32L gene of orf virus displayed ATP hydrolysis activity as predicted from its amino acids sequence. This viral ATPase contains four known functional motifs (motifs I-IV) and a novel AYDG motif; they are essential for ATP hydrolysis reaction by binding ATP and magnesium ions. The motifs I and II correspond with the Walker A and B motifs of the typical ATPase, respectively. To examine the biochemical roles of these five conserved motifs, recombinant ATPases of five deletion mutants derived from the Taiping strain were expressed and purified. Their ATPase functions were assayed and compared with those of two wild type strains, Taiping and Nantou isolated in Taiwan. Our results showed that deletions at motifs I-III or IV exhibited lower activity than that of the wild type. Interestingly, deletion of AYDG motif decreased the ATPase activity more significantly than those of motifs I-IV deletions. Divalent ions such as magnesium and calcium were essential for ATPase activity. Moreover, our recombinant proteins of orf virus also demonstrated GTPase activity, though weaker than the original ATPase activity. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. A recombinant canine distemper virus expressing a modified rabies virus glycoprotein induces immune responses in mice.

    Science.gov (United States)

    Li, Zhili; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Sun, Jiazeng; Yi, Bao; Hou, Qiang; Mao, Yaping; Liu, Weiquan

    2015-06-01

    Canine distemper virus (CDV) and rabies virus (RV) are two important pathogens of the dog. CDV, a member of the morbillivirus genus, has shown promise as an expression vector. The glycoprotein from RV is a main contributor to protective immunity and capable of eliciting the production of virus-neutralizing antibodies. In this study, we recovered an attenuated strain of canine distemper virus and constructed a recombinant virus, rCDV-RV-G, expressing a modified (R333Q) rabies virus glycoprotein (RV-G) of RV Flury strain LEP. RV-G expression by the recombinant viruses was confirmed. Furthermore, G was proved to be incorporated into the surface of CDV particles. While replication of the recombinant virus was slightly reduced compared with the parental CDV, it stably expressed the RV-G over ten serial passages. Inoculation of mice induced specific neutralizing antibodies against both RV-G and CDV. Therefore, the rCDV-RV-G has the potential as a vaccine that may be used to control rabies virus infection in dogs and other animals.

  4. Injury and mechanism of recombinant E. coli expressing STa on piglets colon.

    Science.gov (United States)

    Lv, Yang; Li, Xueni; Zhang, Lin; Shi, Yutao; DU, Linxiao; Ding, Binying; Hou, Yongqing; Gong, Joshua; Wu, Tao

    2018-02-09

    Enterotoxigenic Escherichia coli (ETEC) is primary pathogenic bacteria of piglet diarrhea, over two thirds of piglets diarrhea caused by ETEC are resulted from STa-producing ETEC strains. This experiment was conducted to construct the recombinant E. coli expressing STa and study the injury and mechanism of recombinant E. coli expressing STa on 7 days old piglets colon. Twenty-four 7 days old piglets were allotted to four treatments: control group, STa group (2 × 10 9 CFU E. coli LMG194-STa), LMG194 group (2 × 10 9 CFU E. coli LMG194) and K88 group (2 × 10 9 CFU E. coli K88). The result showed that E. coli infection significantly increased diarrhea rates; changed DAO activity in plasma and colon; damaged colonic mucosal morphology including crypt depth, number of globet cells, density of lymphocytes and lamina propria cell density; substantially reduced antioxidant capacity by altering activities of GSH-Px, SOD, and TNOS and productions of MDA and H 2 O 2 ; obviously decreased AQP3, AQP4 and KCNJ13 protein expression levels; substantially altered the gene expression levels of inflammatory cytokines. Conclusively, STa group had the biggest effect on these indices in four treatment groups. These results suggested that the recombinant strain expressed STa can induce piglets diarrhea and colonic morphological and funtional damage by altering expression of proteins connect to transportation function and genes associated with intestinal injury and inflammatory cytokines.

  5. Expression and characterization of a recombinant maize CK-2 alpha subunit

    DEFF Research Database (Denmark)

    Boldyreff, B; Meggio, F; Dobrowolska, G

    1993-01-01

    CKIIB, one of the CK-2 like enzymes which have been isolated from maize, has been shown to be a monomeric enzyme that cross-reacts with anti CK-2 alpha specific antibodies suggesting a possible relationship between the two proteins (Dobrowolska et al. (1992) Eur. J. Biochem. 204, 299-303). In order...... to support the immunological data also by biochemical and biophysical experiments the availability of a recombinant CK-2 alpha from maize was a prerequisite. A maize cDNA clone of maize CK-2 alpha was expressed in the bacterial strain BL21 (DE3). The recombinant protein was purified to homogeneity; its...... molecular mass on one-dimensional SDS PAGE was estimated to be 36.5 kDa. The calculated molecular mass according to the amino acid composition is 39,228 Da (332 amino acids). The recombinant maize CK-2 alpha (rmCK-2 alpha) exhibited mostly the same properties as the recombinant human CK-2 alpha (rhCK-2...

  6. Expression of recombinant Clostridium difficile toxin A and B in Bacillus megaterium

    Directory of Open Access Journals (Sweden)

    Nie Weijia

    2008-11-01

    Full Text Available Abstract Background Major Clostridium difficile virulence factors are the exotoxins TcdA and TcdB. Due to the large size and poor stability of the proteins, the active recombinant TcdA and TcdB have been difficult to produce. Results The toxin genes tcdA and tcdB were amplified by PCR using chromosomal DNA from a toxigenic strain as a template, and cloned into a shuttle vector pHis1522. The sequences of both tcdA and tcdB genes in the vector have been verified by DNA sequencing. The constructs were transformed into B. megaterium protoplasts and the protein expression was controlled under a xylose promoter. The recombinant toxins (rTcdA and rTcdB were purified from bacterial crude extracts. Approximately 5 – 10 mg of highly purified recombinant toxins were obtained from one liter of bacterial culture. The resulting rTcdA and rTcdB had similar molecular masses to the native toxins, and their biological activities were found to be similar to their native counterparts after an extensive examination. Conclusion We have generated the full length and active recombinant TcdA and TcdB in Bacillus megaterium.

  7. Highly diverse recombining populations of Vibrio cholerae and Vibrio parahaemolyticus in French Mediterranean coastal lagoons

    Science.gov (United States)

    Esteves, Kévin; Mosser, Thomas; Aujoulat, Fabien; Hervio-Heath, Dominique; Monfort, Patrick; Jumas-Bilak, Estelle

    2015-01-01

    Vibrio parahaemolyticus and Vibrio cholerae are ubiquitous to estuarine and marine environments. These two species found in Mediterranean coastal systems can induce infections in humans. Environmental isolates of V. cholerae (n = 109) and V. parahaemolyticus (n = 89) sampled at different dates, stations and water salinities were investigated for virulence genes and by a multilocus sequence-based analysis (MLSA). V. cholerae isolates were all ctxA negative and only one isolate of V. parahaemolyticus displayed trh2 gene. Most Sequence Types (ST) corresponded to unique ST isolated at one date or one station. Frequent recombination events were detected among different pathogenic species, V. parahaemolyticus, V. cholerae, Vibrio mimicus, and Vibrio metoecus. Recombination had a major impact on the diversification of lineages. The genetic diversity assessed by the number of ST/strain was higher in low salinity condition for V. parahaemolyticus and V. cholerae whereas the frequency of recombination events in V. cholerae was lower in low salinity condition. Mediterranean coastal lagoon systems housed V. cholerae and V. parahaemolyticus with genetic diversities equivalent to the worldwide diversity described so far. The presence of STs found in human infections as well as the frequency of recombination events in environmental vibrios populations could predict a potential epidemiological risk. PMID:26236294

  8. Karyotype Rearrangements in a Wine Yeast Strain by rad52-Dependent and rad52-Independent Mechanisms

    OpenAIRE

    Carro, David; Bartra, Enric; Piña, Benjamin

    2003-01-01

    Yeast strains isolated from the wild may undergo karyotype changes during vegetative growth, a characteristic that compromises their utility in genetic improvement projects for industrial purposes. Karyotype instability is a dominant trait, segregating among meiotic derivatives as if it depended upon only a few genetic elements. We show that disrupting the RAD52 gene in a hypervariable strain partially stabilizes its karyotype. Specifically, RAD52 disruption eliminated recombination at telome...

  9. New recombinant vaccines for the prevention of meningococcal B disease

    Directory of Open Access Journals (Sweden)

    Taha MK

    2012-06-01

    Full Text Available Muhamed-Kheir Taha, Ala-Eddine DeghmaneInstitut Pasteur, Unit of Invasive Bacterial Infections and National Reference Center for Meningococci, Paris, FranceAbstract: Meningococcal disease is a life-threatening invasive infection (mainly septicemia and meningitis that occurs as epidemic or sporadic cases. The causative agent, Neisseria meningitidis or meningococcus, is a capsulated Gram-negative bacterium. Current vaccines are prepared from the capsular polysaccharides (that also determine serogroups and are available against strains of serogroups A, C, Y, and W-135 that show variable distribution worldwide. Plain polysaccharide vaccines were first used and subsequently conjugate vaccines with enhanced immunogenicity were introduced. The capsular polysaccharide of meningococcal serogroup B is poorly immunogenic due to similarity to the human neural cells adhesion molecule. Tailor-made, strain-specific vaccines have been developed to control localized and clonal outbreaks due to meningococci of serogroup B but no “universal” vaccine is yet available. This unmet medical need was recently overcome using several subcapsular proteins to allow broad range coverage of strains and to reduce the risk of escape variants due to genetic diversity of the meningococcus. Several vaccines are under development that target major or minor surface proteins. One vaccine (Bexsero®; Novartis, under registration, is a multicomponent recombinant vaccine that showed an acceptable safety profile and covers around 80% of the currently circulating serogroup B isolates. However, its reactogenicity in infants seems to be high and the long term persistence of the immune response needs to be determined. Its activity on carriage, and therefore transmission, is under evaluation. Indirect protection is expected through restricting strain circulation and acquisition. This vaccine covers the circulating strains according to the presence of the targeted antigens in the

  10. A recombinant rabies virus expressing luciferase.

    Science.gov (United States)

    Liang, H; Tan, Y; Dun, C; Guo, X

    2010-01-01

    A recombinant Rabies virus (RV) expressing firefly luciferase (rRV-luc) was generated by an improved reverse genetics system. Its biological properties were compared with those of the parental RV. The rRV-luc grew in BHK-21 cells similarly to RV, but its virulence for mice was weaker as shown by the lower infectious titers in brain. Rising infectious titers of rRV-luc during its passaging in BHK-21 cells indicated a virus adaptation, while the luciferase (luc) expression was stable. These results suggest that the recombinant RV carrying luc gene might prove a useful tool for further analysis of pathogenesis of RV in small animal models.

  11. Thermal recombination: Beyond the valence quark approximation

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, B. [Department of Physics, Duke University, Durham, NC 27708 (United States); Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: fries@physics.umn.edu; Bass, S.A. [Department of Physics, Duke University, Durham, NC 27708 (United States); RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973 (United States)

    2005-07-07

    Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.

  12. Theoretical models for recombination in expanding gas

    International Nuclear Information System (INIS)

    Avron, Y.; Kahane, S.

    1978-09-01

    In laser isotope separation of atomic uranium, one is confronted with the theoretical problem of estimating the concentration of thermally ionized uranium atoms. To investigate this problem theoretical models for recombination in an expanding gas and in the absence of local thermal equilibrium have been constructed. The expansion of the gas is described by soluble models of the hydrodynamic equation, and the recombination by rate equations. General results for the freezing effect for the suitable ranges of the gas parameters are obtained. The impossibility of thermal equilibrium in expanding two-component systems is proven

  13. Complete genome sequence analysis of novel human bocavirus reveals genetic recombination between human bocavirus 2 and human bocavirus 4.

    Science.gov (United States)

    Khamrin, Pattara; Okitsu, Shoko; Ushijima, Hiroshi; Maneekarn, Niwat

    2013-07-01

    Epidemiological surveillance of human bocavirus (HBoV) was conducted on fecal specimens collected from hospitalized children with diarrhea in Chiang Mai, Thailand in 2011. By partial sequence analysis of VP1 gene, an unusual strain of HBoV (CMH-S011-11), was initially identified as HBoV4. The complete genome sequence of CMH-S011-11 was performed and analyzed further to clarify whether it was a recombinant strain or a new HBoV variant. Analysis of complete genome sequence revealed that the coding sequence starting from NS1, NP1 to VP1/VP2 was 4795 nucleotides long. Interestingly, the nucleotide sequence of NS1 gene of CMH-S011-11 was most closely related to the HBoV2 reference strains detected in Pakistan, which contradicted to the initial genotyping result of the partial VP1 region in the previous study. In addition, comparison of NP1 nucleotide sequence of CMH-S011-11 with those of other HBoV1-4 reference strains also revealed a high level of sequence identity with HBoV2. On the other hand, nucleotide sequence of VP1/VP2 gene of CMH-S011-11 was most closely related to those of HBoV4 reference strains detected in Nigeria. The overall full-length sequence analysis revealed that this CMH-S011-11 was grouped within HBoV4 species, but located in a separate branch from other HBoV4 prototype strains. Recombination analysis revealed that CMH-S011-11 was the result of recombination between HBoV2 and HBoV4 strains with the break point located near the start codon of VP2. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Characterization of a rare natural intertypic type 2/type 3 penta-recombinant vaccine-derived poliovirus isolated from a child with acute flaccid paralysis.

    Science.gov (United States)

    Zhang, Yong; Wang, Haiyan; Zhu, Shuangli; Li, Yan; Song, Lizhi; Liu, Yao; Liu, Guifang; Nishimura, Yorihiro; Chen, Li; Yan, Dongmei; Wang, Dongyan; An, Hongqiu; Shimizu, Hiroyuki; Xu, Aiqiang; Xu, Wenbo

    2010-02-01

    A type 2 vaccine-derived poliovirus (VDPV) (strain CHN1025), with a 1.1 % (10/903) difference from Sabin strain in the VP1 coding region, was isolated from a child with poliomyelitis caused by a poliovirus variant infection. The patient was from Shandong Province of China and developed acute flaccid paralysis in 1997. The child was infected with a rare and complicated penta-recombinant poliovirus with the uncommon genomic recombinant organization S2/S3/S1/S3/S1/S3. At least five successive rounds of recombination occurred in the VP1 capsid coding region and in the 2C, 3C (twice) and 3D(pol) non-capsid coding regions, respectively, during virus evolution. Strain CHN1025 had most of the characteristics of the type 2 vaccine strain; it had Sabin-specific epitopes, suggesting that the virus was antigenically indistinguishable from the Sabin 2 reference strain. Typical mutations in the 5'-untranslated region and VP1 associated with reversion to neurovirulence for Sabin 2 poliovirus were found, and the virus showed moderate neurovirulence in transgenic mice. A few nucleotide substitutions were located in the donor sequences, and two donor sequences contained no nucleotide substitutions, suggesting that these sequences were relatively new. The appearance of these mutations within approximately 192 days of at least five successive rounds of recombination events derived from a single ancestral infection illustrates the rapid emergence of new recombinants among VDPVs. This is the first report on the isolation of a type 2/type 3 poliovirus capsid recombinant with one of the five crossover sites located in the VP1 coding region.

  15. Improving ethanol fermentation performance of Saccharomyces cerevisiae in very high-gravity fermentation through chemical mutagenesis and meiotic recombination

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Jing; Ding, Wen-Tao; Zhang, Guo-Chang; Wang, Jing-Yu [Tianjin Univ. (China). Dept. of Biochemical Engineering

    2011-08-15

    Genome shuffling is an efficient way to improve complex phenotypes under the control of multiple genes. For the improvement of strain's performance in very high-gravity (VHG) fermentation, we developed a new method of genome shuffling. A diploid ste2/ste2 strain was subjected to EMS (ethyl methanesulfonate) mutagenesis followed by meiotic recombination-mediated genome shuffling. The resulting haploid progenies were intrapopulation sterile and therefore haploid recombinant cells with improved phenotypes were directly selected under selection condition. In VHG fermentation, strain WS1D and WS5D obtained by this approach exhibited remarkably enhanced tolerance to ethanol and osmolarity, increased metabolic rate, and 15.12% and 15.59% increased ethanol yield compared to the starting strain W303D, respectively. These results verified the feasibility of the strain improvement strategy and suggested that it is a powerful and high throughput method for development of Saccharomyces cerevisiae strains with desired phenotypes that is complex and cannot be addressed with rational approaches. (orig.)

  16. Anomalous Abundances in Gaseous Nebulae From Recombination and Collisional Lines: Improved Photoionization and Recombination Studies

    Science.gov (United States)

    Pradhan, Anil Kumar; Nahar, S. N.; Eissner, W. B.; Montenegro, M.

    2011-01-01

    A perplexing anomaly arises in the determination of abundances of common elements in gaseous nebulae, as derived from collisionally excited lines (CEL) as opposed to those from Recombination Lines (RCL). The "abundance discrepancy factors" can range from a factor of 2 to an order of magnitude or more. That has led to quite different interpretation of the physical structure and processes in gaseous nebulae, such as temperature fluctuations across the object, or metal-rich concentrations leading to a dual-abundnace scenario. We show that the problem may lie in inaccuracies in photoionization and recombination models neglecting low-energy resonance phenomena due to fine structure. Whereas the atomic physics of electron impact excitation of forbidden lines is well understood, and accurate collision strengths have long been available, that is not generally the case for electron-ion recombination cross sections. A major problem is the inclusion of relativisitic effects as it pertains to the existence of very low-energy fine structure resonances in photoionization cross sections. We carry out new relativistic calculations for photoionization and recombination cross sections using a recently extended version of the Breit-Pauli R-matrix codes, and the unified electron-ion recombination method that subsumes both the radiative and the dielectronic recombination (RR and DR) processes in an ab initio and self-consistent manner. We find that near-thresold resonances manifest themselves within fine structure levels of the ground state of ions, enhancing low-temperature recombination rate coefficients at 1000-10,000 K. The resulting enahncement in level-specific and total recombination rate coefficients should therefore lead to reduced abundances derived from RCL, and in accordance with those from CEL. We present results for photoionization of O II into, and recombination from, O III. Theoretical cross sections are benchmarked against high-resolution measurements from synchrotron

  17. Structural and Photoluminescence Properties for Highly Strain-Compensated InGaAs/InAlAs Superlattice

    International Nuclear Information System (INIS)

    Yi, Gu; Yong-Gang, Zhang; Ai-Zhen, Li; Kai, Wang; Cheng, Li; Yao-Yao, Li

    2009-01-01

    The effects of strain compensation are investigated by using twenty periods of highly strain-compensated InGaAs/InAlAs superlattice. The lattice mismatches of individual layers are as high as about 1%, and the thicknesses are close to critical thicknesses. X-ray diffraction measurements show that lattice imperfectness is not serious but still present, though the structural parameters are within the range of theoretical design criteria for structural stability. Rough interfaces and composition fluctuations are the primary causes for lattice imperfectness. Photoluminescence measurements show the large thermally activated nonradiative recombination in the sample. In addition, the recombination process gradually evolves from excitonic recombination at lower temperatures to band-to-band recombination at higher temperatures, which should be considered in device applications. (condensed matter: electronicstructure, electrical, magnetic, and opticalproperties)

  18. Construction of two Listeria ivanovii attenuated strains expressing Mycobacterium tuberculosis antigens for TB vaccine purposes.

    Science.gov (United States)

    Lin, Qingqing; Zhou, Mengying; Xu, Zongkai; Khanniche, Asma; Shen, Hao; Wang, Chuan

    2015-02-20

    Bacillus Calmette-Guerin (BCG) has failed in complete control of tuberculosis (TB), thus, novel tuberculosis vaccines are urgently needed. We have constructed several TB vaccine candidates, which are characterized by the use of Listeria ivanovii (LI) strain as an antigen delivery vector. Two L. ivanovii attenuated recombinant strains L. ivanovii△actAplcB-Rv0129c and L. ivanovii△actAplcB-Rv3875 were successfully screened. Results from genome PCR and sequencing showed that the Mycobacterium tuberculosis antigen gene cassette coding for Ag85C or ESAT-6 protein respectively had been integrated into LI genome downstream of mpl gene. Western blot confirmed the secretion of Ag85C or ESAT-6 protein from the recombinant LI strains. These two recombinant strains showed similar growth curves as wide type strain in vitro. In vivo, they transiently propagated in mice spleen and liver, and induced specific CD8(+) IFN-γ secretion. Therefore, in this paper, two novel LI attenuated strains expressing specific TB antigens were successfully constructed. The promising growth characteristics in mice immune system and the capability of induction of IFN-γ secretion make them of potential interest for development of TB vaccines. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Multiple recombinants in two dengue virus, serotype-2 isolates from patients from Oaxaca, Mexico

    Directory of Open Access Journals (Sweden)

    Cisneros Alejandro

    2009-12-01

    Full Text Available Abstract Background Dengue (DEN is a serious cause of mortality and morbidity in the world including Mexico, where the infection is endemic. One of the states with the highest rate of dengue cases is Oaxaca. The cause of DEN is a positive-sense RNA virus, the dengue virus (DENV that evolves rapidly increasing its variability due to the absence of a repair mechanism that leads to approximately one mutational event per genome replication; which results in enhancement of viral adaptation, including the escape from host immune responses. Additionally, recombination may play a role in driving the evolution of DENV, which may potentially affect virulence and cause host tropism changes. Recombination in DENV has not been described in Mexican strains, neither has been described the relevance in virus evolution in an endemic state such as Oaxaca where the four serotypes of DENV are circulating. Results To study whether there are isolates from Oaxaca having recombination, we obtained the sequence of 6 different isolates of DENV-2 Asian/American genotype from the outbreak 2005-6, one clone of the C(91-prM-E-NS1(2400 structural genes, and 10 clones of the E gene from the isolate MEX_OAX_1656_05. Evidence of recombination was found by using different methods along with two softwares: RDP3 and GARD. The Oaxaca MEX_OAX_1656_05 and MEX_OAX_1038_05 isolates sequenced in this study were recombinant viruses that incorporate the genome sequence from the Cosmopolitan genotype. Furthermore, the clone of the E gene namely MEX_OAX_165607_05 from this study was also recombinant, incorporating genome sequence from the American genotype. Conclusions This is the first report of recombination in DENV-2 in Mexico. Given such a recombinant activity new genomic combinations were produced, this could play a significant role in the DENV evolution and must be considered as a potentially important mechanism generating genetic variation in this virus with serious implications for

  20. Multiple recombinants in two dengue virus, serotype-2 isolates from patients from Oaxaca, Mexico.

    Science.gov (United States)

    Perez-Ramir