WorldWideScience

Sample records for aspm-associated stem cell

  1. Stem Cells

    Science.gov (United States)

    Stem cells are cells with the potential to develop into many different types of cells in the body. ... the body. There are two main types of stem cells: embryonic stem cells and adult stem cells. Stem ...

  2. Types of Stem Cells

    Science.gov (United States)

    ... Stem Cell Glossary Search Toggle Nav Types of Stem Cells Stem cells are the foundation from which all ... Learn About Stem Cells > Types of Stem Cells Stem cells Stem cells are the foundation for every organ ...

  3. Stem Cells

    Directory of Open Access Journals (Sweden)

    Madhukar Thakur

    2015-02-01

    Full Text Available Objective: The objective of this presentation is to create awareness of stem cell applications in the ISORBE community and to foster a strategy of how the ISORBE community can disseminate information and promote the use of radiolabeled stem cells in biomedical applications. Methods: The continued excitement in Stem Cells, in many branches of basic and applied biomedical science, stems from the remarkable ability of stem cells to divide and develop into different types of cells in the body. Often called as Magic Seeds, stem cells are produced in bone marrow and circulate in blood, albeit at a relatively low concentration. These virtues together with the ability of stem cells to grow in tissue culture have paved the way for their applications to generate new and healthy tissues and to replace diseased or injured human organs. Although possibilities of stem cell applications are many, much remains yet to be understood of these remarkable magic seeds. Conclusion: This presentation shall briefly cover the origin of stem cells, the pros and cons of their growth and division, their potential application, and shall outline some examples of the contributions of radiolabeled stem cells, in this rapidly growing branch of biomedical science

  4. Stem Cells

    DEFF Research Database (Denmark)

    Sommerlund, Julie

    2004-01-01

    '. This paper is about tech-noscience, and about the proliferation of connections and interdependencies created by it.More specifically, the paper is about stem cells. Biotechnology in general has the power to capture the imagination. Within the field of biotechnology nothing seems more provocative...... and tantalizing than stem cells, in research, in medicine, or as products....

  5. Learn About Stem Cells

    Science.gov (United States)

    ... Patient Handbook Stem Cell Glossary Search Toggle Nav Stem Cell Basics Stem cells are the foundation from which ... original cell’s DNA, cytoplasm and cell membrane. About stem cells Stem cells are the foundation of development in ...

  6. Stem cells.

    Science.gov (United States)

    Redi, Carlo Alberto; Monti, Manuela; Merico, Valeria; Neri, Tui; Zanoni, Mario; Zuccotti, Maurizio; Garagna, Silvia

    2007-01-01

    The application of stem cells to regenerative medicine is one of the actual hot topics in biomedicine. This research could help the cure of a number of diseases that are affecting a large share of the population. Some good results in cell replacement have already been obtained (infarcted heart, diabetes, Parkinson disease), apart from those of more traditional applications like severe burns and blood tumors. We are now facing crucial questions in stem cell biology. One of the key questions is how a cell begins to proliferate or differentiate. Genome reprogramming, both following nuclear transfer and cytoplast action, will likely highlight some of the molecular mechanisms of cell differentiation and dedifferentiation. In turn, these clues should be useful to the production of populations of reprogrammed cells that could develop into tissues or, in the future, into proper organs. We will overview what stem cells are, what roles they play in normal developmental processes and how stem cells could have the potential to treat diseases.

  7. Stem Cell Basics

    Science.gov (United States)

    ... Tips Info Center Research Topics Federal Policy Glossary Stem Cell Information General Information Clinical Trials Funding Information Current ... Basics » Stem Cell Basics I. Back to top Stem Cell Basics I. Introduction: What are stem cells, and ...

  8. Tracking adult stem cells

    NARCIS (Netherlands)

    Snippert, H.J.G.; Clevers, H.

    2011-01-01

    The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context,

  9. Tracking adult stem cells.

    Science.gov (United States)

    Snippert, Hugo J; Clevers, Hans

    2011-02-01

    The maintenance of stem-cell-driven tissue homeostasis requires a balance between the generation and loss of cell mass. Adult stem cells have a close relationship with the surrounding tissue--known as their niche--and thus, stem-cell studies should preferably be performed in a physiological context, rather than outside their natural environment. The mouse is an attractive model in which to study adult mammalian stem cells, as numerous experimental systems and genetic tools are available. In this review, we describe strategies commonly used to identify and functionally characterize adult stem cells in mice and discuss their potential, limitations and interpretations, as well as how they have informed our understanding of adult stem-cell biology. An accurate interpretation of physiologically relevant stem-cell assays is crucial to identify adult stem cells and elucidate how they self-renew and give rise to differentiated progeny.

  10. Stem Cell Transplant

    Science.gov (United States)

    ... transplant is a procedure that infuses healthy blood stem cells into your body to replace your damaged or ... A bone marrow transplant is also called a stem cell transplant. A bone marrow transplant may be necessary ...

  11. Plant stem cell niches.

    Science.gov (United States)

    Aichinger, Ernst; Kornet, Noortje; Friedrich, Thomas; Laux, Thomas

    2012-01-01

    Multicellular organisms possess pluripotent stem cells to form new organs, replenish the daily loss of cells, or regenerate organs after injury. Stem cells are maintained in specific environments, the stem cell niches, that provide signals to block differentiation. In plants, stem cell niches are situated in the shoot, root, and vascular meristems-self-perpetuating units of organ formation. Plants' lifelong activity-which, as in the case of trees, can extend over more than a thousand years-requires that a robust regulatory network keep the balance between pluripotent stem cells and differentiating descendants. In this review, we focus on current models in plant stem cell research elaborated during the past two decades, mainly in the model plant Arabidopsis thaliana. We address the roles of mobile signals on transcriptional modules involved in balancing cell fates. In addition, we discuss shared features of and differences between the distinct stem cell niches of Arabidopsis.

  12. Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Sharon R. Pine

    2008-01-01

    Full Text Available Lung cancer remains a major cause of cancer-related lethality because of high incidence and recurrence in spite of significant advances in staging and therapies. Recent data indicates that stem cells situated throughout the airways may initiate cancer formation. These putative stem cells maintain protumorigenic characteristics including high proliferative capacity, multipotent differentiation, drug resistance and long lifespan relative to other cells. Stem cell signaling and differentiation pathways are maintained within distinct cancer types, and destabilization of this machinery may participate in maintenance of cancer stem cells. Characterization of lung cancer stem cells is an area of active research and is critical for developing novel therapies. This review summarizes the current knowledge on stem cell signaling pathways and cell markers used to identify the lung cancer stem cells.

  13. Stem Cell Information: Glossary

    Science.gov (United States)

    ... bone, cartilage, stromal cells that support blood formation, fat, and fibrous tissue. Cell-based therapies —Treatment in which stem cells are induced to differentiate into the specific cell type required to repair damaged or destroyed cells or ...

  14. STEM CELLS AND PROTEOMICS

    Institute of Scientific and Technical Information of China (English)

    ZHOU Yong-ming; GUO Tian-nan; HUANG Shi-ang

    2006-01-01

    The distinctive features of proteomics are large-scale and high throughput. The key techniques of proteomics are two-dimensional gel electrophoresis, mass spectrometry and bioinformatics. Stem cell can differentiate into all kinds of cells, tissues and organs. There are many proteins and cytokines involved in the process of differentiation. Applying proteomics techniques to the research of the complex process of stem cell differentiation is of great importance to study the mechanism and applications of stem cell differentiation.

  15. Stem cells in urology.

    Science.gov (United States)

    Aboushwareb, Tamer; Atala, Anthony

    2008-11-01

    The shortage of donors for organ transplantation has stimulated research on stem cells as a potential resource for cell-based therapy in all human tissues. Stem cells have been used for regenerative medicine applications in many organ systems, including the genitourinary system. The potential applications for stem cell therapy have, however, been restricted by the ethical issues associated with embryonic stem cell research. Instead, scientists have explored other cell sources, including progenitor and stem cells derived from adult tissues and stem cells derived from the amniotic fluid and placenta. In addition, novel techniques for generating stem cells in the laboratory are being developed. These techniques include somatic cell nuclear transfer, in which the nucleus of an adult somatic cell is placed into an oocyte, and reprogramming of adult cells to induce stem-cell-like behavior. Such techniques are now being used in tissue engineering applications, and some of the most successful experiments have been in the field of urology. Techniques to regenerate bladder tissue have reached the clinic, and exciting progress is being made in other areas, such as regeneration of the kidney and urethra. Cell therapy as a treatment for incontinence and infertility might soon become a reality. Physicians should be optimistic that regenerative medicine and tissue engineering will one day provide mainstream treatment options for urologic disorders.

  16. Dazlin' pluripotent stem cells

    NARCIS (Netherlands)

    Welling, M.A.

    2014-01-01

    Pluripotent embryonic stem cells (ESCs) can be isolated from the inner cell mass (ICM) of blastocyst embryos and differentiate into all three germ layers in vitro. However, despite their similar origin, mouse embryonic stem cells represent a more naïve ICM-like pluripotent state whereas human embryo

  17. Aneuploidy in stem cells

    NARCIS (Netherlands)

    Garcia-Martinez, Jorge; Bakker, Bjorn; Schukken, Klaske M; Simon, Judith E; Foijer, Floris

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells (IPSCs) from somatic cells has brought this promise steps closer to real

  18. Stem cells in cell transplantation.

    Science.gov (United States)

    Sanmartin, Agneta; English, Denis; Sanberg, Paul R

    2006-12-01

    This commentary documents the increased number of stem cell-related research reports recently published in the cell transplantation field in the journal Cell Transplantation. The journal covers a wide range of issues in cell-based therapy and regenerative medicine and is attracting clinical and preclinical articles from around the world. It thereby complements and extends the basic coverage of stem cell physiology reported in Stem Cells and Development. Sections in Cell Transplantation cover neuroscience, diabetes, hepatocytes, bone, muscle, cartilage, skin, vessels, and other tissues, as well as tissue engineering that employs novel methods with stem cells. Clearly, the continued use of biomedical engineering will depend heavily on stem cells, and these two journals are well positioned to provide comprehensive coverage of these developments.

  19. Many facets of stem cells

    Institute of Scientific and Technical Information of China (English)

    Jiarui Wu

    2011-01-01

    @@ Research area on stem cells is one of frontiers in biology.The collection of five research articles in this issue aims to cover timely developments in stem cell biology, ranging from generating and identifying stem cell line to manipulating stem cells, and from basic mechanism analysis to applied medical potential.These papers reflect the various research tasks in stem cell biology.

  20. Fish stem cell cultures.

    Science.gov (United States)

    Hong, Ni; Li, Zhendong; Hong, Yunhan

    2011-04-13

    Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES) cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on "Fish Stem Cells and Nuclear Transfer", we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  1. Fish Stem Cell Cultures

    Directory of Open Access Journals (Sweden)

    Ni Hong, Zhendong Li, Yunhan Hong

    2011-01-01

    Full Text Available Stem cells have the potential for self-renewal and differentiation. First stem cell cultures were derived 30 years ago from early developing mouse embryos. These are pluripotent embryonic stem (ES cells. Efforts towards ES cell derivation have been attempted in other mammalian and non-mammalian species. Work with stem cell culture in fish started 20 years ago. Laboratory fish species, in particular zebrafish and medaka, have been the focus of research towards stem cell cultures. Medaka is the second organism that generated ES cells and the first that gave rise to a spermatogonial stem cell line capable of test-tube sperm production. Most recently, the first haploid stem cells capable of producing whole animals have also been generated from medaka. ES-like cells have been reported also in zebrafish and several marine species. Attempts for germline transmission of ES cell cultures and gene targeting have been reported in zebrafish. Recent years have witnessed the progress in markers and procedures for ES cell characterization. These include the identification of fish homologs/paralogs of mammalian pluripotency genes and parameters for optimal chimera formation. In addition, fish germ cell cultures and transplantation have attracted considerable interest for germline transmission and surrogate production. Haploid ES cell nuclear transfer has proven in medaka the feasibility of semi-cloning as a novel assisted reproductive technology. In this special issue on “Fish Stem Cells and Nuclear Transfer”, we will focus our review on medaka to illustrate the current status and perspective of fish stem cells in research and application. We will also mention semi-cloning as a new development to conventional nuclear transfer.

  2. What are Stem Cells?

    Directory of Open Access Journals (Sweden)

    Ahmadshah Farhat

    2014-05-01

    Full Text Available   Stem cells are undifferentiated self regenerating multi potential cells. There are three types of stem cells categories by the ability to form after cells and correlated with the body’s development process. Totipotent: these stem cells can form an entire organism such as fertilized egg. Ploripotent: ploripotent cells are those that can form any cell in the body but cannot form an entire organism such as developing embryo’s totipotent cells become ploripotent  Multipotent: Multi potent stem cells are those that can only form specific cells in the body such as blood cells based. Based on the sources of stem cells we have three types of these cells: Autologous: Sources of the patient own cells are (Autologous either the cells from patient own body or his or her cord blood. For this type of transplant the physician now usually collects the periphery rather than morrow because the procedure is easier on like a bane morrow harvest it take place outside of an operating room, and the patient does not to be under general unsetting . Allogenic: Sources of stem cells from another donore are primarily relatives (familial allogenic or completely unrelated donors. Xenogenic: In these stem cells from different species are transplanted e .g striatal porcine fetal mesan cephalic (FVM xenotransplants for Parkinson’s disease. On sites of isolation such as embryo, umbilical cord and other body tissues stem cells are named embnyonic, cord blood, and adult stem cells. The scope of results and clinical application of stem cells are such as: Neurodegenerative conditions (MS,ALS, Parkinson’s, Stroke, Ocular disorders- Glaucoma, retinitis Pigmentosa (RP, Auto Immune Conditions (Lupus, MS,R. arthritis, Diabetes, etc, Viral Conditions (Hepatitis C and AIDS, Heart Disease, Adrenal Disorders, Injury(Nerve, Brain, etc, Anti aging (hair, skin, weight control, overall well being/preventive, Emotional disorders, Organ / Tissue Cancers, Blood cancers, Blood diseases

  3. Stem cells in dermatology.

    Science.gov (United States)

    Ogliari, Karolyn Sassi; Marinowic, Daniel; Brum, Dario Eduardo; Loth, Fabrizio

    2014-01-01

    Preclinical and clinical research have shown that stem cell therapy could be a promising therapeutic option for many diseases in which current medical treatments do not achieve satisfying results or cure. This article describes stem cells sources and their therapeutic applications in dermatology today.

  4. Stem Cell Transplants (For Teens)

    Science.gov (United States)

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Stem Cell Transplants KidsHealth > For Teens > Stem Cell Transplants Print ... Does it Take to Recover? Coping What Are Stem Cells? As you probably remember from biology class, every ...

  5. Dental pulp stem cells

    DEFF Research Database (Denmark)

    Ashri, N. Y.; Ajlan, S. A.; Aldahmash, Abdullah M.

    2015-01-01

    scaffold, and guided through signaling molecules. Dental pulp stem cells have been used in an increasing number of studies in dental tissue engineering. Those cells show mesenchymal (stromal) stem cell-like properties including self-renewal and multilineage differentiation potentials, aside from...... an updated review on dental pulp stem cells and their applications in periodontal regeneration, in combination with different scaffolds and growth factors.......Inflammatory periodontal disease is a major cause of loss of tooth-supporting structures. Novel approaches for regeneration of periodontal apparatus is an area of intensive research. Periodontal tissue engineering implies the use of appropriate regenerative cells, delivered through a suitable...

  6. Immunology of Stem Cells and Cancer Stem Cells

    Institute of Scientific and Technical Information of China (English)

    Xiao-Feng Yang

    2007-01-01

    The capacity of pluri-potent stem cells to repair the tissues in which stem cells reside holds great promise in development of novel cell replacement therapeutics for treating chronic and degenerative diseases. However,numerous reports show that stem cell therapy, even in an autologous setting, triggers lymphocyte infiltration and inflammation. Therefore, an important question to be answered is how the host immune system responds to engrafted autologous stem cells or allogeneous stem cells. In this brief review, we summarize the progress in several related areas in this field, including some of our data, in four sections: (1) immunogenicity of stem cells; (2)strategies to inhibit immune rejection to allograft stem cells; (3) immune responses to cancer stem cells; and (4)mesenchymal stem cells in immune regulation. Improvement of our understanding on these and other aspects of immune system-stem cell interplay would greatly facilitate the development of stem cell-based therapeutics for regenerative purposes.

  7. Skeletal (stromal) stem cells

    DEFF Research Database (Denmark)

    Abdallah, Basem M; Kermani, Abbas Jafari; Zaher, Walid

    2015-01-01

    Skeletal (marrow stromal) stem cells (BMSCs) are a group of multipotent cells that reside in the bone marrow stroma and can differentiate into osteoblasts, chondrocytes and adipocytes. Studying signaling pathways that regulate BMSC differentiation into osteoblastic cells is a strategy....../preadipocyte factor 1 (Dlk1/Pref-1), the Wnt co-receptor Lrp5 and intracellular kinases. This article is part of a Special Issue entitled: Stem Cells and Bone....

  8. Induced pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Siddhartha Bhowmik; LI Yong

    2011-01-01

    Induced pluripotent stem (iPS) cells are a recent development which has brought a promise of great therapeutic values. The previous technique of somatic cell nuclear transfer (SCNT) has been ineffective in humans. Recent discoveries show that human fibroblasts can be reprogrammed by a transient over expression of a small number of genes; they can undergo induced pluripotency. iPS were first produced in 2006. By 2008, work was underway to remove the potential oncogenes from their structure. In 2009, protein iPS (piPS) cells were discovered. Surface markers and reporter genes play an important role in stem cell research. Clinical applications include generation of self renewing stem cells, tissue replacement and many more. Stem cell therapy has the ability to dramatically change the treatment of human diseases.

  9. [On plant stem cells and animal stem cells].

    Science.gov (United States)

    You, Yun; Jiang, Chao; Huang, Lu-Qi

    2014-01-01

    A comparison of plant and animal stem cells can highlight core aspects of stem-cell biology. In both kingdoms, stem cells are defined by their clonogenic properties and are maintained by intercellular signals. The signaling molecules are different in plants and animals stem cell niches, but the roles of argonaute and polycomb group proteins suggest that there are some molecular similarities.

  10. Aneuploidy in stem cells

    Institute of Scientific and Technical Information of China (English)

    Jorge; Garcia-Martinez; Bjorn; Bakker; Klaske; M; Schukken; Judith; E; Simon; Floris; Foijer

    2016-01-01

    Stem cells hold enormous promise for regenerative medicine as well as for engineering of model systems to study diseases and develop new drugs. The discovery of protocols that allow for generating induced pluripotent stem cells(IPSCs) from somatic cells has brought this promise steps closer to reality. However,as somatic cells might have accumulated various chromosomal abnormalities,including aneuploidies throughout their lives,the resulting IPSCs might no longer carry the perfect blueprint for the tissue to be generated,or worse,become at risk of adopting a malignant fate. In this review,we discuss the contribution of aneuploidy to healthy tissues and how aneuploidy can lead to disease. Furthermore,we review the differences between how somatic cells and stem cells respond to aneuploidy.

  11. Mammary gland stem cells

    DEFF Research Database (Denmark)

    Fridriksdottir, Agla J R; Petersen, Ole W; Rønnov-Jessen, Lone

    2011-01-01

    Distinct subsets of cells, including cells with stem cell-like properties, have been proposed to exist in normal human breast epithelium and breast carcinomas. The cellular origins of epithelial cells contributing to gland development, tissue homeostasis and cancer are, however, still poorly...... and differences between mouse and human gland development with particular emphasis on the identity and localization of stem cells, and the influence of the surrounding microenvironment. It is concluded that while recent advances in the field have contributed immense insight into how the normal mammary gland...... develops and is maintained, significant discrepancies exist between the mouse and human gland which should be taken into consideration in current and future models of mammary stem cell biology....

  12. Stem cell heterogeneity revealed

    DEFF Research Database (Denmark)

    Andersen, Marianne S; Jensen, Kim B

    2016-01-01

    The skin forms a protective, water-impermeable barrier consisting of heavily crosslinked epithelial cells. However, the specific role of stem cells in sustaining this barrier remains a contentious issue. A detailed analysis of the interfollicular epidermis now proposes a model for how a composite...... of cells with different properties are involved in its maintenance....

  13. The Stem Cell Conundrum

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    @@ At the beginning of this year, Kelly Reynolds,a US-national diagnosed with amyotrophic lateral sclerosis (ALS), became the one of the latest overseas patient to undergo stem cell treatment at the Nanshan Hospital in Shenzhen.Confined to a wheelchair and with limited use of his hands,the 39-year old received four fetal stem cell injections over a three-week period. So far,the results have been positive and Reynolds, acording to his personal blog page, is upbeat about the long-term benefits.

  14. Origins of pluripotent stem cells.

    Science.gov (United States)

    Roelen, B A J; Chuva De Sousa Lopes, S M

    2011-08-01

    Different types of pluripotent stem cells can be identified and cultured in vitro. Here an overview is presented of the various pluripotent stem cells types. Embryonal carcinoma (EC) cells that have been cultured in vitro provided the groundwork for future pluripotent cell cultures. Conditions established for these cells such as culture on a feeder layer of mouse embryonic fibroblasts and the importance of fetal calf serum were initially also used for the culture of mouse embryonic stem (ES) cells derived from the inner cell masses of blastocysts. Embryonic stem cells derived from human blastocysts were found to require different conditions and are cultured in the presence of activin and basic fibroblast growth factor. Recently pluripotent stem cells have also been derived from mouse peri-implantation epiblasts. Since these epiblast stem cells (EpiSCs) require the same conditions as the human ES cells it has been suggested that human ES cells are more similar to mouse EpiSCs than to mouse ES cells. Pluripotent cell lines have also been derived from migratory primordial germ cells and spermatogonial stem cells. The creation of pluripotent stem cells from adult cells by the introduction of reprogramming transcription factors, so-called induced pluripotent stem (iPS) cells allowed the derivation of patient-specific pluripotent stem cells without the need of creation of a human blastocyst after cloning by somatic cells nuclear transfer. Recently it has become clear however that iPS cells may be quite different to ES cells in terms of epigenetics.

  15. Stem Cell Transplants (For Parents)

    Science.gov (United States)

    ... Old Feeding Your 1- to 2-Year-Old Stem Cell Transplants KidsHealth > For Parents > Stem Cell Transplants Print A A A What's in this ... Recovery Coping en español Trasplantes de células madre Stem cells are cells in the body that have the ...

  16. Stem cell organization in Arabidopsis

    NARCIS (Netherlands)

    Wendrich, J.R.

    2016-01-01

    Growth of plant tissues and organs depends on continuous production of new cells, by niches of stem cells. Stem cells typically divide to give rise to one differentiating daughter and one non-differentiating daughter. This constant process of self-renewal ensures that the niches of stem cells or mer

  17. Stem cells and transplant arteriosclerosis.

    Science.gov (United States)

    Xu, Qingbo

    2008-05-09

    Stem cells can differentiate into a variety of cells to replace dead cells or to repair damaged tissues. Recent evidence indicates that stem cells are involved in the pathogenesis of transplant arteriosclerosis, an alloimmune initiated vascular stenosis that often results in transplant organ failure. Although the pathogenesis of transplant arteriosclerosis is not yet fully understood, recent developments in stem cell research have suggested novel mechanisms of vascular remodeling in allografts. For example, stem cells derived from the recipient may repair damaged endothelial cells of arteries in transplant organs. Further evidence suggests that stem cells or endothelial progenitor cells may be released from both bone marrow and non-bone marrow tissues. Vascular stem cells appear to replenish cells that died in donor vessels. Concomitantly, stem/progenitor cells may also accumulate in the intima, where they differentiate into smooth muscle cells. However, several issues concerning the contribution of stem cells to the pathogenesis of transplant arteriosclerosis are controversial, eg, whether bone marrow-derived stem cells can differentiate into smooth muscle cells that form neointimal lesions of the vessel wall. This review summarizes recent research on the role of stem cells in transplant arteriosclerosis, discusses the mechanisms of stem cell homing and differentiation into mature endothelial and smooth muscle cells, and highlights the controversial issues in the field.

  18. Stem cell therapy for diabetes

    Directory of Open Access Journals (Sweden)

    K O Lee

    2012-01-01

    Full Text Available Stem cell therapy holds immense promise for the treatment of patients with diabetes mellitus. Research on the ability of human embryonic stem cells to differentiate into islet cells has defined the developmental stages and transcription factors involved in this process. However, the clinical applications of human embryonic stem cells are limited by ethical concerns, as well as the potential for teratoma formation. As a consequence, alternative forms of stem cell therapies, such as induced pluripotent stem cells, umbilical cord stem cells and bone marrow-derived mesenchymal stem cells, have become an area of intense study. Recent advances in stem cell therapy may turn this into a realistic treatment for diabetes in the near future.

  19. Laser biomodulation on stem cells

    Science.gov (United States)

    Liu, Timon C.; Duan, Rui; Li, Yan; Li, Xue-Feng; Tan, Li-Ling; Liu, Songhao

    2001-08-01

    Stem cells are views from the perspectives of their function, evolution, development, and cause. Counterintuitively, most stem cells may arise late in development, to act principally in tissue renewal, thus ensuring an organisms long-term survival. Surprisingly, recent reports suggest that tissue-specific adult stem cells have the potential to contribute to replenishment of multiple adult tissues. Stem cells are currently in the news for two reasons: the successful cultivation of human embryonic stem cell lines and reports that adult stem cells can differentiate into developmentally unrelated cell types, such as nerve cells into blood cells. The spotlight on stem cells has revealed gaps in our knowledge that must be filled if we are to take advantage of their full potential for treating devastating degenerative diseases such as Parkinsons's disease and muscular dystrophy. We need to know more about the intrinsic controls that keep stem cells as stem cells or direct them along particular differentiation pathways. Such intrinsic regulators are, in turn, sensitive to the influences of the microenvironment, or niche, where stem cells normally reside. Both intrinsic and extrinsic signals regular stem cell fate and some of these signals have now been identified. Vacek et al and Wang et al have studied the effect of low intensity laser on the haemopoietic stem cells in vitro. There experiments show there is indeed the effect of low intensity laser on the haemopoietic stem cells in vitro, and the present effect is the promotion of haemopoietic stem cells proliferation. In other words, low intensity laser irradiation can act as an extrinsic signal regulating stem cell fate. In this paper, we study how low intensity laser can be used to regulate stem cell fate from the viewpoint of collective phototransduction.

  20. Stem cells and healthy aging.

    Science.gov (United States)

    Goodell, Margaret A; Rando, Thomas A

    2015-12-04

    Research into stem cells and aging aims to understand how stem cells maintain tissue health, what mechanisms ultimately lead to decline in stem cell function with age, and how the regenerative capacity of somatic stem cells can be enhanced to promote healthy aging. Here, we explore the effects of aging on stem cells in different tissues. Recent research has focused on the ways that genetic mutations, epigenetic changes, and the extrinsic environmental milieu influence stem cell functionality over time. We describe each of these three factors, the ways in which they interact, and how these interactions decrease stem cell health over time. We are optimistic that a better understanding of these changes will uncover potential strategies to enhance stem cell function and increase tissue resiliency into old age.

  1. Inflammation and cancer stem cells.

    Science.gov (United States)

    Shigdar, Sarah; Li, Yong; Bhattacharya, Santanu; O'Connor, Michael; Pu, Chunwen; Lin, Jia; Wang, Tao; Xiang, Dongxi; Kong, Lingxue; Wei, Ming Q; Zhu, Yimin; Zhou, Shufeng; Duan, Wei

    2014-04-10

    Cancer stem cells are becoming recognised as being responsible for metastasis and treatment resistance. The complex cellular and molecular network that regulates cancer stem cells and the role that inflammation plays in cancer progression are slowly being elucidated. Cytokines, secreted by tumour associated immune cells, activate the necessary pathways required by cancer stem cells to facilitate cancer stem cells progressing through the epithelial-mesenchymal transition and migrating to distant sites. Once in situ, these cancer stem cells can secrete their own attractants, thus providing an environment whereby these cells can continue to propagate the tumour in a secondary niche.

  2. Porcine embryonic stem cells

    DEFF Research Database (Denmark)

    Hall, Vanessa Jane

    2008-01-01

    The development of porcine embryonic stem cell lines (pESC) has received renewed interest given the advances being made in the production of immunocompatible transgenic pigs. However, difficulties are evident in the production of pESCs in-vitro. This may largely be attributable to differences...

  3. Embryonic Stem Cell Markers

    Directory of Open Access Journals (Sweden)

    Lan Ma

    2012-05-01

    Full Text Available Embryonic stem cell (ESC markers are molecules specifically expressed in ES cells. Understanding of the functions of these markers is critical for characterization and elucidation for the mechanism of ESC pluripotent maintenance and self-renewal, therefore helping to accelerate the clinical application of ES cells. Unfortunately, different cell types can share single or sometimes multiple markers; thus the main obstacle in the clinical application of ESC is to purify ES cells from other types of cells, especially tumor cells. Currently, the marker-based flow cytometry (FCM technique and magnetic cell sorting (MACS are the most effective cell isolating methods, and a detailed maker list will help to initially identify, as well as isolate ESCs using these methods. In the current review, we discuss a wide range of cell surface and generic molecular markers that are indicative of the undifferentiated ESCs. Other types of molecules, such as lectins and peptides, which bind to ESC via affinity and specificity, are also summarized. In addition, we review several markers that overlap with tumor stem cells (TSCs, which suggest that uncertainty still exists regarding the benefits of using these markers alone or in various combinations when identifying and isolating cells.

  4. Materials as stem cell regulators

    Science.gov (United States)

    Murphy, William L.; McDevitt, Todd C.; Engler, Adam J.

    2014-06-01

    The stem cell/material interface is a complex, dynamic microenvironment in which the cell and the material cooperatively dictate one another's fate: the cell by remodelling its surroundings, and the material through its inherent properties (such as adhesivity, stiffness, nanostructure or degradability). Stem cells in contact with materials are able to sense their properties, integrate cues via signal propagation and ultimately translate parallel signalling information into cell fate decisions. However, discovering the mechanisms by which stem cells respond to inherent material characteristics is challenging because of the highly complex, multicomponent signalling milieu present in the stem cell environment. In this Review, we discuss recent evidence that shows that inherent material properties may be engineered to dictate stem cell fate decisions, and overview a subset of the operative signal transduction mechanisms that have begun to emerge. Further developments in stem cell engineering and mechanotransduction are poised to have substantial implications for stem cell biology and regenerative medicine.

  5. PTEN, Stem Cells, and Cancer Stem Cells*S⃞

    OpenAIRE

    Hill, Reginald; Wu, Hong

    2009-01-01

    Like normal stem cells, “cancer stem cells” have the capacity for indefinite proliferation and generation of new cancerous tissues through self-renewal and differentiation. Among the major intracellular signaling pathways, WNT, SHH, and NOTCH are known to be important in regulating normal stem cell activities, and their alterations are associated with tumorigenesis. It has become clear recently that PTEN (phosphatase and tensin homologue) is also critical for stem cell...

  6. Information on Stem Cell Research

    Science.gov (United States)

    ... Home » Current Research » Focus on Research Focus on Stem Cell Research Stem cells possess the unique ability to differentiate into many ... they also retain the ability to produce more stem cells, a process termed self-renewal. There are multiple ...

  7. Stem cells and genetic diseases

    Directory of Open Access Journals (Sweden)

    Irshad S.

    2012-09-01

    Full Text Available In this review, we have discussed a role of stem cells in the treatment of genetic diseases including cochlear and retinal regeneration. The most perceptive use of stem cells at the genetic diseases is cellular repair of tissues affected by a genetic mutation when stem cells without such mutation are transplanted to restore normal tissue function.

  8. Advances in stem cell research

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@In 1998, biologists Thomson and Gearhart successfully derived stem cells from human embryos. One year later, several researchers discovered that adult stem cells still retain the ability to be differentiated into unrelated types of cells. Advances in stem cell research open a promising direction for applied medical science. Moreover, it may also force scientists to reconsider the fundamental theory about how cells grow up. Stem cell research was considered by Science as the top of the ten breakthroughs of science of the year[1]. This paper gives a survey of recent advances in stem cell research. 1 Overview In the 1980s, embryonic stem cell and/or embryonic germ cell line (ES cell line, EG cell line) of multifarious mammalian animals, especially those of non-human pri-mates, had been established. In 1998, Thomson and Shamblott obtained ES, EG cell lines from human blasto-cysts and gonad ridges of early human embryos, respec-tively. Their research brought up an ethical debate about whether human embryos can be used as experimental materials. It was not appeased until 1999 when research-ers discovered that stem cells from adults still retain the ability to become different kinds of tissue cells. For in-stance, brain cells can become blood cells[2], and cells from bone marrow can become cells in liver. Scientists believe, for a long time, that cells can only be developed from early pluripotent embryo cells; the differentiation potential of stem cells from mature tissues is restricted to only one of the cell types of the tissue where stem cells are obtained. Recent stem cell researches, however, sub-verted the traditional view of stem cells. These discoveries made scientists speed ahead with the work on adult stem cells, hoping to discover whether their promise will rival that of ES cells.

  9. Stem cells in dentistry--part I: stem cell sources.

    Science.gov (United States)

    Egusa, Hiroshi; Sonoyama, Wataru; Nishimura, Masahiro; Atsuta, Ikiru; Akiyama, Kentaro

    2012-07-01

    Stem cells can self-renew and produce different cell types, thus providing new strategies to regenerate missing tissues and treat diseases. In the field of dentistry, adult mesenchymal stem/stromal cells (MSCs) have been identified in several oral and maxillofacial tissues, which suggests that the oral tissues are a rich source of stem cells, and oral stem and mucosal cells are expected to provide an ideal source for genetically reprogrammed cells such as induced pluripotent stem (iPS) cells. Furthermore, oral tissues are expected to be not only a source but also a therapeutic target for stem cells, as stem cell and tissue engineering therapies in dentistry continue to attract increasing clinical interest. Part I of this review outlines various types of intra- and extra-oral tissue-derived stem cells with regard to clinical availability and applications in dentistry. Additionally, appropriate sources of stem cells for regenerative dentistry are discussed with regard to differentiation capacity, accessibility and possible immunomodulatory properties.

  10. Stem Cell Tracking by Nanotechnologies

    OpenAIRE

    Marzia Belicchi; Yvan Torrente; Franco Rustichelli; Fabrizio Fiori; Paola Razini; Silvia Erratico; Chiara Villa

    2010-01-01

    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission ...

  11. Characteristics of adult stem cells.

    Science.gov (United States)

    Gonzalez, Manuel A; Bernad, Antonio

    2012-01-01

    Stem cells are characterized by their unlimited ability to divide specifically; a stem cell is capable of making an immense number of copies of itself, maintaining the same characteristics. Moreover, these cells are able to generate several of the cell lineages which make up the body, including cells from the heart, liver, kidney, neurons, and muscles. Investigation of the mechanisms through which this differentiation occurs, the genes involved and the possibility of increasing the efficiency with which stem cells can be isolated and/or characterized are currently among the most important fields in biology and biomedicine.To date, stems cells have been identified from four different sources: Embryonic stem cells (ESC), germinal stem cells, and those derived from embryonic carcinomas (teratocarcinomas) and from somatic tissues (somatic stem cells). The latter are called adult stem cells (ASC) when they are found in postnatal tissues. We now know that there is a great diversity among ASC, with some tissues, such as the bone marrow, containing more than one type of ASC. Adult stem cells have several characteristics that make them to be the main players in current regenerative medicine and are being investigated as potential therapeutic agents for a wide variety of diseases. Specifically, HSC and MSC are being assessed in increasing numbers of clinical trials.

  12. Stem cell tracking by nanotechnologies.

    Science.gov (United States)

    Villa, Chiara; Erratico, Silvia; Razini, Paola; Fiori, Fabrizio; Rustichelli, Franco; Torrente, Yvan; Belicchi, Marzia

    2010-03-12

    Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET), single-photon emission tomography (SPECT), magnetic resonance (MR) imaging, and X-Ray computed microtomography (microCT). This review examines the use of nanotechnologies for stem cell tracking.

  13. Stem Cell Tracking by Nanotechnologies

    Directory of Open Access Journals (Sweden)

    Marzia Belicchi

    2010-03-01

    Full Text Available Advances in stem cell research have provided important understanding of the cell biology and offered great promise for developing new strategies for tissue regeneration. The beneficial effects of stem cell therapy depend also by the development of new approachs for the track of stem cells in living subjects over time after transplantation. Recent developments in the use of nanotechnologies have contributed to advance of the high-resolution in vivo imaging methods, including positron emission tomography (PET, single-photon emission tomography (SPECT, magnetic resonance (MR imaging, and X-Ray computed microtomography (microCT. This review examines the use of nanotechnologies for stem cell tracking.

  14. Stem cells and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the de-velopment of old-aging society, the incidence of neurodegenerative diseases is on the increase. How-ever, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegen-erative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson’s disease, Alzheimer’s disease, Hunt-ington’s disease and Amyotrophic lateral sclerosis/Lou Gehrig’s disease.

  15. Stem cells and neurodegenerative diseases.

    Science.gov (United States)

    Hou, LingLing; Hong, Tao

    2008-04-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the development of old-aging society, the incidence of neurodegenerative diseases is on the increase. However, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegenerative diseases of animal model. Here we review the progress and prospects of various stem cells, including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington' disease and Amyotrophic lateral sclerosis/Lou Gehrig's disease.

  16. Stem cells and neurodegenerative diseases

    Institute of Scientific and Technical Information of China (English)

    HOU LingLing; HONG Tao

    2008-01-01

    Neurodegenerative diseases are characterized by the neurodegenerative changes or apoptosis of neurons involved in networks, which are important to specific physiological functions. With the development of old-aging society, the incidence of neurodegenerative diseases is on the increase. However, it is difficult to diagnose for most of neurodegenerative diseases. At present, there are too few effective therapies. Advances in stem cell biology have raised the hope and possibility for the therapy of neurodegenerative diseases. Recently, stem cells have been widely attempted to treat neurodegenerative diseases of animal model. Here we review the progress and prospects of various stem cells,including embryonic stem cells, mesenchymal stem cell and neural stem cells and so on, for the treatments of neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, Huntington's disease and Amyotrophic lateral sclerosis/Lou Gehrig's disease.

  17. [Stem cells and cardiac regeneration].

    Science.gov (United States)

    Perez Millan, Maria Ines; Lorenti, Alicia

    2006-01-01

    Stem cells are defined by virtue of their functional attributes: absence of tissue specific differentitated markers, capable of proliferation, able to self-maintain the population, able to produce a large number of differentiated, functional progeny, able to regenerate the tissue after injury. Cell therapy is an alternative for the treatment of several diseases, like cardiac diseases (cell cardiomyoplasty). A variety of stem cells could be used for cardiac repair: from cardiac and extracardiac sources. Each cell type has its own profile of advantages, limitations, and practicability issues in specific clinical settings. Differentiation of bone marrow stem cells to cardiomyocyte-like cells have been observed under different culture conditions. The presence of resident cardiac stem cell population capable of differentiation into cardiomyocyte or vascular lineage suggests that these cells could be used for cardiac tissue repair, and represent a great promise for clinical application. Stem cells mobilization by cytokines may also offer a strategy for cardiac regeneration. The use of stem cells (embryonic and adult) may hold the key to replacing cells lost in many devastating diseases. This potential benefit is a major focus for stem cell research.

  18. Human stromal (mesenchymal) stem cells

    DEFF Research Database (Denmark)

    Aldahmash, Abdullah; Zaher, Walid; Al-Nbaheen, May

    2012-01-01

    Human stromal (mesenchymal) stem cells (hMSC) represent a group of non-hematopoietic stem cells present in the bone marrow stroma and the stroma of other organs including subcutaneous adipose tissue, placenta, and muscles. They exhibit the characteristics of somatic stem cells of self......-renewal and multi-lineage differentiation into mesoderm-type of cells, e.g., to osteoblasts, adipocytes, chondrocytes and possibly other cell types including hepatocytes and astrocytes. Due to their ease of culture and multipotentiality, hMSC are increasingly employed as a source for cells suitable for a number...

  19. Involvement of plant stem cells or stem cell-like cells in dedifferentiation

    Directory of Open Access Journals (Sweden)

    Fangwei eJiang

    2015-11-01

    Full Text Available Dedifferentiation is the transformation of cells from a given differentiated state to a less differentiated or stem cell-like state. Stem cell-related genes play important roles in dedifferentiation, which exhibits similar histone modification and DNA methylation features to stem cell maintenance. Hence, stem cell-related factors possibly synergistically function to provide a specific niche beneficial to dedifferentiation. During callus formation in Arabidopsis petioles, cells adjacent to procambium cells (stem cell-like cells are dedifferentiated and survive more easily than other cell types. This finding indicates that stem cells or stem cell-like cells may influence the dedifferentiating niche. In this paper, we provide a brief overview of stem cell maintenance and dedifferentiation regulation. We also summarize current knowledge of genetic and epigenetic mechanisms underlying the balance between differentiation and dedifferentiation. Furthermore, we discuss the correlation of stem cells or stem cell-like cells with dedifferentiation.

  20. Stem cells for spine surgery

    Institute of Scientific and Technical Information of China (English)

    Joshua Schroeder; Janina Kueper; Kaplan Leon; Meir Liebergall

    2015-01-01

    In the past few years, stem cells have become the focusof research by regenerative medicine professionals andtissue engineers. Embryonic stem cells, although capableof differentiating into cell lineages of all three germlayers, are limited in their utilization due to ethical issues.In contrast, the autologous harvest and subsequenttransplantation of adult stem cells from bone marrow,adipose tissue or blood have been experimentally utilizedin the treatment of a wide variety of diseases rangingfrom myocardial infarction to Alzheimer's disease. Thephysiologic consequences of stem cell transplantationand its impact on functional recovery have been studiedin countless animal models and select clinical trials.Unfortunately, the bench to bedside translation of thisresearch has been slow. Nonetheless, stem cell therapyhas received the attention of spinal surgeons due to itspotential benefits in the treatment of neural damage,muscle trauma, disk degeneration and its potentialcontribution to bone fusion.

  1. Bioprinting for stem cell research.

    Science.gov (United States)

    Tasoglu, Savas; Demirci, Utkan

    2013-01-01

    Recently, there has been growing interest in applying bioprinting techniques to stem cell research. Several bioprinting methods have been developed utilizing acoustics, piezoelectricity, and lasers to deposit living cells onto receiving substrates. Using these technologies, spatially defined gradients of immobilized biomolecules can be engineered to direct stem cell differentiation into multiple subpopulations of different lineages. Stem cells can also be patterned in a high-throughput manner onto flexible implementation patches for tissue regeneration or onto substrates with the goal of accessing encapsulated stem cells of interest for genomic analysis. Here, we review recent achievements with bioprinting technologies in stem cell research, and identify future challenges and potential applications including tissue engineering and regenerative medicine, wound healing, and genomics.

  2. Stem Cells and Tissue Engineering

    CERN Document Server

    Pavlovic, Mirjana

    2013-01-01

    Stem cells are the building blocks for all other cells in an organism. The human body has about 200 different types of cells and any of those cells can be produced by a stem cell. This fact emphasizes the significance of stem cells in transplantational medicine, regenerative therapy and bioengineering. Whether embryonic or adult, these cells can be used for the successful treatment of a wide range of diseases that were not treatable before, such as osteogenesis imperfecta in children, different forms of leukemias, acute myocardial infarction, some neural damages and diseases, etc. Bioengineering, e.g. successful manipulation of these cells with multipotential capacity of differentiation toward appropriate patterns and precise quantity, are the prerequisites for successful outcome and treatment. By combining in vivo and in vitro techniques, it is now possible to manage the wide spectrum of tissue damages and organ diseases. Although the stem-cell therapy is not a response to all the questions, it provides more...

  3. Stem cell mitochondria during aging.

    Science.gov (United States)

    Min-Wen, Jason Chua; Jun-Hao, Elwin Tan; Shyh-Chang, Ng

    2016-04-01

    Mitochondria are the central hubs of cellular metabolism, equipped with their own mitochondrial DNA (mtDNA) blueprints to direct part of the programming of mitochondrial oxidative metabolism and thus reactive oxygen species (ROS) levels. In stem cells, many stem cell factors governing the intricate balance between self-renewal and differentiation have been found to directly regulate mitochondrial processes to control stem cell behaviors during tissue regeneration and aging. Moreover, numerous nutrient-sensitive signaling pathways controlling organismal longevity in an evolutionarily conserved fashion also influence stem cell-mediated tissue homeostasis during aging via regulation of stem cell mitochondria. At the genomic level, it has been demonstrated that heritable mtDNA mutations and variants affect mammalian stem cell homeostasis and influence the risk for human degenerative diseases during aging. Because such a multitude of stem cell factors and signaling pathways ultimately converge on the mitochondria as the primary mechanism to modulate cellular and organismal longevity, it would be most efficacious to develop technologies to therapeutically target and direct mitochondrial repair in stem cells, as a unified strategy to combat aging-related degenerative diseases in the future.

  4. Skin Stem Cells in Skin Cell Therapy

    Directory of Open Access Journals (Sweden)

    Mollapour Sisakht

    2015-12-01

    Full Text Available Context Preclinical and clinical research has shown that stem cell therapy is a promising therapeutic option for many diseases. This article describes skin stem cells sources and their therapeutic applications. Evidence Acquisition Compared with conventional methods, cell therapy reduces the surgical burden for patients because it is simple and less time-consuming. Skin cell therapy has been developed for variety of diseases. By isolation of the skin stem cell from the niche, in vitro expansion and transplantation of cells offers a surprising healing capacity profile. Results Stem cells located in skin cells have shown interesting properties such as plasticity, transdifferentiation, and specificity. Mesenchymal cells of the dermis, hypodermis, and other sources are currently being investigated to promote regeneration. Conclusions Because skin stem cells are highly accessible from autologous sources and their immunological profile is unique, they are ideal for therapeutic approaches. Optimization of administrative routes requires more investigation own to the lack of a standard protocol.

  5. FDA Warns About Stem Cell Claims

    Science.gov (United States)

    ... Home For Consumers Consumer Updates FDA Warns About Stem Cell Claims Share Tweet Linkedin Pin it More sharing ... blood-forming system. back to top Regulation of Stem Cells FDA regulates stem cells in the U.S. to ...

  6. Stem cells in endodontic therapy

    Directory of Open Access Journals (Sweden)

    Sita Rama Kumar M, Madhu Varma K, Kalyan Satish R, Manikya kumar Nanduri.R, Murali Krishnam Raju S, Mohan rao

    2014-11-01

    Full Text Available Stem cells have the remarkable potential to develop into many different cell types in the body. Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish other cells as long as the person or animal is still alive. However, progress in stem cell biology and tissue engineering may present new options for replacing heavily damaged or lost teeth, or even individual tooth structures. The goal of this review is to discuss the potential impact of dental pulp stem cells on regenerative endodontics.

  7. Stem cells and respiratory diseases

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Soraia Carvalho; Maron-Gutierrez, Tatiana; Garcia, Cristiane Sousa Nascimento Baez; Morales, Marcelo Marcos; Rocco, Patricia Rieken Macedo [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Biofisica Carlos Chagas Filho. Lab. de Investigacao]. E-mail: prmrocco@biof.ufrj.br

    2008-12-15

    Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases. (author)

  8. Gastrointestinal stem cell up-to-date.

    Science.gov (United States)

    Pirvulet, V

    2015-01-01

    Cellular and tissue regeneration in the gastrointestinal tract depends on stem cells with properties of self-renewal, clonogenicity, and multipotency. Progress in stem cell research and the identification of potential gastric, intestinal, colonic stem cells new markers and the signaling pathways provide hope for the use of stem cells in regenerative medicine and treatments for disease. This review provides an overview of the different types of stem cells, focusing on tissue-restricted adult stem cells.

  9. Laryngeal cancer stem cells

    Directory of Open Access Journals (Sweden)

    Antonio Greco

    2016-03-01

    Full Text Available Laryngeal squamous cell carcinoma (LSCC is one of the most commonly diagnosed malignancies in the head and neck region with an increased incidence rate worldwide. Cancer stem cells (CSCs are a group of cells with eternal life or infinite self-renewal ability, which have high migrating, infiltrative, and metastatic abilities. Though CSCs only account for a small proportion in tumors, the high resistance to traditional therapy exempts them from therapy killing and thus they can reconstruct tumors. Our current knowledge, about CSCs in the LSCC, largely depends on head and neck studies with a lack of systematic data about the evidences of CSCs in tumorigenesis of LSCC. Certainly, the combination of therapies aimed at debulking the tumour (e.g. surgery, conventional chemotherapy, radiotherapy together with targeted therapies aimed at the elimination of the CSCs might have a positive impact on the long-term outcome of patients with laryngeal cancer (LC in the future and may cast a new light on the cancer treatment.

  10. Bone repair and stem cells.

    Science.gov (United States)

    Ono, Noriaki; Kronenberg, Henry M

    2016-10-01

    Bones are an important component of vertebrates; they grow explosively in early life and maintain their strength throughout life. Bones also possess amazing capabilities to repair-the bone is like new without a scar after complete repair. In recent years, a substantial progress has been made in our understanding on mammalian bone stem cells. Mouse genetic models are powerful tools to understand the cell lineage, giving us better insights into stem cells that regulate bone growth, maintenance and repair. Recent findings about these stem cells raise new questions that require further investigations.

  11. Bone regeneration and stem cells

    DEFF Research Database (Denmark)

    Arvidson, K; Abdallah, B M; Applegate, L A

    2011-01-01

    This invited review covers research areas of central importance for orthopedic and maxillofacial bone tissue repair, including normal fracture healing and healing problems, biomaterial scaffolds for tissue engineering, mesenchymal and fetal stem cells, effects of sex steroids on mesenchymal stem...... cells, use of platelet rich plasma for tissue repair, osteogenesis and its molecular markers. A variety of cells in addition to stem cells, as well as advances in materials science to meet specific requirements for bone and soft tissue regeneration by addition of bioactive molecules, are discussed....

  12. Stem cells and combinatorial science.

    Science.gov (United States)

    Fang, Yue Qin; Wong, Wan Qing; Yap, Yan Wen; Orner, Brendan P

    2007-09-01

    Stem cell-based technologies have the potential to help cure a number of cell degenerative diseases. Combinatorial and high throughput screening techniques could provide tools to control and manipulate the self-renewal and differentiation of stem cells. This review chronicles historic and recent progress in the stem cell field involving both pluripotent and multipotent cells, and it highlights relevant cellular signal transduction pathways. This review further describes screens using libraries of soluble, small-molecule ligands, and arrays of molecules immobilized onto surfaces while proposing future trends in similar studies. It is hoped that by reviewing both the stem cell and the relevant high throughput screening literature, this paper can act as a resource to the combinatorial science community.

  13. p53 in stem cells

    Institute of Scientific and Technical Information of China (English)

    Valeriya; Solozobova; Christine; Blattner

    2011-01-01

    p53 is well known as a "guardian of the genome" for differentiated cells,in which it induces cell cycle arrest and cell death after DNA damage and thus contributes to the maintenance of genomic stability.In addition to this tumor suppressor function for differentiated cells,p53 also plays an important role in stem cells.In this cell type,p53 not only ensures genomic integrity after genotoxic insults but also controls their proliferation and differentiation.Additionally,p53 provides an effective barrier for the generation of pluripotent stem celllike cells from terminally differentiated cells.In this review,we summarize our current knowledge about p53 activities in embryonic,adult and induced pluripotent stem cells.

  14. [Therapeutic use of stem cells. II. Adult stem cells].

    Science.gov (United States)

    Uzan, Georges

    2004-09-30

    Many degenerative diseases are not curable by means of classical medicine. The long term objective of cell therapy is to treat the patients with their own stem cells that could be either purified from the diseased organ or from "reservoirs" of stem cells such as that constituted by the bone marrow. The existence of stem cells in the organs or reservoirs is now established in vitro and in some cases, in animal models. Numbers of technical problems linked to the scarcity of these cells still delay the clinical use of purified stem cells. However, clinical protocols using heterogeneous cell populations have already started to treat a growing number of diseases. In some case, autologous cells can be used, as it is the case for bone marrow transplantation in blood diseases. Mesenchymal cells, also purified from the bone marrow are currently used in orthopaedic diseases. Because these cells reveal a broad differentiation potential, active research programs explore their possible use for treatment of other diseases. Bone marrow also contains vascular stem cells that could be active in reappearing defective vessels responsible for ischaemic diseases. Indeed, clinical trials in which bone marrow cells are injected in the cardiac muscle of patients with myocardial infarction or in the leg muscle (gastrocnemius) of patients with hind limb ischaemia have already started. Artificial skin prepared from skin biopsies is used for the reconstitution of the derma of severely burned patients. Clinical trials have also started, using allogenic cells. The patients must be treated by immunosuppressive drugs. Neurodegenerative diseases such as Parkinson have been successfully treated by intra-cerebral injection of foetal neurones. Pancreatic islets implanted in the liver have shown to re-establish a normal glycaemia in diabetic patients. However, all these clinical trials use differentiated cells or at least progenitors which display differentiation potential and lifetime much more

  15. Mesenchymal Stem Cells and Tooth Engineering

    Institute of Scientific and Technical Information of China (English)

    Li Peng; Ling Ye; Xue-dong Zhou

    2009-01-01

    Tooth loss compromises human oral health. Although several prosthetic methods, such as artificial denture and dental implants, are clinical therapies to tooth loss problems, they are thought to have safety and usage time issues. Recently, tooth tissue engineering has attracted more and more attention. Stem cell based tissue engineering is thought to be a promising way to replace the missing tooth. Mesenchymal stem cells (MSCs) are multipotent stem cells which can differentiate into a variety of cell types. The potential MSCs for tooth regeneration mainly include stem cells from human exfoliated deciduous teeth (SHEDs), adult dental pulp stem cells (DPSCs), stem cells from the apical part of the papilla (SCAPs), stem cells from the dental follicle (DFSCs), periodontal ligament stem cells (PDLSCs) and bone marrow derived mesenchymal stem cells (BMSCs). This review outlines the recent progress in the mesenchymal stem cells used in tooth regeneration.

  16. [Progress in stem cells and regenerative medicine].

    Science.gov (United States)

    Wang, Libin; Zhu, He; Hao, Jie; Zhou, Qi

    2015-06-01

    Stem cells have the ability to differentiate into all types of cells in the body and therefore have great application potential in regenerative medicine, in vitro disease modelling and drug screening. In recent years, stem cell technology has made great progress, and induced pluripotent stem cell technology revolutionizes the whole stem cell field. At the same time, stem cell research in our country has also achieved great progress and becomes an indispensable power in the worldwide stem cell research field. This review mainly focuses on the research progress in stem cells and regenerative medicine in our country since the advent of induced pluripotent stem cell technology, including induced pluripotent stem cells, transdifferentiation, haploid stem cells, and new gene editing tools.

  17. Stem cell research in hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Chengyi SUN; Shi ZUO

    2008-01-01

    The traditional view that adult human liver tumors, mainly hepatocellular carcinoma (HCC), arise from mature cell types has been challenged in recent dec-ades. The results of several studies suggest that HCC can be derived from liver stem cells. There are four levels of cells in the liver stem cell lineage: hepatocytes, hepatic stem cells/oval cells, bone marrow stem cells and hepato-pancreas stem cells. However, whether HCC is resulted from the differentiation block of stem cells and, moreover, which liver stem cell lineage is the source cell of hepatocarcinogenesis remain controversial. In this review, we focus on the current status of liver stem cell research and their roles in carcinogenesis of HCC, in order to explore new approaches for stem cell therapy of HCC.

  18. Human embryonic stem cells handbook

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-03-01

    Full Text Available After the Nobel prize in physiology or medicine was awarded jointly to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent it became imperative to write down the review for a book entirely devoted to human embryonic stem cells (hES, those cells that are a urgent need for researchers, those cells that rekindle the ethical debates and finally, last but not least, those cells whose study paved the way to obtain induced pluripotent stem cells by the OSKC’s Yamanaka method (the OSKC acronim refers, for those not familiar with the topic, to the four stemness genes used to transfect somatic fibroblasts: Oct4, Sox2, Klf4 and c-Myc....

  19. Road for understanding cancer stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Erzik, Can

    2007-01-01

    There is increasing evidence suggesting that stem cells are susceptive to carcinogenesis and, consequently, can be the origin of many cancers. Recently, the neoplastic potential of stem cells has been supported by many groups showing the existence of subpopulations with stem cell characteristics...... in tumor biopsies such as brain and breast. Evidence supporting the cancer stem cell hypothesis has gained impact due to progress in stem cell biology and development of new models to validate the self-renewal potential of stem cells. Recent evidence on the possible identification of cancer stem cells may...... offer an opportunity to use these cells as future therapeutic targets. Therefore, model systems in this field have become very important and useful. This review will focus on the state of knowledge on cancer stem cell research, including cell line models for cancer stem cells. The latter will, as models...

  20. Dental Stem Cell in Tooth Development and Advances of Adult Dental Stem Cell in Regenerative Therapies.

    Science.gov (United States)

    Tan, Jiali; Xu, Xin; Lin, Jiong; Fan, Li; Zheng, Yuting; Kuang, Wei

    2015-01-01

    Stem cell-based therapies are considered as a promising treatment for many clinical usage such as tooth regeneration, bone repairation, spinal cord injury, and so on. However, the ideal stem cell for stem cell-based therapy still remains to be elucidated. In the past decades, several types of stem cells have been isolated from teeth, including dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSCs), dental follicle progenitor stem cells (DFPCs) and stem cells from apical papilla (SCAP), which may be a good source for stem cell-based therapy in certain disease, especially when they origin from neural crest is considered. In this review, the specific characteristics and advantages of the adult dental stem cell population will be summarized and the molecular mechanisms of the differentiation of dental stem cell during tooth development will be also discussed.

  1. Development and application of stem cells

    Institute of Scientific and Technical Information of China (English)

    HUI Guo-zhen; SHAN Li-dong

    2005-01-01

    @@ Stem cells are defined by two important characteristics: the ability to proliferate by a process of self-renewal and the potential to form at least one specialized cell type. Transient population of pluripotent or multipotent stem cells first appear during the development at the first days post coitum. The cells of the inner cell mass (ICM) of the blastocyst, of which embryonic stem cells (ES) are the in vitro counterpart, can give rise to any differentiated cell type in the three primary germ layers of the embryo (endoderm, mesoderm and ectoderm).1-3 These cells gradually mature into committed, organ- and tissue-specific stem cells or adult stem cells, such as neural stem cells, mesenchymal stem cells, hematopoietic stem cells, etc. Over the past years, studies have focused on two aspects: molecular level and application, and some new methods and technology have been used.

  2. Flexibility of neural stem cells

    Directory of Open Access Journals (Sweden)

    Eumorphia eRemboutsika

    2011-04-01

    Full Text Available Embryonic cortical neural stem cells are self-renewing progenitors that can differentiate into neurons and glia. We generated neurospheres from the developing cerebral cortex using a mouse genetic model that allows for lineage selection and found that the self-renewing neural stem cells are restricted to Sox2 expressing cells. Under normal conditions, embryonic cortical neurospheres are heterogeneous with regard to Sox2 expression and contain astrocytes, neural stem cells and neural progenitor cells sufficiently plastic to give rise to neural crest cells when transplanted into the hindbrain of E1.5 chick and E8 mouse embryos. However, when neurospheres are maintained under lineage selection, such that all cells express Sox2, neural stem cells maintain their Pax6+ cortical radial glia identity and exhibit a more restricted fate in vitro and after transplantation. These data demonstrate that Sox2 preserves the cortical identity and regulates the plasticity of self-renewing Pax6+ radial glia cells.

  3. [Therapeutic use of stem cells].

    Science.gov (United States)

    Uzan, Georges

    2004-09-15

    Stem cells display important capacities of self renewing, proliferation and differentiation. Because those present in the embryo have the more remarkable properties, their potential use in the therapy of until now incurable degenerative diseases have been envisioned. Embryonic stem (ES) cells are located in the inner mass of the balstocyst at early stages of the development. Even in long-term cultures they still retain their undifferentiated features. Under specific culture conditions, ES cells can be committed into a variety of differentiation pathways, giving rise to large amounts of cells corresponding to different tissues (neurones, cardiomyocytes, skeletal muscle, etc.). However, producing these tissues from already established ES cell lines would lead to immune rejection when transplanted to patients. To prevent this pitfall and using the expertise accumulated by animal cloning by nucleus transfer, it has been proposed to adapt this technique to human ES cells. The therapeutic cloning consists in transferring the nucleus of somatic stem cells isolated from the patient into an enucleated oocyte, to allow blastocyst development from which ES cells will be derived. From these stem cells, compatible tissues will be then produced. The problem is that it is in theoretically possible to reimplant the cloned blastocyst into a surrogate mother for obtaining a baby genetically identical to the donor. This is called reproductive cloning. This worrying risk raises important ethic and legal questions.

  4. Adipose-Derived Stem Cells

    DEFF Research Database (Denmark)

    Toyserkani, Navid Mohamadpour; Quaade, Marlene Louise; Sheikh, Søren Paludan

    2015-01-01

    Emerging evidence has shown that adipose tissue is the richest and most accessible source of mesenchymal stem cells. Many different therapies for chronic wounds exist with varying success rates. The capacity of adipose-derived stem cells (ASCs) to promote angiogenesis, secrete growth factors......, regulate the inflammatory process, and differentiate into multiple cell types makes them a potential ideal therapy for chronic wounds. The aim of this article was to review all preclinical trials using ASCs in problem wound models. A systematic search was performed and 12 studies were found where different...

  5. Stem cells' exodus: a journey to immortality.

    Science.gov (United States)

    Zhou, Yi; Lewallen, Michelle; Xie, Ting

    2013-01-28

    Stem cell niches provide a regulatory microenvironment that retains stem cells and promotes self-renewal. Recently in Developmental Cell, Rinkevich et al. (2013) showed that cell islands (CIs) of Botryllus schlosseri, a colonial chordate, provide niches for maintaining cycling stem cells that migrate from degenerated CIs to newly formed buds.

  6. The spermatogonial stem cell niche

    NARCIS (Netherlands)

    D.G. de Rooij

    2009-01-01

    Spermatogonial stem cells (SSCs; A(s) spermatogonia) and their direct descendants (A(pr) and A(al) spermatogonia) are preferentially located in those areas of the seminiferous tubules that border on the interstitial tissue. Fewer of these cells are present in tubule areas directly bordering on anoth

  7. Common stemness regulators of embryonic and cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Christiana; Hadjimichael; Konstantina; Chanoumidou; Natalia; Papadopoulou; Panagiota; Arampatzi; Joseph; Papamatheakis; Androniki; Kretsovali

    2015-01-01

    Pluripotency of embryonic stem cells(ESCs) and induced pluripotent stem cells is regulated by a well characterized gene transcription circuitry. The circuitry is assembled by ESC specific transcription factors, signal trans-ducing molecules and epigenetic regulators. Growing understanding of stem-like cells, albeit of more complex phenotypes, present in tumors(cancer stem cells), provides a common conceptual and research frame-work for basic and applied stem cell biology. In this review, we highlight current results on biomarkers, gene signatures, signaling pathways and epigenetic regulators that are common in embryonic and cancer stem cells. We discuss their role in determining the cell phenotype and finally, their potential use to design next generation biological and pharmaceutical approaches for regenerative medicine and cancer therapies.

  8. Introduction to stem cells and regenerative medicine.

    Science.gov (United States)

    Kolios, George; Moodley, Yuben

    2013-01-01

    Stem cells are a population of undifferentiated cells characterized by the ability to extensively proliferate (self-renewal), usually arise from a single cell (clonal), and differentiate into different types of cells and tissue (potent). There are several sources of stem cells with varying potencies. Pluripotent cells are embryonic stem cells derived from the inner cell mass of the embryo and induced pluripotent cells are formed following reprogramming of somatic cells. Pluripotent cells can differentiate into tissue from all 3 germ layers (endoderm, mesoderm, and ectoderm). Multipotent stem cells may differentiate into tissue derived from a single germ layer such as mesenchymal stem cells which form adipose tissue, bone, and cartilage. Tissue-resident stem cells are oligopotent since they can form terminally differentiated cells of a specific tissue. Stem cells can be used in cellular therapy to replace damaged cells or to regenerate organs. In addition, stem cells have expanded our understanding of development as well as the pathogenesis of disease. Disease-specific cell lines can also be propagated and used in drug development. Despite the significant advances in stem cell biology, issues such as ethical controversies with embryonic stem cells, tumor formation, and rejection limit their utility. However, many of these limitations are being bypassed and this could lead to major advances in the management of disease. This review is an introduction to the world of stem cells and discusses their definition, origin, and classification, as well as applications of these cells in regenerative medicine.

  9. Stem Cell Transplantation for Neuroprotection in Stroke

    Directory of Open Access Journals (Sweden)

    Cesar V. Borlongan

    2013-03-01

    Full Text Available Stem cell-based therapies for stroke have expanded substantially over the last decade. The diversity of embryonic and adult tissue sources provides researchers with the ability to harvest an ample supply of stem cells. However, the optimal conditions of stem cell use are still being determined. Along this line of the need for optimization studies, we discuss studies that demonstrate effective dose, timing, and route of stem cells. We recognize that stem cell derivations also provide uniquely individual difficulties and limitations in their therapeutic applications. This review will outline the current knowledge, including benefits and challenges, of the many current sources of stem cells for stroke therapy.

  10. Chemical approaches to studying stem cell biology

    Institute of Scientific and Technical Information of China (English)

    Wenlin Li; Kai Jiang; Wanguo Wei; Yan Shi; Sheng Ding

    2013-01-01

    Stem cells,including both pluripotent stem cells and multipotent somatic stem cells,hold great potential for interrogating the mechanisms of tissue development,homeostasis and pathology,and for treating numerous devastating diseases.Establishment of in vitro platforms to faithfully maintain and precisely manipulate stem cell fates is essential to understand the basic mechanisms of stem cell biology,and to translate stem cells into regenerative medicine.Chemical approaches have recently provided a number of small molecules that can be used to control cell selfrenewal,lineage differentiation,reprogramming and regeneration.These chemical modulators have been proven to be versatile tools for probing stem cell biology and manipulating cell fates toward desired outcomes.Ultimately,this strategy is promising to be a new frontier for drug development aimed at endogenous stem cell modulation.

  11. Stem cells sources for intervertebral disc regeneration

    Institute of Scientific and Technical Information of China (English)

    Gianluca; Vadalà; Fabrizio; Russo; Luca; Ambrosio; Mattia; Loppini; Vincenzo; Denaro

    2016-01-01

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments.Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers(e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration.

  12. Stem cells sources for intervertebral disc regeneration.

    Science.gov (United States)

    Vadalà, Gianluca; Russo, Fabrizio; Ambrosio, Luca; Loppini, Mattia; Denaro, Vincenzo

    2016-05-26

    Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration.

  13. New Advanced Technologies in Stem Cell Therapy

    Science.gov (United States)

    2013-09-01

    Stem Cells and Development , vol. 21, no. 8, pp. 1299–1308, 2012. [25] B. Zheng, B...Matsumoto, H. Eto et al., “Functional implications of CD34 expression in human adipose-derived stem/progenitor cells,” Stem Cells and Development , vol...and progenitor cells within adipose tissue,” Stem Cells and Development , vol. 17, no. 6, pp. 1053–1063, 2008. [43] H. Li, L. Zimmerlin, K. G. Marra,

  14. Characterization and comparison of osteoblasts derived from mouse embryonic stem cells and induced pluripotent stem cells

    NARCIS (Netherlands)

    Ma, Ming-San; Kannan, Vishnu; de Vries, Anneriek E; Czepiel, Marcin; Wesseling, Evelyn M; Balasubramaniyan, Veerakumar; Kuijer, Roelof; Vissink, Arjan; Copray, Sjef C V M; Raghoebar, Gerry M

    2016-01-01

    New developments in stem cell biology offer alternatives for the reconstruction of critical-sized bone defects. One of these developments is the use of induced pluripotent stem (iPS) cells. These stem cells are similar to embryonic stem (ES) cells, but can be generated from adult somatic cells and t

  15. European stem cell research in legal shackles

    NARCIS (Netherlands)

    Nielen, M.G.; de Vries, S.A.; Geijsen, N.

    2013-01-01

    Advances in stem cell biology have raised legal challenges to the patentability of stem cells and any derived technologies and processes. In 1999, Oliver Brustle was granted a patent for the generation and therapeutic use of neural cells derived from human embryonic stem cells (hESCs). The patent wa

  16. Human fetal mesenchymal stem cells.

    Science.gov (United States)

    O'Donoghue, Keelin; Chan, Jerry

    2006-09-01

    Stem cells have been isolated at all stages of development from the early developing embryo to the post-reproductive adult organism. However, the fetal environment is unique as it is the only time in ontogeny that there is migration of stem cells in large numbers into different organ compartments. While fetal neural and haemopoietic stem cells (HSC) have been well characterised, only recently have mesenchymal stem cells from the human fetus been isolated and evaluated. Our group have characterised in human fetal blood, liver and bone marrow a population of non-haemopoietic, non-endothelial cells with an immunophenotype similar to adult bone marrow-derived mesenchymal stem cells (MSC). These cells, human fetal mesenchymal stem cells (hfMSC), are true multipotent stem cells with greater self-renewal and differentiation capacity than their adult counterparts. They circulate in first trimester fetal blood and have been found to traffic into the maternal circulation, engrafting in bone marrow, where they remain microchimeric for decades after pregnancy. Though fetal microchimerism has been implicated in the pathogenesis of autoimmune disease, the biological role of hfMSC microchimerism is unknown. Potential downstream applications of hfMSC include their use as a target cell for non-invasive pre-natal diagnosis from maternal blood, and for fetal cellular and gene therapy. Using hfMSC in fetal therapy offers the theoretical advantages of avoidance of immune rejection, increased engraftment, and treatment before disease pathology sets in. Aside from allogeneic hfMSC in utero transplantation, the use of autologous hfMSC has been brought a step forward with the development of early blood sampling techniques, efficient viral transduction and clonal expansion. Work is ongoing to determine hfMSC fate post-transplantation in murine models of genetic disease. In this review we will examine what is known about hfMSC biology, as well as discussing areas for future research. The

  17. Emerging molecular approaches in stem cell biology.

    Science.gov (United States)

    Jaishankar, Amritha; Vrana, Kent

    2009-04-01

    Stem cells are characterized by their ability to self-renew and differentiate into multiple adult cell types. Although substantial progress has been made over the last decade in understanding stem cell biology, recent technological advances in molecular and systems biology may hold the key to unraveling the mystery behind stem cell self-renewal and plasticity. The most notable of these advances is the ability to generate induced pluripotent cells from somatic cells. In this review, we discuss our current understanding of molecular similarities and differences among various stem cell types. Moreover, we survey the current state of systems biology and forecast future needs and direction in the stem cell field.

  18. The regulatory niche of intestinal stem cells.

    Science.gov (United States)

    Sailaja, Badi Sri; He, Xi C; Li, Linheng

    2016-09-01

    The niche constitutes a unique category of cells that support the microenvironment for the maintenance and self-renewal of stem cells. Intestinal stem cells reside at the base of the crypt, which contains adjacent epithelial cells, stromal cells and smooth muscle cells, and soluble and cell-associated growth and differentiation factors. We summarize here recent advances in our understanding of the crucial role of the niche in regulating stem cells. The stem cell niche maintains a balance among quiescence, proliferation and regeneration of intestinal stem cells after injury. Mesenchymal cells, Paneth cells, immune cells, endothelial cells and neural cells are important regulatory components that secrete niche ligands, growth factors and cytokines. Intestinal homeostasis is regulated by niche signalling pathways, specifically Wnt, bone morphogenetic protein, Notch and epidermal growth factor. These insights into the regulatory stem cell niche during homeostasis and post-injury regeneration offer the potential to accelerate development of therapies for intestine-related disorders.

  19. Systems Biology and Stem Cell Pluripotency

    DEFF Research Database (Denmark)

    Mashayekhi, Kaveh; Hall, Vanessa; Freude, Kristine

    2016-01-01

    Recent breakthroughs in stem cell biology have accelerated research in the area of regenerative medicine. Over the past years, it has become possible to derive patient-specific stem cells which can be used to generate different cell populations for potential cell therapy. Systems biological...... modeling of stem cell pluripotency and differentiation have largely been based on prior knowledge of signaling pathways, gene regulatory networks, and epigenetic factors. However, there is a great need to extend the complexity of the modeling and to integrate different types of data, which would further...... improve systems biology and its uses in the field. In this chapter, we first give a general background on stem cell biology and regenerative medicine. Stem cell potency is introduced together with the hierarchy of stem cells ranging from pluripotent embryonic stem cells (ESCs) and induced pluripotent stem...

  20. nduced pluripotent stem cells and cell therapy

    Directory of Open Access Journals (Sweden)

    Banu İskender

    2013-12-01

    Full Text Available Human embryonic stem cells are derived from the inner cell mass of a blastocyst-stage embryo. They hold a huge promise for cell therapy with their self-renewing ability and pluripotency, which is known as the potential to differentiate into all cell types originating from three embryonic germ layers. However, their unique pluripotent feature could not be utilised for therapeutic purposes due to the ethical and legal problems during derivation. Recently, it was shown that the cells from adult tissues could be reverted into embryonic state, thereby restoring their pluripotent feature. This has strenghtened the possiblity of directed differentition of the reprogrammed somatic cells into the desired cell types in vitro and their use in regenerative medicine. Although these cells were termed as induced pluripotent cells, the mechanism of pluripotency has yet to be understood. Still, induced pluripotent stem cell technology is considered to be significant by proposing novel approaches in disease modelling, drug screening and cell therapy. Besides their self-renewing ability and their potential to differentiate into all cell types in a human body, they arouse a great interest in scientific world by being far from the ethical concerns regarding their embryonic counterparts and their unique feature of being patient-specific in prospective cell therapies. In this review, induced pluripotent stem cell technology and its role in cell-based therapies from past to present will be discussed. J Clin Exp Invest 2013; 4 (4: 550-561

  1. Can Stem Cell 'Patch' Help Heart Failure?

    Science.gov (United States)

    ... https://medlineplus.gov/news/fullstory_164475.html Can Stem Cell 'Patch' Help Heart Failure? Small improvement seen over ... Scientists report another step in the use of stem cells to help treat people with debilitating heart failure. ...

  2. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  3. Stem Cell Transplant Patients and Fungal Infections

    Science.gov (United States)

    ... Foodborne, Waterborne, and Environmental Diseases Mycotic Diseases Branch Stem Cell Transplant Patients and Fungal Infections Recommend on Facebook ... Mold . Top of Page Preventing fungal infections in stem cell transplant patients Fungi are difficult to avoid because ...

  4. Blood-Forming Stem Cell Transplants

    Science.gov (United States)

    ... to Ask about Your Treatment Research Blood-Forming Stem Cell Transplants On This Page What are bone marrow ... Considering becoming a bone marrow or a blood stem cell donor? View this video on YouTube. Follow a ...

  5. Stem cells: A tale of two kingdoms.

    Science.gov (United States)

    Benfey, P N

    1999-03-11

    Homologous genes have recently been shown to regulate stem cell maintenance in animals and plants. This discovery should facilitate elucidation of the poorly understood factors that control stem cell maintenance and differentiation.

  6. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  7. Ethics and Governance of Stem Cell Banks.

    Science.gov (United States)

    Chalmers, Donald; Rathjen, Peter; Rathjen, Joy; Nicol, Dianne

    2017-01-01

    This chapter examines the ethical principles and governance frameworks for stem cell banks. Good governance of stem cell banks should balance facilitation of the clinical use of stem cells with the proper respect and protection of stem cell sample providers and stem cell recipients and ensure compliance with national regulatory requirements to foster public trust in the use of stem cell technology. Stem cell banks must develop with regard to the science, the needs of scientists, and the requirements of the public, which will benefit from this science. Given the international reach of this promising research and its clinical application, it is necessary for stem cell bank governance frameworks to be harmonized across jurisdictions.

  8. Stem cells: a plant biology perspective

    NARCIS (Netherlands)

    Scheres, B.J.G.

    2005-01-01

    A recent meeting at the Juan March Foundation in Madrid, Spain brought together plant biologists to discuss the characteristics of plant stem cells that are unique and those that are shared by stem cells from the animal kingdom

  9. Becoming a Blood Stem Cell Donor

    Science.gov (United States)

    ... total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from NCIcancertopics? Cancel Unsubscribe ... Ever considered becoming a bone marrow or blood stem cell donor? Follow this true story of a former ...

  10. International Society for Stem Cell Research

    Science.gov (United States)

    ... Industry Committee Session RUCDR Humanity in a Dish Stem Cell Engineering Junior Investigator Events Career Panel Meet the ... Scientific Program Confirmed Speakers Support/Exhibit Meeting Supporters Stem Cell Engineering 2014 Program Committee Featured Speakers Deepak Srivastava ...

  11. Stem cell technology for neurodegenerative diseases.

    Science.gov (United States)

    Lunn, J Simon; Sakowski, Stacey A; Hur, Junguk; Feldman, Eva L

    2011-09-01

    Over the past 20 years, stem cell technologies have become an increasingly attractive option to investigate and treat neurodegenerative diseases. In the current review, we discuss the process of extending basic stem cell research into translational therapies for patients suffering from neurodegenerative diseases. We begin with a discussion of the burden of these diseases on society, emphasizing the need for increased attention toward advancing stem cell therapies. We then explain the various types of stem cells utilized in neurodegenerative disease research, and outline important issues to consider in the transition of stem cell therapy from bench to bedside. Finally, we detail the current progress regarding the applications of stem cell therapies to specific neurodegenerative diseases, focusing on Parkinson disease, Huntington disease, Alzheimer disease, amyotrophic lateral sclerosis, and spinal muscular atrophy. With a greater understanding of the capacity of stem cell technologies, there is growing public hope that stem cell therapies will continue to progress into realistic and efficacious treatments for neurodegenerative diseases.

  12. Adipose-Derived Stem Cells

    NARCIS (Netherlands)

    Gathier, WA; Türktas, Z; Duckers, HJ

    2015-01-01

    Until recently bone marrow was perceived to be the only significant reservoir of stem cells in the body. However, it is now recognized that there are other and perhaps even more abundant sources, which include adipose tissue. Subcutaneous fat is readily available in most patients, and can easily be

  13. Culture of Mouse Neural Stem Cell Precursors

    OpenAIRE

    Currle, D. Spencer; Hu, Jia Sheng; Kolski-Andreaco, Aaron; Monuki, Edwin S

    2007-01-01

    Primary neural stem cell cultures are useful for studying the mechanisms underlying central nervous system development. Stem cell research will increase our understanding of the nervous system and may allow us to develop treatments for currently incurable brain diseases and injuries. In addition, stem cells should be used for stem cell research aimed at the detailed study of mechanisms of neural differentiation and transdifferentiation and the genetic and environmental signals that direct the...

  14. [Genetic regulation of plant shoot stem cells].

    Science.gov (United States)

    Al'bert, E V; Ezhova, T A

    2013-02-01

    This article describes the main features of plant stem cells and summarizes the results of studies of the genetic control of stem cell maintenance in the apical meristem of the shoot. It is demonstrated that the WUS-CLV gene system plays a key role in the maintenance of shoot apical stem cells and the formation of adventitious buds and somatic embryos. Unconventional concepts of plant stem cells are considered.

  15. Medaka fish stem cells and their applications

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Stem cells are present in developing embryos and adult tissues of multicellular organisms. Owing to their unique features, stem cells provide excellent opportunities for experimental analyses of basic developmental processes such as pluripotency control and cell fate decision and for regenerative medicine by stem cell-based therapy. Stem cell cultures have been best studied in 3 vertebrate organisms. These are the mouse, human and a small laboratory fish called medaka. Specifically, medaka has given rise to the first embryonic stem (ES) cells besides the mouse, the first adult testis-derived male stem cells spermatogonia capable of test-tube sperm production, and most recently, even haploid ES cells capable of producing Holly, a semi-cloned fertile female medaka from a mosaic oocyte created by microinjecting a haploid ES cell nucleus directly into a normal oocyte. These breakthroughs make medaka a favoring vertebrate model for stem cell research, the topic of this review.

  16. College Students' Conceptions of Stem Cells, Stem Cell Research, and Cloning

    Science.gov (United States)

    Concannon, James P.; Siegel, Marcelle A.; Halverson, Kristy; Freyermuth, Sharyn

    2010-01-01

    In this study, we examined 96 undergraduate non-science majors' conceptions of stem cells, stem cell research, and cloning. This study was performed at a large, Midwest, research extensive university. Participants in the study were asked to answer 23 questions relating to stem cells, stem cell research, and cloning in an on-line assessment before…

  17. Stemness & Niche sans Frontiers – The Cancer Stem Cell myth

    Directory of Open Access Journals (Sweden)

    Editorial

    2014-04-01

    Full Text Available The niche or the environment in which the cells reside and/or develop plays a major role in influencing the behaviour and characteristics of those cells. In case of normal stem cells, the niche acts as a physical anchoring site and the adhesion molecules therein help with their interaction [1]. The niche secretes extrinsic factors that control the self-renewal and lineage differentiation of the stem cells, thereby guiding them towards a pre-determined path of differentiation. For eg. stem cells in the corneal limbus give rise to corneal epithelial cells, stem cells in liver give rise to hepatocytes etc. which happen within the same organ or tissue. The bone marrow stem cells however have been found to come out of the marrow into the circulation, reach sites far away from their origin and have been reported to home to the site of injury and help in tissue repair either by direct differentiation to the cells native to the site of injury or by paracrine effect or other mechanisms [2]. In both these examples, the stem cells of relevance tend to differentiate into a mature cell of the surrounding niche/organ. However when it comes to cancer stem cells, the niche needs to be perceived in a different light. The cancer stem cells possess the ability to mobilize to distant sites and instead of differentiating to the cell type native to the distant metastasized site, these cancer stem cells either stay in a latent state or establish the tumour there, which makes us hypothesize that they might possess the capacity to modify the environment or the niche at that distant metastasized site. For instance, tumour cells in breast cancer have been found to disseminate to the bone marrow at a very early stage of cancer and these disseminated tumor cells (DTC have been found to possess a cancer stem cell phenotype [3]. These DTCs have been reported to persist for long and have been suggested to play a role in cancer recurrence [4]. Also these DTCs acquire a highly

  18. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... are most commonly used in the treatment of cancers like leukemia and lymphoma to restore stem cells that have been destroyed by high doses of ... EuroStemCell 312,828 views 15:53 Understanding Your Cancer Prognosis ... views 6:48 Stem cell donation from brother saves child from cancer - Duration: ...

  19. Setting FIRES to Stem Cell Research

    Science.gov (United States)

    Miller, Roxanne Grietz

    2005-01-01

    The goal of this lesson is to present the basic scientific knowledge about stem cells, the promise of stem cell research to medicine, and the ethical considerations and arguments involved. One of the challenges of discussing stem cell research is that the field is constantly evolving and the most current information changes almost daily. Few…

  20. Cancer Stem Cells in Osteosarcoma

    OpenAIRE

    Heymann, D; Brown, H K; Tellez-Gabriel, M.

    2017-01-01

    Osteosarcoma is the most common primary bone tumour in children and adolescents and advanced osteosarcoma patients with evidence of metastasis share a poor prognosis. Osteosarcoma frequently gains resistance to standard therapies highlighting the need for improved treatment regimens and identification of novel therapeutic targets. Cancer stem cells (CSC) represent a sub-type of tumour cells attributed to critical steps in cancer including tumour propagation, therapy resistance, recurrence and...

  1. Retinal stem cells and potential cell transplantation treatments.

    Science.gov (United States)

    Lin, Tai-Chi; Hsu, Chih-Chien; Chien, Ke-Hung; Hung, Kuo-Hsuan; Peng, Chi-Hsien; Chen, Shih-Jen

    2014-11-01

    The retina, histologically composed of ten delicate layers, is responsible for light perception and relaying electrochemical signals to the secondary neurons and visual cortex. Retinal disease is one of the leading clinical causes of severe vision loss, including age-related macular degeneration, Stargardt's disease, and retinitis pigmentosa. As a result of the discovery of various somatic stem cells, advances in exploring the identities of embryonic stem cells, and the development of induced pluripotent stem cells, cell transplantation treatment for retinal diseases is currently attracting much attention. The sources of stem cells for retinal regeneration include endogenous retinal stem cells (e.g., neuronal stem cells, Müller cells, and retinal stem cells from the ciliary marginal zone) and exogenous stem cells (e.g., bone mesenchymal stem cells, adipose-derived stem cells, embryonic stem cells, and induced pluripotent stem cells). The success of cell transplantation treatment depends mainly on the cell source, the timing of cell harvesting, the protocol of cell induction/transplantation, and the microenvironment of the recipient's retina. This review summarizes the different sources of stem cells for regeneration treatment in retinal diseases and surveys the more recent achievements in animal studies and clinical trials. Future directions and challenges in stem cell transplantation are also discussed.

  2. Pluripotent Stem Cells for Schwann Cell Engineering

    NARCIS (Netherlands)

    Ma, Ming-San; Boddeke, Erik; Copray, Sjef

    2015-01-01

    Tissue engineering of Schwann cells (SCs) can serve a number of purposes, such as in vitro SC-related disease modeling, treatment of peripheral nerve diseases or peripheral nerve injury, and, potentially, treatment of CNS diseases. SCs can be generated from autologous stem cells in vitro by recapitu

  3. Notch signaling in cancer stem cells.

    Science.gov (United States)

    Wang, Jialiang; Sullenger, Bruce A; Rich, Jeremy N

    2012-01-01

    Subpopulations of cancer cells with stem cell-like characteristics, termed cancer stem cells, have been identified in a wide range of human cancers. Cancer stem cells are defined by their ability to self-renew as well as recapitulate the original heterogeneity of cancer cells in culture and in serial xenotransplants. Not only are cancer stem cells highly tumorigenic, but these cells are implicated in tumor resistance to conventional chemotherapy and radiotherapy, thus highlighting their significance as therapeutic targets. Considerable similarities have been found between cancer stem cells and normal stem cells on their dependence on certain signaling pathways. More specifically, the core stem cell signaling pathways, such as the Wnt, Notch and Hedgehog pathways, also critically regulate the self-renewal and survival of cancer stem cells. While the oncogenic functions of Notch pathway have been well documented, its role in cancer stem cells is just emerging. In this chapter, we will discuss recent advances in cancer stem cell research and highlight the therapeutic potential of targeting Notch in cancer stem cells.

  4. Methods for Stem Cell Production and Therapy

    Science.gov (United States)

    Claudio, Pier Paolo (Inventor); Valluri, Jagan V. (Inventor)

    2015-01-01

    The present invention relates to methods for rapidly expanding a stem cell population with or without culture supplements in simulated microgravity conditions. The present invention relates to methods for rapidly increasing the life span of stem cell populations without culture supplements in simulated microgravity conditions. The present invention also relates to methods for increasing the sensitivity of cancer stem cells to chemotherapeutic agents by culturing the cancer stem cells under microgravity conditions and in the presence of omega-3 fatty acids. The methods of the present invention can also be used to proliferate cancer cells by culturing them in the presence of omega-3 fatty acids. The present invention also relates to methods for testing the sensitivity of cancer cells and cancer stem cells to chemotherapeutic agents by culturing the cancer cells and cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce tissue for use in transplantation by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors by culturing stem cells or cancer stem cells under microgravity conditions. The methods of the present invention can also be used to produce cellular factors and growth factors to promote differentiation of cancer stem cells under microgravity conditions.

  5. Nuclear Mechanics and Stem Cell Differentiation.

    Science.gov (United States)

    Mao, Xinjian; Gavara, Nuria; Song, Guanbin

    2015-12-01

    Stem cells are characterized by their self-renewal and multi-lineage differentiation potential. Stem cell differentiation is a prerequisite for the application of stem cells in regenerative medicine and clinical therapy. In addition to chemical stimulation, mechanical cues play a significant role in regulating stem cell differentiation. The integrity of mechanical sensors is necessary for the ability of cells to respond to mechanical signals. The nucleus, the largest and stiffest cellular organelle, interacts with the cytoskeleton as a key mediator of cell mechanics. Nuclear mechanics are involved in the complicated interactions of lamins, chromatin and nucleoskeleton-related proteins. Thus, stem cell differentiation is intimately associated with nuclear mechanics due to its indispensable role in mechanotransduction and mechanical response. This paper reviews several main contributions of nuclear mechanics, highlights the hallmarks of the nuclear mechanics of stem cells, and provides insight into the relationship between nuclear mechanics and stem cell differentiation, which may guide clinical applications in the future.

  6. Recent advances in hematopoietic stem cell biology

    DEFF Research Database (Denmark)

    Bonde, Jesper; Hess, David A; Nolta, Jan A

    2004-01-01

    PURPOSE OF REVIEW: Exciting advances have been made in the field of hematopoietic stem cell biology during the past year. This review summarizes recent progress in the identification, culture, and in vivo tracking of hematopoietic stem cells. RECENT FINDINGS: The roles of Wnt and Notch proteins...... in regulating stem cell renewal in the microenvironment, and how these molecules can be exploited in ex vivo stem cell culture, are reviewed. The importance of identification of stem cells using functional as well as phenotypic markers is discussed. The novel field of nanotechnology is then discussed...... in the context of stem cell tracking in vivo. This review concludes with a section on the unexpected potential of bone marrow-derived stem cells to contribute to the repair of damaged tissues. The contribution of cell fusion to explain the latter phenomenon is discussed. SUMMARY: Because of exciting discoveries...

  7. Endometrial stem cells in regenerative medicine.

    Science.gov (United States)

    Verdi, Javad; Tan, Aaron; Shoae-Hassani, Alireza; Seifalian, Alexander M

    2014-01-01

    First described in 2004, endometrial stem cells (EnSCs) are adult stem cells isolated from the endometrial tissue. EnSCs comprise of a population of epithelial stem cells, mesenchymal stem cells, and side population stem cells. When secreted in the menstrual blood, they are termed menstrual stem cells or endometrial regenerative cells. Mounting evidence suggests that EnSCs can be utilized in regenerative medicine. EnSCs can be used as immuno-modulatory agents to attenuate inflammation, are implicated in angiogenesis and vascularization during tissue regeneration, and can also be reprogrammed into induced pluripotent stem cells. Furthermore, EnSCs can be used in tissue engineering applications and there are several clinical trials currently in place to ascertain the therapeutic potential of EnSCs. This review highlights the progress made in EnSC research, describing their mesodermal, ectodermal, and endodermal potentials both in vitro and in vivo.

  8. Challenges for heart disease stem cell therapy

    Directory of Open Access Journals (Sweden)

    Hoover-Plow J

    2012-02-01

    Full Text Available Jane Hoover-Plow, Yanqing GongDepartments of Cardiovascular Medicine and Molecular Cardiology, Joseph J Jacobs Center for Thrombosis and Vascular Biology, Cleveland Clinic Lerner Research Institute, Cleveland, OH, USAAbstract: Cardiovascular diseases (CVDs are the leading cause of death worldwide. The use of stem cells to improve recovery of the injured heart after myocardial infarction (MI is an important emerging therapeutic strategy. However, recent reviews of clinical trials of stem cell therapy for MI and ischemic heart disease recovery report that less than half of the trials found only small improvements in cardiac function. In clinical trials, bone marrow, peripheral blood, or umbilical cord blood cells were used as the source of stem cells delivered by intracoronary infusion. Some trials administered only a stem cell mobilizing agent that recruits endogenous sources of stem cells. Important challenges to improve the effectiveness of stem cell therapy for CVD include: (1 improved identification, recruitment, and expansion of autologous stem cells; (2 identification of mobilizing and homing agents that increase recruitment; and (3 development of strategies to improve stem cell survival and engraftment of both endogenous and exogenous sources of stem cells. This review is an overview of stem cell therapy for CVD and discusses the challenges these three areas present for maximum optimization of the efficacy of stem cell therapy for heart disease, and new strategies in progress.Keywords: mobilization, expansion, homing, survival, engraftment

  9. Stem-cell therapy for neurologic diseases

    Directory of Open Access Journals (Sweden)

    Shilpa Sharma

    2015-01-01

    Full Text Available With the advent of research on stem cell therapy for various diseases, an important need was felt in the field of neurological diseases. While congenital lesion may not be amenable to stem cell therapy completely, there is a scope of partial improvement in the lesions and halt in further progression. Neuro degenerative lesions like Parkinson′s disease, multiple sclerosis and amyotrophic lateral sclerosis have shown improvement with stem cell therapy. This article reviews the available literature and summarizes the current evidence in the various neurologic diseases amenable to stem cell therapy, the plausible mechanism of action, ethical concerns with insights into the future of stem cell therapy.

  10. Mesenchymal stem cell exosomes.

    Science.gov (United States)

    Lai, Ruenn Chai; Yeo, Ronne Wee Yeh; Lim, Sai Kiang

    2015-04-01

    MSCs are an extensively used cell type in clinical trials today. The initial rationale for their clinical testing was based on their differentiation potential. However, the lack of correlation between functional improvement and cell engraftment or differentiation at the site of injury has led to the proposal that MSCs exert their effects not through their differentiation potential but through their secreted product, more specifically, exosomes, a type of extracellular vesicle. We propose here that MSC exosomes function as an extension of MSC's biological role as tissue stromal support cells. Like their cell source, MSC exosomes help maintain tissue homeostasis for optimal tissue function. They target housekeeping biological processes that operate ubiquitously in all tissues and are critical in maintaining tissue homeostasis, enabling cells to recover critical cellular functions and begin repair and regeneration. This hypothesis provides a rationale for the therapeutic efficacy of MSCs and their secreted exosomes in a wide spectrum of diseases. Here, we give a brief introduction of the biogenesis of MSC exosomes, review their physiological functions and highlight some of their biochemical potential to illustrate how MSC exosomes could restore tissue homeostasis leading to tissue recovery and repair.

  11. Klotho, stem cells, and aging.

    Science.gov (United States)

    Bian, Ao; Neyra, Javier A; Zhan, Ming; Hu, Ming Chang

    2015-01-01

    Aging is an inevitable and progressive biological process involving dysfunction and eventually destruction of every tissue and organ. This process is driven by a tightly regulated and complex interplay between genetic and acquired factors. Klotho is an antiaging gene encoding a single-pass transmembrane protein, klotho, which serves as an aging suppressor through a wide variety of mechanisms, such as antioxidation, antisenescence, antiautophagy, and modulation of many signaling pathways, including insulin-like growth factor and Wnt. Klotho deficiency activates Wnt expression and activity contributing to senescence and depletion of stem cells, which consequently triggers tissue atrophy and fibrosis. In contrast, the klotho protein was shown to suppress Wnt-signaling transduction, and inhibit cell senescence and preserve stem cells. A better understanding of the potential effects of klotho on stem cells could offer novel insights into the cellular and molecular mechanisms of klotho deficiency-related aging and disease. The klotho protein may be a promising therapeutic agent for aging and aging-related disorders.

  12. Strategies for future histocompatible stem cell therapy

    DEFF Research Database (Denmark)

    Nehlin, Jan; Barington, Torben

    2009-01-01

    Stem cell therapy based on the safe and unlimited self-renewal of human pluripotent stem cells is envisioned for future use in tissue or organ replacement after injury or disease. A gradual decline of regenerative capacity has been documented among the adult stem cell population in some body organs...... during the aging process. Recent progress in human somatic cell nuclear transfer and inducible pluripotent stem cell technologies has shown that patient-derived nuclei or somatic cells can be reprogrammed in vitro to become pluripotent stem cells, from which the three germ layer lineages can be generated......, genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within...

  13. Stem cell facelift: between reality and fiction.

    Science.gov (United States)

    Atiyeh, Bishara S; Ibrahim, Amir E; Saad, Dibo A

    2013-03-01

    Stem cells are "big business" throughout medical technology, and their potential application in cosmetic procedures is no exception. One of the latest nonsurgical facial treatments (and new catchphrases) in plastic surgery is the "stem cell facelift." It is evident from the currently available scientific literature that the use of stem cell therapy for facial rejuvenation is limited to the theoretical induction of skin tightening and can in no way be equated to a facelift. In fact, what is advertised and promoted as a new and original technique of stem cell facelifting is mostly stem cell-enriched lipofilling. Despite encouraging data suggesting that adult stem cells hold promise for future applications, the data from clinical evidence available today do not substantiate the marketing and promotional claims being made to patients. To claim that the "stem cell facelift" is a complete facial rejuvenation procedure surgery is unethical.

  14. Stem cells and repair of lung injuries

    Directory of Open Access Journals (Sweden)

    Randell Scott H

    2004-07-01

    Full Text Available Abstract Fueled by the promise of regenerative medicine, currently there is unprecedented interest in stem cells. Furthermore, there have been revolutionary, but somewhat controversial, advances in our understanding of stem cell biology. Stem cells likely play key roles in the repair of diverse lung injuries. However, due to very low rates of cellular proliferation in vivo in the normal steady state, cellular and architectural complexity of the respiratory tract, and the lack of an intensive research effort, lung stem cells remain poorly understood compared to those in other major organ systems. In the present review, we concisely explore the conceptual framework of stem cell biology and recent advances pertinent to the lungs. We illustrate lung diseases in which manipulation of stem cells may be physiologically significant and highlight the challenges facing stem cell-related therapy in the lung.

  15. [Stem cells and tissue engineering techniques].

    Science.gov (United States)

    Sica, Gigliola

    2013-01-01

    The therapeutic use of stem cells and tissue engineering techniques are emerging in urology. Here, stem cell types, their differentiating potential and fundamental characteristics are illustrated. The cancer stem cell hypothesis is reported with reference to the role played by stem cells in the origin, development and progression of neoplastic lesions. In addition, recent reports of results obtained with stem cells alone or seeded in scaffolds to overcome problems of damaged urinary tract tissue are summarized. Among others, the application of these biotechnologies in urinary bladder, and urethra are delineated. Nevertheless, apart from the ethical concerns raised from the use of embryonic stem cells, a lot of questions need to be solved concerning the biology of stem cells before their widespread use in clinical trials. Further investigation is also required in tissue engineering utilizing animal models.

  16. Stem cells news update: a personal perspective.

    Science.gov (United States)

    Wong, Sc

    2013-12-01

    This article is a follow-up to a previous Commentary published in 2011. It updates some of the events mentioned in that Commentary and continues with more interesting and exciting news on stem cell research and the emerging field of Regenerative Medicine. Some of the news includes: 1) the 2012 Nobel Prize for Medicine awarded to John B. Gurdon and Shinya Yamanaka; 2) the cloning of human embryonic stem cells; 3) the continued search for truly pluripotent adult stem cells via in vitro and in vivo protocols; 4) the breakthrough in organ replacements; 5) the global stem cell race; 6) the global stem cell cryo-preservation business; 7) the worldwide stem cell donor registries, and 8) the issue of government regulation on stem cell therapy.

  17. Stem Cells, Science, and Public Reasoning

    Science.gov (United States)

    Hurlbut, J. Benjamin; Robert, Jason Scott

    2012-01-01

    These are interesting days in the scientific, social, and political debates about human embryonic stem cell research. Pluripotent stem cells--cells that can, in principle, give rise to the body's full range of cell types--were previously derivable only from human embryos that were destroyed in the process. Now, a variety of somatic cell types can…

  18. Adult stem cell responses to nanostimuli

    OpenAIRE

    Tsimbouri, Penelope

    2015-01-01

    Adult or mesenchymal stem cells (MSCs) have been found in different tissues in the body, residing in stem cell microenvironments called “stem cell niches”. They play different roles but their main activity is to maintain tissue homeostasis and repair throughout the lifetime of an organism. Their ability to differentiate into different cell types makes them an ideal tool to study tissue development and to use them in cell-based therapies. This differentiation process is subject to both interna...

  19. RhoGTPases in stem cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    RhoGTPases are small molecules that control a wide variety of signal transduction pathways. Their profound function in regulating the actin cytoskeleton is well recognized. Stem cells are unique in their ability to self-renew and produce progenitor cells that can differentiate into specialized cells. RhoGT-Pases influence stem cell morphology and cell migration as well as stem cell self-renewal, proliferation, transplantation, homing and differentiation. In this review, the multiple roles of the RhoGTPases in stem cells are discussed.

  20. Application of Stem Cells in Tissue Engineering

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Stem cells have become an important source of seed cells for tissue engineering because they are relatively easy to expand in vitro and can be induced to differentiate into various cell types in vitro or in vivo. In the current stage, most stem cell researches focus on in vitro studies, including in vitro induction and phenotype characterization. Our center has made a great deal of effort in the in vivo study by using stem cells as seed cells for tissue construction. We have used bone marrow stem cells (BMS...

  1. Generalized Potential of Adult Neural Stem Cells

    Science.gov (United States)

    Clarke, Diana L.; Johansson, Clas B.; Wilbertz, Johannes; Veress, Biborka; Nilsson, Erik; Karlström, Helena; Lendahl, Urban; Frisén, Jonas

    2000-06-01

    The differentiation potential of stem cells in tissues of the adult has been thought to be limited to cell lineages present in the organ from which they were derived, but there is evidence that some stem cells may have a broader differentiation repertoire. We show here that neural stem cells from the adult mouse brain can contribute to the formation of chimeric chick and mouse embryos and give rise to cells of all germ layers. This demonstrates that an adult neural stem cell has a very broad developmental capacity and may potentially be used to generate a variety of cell types for transplantation in different diseases.

  2. Cancer stem cells and metastasis.

    Science.gov (United States)

    Sampieri, Katia; Fodde, Riccardo

    2012-06-01

    Cancer stem cells (CSCs) represent a subpopulation of tumour cells endowed with self-renewal and multi-lineage differentiation capacity but also with an innate resistance to cytotoxic agents, a feature likely to pose major clinical challenges towards the complete eradication of minimal residual disease in cancer patients. Operationally, CSCs are defined by their tumour-propagating ability when serially transplanted into immune-compromised mice and by their capacity to fully recapitulate the original heterogeneity of cell types observed in the primary lesions they are derived from. CSCs were first identified in haematopoietic malignancies and later in a broad spectrum of solid tumours including those of the breast, colon and brain. Notably, several CSC characteristics are relevant to metastasis, such as motility, invasiveness and, as mentioned above, resistance to DNA damage-induced apoptosis. Here, we have reviewed the current literature on the relation between CSCs and metastasis formation. Preliminary studies on cancer cell lines and patient-derived material suggest a rate-limiting role for stem-like cells in the processes of tumour cell dissemination and metastasis formation. However, additional studies are needed to deliver formal proof of their identity as the cell of origin of recurrences at distant organ sites. Nevertheless, several studies have already provided pre-clinical evidence of the efficacy of novel therapies directed against disseminated CSCs.

  3. Embryonic stem cells: testing the germ-cell theory.

    Science.gov (United States)

    Hochedlinger, Konrad

    2011-10-25

    The exact cellular origin of embryonic stem cells remains elusive. Now a new study provides compelling evidence that embryonic stem cells, established under conventional culture conditions, originate from a transient germ-cell state.

  4. Stem cells - biological update and cell therapy progress.

    Science.gov (United States)

    Girlovanu, Mihai; Susman, Sergiu; Soritau, Olga; Rus-Ciuca, Dan; Melincovici, Carmen; Constantin, Anne-Marie; Mihu, Carmen Mihaela

    2015-01-01

    In recent years, the advances in stem cell research have suggested that the human body may have a higher plasticity than it was originally expected. Until now, four categories of stem cells were isolated and cultured in vivo: embryonic stem cells, fetal stem cells, adult stem cells and induced pluripotent stem cells (hiPSCs). Although multiple studies were published, several issues concerning the stem cells are still debated, such as: the molecular mechanisms of differentiation, the methods to prevent teratoma formation or the ethical and religious issues regarding especially the embryonic stem cell research. The direct differentiation of stem cells into specialized cells: cardiac myocytes, neural cells, pancreatic islets cells, may represent an option in treating incurable diseases such as: neurodegenerative diseases, type I diabetes, hematologic or cardiac diseases. Nevertheless, stem cell-based therapies, based on stem cell transplantation, remain mainly at the experimental stages and their major limitation is the development of teratoma and cancer after transplantation. The induced pluripotent stem cells (hiPSCs) represent a prime candidate for future cell therapy research because of their significant self-renewal and differentiation potential and the lack of ethical issues. This article presents an overview of the biological advances in the study of stem cells and the current progress made in the field of regenerative medicine.

  5. Therapeutic potential of adult stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Keith, W. Nicol

    2006-01-01

    is the necessity to be able to identify, select, expand and manipulate cells outside the body. Recent advances in adult stem cell technologies and basic biology have accelerated therapeutic opportunities aimed at eventual clinical applications. Adult stem cells with the ability to differentiate down multiple...... lineages are an attractive alternative to human embryonic stem cells (hES) in regenerative medicine. In many countries, present legislation surrounding hES cells makes their use problematic, and indeed the origin of hES cells may represent a controversial issue for many communities. However, adult stem...... cells are not subject to these issues. This review will therefore focus on adult stem cells. Based on their extensive differentiation potential and, in some cases, the relative ease of their isolation, adult stem cells are appropriate for clinical development. Recently, several observations suggest...

  6. Haematopoietic stem cells: past, present and future

    Science.gov (United States)

    Ng, Ashley P; Alexander, Warren S

    2017-01-01

    The discovery and characterisation of haematopoietic stem cells has required decades of research. The identification of adult bone marrow as a source of haematopoietic cells capable of protecting an organism from otherwise lethal irradiation led to the intense search for their identity and characteristics. Using functional assays along with evolving techniques for isolation of haematopoietic cells, haematopoietic stem cell populations were able to be enriched and their characteristics analysed. The key haematopoietic stem cell characteristics of pluripotentiality and the ability for self-renewal have emerged as characteristics of several haematopoietic stem cell populations, including those that have recently challenged the conventional concepts of the haematopoietic hierarchy. Human allogeneic stem cell therapy relies on these functional characteristics of haematopoietic stem cells that can be isolated from peripheral blood, bone marrow or cord blood, with the additional requirement that immunological barriers need to be overcome to allow sustained engraftment while minimising risk of graft-versus-host disease developing in the recipient of transplanted stem cells. Current and future research will continue to focus on the identification of haematopoietic stem cell regulators and methods for in vitro and in vivo stem cell manipulation, including genome editing, to expand the scope, potential and safety of therapy using haematopoietic stem cells. PMID:28180000

  7. Similarity on neural stem cells and brain tumor stem cells in transgenic brain tumor mouse models

    Institute of Scientific and Technical Information of China (English)

    Guanqun Qiao; Qingquan Li; Gang Peng; Jun Ma; Hongwei Fan; Yingbin Li

    2013-01-01

    Although it is believed that glioma is derived from brain tumor stem cells, the source and molecular signal pathways of these cells are stil unclear. In this study, we used stable doxycycline-inducible transgenic mouse brain tumor models (c-myc+/SV40Tag+/Tet-on+) to explore the malignant trans-formation potential of neural stem cells by observing the differences of neural stem cel s and brain tumor stem cells in the tumor models. Results showed that chromosome instability occurred in brain tumor stem cells. The numbers of cytolysosomes and autophagosomes in brain tumor stem cells and induced neural stem cel s were lower and the proliferative activity was obviously stronger than that in normal neural stem cells. Normal neural stem cells could differentiate into glial fibril ary acidic protein-positive and microtubule associated protein-2-positive cells, which were also negative for nestin. However, glial fibril ary acidic protein/nestin, microtubule associated protein-2/nestin, and glial fibril ary acidic protein/microtubule associated protein-2 double-positive cells were found in induced neural stem cells and brain tumor stem cel s. Results indicate that induced neural stem cells are similar to brain tumor stem cells, and are possibly the source of brain tumor stem cells.

  8. Stem cells in the nervous system.

    Science.gov (United States)

    Maldonado-Soto, Angel R; Oakley, Derek H; Wichterle, Hynek; Stein, Joel; Doetsch, Fiona K; Henderson, Christopher E

    2014-11-01

    Given their capacity to regenerate cells lost through injury or disease, stem cells offer new vistas into possible treatments for degenerative diseases and their underlying causes. As such, stem cell biology is emerging as a driving force behind many studies in regenerative medicine. This review focuses on the current understanding of the applications of stem cells in treating ailments of the human brain, with an emphasis on neurodegenerative diseases. Two types of neural stem cells are discussed: endogenous neural stem cells residing within the adult brain and pluripotent stem cells capable of forming neural cells in culture. Endogenous neural stem cells give rise to neurons throughout life, but they are restricted to specialized regions in the brain. Elucidating the molecular mechanisms regulating these cells is key in determining their therapeutic potential as well as finding mechanisms to activate dormant stem cells outside these specialized microdomains. In parallel, patient-derived stem cells can be used to generate neural cells in culture, providing new tools for disease modeling, drug testing, and cell-based therapies. Turning these technologies into viable treatments will require the integration of basic science with clinical skills in rehabilitation.

  9. Engineering Stem Cells for Biomedical Applications.

    Science.gov (United States)

    Yin, Perry T; Han, Edward; Lee, Ki-Bum

    2016-01-07

    Stem cells are characterized by a number of useful properties, including their ability to migrate, differentiate, and secrete a variety of therapeutic molecules such as immunomodulatory factors. As such, numerous pre-clinical and clinical studies have utilized stem cell-based therapies and demonstrated their tremendous potential for the treatment of various human diseases and disorders. Recently, efforts have focused on engineering stem cells in order to further enhance their innate abilities as well as to confer them with new functionalities, which can then be used in various biomedical applications. These engineered stem cells can take on a number of forms. For instance, engineered stem cells encompass the genetic modification of stem cells as well as the use of stem cells for gene delivery, nanoparticle loading and delivery, and even small molecule drug delivery. The present Review gives an in-depth account of the current status of engineered stem cells, including potential cell sources, the most common methods used to engineer stem cells, and the utilization of engineered stem cells in various biomedical applications, with a particular focus on tissue regeneration, the treatment of immunodeficiency diseases, and cancer.

  10. Reforming craniofacial orthodontics via stem cells

    Science.gov (United States)

    Mohanty, Pritam; Prasad, N.K.K.; Sahoo, Nivedita; Kumar, Gunjan; Mohanty, Debapreeti; Sah, Sushila

    2015-01-01

    Stem cells are the most interesting cells in cell biology. They have the potential to evolve as one of the most powerful technologies in the future. The future refers to an age where it will be used extensively in various fields of medical and dental sciences. Researchers have discovered a number of sources from which stem cells can be derived. Craniofacial problems are very common and occur at all ages. Stem cells can be used therapeutically in almost every field of health science. In fact, many procedures will be reformed after stem cells come into play. This article is an insight into the review of the current researches being carried out on stem cells and its use in the field of orthodontics, which is a specialized branch of dentistry. Although the future is uncertain, there is a great possibility that stem cells will be used extensively in almost all major procedures of orthodontics. PMID:25767761

  11. Stepwise development of hematopoietic stem cells from embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Kenji Matsumoto

    Full Text Available The cellular ontogeny of hematopoietic stem cells (HSCs remains poorly understood because their isolation from and their identification in early developing small embryos are difficult. We attempted to dissect early developmental stages of HSCs using an in vitro mouse embryonic stem cell (ESC differentiation system combined with inducible HOXB4 expression. Here we report the identification of pre-HSCs and an embryonic type of HSCs (embryonic HSCs as intermediate cells between ESCs and HSCs. Both pre-HSCs and embryonic HSCs were isolated by their c-Kit(+CD41(+CD45(- phenotype. Pre-HSCs did not engraft in irradiated adult mice. After co-culture with OP9 stromal cells and conditional expression of HOXB4, pre-HSCs gave rise to embryonic HSCs capable of engraftment and long-term reconstitution in irradiated adult mice. Blast colony assays revealed that most hemangioblast activity was detected apart from the pre-HSC population, implying the early divergence of pre-HSCs from hemangioblasts. Gene expression profiling suggests that a particular set of transcripts closely associated with adult HSCs is involved in the transition of pre-HSC to embryonic HSCs. We propose an HSC developmental model in which pre-HSCs and embryonic HSCs sequentially give rise to adult types of HSCs in a stepwise manner.

  12. Stem cell therapy to treat heart ischaemia

    DEFF Research Database (Denmark)

    Qayyum, Abbas Ali; Mathiasen, Anders Bruun; Kastrup, Jens

    2014-01-01

    (CABG), morbidity and mortality is still high in patients with CAD. Along with PCI and CABG or in patients without options for revascularization, stem cell regenerative therapy in controlled trials is a possibility. Stem cells are believed to exert their actions by angiogenesis and regeneration...... of cardiomyocytes. Recently published clinical trials and meta-analysis of stem cell studies have shown encouraging results with increased left ventricle ejection fraction and reduced symptoms in patients with CAD and heart failure. There is some evidence of mesenchymal stem cell being more effective compared...... to other cell types and cell therapy may be more effective in patients with known diabetes mellitus. However, further investigations are warranted....

  13. Stem cell differentiation and human liver disease

    Institute of Scientific and Technical Information of China (English)

    Wen-Li Zhou; Claire N Medine; Liang Zhu; David C Hay

    2012-01-01

    Human stem cells are scalable cell populations capable of cellular differentiation.This makes them a very attractive in vitro cellular resource and in theory provides unlimited amounts of primary cells.Such an approach has the potential to improve our understanding of human biology and treating disease.In the future it may be possible to deploy novel stem cell-based approaches to treat human liver diseases.In recent years,efficient hepatic differentiation from human stem cells has been achieved by several research groups including our own.In this review we provide an overview of the field and discuss the future potential and limitations of stem cell technology.

  14. Mesenchymal stem cell like (MSCl) cells generated from human embryonic stem cells support pluripotent cell growth

    Energy Technology Data Exchange (ETDEWEB)

    Varga, Nora [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Vereb, Zoltan; Rajnavoelgyi, Eva [Department of Immunology, Medical and Health Science Centre, University of Debrecen, Debrecen (Hungary); Nemet, Katalin; Uher, Ferenc; Sarkadi, Balazs [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary); Apati, Agota, E-mail: apati@kkk.org.hu [Membrane Research Group of the Hungarian Academy of Sciences, Semmelweis University, Budapest (Hungary)

    2011-10-28

    Highlights: Black-Right-Pointing-Pointer MSC like cells were derived from hESC by a simple and reproducible method. Black-Right-Pointing-Pointer Differentiation and immunosuppressive features of MSCl cells were similar to bmMSC. Black-Right-Pointing-Pointer MSCl cells as feeder cells support the undifferentiated growth of hESC. -- Abstract: Mesenchymal stem cell like (MSCl) cells were generated from human embryonic stem cells (hESC) through embryoid body formation, and isolated by adherence to plastic surface. MSCl cell lines could be propagated without changes in morphological or functional characteristics for more than 15 passages. These cells, as well as their fluorescent protein expressing stable derivatives, efficiently supported the growth of undifferentiated human embryonic stem cells as feeder cells. The MSCl cells did not express the embryonic (Oct4, Nanog, ABCG2, PODXL, or SSEA4), or hematopoietic (CD34, CD45, CD14, CD133, HLA-DR) stem cell markers, while were positive for the characteristic cell surface markers of MSCs (CD44, CD73, CD90, CD105). MSCl cells could be differentiated toward osteogenic, chondrogenic or adipogenic directions and exhibited significant inhibition of mitogen-activated lymphocyte proliferation, and thus presented immunosuppressive features. We suggest that cultured MSCl cells can properly model human MSCs and be applied as efficient feeders in hESC cultures.

  15. Induced Pluripotent Stem Cells and Periodontal Regeneration

    OpenAIRE

    Du, Mi; Duan, Xuejing; Yang, Pishan

    2015-01-01

    Periodontitis is a chronic inflammatory disease which leads to destruction of both the soft and hard tissues of the periodontium. Tissue engineering is a therapeutic approach in regenerative medicine that aims to induce new functional tissue regeneration via the synergistic combination of cells, biomaterials, and/or growth factors. Advances in our understanding of the biology of stem cells, including embryonic stem cells and mesenchymal stem cells, have provided opportunities for periodontal ...

  16. Role of Mesenchymal Stem Cells In Tumorigenesis

    Science.gov (United States)

    2009-08-01

    stem cells ( BMDC ), which then acts in a paracrine fashion on the cancer cells to enhance their invasion [7]. Interestingly the group of Karnoub showed...AD_________________ AWARD NUMBER: W81XWH-08-1-0523 TITLE: Role of Mesenchymal Stem Cells in...DATES COVERED 1 Aug 2008 – 31 Jul 2009 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Role of Mesenchymal Stem Cells in Tumorigenesis 5b. GRANT

  17. Pluripotent stem cell-derived neural stem cells: From basic research to applications

    Institute of Scientific and Technical Information of China (English)

    Masahiro; Otsu; Takashi; Nakayama; Nobuo; Inoue

    2014-01-01

    Basic research on pluripotent stem cells is designed to enhance understanding of embryogenesis, whereas applied research is designed to develop novel therapies and prevent diseases. Attainment of these goals has been enhanced by the establishment of embryonic stem cell lines, the technological development of genomic reprogramming to generate induced-pluripotent stem cells, and improvements in in vitro techniques to manipulate stem cells. This review summarizes the techniques required to generate neural cells from pluripotent stem cells. In particular, this review describes current research applications of a simple neural differentiation method, the neural stem sphere method, which we developed.

  18. Expanding intestinal stem cells in culture

    NARCIS (Netherlands)

    Heo, Inha; Clevers, Hans

    2015-01-01

    Culturing intestinal stem cells into 3D organoids results in heterogeneous cell populations, reflecting the in vivo cell type diversity. In a recent paper published in Nature, Wang et al. established a culture condition for a highly homogeneous population of intestinal stem cells.

  19. Autonomous behavior of hematopoietic stem cells

    NARCIS (Netherlands)

    Kamminga, LM; Akkerman, [No Value; Weersing, E; Ausema, A; Dontje, B; Van Zant, G; de Haan, G

    2000-01-01

    Objective. Mechanisms that affect the function of primitive hematopoietic stem cells with long-term proliferative potential remain largely unknown. Here we assessed whether properties of stem cells are cell-extrinsically or cell-autonomously regulated. Materials and Methods. We developed a model in

  20. Induced Pluripotent Stem Cells: Characteristics and Perspectives

    Science.gov (United States)

    Cantz, Tobias; Martin, Ulrich

    The induction of pluripotency in somatic cells is widely considered as a major breakthrough in regenerative medicine, because this approach provides the basis for individualized stem cell-based therapies. Moreover, with respect to cell transplantation and tissue engineering, expertise from bioengineering to transplantation medicine is now meeting basic research of stem cell biology.

  1. Stem cells and respiratory diseases

    Directory of Open Access Journals (Sweden)

    Soraia Carvalho Abreu

    2008-12-01

    Full Text Available Stem cells have a multitude of clinical implications in the lung. This article is a critical review that includes clinical and experimental studies of MedLine and SciElo database in the last 10 years, where we highlight the effects of stem cell therapy in acute respiratory distress syndrome or more chronic disorders such as lung fibrosis and emphysema. Although, many studies have shown the beneficial effects of stem cells in lung development, repair and remodeling; some important questions need to be answered to better understand the mechanisms that control cell division and differentiation, therefore enabling the use of cell therapy in human respiratory diseases.As células-tronco têm uma infinidade de implicações clínicas no pulmão. Este artigo é uma revisão crítica que inclui estudos clínicos e experimentais advindos do banco de dados do MEDLINE e SciElo nos últimos 10 anos, onde foram destacados os efeitos da terapia celular na síndrome do desconforto respiratório agudo ou doenças mais crônicas, como fibrose pulmonar e enfisema. Apesar de muitos estudos demonstrarem os efeitos benéficos das células-tronco no desenvolvimento, reparo e remodelamento pulmonar; algumas questões ainda precisam ser respondidas para um melhor entendimento dos mecanismos que controlam a divisão celular e diferenciação, permitindo o uso da terapia celular nas doenças respiratórias.

  2. Stem Cells and Herbal Acupuncture Therapy

    Directory of Open Access Journals (Sweden)

    Ki Rok Kwon

    2005-12-01

    Full Text Available Stem cell therapy implies the birth of regenerative medicine. Regenerative medicine signify treatment through regeneration of cells which was impossible by existing medicine. Stem cell is classified into embryonic stem cell and adult stem cell and they have distinctive benefits and limitations. Researches on stem cell are already under active progression and is expected to be commercially available in the near future. One may not relate the stem cell treatment with Oriental medicine, but can be interpreted as the fundamental treatment action of Oriental medicine is being investigated in more concrete manner. When it comes to difficult to cure diseases, there is no boundary between eastern and western medicine, and one must be ready to face and overcome changes lying ahead.

  3. Advances in Lung Stem Cells and Lung Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Huijing YIN

    2015-10-01

    Full Text Available Cancer stem cells (CSCs are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs, including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH and ATP-binding cassette sub-family G member 2 (ABCG2. Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR, signal transducer and activator of transcription 3 (STAT3 and phosphatidylinositol 3 kinase (PI3K pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  4. [Advances in Lung Stem Cells and Lung Cancer Stem Cells].

    Science.gov (United States)

    Yin, Huijing; Deng, Jiong

    2015-10-20

    Cancer stem cells (CSCs) are emerging as a hot topic for cancer research. Lung CSCs share many characteristics with normal lung stem cells (SCs), including self-renewal and multi-potency for differentiation. Many molecular markers expressed in various types of CSCs were also found in lung CSCs, such as CD133, CD44, aldehyde dehydrogenase (ALDH) and ATP-binding cassette sub-family G member 2 (ABCG2). Similarly, proliferation and expansion of lung CSCs are regulated not only by signal transduction pathways functioning in normal lung SCs, such as Notch, Hedgehog and Wnt pathways, but also by those acting in tumor cells, such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3) and phosphatidylinositol 3 kinase (PI3K) pathways. As CSC plays an critical role in tumor recurrence, metastasis and drug-resistance, understanding the difference between lung CSCs and normal lung SCs, identifying and targeting CSC markers or related signaling pathways may increase the efficacy of therapy on lung cancer and improved survival of lung cancer patients.

  5. Therapeutic potential of amniotic fluid stem cells.

    Science.gov (United States)

    Abdulrazzak, Hassan; De Coppi, Paolo; Guillot, Pascale V

    2013-03-01

    Human amniotic fluid cells have been used traditionally as a diagnostic tool for genetic anomalies. More recently it has been recognized that amniotic fluid contains populations of stem cells. Mesenchymal stem cells (AFMSC) were first to be described. These cells are able to differentiate towards mesodermal lineages. More recently cells with broader potential, defined as amniotic fluid stem cells (AFSC), were also isolated. They have intermediate characteristics between embryonic and adult stem cells and are able to differentiate into lineages representative of all three germ layers but unlike ES cells they do not form tumours in vivo. Furthermore, AFSC have been reverted to functional pluripotency in a transgene-free approach using an epigenetics modifier. These characteristics, together with absence of ethical issues concerning their employment, have made stem cells from amniotic fluid a promising candidate for cell therapy and tissue engineering.

  6. Mammary stem cells have myoepithelial cell properties.

    Science.gov (United States)

    Prater, Michael D; Petit, Valérie; Alasdair Russell, I; Giraddi, Rajshekhar R; Shehata, Mona; Menon, Suraj; Schulte, Reiner; Kalajzic, Ivo; Rath, Nicola; Olson, Michael F; Metzger, Daniel; Faraldo, Marisa M; Deugnier, Marie-Ange; Glukhova, Marina A; Stingl, John

    2014-10-01

    Contractile myoepithelial cells dominate the basal layer of the mammary epithelium and are considered to be differentiated cells. However, we observe that up to 54% of single basal cells can form colonies when seeded into adherent culture in the presence of agents that disrupt actin-myosin interactions, and on average, 65% of the single-cell-derived basal colonies can repopulate a mammary gland when transplanted in vivo. This indicates that a high proportion of basal myoepithelial cells can give rise to a mammary repopulating unit (MRU). We demonstrate that myoepithelial cells, flow-sorted using two independent myoepithelial-specific reporter strategies, have MRU capacity. Using an inducible lineage-tracing approach we follow the progeny of myoepithelial cells that express α-smooth muscle actin and show that they function as long-lived lineage-restricted stem cells in the virgin state and during pregnancy.

  7. Pancreatic cancer stem cells: fact or fiction?

    Science.gov (United States)

    Bhagwandin, Vikash J; Shay, Jerry W

    2009-04-01

    The terms cancer-initiating or cancer stem cells have been the subject of great interest in recent years. In this review we will use pancreatic cancer as an overall theme to draw parallels with historical findings to compare to recent reports of stem-like characteristics in pancreatic cancer. We will cover such topics as label-retaining cells (side-population), ABC transporter pumps, telomerase, quiescence, cell surface stem cell markers, and epithelial-mesenchymal transitions. Finally we will integrate the available findings into a pancreatic stem cell model that also includes metastatic disease.

  8. Radiation response of mesenchymal stem cells derived from bone marrow and human pluripotent stem cells

    OpenAIRE

    Islam, Mohammad S; Stemig, Melissa E.; Takahashi, Yutaka; Hui, Susanta K.

    2014-01-01

    Mesenchymal stem cells (MSCs) isolated from human pluripotent stem cells are comparable with bone marrow-derived MSCs in their function and immunophenotype. The purpose of this exploratory study was comparative evaluation of the radiation responses of mesenchymal stem cells derived from bone marrow- (BMMSCs) and from human embryonic stem cells (hESMSCs). BMMSCs and hESMSCs were irradiated at 0 Gy (control) to 16 Gy using a linear accelerator commonly used for cancer treatment. Cells were harv...

  9. Effect of aging on stem cells

    Science.gov (United States)

    Ahmed, Abu Shufian Ishtiaq; Sheng, Matilda HC; Wasnik, Samiksha; Baylink, David J; Lau, Kin-Hing William

    2017-01-01

    Pluripotent stem cells have the remarkable self-renewal ability and are capable of differentiating into multiple diverse cells. There is increasing evidence that the aging process can have adverse effects on stem cells. As stem cells age, their renewal ability deteriorates and their ability to differentiate into the various cell types is altered. Accordingly, it is suggested aging-induced deterioration of stem cell functions may play a key role in the pathophysiology of the various aging-associated disorders. Understanding the role of the aging process in deterioration of stem cell function is crucial, not only in understanding the pathophysiology of aging-associated disorders, but also in future development of novel effective stem cell-based therapies to treat aging-associated diseases. This review article first focuses on the basis of the various aging disease-related stem cell dysfunction. It then addresses the several concepts on the potential mechanism that causes aging-related stem cell dysfunction. It also briefly discusses the current potential therapies under development for aging-associated stem cell defects.

  10. Of Microenvironments and Mammary Stem Cells

    Energy Technology Data Exchange (ETDEWEB)

    LaBarge, Mark A; Petersen, Ole W; Bissell, Mina J

    2007-06-01

    In most adult tissues there reside pools of stem and progenitor cells inside specialized microenvironments referred to as niches. The niche protects the stem cells from inappropriate expansion and directs their critical functions. Thus guided, stem cells are able to maintain tissue homeostasis throughout the ebb and flow of metabolic and physical demands encountered over a lifetime. Indeed, a pool of stem cells maintains mammary gland structure throughout development, and responds to the physiological demands associated with pregnancy. This review discusses how stem cells were identified in both human and mouse mammary glands; each requiring different techniques that were determined by differing biological needs and ethical constraints. These studies together create a robust portrait of mammary gland biology and identify the location of the stem cell niche, elucidate a developmental hierarchy, and suggest how the niche might be manipulated for therapeutic benefit.

  11. Human stem cells and articular cartilage regeneration.

    Science.gov (United States)

    Inui, Atsuyuki; Iwakura, Takashi; Reddi, A Hari

    2012-11-05

    The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES) cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS) cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  12. Human Stem Cells and Articular Cartilage Regeneration

    Directory of Open Access Journals (Sweden)

    A. Hari Reddi

    2012-11-01

    Full Text Available  The regeneration of articular cartilage damaged due to trauma and posttraumatic osteoarthritis is an unmet medical need. Current approaches to regeneration and tissue engineering of articular cartilage include the use of chondrocytes, stem cells, scaffolds and signals, including morphogens and growth factors. Stem cells, as a source of cells for articular cartilage regeneration, are a critical factor for articular cartilage regeneration. This is because articular cartilage tissue has a low cell turnover and does not heal spontaneously. Adult stem cells have been isolated from various tissues, such as bone marrow, adipose, synovial tissue, muscle and periosteum. Signals of the transforming growth factor beta superfamily play critical roles in chondrogenesis. However, adult stem cells derived from various tissues tend to differ in their chondrogenic potential. Pluripotent stem cells have unlimited proliferative capacity compared to adult stem cells. Chondrogenesis from embryonic stem (ES cells has been studied for more than a decade. However, establishment of ES cells requires embryos and leads to ethical issues for clinical applications. Induced pluripotent stem (iPS cells are generated by cellular reprogramming of adult cells by transcription factors. Although iPS cells have chondrogenic potential, optimization, generation and differentiation toward articular chondrocytes are currently under intense investigation.

  13. Spermatogonial stem cells in the bull

    NARCIS (Netherlands)

    Aponte, P.M

    2009-01-01

    In the testis a complex process, called spermatogenesis, generates millions of spermatozoa per day. At the start of this process there are spermatogonial stem cells (SSCs) that have the ability to divide either into new stem cells (self-renewal) or daughter cells committed to develop into spermatozo

  14. Plant stem cells as innovation in cosmetics.

    Science.gov (United States)

    Moruś, Martyna; Baran, Monika; Rost-Roszkowska, Magdalena; Skotnicka-Graca, Urszula

    2014-01-01

    The stem cells thanks to their ability of unlimited division number or transformation into different cell types creating organs, are responsible for regeneration processes. Depending on the organism in which the stem cells exists, they divide to the plant or animal ones. The later group includes the stem cells existing in both embryo's and adult human's organs. It includes, among others, epidermal stem cells, located in the hair follicle relieves and also in its basal layers, and responsible for permanent regeneration of the epidermis. Temporary science looks for method suitable for stimulation of the epidermis stem cells, amongst the other by delivery of e.g., growth factors for proliferation that decrease with the age. One of the methods is the use of the plant cell culture technology, including a number of methods that should ensure growth of plant cells, issues or organs in the environment with the microorganism-free medium. It uses abilities of the different plant cells to dedifferentiation into stem cells and coming back to the pluripotent status. The extracts obtained this way from the plant stem cells are currently used for production of both common or professional care cosmetics. This work describes exactly impact of the plant stem cell extract, coming from one type of the common apple tree (Uttwiler Spätlauber) to human skin as one of the first plant sorts, which are used in cosmetology and esthetic dermatology.

  15. Liver stem cells: from preface to advancements.

    Science.gov (United States)

    Rehman, Kanwal; Iqbal, Muhammad Javed; Zahra, Nureen; Akash, Muhammad Sajid Hamid

    2014-01-01

    Liver is a major metabolic organ of the body and is known to comprise of two epithelial cell lineages, namely, hepatocytes and cholangiocytes which are known to originate from hepatoblasts during fetal developing stages. Upon acute injury, the hepatocytes and cholangiocytes undergo cellular division to compensate the loss, however, chronic damage may suppress this proliferative ability and as a consequence hepatic and extra-hepatic stem cells may contribute for liver regeneration. Facultative liver stem cells (oval cells) may emerge, proliferate and contribute in replacing damaged hepatic cells. Similarly, bone marrow and mesenchymal stem cells are also known for contributing in liver regeneration having their ability of self renewal and differentiation. However, a closer look is still required to bridge the existing knowledge gaps between functionality and limitations. Thereby, we have discussed the detailed mechanistic insights of both hepatic and extra-hepatic stem cells including, stem/progenitor cells, adult/fetal hepatocytes, oval cells, bone marrow and mesenchymal stem cells. We have also focused on few in vitro and in vivo studies elucidating therapeutic applications and challenges related to the liver stem cells. We believe that such conversations may provide invaluable contribution for realistic advancement in the state of therapeutic stem-cell transplantation.

  16. Stomach development, stem cells and disease.

    Science.gov (United States)

    Kim, Tae-Hee; Shivdasani, Ramesh A

    2016-02-15

    The stomach, an organ derived from foregut endoderm, secretes acid and enzymes and plays a key role in digestion. During development, mesenchymal-epithelial interactions drive stomach specification, patterning, differentiation and growth through selected signaling pathways and transcription factors. After birth, the gastric epithelium is maintained by the activity of stem cells. Developmental signals are aberrantly activated and stem cell functions are disrupted in gastric cancer and other disorders. Therefore, a better understanding of stomach development and stem cells can inform approaches to treating these conditions. This Review highlights the molecular mechanisms of stomach development and discusses recent findings regarding stomach stem cells and organoid cultures, and their roles in investigating disease mechanisms.

  17. Wnt Signaling in Cancer Stem Cell Biology.

    Science.gov (United States)

    de Sousa E Melo, Felipe; Vermeulen, Louis

    2016-06-27

    Aberrant regulation of Wnt signaling is a common theme seen across many tumor types. Decades of research have unraveled the epigenetic and genetic alterations that result in elevated Wnt pathway activity. More recently, it has become apparent that Wnt signaling levels identify stem-like tumor cells that are responsible for fueling tumor growth. As therapeutic targeting of these tumor stem cells is an intense area of investigation, a concise understanding on how Wnt activity relates to cancer stem cell traits is needed. This review attempts at summarizing the intricacies between Wnt signaling and cancer stem cell biology with a special emphasis on colorectal cancer.

  18. Genetic and epigenetic instability of stem cells.

    Science.gov (United States)

    Rajamani, Karthyayani; Li, Yuan-Sheng; Hsieh, Dean-Kuo; Lin, Shinn-Zong; Harn, Horng-Jyh; Chiou, Tzyy-Wen

    2014-01-01

    Recently, research on stem cells has been receiving an increasing amount of attention, both for its advantages and disadvantages. Genetic and epigenetic instabilities among stem cells have been a recurring obstacle to progress in regenerative medicine using stem cells. Various reports have stated that these instabilities can transform stem cells when transferred in vivo and thus have the potential to develop tumors. Previous research has shown that various extrinsic and intrinsic factors can contribute to the stability of stem cells. The extrinsic factors include growth supplements, growth factors, oxygen tension, passage technique, and cryopreservation. Controlling these factors based on previous reports may assist researchers in developing strategies for the production and clinical application of "safe" stem cells. On the other hand, the intrinsic factors can be unpredictable and uncontrollable; therefore, to ensure the successful use of stem cells in regenerative medicine, it is imperative to develop and implement appropriate strategies and technique for culturing stem cells and to confirm the genetic and epigenetic safety of these stem cells before employing them in clinical trials.

  19. Nanomaterials for Engineering Stem Cell Responses.

    Science.gov (United States)

    Kerativitayanan, Punyavee; Carrow, James K; Gaharwar, Akhilesh K

    2015-08-05

    Recent progress in nanotechnology has stimulated the development of multifunctional biomaterials for tissue engineering applications. Synergistic interactions between nanomaterials and stem cell engineering offer numerous possibilities to address some of the daunting challenges in regenerative medicine, such as controlling trigger differentiation, immune reactions, limited supply of stem cells, and engineering complex tissue structures. Specifically, the interactions between stem cells and their microenvironment play key roles in controlling stem cell fate, which underlines therapeutic success. However, the interactions between nanomaterials and stem cells are not well understood, and the effects of the nanomaterials shape, surface morphology, and chemical functionality on cellular processes need critical evaluation. In this Review, focus is put on recent development in nanomaterial-stem cell interactions, with specific emphasis on their application in regenerative medicine. Further, the emerging technologies based on nanomaterials developed over the past decade for stem cell engineering are reviewed, as well as the potential applications of these nanomaterials in tissue regeneration, stem cell isolation, and drug/gene delivery. It is anticipated that the enhanced understanding of nanomaterial-stem cell interactions will facilitate improved biomaterial design for a range of biomedical and biotechnological applications.

  20. Advances in studies on hepatic stem cells

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The question whether hepatic stem cells exist or not has been debated for several decades. Current researches confirm that there are hepatic stem cells in the liver. Oval cells, putative bipotential hepatic stem cells, are probably located within canals of Hering, portal tracts or branches of biliary trees. Bone marrow is a potential source of oval cells, indicating that there exists a close relationship between liver and hematopoiesis in adulthood. Hepatic stem cells are able to proliferate in vitro and can be induced to differentiate into hepatocytes. This will provide a promising approach of cell transplantation, tissue engineering and gene therapy for liver diseases. In this review, the evidence of their presence, origin, identification, proliferation in vitro, differentiation by induction, application prospects of hepatic stem cells and future directions for the field are discussed.

  1. Strategies to improve homing of mesenchymal stem cells for greater efficacy in stem cell therapy.

    Science.gov (United States)

    Naderi-Meshkin, Hojjat; Bahrami, Ahmad Reza; Bidkhori, Hamid Reza; Mirahmadi, Mahdi; Ahmadiankia, Naghmeh

    2015-01-01

    Stem/progenitor cell-based therapeutic approach in clinical practice has been an elusive dream in medical sciences, and improvement of stem cell homing is one of major challenges in cell therapy programs. Stem/progenitor cells have a homing response to injured tissues/organs, mediated by interactions of chemokine receptors expressed on the cells and chemokines secreted by the injured tissue. For improvement of directed homing of the cells, many techniques have been developed either to engineer stem/progenitor cells with higher amount of chemokine receptors (stem cell-based strategies) or to modulate the target tissues to release higher level of the corresponding chemokines (target tissue-based strategies). This review discusses both of these strategies involved in the improvement of stem cell homing focusing on mesenchymal stem cells as most frequent studied model in cellular therapies.

  2. Single-cell sequencing in stem cell biology.

    Science.gov (United States)

    Wen, Lu; Tang, Fuchou

    2016-04-15

    Cell-to-cell variation and heterogeneity are fundamental and intrinsic characteristics of stem cell populations, but these differences are masked when bulk cells are used for omic analysis. Single-cell sequencing technologies serve as powerful tools to dissect cellular heterogeneity comprehensively and to identify distinct phenotypic cell types, even within a 'homogeneous' stem cell population. These technologies, including single-cell genome, epigenome, and transcriptome sequencing technologies, have been developing rapidly in recent years. The application of these methods to different types of stem cells, including pluripotent stem cells and tissue-specific stem cells, has led to exciting new findings in the stem cell field. In this review, we discuss the recent progress as well as future perspectives in the methodologies and applications of single-cell omic sequencing technologies.

  3. Stem cells in bone tissue engineering

    Energy Technology Data Exchange (ETDEWEB)

    Seong, Jeong Min [Department of Preventive and Social Dentistry and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Kim, Byung-Chul; Park, Jae-Hong; Kwon, Il Keun; Hwang, Yu-Shik [Department of Maxillofacial Biomedical Engineering and Institute of Oral Biology, College of Dentistry, Kyung Hee University, Seoul 130-701 (Korea, Republic of); Mantalaris, Anathathios, E-mail: yshwang@khu.ac.k [Department of Chemical Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ (United Kingdom)

    2010-12-15

    Bone tissue engineering has been one of the most promising areas of research, providing a potential clinical application to cure bone defects. Recently, various stem cells including embryonic stem cells (ESCs), bone marrow-derived mesenchymal stem cells (BM-MSCs), umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs), adipose tissue-derived stem cells (ADSCs), muscle-derived stem cells (MDSCs) and dental pulp stem cells (DPSCs) have received extensive attention in the field of bone tissue engineering due to their distinct biological capability to differentiate into osteogenic lineages. The application of these stem cells to bone tissue engineering requires inducing in vitro differentiation of these cells into bone forming cells, osteoblasts. For this purpose, efficient in vitro differentiation towards osteogenic lineage requires the development of well-defined and proficient protocols. This would reduce the likelihood of spontaneous differentiation into divergent lineages and increase the available cell source for application to bone tissue engineering therapies. This review provides a critical examination of the various experimental strategies that could be used to direct the differentiation of ESC, BM-MSC, UCB-MSC, ADSC, MDSC and DPSC towards osteogenic lineages and their potential applications in tissue engineering, particularly in the regeneration of bone. (topical review)

  4. Stem cells in the human breast

    DEFF Research Database (Denmark)

    Petersen, Ole William; Polyak, Kornelia

    2010-01-01

    The origins of the epithelial cells participating in the development, tissue homeostasis, and cancer of the human breast are poorly understood. However, emerging evidence suggests a role for adult tissue-specific stem cells in these processes. In a hierarchical manner, these generate the two main...... mammary cell lineages, producing an increasing number of cells with distinct properties. Understanding the biological characteristics of human breast stem cells and their progeny is crucial in attempts to compare the features of normal stem cells and cancer precursor cells and distinguish these from...... nonprecursor cells and cells from the bulk of a tumor. A historical overview of research on human breast stem cells in primary tissue and in culture reveals the progress that has been made in this area, whereas a focus on the cell-of-origin and reprogramming that occurs during neoplastic conversion provides...

  5. Nonclinical safety strategies for stem cell therapies

    Energy Technology Data Exchange (ETDEWEB)

    Sharpe, Michaela E., E-mail: michaela_sharpe@yahoo.com [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom); Morton, Daniel [Exploratory Drug Safety, Drug Safety Research and Development, Pfizer Inc, Cambridge, 02140 (United States); Rossi, Annamaria [Investigative Toxicology, Drug Safety Research and Development, Pfizer Ltd, Ramsgate Road, Sandwich, CT13 9NJ (United Kingdom)

    2012-08-01

    Recent breakthroughs in stem cell biology, especially the development of the induced pluripotent stem cell techniques, have generated tremendous enthusiasm and efforts to explore the therapeutic potential of stem cells in regenerative medicine. Stem cell therapies are being considered for the treatment of degenerative diseases, inflammatory conditions, cancer and repair of damaged tissue. The safety of a stem cell therapy depends on many factors including the type of cell therapy, the differentiation status and proliferation capacity of the cells, the route of administration, the intended clinical location, long term survival of the product and/or engraftment, the need for repeated administration, the disease to be treated and the age of the population. Understanding the product profile of the intended therapy is crucial to the development of the nonclinical safety study design.

  6. Mesenchymal stem cells: cell biology and potential use in therapy

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Kristiansen, Malthe; Abdallah, Basem M

    2004-01-01

    Mesenchymal stem cells are clonogenic, non-haematopoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages e.g. osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages e.g. neuronal-like cells. Several methods...... are currently available for isolation of the mesenchymal stem cells based on their physical and immunological characteristics. Because of the ease of their isolation and their extensive differentiation potential, mesenchymal stem cells are among the first stem cell types to be introduced in the clinic. Recent...... studies have demonstrated that the life span of mesenchymal stem cells in vitro can be extended by increasing the levels of telomerase expression in the cells and thus allowing culture of large number of cells needed for therapy. In addition, it has been shown that it is possible to culture the cells...

  7. Neurogenic differentiation of amniotic fluid stem cells.

    Science.gov (United States)

    Rosner, M; Mikula, M; Preitschopf, A; Feichtinger, M; Schipany, K; Hengstschläger, M

    2012-05-01

    In 2003, human amniotic fluid has been shown to contain stem cells expressing Oct-4, a marker for pluripotency. This finding initiated a rapidly growing and very promising new stem cell research field. Since then, amniotic fluid stem (AFS) cells have been demonstrated to harbour the potential to differentiate into any of the three germ layers and to form three-dimensional aggregates, so-called embryoid bodies, known as the principal step in the differentiation of pluripotent stem cells. Marker selection and minimal dilution approaches allow the establishment of monoclonal AFS cell lineages with high proliferation potential. AFS cells have a lower risk for tumour development and do not raise the ethical issues of embryonic stem cells. Compared to induced pluripotent stem cells, AFS cells do not need exogenic treatment to induce pluripotency, are chromosomal stable and do not harbour the epigenetic memory and accumulated somatic mutations of specific differentiated source cells. Compared to adult stem cells, AFS can be grown in larger quantities and show higher differentiation potential. Accordingly, in the recent past, AFS became increasingly accepted as an optimal tool for basic research and probably also for specific cell-based therapies. Here, we review the current knowledge on the neurogenic differentiation potential of AFS cells.

  8. [Stem cells, stem cell therapy, and ethical problems of medicine].

    Science.gov (United States)

    Hruska, I; Filip, S

    2007-01-01

    Common denominator of many philosophic approaches to the problem of using human embryos in medicine is the statement that it is "a full-value human subject that deserves respect as an adult human being". It has a defined identity in which it starts its own coordinated gradual development. Therefore, it is not just a simple cluster of cells. Integrity or holistic properties of a new quality of cells that, as a whole, represent an early embryo, and in fact are not a cluster of pre-embryonic "structural" parts or a sum of cells etc. They have theirs own evolution, previously inherently encoded, but not precisely predestined. In other words, only autointegrity alone in evolution, inherence as a part of predetermination in evolution of embryo, is not able to exist as a unit "alone". Human foetus since the first moments of its existence goes through many qualitative (externally or internally determined) transformations before it becomes a respectable human being. It is possible to say that medicine, as many times before, is now coming to a stage when axiologic values, ethical directives or moral feelings of its subjects and human objects proved in the past, are no more relevant at present. Therefore, medicine has no other alternative than an active approach to study this problem from all philosophical, biological and medical aspects to evolutionize itself in this new dimension. In this paper some of these questions are discussed and some ways of forming the ethics in therapeutic use of stem cells are presented.

  9. Potential of cardiac stem/progenitor cells and induced pluripotent stem cells for cardiac repair in ischaemic heart disease

    OpenAIRE

    Wang, Wei Eric; Chen, Xiongwen; Houser, Steven R.; Zeng, Chunyu

    2013-01-01

    Stem cell therapy has emerged as a promising strategy for cardiac and vascular repair. The ultimate goal is to rebuild functional myocardium by transplanting exogenous stem cells or by activating native stem cells to induce endogenous repair. CS/PCs (cardiac stem/progenitor cells) are one type of adult stem cell with the potential to differentiate into cardiac lineages (cardiomyocytes, smooth muscle cells and endothelial cells). iPSCs (induced pluripotent stem cells) also ha...

  10. Role of liver stem cells in hepatocarcinogenesis

    Institute of Scientific and Technical Information of China (English)

    Lei-Bo; Xu; Chao; Liu

    2014-01-01

    Liver cancer is an aggressive disease with a high mortality rate. Management of liver cancer is strongly dependent on the tumor stage and underlying liver disease. Unfortunately, most cases are discovered when the cancer is already advanced, missing the opportunity for surgical resection. Thus, an improved understanding of the mechanisms responsible for liver cancer initiation and progression will facilitate the detection of more reliable tumor markers and the development of new small molecules for targeted therapy of liver cancer. Recently, there is increasing evidence for the "cancer stem cell hypothesis", which postulates that liver cancer originates from the malignant transformation of liver stem/progenitor cells(liver cancer stem cells). This cancer stem cell model has important significance for understanding the basic biology of liver cancer and has profound importance for the development of new strategies for cancer prevention and treatment. In this review, we highlight recent advances in the role of liver stem cells in hepatocarcinogenesis. Our review of the literature shows that identification of the cellular origin and the signaling pathways involved is challenging issues in liver cancer with pivotal implications in therapeutic perspectives. Although the dedifferentiation of mature hepatocytes/cholangiocytes in hepatocarcinogenesis cannot be excluded, neoplastic transformation of a stem cell subpopulation more easily explains hepatocarcinogenesis. Elimination of liver cancer stem cells in liver cancer could result in the degeneration of downstream cells, which makes them potential targets for liver cancer therapies. Therefore, liver stem cells could represent a new target for therapeutic approaches to liver cancer in the near future.

  11. DNA damage response in adult stem cells.

    Science.gov (United States)

    Insinga, Alessandra; Cicalese, Angelo; Pelicci, Pier Giuseppe

    2014-04-01

    This review discusses the processes of DNA-damage-response and DNA-damage repair in stem and progenitor cells of several tissues. The long life-span of stem cells suggests that they may respond differently to DNA damage than their downstream progeny and, indeed, studies have begun to elucidate the unique stem cell response mechanisms to DNA damage. Because the DNA damage responses in stem cells and progenitor cells are distinctly different, stem and progenitor cells should be considered as two different entities from this point of view. Hematopoietic and mammary stem cells display a unique DNA-damage response, which involves active inhibition of apoptosis, entry into the cell-cycle, symmetric division, partial DNA repair and maintenance of self-renewal. Each of these biological events depends on the up-regulation of the cell-cycle inhibitor p21. Moreover, inhibition of apoptosis and symmetric stem cell division are the consequence of the down-regulation of the tumor suppressor p53, as a direct result of p21 up-regulation. A deeper understanding of these processes is required before these findings can be translated into human anti-aging and anti-cancer therapies. One needs to clarify and dissect the pathways that control p21 regulation in normal and cancer stem cells and define (a) how p21 blocks p53 functions in stem cells and (b) how p21 promotes DNA repair in stem cells. Is this effect dependent on p21s ability to inhibit p53? Such molecular knowledge may pave the way to methods for maintaining short-term tissue reconstitution while retaining long-term cellular and genomic integrity.

  12. Glial cell derived neurotrophic factor induces spermatogonial stem cell marker genes in chicken mesenchymal stem cells.

    Science.gov (United States)

    Boozarpour, Sohrab; Matin, Maryam M; Momeni-Moghaddam, Madjid; Dehghani, Hesam; Mahdavi-Shahri, Naser; Sisakhtnezhad, Sajjad; Heirani-Tabasi, Asieh; Irfan-Maqsood, Muhammad; Bahrami, Ahmad Reza

    2016-06-01

    Mesenchymal stem cells (MSCs) are known with the potential of multi-lineage differentiation. Advances in differentiation technology have also resulted in the conversion of MSCs to other kinds of stem cells. MSCs are considered as a suitable source of cells for biotechnology purposes because they are abundant, easily accessible and well characterized cells. Nowadays small molecules are introduced as novel and efficient factors to differentiate stem cells. In this work, we examined the potential of glial cell derived neurotrophic factor (GDNF) for differentiating chicken MSCs toward spermatogonial stem cells. MSCs were isolated and characterized from chicken and cultured under treatment with all-trans retinoic acid (RA) or glial cell derived neurotrophic factor. Expression analysis of specific genes after 7days of RA treatment, as examined by RT-PCR, proved positive for some germ cell markers such as CVH, STRA8, PLZF and some genes involved in spermatogonial stem cell maintenance like BCL6b and c-KIT. On the other hand, GDNF could additionally induce expression of POU5F1, and NANOG as well as other genes which were induced after RA treatment. These data illustrated that GDNF is relatively more effective in diverting chicken MSCs towards Spermatogonial stem cell -like cells in chickens and suggests GDNF as a new agent to obtain transgenic poultry, nevertheless, exploitability of these cells should be verified by more experiments.

  13. Signaling involved in stem cell reprogramming and differentiation

    Institute of Scientific and Technical Information of China (English)

    Shihori; Tanabe

    2015-01-01

    Stem cell differentiation is regulated by multiple signaling events. Recent technical advances have reve-aled that differentiated cells can be reprogrammed into stem cells. The signals involved in stem cell pro-gramming are of major interest in stem cell research. The signaling mechanisms involved in regulating stem cell reprogramming and differentiation are the subject of intense study in the field of life sciences. In this review,the molecular interactions and signaling pathways related to stem cell differentiation are discussed.

  14. Three-dimensional approach to stem cell therapy.

    OpenAIRE

    Oh, IL-Hoan; Kim, Dong-Wook

    2002-01-01

    Recent progress in stem cell research is opening a new hope for cell therapy in regenerative medicine. Two breakthroughs were made in the stem cell era, one, new discoveries in multi-potentiality of adult stem cells beyond the traditionally appreciated extent, and the other, establishment of pluripotent stem cell from human embryo. In addition to the newly identified multi-potentiality of adult stem cells, their ability to be trans-differentiated toward other tissue types (stem cell plasticit...

  15. Adult Stem Cell Therapy for Stroke: Challenges and Progress

    OpenAIRE

    Bang, Oh Young; Kim, Eun Hee; Cha, Jae Min; Moon, Gyeong Joon

    2016-01-01

    Stroke is one of the leading causes of death and physical disability among adults. It has been 15 years since clinical trials of stem cell therapy in patients with stroke have been conducted using adult stem cells like mesenchymal stem cells and bone marrow mononuclear cells. Results of randomized controlled trials showed that adult stem cell therapy was safe but its efficacy was modest, underscoring the need for new stem cell therapy strategies. The primary limitations of current stem cell t...

  16. The potential application of stem cell in dentistry

    Directory of Open Access Journals (Sweden)

    Ketut Suardita

    2006-12-01

    Full Text Available Stem cells are generally defined as cells that have the capacity to self-renewal and differentiate to specialize cell. There are two kinds of stem cell, embryonic stem cell and adult stem cells. Stem cell therapy has been used to treat diseases including Parkinson’s and Alzheimer’s diseases, spinal cord injury, stroke, burns, heart diseases, diabetes, osteoarthritis, and rheumatoid arthritis. Stem cells were found in dental pulp, periodontal ligament, and alveolar bone marrow. Because of their potential in medical therapy, stem cells were used to regenerate lost or damage teeth and periodontal structures. This article discusses the potential application of stem cells for dental field.

  17. Adult stem-like cells in kidney

    Institute of Scientific and Technical Information of China (English)

    Keiichi Hishikawa; Osamu Takase; Masahiro Yoshikawa; Taro Tsujimura; Masaomi Nangaku; Tsuyoshi Takato

    2015-01-01

    Human pluripotent cells are promising for treatmentfor kidney diseases, but the protocols for derivationof kidney cell types are still controversial. Kidneytissue regeneration is well confirmed in several lowervertebrates such as fish, and the repair of nephronsafter tubular damages is commonly observed after renalinjury. Even in adult mammal kidney, renal progenitorcell or system is reportedly presents suggesting thatadult stem-like cells in kidney can be practical clinicaltargets for kidney diseases. However, it is still unclearif kidney stem cells or stem-like cells exist or not. Ingeneral, stemness is defined by several factors suchas self-renewal capacity, multi-lineage potency andcharacteristic gene expression profiles. The definiteuse of stemness may be obstacle to understand kidneyregeneration, and here we describe the recent broadfindings of kidney regeneration and the cells thatcontribute regeneration.

  18. Emerging uses for pediatric hematopoietic stem cells.

    Science.gov (United States)

    Domen, Jos; Gandy, Kimberly; Dalal, Jignesh

    2012-04-01

    Many new therapies are emerging that use hematopoietic stem and progenitor cells. In this review, we focus on five promising emerging trends that are altering stem cell usage in pediatrics: (i) The use of hematopoietic stem cell (HSC) transplantation, autologous or allogeneic, in the treatment of autoimmune disorders is one. (ii) The use of cord blood transplantation in patients with inherited metabolic disorders such as Hurler syndrome shows great benefit, even more so than replacement enzyme therapy. (iii) Experience with the delivery of gene therapy through stem cells is increasing, redefining the potential and limitations of this therapy. (iv) It has recently been shown that human immunodeficiency virus (HIV) infection can be cured by the use of selected stem cells. (v) Finally, it has long been postulated that HSC-transplantation can be used to induce tolerance in solid-organ transplant recipients. A new approach to tolerance induction using myeloid progenitor cells will be described.

  19. Clonogenicity: holoclones and meroclones contain stem cells.

    Science.gov (United States)

    Beaver, Charlotte M; Ahmed, Aamir; Masters, John R

    2014-01-01

    When primary cultures of normal cells are cloned, three types of colony grow, called holoclones, meroclones and paraclones. These colonies are believed to be derived from stem cells, transit-amplifying cells and differentiated cells respectively. More recently, this approach has been extended to cancer cell lines. However, we observed that meroclones from the prostate cancer cell line DU145 produce holoclones, a paradoxical observation as meroclones are thought to be derived from transit-amplifying cells. The purpose of this study was to confirm this observation and determine if both holoclones and meroclones from cancer cell lines contain stem cells. We demonstrated that both holoclones and meroclones can be serially passaged indefinitely, are highly proliferative, can self-renew to form spheres, are serially tumorigenic and express stem cell markers. This study demonstrates that the major difference between holoclones and meroclones derived from a cancer cell line is the proportion of stem cells within each colony, not the presence or absence of stem cells. These findings may reflect the properties of cancer as opposed to normal cells, perhaps indicating that the hierarchy of stem cells is more extensive in cancer.

  20. Stem Cell Research and Health Education

    Science.gov (United States)

    Eve, David J.; Marty, Phillip J.; McDermott, Robert J.; Klasko, Stephen K.; Sanberg, Paul R.

    2008-01-01

    Stem cells are being touted as the greatest discovery for the potential treatment of a myriad of diseases in the new millennium, but there is still much research to be done before it will be known whether they can live up to this description. There is also an ethical debate over the production of one of the most valuable types of stem cell: the…

  1. Stem Cell Transplants in Cancer Treatment

    Science.gov (United States)

    Stem cell transplants are procedures that restore blood-forming stem cells in cancer patients who have had theirs destroyed by very high doses of chemotherapy or radiation therapy. Learn about the types of transplants and side effects that may occur.

  2. Skeletal stem cells in space and time.

    Science.gov (United States)

    Kassem, Moustapha; Bianco, Paolo

    2015-01-15

    The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice and demonstrate its role in skeletal tissue maintenance and regeneration.

  3. Pathological modifications of plant stem cell destiny

    Science.gov (United States)

    In higher plants, the shoot apex contains undifferentiated stem cells that give rise to various tissues and organs. The fate of these stem cells determines the pattern of plant growth as well as reproduction; and such fate is genetically preprogrammed. We found that a bacterial infection can derai...

  4. Representations of stem cell clinics on Twitter.

    Science.gov (United States)

    Kamenova, Kalina; Reshef, Amir; Caulfield, Timothy

    2014-12-01

    The practice of travelling abroad to receive unproven and unregulated stem cell treatments has become an increasingly problematic global phenomenon known as 'stem cell tourism'. In this paper, we examine representations of nine major clinics and providers of such treatments on the microblogging network Twitter. We collected and conducted a content analysis of Twitter posts (n = 363) by these establishments and by other users mentioning them, focusing specifically on marketing claims about treatment procedures and outcomes, discussions of safety and efficacy of stem cell transplants, and specific representations of patients' experiences. Our analysis has shown that there were explicit claims or suggestions of benefits associated with unproven stem cell treatments in approximately one third of the tweets and that patients' experiences, whenever referenced, were presented as invariably positive and as testimonials about the efficacy of stem cell transplants. Furthermore, the results indicated that the tone of most tweets (60.2 %) was overwhelmingly positive and there were rarely critical discussions about significant health risks associated with unproven stem cell therapies. When placed in the context of past research on the problems associated with the marketing of unproven stem cell therapies, this analysis of representations on Twitter suggests that discussions in social media have also remained largely uncritical of the stem cell tourism phenomenon, with inaccurate representations of risks and benefits for patients.

  5. Mesenchymal stem cells in oral reconstructive surgery

    DEFF Research Database (Denmark)

    Jakobsen, C; Sørensen, J A; Kassem, M

    2013-01-01

    This study evaluated clinical outcomes following intraoperative use of adult mesenchymal stem cells (MSCs) in various oral reconstructive procedures. PubMed was searched without language restrictions from 2000 to 2011 using the search words stem cell, oral surgery, tissue engineering, sinus lift...

  6. Skeletal stem cells in space and time

    DEFF Research Database (Denmark)

    Kassem, Moustapha; Bianco, Paolo

    2015-01-01

    The nature, biological characteristics, and contribution to organ physiology of skeletal stem cells are not completely determined. Chan et al. and Worthley et al. demonstrate that a stem cell for skeletal tissues, and a system of more restricted, downstream progenitors, can be identified in mice...

  7. Organ or Stem Cell Transplant and Your Mouth

    Science.gov (United States)

    ... Stem Cell Transplant and Your Mouth Organ or Stem Cell Transplant and Your Mouth Main Content Key Points​ ... Your Dentist Before Transplant Before an organ or stem cell transplant, have a dental checkup. Your mouth should ...

  8. Stem Cell Research: Unlocking the Mystery of Disease

    Science.gov (United States)

    ... Home Current Issue Past Issues From the Director: Stem Cell Research: Unlocking the Mystery of Disease Past Issues / ... Zerhouni, NIH Director, described the need for expanding stem cell research. Recently, he spoke about stem cell research ...

  9. Stem Cells: What They Are and What They Do

    Science.gov (United States)

    Stem cells: What they are and what they do Stem cells and derived products offer great promise for new medical treatments. Learn about stem cell types, current and possible uses, ethical issues, and ...

  10. Computational Tools for Stem Cell Biology.

    Science.gov (United States)

    Bian, Qin; Cahan, Patrick

    2016-12-01

    For over half a century, the field of developmental biology has leveraged computation to explore mechanisms of developmental processes. More recently, computational approaches have been critical in the translation of high throughput data into knowledge of both developmental and stem cell biology. In the past several years, a new subdiscipline of computational stem cell biology has emerged that synthesizes the modeling of systems-level aspects of stem cells with high-throughput molecular data. In this review, we provide an overview of this new field and pay particular attention to the impact that single cell transcriptomics is expected to have on our understanding of development and our ability to engineer cell fate.

  11. Clinical trials for stem cell transplantation: when are they needed?

    Science.gov (United States)

    Van Pham, Phuc

    2016-04-27

    In recent years, both stem cell research and the clinical application of these promising cells have increased rapidly. About 1000 clinical trials using stem cells have to date been performed globally. More importantly, more than 10 stem cell-based products have been approved in some countries. With the rapid growth of stem cell applications, some countries have used clinical trials as a tool to diminish the rate of clinical stem cell applications. However, the point at which stem cell clinical trials are essential remains unclear. This commentary discusses when stem cell clinical trials are essential for stem cell transplantation therapies.

  12. Biophysical regulation of stem cell differentiation.

    Science.gov (United States)

    Govey, Peter M; Loiselle, Alayna E; Donahue, Henry J

    2013-06-01

    Bone adaptation to its mechanical environment, from embryonic through adult life, is thought to be the product of increased osteoblastic differentiation from mesenchymal stem cells. In parallel with tissue-scale loading, these heterogeneous populations of multipotent stem cells are subject to a variety of biophysical cues within their native microenvironments. Bone marrow-derived mesenchymal stem cells-the most broadly studied source of osteoblastic progenitors-undergo osteoblastic differentiation in vitro in response to biophysical signals, including hydrostatic pressure, fluid flow and accompanying shear stress, substrate strain and stiffness, substrate topography, and electromagnetic fields. Furthermore, stem cells may be subject to indirect regulation by mechano-sensing osteocytes positioned to more readily detect these same loading-induced signals within the bone matrix. Such paracrine and juxtacrine regulation of differentiation by osteocytes occurs in vitro. Further studies are needed to confirm both direct and indirect mechanisms of biophysical regulation within the in vivo stem cell niche.

  13. Nanotopographical Control of Stem Cell Differentiation

    Directory of Open Access Journals (Sweden)

    Laura E. McNamara

    2010-01-01

    Full Text Available Stem cells have the capacity to differentiate into various lineages, and the ability to reliably direct stem cell fate determination would have tremendous potential for basic research and clinical therapy. Nanotopography provides a useful tool for guiding differentiation, as the features are more durable than surface chemistry and can be modified in size and shape to suit the desired application. In this paper, nanotopography is examined as a means to guide differentiation, and its application is described in the context of different subsets of stem cells, with a particular focus on skeletal (mesenchymal stem cells. To address the mechanistic basis underlying the topographical effects on stem cells, the likely contributions of indirect (biochemical signal-mediated and direct (force-mediated mechanotransduction are discussed. Data from proteomic research is also outlined in relation to topography-mediated fate determination, as this approach provides insight into the global molecular changes at the level of the functional effectors.

  14. Overcoming Multidrug Resistance in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Karobi Moitra

    2015-01-01

    Full Text Available The principle mechanism of protection of stem cells is through the expression of ATP-binding cassette (ABC transporters. These transporters serve as the guardians of the stem cell population in the body. Unfortunately these very same ABC efflux pumps afford protection to cancer stem cells in tumors, shielding them from the adverse effects of chemotherapy. A number of strategies to circumvent the function of these transporters in cancer stem cells are currently under investigation. These strategies include the development of competitive and allosteric modulators, nanoparticle mediated delivery of inhibitors, targeted transcriptional regulation of ABC transporters, miRNA mediated inhibition, and targeting of signaling pathways that modulate ABC transporters. The role of ABC transporters in cancer stem cells will be explored in this paper and strategies aimed at overcoming drug resistance caused by these particular transporters will also be discussed.

  15. Cytokine signalling in embryonic stem cells

    DEFF Research Database (Denmark)

    Kristensen, David Møbjerg; Kalisz, Mark; Nielsen, Jens Høiriis

    2006-01-01

    Cytokines play a central role in maintaining self-renewal in mouse embryonic stem (ES) cells through a member of the interleukin-6 type cytokine family termed leukemia inhibitory factor (LIF). LIF activates the JAK-STAT3 pathway through the class I cytokine receptor gp130, which forms a trimeric...... pathways seem to converge on c-myc as a common target to promote self-renewal. Whereas LIF does not seem to stimulate self-renewal in human embryonic stem cells it cannot be excluded that other cytokines are involved. The pleiotropic actions of the increasing number of cytokines and receptors signalling...... via JAKs, STATs and SOCS exhibit considerable redundancy, compensation and plasticity in stem cells in accordance with the view that stem cells are governed by quantitative variations in strength and duration of signalling events known from other cell types rather than qualitatively different stem...

  16. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy.

    Science.gov (United States)

    Ding, Dah-Ching; Chang, Yu-Hsun; Shyu, Woei-Cherng; Lin, Shinn-Zong

    2015-01-01

    The human umbilical cord is a promising source of mesenchymal stem cells (HUCMSCs). Unlike bone marrow stem cells, HUCMSCs have a painless collection procedure and faster self-renewal properties. Different derivation protocols may provide different amounts and populations of stem cells. Stem cell populations have also been reported in other compartments of the umbilical cord, such as the cord lining, perivascular tissue, and Wharton's jelly. HUCMSCs are noncontroversial sources compared to embryonic stem cells. They can differentiate into the three germ layers that promote tissue repair and modulate immune responses and anticancer properties. Thus, they are attractive autologous or allogenic agents for the treatment of malignant and nonmalignant solid and soft cancers. HUCMCs also can be the feeder layer for embryonic stem cells or other pluripotent stem cells. Regarding their therapeutic value, storage banking system and protocols should be established immediately. This review critically evaluates their therapeutic value, challenges, and future directions for their clinical applications.

  17. Are stem cells a cure for diabetes?

    Science.gov (United States)

    McCall, Michael D; Toso, Christian; Baetge, Emmanuel E; Shapiro, A M James

    2009-10-12

    With the already heightened demand placed on organ donation, stem cell therapy has become a tantalizing idea to provide glucose-responsive insulin-producing cells to Type 1 diabetic patients as an alternative to islet transplantation. Multiple groups have developed varied approaches to create a population of cells with the appropriate characteristics. Both adult and embryonic stem cells have received an enormous amount of attention as possible sources of insulin-producing cells. Although adult stem cells lack the pluripotent nature of their embryonic counterparts, they appear to avoid the ethical debate that has centred around the latter. This may limit the eventual application of embryonic stem cells, which have already shown promise in early mouse models. One must also consider the potential of stem cells to form teratomas, a complication which would prove devastating in an immunologically compromised transplant recipient. The present review looks at the progress to date in both the adult and embryonic stem cells fields as potential treatments for diabetes. We also consider some of the limitations of stem cell therapy and the potential complications that may develop with their use.

  18. The biology of cancer stem cells.

    Science.gov (United States)

    Lobo, Neethan A; Shimono, Yohei; Qian, Dalong; Clarke, Michael F

    2007-01-01

    Cancers originally develop from normal cells that gain the ability to proliferate aberrantly and eventually turn malignant. These cancerous cells then grow clonally into tumors and eventually have the potential to metastasize. A central question in cancer biology is, which cells can be transformed to form tumors? Recent studies elucidated the presence of cancer stem cells that have the exclusive ability to regenerate tumors. These cancer stem cells share many characteristics with normal stem cells, including self-renewal and differentiation. With the growing evidence that cancer stem cells exist in a wide array of tumors, it is becoming increasingly important to understand the molecular mechanisms that regulate self-renewal and differentiation because corruption of genes involved in these pathways likely participates in tumor growth. This new paradigm of oncogenesis has been validated in a growing list of tumors. Studies of normal and cancer stem cells from the same tissue have shed light on the ontogeny of tumors. That signaling pathways such as Bmi1 and Wnt have similar effects in normal and cancer stem cell self-renewal suggests that common molecular pathways regulate both populations. Understanding the biology of cancer stem cells will contribute to the identification of molecular targets important for future therapies.

  19. Translational research of adult stem cell therapy

    Institute of Scientific and Technical Information of China (English)

    Gen; Suzuki

    2015-01-01

    Congestive heart failure(CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  20. Translational research of adult stem cell therapy.

    Science.gov (United States)

    Suzuki, Gen

    2015-11-26

    Congestive heart failure (CHF) secondary to chronic coronary artery disease is a major cause of morbidity and mortality world-wide. Its prevalence is increasing despite advances in medical and device therapies. Cell based therapies generating new cardiomyocytes and vessels have emerged as a promising treatment to reverse functional deterioration and prevent the progression to CHF. Functional efficacy of progenitor cells isolated from the bone marrow and the heart have been evaluated in preclinical large animal models. Furthermore, several clinical trials using autologous and allogeneic stem cells and progenitor cells have demonstrated their safety in humans yet their clinical relevance is inconclusive. This review will discuss the clinical therapeutic applications of three specific adult stem cells that have shown particularly promising regenerative effects in preclinical studies, bone marrow derived mesenchymal stem cell, heart derived cardiosphere-derived cell and cardiac stem cell. We will also discuss future therapeutic approaches.

  1. Hippocampal stem cells: so they are multipotent!

    Institute of Scientific and Technical Information of China (English)

    Verdon Taylor

    2011-01-01

    Although neurogenesis continues throughout life in the mammalian brain, the issue of whether the stem cells that drive the process in vivo are self-renewing and multipotent remains unclear. In a recent landmark paper by Bonaguidi et al. (2011) published in Cell, the authors provide clonal evidence that neural stem cells in the dentate gyrus of the adult hippocampus are indeed multipotent and undergo symmetric cell divisions.%Although neurogenesis continues throughout life in the mammalian brain,the issue of whether the stem cells that drive the process in vivo are self-renewing and multipotent remains unclear.In a recent landmark paper by Bonaguidi et al.(2011) pubiished in Cell,the authors provide cional evidence that neural stem cells in the dentate gyrus of the adult hippocampus are indeed multipotent and undergo symmetric cell divisions.

  2. Breast cancer stem cells and radiation

    Science.gov (United States)

    Phillips, Tiffany Marie

    2007-12-01

    The present studies explore the response of breast cancer stem cells (BCSC's) to radiation and the implications for clinical cancer treatment. Current cancer therapy eliminates bulky tumor mass but may fail to eradicate a critical tumor initiating cell population termed "cancer stem cells". These cells are potentially responsible for tumor formation, metastasis, and recurrence. Recently cancer stem cells have been prospectively identified in various malignancies, including breast cancer. The breast cancer stem cell has been identified by the surface markers CD44+/CD24 -(low). In vitro mammosphere cultures allow for the enrichment of the cancer stem cell population and were utilized in order to study differential characteristics of BCSC's. Initial studies found that BCSC's display increased radiation resistance as compared to other non-stem tumor cells. This resistance was accompanied by decreased H2AX phosphorylation, decreased reactive oxygen species formation, and increased phosphorylation of the checkpoint protein Chk1. These studies suggest differential DNA damage and repair within the BCSC population. Studies then examined the consequences of fractionated radiation on the BCSC population and found a two-fold increase in BCSC's following 5 x 3Gy. This observation begins to tie cancer stem cell self-renewal to the clinical stem cell phenomenon of accelerated repopulation. Accelerated repopulation is observed when treatment gaps increase between sequential fractions of radiotherapy and may be due to cancer stem cell symmetric self-renewal. The balance between asymmetric and symmetric stem cell division is vital for proper maintenance; deregulation is likely linked to cancer initiation and progression. The developmental Notch-1 pathway was found to regulate BCSC division. Over-expressing the constitutively active Notch-1-ICD in MCF7 cells produced an increase in the BCSC population. Additionally, radiation was observed to increase the expression of the Notch-1

  3. Regenerative medicine for the kidney: renotropic factors, renal stem/progenitor cells, and stem cell therapy.

    Science.gov (United States)

    Maeshima, Akito; Nakasatomi, Masao; Nojima, Yoshihisa

    2014-01-01

    The kidney has the capacity for regeneration and repair after a variety of insults. Over the past few decades, factors that promote repair of the injured kidney have been extensively investigated. By using kidney injury animal models, the role of intrinsic and extrinsic growth factors, transcription factors, and extracellular matrix in this process has been examined. The identification of renal stem cells in the adult kidney as well as in the embryonic kidney is an active area of research. Cell populations expressing putative stem cell markers or possessing stem cell properties have been found in the tubules, interstitium, and glomeruli of the normal kidney. Cell therapies with bone marrow-derived hematopoietic stem cells, mesenchymal stem cells, endothelial progenitor cells, and amniotic fluid-derived stem cells have been highly effective for the treatment of acute or chronic renal failure in animals. Embryonic stem cells and induced pluripotent stem cells are also utilized for the construction of artificial kidneys or renal components. In this review, we highlight the advances in regenerative medicine for the kidney from the perspective of renotropic factors, renal stem/progenitor cells, and stem cell therapies and discuss the issues to be solved to realize regenerative therapy for kidney diseases in humans.

  4. Stem cell horizons in intervertebral disc degeneration

    Directory of Open Access Journals (Sweden)

    Joseph Ciacci

    2009-01-01

    Full Text Available Joseph Ciacci1, Allen Ho1,2, Christopher P Ames3, Rahul Jandial41Division of Neurosurgery, University of California, San Diego, La Jolla, California, USA; 2Del E Webb Neurosciences, Aging and Stem Cell Research Center, The Burnham Institute for Medical Research, La Jolla, California, USA; 3Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; 4Division of Neurosurgery, Department of Surgery, City of Hope Cancer Center, Duarte, CA, USAAbstract: Intervertebral disc degeneration remains a pervasive and intractable disease arising from a combination of aging and stress on the back and spine. The growing field of regenerative medicine brings the promise of stem cells in the treatment of disc disease. Scientists and physicians hope to employ stem cells not only to stop, but also reverse degeneration. However, there are many important outstanding issues, including the hostile avascular, apoptotic physiological environment of the intervertebral disc, and the difficulty of obtaining mesenchymal stem cells, and directing them towards chondrocytic differentiation and integration within the nucleus pulposus of the disc. Given the recent advances in minimally invasive spine surgery, and developing body of work on stem cell manipulation and transplantation, stem cells are uniquely poised to bring about large-scale improvements in treatment and outcomes for degenerative disc disease. In this review we will first discuss the cellular and molecular factors influencing degeneration, and then examine the efficacy and difficulties of stem cell transplantation.Keywords: intervertebral disc degeneration, stem cells, disc disease, mesenchymal stem cells, stem cell transplantation

  5. Curbing stem cell tourism in South Africa.

    Science.gov (United States)

    Meissner-Roloff, Madelein; Pepper, Michael S

    2013-12-01

    Stem cells have received much attention globally due in part to the immense therapeutic potential they harbor. Unfortunately, malpractice and exploitation (financial and emotional) of vulnerable patients have also drawn attention to this field as a result of the detrimental consequences experienced by some individuals that have undergone unproven stem cell therapies. South Africa has had limited exposure to stem cells and their applications and, while any exploitation is detrimental to the field of stem cells, South Africa is particularly vulnerable in this regard. The current absence of adequate legislation and the inability to enforce existing legislation, coupled to the sea of misinformation available on the Internet could lead to an increase in illegitimate stem cell practices in South Africa. Circumstances are already precarious because of a lack of understanding of concepts involved in stem cell applications. What is more, credible and easily accessible information is not available to the public. This in turn cultivates fears born out of existing superstitions, cultural beliefs, rituals and practices. Certain cultural or religious concerns could potentially hinder the effective application of stem cell therapies in South Africa and novel ways of addressing these concerns are necessary. Understanding how scientific progress and its implementation will affect each individual and, consequently, the community, will be of cardinal importance to the success of the fields of stem cell therapy and regenerative medicine in South Africa. A failure to understand the ethical, cultural or moral ramifications when new scientific concepts are introduced could hinder the efficacy and speed of bringing discoveries to the patient. Neglecting proper procedure for establishing the field would lead to long delays in gaining public support in South Africa. Understanding the dangers of stem cell tourism - where vulnerable patients are subjected to unproven stem cell therapies that

  6. Therapeutic implications of colon cancer stem cells

    Institute of Scientific and Technical Information of China (English)

    Eros; Fabrizi; Simona; di; Martino; Federica; Pelacchi; Lucia; Ricci-Vitiani

    2010-01-01

    Colorectal cancer is the second most common cause of cancer-related death in many industrialized countries and is characterized by a heterogenic pool of cells with distinct differentiation patterns. Recently, the concept that cancer might arise from a rare population of cells with stem cell-like properties has received support with regard to several solid tumors, including colorectal cancer. According to the cancer stem cell hypothesis, cancer can be considered a disease in which mutations either convert no...

  7. [Stem cells: limitations and opportunities in Peru].

    Science.gov (United States)

    Amiel-Pérez, José; Casado, Fanny

    2015-10-01

    Stem cells are defined as rare cells that are characterized by asymmetric division, a process known as self-renewal, and the potential to differentiate into more than one type of terminally differentiated cell. There is a diversity of stem cells including embryonic stem cells, which exist only during the first stages of human development, and many adult stem cells depending on the specific tissues from where they derive or the ones derived from mesenchymal or stromal tissues. On the other hand, there are induced pluripotent stem cells generated by genetic engineering with similar properties to embryonic stem cells that are derived from adult tissues without the ethical and legal limitations. In all cases, there are many questions that are being addressed by research in basic sciences to better inform clinical practice. In Peru, there is much to do refining techniques and improving methodologies, which requires experience, proper facilities and highly specialized human resources. However, there are interesting efforts to place Peruvian stem cell research in the international scientific arena.

  8. Smart drugs for smarter stem cells: making SENSe (sphingolipid-enhanced neural stem cells) of ceramide.

    Science.gov (United States)

    Bieberich, Erhard

    2008-01-01

    Ceramide and its derivative sphingosine-1-phosphate (S1P) are important signaling sphingolipids for neural stem cell apoptosis and differentiation. Most recently, our group has shown that novel ceramide analogs can be used to eliminate teratoma (stem cell tumor)-forming cells from a neural stem cell graft. In new studies, we found that S1P promotes survival of specific neural precursor cells that undergo differentiation to cells expressing oligodendroglial markers. Our studies suggest that a combination of novel ceramide and S1P analogs eliminates tumor-forming stem cells and at the same time, triggers oligodendroglial differentiation. This review discusses recent studies on the function of ceramide and S1P for the regulation of apoptosis, differentiation, and polarity in stem cells. We will also discuss results from ongoing studies in our laboratory on the use of sphingolipids in stem cell therapy.

  9. Connecting Mitochondria, Metabolism, and Stem Cell Fate.

    Science.gov (United States)

    Wanet, Anaïs; Arnould, Thierry; Najimi, Mustapha; Renard, Patricia

    2015-09-01

    As sites of cellular respiration and energy production, mitochondria play a central role in cell metabolism. Cell differentiation is associated with an increase in mitochondrial content and activity and with a metabolic shift toward increased oxidative phosphorylation activity. The opposite occurs during reprogramming of somatic cells into induced pluripotent stem cells. Studies have provided evidence of mitochondrial and metabolic changes during the differentiation of both embryonic and somatic (or adult) stem cells (SSCs), such as hematopoietic stem cells, mesenchymal stem cells, and tissue-specific progenitor cells. We thus propose to consider those mitochondrial and metabolic changes as hallmarks of differentiation processes. We review how mitochondrial biogenesis, dynamics, and function are directly involved in embryonic and SSC differentiation and how metabolic and sensing pathways connect mitochondria and metabolism with cell fate and pluripotency. Understanding the basis of the crosstalk between mitochondria and cell fate is of critical importance, given the promising application of stem cells in regenerative medicine. In addition to the development of novel strategies to improve the in vitro lineage-directed differentiation of stem cells, understanding the molecular basis of this interplay could lead to the identification of novel targets to improve the treatment of degenerative diseases.

  10. Stem cells and small molecule screening: haploid embryonic stem cells as a new tool

    Institute of Scientific and Technical Information of China (English)

    Bi WU; Wei LI; Liu WANG; Zhong-hua LIU; Xiao-yang ZHAO

    2013-01-01

    Stem cells can both self-renew and differentiate into various cell types under certain conditions,which makes them a good model for development and disease studies.Recently,chemical approaches have been widely applied in stem cell biology by promoting stem cell self-renewal,proliferation,differentiation and somatic cell reprogramming using specific small molecules.Conversely,stem cells and their derivatives also provide an efficient and robust platform for small molecule and drug screening.Here,we review the current research and applications of small molecules that modulate stem cell self-renewal and differentiation and improve reprogramming,as well as the applications that use stem cells as a tool for small molecule screening.Moreover,we introduce the recent advance in haploid embryonic stem cells research.Haploid embryonic stem cells maintain haploidy and stable growth over extensive passages,possess the ability to differentiate into all three germ layers in vitro and in vivo,and contribute to the germlines of chimeras when injected into blastocysts.Androgenetic haploid stem cells can also be used in place of sperm to produce fertile progeny after intracytoplasmic injection into mature oocytes.Such characteristics demonstrate that haploid stem cells are a new approach for genetic studies at both the cellular and animal levels and that they are a valuable platform for future small molecule screening.

  11. Calcium signaling in pluripotent stem cells.

    Science.gov (United States)

    Apáti, Ágota; Pászty, Katalin; Erdei, Zsuzsa; Szebényi, Kornélia; Homolya, László; Sarkadi, Balázs

    2012-04-28

    Pluripotent stem cells represent a new source of biological material allowing the exploration of signaling phenomena during normal cell development and differentiation. Still, the calcium signaling pathways and intracellular calcium responses to various ligands or stress conditions have not been sufficiently explored as yet in embryonic or induced pluripotent stem cells and in their differentiated offspring. This is partly due to the special culturing conditions of these cell types, the rapid morphological and functional changes in heterogeneous cell populations during early differentiation, and methodological problems in cellular calcium measurements. In this paper, we review the currently available data in the literature on calcium signaling in pluripotent stem cells and discuss the potential shortcomings of these studies. Various assay methods are surveyed for obtaining reliable data both in undifferentiated embryonic stem cells and in specific, stem cell-derived human tissues. In this paper, we present the modulation of calcium signaling in human embryonic stem cells (hESC) and in their derivates; mesenchymal stem cell like (MSCl) cells and cardiac tissues using the fluorescent calcium indicator Fluo-4 and confocal microscopy. LPA, trypsin and angiotensin II were effective in inducing calcium signals both in HUES9 and MSCl cells. Histamine and thrombin induced calcium signal exclusively in the MSCl cells, while ATP was effective only in HUES9 cells. There was no calcium signal evoked by GABA, even at relatively high concentrations. In stem cell-derived cardiomyocytes a rapid increase in the beating rate and an increase of the calcium signal peaks could be observed after the addition of adrenaline, while verapamil led to a strong decrease in cellular calcium and stopped spontaneous contractions in a relaxed state.

  12. Recent advances in stem cell neurobiology.

    Science.gov (United States)

    Ostenfeld, T; Svendsen, C N

    2003-01-01

    1. Neural stem cells can be cultured from the CNS of different mammalian species at many stages of development. They have an extensive capacity for self-renewal and will proliferate ex vivo in response to mitogenic growth factors or following genetic modification with immortalising oncogenes. Neural stem cells are multipotent since their differentiating progeny will give rise to the principal cellular phenotypes comprising the mature CNS: neurons, astrocytes and oligodendrocytes. 2. Neural stem cells can also be derived from more primitive embryonic stem (ES) cells cultured from the blastocyst. ES cells are considered to be pluripotent since they can give rise to the full cellular spectrum and will, therefore, contribute to all three of the embryonic germ layers: endoderm, mesoderm and ectoderm. However, pluripotent cells have also been derived from germ cells and teratocarcinomas (embryonal carcinomas) and their progeny may also give rise to the multiple cellular phenotypes contributing to the CNS. In a recent development, ES cells have also been isolated and grown from human blastocysts, thus raising the possibility of growing autologous stem cells when combined with nuclear transfer technology. 3. There is now an emerging recognition that the adult mammalian brain, including that of primates and humans, harbours stem cell populations suggesting the existence of a previously unrecognised neural plasticity to the mature CNS, and thereby raising the possibility of promoting endogenous neural reconstruction. 4. Such reports have fuelled expectations for the clinical exploitation of neural stem cells in cell replacement or recruitment strategies for the treatment of a variety of human neurological conditions including Parkinson's disease (PD), Huntington's disease, multiple sclerosis and ischaemic brain injury. Owing to their migratory capacity within the CNS, neural stem cells may also find potential clinical application as cellular vectors for widespread gene

  13. Stem cells in neurology - current perspectives

    Directory of Open Access Journals (Sweden)

    Chary Ely Marquez Batista

    2014-06-01

    Full Text Available Central nervous system (CNS restoration is an important clinical challenge and stem cell transplantation has been considered a promising therapeutic option for many neurological diseases. Objective : The present review aims to briefly describe stem cell biology, as well as to outline the clinical application of stem cells in the treatment of diseases of the CNS. Method : Literature review of animal and human clinical experimental trials, using the following key words: “stem cell”, “neurogenesis”, “Parkinson”, “Huntington”, “amyotrophic lateral sclerosis”, “traumatic brain injury”, “spinal cord injury”, “ischemic stroke”, and “demyelinating diseases”. Conclusion : Major recent advances in stem cell research have brought us several steps closer to their effective clinical application, which aims to develop efficient ways of regenerating the damaged CNS.

  14. Biomaterials and Stem Cells in Regenerative Medicine

    CERN Document Server

    Ramalingam, Murugan; Best, Serena

    2012-01-01

    Work in the area of biomaterials and stem cell therapy has revealed great potential for many applications, from the treatment of localized defects and diseases to the repair and replacement of whole organs. Researchers have also begun to develop a better understanding of the cellular environment needed for optimal tissue repair and regeneration. Biomaterials and Stem Cells in Regenerative Medicine explores a range of applications for biomaterials and stem cell therapy and describes recent research on suitable cell scaffolds and substrates for tissue repair and reconstruction. Featuring contrib

  15. Stem cell applications in military medicine.

    Science.gov (United States)

    Christopherson, Gregory T; Nesti, Leon J

    2011-10-19

    There are many similarities between health issues affecting military and civilian patient populations, with the exception of the relatively small but vital segment of active soldiers who experience high-energy blast injuries during combat. A rising incidence of major injuries from explosive devices in recent campaigns has further complicated treatment and recovery, highlighting the need for tissue regenerative options and intensifying interest in the possible role of stem cells for military medicine. In this review we outline the array of tissue-specific injuries typically seen in modern combat - as well as address a few complications unique to soldiers--and discuss the state of current stem cell research in addressing each area. Embryonic, induced-pluripotent and adult stem cell sources are defined, along with advantages and disadvantages unique to each cell type. More detailed stem cell sources are described in the context of each tissue of interest, including neural, cardiopulmonary, musculoskeletal and sensory tissues, with brief discussion of their potential role in regenerative medicine moving forward. Additional commentary is given to military stem cell applications aside from regenerative medicine, such as blood pharming, immunomodulation and drug screening, with an overview of stem cell banking and the unique opportunity provided by the military and civilian overlap of stem cell research.

  16. Hepatic stem cells: existence and origin

    Institute of Scientific and Technical Information of China (English)

    Ying Zhang; Xue-Fan Bai; Chang-Xing Huang

    2003-01-01

    Stem cells are not only units of biological organization,responsible for the development and the regeneration oftissue and organ systems, but also are units in evolution bynatural selection. It is accepted that there is stem cellpotential in the liver. Like most organs in a healthy adult,the liver maintains a perfect balance between cell gain andloss. It has three levels of cells that can respond to loss ofhepatocytes: (1) Mature hepatocytes, which proliferate afternormal liver tissue renewal, less severe liver damage, etc;they are numerous, unipotent, "committed" and respondrapidly to liver injury. (2) Oval cells, which are activated toproliferate when the liver damage is extensive and chronic,or if proliferation of hepatocytes is inhibited; they lie withinor immediately adjacent tothe canal of Hering (CoH); theyare less numerous, bipotent and respond by longer, but stilllimited proliferation. (3) Exogenous liver stem cells, whichmay derive from circulating hematopoietic stem cells (HSCs)or bone marrow stem cells; they respond to allyl alcoholinjury or hepatocarcinogenesis; they are multipotent, rare,but have a very long proliferation potential. They make amore significant contribution to regeneration, and evencompletely restore normal function in a murine model ofhereditary tyrosinaemia. How these three stem cellpopulations integrate to achieve a homeostatic balanceremains enigmatic. This review focuses on the location,activation, markers of the three candidates of liver stemcell, and the most importantly, therapeutic potential ofhepatic stem cells.

  17. Understanding cancer stem cell heterogeneity and plasticity

    Institute of Scientific and Technical Information of China (English)

    Dean G Tang

    2012-01-01

    Heterogeneity is an omnipresent feature of mammalian cells in vitro and in vivo.It has been recently realized that even mouse and human embryonic stem cells under the best culture conditions are heterogeneous containing pluripotent as well as partially committed cells.Somatic stem cells in adult organs are also heterogeneous,containing many subpopulations of self-renewing cells with distinct regenerative capacity.The differentiated progeny of adult stem cells also retain significant developmental plasticity that can be induced by a wide variety of experimental approaches.Like normal stem cells,recent data suggest that cancer stem cells(CSCs)similarly display significant phenotypic and functional heterogeneity,and that the CSC progeny can manifest diverse plasticity.Here,I discuss CSC heterogeneity and plasticity in the context of tumor development and progression,and by comparing with normal stem cell development.Appreciation of cancer cell plasticity entails a revision to the earlier concept that only the tumorigenic subset in the tumor needs to be targeted.By understanding the interrelationship between CSCs and their differentiated progeny,we can hope to develop better therapeutic regimens that can prevent the emergence of tumor cell variants that are able to found a new tumor and distant metastases.

  18. Stem cells for cardiac repair: an introduction

    Institute of Scientific and Technical Information of China (English)

    Bastiaan C du Pr(e); Pieter A Doevendans; Linda W van Laake

    2013-01-01

    Cardiovascular disease is a major cause of morbidity and mortality throughout the world. Most cardiovascular diseases, such as ischemic heart disease and cardiomyopathy, are associated with loss of functional cardiomyocytes. Unfortunately, the heart has a limited regenerative capacity and is not able to replace these cardiomyocytes once lost. In recent years, stem cells have been put forward as a potential source for cardiac regeneration. Pre-clinical studies that use stem cell-derived cardiac cells show promising results. The mechanisms, though, are not well understood, results have been variable, sometimes transient in the long term, and often without a mechanistic explanation. There are still several major hurdles to be taken. Stem cell-derived cardiac cells should resemble original cardiac cell types and be able to integrate in the damaged heart. Integration requires administration of stem cell-derived cardiac cells at the right time using the right mode of delivery. Once delivered, transplanted cells need vascularization, electrophysiological coupling with the injured heart, and prevention of immunological rejection. Finally, stem cell therapy needs to be safe, reproducible, and affordable. In this review, we will give an introduction to the principles of stem cell based cardiac repair.

  19. Stem cells as promising therapeutic options for neurological disorders.

    Science.gov (United States)

    Yoo, Jongman; Kim, Han-Soo; Hwang, Dong-Youn

    2013-04-01

    Due to the limitations of pharmacological and other current therapeutic strategies, stem cell therapies have emerged as promising options for treating many incurable neurologic diseases. A variety of stem cells including pluripotent stem cells (i.e., embryonic stem cells and induced pluripotent stem cells) and multipotent adult stem cells (i.e., fetal brain tissue, neural stem cells, and mesenchymal stem cells from various sources) have been explored as therapeutic options for treating many neurologic diseases, and it is becoming obvious that each type of stem cell has pros and cons as a source for cell therapy. Wise selection of stem cells with regard to the nature and status of neurologic dysfunctions is required to achieve optimal therapeutic efficacy. To this aim, the stem cell-mediated therapeutic efforts on four major neurological diseases, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and stroke, will be introduced, and current problems and future directions will be discussed.

  20. Cellular quiescence in mammary stem cells and breast tumor stem cells: got testable hypotheses?

    Science.gov (United States)

    Harmes, David C; DiRenzo, James

    2009-03-01

    Cellular quiescence is a state of reversible cell cycle arrest and has more recently been shown to be a blockade to differentiation and to correlate with resistance to cancer chemotherapeutics and other xenobiotics; features that are common to adult stem cells and possibly tumor stem cells. The biphasic kinetics of mammary regeneration, coupled to its cyclic endocrine control suggest that mammary stem cells most likely divide during a narrow window of the regenerative cycle and return to a state of quiescence. This would enable them to retain their proliferative capacity, resist differentiation signals and preserve their prolonged life span. There is accumulating evidence that mammary stem cells and other adult stem cells utilize quiescence for this purpose, however the degree to which tumor stem cells do so is largely unknown. The retained proliferative capacity of mammary stem cells likely enables them to accumulate and harbor mutations that lead to breast cancer initiation. However it is currently unclear if these causative lesions lead to defective or deranged quiescence in mammary stem cells. Evidence of such effects could potentially lead to the development of diagnostic systems that monitor mammary stem cell quiescence or activation. Such systems may be useful for the evaluation of patients who are at significant risk of breast cancer. Additionally quiescence has been postulated to contribute to therapeutic resistance and tumor recurrence. This review aims to evaluate what is known about the mechanisms governing cellular quiescence and the role of tumor stem cell quiescence in breast cancer recurrence.

  1. State of the Art in Stem Cell Research: Human Embryonic Stem Cells, Induced Pluripotent Stem Cells, and Transdifferentiation

    Directory of Open Access Journals (Sweden)

    Giuseppe Maria de Peppo

    2012-01-01

    Full Text Available Stem cells divide by asymmetric division and display different degrees of potency, or ability to differentiate into various specialized cell types. Owing to their unique regenerative capacity, stem cells have generated great enthusiasm worldwide and represent an invaluable tool with unprecedented potential for biomedical research and therapeutic applications. Stem cells play a central role in the understanding of molecular mechanisms regulating tissue development and regeneration in normal and pathological conditions and open large possibilities for the discovery of innovative pharmaceuticals to treat the most devastating diseases of our time. Not least, their intrinsic characteristics allow the engineering of functional tissues for replacement therapies that promise to revolutionize the medical practice in the near future. In this paper, the authors present the characteristics of pluripotent stem cells and new developments of transdifferentiation technologies and explore some of the biomedical applications that this emerging technology is expected to empower.

  2. Muscle Stem Cells: A Model System for Adult Stem Cell Biology.

    Science.gov (United States)

    Cornelison, Ddw; Perdiguero, Eusebio

    2017-01-01

    Skeletal muscle stem cells, originally termed satellite cells for their position adjacent to differentiated muscle fibers, are absolutely required for the process of skeletal muscle repair and regeneration. In the last decade, satellite cells have become one of the most studied adult stem cell systems and have emerged as a standard model not only in the field of stem cell-driven tissue regeneration but also in stem cell dysfunction and aging. Here, we provide background in the field and discuss recent advances in our understanding of muscle stem cell function and dysfunction, particularly in the case of aging, and the potential involvement of muscle stem cells in genetic diseases such as the muscular dystrophies.

  3. Concise Review: Asymmetric Cell Divisions in Stem Cell Biology

    Directory of Open Access Journals (Sweden)

    Florian Murke

    2015-11-01

    Full Text Available Somatic stem cells are rare cells with unique properties residing in many organs and tissues. They are undifferentiated cells responsible for tissue regeneration and homeostasis, and contain both the capacity to self-renew in order to maintain their stem cell potential and to differentiate towards tissue-specific, specialized cells. However, the knowledge about the mechanisms controlling somatic stem cell fate decisions remains sparse. One mechanism which has been described to control daughter cell fates in selected somatic stem cell systems is the process of asymmetric cell division (ACD. ACD is a tightly regulated and evolutionary conserved process allowing a single stem or progenitor cell to produce two differently specified daughter cells. In this concise review, we will summarize and discuss current concepts about the process of ACD as well as different ACD modes. Finally, we will recapitulate the current knowledge and our recent findings about ACD in human hematopoiesis.

  4. Induced pluripotent stem (iPS) cells from human fetal stem cells.

    Science.gov (United States)

    Guillot, Pascale V

    2016-02-01

    Pluripotency defines the ability of stem cells to differentiate into all the lineages of the three germ layers and self-renew indefinitely. Somatic cells can regain the developmental potential of embryonic stem cells following ectopic expression of a set of transcription factors or, in certain circumstances, via modulation of culture conditions and supplementation with small molecule, that is, induced pluripotent stem (iPS) cells. Here, we discuss the use of fetal tissues for reprogramming, focusing in particular on stem cells derived from human amniotic fluid, and the development of chemical reprogramming. We next address the advantages and disadvantages of deriving pluripotent cells from fetal tissues and the potential clinical applications.

  5. Stem Cells in Niemann-Pick Disease

    Directory of Open Access Journals (Sweden)

    Sun-Jung Kim

    2008-01-01

    Full Text Available Neural stem cells are multi-potent and able to self renew to maintain its character throughout the life. Loss of self renewal ability of stem cells prevents recovery or replacement of cells damaged by disease with new cells. The Niemann-Pick type C1 (NPC1 disease is one of the neurodegenerative diseases, caused by a mutation of NPC1 gene which affects the function of NPC1 protein. We reported that NPC 1 gene deficiency could lead to lack of the self renewal ability of neural stem cells in Niemann pick type C disease. We also investigated many genes which are involved in stem cells proliferation and differentiation by gene profile in NPC mice.

  6. Lung stem cells: do they exist?

    Science.gov (United States)

    Bertoncello, Ivan; McQualter, Jonathan L

    2013-05-01

    Recognition of the potential of stem cell-based therapies for alleviating intractable lung diseases has provided the impetus for research aimed at identifying regenerative cells in the adult lung, understanding how they are organized and regulated, and how they could be harnessed in lung regenerative medicine. In this review, we describe the attributes of adult stem and progenitor cells in adult organs and how they are regulated by the permissive or restrictive microenvironment in which they reside. We describe the power and limitations of experimental models, cell separative strategies and functional assays used to model the organization and regulation of adult airway and alveolar stem cells in the adult lung. The review summarizes recent progress and obstacles in defining endogenous lung epithelial stem and progenitor cells in mouse models and in translational studies.

  7. Immunological characteristics of mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Cíntia de Vasconcellos Machado

    2013-01-01

    Full Text Available Although bone marrow is the main source, mesenchymal stem cells have already been isolated from various other tissues, such as the liver, pancreas, adipose tissue, peripheral blood and dental pulp. These plastic adherent cells are morphologically similar to fibroblasts and have a high proliferative potential. This special group of cells possesses two essential characteristics: self-renewal and differentiation, with appropriate stimuli, into various cell types. Mesenchymal stem cells are considered immunologically privileged, since they do not express costimulatory molecules, required for complete T cell activation, on their surface. Several studies have shown that these cells exert an immunosuppressive effect on cells from both innate and acquired immunity systems. Mesenchymal stem cells can regulate the immune response in vitro by inhibiting the maturation of dendritic cells, as well as by suppressing the proliferation and function of T and B lymphocytes and natural killer cells. These special properties of mesenchymal stem cells make them a promising strategy in the treatment of immune mediated disorders, such as graft-versus-host disease and autoimmune diseases, as well as in regenerative medicine. The understanding of immune regulation mechanisms of mesenchymal stem cells, and also those involved in the differentiation of these cells in various lineages is primordial for their successful and safe application in different areas of medicine.

  8. Adult Stem Cells and Diseases of Aging

    Directory of Open Access Journals (Sweden)

    Lisa B. Boyette

    2014-01-01

    Full Text Available Preservation of adult stem cells pools is critical for maintaining tissue homeostasis into old age. Exhaustion of adult stem cell pools as a result of deranged metabolic signaling, premature senescence as a response to oncogenic insults to the somatic genome, and other causes contribute to tissue degeneration with age. Both progeria, an extreme example of early-onset aging, and heritable longevity have provided avenues to study regulation of the aging program and its impact on adult stem cell compartments. In this review, we discuss recent findings concerning the effects of aging on stem cells, contributions of stem cells to age-related pathologies, examples of signaling pathways at work in these processes, and lessons about cellular aging gleaned from the development and refinement of cellular reprogramming technologies. We highlight emerging therapeutic approaches to manipulation of key signaling pathways corrupting or exhausting adult stem cells, as well as other approaches targeted at maintaining robust stem cell pools to extend not only lifespan but healthspan.

  9. Technology advancement for integrative stem cell analyses.

    Science.gov (United States)

    Jeong, Yoon; Choi, Jonghoon; Lee, Kwan Hyi

    2014-12-01

    Scientists have endeavored to use stem cells for a variety of applications ranging from basic science research to translational medicine. Population-based characterization of such stem cells, while providing an important foundation to further development, often disregard the heterogeneity inherent among individual constituents within a given population. The population-based analysis and characterization of stem cells and the problems associated with such a blanket approach only underscore the need for the development of new analytical technology. In this article, we review current stem cell analytical technologies, along with the advantages and disadvantages of each, followed by applications of these technologies in the field of stem cells. Furthermore, while recent advances in micro/nano technology have led to a growth in the stem cell analytical field, underlying architectural concepts allow only for a vertical analytical approach, in which different desirable parameters are obtained from multiple individual experiments and there are many technical challenges that limit vertically integrated analytical tools. Therefore, we propose--by introducing a concept of vertical and horizontal approach--that there is the need of adequate methods to the integration of information, such that multiple descriptive parameters from a stem cell can be obtained from a single experiment.

  10. The Stem Cell Hypothesis of Aging

    Directory of Open Access Journals (Sweden)

    Anna Meiliana

    2010-04-01

    Full Text Available BACKGROUND: There is probably no single way to age. Indeed, so far there is no single accepted explanation or mechanisms of aging (although more than 300 theories have been proposed. There is an overall decline in tissue regenerative potential with age, and the question arises as to whether this is due to the intrinsic aging of stem cells or rather to the impairment of stem cell function in the aged tissue environment. CONTENT: Recent data suggest that we age, in part, because our self-renewing stem cells grow old as a result of heritable intrinsic events, such as DNA damage, as well as extrinsic forces, such as changes in their supporting niches. Mechanisms that suppress the development of cancer, such as senescence and apoptosis, which rely on telomere shortening and the activities of p53 and p16INK4a may also induce an unwanted consequence: a decline in the replicative function of certain stem cells types with advancing age. This decrease regenerative capacity appears to pointing to the stem cell hypothesis of aging. SUMMARY: Recent evidence suggested that we grow old partly because of our stem cells grow old as a result of mechanisms that suppress the development of cancer over a lifetime. We believe that a further, more precise mechanistic understanding of this process will be required before this knowledge can be translated into human anti-aging therapies. KEYWORDS: stem cells, senescence, telomere, DNA damage, epigenetic, aging.

  11. Cancer stem cells, cancer cell plasticity and radiation therapy.

    Science.gov (United States)

    Vlashi, Erina; Pajonk, Frank

    2015-04-01

    Since the first prospective identification of cancer stem cells in solid cancers the cancer stem cell hypothesis has reemerged as a research topic of increasing interest. It postulates that solid cancers are organized hierarchically with a small number of cancer stem cells driving tumor growth, repopulation after injury and metastasis. They give rise to differentiated progeny, which lack these features. The model predicts that for any therapy to provide cure, all cancer stem cells have to be eliminated while the survival of differentiated progeny is less critical. In this review we discuss recent reports challenging the idea of a unidirectional differentiation of cancer cells. These reports provide evidence supporting the idea that non-stem cancer cells exhibit a remarkable degree of plasticity that allows them to re-acquire cancer stem cell traits, especially in the context of radiation therapy. We summarize conditions under which differentiation is reversed and discuss the current knowledge of the underlying mechanisms.

  12. Special issue for stem cells: a multi-perspective look at stem cells

    Institute of Scientific and Technical Information of China (English)

    Qi ZHOU

    2010-01-01

    The past few years may have been a golden time in the history of stem cell research. The unique properties stem cells possess, to proliferate indefinitely and to differentiate into multiple kinds of cells, make these cells wonderful platforms for studying organism development and valuable sources for regenerative medicine.

  13. TOPICAL REVIEW: Stem cells engineering for cell-based therapy

    Science.gov (United States)

    Taupin, Philippe

    2007-09-01

    Stem cells carry the promise to cure a broad range of diseases and injuries, from diabetes, heart and muscular diseases, to neurological diseases, disorders and injuries. Significant progresses have been made in stem cell research over the past decade; the derivation of embryonic stem cells (ESCs) from human tissues, the development of cloning technology by somatic cell nuclear transfer (SCNT) and the confirmation that neurogenesis occurs in the adult mammalian brain and that neural stem cells (NSCs) reside in the adult central nervous system (CNS), including that of humans. Despite these advances, there may be decades before stem cell research will translate into therapy. Stem cell research is also subject to ethical and political debates, controversies and legislation, which slow its progress. Cell engineering has proven successful in bringing genetic research to therapy. In this review, I will review, in two examples, how investigators are applying cell engineering to stem cell biology to circumvent stem cells' ethical and political constraints and bolster stem cell research and therapy.

  14. Determination of telomerase activity in stem cells and non-stem cells of breast cancer

    Institute of Scientific and Technical Information of China (English)

    LI Zhi; HE Yanli; ZHANG Jiahua; ZHANG Jinghui; HUANG Tao

    2007-01-01

    Although all normal tissue cells,including stem cells,are genetically homologous,variation in gene expression patterns has already determined the distinct roles for individual cells in the physiological process due to the occurrence of epigenetic modification.This is of special importance for the existenee of tissue stem cells because they are exclusively immortal within the body,capable of selfreplicating and differentiating by which tissues renew and repair itself and the total tissue cell population maintains a steady-state.Impairment of tissue stem cells is usually accompanied by a reduction in cell number,slows down the repair process and causes hypofunction.For instance,chemotherapy usually leads to depression of bone marrow and hair loss.Cellular aging is closely associated with the continuous erosion of the telomere while activation of telomerase repairs and maintains telomeres,thus slowing the aging process and prolonging cell life.In normal adults,telomerase activation mainly presents in tissue stem cells and progenitor cells giving them unlimited growth potential.Despite the extensive demonstration of telomerase activation in malignancy(>80%),scientists found that heterogeneity also exists among the tumor cells and only minorities of cells,designated as cancer stem cells,andergo processes analogous to the self-renewal and differentiation of normal stem ceils while the rest have limited lifespans.In this study,telomerase activity was measured and compared in breast cancer stem cells and non-stem cells that were phenotypically sorted by examining surface marker expression.The results indicated that cancer stem cells show a higher level of enzyme activity than non-stem cells.In addition,associated with the repair of cancer tissue(or relapse)after chemotherapy,telomerase activity in stem cells was markedly increased.

  15. Stem cell therapy in oral and maxillofacial region: An overview

    Directory of Open Access Journals (Sweden)

    P M Sunil

    2012-01-01

    Full Text Available Cells with unique capacity for self-renewal and potency are called stem cells. With appropriate biochemical signals stem cells can be transformed into desirable cells. The idea behind this article is to shortly review the obtained literature on stem cell with respect to their properties, types and advantages of dental stem cells. Emphasis has been given to the possibilities of stem cell therapy in the oral and maxillofacial region including regeneration of tooth and craniofacial defects.

  16. Biobanking human embryonic stem cell lines

    DEFF Research Database (Denmark)

    Holm, Søren

    2016-01-01

    Stem cell banks curating and distributing human embryonic stem cells have been established in a number of countries and by a number of private institutions. This paper identifies and critically discusses a number of arguments that are used to justify the importance of such banks in policy...... are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being...

  17. Embryonic stem cell research: an ethical problem

    OpenAIRE

    Рамазанова, А.

    2014-01-01

    Embryonic stem cells offer hope for new therapies, but their use and research entail an ethical problem, which does not have a certain solution. Therefore, we can ask: What exactly are the ethical arguments? Why are they so tricky to resolve?Embryonic stem cell research poses a moral dilemma. It forces us to choose between two moral principles: The duty to prevent or alleviate suffering The duty to respect the value of human life To obtain embryonic stem cells, the early embryo has to be dest...

  18. Concise Review: Quiescence in Adult Stem Cells

    DEFF Research Database (Denmark)

    Rumman, M; Dhawan, J; Kassem, Moustapha

    2015-01-01

    Adult stem cells (ASCs) are tissue resident stem cells responsible for tissue homeostasis and regeneration following injury. In uninjured tissues, ASCs exist in a nonproliferating, reversibly cell cycle-arrested state known as quiescence or G0. A key function of the quiescent state is to preserve...... stemness in ASCs by preventing precocious differentiation, and thus maintaining a pool of undifferentiated ASCs. Recent evidences suggest that quiescence is an actively maintained state and that excessive or defective quiescence may lead to compromised tissue regeneration or tumorigenesis. The aim...

  19. Cell therapy for diabetes mellitus: an opportunity for stem cells?

    Science.gov (United States)

    Soria, B; Bedoya, F J; Tejedo, J R; Hmadcha, A; Ruiz-Salmerón, R; Lim, S; Martin, F

    2008-01-01

    Diabetes is a chronic disease characterized by a deficit in beta cell mass and a failure of glucose homeostasis. Both circumstances result in a variety of severe complications and an overall shortened life expectancy. Thus, diabetes represents an attractive candidate for cell therapy. Reversal of diabetes can be achieved through pancreas and islet transplantation, but shortage of donor organs has prompted an intensive search for alternative sources of beta cells. This achievement has stimulated the search for appropriate stem cell sources. Both embryonic and adult stem cells have been used to generate surrogate beta cells or otherwise restore beta cell functioning. In this regard, several studies have reported the generation of insulin-secreting cells from embryonic and adult stem cells that normalized blood glucose values when transplanted into diabetic animal models. Due to beta cell complexity, insulin-producing cells generated from stem cells do not possess all beta cell attributes. This indicates the need for further development of methods for differentiation and selection of completely functional beta cells. While these problems are overcome, diabetic patients may benefit from therapeutic strategies based on autologous stem cell therapies addressing late diabetic complications. In this article, we discuss the recent progress in the generation of insulin-producing cells from embryonic and adult stem cells, together with the challenges for the clinical use of diabetes stem cell therapy.

  20. Mesenchymal stem cells targeting the GVHD

    Institute of Scientific and Technical Information of China (English)

    WANG Liang; ZHAO Robert ChunHua

    2009-01-01

    Acute graft-versus-host disease (GVHD) occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues. About 35% -5% of hematopoietic stem cell transplant (HSCT) recipients will develop acute GVHD. It is associated with considerable morbidity and mortality, particularly in patients who do not respond to primary therapy, which usually consists of glucocorticoids(steroids). Most of the available second-line and third-line treatments for sterold-refractory acute GVHD induce severe immunodeficiency, which is commonly accompanied by lethal infectious complications. Mesenchymal stem cells (MSCs) have been shown to mediate immunomodulatory effects. The recently elucidated immunosuppreseive potential of mesenchymal stem cells has set the stage for their clinical testing as cellular immunosuppressants, MSCs have been used in patients with steroid-refractory acute GVHD, and encouraging responses have been obtained in many studies. The utility of MSCs for the treatment of GVHD is becoming clear.

  1. Bioprinting and Differentiation of Stem Cells.

    Science.gov (United States)

    Irvine, Scott A; Venkatraman, Subbu S

    2016-09-08

    The 3D bioprinting of stem cells directly into scaffolds offers great potential for the development of regenerative therapies; in particular for the fabrication of organ and tissue substitutes. For this to be achieved; the lineage fate of bioprinted stem cell must be controllable. Bioprinting can be neutral; allowing culture conditions to trigger differentiation or alternatively; the technique can be designed to be stimulatory. Such factors as the particular bioprinting technique; bioink polymers; polymer cross-linking mechanism; bioink additives; and mechanical properties are considered. In addition; it is discussed that the stimulation of stem cell differentiation by bioprinting may lead to the remodeling and modification of the scaffold over time matching the concept of 4D bioprinting. The ability to tune bioprinting properties as an approach to fabricate stem cell bearing scaffolds and to also harness the benefits of the cells multipotency is of considerable relevance to the field of biomaterials and bioengineering.

  2. Bioprinting and Differentiation of Stem Cells

    Directory of Open Access Journals (Sweden)

    Scott A. Irvine

    2016-09-01

    Full Text Available The 3D bioprinting of stem cells directly into scaffolds offers great potential for the development of regenerative therapies; in particular for the fabrication of organ and tissue substitutes. For this to be achieved; the lineage fate of bioprinted stem cell must be controllable. Bioprinting can be neutral; allowing culture conditions to trigger differentiation or alternatively; the technique can be designed to be stimulatory. Such factors as the particular bioprinting technique; bioink polymers; polymer cross-linking mechanism; bioink additives; and mechanical properties are considered. In addition; it is discussed that the stimulation of stem cell differentiation by bioprinting may lead to the remodeling and modification of the scaffold over time matching the concept of 4D bioprinting. The ability to tune bioprinting properties as an approach to fabricate stem cell bearing scaffolds and to also harness the benefits of the cells multipotency is of considerable relevance to the field of biomaterials and bioengineering.

  3. Search for naive human pluripotent stem cells

    Institute of Scientific and Technical Information of China (English)

    Simone Aparecida Siqueira Fonseca; Roberta Montero Costas; Lygia Veiga Pereira

    2015-01-01

    Normal mouse pluripotent stem cells were originallyderived from the inner cell mass (ICM) of blastocystsand shown to be the in vitro equivalent of those preimplantationembryonic cells, and thus were calledembryonic stem cells (ESCs). More than a decade later,pluripotent cells were isolated from the ICM of humanblastocysts. Despite being called human ESCs, thesecells differ significantly from mouse ESCs, includingdifferent morphology and mechanisms of control ofpluripotency, suggesting distinct embryonic originsof ESCs from the two species. Subsequently, mousepluripotent stem cells were established from the ICMderivedepiblast of post-implantation embryos. Thesemouse epiblast stem cells (EpiSCs) are morphologicaland epigenetically more similar to human ESCs. Thisraised the question of whether cells from the humanICM are in a more advanced differentiation stage thantheir murine counterpart, or whether the availableculture conditions were not adequate to maintain thosehuman cells in their in vivo state, leading to a transitioninto EpiSC-like cells in vitro . More recently, novel cultureconditions allowed the conversion of human ESCs intomouse ESC-like cells called naive (or ground state)human ESCs, and the derivation of naive human ESCsfrom blastocysts. Here we will review the characteristicsof each type of pluripotent stem cells, how (andwhether) these relate to different stages of embryonicdevelopment, and discuss the potential implications ofnaive human ESCs in research and therapy.

  4. Stemness is derived from thyroid cancer cells

    Directory of Open Access Journals (Sweden)

    Risheng eMa

    2014-07-01

    Full Text Available Background: One hypothesis for thyroid cancer development is its derivation from thyroid cancer stem cells (CSCs. Such cells could arise via different paths including from mutated resident stem cells within the thyroid gland or via epithelial to mesenchymal transition (EMT from malignant cells since EMT is known to confer stem-like characteristics. Methods: To examine the status of stemness in thyroid papillary cancer we employed a murine model of thyroid papillary carcinoma and examined the expression of stemness and EMT using qPCR and histochemistry in mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre. This construct is only activated at the time of thyroid peroxidase (TPO expression in differentiating thyroid cells and cannot be activated by undifferentiated stem cells which do not express TPO.Results: There was decreased expression of thyroid specific genes such as Tg and NIS and increased expression of stemness markers such as Oct4, Rex1, CD15 and Sox2 in the thyroid carcinoma tissue from 6 week old BRAFV600E mice. The decreased expression of the epithelial marker E-cadherin and increased EMT regulators including Snail, Slug, and TGF-β1 and TGF-β3, and the mesenchymal marker vimentin demonstrated the simultaneous progression of EMT and the CSC-like phenotype. Stemness was also found in a derived cancer thyroid cell line in which overexpression of Snail caused up-regulation of vimentin expression and up regulation of stemness markers Oct4, Rex1, CD15 with enhanced migration ability of the cells. Conclusions: Our findings support our earlier hypothesis that stemness in thyroid cancer is derived via EMT rather than from resident thyroid stem cells. In mice with a thyroid-specific knock-in of oncogenic Braf (LSL-Braf(V600E/TPO-Cre the neoplastic changes were dependent on thyroid cell differentiation and the onset of stemness must have been derived from differentiated thyroid epithelial cells.

  5. Prion potency in stem cells biology.

    Science.gov (United States)

    Lopes, Marilene H; Santos, Tiago G

    2012-01-01

    Prion protein (PrP) can be considered a pivotal molecule because it interacts with several partners to perform a diverse range of critical biological functions that might differ in embryonic and adult cells. In recent years, there have been major advances in elucidating the putative role of PrP in the basic biology of stem cells in many different systems. Here, we review the evidence indicating that PrP is a key molecule involved in driving different aspects of the potency of embryonic and tissue-specific stem cells in self-perpetuation and differentiation in many cell types. It has been shown that PrP is involved in stem cell self-renewal, controlling pluripotency gene expression, proliferation, and neural and cardiomyocyte differentiation. PrP also has essential roles in distinct processes that regulate tissue-specific stem cell biology in nervous and hematopoietic systems and during muscle regeneration. Results from our own investigations have shown that PrP is able to modulate self-renewal and proliferation in neural stem cells, processes that are enhanced by PrP interactions with stress inducible protein 1 (STI1). Thus, the available data reveal the influence of PrP in acting upon the maintenance of pluripotent status or the differentiation of stem cells from the early embryogenesis through adulthood.

  6. The myeloma stem cell concept, revisited

    DEFF Research Database (Denmark)

    Johnsen, Hans Erik; Bøgsted, Martin; Schmitz, Alexander;

    2016-01-01

    The concept of the myeloma stem cell may have important therapeutic implications, yet its demonstration has been hampered by a lack of consistency in terms and definitions. Here, we summarize the current documentation and propose single-cell in vitro studies for future translational studies....... By the classical approach, a CD19(-)/CD45(low/-)/CD38(high)/CD138(+) malignant plasma cell, but not the CD19(+)/CD38(low/-) memory B cell compartment, is enriched for tumorigenic cells that initiate myeloma in xenografted immunodeficient mice, supporting that myeloma stem cells are present in the malignant PC...... anticipate that further characterization will require single cell geno- and phenotyping combined with clonogenic assays. To implement such technologies, we propose a revision of the concept of a myeloma stem cell by including operational in vitro assays to describe the cellular components of origin...

  7. Stem cell tracking using iron oxide nanoparticles

    Directory of Open Access Journals (Sweden)

    Bull E

    2014-03-01

    Full Text Available Elizabeth Bull,1 Seyed Yazdan Madani,1 Roosey Sheth,1 Amelia Seifalian,1 Mark Green,2 Alexander M Seifalian1,31UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London, 2Department of Physics, King’s College London, Strand Campus, London, UK; 3Royal Free London National Health Service Foundation Trust Hospital, London, UKAbstract: Superparamagnetic iron oxide nanoparticles (SPIONs are an exciting advancement in the field of nanotechnology. They expand the possibilities of noninvasive analysis and have many useful properties, making them potential candidates for numerous novel applications. Notably, they have been shown that they can be tracked by magnetic resonance imaging (MRI and are capable of conjugation with various cell types, including stem cells. In-depth research has been undertaken to establish these benefits, so that a deeper level of understanding of stem cell migratory pathways and differentiation, tumor migration, and improved drug delivery can be achieved. Stem cells have the ability to treat and cure many debilitating diseases with limited side effects, but a main problem that arises is in the noninvasive tracking and analysis of these stem cells. Recently, researchers have acknowledged the use of SPIONs for this purpose and have set out to establish suitable protocols for coating and attachment, so as to bring MRI tracking of SPION-labeled stem cells into common practice. This review paper explains the manner in which SPIONs are produced, conjugated, and tracked using MRI, as well as a discussion on their limitations. A concise summary of recently researched magnetic particle coatings is provided, and the effects of SPIONs on stem cells are evaluated, while animal and human studies investigating the role of SPIONs in stem cell tracking will be explored.Keywords: stem cells, nanoparticle, magnetic

  8. Stem cell characteristics in prostate cancer cell lines.

    NARCIS (Netherlands)

    Pfeiffer, M.J.; Schalken, J.A.

    2010-01-01

    BACKGROUND: Recent studies indicate the presence of a small, stem-like cell population in several human cancers that is crucial for the tumour (re)population. OBJECTIVE: Six established prostate cancer (PCa) cell lines-DU145, DuCaP, LAPC-4, 22Rv1, LNCaP, and PC-3-were examined for their stem cell pr

  9. Therapeutic potential of stem cells in auditory hair cell repair

    Directory of Open Access Journals (Sweden)

    Ryuji Hata

    2009-01-01

    Full Text Available The prevalence of acquired hearing loss is very high. About 10% of the total population and more than one third of the population over 65 years suffer from debilitating hearing loss. The most common type of hearing loss in adults is idiopathic sudden sensorineural hearing loss (ISSHL. In the majority of cases, ISSHL is permanent and typically associated with loss of sensory hair cells in the organ of Corti. Following the loss of sensory hair cells, the auditory neurons undergo secondary degeneration. Sensory hair cells and auditory neurons do not regenerate throughout life, and loss of these cells is irreversible and cumulative. However, recent advances in stem cell biology have gained hope that stem cell therapy comes closer to regenerating sensory hair cells in humans. A major advance in the prospects for the use of stem cells to restore normal hearing comes with the recent discovery that hair cells can be generated ex vivo from embryonic stem (ES cells, adult inner ear stem cells and neural stem cells. Furthermore, there is increasing evidence that stem cells can promote damaged cell repair in part by secreting diffusible molecules such as growth factors. These results suggest that stem-cell-based treatment regimens can be applicable to the damaged inner ear as future clinical applications.Previously we have established an animal model of cochlear ischemia in gerbils and showed progressive hair cell loss up to 4 days after ischemia. Auditory brain stem response (ABR recordings have demonstrated that this gerbil model displays severe deafness just after cochlear ischemia and gradually recovers thereafter. These pathological findings and clinical manifestations are reminiscent of ISSHL in humans. In this study, we have shown the effectiveness of stem cell therapy by using this animal model of ISSHL.

  10. Mesenchymal stem cells in regenerative rehabilitation.

    Science.gov (United States)

    Nurkovic, Jasmin; Dolicanin, Zana; Mustafic, Fahrudin; Mujanovic, Rifat; Memic, Mensur; Grbovic, Vesna; Skevin, Aleksandra Jurisic; Nurkovic, Selmina

    2016-06-01

    [Purpose] Regenerative medicine and rehabilitation contribute in many ways to a specific plan of care based on a patient's medical status. The intrinsic self-renewing, multipotent, regenerative, and immunosuppressive properties of mesenchymal stem cells offer great promise in the treatment of numerous autoimmune, degenerative, and graft-versus-host diseases, as well as tissue injuries. As such, mesenchymal stem cells represent a therapeutic fortune in regenerative medicine. The aim of this review is to discuss possibilities, limitations, and future clinical applications of mesenchymal stem cells. [Subjects and Methods] The authors have identified and discussed clinically and scientifically relevant articles from PubMed that have met the inclusion criteria. [Results] Direct treatment of muscle injuries, stroke, damaged peripheral nerves, and cartilage with mesenchymal stem cells has been demonstrated to be effective, with synergies seen between cellular and physical therapies. Over the past few years, several researchers, including us, have shown that there are certain limitations in the use of mesenchymal stem cells. Aging and spontaneous malignant transformation of mesenchymal stem cells significantly affect the functionality of these cells. [Conclusion] Definitive conclusions cannot be made by these studies because limited numbers of patients were included. Studies clarifying these results are expected in the near future.

  11. Cerebral and brain stem Langerhans cell histiocytosis

    Energy Technology Data Exchange (ETDEWEB)

    Breidahl, W.H. (Dept. of Radiology, Royal Perth Hospital, Nedlands (Australia)); Ives, F.J. (Dept. of Radiology, Royal Perth Hospital, Nedlands (Australia)); Khangure, M.S. (Dept. of Magnetic Resonance Imaging, Sir Charles Gairdner Hospital, Nedlands (Australia))

    1993-05-01

    Two patients with central nervous system manifestations of Langerhans cell histiocytosis, both with brain stem involvement, are reported. The onset of symptoms was at an age when the diagnosis might not have been considered. (orig.)

  12. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... Queue __count__/__total__ Find out why Close Becoming a Blood Stem Cell Donor NCIcancertopics Loading... Unsubscribe from ... later? Sign in to add this video to a playlist. Sign in Share More Report Need to ...

  13. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... are most commonly used in the treatment of cancers like leukemia and lymphoma to restore stem cells ... use of BMT and PBSCT, see http://www.cancer.gov/cancertopics/fa... If you are interested in ...

  14. Mesenchymal Stem Cells Reduce Murine Atherosclerosis Development

    NARCIS (Netherlands)

    Frodermann, Vanessa; van Duijn, Janine; van Pel, Melissa; van Santbrink, Peter J.; Bot, Ilze; Kuiper, Johan; de Jager, Saskia C. A.

    2015-01-01

    Mesenchymal stem cells (MSCs) have regenerative properties, but recently they were also found to have immunomodulatory capacities. We therefore investigated whether MSCs could reduce atherosclerosis, which is determined by dyslipidaemia and chronic inflammation. We adoptively transferred MSCs into l

  15. Becoming a Blood Stem Cell Donor

    Medline Plus

    Full Text Available ... be donors at http://www.marrow.org . Category Science & Technology License Standard YouTube License ... - Duration: 49:19. Children's Health 33,509 views 49:19 Stem Cell Fraud: ...

  16. De Novo Kidney Regeneration with Stem Cells

    Directory of Open Access Journals (Sweden)

    Shinya Yokote

    2012-01-01

    Full Text Available Recent studies have reported on techniques to mobilize and activate endogenous stem-cells in injured kidneys or to introduce exogenous stem cells for tissue repair. Despite many recent advantages in renal regenerative therapy, chronic kidney disease (CKD remains a major cause of morbidity and mortality and the number of CKD patients has been increasing. When the sophisticated structure of the kidneys is totally disrupted by end stage renal disease (ESRD, traditional stem cell-based therapy is unable to completely regenerate the damaged tissue. This suggests that whole organ regeneration may be a promising therapeutic approach to alleviate patients with uncured CKD. We summarize here the potential of stem-cell-based therapy for injured tissue repair and de novo whole kidney regeneration. In addition, we describe the hurdles that must be overcome and possible applications of this approach in kidney regeneration.

  17. Stem Cell-Based Dental Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Petar Zivkovic

    2010-01-01

    Full Text Available The development of biological and biomaterial sciences profiled tissue engineering as a new and powerful tool for biological replacement of organs. The combination of stem cells and suitable scaffolds is widely used in experiments today, in order to achieve partial or whole organ regeneration. This review focuses on the use of tissue engineering strategies in tooth regeneration, using stem cells and stem cells/scaffold constructs. Although whole tooth regeneration is still not possible, there are promising results. However, to achieve this goal, it is important to understand and further explore the mechanisms underlying tooth development. Only then will we be able to mimic the natural processes with the use of stem cells and tissue engineering techniques.

  18. Cell therapy using induced pluripotent stem cells or somatic stem cells: this is the question.

    Science.gov (United States)

    Somoza, Rodrigo A; Rubio, Francisco J

    2012-05-01

    A lot of effort has been developed to bypass the use of embryonic stem cells (ES) in human therapies, because of several concerns and ethical issues. Some unsolved problems of using stem cells for human therapies, excluding the human embryonic origin, are: how to regulate cell plasticity and proliferation, immunological compatibility, potential adverse side-effects when stem cells are systemically administrated, and the in vivo signals to rule out a specific cell fate after transplantation. Currently, it is known that almost all tissues of an adult organism have somatic stem cells (SSC). Whereas ES are primary involved in the genesis of new tissues and organs, SSC are involved in regeneration processes, immuno-regulatory and homeostasis mechanisms. Although the differentiating potential of ES is higher than SSC, several studies suggest that some types of SSC, such as mesenchymal stem cells (MSC), can be induced epigenetically to differentiate into tissue-specific cells of different lineages. This unexpected pluripotency and the variety of sources that they come from, can make MSC-like cells suitable for the treatment of diverse pathologies and injuries. New hopes for cell therapy came from somatic/mature cells and the discovery that could be reprogrammed to a pluripotent stage similar to ES, thus generating induced pluripotent stem cells (iPS). For this, it is necessary to overexpress four main reprogramming factors, Sox2, Oct4, Klf4 and c-Myc. The aim of this review is to analyze the potential and requirements of cellular based tools in human therapy strategies, focusing on the advantage of using MSC over iPS.

  19. Autophagy in stem and progenitor cells.

    Science.gov (United States)

    Rodolfo, Carlo; Di Bartolomeo, Sabrina; Cecconi, Francesco

    2016-02-01

    Autophagy is a highly conserved cellular process, responsible for the degradation and recycling of damaged and/or outlived proteins and organelles. This is the major cellular pathway, acting throughout the formation of cytosolic vesicles, called autophagosomes, for the delivering to lysosome. Recycling of cellular components through autophagy is a crucial step for cell homeostasis as well as for tissue remodelling during development. Impairment of this process has been related to the pathogenesis of various diseases, such as cancer and neurodegeneration, to the response to bacterial and viral infections, and to ageing. The ability of stem cells to self-renew and differentiate into the mature cells of the body renders this unique type of cell highly crucial to development and tissue renewal, not least in various diseases. During the last two decades, extensive knowledge about autophagy roles and regulation in somatic cells has been acquired; however, the picture about the role and the regulation of autophagy in the different types of stem cells is still largely unknown. Autophagy is a major player in the quality control and maintenance of cellular homeostasis, both crucial factors for stem cells during an organism's life. In this review, we have highlighted the most significant advances in the comprehension of autophagy regulation in embryonic and tissue stem cells, as well as in cancer stem cells and induced pluripotent cells.

  20. Impact of genomic damage and ageing on stem cell function

    NARCIS (Netherlands)

    Behrens, A.; Deursen, J.M. van; Rudolph, K.L.; Schumacher, B.

    2014-01-01

    Impairment of stem cell function contributes to the progressive deterioration of tissue maintenance and repair with ageing. Evidence is mounting that age-dependent accumulation of DNA damage in both stem cells and cells that comprise the stem cell microenvironment are partly responsible for stem cel

  1. 3 CFR - Guidelines for Human Stem Cell Research

    Science.gov (United States)

    2010-01-01

    ... 3 The President 1 2010-01-01 2010-01-01 false Guidelines for Human Stem Cell Research Presidential Documents Other Presidential Documents Memorandum of July 30, 2009 Guidelines for Human Stem Cell Research..., scientifically worthy human stem cell research, including human embryonic stem cell research, to the...

  2. Phenotypic characterizations and comparison of adult dental stem cells with adipose-derived stem cells

    Directory of Open Access Journals (Sweden)

    Razieh Alipour

    2010-01-01

    Conclusions: Both cell populations derived from adipose tissue and dental pulp showed common phenotypic markers of mesenchymal stem cells. In conclusion, mesenchymal stem cells could be isolated and cultured successfully from dental pulp of human exfo-liated deciduous teeth, they are very good candidates for treatment and prevention of human diseases.

  3. Biomaterial-stem cell interactions and their impact on stem cell response

    NARCIS (Netherlands)

    Oziemlak-Schaap, Aneta M.; Kuhn, Philipp T.; van Kooten, Theo G.; van Rijn, Patrick

    2014-01-01

    In this review, current research in the field of biomaterial properties for directing stem cells are discussed and placed in a critical perspective. Regenerative medicine, in which stem cells play a crucial role, has become an interdisciplinary field between cell biology and materials science. New i

  4. Multiple myeloma cancer stem cells

    Science.gov (United States)

    Gao, Minjie; Kong, Yuanyuan; Yang, Guang; Gao, Lu; Shi, Jumei

    2016-01-01

    Multiple myeloma (MM) remains incurable despite much progress that has been made in the treatment of the disease. MM cancer stem cell (MMSC), a rare subpopulation of MM cells with the capacity for self-renewal and drug resistance, is considered to lead to disease relapse. Several markers such as side population (SP) and ALDH1+ have been used to identify MMSCs. However, ideally and more precisely, the identification of the MMSCs should rely on MMSCs phenotype. Unfortunately the MMSC phenotype has not been properly defined yet. Drug resistance is the most important property of MMSCs and contributes to disease relapse, but the mechanisms of drug resistance have not been fully understood. The major signaling pathways involved in the regulation of self-renewal and differentiation of MMSCs include Hedgehog (Hh), Wingless (Wnt), Notch and PI3K/Akt/mTOR. However, the precise role of these signaling pathways needs to be clarified. It has been reported that the microRNA profile of MMSCs is remarkably different than that of non-MMSCs. Therefore, the search for targeting MMSCs has also been focused on microRNAs. Complex and mutual interactions between the MMSC and the surrounding bone marrow (BM) microenvironment sustain self-renewal and survival of MMSC. However, the required molecules for the interaction of the MMSC and the surrounding BM microenvironment need to be further identified. In this review, we summarize the current state of knowledge of MMSCs regarding their phenotype, mechanisms of drug resistance, signaling pathways that regulate MMSCs self-renewal and differentiation, abnormal microRNAs expression, and their interactions with the BM microenvironment. PMID:27007154

  5. Stem cell-based approaches in dentistry

    OpenAIRE

    Mitsiadis, T A; Orsini, G.; Jimenez-Rojo, L

    2015-01-01

    Repair of dental pulp and periodontal lesions remains a major clinical challenge. Classical dental treatments require the use of specialised tissue-adapted materials with still questionable efficacy and durability. Stem cell-based therapeutic approaches could offer an attractive alternative in dentistry since they can promise physiologically improved structural and functional outcomes. These therapies necessitate a sufficient number of specific stem cell populations for implantation. Dental m...

  6. Liver stem cells - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-09-01

    Full Text Available The brief and concise preface written by prof. Takahiro Ochiya is particularly well addressed to scholars belonging to different scientific fields: cellular and molecular biology, liver and cancer biology, tissue engineering and stem cell therapy. By a few lines prof Ochiya is telling us that we are getting exciting results, at the lab and the preclinical level, in treating liver injuries thanks to the unprecedented advances in our knowledge on liver stem cells biology....

  7. Notch Promotes Radioresistance of Glioma Stem Cells

    OpenAIRE

    Wang, Jialiang; Wakeman, Timothy P.; Latha, Justin D.; Hjelmeland, Anita B.; Wang, Xiao-Fan; White, Rebekah R.; Rich, Jeremy N.; Sullenger, Bruce A.

    2010-01-01

    Radiotherapy represents the most effective nonsurgical treatments for gliomas. Yet, gliomas are highly radioresistant and recurrence is nearly universal. Results from our laboratory and other groups suggest that cancer stem cells contribute to radioresistance in gliomas and breast cancers. The Notch pathway is critically implicated in stem cell fate determination and cancer. In this study, we showed that inhibition of Notch pathway with gamma-secretase inhibitors (GSIs) rendered the glioma st...

  8. Bioprinting and Differentiation of Stem Cells

    OpenAIRE

    2016-01-01

    The 3D bioprinting of stem cells directly into scaffolds offers great potential for the development of regenerative therapies; in particular for the fabrication of organ and tissue substitutes. For this to be achieved; the lineage fate of bioprinted stem cell must be controllable. Bioprinting can be neutral; allowing culture conditions to trigger differentiation or alternatively; the technique can be designed to be stimulatory. Such factors as the particular bioprinting technique; bioink poly...

  9. Cortical network from human embryonic stem cells

    OpenAIRE

    2010-01-01

    Abstract The connection of embryonic stem cell technology and developmental biology provides valuable tools to decipher the mechanisms underlying human brain development and diseases, especially among neuronal populations, that are not readily available in primary cultures. It is obviously the case of neurons forming the human cerebral cortex. In the images that are presented, the neurons were generated in vitro from human embryonic stem cells via forebrain-like progenitors. Maintained in cul...

  10. Reconstituting mammalian spermatogenesis using stem cells

    Institute of Scientific and Technical Information of China (English)

    Paul J Turek

    2011-01-01

    While stock markets and economies are smoldering all over the world,stem cell science is on fire.The promise of curing many untreatable forms of human male infertility is now one small step closer based on a recent paper in Cell.1 In this work,scientists from Kyoto University in Japan created mature,fertile sperm from embryonic and induced pluripotent stem cells by grabbing the primitive germ cells called primordial germ cells just as they were being made from their pluripotent precursors in vitro and transplanting them back into genetically sterile mice.

  11. Prostate Cancer Stem Cells: Research Advances.

    Science.gov (United States)

    Jaworska, Dagmara; Król, Wojciech; Szliszka, Ewelina

    2015-01-01

    Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  12. Prostate Cancer Stem Cells: Research Advances

    Directory of Open Access Journals (Sweden)

    Dagmara Jaworska

    2015-11-01

    Full Text Available Cancer stem cells have been defined as cells within a tumor that possesses the capacity to self-renew and to cause the heterogeneous lineages of cancer cells that comprise the tumor. Experimental evidence showed that these highly tumorigenic cells might be responsible for initiation and progression of cancer into invasive and metastatic disease. Eradicating prostate cancer stem cells, the root of the problem, has been considered as a promising target in prostate cancer treatment to improve the prognosis for patients with advanced stages of the disease.

  13. Perspectives and controversies in the field of stem cell research.

    Science.gov (United States)

    Romano, Gaetano

    2006-09-01

    The fourth annual meeting of the International Society for Stem Cell Research focused on a number of pressing issues, including: (I) the need to better characterize the biology of stem cells; (II) the need to exploit and optimize the great therapeutic potential of stem cells in tissue regeneration; (III) ethical and safety considerations related to the use of human embryonic stem cells; (IV) the contribution of adult stem cells to carcinogenesis; (V) the need to investigate the biology of cancer stem cells. The purpose of this report is to summarize the current status of stem cell research, as surmised by the proceedings of this meeting.

  14. Embryonic stem cell differentiation: A chromatin perspective

    OpenAIRE

    Rasmussen Theodore P

    2003-01-01

    Abstract Embryonic stem (ES) cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to ...

  15. Apoptosis, stem cells, and tissue regeneration.

    Science.gov (United States)

    Bergmann, Andreas; Steller, Hermann

    2010-10-26

    Most metazoans have at least some ability to regenerate damaged cells and tissues, although the regenerative capacity varies depending on the species, organ, or developmental stage. Cell replacement and regeneration occur in two contexts: renewal of spent cells during tissue homeostasis (homeostatic growth), and in response to external injury, wounding, or amputation (epimorphic regeneration). Model organisms that display remarkable regenerative capacity include amphibians, planarians, Hydra, and the vertebrate liver. In addition, several mammalian organs--including the skin, gut, kidney, muscle, and even the human nervous system--have some ability to replace spent or damaged cells. Although the regenerative response is complex, it typically involves the induction of new cell proliferation through formation of a blastema, followed by cell specification, differentiation, and patterning. Stem cells and undifferentiated progenitor cells play an important role in both tissue homeostasis and tissue regeneration. Stem cells are typically quiescent or passing slowly through the cell cycle in adult tissues, but they can be activated in response to cell loss and wounding. A series of studies, mostly performed in Drosophila as well as in Hydra, Xenopus, and mouse, has revealed an unexpected role of apoptotic caspases in the production of mitogenic signals that stimulate the proliferation of stem and progenitor cells to aid in tissue regeneration. This Review summarizes some of the key findings and discusses links to stem cell biology and cancer.

  16. European stem cell research in legal shackles.

    Science.gov (United States)

    Nielen, Myrthe G; de Vries, Sybe A; Geijsen, Niels

    2013-12-11

    Advances in stem cell biology have raised legal challenges to the patentability of stem cells and any derived technologies and processes. In 1999, Oliver Brüstle was granted a patent for the generation and therapeutic use of neural cells derived from human embryonic stem cells (hESCs). The patent was challenged and put before the European Court of Justice, which ruled that inventions involving the prior destruction of human embryos cannot be patented. The legal maneuvering around this case demonstrates that the future of stem cell-based patents in Europe remains unsettled. Furthermore, owing to the European Court's broad definition of hESC as 'any cell that is capable of commencing development into a human being,' novel technologies that could eliminate the need for hESCs, such as induced pluripotent stem cells (iPSCs), are at risk of being included under the same ruling. Advances in the in vitro development of germ cells from pluripotent stem cells may one day provide a direct developmental path from iPSC to oocyte and sperm, and, according to the European Court's reasoning, legally equate iPSCs with human embryos. In this review, we will briefly discuss the Brüstle v Greenpeace case and the implications of the European Court of Justice's ruling. We will identify potential risks for stem cell research and future therapeutics resulting from the broad legal definition of the human embryo. Finally, we will broach the current legal landscape, as this broad definition has also created great uncertainty about the status of human iPSCs.

  17. Characterization of Spermatogonial Stem Cells Lacking Intercellular Bridges and Genetic Replacement of a Mutation in Spermatogonial Stem Cells

    OpenAIRE

    2012-01-01

    Stem cells have a potential of gene therapy for regenerative medicine. Among various stem cells, spermatogonial stem cells have a unique characteristic in which neighboring cells can be connected by intercellular bridges. However, the roles of intercellular bridges for stem cell self-renewal, differentiation, and proliferation remain to be elucidated. Here, we show not only the characteristics of testis-expressed gene 14 (TEX14) null spermatogonial stem cells lacking intercellular bridges but...

  18. Chemo Resistance of Breast Cancer Stem Cells

    Science.gov (United States)

    2006-05-01

    cell self-renewal pathways generates tumors driven by cells that maintain stem cell character- istics. Materials and Methods Dissociation of mammary...of America Q12) was placed s.c. on the back of the neck of the mouse by using a trocar , and 400 mammospheres were mixed with 2.5 105 normal human

  19. Inactivated Mesenchymal Stem Cells Maintain Immunomodulatory Capacity

    NARCIS (Netherlands)

    Luk, Franka; de Witte, Samantha F. H.; Korevaar, Sander S.; Roemeling, Marieke; Franquesa, Marcella; Strini, Tanja; van den Engel, Sandra; Gargesha, Madhusudhana; Roy, Debashish; Dor, Frank J. M. F.; Horwitz, Edwin M.; de Bruin, Ron W. F.; Betjes, Michiel G. H.; Baan, Carla C.; Hoogduijn, Martin J.

    2016-01-01

    Mesenchymal stem cells (MSC) are studied as a cell therapeutic agent for treatment of various immune diseases. However, therapy with living culture-expanded cells comes with safety concerns. Furthermore, development of effective MSC immunotherapy is hampered by lack of knowledge of the mechanisms of

  20. Modeling Rett Syndrome with Stem Cells

    OpenAIRE

    Walsh, Ryan M.; Hochedlinger, Konrad

    2010-01-01

    The discovery that somatic cells can be reprogrammed into induced pluripotent stem cells (iPSCs) raised the exciting possibility of modeling diseases with patient-specific cells. Marchetto et al. (2010) now use iPSC technology to generate, characterize, and treat an in vitro model for the autism spectrum disorder, Rett syndrome.

  1. Ex vivo Expansion of Hematopoietic Stem Cells

    NARCIS (Netherlands)

    E. Farahbakhshian (Elnaz)

    2013-01-01

    textabstractHematopoiesis is a complex cellular differentiation process resulting in the formation of all blood cell types. In this process, hematopoietic stem cells (HSCs) reside at the top of the hematopoiesis hierarchy and have the capacity to differentiate into all blood cell lineages (multipote

  2. Induced pluripotent stem cell-derived neural stem cell therapies for spinal cord injury

    Institute of Scientific and Technical Information of China (English)

    Corinne A Lee-Kubli; Paul Lu

    2015-01-01

    The greatest challenge to successful treatment of spinal cord injury is the limited regenerative capacity of the central nervous system and its inability to replace lost neurons and severed axons following injury. Neural stem cell grafts derived from fetal central nervous system tissue or embryonic stem cells have shown therapeutic promise by differentiation into neurons and glia that have the potential to form functional neuronal relays across injured spinal cord segments. However, implementation of fetal-derived or embryonic stem cell-derived neural stem cell ther-apies for patients with spinal cord injury raises ethical concerns. Induced pluripotent stem cells can be generated from adult somatic cells and differentiated into neural stem cells suitable for therapeutic use, thereby providing an ethical source of implantable cells that can be made in an autologous fashion to avoid problems of immune rejection. This review discusses the therapeutic potential of human induced pluripotent stem cell-derived neural stem cell transplantation for treatment of spinal cord injury, as well as addressing potential mechanisms, future perspectives and challenges.

  3. Implications of Stem Cells and Cancer Stem Cells for Understanding Fomation and Therapy of Cancer

    Institute of Scientific and Technical Information of China (English)

    Guanghui Li; Donglin Wang

    2005-01-01

    Most cancers are heterogeneous with respect to proliferation and differentiation. There is increasing evidence suggesting that only a minority of cancer cells, tumorigenic or tumor initiating cells, possess the capacity to proliferate extensively and form new hematopoietic cancer or solid tumors. Tumor initiating cells share characteristics required for normal stem cells. The dysregulation of self-renewal and proliferation of stem cells is a likely requirement for cancer development. This review formulates a model for the origin of cancer stem cells and regulating self-renewal which influences the way we study and treat cancer.

  4. Pavia symposium on embryos and stem cells

    Directory of Open Access Journals (Sweden)

    M Boiani

    2009-08-01

    Full Text Available Stem cells occur in very small numbers in adult tissues, in higher numbers in the fetus and its annexes and they can be derived from whole embryos or parts thereof. For a couple of years, stem cells can also be derived straight from somatic cells by retrovirus-mediated transfer of selected genes in culture. Stem cells have varying capacities for self-renewal and differentiation according to their origin, up to the point that they can be propagated in vitro for years and give rise to a wide range of cell types. This makes them suitable means for cell and tissue-replacement therapies. Gaining access to stem cells involves manipulation of living organisms i.e. human beings or animal models. The extent of manipulation ranges from the mere biopsy and culture of body cells in vitro, to their genetic manipulation and back-grafting in vivo.This raises bioethical issues as to whether we should manipulate animal and in particular human life. Many scientific meetings have been organized to present research findings on stem cells and on their potency, differentiation and therapeutic applications for treating disease. In many of these meetings, the ‘mother’ of all stem cells - the embryo - has often been ignored, because embryonic stem cells do not exist as such in the embryo and because the manipulation of the embryo brings up ethical concerns.To make up for this omission, the theme of our meeting was ‘Pluripotency and differentiation in embryos and stem cells’.With a strong sense of purpose and commitment, we managed to hold a two-day symposium concerned with three major topics: 1 natural and induced pluripotency; 2 mechanisms of cell fate control; 3 adult and cancer stem cells. The meeting took place on January 17th-18th 2008 in the beautiful, frescoed halls of Collegio Ghislieri and Borromeo, two foremost colleges in the Pavia campus. A small but prominent group of scientists took part in the meeting – James Adjaye (Germany, Anne Grete Byskov

  5. Kallikrein-kinin in stem cell therapy

    Institute of Scientific and Technical Information of China (English)

    Julie; Chao; Grant; Bledsoe; Lee; Chao

    2014-01-01

    The tissue kallikrein-kinin system exerts a wide spectrum of biological activities in the cardiovascular, renal and central nervous systems. Tissue kallikrein-kinin modulates the proliferation, viability, mobility and functional activity of certain stem cell populations, namely mesenchymal stem cells(MSCs), endothelial progenitor cells(EPCs), mononuclear cell subsets and neural stem cells. Stimulation of these stem cells by tissue kallikrein-kinin may lead to protection against renal, cardiovascular and neural damage by inhibiting apoptosis, inflammation, fibrosis and oxidative stress and promoting neovascularization. Moreover, MSCs and EPCs genetically modified with tissue kallikrein are resistant to hypoxia- and oxidative stress-induced apoptosis, and offer enhanced protective actions in animal models of heart and kidney injury and hindlimb ischemia. In addition, activation of the plasma kallikrein-kinin system promotes EPC recruitment to the inflamed synovium of arthritic rats. Conversely, cleaved high molecular weight kininogen, a product of plasma kallikrein, reduces the viability and vasculogenic activity of EPCs. Therefore, kallikrein-kinin provides a new approach in enhancing the efficacy of stem cell therapy for human diseases.

  6. Wnt signaling and stem cell control

    Institute of Scientific and Technical Information of China (English)

    Roel Nusse

    2008-01-01

    Wnt signaling has been implicated in the control over various types of stem cells and may act as a niche factor to maintain stem cells in a self-renewing state.As currently understood,Wnt proteins bind to receptors of the Frizzled and LRP families on the cell surface.Through several cytoplasmic relay components,the signal is transduced to B-catenin,which then enters the nucleus and forms a complex with TCF to activate transcription of Wnt target genes.Wnts can also signal through tyrosine kinase receptors,in particular the ROR and RYK receptors,leading to alternative modes of Wnt signaling.During the growth of tissues,these ligands and receptors are dynamically expressed,often transcriptionally controlled by Wnt signals themselves,to ensure the right balance between proliferation and differentiation.Isolated Wnt proteins are active on a variety of stem cells,including neural,mammary and embryonic stem cells.In general,Wnt proteins act to maintain the undifferentiated state of stem cells,while other growth factors instruct the cells to proliferate.These other factors include FGF and EGF,signaling through tyrosine kinase pathways.

  7. Translating Stem Cell Biology Into Drug Discovery

    Science.gov (United States)

    Singeç, Ilyas; Simeonov, Anton

    2016-01-01

    Pluripotent stem cell research has made extraordinary progress over the last decade. The robustness of nuclear reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) has created entirely novel opportunities for drug discovery and personalized regenerative medicine. Patient- and disease-specific iPSCs can be expanded indefinitely and differentiated into relevant cell types of different organ systems. As the utilization of iPSCs is becoming a key enabling technology across various scientific disciplines, there are still important challenges that need to be addressed. Here we review the current state and reflect on the issues that the stem cell and translational communities are facing in bringing iPSCs closer to clinical application.

  8. Quantum dot imaging for embryonic stem cells

    Directory of Open Access Journals (Sweden)

    Gambhir Sanjiv S

    2007-10-01

    Full Text Available Abstract Background Semiconductor quantum dots (QDs hold increasing potential for cellular imaging both in vitro and in vivo. In this report, we aimed to evaluate in vivo multiplex imaging of mouse embryonic stem (ES cells labeled with Qtracker delivered quantum dots (QDs. Results Murine embryonic stem (ES cells were labeled with six different QDs using Qtracker. ES cell viability, proliferation, and differentiation were not adversely affected by QDs compared with non-labeled control cells (P = NS. Afterward, labeled ES cells were injected subcutaneously onto the backs of athymic nude mice. These labeled ES cells could be imaged with good contrast with one single excitation wavelength. With the same excitation wavelength, the signal intensity, defined as (total signal-background/exposure time in millisecond was 11 ± 2 for cells labeled with QD 525, 12 ± 9 for QD 565, 176 ± 81 for QD 605, 176 ± 136 for QD 655, 167 ± 104 for QD 705, and 1,713 ± 482 for QD 800. Finally, we have shown that QD 800 offers greater fluorescent intensity than the other QDs tested. Conclusion In summary, this is the first demonstration of in vivo multiplex imaging of mouse ES cells labeled QDs. Upon further improvements, QDs will have a greater potential for tracking stem cells within deep tissues. These results provide a promising tool for imaging stem cell therapy non-invasively in vivo.

  9. Induction of cancer cell stemness by chemotherapy.

    Science.gov (United States)

    Hu, Xingwang; Ghisolfi, Laura; Keates, Andrew C; Zhang, Jian; Xiang, Shuanglin; Lee, Dong-ki; Li, Chiang J

    2012-07-15

    Recent studies indicate that cancer stem cells (CSCs) exist in most hematological and solid tumors. CSCs are characterized by their ability to self-renew and their capacity to differentiate into the multitude of cells that comprise the tumor mass. Moreover, these cells have been shown to be intrinsically resistant to conventional anticancer therapies. Despite their fundamental role in cancer pathogenesis, the cellular origin of CSCs remains highly controversial. The aim of this study was to examine whether heterogeneous cancer cells can acquire stem cell-like properties in response to chemotherapy. We demonstrate that carboplatin can induce the self-renewal (spherogenesis) and pluripotency (Sox2 and Oct3/4 expression) of hepatocellular carcinoma (HCC) cells grown under stem cell culture conditions. Moreover, we show that non-CSC cells, obtained by side population flow cytometric sorting using Hoechst 33342, can acquire stem-like properties after exposure to carboplatin. Finally, we show that knockdown of Sox2 and Oct3/4 gene expression in HCC cells can reduce carboplatin-mediated increases in sphere formation and increase cellular sensitivity to chemotherapy. Taken together, our data indicate that bulk cancer cells may be an important source of CSCs during tumor development, and that targeting Sox2 and/or Oct3/4 may be a promising approach for targeting CSCs in clinical cancer treatment.

  10. System for tracking transplanted limbal epithelial stem cells in the treatment of corneal stem cell deficiency

    Science.gov (United States)

    Boadi, J.; Sangwal, V.; MacNeil, S.; Matcher, S. J.

    2015-03-01

    The prevailing hypothesis for the existence and healing of the avascular corneal epithelium is that this layer of cells is continually produced by stem cells in the limbus and transported onto the cornea to mature into corneal epithelium. Limbal Stem Cell Deficiency (LSCD), in which the stem cell population is depleted, can lead to blindness. LSCD can be caused by chemical and thermal burns to the eye. A popular treatment, especially in emerging economies such as India, is the transplantation of limbal stem cells onto damaged limbus with hope of repopulating the region. Hence regenerating the corneal epithelium. In order to gain insights into the success rates of this treatment, new imaging technologies are needed in order to track the transplanted cells. Optical Coherence Tomography (OCT) is well known for its high resolution in vivo images of the retina. A custom OCT system has been built to image the corneal surface, to investigate the fate of transplanted limbal stem cells. We evaluate two methods to label and track transplanted cells: melanin labelling and magneto-labelling. To evaluate melanin labelling, stem cells are loaded with melanin and then transplanted onto a rabbit cornea denuded of its epithelium. The melanin displays strongly enhanced backscatter relative to normal cells. To evaluate magneto-labelling the stem cells are loaded with magnetic nanoparticles (20-30nm in size) and then imaged with a custom-built, magneto-motive OCT system.

  11. Mesenchymal Stem Cells in Neurodegenerative Diseases

    Directory of Open Access Journals (Sweden)

    Olcay Ergurhan Kiroglu

    2015-03-01

    Full Text Available Neurodegenerative diseases are almost incurable, debilitating, and they might be fatal, because of limited neurogenesis in nervous system, presence of inhibitory substances and inhibition of recovery due to development of glial scar. Despite many treatment strategies of neurodegenerative diseases no full cure has been achieved. The successful results for mesenchymal stem cells applications on muscles, heart and liver diseases and the application of these cells to the damaged area in particular, hypoxia, inflammation and apoptosis promise hope of using them for neurodegenerative diseases. Mesenchymal stem cells applications constitute a vascular and neuronal phenotype in Parkinsons disease, Huntingtons disease, Amyotrophic lateral sclerosis and Alzheimers disease. Stem cells release bioactive agents that lead to suppression of local immune system, reduction of free radicals, increase in angiogenesis, inhibition of fibrosis, and apoptosis. In addition, tissue stem cells, increase neuronal healing, stimulate proliferation and differentiation. These findings show that stem cells might be a hope of a cure in the treatment of neurodegenerative diseases and intensive work on this issue should continue.

  12. Recent Stem Cell Advances: Cord Blood and Induced Pluripotent Stem Cell for Cardiac Regeneration- a Review.

    Science.gov (United States)

    Medhekar, Sheetal Kashinath; Shende, Vikas Suresh; Chincholkar, Anjali Baburao

    2016-05-30

    Stem cells are primitive self renewing undifferentiated cell that can be differentiated into various types of specialized cells like nerve cell, skin cells, muscle cells, intestinal tissue, and blood cells. Stem cells live in bone marrow where they divide to make new blood cells and produces peripheral stem cells in circulation. Under proper environment and in presence of signaling molecules stem cells begin to develop into specialized tissues and organs. These unique characteristics make them very promising entities for regeneration of damaged tissue. Day by day increase in incidence of heart diseases including left ventricular dysfunction, ischemic heart disease (IHD), congestive heart failure (CHF) are the major cause of morbidity and mortality. However infracted tissue cannot regenerate into healthy tissue. Heart transplantation is only the treatment for such patient. Due to limitation of availability of donor for organ transplantation, a focus is made for alternative and effective therapy to treat such condition. In this review we have discussed the new advances in stem cells such as use of cord stem cells and iPSC technology in cardiac repair. Future approach of CB cells was found to be used in tissue repair which is specifically observed for improvement of left ventricular function and myocardial infarction. Here we have also focused on how iPSC technology is used for regeneration of cardiomyocytes and intiating neovascularization in myocardial infarction and also for study of pathophysiology of various degenerative diseases and genetic disease in research field.

  13. Stem Cell Therapies in Retinal Disorders

    Directory of Open Access Journals (Sweden)

    Aakriti Garg

    2017-02-01

    Full Text Available Stem cell therapy has long been considered a promising mode of treatment for retinal conditions. While human embryonic stem cells (ESCs have provided the precedent for regenerative medicine, the development of induced pluripotent stem cells (iPSCs revolutionized this field. iPSCs allow for the development of many types of retinal cells, including those of the retinal pigment epithelium, photoreceptors, and ganglion cells, and can model polygenic diseases such as age-related macular degeneration. Cellular programming and reprogramming technology is especially useful in retinal diseases, as it allows for the study of living cells that have genetic variants that are specific to patients’ diseases. Since iPSCs are a self-renewing resource, scientists can experiment with an unlimited number of pluripotent cells to perfect the process of targeted differentiation, transplantation, and more, for personalized medicine. Challenges in the use of stem cells are present from the scientific, ethical, and political realms. These include transplant complications leading to anatomically incorrect placement, concern for tumorigenesis, and incomplete targeting of differentiation leading to contamination by different types of cells. Despite these limitations, human ESCs and iPSCs specific to individual patients can revolutionize the study of retinal disease and may be effective therapies for conditions currently considered incurable.

  14. Large animal models for stem cell therapy.

    Science.gov (United States)

    Harding, John; Roberts, R Michael; Mirochnitchenko, Oleg

    2013-03-28

    The field of regenerative medicine is approaching translation to clinical practice, and significant safety concerns and knowledge gaps have become clear as clinical practitioners are considering the potential risks and benefits of cell-based therapy. It is necessary to understand the full spectrum of stem cell actions and preclinical evidence for safety and therapeutic efficacy. The role of animal models for gaining this information has increased substantially. There is an urgent need for novel animal models to expand the range of current studies, most of which have been conducted in rodents. Extant models are providing important information but have limitations for a variety of disease categories and can have different size and physiology relative to humans. These differences can preclude the ability to reproduce the results of animal-based preclinical studies in human trials. Larger animal species, such as rabbits, dogs, pigs, sheep, goats, and non-human primates, are better predictors of responses in humans than are rodents, but in each case it will be necessary to choose the best model for a specific application. There is a wide spectrum of potential stem cell-based products that can be used for regenerative medicine, including embryonic and induced pluripotent stem cells, somatic stem cells, and differentiated cellular progeny. The state of knowledge and availability of these cells from large animals vary among species. In most cases, significant effort is required for establishing and characterizing cell lines, comparing behavior to human analogs, and testing potential applications. Stem cell-based therapies present significant safety challenges, which cannot be addressed by traditional procedures and require the development of new protocols and test systems, for which the rigorous use of larger animal species more closely resembling human behavior will be required. In this article, we discuss the current status and challenges of and several major directions

  15. Hematopoietic stem cell origin of connective tissues.

    Science.gov (United States)

    Ogawa, Makio; Larue, Amanda C; Watson, Patricia M; Watson, Dennis K

    2010-07-01

    Connective tissue consists of "connective tissue proper," which is further divided into loose and dense (fibrous) connective tissues and "specialized connective tissues." Specialized connective tissues consist of blood, adipose tissue, cartilage, and bone. In both loose and dense connective tissues, the principal cellular element is fibroblasts. It has been generally believed that all cellular elements of connective tissue, including fibroblasts, adipocytes, chondrocytes, and bone cells, are generated solely by mesenchymal stem cells. Recently, a number of studies, including those from our laboratory based on transplantation of single hematopoietic stem cells, strongly suggested a hematopoietic stem cell origin of these adult mesenchymal tissues. This review summarizes the experimental evidence for this new paradigm and discusses its translational implications.

  16. Proteomic cornerstones of hematopoietic stem cell differentiation

    DEFF Research Database (Denmark)

    Klimmeck, Daniel; Hansson, Jenny; Raffel, Simon

    2012-01-01

    Regenerative tissues such as the skin epidermis, the intestinal mucosa or the hematopoietic system are organized in a hierarchical manner with stem cells building the top of this hierarchy. Somatic stem cells harbor the highest self-renewal activity and generate a series of multipotent progenitors...... which differentiate into lineage committed progenitors and subsequently mature cells. In this report, we applied an in-depth quantitative proteomic approach to analyze and compare the full proteomes of ex vivo isolated and FACS-sorted populations highly enriched for either multipotent hematopoietic stem....../progenitor cells (HSPCs, Lin(neg)Sca-1(+)c-Kit(+)) or myeloid committed precursors (Lin(neg)Sca-1(-)c-Kit(+)). By employing stable isotope dimethyl labeling and high-resolution mass spectrometry, more than 5,000 proteins were quantified. From biological triplicate experiments subjected to rigorous statistical...

  17. Adult stem cells underlying lung regeneration.

    Science.gov (United States)

    Xian, Wa; McKeon, Frank

    2012-03-01

    Despite the massive toll in human suffering imparted by degenerative lung disease, including COPD, idiopathic pulmonary fibrosis and ARDS, the scientific community has been surprisingly agnostic regarding the potential of lung tissue, and in particular the alveoli, to regenerate. However, there is circumstantial evidence in humans and direct evidence in mice that ARDS triggers robust regeneration of lung tissue rather than irreversible fibrosis. The stem cells responsible for this remarkable regenerative process has garnered tremendous attention, most recently yielding a defined set of cloned human airway stem cells marked by p63 expression but with distinct commitment to differentiated cell types typical of the upper or lower airways, the latter of which include alveoli-like structures in vitro and in vivo. These recent advances in lung regeneration and distal airway stem cells and the potential of associated soluble factors in regeneration must be harnessed for therapeutic options in chronic lung disease.

  18. Stem cell therapy: facts and fiction.

    Science.gov (United States)

    Spits, C

    2012-01-01

    This opinion paper is a brief overview of the current state of the translation of stem cell therapy from the bench to the clinic. The hype generated by the great medical potential of stem cells has lead to hundreds of clinics worldwide claiming to have the cure for every imaginable condition. This fraudulent practice is far from the reality of scientists and bona fide companies. Much effort is put into addressing all the hurdles we have been encountering for the safe use of stem cells in therapy. By now, a significant number of clinical trials are booking very exciting progress, opening a realistic path to the use of these amazing cells in regenerative medicine.

  19. Induced pluripotent stem cells for cardiac repair.

    Science.gov (United States)

    Zwi-Dantsis, Limor; Gepstein, Lior

    2012-10-01

    Myocardial stem cell therapies are emerging as novel therapeutic paradigms for myocardial repair, but are hampered by the lack of sources for autologous human cardiomyocytes. An exciting development in the field of cardiovascular regenerative medicine is the ability to reprogram adult somatic cells into pluripotent stem cell lines (induced pluripotent stem cells, iPSCs) and to coax their differentiation into functional cardiomyocytes. This technology holds great promise for the emerging disciplines of personalized and regenerative medicine, because of the ability to derive patient-specific iPSCs that could potentially elude the immune system. The current review describes the latest techniques of generating iPSCs as well as the methods used to direct their differentiation towards the cardiac lineage. We then detail the unique potential as well as the possible hurdles on the road to clinical utilizing of the iPSCs derived cardiomyocytes in the emerging field of cardiovascular regenerative medicine.

  20. [Stem cell perspectives in myocardial infarctions].

    Science.gov (United States)

    Aceves, José Luis; Archundia, Abel; Díaz, Guillermo; Páez, Araceli; Masso, Felipe; Alvarado, Martha; López, Manuel; Aceves, Rocío; Ixcamparij, Carlos; Puente, Adriana; Vilchis, Rafael; Montaño, Luis Felipe

    2005-01-01

    Myocardial infarction is the leading cause of congestive heart failure and death in industrializated countries. The cellular cardiomyoplasty has emerged as an alternative treatment in the regeneration of infarted myocardial tissue. In animals' models, different cellular lines such as cardiomyocites, skeletal myoblasts, embryonic stem cells and adult mesenchymal stem cells have been used, resulting in an improvement in ventricular function and decrease in amount of infarcted tissue. The first three cells lines have disvantages as they are allogenics and are difficult to obtain. The adult mesenchymal stem cells are autologous and can be obtained throught the aspiration of bone marrow or from peripherical circulation, after stimulating with cytokines (G-CSF). The implantation in humans with recent and old myocardial infarction have shown improvements similar to those shown in animal models. These findings encourage the continued investigation in the mechanism of cellular differentiation and implantation methods in infarcted myocardial tissue.

  1. Targeting the osteosarcoma cancer stem cell

    Directory of Open Access Journals (Sweden)

    Qin Ling

    2010-10-01

    Full Text Available Abstract Osteosarcoma is the most common type of solid bone cancer and the second leading cause of cancer-related death in pediatric patients. Many patients are not cured by the current osteosarcoma therapy consisting of combination chemotherapy along with surgery and thus new treatments are urgently needed. In the last decade, cancer stem cells have been identified in many tumors such as leukemia, brain, breast, head and neck, colon, skin, pancreatic, and prostate cancers and these cells are proposed to play major roles in drug resistance, tumor recurrence, and metastasis. Recent studies have shown evidence that osteosarcoma also possesses cancer stem cells. This review summarizes the current knowledge about the osteosarcoma cancer stem cell including the methods used for its isolation, its properties, and its potential as a new target for osteosarcoma treatment.

  2. Biodegradable Polymers and Stem Cells for Bioprinting.

    Science.gov (United States)

    Lei, Meijuan; Wang, Xiaohong

    2016-04-29

    It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  3. Biodegradable Polymers and Stem Cells for Bioprinting

    Directory of Open Access Journals (Sweden)

    Meijuan Lei

    2016-04-01

    Full Text Available It is imperative to develop organ manufacturing technologies based on the high organ failure mortality and serious donor shortage problems. As an emerging and promising technology, bioprinting has attracted more and more attention with its super precision, easy reproduction, fast manipulation and advantages in many hot research areas, such as tissue engineering, organ manufacturing, and drug screening. Basically, bioprinting technology consists of inkjet bioprinting, laser-based bioprinting and extrusion-based bioprinting techniques. Biodegradable polymers and stem cells are common printing inks. In the printed constructs, biodegradable polymers are usually used as support scaffolds, while stem cells can be engaged to differentiate into different cell/tissue types. The integration of biodegradable polymers and stem cells with the bioprinting techniques has provided huge opportunities for modern science and technologies, including tissue repair, organ transplantation and energy metabolism.

  4. Epigenetic control of embryonic stem cell fate

    DEFF Research Database (Denmark)

    Christophersen, Nicolaj Strøyer; Helin, Kristian

    2010-01-01

    Embryonic stem (ES) cells are derived from the inner cell mass of the preimplantation embryo and are pluripotent, as they are able to differentiate into all cell types of the adult organism. Once established, the pluripotent ES cells can be maintained under defined culture conditions, but can also...... be induced rapidly to differentiate. Maintaining this balance of stability versus plasticity is a challenge, and extensive studies in recent years have focused on understanding the contributions of transcription factors and epigenetic enzymes to the "stemness" properties of these cells. Identifying...... the molecular switches that regulate ES cell self-renewal versus differentiation can provide insights into the nature of the pluripotent state and enhance the potential use of these cells in therapeutic applications. Here, we review the latest models for how changes in chromatin methylation can modulate ES cell...

  5. Intestinal lineage commitment of embryonic stem cells.

    Science.gov (United States)

    Cao, Li; Gibson, Jason D; Miyamoto, Shingo; Sail, Vibhavari; Verma, Rajeev; Rosenberg, Daniel W; Nelson, Craig E; Giardina, Charles

    2011-01-01

    Generating lineage-committed intestinal stem cells from embryonic stem cells (ESCs) could provide a tractable experimental system for understanding intestinal differentiation pathways and may ultimately provide cells for regenerating damaged intestinal tissue. We tested a two-step differentiation procedure in which ESCs were first cultured with activin A to favor formation of definitive endoderm, and then treated with fibroblast-conditioned medium with or without Wnt3A. The definitive endoderm expressed a number of genes associated with gut-tube development through mouse embryonic day 8.5 (Sox17, Foxa2, and Gata4 expressed and Id2 silent). The intestinal stem cell marker Lgr5 gene was also activated in the endodermal cells, whereas the Msi1, Ephb2, and Dcamkl1 intestinal stem cell markers were not. Exposure of the endoderm to fibroblast-conditioned medium with Wnt3A resulted in the activation of Id2, the remaining intestinal stem cell markers and the later gut markers Cdx2, Fabp2, and Muc2. Interestingly, genes associated with distal gut-associated mesoderm (Foxf2, Hlx, and Hoxd8) were also simulated by Wnt3A. The two-step differentiation protocol generated gut bodies with crypt-like structures that included regions of Lgr5-expressing proliferating cells and regions of cell differentiation. These gut bodies also had a smooth muscle component and some underwent peristaltic movement. The ability of the definitive endoderm to differentiate into intestinal epithelium was supported by the vivo engraftment of these cells into mouse colonic mucosa. These findings demonstrate that definitive endoderm derived from ESCs can carry out intestinal cell differentiation pathways and may provide cells to restore damaged intestinal tissue.

  6. Stem cell concepts renew cancer research.

    Science.gov (United States)

    Dick, John E

    2008-12-15

    Although uncontrolled proliferation is a distinguishing property of a tumor as a whole, the individual cells that make up the tumor exhibit considerable variation in many properties, including morphology, proliferation kinetics, and the ability to initiate tumor growth in transplant assays. Understanding the molecular and cellular basis of this heterogeneity has important implications in the design of therapeutic strategies. The mechanistic basis of tumor heterogeneity has been uncertain; however, there is now strong evidence that cancer is a cellular hierarchy with cancer stem cells at the apex. This review provides a historical overview of the influence of hematology on the development of stem cell concepts and their linkage to cancer.

  7. Updates in colorectal cancer stem cell research

    Directory of Open Access Journals (Sweden)

    Chun-Jie Li

    2014-01-01

    Full Text Available Colorectal cancer (CRC is one of the world most common malignant tumors, also is the main disease, which cause tumor-associated death. Surgery and chemotherapy are the most used treatment of CRC. Recent research reported that, cancer stem cells (CSCs are considered as the origin of tumor genesis, development, metastasis and recurrence in theory. At present, it has been proved that, CSCs existed in many tumors including CRC. In this review, we summary the identification of CSCs according to the cell surface markers, and the development of drugs that target colorectal cancer stem cells.

  8. Substrates for clinical applicability of stem cells

    Institute of Scientific and Technical Information of China (English)

    Sanjar Enam; Sha Jin

    2015-01-01

    The capability of human pluripotent stem cells (hPSCs)to differentiate into a variety of cells in the human bodyholds great promise for regenerative medicine. Manysubstrates exist on which hPSCs can be self-renewed,maintained and expanded to further the goal of clinicalapplication of stem cells. In this review, we highlightnumerous extracellular matrix proteins, peptide andpolymer based substrates, scaffolds and hydrogelsthat have been pioneered. We discuss their benefitsand shortcomings and offer future directions as well asemphasize commercially available synthetic peptidesas a type of substrate that can bring the benefits ofregenerative medicine to clinical settings.

  9. Prostate cancer and metastasis initiating stem cells

    Institute of Scientific and Technical Information of China (English)

    Kathleen Kelly; Juan Juan Yin

    2008-01-01

    Androgen refractory prostate cancer metastasis is a major clinical challenge.Mechanism-based approaches to treating prostate cancer metastasis require an understanding of the developmental origin of the metastasis-initiating cell.Properties of prostate cancer metastases such as plasticity with respect to differentiated phenotype and androgen independence are consistent with the transformation of a prostate epithelial progenitor or stem cell leading to metastasis.This review focuses upon current evidence and concepts addressing the identification and properties of normal prostate stem or progenitor cells and their transformed counterparts.

  10. What's missing? Discussing stem cell translational research in educational information on stem cell "tourism".

    Science.gov (United States)

    Master, Zubin; Zarzeczny, Amy; Rachul, Christen; Caulfield, Timothy

    2013-01-01

    Stem cell tourism is a growing industry in which patients pursue unproven stem cell therapies for a wide variety of illnesses and conditions. It is a challenging market to regulate due to a number of factors including its international, online, direct-to-consumer approach. Calls to provide education and information to patients, their families, physicians, and the general public about the risks associated with stem cell tourism are mounting. Initial studies examining the perceptions of patients who have pursued stem cell tourism indicate many are highly critical of the research and regulatory systems in their home countries and believe them to be stagnant and unresponsive to patient needs. We suggest that educational material should include an explanation of the translational research process, in addition to other aspects of stem cell tourism, as one means to help promote greater understanding and, ideally, curb patient demand for unproven stem cell interventions. The material provided must stress that strong scientific research is required in order for therapies to be safe and have a greater chance at being effective. Through an analysis of educational material on stem cell tourism and translational stem cell research from patient groups and scientific societies, we describe essential elements that should be conveyed in educational material provided to patients. Although we support the broad dissemination of educational material on stem cell translational research, we also acknowledge that education may simply not be enough to engender patient and public trust in domestic research and regulatory systems. However, promoting patient autonomy by providing good quality information to patients so they can make better informed decisions is valuable in itself, irrespective of whether it serves as an effective deterrent of stem cell tourism.

  11. Stem Cell-Based Therapies for Ischemic Stroke

    Directory of Open Access Journals (Sweden)

    Lei Hao

    2014-01-01

    Full Text Available In recent years, stem cell-based approaches have attracted more attention from scientists and clinicians due to their possible therapeutical effect on stroke. Animal studies have demonstrated that the beneficial effects of stem cells including embryonic stem cells (ESCs, inducible pluripotent stem cells (iPSCs, neural stem cells (NSCs, and mesenchymal stem cell (MSCs might be due to cell replacement, neuroprotection, endogenous neurogenesis, angiogenesis, and modulation on inflammation and immune response. Although several clinical studies have shown the high efficiency and safety of stem cell in stroke management, mainly MSCs, some issues regarding to cell homing, survival, tracking, safety, and optimal cell transplantation protocol, such as cell dose and time window, should be addressed. Undoubtably, stem cell-based gene therapy represents a novel potential therapeutic strategy for stroke in future.

  12. Neural Crest As the Source of Adult Stem Cells

    Science.gov (United States)

    Pierret, Chris; Spears, Kathleen; Maruniak, Joel A.; Kirk, Mark D.

    2012-01-01

    Recent studies suggest that adult stem cells can cross germ layer boundaries. For example, bone marrow-derived stem cells appear to differentiate into neurons and glial cells, as well as other types of cells. How can stem cells from bone marrow, pancreas, skin, or fat become neurons and glia; in other words, what molecular and cellular events direct mesodermal cells to a neural fate? Transdifferentiation, dediffereniation, and fusion of donor adult stem cells with fully differentiated host cells have been proposed to explain the plasticity of adult stem cells. Here we review the origin of select adult stem cell populations and propose a unifying hypothesis to explain adult stem cell plasticity. In addition, we outline specific experiments to test our hypothesis. We propose that peripheral, tissue-derived, or adult stem cells are all progeny of the neural crest. PMID:16646675

  13. Cancer stem cell plasticity and tumor hierarchy

    Institute of Scientific and Technical Information of China (English)

    Marina Carla Cabrera; Robert E Hollingsworth; Elaine M Hurt

    2015-01-01

    The origins of the complex process of intratumoralheterogeneity have been highly debated and differentcellular mechanisms have been hypothesized to accountfor the diversity within a tumor. The clonal evolution andcancer stem cell (CSC) models have been proposed asdrivers of this heterogeneity. However, the concept ofcancer stem cell plasticity and bidirectional conversionbetween stem and non-stem cells has added additionalcomplexity to these highly studied paradigms and may helpexplain the tumor heterogeneity observed in solid tumors.The process of cancer stem cell plasticity in which cancercells harbor the dynamic ability of shifting from a non-CSCstate to a CSC state and vice versa may be modulated byspecific microenvironmental signals and cellular interactionsarising in the tumor niche. In addition to promoting CSCplasticity, these interactions may contribute to the cellulartransformation of tumor cells and affect response tochemotherapeutic and radiation treatments by providingCSCs protection from these agents. Herein, we review theliterature in support of this dynamic CSC state, discussthe effectors of plasticity, and examine their role in thedevelopment and treatment of cancer.

  14. Pluripotent stem cells - Methods and protocols

    Directory of Open Access Journals (Sweden)

    Carlo Alberto Redi

    2013-09-01

    Full Text Available The 2012 Nobel prize for Physiology or Medicine has been awarded conjunctely to Sir John Gurdon and Shinya Yamanaka for the discovery that mature cells can be reprogrammed to become pluripotent as during the syxties John Gurdon challenged the dogma that the specialised cell is irreversibly committed to its fate and just few years ago Shinya Yamanaka was the first to induce mature cells to reverse their development and turn back into induced pluripotent stem cells....

  15. Fish Stem Cells: Classification, Resources, Characteristics and Application Areas

    Directory of Open Access Journals (Sweden)

    Şehriban ÇEK

    2016-08-01

    Full Text Available Stem cells are a class of undifferentiated cells, have the potential for self-renewal that can differ to the specialized cells. First studies on stem cells in fish started with zebra fish in 1992. In this review, classification, resources, vital importance, characteristics and application areas of fish stem cell were clarified.

  16. Application of Nanoscaffolds in Mesenchymal Stem Cell-Based Therapy

    OpenAIRE

    Ghoraishizadeh, Saman; Ghorishizadeh, Afsoon; Ghoraishizadeh, Peyman; Daneshvar,Nasibeh; Boroojerdi, Mohadese Hashem

    2014-01-01

    Regenerative medicine is an alternative solution for organ transplantation. Stem cells and nanoscaffolds are two essential components in regenerative medicine. Mesenchymal stem cells (MSCs) are considered as primary adult stem cells with high proliferation capacity, wide differentiation potential, and immunosuppression properties which make them unique for regenerative medicine and cell therapy. Scaffolds are engineered nanofibers that provide suitable microenvironment for cell signalling whi...

  17. Towards stem-cell therapy in the endocrine pancreas

    NARCIS (Netherlands)

    Gangaram-Panday, Shanti T.; Faas, Marijke M.; de Vos, Paul

    2007-01-01

    Many approaches of stem-cell therapy for the treatment of diabetes have been described. One is the application of stem cells for replacement of nonfunctional islet cells in the native endogenous pancreas; another one is the use of stem cells as an inexhaustible source for islet-cell transplantation.

  18. New Advanced Technologies in Stem Cell Therapy

    Science.gov (United States)

    2014-11-01

    cells reverts nociceptive hyper- sensitivity in an experimental model of neuropathy,” Stem Cells and Development, vol. 22, no. 8, pp. 1252–1263, 2013...which the differences between males and females are most striking. Differences in injury mechanism, pain sensation, drug handling, and healing

  19. Controling stem cell proliferation - CKIs at work

    NARCIS (Netherlands)

    Bruggeman, SWM; van Lohuizen, M

    2006-01-01

    The cyclin-dependent kinase inhibitors or CKIs are well recognized as intrinsic regulators of the cell cycle. Here, we discuss recent data implicating their activity in restraining adult stem cell self-renewal, and the role that proteins regulating CKI expression play in this process.

  20. Enteric Bacteria and Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Jun Sun

    2011-01-01

    Full Text Available Intestinal bacteria can contribute to cell proliferation and cancer development, particularly in chronic infectious diseases in which bacteria and/or bacterial components might interfere with cell function. The number of microbial cells within the gut lumen is estimated to be 100 trillion, which is about 10-times larger than the number of eukaryotic cells in the human body. Because of the complexity of the gut flora, identifying the specific microbial agents related to human diseases remains challenging. Recent studies have demonstrated that the stemness of colon cancer cells is, in part, orchestrated by the microenvironment and is defined by high Wnt activity. In this review article, we will discuss recent progress with respect to intestinal stem cells, cancer stem cells, and the molecular mechanisms of enteric bacteria in the activation of the Wnt pathway. We will also discuss the roles of other pathways, including JAK-STAT, JNK, and Notch, in regulating stem cell niches during bacterial infections using Drosophila models. Insights gained from understanding how host-bacterial interaction during inflammation and cancer may serve as a paradigm for understanding the nature of self-renewal signals.

  1. Osteogenic Differentiation of Dental Follicle Stem Cells

    Directory of Open Access Journals (Sweden)

    Giorgio Mori, Andrea Ballini, Claudia Carbone, Angela Oranger, Giacomina Brunetti, Adriana Di Benedetto, Biagio Rapone, Stefania Cantore, Mariasevera Di Comite, Silvia Colucci, Maria Grano, Felice R. Grassi

    2012-01-01

    Full Text Available Background: Stem cells are defined as clonogenic cells capable of self-renewal and multi-lineage differentiation. A population of these cells has been identified in human Dental Follicle (DF.Dental Follicle Stem Cells (DFSCs were found in pediatric unerupted wisdom teeth and have been shown to differentiate, under particular conditions, into various cell types of the mesenchymal tissues.Aim: The aim of this study was to investigate if cells isolated from DF show stem features, differentiate toward osteoblastic phenotype and express osteoblastic markers.Methods: We studied the immunophenotype of DFSCs by flow cytometric analysis, the osteoblastic markers of differentiated DFSCs were assayed by histochemical methods and real-time PCR.Results: We demonstrated that DFSCs expressed a heterogeneous assortment of makers associated with stemness. Moreover DFSCs differentiated into osteoblast-like cells, producing mineralized matrix nodules and expressed the typical osteoblastic markers, Alkaline Phosphatase (ALP and Collagen I (Coll I.Conclusion: This study suggests that DFSCs may provide a cell source for tissue engineering of bone.

  2. Stem Cells Matter in Response to Fasting

    Directory of Open Access Journals (Sweden)

    Badi Sri Sailaja

    2015-12-01

    Full Text Available The molecular processes underlying intestinal adaptation to fasting and re-feeding remain largely uncharacterized. In this issue of Cell Reports, Richmond et al. report that dormant intestinal stem cells are regulated by PTEN and nutritional status.

  3. Generating cartilage repair from pluripotent stem cells.

    Science.gov (United States)

    Cheng, Aixin; Hardingham, Timothy E; Kimber, Susan J

    2014-08-01

    The treatment of degeneration and injury of articular cartilage has been very challenging for scientists and surgeons. As an avascular and hypocellular tissue, cartilage has a very limited capacity for self-repair. Chondrocytes are the only cell type in cartilage, in which they are surrounded by the extracellular matrix that they secrete and assemble. Autologous chondrocyte implantation for cartilage defects has achieved good results, but the limited resources and complexity of the procedure have hindered wider application. Stem cells form an alternative to chondrocytes as a source of chondrogenic cells due to their ability to proliferate extensively while retaining the potential for differentiation. Adult stem cells such as mesenchymal stem cells have been differentiated into chondrocytes, but the limitations in their proliferative ability and the heterogeneous cell population hinder their adoption as a prime alternative source for generating chondrocytes. Human embryonic stem cells (hESCs) are attractive as candidates for cell replacement therapy because of their unlimited self-renewal and ability for differentiation into mesodermal derivatives as well as other lineages. In this review, we focus on current protocols for chondrogenic differentiation of ESCs, in particular the chemically defined culture system developed in our lab that could potentially be adapted for clinical application.

  4. Stem cell sources for cardiac regeneration

    NARCIS (Netherlands)

    Roccio, M.; Goumans, M. J.; Sluijter, J. P. G.; Doevendans, P. A.

    2008-01-01

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new cardiomyo

  5. Hematopoietic Stem-Cell Transplantation for Sickle Cell Disease

    Directory of Open Access Journals (Sweden)

    Atila Tanyeli

    2014-02-01

    Full Text Available Sickle cell anemia is one of the most common hemoglobinopathies in the worldwide. Sickle cell anemia characterized by crises and organ failure develops over time. Myeloablative stem cell transplantation is curative but it has been performed in children younger than 16 years of age. Modest modifications in the conditioning regimen and supportive care have improved outcome such that the majority of children with a suitable HLA-matched sibling donor can expect a cure from this approach. But nonmyeloablative protocols are crucial for the future of Hematopoietic Stem-Cell Transplantation for older sickle cell anemia patients with organ failure. A protocol for nonmyeloablative allogeneic hematopoietic stem-cell transplantation that includes total-body irradiation and treatment with alemtuzumab and sirolimus can achieve stable, mixed donor–recipient chimerism. Stem cell transplantation is recommended in the presence of HLA-matched siblings in patients at risk.

  6. The promises of stem cells: stem cell therapy for movement disorders.

    Science.gov (United States)

    Mochizuki, Hideki; Choong, Chi-Jing; Yasuda, Toru

    2014-01-01

    Despite the multitude of intensive research, the exact pathophysiological mechanisms underlying movement disorders including Parkinson's disease, multiple system atrophy and Huntington's disease remain more or less elusive. Treatments to halt these disease progressions are currently unavailable. With the recent induced pluripotent stem cells breakthrough and accomplishment, stem cell research, as the vast majority of scientists agree, holds great promise for relieving and treating debilitating movement disorders. As stem cells are the precursors of all cells in the human body, an understanding of the molecular mechanisms that govern how they develop and work would provide us many fundamental insights into human biology of health and disease. Moreover, stem-cell-derived neurons may be a renewable source of replacement cells for damaged neurons in movement disorders. While stem cells show potential for regenerative medicine, their use as tools for research and drug testing is thought to have more immediate impact. The use of stem-cell-based drug screening technology could be a big boost in drug discovery for these movement disorders. Particular attention should also be given to the involvement of neural stem cells in adult neurogenesis so as to encourage its development as a therapeutic option.

  7. Limbal stem cell transplantation: current perspectives

    Directory of Open Access Journals (Sweden)

    Atallah MR

    2016-04-01

    Full Text Available Marwan Raymond Atallah, Sotiria Palioura, Victor L Perez, Guillermo Amescua Department of Ophthalmology, Bascom Palmer Eye Institute, University of Miami Miller School of Medicine, Miami, FL, USA Abstract: Regeneration of the corneal surface after an epithelial insult involves division, migration, and maturation of a specialized group of stem cells located in the limbus. Several insults, both intrinsic and extrinsic, can precipitate destruction of the delicate microenvironment of these cells, resulting in limbal stem cell deficiency (LSCD. In such cases, reepithelialization fails and conjunctival epithelium extends across the limbus, leading to vascularization, persistent epithelial defects, and chronic inflammation. In partial LSCD, conjunctival epitheliectomy, coupled with amniotic membrane transplantation, could be sufficient to restore a healthy surface. In more severe cases and in total LSCD, stem cell transplantation is currently the best curative option. Before any attempts are considered to perform a limbal stem cell transplantation procedure, the ocular surface must be optimized by controlling causative factors and comorbid conditions. These factors include adequate eyelid function or exposure, control of the ocular surface inflammatory status, and a well-lubricated ocular surface. In cases of unilateral LSCD, stem cells can be obtained from the contralateral eye. Newer techniques aim at expanding cells in vitro or in vivo in order to decrease the need for large limbal resection that may jeopardize the “healthy” eye. Patients with bilateral disease can be treated using allogeneic tissue in combination with systemic immunosuppressive therapy. Another emerging option for this subset of patients is the use of noncorneal cells such as mucosal grafts. Finally, the use of keratoprosthesis is reserved for patients who are not candidates for any of the aforementioned options, wherein the choice of the type of keratoprosthesis depends on

  8. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells.

    Science.gov (United States)

    Chen, Tong; Wang, Fen; Wu, Mengyao; Wang, Zack Z

    2015-07-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose.

  9. Embryonic stem cell differentiation: a chromatin perspective.

    Science.gov (United States)

    Rasmussen, Theodore P

    2003-11-13

    Embryonic stem (ES) cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.

  10. Embryonic stem cell differentiation: A chromatin perspective

    Directory of Open Access Journals (Sweden)

    Rasmussen Theodore P

    2003-11-01

    Full Text Available Abstract Embryonic stem (ES cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.

  11. Stem cell sources for cardiac regeneration.

    Science.gov (United States)

    Roccio, M; Goumans, M J; Sluijter, J P G; Doevendans, P A

    2008-03-01

    Cell-based cardiac repair has the ambitious aim to replace the malfunctioning cardiac muscle developed after myocardial infarction, with new contractile cardiomyocytes and vessels. Different stem cell populations have been intensively studied in the last decade as a potential source of new cardiomyocytes to ameliorate the injured myocardium, compensate for the loss of ventricular mass and contractility and eventually restore cardiac function. An array of cell types has been explored in this respect, including skeletal muscle, bone marrow derived stem cells, embryonic stem cells (ESC) and more recently cardiac progenitor cells. The best-studied cell types are mouse and human ESC cells, which have undisputedly been demonstrated to differentiate into cardiomyocyte and vascular lineages and have been of great help to understand the differentiation process of pluripotent cells. However, due to their immunogenicity, risk of tumor development and the ethical challenge arising from their embryonic origin, they do not provide a suitable cell source for a regenerative therapy approach. A better option, overcoming ethical and allogenicity problems, seems to be provided by bone marrow derived cells and by the recently identified cardiac precursors. This report will overview current knowledge on these different cell types and their application in cardiac regeneration and address issues like implementation of delivery methods, including tissue engineering approaches that need to be developed alongside.

  12. Hypoxia and Stem Cell-Based Engineering of Mesenchymal Tissues

    OpenAIRE

    Ma, Teng; Grayson, Warren L.; Fröhlich, Mirjam; Vunjak-Novakovic, Gordana

    2009-01-01

    Stem cells have the ability for prolonged self-renewal and differentiation into mature cells of various lineages, which makes them important cell sources for tissue engineering applications. Their remarkable ability to replenish and differentiate in vivo is regulated by both intrinsic and extrinsic cellular mechanisms. The anatomical location where the stem cells reside, known as the “stem cell niche or microenvironment,” provides signals conducive to the maintenance of definitive stem cell p...

  13. Induction of iPS cells and of cancer stem cells: the stem cell or reprogramming hypothesis of cancer?

    Science.gov (United States)

    Trosko, James E

    2014-01-01

    This article as designed to examine whether the "stoichiometric" or "elite models" of the origin of the "induced pluripotent stem" (iPS) cells fits some experiment facts from the developmental biology of adult stem cells and from the field of cancer research. In brief, since the evidence presented to support the stoichiometric model failed to recognize the factual existence of adult organ specific stem cells, the model has not been rigorously tested. In addition, the demonstration of a subset of cells (MUSE cells) in normal primary in vitro cultures of human fibroblasts (the usual source of iPS cells) seems to be the origin of the iPS cells. Moreover, from the field of carcinogenesis, the "stem cell" versus "de-differentiation" or "reprogramming" hypotheses were examined. Again, using the role of glycolysis, known to be associated with the Warburg effect in cancer cells, a list of experiments showing that (a) normal stem cells, which have few mitochondria, metabolize via glycolysis; (b) the stem cells are targets for "initiation" or "immortalization" or the blockage of differentiation and apoptosis of the stem cells by "immortalizing viruses"; (c) Lactate dehydrogenase A (LDHA), when expressed, is associated with glycolysis and therefore, must be expressed in normal adult stem cells, as well as in cancer cells; and (d) p53, depleted or rendered dysfunctional by SV40 Large T antigen, is associated with the reduction of mitochondrial function and mass and is associated with the Warburg effect. Together, these observations from the iPS and "cancer stem cell" fields support the idea that both iPS cells and cancer stem cell are derived from adult organ-specific stem cells that do not restore or switch their metabolism of glucose from oxidative metabolism to glycolysis but, rather, in both cases, the adult stem cell, which metabolizes by glycolysis, is prevented from differentiation or from metabolizing by oxidative phosphorylation.

  14. Mesenchymal stem cells and induced pluripotent stem cells as therapies for multiple sclerosis.

    Science.gov (United States)

    Xiao, Juan; Yang, Rongbing; Biswas, Sangita; Qin, Xin; Zhang, Min; Deng, Wenbin

    2015-04-24

    Multiple sclerosis (MS) is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC) and induced pluripotent stem cell (iPSCs) derived precursor cells can modulate the autoimmune response in the central nervous system (CNS) and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  15. Mesenchymal Stem Cells and Induced Pluripotent Stem Cells as Therapies for Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Juan Xiao

    2015-04-01

    Full Text Available Multiple sclerosis (MS is a chronic, autoimmune, inflammatory demyelinating disorder of the central nervous system that leads to permanent neurological deficits. Current MS treatment regimens are insufficient to treat the irreversible neurological disabilities. Tremendous progress in the experimental and clinical applications of cell-based therapies has recognized stem cells as potential candidates for regenerative therapy for many neurodegenerative disorders including MS. Mesenchymal stem cells (MSC and induced pluripotent stem cell (iPSCs derived precursor cells can modulate the autoimmune response in the central nervous system (CNS and promote endogenous remyelination and repair process in animal models. This review highlights studies involving the immunomodulatory and regenerative effects of mesenchymal stem cells and iPSCs derived cells in animal models, and their translation into immunomodulatory and neuroregenerative treatment strategies for MS.

  16. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration

    Directory of Open Access Journals (Sweden)

    Shan Liu

    2016-06-01

    Full Text Available Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous. The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells, early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium, using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration, timing for cell therapy (immediate vs. a few days after injury, single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  17. Strategies to Optimize Adult Stem Cell Therapy for Tissue Regeneration.

    Science.gov (United States)

    Liu, Shan; Zhou, Jingli; Zhang, Xuan; Liu, Yang; Chen, Jin; Hu, Bo; Song, Jinlin; Zhang, Yuanyuan

    2016-06-21

    Stem cell therapy aims to replace damaged or aged cells with healthy functioning cells in congenital defects, tissue injuries, autoimmune disorders, and neurogenic degenerative diseases. Among various types of stem cells, adult stem cells (i.e., tissue-specific stem cells) commit to becoming the functional cells from their tissue of origin. These cells are the most commonly used in cell-based therapy since they do not confer risk of teratomas, do not require fetal stem cell maneuvers and thus are free of ethical concerns, and they confer low immunogenicity (even if allogenous). The goal of this review is to summarize the current state of the art and advances in using stem cell therapy for tissue repair in solid organs. Here we address key factors in cell preparation, such as the source of adult stem cells, optimal cell types for implantation (universal mesenchymal stem cells vs. tissue-specific stem cells, or induced vs. non-induced stem cells), early or late passages of stem cells, stem cells with endogenous or exogenous growth factors, preconditioning of stem cells (hypoxia, growth factors, or conditioned medium), using various controlled release systems to deliver growth factors with hydrogels or microspheres to provide apposite interactions of stem cells and their niche. We also review several approaches of cell delivery that affect the outcomes of cell therapy, including the appropriate routes of cell administration (systemic, intravenous, or intraperitoneal vs. local administration), timing for cell therapy (immediate vs. a few days after injury), single injection of a large number of cells vs. multiple smaller injections, a single site for injection vs. multiple sites and use of rodents vs. larger animal models. Future directions of stem cell-based therapies are also discussed to guide potential clinical applications.

  18. Human embryonic stem cells for neuronal repair.

    Science.gov (United States)

    Ben-Hur, Tamir

    2006-02-01

    Human embryonic stem cells may serve as a potentially endeless source of transplantable cells to treat various neurologic disorders. Accumulating data have shown the therapeutic value of various neural precursor cell types in experimental models of neurologic diseases. Tailoring cell therapy for specific disorders requires the generation of cells that are committed to specific neural lineages. To this end, protocols were recently developed for the derivation of dopaminergic neurons, spinal motor neurons and oligodendrocytes from hESC. These protocols recapitulate normal development in culture conditions. However, a novel concept emerging from these studies is that the beneficial effect of transplanted stem cells is not only via cell replacement in damaged host tissue, but also by trophic and protective effects, as well as by an immunomodulatory effect that down-regulates detrimental brain inflammation.

  19. Induced pluripotent stem cells for regenerative medicine.

    Science.gov (United States)

    Hirschi, Karen K; Li, Song; Roy, Krishnendu

    2014-07-11

    With the discovery of induced pluripotent stem (iPS) cells, it is now possible to convert differentiated somatic cells into multipotent stem cells that have the capacity to generate all cell types of adult tissues. Thus, there is a wide variety of applications for this technology, including regenerative medicine, in vitro disease modeling, and drug screening/discovery. Although biological and biochemical techniques have been well established for cell reprogramming, bioengineering technologies offer novel tools for the reprogramming, expansion, isolation, and differentiation of iPS cells. In this article, we review these bioengineering approaches for the derivation and manipulation of iPS cells and focus on their relevance to regenerative medicine.

  20. Embryonic stem cell and induced pluripotent stem cell: an epigenetic perspective

    Institute of Scientific and Technical Information of China (English)

    Gaoyang Liang; Yi Zhang

    2013-01-01

    Pluripotent stem cells,like embryonic stem cells (ESCs),have specialized epigenetic landscapes,which are important for pluripotency maintenance.Transcription factor-mediated generation of induced pluripotent stem cells (iPSCs)requires global change of somatic cell epigenetic status into an ESC-like state.Accumulating evidence indicates that epigenetic mechanisms not only play important roles in the iPSC generation process,but also affect the properties of reprogrammed iPSCs.Understanding the roles of various epigenetic factors in iPSC generation contributes to our knowledge of the reprogramming mechanisms.

  1. Transition of mesenchymal stem/stromal cells to endothelial cells

    NARCIS (Netherlands)

    M. Crisan (Mihaela)

    2013-01-01

    textabstractMesenchymal stem/stromal cells (MSCs) are heterogeneous. A fraction of these cells constitute multipotent cells that can self-renew and mainly give rise to mesodermal lineage cells such as adipocytes, osteocytes and chondrocytes. The ability of MSCs to differentiate into endothelial cell

  2. Embryonic stem cell factors and pancreatic cancer.

    Science.gov (United States)

    Herreros-Villanueva, Marta; Bujanda, Luis; Billadeau, Daniel D; Zhang, Jin-San

    2014-03-07

    Pancreatic ductal adenocarcinoma (PDAC), the most common type of pancreatic tumor, is a highly aggressive human cancer with the lowest five-year survival rate of any human maligancy primarily due to its early- metastasis and lack of response to chemotherapy and radiation. Recent research suggests that PDAC cells comprise a hierarchy of tumor cells that develop around a population of cancer stem cells (CSCs), a small and distinct population of cancer cells that mediates tumoregenesis, metastasis and resistance to standard treatments. Thus, CSCs could be a target for more effective treatment options. Interestingly, pancreatic CSCs are subject to regulation by some of key embryonic stem cell (ESC) transctiption factors abberently expressed in PDAC, such as SOX2, OCT4 and NANOG. ESC transcription factors are important DNA-binding proteins present in both embryonic and adult somatic cells. The critical role of these factors in reprogramming processes makes them essential not only for embryonic development but also tumorigenesis. Here we provide an overview of stem cell transcription factors, particularly SOX2, OCT4, and NANOG, on their expression and function in pancreatic cancer. In contrast to embryonic stem cells, in which OCT4 and SOX2 are tightly regulated and physically interact to regulate a wide spectrum of target genes, de novo SOX2 expression alone in pancreatic cancer cells is sufficient to promote self-renewal, de-differentiation and imparting stemness characteristics via impacting specific cell cycle regulatory genes and epithelial-mesnechymal transtion driver genes. Thus, targeting ESC factors, particularly SOX2, could be a worthy strategy for pancreatic cancer therapy.

  3. Ionizing radiation induces stemness in cancer cells.

    Directory of Open Access Journals (Sweden)

    Laura Ghisolfi

    Full Text Available The cancer stem cell (CSC model posits the presence of a small number of CSCs in the heterogeneous cancer cell population that are ultimately responsible for tumor initiation, as well as cancer recurrence and metastasis. CSCs have been isolated from a variety of human cancers and are able to generate a hierarchical and heterogeneous cancer cell population. CSCs are also resistant to conventional chemo- and radio-therapies. Here we report that ionizing radiation can induce stem cell-like properties in heterogeneous cancer cells. Exposure of non-stem cancer cells to ionizing radiation enhanced spherogenesis, and this was accompanied by upregulation of the pluripotency genes Sox2 and Oct3/4. Knockdown of Sox2 or Oct3/4 inhibited radiation-induced spherogenesis and increased cellular sensitivity to radiation. These data demonstrate that ionizing radiation can activate stemness pathways in heterogeneous cancer cells, resulting in the enrichment of a CSC subpopulation with higher resistance to radiotherapy.

  4. Isolating stem cells from soft musculoskeletal tissues.

    Science.gov (United States)

    Li, Yong; Pan, Haiying; Huard, Johnny

    2010-07-05

    Adult stem cells have long been discussed in regards to their application in regenerative medicine. Adult stem cells have generated a great deal of excitement for treating injured and diseased tissues due to their impressive capabilities to undergo multi-lineage cell differentiation and their self-renewal ability. Most importantly, these qualities have made them advantageous for use in autologous cell transplantation therapies. The current protocol will introduce the readers to the modified preplate technique where soft tissues of the musculoskeletal system, e.g. tendon and muscle, are 1(st) enzymatically dissociated and then placed in collagen coated flasks with medium. The supernatant, which is composed of medium and the remaining floating cells, is serially transferred daily to new flasks. The stem cells are the slowest to adhere to the flasks which is usually takes 5-7 days (serial transfers or preplates). By using this technique, adult stem cells present in these tissues can be easily harvested through fairly non-invasive procedures.

  5. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin

    OpenAIRE

    2015-01-01

    Epigenetic memory in induced pluripotent stem cells, which is related to the somatic cell type of origin of the stem cells, might lead to variations in the differentiation capacities of the pluripotent stem cells. In this context, induced pluripotent stem cells from human CD34+ hematopoietic stem cells might be more suitable for hematopoietic differentiation than the commonly used fibroblast-derived induced pluripotent stem cells. To investigate the influence of an epigenetic memory on the ex...

  6. Induced Pluripotent Stem Cells in Cardiovascular Medicine

    Directory of Open Access Journals (Sweden)

    Toru Egashira

    2011-01-01

    Full Text Available Induced pluripotent stem (iPS cells are generated by reprogramming human somatic cells through the forced expression of several embryonic stem (ES cell-specific transcription factors. The potential of iPS cells is having a significant impact on regenerative medicine, with the promise of infinite self-renewal, differentiation into multiple cell types, and no problems concerning ethics or immunological rejection. Human iPS cells are currently generated by transgene introduction principally through viral vectors, which integrate into host genomes, although the associated risk of tumorigenesis is driving research into nonintegration methods. Techniques for pluripotent stem cell differentiation and purification to yield cardiomyocytes are also advancing constantly. Although there remain some unsolved problems, cardiomyocyte transplantation may be a reality in the future. After those problems will be solved, applications of human iPS cells in human cardiovascular regenerative medicine will be envisaged for the future. Furthermore, iPS cell technology has generated new human disease models using disease-specific cells. This paper summarizes the progress of iPS cell technology in cardiovascular research.

  7. Stem-cell niches: nursery rhymes across kingdoms.

    Science.gov (United States)

    Scheres, Ben

    2007-05-01

    Despite the large evolutionary distance between the plant and animal kingdoms, stem cells in both reside in specialized cellular contexts called stem-cell niches. Although stem-cell-specification factors have been recruited from plant-specific gene families, maintenance factors that repress stem-cell differentiation are conserved between plants and animals. Recent evidence indicates that stem cells in multicellular organisms can be specified by kingdom-specific patterning mechanisms that connect to a related core of epigenetic stem-cell factors.

  8. Stem Cells: The Pursuit of Genomic Stability

    Directory of Open Access Journals (Sweden)

    Saranya P. Wyles

    2014-11-01

    Full Text Available Stem cells harbor significant potential for regenerative medicine as well as basic and clinical translational research. Prior to harnessing their reparative nature for degenerative diseases, concerns regarding their genetic integrity and mutation acquisition need to be addressed. Here we review pluripotent and multipotent stem cell response to DNA damage including differences in DNA repair kinetics, specific repair pathways (homologous recombination vs. non-homologous end joining, and apoptotic sensitivity. We also describe DNA damage and repair strategies during reprogramming and discuss potential genotoxic agents that can reduce the inherent risk for teratoma formation and mutation accumulation. Ensuring genomic stability in stem cell lines is required to achieve the quality control standards for safe clinical application.

  9. Engineering the niche for stem cells.

    Science.gov (United States)

    Tan, Shawna; Barker, Nicholas

    2013-12-01

    Much has been made about the potential for stem cells in regenerative medicine but the reality is that the development of actual therapies has been slow. Adult stem cells rely heavily on the assortment of biochemical and biophysical elements that constitute the local microenvironment in which they exist. One goal of biomedicine is to create an artificial yet biofunctional niche to support multipotency, differentiation and proliferation. Such tools would facilitate more conclusive experimentation by biologists, pharmaceutical scientists and tissue engineers. While many bioengineering techniques and platforms are already in use, technological innovations now allow this to be done at a higher resolution and specificity. Ultimately, the multidisciplinary integration of engineering and biology will allow the niche to be generated at a scale that can be clinically exploited. Using the systems that constitute the intestinal, hematopoietic and epidermal tissues, this article summarizes the various approaches and tools currently employed to recreate stem cell niches and also explores recent advances in the field.

  10. Neurotrophin signaling in cancer stem cells.

    Science.gov (United States)

    Chopin, Valérie; Lagadec, Chann; Toillon, Robert-Alain; Le Bourhis, Xuefen

    2016-05-01

    Cancer stem cells (CSCs), are thought to be at the origin of tumor development and resistance to therapies. Thus, a better understanding of the molecular mechanisms involved in the control of CSC stemness is essential to the design of more effective therapies for cancer patients. Cancer cell stemness and the subsequent expansion of CSCs are regulated by micro-environmental signals including neurotrophins. Over the years, the roles of neurotrophins in tumor development have been well established and regularly reviewed. Especially, nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) are reported to stimulate tumor cell proliferation, survival, migration and/or invasion, and favors tumor angiogenesis. More recently, neurotrophins have been reported to regulate CSCs. This review briefly presents neurotrophins and their receptors, summarizes their roles in different cancers, and discusses the emerging evidence of neurotrophins-induced enrichment of CSCs as well as the involved signaling pathways.

  11. Carbon nanotubes for stem cell control

    Directory of Open Access Journals (Sweden)

    David A. Stout

    2012-07-01

    Full Text Available In the past decade, two major advancements have transformed the world of tissue engineering and regenerative medicine—stem cells and carbon nano-dimensional materials. In the past, stem cell therapy seemed like it may present a cure for all medical ailments, but problems arose (i.e., immune system clearance, control of differentiation in the body, etc. that have hindered progress. But, with the synergy of carbon nano-dimensional materials, researchers have been able to overcome these tissue engineering and regenerative medicine obstacles and have begun developing treatments for strokes, bone failure, cardiovascular disease, and many other conditions. Here, we briefly review research involving carbon nanotubes which are relevant to the tissue engineering and regenerative medicine field with a special emphasis on carbon nanotube applications for stem cell delivery, drug delivery applications, and their use as improved medical devices.

  12. Stem cell therapy for retinal diseases

    Institute of Scientific and Technical Information of China (English)

    Jose Mauricio Garcia,; Luisa Mendon?a; Rodrigo Brant; Murilo Abud; Caio Regatieri; Bruno Diniz

    2015-01-01

    In this review, we discuss about current knowledgeabout stem cell (SC) therapy in the treatment of retinaldegeneration. Both human embryonic stem cell andinduced pluripotent stem cell has been growth inculture for a long time, and started to be explored inthe treatment of blinding conditions. The Food andDrug Administration, recently, has granted clinical trialsusing SC retinal therapy to treat complex disorders, asStargardt's dystrophy, and patients with geographicatrophy, providing good outcomes. This study'sintent is to overview the critical regeneration of thesubretinal anatomy through retinal pigment epitheliumtransplantation, with the goal of reestablish importantpathways from the retina to the occipital cortex of thebrain, as well as the differentiation from pluripotentquiescent SC to adult retina, and its relationshipwith a primary retinal injury, different techniques oftransplantation, management of immune rejection andtumorigenicity, its potential application in improvingpatients' vision, and, finally, approaching future directionsand challenges for the treatment of several conditions.

  13. Stem cell engineering a WTEC global assessment

    CERN Document Server

    Loring, Jeanne; McDevitt, Todd; Palecek, Sean; Schaffer, David; Zandstra, Peter

    2014-01-01

    This book describes a global assessment of stem cell engineering research, achieved through site visits by a panel of experts to leading institutes, followed by dedicated workshops. The assessment made clear that engineers and the engineering approach with its quantitative, system-based thinking can contribute much to the progress of stem cell research and development. The increased need for complex computational models and new, innovative technologies, such as high-throughput screening techniques, organ-on-a-chip models and in vitro tumor models require an increasing involvement of engineers and physical scientists. Additionally, this book will show that although the US is still in a leadership position in stem cell engineering, Asian countries such as Japan, China and Korea, as well as European countries like the UK, Germany, Sweden and the Netherlands are rapidly expanding their investments in the field. Strategic partnerships between countries could lead to major advances of the field and scalable expansi...

  14. Stem cells in endometrium and endometriosis.

    Science.gov (United States)

    Ulukus, Murat

    2015-08-01

    Endometriosis is a common chronic gynecological disease that is classically defined by the presence of endometrial stromal and glandular tissues outside the uterine cavity. Pelvic pain and infertility are the nonspecific but the most common symptoms of the disease; however, no currently definitive treatment has been developed since its pathogenesis has not been completely understood. Currently, none of the proposed conventional theories can explain all aspects of endometriosis. Recent evidence supports the presence of endometrial stem/progenitor cells and their possible involvement in endometrial regeneration and differentiation. The stem cell theory is a new hypothesis which may clarify the underlying pathophysiologic mechanisms of endometriosis. However, this theory could not only account for an alternative pathogenic mechanism of endometriosis but could also be involved in all conventional theories. This article will review the evidence for the presence of endometrial stem/progenitor cells, their possible sources and their possible involvement in the pathogenesis of endometriosis.

  15. Smurfs have "fused" into the asymmetric division of stem cells

    Institute of Scientific and Technical Information of China (English)

    Steven Y. Cheng; Ying E. Zhang

    2011-01-01

    @@ The asymmetric cell division is the way in which a stem cell divides into one daughter stem cell and one differentiated daughter cell.This process is one of the key principles of developmental biology that ensures the perpetual supply of stem cells while allowing a particular cell lineage to be populated.During Drosophila oogenesis, the fate of the daughter stem cell produced from the asymmetric division of germline stem cells (GSCs) is specified by Decapentaplegic (Dpp), but the other daughter cell has almost equal access to the Dpp signal.

  16. Adult stem cells: hopes and hypes of regenerative medicine.

    Science.gov (United States)

    Dulak, Józef; Szade, Krzysztof; Szade, Agata; Nowak, Witold; Józkowicz, Alicja

    2015-01-01

    Stem cells are self-renewing cells that can differentiate into specialized cell type(s). Pluripotent stem cells, i.e. embryonic stem cells (ESC) or induced pluripotent stem cells (iPSC) differentiate into cells of all three embryonic lineages. Multipotent stem cells, like hematopoietic stem cells (HSC), can develop into multiple specialized cells in a specific tissue. Unipotent cells differentiate only into one cell type, like e.g. satellite cells of skeletal muscle. There are many examples of successful clinical applications of stem cells. Over million patients worldwide have benefited from bone marrow transplantations performed for treatment of leukemias, anemias or immunodeficiencies. Skin stem cells are used to heal severe burns, while limbal stem cells can regenerate the damaged cornea. Pluripotent stem cells, especially the patient-specific iPSC, have a tremendous therapeutic potential, but their clinical application will require overcoming numerous drawbacks. Therefore, the use of adult stem cells, which are multipotent or unipotent, can be at present a more achievable strategy. Noteworthy, some studies ascribed particular adult stem cells as pluripotent. However, despite efforts, the postulated pluripotency of such events like "spore-like cells", "very small embryonic-like stem cells" or "multipotent adult progenitor cells" have not been confirmed in stringent independent studies. Also plasticity of the bone marrow-derived cells which were suggested to differentiate e.g. into cardiomyocytes, has not been positively verified, and their therapeutic effect, if observed, results rather from the paracrine activity. Here we discuss the examples of recent studies on adult stem cells in the light of current understanding of stem cell biology.

  17. A Glimpse of Stem Cell Research in China

    Institute of Scientific and Technical Information of China (English)

    CHEN Zhi-Guo; ZHANG Y.Alex

    2011-01-01

    2010 has seen rapid progress in stem cell research in China.Not only the major funding agencies had provided extensive funding to stem cell research,the publications by Chinese stem cell biologists also flourished in top-notch scientific journals.In this special review,we highlighted some recent studies that had been published in Science China Life Sciences and Cell Research,two key SCI journals based in China.Not surprisingly,these studies mainly focused on some of the highly pursued stem cell types:embryonic stem cells(ES cells),induced pluripotent stem cells (iPSCs),neural stem cells(NSCs)and mesenchymal stem cells(MSCs).

  18. Expression and function of nicotinic acetylcholine receptors in stem cells

    Directory of Open Access Journals (Sweden)

    Herman S. Cheung

    2016-07-01

    Full Text Available Nicotinic acetylcholine receptors are prototypical ligand gated ion channels typically found in muscular and neuronal tissues. Functional nicotinic acetylcholine receptors, however, have also recently been identified on other cell types, including stem cells. Activation of these receptors by the binding of agonists like choline, acetylcholine, or nicotine has been implicated in many cellular changes. In regards to stem cell function, nicotinic acetylcholine receptor activation leads to changes in stem cell proliferation, migration and differentiation potential. In this review we summarize the expression and function of known nicotinic acetylcholine receptors in different classes of stem cells including: pluripotent stem cells, mesenchymal stem cells, periodontal ligament derived stem cells, and neural progenitor cells and discuss the potential downstream effects of receptor activation on stem cell function.

  19. Identification of Abnormal Stem Cells Using Raman Spectroscopy

    DEFF Research Database (Denmark)

    Harkness, Linda; Novikov, Sergey M; Beermann, Jonas

    2012-01-01

    The clinical use of stem cells in cell-based therapeutics for degenerative diseases requires development of criteria for defining normal stem cells to ensure safe transplantation. Currently, identification of abnormal from normal stem cells is based on extensive ex vivo and in vivo testing. Raman...... microscopy is a label-free method for rapid and sensitive detection of changes in cells' bio-molecular composition. Here, we report that by using Raman spectroscopy, we were able to map the distribution of different biomolecules within 2 types of stem cells: adult human bone marrow-derived stromal stem cells...... and human embryonic stem cells and to identify reproducible differences in Raman's spectral characteristics that distinguished genetically abnormal and transformed stem cells from their normal counterparts. Raman microscopy can be prospectively employed as a method for identifying abnormal stem cells in ex...

  20. Towards Personalized Regenerative Cell Therapy: Mesenchymal Stem Cells Derived from Human Induced Pluripotent Stem Cells.

    Science.gov (United States)

    Lin, Lin; Bolund, Lars; Luo, Yonglun

    2016-01-01

    Mesenchymal stem cells (MSCs) are adult stem cells with the capacity of self-renewal and multilineage differentiation, and can be isolated from several adult tissues. However, isolating MSCs from adult tissues for cell therapy is hampered by the invasive procedure, the rarity of the cells and their attenuated proliferation capacity when cultivated and expanded in vitro. Human MSCs derived from induced pluripotent stem cells (iPSC-MSCs) have now evolved as a promising alternative cell source for MSCs and regenerative medicine. Several groups, including ours, have reported successful derivation of functional iPSC-MSCs and applied these cells in MSC-based therapeutic testing. Still, the current experience and understanding of iPSC-MSCs with respect to production methods, safety and efficacy are primitive. In this review, we highlight the methodological progress in iPSC-MSC research, describing the importance of choosing the right sources of iPSCs, iPSC reprogramming methods, iPSC culture systems, embryoid body intermediates, pathway inhibitors, basal medium, serum, growth factors and culture surface coating. We also highlight some progress in the application of iPSC-MSCs in direct cell therapy, tissue engineering and gene therapy.

  1. Cord blood stem cell banking and transplantation.

    Science.gov (United States)

    Dhot, P S; Nair, V; Swarup, D; Sirohi, D; Ganguli, P

    2003-12-01

    Stem cells have the ability to divide for indefinite periods in culture and to give rise to specialized cells. Cord blood as a source of hematopoietic stem cells (HSC) has several advantages as it is easily available, involves non-invasive collection procedure and is better tolerated across the HLA barrier. Since the first cord blood transplant in 1988, over 2500 cord blood HSC transplants have been done world wide. Since then, the advantages of cord blood as a source of hematopietic stem cells for transplantation have become clear. Firstly, the proliferative capacity of HSC in cord blood is superior to that of cells in bone marrow or blood from adults. A 100 ml unit of cord blood contains 1/10th the number of nucleated cells and progenitor cells (CD34+ cells) present in 1000 ml of bone marrow, but because they proliferate rapidly, the stem cell in a single unit of cord blood can reconstitute the entire haematopoietic system. Secondly, the use of cord blood reduces the risk of graft vs host disease. Cord Blood Stem Cell banks have been established in Europe and United States to supply HSC for related and unrelated donors. Currently, more than 65,000 units are available and more than 2500 patients have received transplants of cord blood. Results in children have clearly shown that the number of nucleated cells in the infused cord blood influences the speed of recovery of neutrophils and platelets after myeloablative chemotherapy. The optimal dose is about 2 x 10(7) nucleated cells/kg of body weight. The present study was carried out for collection, separation, enumeration and cryopreservation of cord blood HSC and establishing a Cord Blood HSC Bank. 172 samples of cord blood HSC were collected after delivery of infant prior to expulsion of placenta. The average cord blood volume collected was 101.20 ml. Mononuclear cell count ranged from 7.36 to 25.6 x 10(7)/ml. Viability count of mononuclear cells was 98.1%. After 1 year of cryopreservation, the viability count on

  2. Facts about Stem Cells and Importance of Them

    Directory of Open Access Journals (Sweden)

    Masumeh Saeidi

    2014-05-01

    Full Text Available Stem cells are undifferentiated biological cells that can differentiate into specialized cells and can divide (through mitosis to produce more stem cells. They are found in multicellular organisms. In mammals, there are two broad types of stem cells: embryonic stem cells, which are isolated from the inner cell mass of blastocysts, and adult stem cells, which are found in various tissues. In adult organisms, stem cells and progenitor cells act as a repair system for the body, replenishing adult tissues. In a developing embryo, stem cells can differentiate into all the specialized cells—ectoderm, endoderm and mesoderm (see induced pluripotent stem cells—but also maintain the normal turnover of regenerative organs, such as blood, skin, or intestinal tissues. There are three accessible sources of autologous adult stem cells in humans: Bone marrow, which requires extraction by harvesting, that is, drilling into bone (typically the femur or iliac crest, Adipose tissue (lipid cells, which requires extraction by liposuction, and Blood, which requires extraction through apheresis, wherein blood is drawn from the donor (similar to a blood donation, and passed through a machine that extracts the stem cells and returns other portions of the blood to the donor. Stem cells can also be taken from umbilical cord blood just after birth. Of all stem cell types, autologous harvesting involves the least risk. By definition, autologous cells are obtained from one's own body, just as one may bank his or her own blood for elective surgical procedures. Adult stem cells are frequently used in medical therapies, for example in bone marrow transplantation. Stem cells can now be artificially grown and transformed (differentiated into specialized cell types with characteristics consistent with cells of various tissues such as muscles or nerves. Embryonic cell lines and autologous embryonic stem cells generated through Somatic-cell nuclear transfer or dedifferentiation

  3. Progress with nonhuman primate embryonic stem cells.

    Science.gov (United States)

    Wolf, Don P; Kuo, Hung-Chih; Pau, K-Y Francis; Lester, Linda

    2004-12-01

    Embryonic stem cells hold potential in the fields of regenerative medicine, developmental biology, tissue regeneration, disease pathogenicity, and drug discovery. Embryonic stem (ES) cell lines are now available in primates, including man, rhesus, and cynomologous monkeys. Monkey ES cells serve as invaluable clinically relevant models for studies that can't be conducted in humans because of practical or ethical limitations, or in rodents because of differences in physiology and anatomy. Here, we review the current status of nonhuman primate research with ES cells, beginning with a description of their isolation, characterization, and availability. Substantial limitations still plague the use of primate ES cells, such as their required growth on feeder layers, poor cloning efficiency, and restricted availability. The ability to produce homogenous populations of both undifferentiated as well as differentiated phenotypes is an important challenge, and genetic approaches to achieving these objectives are discussed. Finally, safety, efficiency, and feasibility issues relating to the transplantation of ES-derived cells are considered.

  4. Redox Regulation in Cancer Stem Cells

    Directory of Open Access Journals (Sweden)

    Shijie Ding

    2015-01-01

    Full Text Available Reactive oxygen species (ROS and ROS-dependent (redox regulation signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processes are strongly associated with human diseases including many cancers. ROS levels are elevated in cancer cells partially due to their higher metabolism rate. In the past 15 years, the concept of cancer stem cells (CSCs has been gaining ground as the subpopulation of cancer cells with stem cell-like properties and characteristics have been identified in various cancers. CSCs possess low levels of ROS and are responsible for cancer recurrence after chemotherapy or radiotherapy. Unfortunately, how CSCs control ROS production and scavenging and how ROS-dependent signaling pathways contribute to CSCs function remain poorly understood. This review focuses on the role of redox balance, especially in ROS-dependent cellular processes in cancer stem cells (CSCs. We updated recent advances in our understanding of ROS generation and elimination in CSCs and their effects on CSC self-renewal and differentiation through modulating signaling pathways and transcriptional activities. The review concludes that targeting CSCs by manipulating ROS metabolism/dependent pathways may be an effective approach for improving cancer treatment.

  5. Experimental hepatology applied to stem cells.

    Science.gov (United States)

    Burra, P; Tomat, S; Villa, E; Gasbarrini, A; Costa, A N; Conconi, M T; Forbes, S J; Farinati, F; Cozzi, E; Alison, M R; Russo, F P

    2008-01-01

    Transplantation is an accepted treatment today for many people suffering from organ failure. More and more patients are referred for transplant surgery, and the waiting lists are growing longer because not enough organs and tissues are donated for transplantation. This has led to several potentially viable alternatives being considered, including bio-artificial support devices, the transplantation of mature cells or stem/progenitor cells and the potential transplantation of xenogenic organs and cells [Burra P, Samuel D, Wendon J, Pietrangelo A, Gupta S. Strategies for liver support: from stem cells to xenotransplantation. J Hepatol 2004;41:1050-9]. Numerous investigators around the world are engaged in these investigations and the pace of discovery has begun to accelerate in recent years. To take stock of the achievements of recent years, the AISF sponsored a Single-Topic Conference, held in Padua on 26-27 May, 2006, with the participation of many leading investigators from various parts of Italy and Europe. This present paper summarizes the content of the Conference. Different issues were analysed, from the biology of stem cells to the possible use of gene therapy. The speakers were clinicians and scientists interested in diseases not only of the liver but also of other organs such as the kidney or heart. The fact that numerous specialties were represented helped the audience to understand the stem cell research area from different standpoints, and what research has achieved so far.

  6. Stem cell therapy for Alzheimer's disease.

    Science.gov (United States)

    Abdel-Salam, Omar M E

    2011-06-01

    Alzheimer's disease (AD) is a progressive neurodegenerative disorder which impairs the memory and intellectual abilities of the affected individuals. Loss of episodic as well as semantic memory is an early and principal feature. The basal forebrain cholinergic system is the population of neurons most affected by the neurodegenerative process. Extracellular as well as intracellular deposition of beta-amyloid or Abeta (Abeta) protein, intracellular formation of neurofibrillary tangles and neuronal loss are the neuropathological hallmarks of AD. In the last few years, hopes were raised that cell replacement therapy would provide cure by compensating the lost neuronal systems. Stem cells obtained from embryonic as well as adult tissue and grafted into the intact brain of mice or rats were mostly followed by their incorporation into the host parenchyma and differentiation into functional neural lineages. In the lesioned brain, stem cells exhibited targeted migration towards the damaged regions of the brain, where they engrafted, proliferated and matured into functional neurones. Neural precursor cells can be intravenously administered and yet migrate into brain damaged areas and induce functional recovery. Observations in animal models of AD have provided evidence that transplanted stem cells or neural precursor cells (NPCs) survive, migrate, and differentiate into cholinergic neurons, astrocytes, and oligodendrocytes with amelioration of the learning/memory deficits. Besides replacement of lost or damaged cells, stem cells stimulate endogenous neural precursors, enhance structural neuroplasticity, and down regulate proinflammatory cytokines and neuronal apoptotic death. Stem cells could also be genetically modified to express growth factors into the brain. In the last years, evidence indicated that the adult brain of mammals preserves the capacity to generate new neurons from neural stem/progenitor cells. Inefficient adult neurogenesis may contribute to the

  7. Translational control in germline stem cell development.

    Science.gov (United States)

    Slaidina, Maija; Lehmann, Ruth

    2014-10-13

    Stem cells give rise to tissues and organs during development and maintain their integrity during adulthood. They have the potential to self-renew or differentiate at each division. To ensure proper organ growth and homeostasis, self-renewal versus differentiation decisions need to be tightly controlled. Systematic genetic studies in Drosophila melanogaster are revealing extensive regulatory networks that control the switch between stem cell self-renewal and differentiation in the germline. These networks, which are based primarily on mutual translational repression, act via interlocked feedback loops to provide robustness to this important fate decision.

  8. Stem cells and the aging hematopoietic system.

    Science.gov (United States)

    Beerman, Isabel; Maloney, William J; Weissmann, Irving L; Rossi, Derrick J

    2010-08-01

    Advancing age is accompanied by a number of clinically significant conditions arising in the hematopoietic system that include: diminution and decreased competence of the adaptive immune system, elevated incidence of certain autoimmune diseases, increased hematological malignancies, and elevated incidence of age-associated anemia. As with most tissues, the aged hematopoietic system also exhibits a reduced capacity to regenerate and return to normal homeostasis after injury or stress. Evidence suggests age-dependent functional alterations within the hematopoietic stem cell compartment significantly contribute to many of these pathophysiologies. Recent developments have shed light on how aging of the hematopoietic stem cell compartment contributes to hematopoietic decline through diverse mechanisms.

  9. Cancer and deregulation of stem cells pathways

    Directory of Open Access Journals (Sweden)

    Filipe Correia Martins

    2011-12-01

    Full Text Available Stem cells may have an important etiological role in cancer. Their classic regulatory pathways are deregulated in tumors, strengthening the stem cell theory of cancer. In this manuscript, we review Wnt, Notch and Hedhehog pathways, describing which of their factors may be responsible for the neoplastic development. Furthermore, we classify these elements as oncogenes or tumor suppressor genes, demonstrating their mutation implications in cancer. The activation of these pathways is associated with the expression of certain genes which maintain proliferation and apoptosis inhibition. Further work should be carried out in the future in order to control tumor development by controlling these signaling cascades.

  10. Adipose derived stem cells and nerve regeneration

    Institute of Scientific and Technical Information of China (English)

    Alessandro Faroni; Richard JP Smith; Adam J Reid

    2014-01-01

    Injuries to peripheral nerves are common and cause life-changing problems for patients along-side high social and health care costs for society. Current clinical treatment of peripheral nerve injuries predominantly relies on sacriifcing a section of nerve from elsewhere in the body to pro-vide a graft at the injury site. Much work has been done to develop a bioengineered nerve graft, precluding sacriifce of a functional nerve. Stem cells are prime candidates as accelerators of re-generation in these nerve grafts. This review examines the potential of adipose-derived stem cells to improve nerve repair assisted by bioengineered nerve grafts.

  11. Stem cell treatment for Alzheimer's disease.

    Science.gov (United States)

    Li, Ming; Guo, Kequan; Ikehara, Susumu

    2014-10-23

    Alzheimer's disease (AD) is a progressive and neurodegenerative disorder that induces dementia in older people. It was first reported in 1907 by Alois Alzheimer, who characterized the disease as causing memory loss and cognitive impairment. Pathologic characteristics of AD are β-amyloid plaques, neurofibrillary tangles and neurodegeneration. Current therapies only target the relief of symptoms using various drugs, and do not cure the disease. Recently, stem cell therapy has been shown to be a potential approach to various diseases, including neurodegenerative disorders, and in this review, we focus on stem cell therapies for AD.

  12. Are reviewers obstructing stem cell research?

    Directory of Open Access Journals (Sweden)

    Bernard Binetruy

    2010-08-01

    Full Text Available Bernard BinetruyINSERM U626, Faculté de Médecine La Timone, Marseille, FranceA current controversy in stem cell research was published on the BBC website recently. Some stem cell researchers have said that "they believe a small group of scientists is effectively vetoing high quality science from publication in journals". They strongly suspected some reviewers to be deliberately sending back negative comments or asking for unnecessary experiments. Nature editor, Dr Philip Campbell, has said that "this idea is utterly false".

  13. PARASITIC INFECTIONS IN HEMATOPOIETIC STEM CELL TRANSPLANTATION

    Directory of Open Access Journals (Sweden)

    Isidro Jarque

    2016-07-01

    Full Text Available Parasitic infections are rarely documented in hematopoietic stem cell transplant recipients. However, they may be responsible for fatal complications that are only diagnosed at autopsy. Increased awareness of the possibility of parasitic diseases both in autologous and allogeneic stem cell transplant patients is relevant not only for implementing preventive measures but also for performing an early diagnosis and starting appropriate therapy for these unrecognized but fatal infectious complications in hematopoietic transplant recipients. In this review, we will focus on parasitic diseases occurring in this population especially those with major clinical relevance including toxoplasmosis, American trypanosomiasis, leishmaniasis, malaria, and strongyloidiasis, among others, highlighting the diagnosis and management in hematopoietic transplant recipients.

  14. Characterization of human pluripotent stem cells.

    Science.gov (United States)

    Gokhale, Paul J; Andrews, Peter W

    2013-12-18

    Human pluripotent stem cells (PSCs), whether embryonic stem cells or induced PSCs, offer enormous opportunities for regenerative medicine and other biomedical applications once we have developed the ability to harness their capacity for extensive differentiation. Central to this is our ability to identify and characterize such PSCs, but this is fraught with potential difficulties that arise from a tension between functional definitions of pluripotency and the more convenient use of 'markers', a problem exacerbated by ethical issues, our lack of knowledge of early human embryonic development, and differences from the mouse paradigm.

  15. Induced pluripotent stem cell lines derived from human somatic cells.

    Science.gov (United States)

    Yu, Junying; Vodyanik, Maxim A; Smuga-Otto, Kim; Antosiewicz-Bourget, Jessica; Frane, Jennifer L; Tian, Shulan; Nie, Jeff; Jonsdottir, Gudrun A; Ruotti, Victor; Stewart, Ron; Slukvin, Igor I; Thomson, James A

    2007-12-21

    Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

  16. Probing stem cell differentiation using atomic force microscopy

    Science.gov (United States)

    Liang, Xiaobin; Shi, Xuetao; Ostrovidov, Serge; Wu, Hongkai; Nakajima, Ken

    2016-03-01

    A real-time method using atomic force microscopy (AFM) was developed to probe stem cell differentiation by measuring the mechanical properties of cells and the extracellular matrix (ECM). The mechanical properties of stem cells and their ECMs can be used to clearly distinguish specific stem cell-differentiated lineages. It is clear that AFM is a facile and useful tool for monitoring the differentiation of stem cells in a non-invasive manner.

  17. Stem cell biology and drug discovery

    Directory of Open Access Journals (Sweden)

    Haston Kelly M

    2011-06-01

    Full Text Available Abstract There are many reasons to be interested in stem cells, one of the most prominent being their potential use in finding better drugs to treat human disease. This article focuses on how this may be implemented. Recent advances in the production of reprogrammed adult cells and their regulated differentiation to disease-relevant cells are presented, and diseases that have been modeled using these methods are discussed. Remaining difficulties are highlighted, as are new therapeutic insights that have emerged.

  18. Directed hepatic differentiation from embryonic stem cells

    OpenAIRE

    Chen, Xuesong; Zeng, Fanyi

    2011-01-01

    The liver is the largest internal organ in mammals, and is important for the maintenance of normal physiological functions of other tissues and organs. Hepatitis, cirrhosis, liver cancer and other chronic liver diseases are serious threats to human health, and these problems are compounded by a scarcity of liver donors for transplantation therapies. Directed differentiation of embryonic stem cells to liver cells is a promising strategy for obtaining hepatocytes that can be used for cell trans...

  19. Current Progress with Primate Embryonic Stem Cells

    OpenAIRE

    Byrne, James A.; Mitalipov, Shoukhrat M.; Wolf, Don P

    2006-01-01

    Embryonic stem cells (ESCs) can proliferate indefinitely, maintain an undifferentiated pluripotent state and differentiate into any cell type. Differentiation of ESCs into various specific cell-types may be able to cure or alleviate the symptoms of various degenerative diseases. Unresolved issues regarding maintaining function, possible apoptosis and tumor formation in vivo mean a prudent approach should be taken towards advancing ESCs into human clinical trials. Rhesus macaques provide the i...

  20. Cancer stem cell markers in common cancers - therapeutic implications

    DEFF Research Database (Denmark)

    Klonisch, Thomas; Wiechec, Emilia; Hombach-Klonisch, Sabine

    2008-01-01

    Rapid advance in the cancer stem cell field warrants optimism for the development of more reliable cancer therapies within the next 2-3 decades. Below, we characterize and compare the specific markers that are present on stem cells, cancer cells and cancer stem cells (CSC) in selected tissues...

  1. Human embryonic stem cells create their own niche

    Institute of Scientific and Technical Information of China (English)

    Ying Jin

    2007-01-01

    @@ Experimental evidence demonstrates that the ability of stem cells to self-renew and to differentiate into different types of mature cells depends on both their intrinsic genetic programs and external control from their microenvironment or niche. The concept of stem cell niche was first proposed by Schofield in 1978 to describe a microenvironment that supports stem cells in a mammalian hematopoietic system [ 1 ].

  2. Plant and animal stem cells: similar yet different

    NARCIS (Netherlands)

    Heidstra, R.; Sabatini, S.

    2014-01-01

    The astonishingly long lives of plants and their regeneration capacity depend on the activity of plant stem cells. As in animals, stem cells reside in stem cell niches, which produce signals that regulate the balance between self-renewal and the generation of daughter cells that differentiate into n

  3. Ground Zero in the Debate over Stem-Cell Research.

    Science.gov (United States)

    Southwick, Ron

    2001-01-01

    Describes how political, legal, and ethical battles over embryonic stem-cell research are focused on the University of Wisconsin at Madison, where the cells were first isolated. Addresses the issue of access to the university's stem cells and a recent presidential decision regarding funding for stem-cell research.(EV)

  4. Hematopoietic stem cells : Self-renewing or aging?

    NARCIS (Netherlands)

    de Haan, G

    2002-01-01

    Stem cells are defined by their extensive self-renewal properties, and yet there is abundant evidence of erosion of stem cell functioning during aging. Whereas intracellular repair and protection mechanisms determine the lifespan of an individual cell, here an argument is made that somatic stem cell

  5. Elements of a neural stem cell niche derived from embryonic stem cells.

    Science.gov (United States)

    Pierret, Chris; Spears, Kathleen; Morrison, Jason A; Maruniak, Joel A; Katz, Martin L; Kirk, Mark D

    2007-12-01

    Recent studies show that adult neural tissues can harbor stem cells within unique niches. In the mammalian central nervous system, neural stem cell (NSC) niches have been identified in the dentate gyrus and the subventricular zone (SVZ). Stem cells in the well-characterized SVZ exist in a microenvironment established by surrounding cells and tissue components, including transit-amplifying cells, neuroblasts, ependymal cells, blood vessels, and a basal lamina. Within this microenvironment, stem cell properties, including proliferation and differentiation, are maintained. Current NSC culture techniques often include the addition of molecular components found within the in vivo niche, such as mitogenic growth factors. Some protocols use bio-scaffolds to mimic the physical growth environment of living tissue. We describe a novel NSC culture system, derived from embryonic stem (ES) cells, that displays elements of an NSC niche in the absence of exogenously applied mitogens or complex physical scaffolding. Mouse ES cells were neuralized with retinoic acid and plated on an entactin-collagen-laminin-coated glass surface at high density (250,000 cells/cm(2)). Six to eight days after plating, complex multicellular structures consisting of heterogeneous cell types developed spontaneously. NSC and progenitor cell proliferation and differentiation continued within these structures. The identity of cellular and molecular components within the cultures was documented using RT-PCR, immunocytochemistry, and neurosphere-forming assays. We show that ES cells can be induced to form structures that exhibit key properties of a developing NSC niche. We believe this system can serve as a useful model for studies of neurogenesis and stem cell maintenance in the NSC niche as well as for applications in stem cell transplantation.

  6. Tumourigenicity and radiation resistance of mesenchymal stem cells

    DEFF Research Database (Denmark)

    D'Andrea, Filippo Peder; Horsman, Michael Robert; Kassem, Moustapha

    2012-01-01

    Background. Cancer stem cells are believed to be more radiation resistant than differentiated tumour cells of the same origin. It is not known, however, whether normal nontransformed adult stem cells share the same radioresistance as their cancerous counterpart. Material and methods....... Nontumourigenic (TERT4) and tumourigenic (TRET20) cell lines, from an immortalised mesenchymal stem cell line, were grown in culture prior to irradiation and gene expression analysis. Radiation resistance was measured using a clonogenic assay. Differences in gene expression between the two cell lines, both under...... the intercellular matrix. These results also indicate that cancer stem cells are more radiation resistant than stem cells of the same origin....

  7. Animal and plant stem cells concepts, propagation and engineering

    CERN Document Server

    Pavlović, Mirjana

    2017-01-01

    This book provides a multifaceted look into the world of stem cells and explains the similarities and differences between plant and human stem cells. It explores the intersection between animals and plants and explains their cooperative role in bioengineering studies. The book treats both theoretical and practical aspects of stem cell research. It covers the advantages and limitations of many common applications related to stem cells: their sources, categories, engineering of these cells, reprogramming of their functions, and their role as novel cellular therapeutic approach. Written by experts in the field, the book focuses on aspects of stem cells ranging from expansion-propagation to metabolic reprogramming. It introduces the emergence of cancer stem cells and different modalities in targeted cancer stem cell therapies. It is a valuable source of fresh information for academics and researchers, examining molecular mechanisms of animal and plant stem cell regulation and their usage for therapeutic applicati...

  8. Stem Cell-Based Gene Therapy.

    Science.gov (United States)

    Bagnis; Mannoni

    1997-01-01

    Many researchers and clinicians wonder if gene therapy remains a way to treat genetic or acquired life-threatening diseases. For the last few years, many experimental, pre-clinical, and clinical data have been published showing that it is possible to transfer with relatively high efficiency new genetic information (transgene) in many cells or tissues including both hematopoietic progenitor cells and differentiated cells. Based on experimental works, addition of the normal gene to cells with deletions, mutations, or alterations of the corresponding endogenous one has been shown to reverse the phenotype and to restore (in some case) the functional defect. In spite of very attractive preliminary results, however, suggesting the feasibility and safety of this process, therapeutically efficient gene transfer and expression in targeted cells or tissues must be proven. In this review, we will focus primarily on the attempts to use gene transfer in hematopoietic stem cells as a model for more general genetic manipulations of stem cells. Hematopoietic stem cells are included in a subset of bone marrow, cord blood, or peripheral blood cells identified by the expression of the CD34 antigen on their membrane.

  9. Nano scaffolds and stem cell therapy in liver tissue engineering

    Science.gov (United States)

    Montaser, Laila M.; Fawzy, Sherin M.

    2015-08-01

    Tissue engineering and regenerative medicine have been constantly developing of late due to the major progress in cell and organ transplantation, as well as advances in materials science and engineering. Although stem cells hold great potential for the treatment of many injuries and degenerative diseases, several obstacles must be overcome before their therapeutic application can be realized. These include the development of advanced techniques to understand and control functions of micro environmental signals and novel methods to track and guide transplanted stem cells. A major complication encountered with stem cell therapies has been the failure of injected cells to engraft to target tissues. The application of nanotechnology to stem cell biology would be able to address those challenges. Combinations of stem cell therapy and nanotechnology in tissue engineering and regenerative medicine have achieved significant advances. These combinations allow nanotechnology to engineer scaffolds with various features to control stem cell fate decisions. Fabrication of Nano fiber cell scaffolds onto which stem cells can adhere and spread, forming a niche-like microenvironment which can guide stem cells to proceed to heal damaged tissues. In this paper, current and emergent approach based on stem cells in the field of liver tissue engineering is presented for specific application. The combination of stem cells and tissue engineering opens new perspectives in tissue regeneration for stem cell therapy because of the potential to control stem cell behavior with the physical and chemical characteristics of the engineered scaffold environment.

  10. Stem cell therapy for severe autoimmune diseases

    Directory of Open Access Journals (Sweden)

    Marmont Alberto M.

    2002-01-01

    Full Text Available Intense immunosuppresion followed by alogenic or autogenic hematopoietic stem cell transplantation is a relatively recent procedure which was used for the first time in severe, refractory cases of systemic lupus erythematosus. Currently three agressive procedures are used in the treatment of autoimmune diseases: high dose chemotherapy without stem cell rescue, intense immunosuppression with subsequent infusion of the alogenic hematopoietic stem cell transplantation combined with or without the selection of CD34+ cells, and the autogenic hematopoietic stem cell transplantation. Proof of the graft-versus-leukemia effect observed define SCT as a form of immunotherapy, with additional evidence of an similar Graft-vs-Autoimmunity effect which is suggestive of a cure for autoimmune diseases in this type of therapy. The use of alogenic SCT improved due to its safety compared to autogenic transplantations. In this report, data of multiply sclerosis and systemic lupus erythematosus are reported, with the conclusion that Immunoablation followed by SCT is clearly indicated in such cases.

  11. Mesenchymal stem cells targeting the GVHD

    Institute of Scientific and Technical Information of China (English)

    ZHAO; Robert; ChunHua

    2009-01-01

    Acute graft-versus-host disease(GVHD) occurs after allogeneic hematopoietic stem cell transplant and is a reaction of donor immune cells against host tissues.About 35%-50% of hematopoietic stem cell transplant(HSCT) recipients will develop acute GVHD.It is associated with considerable morbidity and mortality,particularly in patients who do not respond to primary therapy,which usually consists of glucocorticoids(steroids).Most of the available second-line and third-line treatments for steroid-refractory acute GVHD induce severe immunodeficiency,which is commonly accompanied by lethal infectious complications.Mesenchymal stem cells(MSCs) have been shown to mediate immunomodulatory effects.The recently elucidated immunosuppressive potential of mesenchymal stem cells has set the stage for their clinical testing as cellular immunosuppressants,MSCs have been used in patients with steroid-refractory acute GVHD,and encouraging responses have been obtained in many studies.The utility of MSCs for the treatment of GVHD is becoming clear.

  12. Cancer Stem Cells and Pediatric Solid Tumors

    Directory of Open Access Journals (Sweden)

    Gregory K. Friedman

    2011-01-01

    Full Text Available Recently, a subpopulation of cells, termed tumor-initiating cells or tumor stem cells (TSC, has been identified in many different types of solid tumors. These TSC, which are typically more resistant to chemotherapy and radiation compared to other tumor cells, have properties similar to normal stem cells including multipotency and the ability to self-renew, proliferate, and maintain the neoplastic clone. Much of the research on TSC has focused on adult cancers. With considerable differences in tumor biology between adult and pediatric cancers, there may be significant differences in the presence, function and behavior of TSC in pediatric malignancies. We discuss what is currently known about pediatric solid TSC with specific focus on TSC markers, tumor microenvironment, signaling pathways, therapeutic resistance and potential future therapies to target pediatric TSC.

  13. Cartilage stem cells: regulation of differentiation.

    Science.gov (United States)

    Solursh, M

    1989-01-01

    The developing limb bud is a useful source of cartilage stem cells for studies on the regulation of chondrogenesis. In high density cultures these cells can progress through all stages of chondrogenesis to produce mineralized hypertrophic cartilage. If the cells are maintained in a spherical shape, single stem cells can progress through a similar sequence. The actin cytoskeleton is implicated in the regulation of chondrogenesis since conditions that favor its disruption promote chondrogenesis and conditions that favor actin assembly inhibit chondrogenesis. Since a number of extracellular matrix receptors mediate effects of the extracellular matrix on cytoskeletal organization and some of these receptors are developmentally regulated, it is proposed that matrix receptor expression plays a central role in the divergence of connective tissue cells during development.

  14. Microgravity-Enhanced Stem Cell Selection

    Science.gov (United States)

    Claudio, Pier Paolo; Valluri, Jagan

    2011-01-01

    Stem cells, both embryonic and adult, promise to revolutionize the practice of medicine in the future. In order to realize this potential, a number of hurdles must be overcome. Most importantly, the signaling mechanisms necessary to control the differentiation of stem cells into tissues of interest remain to be elucidated, and much of the present research on stem cells is focused on this goal. Nevertheless, it will also be essential to achieve large-scale expansion and, in many cases, assemble cells in 3D as transplantable tissues. To this end, microgravity analog bioreactors can play a significant role. Microgravity bioreactors were originally conceived as a tool to study the cellular responses to microgravity. However, the technology can address some of the shortcomings of conventional cell culture systems; namely, the deficiency of mass transport in static culture and high mechanical shear forces in stirred systems. Unexpectedly, the conditions created in the vessel were ideal for 3D cell culture. Recently, investigators have demonstrated the capability of the microgravity bioreactors to expand hematopoietic stem cells compared to static culture, and facilitate the differentiation of umbilical cord stem cells into 3D liver aggregates. Stem cells are capable of differentiating into functional cells. However, there are no reliable methods to induce the stem cells to form specific cells or to gain enough cells for transplantation, which limits their application in clinical therapy. The aim of this study is to select the best experimental setup to reach high proliferation levels by culturing these cells in a microgravity-based bioreactor. In typical cell culture, the cells sediment to the bottom surface of their container and propagate as a one-cell-layer sheet. Prevention of such sedimentation affords the freedom for self-assembly and the propagation of 3D tissue arrays. Suspension of cells is easily achievable using stirred technologies. Unfortunately, in

  15. Stem cell-derived vascular endothelial cells and their potential application in regenerative medicine

    Science.gov (United States)

    Although a 'vascular stem cell' population has not been identified or generated, vascular endothelial and mural cells (smooth muscle cells and pericytes) can be derived from currently known pluripotent stem cell sources, including human embryonic stem cells and induced pluripotent stem cells. We rev...

  16. Stem Cell Therapy for Congestive Heart Failure

    Directory of Open Access Journals (Sweden)

    Gunduz E

    2011-01-01

    Full Text Available IntroductionHeart failure is a major cardiovascular health problem. Coronary artery disease is the leading cause of congestive heart failure (CHF [1]. Cardiac transplantation remains the most effective long-term treatment option, however is limited primarily by donor availability, rejection and infections. Mechanical circulatory support has its own indications and limitations [2]. Therefore, there is a need to develop more effective therapeutic strategies.Recently, regenerative medicine has received considerable scientific attention in the cardiovascular arena. We report here our experience demonstrating the beneficial effects of cardiac stem cell therapy on left ventricular functions in a patient with Hodgkin’s lymphoma (HL who developed CHF due to ischemic heart disease during the course of lymphoma treatment. Case reportA 58-year-old male with relapsed HL was referred to our bone marrow transplantation unit in October 2009. He was given 8 courses of combination chemotherapy with doxorubicin, bleomycin, vincristine, and dacarbazine (ABVD between June 2008 and February 2009 and achieved complete remission. However, his disease relapsed 3 months after completing the last cycle of ABVD and he was decided to be treated with DHAP (cisplatin, cytarabine, dexamethasone followed autologous stem cell transplantation (SCT. After the completion of first course of DHAP regimen, he developed acute myocardial infarction (AMI and coronary artery bypass grafting (CABG was performed. After his cardiac function stabilized, 3 additional courses of DHAP were given and he was referred to our centre for consideration of autologous SCT. Computed tomography scans obtained after chemotherapy confirmed complete remission. Stem cells were collected from peripheral blood after mobilization with 10 µg/kg/day granulocyte colony-stimulating factor (G-CSF subcutaneously. Collection was started on the fifth day of G-CSF and performed for 3 consecutive days. Flow cytometric

  17. [Heart tissue from embryonic stem cells].

    Science.gov (United States)

    Zimmermann, W-H

    2008-09-01

    Embryonic stem cells can give rise to all somatic cells, making them an attractive cell source for tissue engineering applications. The propensity of cells to form tissue-like structures in a culture dish has been well documented. We and others made use of this intrinsic property to generate bioartificial heart muscle. First proof-of-concept studies involved immature heart cells mainly from fetal chicken, neonatal rats and mice. They eventually provided evidence that force-generating heart muscle can be engineered in vitro. Recently, the focus shifted to the application of stem cells to eventually enable the generation of human heart muscle and reach following long-term goals: (1) development of a simplified in vitro model of heart muscle development; (2) generation of a human test-bed for drug screening and development; (3) allocation of surrogate heart tissue to myocardial repair applications. This overview will provide the background for cell-based myocardial repair, introduce the main myocardial tissue engineering concepts, discuss the use of embryonic and non-embryonic stem cells, and lays out the potential direct and indirect therapeutic use of human tissue engineered myocardium.

  18. Telomere stability and telomerase in mesenchymal stem cells

    DEFF Research Database (Denmark)

    Serakinci, Nedime; Graakjaer, Jesper; Kølvrå, Steen

    2008-01-01

    Telomeres are repetitive genetic material that cap and thereby protect the ends of chromosomes. Each time a cell divides, telomeres get shorter. Telomere length is mainly maintained by telomerase. This enzyme is present in high concentrations in the embryonic stem cells and in fast growing...... embryonic cells, and declines with age. It is still unclear to what extent there is telomerase in adult stem cells, but since these are the founder cells of cells of all the tissues in the body, understanding the telomere dynamics and expression of telomerase in adult stem cells is very important....... In the present communication we focus on telomere expression and telomere length in stem cells, with a special focus on mesenchymal stem cells. We consider different mechanisms by which stem cells can maintain telomeres and also focus on the dynamics of telomere length in mesenchymal stem cells, both the overall...

  19. Stem cell research:from molecular physiology to therapeutic applications

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Stem cell research promises remedies to many devastating diseases that are currently incurable, ranging from diabetes and Parkinson’s disease to paralysis. Totipotent embryonic stem cells have great potential for generating a wide

  20. Stem Cells Hold Promise, Peril in Treating Seniors' Eye Disease

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_164099.html Stem Cells Hold Promise, Peril in Treating Seniors' Eye Disease ... 15, 2017 WEDNESDAY, March 15, 2017 (HealthDay News) -- Stem cells may offer new hope for people losing their ...

  1. Stem Cells Transplanted in Monkeys without Anti-Rejection Drugs

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160989.html Stem Cells Transplanted in Monkeys Without Anti-Rejection Drugs Scientists say goal is to create banks of stem cells that could be used for any human patient ...

  2. Alfalfa stem tissues: Cell wall deposition, composition, and degradability

    NARCIS (Netherlands)

    Jung, H.G.; Engels, F.M.

    2002-01-01

    Declining cell wall degradability of alfalfa (Medicago sativa L.) stems with maturation limits the nutritional value of alfalfa for ruminants. This study characterized changes in cell wall concentration, composition, and degradability by rumen microbes resulting from alfalfa stem tissue proliferatio

  3. Advance in hematopoietic stem cells transplantation for leukemia

    Institute of Scientific and Technical Information of China (English)

    HUANG Xiao-jun

    2008-01-01

    @@ During the past 50 years, intensive studies into the characteristics of hematopoietic stem cell transplantation immunology and the emergence of new immunosuppressant and anti-infective drugs have significantly improved the clinical result of hematopoietic stem cell transplantation (HSCT).

  4. Nanotechnology in the regulation of stem cell behavior

    Directory of Open Access Journals (Sweden)

    King-Chuen Wu, Ching-Li Tseng, Chi-Chang Wu, Feng-Chen Kao, Yuan-Kun Tu, Edmund C So and Yang-Kao Wang

    2013-01-01

    Full Text Available Stem cells are known for their potential to repair damaged tissues. The adhesion, growth and differentiation of stem cells are likely controlled by the surrounding microenvironment which contains both chemical and physical cues. Physical cues in the microenvironment, for example, nanotopography, were shown to play important roles in stem cell fate decisions. Thus, controlling stem cell behavior by nanoscale topography has become an important issue in stem cell biology. Nanotechnology has emerged as a new exciting field and research from this field has greatly advanced. Nanotechnology allows the manipulation of sophisticated surfaces/scaffolds which can mimic the cellular environment for regulating cellular behaviors. Thus, we summarize recent studies on nanotechnology with applications to stem cell biology, including the regulation of stem cell adhesion, growth, differentiation, tracking and imaging. Understanding the interactions of nanomaterials with stem cells may provide the knowledge to apply to cell–scaffold combinations in tissue engineering and regenerative medicine.

  5. Induced pluripotent stem cells and neurodegenerative diseases.

    Science.gov (United States)

    Chen, Chao; Xiao, Shi-Fu

    2011-04-01

    Neurodegenerative diseases, including Parkinson's disease, Alzheimer's disease and Amyotrophic Lateral Sclerosis, are characterized by idiopathic neuron loss in different regions of the central nervous system, which contributes to the relevant dysfunctions in the patients. The application of cell replacement therapy using human embryonic stem (hES) cells, though having attracted much attention, has been hampered by the intrinsic ethical problems. It has been demonstrated that adult somatic cells can be reprogrammed into the embryonic state, called induced pluripotent stem (iPS) cells. It is soon realized that iPS cells may be an alternative source for cell replacement therapy, because it raises no ethical problems and using patient-specific iPS cells for autologous transplantation will not lead to immunological rejection. What's more, certain types of neurons derived from patient-specific iPS cells may display disease-relevant phenotypes. Thus, patient-specific iPS cells can provide a unique opportunity to directly investigate the pathological properties of relevant neural cells in individual patient, and to study the vulnerability of neural cells to pathogenic factors in vitro, which may help reveal the pathogenesis of many neurodegenerative diseases. In this review, the recent development in cellular treatment of neurodegenerative diseases using iPS cells was summarized, and the potential value of iPS cells in the modeling of neurodegenerative disease was discussed.

  6. Asymmetric stem cell division: lessons from Drosophila.

    Science.gov (United States)

    Wu, Pao-Shu; Egger, Boris; Brand, Andrea H

    2008-06-01

    Asymmetric cell division is an important and conserved strategy in the generation of cellular diversity during animal development. Many of our insights into the underlying mechanisms of asymmetric cell division have been gained from Drosophila, including the establishment of polarity, orientation of mitotic spindles and segregation of cell fate determinants. Recent studies are also beginning to reveal the connection between the misregulation of asymmetric cell division and cancer. What we are learning from Drosophila as a model system has implication both for stem cell biology and also cancer research.

  7. Concise Review: Stem Cell Microenvironment on a Chip: Current Technologies for Tissue Engineering and Stem Cell Biology

    Science.gov (United States)

    Park, DoYeun; Lim, Jaeho; Park, Joong Yull

    2015-01-01

    Stem cells have huge potential in many therapeutic areas. With conventional cell culture methods, however, it is difficult to achieve in vivo-like microenvironments in which a number of well-controlled stimuli are provided for growing highly sensitive stem cells. In contrast, microtechnology-based platforms offer advantages of high precision, controllability, scalability, and reproducibility, enabling imitation of the complex physiological context of in vivo. This capability may fill the gap between the present knowledge about stem cells and that required for clinical stem cell-based therapies. We reviewed the various types of microplatforms on which stem cell microenvironments are mimicked. We have assigned the various microplatforms to four categories based on their practical uses to assist stem cell biologists in using them for research. In particular, many examples are given of microplatforms used for the production of embryoid bodies and aggregates of stem cells in vitro. We also categorized microplatforms based on the types of factors controlling the behaviors of stem cells. Finally, we outline possible future directions for microplatform-based stem cell research, such as research leading to the production of well-defined environments for stem cells to be used in scaled-up systems or organs-on-a-chip, the regulation of induced pluripotent stem cells, and the study of the genetic states of stem cells on microplatforms. Significance Stem cells are highly sensitive to a variety of physicochemical cues, and their fate can be easily altered by a slight change of environment; therefore, systematic analysis and discrimination of the extracellular signals and intracellular pathways controlling the fate of cells and experimental realization of sensitive and controllable niche environments are critical. This review introduces diverse microplatforms to provide in vitro stem cell niches. Microplatforms could control microenvironments around cells and have recently

  8. Hematopoietic stem cell transplantation in multiple sclerosis

    DEFF Research Database (Denmark)

    Rogojan, C; Frederiksen, J L

    2009-01-01

    Intensive immunosuppresion followed by hematopoietic stem cell transplantation (HSCT) has been suggested as potential treatment in severe forms of multiple sclerosis (MS). Since 1995 ca. 400 patients have been treated with HSCT. Stabilization or improvement occurred in almost 70% of cases at least...

  9. Vascular potential of human pluripotent stem cells

    Science.gov (United States)

    Cardiovascular disease is the number one cause of death and disability in the US. Understanding the biological activity of stem and progenitor cells, and their ability to contribute to the repair, regeneration and remodeling of the heart and blood vessels affected by pathological processes is an ess...

  10. Redox regulation in cancer stem cells

    Science.gov (United States)

    Reactive oxygen species (ROS) and ROS-dependent (redox regulation) signaling pathways and transcriptional activities are thought to be critical in stem cell self-renewal and differentiation during growth and organogenesis. Aberrant ROS burst and dysregulation of those ROS-dependent cellular processe...

  11. Medical Research on Stem Cells to Continue

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    China will maintain its opposition to human reproductive cloning but will continue to allow closely monitored embryo stem cell research for the treatment and prevention of disease, said Wang Hongguang, president of the China National Center for Biotechnology Development, on February 20 in Beijing.

  12. Web Resources for Stem Cell Research

    Institute of Scientific and Technical Information of China (English)

    Ting Wei; Xing Peng; Lili Ye; Jiajia Wang; Fuhai Song; Zhouxian Bai; Guangchun Han; Fengmin Ji; Hongxing Lei

    2015-01-01

    In this short review, we have presented a brief overview on major web resources relevant to stem cell research. To facilitate more efficient use of these resources, we have provided a pre-liminary rating based on our own user experience of the overall quality for each resource. We plan to update the information on an annual basis.

  13. Stem cells to regenerate the newborn brain

    NARCIS (Netherlands)

    van Velthoven, C.T.J.

    2011-01-01

    Perinatal hypoxia-ischemia (HI) is a frequent cause of perinatal morbidity and mortality with limited therapeutic options. In this thesis we investigate whether mesenchymal stem cells (MSC) regenerate the neonatal brain after HI injury. We show that transplantation of MSC after neonatal brain injury

  14. Epigenetic regulation of hematopoietic stem cell aging

    Energy Technology Data Exchange (ETDEWEB)

    Beerman, Isabel, E-mail: isabel.beerman@childrens.harvard.edu [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States); Rossi, Derrick J. [Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 (United States); Department of Pediatrics, Harvard Medical School, Boston, MA 02115 (United States); Program in Cellular and Molecular Medicine, Division of Hematology/Oncology, Boston Children' s Hospital, MA 02116 (United States)

    2014-12-10

    Aging is invariably associated with alterations of the hematopoietic stem cell (HSC) compartment, including loss of functional capacity, altered clonal composition, and changes in lineage contribution. Although accumulation of DNA damage occurs during HSC aging, it is unlikely such consistent aging phenotypes could be solely attributed to changes in DNA integrity. Another mechanism by which heritable traits could contribute to the changes in the functional potential of aged HSCs is through alterations in the epigenetic landscape of adult stem cells. Indeed, recent studies on hematopoietic stem cells have suggested that altered epigenetic profiles are associated with HSC aging and play a key role in modulating the functional potential of HSCs at different stages during ontogeny. Even small changes of the epigenetic landscape can lead to robustly altered expression patterns, either directly by loss of regulatory control or through indirect, additive effects, ultimately leading to transcriptional changes of the stem cells. Potential drivers of such changes in the epigenetic landscape of aged HSCs include proliferative history, DNA damage, and deregulation of key epigenetic enzymes and complexes. This review will focus largely on the two most characterized epigenetic marks – DNA methylation and histone modifications – but will also discuss the potential role of non-coding RNAs in regulating HSC function during aging.

  15. Advances in Stem Cell Therapy for Leukemia.

    Science.gov (United States)

    Tian, Hong; Qu, Qi; Liu, Liming; Wu, Depei

    2016-01-01

    Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is the most effective post remission treatment for leukemia, resulting in lower relapse rates than alternative therapies. However, it is limited by the lack of suitable human leukocyte antigen (HLA) matched donors and high rates of transplant-related morbidity and mortality. Cord blood transplantation (CBT) and haploidentical SCT (haplo-SCT) expand the potential donor pool but are also associated with major complications. Co-infusion of third-party donor stem cells with a CBT/haplo-SCT, which is called "dual transplantation," has been reported to improve the outcome of HSCT by accelerating hematopoietic reconstitution and reducing the incidence of graft-versus-host disease (GVHD). In addition, infusion of HLA-mismatched donor granulocyte colony-stimulating factor-mobilized donor peripheral blood stem cells after chemotherapy, the so called "microtransplantation", has been shown to promote the graft-versus-leukemia effect and hasten hematopoietic recovery without amplifying GVHD. Herein, we review recent advances in stem cell therapy for leukemia with a specific focus on dual transplantation and microtransplantation.

  16. Bioterrorism, embryonic stem cells, and Frankenstein.

    Science.gov (United States)

    Guinan, Patrick

    2002-01-01

    The stem cell controversy raises a fundamental question for humankind. Does science have a right to pursue knowledge whatever the cost? Our Enlightenment culture says yes. However, human history and literature are sending warning signals. Ethical issues impact the "knowledge for its own sake" imperative, and must be addressed.

  17. What Undergraduates Misunderstand about Stem Cell Research

    Science.gov (United States)

    Halverson, Kristy Lynn; Freyermuth, Sharyn K.; Siegel, Marcelle A.; Clark, Catharine G.

    2010-01-01

    As biotechnology-related scientific advances, such as stem cell research (SCR), are increasingly permeating the popular media, it has become ever more important to understand students' ideas about this issue. Very few studies have investigated learners' ideas about biotechnology. Our study was designed to understand the types of alternative…

  18. Skeletal tissue engineering using embryonic stem cells

    NARCIS (Netherlands)

    Jukes, Jojanneke Maria

    2009-01-01

    Tissue engineering aims at repairing or replacing damaged or diseased tissue. In this thesis, we investigated the potential of embryonic stem cells (ESCs) for cartilage tissue engineering. After differentiation of mouse and human ESCs into the chondrogenic and osteogenic lineage had been established

  19. Biobanking human embryonic stem cell lines

    DEFF Research Database (Denmark)

    Holm, Søren

    2016-01-01

    are curiously absent from the particular stem cell banking policy discourse. This to some extent artificially isolates this discourse from the broader discussions about the flows of reproductive materials and tissues in modern society, and such isolation may lead to the interests of important actors being...

  20. Heterogeneity and plasticity of epidermal stem cells

    DEFF Research Database (Denmark)

    Schepeler, Troels; Page, Mahalia E; Jensen, Kim Bak

    2014-01-01

    facilitate this task. In this Review, we discuss stem cell behaviour during normal tissue homeostasis, regeneration and disease within the pilosebaceous unit, an integral structure of the epidermis that is responsible for hair growth and lubrication of the epithelium. We provide an up-to-date view...

  1. Properties and applications of embryonic stem cells

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Mouse embryonic stem (ES) cells are pluripotent cells derived from the early embryo and can be propagated stably in undifferentiated state in vitro. They retain the ability to differentiate into all cell types found in the embryonic and adult body in vivo, and can be induced to differentiate into many cell types under appropriate culture conditions in vitro. Using these properties, people have set up various differentiated systems of many cell types and tissues in vitro. Through analysis of these systems, one can identify novel bioactive factors and reveal mechanisms of cell differentiation and organogenesis. ES cell-derived differentiated cells can also be applied to cell transplantation therapy. In addition, we summarized the features and potential applications of human ES cells.

  2. Induction of embryonic stem cells to hematopoietic cells in vitro

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In order to get hematopoietic cells from embryonic stem (ES) cells and to study development mechanisms of hematopoietic cells, the method of inducing embryonic stem cells to hematopoietic cells was explored by differenciating mouse ES cells and human embryonic cells in three stages. The differentiated cells were identified by flow cytometry, immunohistochemistry and Wright's staining. The results showed that embryoid bodies (EBs) could form when ES cells were cultured in the medium with 2-mercaptoethanol (2-ME). However, cytokines, such as stem cell factor (SCF), thrombopoietin (TPO), interleukin-3 (IL-3), interleukin-6 (IL-6), erythropoietin (EPO) and granular colony stimulating factor (G-CSF), were not helpful for forming EBs. SCF, TPO and embryonic cell conditional medium were useful for the differentiation of mouse EBs to hematopoietic progenitors. Eighty-six percent of these cells were CD34+ after 6-d culture. Hematopoietic progenitors differentiated to B lymphocytes when they were cocultured with primary bone marrow stroma cells in the DMEM medium with SCF and IL-6. 14 d later, most of the cells were CD34-CD38+. Wright's staining and immunohistochemistry showed that 80% of these cells were plasma-like morphologically and immunoglubolin positive. The study of hematopoietic cells from human embryonic cells showed that human embryonic cell differentiation was very similar to that of mouse ES cells. They could form EBs in the first stage and the CD34 positive cells account for about 48.5% in the second stage.

  3. Brain Cancer Stem Cells: Current Status on Glioblastoma Multiforme

    OpenAIRE

    2011-01-01

    Glioblastoma multiforme (GBM), an aggressive brain tumor of astrocytic/neural stem cell origin, represents one of the most incurable cancers. GBM tumors are highly heterogeneous. However, most tumors contain a subpopulation of cells that display neural stem cell characteristics in vitro and that can generate a new brain tumor upon transplantation in mice. Hence, previously identified molecular pathways regulating neural stem cell biology were found to represent the cornerstone of GBM stem cel...

  4. Stem Cells and the Origin and Propagation of Brain Tumors

    OpenAIRE

    2008-01-01

    In recent years there has been a flood of interest in the relationship between brain tumors and stem cells. Some investigators have focused on the sensitivity of normal stem cells to transformation, others have described phenotypic or functional similarities between tumor cells and stem cells, and still others have suggested that tumors contain a subpopulation of “cancer stem cells” that is crucial for tumor maintenance or propagation. While all these concepts are interesting and provide insi...

  5. Isolation of mesenchymal stem cells from equine umbilical cord blood

    OpenAIRE

    Thomsen Preben D; Heerkens Tammy; Koch Thomas G; Betts Dean H

    2007-01-01

    Background: There are no published studies on stem cells from equine cord blood although commercial storage of equine cord blood for future autologous stem cell transplantations is available. Mesenchymal stem cells (MSC) have been isolated from fresh umbilical cord blood of humans collected non-invasively at the time of birth and from sheep cord blood collected invasively by a surgical intrauterine approach. Mesenchymal stem cells isolation percentage from frozen-thawed human cord blood is lo...

  6. Culture of rodent spermatogonial stem cells, male germline stem cells of the postnatal animal.

    Science.gov (United States)

    Kubota, Hiroshi; Brinster, Ralph L

    2008-01-01

    Spermatogonial stem cells (SSCs), postnatal male germline stem cells, are the foundation of spermatogenesis, during which an enormous number of spermatozoa is produced daily by the testis throughout life of the male. SSCs are unique among stem cells in the adult body because they are the only cells that undergo self-renewal and transmit genes to subsequent generations. In addition, SSCs provide an excellent and powerful model to study stem cell biology because of the availability of a functional assay that unequivocally identifies the stem cell. Development of an in vitro culture system that allows an unlimited supply of SSCs is a crucial technique to manipulate genes of the SSC to generate valuable transgenic animals, to study the self-renewal mechanism, and to develop new therapeutic strategies for infertility. In this chapter, we describe a detailed protocol for the culture of mouse and rat SSCs. A key factor for successful development of the SSC culture system was identification of in vitro growth factor requirements for the stem cell using a defined serum-free medium. Because transplantation assays using immunodeficient mice demonstrated that extrinsic factors for self-renewal of SSCs appear to be conserved among many mammalian species, culture techniques for SSCs of other species, including farm animals and humans, are likely to be developed in the coming 5-10 years.

  7. Viability of mesenchymal stem cells during electrospinning

    Directory of Open Access Journals (Sweden)

    G. Zanatta

    2012-02-01

    Full Text Available Tissue engineering is a technique by which a live tissue can be re-constructed and one of its main goals is to associate cells with biomaterials. Electrospinning is a technique that facilitates the production of nanofibers and is commonly used to develop fibrous scaffolds to be used in tissue engineering. In the present study, a different approach for cell incorporation into fibrous scaffolds was tested. Mesenchymal stem cells were extracted from the wall of the umbilical cord and mononuclear cells from umbilical cord blood. Cells were re-suspended in a 10% polyvinyl alcohol solution and subjected to electrospinning for 30 min under a voltage of 21 kV. Cell viability was assessed before and after the procedure by exclusion of dead cells using trypan blue staining. Fiber diameter was observed by scanning electron microscopy and the presence of cells within the scaffolds was analyzed by confocal laser scanning microscopy. After electrospinning, the viability of mesenchymal stem cells was reduced from 88 to 19.6% and the viability of mononuclear cells from 99 to 8.38%. The loss of viability was possibly due to the high viscosity of the polymer solution, which reduced the access to nutrients associated with electric and mechanical stress during electrospinning. These results suggest that the incorporation of cells during fiber formation by electrospinning is a viable process that needs more investigation in order to find ways to protect cells from damage.

  8. Science and society: a stem cell technology model.

    Science.gov (United States)

    Kiatpongsan, Sorapop

    2008-02-01

    Stem cell technology has been recognized as an emerging technology that could transform current supportive approach toward curing many chronic disorders and degenerative conditions. Regenerative medicine is the promising area of medical practice in the coming decade. However, stem cell technology also brings up controversial issues from the bioethical perspective such as the destruction of human embryos to derive embryonic stem cells or putting the egg donors at risk when retrieving oocytes used in somatic cell nuclear transfer technique. Recently, scientists have discovered a novel method to derive human embryonic stem cell-like cells (iPS; induced pluripotent stem cells) from human skin cells. This innovative approach would not only be a breakthrough discovery to advance the knowledge of stem cell research and the landmark for future stem cell-based therapy but will also provide viable solutions for social concerns on bioethical issues.

  9. Enrichment of Mouse Spermatogonial Stem Cells by the Stem Cell Dye CDy1.

    Science.gov (United States)

    Kanatsu-Shinohara, Mito; Morimoto, Hiroko; Shinohara, Takashi

    2016-01-01

    Spermatogonial stem cells (SSCs) comprise a small population of germ cells with self-renewal potential. Previous studies have shown that SSCs share several common features with stem cells in other self-renewing tissues, including surface markers and proliferative machinery. However, studies of SSCs are severely handicapped by the small number of SSCs and the lack of SSC-specific markers. In the present study, we examined the utility of CDy1 and Rh123, both of which are used for the collection of stem cells in several self-renewing tissues. CDy1 stained germline stem (GS) cells, cultured spermatogonia enriched for SSC activity, after in vitro incubation without exerting toxic effects. Unlike previously reported stem cell-specific dyes, CDy1 was also useful for enrichment of SSCs in both GS cell culture and mature adult testes. Spermatogonial transplantation showed that ∼1 in 66.7 cells exhibited SSC activity after CDH1-based magnetic cell selection and CDy1 staining. In contrast, although Rh123 was previously used successfully to collect SSCs from cryptorchid testes, it was not possible to recover SSCs from both GS cell cultures and wild-type testes. Thus, CDy1 staining will provide a useful strategy for the enrichment of SSCs and may be used in conjunction with other reagents for the enrichment of SSCs.

  10. Human pluripotent stem cells in contemporary medicine

    Directory of Open Access Journals (Sweden)

    S. A. Rodin

    2015-01-01

    Full Text Available Human pluripotent stem cells (hPSCs are capable of indefinite proliferation and can be differentiated into any cell type of the human body. Therefore, they are a promising source of cells for treatment of numerous degenerative diseases and injuries. Pluripotent stem cells are also associated with a number of ethical, safety and technological issues. In this review, we describe various types of hPSCs, safety issues that concern all or some types of hPSCs and methods of clinical-grade hPSC line development. Also, we discuss current and past clinical trials involving hPSCs, their outcomes and future perspectives of hPSC-based therapy. 

  11. [Human pluripotent stem cell and neural differentiation].

    Science.gov (United States)

    Wataya, Takafumi; Muguruma, Keiko; Sasai, Yoshiki

    2008-10-01

    Recovery of lost brain function is an important issue in medical studies because neurons of the central nervous system (CNS) have poor potential for regeneration. Since few CNS diseases can be treated completely by medicines, regenerative therapy by using stem cells should be studied as a new type of therapeutic intervention. The efficacy of cell replacement therapy in Parkinson's disease has been well investigated. Several studies on fetal tissue transplantation have revealed that quantity and purity of transplanted cells are necessary for recovery of symptoms. SFEB (Serum-free floating culture of embryoid body-like aggregates) method is capable of inducing multi-potential CNS progenitors that can be steered to differentiate into region-specific tissues. On the basis of the existing knowledge of embryology, we have succeeded in the generating of various types of neurons such as telencephalic, cerebeller (Purkinje and granule cells), retinal (photoreceptor cells) and hypothalamic neurons. Application of this culture method to human ES (hES) cells is necessary for clinical purpose: however, poor survival of hES cells in SFEB culture might limit the possibility of using these cells for future medical applications. We found that a selective Rho-associated kinase (ROCK) inhibitor, Y-27632, markedly diminished the dissociation-induced apoptosis of hES cells and enabled the cells to form aggregates in SFEB culture. For both mouse and human ES cells, SFEB culture is a favorable method that can generate large amounts of region-specific neurons. However, stem cell-based therapy continues to face several obstacles. It is important that researchers in the basic sciences and clinical medicine should discuss these problems together to overcome both scientific and ethical issues related to stem cells.

  12. Cell of Origin and Cancer Stem Cell Phenotype in Medulloblastomas

    Science.gov (United States)

    2015-07-01

    progenitor cells (NPCs) by expressing an activated form of Notch1 (N1ICD) or oncogenic PIK3CA (PIK3CA*) in the developing mouse cerebellum, using cell...resistance, pediatric cancer, brain tumor, Notch1, PIK3CA, cell of origin, molecular subtypes, neural stem cells, neural progenitor cells, tumor initiation...neural progenitor cells, tumor initiation. 3. ACCOMPLISHMENTS: Major goals of the project: The stated goals of this project are to: 1) test the

  13. A blizzard of stem cells in Santa Fe.

    Science.gov (United States)

    Youssef, Khalil Kass; Blanpain, Cédric

    2011-06-01

    The Keystone Symposium 'Stem Cells in Development, Tissue Homeostasis and Disease' was held between 30th January and 4th February 2011 in Santa Fe, New Mexico, USA. The organizers gathered together an impressive panel of speakers to discuss various aspects of stem-cell biology from early development to adult homeostasis, as well as the implications of stem cells for human diseases.

  14. Tissue-specific designs of stem cell hierarchies

    NARCIS (Netherlands)

    Visvader, Jane E; Clevers, Hans

    2016-01-01

    Recent work in the field of stem cell biology suggests that there is no single design for an adult tissue stem cell hierarchy, and that different tissues employ distinct strategies to meet their self-renewal and repair requirements. Stem cells may be multipotent or unipotent, and can exist in quiesc

  15. Stem cells: intellectual property issues in regenerative medicine.

    Science.gov (United States)

    Zachariades, Nicholas A

    2013-12-01

    The topic of stem cells for use in regenerative medicine, especially embryonic stem cells, inspires much debate, discussion, and outrage as it slices through the very core moral values of society. These social and moral issues have, in turn, resulted in government policies that have influenced the study of stem cells in regenerative medicine.

  16. Defining and mining the intestinal stem cell signature

    NARCIS (Netherlands)

    Stange, D.E.

    2012-01-01

    The work in this thesis adds to our knowledge of intestinal stem cell physiology. After identification of Lgr5 as a specific marker for intestinal stem cells by Barker et al, we now set out to characterize them in depth. Taking advantage of the possibility to sort pure fractions of Lgr5+ stem cells

  17. Hematopoietic Stem Cells Expansionin Rotating Wall Vessel

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    1 IntroductionClinical trials have demonstrated that ex vivo expanded hematopoietic stem cells (HSCs) and progenitors offer great promise in reconstituting in vivo hematopoiesis in patients who have undergone intensive chemotherapy. It is therefore necessary to develop a clinical-scale culture system to provide the expanded HSCs and progenitors. Static culture systems such as T-flasks and gas-permeable blood bags are the most widely used culture devices for expanding hematopoietic cells. But they reveal sev...

  18. Gastrointestinal stem cells. III. Emergent themes of liver stem cell biology: niche, quiescence, self-renewal, and plasticity.

    Science.gov (United States)

    Theise, Neil D

    2006-02-01

    This essay will address areas of liver stem/progenitor cell studies in which consensus has emerged and in which controversy still prevails over consensus, but it will also highlight important themes that inevitably should be a focus of liver stem/progenitor cell investigations in coming years. Thus concepts regarding cell plasticity, the existence of a physiological/anatomic stem cell niche, and whether intrahepatic liver stem/progenitor cells comprise true stem cells or progenitor cells (or both) will be approached in some detail.

  19. Stem cell biology and cell transplantation therapy in the retina.

    Science.gov (United States)

    Osakada, Fumitaka; Hirami, Yasuhiko; Takahashi, Masayo

    2010-01-01

    Embryonic stem (ES) cells, which are derived from the inner cell mass of mammalian blastocyst stage embryos, have the ability to differentiate into any cell type in the body and to grow indefinitely while maintaining pluripotency. During development, cells undergo progressive and irreversible differentiation into specialized adult cell types. Remarkably, in spite of this restriction in potential, adult somatic cells can be reprogrammed and returned to the naive state of pluripotency found in the early embryo simply by forcing expression of a defined set of transcription factors. These induced pluripotent stem (iPS) cells are molecularly and functionally equivalent to ES cells and provide powerful in vitro models for development, disease, and drug screening, as well as material for cell replacement therapy. Since functional impairment results from cell loss in most central nervous system (CNS) diseases, recovery of lost cells is an important treatment strategy. Although adult neurogenesis occurs in restricted regions, the CNS has poor potential for regeneration to compensate for cell loss. Thus, cell transplantation into damaged or diseased CNS tissues is a promising approach to treating various neurodegenerative disorders. Transplantation of photoreceptors or retinal pigment epithelium cells derived from human ES cells can restore some visual function. Patient-specific iPS cells may lead to customized cell therapy. However, regeneration of retinal function will require a detailed understanding of eye development, visual system circuitry, and retinal degeneration pathology. Here, we review the current progress in retinal regeneration, focusing on the therapeutic potential of pluripotent stem cells.

  20. Progress and prospects in stem cell therapy

    Institute of Scientific and Technical Information of China (English)

    Xiu-ling XU; Fei YI; Hui-ze PAN; Shun-lei DUAN; Zhi-chao DING; Guo-hong YUAN; Jing QU

    2013-01-01

    In the past few years,progress being made in stem cell studies has incontestably led to the hope of developing cell replacement based therapy for diseases deficient in effective treatment by conventional ways.The induced pluripotent stem cells (iPSCs) are of great interest of cell therapy research because of their unrestricted self-renewal and differentiation potentials.Proof of principle studies have successfully demonstrated that iPSCs technology would substantially benefit clinical studies in various areas,including neurological disorders,hematologic diseases,cardiac diseases,liver diseases and etc.On top of this,latest advances of gene editing technologies have vigorously endorsed the possibility of obtaining disease-free autologous cells from patient specific iPSCs.Here in this review,we summarize current progress of stem cell therapy research with special enthusiasm in iPSCs studies.In addition,we compare current gene editing technologies and discuss their potential implications in clinic application in the future.

  1. Would cancer stem cells affect the future investment in stem cell therapy.

    Science.gov (United States)

    Rameshwar, Pranela

    2012-04-20

    The common goal within the overwhelming interests in stem cell research is to safely translate the science to patients. Although there are various methods by which this goal can be reached, this editorial emphasizes the safety of mesenchymal stem cell (MSC) transplant and possible confounds by the growing information on cancer stem cells (CSCs). There are several ongoing clinical trials with MSCs and their interactions with CSCs need to be examined. The rapid knowledge on MSCs and CSCs has now collided with regards to the safe treatment of MSCs. The information discussed on MSCs can be extrapolated to other stem cells with similar phenotype and functions such as placenta stem cells. MSCs are attractive for cell therapy, mainly due to reduced ethical concerns, ease in expansion and reduced ability to be transformed. Also, MSCs can exert both immune suppressor and tissue regeneration simultaneously. It is expected that any clinical trial with MSCs will take precaution to ensure that the cells are not transformed. However, going forward, the different centers should be aware that MSCs might undergo oncogenic events, especially as undifferentiated cells or early differentiated cells. Another major concern for MSC therapy is their ability to promote tumor growth and perhaps, to protect CSCs by altered immune responses. These issues are discussed in light of a large number of undiagnosed cancers.

  2. Embryonic stem cells or induced pluripotent stem cells? A DNA integrity perspective.

    Science.gov (United States)

    Bai, Qiang; Desprat, Romain; Klein, Bernard; Lemaître, Jean-Marc; De Vos, John

    2013-04-01

    Induced pluripotent stem cells (iPSCs) and embryonic stem cells (ESCs) are two types of pluripotent stem cells that hold great promise for biomedical research and medical applications. iPSCs were initially favorably compared to ESCs. This view was first based on ethical arguments (the generation of iPSCs does not require the destruction of an embryo) and on immunological reasons (it is easier to derive patient HLA-matched iPSCs than ESCs). However, several reports suggest that iPSCs might be characterized by higher occurrence of epigenetic and genetic aberrations than ESCs as a consequence of the reprogramming process. We focus here on the DNA integrity of pluripotent stem cells and examine the three main sources of genomic abnormalities in iPSCs: (1) genomic variety of the parental cells, (2) cell reprogramming, and (3) in vitro cell culture. Recent reports claim that it is possible to generate mouse or human iPSC lines with a mutation level similar to that of the parental cells, suggesting that "genome-friendly" reprogramming techniques can be developed. The issue of iPSC DNA integrity clearly highlights the crucial need of guidelines to define the acceptable level of genomic integrity of pluripotent stem cells for biomedical applications. We discuss here the main issues that such guidelines should address.

  3. Suspension culture of pluripotent stem cells: effect of shear on stem cell fate.

    Science.gov (United States)

    Keller, Kevin C; Rodrigues, Beatriz; zur Nieden, Nicole I

    2014-01-01

    Despite significant promise, the routine usage of suspension cell culture to manufacture stem cell-derived differentiated cells has progressed slowly. Suspension culture is an innovative way of either expanding or differentiating cells and sometimes both are combined into a single bioprocess. Its advantages over static 2D culturing include a homogeneous and controllable culture environment and producing a large quantity of cells in a fraction of time. This feature makes suspension cell culture ideal for use in stem cell research and eventually ideal in the large-scale production of differentiated cells for regenerative medicine. Because of their tremendous differentiation capacities and unlimited growth properties, pluripotent stem cells (PSCs) in particular are considered potential sources for future cell-replacement therapies. Currently, expansion of PSCs is accomplished in 2D, which only permits a limited amount of cell growth per culture flask before cells need to be passaged. However, before stem cells can be applied clinically, several aspects of their expansion, such as directed growth, but also differentiation, need to be better controlled. This review will summarize recent advantages in suspension culture of PSCs, while at the same time highlighting current challenges.

  4. Embryos, Clones, and Stem Cells: A Scientific Primer

    Directory of Open Access Journals (Sweden)

    Kenyon S. Tweedell

    2004-01-01

    Full Text Available This article is intended to give the nonspecialist an insight into the nuances of “clones”, cloning, and stem cells. It distinguishes embryonic and adult stem cells, their normal function in the organism, their origin, and how they are recovered to produce stem cell lines in culture. As background, the fundamental processes of embryo development are reviewed and defined, since the manipulation of stem cell lines into desired specialized cells employs many of the same events. Stem cells are defined and characterized and shown how they function in the intact organism during early development and later during cell regeneration in the adult. The complexity of stem cell recovery and their manipulation into specific cells and tissue is illustrated by reviewing current experimentation on both embryonic and adult stem cells in animals and limited research on human stem cell lines. The current and projected use of stem cells for human diseases and repair, along with the expanding methodology for the recovery of human embryonic stem cells, is described. An assessment on the use of human embryonic stem cells is considered from ethical, legal, religious, and political viewpoints.

  5. Differences in the microrheology of human embryonic stem cells and human induced pluripotent stem cells.

    Science.gov (United States)

    Daniels, Brian R; Hale, Christopher M; Khatau, Shyam B; Kusuma, Sravanti; Dobrowsky, Terrence M; Gerecht, Sharon; Wirtz, Denis

    2010-12-01

    Embryonic and adult fibroblasts can be returned to pluripotency by the expression of reprogramming genes. Multiple lines of evidence suggest that these human induced pluripotent stem (hiPS) cells and human embryonic stem (hES) cells are behaviorally, karyotypically, and morphologically similar. Here we sought to determine whether the physical properties of hiPS cells, including their micromechanical properties, are different from those of hES cells. To this end, we use the method of particle tracking microrheology to compare the viscoelastic properties of the cytoplasm of hES cells, hiPS cells, and the terminally differentiated parental human fibroblasts from which our hiPS cells are derived. Our results indicate that although the cytoplasm of parental fibroblasts is both viscous and elastic, the cytoplasm of hiPS cells does not exhibit any measurable elasticity and is purely viscous over a wide range of timescales. The viscous phenotype of hiPS cells is recapitulated in parental cells with disassembled actin filament network. The cytoplasm of hES cells is predominantly viscous but contains subcellular regions that are also elastic. This study supports the hypothesis that intracellular elasticity correlates with the degree of cellular differentiation and reveals significant differences in the mechanical properties of hiPS cells and hES cells. Because mechanical stimuli have been shown to mediate the precise fate of differentiating stem cells, our results support the concept that stem cell "softness" is a key feature of force-mediated differentiation of stem cells and suggest there may be subtle functional differences between force-mediated differentiation of hiPS cells and hES cells.

  6. Eicosanoids: Emerging contributors in stem cell-mediated wound healing.

    Science.gov (United States)

    Berry, Elizabeth; Liu, Yanzhou; Chen, Li; Guo, Austin M

    2016-11-05

    Eicosanoids are bioactive lipid products primarily derived from the oxidation of arachidonic acid (AA). The individual contributions of eicosanoids and stem cells to wound healing have been of great interest. This review focuses on how stem cells work in concert with eicosanoids to create a beneficial environment in the wound bed and in the promotion of wound healing. Stem cells contribute to wound healing through modulating inflammation, differentiating into skin cells or endothelial cells, and exerting paracrine effects by releasing various potent growth factors. Eicosanoids have been shown to stimulate proliferation, migration, homing, and differentiation of stem cells, all of which contribute to the process of wound healing. Increasing evidence has shown that eicosanoids improve wound healing through increasing stem cell densities, stimulating differentiation, and enhancing the angiogenic properties of stem cells. Chronic wounds have become a major problem in health care. Therefore, research regarding the effects of stem cells and eicosanoids in the promotion wound healing is of great importance.

  7. Stem cells in normal mammary gland and breast cancer.

    Science.gov (United States)

    Luo, Jie; Yin, Xin; Ma, Tao; Lu, Jun

    2010-04-01

    The mammary gland is a structurally dynamic organ that undergoes dramatic alterations with age, menstrual cycle, and reproductive status. Mammary gland stem cells, the minor cell population within the mature organ, are thought to have multiple functions in regulating mammary gland development, tissue maintenance, major growth, and structural remodeling. In addition, accumulative evidence suggests that breast cancers are initiated and maintained by a subpopulation of tumor cells with stem cell features (called cancer stem cells). A variety of methods have been developed to identify and characterize mammary stem cells, and several signal transduction pathways have been identified to be essential for the self-renewal and differentiation of mammary gland stem cells. Understanding the origin of breast cancer stem cells, their relationship to breast cancer development, and the differences between normal and cancer stem cells may lead to novel approaches to breast cancer diagnosis, prevention, and treatment.

  8. Characterization of spermatogonial stem cells lacking intercellular bridges and genetic replacement of a mutation in spermatogonial stem cells.

    Directory of Open Access Journals (Sweden)

    Naoki Iwamori

    Full Text Available Stem cells have a potential of gene therapy for regenerative medicine. Among various stem cells, spermatogonial stem cells have a unique characteristic in which neighboring cells can be connected by intercellular bridges. However, the roles of intercellular bridges for stem cell self-renewal, differentiation, and proliferation remain to be elucidated. Here, we show not only the characteristics of testis-expressed gene 14 (TEX14 null spermatogonial stem cells lacking intercellular bridges but also a trial application of genetic correction of a mutation in spermatogonial stem cells as a model for future gene therapy. In TEX14 null testes, some genes important for undifferentiated spermatogonia as well as some differentiation-related genes were activated. TEX14 null spermatogonial stem cells, surprisingly, could form chain-like structures even though they do not form stable intercellular bridges. TEX14 null spermatogonial stem cells in culture possessed both characteristics of undifferentiated and differentiated spermatogonia. Long-term culture of TEX14 null spermatogonial stem cells could not be established likely secondary to up-regulation of CDK4 inhibitors and down-regulation of cyclin E. These results suggest that intercellular bridges are essential for both maintenance of spermatogonial stem cells and their proliferation. Lastly, a mutation in Tex14(+/- spermatogonial stem cells was successfully replaced by homologous recombination in vitro. Our study provides a therapeutic potential of spermatogonial stem cells for reproductive medicine if they can be cultured long-term.

  9. Characterization of Spermatogonial Stem Cells Lacking Intercellular Bridges and Genetic Replacement of a Mutation in Spermatogonial Stem Cells

    Science.gov (United States)

    Iwamori, Naoki; Iwamori, Tokuko; Matzuk, Martin M.

    2012-01-01

    Stem cells have a potential of gene therapy for regenerative medicine. Among various stem cells, spermatogonial stem cells have a unique characteristic in which neighboring cells can be connected by intercellular bridges. However, the roles of intercellular bridges for stem cell self-renewal, differentiation, and proliferation remain to be elucidated. Here, we show not only the characteristics of testis-expressed gene 14 (TEX14) null spermatogonial stem cells lacking intercellular bridges but also a trial application of genetic correction of a mutation in spermatogonial stem cells as a model for future gene therapy. In TEX14 null testes, some genes important for undifferentiated spermatogonia as well as some differentiation-related genes were activated. TEX14 null spermatogonial stem cells, surprisingly, could form chain-like structures even though they do not form stable intercellular bridges. TEX14 null spermatogonial stem cells in culture possessed both characteristics of undifferentiated and differentiated spermatogonia. Long-term culture of TEX14 null spermatogonial stem cells could not be established likely secondary to up-regulation of CDK4 inhibitors and down-regulation of cyclin E. These results suggest that intercellular bridges are essential for both maintenance of spermatogonial stem cells and their proliferation. Lastly, a mutation in Tex14+/− spermatogonial stem cells was successfully replaced by homologous recombination in vitro. Our study provides a therapeutic potential of spermatogonial stem cells for reproductive medicine if they can be cultured long-term. PMID:22719986

  10. Stem Cell Therapy to Treat Diabetes Mellitus

    OpenAIRE

    2008-01-01

    Transplantation of pancreatic islets offers a direct treatment for type 1 diabetes and in some cases, insulin-dependent type 2 diabetes. However, its widespread use is hampered by a shortage of donor organs. Many extant studies have focused on deriving β-cell progenitors from pancreas and pluripotent stem cells. Efforts to generate β-cells in vitro will help elucidate the mechanisms of β-cell formation and thus provide a versatile in vivo system to evaluate the therapeutic potential of these ...

  11. Targeting cancer stem cells in hepatocellular carcinoma

    Directory of Open Access Journals (Sweden)

    He AR

    2014-12-01

    Full Text Available Aiwu Ruth He,1 Daniel C Smith,1 Lopa Mishra2 1Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, 2Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA Abstract: The poor outcome of patients with hepatocellular carcinoma (HCC is attributed to recurrence of the disease after curative treatment and the resistance of HCC cells to conventional chemotherapy, which may be explained partly by the function of liver cancer stem cells (CSCs. Liver CSCs have emerged as an important therapeutic target against HCC. Numerous surface markers for liver CSCs have been identified, and include CD133, CD90, CD44, CD13, and epithelial cell adhesion molecules. These surface markers serve not only as tools for identifying and isolating liver CSCs but also as therapeutic targets for eradicating these cells. In studies of animal models and large-scale genomic analyses of human HCC samples, many signaling pathways observed in normal stem cells have been found to be altered in liver CSCs, which accounts for the stemness and aggressive behavior of these cells. Antibodies and small molecule inhibitors targeting the signaling pathways have been evaluated at different levels of preclinical and clinical development. Another strategy is to promote the differentiation of liver CSCs to less aggressive HCC that is sensitive to conventional chemotherapy. Disruption of the tumor niche essential for liver CSC homeostasis has become a novel strategy in cancer treatment. To overcome the challenges in developing treatment for liver CSCs, more research into the genetic makeup of patient tumors that respond to treatment may lead to more effective therapy. Standardization of HCC CSC tumor markers would be helpful for measuring the CSC response to these agents. Herein, we review the current strategies for developing treatment to eradicate liver CSCs and to improve the outcome for patients with

  12. Embryonic stem cell-somatic cell fusion and postfusion enucleation.

    Science.gov (United States)

    Sumer, Huseyin; Verma, Paul J

    2015-01-01

    Embryonic stem (ES) cells are able to reprogram somatic cells following cell fusion. The resulting cell hybrids have been shown to have similar properties to pluripotent cells. It has also been shown that transcriptional changes can occur in a heterokaryon, without nuclear hybridization. However it is unclear whether these changes can be sustained following removal of the dominant ES nucleus. In this chapter, methods are described for the cell fusion of mouse tetraploid ES cells with somatic cells and enrichment of the resulting heterokaryons. We next describe the conditions for the differential removal of the ES cell nucleus, allowing for the recovery of somatic cells.

  13. DI-3-butylphthalide-enhanced hematopoietic stem cell transplantation and endogenous stem cell mobilization for the treatment of cerebral infarcts

    Institute of Scientific and Technical Information of China (English)

    Baoquan Lu; Xiaoming Shang; Yongqiu Li; Hongying Ma; Chunqin Liu; Jianmin Li; Yingqi Zhang; Shaoxin Yao

    2011-01-01

    Exogenous stem cell transplantation and endogenous stem cell mobilization are both effective for the treatment of acute cerebral infarction. The compound dl-3-butylphthalide is known to improve microcirculation and help brain cells at the infarct loci. This experiment aimed to investigate the effects of dl-3-butylphthalide intervention based on the transplantation of hematopoietic stem cells and mobilization of endogenous stem cells in a rat model of cerebral infarction, following middle cerebral artery occlusion. Results showed that neurological function was greatly improved and infarct volume was reduced in rats with cerebral infarction. Data also showed that dl-3-butylphthalide can promote hematopoietic stem cells to transform into vascular endothelial cells and neuronal-like cells, and also enhance the therapeutic effect on cerebral infarction by hematopoietic stem cell transplantation and endogenous stem cell mobilization.

  14. Development of a new therapeutic technique to direct stem cells to the infarcted heart using targeted microbubbles: StemBells

    NARCIS (Netherlands)

    L. Woudstra; P.A.J. Krijnen (Paul); S.J.P. Bogaards; E. Meinster; R.W. Emmens; T.J.A. Kokhuis (Tom); I.A.E. Bollen; H. Baltzer; S.M.T. Baart; R. Parbhudayal; K. Helder MScN (Onno); V.W.M. van Hinsbergh (Victor); R.J.P. Musters (René); N. de Jong (Nico); O. Kamp (Otto); H.W.M. Niessen (Hans ); A. van Dijk (Annemieke); L.J.M. Juffermans (Lynda)

    2016-01-01

    textabstractSuccessful stem cell therapy after acute myocardial infarction (AMI) is hindered by lack of engraftment of sufficient stem cells at the site of injury. We designed a novel technique to overcome this problem by assembling stem cell-microbubble complexes, named 'StemBells'.StemBells were a

  15. Monitoring stem cells in phase contrast imaging

    Science.gov (United States)

    Lam, K. P.; Dempsey, K. P.; Collins, D. J.; Richardson, J. B.

    2016-04-01

    Understanding the mechanisms behind the proliferation of Mesenchymal Stem cells (MSCs) can offer a greater insight into the behaviour of these cells throughout their life cycles. Traditional methods of determining the rate of MSC differentiation rely on population based studies over an extended time period. However, such methods can be inadequate as they are unable to track cells as they interact; for example, in autologous cell therapies for osteoarthritis, the development of biological assays that could predict in vivo functional activity and biological action are particularly challenging. Here further research is required to determine non-histochemical biomarkers which provide correlations between cell survival and predictive functional outcome. This paper proposes using a (previously developed) advanced texture-based analysis algorithm to facilitate in vitro cells tracking using time-lapsed microscopy. The technique was adopted to monitor stem cells in the context of unlabelled, phase contrast imaging, with the goal of examining the cell to cell interactions in both monoculture and co-culture systems. The results obtained are analysed using established exploratory procedures developed for time series data and compared with the typical fluorescent-based approach of cell labelling. A review of the progress and the lessons learned are also presented.

  16. Stem cell sources for clinical islet transplantation in type 1 diabetes: embryonic and adult stem cells.

    Science.gov (United States)

    Miszta-Lane, Helena; Mirbolooki, Mohammadreza; James Shapiro, A M; Lakey, Jonathan R T

    2006-01-01

    Lifelong immunosuppressive therapy and inadequate sources of transplantable islets have led the islet transplantation benefits to less than 0.5% of type 1 diabetics. Whereas the potential risk of infection by animal endogenous viruses limits the uses of islet xeno-transplantation, deriving islets from stem cells seems to be able to overcome the current problems of islet shortages and immune compatibility. Both embryonic (derived from the inner cell mass of blastocysts) and adult stem cells (derived from adult tissues) have shown controversial results in secreting insulin in vitro and normalizing hyperglycemia in vivo. ESCs research is thought to have much greater developmental potential than adult stem cells; however it is still in the basic research phase. Existing ESC lines are not believed to be identical or ideal for generating islets or beta-cells and additional ESC lines have to be established. Research with ESCs derived from humans is controversial because it requires the destruction of a human embryo and/or therapeutic cloning, which some believe is a slippery slope to reproductive cloning. On the other hand, adult stem cells are already in some degree specialized, recipients may receive their own stem cells. They are flexible but they have shown mixed degree of availability. Adult stem cells are not pluripotent. They may not exist for all organs. They are difficult to purify and they cannot be maintained well outside the body. In order to draw the future avenues in this field, existent discrepancies between the results need to be clarified. In this study, we will review the different aspects and challenges of using embryonic or adult stem cells in clinical islet transplantation for the treatment of type 1 diabetes.

  17. Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application

    Science.gov (United States)

    Zhu, Qian; Lu, Qiqi; Gao, Rong

    2016-01-01

    Neural crest stem cells (NCSCs) represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs) can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration. PMID:28090209

  18. Prospect of Human Pluripotent Stem Cell-Derived Neural Crest Stem Cells in Clinical Application

    Directory of Open Access Journals (Sweden)

    Qian Zhu

    2016-01-01

    Full Text Available Neural crest stem cells (NCSCs represent a transient and multipotent cell population that contributes to numerous anatomical structures such as peripheral nervous system, teeth, and cornea. NCSC maldevelopment is related to various human diseases including pigmentation abnormalities, disorders affecting autonomic nervous system, and malformations of teeth, eyes, and hearts. As human pluripotent stem cells including human embryonic stem cells (hESCs and human induced pluripotent stem cells (hiPSCs can serve as an unlimited cell source to generate NCSCs, hESC/hiPSC-derived NCSCs can be a valuable tool to study the underlying mechanisms of NCSC-associated diseases, which paves the way for future therapies for these abnormalities. In addition, hESC/hiPSC-derived NCSCs with the capability of differentiating to various cell types are highly promising for clinical organ repair and regeneration. In this review, we first discuss NCSC generation methods from human pluripotent stem cells and differentiation mechanism of NCSCs. Then we focus on the clinical application potential of hESC/hiPSC-derived NCSCs on peripheral nerve injuries, corneal blindness, tooth regeneration, pathological melanogenesis, Hirschsprung disease, and cardiac repair and regeneration.

  19. Stem cell signaling. An integral program for tissue renewal and regeneration : Wnt signaling and stem cell control

    NARCIS (Netherlands)

    Clevers, Hans; Loh, Kyle M; Nusse, Roel

    2014-01-01

    Stem cells fuel tissue development, renewal, and regeneration, and these activities are controlled by the local stem cell microenvironment, the "niche." Wnt signals emanating from the niche can act as self-renewal factors for stem cells in multiple mammalian tissues. Wnt proteins are lipid-modified,

  20. Renal stem cells: fact or science fiction?

    Science.gov (United States)

    McCampbell, Kristen K; Wingert, Rebecca A

    2012-06-01

    The kidney is widely regarded as an organ without regenerative abilities. However, in recent years this dogma has been challenged on the basis of observations of kidney recovery following acute injury, and the identification of renal populations that demonstrate stem cell characteristics in various species. It is currently speculated that the human kidney can regenerate in some contexts, but the mechanisms of renal regeneration remain poorly understood. Numerous controversies surround the potency, behaviour and origins of the cell types that are proposed to perform kidney regeneration. The present review explores the current understanding of renal stem cells and kidney regeneration events, and examines the future challenges in using these insights to create new clinical treatments for kidney disease.

  1. Stem cell procedures in arthroscopic surgery.

    Science.gov (United States)

    Dyrna, Felix; Herbst, Elmar; Hoberman, Alexander; Imhoff, Andreas B; Schmitt, Andreas

    2016-07-13

    The stem cell as the building block necessary for tissue reparation and homeostasis plays a major role in regenerative medicine. Their unique property of being pluripotent, able to control immune process and even secrete a whole army of anabolic mediators, draws interest. While new arthroscopic procedures and techniques involving stem cells have been established over the last decade with improved outcomes, failures and dissatisfaction still occur. Therefore, there is increasing interest in ways to improve the healing response. MSCs are particularly promising for this task given their regenerative potential. While methods of isolating those cells are no longer poses a challenge, the best way of application is not clear. Several experiments in the realm of basic science and animal models have recently been published, addressing this issue, yet the application in clinical practice has lagged. This review provides an overview addressing the current standing of MSCs in the field of arthroscopic surgery.

  2. Autophagy in human embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Thien Tra

    Full Text Available Autophagy (macroautophagy is a degradative process that involves the sequestration of cytosolic material including organelles into double membrane vesicles termed autophagosomes for delivery to the lysosome. Autophagy is essential for preimplantation development of mouse embryos and cavitation of embryoid bodies. The precise roles of autophagy during early human embryonic development, remain however largely uncharacterized. Since human embryonic stem cells constitute a unique model system to study early human embryogenesis we investigated the occurrence of autophagy in human embryonic stem cells. We have, using lentiviral transduction, established multiple human embryonic stem cell lines that stably express GFP-LC3, a fluorescent marker for the autophagosome. Each cell line displays both a normal karyotype and pluripotency as indicated by the presence of cell types representative of the three germlayers in derived teratomas. GFP expression and labelling of autophagosomes is retained after differentiation. Baseline levels of autophagy detected in cultured undifferentiated hESC were increased or decreased in the presence of rapamycin and wortmannin, respectively. Interestingly, autophagy was upregulated in hESCs induced to undergo differentiation by treatment with type I TGF-beta receptor inhibitor SB431542 or removal of MEF secreted maintenance factors. In conclusion we have established hESCs capable of reporting macroautophagy and identify a novel link between autophagy and early differentiation events in hESC.

  3. Embryonic stem cells: from markers to market.

    Science.gov (United States)

    Deb, Kaushik Dilip; Jayaprakash, Anitha Devi; Sharma, Vijay; Totey, Satish

    2008-02-01

    ABSTRACT Embryonic stem cells are considered the mother of all kinds of tissues and cells and it is envisioned as the holy grail of regenerative medicine. However, their use in cell replacement therapies (CRT) has so far been limited and their potentials are yet to be fully realized. The use of human embryonic stem cells (hESC) involves many safety issues pertaining to culture conditions and epigenetic changes. The role and importance of an epigenomic signature in derivation and maintenance of hESC are discussed. We provide a list of important epigenetic markers, which should be studied for evaluation of safety in hESC-based cell replacement therapies. These genes also need to be screened to determine an epigenetic signature for pluripotency in the hESCs. Finally a comprehensive list of all known stemness signature genes and the marker genes for different germ line lineages are presented. This review aims at summing up most of the intriguing molecules that can play a role in the maintenance of pluripotency and can help in determining hESC differentiation to various lineages. Extensive understanding of these markers will eventually help the researchers to transform the hESC research from bench to the bedside. The use of hESCs in CRTs is still in its infancy; much effort is warranted to turn them into the much dreamed about magic wand of regenerative medicine.

  4. Corneal reconstruction by stem cells and bioengineering

    Directory of Open Access Journals (Sweden)

    Arjamaa O

    2012-09-01

    Full Text Available Olli ArjamaaDepartment of Biology, University of Turku, Turku, FinlandAbstract: Almost 300 million people are visually impaired worldwide due to various eye diseases such as cataracts, glaucoma, age-related macular degeneration, diabetic retinopathy, and corneal diseases. Notably, ten million people are blind because of severe ocular surface diseases and the majority of cases occur in developing countries. Blinding ocular surface diseases have, however, become treatable by grafting of surface layers, or by full-thickness transplantation of the cornea. As the demand for human corneal tissue for surface reconstruction and transplantation far exceeds the supply, methods are being developed to supplement tissue donation. Xenotransplantation of the cornea or cells from genetically modified pigs may become one of the solutions. Transplantation of limbal stem cells within tissue biopsies, to restore the transparency of the cornea is another remarkable method, which has shown its potential in several clinical studies. The combination of stem cell technology and engineering of biocompatible tissue equivalent, still at preclinical stage, has shown us how synthetic corneal tissue is able to guide cultured corneal stromal stem cells of human origin, to become native-like stroma, the most important layer of the cornea. These findings give hope for a large-quantity production of biomaterial for corneal reconstruction. As such, clinical ophthalmologists should become more familiar with the methods of laboratory science.Keywords: eye, grafting, keratoplasty, xenotransplantation, cell reservoir, biocompatible tissue equivalent

  5. Niche interactions in epidermal stem cells

    Institute of Scientific and Technical Information of China (English)

    Hye-Ryung Choi; Sang-Young Byun; Soon-Hyo Kwon; Kyoung-Chan Park

    2015-01-01

    Within the epidermis and dermis of the skin, cellssecrete and are surrounded by the extracellular matrix(ECM), which provides structural and biochemicalsupport. The ECM of the epidermis is the basementmembrane, and collagen and other dermal componentsconstitute the ECM of the dermis. There is significantvariation in the composition of the ECM of the epidermisand dermis, which can affect "cell to cell" and "cellto ECM" interactions. These interactions, in turn, caninfluence biological responses, aging, and woundhealing; abnormal ECM signaling likely contributes toskin diseases. Thus, strategies for manipulating cell-ECM interactions are critical for treating wounds and avariety of skin diseases. Many of these strategies focuson epidermal stem cells, which reside in a unique nichein which the ECM is the most important component;interactions between the ECM and epidermal stemcells play a major role in regulating stem cell fate. Asthey constitute a major portion of the ECM, it is likelythat integrins and type Ⅳ collagens are important instem cell regulation and maintenance. In this review,we highlight recent research-including our previouswork-exploring the role that the ECM and its associatedcomponents play in shaping the epidermal stem cellniche.

  6. Identify multiple myeloma stem cells: Utopia?

    Science.gov (United States)

    Saltarella, Ilaria; Lamanuzzi, Aurelia; Reale, Antonia; Vacca, Angelo; Ria, Roberto

    2015-01-26

    Multiple myeloma (MM) is a hematologic malignancy of monoclonal plasma cells which remains incurable despite recent advances in therapies. The presence of cancer stem cells (CSCs) has been demonstrated in many solid and hematologic tumors, so the idea of CSCs has been proposed for MM, even if MM CSCs have not been define yet. The existence of myeloma CSCs with clonotypic B and clonotypic non B cells was postulated by many groups. This review aims to focus on these distinct clonotypic subpopulations and on their ability to develop and sustain MM. The bone marrow microenvironment provides to MM CSCs self-renewal, survival and drug resistance thanks to the presence of normal and cancer stem cell niches. The niches and CSCs interact each other through adhesion molecules and the interplay between ligands and receptors activates stemness signaling (Hedgehog, Wnt and Notch pathways). MM CSCs are also supposed to be responsible for drug resistance that happens in three steps from the initial cancer cell homing microenvironment-mediated to development of microenvironment-independent drug resistance. In this review, we will underline all these aspects of MM CSCs.

  7. Generation of human induced pluripotent stem cells from dermal fibroblasts

    OpenAIRE

    2008-01-01

    The generation of patient-specific pluripotent stem cells has the potential to accelerate the implementation of stem cells for clinical treatment of degenerative diseases. Technologies including somatic cell nuclear transfer and cell fusion might generate such cells but are hindered by issues that might prevent them from being used clinically. Here, we describe methods to use dermal fibroblasts easily obtained from an individual human to generate human induced pluripotent stem (iPS) cells by ...

  8. Reconstitution of mammary epithelial morphogenesis by murine embryonic stem cells undergoing hematopoietic stem cell differentiation.

    Directory of Open Access Journals (Sweden)

    Shuxian Jiang

    Full Text Available BACKGROUND: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating mammary tissue in vivo. METHODOLOGY/PRINCIPAL FINDINGS: To examine whether other types of progenitor cells are able to contribute to mammary branching morphogenesis, we examined the potential of murine embryonic stem (mES cells, undergoing hematopoietic differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs under hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were transplanted in vivo. CONCLUSIONS/SIGNIFICANCE: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.

  9. Stem cell self-renewal in intestinal crypt

    Energy Technology Data Exchange (ETDEWEB)

    Simons, Benjamin D., E-mail: bds10@cam.ac.uk [Cavendish Laboratory, Department of Physics, J.J. Thomson Avenue, University of Cambridge, Cambridge CB3 0HE (United Kingdom); The Wellcome Trust/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN (United Kingdom); Clevers, Hans, E-mail: h.clevers@hubrecht.eu [Hubrecht Institute, KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht (Netherlands)

    2011-11-15

    As a rapidly cycling tissue capable of fast repair and regeneration, the intestinal epithelium has emerged as a favored model system to explore the principles of adult stem cell biology. However, until recently, the identity and characteristics of the stem cell population in both the small intestine and colon has remained the subject of debate. Recent studies based on targeted lineage tracing strategies, combined with the development of an organotypic culture system, have identified the crypt base columnar cell as the intestinal stem cell, and have unveiled the strategy by which the balance between proliferation and differentiation is maintained. These results show that intestinal stem cells operate in a dynamic environment in which frequent and stochastic stem cell loss is compensated by the proliferation of neighboring stem cells. We review the basis of these experimental findings and the insights they offer into the mechanisms of homeostatic stem cell regulation.

  10. A Chemical Probe that Labels Human Pluripotent Stem Cells

    Directory of Open Access Journals (Sweden)

    Nao Hirata

    2014-03-01

    Full Text Available A small-molecule fluorescent probe specific for human pluripotent stem cells would serve as a useful tool for basic cell biology research and stem cell therapy. Screening of fluorescent chemical libraries with human induced pluripotent stem cells (iPSCs and subsequent evaluation of hit molecules identified a fluorescent compound (Kyoto probe 1 [KP-1] that selectively labels human pluripotent stem cells. Our analyses indicated that the selectivity results primarily from a distinct expression pattern of ABC transporters in human pluripotent stem cells and from the transporter selectivity of KP-1. Expression of ABCB1 (MDR1 and ABCG2 (BCRP, both of which cause the efflux of KP-1, is repressed in human pluripotent stem cells. Although KP-1, like other pluripotent markers, is not absolutely specific for pluripotent stem cells, the identified chemical probe may be used in conjunction with other reagents.

  11. Segmentation and Tracking of Neural Stem Cell

    Institute of Scientific and Technical Information of China (English)

    TANG Chun-ming; ZHAO Chun-hui; Ewert Bengtsson

    2005-01-01

    In order to understand the development of stem cells into specialized mature cells it is necessary to study the growth of cells in culture. For this purpose it is very useful to have an efficient computerized cell tracking system. In this paper a prototype system for tracking neural stem cells in a sequence of images is described. In order to get reliable tracking results it is important to have good and robust segmentation of the cells. To achieve this we have implemented three levels of segmentation. The primary level, applied to all frames, is based on fuzzy threshold and watershed segmentation of a fuzzy gray weighted distance transformed image.The second level, applied to difficult frames where the first algorithm seems to have failed, is based on a fast geometric active contour model based on the level set algorithm. Finally, the automatic segmentation result on the crucial first frame can be interactively inspected and corrected. Visual inspection and correction can also be applied to other frames but this is generally not needed. For the tracking all cells are classified into inactive, active, dividing and clustered cells. Different algorithms are used to deal with the different cell categories. A special backtracking step is used to automatically correct for some common errors that appear in the initial forward tracking process.

  12. Control of stem cell fate by engineering their micro andnanoenvironment

    Institute of Scientific and Technical Information of China (English)

    Michelle F Griffin; Peter E Butler; Alexander M Seifalian; Deepak M Kalaskar

    2015-01-01

    Stem cells are capable of long-term self-renewal anddifferentiation into specialised cell types, making theman ideal candidate for a cell source for regenerativemedicine. The control of stem cell fate has become amajor area of interest in the field of regenerative medicineand therapeutic intervention. Conventional methodsof chemically inducing stem cells into specific lineagesis being challenged by the advances in biomaterialtechnology, with evidence highlighting that materialproperties are capable of driving stem cell fate. Materialsare being designed to mimic the clues stem cells receivein their in vivo stem cell niche including topographicaland chemical instructions. Nanotopographical clues thatmimic the extracellular matrix (ECM) in vivo have shownto regulate stem cell differentiation. The delivery of ECMcomponents on biomaterials in the form of short peptidessequences has also proved successful in directing stem celllineage. Growth factors responsible for controlling stemcell fate in vivo have also been delivered via biomaterialsto provide clues to determine stem cell differentiation. Analternative approach to guide stem cells fate is to providegenetic clues including delivering DNA plasmids andsmall interfering RNAs via scaffolds. This review, aims toprovide an overview of the topographical, chemical andmolecular clues that biomaterials can provide to guidestem cell fate. The promising features and challenges ofsuch approaches will be highlighted, to provide directionsfor future advancements in this exciting area of stem celltranslation for regenerative medicine.

  13. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Directory of Open Access Journals (Sweden)

    Wataru Sonoyama

    Full Text Available Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla. Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  14. Mesenchymal stem cell-mediated functional tooth regeneration in swine.

    Science.gov (United States)

    Sonoyama, Wataru; Liu, Yi; Fang, Dianji; Yamaza, Takayoshi; Seo, Byoung-Moo; Zhang, Chunmei; Liu, He; Gronthos, Stan; Wang, Cun-Yu; Wang, Songlin; Shi, Songtao

    2006-12-20

    Mesenchymal stem cell-mediated tissue regeneration is a promising approach for regenerative medicine for a wide range of applications. Here we report a new population of stem cells isolated from the root apical papilla of human teeth (SCAP, stem cells from apical papilla). Using a minipig model, we transplanted both human SCAP and periodontal ligament stem cells (PDLSCs) to generate a root/periodontal complex capable of supporting a porcelain crown, resulting in normal tooth function. This work integrates a stem cell-mediated tissue regeneration strategy, engineered materials for structure, and current dental crown technologies. This hybridized tissue engineering approach led to recovery of tooth strength and appearance.

  15. Crystalline calcium carbonate and hydrogels as microenvironment for stem cells.

    Science.gov (United States)

    Astachov, Liliana; Nevo, Zvi; Aviv, Moran; Vago, Razi

    2011-01-01

    Stem cell development and fate decisions are dictated by the microenvironment in which the stem cell is embedded. Among the advanced goals of tissue engineering is the creation of a microenvironment that will support the maintenance and differentiation of the stem cell--based on embryonic and adult stem cells as potent, cellular sources--for a variety of clinical applications. This review discusses some of the approaches used to create regulatory and instructive microenvironments for the directed differentiation of mesenchymal stem cells (MSCs) using three-dimensional crystalline calcium carbonate biomaterials of marine origin combined with a hydrated gel based on hyaluronan.

  16. Stem cells for the treatment of neurodegenerative diseases.

    Science.gov (United States)

    Dantuma, Elise; Merchant, Stephanie; Sugaya, Kiminobu

    2010-12-10

    Stem cells offer an enormous pool of resources for the understanding of the human body. One proposed use of stem cells has been as an autologous therapy. The use of stem cells for neurodegenerative diseases has become of interest. Clinical applications of stem cells for Alzheimer disease, Parkinson disease, amyotrophic lateral sclerosis, and multiple sclerosis will increase in the coming years, and although great care will need to be taken when moving forward with prospective treatments, the application of stem cells is highly promising.

  17. Trends and Prospects of Stem Cell Research in China

    Institute of Scientific and Technical Information of China (English)

    Jing-wen Cao; Lu Zhang; Ye Li; Qing Yang; Wen-hua Fu; Xiao-chen Wang; Wen-long Huang

    2016-01-01

    Great progresses have been made in fundamental and clinical stem cell research in China in recent years. The official policy on stem cells, which was announced in 2015, seems as the spring of stem cell therapy in China. However, the regulation, governance, and management of clinical expectations are still challenging. This review summarized the current stem cell research and development in the field, as well as its rapidly evolving commercial, regulatory and ethical environment in China. As expected, the prospects of stem cells in China look prospective.

  18. Reprogramming stem cells is a microenvironmental task

    Energy Technology Data Exchange (ETDEWEB)

    Bissell, Mina J; Inman, Jamie

    2008-10-14

    That tumor cells for all practical purposes are unstable and plastic could be expected. However, the astonishing ability of the nuclei from cells of normal adult tissues to be reprogrammed - given the right embryonic context - found its final truth even for mammals in the experiments that allowed engineering Dolly (1). The landmark experiments showed that nuclei originating from cells of frozen mammary tissues were capable of being reprogrammed by the embryonic cytoplasm and its microenvironment to produce a normal sheep. The rest is history. However, whether microenvironments other than those of the embryos can also reprogram adult cells of different tissue origins still containing their cytoplasm is of obvious interest. In this issue of PNAS, the laboratory of Gilbert Smith (2) reports on how the mammary gland microenvironment can reprogram both embryonic and adult stem neuronal cells. The work is a follow-up to their previous report on testis stem cells that were reprogrammed by the mammary microenvironment (3). They demonstrated that cells isolated from the seminiferous tubules of the mature testis, mixed with normal mammary epithelial cells, contributed a sizable number of epithelial progeny to normal mammary outgrowths in transplanted mammary fat pads. However, in those experiments they were unable to distinguish which subpopulation of the testis cells contributed progeny to the mammary epithelial tree. The current work adds new, compelling, and provocative information to our understanding of stem cell plasticity. Booth et al. (2) use neuronal stem cells (NSCs) isolated from WAP-cre/R26R mice combined with unlabeled mammary epithelial cells that subsequently are implanted in cleared mammary fat pads. In this new microenvironment, the NSCs that are incorporated into the branching mammary tree make chimeric glands (Fig. 1) that remarkably can also express the milk protein {beta}-casein, progesterone receptor, and estrogen receptor {alpha}. Remarkably, the

  19. Attributes of Oct4 in stem cell biology: perspectives on cancer stem cells of the ovary

    Directory of Open Access Journals (Sweden)

    Samardzija Chantel

    2012-11-01

    Full Text Available Abstract Epithelial ovarian cancer (EOC remains the most lethal of all the gynaecological malignancies with drug resistance and recurrence remaining the major therapeutic barrier in the management of the disease. Although several studies have been undertaken to understand the mechanisms responsible for chemoresistance and subsequent recurrence in EOC, the exact mechanisms associated with chemoresistance/recurrence continue to remain elusive. Recent studies have shown that the parallel characteristics commonly seen between embryonic stem cells (ESCs and induced pluripotent stem cells (iPSC are also shared by a relatively rare population of cells within tumors that display stem cell-like features. These cells, termed ‘cancer initiating cells’ or ‘cancer stem cells (CSCs’ have been shown not only to display increased self renewal and pluripotent abilities as seen in ESCs and iPSCs, but are also highly tumorigenic in in vivo mouse models. Additionally, these CSCs have been implicated in tumor recurrence and chemoresistance, and when isolated have consistently shown to express the master pluripotency and embryonic stem cell regulating gene Oct4. This article reviews the involvement of Oct4 in cancer progression and chemoresistance, with emphasis on ovarian cancer. Overall, we highlight why ovarian cancer patients, who initially respond to conventional chemotherapy subsequently relapse with recurrent chemoresistant disease that is essentially incurable.

  20. Generation of mature hematopoietic cells from human pluripotent stem cells.

    Science.gov (United States)

    Togarrati, Padma Priya; Suknuntha, Kran

    2012-06-01

    A number of malignant and non-malignant hematological disorders are associated with the abnormal production of mature blood cells or primitive hematopoietic precursors. Their capacity for continuous self-renewal without loss of pluripotency and the ability to differentiate into adult cell types from all three primitive germ layers make human embryonic stem cells and induced pluripotent stem cells (hiPSCs) attractive complementary cell sources for large-scale production of transfusable mature blood cell components in cell replacement therapies. The generation of patient-specific hematopoietic stem/precursor cells from iPSCs by the regulated manipulation of various factors involved in reprograming to ensure complete pluripotency, and developing innovative differentiation strategies for generating unlimited supply of clinically safe, transplantable, HLA-matched cells from hiPSCs to outnumber the inadequate source of hematopoietic stem cells obtained from cord blood, bone marrow and peripheral blood, would have a major impact on the field of regenerative and personalized medicine leading to translation of these results from bench to bedside.