WorldWideScience

Sample records for asphaltenes

  1. The Asphaltenes

    Science.gov (United States)

    Mullins, Oliver C.

    2011-07-01

    Asphaltenes, the most aromatic of the heaviest components of crude oil, are critical to all aspects of petroleum utilization, including reservoir characterization, production, transportation, refining, upgrading, paving, and coating materials. The asphaltenes, which are solid, have or impart crucial and often deleterious attributes in fluids such as high viscosity, emulsion stability, low distillate yields, and inopportune phase separation. Nevertheless, fundamental uncertainties had precluded a first-principles approach to asphaltenes until now. Recently, asphaltene science has undergone a renaissance; many basic molecular and nanocolloidal properties have been resolved and codified in the modified Yen model (also known as the Yen-Mullins model), thereby enabling predictive asphaltene science. Advances in analytical chemistry, especially mass spectrometry, enable the identification of tens of thousands of distinct chemical species in crude oils and asphaltenes. These and other powerful advances in asphaltene science fall under the banner of petroleomics, which incorporates predictive petroleum science and provides a framework for future developments.

  2. Interfacial behavior of asphaltenes.

    Science.gov (United States)

    Langevin, Dominique; Argillier, Jean-François

    2016-07-01

    We review the existing literature on asphaltenes at various types of interfaces: oil-water, air-water, gas-oil and solid-liquid, with more emphasis on the oil-water interfaces. We address the role of asphaltene aggregation, recently clarified for asphaltenes in bulk by the Yen-Mullins model. We discuss the questions of adsorption reversibility and interfacial rheology, especially in connection with emulsion stability. PMID:26498501

  3. The fractal aggregation of asphaltenes.

    Science.gov (United States)

    Hoepfner, Michael P; Fávero, Cláudio Vilas Bôas; Haji-Akbari, Nasim; Fogler, H Scott

    2013-07-16

    This paper discusses time-resolved small-angle neutron scattering results that were used to investigate asphaltene structure and stability with and without a precipitant added in both crude oil and model oil. A novel approach was used to isolate the scattering from asphaltenes that are insoluble and in the process of aggregating from those that are soluble. It was found that both soluble and insoluble asphaltenes form fractal clusters in crude oil and the fractal dimension of the insoluble asphaltene clusters is higher than that of the soluble clusters. Adding heptane also increases the size of soluble asphaltene clusters without modifying the fractal dimension. Understanding the process of insoluble asphaltenes forming fractals with higher fractal dimensions will potentially reveal the microscopic asphaltene destabilization mechanism (i.e., how a precipitant modifies asphaltene-asphaltene interactions). It was concluded that because of the polydisperse nature of asphaltenes, no well-defined asphaltene phase stability envelope exists and small amounts of asphaltenes precipitated even at dilute precipitant concentrations. Asphaltenes that are stable in a crude oil-precipitant mixture are dispersed on the nanometer length scale. An asphaltene precipitation mechanism is proposed that is consistent with the experimental findings. Additionally, it was found that the heptane-insoluble asphaltene fraction is the dominant source of small-angle scattering in crude oil and the previously unobtainable asphaltene solubility at low heptane concentrations was measured. PMID:23808932

  4. Athabasca asphaltene structures

    Energy Technology Data Exchange (ETDEWEB)

    Dettman, H.; Salmon, S.; Zinz, D. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2009-07-01

    In order to model petroleum behaviour during production and refining processes, it is important to understand the molecular character of oil components. Gas chromatography can be used to separate components with boiling points less than 524 degrees C. However, since asphaltenes have a higher boiling point, gel permeation chromatography (GPC) must be used to separate species before analysis. Analysis of Athabasca asphaltene GPC fractions has shown that asphaltenes consist of 2 types of species, notably crunchy species that are graphitic in appearance, and oily species. The molecular weights range from 400 to 2000 g/mole as measured by low resolution mass spectrometry. This poster described the ongoing effort to separate the asphaltenes by polarity. Athabasca asphaltenes were subfractioned into 4 parts according to differential solubility in pentane and centrifugation. Acidic species were isolated from the asphaltenes using adsorption chromatography. The 4 polarity fractions and acid species have been characterized with particular reference to elemental and metals content. Analyses were performed by Fourier transform infrared (FTIR) and nuclear magnetic resonance (NMR) carbon type analyses. This poster provided comparisons of their elution profiles by GPC. tabs., figs.

  5. Raman spectrum of asphaltene

    KAUST Repository

    Abdallah, Wael A.

    2012-11-05

    Asphaltenes extracted from seven different crude oils representing different geological formations from around the globe were analyzed using the Raman spectroscopic technique. Each spectrum is fitted with four main peaks using the Gaussian function. On the basis of D1 and G bands of the Raman spectrum, asphaltene indicated an ordered structure with the presence of boundary defected edges. The average aromatic sheet size of the asphaltene molecules is estimated within the range of 1.52-1.88 nm, which represents approximately seven to eight aromatic fused rings. This estimation is based on the integrated intensity of D1 and G bands, as proposed by Tunistra and Koenig. The results here are in perfect agreement with so many other used techniques and indicate the potential applicability of Raman measurements to determine the average aromatic ring size and its boundary. © 2012 American Chemical Society.

  6. Polymeric stabilization of colloidal asphaltenes

    Science.gov (United States)

    Hashmi, Sara; Firoozabadi, Abbas

    2010-03-01

    Asphaltenes, the heaviest component of crude oil, cause many problems in petroleum extraction and recovery. Operationally defined as insoluble in long chain alkanes but soluble in toluene, asphaltenes have been described by bulk thermodynamic models such as the Flory-Huggins theory. However, bulk models work well only for asphaltenes in good solvents. Characterization of asphaltenes in poor solvents remains elusive: molecular scale asphaltenes readily aggregate to the colloidal scale and become highly unstable in solution. We investigate the ability of polymers to stabilize colloidal asphaltene suspensions in heptane. In the absence of added polymer, sedimentation measurements reveal dynamics reminiscent of collapsing gels. Adding polymers to colloidal asphaltene suspensions can delay the characteristic sedimentation time by orders of magnitude. Light scattering results suggest that the mechanism of stabilization may be related to a decrease in both particle size and polydispersity as a function of added polymer.

  7. Asphaltene based photovoltaic devices

    Science.gov (United States)

    Chianelli, Russell R.; Castillo, Karina; Gupta, Vipin; Qudah, Ali M.; Torres, Brenda; Abujnah, Rajib E.

    2016-03-22

    Photovoltaic devices and methods of making the same, are disclosed herein. The cell comprises a photovoltaic device that comprises a first electrically conductive layer comprising a photo-sensitized electrode; at least one photoelectrochemical layer comprising metal-oxide particles, an electrolyte solution comprising at least one asphaltene fraction, wherein the metal-oxide particles are optionally dispersed in a surfactant; and a second electrically conductive layer comprising a counter-electrode, wherein the second electrically conductive layer comprises one or more conductive elements comprising carbon, graphite, soot, carbon allotropes or any combinations thereof.

  8. Asphaltene Aggregation and Fouling Behavior

    Science.gov (United States)

    Derakhshesh, Marzie

    This thesis explored the properties of asphaltene nano-aggregates in crude oil and toluene based solutions and fouling at process furnace temperatures, and the links between these two phenomena. The link between stability of asphaltenes at ambient conditions and fouling at the conditions of a delayed coker furnace, at over 450 °C, was examined by blending crude oil with an aliphatic diluent in different ratios. The stability of the blends were measured using a S-value analyzer, then fouling rates were measured on electrically heated stainless steel 316 wires in an autoclave reactor. The less stable the blend, the greater the rate and extent of fouling. The most severe fouling occurred with the unstable asphaltenes. SEM imaging of the foulant illustrates very different textures, with the structure becoming more porous with lower stability. Under cross-polarized light, the coke shows the presence of mesophase in the foulant layer. These data suggest a correlation between the fouling rate at high temperature furnace conditions and the stability index of the crude oil. Three organic polysulfides were introduced to the crude oil to examine their effect on fouling. The polysulfides are able to reduce coking and carbon monoxide generation in steam crackers. The fouling results demonstrated that polysulfide with more sulfur content increased the amount of corrosion-fouling of the wire. Various additives, solvents, ultrasound, and heat were employed to attempt to completely disaggregate the asphaltene nano-aggregates in solution at room temperature. The primary analytical technique used to monitor the nano-aggregation state of the asphaltenes in solution was the UV-visible spectroscopy. The results indicate that stronger solvents, such as pyridine and quinoline, combined with ionic liquids yield a slight reduction in the apparent absorbance at longer wavelengths, indicative of a decrease in the nano-aggregate size although the magnitude of the decrease is not significant

  9. Electrodeposition of Asphaltenes. 2. Effect of Resins and Additives

    DEFF Research Database (Denmark)

    Khvostichenko, Daria S; Andersen, Simon Ivar

    2010-01-01

    Electrodeposition of asphaltenes from oil/heptane, asphaltene/heptane, and asphaltene/heptane/additive mixtures has been investigated. Toluene, native petroleum resins, and a synthetic asphaltene dispersant, p-nonylphenol, were used as additives. The addition of these components led to partial...... preparation of the mixture and the toluene content. Introduction of petroleum resins into asphaltene/heptane mixtures resulted in neutralization of the asphaltene particle charge. The addition of p-nonylphenol to asphaltene suspensions in heptane did not alter the charge of asphaltene particles. Current...

  10. Asphaltenes and Asphaltene model compounds: Adsorption, Desorption and Interfacial Rheology.

    OpenAIRE

    Pradilla, Diego

    2016-01-01

    There are numerous problems encountered during extraction, production, transportation and refining of crude oil. Most of these problems are typically oil-specific, meaning that they depend upon the source of the oil, and sometimes they are reservoir-specific, meaning that they depend on the stage of extraction (primary, secondary or enhanced recovery). Nevertheless, a great part of the problems are related to the indigenous surface-active species such as asphaltenes, naphthenat...

  11. Molecular thermodynamics for prevention of asphaltene precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianzhong; Prausnitz, J.M.

    1996-06-01

    Crude petroleum is a complex mixture of compounds with different chemical structures and molecular weights. Asphaltenes, the heaviest and most polar fraction of crude oil, are insoluble in normal alkanes such as n-heptane, but they are soluble in aromatic solvents such as toluene. The molecular nature of asphaltenes and their role in production and processing of crude oils have been the topic of numerous studies. Under some conditions, asphaltenes precipitate from a petroleum fluid, causing severe problems in production and transportation Our research objective is to develop a theoretically based, but engineering-oriented, molecular-thermodynamic model which can describe the phase behavior of asphaltene precipitation in petroleum fluids, to provide guidance for petroleum-engineering design and production. In this progress report, particular attention is given to the potential of mean force between asphaltene molecules in a medium of asphaltene-free solvent. This potential of mean force is derived using the principles of colloid science. It depends on the properties of asphaltene and those of the solvent as well as on temperature and pressure. The effect of a solvent on interactions between asphaltenes is taken into account through its density and through its molecular dispersion properties.

  12. Quantification of asphaltene precipitation by scaling equation

    Science.gov (United States)

    Janier, Josefina Barnachea; Jalil, Mohamad Afzal B. Abd.; Samin, Mohamad Izhar B. Mohd; Karim, Samsul Ariffin B. A.

    2015-02-01

    Asphaltene precipitation from crude oil is one of the issues for the oil industry. The deposition of asphaltene occurs during production, transportation and separating process. The injection of carbon dioxide (CO2) during enhance oil recovery (EOR) is believed to contribute much to the precipitation of asphaltene. Precipitation can be affected by the changes in temperature and pressure on the crude oil however, reduction in pressure contribute much to the instability of asphaltene as compared to temperature. This paper discussed the quantification of precipitated asphaltene in crude oil at different high pressures and at constant temperature. The derived scaling equation was based on the reservoir condition with variation in the amount of carbon dioxide (CO2) mixed with Dulang a light crude oil sample used in the experiment towards the stability of asphaltene. A FluidEval PVT cell with Solid Detection System (SDS) was the instrument used to gain experimental knowledge on the behavior of fluid at reservoir conditions. Two conditions were followed in the conduct of the experiment. Firstly, a 45cc light crude oil was mixed with 18cc (40%) of CO2 and secondly, the same amount of crude oil sample was mixed with 27cc (60%) of CO2. Results showed that for a 45cc crude oil sample combined with 18cc (40%) of CO2 gas indicated a saturation pressure of 1498.37psi and asphaltene onset point was 1620psi. Then for the same amount of crude oil combined with 27cc (60%) of CO2, the saturation pressure was 2046.502psi and asphaltene onset point was 2230psi. The derivation of the scaling equation considered reservoir temperature, pressure, bubble point pressure, mole percent of the precipitant the injected gas CO2, and the gas molecular weight. The scaled equation resulted to a third order polynomial that can be used to quantify the amount of asphaltene in crude oil.

  13. Separation and characterization of asphaltenic subfractions

    Energy Technology Data Exchange (ETDEWEB)

    Honse, Siller O.; Ferreira, Silas R.; Mansur, Claudia R. E.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Professora Eloisa Mano; Gonzalez, Gaspar, E-mail: elucas@ima.ufrj.br [Centro de Pesquisas da PETROBRAS (CENPES), Rio de Janeiro, RJ (Brazil)

    2012-07-01

    The structure of the various asphaltenic subfractions found in crude oil was evaluated. For this purpose, C5 asphaltenes were extracted from an asphaltic residue using n-pentane as the flocculant solvent. The different subfractions were isolated from the C5 asphaltenes by the difference in solubility in different solvents. These were characterized by infrared spectroscopy, nuclear magnetic resonance, X-ray fluorescence, elementary analysis and mass spectrometry. The results confirmed that the subfractions extracted with higher alkanes had greater aromaticity and molar mass. However, small solubility variations between the subfractions were attributed mainly to the variation in the concentrations of cyclical hydrocarbon compounds and metals (author)

  14. Determination of the molecular weight of asphaltenes

    International Nuclear Information System (INIS)

    Average molecular weights of asphaltenes from Colombian Barrancabermeja asphalts were determined using freezing point depression and MALDI TOF methods. Asphaltenes from different sources were used: fresh Barrancabermeja asphalt and recovered asphalt of the same origin that had been used as paving during five years. The results obtained using both techniques ate consistent and show that average molecular weight of asphaltenes from fresh asphalt is lower than the weight of asphaltenes from recovered asphalts. The freezing point depression method using benzene as solvent proved to be reliable and accurate when the temperature changes are measured with an uncertainty of +/- 0.00 1 K. The matrix preparation for the MALDI TOF method was modified using silver trifluoroacetate as ionisation promoter

  15. Asphaltenes-based polymer nano-composites

    Science.gov (United States)

    Bowen, III, Daniel E

    2013-12-17

    Inventive composite materials are provided. The composite is preferably a nano-composite, and comprises an asphaltene, or a mixture of asphaltenes, blended with a polymer. The polymer can be any polymer in need of altered properties, including those selected from the group consisting of epoxies, acrylics, urethanes, silicones, cyanoacrylates, vulcanized rubber, phenol-formaldehyde, melamine-formaldehyde, urea-formaldehyde, imides, esters, cyanate esters, allyl resins.

  16. Rheology of asphaltene-toluene/water interfaces.

    Science.gov (United States)

    Sztukowski, Danuta M; Yarranton, Harvey W

    2005-12-01

    The stability of water-in-crude oil emulsions is frequently attributed to a rigid asphaltene film at the water/oil interface. The rheological properties of these films and their relationship to emulsion stability are ill defined. In this study, the interfacial tension, elastic modulus, and viscous modulus were measured using a drop shape analyzer for model oils consisting of asphaltenes dissolved in toluene for concentrations varying from 0.002 to 20 kg/m(3). The effects of oscillation frequency, asphaltene concentration, and interface aging time were examined. The films exhibited viscoelastic behavior. The total modulus increased as the interface aged at all asphaltene concentrations. An attempt was made to model the rheology for the full range of asphaltene concentration. The instantaneous elasticity was modeled with a surface equation of state (SEOS), and the elastic and viscous moduli, with the Lucassen-van den Tempel (LVDT) model. It was found that only the early-time data could be modeled using the SEOS-LVDT approach; that is, the instantaneous, elastic, and viscous moduli of interfaces aged for at most 10 minutes. At longer interface aging times, the SEOS-LVDT approach was invalid, likely because of irreversible adsorption of asphaltenes on the interface and the formation of a network structure. PMID:16316096

  17. The Critical Micelle Concentration of Asphaltenes as Measured by Calorimetry

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Christensen, S. D.

    2000-01-01

    solvent mixture) is titrated with a solution of asphaltene in the same solvent. The asphaltene concentration of the injected solution is at a level above the critical micelle concentration (CMC). In the present paper the procedure is applied in investigation of asphaltenes as well as subfractions...

  18. Investigation of Asphaltene Precipitation at Elevated Temperature

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lindeloff, Niels; Stenby, Erling Halfdan

    1998-01-01

    In order to obtain quantitative data on the asphaltene precipitation induced by the addition of n-alkane (heptane) at temperatures above the normal boiling point of the precipitant, a high temperature/high pressure filtration apparatus has been constructed. Oil and alkane are mixed at the...... the extracted fraction, hence there is no room for stirring. The equipment as well as solutions to some of the problems are presented along with precipitation data from 40 to 200 degrees C. The asphaltenes separated are analyzed using FT-ir. The filtrate containing the maltenes was cooled to room...

  19. Colloidal structural evolution of asphaltene studied by confocal microscopy

    Science.gov (United States)

    Hung, Jannett; Castillo, Jimmy A.; Reyes, A.

    2004-10-01

    In this work, a detail analysis of the flocculation kinetic of asphaltenes colloidal particles has been carried out usng confocal microscopy. The colloidal structural evolution of the asphaltene flocculated has had varies postulated; however, the aggregation process of asphaltene is still not fully understood. In a recent paper, using Confocal microscope (homemade), we reported high-resolution micrographic images of asphaltenes flocculated and the correlation between crude oil stability and flocculation process. This technique permitted visualizes directly the physical nature of asphaltene flocculated. In this work, a detail analysis of the flocculation kinetic of asphaltene colloidal particles has been carried out using confocal microscopy. The physical nature of asphaltene flocculated from different crude oils is showed through of high-resolution image micrographies and its colloidal structural evolution.

  20. Asphaltene precipitates in oil production wells

    DEFF Research Database (Denmark)

    Kleinitz, W,; Andersen, Simon Ivar

    1998-01-01

    At the beginning of production in a southern German oil field, flow blockage was observed during file initial stage of production from the oil wells. The hindrance was caused by the precipitation of asphaltenes in the proximity of the borehole and in the tubings. The precipitates were of solid...

  1. Asphaltenes : interfacial aggregates characterization and film structure

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, G.; Argillier, J.F. [Inst. Francais du Petrole, Rueil-Malmaison Cedex (France); Langevin, D. [Univ. Paris-Sud, Orsay Cedex (France). Laboratoire de Physique des Solides

    2008-07-01

    An understanding of stability mechanisms of crude oil emulsions is necessary for controlling and improving heavy oil production. The properties of the amphiphilic film that surrounds the droplets influence the behaviour of emulsions. This study examined the complex composition of asphaltenes, resins and naphtenic acids found in crude oil using a combination of techniques, such as measurement of dynamic interfacial tension and rheology of water; and modelling the oil interface where asphaltenes or naphthenic acids are dissolved. The study revealed the properties of the films. The amount of adsorbed asphaltene at the interface was determined through small-angle neutrons scattering (SANS) measurements, in which the structure of the interfacial layer and aggregates characteristics were obtained, along with UV-VIS experiments. The study showed that different parameters have a significant influence on interfacial structure and film properties, and therefore on emulsions behaviour. The parameters include naphthenic acid/asphaltene ratio, molecular weight of the naphtenic acid, pH and ionic strength of the aqueous phase. Some correlation between microscopic properties and macroscopic behaviour were obtained using stability tests on emulsions.

  2. On the Mass Balance of Asphaltene Precipitation

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lira-Galeana, C.; Stenby, Erling Halfdan

    2001-01-01

    In the evaluation of experimental data as well as in calculation of phase equilibria the necessity of the application of mass balances is obvious. In the case of asphaltenes the colloidal nature of these compounds may highly affect the mass balance. In the present paper several experiments are pe...

  3. Monitoring of large diesel engines through asphaltene content

    Energy Technology Data Exchange (ETDEWEB)

    Declerck, R. [Texaco Technology Ghent (Belgium)

    1997-12-31

    Lubricants in large diesel engines, for marine and power plant application, are open contaminated with heavy fuel. This type of contamination results in blackening of the engines and deposit formation because of the coagulation of asphaltene particles. Monitoring of the asphaltene content presents the operator with important information on the condition of the engine and the lubricant. This technique was an important asset in developing a new range of lubricants highly capable of tackling the presence of asphaltenes. (orig.)

  4. Pyrolysis of petroleum asphaltenes from different geological origins and use of methylnaphthalenes and methylphenanthrenes as maturity indicators for asphaltenes

    Indian Academy of Sciences (India)

    Manoj Kumar Sarmah; Arun Borthakur; Aradhana Dutta

    2010-08-01

    Asphaltenes separated from two different crude oils from upper Assam, India, having different geological origins, viz. DK (Eocene) and JN (Oligocene–Miocene) were pyrolysed at 600°C and the products were analysed by gas chromatography–mass spectrometry (GC/MS) especially for the generated alkylnaphthalenes and alkylphenanthrenes. Both the asphaltenes produced aliphatic as well as aromatic compound classes. Alkylnaphthalenes and alkylphenanthrenes were identified by using reference chromatograms and literature data and the distributions were used to assess thermal maturity of the asphaltenes. The ratios of -substituted to α-substituted isomers of both alkylnaphthalenes and alkylphenanthrenes revealed higher maturity of the JN asphaltenes than the DK asphaltenes. For both the asphaltenes the abundance of 1-methylphenanthrene dominated over that of 9-methylphenanthrene showing the terrestrial nature of the organic matter.

  5. Pyrolysis of petroleum asphaltenes from different geological origins and use of methylnaphthalenes and methylphenanthrenes as maturity indicators for asphaltenes

    Indian Academy of Sciences (India)

    Manoj Kumar Sarmah; Arun Borthakur; Aradhana Dutta

    2013-04-01

    Asphaltenes separated from two different crude oils from upper Assam, India, having different geological origins, viz. DK(eocene) and JN (oligocene–miocene) were pyrolysed at 600 °C and the products were analysed by gas chromatography–mass spectrometry (GC/MS) especially for the generated alkylnaphthalenes and alkylphenanthrenes. Both the asphaltenes produce aliphatic as well as aromatic compound classes. Alkylnaphthalenes and alkylphenanthrenes were identified by using reference chromatograms and literature data and the distributions used to assess thermalmaturity of the asphaltenes. The ratios of -substituted to -substituted isomers of both alkylnaphthalenes and alkylphenanthrenes revealed higher maturity of the JN asphaltenes than the DK asphaltenes. For both the asphaltenes, the abundance of 1-methylphenanthrene dominates over that of 9-methylphenanthrene showing the terrestrial nature of the organic matter.

  6. Effect of asphaltenes on crude oil wax crystallization

    DEFF Research Database (Denmark)

    Kriz, Pavel; Andersen, Simon Ivar

    2005-01-01

    The paper summarizes the experimental work done on asphaltene influenced wax crystallization. Three different asphaltenes (from stable oil, instable oil, and deposit) were mixed at several concentrations or dispersions into the waxy crude oil. These blends were evaluated by viscometry and yield...... stress measurement and compared with the original crude oil. A complex asphaltene−wax interaction as a function of asphaltene concentration and degree of asphaltene dispersion under dynamic and static condition was observed. The crystallization and the wax network strength was strongly dependent...

  7. Separation of Asphaltenes by Polarity using Liquid-Liquid Extraction

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar

    1997-01-01

    In order to investigate the nature of petroleum asphaltenes in terms of polarity a process was developed using initial liquid-liquid extraction of the oil phase followed by precipitation of the asphaltenes using n-heptane. The liquid-liquid extraction was performed using toluene-methanol mixtures...... with increasing content of toluene. Although large fractions of the crude oil (Alaska ´93) was extracted in the higher polarity solvents (high concentration of methanol), the asphaltene content of the dissolved material was low. As the toluene content increased more asphaltenes were transferred to the...... extracted in the high polarity solvents....

  8. Study of asphaltene precipitation by Calorimetry

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Plantier, Frédéric; Bessières, David; Andersen, Simon Ivar; Stenby, Erling Halfdan; Carrier, Hervé

    2007-01-01

    Can calorimetry bring new input to the Current understanding of asphaltene precipitation? In this work, two types of precipitation were studied by means of calorimetry: addition of n-heptane into asphaltene solutions and temperature/pressure variations on a recombined live oil. The first series of...... experiments showed that weak forces determine precipitation. Indeed, isothermal titration calorimetry could not detect any clear signal although this technique can detect low-energy transitions such as liquid-liquid equilibrium and rnicellization. The second series of tests proved that precipitation caused by...... T and P variations is exothermic for this system. Furthermore, the temperature-induced precipitation is accompanied by an increase in the apparent thermal expansivity. Therefore, it seems that these two phase transitions exhibit different calorimetric behaviours and they may not be as similar as...

  9. Asphaltene analysis using size exclusion chromatogrphy

    Energy Technology Data Exchange (ETDEWEB)

    Lynch, A.W.; Thomas, M.G.

    1983-09-01

    A common technique used in coal liquefaction investigations is the asphaltene analysis, whereby products are separated into four major fractions (insolubles, preasphaltenes, asphaltenes and oils) by solvent extraction techniques. The fractions are defined by their solubility in organic solvents such as tetrahydrofuran, toluene and pentane. An instrumental method of analysis, using gel permeation liquid chromatography, was developed to reduce the problems with the conventional solvent separation. The technique relies upon the fact that the fractions differ in molecular size as well as solubility. The method uses one solvent (THF) and a single 100A microstyragel column to separate the three soluble fractions. The trends in the data obtained with the molecular size separation agree with the trends obtained by conventional solvent separation on the same samples. (5 refs.)

  10. Investigation of Asphaltene Precipitation at Elevated Temperature

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lindeloff, Niels; Stenby, Erling Halfdan

    1998-01-01

    appropriate temperature and the pressure in closed vessels keeping the mixture at the liquid state. The filtration is performed with a small differential pressure over the filter so as to avoid flashing the mixture. The technique requires a low dead volume in the system to minimize the content of maltenes in...... the extracted fraction, hence there is no room for stirring. The equipment as well as solutions to some of the problems are presented along with precipitation data from 40 to 200 degrees C. The asphaltenes separated are analyzed using FT-ir. The filtrate containing the maltenes was cooled to room...... temperature and the asphaltenes separating upon cooling was collected and analyzed. The oil and selected maltene fractions and extraction/cleaning solvents were analyzed using GC....

  11. HINDERED DIFFUSION OF ASPHALTENES AT ELEVATED TEMPERATURE AND PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    James A. Guin; Ganesh Ramakrishnan; Keiji Asada

    2000-04-07

    During this past six months we continued our ongoing studies of the diffusion controlled uptake of coal and petroleum asphaltenes into a porous carbon catalyst. Toluene was used as the solvent for experiments at 20 C and 75 C while 1-methylnaphthalene was the solvent for the higher temperature experiments at 100 C, 150 C and 250 C. All runs were made at a pressure of 250 psi (inert He gas). Experiments were performed at 20 C and 75 C, for the petroleum asphaltene/toluene system. For the coal asphaltene/toluene system, experiments were performed at 75 C. Experiments were performed at 100 C, 150 C and 250 C for the coal asphaltene/1-methylnaphthalene system. A comparison between the experimental data and model simulated data showed that the mathematical model satisfactorily fitted the adsorptive diffusion of both the coal and petroleum asphaltenes onto a porous activated carbon. The adsorption constant decreases with an increase in temperature for both, the coal asphaltene/1-methylnaphthalene system as well as the petroleum asphaltene/toluene system. It was found that the adsorption constant for the coal asphaltene/toluene system at 75 C was much higher than that of the petroleum asphaltene/toluene system at the same temperature providing evidence of the greater affinity of the coal asphaltenes for the carbon surface. This could be due to the presence of more functional heteroatomic groups in the coal asphaltenes compared to their petroleum counterparts. Also during this time period, a new carbon catalyst support was prepared in our laboratory which will be used in adsorption experiments during the next phase of work.

  12. Asphaltene and solids-stabilized water-in-oil emulsions

    Science.gov (United States)

    Sztukowski, Danuta M.

    Water-in-crude oil emulsions are a problem in crude oil production, transportation, and processing. Many of these emulsions are stabilized by asphaltenes and native oilfield solids adsorbed at the oil-water interface. Design of effective emulsion treatments is hampered because there is a lack of understanding of the role asphaltenes and solids play in stabilizing these emulsions. In this work, the structural, compositional and rheological properties of water/hydrocarbon interfaces were determined for model emulsions consisting of water, toluene, heptane, asphaltenes and native oilfield solids. The characteristics of the interface were related to the properties of asphaltenes and native solids. Emulsion stability was correlated to interfacial rheology. A combination of vapour pressure osmometry, interfacial tension and emulsion gravimetric studies indicated that asphaltenes initially adsorb at the interface as a monolayer of self-associated molecular aggregates. It was demonstrated why it is necessary to account for asphaltene self-association when interpreting interfacial measurements. The interfacial area of Athabasca asphaltenes was found to be approximately 1.5 nm2 and did not vary with concentration or asphaltene self-association. Hence, more self-associated asphaltenes simply formed a thicker monolayer. The interfacial monolayer observed in this work varied from 2 to 9 nm in thickness. The asphaltene monolayer was shown to adsorb reversibly only at short interface aging times. The film gradually reorganizes at the interface to form a rigid, irreversibly adsorbed network. The elastic and viscous moduli can be modeled using the Lucassen-van den Tempel (LVDT) model when the aging time is less than 10 minutes. An increase in film rigidity can be detected with an increase in the total elastic modulus. Increased film rigidity was shown to reduce the rate of coalescence in an emulsion and increase overall emulsion stability (reduce free water resolution). The rate of

  13. Study on the polarity, solubility, and stacking characteristics of asphaltenes

    KAUST Repository

    Zhang, Long-li

    2014-07-01

    The structure and transformation of fused aromatic ring system in asphaltenes play an important role in the character of asphaltenes, and in step affect the properties of heavy oils. Polarity, solubility and structural characteristics of asphaltenes derived from Tahe atmospheric residue (THAR) and Tuo-826 heavy crude oil (Tuo-826) were analyzed for study of their internal relationship. A fractionation method was used to separate the asphaltenes into four sub-fractions, based on their solubility in the mixed solvent, for the study of different structural and physical-chemical properties, such as polarity, solubility, morphology, stacking characteristics, and mean structural parameters. Transmission electron microscope (TEM) observation can present the intuitive morphology of asphaltene molecules, and shows that the structure of asphaltenes is in local order as well as long range disorder. The analysis results showed that n-heptane asphaltenes of THAR and Tuo-826 had larger dipole moment values, larger fused aromatic ring systems, larger mean number of stacking layers, and less interlayer spacing between stacking layers than the corresponding n-pentane asphaltenes. The sub-fractions that were inclined to precipitate from the mixture of n-heptane and tetrahydrofuran had larger polarity and less solubility. From the first sub-fraction to the fourth sub-fraction, polarity, mean stacking numbers, and average layer size from the TEM images follow a gradual decrease. The structural parameters derived from TEM images could reflect the largest fused aromatic ring system in asphaltene molecule, yet the parameters derived from 1H NMR data reflected the mean message of poly-aromatic ring systems. The structural parameters derived from TEM images were more consistent with the polarity variation of sub-fractions than those derived from 1H NMR data, which indicates that the largest fused aromatic ring system will play a more important role in the stacking characteristics of

  14. Interfacial tension change due to asphaltene flocculation in recombined oils

    Energy Technology Data Exchange (ETDEWEB)

    Carrier, H.; Pauly, J.; Daridon, J.L. [Univ. de Pau, Pau Cedex (France). Laboratoire des Fluides Complexes; Mejia, A. [Univ. de Pau, Pau Cedex (France). Laboratoire des Fluides Complexes; Univ. Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of). Facultad de Ciencias; Castillo, J. [Univ. Central de Venezuela, Caracas (Venezuela, Bolivarian Republic of). Facultad de Ciencias

    2008-07-01

    Asphaltenes found in reservoirs fluids may dissolve as colloidal aggregates in crude oils. The aggregates might destabilize as a result of changes in both temperature and pressure, resulting in flocculation of asphaltenes. The insolubility of asphaltenes can cause major problems at different stages of oil production, such as deposition and flow blockage. In order to evaluate the risk of asphaltene formation and to design techniques to prevent asphaltene deposits, it is necessary to measure and predict the conditions of flocculation throughout the pressures encountered from reservoir to surface conditions. To date, most asphaltene stability studies have been conducted at atmospheric pressure for dead oils by adding precipitating solvents. However the relationship of these stability tests with asphaltene flocculation due to the decompression of live oil in reservoir or production conditions is not fully established. Accurate measurements on both atmospheric and field conditions are needed. In order to address this problem, a high-pressure device using refractive index measurements and a filtration technique was designed to measure onset of asphaltene flocculation in live oils. The capacity of the device was also extended to investigate the evolution of the interfacial tension between crude oil and gases or immiscible liquids such as water, at pressures up to 70 MPa. Interfacial tension was measured by axisymmetric drop shape analysis of a pendant oil drop. The study found that a relationship exists between the discontinuity in the trend of the superficial tension as a function of the pressure and the threshold of asphaltenes aggregation due to decompression. The study provided evidence of the effect of asphaltenes flocculation on the interfacial tension. 2 refs.

  15. Structural Study of Asphaltenes from Iranian Heavy Crude Oil

    Directory of Open Access Journals (Sweden)

    Davarpanah L.

    2015-11-01

    Full Text Available In the present study, asphaltene precipitation from Iranian heavy crude oil (Persian Gulf off-shore was performed using n-pentane (n-C5 and n-heptane (n-C7 as light alkane precipitants. Several analytical techniques, each following different principles, were then used to structurally characterize the precipitated asphaltenes. The yield of asphaltene obtained using n-pentane precipitant was higher than asphaltene precipitated with the use of n-heptane. The asphaltene removal affected the n-C5 and n-C7 maltene fractions at temperatures below 204°C, as shown by the data obtained through the simulated distillation technique. Viscosity of heavy oil is influenced by the asphaltene content and behavior. The viscosity dependence of the test heavy oil on the shear rate applied was determined and the flow was low at y. above 25 s-1 . The reconstituted heavy oil samples were prepared by adding different amounts of asphaltenes to the maltenes (deasphalted heavy oil and asphaltene effects were more pronounced at the low temperature of 25°C as compared with those at the higher temperatures. According to the power law model used in this study the flowability of the test heavy oil exhibited a pseudoplastic character. Structural results obtained from Fourier Transform InfraRed (FTIR spectroscopy showed the presence of the different functional groups in the precipitated asphaltenes. For instance, the presence of different hydrocarbons (aliphatic, aromatic and alicyclic based on their characteristics in the FTIR spectra was confirmed. Resins are effective dispersants, and removal of this fraction from the crude oil is disturbing to the colloidal nature of heavy oil; asphaltene flocculation and precipitation eventually occur. Appearance of pores in the Scanning Electron Microscopy (SEM images was used as an indicator of the resin detachment. With the use of 1H and 13C Nuclear Magnetic Resonance (NMR spectroscopy, two important structural parameters of the

  16. Asphaltene precipitates in oil production wells

    DEFF Research Database (Denmark)

    Kleinitz, W,; Andersen, Simon Ivar

    1998-01-01

    compounds in the organic scales from operations definitely differed from the data published in the literature. In order to dissolve the precipitates and thus eliminate the damage, various organic solvents and industrial solvent mixtures were examined. The kinetics of the dissolution process in operational...... subsequently resumed in these wells. The production from the wells was adjusted in such a way that the conditions for asphaltene deposition are effectively suppressed for several years. The long-term success of the treatment tons also supported by modifying the production strategy. The process of optimising...

  17. Role of asphaltenes in stabilizing thin liquid emulsion films.

    Science.gov (United States)

    Tchoukov, Plamen; Yang, Fan; Xu, Zhenghe; Dabros, Tadeusz; Czarnecki, Jan; Sjöblom, Johan

    2014-03-25

    Drainage kinetics, thickness, and stability of water-in-oil thin liquid emulsion films obtained from asphaltenes, heavy oil (bitumen), and deasphalted heavy oil (maltenes) diluted in toluene are studied. The results show that asphaltenes stabilize thin organic liquid films at much lower concentrations than maltenes and bitumen. The drainage of thin organic liquid films containing asphaltenes is significantly slower than the drainage of the films containing maltenes and bitumen. The films stabilized by asphaltenes are much thicker (40-90 nm) than those stabilized by maltenes (∼10 nm). Such significant variation in the film properties points to different stabilization mechanisms of thin organic liquid films. Apparent aging effects, including gradual increase of film thickness, rigidity of oil/water interface, and formation of submicrometer size aggregates, were observed for thin organic liquid films containing asphaltenes. No aging effects were observed for films containing maltenes and bitumen in toluene. The increasing stability and lower drainage dynamics of asphaltene-containing thin liquid films are attributed to specific ability of asphaltenes to self-assemble and form 3D network in the film. The characteristic length of stable films is well beyond the size of single asphaltene molecules, nanoaggregates, or even clusters of nanoaggregates reported in the literature. Buildup of such 3D structure modifies the rheological properties of the liquid film to be non-Newtonian with yield stress (gel like). Formation of such network structure appears to be responsible for the slower drainage of thin asphaltenes in toluene liquid films. The yield stress of liquid film as small as ∼10(-2) Pa is sufficient to stop the drainage before the film reaches the critical thickness at which film rupture occurs. PMID:24564447

  18. A study of asphaltene solubility and precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Hong E.; Paul Watkinson [University of British Columbia, Vancouver, BC (Canada). Department of Chemical and Biological Engineering

    2004-10-01

    The effects of diluent composition on asphaltene precipitation from Cold Lake vacuum residue and Athabasca atmospheric tower bottoms were determined using the hot filtration method at 60-85{sup o}C. For selected mixtures the temperature range was extended to 300{sup o}C. The diluents include pure n-alkanes, a lube oil base-stock, a heavy vacuum gas oil and a resin-enriched fraction recovered from Cold Lake vacuum residue by supercritical fluid extraction and fractionation. The latter three complex diluents were tested alone and in blends, in order to cover a range of saturates from 56 to 99.4 wt%, aromatics from 0.6 to 25 wt%, and resins from 0 to 19 wt%. The scaling equation proposed by Rassamdana et al. in which the weight percent of asphaltenes precipitated is expressed as a function of alkane to feed ratio, and the alkane molecular mass, gave good agreement with the data for the pure alkane diluents. For the more complex diluents, an extension to the scaling equation was developed with two additional variables (the density and saturate content of the diluents). This equation provided good agreement with the data over a wide range of diluent to feed ratios. By the addition of the colloidal instability index of the feed oil into the variables of the scaling equation, the precipitation data from the two different feed oils could be correlated. 13 refs., 8 figs., 3 tabs.

  19. Chemical composition of asphaltenes from thermal dissociation of brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Evstaf' ev, S.N.; Denisova, T.I.; Tuturina, V.V.

    1987-07-01

    Investigates chemical composition of asphaltenes and preasphaltenes separated from liquid products of thermal dissociation of Azeisk deposit brown coal in tetralin. Asphaltenes and preasphaltenes represent a mixture of mainly aromatic compounds containing bi- and tri-cyclic aromatic fractions differing by length of aliphatic substituents and by distribution of oxygen-containing functional groups. Describes tests carried out at 300-420 C in autoclaves using 0.1-0.3 mm coal particles and tetralin containing decalin (2.8%) and naphthalene (5.2%). Establishes that asphaltenes soluble in acetone are represented by low-molecular saturated compounds; about 60% of oxygen in asphaltenes and preasphaltenes is attached to ethereal and heterocyclic structure groups. 10 refs.

  20. A chemical process of asphaltenes dispersion : anticor DSA 700

    International Nuclear Information System (INIS)

    This work deals with asphalts dispersion chemical process. Asphaltenes are constituents of petroleum which under chemical, physical or mechanical variations effect precipitate and create deposits. In order to cope with this problem, a product : Anticor DSA 700 has been adjusted and allow to stabilize asphaltenes. This method has already been used in France and in Algeria and will be extended to others west countries. (O.L.). 2 figs

  1. HINDERED DIFFUSION OF ASPHALTENES AT ELEVATED TEMPERATURE AND PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    James A. Guin; Ganesh Ramakrishnan

    1999-10-07

    During this time period, experiments were performed to study the diffusion controlled uptake of quinoline and a coal asphaltene into porous carbon catalyst pellets. Cyclohexane and toluene were used as solvents for quinoline and the coal asphaltene respectively. The experiments were performed at 27 C and 75 C, at a pressure of 250 psi (inert gas) for the quinoline/cyclohexane system. For the coal asphaltene/toluene system, experiments were performed at 27 C, also at a pressure of 250 psi. These experiments were performed in a 20 cm{sup 3} microautoclave, the use of which is advantageous since it is economical from both a chemical procurement and waste disposal standpoint due to the small quantities of solvents and catalysts used. A C++ program was written to simulate data using a mathematical model which incorporated both diffusional and adsorption mechanisms. The simulation results showed that the mathematical model satisfactorily fitted the adsorptive diffusion of quinoline and the coal asphaltene onto a porous activated carbon. For the quinoline/cyclohexane system, the adsorption constant decreased with an increase in temperature. The adsorption constant for the coal asphaltene/toluene system at 27 C was found to be much higher than that of the quinoline/cyclohexane system at the same temperature. Apparently the coal asphaltenes have a much greater affinity for the surface of the carbon catalyst than is evidenced by the quinoline molecule.

  2. Novel stationary phases based on asphaltenes for gas chromatography.

    Science.gov (United States)

    Boczkaj, Grzegorz; Momotko, Malwina; Chruszczyk, Dorota; Przyjazny, Andrzej; Kamiński, Marian

    2016-07-01

    We present the results of investigations on the possibility of the application of the asphaltene fraction isolated from the oxidized residue from vacuum distillation of crude oil as a stationary phase for gas chromatography. The results of the investigation revealed that the asphaltene stationary phases can find use for the separation of a wide range of volatile organic compounds. The experimental values of Rohrschneider/McReynolds constants characterize the asphaltenes as stationary phases of medium polarity and selectivity similar to commercially available phases based on alkyl phthalates. Isolation of asphaltenes from the material obtained under controlled process conditions allows the production of a stationary phase having reproducible sorption properties and chromatographic columns having the same selectivity. Unique selectivity and high thermal stability make asphaltenes attractive as a material for stationary phases for gas chromatography. A low production cost from a readily available raw material (oxidized petroleum bitumens) is an important economic factor in case of application of the asphaltene stationary phases for preparative and process separations. PMID:27144876

  3. Modelling the effect of gas injections on the stability of asphaltene-containing crude oils

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Moorwood, T. [Infochem, Munich (Germany); Merino Garcia, D.; Pena Diez, J.L. [Repsol YPF, Madrid (Spain)

    2008-07-01

    In oil fields where asphaltene deposits occur, they present major remediation problems and can halt production due to flow blockage. Crude oils which precipitate asphaltenes generally contain both asphaltene molecules and lighter resin molecules. Resins are thought to solvate the asphaltene molecules, thus stabilizing the solution, while light gases have the opposite effect. In order to model asphaltene phase behaviour, it is important to understand the impact of adding gas to asphaltene-containing crudes. This study presented several experimental investigations of gas injection into asphaltene-containing crudes. The trends of asphaltene destabilization were discussed. The injection gases ranged from pure gases to a gas condensate. The data were modelled using a conventional equation of state together with an extra term that considered the association between asphaltene molecules and their solvation by resins. Since the model could simultaneously described the gas, oil and asphaltene phases, it was possible to calculate phase stability and phase equilibria. However, a different model had to be used to obtain the gas-oil equilibrium because the use of solubility parameters only allows the stability of the asphaltene phase to be calculated. The model correctly predicted that the gases will promote asphaltene precipitation. In its original form, the model tended to over-predict the trend. The optimal parameter values needed to represent all the available experimental data were determined. The extent to which the effect of gas injection on asphaltenes can be predicted was then discussed.

  4. Comparisons Between Asphaltenes from the Dead and Live-Oil Samples of the Same Crude Oils

    DEFF Research Database (Denmark)

    Aquino-Olivos, M.A.; Andersen, Simon Ivar; Lira-Galeana, C.

    2003-01-01

    extracted and analyzed. These pressure-driven asphaltenes found on the filter were found to make up in the range between 50 and 100 ppm of the whole crude oil. Opening of the cell did not reveal asphaltenes retained due to wall adhesion. Size exclusion chromatography tests performed on both the live-oil......-derived asphaltenes and the standard asphaltenes as precipitated by atmospheric titration on the same crude oil, revealed that the live-oil asphaltenes had apparent smaller hydrodynamic volume and narrower distributions than the standard asphaltenes for two oils. Further FTIR tests also showed large differences......Asphaltenes precipitated from pressure-preserve bottomhole oil samples have been obtained for three oils at different pressures, using a bulk high-pressure filtration apparatus. The precipitates captured on the filter were recovered, the asphaltenes defined by the n-heptane insolubility were...

  5. Comparisons Between Asphaltenes from the Dead and Live-Oil Samples of the Same Crude Oils

    DEFF Research Database (Denmark)

    Aquino-Olivos, M.A.; Andersen, Simon Ivar; Lira-Galeana, C.

    2003-01-01

    Asphaltenes precipitated from pressure-preserve bottomhole oil samples have been obtained for three oils at different pressures, using a bulk high-pressure filtration apparatus. The precipitates captured on the filter were recovered, the asphaltenes defined by the n-heptane insolubility were...... extracted and analyzed. These pressure-driven asphaltenes found on the filter were found to make up in the range between 50 and 100 ppm of the whole crude oil. Opening of the cell did not reveal asphaltenes retained due to wall adhesion. Size exclusion chromatography tests performed on both the live-oil......-derived asphaltenes and the standard asphaltenes as precipitated by atmospheric titration on the same crude oil, revealed that the live-oil asphaltenes had apparent smaller hydrodynamic volume and narrower distributions than the standard asphaltenes for two oils. Further FTIR tests also showed large differences...

  6. New method for the onset point determination of the petroleum asphaltene aggregation

    International Nuclear Information System (INIS)

    Work has been devoted to investigation of the process of asphaltenes aggregation in a model system asphaltene-toluene-heptane. The procedure of the onset point determination of the petroleum asphaltenes which is based on the method of photon correlation spectroscopy has been described. Two ways have been developed to determine the onset of asphaltenes aggregation by means of method of photon correlation spectroscopy. The first method allows defining the onset of asphaltenes aggregation of light scattering intensity depending on the quantity of n-alkane in the model system. The second method allows determining the onset point of asphaltenes aggregation parameter k depending on the quantity of n-alkane. A comparative evaluation of onset points, obtained in different ways has been given. The influence of the model system composition on the process of asphaltenes aggregation has been studied. The characteristic diffusion time of asphaltenes has been calculated

  7. An experimental study of asphaltene particle sizes in n-heptane-toluene mixtures by light scattering

    OpenAIRE

    Rajagopal K.; Silva S. M. C.

    2004-01-01

    The particle size of asphaltene flocculates has been the subject of many recent studies because of its importance in the control of deposition in petroleum production and processing. We measured the size of asphaltene flocculates in toluene and toluene - n-heptane mixtures, using the light-scattering technique. The asphaltenes had been extracted from Brazilian oil from the Campos Basin, according to British Standards Method IP-143/82. The asphaltene concentration in solution ranged between 10...

  8. Correlations between SARA Fractions, Density, and RI to Investigate the Stability of Asphaltene

    OpenAIRE

    Ali Chamkalani

    2012-01-01

    Asphaltene precipitation is one of the most common problems in both oil recovery and refinery processes. Its deposition causes many problems mainly because of the fuzzy nature of asphaltene and the large number of parameters affecting precipitation. Unfortunately there is not a predictive technique for screening it. Refractive index (RI) was used as a stability test for asphaltene which makes a quantitative judgment for asphaltene stability. In our study, we first represent a novel correlatio...

  9. Asphaltene flocculation and collapse from petroleum fluids

    Energy Technology Data Exchange (ETDEWEB)

    Branco, Valter Antonio M.; De Almeida Xavier, Luiza Cristina [Petroleo Brasilerio S.A., Petrobras/CENPES/DIGER, Cidade Universitaria, Quadra 7, Ilma Fundao, RJ, 21910 Rio de Janeiro (Brazil); Mansoori, G. Ali; Park, Sang J.; Manafi, Hussain [Thermodynamics Research Laboratory, Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton Street, 60607-7000 Chicago, IL (United States)

    2001-12-29

    Deposition of complex and heavy organic compounds, which exist in petroleum crude and heavy oil, can cause a number of severe problems. To prevent deposition inside the reservoir, in the well head and inside the transmission lines, it is necessary to be able to predict the onset and amount of deposition due to various factors. In the present paper, the mechanism of asphaltene deposition, which is the major cause of most organic deposition cases, is modeled based on statistical mechanics of polydisperse polymer solutions joined with the kinetic theory of aggregation and its predictive capability is discussed. Utilization of statistical mechanics of polydisperse polymer solutions joined with kinetic theory of aggregation enables us to develop a realistic model which is able to predict both reversible and irreversible heavy organic depositions. The present model is capable of describing several reversible and irreversible situations, such as the phenomena of organic deposition, growing mechanism of heavy organic aggregates, the size distributions of precipitated organics and the solubility of heavy organics in a crude oil due to variations in oil pressure, temperature and composition. As an example, the present model is applied for heavy organics deposition prediction of two different Brazilian crude oils for which experimental data are available. It is shown that the prediction results of the present model are in good agreement with the experimental data.

  10. Cooee bitumen. II. Stability of linear asphaltene nanoaggregates

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Schrøder, Thomas; Dyre, J. C.;

    2014-01-01

    chose first to consider the simple case where only asphaltene molecules are counted in a nanoaggregate. We used a master equation approach and a related statistical mechanics model. The linear asphaltene nanoaggregates behave as a rigid linear chain. The most complicated case where all aromatic......Asphaltene and smaller aromatic molecules tend to form linear nanoaggregates in bitumen. Over the years bitumen undergoes chemical aging and during this process, the size of the nanoaggregate increases. This increase is associated with an increase in viscosity and brittleness of the bitumen...... molecules are counted in a nanoaggregate is then discussed. The linear aggregates where all aromatic molecules are counted seem to behave as a flexible linear chain...

  11. Hindered Diffusion of Asphaltenes at Evaluated Temperature and Pressure

    Energy Technology Data Exchange (ETDEWEB)

    James A. Guin; Surya Vadlamani; Xiafeng Yang

    1998-12-04

    During this time period, uptake experiments were performed at elevated temperatures up to 280 o C for the adsorptive diffusion of a coal asphaltene in 1- methylnaphthalene onto alumina catalyst pellets. Model simulation results showed that a mathematical model incorporating diffusion and adsorption mechanisms satisfactorily fitted the adsorptive diffusion of coal asphaltenes onto the alumina catalyst in a fairly wide temperature range of 55 o C to 280 o C. The logarithm of the adsorption constant, obtained by simulating the experimental data with the model solution, was found to be linearly dependent on temperature. As temperature increased, the value of the adsorption constant decreased. On the other hand, the effective diffusivity of the asphaltene increased with temperature. These off-setting temperature dependencies resulting from the adsorption constant and the effective diffusivity compensated at least to some extent in the uptake process.

  12. Thin film pyrolysis of oil sands asphaltenes for structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Karimi, Arash; Gray, Murray R [Department of Chemical and Materials Engineering, University of Alberta (Canada); Qian, Kuangnan; Olmstead, William N.; Freund, Howard [ExxonMobil Research and Engineering (United States)], email: murray.gray@ualberta.ca

    2010-07-01

    Current methods to extract asphaltene building blocks only produce small sample quantities per batch for analysis. To reach sample quantities sufficient for several analytical methods on each batch, the following method was investigated in a preliminary study. Asphaltenes from Alberta bitumen were spray coated as thin films on alloy plates to be used in controlled pyrolysis. Each batch of six plates reacted around 1 g of asphaltenes in the furnace. Reaction products were purged from the reaction chamber with cold nitrogen, then cooled in a cold trap. Gases were collected and analysed using gas chromatography. Liquid products were condensed in a cold trap, rinsed with solvent, and evaporated overnight. The coke was also recovered from the plates and analysed. The method yielded mass balances greater than 90%. Products analysis revealed molecular fragment sizes ranging from C10 to C100. Lighter components (C5-C10) were not detected, having probably evaporated during solvent removal.

  13. Polymeric dispersants delay sedimentation in colloidal asphaltene suspensions.

    Science.gov (United States)

    Hashmi, Sara M; Quintiliano, Leah A; Firoozabadi, Abbas

    2010-06-01

    Asphaltenes, among the heaviest components of crude oil, can become unstable under a variety of conditions and precipitate and sediment out of solution. In this report, we present sedimentation measurements for a system of colloidal scale asphaltene particles suspended in heptane. Adding dispersants to the suspension can improve the stability of the system and can mediate the transition from a power-law collapse in the sedimentation front to a rising front. Additional dispersant beyond a crossover concentration can cause a significant delay in the dynamics. Dynamic light scattering measurements suggest that the stabilization provided by the dispersants may occur through a reduction of both the size and polydispersity of the asphaltene particles in suspension. PMID:20334407

  14. Cooee bitumen II: Stability of linear asphaltene nanoaggregates

    CERN Document Server

    Lemarchand, Claire A; Dyre, Jeppe C; Hansen, Jesper S

    2014-01-01

    Asphaltene and smaller aromatic molecules tend to form linear nanoaggregates in bitumen.Over the years bitumen undergoes chemical aging and during this process, the size of the nanoaggregate increases. This increase is associated with an increase in viscosity and brittleness of the bitumen, eventually leading to road deterioration. This paper focuses on understanding the mechanisms behind nanoaggregate size and stability. We used molecular dynamics simulations to quantify the probability of having a nanoaggregate of a given size in the stationary regime. To model this complicated behavior, we chose first to consider the simple case where only asphaltene molecules are counted in a nanoaggregate. We used a master equation approach and a related statistical mechanics model. The linear asphaltene nanoaggregates behave as a rigid linear chain. The most complicated case where all aromatic molecules are counted in a nanoaggregate is then discussed. The linear aggregates where all aromatic molecules are counted seem ...

  15. Cooee bitumen. II. Stability of linear asphaltene nanoaggregates

    Science.gov (United States)

    Lemarchand, Claire A.; Schrøder, Thomas B.; Dyre, Jeppe C.; Hansen, Jesper S.

    2014-10-01

    Asphaltene and smaller aromatic molecules tend to form linear nanoaggregates in bitumen. Over the years bitumen undergoes chemical aging and during this process, the size of the nanoaggregate increases. This increase is associated with an increase in viscosity and brittleness of the bitumen, eventually leading to road deterioration. This paper focuses on understanding the mechanisms behind nanoaggregate size and stability. We used molecular dynamics simulations to quantify the probability of having a nanoaggregate of a given size in the stationary regime. To model this complicated behavior, we chose first to consider the simple case where only asphaltene molecules are counted in a nanoaggregate. We used a master equation approach and a related statistical mechanics model. The linear asphaltene nanoaggregates behave as a rigid linear chain. The most complicated case where all aromatic molecules are counted in a nanoaggregate is then discussed. The linear aggregates where all aromatic molecules are counted seem to behave as a flexible linear chain.

  16. Stability and demulsification of emulsions stabilized by asphaltenes or resins.

    Science.gov (United States)

    Xia, Lixin; Lu, Shiwei; Cao, Guoying

    2004-03-15

    Experimental data are presented to show the influence of asphaltenes and resins on the stability and demulsification of emulsions. It was found that emulsion stability was related to the concentrations of the asphaltene and resin in the crude oil, and the state of dispersion of the asphaltenes and resins (molecular vs colloidal) was critical to the strength or rigidity of interfacial films and hence to the stability of the emulsions. Based on this research, a possible emulsion minimization approach in refineries, which can be implemented utilizing microwave radiation, is also suggested. Comparing with conventional heating, microwave radiation can enhance the demulsification rate by an order of magnitude. The demulsification efficiency reaches 100% in a very short time under microwave radiation. PMID:14972628

  17. Degradation of Asphaltenic Fraction by Locally Isolated Halotolerant Bacterial Strains

    OpenAIRE

    Ali, Hager R.; Nour Sh. El-Gendy; Moustafa, Yasser M.; Roushdy, Mohamed I.; Hashem, Ahmed I.

    2012-01-01

    Three halotolerant bacterial species were isolated from locally oil-polluted water sample for their ability to utilize asphaltene (Asph) fraction as sole carbon and energy source. These bacteria degrade 83–96% of 2500 mg/L asphaltene within 21 d at 30°C and pH7. They were identified as Bacillus sp. Asph1, Pseudomonas aeruginosa Asph2, and Micrococcus sp. Asph3. A statistically significant difference at 95% confidence level for cell growth and percentage biodegradation (%BD) was observed in al...

  18. The effect of asphaltene particle size and distribution on the temporal advancement of the asphaltene deposition profile in the well column

    Science.gov (United States)

    Zeinali Hasanvand, Mahdi; Mosayebi Behbahani, Reza; Feyzi, Farzaneh; Ali Mousavi Dehghani, Seyed

    2016-05-01

    Asphaltene deposition in oil wells is an inconvenient production problem. Generating a precise deposition model for the well column is essential for optimal well design and prevention/reduction of deposition-associated difficulties. The goal of this study is to determine the effects of various parameters on the deposition process. These parameters include oil viscosity, temperature, flow velocity, well diameter and asphaltene particle size and particle size distribution. The first five parameters are analyzed using Escobedo and Mansoori (2010), Cleaver and Yates (1975) and Friedlander and Johnstone (1957) asphaltene deposition models. The last parameter (asphaltene particle size distribution) is not directly included in the asphaltene deposition models. Therefore, a dynamic well column model is generated by combining transport phenomena (mass, heat and momentum transfer) equations with thermodynamic models. The model is fine-tuned and verified based on field data from an Iranian producing oil well with frequent asphaltene deposition problem and subsequently used for predicting the time-dependent development of the asphaltene deposition profile in the well column for a series of asphaltene particle size distributions. The results show the effect of the said parameters depends on how the buffer layer and Brownian motion are defined. The Escobedo and Mansoori (2010) model is found to make better predictions of deposited asphaltene in the studied well.

  19. Enhanced Oil Recovery (EOR by Miscible CO2 and Water Flooding of Asphaltenic and Non-Asphaltenic Oils

    Directory of Open Access Journals (Sweden)

    Edwin A. Chukwudeme

    2009-09-01

    Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.

  20. Asphaltene detection using surface enhanced Raman scattering (SERS).

    Science.gov (United States)

    Alabi, O O; Edilbi, A N F; Brolly, C; Muirhead, D; Parnell, J; Stacey, R; Bowden, S A

    2015-04-28

    Surface enhanced Raman spectroscopy using a gold substrate and excitation at 514 nm can detect sub parts per million quantities of asphaltene and thereby petroleum. This simple format and sensitivity make it transformative for applications including sample triage, flow assurance, environmental protection and analysis of unique one of a kind materials. PMID:25812164

  1. Langmuir films of asphaltene model compounds and their fluorescent properties.

    Science.gov (United States)

    Nordgård, Erland L; Landsem, Eva; Sjöblom, Johan

    2008-08-19

    The relationship between the physicochemical properties of asphaltenes and asphaltene structure is an issue of increasing focus. Surface pressure-area isotherms of asphaltene model compounds have been investigated to gain more knowledge of their arrangement at an aqueous surface. Variations in interfacial activity have been correlated to proposed arrangements. The presence of a carboxylic acid has shown to be crucial for their interfacial activity and film properties. The acid group directs the molecules normal to the surface, forming a stable monolayer film. The high stability was absent when no acidic groups were present. Fluorescence spectra of deposited Langmuir-Blodgett films showed only the presence of the excimer emission for thin films of acidic model compounds, indicating a close face-to-face arrangement of the molecules. Time-correlated single photon counting (TCSPC) of the model compounds in toluene indicated the presence of aggregates for two of four compounds at low concentrations. However, a sudden drop of interfacial tension observed could not be correlated to the aggregation. Instead, aggregation induced by addition of a "poor" solvent showed decreased interfacial activity when aggregated due to decrease of monomers in bulk. The findings regarding these asphaltene model compounds and their structural differences show the great effect an acidic group has on their physicochemical properties. PMID:18652499

  2. A Thermodynamic Mixed-Solid Asphaltene Precipitation Model

    DEFF Research Database (Denmark)

    Lindeloff, Niels; Heidemann, R.A.; Andersen, Simon Ivar;

    1998-01-01

    A simple model for the prediction of asphaltene precipitation is proposed. The model is based on an equation of state and uses standard thermodynamics, thus assuming that the precipitation phenomenon is a reversible process. The solid phase is treated as an ideal multicomponent mixture. An activi...

  3. Aggregation of model asphaltenes: a molecular dynamics study.

    Science.gov (United States)

    Costa, J L L F S; Simionesie, D; Zhang, Z J; Mulheran, P A

    2016-10-01

    Natural asphaltenes are defined as polyaromatic compounds whose chemical composition and structure are dependent on their geological origin and production history, hence are regarded as complex molecules with aromatic cores and aliphatic tails that occur in the heaviest fraction of crude oil. The aggregation of asphaltenes presents a range of technical challenges to the production and processing of oil. In this work we study the behaviour of the model asphaltene-like molecule hexa-tert-butylhexa-peri-hexabenzocoronene (HTBHBC) using molecular dynamics simulation. It was found that the regular arrangement of the tert-butyl side chains prevents the formation of strongly-bound dimers by severely restricting the configurational space of the aggregation pathway. In contrast, a modified molecule with only 3 side chains is readily able to form dimers. This work therefore confirms the influence of the molecular structure of polyaromatic compounds on their aggregation mechanism, and reveals the unexpected design rules required for model systems that can mimic the behavior of asphaltenes. PMID:27465036

  4. Microfluidic investigation of the deposition of asphaltenes in porous media.

    Science.gov (United States)

    Hu, Chuntian; Morris, James E; Hartman, Ryan L

    2014-06-21

    The deposition of asphaltenes in porous media, an important problem in science and macromolecular engineering, was for the first time investigated in a transparent packed-bed microreactor (μPBR) with online analytics to generate high-throughput information. Residence time distributions of the μPBR before and after loading with ~29 μm quartz particles were measured using inline UV-Vis spectroscopy. Stable packings of quartz particles with porosity of ~40% and permeability of ~500 mD were obtained. The presence of the packing materials reduced dispersion under the same velocity via estimation of dispersion coefficients and the Bodenstein number. Reynolds number was observed to influence the asphaltene deposition mechanism. For larger Reynolds numbers, mechanical entrapment likely resulted in significant pressure drops for less pore volumes injected and less mass of asphaltenes being retained under the same maximum dimensionless pressure drop. The innovation of packed-bed microfluidics for investigations on asphaltene deposition mechanisms could contribute to society by bridging macromolecular science with microsystems. PMID:24777527

  5. A Thermodynamic Mixed-Solid Asphaltene Precipitation Model

    DEFF Research Database (Denmark)

    Lindeloff, Niels; Heidemann, R.A.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    A simple model for the prediction of asphaltene precipitation is proposed. The model is based on an equation of state and uses standard thermodynamics, thus assuming that the precipitation phenomenon is a reversible process. The solid phase is treated as an ideal multicomponent mixture. An activity...

  6. Water-in-Hydrocarbon Emulsions Stabilized by Asphaltenes at Low Concentrations.

    Science.gov (United States)

    Yarranton; Hussein; Masliyah

    2000-08-01

    The role of Athabasca asphaltene particles and molecules in stabilizing emulsions was examined by measuring the surface area of water-in-toluene/hexane emulsions stabilized by various asphaltene fractions, each with a different proportion of soluble and insoluble asphaltenes. The stabilized interfacial area was found to depend only on the amount of soluble asphaltenes. Furthermore, the amount of asphaltenes on the interface was consistent with molecular monolayer coverage. Hence, at low concentrations, asphaltenes appear to both act as a molecular surfactant and stabilize emulsions. The effect of the hexane : toluene ratio on emulsion stability was examined as well. At lower hexane : toluene ratios, more asphaltenes were soluble but the surface activity of a given asphaltene molecule was reduced. The two effects oppose each other but, in general, a smaller fraction of asphaltenes appeared to stabilize emulsions at lower hexane : toluene ratios. The results imply that the emulsifying capacity of asphaltenes is reduced but not eliminated in better solvents. Copyright 2000 Academic Press. PMID:10882493

  7. Permeability reduction by asphaltenes and resins deposition in porous media

    Energy Technology Data Exchange (ETDEWEB)

    R. Hamadou; M. Khodja; M. Kartout; A. Jada [Sonatrach/Division Centre de Recherche et Developpement, Boumerdes (Algeria)

    2008-08-15

    The deposition of crude oil polar fractions such as asphaltenes and resins in oil reservoir rocks reduce considerably the rock permeability and the oil production. In the present work, a crude oil and various core samples were extracted from Rhourd-Nouss (RN) reservoir rock. Afterwards, core flow experiments were carried out in the laboratory to investigate permeability reduction that causes formation damage. The core permeability damage was evaluated by flooding Soltrol, through the sample and measuring the solvent permeabilities, K{sub I} and K{sub f}, respectively, before and after injection of a given pore volume number of the crude oil. The data indicate that upon flooding the crude oil through the porous medium, considerable permeability reduction, expressed as the ratio (K{sub I} - K{sub f})/K{sub I}, and ranging from 72.4% to 98.3% were observed. The permeability reduction is found to result from irreversible retention of asphaltenes and resins in the porous core sample. However, no correlations could be established between the depth of the well, the core porosity, the core mineral compositions determined by X-ray analysis, and the permeability damage factors. In addition, effluents flowing away from RN wells were collected and analysed at various periods, after carrying out aromatic solvents squeezes. The amount of saturates, aromatics, resins, and asphaltenes (SARA analysis), of the crude oil, the deposited crude oil fraction, and the effluent's residues were measured and compared. The asphaltenes weight percent was found to increase from 1.56% for the crude oil to 11.42% for the deposited oil fraction, and was in the range 1.37-2.36% for the effluent's residues. Such results indicate that the deposited oil fraction and the effluent's residues consist mainly of asphaltenes and resins. 26 refs., 1 fig., 11 tabs.

  8. The importance of asphaltene origin on its behaviour in production systems

    Energy Technology Data Exchange (ETDEWEB)

    Grutters, M.; Stankiewicz, A.; Cornelisse, P.; Utech, N. [Shell Global Solutions, The Hague (Netherlands)

    2008-07-01

    Despite much progress in characterizing asphaltenes, little is known about the relation between the size and shape of asphaltenes and their impact on flow assurance. This lack of understanding is related primarily to the fact that the asphaltenes structure found in crudes depends on many geochemical processes that are generally not included as input for flow assurance studies. The geochemical processes that are important to asphaltenes are type of source rock and deposited organic matter, maturity, migration history, and processes in the reservoir as hybridization and biodegradation. A careful examination of geochemical processes can reveal the relationship between asphaltene behaviour in fields that are seemingly very different or distant. This paper provided some examples of these relationships. Understanding the structure of asphaltenes is critical and warrants the further development of methods for more accurate characterization.

  9. Method for determining asphaltene stability of a hydrocarbon-containing material

    Energy Technology Data Exchange (ETDEWEB)

    Schabron, John F; Rovani, Jr., Joseph F

    2013-02-05

    A method for determining asphaltene stability in a hydrocarbon-containing material having solvated asphaltenes therein is disclosed. In at least one embodiment, it involves the steps of: (a) precipitating an amount of the asphaltenes from a liquid sample of the hydrocarbon-containing material with an alkane mobile phase solvent in a column; (b) dissolving a first amount and a second amount of the precipitated asphaltenes by changing the alkane mobile phase solvent to a final mobile phase solvent having a solubility parameter that is higher than the alkane mobile phase solvent; (c) monitoring the concentration of eluted fractions from the column; (d) creating a solubility profile of the dissolved asphaltenes in the hydrocarbon-containing material; and (e) determining one or more asphaltene stability parameters of the hydrocarbon-containing material.

  10. Prediction of the Gas Injection Effect on the Asphaltene Phase Envelope

    OpenAIRE

    Bahrami Peyman; Kharrat Riyaz; Mahdavi Sedigheh; Firoozinia Hamed

    2015-01-01

    Asphaltene instability may occur when pressure, temperature and compositional variations affect the reservoir oil. Permeability reduction, wettability alteration, and plugging of wells and flow lines are the consequences of this phenomenon. Therefore, it is crucial to investigate the asphaltene behavior in different thermodynamic conditions by knowing the Asphaltene Precipitation Envelope (APE) in a preventive way rather than the costly clean-up procedures. The selected reservoir oil has face...

  11. Bayesian Belief Network Method for Predicting Asphaltene Precipitation in Light Oil Reservoirs

    OpenAIRE

    Jeffrey O. Oseh (M.Sc.); Olugbenga A. Falode (Ph.D)

    2015-01-01

    Asphaltene precipitation is caused by a number of factors including changes in pressure, temperature, and composition. The two most prevalent causes of asphaltene precipitation in light oil reservoirs are decreasing pressure and mixing oil with injected solvent in improved oil recovery processes. This study focused on predicting the amount of asphaltene precipitation with increasing Gas-Oil Ratio in a light oil reservoir using Bayesian Belief Network Method. These Artificial Intelligence-Baye...

  12. Impact of maltene and asphaltene fraction on mechanical behavior and microstructure of bitumen

    OpenAIRE

    Hofko, B.; L. Eberhardsteiner; Fussl, J.; H. Grothe; Handle, F.; Hospodka, M.; Grossegger, D.; Nahar, S.N.; Schmets, A. J. M.; Scarpas, A.

    2015-01-01

    As a widely accepted concept, bitumen consists of four fractions that can be distinguished by their polarity. Highly polar asphaltene micelles are dispersed in a viscous phase of saturates, aromatics and resins (maltene phase). Different concentrations of asphaltenes in the bitumen result in a range of mechanical response properties. In an interdisciplinary study the impact of the maltene phase and asphaltenes on the linear viscoelastic behavior and the microstructure of bitumen were analyzed...

  13. COMPARISON BETWEEN ASPHALTENES (SUBFRACTIONS EXTRACTED FROM TWO DIFFERENT ASPHALTIC RESIDUES: CHEMICAL CHARACTERIZATION AND PHASE BEHAVIOR

    Directory of Open Access Journals (Sweden)

    Silas R. Ferreira

    2016-01-01

    Full Text Available Asphaltenes are blamed for various problems in the petroleum industry, especially formation of solid deposits and stabilization of water-in-oil emulsions. Many studies have been conducted to characterize chemical structures of asphaltenes and assess their phase behavior in crude oil or in model-systems of asphaltenes extracted from oil or asphaltic residues from refineries. However, due to the diversity and complexity of these structures, there is still much to be investigated. In this study, asphaltene (subfractions were extracted from an asphaltic residue (AR02, characterized by NMR, elemental analysis, X-ray fluorescence and MS-TOF, and compared to asphaltene subfractions obtained from another asphaltic residue (AR01 described in a previous article. The (subfractions obtained from the two residues were used to prepare model-systems containing 1 wt% of asphaltenes in toluene and their phase behavior was evaluated by measuring asphaltene precipitation onset using optical microscopy. The results obtained indicated minor differences between the asphaltene fractions obtained from the asphaltic residues of distinct origins, with respect to aromaticity, elemental composition (CHN, presence and content of heteroelements and average molar mass. Regarding stability, minor differences in molecule polarity appear to promote major differences in the phase behavior of each of the asphaltene fractions isolated.

  14. The acoustic spectroscopy of asphaltene aggregation in petroleum

    International Nuclear Information System (INIS)

    A sphaltenes are well known to be important in causing blockages during production, transportation and refining. They are also responsible for the formation of tar mats in petroleum reservoirs, which can impede crude oil recovery. Acoustic spectroscopy in the frequency range 2 – 120 MHz was used to detect the aggregation of asphaltenes in a North Sea crude oil (UK continental shelf). In the absence of aggregation, both the toluene solvent and the maltenes isolated from the oil exhibit a power law dependence which is a function of the continuous phase. In contrast the crude oil itself showed clear signs of a changing size of the scattering entities. With sufficient information, it may in future be possible to determine the size of the scattering particles from the acoustic spectrum including the changing size of the asphaltene particles during aggregation.

  15. Asphaltenes in Mexican fuel oils; Asfaltenos en combustoleos mexicanos

    Energy Technology Data Exchange (ETDEWEB)

    Longoria Ramirez, Rigoberto [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1996-12-31

    In this article the main aspects in which the Instituto de Investigaciones Electricas (IIE) has worked to contribute to the solution of problems due to the presence of asphaltenes in national fuel oils, are emphasized. The increment of these compounds, that concentrate harmful elements, in the last ten years has reached 22% by weight of the fuel oil. It is demonstrated that the quantification of asphaltenes depends on the type of solvent employed. [Espanol] En este articulo se subrayan los principales aspectos en los que el Instituto de Investigaciones Electricas (IIE) ha trabajado para contribuir a la solucion de problemas debidos a la presencia de asfaltenos en combustoleos nacionales. El incremento de estos compuestos, que concentran elementos nocivos, en los ultimos diez anos ha llegado hasta un 22% del peso del combustoleo. Se demuestra que la cuantificacion de los asfaltenos depende del tipo de solvente utilizado.

  16. Cooee bitumen II: Stability of linear asphaltene nanoaggregates

    OpenAIRE

    Lemarchand, Claire,; Schrøder, Thomas; Dyre, J.C.; Hansen, Jesper Schmidt

    2014-01-01

    Asphaltene and smaller aromatic molecules tend to form linear nanoaggregates in bitumen. Over the years bitumen undergoes chemical aging and during this process, the size of the nanoaggregate increases. This increase is associated with an increase in viscosity and brittleness of the bitumen, eventually leading to road deterioration. This paper focuses on understanding the mechanisms behind nanoaggregate size and stability. We used molecular dynamics simulations to quantify the probability of ...

  17. Behavior of asphaltene model compounds at w/o interfaces.

    Science.gov (United States)

    Nordgård, Erland L; Sørland, Geir; Sjöblom, Johan

    2010-02-16

    Asphaltenes, present in significant amounts in heavy crude oil, contains subfractions capable of stabilizing water-in-oil emulsions. Still, the composition of these subfractions is not known in detail, and the actual mechanism behind emulsion stability is dependent on perceived interfacial concentrations and compositions. This study aims at utilizing polyaromatic surfactants which contains an acidic moiety as model compounds for the surface-active subfraction of asphaltenes. A modified pulse-field gradient (PFG) NMR method has been used to study droplet sizes and stability of emulsions prepared with asphaltene model compounds. The method has been compared to the standard microscopy droplet counting method. Arithmetic and volumetric mean droplet sizes as a function of surfactant concentration and water content clearly showed that the interfacial area was dependent on the available surfactant at the emulsion interface. Adsorption of the model compounds onto hydrophilic silica has been investigated by UV depletion, and minor differences in the chemical structure of the model compounds caused significant differences in the affinity toward this highly polar surface. The cross-sectional areas obtained have been compared to areas from the surface-to-volume ratio found by NMR and gave similar results for one of the two model compounds. The mean molecular area for this compound suggested a tilted geometry of the aromatic core with respect to the interface, which has also been proposed for real asphaltenic samples. The film behavior was further investigated using a liquid-liquid Langmuir trough supporting the ability to form stable interfacial films. This study supports that acidic, or strong hydrogen-bonding fractions, can promote stable water-in-oil emulsion. The use of model compounds opens up for studying emulsion behavior and demulsifier efficiency based on true interfacial concentrations rather than perceived interfaces. PMID:19852481

  18. Influence of asphaltene aggregation and pressure on crude oil emulsion stability

    Energy Technology Data Exchange (ETDEWEB)

    Auflem, Inge Harald

    2002-07-01

    Water-in-crude oil emulsions stabilised by various surface-active components are one of the major problems in relation to petroleum production. This thesis presents results from high-pressure separation experiments on ''live'' crude oil and model oil emulsions, as well as studies of Interactions between various indigenous stabilising materials in crude oil. A high-pressure separation rig was used to study the influence of gas and gas bubbles on the separation of water-in-crude oil emulsions. The results were interpreted as a flotation effect from rising gas bubbles, which led to increased separation efficiency. The separation properties of a ''live'' crude oil were compared to crude oil samples recombined with various gases. The results showed that water-in-oil emulsions produced from the ''live'' crude oil samples, generally separated faster and more complete, than emulsions based on recombined samples of the same crude oil. Adsorption of asphaltenes and resins onto a hydrophilic surface from solutions with varying aromatic/aliphatic character was investigated by a quarts crystal microbalance. The results showed that asphaltenes adsorbed to a larger degree than the resins. The resins were unable to desorb pre-adsorbed asphaltenes from the surface, and neither did they adsorb onto the asphaltene-coated surface. In solutions of both of resins and asphaltenes the two constituents associated in bulk liquid and adsorbed to the surface in the form of mixed aggregates. Near infrared spectroscopy and pulsed field gradient spin echo nuclear magnetic resonance were used to study asphaltene aggregation and the influence of various amphiphiles on the asphaltene aggregate size. The results showed Interactions between the asphaltenes and various chemicals, which were proposed to be due to acid-base interactions. Among the chemicals used were various naphthenic acids. Synthesised monodisperse acids gave a reduction of

  19. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Milind D.

    2002-02-21

    This project was undertaken to understand fundamental aspects of carbon dioxide (CO2) induced asphaltene precipitation. Oil and asphaltene samples from the Rangely field in Colorado were used for most of the project. The project consisted of pure component and high-pressure, thermodynamic experiments, thermodynamic modeling, kinetic experiments and modeling, targeted corefloods and compositional modeling.

  20. Molecular dynamic simulation of asphaltene co-aggregation with humic acid during oil spill.

    Science.gov (United States)

    Zhu, Xinzhe; Chen, Daoyi; Wu, Guozhong

    2015-11-01

    Humic acid in water and sediment plays a key role in the fate and transport of the spilled oil, but little is known about its influence on the aggregation of heavy oil asphaltenes which is adverse for remediation. Molecular dynamic simulation was performed to characterize the co-aggregation of asphaltenes (continental model and Violanthrone-79 model) with Leonardite humic acid (LHA) at the toluene-water interface and in bulk water, respectively, to simulate the transport of asphaltenes from oil to water. At the toluene-water interface, a LHA layer tended to form and bind to the water by hydrogen bonding which provided a surface for the accumulation of asphaltenes by parallel or T-shape stacking. After entering the bulk water, asphaltene aggregates stacked in parallel were tightly sequestrated inside the inner cavity of LHA aggregates following surface adsorption and structure deformation. Asphaltene aggregation in water was 2-fold higher than at the toluene-water interface. The presence of LHA increased the intensity of asphaltene aggregation by up to 83% in bulk water while relatively less influence was observed at the toluene-water interface. Overall results suggested that the co-aggregation of asphaltene with humic acid should be incorporated to the current oil spill models for better interpreting the overall environmental risks of oil spill. PMID:26149857

  1. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    International Nuclear Information System (INIS)

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  2. An experimental study of asphaltene particle sizes in n-heptane-toluene mixtures by light scattering

    Directory of Open Access Journals (Sweden)

    Rajagopal K.

    2004-01-01

    Full Text Available The particle size of asphaltene flocculates has been the subject of many recent studies because of its importance in the control of deposition in petroleum production and processing. We measured the size of asphaltene flocculates in toluene and toluene - n-heptane mixtures, using the light-scattering technique. The asphaltenes had been extracted from Brazilian oil from the Campos Basin, according to British Standards Method IP-143/82. The asphaltene concentration in solution ranged between 10-6 g/ml and 10-7 g/ml. Sizes was measured for a period of about 10000 minutes at a constant temperature of 20°C. We found that the average size of the particles remained constant with time and increase with an increase in amount of n-heptane. The correlation obtained for size with concentration will be useful in asphaltene precipitation models.

  3. The formation of rag layers and the role of interfacial partition of naphthenates and asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Moran, K. [Syncrude, Edmonton, AB (Canada); Kiran, S.; Acosta, E.J. [Toronto Univ., ON (Canada). Dept. of Chemical Engineering and Applied Chemistry

    2008-07-01

    Stable emulsions of oil and water are known as rag layers and have been associated with the precipitation of asphaltenes and the formation of liquid crystal phases. This paper presented optical microscopy studies of rag layers produced under different conditions. Liquid crystal formation was observed only under specific conditions, such as in the presence of un-dissociated naphthenic acids. Liquid crystal phases were not observed in the absence of naphthenic acids or in the presence of sodium naphthenates. The formation of rag layer was associated to the fraction of asphaltene where the oil was reduced. Optical micrographs showed that the droplets of oil and/or water in the rag layer were not stabilized by the particles of asphaltene precipitated. These observations were explained using a hypothesis of asphaltene interfacial partition, whereby the asphaltene molecules accumulate near the oil/water interface to form skins that inhibit their coalescence and separation.

  4. Chemical modification of cobalt ferrite nanoparticles with possible application as asphaltene flocculant agent

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Clarindo, J.E.S.; Santo, K.S.E., E-mail: geiza.oliveira@ufes.br [Universidade Federal do Espirito Santo (CCE/DQUI/UFES), Vitoria, ES (Brazil). Centro de Ciencias Exatas. Dept. de Quimica; Souza Junior, F.G. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), Rio de Janeiro, RJ (Brazil). Instituto de Macromoleculas

    2013-11-01

    Asphaltenes can cause enormous losses in the oil industry, because they are soluble only in aromatic solvents. Therefore, they must be removed from the petroleum before it is refined, using flocculant agents. Aiming to find new materials that can work as flocculant agents to asphaltenes, cobalt ferrite nanoparticles were chemically modified through acid-base reactions using dodecylbenzene sulfonic acid (DBSA) to increase their lipophilicity. Nanoparticle synthesis was performed using the co-precipitation method followed by annealing of these nanoparticles, aiming to change the structural phase. Modified and unmodified nanoparticles were tested by FTIR-ATR, XRD and TGA/DTA. In addition, precipitation onset of the asphaltenes was performed using modified and unmodified nanoparticles. These tests showed that modified nanoparticles have a potential application as flocculant agents used to remove asphaltenes before oil refining, since the presence of nanoparticles promotes the asphaltene precipitation onset with the addition of a small amount of non-solvent (author)

  5. Evaluation of the asphaltenes macromolecules stabilization by alkylbenzenes compounds; Avaliacao da estabilizacao de macromoleculas asfaltenicas por compostos alquilbenzenicos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, G.E.; Mansur, C.R.E.; Lucas, E.F. [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas]. E-mail: elucas@ima.ufrj.br; geiza@ima.ufrj.br; Gonzalez, G. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas]. E-mail: gaspar@cenpes.petrobras.com.br

    2003-07-01

    The asphaltene deposition is a problem that affects oil production, transportation and storage. Some researches about asphaltene stabilization have been made in order to avoid its flocculation and deposition. In this work, the performance of four alkylbenzene compounds as asphaltene stabilizer was evaluated. The additive were tested in two different concentrations: 5000 and 10000 mg/L. Cardanol, polycardanol, polystyrene and polystyrene sulfonade were used as additive. The study was carried out by asphaltene precipitation in a solvent mixture (toluene and heptane), since that the asphaltene solubility in these solvents are different. The best results were obtained by using cardanol, at 5000 mg/L. (author)

  6. Geochemistry of raw Asphaltenes of the Oriental Plains

    International Nuclear Information System (INIS)

    Were studied samples of asphaltenes previously separate from 44 raw (p.eb ≥ 200 Celsius degrades) of the three regions of the Oriental Plains: Meta, Casanare and Arauca. The elementary analysis of asphaltenes samples of was carried out in a Carlo Erba CHNS analyzing, with a Coulometric auxiliary of Sulfur (Western Atlas, Core Laboratories). Starting from this analysis the atomic relationships were calculated (H/C), (O/C), (N/S), (C/S) and (C/N) which were used to discriminate or to separate the samples in groups. The pyrolysis Rock-eval was carried out on 20 mg, of each sample diluted with 80 mg of fine quartz, in order to avoiding the problems that are presented when it works with samples that contain more than 20% of Total Organic Carbon (COT). The results of this pyrolysis allowed establishing the presence of six groups or families in the samples of asphaltenes. It was also proven that the raw of the Arauca Field is of terrestrial origin while those of Cano Limon are originated of marine kerogens. With Nuclear Magnetic Resonance of proton (RMN of H) the percentages of Ha, Hβ, Ha, Hox y HAR+F, were calculated as well as the percentage of carbon aromatic insubstituted (% CAR (US)). Also, it was calculated the Aromatic Factor, FA and the substitution degree a, they were also calculated starting from these data the relationships FA/s, Hα/Hox+F y Hα/Hβ. When correlating the diverse data obtained starting from the elementary analysis to each other, the pyrolysis rock-eval and the RMN of H was possible to find two families or groups of raw in each one of the three areas of the Oriental Plains, giving a total of six families or groups of raw in the 44 studied samples. The correlations were: S2/S3 versus (N/S)AT, (C/S)AT versus FA/a, % Car (US) versus FA/d, FA versus, Ha /Ha r+d versus F A/d. Keeping in mind that Behar et al (1984) they concluded in their investigation of asphalts Geochemistry that the gases chromatography (PY -GC) of asphalts it could be used for

  7. Characterization of Physically and Chemically Separated Athabasca Asphaltenes Using Small-Angle X-ray Scattering

    Energy Technology Data Exchange (ETDEWEB)

    Amundaraín Hurtado, Jesús Leonardo; Chodakowski, Martin; Long, Bingwen; Shaw, John M. (Alberta)

    2012-02-07

    Athabasca asphaltenes were characterized using small-angle X-ray scattering (SAXS). Two methods were used to separate asphaltenes from the Athabasca bitumen: namely, chemical separation by precipitation with n-pentane and physical separation by nanofiltration using a zirconia membrane with a 20 nm average pore size. The permeate and chemically separated samples were diluted in 1-methylnaphtalene and n-dodecane prior to SAXS measurements. The temperature and asphaltene concentration ranges were 50-310 C and 1-10.4 wt %, respectively. Model-independent analysis of SAXS data provided the radius of gyration and the scattering coefficients. Model-dependent fits provided size distributions for asphaltenes assuming that they are dense and spherical. Model-independent analysis for physically and chemically separated asphaltenes showed significant differences in nominal size and structure, and the temperature dependence of structural properties. The results challenge the merits of using chemically separated asphaltene properties as a basis for asphaltene property prediction in hydrocarbon resources. While the residuals for model-dependent fits are small, the results are inconsistent with the structural parameters obtained from model-independent analysis.

  8. Study on the dipole moment of asphaltene molecules through dielectric measuring

    KAUST Repository

    Zhang, Long Li

    2015-01-01

    The polarity of asphaltenes influences production, transportation, and refining of heavy oils. However, the dipole moment of asphaltene molecules is difficult to measure due to their complex composition and electromagnetic opaqueness. In this work, we present a convenient and efficient way to determine the dipole moment of asphaltene in solution by dielectric measurements alone without measurement of the refractive index. The dipole moment of n-heptane asphaltenes of Middle East atmospheric residue (MEAR) and Ta-He atmospheric residue (THAR) are measured within the temperature range of -60°C to 20°C. There is one dielectric loss peak in the measured solutions of the two types of asphaltene at the temperatures of -60°C or -40°C, indicating there is one type of dipole in the solution. Furthermore, there are two dielectric loss peaks in the measured solutions of the two kinds of asphaltene when the temperature rises above -5°C, indicating there are two types of dipoles corresponding to the two peaks. This phenomenon indicates that as the temperature increases above -5°C, the asphaltene molecules aggregate and present larger dipole moment values. The dipole moments of MEAR C7-asphaltene aggregates are up to 5 times larger than those before aggregation. On the other hand, the dipole moments of the THAR C7-asphaltene aggregates are only 3 times larger than those before aggregation. It will be demonstrated that this method is capable of simultaneously measuring multi dipoles in one solution, instead of obtaining only the mean dipole moment. In addition, this method can be used with a wide range of concentrations and temperatures.

  9. Heavy Oil Process Monitor: Automated On-Column Asphaltene Precipitation and Re-Dissolution

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani; Mark Sanderson

    2007-03-31

    An automated separation technique was developed that provides a new approach to measuring the distribution profiles of the most polar, or asphaltenic components of an oil, using a continuous flow system to precipitate and re-dissolve asphaltenes from the oil. Methods of analysis based on this new technique were explored. One method based on the new technique involves precipitation of a portion of residua sample in heptane on a polytetrafluoroethylene-packed (PTFE) column. The precipitated material is re-dissolved in three steps using solvents of increasing polarity: cyclohexane, toluene, and methylene chloride. The amount of asphaltenes that dissolve in cyclohexane is a useful diagnostic of the thermal history of oil, and its proximity to coke formation. For example, about 40 % (w/w) of the heptane asphaltenes from unpyrolyzed residua dissolves in cyclohexane. As pyrolysis progresses, this number decrease to below 15% as coke and toluene insoluble pre-coke materials appear. Currently, the procedure for the isolation of heptane asphaltenes and the determination of the amount of asphaltenes soluble in cyclohexane spans three days. The automated procedure takes one hour. Another method uses a single solvent, methylene chloride, to re-dissolve the material that precipitates on heptane on the PTFE-packed column. The area of this second peak can be used to calculate a value which correlates with gravimetric asphaltene content. Currently the gravimetric procedure to determine asphaltenes takes about 24 hours. The automated procedure takes 30 minutes. Results for four series of original and pyrolyzed residua were compared with data from the gravimetric methods. Methods based on the new on-column precipitation and re-dissolution technique provide significantly more detail about the polar constituent's oils than the gravimetric determination of asphaltenes.

  10. Diagnosis of asphaltene stability in crude oil through “two parameters” SVM model

    DEFF Research Database (Denmark)

    Chamkalani, Ali; Mohammadi, Amir H.; Eslamimanesh, Ali;

    2012-01-01

    Asphaltene precipitation/deposition and its imposing difficulties are drastic issues in petroleum industry. Monitoring the asphaltene stability conditions in crude oil systems is still a challenge and has been subject of many studies. In this work, the Refractive Index (RI) of several oil samples...... is determined using the existing SARA fractions experimental data for this purpose. The powerful Least-Square modification of Support Vector Machine (LSSVM) strategy is applied to develop a computer program, by which the asphaltene stability region can be determined for various crudes. The developed two...

  11. Investigating molecular interactions and surface morphology of wax-doped asphaltenes.

    Science.gov (United States)

    Pahlavan, Farideh; Mousavi, Masoumeh; Hung, Albert; Fini, Ellie H

    2016-04-01

    The nature and origin of bee-like microstructures (bees) in asphalt binders and their impact on asphalt oxidation have been the subject of extensive discussions in recent years. While several studies refer to the bees as solely surface features, some others consider them to be bulk microcrystalline components that are formed due to co-precipitation of wax and asphaltene molecules. In this study, we use a rigorous theoretical and experimental approach to investigate the interplay of asphalt components (mainly asphaltene and wax) and their impact on bee formation. In the theoretical section, quantum-mechanical calculations using density functional theory (DFT) are used to evaluate the strength of interactions between asphaltene unit sheets in the presence and absence of a wax component, as well as the mutual interactions between asphaltene molecules (monomers and dimers) and paraffin wax. The results of this section reveal that paraffin waxes not only do not reinforce the interaction between the asphaltene unit sheets, they destabilize asphaltene assembly and dimerization. AIM (Atom in Molecules) analysis shows the destabilizing effect of wax on asphaltene assembly as a reduction in the number of cage and bond critical points between asphaltenes. This destabilization effect among interacting systems (asphaltene-asphaltene and wax-asphaltene) does not support the hypothesis that interaction between paraffin waxes and non-wax components, such as asphaltene, is responsible for their co-precipitation and bee formation. To further examine the effect of wax component on asphalt microstructure experimentally, we used atomic force microscopy (AFM) to study the surface morphology of an asphalt sample doped with 1% to 25% paraffin wax. In agreement with the conclusions drawn from the DFT approach, our experiments indicate that paraffin wax tends to crystallize separately and form lamellar paraffin wax crystal inclusions with 10 nm thickness. Moreover, the addition of 3% wax

  12. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Deo, Milind D.

    2002-02-21

    Objectives of this project was to understand asphaltene precipitation in General and carbon dioxide induced precipitation in particular. To this effect, thermodynamic and kinetic experiments with the Rangely crude oil were conducted and thermodynamic and reservoir models were developed.

  13. Asphaltene self-association: Modeling and effect of fractionation with a polar solvent

    DEFF Research Database (Denmark)

    Garcia, Daniel Merino; Murgich, J; Andersen, Simon Ivar

    2004-01-01

    The self-association of asphaltenes in toluene is believed to occur step-wise, rather than by the formation of micelles. A number of step-wise models have been used to fit the calorimetric titration of asphaltenes in dried toluene solutions, with excellent results. All the models are based on...... chemical reactions equivalent to the ones found in polymerization. The study shows that the choice of the average properties of asphaltenes, such as the molecular weight, is critical in the final value of the parameter of interest, namely the average heat of self-association DeltaH(a). The low values of...... because it does not self-associate or because the dilution effect is not strong enough to break the aggregates. Fluorescence and IR spectroscopy experiments confirm there is self-association in INS fraction, leading to the conclusion that asphaltene aggregates are formed by bonds of different strengths...

  14. Modelling asphaltene precipitation equilibrium : influence of the experimental contact time and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J.; Marugan, J.; Calles, J.A.; Gimenez-Aguirre, R. [Rey Juan Carlos Univ., Madrid (Spain). Dept. of Chemical and Environmental Technology, Repsol-YPF Flow Assurance Laboratory; Pena, J.L. [Rey Juan Carlos Univ., Madrid (Spain). Dept. of Chemical and Environmental Technology, Repsol-YPF Flow Assurance Laboratory; Centro Tecnologico Repsol-YPF, Madrid (Spain); Merino-Garcia, D. [Centro Tecnologico Repsol-YPF, Madrid (Spain)

    2008-07-01

    Asphaltene deposition creates flow assurance problems and economic losses for petroleum companies. Predictive models are therefore needed to prevent these problems. Most models found in the literature are based on equilibrium calculations and must be checked against experimental data of both onset and amount of asphaltenes separated. However, the samples must be equilibrated for a long time since the kinetics of asphaltene aggregation and precipitation are slow. This paper discussed the kinetics of asphaltene precipitation, based on results obtained from a problematic South American crude and its residue. The influence of temperature, chain length of the n-alkane solvent and n-alkane/oil mass ratio was evaluated. The solids were characterized by 1H NMR, elemental analysis and Fourier transform infrared (FTIR) spectroscopy to determine their chemical structure. Metal contents (mainly Fe, V and Ni) have been measured by atomic emission spectroscopy. The true equilibrium data will be used to validate equilibrium models from the literature.

  15. Bayesian Belief Network Method for Predicting Asphaltene Precipitation in Light Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Jeffrey O. Oseh (M.Sc.

    2015-04-01

    Full Text Available Asphaltene precipitation is caused by a number of factors including changes in pressure, temperature, and composition. The two most prevalent causes of asphaltene precipitation in light oil reservoirs are decreasing pressure and mixing oil with injected solvent in improved oil recovery processes. This study focused on predicting the amount of asphaltene precipitation with increasing Gas-Oil Ratio in a light oil reservoir using Bayesian Belief Network Method. These Artificial Intelligence-Bayesian Belief Network Method employed were validated and tested by unseen data to determine their accuracy and trend stability and were also compared with the findings obtained from Scaling equations. The obtained Bayesian Belief Network results indicated that the method showed an improved performance of predicting the amount of asphaltene precipitated in light oil reservoirs thus reducing the number of experiments required.

  16. Studies of water-in-oil emulsions: the role of asphaltenes and resins

    International Nuclear Information System (INIS)

    Experiments were conducted to study the role of asphaltenes in water-in-oil emulsions. Asphaltenes are the agents that act like surfactants and are responsible for the formation and stability of these emulsions. Experiments were conducted on an emulsion that had been standing for three months, and on a salt water-oil emulsion. A series of tests were performed to study how asphaltenes would migrate in the absence of a strong gravity effect. All the experiments showed that asphaltenes migrate to the oil-water interface from the oil. This explains why an emulsion which sits for a long time can become more viscous and more stable as time progresses. Future work will determine whether resins will behave in the same manner. 36 refs., 2 tabs

  17. Investigation of asphaltene precipitation in miscible gas injection processes: experimental study and modeling

    Directory of Open Access Journals (Sweden)

    S. Moradi

    2012-09-01

    Full Text Available Asphaltene precipitation during natural depletion and miscible gas injection is a common problem in oilfields throughout the world. In this work, static precipitation tests are conducted to investigate the effects of pressure, temperature and gas type and concentration on asphaltene instability. Three different oil samples have been studied under reservoir conditions with/without nitrogen and methane injection. Besides applying common thermodynamic models, a new scaling equation is presented to predict asphaltene precipitation under HPHT gas injection. Extensive published data from the literature are also used in model development. The scaling approach is attractive because it is simple and complex asphaltene properties are not involved in the calculations. Moreover, the proposed model provides universal parameters for different fluid samples over a wide range of pressure and temperature that makes it novel for evaluation of future gas injection projects when simple PVT data are available.

  18. Analysis of metals in asphaltenes of KU-46 by PIXE analysis

    International Nuclear Information System (INIS)

    The content of metals of the asphaltenes obtained from the KU-46 mexican crude with n-heptane was evaluated. The found metals in higher concentration are transition metals as well as the vanadium, nickel, copper and zinc. Moreover the sulfur in high concentrations was quantified. The metallic content of the asphaltenes revealed that the crude contains a lower quantity of metals unlike the vacuum residue previously analysed. (Author)

  19. Prediction of the Gas Injection Effect on the Asphaltene Phase Envelope

    Directory of Open Access Journals (Sweden)

    Bahrami Peyman

    2015-11-01

    Full Text Available Asphaltene instability may occur when pressure, temperature and compositional variations affect the reservoir oil. Permeability reduction, wettability alteration, and plugging of wells and flow lines are the consequences of this phenomenon. Therefore, it is crucial to investigate the asphaltene behavior in different thermodynamic conditions by knowing the Asphaltene Precipitation Envelope (APE in a preventive way rather than the costly clean-up procedures. The selected reservoir oil has faced a remarkable decline in production due to several years of extraction, and Enhanced Oil Recovery (EOR has been considered as a solution. Therefore, in this paper, a comprehensive study was carried out to predict the effects of different injected gases on asphaltene onset and to prevent future asphaltene precipitation based on the laboratory data. The Advanced Redlich-Kwong-Soave (RKSA equation of state was considered to develop APE using Multiflash (Infochem Co.. For the selected reservoir oil, with temperature reduction at low temperatures, asphaltene precipitation weakened and made the onset pressure decrease, so this behavior is different from the results obtained in other published reports. On the basis of this model, several sensitivity analyses were performed with different gases (i.e., methane, CO2, N2 and associated gases to compare the risk of each gas for future EOR strategies. APE tend to expand as the amount of injected gases increases, except for CO2 gas injection, that showed another unconventional behavior for this crude oil. It was observed that for CO2 gas injection below a certain temperature, asphaltene stability increased, which can be considered as a good inhibitor of asphaltene precipitation.

  20. Distribution of metals in vacuum residuums, asphaltenes and maltenes by PIXE

    International Nuclear Information System (INIS)

    The PIXE technique for determining directly the distribution and abundance of trace metals in vacuum residuum, asphaltenes and maltenes separated with n-alkanes (C5-C8) is used. The metal content of petroleum derivatives revealed that the vacuum residuum contains iron, aluminium, vanadium and nickel mainly, while that the asphaltenes and maltenes maintain inside of their composition only preferably the vanadium and nickel as majority elements. (Author)

  1. Kinetic studies on the pyrolysis of asphaltenes from differenttypes of kerogens

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The pyrolysis kinetics of a series of asphaltenes, from different types of kerogens, are studied in this work. The results indicate that the distributions of activation energy are over a wide range for the asphaltenes from type I kerogens. There is still a large potential of hydrocarbon generation in case the activation energy is above 350 kJ·mol-1. While the distributions of activation energy are comparatively over a narrow range for the asphaltenes from type II and II kerogens,there is a little or almost no potential of hydrocarbon generation with the activation energy above 350 kJ·mol-1 respectively. For the asphaltenes from some specific type of kerogens, the pyrolysis kinetics can be applied to marking their maturity. Furthermore, based on detailed discussions of the kinetics parameter frequency factor, the asphaltenes from type I kerogens are considered to be of great potential to regenerate oils, while the asphaltenes' potential for oil-to-gas conversion tends to go down in order of primitive kerogen types of Ⅲ II and I.

  2. Structural Characterisation of Asphaltenes during Residue Hydrotreatment with Light Cycle Oil as an Additive

    Directory of Open Access Journals (Sweden)

    Yong-Jun Liu

    2015-01-01

    Full Text Available Several atmospheric residues (AR of Kuwaiti crude, in the absence, or in the presence, of light cycle oil (LCO as an aromatic additive, were hydrotreated in an experimental plant. Asphaltenes (precipitated from Kuwaiti AR, a hydrotreated AR, and a hydrotreated blend of AR and LCO were characterised by chemical structure and changes during residue hydrotreatment. The average structural parameters of these asphaltenes, obtained from a combined method of element analysis, average molecular weight, X-ray diffraction, and NMR, demonstrate that, after hydrotreatment, the aromatic cores of the asphaltenes become more compact and smaller whereas the peripheral alkyl branches are decreased in number and shortened. The influence of LCO on residue hydrotreating is also studied in terms of structural changes in the asphaltenes. The findings imply that LCO added to AR during hydrotreating improves the degree of aromatic substitution, the total hydrogen/carbon atomic ratio per average molecule, the distance between aromatic sheets and aliphatic chains, and so forth, by modifying the colloidal nature and microstructure of asphaltene: this is beneficial for the further hydroprocessing of AR. Three hypothetical average molecules are proposed to represent the changes undergone by such asphaltenes during hydrotreatment as well as the effects of additive LCO.

  3. Asphaltene macrostructure of petroleum crude investigated by small angle neutron scattering

    International Nuclear Information System (INIS)

    Complete text of publication follows. The amount and the phase stability of the asphaltene fraction in petroleum and crude oils are important during the production, the processing and the transportation of these crude fluids. Small angle neutron scattering SANS technique was used to investigate the colloidal properties of an Algerian petroleum crude. Dilute samples with various concentrations up to 11% vol. were studied. The macrostructure of the present asphaltene fraction as well as its size distributions and volume fraction were extracted by modeling the experimental scattering data using a non linear least squares fitting program. The analysis results suggest that into the studied conditions, the petroleum crude asphaltene fraction seems to form stable micellar systems with a polydisperse globular like shape structures. It was found that the micelles mean size radius was about 2 nm and did not vary with the petroleum fluid medium concentration. The volume fraction of asphaltenes did not also increase with petroleum fluid medium concentration. These results suggest that the forming micelles were stable and there was no aggregation. In order to probe the internal structure of the asphaltene micelles the contrast variation technique was also performed on the isolated asphaltene fraction and from these results a form factor shape model was proposed. (author)

  4. Formation of asphaltene deposits from crude oil destabilized by addition of propane

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.; Creek, J. [Chevron Energy Technology Co., Houston, TX (United States); Fan, T.; Buckley, J. [New Mexico Inst. of Mining and Technology, NM (United States)

    2008-07-01

    As oil development moves into deeper water and deeper wells, it is increasingly important to predict the formation of asphaltene deposits. The first step toward predicting deposition is knowing the asphaltene stability as a function of temperature, pressure, and composition. Flocculated asphaltenes can segregate under the influence of gravity in low energy environments. The challenge lies in understanding the deposits that form on pipe walls in producing wells. This paper reported on a continuing study of arterial deposition from destabilized crude oils in stainless steel capillary tubing as a function of several variables, including the molecular size of the paraffinic precipitating agent. The initial studies revealed that destabilization of asphaltenes from a given crude oil with higher molecular weight precipitants produced a larger volume of asphaltene enriched deposit compared to a lower molecular weight precipitant with the same crude oil. Liquid n-paraffins precipitants from n-pentane to n-pentadecane were used in the initial studies. The data was then used to forecast precipitation with solution gas at different pressures and temperatures. In this present study, the range of paraffinic precipitants was extended to include propane for a comparative evaluation to determine the driving force for asphaltene precipitation in reservoir fluids.

  5. Chemistry and structure of coal derived asphaltenes and preasphaltenes. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1979-01-01

    It is the objective of this project to isolate the asphaltene and preasphaltene fractions from coal liquids from a number of liquefaction processes. These processes consist of in general: catalytic hydrogenation, staged pyrolysis and solvent refining. The asphaltene fractions may be further separated by both gradient elution through column chromatography, and molecular size distribution through gel permeation chromatography. These coal-derived asphaltene and preashpaltene fractions will then be investigated by various chemical and physical methods for characterization of their structures. After the parameters are obtained, these parameters will be correlated with the refining and conversion variables which control a given type of liquefaction process. The effects of asphaltene in catalysis, ash or metal removal, desulfurization and denitrification will also be correlated. It is anticipated that understanding the role of asphaltenes in liquefaction processes will enable engineers to both improve existing processes, and to make recommendations for operational changes in planned liquefaction units. The objective of Phase 1 was to complete the isolation and separation of coal liquid fractions and to initiate their characterization. The objective of Phase 2 is to continue the characterization of coal asphaltenes and other coal liquid fractions by use of physical and instrumental methods. The structural parameters obtained will be used to postulate hypothetical average structures for coal liquid fractions.The objective of Phase 3 is to concentrate on the characterization of the preasphaltene (benzene insoluble fraction) of coal liquid fraction by the available physical and chemical methods to obtain a number of structural parameters.

  6. COMPARISON BETWEEN ASPHALTENES (SUB)FRACTIONS EXTRACTED FROM TWO DIFFERENT ASPHALTIC RESIDUES: CHEMICAL CHARACTERIZATION AND PHASE BEHAVIOR

    OpenAIRE

    Silas R. Ferreira; Fabio R. Barreira; Luciana S. Spinelli; Katia Z. Leal; Peter Seidl; Elizabete F. Lucas

    2016-01-01

    Asphaltenes are blamed for various problems in the petroleum industry, especially formation of solid deposits and stabilization of water-in-oil emulsions. Many studies have been conducted to characterize chemical structures of asphaltenes and assess their phase behavior in crude oil or in model-systems of asphaltenes extracted from oil or asphaltic residues from refineries. However, due to the diversity and complexity of these structures, there is still much to be investigated. In this study,...

  7. Study on the interaction of asphaltenes macromolecules and stabilizer compounds: LCC and cardanol; Estudo da interatividade entre macromoleculas asfaltenicas e compostos estabilizantes: LCC e cardanol

    Energy Technology Data Exchange (ETDEWEB)

    Moreira, Luiz Fernando Bandeira; Lucas, Elizabete Fernandes [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas; Gonzalez, Gaspar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    1998-09-01

    Petroleum contains asphaltene which can be precipitated, generating various problems affecting the crude oil production and transport, storage and processing. This work presents a mathematical adaptation of interaction models for the asphaltene-stabilizer system allowing prediction of stabilizer performance for avoiding asphaltene precipitation. The ashew liquid and particularly the cardanol have been studied by using the peptising test. The ashew and cardanol present the asphaltene stabilizer properties and positive properties in both cases. (author)

  8. Determination of trace elements in GPC fractions of oil-sand asphaltenes by INAA

    International Nuclear Information System (INIS)

    Asphaltene samples precipitated from Athabasca and Cold Lake oil-sand bitumens were separated into 12 fractions of varying molecular weight by preparative gel permeation chromatography (GPC). Each fraction was then analyzed by analytical GPC and visible spectrometry. Concentrations of As, Ce, Co, Cr, Eu, Ga, Hf, Hg, La, Ni, Sb, Sc, Se, Sm, Tb, Th, U, V, Zn, and Zr in the fractions were determined by neutron activation analysis. Molecular weights of the Athabasca fractions are generally higher than the corresponding Cold Lake fractions. Between 58% and 90% of the metal contents occur in the high molecular weight fractions of both asphaltenes. Except for V and Cr, which show biomodel distributions, all the elements have decreasing concentrations as the molecular weight of the fraction decreases. High molecular weight fractions, constituting about 55% of the whole asphaltenes, contain nonporphyrin bound vanadium compounds. It is estimated that 27% and 31% of V present in Athabasca and Cold Lake asphaltenes respectively occur as porphyrin type compounds, including vanadyl prophyrins released from the asphaltene micelle during the separation and vanadyl porphyrins bearing high-molecular-weight substituents

  9. The aggregation and diffusion of asphaltenes studied by GPU-accelerated dissipative particle dynamics

    Science.gov (United States)

    Wang, Sibo; Xu, Junbo; Wen, Hao

    2014-12-01

    The heavy crude oil consists of thousands of compounds and much of them have large molecular weights and complex structures. Studying the aggregation and diffusion behavior of asphaltenes can facilitate the understanding of the heavy crude oil. In previous studies, the fused aromatic rings were treated as rigid bodies so that dissipative particle dynamics (DPD) integrated with the quaternion method can be used to study asphaltene systems. In this work, DPD integrated with the quaternion method is implemented on graphics processing units (GPUs). Compared with the serial program, tens of times speedup can be achieved when simulations performed on a single GPU. Using multiple GPUs can provide faster computation speed and more storage space for simulations of significant large systems. By using large systems, simulations of the asphaltene-toluene system at extremely dilute concentrations can be performed. The determined diffusion coefficients of asphaltenes are similar to that in experimental studies. At last, the aggregation behavior of asphaltenes in heptane was investigated, and the simulation results agreed with the modified Yen model. Monomers, nanoaggregates and clusters were observed from the simulations at different concentrations.

  10. HEAVY OIL PROCESS MONITOR: AUTOMATED ON-COLUMN ASPHALTENE PRECIPITATION AND RE-DISSOLUTION

    Energy Technology Data Exchange (ETDEWEB)

    John F. Schabron; Joseph F. Rovani Jr; Mark Sanderson

    2006-06-01

    About 37-50% (w/w) of the heptane asphaltenes from unpyrolyzed residua dissolve in cyclohexane. As pyrolysis progresses, this number decrease to below 15% as coke and toluene insoluble pre-coke materials appear. This solubility measurement can be used after coke begins to form, unlike the flocculation titration, which cannot be applied to multi-phase systems. Currently, the procedure for the isolation of heptane asphaltenes and the determination of the amount of asphaltenes soluble in cyclohexane spans three days. A more rapid method to measure asphaltene solubility was explored using a novel on-column asphaltene precipitation and re-dissolution technique. This was automated using high performance liquid chromatography (HPLC) equipment with a step gradient sequence using the solvents: heptane, cyclohexane, toluene:methanol (98:2). Results for four series of original and pyrolyzed residua were compared with data from the gravimetric method. The measurement time was reduced from three days to forty minutes. The separation was expanded further with the use of four solvents: heptane, cyclohexane, toluene, and cyclohexanone or methylene chloride. This provides a fourth peak which represents the most polar components, in the oil.

  11. Asphaltene precipitation and its effects on the vapour extraction (VAPEX) heavy oil recovery process

    Energy Technology Data Exchange (ETDEWEB)

    Luo, P.; Wang, X.; Gu, Y. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Regina Univ., SK (Canada). Petroleum Technology Research Centre; Zhang, H. [Society of Petroleum Engineers, Canadian Section, Calgary, AB (Canada)]|[Core Laboratories Canada Ltd., Calgary, AB (Canada); Moghadam, L. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-10-15

    One of the most important physical phenomena during the solvent vapour extraction (VAPEX) of heavy oil recovery is asphaltene precipitation. After the asphaltene precipitation occurs, the produced heavy oil is deasphalted in-situ, resulting in a lower viscosity and better quality. However, precipitated asphaltenes may plug some small pores of the reservoir formation, thus reducing its permeability. This paper examined the effects of three operating factors on the asphaltene precipitation during the VAPEX process, notably solvent type; operating pressure; and sand-pack permeability. Eight VAPEX tests were conducted to recover two different Lloydminster heavy oil samples from a rectangular sand-packed physical model with a butane mixture and propane as the respective solvents. The accumulative heavy oil and solvent production from the physical model were measured in the entire VAPEX process. The paper described the materials, experimental set-up, and experimental preparation. The VAPEX test was also explained. Results were presented for sand consolidation; solvent effect; pressure effect; and permeability effect. It was concluded that when the extracting solvent is in a liquid-gas state, asphaltene precipitation occurs and leads to in-situ deasphalting. 15 refs., 3 tabs., 6 figs.

  12. Molecular mechanics and microcalorimetric investigations of the effects of molecular water on the aggregation of asphaltenes in solutions

    DEFF Research Database (Denmark)

    Murgich, J.; Lira-Galeana, C.; Garcia, Daniel Merino; Andersen, Simon Ivar; del Rio-Garcia, J.M.

    2002-01-01

    The interaction of two model asphaltene molecules from the Athabasca sand oil with a water molecule in a toluene solution was studied by means of molecular mechanics calculations. It was found that water forms bridging H bonds between the heteroatoms of asphaltenes with a considerable span in ene...

  13. Characterization of the onset asphaltenes by focused-beam laser reflectance : a tool for chemical additives screening

    Energy Technology Data Exchange (ETDEWEB)

    Marugan, J.; Calles, J.A.; Dufour, J.; Gimenez-Aguirre, R. [Univ. Rey Juan Carlos, Madrid (Spain). URJC-Repsol-YPF Flow Assurance Laboratory, Dept. of Chemical and Environmental Technology; Pena, J.L. [Univ. Rey Juan Carlos, Madrid (Spain). URJC-Repsol-YPF Flow Assurance Laboratory, Dept. of Chemical and Environmental Technology; Centro Tecnologico Repsol-YPF, Madrid (Spain); Merino-Garcia, D. [Centro Tecnologico Repsol-YPF, Madrid (Spain)

    2008-07-01

    The deposition of asphaltenes in crude oil can cause flow assurance problems. In this study, a laser reflectance technique known as Focused-Beam Reflectance Measurement (FBRM) was used to study the kinetics of asphaltenes aggregation near onset. The FBRM tool provides a very sensitive way of determining the onset n-alkane/oil mass ratio. The influence of the n-alkane solvent and temperature on the solvent/oil threshold ratio of 2 South American crude oils with 21 and 27 API were investigated. The FBRM technique provided kinetic information about the evolution with time of the size distribution of asphaltenes flocs. Additional FBRM experiments of asphaltene redissolution and reprecipitation were also performed for a comparative evaluation, beginning with the solids recovered following the IP- 143 standard, which were fractionated into 4 different polarity groups using n-pentane - chloroform mixtures. The objective was to find correlations between polarity of the asphaltenes and its instability near the onset. Metal content was determined through atomic emission spectroscopy. The solids were characterized by 1H NMR, FT-IR spectroscopy, and vapour-pressure osmometry in order to determine the chemical and structural features of the most unstable asphaltenes. The FBRM probe was used to screen commercial chemical additives to prevent asphaltenes deposits. This technique was shown to be a very powerful tool for examining the influence of additives on the aggregation kinetics and the particle size distribution of the first asphaltene solids.

  14. Isothermal Titration Calorimetry and Fluorescence Spectroscopy Study Of Asphaltene Self-Association In Toluene And Interaction With A Model Resin

    DEFF Research Database (Denmark)

    Garcia, Daniel Merino; Andersen, Simon Ivar

    2002-01-01

    This article collects the work performed by Isothermal Titration Caloritnetry (ITC) in the study of the self-association of asphaltenes in toluene solutions. Calorimetric experiments show that asphaltenes, start self-associating at very low concentrations and that the existence of a Critical Mice...

  15. Removal of asphaltene and paraffin deposits using micellar solutions and fused reactions. Final report, 1995--1997

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C.L.; Nalwaya, V.; Singh, P.; Fogler, H.S.

    1998-05-01

    Chemical treatments of paraffin and asphaltene deposition by means of cleaning fluids were carried out in this research project. Research focused on the characterization of asphaltene and paraffin materials and dissolution of asphaltene and paraffin deposits using surfactant/micellar fluids developed early in the project. The key parameters controlling the dissolution rate were identified and the process of asphaltene/paraffin dissolution were examined using microscopic apparatus. Numerical modeling was also carried out to understand the dissolution of paraffin deposits. The results show that fused chemical reaction systems are a promising way of removing paraffin deposits in subsea pipelines. The fused system may be in the form of alternate pulses, emulsions systems or encapsulated catalyst systems. Fused reaction systems, in fact, are extremely cost-effective--less than 10% of the cost of replacing entire sections of the blocked pipeline. The results presented in this report can have a real impact on the petroleum industry and the National Oil Program, if it is realized that the remediation technologies developed here can substantially delay abandonment (due to asphaltene/paraffin plugging) of domestic petroleum resources. The report also sheds new light on the nature and properties of asphaltenes and paraffin deposits which will ultimately help the scientific and research community to develop effective methods in eliminating asphaltene/paraffin deposition problems. It must also be realized that asphaltene remediation technologies developed and presented in this report are a real alternative to aromatic cleaning fluids currently used by the petroleum industry.

  16. Calorimetric Evidence about the Application of the Concept of CMC to Asphaltene Self-Association

    DEFF Research Database (Denmark)

    Garcia, Daniel Merino; Andersen, Simon Ivar

    2005-01-01

    For many years, the concept of critical micellar concentration (CMC) has been projected from surfactant science into asphaltene science. There are several similarities between these two species, such as the stabilization of water-in-oil emulsions and surface activity, which suggested that...... asphaltenes may also have a concentration at which self-association occurs (CMC). This article presents evidence found by calorimetry and spectroscopic techniques, that suggest that this concept may not be adequate for asphaltene self-association in toluene solutions. Isothermal titration calorimetry has been...... widely used in surfactant science to determine both the CMC and the enthalpy of micellation of many surfactants. The concentration interval could be divided into three regions: monomer region, micellation region, and micelle region. The absence of the first region (monomer) in the concentration range...

  17. Structural modifications of petroleum asphaltenes by reductive alkylation investigated by TLC-FID

    Energy Technology Data Exchange (ETDEWEB)

    Cagniant, D.; Nosyrev, I.; Cebolla, V.; Vela, J.; Membrado, L.; Gruber, R. [Universite de Metz, Metz (France). Laboratoire de Thermodynamique et d' Analyses Chimiques

    2001-01-01

    The reductive alkylation of a French petroleum asphaltene (Lagrave) was studied with potassium in THF, in absence of an electron transfer reagent. From the number of butyl and benzyl groups added to the starting asphaltene, the difference of reactivity of the alkyl reagents, butyl iodide and benzyl bromide, was pointed out. Special attention was focused on the cleavage of C-S and C-O linkages in relation to the structural modifications. From the number of hydrogen atoms added during the reduction step, it was concluded that the sulphide linkages are mainly of aryl-S-aryl, aryl-S-alkyl or alkyl-S-alkyl types. The TLC-FID (Iatroscan) analysis was found to be very suitable to follow the 'depolymerization' process of the asphaltene, qualitatively as well as quantitatively, by the application hydrocarbon group type analysis. 23 refs., 2 figs., 5 tabs.

  18. Sulfur K-edge X-ray absorption spectroscopy of petroleum asphaltenes and model compounds

    International Nuclear Information System (INIS)

    The utility of sulfur K-edge X-ray absorption spectroscopy for the determination and quantification of sulfur forms in petroleum asphaltenes has been investigated. Both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) spectra were obtained for a selected group of model compounds and for several petroleum asphaltene samples. For the model compounds the sulfur XANES was found to vary widely from compound to compound and to provide a fingerprint for the form of sulfur involved. The use of third derivatives of the spectra enabled discrimination of mixtures of sulfidic and thiophenic model compounds and allowed approximate quantification of the amount of each component in the mixtures and in the asphaltene samples. These results represent the first demonstration that nonvolatile sulfur forms can be distinguished and approximately quantified by direct measurement

  19. A study of some asphaltenes solutions structure and of a Safaniya vacuum residue

    Energy Technology Data Exchange (ETDEWEB)

    Guille, V.

    1996-05-20

    A lot of problems in the petroleum industry are due to the presence of asphaltenes compounds in petroleum products. A good knowledge of the chemical composition and the different properties of asphaltenes in solution are necessary to cope with these difficulties. We have then examined a Safaniya Vacuum Residue (VR) and its fractions (asphaltenes, resins, aromatics and saturates). In order to describe the macro-structure of these complex colloidal systems, we used different characterisation techniques: small angle X-ray and neutron scattering (SAXS and SANS), rheology and electron microscopy. Scattering techniques allows us to precise the model for asphaltenes and resins in solution. These macromolecules are poly-dispersed disk-like particles with thickness and diameter which are respectively close to 1 to 10 nm. The average molecular weight is equal to 106 000 for asphaltenes and 3 300 for resins. We have shown that SAXS is more sensitive to the scattering of the aromatic part of the molecule. Adding n-heptane induces first a de-solvation of the molecules and then an aggregation up to flocculation. These solutions present large heterogeneities due to concentration fluctuations. A huge difference in the chemical composition of the different asphaltenes molecules can explain these fluctuations. These heterogeneities are stable as a function of temperature; this means that exist strong molecular interactions. Ultracentrifugation gives two different fractions which contain different chemical structures, more or less aromatic. Solutions, in good solvent, of these two fractions are homogeneous but a mixture of these two fractions exhibits, heterogeneities. SAXS gives information about the structure of VR. We have observed the presence of large density fluctuations up to 300 deg. C. Rheological measurements confirm three-dimensional organisation. (author). 11 refs., 11 figs., 49 tabs.

  20. Effects of Asphaltene Aggregation in Model Heptane-Toluene Mixtures on Stability of Water-in-Oil Emulsions

    Science.gov (United States)

    McLean; Kilpatrick

    1997-12-01

    As part of an ongoing investigation into the stability of water-in-crude oil emulsions, model oils have been utilized to further probe the effects of crude solvency as well as specific resin-asphaltene interactions on emulsion stability. These model oils were constructed by dissolving varying amounts of resins and/or asphaltenes in a mixture of heptane and toluene. The resins and asphaltenes used in this study were isolated from four different crude types-Arab Berri (AB), Arab Heavy (AH), Alaska North Slope (ANS), and San Joaquin Valley (SJV)-and characterized in a previous study using heptane precipitation of the asphaltenes followed by an extrographic separation of the resins from silica gel. Asphaltenes dissolved in heptol at concentrations of just 0.5% were shown to generate emulsions which were even more stable than those generated from their respective whole crude oils. Some types of resins (e.g., from AH and SJV) also demonstrated an ability to stabilize emulsions although these resin-stabilized emulsions were considerably less stable than those prepared with asphaltenes. The primary factors governing the stability of these model emulsions were the aromaticity of the crude medium (as controlled by the heptane:toluene ratio), the concentration of asphaltenes, and the availability of solvating resins in the oil (i.e., the resin/asphaltene or R/A ratio). The model emulsions were the most stable when the crude medium was 30-40% toluene and in many cases at small R/A ratios (i.e., R/A asphaltenes are the most effective in stabilizing emulsions when they are near the point of incipient precipitation. The types of resins and asphaltenes used to construct these model oils also played a role in determining the resultant emulsion stability which indicates the importance of specific resin-asphaltene interactions. The interfacially active components that stabilized these model systems were the most polar and/or condensed portions of the resin and asphaltene fractions as

  1. Fractal characteristics of an asphaltene deposited heterogeneous surface

    International Nuclear Information System (INIS)

    Several methods have been employed in recent years to investigate homogeneous surface topography based on image analysis, such as AFM (atomic force microscopy) and SEM (scanning electron microscopy). Fractal analysis of the images provides fractal dimension of the surface which is used as one of the most common surface indices. Surface topography has generally been considered to be mono-fractal. On the other hand, precipitation of organic materials on a rough surface and its irregular growth result in morphology alteration and converts a homogeneous surface to a heterogeneous one. In this case a mono-fractal description of the surface does not completely describe the nature of the altered surface. This work aims to investigate the topography alteration of a glass surface as a result of asphaltene precipitation and its growth at various pressures using a bi-fractal approach. The experimental results of the deposited surfaces were clearly indicating two regions of micro- and macro-asperities namely, surface types I and II, respectively. The fractal plots were indicative of bi-fractal behavior and for each surface type one fractal dimension was calculated. The topography information of the surfaces was obtained by two image analyses, AFM and SEM imaging techniques. Results of the bi-fractal analysis demonstrated that topography alteration in surface type II (macro-asperities) is more evident than that in surface type I (micro-asperities). Compared to surface type II, a better correlation was observed between the fractal dimensions inferred from the AFM images (DA) and those of the SEM images (DS) in surface type I.

  2. Monitoring the formation of asphaltene and pre-asphaltene through solvent soaking during liquefaction of Mukah Malingian Malaysian coal via semi-continuous solvent flow high-pressure reactor system

    Energy Technology Data Exchange (ETDEWEB)

    Khudzir Ismail; Nur Nasulhah Kasim; Mohd Azlan Mohd Ishak; Mohd Fauzi Abdullah [University Technology MARA Perlis, Perlis (Malaysia). Fuel Combustion Research Laboratory

    2007-07-01

    One of the problems that could affect the production of high percentage of oil + gas yield during liquefaction of low-rank coal is the production of high amount of asphaltene, pre-asphaltene and coke through de-polymerisation and re-polymerisation of the radical species within the coal carbon matrix at high temperature regime. Hence, one solution is to suppress the re-polymerisation reaction by supplying sufficient amount of fresh donor solvent at the appropriate liquefaction temperature to instantaneously cap the reactive radical species. In this work, the effect of solvent flow rates and solvent soaking time at selective isothermal temperatures on the formation of asphaltene and preasphaltene during liquefaction of Mukah Balingian low-rank Malaysian coal via semi-continuous solvent flow high-pressure reactor system were studied. The liquefaction processes were carried out at 4 MPa with three different solvent flow rates i.e. at 2, 7, and 10 ml/min, and at temperature ranging from 300 to 450{sup o}C by using tetralin as hydrogen donor solvent. Initial findings showed that asphaltene and pre-asphaltene begin to form at liquefaction temperature range of 300-350{sup o}C, with the percent yields tend to increase with increasing in the solvent flow rate and solvent soaking time. At above 400{sup o}C, the percent of asphaltene and pre-asphaltene seem to decrease slightly probably due to conversion of these components to oil + gas. The slight reduction in the percentage of asphaltene and pre-asphaltene suggest that sufficient amount of hydrogen donors were present during the soaking condition to cap the small radical species, thus preventing the re-polymerisation reaction and promoting the formation of oil+gas. Apparently, the percentages of coal conversion and oil + gas yield were almost similar regardless whether the solvent soaking was applied at 400 or 420{sup o}C. 18 refs., 4 figs., 4 tabs.

  3. Effect on molecular interactions of chemical alteration of petroleum asphaltenes. I

    DEFF Research Database (Denmark)

    Juyal, Priyanka; Garcia, Daniel Merino; Andersen, Simon Ivar

    2005-01-01

    Asphaltenes are naturally occurring components of crude oil and have been the subject of many studies that have involved a variety of methods to determine their complex structure, their association in crude oil with resins, and their agglomeration phenomena. Yet, the molecular structures of aspha...

  4. Determination of asphaltenes in heavy oils using an on-column method

    Energy Technology Data Exchange (ETDEWEB)

    Rogel, E.; Ovalles, C.; Moir, M. [Chevron Energy Technology Co., Richmond, CA (United States); Schabron, J.F. [Western Research Inst., Laramie, WY (United States)

    2009-07-01

    An improved analytical method for determining the asphaltene content in crude oil and petroleum samples was presented. The method used an on-column precipitation technique coupled with an evaporative light scattering detector (ELSD). The column has an inert packing material where the asphaltene was precipitated and re-dissolved using a solvent. Heavy crude oils with asphaltene contents ranging from 5 to 25 per cent w/w were tested. A blend of 90:10 dichloromethane and methanol was used to decrease the influence of hydrocarbon adsorption mechanisms from the polymeric liquid chromatographic phases. A series of laboratory experiments were conducted to compare results obtained using the method with results obtained using traditional gravimetric methods. Regression analysis was used to determine the calibration constants. The study showed that the method can be used as replacement for conventional gravimetric methods when faster results are needed or when sample sizes are small. It was concluded that the method was able to accurately quantify asphaltene contents as low as 120 ppm. 8 refs., 1 tab., 3 figs.

  5. Determination of asphaltene onset conditions using the cubic plus association equation of state

    DEFF Research Database (Denmark)

    Arya, Alay; von Solms, Nicolas; Kontogeorgis, Georgios M.

    2015-01-01

    The cubic-plus-association (CPA) equation of state (EoS) has already been proven to be a successful model for phase equilibrium calculations for systems containing associating components and has already been applied for asphaltene modeling by few researchers. In the present work, we apply the CPA...

  6. Investigating the factors influencing recovery of asphaltenic oil by water and miscible CO{sub 2} flooding

    Energy Technology Data Exchange (ETDEWEB)

    Chukwudeme, Edwin Andrew

    2009-09-15

    Conclusions that may be drawn from this work on the influence of CO{sub 2}, temperature, pressure and water composition on the recovery of asphaltenic oil by water and CO{sub 2} flooding are as follows: Asphaltene is found to alter outcrop chalk wettability from water-wet to more oil wet, which influence oil recovery by miscible CO{sub 2} and water flooding. Modification of Hirschberg solubility model for predicting asphaltene deposition has been done to account for the effect of CO{sub 2} fraction in the liquid phase during miscible flooding. This is done based on data from this work and literature. This model made it possible to isolate the effect of CO{sub 2} fraction in liquid phase on asphaltene deposition during miscible flooding. Hence, determine the critical fraction of CO{sub 2} that initiate the asphaltene deposition. The critical fraction of CO{sub 2} is estimated to be between 17 to 42 mol percent (mol%), with 33 mol% as average value. A ternary diagram is developed and is based on solubility parameter ratio (S.P.R) and molar volume ratio (V{sub CO2}/V{sub L}) and their relation to asphaltene deposition using data from this work and literature. From this data, it may be suggested that S.P.R is a determining factor for asphaltene deposition during CO{sub 2} flooding, which is not unreasonable since it is influenced by the molar volume ratio, hence temperature, pressure and composition. It is interesting to see a linear relationship between asphaltene precipitation and pressure drop regardless of the flowing pressure at isothermal condition. This is tested for under-saturated fluids. Oil recovery by miscible CO{sub 2} flooding shows low ultimate oil recovery with increasing temperature and pressure for asphaltenic oil compared to non-asphaltenic. CO{sub 2} flooding is found to be plausible for asphaltenic reservoir at lower temperature (< 70 C). From simulation studies, EOR by CO{sub 2} initiated after at least three years of water injection show the

  7. Separation and characterization of resins and asphaltenes coming from Castilla crude Evaluation of their molecular interaction

    International Nuclear Information System (INIS)

    The study of resins and asphaltenes, the heaviest fractions of oil, has become an area of interest due to the abundance of heavy crude oils in Colombia and Latin America. We studied the chemical composition of the heavy fractions of Castilla crude oil, evaluated some of its molecular parameters and found evidence of the interaction between the resins extracted from the crude with the asphaltenes of the original crude. With this objective, we carried out at the pilot plant level precipitation of the resin-asphaltene (R-A) aggregate by adding and mixing under controlled conditions, a paraffin solvent, from the Apiay refinery, called Apiasol. By extracting Soxhlet with the same solvent, resin 1 of aggregate R-A was separated. Resin ll defined as the soluble fraction that is part of the maltenes, was separated from the deasphalted crude by open column chromatography, using alumina as support, according to the SAR method (Saturated, Aromatics, Resins). The fractions of resins and the asphaltenes obtained, were characterized by: Nuclear Magnetic Resonance (NMR), FT-lR, DRX, elementary analysis (C, H, N, S), metal content (Ni and V), distribution of molecular weight by GPC, and average molecular weight by VPO. The results obtained show evidence that resin l which is part of the aggregate has less average molecular weight than resin ll which is present in the fraction of maltenes. In addition, some changes were found in the elementary analysis of among the resins. On the one hand, and taking into account the existing theories of molecular interactions among these fractions, it was found that the resins l separated from the R-A aggregate, when added to the crude, they stabilize their asphaltenes. This evaluation was carried out by analyzing the flocculation point of the crude and its mixtures with 1,9% and 3,8% of resin l, when they are titrated with a precipitating agent in an NIR cell that works with high pressure and temperature

  8. Dynamic Surface Properties of Asphaltenes and Resins at the Oil-Air Interface.

    Science.gov (United States)

    Bauget, Fabrice; Langevin, Dominique; Lenormand, Roland

    2001-07-15

    Because of the existence of large reserves, the production of heavy oils is presently the object of much interest. Some heavy oil reservoirs show anomalous behavior in primary production, with rates of production better than predicted. In Canada and Venezuela some heavy oils are produced in the form of "bubbly" oil, which is stable for several hours in open vessels. These crude oils are therefore commonly called "foamy oils". Since the presence of bubbles could be responsible for an enhanced rate of production, a better knowledge of the properties of the gas-oil interface is desirable. We have experimentally studied the effect of concentration of asphaltenes and resins on static and dynamic properties of oil-air interfaces and also on bulk viscosity. The experiments include surface tension measurements using the pendant-drop method, surface viscosity by the oscillating-drop method, foamability by continuous gas injection, and film lifetime. All the experiments were performed using resins and asphaltenes in toluene solutions at 20 degrees C. At first asphaltenes enhance foamability and film lifetime. All the experiments performed showed a change in regime for asphaltene concentrations around 10% by weight, possibly due to clustering. At the studied concentrations, the adsorption process at the air-oil interface is not diffusion controlled but rather involves a reorganization of asphaltene molecules in a network structure. The formation of a solid skin is well identified by the increase of the elastic modulus. This elastic modulus is also an important property for foam stability, since a rigid interface limits bubble rupture. The interface rigidity at long times decreases with increases in resin fraction, which could decrease foam stability as well as emulsion stability. Copyright 2001 Academic Press. PMID:11427016

  9. Compositional thermodynamic model of asphaltenes flocculation out of crudes; Modelisation thermodynamique compositionnelle de la floculation des bruts asphalteniques

    Energy Technology Data Exchange (ETDEWEB)

    Szewczyk, V.

    1997-12-02

    The aim of this work is to propose to the oil industry a compositional thermodynamic model able to predict the operating conditions which induce asphaltenes flocculation out of crudes. In this study, various analytical methods (calorimetry, elemental analysis, {sup 13}C nuclear magnetic resonance, neutron diffusion,...) have been used in order to get a better description of the asphaltene fraction to infer its flocculation mechanism. The proposed model describes this flocculation as a thermodynamic transition inducing the formation of a new liquid phase with a high asphaltene content and formed by all the components initially in the crude: the asphaltene deposit. Asphaltenes are represented as a pseudo-component essentially made of carbon and hydrogen. The analytical modelling of the F11-F20 light fraction is the one proposed by Jaubert (1993). The F20+ heavy fraction is represented by four pseudo-components, their physical properties are calculated using the group contribution methods of Avaullee (1995) and of Rogalski and Neau (1990). The Peng-Robinson equation of state (1976) combined with the Abdoul and Peneloux group contribution mixing rules (1989) is used in order to restitute the gas-liquid-asphaltene deposit phase equilibria. This model not being able to compute flocculation conditions on a predictive manner, the method consists in fitting some physical properties of the pseudo-components introduced in the analytical representation of the asphaltene crudes. he obtained results show results show that the proposed flocculation model is then well adapted to the description of the thermodynamic properties (saturation pressures, relative volumes, flocculation curves) of asphaltene crudes within a relatively large range of temperature (30-150 deg C) and pressure (0.1-50 MPa), covering the majority of conditions met in oil production. (author) 109 refs.

  10. Problematic stabilizing films in petroleum emulsions: shear rheological response of viscoelastic asphaltene films and the effect on drop coalescence.

    OpenAIRE

    Harbottle, D; Q. Chen; Moorthy, K.; Wang, L.; Xu, S; Liu, Q.; Sjoblom, J; Z. Xu

    2014-01-01

    Adsorption of asphaltenes at the water-oil interface contributes to the stability of petroleum emulsions by forming a networked film that can hinder drop-drop coalescence. The interfacial microstructure can either be liquid-like or solid-like, depending on (i) initial bulk concentration of asphaltenes, (ii) interfacial aging time, and (iii) solvent aromaticity. Two techniques--interfacial shear rheology and integrated thin film drainage apparatus--provided equivalent interface aging condition...

  11. The influence of petroleum asphaltenic sub fractions on the demulsifiers performance; Influencia de subfracoes asfaltenicas de petroleo sobre a acao de desemulsificantes

    Energy Technology Data Exchange (ETDEWEB)

    Honse, Siller O.; Mansur, Claudia R.E.; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas. Lab. de Macromoleculas e Coloides na Industria de Petroleo], e-mail: celias@ima.ufrj.br

    2011-07-01

    The aim of this work is to evaluate the influence of asphaltene fractions and subfractions on the stabilization of petroleum emulsions, as well as on the efficiency of demulsifiers based on poly(ethylene oxide-b-propylene oxide) (PEO-PPO). Asphaltenes were extracted from an asphaltic residue using n-heptane (C5 asphaltenes) and n-decane (asphaltenes C10). Intermediate subfractions were also obtained. Model emulsions, consisted of water and dispersions of the asphaltene in toluene were prepared, with and without adding demulsifier. The stability of the emulsions was higher when adding more polar fractions. However, asphaltenes presenting a broad distribution of polarity cause higher emulsion stability than that presenting very narrow distribution of intermediate polarity. The efficiency of PEO-PPO copolymer on emulsions separation is related to the original stability of the emulsions. In this work, it was confirmed that branched surfactant presents higher efficiency than the linear. (author)

  12. Chemistry and structure of coal-derived asphaltenes, Phase III. Quarterly progress report, January--March 1978

    Energy Technology Data Exchange (ETDEWEB)

    Yen, T. F.

    1978-01-01

    The solubility limits of Synthoil and PAMCO asphaltenes have been measured as a function of Hildebrand solubility parameters and hydrogen bonding. Solvents with moderate hydrogen bonding capacity such as dioxane, ethyl benzoate and dibutyl phthalate were found to be most effective in dissolving asphaltenes over the widest range of solubility parameters. VPO molecular weight studies of coal liquid derived carbenes, as a function of concentration in the solvent THF, indicate that these fractions are more strongly self-associated than the corresponding asphaltenes, and generally afford high infinite dilution number average molecular weights: Synthoil, 861; HRI H-Coal, 1156; Cat. Inc. SRC, 1228; PAMCO SRC, 1054. The variable ESR temperature dependence of the spin intensity for a Synthoil asphaltene-I/sub 2/ charge transfer followed a 1/T (Curie--Weiss) dependence over the temperature range from 25/sup 0/ to -114/sup 0/C suggesting that independent, non-interacting donor and acceptor doublets were formed. Weight percent OH values, determined from 'H NMR analysis of silylated asphaltenes, were found to provide a reasonably linear correlation with the absorbance of the monomeric OH infrared stretching bands of the asphaltenes.

  13. Molecular Dynamics Simulation: The Behavior of Asphaltene in Crude Oil and at the Oil/Water Interface

    KAUST Repository

    Gao, Fengfeng

    2014-12-18

    Carboxyl asphaltene is commonly discussed in the petroleum industry. In most conditions, electroneutral carboxyl asphaltene molecules can be deprotonated to become carboxylate asphaltenes. Both in crude oil and at the oil/water interface, the characteristics of anionic carboxylate asphaltenes are different than those of the carboxyl asphaltenes. In this paper, molecular dynamics (MD) simulations are utilized to study the structural features of different asphaltene molecules, namely, C5 Pe and anionic C5 Pe, at the molecular level. In crude oil, the electroneutral C5 Pe molecules prefer to form a steady face-to-face stacking, while the anionic C5 Pe molecules are inclined to form face-to-face stacking and T-shaped II stacking because of the repulsion of the anionic headgroups. Anionic C5 Pe has a distinct affinity to the oil/water interface during the simulation, while the C5 Pe molecules persist in the crude oil domain. A three-stage model of anionic C5 Pe molecules adsorbed at the oil/water interface is finally developed.

  14. Application of the PC-SAFT EoS in the definition of a universal plot for asphaltene stability

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, F.; Hirasaki, G.; Chapman, W. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Gonzalez, D. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Schlumberger, Houston, TX (United States); Wang, J.; Creek, J. [Chevron Energy Technology Co., Houston, TX (United States); Buckley, J. [New Mexico Tech, Socorro, NM (United States). PRRC

    2008-07-01

    This paper presented a new tool to model asphaltene stability under reservoir conditions. Asphaltene poses a problem in deep water production because of it has the tendency to precipitate, and the mechanisms of aggregation and deposition are not completely understood. A universal model is needed to predict the stability of these species, under different conditions. This paper presented advances in developing a general method to model asphaltene stability in oil, using the PC-SAFT Equation of State (EoS), regardless of the oil components and their compositions. The PC-SAFT EoS is an alternative to the Flory-Huggins theory (FHT) and has been successfully used to model asphaltene stability. By defining dimensionless parameters, the equilibrium curves of different multicomponent mixtures collapse onto one single curve. The obtained universal plots for the bubble point and the onset of asphaltene precipitation were found to be in excellent agreement with results obtained from simulations. This paper also presented an extension of this model to mixtures containing dissolved gases, such as methane, carbon dioxide and ethane. The study also addressed the issue regarding the validity of the current mixing rule for solubility parameters of mixtures containing dissolved gases. A new mixing rule was derived for solubility parameters of mixtures containing liquids and dissolved gases. There was good agreement between simulation results and refractive index measurements. In addition, the universal curves for asphaltene stability and the corresponding dimensionless numbers proposed in this study can be obtained using this new mixing rule.

  15. Polymer solution and lattice theory applications for modeling of asphaltene precipitation in petroleum mixtures

    Directory of Open Access Journals (Sweden)

    S. A. Mousavi-Dehghani

    2008-09-01

    Full Text Available Here asphaltene precipitation in petroleum reservoirs during natural depletion and miscible gas injection is modeled via two distinct and new methods (polymer solution and lattice theories. The first model is based on the polymer solution theory, which is a combination of Miller's combinatorial term with a modified residual term of the original Flory-Huggins theory. The second one is the application of the well-known Sanchez-Lacombe equation of state (SL EOS to describe the phase behavior of asphaltene compounds in crude oil. The results of both models show an acceptable and good agreement between the real data (field and experimental and these two models. As it can be seen from the obtained results of these two models, it seems application of the lattice or polymer solution theories (based on The Miller's combinatorial term could give the better and more close to real data.

  16. Fullerenes in asphaltenes and other carbonaceous materials: natural constituents or laser artifacts.

    Science.gov (United States)

    Santos, Vanessa G; Fasciotti, Maíra; Pudenzi, Marcos A; Klitzke, Clécio F; Nascimento, Heliara L; Pereira, Rosana C L; Bastos, Wagner L; Eberlin, Marcos N

    2016-04-25

    The presence of fullerenes as natural constituents of carbonaceous materials or their formation as laser artifacts during laser desorption ionization (LDI) mass spectrometry (MS) analysis is reinvestigated and reviewed. The results using asphaltene samples with varying composition as well as standard polycyclic aromatic hydrocarbons (PAH) and fullerene samples as models have demonstrated that indeed Cn ring fullerenes are not natural constituents but they are formed as common and often as predominant artifacts upon laser radiation, and a series of incorrect assignments based on LDI-MS data of several carbonaceous materials seems unfortunately to have been made. When the present results are evaluated also in the light of the vast literature on LDI-MS of carbonaceous materials, the formation of fullerene artifacts seems particularly common for LDI-MS analysis of asphaltenes and other carbonaceous samples with considerably high levels of PAH and varies according to the type of laser used, and the intensity of the laser beam. PMID:26805430

  17. Reduction of Water/Oil Interfacial Tension by Model Asphaltenes: The Governing Role of Surface Concentration.

    Science.gov (United States)

    Jian, Cuiying; Poopari, Mohammad Reza; Liu, Qingxia; Zerpa, Nestor; Zeng, Hongbo; Tang, Tian

    2016-06-30

    In this work, pendant drop techniques and molecular dynamics (MD) simulations were employed to investigate the effect of asphaltene concentrations on the interfacial tension (IFT) of the oil/water interface. Here, oil and asphaltene were represented by, respectively, common organic solvents and Violanthrone-79, and two types of concentration, i.e., bulk concentration and surface concentration, were examined. Correlations between the IFTs from experiments and MD simulations revealed that surface concentration, rather than the commonly used bulk concentration, determines the reduction of oil/water IFTs. Through analyzing the hydrogen bonding, the underlying mechanism for the IFT reduction was proposed. Our discussions here not only enable the direct comparison between experiments and MD simulations on the IFTs but also help with future interfacial studies using combined experimental and simulation approaches. The methodologies used in this work can be extended to many other oil/water interfaces in the presence of interfacially active compounds. PMID:27268710

  18. Experimental Study and Mathematical Modeling of Asphaltene Deposition Mechanism in Core Samples

    OpenAIRE

    Jafari Behbahani T.; Ghotbi C.; Taghikhani V.; Shahrabadi A.

    2015-01-01

    In this work, experimental studies were conducted to determine the effect of asphaltene deposition on the permeability reduction and porosity reduction of carbonate, sandstone and dolomite rock samples using an Iranian bottom hole live oil sample which is close to reservoir conditions, whereas in the majority of previous work, a mixture of recombined oil (a mixture of dead oil and associated gas) was injected into a core sample which is far from reservoir conditions. The effect of the oil inj...

  19. Polymer solution and lattice theory applications for modeling of asphaltene precipitation in petroleum mixtures

    OpenAIRE

    S. A. Mousavi-Dehghani; Mirzayi, B.; M. Vafaie-Sefti

    2008-01-01

    Here asphaltene precipitation in petroleum reservoirs during natural depletion and miscible gas injection is modeled via two distinct and new methods (polymer solution and lattice theories). The first model is based on the polymer solution theory, which is a combination of Miller's combinatorial term with a modified residual term of the original Flory-Huggins theory. The second one is the application of the well-known Sanchez-Lacombe equation of state (SL EOS) to describe the phase behavior o...

  20. Organic flow assurance: Asphaltene dispersant/inhibitor formulation development through experimental design

    OpenAIRE

    Abrahamsen, Eirin L.

    2012-01-01

    The exploitation of hydrocarbon has forced the petroleum production to move closer to extreme climate areas and deep waters such as the Barents Sea. These challenges require effective and safe production, transport and processing of the petroleum sources. Chemical and physical changes in the reservoir may cause different types of unpredicted problems such as organic deposits which are mainly asphaltene and wax precipitation. Wax precipitation is very common in subsea pipelines....

  1. Correlations between diamagnetic properties and structural characters of asphaltenes and other heavy petroleum products

    Energy Technology Data Exchange (ETDEWEB)

    El-Mohamed, S.; Achard, M.-F.; Hardouin, F.; Gasparoux, H.

    1986-11-01

    Magnetic susceptibility measurements are made at room temperature on heavy petroleum products. They provide characteristic values of the diamagnetism of such organic compounds with high molecular masses. By the use of the Pascal's rules the average number of condensed aromatic rings, in asphaltenes and other heavy petroleum fractions, must be small and undoubtedly less than in the well-known Yen's model. 10 refs., 4 figs., 4 tabs.

  2. DEGRADATION OF ASPHALTENES BY INDIVIDUAL OIL-UTILIZING AEROBIC BACTERIAL STRAINS

    OpenAIRE

    Shkidchenko, Alexander; Akhmetov, Lenar; Gafarov, Arslan

    2013-01-01

    The possibility of biodegradation of asphaltenes at a room temperature by single aerobic strains Microbacterium liquefaciens Ash-10, Pseudomonas putida Ash-4, Rhodococcus erythropolis Sh-3 and Bacillus sp. 2, isolated from soil with chronic petroleum pollution has been shown. All strains possess high oil-utilizing activity and the ability to grow on agar media containing polycondensed hydrocarbons, black oil, alcohol-benzene resins, benzene resins as sole sources of carbon and energy. The str...

  3. Rheological, dielectric and structural characterization of asphaltene suspensions under DC electric fields

    Energy Technology Data Exchange (ETDEWEB)

    L. Rejon; O. Manero; C. Lira-Galeana [Instituto de Investigaciones Electricas, Morelos (Mexico)

    2004-03-01

    The rheological, dielectric and structural behavior of suspensions composed of silicon oil and asphaltene particles under DC electric fields are investigated experimentally. In the absence of an electric field, the suspensions show a near Newtonian behavior. When the electric field (E) is applied, the suspensions behave as Bingham plastics with a yield stress that varies as a power of the electric field. The increase in the viscosity of the suspensions (electrorheological phenomenon, ER) is more accentuated at low shear rates and depends on the electric field intensity. The resulting rheological behavior can be attributed to the formation of structures induced by the electric field, and they break when the shear rate is increased. The relation between the structural arrangements of the suspension under an electric field and the rheological behavior is analyzed in this study. Results show that the ER response of asphaltene suspensions is not as large as that observed in conventional ER fluids, but nevertheless they throw light on the contribution of electrorheological mechanisms upon asphaltene particle aggregation observed in the transport of the crude oil in the petroleum industry. 17 refs., 10 figs., 1 tab.

  4. Air oxidation of the kerogen/asphaltene vanadyl porphyrins: an electron spin resonance study

    Directory of Open Access Journals (Sweden)

    MIRJANA S. PAVLOVIC

    2000-02-01

    Full Text Available The thermal behavior of vanadyl porphyrins was studied by electron spin resonance during heating of kerogens, isolated from the La Luna (Venezuela and Serpiano (Switzerland bituminous rocks, at 25°C for 1 to 20 days in the presence of air. During the thermal treatment of the kerogens, the vanadyl porphyrins resonance signals decrease monotonically and become quite small after 6 days of heating. Concomitantly, new vanadyl signals appear and, at longer heating times, dominate the spectrum. It is suggested that the secondary vanadyl species must have been formed from vanadyl porphyrins. Similar conversions of vanadyl porphyrins are observed under the same experimental conditions for asphaltenes extracted from the La Luna and Serpiano rocks, and floating asphalt from the Dead Sea (Israel. A comparison of the spin-Hamiltonian parameters for vanadyl porphyrins and the vanadyl compounds obtained during pyrolysis of the kerogens/asphaltenes suggests that the latter are of a non-porphyrin type. For comparison a study was conducted on Western Kentucky No. 9 coal enriched with vanadium (>>400 ppm from six mines. All the coal samples show only the presence of predominant by non-porphyrin vanadyl compounds, similar to those generated through laboratory heating of the kerogens/asphaltenes in air. In addition, some samples also contain a minor amount of vanadyl porphyrins.

  5. Syngas obtainment from the gasification of asphaltenes of the San Fernando crude oil

    International Nuclear Information System (INIS)

    In this work, we developed the first study in Colombia to obtain and evaluate syngas compositions derived from asphaltenes gasification. These asphaltenes came from the implementation of a Deasphalting process to San Fernando crude oil, with the purpose of looking for technological options for their utilization. We performed the design, installation and commissioning of facilities for the gasification of asphaltenes at laboratory scale, it following an experimental methodology, performing nine tests and considering temperature and agent gasification quantity (oxygen) as independent variables. The syngas derived from gasification was analyzed by two chromatographic techniques, which reported the presence of refinery gases and sulfur. We evidenced a growth tendency of CO, H2 and sulfur composition and a decrease in CH4 and CO2 composition with temperature. The composition of the syngas was evaluated with different quantities of gasification agent (33%, 40% and 47% the amount of oxygen theoretically required for complete combustion) at each temperature levels operated. It was established that when using a 40% of gasification agent, you get greater average content of CO and H2, which are the interest gases in the gasification process.

  6. Colloidal asphaltene deposition in laminar pipe flow: Flow rate and parametric effects

    Science.gov (United States)

    Hashmi, S. M.; Loewenberg, M.; Firoozabadi, A.

    2015-08-01

    Deposition from a suspended phase onto a surface can aversely affect everyday transport processes on a variety of scales, from mineral scale corrosion of household plumbing systems to asphaltene deposition in large-scale pipelines in the petroleum industry. While petroleum may be a single fluid phase under reservoir conditions, depressurization upon production often induces a phase transition in the fluid, resulting in the precipitation of asphaltene material which readily aggregates to the colloidal scale and deposits on metallic surfaces. Colloidal asphaltene deposition in wellbores and pipelines can be especially problematic for industrial purposes, where cleanup processes necessitate costly operational shutdowns. In order to better understand the parametric dependence of deposition which leads to flow blockages, we carry out lab-scale experiments under a variety of material and flow conditions. We develop a parametric scaling model to understand the fluid dynamics and transport considerations governing deposition. The lab-scale experiments are performed by injecting precipitating petroleum fluid mixtures into a small metal pipe, which results in deposition and clogging, assessed by measuring the pressure drop across the pipe. Parametric scaling arguments suggest that the clogging behavior is determined by a combination of the Peclet number, volume fraction of depositing material, and the volume of the injection itself.

  7. Characterisation of crude oil components, asphaltene aggregation and emulsion stability by means of near infrared spectroscopy and multivariate analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aske, Narve

    2002-06-01

    Effective separation of water-in-crude oil emulsions is a central challenge for the oil industry on the Norwegian Continental Shelf, especially with the future increase in subsea and even down-hole processing of well fluids. The mechanisms and properties governing emulsion stability are far from fully understood but the indigenous surface active crude oil components are believed to play a major role. In this work a thorough physico-chemical characterisation of a set of crude oils originating from a variety of production fields has been performed. Crude oil properties responsible for emulsion stability were identified by use of multivariate analysis techniques like partial least squares regression (PLS) and principal component analysis (PCA). Interfacial elasticity along with both asphaltene content and asphaltene aggregation state were found to be main contributors to emulsion stability. Information on a crude oils ability to form elastic crude oil-water interfaces was found to be especially crucial when discussing emulsion stability. However, measured values of interfacial elasticity were highly dependent on asphaltene aggregation state. Several experimental techniques was utilised and partly developed for the crude oil characterisation. A high-pressure liquid chromatography (HPLC) scheme was developed for SARA-fractionation of crude oils and an oscillating pendant drop tensiometer was used for characterisation of interfacial rheological properties. For emulsion stability a cell for determining the stability as a function of applied electric fields was used. In addition, near infrared spectroscopy (NIR) was used throughout the work both for chemical and physical characterisation of crude oils and model systems. High pressure NIR was used to study the aggregation of asphaltenes by pressure depletion. A new technique for detection of asphaltene aggregation onset pressures based on NIR combined with PCA was developed. It was also found that asphaltene aggregation is

  8. Probing Molecular Interactions of Asphaltenes in Heptol Using a Surface Forces Apparatus: Implications on Stability of Water-in-Oil Emulsions.

    Science.gov (United States)

    Zhang, Ling; Shi, Chen; Lu, Qingye; Liu, Qingxia; Zeng, Hongbo

    2016-05-17

    The behaviors and molecular interactions of asphaltenes are related to many challenging issues in oil production. In this study, the molecular interaction mechanism of asphaltenes in Heptol solvents of varying toluene/n-heptane ratio were directly measured using a surface forces apparatus (SFA). The results showed that the interactions between asphaltene surfaces gradually changed from pure repulsion to weak adhesion as the weight ratio of toluene (ω) in Heptol decreased from ω = 1 to 0. The measured repulsion was mainly due to the steric interactions between swelling asphaltene molecules and/aggregates. The micropipet technique was applied to test the stability of two water-in-oil emulsion droplets attached to glass pipettes. A computer-controlled 4-roll mill fluidic device was also built in-house to investigate the interaction of free-suspending water-in-oil emulsions under dynamic flow conditions. Both micropipet and 4-roll mill fluidic tests demonstrate that asphaltenes adsorbed at oil/water interfaces play a critical role in stabilizing the emulsion drops, in agreement with the repulsion measured between asphaltene surfaces in toluene using SFA, and that interfacial sliding or shearing is generally required to destabilize the protective interfacial apshaltene layers which facilitates the coalescence of emulsion drops. Our results provide insights into the fundamental understanding of molecular interaction mechanisms of asphaltenes in organic solvents and stabilization/destabilization behaviors of water-in-oil emulsions with asphaltenes. PMID:27128395

  9. Colloidal analysis of the asphaltene and their fractions with p-nitrophenol (PNP) of the Furrial crude oil for effect of the hydrotreating to different pressures

    Energy Technology Data Exchange (ETDEWEB)

    Labrador-Sanchez, H. [Univ. de Carabobo, Estado Carabobo (Venezuela, Bolivarian Republic of). Dept. de Quimica, Grupo de Petroleo, Hidrocarburo y Derivados; Lindarte, L. [Univ. de Carabobo, Estado Carabobo (Venezuela, Bolivarian Republic of). Dept. de Quimica, Grupo de Petroleo, Hidrocarburo y Derivados; Univ. de Carabobo, Estado Carabobo (Venezuela, Bolivarian Republic of). Dept. de Quimica, Laboratorio de Catalisis y Metales de Transicion; Luis, M.A. [Univ. de Carabobo, Estado Carabobo (Venezuela, Bolivarian Republic of). Dept. de Quimica, Laboratorio de Catalisis y Metales de Transicion

    2008-07-01

    A study was conducted to investigate the effect of hydrotreating Furrial crude oil on asphaltene and its fractions (A1 and A2) obtained by the p-Nitrophenol (PNP) method. A batch reactor was used at different pressures of hydrogen to perform 8 hydrotreating reactions on the Furrial crude oil. Asphaltenes were separated from the oil and fractioned with PNP to obtain A1 and A2. The asphaltene and their fractions were characterized for flocculation threshold, percentage of total sulfur, nuclear magnetic resonance of 13C and elemental composition. The study showed that hydrotreating influenced the colloidal behaviour of the asphaltene and that the catalyst promoted the conversion of asphaltene, its stability, and its desulfurization. Hydrotreating had a greater affect on the A2 fraction than the A1 fraction. 2 refs.

  10. Thermogravimetric analysis of petroleum asphaltenes along with estimation of average chemical structure by nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Combining with the 1H and 13C nuclear magnetic resonance (NMR) determinations, elemental analysis and molecular weight measurement, average molecular formula of the chemical unit for the asphaltenes from Chinese Daqing crude oil were calculated. Thermal pyrolysis kinetics of the asphaltenes had been studied using thermogravimetric analysis (TGA). The distributed activation energy model (DAEM) was used to analyze these complex systems. The results show that the peak activation energy for pyrolysis of the asphaltenes is 245 kJ mol-1 and the pre-exponential factor is 5.88 x 1014 s-1. The DAEM method presented reasonably good results of the prediction of the weight loss curves. A linear relationship can be found from the plots of logarithm of the pre-exponential factor against the activation energy at selected conversion values. This phenomenon known as the compensation effect was explained and it was in agreement with the estimated chemical structure determined by NMR

  11. Quantitative Determination of Asphaltenes and Resins in Solution by Means of Near-Infrared Spectroscopy. Correlations to Emulsion Stability.

    Science.gov (United States)

    Kallevik, Harald; Kvalheim, Olav M.; Sjöblom, Johan

    2000-05-15

    Near-infrared (NIR) spectroscopy in the range 1100-2250 nm together with a latent-variable regression technique is used to analyze the content of asphaltene and resins in solution. It is shown that this technique is capable of determining the amount of these components individually. w/o emulsions were prepared from the separated components of asphaltenes and resins from crude oils. The stability was directly determined with the critical voltage in a dielectric instrumentation. The emulsion stability decreased linearly with an increase in the resin/asphaltene ratio. A final linear model correlating the critical voltage and the analytical concentrations (from the NIR spectra) could be established for this model system. Copyright 2000 Academic Press. PMID:11254289

  12. On the application of NiO nanoparticles to mitigate in situ asphaltene deposition in carbonate porous matrix

    Science.gov (United States)

    Hashemi, Seyed Iman; Fazelabdolabadi, Babak; Moradi, Siyamak; Rashidi, Ali Morad; Shahrabadi, Abbas; Bagherzadeh, Hadi

    2016-01-01

    Prevention of asphaltene formation in reservoir rocks can result in resolving a severe long-lasting issue in petroleum production. The present research addresses the issue in the context of exploring the potential effect of nickel oxide (NiO) nanoparticles in destabilizing asphaltene deposition in porous media, in the presence of carbon dioxide. To ensure proper distribution within the system and to retain future field-scale applicability, the NiO nanoparticles were exposed to the in situ oil via injection gas stream, in which they had been uniformly dispersed using polydimethylsiloxane (PDMS). The experimental results, established under miscible CO2 state, indicate a considerable improvement in permeability/porosity reduction of core, as well as less asphaltene accumulation in porous media and increased oil recovery factor after applying NiO nanoparticles.

  13. Study of flow properties of asphaltenic oils in a porous medium; Etude des proprietes d`ecoulement des bruts asphalteniques en milieu poreux

    Energy Technology Data Exchange (ETDEWEB)

    Petrova-Bensalem, R.

    1998-06-30

    Deposits of asphaltenes during production can adversely affect the exploitation of certain fields, that of Hassi Messaoud is a known example. The objective of this study is essentially focused on the damage aspects due to formation of this deposits. A methodology has been developed which makes it possible to determine the flow properties of asphaltenic oils in a porous medium under conditions close to those of a reservoir and to detect the formation of organic deposits in situ. Several types of rocks with different morphology were selected along with a number of asphaltenic oils having varied geographic origins. It was shown with these that it was possible to evaluate, in laboratory, the reduction in permeability to the oil resulting from an asphaltene deposit during the circulation of crude oil in the samples. It was observed that the variation in blocking the cores as a function of the volume of injected fluid is similar to the blocking kinetics ascertained for the retention of solid suspended particles in injection water. This similarity in the phenomena led to using particle damage models developed for the latter case. Several experiments involving blocking by asphaltenes could thus be satisfactory simulated, showing that this approach is worth developing despite the differences between the two types of colloidal suspension. The method using injection or `squeeze` of co- solvents was studied with the same systems (rock/crude oil) as a possible remedy for asphaltene deposition. To select suitable solvents and additives. A methodology was established based on application of Hansen`s theory for adjusting the polarity of solvent to the chemical properties of the asphaltene to be eliminated. This was combined with a series of in vitro tests with separated asphaltenes and the minerals of the reservoir rock. The efficiency of the co-solvents thus selected was verified by slug injection in to cores which has been damaged by asphaltenes. This approach may well help the

  14. Extraction and characterization of crude oil asphaltenes sub fractions; Extracao e caracterizacao de subfracoes de asfaltenos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Silas R.; Calado, Lucas S.; Honse, Siller O.; Mansur, Claudia R.E.; Lucas, Elizabete F., E-mail: silas@ima.ufrj.br [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)

    2011-07-01

    Asphaltenes from crude oil have been studied for a long time. However, until today their chemical structures and physical-chemical properties are not well established. Nowadays, it is accepted that asphaltenes are dispersed in the crude oil as macro structures, which are mainly constituted of some condensed aromatic rings (about 6-20), containing aliphatic or naphthenic groups. The asphaltenes are also defined as the crude oil fraction that is insoluble in low molar mass n-alkanes and soluble in aromatic solvents, like benzene and toluene In order to investigate the molecular structure, in this work the asphaltenes were separated by using a different procedure as that normally described in the literature and characterized by infrared spectrometry, nuclear magnetic resonance, x-ray fluorescence, elemental analyses and particle size and size distribution. The difference in subfractions polarity can be attributed not only to the aromaticity changes but also to the content of elements, such as N, O, Fe, V, Si e Ni. (author)

  15. Effect of demulsifiers on interfacial films and stability of water-in-oil emulsions stabilized by asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Baydak, E.N.; Yarranton, H.W.; Ortiz, D. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Moran, K. [Syncrude Research Centre, Edmonton, AB (Canada)

    2008-07-01

    In water-in-toluene/heptane emulsions stabilized by asphaltenes, there is a correlation between emulsion stability and the compressibility of interfacial asphaltene films. In order to determine if this correlation for emulsion stability is more generally applicable, a study was conducted in which the effect of commercial demulsifiers on the film properties and emulsion stability was measured. A naphthenic acid (NA) and a branched dodecylbenzene sulfonic acid (DDBS) were examined. Surface pressure isotherms were measured in a drop shape analyzer for droplets of asphaltenes, toluene, and heptane surrounded by a solution of water and surfactant. The experimental variables included heptane, asphaltene and surfactant concentration along with aging time. The compressibilities of the interfacial films were determined from the slope of the surface pressure isotherms. Water-in-oil emulsions were prepared from the same solutions. Emulsion stability was evaluated in terms of the free water evolved after a treatment of centrifugation and heating. Initial results suggest that the demulsifiers increase the compressibility of the interfacial films. In most cases, the addition of the demulsifier increased emulsion stability. The timing of the addition of the demulsifier or the phase to which it was added did not appear to have an influence on the results. It was concluded that the reduction in interfacial tension from the added surfactant may inhibit coalescence more than the weakening of the interfacial film promotes coalescence. 1 ref.

  16. Problematic stabilizing films in petroleum emulsions: shear rheological response of viscoelastic asphaltene films and the effect on drop coalescence.

    Science.gov (United States)

    Harbottle, David; Chen, Qian; Moorthy, Krishna; Wang, Louxiang; Xu, Shengming; Liu, Qingxia; Sjoblom, Johan; Xu, Zhenghe

    2014-06-17

    Adsorption of asphaltenes at the water-oil interface contributes to the stability of petroleum emulsions by forming a networked film that can hinder drop-drop coalescence. The interfacial microstructure can either be liquid-like or solid-like, depending on (i) initial bulk concentration of asphaltenes, (ii) interfacial aging time, and (iii) solvent aromaticity. Two techniques--interfacial shear rheology and integrated thin film drainage apparatus--provided equivalent interface aging conditions, enabling direct correlation of the interfacial rheology and droplet stability. The shear rheological properties of the asphaltene film were found to be critical to the stability of contacting drops. With a viscous dominant interfacial microstructure, the coalescence time for two drops in intimate contact was rapid, on the order of seconds. However, as the elastic contribution develops and the film microstructure begins to be dominated by elasticity, the two drops in contact do not coalescence. Such step-change transition in coalescence is thought to be related to the high shear yield stress (~10(4) Pa), which is a function of the film shear yield point and the film thickness (as measured by quartz crystal microbalance), and the increased elastic stiffness of the film that prevents mobility and rupture of the asphaltene film, which when in a solid-like state provides an energy barrier against drop coalescence. PMID:24845467

  17. Analysis of metals in asphaltenes of KU-46 by PIXE analysis; Analisis de metales en asfaltenos de crudo mexicano KU-46 por PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Navidad G, P.; Pina L, L.I.; Lopez M, J.; Ramirez T, J.J.; Aspiazu F, J.A.; Romero G, E.T. [Gerencia de Ciencias Basicas, Instituto Nacional de Investigaciones Nucleares, A.P. 18-1027, 11801 Mexico D.F. (Mexico)

    2002-07-01

    The content of metals of the asphaltenes obtained from the KU-46 mexican crude with n-heptane was evaluated. The found metals in higher concentration are transition metals as well as the vanadium, nickel, copper and zinc. Moreover the sulfur in high concentrations was quantified. The metallic content of the asphaltenes revealed that the crude contains a lower quantity of metals unlike the vacuum residue previously analysed. (Author)

  18. Effect of Asphaltene Dispersants on Asphaltene Dispersibility in Heavy Fuel Oil%沥青质分散剂对重质燃料油沥青质分散稳定作用研究

    Institute of Scientific and Technical Information of China (English)

    刘新亮; 张菅; 尹海亮

    2014-01-01

    以总潜在沉淀物为指标,考察了沥青质分散剂对船用燃料油沥青质分散性的影响,并对其分散机理进行了讨论,结果表明,十二烷基苯磺酸、十二烷基苯酚、十二烷基醇和十二烷基胺均对燃料油中的沥青质有一定的分散作用,其中,十二烷基苯磺酸分散性能最好,99%以上的以总潜在沉淀物形式检测到的沥青质可以被其重新分散到燃料油中,其良好的分散性可能与十二烷基苯磺酸分子中的酸性官能团和苯环有关。%The dispersibilities of four different dispersants (dodecylbenzenesulfonic acid,dodecanol,dodecylamine and dodecyl phenol) to asphaltene in heavy fuel oil were evaluated by using the potential total sediment as the index, and the possible dispersing mechanism was discussed. The results show that, dodecylbenzenesulfonic acid has the highest disperability to asphaltene in heavy fuel oil, and more than 99 % asphaltene aggregation can be redispersed when dodecylbenzenesulfonic acid dosage is 4%(wt).

  19. Investigation of the Gas Injection Effect on Asphaltene Onset Precipitation Using the Cubic-Plus-Association Equation of State

    DEFF Research Database (Denmark)

    Arya, Alay; von Solms, Nicolas; Kontogeorgis, Georgios M.

    2016-01-01

    Miscible and immiscible gas flooding is one of the enhanced oil recovery (EOR) techniques that has been widely used to increase the oil production. One of the critical problems with gas flooding is that it generally aggravates the asphaltene precipitation, which further creates a flow assurance...... modeling approach from the previous work and provide the conceptual base for it. Five different reservoir fluids are studied to validate whether the model is able to calculate the effect of different types (e.g., N2, CO2, and methane) and amounts (e.g., 10, 20, and 30 mol %) of gas injections in agreement...... amounts of gas injections and also remains the same at upper and lower onset pressure boundaries. On the basis of this unique characteristic, a simple procedure to predict asphaltene phase envelope (APE) for the reservoir oil with relatively simple and few experimental data, performed on STO with n...

  20. Modeling of asphaltene precipitation due to steam and n-alkane co-injection in the ES-SAGD process

    Energy Technology Data Exchange (ETDEWEB)

    Badamchizadeh, A.; Kohse, Bruce F.; Kumar, A. [Computer Modelling Group Ltd (Canada)

    2011-07-01

    This paper provides an insight into the SAGD process in general, and the formation of asphaltene participates in the hybrid ES-SAGD process in particular. The objective of this work was to build an EoS model able to calculate the physical and chemical properties of the bitumen and n-alkane mixture, develop a model to quantify asphaltene participates in bitumen due to n-alkane injection, and investigate their effect on the ES-SAGD process. Athabasca bitumen properties identified under various test conditions and from the results of previous efforts, mainly the SimDist experimental data, were illustrated. These data were used to develop the EoS model, which in turn was used to generate the STARS thermal simulator. Overall, the EoS model was successfully developed and hence was able to predict bitumen and n-heptane properties. Moreover, asphaltene deposition in the ES-SAGD process was modeled in the thermal simulator its effect in causing oil blockage and restrictions in the steam chamber over a long run of the process was demonstrated.

  1. Effect of surfactants on interfacial films and stability of water-in-oil emulsions stabilized by asphaltenes.

    Science.gov (United States)

    Ortiz, D P; Baydak, E N; Yarranton, H W

    2010-11-15

    The effect of additives on asphaltene interfacial films and emulsion stability was analyzed through the change in film properties. Surface pressure isotherms were measured at 23°C for model interfaces between aqueous surfactant solutions and asphaltenes dissolved in toluene and heptane-toluene mixtures. Compressibility, crumpling film ratio and surface pressure were determined from the surface pressure isotherms. The stability of water-in-oil emulsions was determined for the same systems based on the proportion of unresolved emulsified water after repeated treatment involving heating at 60°C and centrifugation. Experimental variables included concentration of asphaltenes (5 and 10 kg/m(3)), concentration and type of surfactant (Aerosol OT, nonylphenol ethoxylates, polypropylene oxide block-copolymer, dodecylbenzene sulfonic acids, dodecylbenzene sulfonic acid-polymer blend, diisopropyl naphthalene sulfonic acid, and sodium naphthenate) and aging time (from 10 min to 4 h). Additives were found to have two opposing effects on film properties and emulsion stability: (1) decreasing or eliminating the crumpling ratio which destabilized emulsions and (2) decreasing interfacial tension which enhanced emulsion stability. A stability parameter was defined to include both the crumpling ratio and interfacial tension and provided a consistent correlation for the percent residual emulsified water. PMID:20804982

  2. Characterization of asphaltene molecular structures by cracking under hydrogenation conditions and prediction of the viscosity reduction from visbreaking of heavy oils

    Science.gov (United States)

    Rueda Velasquez, Rosa Imelda

    The chemical building blocks that comprise petroleum asphaltenes were determined by cracking samples under conditions that minimized alterations to aromatic and cycloalkyl groups. Hydrogenation conditions that used tetralin as hydrogen-donor solvent, with an iron-based catalyst, allowed asphaltenes from different geological regions to yield 50-60 wt% of distillates (Paraffins and 1-3 ring aromatics were the most abundant building blocks. The diversity of molecules identified, and the high yield of paraffins were consistent with high heterogeneity and complexity of molecules, built up by smaller fragments attached to each other by bridges. The sum of material remaining as vacuum residue and coke was in the range of 35-45 wt%; this total represents the maximum amount of large clusters in asphaltenes that could not be converted to lighter compounds under the evaluated cracking conditions. These analytical data for Cold Lake asphaltenes were transformed into probability density functions that described the molecular weight distributions of the building blocks. These distributions were input for a Monte Carlo approach that allowed stochastic construction of asphaltenes and simulation of their cracking reactions to examine differences in the distributions of products associated to the molecular topology. The construction algorithm evidenced that a significant amount of asphaltenes would consist of 3-5 building blocks. The results did not show significant differences between linear and dendritic molecular architectures, but suggested that dendritic molecules would experience slower reaction rates as they required more breakages to reach a given yield of distillates. Thermal cracking of asphaltenes in heavy oils and bitumens can dramatically reduce viscosity, enabling pipeline transportation with less solvent addition. The viscosities of the products from visbreaking reactions of two different heavy oils were modeled with lumped kinetics based on boiling point pseudo

  3. Mise en évidence de la polydispersité physico-chimique des asphaltènes Evidence of the Physicochemical Polydispersity of Asphaltenes

    Directory of Open Access Journals (Sweden)

    Szewczyk V.

    2006-11-01

    Full Text Available Afin d'élaborer un modèle thermodynamique capable de décrire la floculation des asphaltènes en s'appuyant au maximum sur la réalité physicochimique, nous nous sommes efforc In order to develop a thermodynamic model able to describe the flocculation of asphaltenes according to their physicochemical properties, we have tried to give a better definition of the asphaltenes chemical structure and to show its influence on the mechanism of aggregation in solution. This work consisted in :- putting in evidence the physical and chemical polydispersity of asphaltenes;- studying simultaneously the nature and the localization of the chemical functions in the asphaltene oligomers (elemental analysis, analysis of the pyrolysed products, etc. and their capacity to aggregate in solution (X-ray diffusion to better understand the aggregation mechanims and to identify the functions responsible of this aggregation;- establishing a relation between the proportion of these functions and the size of the aggregates in order to take it in account in the thermodynamic model.The fractionation of a sample of asphaltenes with increasing quantities of n-heptane has allowed to separate different classes of aggregates. For each added quantity of n-heptane, the sample of asphaltenes has been separated in an insoluble fraction and a soluble one. The insoluble fraction contains the aggregates which firstly floculate. The elemental composition of each fraction has been determined by elemetal analysis. The pyrolysis in an open medium has allowed to break the aggregates in elementary patterns, the nature of the different patterns has been determined by liquid and gazeous chromatography. The size of the aggregates has been observed by X-ray diffusion.The results of this chemical characterization have shown that the initial sample of asphaltenes is formed by a group of oligomers having different elemental compositions and different chemical structures. The aggregates which

  4. Asphaltenes analysis arising of non conventional oils; Analise de asfaltenos oriundos de petroleos nao convencionais

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Fernanda B. da; Fiorio, Paula G.P.; Guimaraes, Maria Jose O.C.; Seidl, Peter R. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica

    2012-07-01

    The need to use heavy fractions in an efficient way in the production of nobler fractions has motivated the search for ways of separating the asphaltenes, since these molecules increase the viscosity of the fractions submitted to distillation, contribute to the formation of coke and to poisoning and deactivation of catalysts used in process such as cracking, reform, etc, besides provoking cloggings and blockages caused by its deposition, generating losses on the productivity and increases of the operational costs. This paper evaluates the influence of solvent blends (EQ-NP) in the selective extraction of constituents of three samples from Brazilian heavy crude. For the extraction process was used two solvent blends (N1P1 and N1P2). The solvent blend composed of N1P1 showed a higher selectivity in the extraction of aggregates than N1P2. The extracted fraction was characterized by Hydrogen Nuclear Magnetic Resonance ({sup 1}H-NMR) and revealed that the chemical species extracted from different blends exhibit very small differences. (author)

  5. Steroid-Derived Naphthoquinoline Asphaltene Model Compounds: Hydriodic Acid Is the Active Catalyst in I2-Promoted Multicomponent Cyclocondensation Reactions.

    Science.gov (United States)

    Schulze, Matthias; Scott, David E; Scherer, Alexander; Hampel, Frank; Hamilton, Robin J; Gray, Murray R; Tykwinski, Rik R; Stryker, Jeffrey M

    2015-12-01

    A multicomponent cyclocondensation reaction between 2-aminoanthracene, aromatic aldehydes, and 5-α-cholestan-3-one has been used to synthesize model asphaltene compounds. The active catalyst for this reaction has been identified as hydriodic acid, which is formed in situ from the reaction of iodine with water, while iodine is not a catalyst under anhydrous conditions. The products, which contain a tetrahydro[4]helicene moiety, are optically active, and the stereochemical characteristics have been examined by VT-NMR and VT-CD spectroscopies, as well as X-ray crystallography. PMID:26584791

  6. Far- and mid-infrared spectroscopy of complex organic matter of astrochemical interest: coal, heavy petroleum fractions, and asphaltenes

    CERN Document Server

    Cataldo, F; Manchado, A

    2012-01-01

    The coexistence of a large variety of molecular species (i.e., aromatic, cycloaliphatic and aliphatic) in several astrophysical environments suggests that unidentified IR emission (UIE) occurs from small solid particles containing a mix of aromatic and aliphatic structures (e.g., coal, petroleum, etc.), renewing the astronomical interest on this type of materials. A series of heavy petroleum fractions namely DAE, RAE, BQ-1, and asphaltenes derived from BQ-1 were used together with anthracite coal and bitumen as model compounds in matching the band pattern of the emission features of proto-planetary nebulae (PPNe). All the model materials were examined in the mid-infrared (2.5-16.7 um) and for the first time in the far-infrared (16.7-200 um), and the IR bands were compared with the UIE from PPNe. The best match of the PPNe band pattern is offered by the BQ-1 heavy aromatic oil fraction and by its asphaltenes fraction. Particularly interesting is the ability of BQ-1 to match the band pattern of the aromatic-ali...

  7. Chemical modification of a bitumen and its non-fuel uses. [Reactions of tar sand asphaltenes in synthesis of non-fuel products

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1974-01-01

    Simple reactions are described whereby tar sand bitumen can be converted to a whole range of materials. Examples are given to illustrate the non-fuel uses of the products. The following reactions of Athabasca asphaltenes are considered: oxidation, halogenation, sulfonation and sulfomethylation, phosphorylation, hydrogenation, reactions with S and O, reactions with metal salts, and miscellaneous chemical conversions. (JGB)

  8. Combustion of drops of Mexican fuel oils with high asphaltenes content; Combustion de gotas de combustoleos mexicanos con alto contenido de asfaltenos

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Rodriguez, Jose Francisco [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-09-01

    In this work the combustion of fuel drops with a content of 18% of asphaltenes has been studied . The results obtained for this fuel were compared with the ones obtained for another with a content of 12% asphaltenes. The drops were suspended in a platinum filament and burned in an spherical radiant furnace. The drop size varied between 600 and 800 microns. The fuel drops with 12% asphaltenes showed shorter combustion times, a smaller diameter increment of the smaller diameter during the combustion stages and also a shorter burning time of the carbonaceous residue than the fuel drops with a content of 18% asphaltenes. [Espanol] En el presente trabajo se ha estudiado la combustion de gotas de combustible con 18% de contenido de asfaltenos. Los resultados obtenidos para este combustible se compararon con los obtenidos para otro con 12% de contenido de asfaltenos. Las gotas fueron suspendidas en un filamento de platino y quemadas en un horno radiante esferico. El tamano de las gotas vario entre 600 y 800 micras. Las gotas de combustible con 12% de asfaltenos mostraron tiempos de combustion mas cortos, un incremento del diametro menor durante las etapas de combustion y un tiempo de quemado del residuo carbonoso tambien mas corto que las gotas del combustible con 18% de contenido de asfaltenos.

  9. A small angle neutron scattering study of the adsorbed asphaltene layer in water-in-hydrocarbon emulsions: structural description related to stability.

    Science.gov (United States)

    Jestin, Jacques; Simon, Sébastien; Zupancic, Lina; Barré, Loïc

    2007-10-01

    We have developed a specific protocol to study with SANS measurements, the structure of the interfacial film layer in water-in-oil emulsions stabilized by asphaltene. Using the contrast matching technique available for neutron scattering, we have access to both the composition and the quantity of interface. The results obtained give us a view of the asphaltene aggregates in the interfacial film, which are structured as a monolayer and show a direct correlation between the size of asphaltene aggregates in solution and the thickness of the film layer. The organization of the interface has been studied as a function of several parameters such as the quantity of resins, i.e., the size of aggregates, the pH of the aqueous phase, and the aging time of the emulsions and the consequences of these variations on the macroscopic stability of these emulsions. We show that the key parameter for the stability is the inter-asphaltene aggregate interaction inside the film layer. Changing the attractive/repulsive balance between the aggregates in the film at the microscopic scale, by changing the aggregate's size or the aggregate's ionization, has a direct incidence on the quantity of water recovered after centrifugation: the stronger the attraction between aggregates in the film, the more stable the emulsion is. PMID:17867712

  10. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR.

    Directory of Open Access Journals (Sweden)

    Kevin A Thorn

    Full Text Available Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.

  11. Rheological properties of hydrate suspensions in asphaltenic crude oils; Proprietes rheologiques de suspensions d'hydrate dans des bruts asphalteniques

    Energy Technology Data Exchange (ETDEWEB)

    Marques de Toledo Camargo, R.

    2001-03-01

    The development of offshore oil exploitation under increasing water depths has forced oil companies to increase their understanding of gas hydrate formation and transportation in multiphase flow lines in which a liquid hydrocarbon phase is present. This work deals with the flow behaviour of hydrate suspensions in which a liquid hydrocarbon is the continuous phase. Three different liquid hydrocarbons are used: an asphaltenic crude oil, a condensate completely free of asphaltenes and a mixture between the asphaltenic oil and heptane. The rheological characterisation of hydrate suspensions is the main tool employed. Two original experimental devices are used: a PVT cell adapted to operate as a Couette type rheometer and a semi-industrial flow loop. Hydrate suspensions using the asphaltenic oil showed shear-thinning behaviour and thixotropy. This behaviour is typically found in flocculated systems, in which the particles attract each other forming flocs of aggregated particles at low shear rates. The suspensions using the condensate showed Newtonian behaviour. Their relative viscosities were high, which suggests that an aggregation process between hydrate particles takes. place during hydrate formation. Finally, hydrate suspensions using the mixture asphaltenic oil-heptane showed shear-thinning behaviour, thixotropy and high relative viscosity. From these results it can be inferred that, after the achievement of the hydrate formation process, the attractive forces between hydrate particles are weak. making unlikely pipeline obstruction by an aggregation process. Nevertheless, during the hydrate formation, these attractive forces can be sufficiently high. It seems that the hydrate surface wettability is an important parameter in this phenomena. (author)

  12. Géochimie des résines et asphaltènes Geochernistry of Resins and Asphaltenes

    Directory of Open Access Journals (Sweden)

    Tissot B.

    2006-11-01

    Full Text Available Les produits lourds des huiles brutes (résines et asphaltènes jouent un rôle important dans la genèse et l'accumulation du pétrole, ainsi que dans la mise en production par des méthodes conventionnelles ou par récupération assistée. Les asphaltènes et résines sont considérés ici comme des fragments de kérogène, avec une structure d'ensemble comparable : ils peuvent constituer des intermédiaires dans la genèse de l'huile brute par dégradation thermique du kérogène. De plus, la pyrolyse des asphaltènes séparés à partir d'un pétrole biodégradé peut produire de nouveaux hydrocarbures saturés qui reproduisent la fraction saturée primitive, détruite par la dégradation ; on peut ainsi disposer d'un nouvel outil pour corréler ce type d'huiles brutes. Les produits lourds semblent défavorisés par rapport aux hydrocarbures, dans la migration de la roche-mère vers le réservoir, où les résines et asphaltènes sont proportionnellement moins abondants. La structure physique des asphaltènes et résines dans les pétroles, et en particulier l'existence d'une macrostructure du type micelles ou agrégats, est probablement responsable de la viscosité élevée des huiles lourdes. Une meilleure connaissance de cette macrostructure pourrait suggérer de nouvelles méthodes pour diminuer la viscosité et améliorer la récupération des huiles lourdes. The heavy constituents of crude oil (resins and asphaltenes play an important role in generation and accumulation of petroleum, and also in production by conventional and enhanced oil recovery processes. Asphaltenes and resins are considered here as small fragments of kerogen, with a comparable overall structure: they may act as intermediate compounds in oil generation by thermal breakdown of kerogen. Furthermore, pyrolysis of asphaltenes separated from a degraded crude oil is able to generate a new saturated hydrocarbon fraction which duplicates the original one, now degraded

  13. Effect of asphaltene and resin oils on the viscosity of bituminous petroleum materials to be used as asphalt primers

    Directory of Open Access Journals (Sweden)

    Bencomo, M. R.

    2006-03-01

    Full Text Available The bituminous crude from the Machete, Venezuela, area, which has such a fluid consistency that it falls outside the normal scope of the A5TM D-5 (1 penetration test exceeding the 3D-mm ceiling specified in that standard and can be used as an asphalt primer: Like other asphalt products, these materials are -chemically speaking- a mix of numerous naphthenic, paraffinic and aromatic hydrocarbons and heterocyclic compounds containing sulphur, nitrogen, oxygen and so on. They have a dense and a malthene oil phase which, along with the natural hydrocarbons additives used in these products acts as a volatile fluidizer. The former is described as a mix of asphaltenes: complex high molecular weight substances that are insoluble in paraffinic hydrocarbons and soluble in aromatic compounds such as benzene. The malthene oil phase, in turn, consists in a mix of resins and hydrocarbons and together the two constitute a colloidal system. The experiments discussed in the present paper were conducted to determine the effect of the proportion of asphaltenes and resin oils on the viscosity of such bituminous crude emulsions/ with a view to their use as primers. These experiments were run in a Parr batch reactor in a nitrogen atmosphere using n-heptane as a solvent. The resins were separated after the asphaltenes precipitated from the samples and subsequently from the malthene fraction obtained. The results showed that the asphaltenes account for the structural characteristics and consistency of the medium and the resin oils for its cohesive properties/,the malthene oils act as solvents.Los crudos extrapesados procedentes del área Machete (Venezuela son materiales de consistencia blanda o fluida, por lo que se salen del campo en el que normalmente se aplica el ensayo de penetración a productos asfálticos según el método ASTM D-5 (1, cuyo límite máximo es 30 mm, y pueden ser utilizados como pinturas asfálticas de imprimación. Al igual que otros productos

  14. ATOMISTIC MODELING OF OIL SHALE KEROGENS AND ASPHALTENES ALONG WITH THEIR INTERACTIONS WITH THE INORGANIC MINERAL MATRIX

    Energy Technology Data Exchange (ETDEWEB)

    Facelli, Julio; Pugmire, Ronald; Pimienta, Ian

    2011-03-31

    The goal of this project is to obtain and validate three dimensional atomistic models for the organic matter in both oil shales and oil sands. In the case of oil shales the modeling was completed for kerogen, the insoluble portion of the organic matter; for oil sands it was for asphaltenes, a class of molecules found in crude oil. The three dimensional models discussed in this report were developed starting from existing literature two dimensional models. The models developed included one kerogen, based on experimental data on a kerogen isolated from a Green River oil shale, and a set of six representative asphaltenes. Subsequently, the interactions between these organic models and an inorganic matrix was explored in order to gain insight into the chemical nature of this interaction, which could provide vital information in developing efficient methods to remove the organic material from inorganic mineral substrate. The inorganic substrate used to model the interaction was illite, an aluminum silicate oxide clay. In order to obtain the feedback necessary to validate the models, it is necessary to be able to calculate different observable quantities and to show that these observables both reproduce the results of experimental measurements on actual samples as well as that the observables are sensitive to structural differences between models. The observables that were calculated using the models include 13C NMR spectra, the IR vibrational spectra, and the atomic pair wise distribution function; these were chosen as they are among the methods for which both experimental and calculated values can be readily obtained. Where available, comparison was made to experiment results. Finally, molecular dynamic simulations of pyrolysis were completed on the models to gain an understanding into the nature of the decomposition of these materials when heated.

  15. Brewster angle microscopy of Langmuir films of athabasca bitumens, n-C5 asphaltenes, and SAGD bitumen during pressure-area hysteresis.

    Science.gov (United States)

    Hua, Yujuan; Angle, Chandra W

    2013-01-01

    Bitumen films formed on water surfaces have negative consequences, both environmental and economic. CanmetENERGY has placed considerable research emphasis on understanding the structures of the bitumen films on water as a necessary step before optimization of bitumen extraction. The detailed structures of the adsorbed molecules and, especially, the role of asphaltene molecules at the interfaces are still under scrutiny and debate. In the present study, we compared bitumen and asphaltene films as they were compressed and expanded under various surface pressures in order to achieve a clearer understanding of bitumen film structures. We used a customized NIMA Langmuir trough interfaced to a Brewster angle microscope (BAM) and CCD camera (Nanofilm_ep3BAM, Accurion, previously Nanofilm Gmbh) to study images of bitumen films at the air/water interface. The bitumen film appeared uniform with high reflectivity at a surface pressure of 18 mN·m(-1) and exhibited a coarse pebblelike interface with reduced reflectivity in the liquid condensed (LC) phase at higher pressures (18-35 mN·m(-1)). During the first cycle of compression asphaltene films showed well-defined phase transitions and a uniformly smooth interface in the LC phase between 9 and 35 mN·m(-1). However, folding or buckling occurred at surface pressures from 35 to 44 mN·m(-1). On expansion, asphaltene films appeared to break into islands. The hysteresis of the pressure-area isotherm was much larger for asphaltenes than for bitumen. In both compression and expansion cycles, BAM images for bitumen films appeared to be more reproducible than those of the asphaltene films at the same surface pressures. Films for low-°API SAGD bitumen were almost identical to those for surface-mined bitumen. Films formed from partially deasphalted surface-mined bitumens showed higher compressibility and lower rigidity than the original bitumen. The BAM images illustrated significant differences between the partially deasphalted and

  16. Avaliação geoquímica de biomarcadores ocluídos em estruturas asfaltênicas Geochemical evaluation of occluded biomarkers in asphaltenic structures

    Directory of Open Access Journals (Sweden)

    Débora de Almeida Azevedo

    2009-01-01

    Full Text Available Asphaltenes from two Brazilian crude oils were submitted to mild oxidation to disrupt their structure, releasing the occluded oil. The released hydrocarbons were compared with those from the original crude oil, and used to evaluate the alteration of the oils, especially as a result of biodegradation, but also thermal maturity. The crude oils used are depleted in n-alkanes, which are usually related to biodegradation. However, the released products from the corresponding asphaltenes have n-alkane distributions from nC10 to nC40, suggesting a protection effect from biodegradation. The m/z 191 mass chromatograms showed higher relative intensities for tricyclic terpanes than the hopanes in the crude in comparison with the released ones.

  17. Ruthenium-ion-catalyzed oxidation of asphaltenes and oil-source correlation of heavy oils from the Lunnan and Tahe oilfields in the Tarim Basin, NW China

    Institute of Scientific and Technical Information of China (English)

    MA Anlai; ZHANG Shuichang; ZHANG Dajiang; JIN Zhijun; MA Xiaojuan; CHEN Qingtang

    2005-01-01

    The identification of marine source rocks in the Tarim Basin is debated vigorously. The intention of this paper is to investigate the asphaltenes in heavy oils from the Lunnan and Tahe oilfields and Well TD2 with ruthenium-ions-catalyzed oxidation technique (RICO), in order to explore its role in oil-oil and oil-source correlations. The RICO products included n-alkanoic acids, α, ω-di-n-alkanoic acids, branched alkanoic acids, tricyclic terpanoic acids, hopanoic acids, gammacerane carboxylic acid , regular sterane carboxylic acids and 4-methylsterane carboxylic acids. The n-alkyl chains and biomarkers bounded on the asphaltenes were of unsusceptibility to biodegradation. The distribution and absolute concentrations of n-alkanoic acids in the RICO products of heavy oils from the Lunnan and Tahe oilfields are different from those of Well TD2. The biomarkers bounded on the asphaltenes, especially steranes, have a distribution trend similar to that of the counterparts in saturates. The sterane carboxylic acids and 4-methylsterane carboxylic acids in the RICO products of heavy oils from the Lunnan and Tahe oilfields, dominated by C30 sterane and C31 4-methylsterane carboxylic acids, respectively, are significantly different from those of the heavy oils of Well TD2, whose dominating sterane and 4-methylsterane carboxylic acids are C2s sterane and C29 4-methylsterane acids, respectively. The RICO products of the asphaltenes further indicate that the Middle-Upper Ordovician may be the main source rocks for heavy oils from the Lunnan and Tahe oilfields.

  18. Effect of various catalysts on the chemical structure of oils and asphaltenes obtained from the hydroliquefaction of a highly volatile bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Cebolla, V.L.; Diack, M.; Oberson, M.; Bacaud, R.; Cagniant, D.; Nickel-Pepin-Donat, B. (Universite de Metz, Metz (France))

    1991-07-01

    The catalysts studied were aerosols of SiO{sub 2}, Fe{sub 2}O{sub 3}, MoO{sub 3} and Ni-Mo/Al{sub 2}O{sub 3}. The hydroliquefaction runs at 350, 400 and 430{degree}C, in the presence of tetralin and sulfur, were evaluated by solvent extractions, hydrogen consumption and structural analysis of the isolated oil and asphaltene fractions. At 350 {degree}C, a clear influence of the catalyst on the extraction yields is observed. This effect disappears at higher temperatures. Nevertheless, hydrogen consumption from gas or solvent is affected by the nature of the catalyst at a given temperature. The influence of the catalyst is also confirmed by electron spin resonance study of the stable radicals of the tetrahydrofuran insoluble fractions. After elimination of tetralin, the structural analyses were carried out by gas chromatography (oils), size exclusion chromatography (oils and asphaltenes) and extrography (raw hydroliquefaction products). The oils obtained with sulfided Fe{sub 2}O{sub 3} or MoO{sub 3} contained significantly more two-ringed aromatic compounds than oils obtained with the other catalysts or without added catalyst. No significant influence of the catalyst at a given temperature on the oils and asphaltenes is observed by size exclusion chromatography. In contrast, a large temperature effect is evidenced for each fraction, independently of the nature of the catalyst. 38 refs., 7 figs., 6 tabs.

  19. Effect of salts on the interfacial tension of asphaltene-toluene/water interface : prediction by Poisson-Boltzmann modified model and experimental validation

    Energy Technology Data Exchange (ETDEWEB)

    Se, R.A.G.; Lima, E.R.A.; Nele, M.; Tavares, F.W. [Federal Univ. of Rio de Janeiro (Brazil). School of Chemistry; Bostrom, M. [Linkoping Univ., Linkoping (Sweden). Dept. of Physics, Chemistry and Biology

    2008-07-01

    This study presented new experimental data of interfacial tension of toluene-asphaltene/water systems in the presence of different salts. In order to study the stability of emulsions caused by the presence of salts in produced water, it is important to understand the interaction of ions at the interface. It was simpler to use model systems consisting of asphaltenes dissolved in toluene because of the complexity of the interfacially active components in oil. The study involved a Brazilian crude oil in which asphaltene was precipitated with a 1:15 ratio of n-heptane and solutions of water with salts LiCl, KCl, NaCl, NaI, NaBr and KBr in concentrations of 0.10, 0.25, 0.50, 0.75 and 1.0 M. The study investigated salt mixtures NaCl/NaBr and NaCl/NaI in the proportions 0.8:0.2, 0.6:0.4, 0.4:0.6, 0.2:0.8 molar. The experimental data was modeled using a modified Poisson-Boltzmann equation that considered dispersion in order to take into account the influence of ions at the interface.

  20. Re-Os dating of maltenes and asphaltenes within single samples of crude oil

    Science.gov (United States)

    Georgiev, Svetoslav V.; Stein, Holly J.; Hannah, Judith L.; Galimberti, Roberto; Nali, Micaela; Yang, Gang; Zimmerman, Aaron

    2016-04-01

    Re-Os geochronology of oil may constrain the timing of oil formation and improve oil-source and oil-oil correlations. Typically, asphaltene (ASPH), the heaviest and most Re-Os rich oil fraction, from multiple oils within an oil field or a larger petroleum system are analyzed to obtain sufficient spread in Re-Os isotopic ratios, a mathematical necessity for precise Re-Os isochrons. Here we offer a new approach for Re-Os geochronology of oil based on isotopic analyses of different fractions within a single sample of crude oil. We studied three oils from the Gela oil field, southern Sicily, Italy, recovered from Triassic-Jurassic stratigraphic intervals (Streppenosa, Noto, and Sciacca Formations) within the Gela-1 well. ASPH (insoluble in n-alkane) and maltene (MALT, soluble in n-alkane) fractions of oil were separated using n-pentane, n-hexane, n-heptane and n-decane solvents. The ASPH contents of the Sciacca and Noto oils (26-33 wt%) are notably higher compared to the Streppenosa oil (7-12 wt% ASPH). We present an optimized Re-Os procedure with sample digestion in a high-pressure asher, followed by isotopic measurements using negative thermal ionization mass spectrometry. Very high metal contents of Gela oils allowed acquisition of precise Re-Os data. Systematic variations between the type of solvent used for ASPH precipitation and the ASPH content of the oil (also known from the literature) and the Re-Os contents of the ASPH and MALT fractions (first observed in this study) provide important practical applications for Re-Os analyses of oil. Most Re and Os (∼96-98%) in the Noto oil are hosted in the ASPH fraction. In contrast, a significant portion of Re and Os (∼33-34%) is stored in the MALT fraction of the lighter, but heavily biodegraded Streppenosa oil. Collectively, our new data on alkane distribution, hopane and sterane biomarkers, major and trace element contents, and Re-Os concentrations and isotopic ratios of the oils and their fractions support the

  1. Molecular Weight and Association of Asphaltenes: a Critical Review Masse moléculaire et association des asphaltènes : une revue critique

    Directory of Open Access Journals (Sweden)

    Speight J. G.

    2006-11-01

    Full Text Available The determination of asphaltene molecular weights is complicated by the tendency of asphaltene molecules to associate with each other and with other petroleum constituents, and reported molecular weights vary from 900 to 300 000. This paper reviews the methods (vapor pressure osmometry, size exclusion chromatography, ultrafiltration, ultracentrifugation, viscosity, small angle X-ray scattering, infrared spectroscopy, solubilization, and interfacial tension that have been used to estimate asphaltene molecular weights and to probe association phenomena. It is concluded that asphaltene fractions from typical crudes have a number average molecular weight of 1 200-2 700 and a molecular weight range of 1,000-10,000 or higher. Intermolecular association phenomena are primarily responsible for observed molecular weights up to and in excess of 100,000 but detailed mechanisms of the intermolecular associations are not well understood. Certain observations suggest that asphaltene molecules are associated in reversedmicelles and that asphaltenes interact selectively with resins although the evidence on these points is subject to alternate interpretations. H-bond interactions between asphaltenes and resins have been demonstrated. La détermination de la masse moléculaire des asphaltènes est difficile à cause de la tendance qu'ont les molécules d'asphaltènes à s'associer les unes aux autres et avec d'autres constituants des pétroles. Ces masses moléculaires varient de 900 à 300 000. Cet article passe en revue les méthodes (osmométrie par tension de vapeur, chromatographie d'exclusion stérique, ultrafiltration, ultracentrifugation, viscosité, diffusion centrale des rayons X, spectroscopie infra-rouge, solubilisation et tension interfaciale qui ont été utilisées pour estimer les masses moléculaires des asphaltènes et pour étudier les phénomènes d'association. On conclut que les asphaltènes extraits de bruts types ont des masses mol

  2. SYNTHESIS AND CHARACTERIZATION OF THE POLYSTYRENE - ASPHALTENE GRAFT COPOLYMER BY FT-IR SPECTROSCOPY SÍNTESIS Y CARACTERIZACIÓN DEL COPOLIMERO ASFALTENO - POLIESTIRENO POR ESPECTROSCOPIA INFRAROJA

    Directory of Open Access Journals (Sweden)

    Adan-Yovani León-Bermúdez

    2008-12-01

    Full Text Available The creation of new polymer compounds to be added to asphalt has drawn considerable attention because these substances have succeeded in modifying the asphalt rheologic characteristics and physical properties for the enhancement of its behavior during the time of use. This work explains the synthesis of a new graft copolymer based on an asphalt fraction called asphaltene, modified with maleic anhydride. Polystyrene functionalization is conducted in a parallel fashion in order to obtain polybenzylamine resin with an amine - NH2 free group, that reacts with the anhydride graft groups in the asphaltene, thus obtaining the new Polystyrene/Asphaltene graft copolymer.La creación de nuevos compuestos poliméricos para ser adicionados al asfalto, ha llamado la atención de manera considerable debido a que estas sustancias han logrado modificar las características reológicas y propiedades físicas del asfalto, con la finalidad de mejorar su comportamiento en el tiempo de uso. El presente trabajo explica, la síntesis de un nuevo copolímero de injerto a partir de una fracción del asfalto llamada asfalteno, la cual es modificada con anhídrido maleico. Paralelamente se realiza la funcionalización del poliestireno, resina polibencilamina, esta posee un grupo amina - NH2 libre que reacciona con los grupos anhídro, injertados en el asfalteno, y así obtener el nuevo copolímero de injerto Poliestireno/Asfalteno.

  3. Colloidal Structure of Heavy Crudes and Asphaltene Soltutions Structure colloïdale des bruts lourds et des suspensions d'asphaltènes

    Directory of Open Access Journals (Sweden)

    Barre L.

    2006-12-01

    Full Text Available Many industrial problems that arise during petroleum processing are related to the high concentration of asphaltenes. A good knowledge of the chemical composition of these macromolecules and a detailed understanding of the evolution of the colloïdal structures present in oil and its derivatives can play a decisive role in improving processing facilities. Asphaltenes are defined by their insolubility in n-heptane. Soluble molecules are called maltenes which can be fractionated by liquid chromatography in so-called resins, aromatic and saturated fractions. The major part of the research carried out on these complex molecules concerned the chemical composition determination from powerful techniques measurements as for instance IR or NMR methods. Nevertheless, very little information on the colloïdal structure of asphaltenes or resins in pure solvent or in real systems is accessible.The molecular weight determination was the first objective; several techniques, as vapour pressure osmometry (VPO, were used. The main conclusion of these determinations was the huge variation of the molecular weight measured by different methods. We used X-ray and neutron small angle scattering techniques in order to deduce the size polydispersity and the weight average molecular weight. Different systems as (i asphaltenes or resins in solution with different solvents, or (ii asphaltene and resin mixtures in suspension with good or bad solvents were investigated as a function of temperature increase. We have exhibited that the aggregation number, i.e. the number of smaller entities , can strongly vary with solvent composition and temperature. Resins appear as very good solvent for asphaltene molecules. Scattering measurements often exhibit strong scattered intensity at small scattering vector, showing the presence in the suspension of large heterogeneities in diluted solutions of asphaltenes and resins. We can suggest that these heterogeneities are due to

  4. Far infrared (terahertz) spectroscopy of a series of polycyclic aromatic hydrocarbons and application to structure interpretation of asphaltenes and related compounds

    Science.gov (United States)

    Cataldo, Franco; Angelini, Giancarlo; García-Hernández, D. A.; Manchado, Arturo

    2013-07-01

    A series of 33 different polycyclic aromatic hydrocarbons (PAHs) were studied by far infrared spectroscopy (terahertz spectroscopy) in the spectral range comprised between 600 and 50 cm-1. In addition to common PAHs like naphthalene, anthracene, phenanthrene, fluoranthene, picene, pyrene, benzo[α]pyrene, and perylene, also quite unusual PAHs were studied like tetracene, pentacene, acenaphtene, acenaphtylene, triphenylene, and decacyclene. A series of alkylated naphthalenes and anthracenes were studied as well as methypyrene. Partially or totally hydrogenated PAHs were also object of the present investigation, ranging from tetrahydronaphthalene (tetralin) to decahydronaphthalene (decalin), 9,10-dihydroanthracene, 9,10-dihydrophenanthrene, hexahydropyrene, and dodecahydrotriphenylene. Finally, the large and quite rare PAHs coronene, quaterrylene, hexabenzocoronene, and dicoronylene were studied by far infrared spectroscopy. The resulting reference spectra were used in the interpretation of the chemical structure of asphaltenes (as extracted from a heavy petroleum fraction and from bitumen), the chemical structures of other petroleum fractions known as DAE (distillate aromatic extract) and RAE (residual aromatic extract), and a possible interpretation of components of the chemical structure of anthracite coal. Asphaltenes, heavy petroleum fractions, and coal were proposed as model compounds for the interpretation of the emission spectra of certain proto-planetary nebulae (PPNe) with a good matching in the mid infrared between the band pattern of the PPNe emission spectra and the spectra of these oil fractions or coal. Although this study was finalized in an astrochemical context, it may find application also in the petroleum and coal chemistry.

  5. Evaluation of nano emulsion containing asphaltenes dispersant additive in dehydration of oil; Avaliacao de nanoemulsoes contendo aditivo dispersante de asfaltenos na desidratacao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Priscila F. de; Rodrigues, Jessica S.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro/ Instituto de Macromoleculas/ Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)], e-mail: prisfrias@hotmail.com

    2011-07-01

    Due to the problem of the formation of emulsions type water-oil during oil production, new alternatives of the breakdown of these emulsions have been proposed over the years. Several polymers have been used to destabilize these emulsions and among them are those based on polyphenylene ether. The aim of this study was to develop nanoemulsions type oil / water, where an asphaltenes dispersant additive was dissolved in dispersed phase in order to evaluate them as a new alternative in the breakdown of oil emulsions. The nanoemulsions were prepared in the presence of surfactant based on polyoxide using a high pressure homogenizer (HPH). We obtained stable nanoemulsions for more than 30 days in the presence or absence of additive. These nanoemulsions were effective in water /oil phase separation, and the nanoemulsion containing the dispersant additive provided a faster separation of these phases. (author)

  6. Routine method for quantitative /sup 13/C NMR spectra editing and providing structural patterns. Application to every kind of petroleum fractions including residues and asphaltenes

    Energy Technology Data Exchange (ETDEWEB)

    Bouquet, M.; Bailleul, A.

    1986-09-01

    In order to derive structural hydrocarbon patterns of petroleum cuts, including high molecular fractions and heavy cuts, in both quantitative and routine procedure, the authors have built up a method based on inverse gated decoupling and gated spin-echo /sup 13/C experiments. Multiplet selection methods allow identification of CH/sub n/ groups (n is 0-3) and quantitativeness is obtained with the use of relaxation reagent, two conventional spin echo and three gated spin echo experiments, and a correction factor applied to aliphatic carbons basic spectra. Different steps of the method are discussed theoretically and examples dealing with vacuum distillates, residues and fractions (resins, asphaltenes) are given. Emphasis has been put on the experimental and practical running of the described method, convenient with routine industrial research experiments. 14 references.

  7. STUDY ON THE CHANGING OF COMPOSITION AND STRUCTURE OF ASPHALTENE DURING RESIDUE HYDROTREATING%渣油加氢处理中沥青质组成和结构的变化研究

    Institute of Scientific and Technical Information of China (English)

    王跃; 张会成; 凌凤香; 马波

    2012-01-01

    Residue oil hydrotreating experiments were carried out on a pilot plant unit to investigate the effect of reaction temperature and hydrotreating severity on the composition and the molecular structure of asphaltenes in the treated residue samples. Results showed that with the increase of reaction temperature or the depth of hydrogenation, the asphaltene content in the treated residue sample decreased; the sulfur, nickel and vanadium contents of asphaltene dropped, but the nitrogen content gave an increase trend. The average molecular structural parameters of asphaltene in the obtained samples were calculated from the spectrum of 1H-NMR and 13C-NMR. Results showed that with the increase of reaction temperature, the fraction of paraffins decreased and the fraction of aromatics increased; however, with the increase of hydrogenation depth, the fraction of paraffins increased and the fraction of aromatics decreased.%利用渣油加氢处理中试装置考察反应温度和加氢深度对加氢产物渣油中沥青质组成、结构的影响,结果表明:随温度或加氢深度增加,加氢产物渣油中沥青质含量降低,沥青质中硫、镍、钒含量降低,氮含量呈增加趋势.采用13C-NMR谱和1H-NMR谱,计算了沥青质的平均分子结构参数,结果表明:随着温度的升高,饱和碳分率逐渐下降,芳香碳分率逐渐升高;随着加氢深度增大,饱和碳分率逐渐升高,而芳香碳分率逐渐下降.

  8. Estudo da interatividade entre macromoléculas asfaltênicas e compostos estabilizantes: LCC e Cardanol Study of the interactivity between asphaltenic macromolecules and stabilizing compounds: cashew-nut Shell liquid and Cardanol

    Directory of Open Access Journals (Sweden)

    Luiz Fernando B. Moreira

    1998-01-01

    Full Text Available O asfalteno contido no petróleo pode se depositar gerando inúmeros problemas que podem afetar não só a produção, mas também todas as etapas que envolvem o transporte, armazenamento e processamento do óleo cru. Este trabalho apresenta uma adaptação matemática de modelos de interatividade para o sistema asfalteno/estabilizante capaz de prever o desempenho do estabilizante em evitar a precipitação de asfalteno. A capacidade do líquido da casca da castanha de caju (LCC e de um dos seus derivados, o cardanol, foi estudada empregando-se o teste de peptização. Tanto o LCC quanto o cardanol apresentaram propriedades estabilizadoras de asfaltenos e exibiram interatividade positiva em ambos os casos.Asphaltenes deposition may cause serious problems for crude oil production, treatment and refining. Additives that disperse or peptisize asphaltenes particles may prevent this deposition process, avoiding serious technological problems. The results presented in this paper show that the oil extracted from cashew nut shell and cardanol, one of its components, may be used as peptizing agent for asphaltenes. Furthermore, it is shown that dispersants display binding isotherms presenting typical co-operative association.

  9. Optimization of asphaltenes decantation equipment used in deasphalting process using computational fluid dynamics; Otimizacao de um equipamento para a decantacao de asfaltenos no processo de desasfaltacao usando fluidodinamica computacional

    Energy Technology Data Exchange (ETDEWEB)

    Arenales, Carlos Gregorio Dallos [Cooperativa de Trabajadores Profesionales Ltda (CTP), Santander (Colombia); Pimiento, Carlos Eduardo Lizcano; Quintero, Lina Constanza Navarro; Bueno, Jhon Ivan Penaloza [Empresa Colombiana de Petroleos S.A. (ICP/ECOPETROL), Santander (Colombia). Instituto Colombiano del Petroleo

    2012-07-01

    Heavy crude oil is a complex mixture of compounds that include saturates, aromatics, resins and asphaltenes. In this mixture, the asphaltenes are the heaviest components and can be unstable and precipitate. This kind of components causes troubles in transportation and processing. One way to reduce this problem is through technologies that use solvents, which under adequate operating conditions, separate the heavy fraction, improving the properties and conditions for transporting and refining of heavy crude oil. One of the processes used in the petroleum industry to improve the properties of heavy and residue oil is the solvent deasphalting. These processes have the disadvantage of work at elevated pressure and temperature. The Colombian Petroleum Company, ECOPETROL S.A. has developed its own process of upgrading heavy oils, ECODESF, a process that is designed to work at moderate conditions of pressure and temperature and that by using a paraffinic solvent, significantly improves the quality of heavy oil, reducing its viscosity and increasing API gravity. The present work develops a model of computational fluid dynamics (CFD) for asphaltene settler, using microscopic balance. The response of this model allowed determine: the solids flow pattern distribution and accumulation points of heavy phase. This information is useful for understanding the fluid-dynamic behavior of the system. The model was validated using data from a pilot plant with capacity for treatment 1.25 BPD of heavy crude oil. This pilot plant is located in the Colombian Petroleum Institute of ECOPETROL (ICP), Piedecuesta city, Santander, Colombia. (author)

  10. 渣油加氢处理前后沥青质的微观结构研究%Microstructure characterization of asphaltenes from atmospheric residue before and after hydroprocessing

    Institute of Scientific and Technical Information of China (English)

    刘勇军

    2012-01-01

    采用元素分析、扫描电镜和透射电镜等分析方法对渣油原料中的沥青质、加氢处理后的沥青质及添加高芳香性轻循环油(LCO)反应后的沥青质进行对比研究.结果发现,渣油加氢处理前后沥青质的表面呈现出光滑表面和多孔的球形颗粒表面两种完全不同的形貌.渣油加氢前后沥青质的芳核堆砌表现出明显的长程无序局部有序的特征;加氢处理后的沥青质芳核片层易于堆砌,出现了多层堆砌、长程有序的类石墨结构.渣油中高芳香性LCO的添加有利于促进沥青质的加氢反应、改善沥青质芳核系统在渣油加氢处理过程中的聚集行为.%A comparative study on microstructure of asphaltenes obtained from an atmospheric residue (AR),a hydroprocessed oil of AR and a blending of AR with high aromatic light cycle oil (LCO) was carried out by element analysis,scanning and transmission electron microscopy ( SEM and TEM). Different asphaltene morphologies,smooth surface and porous surface with spherical particles,were observed by SEM before and after hydroprocessing. The results of TEM micrographs show that the aromatic ring stacking of original asphaltene is characterized of long range disorder and short range order,and multi-stacking graphite-like carbon with long range order is observed for hydroprocessed asphaltene. The addition of high aromatic LCO into AR enhances the hydrogenation reactions of asphaltene and inhibits the aggregation of aromatic ring systems under AR hydrotreating.

  11. 沥青质裂解反应选择性分析%Analysis for the Selectivity of Asphaltene Cracking Reactions

    Institute of Scientific and Technical Information of China (English)

    赵迎宪; 危凤; 李达

    2011-01-01

    A pentane-insoluble asphaltene was processed by thermal cracking, thermal hydrocracking and catalytic hydrocracking over NiMo/γ-Al2O3 at 703 K, respectively. Analysis of selectivity showed that at the same level of asphaltene conversion and according to the selectivity of liquid products from high to low the three cracking reactions were in the order of catalytic hydrocracking, thermal hydrocracking, thermal cracking, while according to the selectivity of coke from high to low, the three cracking reactions were in the opposite order. In thermal cracking, a large amount of sulfur converted from the feed into coke, and in thermal hydrocracking, molecular hydrogen played a certain degree role in inhibiting formation of coke with high sulfur content, and in catalytic hydrocracking the catalyst effectively activated hydrogen molecules to hydrogenate the reactant and middle products, leading to a significant reduction of coke formation and remarkable improvement of liquid stability, selectivity and quality (lower average relative molecular mass and sulfur content).%在703K下,考察了1种正戊烷不溶的沥青质的热裂解、临氢热裂解和NiMo/y-Al2O3存在时的临氢催化裂解反应.结果表明,在相同的反应物转化率水平下,3种裂解反应按液体产物选择性从大到小的排列顺序为临氢催化裂解、临氢热裂解、热裂解反应,而按焦炭的选择性的排列顺序则相反.在热裂解反应中,沥青质中大量的硫被转化生成高硫焦炭;在临氢热裂解反应中,氢气分子对高硫焦炭的生成只起到有限的抑制作用;在临氢催化裂解反应中,催化剂充分激活氢气分子,使其有效地对沥青质及中间产物发生“加氢”(氢化)作用,显著地抑制了焦炭的生成,提高了液体产物的稳定性、选择性和品质(低相对分子质量和低硫含量).

  12. The determination of maturity levels in source rocks of the La Luna Formation, Maracaibo Basin, Venezuela, based on convention geochemical parameters and asphaltenes; Determinacao do grau de maturacao em rochas geradoras de petroleo, formacao La Luna, Bacia de Maracaibo, Venezuela: parametros geoquimicos convencionais e asfaltenos

    Energy Technology Data Exchange (ETDEWEB)

    Castro, L.P. de [Pontificia Universidade Catolica (PUC-RS), Porto Alegre, RS (Brazil). Centro de Excelencia em Pesquisas sobre o Armazenamento de Carbono; Franco, N. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Dept. de Geologia; Lopez, L.; Lo Monaco, S.; Escobar, G. [Universidad Central de Venezuela (UCV), Caracas (Venezuela); Kalkreuth, W. [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Centro de Excelencia em Analises de Carvao e Rochas Geradoras de Petroleo

    2008-07-01

    The La Luna Formation, main source rock of the Maracaibo Basin was studied by conventional geochemical parameters, used to determine the maturity, and they were compared with the physic-chemical and molecular properties of the asphaltenes present in the bitumen of the rocks. Three wells were studied (A, B and C) with a total of 13 samples. Based on Rock-Eval results the organic matter in well A (455 deg C Tmax) shows a relatively high level of maturation (top of the oil window), whereas the organic matter in well B (435 - 436 deg C Tmax) is in the beginning of the oil window. Tmax values in well C (438 - 446 deg C) and well C suggest an intermediate maturity level. The biomarkers identified in well B and C show ratios indicating an equilibrium state in the maturity level. A good correlation was found comparing the conventional analytical data with the determination of maturity level obtained from the asphaltenes precipitated from the bitumen of the samples. With increased maturity levels the H1 NMR analysis showed enrichment in aromatic molecules in relation to aliphatic, due to the bitumen aromatization process. Similarly, the asphaltenes molecular weight has higher values in samples characterized by elevated maturity levels. This confirms earlier studies that showed that asphaltenes may be utilized as maturity parameter of organic matter. (author)

  13. Prediction of Volumetric Properties and (Multi- Phase Behaviour of Asphaltenic Crudes Prédiction des propriétés volumétriques et des équilibres de phases des bruts asphalténiques

    Directory of Open Access Journals (Sweden)

    Szewczyk V.

    2006-11-01

    Full Text Available Asphaltenes flocculation is described as a thermodynamic transition inducing the formation of a new liquid phase with a high asphaltenic content; this phase being the asphaltenic deposit. The thermodynamic model selected is the Peng-Robinson Equation of State associated with the Abdoul and Péneloux group contribution mixing rules. The oil is modeled by 33 pseudocomponents. Mainly, the heavy F(11+ residue is represented as one pseudocomponent for the F11 - F20 cut and as 4 pseudocomponents for the F(20+ cut : Sat F(20+ , Aro F(20+ , Resinsand Asphaltenes . The physical properties of the Sat F(20+ , Aro F(20+and Resinspseudocomponents are calculated using the group contribution methods of Avaullée, and of Rogalski and Neau, based on the knowledge of their molecular structure. The physical properties of the F11 - F20and Asphaltenespseudocomponents are fitted in order to reproduce correctly the bubble pressure, the relative volumes and the flocculated quantities at 303 K. The model gives the proportion and the composition of asphaltene deposits in the oil at different temperatures (303 - 403 K within a relatively large pressure range (0. 1 - 50 MPa including the bubble pressure of the considered crude. La floculation des asphaltènes est décrite comme une transition thermodynamique conduisant à la formation d'une nouvelle phase liquide riche en asphaltènes : le dépôt asphalténique. Le modèle thermodynamique choisi est l'équation d'état de Peng-Robinson associée aux règles de mélange d'Abdoul et Péneloux fondées sur les contributions de groupes. Le brut est représenté par 33 pseudo-constituants. La fraction lourde F(11+ est représentée par un pseudo-constituant pour la coupe F11 - F20 et 4 pseudo-constituants pour la coupe F(20+ : Sat F(20+ , Aro F(20+ , Résines , Asphaltènes . Les propriétés physiques des pseudo-constituants Sat F(20+, Aro F(20+et Résinessont calculées à l'aide des méthodes de contribution de groupes

  14. Study of the interface solid/solutions containing PEO-PPO block copolymers and asphaltenes by FTIR/ATR; Estudo de solucoes de copolimeros em bloco de PEO-PPO contendo asfaltenos por FTIR/DTA

    Energy Technology Data Exchange (ETDEWEB)

    Aguiar, Janaina I.S.; Neto, Jessica S.G.; Mansur, Claudia R.E. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)], E-mails: janaina_333@hotmail.com, kinha_dac_dm@hotmail.com; celias@ima.ufrj.br

    2011-07-01

    The formation of water/oil emulsions can cause problems in various stages of production, processing and refining of petroleum. In this study, the technique of Fourier transform infrared spectroscopy (FTIR) using the method of attenuated total reflectance (ATR) was applied to study the solid-solutions of block copolymers based on poly(ethylene oxide)-poly(propylene oxide) (PEO-PPO) interface and its interaction in this interface with asphaltenic fractions of petroleum. The solid is the crystal of the ATR. Initially, we determined the critical micelle concentration values of the copolymers, which were consistent those obtained by a tensiometer. Bottle Test was also performed to correlate the efficiency of PEO-PPO copolymers in the breaking of water/oil emulsions with its adsorption at the interfaces solutions. (author)

  15. Modélisation de la combustion de fuels lourds prenant en compte la dispersion des asphaltènes Modeling Heavy Fuel-Oil Combustion (While Considering Or Including Asphaltene Dispersion

    Directory of Open Access Journals (Sweden)

    Audibert F.

    2006-11-01

    difficultés relevant du mode d'exploration et de la non adéquation entre les structures asphalténiques et fractales. On a finalement opté pour une détermination visuelle s'appuyant sur les clichés sur lesquels les agglomérats d'asphaltènes sont clairement visualisés tels qu'ils sont dans le fuel. Ce mode d'exploration laborieux a cependant permis de déterminer un modèle construit sur une série de 25 fuels dont 10 ont été brûlés sur une chaudière de 2 MW, et 15 sur un four de 100 kW. Ce modèle fait intervenir les teneurs en carbone Conradson et en métaux, ainsi que le taux de dispersion des asphaltènes. Le perfectionnement des moyens d'exploration aidant, on peut s'attendre à ce que soient disponibles des techniques d'évaluation de la dispersion sur les clichés. Ce paramètre pourra alors être pris en considération pour une meilleure prédiction de résultats de combustion insuffisamment expliqués avec les paramètres classiques. Various models aiming to predict the amount of unburned particles (solids during heavy fuel-oil combustion have been developed. The parameters taken into consideration are generally asphaltenes precipitated by normal heptane or pentane and Conradson carbon as well as the metals content having a known catalytic effect on cenosphere combustion in the combustion chamber. The Exxon and Shell models can be mentioned, which were developed respectively in 1979 and 1981 (Chapter II. Other models also give consideration to the fuel-oil composition, the way it is atomized and diffused in the chamber and the combustion kinetics (research done by the MIT Energy Laboratory published in 1986. However, the above parameters are not the only ones involved. For some fuel oils, experience has shown that the state of dispersion of asphaltenes may also play an important role particularly for combustion installations with mechanical injection for which the dispersion of fuel-oil droplets is not very great and does not affect the structures built

  16. Experimental Investigation of the Asphaltene Deposition Process during Different Production Schemes Étude expérimentale du processus de dépôt d’asphaltènes au cours de différents modes de production

    Directory of Open Access Journals (Sweden)

    Bagheri M.B.

    2011-02-01

    Full Text Available This paper presents the results of asphaltene precipitation and deposition during lean gas injection, CO2 injection and natural depletion in reservoir conditions. In addition, the effect of variations in operating pressure, injection gas concentration and production rate on asphaltene precipitation and deposition were investigated. The severity of asphaltene deposition was found to be more pronounced in lean gas injection in comparison with CO2 injection and natural depletion. Increasing the flow rate in natural depletion experiments showed a considerable increase in asphaltene deposition, and consequently permeability reduction in the core matrix. Moreover, more asphaltene deposition was observed along the porous media in the gas injection experiments when the gas mol percent of the mixture was increased. Cet article présente les résultats d’une étude de la précipitation et du dépôt d’asphaltènes qui peuvent se produire lors d’une injection de gaz pauvre, d’une injection de CO2 ou d’une déplétion naturelle en conditions de réservoir. En outre, les effets de la pression de fonctionnement, de la concentration en gaz injecté et du débit de production sur la précipitation et le dépôt d’asphaltènes ont été étudiés. Il a été constaté que l’importance du dépôt d’asphaltènes est plus prononcée dans le cas d’une injection de gaz pauvre comparativement à une injection de CO2 ou à une déplétion naturelle. Une augmentation du débit au cours d’expériences de déplétion naturelle a montré un accroissement considérable du dépôt d’asphaltènes et, en conséquence, une réduction de perméabilité au sein de la matrice poreuse. Par ailleurs, un dépôt d’asphaltènes plus important a été observé au cours des expériences d’injection de gaz lorsque la concentration molaire gazeuse dans le mélange était augmentée.

  17. Résines et asphaltènes : évolution en fonction des types de matière organique et de leur enfouissement Resins and Asphaltenes: Evolution As a Function of Organic-Matter Type and Burial

    Directory of Open Access Journals (Sweden)

    Castex H.

    2006-11-01

    Full Text Available 151 résines et 175 asphaltènes d'extraits de roche de plusieurs bassins ont été étudiés par analyse élémentaire. On montre que : - les résines ont des valeurs moyennes en carbone et en hydrogène plus élevées ainsi qu'un rapport C/H plus faible que celui des asphaltènes; elles présentent donc une structure plus aliphatique et/ou plus alicyclique. Par contre, les asphaltènes contiennent plus de soufre, d'oxygène et d'azote ; - le soufre et l'oxygène sont des paramètres permettant de différencier des bassins ; - différents types de matière organique sont mis en évidence sur un diagramme H/C, O/C ; leur évolution chimique avec l'enfouissement est caractérisée par une décroissance des teneurs en hydrogène, oxygène et soufre. La résonance magnétique nucléaire du proton et la spectroscopie infrarouge ont été utilisées pour suivre l'évolution structurale des résines et asphaltènes provenant de différents types de matière organique (algaire, marine et terrestre enfouie à des profondeurs croissantes. La résonance magnétique nucléaire permet de calculer plusieurs paramètres structuraux tels que l'aromaticité FA et le degré de substitution sigma du système aromatique. Le facteur FA semble augmenter en fonction de l'enfouissement et du type de matière organique tandis que sigma semble décroître. La spectroscopie infrarouge compléte ces informations. Les surfaces de bandes correspondant aux fonctions suivantes ont été calculées : - OH dans la région 3700-2700 cm-1 - C=O carbonyl vers 1700 cm-1 - C-H aliphatiques à 2900, 1455 et 1380 cm-1 - C=C aromatique à 1610 cm-1. Les variations d'intensité des bandes : - décroissance des C-H aliphatiques, des fonctions C=O ; - augmentation des C-H et C=C aromatiques sont en relation d'une part avec le type de matière organique, d'autre part avec sa catagénèse. Elemental analysis was used to investigate 151 resins and 175 asphaltenes extracted from rocks from

  18. Permeability Damage Due to Asphaltene Deposition : Experimental and Modeling Aspects Endommagement d'un milieu poreux par dépôts d'asphaltènes : expériences et modélisation

    Directory of Open Access Journals (Sweden)

    Minssieux L.

    2006-12-01

    Full Text Available The flow properties of several asphaltenic crudes were studied at reservoir temperature in rocks of different morphology and mineralogy. The experiments performed showed a progressive reduction in permeability to oil during injection, varying in rate according to the system considered. The existence of organic deposits was verified by Rock-Evalpyrolysis measurements made on sections of samples taken at the end of flow at different distances from the entry face. This technique enables the profile of the deposits to be quantified. The interpretation of the permeability damage experiments and their simulation are treated by comparing the asphaltenes in oil to colloidal particles in suspension, capable of being deposited at the surface of the pores and thus reducing the permeability of the porous medium. The first simulations were carried out using the PARISIFP particle damage model, which has recently been extended to the case of multi-layer deposition. A satisfactory qualitative agreement is observed with the experimental results. Les propriétés d'écoulement de plusieurs bruts asphalténiques ont été étudiées à la température du réservoir d'origine dans des roches de morphologie et minéralogie différentes. Les expériences réalisées mettent en évidence une réduction progressive de la perméabilité à l'huile au cours de l'injection, plus ou moins rapide selon les cas. L'existence de dépôts organiques a été vérifiée par des mesures de pyrolyse Rock-Evaleffectuées sur des sections d'échantillons prélevées en fin d'écoulement à différentes distances de la face d'entrée. Cette technique permet de quantifier le profil des dépôts. L'interprétation des expériences de colmatage et leur simulation sont traitées en assimilant les asphaltènes dans l'huile à des particules colloïdales en suspension, susceptibles de se déposer à la surface des pores et ainsi de réduire la perméabilité du milieu poreux. Les premi

  19. An Evaluation of the Delayed-Coking Product Yield of Heavy Feedstocks Using Asphaltene Content and Carbon Residue Évaluation du rendement en produit de cokéfaction différée de pétrole lourd à l'aide de la teneur an asphaltènes et du résidu de coke

    Directory of Open Access Journals (Sweden)

    Schabron J. F.

    2006-11-01

    Full Text Available Six residua from different crude oils were evaluated for composition and carbon residue forming tendencies. The whole residua were evaluated for elemental composition, trace metals content, carbon residue, and specific gravity. Each residuum was deasphaltened in heptane, and the heptane-soluble materials were separated into saturate, aromatic, and polar fractions on activated silica gel. The asphaltenes were evaluated for elemental composition, trace metals content, molecular weight, and carbon residue. The relationship between carbon residues and features of the asphaltenes was studied, and a correlation of contributing features was developed. The asphaltenes were further separated into four fractions according to apparent molecular size by preparative size exclusion chromatography (SEC. The preparative size exclusion chromatographic fractions from the asphaltenes were evaluated for sulfur content, molecular weight, and trace metals content. Material balances showed that the data obtained on the fractions account for the data obtained on the original material. This indicates that the contributions of the properties of the fractions can be studied and related to properties of the whole material. La composition et le résidu de coke de six résidus de raffinage de différents pétroles lourds ont été évalués afin de déterminer des tendances. La composition élémentaire, la teneur en métaux-traces, le résidu de coke et la densité spécifique ont été déterminés sur le résidu complet. Chaque résidu a été désasphalténé dans l'heptane et les produits solubles dans l'heptane ont été séparés en fractions saturée, aromatique et polaire sur du gel de silice activée. La composition élémentaire, la teneur en métaux-traces, la masse moléculaire et le résidu de coke ont été déterminés sur les asphaltènes. La relation entre les résidus de coke et les caractéristiques des asphaltènes a été étudiée, ce qui a permis d

  20. Influence sur les imbrûlés solides de composés métalliques particuliers et du taux de dispersion des asphaltènes dans les fuels lourds Influence of Unburned Solids Made of Unusual Metal Compounds and of the Asphaltene Dispersion Rate in Heavy Fuel Oils

    Directory of Open Access Journals (Sweden)

    Audibert F.

    2006-11-01

    des asphaltes précipités au pentane dilués avec un gaz oil aromatique de raffinerie. Il a été notamment mis en évidence le rôle joué par les résines dans les dispersions des agglomérats d'asphaltènes et par voie de conséquence dans l'émission d'imbrûlés solides. L'ensemble des observations faites permet de mieux comprendre certains mécanismes intervenant en combustion de fuels lourds. Si l'on se situe sur le plan des émissions particulaires, celles-ci peuvent être largement réduites par l'utilisation de taux suffisants de vapeur auxiliaire au niveau de l'injection. The growing diversity of the origins of crude oils has led to giving consideration to the metal content in combustion models in addition of Conradson carbon or C7 asphaltenes in heavy fuel oils. Such models have been developed by Exxon (1979 and Shell (1981 in particular. Recent research done at Institut Français du Pétrole (IFP on a 2 MW package boiler has shown the influence of unusual metal compounds present in fuel oil in the form of sulfides impregnating porous carbon particles. These microparticles may be formed when severe operating conditions are applied to the visbreaking of residual fuel oils in the presence of hydrogen and a suitable catalyst. These microparticles have proved to be very active in combustion and have shown that the metal concentration is not the only factor to be taken into consideration but that the way in which it is combined may be preponderant. To widen the field of application of models, other parameters, such as the operating conditions of the boiler and the spraying of the fuel oil, have been taken into consideration together with the actual parameters of the influence of the fuel oil (research by the MIT Energy Laboratory, publications in 1986. Concerning the predicting of particulate emissions, a method in addition to tests for Conradson residue and n-heptane insolubility has been applied at IFP as part of a project to upgrade heavy oils in

  1. HINDERED DIFFUSION OF ASPHALTENES AT EVALUATED TEMPERATURE AND PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    JAMES A. GUIN; SURYA VADLAMANI

    1998-10-03

    During this time period, the PhD student working on this project, Mr. X. Yang, graduated and has obtained employment with Michelin Tire Company in their research and development laboratory. A new MS student, Mr. Surya Vadlamani, is now working on the project. The work conducted in this time period will form part of Mr. Vadlamani�s MS thesis. Also during the current time period, a no-cost extension was obtained for the project, which will allow Mr. Vadlamani to complete the research work required for the MS degree in chemical engineering. Since Mr. Vadlamani was new to the project and in order to provide appropriate training, it was necessary to conduct some experimental work in the same ranges as performed earlier by Mr. Yang in order to provide continuity and insure duplication of the experimental data. The new data obtained by Mr. Vadlamani agree well in general with the earlier data obtained by Mr. Yang and extend the earlier data to a higher temperature range. Specifically, during this time period, uptake experiments were performed at temperatures from 25 0 C to 300 o C for the adsorptive diffusion of quinoline in cyclohexane and mineral oil onto alumina catalyst pellets. These experiments were conducted in a 40 cm 3 microautoclave, as contrasted with the previous work done in the much larger 1-liter autoclave. The use of the microautoclave is more economical from both a purchasing and waste disposal standpoint due to the small quantities of solvents and catalysts utilized, and is also significantly safer at the higher temperatures. Model simulation results showed that the mathematical model incorporating diffusion and adsorption mechanisms satisfactorily fitted the adsorptive diffusion of quinoline onto the alumina catalyst in a fairly wide temperature range of 25 o C to 300 o C. The logarithm of the adsorption constant, obtained by simulating the experimental data with the model solution, was found to be linearly dependent on temperature. The data obtained using the microautoclave agreed well with the previous data obtained using the larger 1-liter autoclave.

  2. HINDERED DIFFUSION OF ASPHALTENES AT EVALUATED TEMPERATURE AND PRESSURE

    Energy Technology Data Exchange (ETDEWEB)

    James A. Guin; Surya Vadlamani

    1999-04-01

    During this time period, we performed experiments to examine the effects of solvent composition on the diffusion controlled uptake of quinoline into alumina catalyst pellets. Of particular interest was the effect of solvent aromaticity on the diffusive uptake process. The uptake experiments were performed at a temperature of 300 C for the adsorptive diffusion of quinoline in a solvent mixture of mineral oil and 1-methyl naphthalene onto alumina catalyst pellets. These experiments were conducted in a 40 cm{sup 3} microautoclave, the use of which is more economical from both a purchasing and waste disposal standpoint due to the small quantities of solvents and catalysts utilized, and is also significantly safer at the higher temperatures. In order to study the effect of aromaticity of the solvent on the hindered diffusion-adsorption process, the experiments were performed at different volume fractions of 1-methyl naphthalene. Detailed calculations were made to estimate the effects of aromaticity, i. e., as reflected by the percentage of 1-methyl naphthalene in the solvent, on the diffusive properties of the solute. Model simulation results were then performed which showed that the mathematical model incorporating diffusion and adsorption mechanisms satisfactorily fitted the adsorptive diffusion of quinoline onto the alumina catalyst at 300 C with various solvent aromaticities. The logarithm of the adsorption constant at a particular volume fraction of 1-methyl naphthalene, obtained by simulating the experimental data with the model solution, was found to be linearly dependent on an aromaticity factor.

  3. Studies on sedimentation of asphaltene deposits in distillation residues

    OpenAIRE

    Lorek, Aneta; Paczuski, Macie

    2007-01-01

    Наведено експериментальні методи оцінки стабільності твердих речовин у дисперсіях рідин. Для характеристики дисперсійних компонентів застосовували сучасні аналітичні методи, такі, як тензіометрія, сканування і статична турбідиметрія. Показаний вплив відібраних поверхнево-активних речовин на стабільність дисперсій. Experimental methods used for the evaluation of stability of solids in liquids dispersions, are presented in this work. Modern analytical techniques, such as tensiometry, s...

  4. Insights of asphaltene aggregation mechanism from molecular dynamics simulation

    Directory of Open Access Journals (Sweden)

    Jennifer De León

    2015-01-01

    Full Text Available Se estudió el proceso de agregación de asfaltenos utilizando té cnicas de dinámica molecular. Se utilizaron cuatro estructuras diferentes. Las primeras tres moléculas tienen una estructura continental, con núcleos aromáticos condensador, mientras que la cuarta pose e una estructura tipo archipiélago, con pequeños grupos de anillos ar omáticos conectados con cadenas saturadas. Las moléculas fueron construidas de manera atomística, en la cual cada átomo se desc ribe individualmente. Se calcula ron las fuerzas de interacción a 300 K y 200 atm; las fuerzas de Van der W aals y las interacciones elect rostáticas fueron evaluadas separadamente. Se calculó el paráme tro de solubilidad para las cuatro molécu las. Se encontró que las inte racciones de Van der Waals asoc iadas a los anillos aromáticos y las fuerzas electrostáticas ocasionadas princ ipalmente por la presencia de heteroátomos como oxígeno, azufr e y nitrógeno, son igualmente r elevantes en la agregación de moléculas de asfalteno. Para todas las molé culas se encontró que los sistemas de asfaltenos tienen menor e nergía en estado de agregación que en estado monomérico. Para las estruct uras continentales, la presencia de largas cadenas obstruye el proceso de formación de agregados. Para las estructuras tipo archipiélago, la flexibilidad de las moléculas facilita la agregación con ot ras estructuras. La presencia de heteroátomos ocasiona una fuerza repulsiva que dificulta la agregación. El volumen molecular y la energía de c ohesión también son sensibles a la confi guración geométrica y la compos ición de las especies, lo cual afecta el parámetro de solubilidad.

  5. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Deo, M.D.

    2001-01-12

    The objective of this project was to identify conditions at which carbon dioxide induced precipitation occurred in crude oils. Establishing compositions of the relevant liquid and solid phases was planned. Other goals of the project were to determine if precipitation occurred in cores and to implement thermodynamic and compositional models to examine the phenomenon. Exploring kinetics of precipitation was also one of the project goals. Crude oil from the Rangely Field (eastern Colorado) was used as a prototype.

  6. Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone

    Directory of Open Access Journals (Sweden)

    Edna L. Hernández-López

    2015-09-01

    Here we describe experimental procedures and methods about our dataset (NCBI GEO accession number GSE68146 and describe the data analysis to identify different expression levels in N. fischeri using this recalcitrant carbon source.

  7. Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan; Villumsen, Arne;

    2012-01-01

    In situ burning of oil spills in the Arctic is a promising countermeasure. In spite of the research already conducted more knowledge is needed especially regarding burning of weathered oils. This paper uses a new laboratory burning cell (100 mL sample) to test three Norwegian crude oils, Grane...... (asphalthenic), Kobbe (light oil) and Norne (waxy), for ignitability as a function of ice conditions and weathering degree. The crude oils (9 L) were weathered in a laboratory basin (4.8 m3) under simulated arctic conditions (0, 50 and 90% ice cover). The laboratory burning tests show that the ignitability......-windows for the oil to be ignitable. The composition of the oils is important for the window of opportunity. The asphalthenic Grane crude oil had a limited timewindow for in situ burning (9 h or less), while the light Kobbe crude oil and the waxy Norne crude oil had the longest time-windows for in situ burning (from...

  8. Comparing ignitability for in situ burning of oil spills for an asphaltenic, a waxy and a light crude oil as a function of weathering conditions under arctic conditions

    DEFF Research Database (Denmark)

    Fritt-Rasmussen, Janne; Brandvik, Per Johan; Villumsen, Arne; Stenby, Erling Halfdan

    2012-01-01

    In situ burning of oil spills in the Arctic is a promising countermeasure. In spite of the research already conducted more knowledge is needed especially regarding burning of weathered oils. This paper uses a new laboratory burning cell (100 mL sample) to test three Norwegian crude oils, Grane...

  9. Reservoir characterisation using macromolecular petroleum compounds including asphaltenes: A case study of the Heidrun oil field in the Norwegian North Sea

    OpenAIRE

    Theuerkorn, Katja

    2012-01-01

    Die vorliegende Arbeit ist Teil des Industriepartner Projektes „BioPets Flux“ zwischen dem GFZ Potsdam und den Industriepartnern BG Group, Devon Energy, ExxonMobil, Petrobras, Repsol YPF, Shell und Statoil. Die Ziele der Arbeit sind es Vorhersagen von Alterationsprozessen in Erdöllagerstätten zu verbessern sowie das Verständnis über die Befüllung zu vertiefen. Die ursprüngliche Zusammensetzung sowie das Volumen von Erdöl in einer Lagerstätte sind häufig durch Prozesse, wie Biodegradation oder...

  10. Polymer science applied to petroleum production; Ciencia de polimeros aplicada a producao de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Elizabete F.; Mansur, Claudia R.E.; Garreto, Maria S.E.; Honse, Siller O.; Mazzeo, Claudia P.P. [Universidade Federal do Rio de Janeiro/ Instituto de Macromoleculas/ Laboratorio de Macromoleculas e Coloides na Industria de Petroleo, Rio de Janeiro, RJ (Brazil)], e-mail: elucas@ima.ufrj.br

    2011-07-01

    The petroleum production comprises several operations, from well drilling to oil and water treatment, in which polymer science is applied. This work is focused in the phase behavior of asphaltenes that can be evaluated by precipitation tests and particle size determination. Recent researches show that the petroleum can be diluted with a specific model solvent, without causing any changes on asphaltenes phase behavior, and that a representative model system can be obtained if asphaltenes could be extracted using n-alkane as low as C1. The phase behavior of asphaltenes directly depends on the solubility parameter, which can be estimated for petroleum and asphaltenic fractions by microcalorimetry. More polar asphaltenes are not completely stabilized by less polar molecules, and this affects the stability of the A/O emulsions. There is a relationship between the amount of polar groups in the polymer chain and its capability in stabilizing/flocculating the asphaltenes, which interferes in the asphaltenes particle sizes. (author)

  11. Chemical modification of bitumen heavy ends and their non-fuel uses

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1976-01-01

    Bitumen asphaltenes undergo a variety of simple chemical conversions. For example, asphaltenes can be oxidized, sulfonated, sulfomethylated, halogenated, and phosphorylated. The net result is the introduction of functional entities into the asphaltene structure which confers interesting properties on the products for which a variety of uses are proposed.

  12. Localization of the vanadyl complexes in polyaromatic oil structures

    International Nuclear Information System (INIS)

    By the ESR method are determined the concentrations of vanadyl complexes and asphaltene paramagnetic centers in a series of samples with different high content of vanadium. Interconnections between the specified particle concentrations are established and experimentally is determined the character of the interaction of vanadyl complexes with asphaltenes. It is shown that the vanadyl complexes form with asphaltene molecules sufficiently stable associates

  13. Method for predicting fouling tendency of a hydrocarbon-containing feedstock

    Science.gov (United States)

    Schabron, John F; Rovani, Jr., Joseph F

    2013-07-23

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock fouling tendency for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  14. Method for determining processability of a hydrocarbon containing feedstock

    Science.gov (United States)

    Schabron, John F.; Rovani, Jr., Joseph F.

    2013-09-10

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitated asphaltenes.

  15. Estudo da interatividade entre macromoléculas asfaltênicas e compostos estabilizantes: LCC e Cardanol Study of the interactivity between asphaltenic macromolecules and stabilizing compounds: cashew-nut Shell liquid and Cardanol

    OpenAIRE

    Luiz Fernando B. Moreira; Gaspar González; Elizabete F. Lucas

    1998-01-01

    O asfalteno contido no petróleo pode se depositar gerando inúmeros problemas que podem afetar não só a produção, mas também todas as etapas que envolvem o transporte, armazenamento e processamento do óleo cru. Este trabalho apresenta uma adaptação matemática de modelos de interatividade para o sistema asfalteno/estabilizante capaz de prever o desempenho do estabilizante em evitar a precipitação de asfalteno. A capacidade do líquido da casca da castanha de caju (LCC) e de um dos seus derivados...

  16. 高硫高沥青质沥青混合料的单轴压缩动态模量研究%Research on Dynamic Modulus of Uniaxial Compression of Asphalt Mixture with High Sulfur and Asphaltene Content

    Institute of Scientific and Technical Information of China (English)

    王家主

    2015-01-01

    利用大板成型钻芯制圆柱体试件,采用UTM-25伺服液压动态试验系统,通过横向比较的方法,进行3种沥青(其中一种为高硫高沥青质沥青)的AC-20C混合料的单轴压缩动态模量试验.试验结果表明,E/sinφ值与路面永久变形有较好的相关性,高硫高沥青质沥青混合料的E/sinφ值较高,抵抗高温及车辆动载的能力较强.

  17. Estudo da influência dos particulados no fenômeno de agregação dos asfaltenos por espectrometria de varredura óptica

    Directory of Open Access Journals (Sweden)

    Claudete Bernardo Henriques

    2011-01-01

    Full Text Available The processing of national petroleums causes many operational problems due to the asphaltene aggregation phenomena. To evaluate the behavior of these phenomena, a study based on optical scan technique was carried out to understand the behavior of pure oils and their mixtures. The evaluation according to criteria established by ASTM D7061-06¹ gives a result of asphaltene flocculation of according to the separability number. In this study, the aspects related to the existence of colloidal forms of peptized asphaltenes in distinct solvents present in petroleums can cause changes in the kinetics of asphaltene flocculation.

  18. Multivariate Screening Analysis of Water-in-Oil Emulsions in High External Electric Fields as Studied by Means of Dielectric Time Domain Spectroscopy.

    Science.gov (United States)

    Midttun; Kallevik; Sjöblom; Kvalheim

    2000-07-15

    The effect of crude oil resins with various polar characters on the stability of w/o model emulsions containing asphaltenes is investigated using a mixture design. The resins were extracted using an adsorption-desorption technique. One asphaltene fraction and four different resin fractions from one European crude oil were used. The stabilities are measured using time-domain dielectric spectroscopy in high external electric field. It is found that resins with different polar character have different effects on the emulsion stability. At asphaltene/resin ratios of 1 and 5 : 3 the resins in some cases lead to an emulsion stability higher than that of a similar emulsion stabilized by asphaltenes only, while at low asphaltene/resin ratios ( approximately 1 : 3) the emulsion stability is reduced by the resins. The effect on emulsion stability of combining two different resin fractions depended on the resin types combined as well as the relative amount of resins and asphaltenes. Also, an increase in the stability of some of the emulsions containing resins and asphaltenes for a period of 50-300 min after the emulsification was observed. This time-dependence of emulsion stability is attributed to the mobility of resins at the oil-water interface and the slow buildup of a stabilizing interfacial film consisting of resins and asphaltenes. Copyright 2000 Academic Press. PMID:10873310

  19. Method for estimating processability of a hydrocarbon-containing feedstock for hydroprocessing

    Energy Technology Data Exchange (ETDEWEB)

    Schabron, John F; Rovani, Jr., Joseph F

    2014-01-14

    Disclosed herein is a method involving the steps of (a) precipitating an amount of asphaltenes from a liquid sample of a first hydrocarbon-containing feedstock having solvated asphaltenes therein with one or more first solvents in a column; (b) determining one or more solubility characteristics of the precipitated asphaltenes; (c) analyzing the one or more solubility characteristics of the precipitated asphaltenes; and (d) correlating a measurement of feedstock reactivity for the first hydrocarbon-containing feedstock sample with a mathematical parameter derived from the results of analyzing the one or more solubility characteristics of the precipitates asphaltenes. Determined parameters and processabilities for a plurality of feedstocks can be used to generate a mathematical relationship between parameter and processability; this relationship can be used to estimate the processability for hydroprocessing for a feedstock of unknown processability.

  20. The conductivity and dielectric behavior of solutions of bitumen in toluene

    Energy Technology Data Exchange (ETDEWEB)

    Chow, R.S.; Tse, D.L.; Takamura, K.

    1988-06-01

    Previous work on the conductivity and dielectric behavior of residual oil (the fraction remaining in the distillation tower) has suggested that the asphaltene fraction (pentane insolubles) was responsible for the conductivity behavior of solutions of this oil in organic solvents. In this work it is shown that the asphaltenes in heavy crude oils determine the conductivity behavior of solutions of the bulk oil in toluene, while the dielectric behavior is influenced by each component of the oil. The strong dependence of the conductivity on the asphaltene fraction makes it possible to determine the asphaltene content of a heavy crude oil by a conductimetric technique. The conductivity and dielectric behavior of crude oils and fractions of the crude oils, as well as the technique for determining the asphaltene content by conductivity will be presented.

  1. Water-in-model oil emulsions studied by small-angle neutron scattering: interfacial film thickness and composition.

    Science.gov (United States)

    Verruto, Vincent J; Kilpatrick, Peter K

    2008-11-18

    The ever-increasing worldwide demand for energy has led to the upgrading of heavy crude oil and asphaltene-rich feedstocks becoming viable refining options for the petroleum industry. Traditional problems associated with these feedstocks, particularly stable water-in-petroleum emulsions, are drawing increasing attention. Despite considerable research on the interfacial assembly of asphaltenes, resins, and naphthenic acids, much about the resulting interfacial films is not well understood. Here, we describe the use of small-angle neutron scattering (SANS) to elucidate interfacial film properties from model emulsion systems. Modeling the SANS data with both a polydisperse core/shell form factor as well as a thin sheet approximation, we have deduced the film thickness and the asphaltenic composition within the stabilizing interfacial films of water-in-model oil emulsions prepared in toluene, decalin, and 1-methylnaphthalene. Film thicknesses were found to be 100-110 A with little deviation among the three solvents. By contrast, asphaltene composition in the film varied significantly, with decalin leading to the most asphaltene-rich films (30% by volume of the film), while emulsions made in toluene and methylnaphthalene resulted in lower asphaltenic contents (12-15%). Through centrifugation and dilatational rheology, we found that trends of decreasing water resolution (i.e., increasing emulsion stability) and increasing long-time dilatational elasticity corresponded with increasing asphaltene composition in the film. In addition to the asphaltenic composition of the films, here we also deduce the film solvent and water content. Our analyses indicate that 1:1 (O/W) emulsions prepared with 3% (w/w) asphaltenes in toluene and 1 wt % NaCl aqueous solutions at pH 7 and pH 10 resulted in 80-90 A thick films, interfacial areas around 2600-3100 cm (2)/mL, and films that were roughly 25% (v/v) asphaltenic, 60-70% toluene, and 8-12% water. The increased asphaltene and water film

  2. Effect of the structure of commercial poly(ethylene oxide-b-propylene oxide) demulsifier bases on the demulsification of water-in-crude oil emulsions: elucidation of the demulsification mechanism

    International Nuclear Information System (INIS)

    Water-in-crude oil emulsions are formed during petroleum production and asphaltenes play an important role in their stabilization. Demulsifiers are added to destabilize such emulsions,however the demulsification mechanism is not completely known. In this paper, the performances of commercial poly(ethylene oxide-b-propylene oxide) demulsifiers were studied using synthetic water-in-oil emulsions and model-systems (asphaltenes in organic solvent). No change in the asphaltene aggregate size induced by the demulsifier was observed. The demulsification performance decreased as the asphaltene aggregate size increased, so it can be suggested that the demulsification mechanism is correlated to the voids between the aggregates adsorbed on the water droplets surface. (author)

  3. Petroleum Processing Efficiency Improvement

    Energy Technology Data Exchange (ETDEWEB)

    John Schabron; Joseph Rovani; Mark Sanderson; Jenny Loveridge

    2012-09-01

    A series of volatile crude oils was characterized using the Asphaltene Determinator oncolumn precipitation and re-dissolution method developed at Western Research Institute (WRI). Gravimetric asphaltenes and polars fractions from silica gel chromatography separation of the oils were characterized also. A study to define the differences in composition of asphaltenes in refinery desalter rag layer emulsions and the corresponding feed and desalter oils was conducted. Results indicate that the most polar and pericondensed aromatic material in the asphaltenes is enriched in the emulsions. The wax types and carbon number distributions in the two heptaneeluting fractions from the Waxphaltene Determinator separation were characterized by repetitive collection of the fractions followed by high temperature gas chromatography (GC) and Fourier transform infrared spectroscopy (FTIR). High resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICRMS) was conducted by researchers at the Florida State University National High Magnetic Field laboratory in a no-cost collaboration with the study.

  4. HINDERED DIFFUSION OF COAL LIQUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Theodore T. Tsotsis; Muhammad Sahimi; Ian A. Webster

    1996-01-01

    It was the purpose of the project described here to carry out careful and detailed investigations of petroleum and coal asphaltene transport through model porous systems under a broad range of temperature conditions. The experimental studies were to be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms and a more accurate concept of the asphaltene structure. The following discussion describes some of our accomplishments.

  5. Investigated Miscible CO2 Flooding for Enhancing Oil Recovery in Wettability Altered Chalk and Sandstone Rocks

    OpenAIRE

    Tabrizy, Vahid Alipour

    2012-01-01

    The thesis addresses oil recovery by miscible CO2 flooding from modified sandstone and chalk rocks. Calcite mineral surface is modified with stearic acid (SA) and asphaltene, and the silicate mineral surfaces are modified with N,N-dimethyldodecylamine (NN-DMDA) and asphaltene. The stability of adsorbed polar components in presence of SO4 2- and Mg2 + ions is also investigated. Recovery from sandstone cores is consistently lower than that from chalk cores saturated with...

  6. Effect of Petroleum Sulphonate on Interfacial Property and Stability of Crude Oil Emulsions%石油磺酸盐对原油界面性质及其乳状液稳定性的影响

    Institute of Scientific and Technical Information of China (English)

    王慧云; 李明远; 吴肇亮; 林梅钦

    2005-01-01

    The influence of petroleum sulphonate (TRS) on interfacial properties and stability of the emulsions formed by formation water and asphaltene, resin and crude model oils from Gudong crude oil was investigated by measurement of interfacial shear viscosity, interfacial tension (IFT) and emulsion stability. With increasing petroleum sulphonate concentration, IFT between the formation water and the asphaltene, resin and crude model oils decreases significantly. The interfacial shear viscosity and emulsion stability of asphaltene and crude model oil system increase for the petroleum sulphonate concentration in the range 0.1% to 0.3%, and decrease slightly when the concentration of the surfactant is 0.5%. There exists a close correlation between the interfacial shear viscosity and the stability of the emulsions formed by asphaltene or crude model oils and petroleum sulphonate solution.The stability of the emulsions is determined by the strength of the interfacial film formed of petroleum sulphonate molecules and the natural interfacial active components in the asphaltene fraction and the crude oil. The asphaltene in the crude oil plays a major role in determining the interfacial properties and the stability of the emulsions.

  7. Relations between interfacial properties and heavy crude oil emulsions stability; Relations entre les proprietes interfaciales et la stabilite des emulsions de brut lourd

    Energy Technology Data Exchange (ETDEWEB)

    Hoebler-Poteau, S.

    2006-02-15

    Oil in water emulsions are currently being investigated to facilitate the transport of viscous heavy oils. The behavior of these emulsions is largely controlled by oil / water interfaces. The surface-active components of crude oil such as asphaltenes and naphthenic acids compete among themselves at these interfaces and also with possibly added synthetic surfactant emulsifier.Here, we present a study of dynamic interfacial tension and rheology of interfaces between water and a model oil (toluene) in which asphaltenes and other surface active molecules from crude oil are dissolved. We show that different parameters such as aging of the interface, asphaltenes concentration, the pH and salinity of the aqueous phase have a strong influence on interfacial properties of asphaltenes at the oil/water interface. Several micro-pipette experiments, in which micrometric drops have been manipulated, are described as well as small angle neutron scattering measurements. The influence of lower molecular weight surface-active species, such as the natural naphthenic acids contained in maltenes (crude oil without asphaltenes) has been investigated, and an interaction between asphaltenes and maltenes which facilitates molecular arrangement at the interface was detected. The microscopic properties of the different interfaces and the stability of the corresponding emulsions are determined to be correlated.The results obtained on model emulsions and model oil/water interfaces were found to be helpful in order to explain and predict the behavior of heavy crude oil emulsions. (author)

  8. Techniques for monitoring fouling tendency resulting from thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Schabron, J.F.; Rovani, J.F. [United States Dept. of Energy, Laramie, WY (United States). Western Research Inst.

    2006-07-01

    Western Research Institute (WRI) coking index calculations use analyses derived from various stages of pyrolysis. Pyrolsis severity is monitored using automated flocculation titrimetry (AFT) and ultrasonic spectroscopy. AFT data are then used to to calculate various stability and solubility parameters. Ultrasonic amplitude and frequency spectra of residua exhibit maximum intensities near 1.1 MHz and diminish during the initial stages of pyrolysis, then grown again as pre-coke materials form. As pyrolysis progresses, the amount of heptane asphaltenes soluble in cyclohexane decreases as coke and toluene insoluble (TI) pre-coke materials appear. While automated flocculation titrimetry (AFT) and ultrasonic spectroscopy can be used to calculate the various stability and solubility parameters, analysis can take up to 3 days to perform. This presentation provided details of a novel automated on-column asphaltene precipitation and re-dissolution technique to isolate heptane asphaltenes and determine the amount of asphaltenes soluble in cyclohexane. Oil solution is injected onto a packed column with a heptane mobile phase. Asphaltene material is re-dissolved in a step gradient sequence of 4 solvents: heptane; cyclohexane; toluene; and methylene chloride. The sequence is followed by a polytetrafluoroethylene (PTFE) stationary phase. Experiments with the method indicated that greater accuracy in the distribution and amounts of polar materials were observed than with gravimetric asphaltene analysis. It was concluded that the automated technique provides a sensitive diagnosis of the pyrolysis severity history of a residuum. refs., tabs., figs.

  9. Colloidal structure of heavy petroleum products; Structure colloidale des produits petroliers lourds

    Energy Technology Data Exchange (ETDEWEB)

    Fenistein, D.

    1998-12-11

    Asphaltenes, the heaviest components of petroleum products, are defined as insoluble in an alkane excess. Their aggregation state, which depends on the thermodynamic conditions (solvent composition, temperature) has been characterized using scattering techniques and viscosimetry. In a solvent (toluene) asphaltenes are stable aggregates. The shape of the scattering spectra, their sensitivity to concentration on the one hand the values of intrinsic viscosities on the other hand, are compatible with a structure of solvated fractal aggregates. The mass distribution of asphaltene aggregates has been evaluated using ultracentrifugation. An increasing addition of flocculant (heptane) induces the extension of asphaltene aggregation. When approaching the flocculation threshold, their structure can be compared to the predictions of the RLCA theoretical model. Crossing the flocculation threshold induces the two phase separation of the system. The flocculated phase of compact aggregates undergoes fast sedimentation if the medium viscosity allows it. The study of asphaltenes in their natural medium (the maltenes) enables to recognize the solvated structures of the non - flocculated asphaltenes in other fluids. (author) 140 refs.

  10. Amélioration des procédés de craquage thermique des résidus par optimisation de la transformation des résines et des asphaltènes Improving Heat Treatment Processes for Residues by Optimizing the Transformation of Resins and Asphaltenes

    Directory of Open Access Journals (Sweden)

    Decroocq D.

    2006-11-01

    Full Text Available L'amélioration de procédés de traitement thermiques de coupes lourdes de pétrole en présence d'additifs susceptibles d'augmenter à la fois la qualité et le degré de conversion en limite de formation de coke est décrit. L'hydroviscoréduction du RSV Safaniya en présence d'un diluant aromatique donneur d'hydrogène (tétraline associé à un composé sulfuré (thiol, disulfure ou sulfoxyde permet l'obtention de conversions élevées sans production notable de coke et de gaz, ceci aussi bien en réacteur statique qu'en régime dynamique. Ces résultats sont confirmés par l'étude du traitement thermique de charges lourdes de natures diverses. Des essais menés sur pilote industriel montrent l'influence d'un additif soufré associé à une coupe LCO ou HCO sur la qualité de bases pour fuels commerciaux produites à partir d'un résidu sous vide de Safaniya. La caractérisation analytique des recettes de pyrolyses ou de certaines de leur fraction, par pyroanalyse oxydante, chromatographies liquides (SARA, GPC, spectroscopies RMN 1H et 13C , diffraction des rayons X, microscopies optiques et électroniques, met en évidence de profondes transformations de la matière hydrocarbonée et confirme l'effet de synergie entre les deux types d'additifs dans le traitement thermique de ces coupes lourdes.

  11. Langmuir films of solids-free bitumen and bitumen fractions at toluene/water interface

    Energy Technology Data Exchange (ETDEWEB)

    Solovyev, A.; Zhang, L.; Xu, Z.; Masliyah, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering

    2006-07-01

    This study examined the interfacial behaviour of bitumen and bitumen fractions at an organic solvent/water interface using a Langmuir trough and atomic force microscope (AFM). The objective was to better understand the stability of water-in-solvent diluted bitumen emulsions. The accumulation of interfacially active components at the oil/water interfaces promotes the formation of interfacial films, which resist the coalescence of water droplets thereby stabilizing water-in-oil emulsions. The bitumen fractions included maltene, and asphaltene films at the toluene/de-ionized water interface. Langmuir films of bitumen, maltene and asphaltene were spread at toluene/water interfaces where they exhibited different interfacial pressure-area isotherms. Asphaltenes were found to be irreversibly adsorbed at the toluene/water interface when the films were subjected to multiple washings with fresh toluene. Interfacial pressure-area isotherms remained unchanged. Consecutive washings of maltene films with fresh toluene showed a progressive loss of interfacial materials from the toluene/water interface. However, the pressure-area isotherms showed a consistent shift during the first 2 consecutive bitumen film washings and then no further shift with subsequent washings. After the first 2 washings, the isotherms were same as the original asphaltene films. According to AFM images of Langmuir-Blodgett films deposited from the toluene/water interface, the topographical features of asphaltene films resembled that of bitumen films. However, they were very different from that of maltene films. The study results demonstrated that the bitumen film at a toluene/water interface is composed primarily of asphaltenes. The asphaltenes contribute to the stability of water-in-diluted bitumen emulsions because they are irreversibly adsorbed at the interface. tabs., figs.

  12. The stability of water-in-crude and model oil emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, A.P.; Zaki, N.N.; Kilpatrick, P.K. [North Carolina State Univ., Raleigh, NC (United States). Dept. of Chemical Engineering; Sjoblom, J. [Norwegian Univ. of Science and Technology, Trondheim (Norway). Dept. of Chemical Engineering, Ugelstad Laboratory

    2007-12-15

    Emulsions are among the most persistent problems faced by petroleum producers. Water is added at refineries to generate a large oil-water interfacial area to facilitate the extraction of salts from the crude oil. The produced emulsions do not readily resolve into neat crude and water phases, and some volume of the emulsion remains. This paper described the surface-active components in petroleum as well as methods of measuring emulsion stability. The stabilities of a variety of water-in-model oil and petroleum emulsions were measured using the critical electric field (CEF) technique. In this study, CEF was used to measure the stability of water-in-heptane-toluene-asphaltene emulsions. Results for emulsions with 60 and 30 per cent water were presented. The effect of interfacial film thickness was discussed and a kinetic model for interfacial film formation was presented. The importance of solvation of asphaltenes to emulsion stability was confirmed along with the importance of the state of asphaltene aggregation. It was shown that emulsion stability increased with the concentration of soluble asphaltenes near the point of precipitation. In order to calculate interfacial area and film thickness, optical microscopy was used to measure droplet size. Film thickness increased with asphaltene concentration up to the solubility limit. Increased concentration above that limit had little effect. CEF increased with interfacial film thickness up to a monolayer coverage of asphaltene aggregates, but film thickness had a much smaller effect above the monolayer. These results were used to develop correlations of the stability of water-in-crude oil emulsions. A strong correlation was found for CEF with the product of asphaltene concentration and the difference in hydrogen to carbon atomic ratios of the asphaltenes and petroleum solvent. The effects of asphaltene chemistry, solvency, and resin concentration on the adsorption and consolidation of emulsion stabilizing interfacial

  13. Oilfield solids and water-in-oil emulsion stability.

    Science.gov (United States)

    Sztukowski, Danuta M; Yarranton, Harvey W

    2005-05-15

    Model water-in-hydrocarbon emulsions consisting of toluene, heptane, water, asphaltenes, and native solids were used to investigate the role of native solids in the stability of oilfield emulsions. The solids were recovered from an oil-sands bitumen, a wellhead emulsion, and a refinery slop oil. The solids were clay platelets and fell into two size categories: (1) fine solids 50 to 500 nm in diameter and (2) coarse solids 1 to 10 microm in diameter. Emulsions stabilized by fine solids and asphaltenes were most stable at a 2:1 fractional area ratio of asphaltenes to solids. It appears that when the asphaltene surface coverage is high, insufficient solids remain to make an effective barrier. When the solids coverage is high, insufficient asphaltenes remain on the interface to immobilize the solids. Treatments that weaken the interface, such as toluene dilution, are recommended for emulsions stabilized by fine solids. Emulsions stabilized by coarse solids were unstable at low solids concentrations but became very stable at solids concentrations greater than 10 kg/m(3). At low concentrations, these solids may act as bridges between water droplets and promote coalescence. At high concentrations, layers of coarse solids may become trapped between water droplets and prevent coalescence. Treatments that flocculate the solids, such as heptane dilution, are recommended for emulsions stabilized by high concentrations of coarse solids. It is possible that emulsions containing both types of solids may require more than one treatment, or even process step, for effective water resolution. PMID:15837502

  14. Adsorption and molecular rearrangement of amphoteric species at oil-water interfaces.

    Science.gov (United States)

    Verruto, Vincent J; Le, Rosemary K; Kilpatrick, Peter K

    2009-10-22

    The formation of stable water-in-petroleum emulsions is a costly challenge when transporting, processing, and refining heavy crude oil and bitumen. The stability of these emulsions is attributed to interfacial films with well-documented viscoelastic properties that are known to vary with concentration, solvent quality, and asphaltene chemistry. In this study, we explore the impact of aqueous phase pH and salinity on the transient interfacial rheological properties of asphaltenic films. Using two chemically unique asphaltenes, interfacial shear rheology revealed an apparent salt-induced retardation of the interfacial consolidation processes that ultimately engender elasticity to the film. For Hondo asphaltenes at pH 7, a linear dependence of this retardation on the Debye parameter (kappa) suggested that shielding of electrostatic attraction was responsible. Further investigation with dynamic oscillating drop tensiometry at pH 3, 7, and 10 illustrated that intralayer repulsive and attractive electrostatic interactions can significantly influence the evolution of the interfacial structure. More specifically, the transient tension and dilatational modulus profiles indicated several interfacial processes were affected by the addition of salt, including (i) interfacial activity and the extent of adsorption, (ii) interfacial rearrangement and consolidation, and (iii) interfacial transport or displacement or both. Furthermore, the observed asphaltene interfacial behavior was consistent with those published for interfacial structure-forming amphoteric proteins, such as lysozyme and beta-casein. PMID:19583194

  15. Probing Intermolecular Interactions in Polycyclic Aromatic Hydrocarbons with 2D IR Spectroscopy

    Science.gov (United States)

    Krummel, Amber

    2014-03-01

    Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous in the environment and impact geochemical processes that are critical to sustainable energy resources. For example, asphaltenes exist naturally in geologic formations and their aggregates heavily impact the petroleum economy. Unfortunately, the chemical dynamics that drive asphaltene nanoaggregation processes are still poorly understood. Solvent dynamics and intermolecular interactions such as π-stacking interactions play integral roles in asphaltene nanoaggregation. Linear and nonlinear vibrational spectroscopy including two-dimensional infrared spectroscopy (2DIR), are well suited to explore these fundamental interactions. Teasing apart the vibrational characteristics in PAHs that model asphaltenic compounds represents an important step towards utilizing 2D IR spectroscopy to understand the intermolecular interactions that are prevalent in asphaltene nanoaggregation. A solar dye, N,N'-Dioctyl-3,4,9,10-perylenedicarboximide, is used in this work to model aphaltenes. Carbonyl and ring vibrations are used to probe the nanoaggregates of the model compounds. However, the characteristics of these normal modes change as a function of the size of the conjugated ring system. Thus, in order to fully understand the nature of these normal modes, we include a systematic study of a series of quinones. Our investigation employs a combination of 2DIR spectroscopy and electronic structure calculations to explore vibrational coupling in quinones and PAHs. We compare the calculated vibrational characteristics to those extracted from 2DIR spectra. ATK acknowledges the Donors of the American Chemical Society Petroleum Research Fund for support of this research.

  16. COOEE bitumen: chemical aging

    CERN Document Server

    Lemarchand, Claire A; Dyre, Jeppe C; Hansen, Jesper S

    2013-01-01

    We study chemical aging in "COOEE bitumen" using molecular dynamic simulations. The model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: "2 resins $\\rightarrow$ 1 asphaltene". Molecular dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule, are determined for the four different compositions. The aging reaction causes a significant dynamics slowdown, which is correlated to the aggregation of asphaltene molecules in larger and dynamically slower nanoaggregates. Finally, a detailed description of the role of each molecule types in the aggregation and aging processes is given.

  17. Brine-in-crude-oil emulsions at the Strategic Petroleum Reserve.

    Energy Technology Data Exchange (ETDEWEB)

    Nemer, Martin B.; Lord, David L.; MacDonald, Terry L.

    2013-10-01

    Metastable water-in-crude-oil emulsion formation could occur in a Strategic Petroleum Reserve (SPR) cavern if water were to flow into the crude-oil layer at a sufficient rate. Such a situation could arise during a drawdown from a cavern with a broken-hanging brine string. A high asphaltene content (> 1.5 wt %) of the crude oil provides the strongest predictor of whether a metastable water-in-crude-oil emulsion will form. However there are many crude oils with an asphaltene content > 1.5 wt % that don't form stable emulsions, but few with a low asphaltene content that do form stable emulsions. Most of the oils that form stable emulsions are %E2%80%9Csour%E2%80%9D by SPR standards indicating they contain total sulfur > 0.50 wt %.

  18. Simple statistical model for branched aggregates

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Hansen, Jesper Schmidt

    2015-01-01

    We propose a statistical model that can reproduce the size distribution of any branched aggregate, including amylopectin, dendrimers, molecular clusters of monoalcohols, and asphaltene nanoaggregates. It is based on the conditional probability for one molecule to form a new bond with a molecule......, given that it already has bonds with others. The model is applied here to asphaltene nanoaggregates observed in molecular dynamics simulations of Cooee bitumen. The variation with temperature of the probabilities deduced from this model is discussed in terms of statistical mechanics arguments. The...... relevance of the statistical model in the case of asphaltene nanoaggregates is checked by comparing the predicted value of the probability for one molecule to have exactly i bonds with the same probability directly measured in the molecular dynamics simulations. The agreement is satisfactory...

  19. Non-isothermal kinetics of styrene—butadiene—styrene asphalt combustion

    International Nuclear Information System (INIS)

    The combustion characteristics of styrene—butadiene—styrene (SBS) asphalt are studied by thermogravimetric analysis (TG/DTG) at four different heating rates. According to the saturates/aromatics/resins/asphaltenes (SARA) fractionation method, the combustion process of SBS asphalt can be divided by Gaussian peak fitting into three main stages: oil content release, resin pyrolysis, and asphaltene and char combustion. When the heating rate increases, the mass losses of the oil content and resin pyrolysis increase, and less asphaltenes are formed at a higher temperature. The activation energy values are calculated by the Coats—Redfern method to be in the range 61.6 kJ/mol–142.9 kJ/mol. The Popescu method is used for the kinetic analysis, and the result shows that the three stages of asphalt combustion can be explained by the sphere phase boundary reaction model, the second order chemical reaction model, nucleation, and its subsequent growth model, respectively

  20. 稠油组分在水包油乳状液中稳定机理的研究--稠油官能团组分油水界面膜性质研究%Effects of Different Heavy Crude Oil Fractions on the Stability of Oil-in-water Emulsions--the film properties of heavy crude functional components and water system

    Institute of Scientific and Technical Information of China (English)

    陈耀武; 范维玉; 宋远明; 南国枝; 李水平; 陈树坤

    2005-01-01

    A series of π-A isotherms are drawn to study the film properties of the components with Langmuir-Blodgett technique. The effects of the aromaticity of spread solvents and pH value on the air/water film formed by the components are investigated. Acid fraction and asphaltene can form stable two-dimensional insoluble films on an air/water surface.The surface film pressure of acid fraction and asphaltene is higher and more stable than that of the other fractions. The surface film pressure of the fraction increases evidently under the basic condition (pH=12). The results show that the interfacial activity of acid fraction and asphaltene is superior to that of the other fractions and the basic condition is favorable to the stability of the O/W emulsion.

  1. Effects of Different Heavy Crude Oil Fractions on the Stability of Oil-in-water Emulsions-the film properties of heavy crude functional components and water system

    Institute of Scientific and Technical Information of China (English)

    ChenYaowu; FanWeiyu; SongYuanming; NanGuozhi; LiShuiping; ChenShukun

    2005-01-01

    A series of π-A isotherms are drawn to study the film properties of the components with Langmuir-Blodgett technique. The effects of the aromaticity of spread solvents and pH value on the air/water film formed by the components are investigated. Acid fraction and asphaltene can form stable two-dimensional insoluble films on an air/water surface.The surface film pressure of acid fraction and asphaltene is higher and more stable than that of the other fractions. The surface film pressure of the fraction increases evidently under the basic condition (pH=12). The results show that the interfaciai activity of acid fraction and asphaltene is superior to that of the other fractions and the basic condition is favorable to the stability of the O/W emulsion.

  2. Instability, precipitation and fouling in heavy oil systems

    Energy Technology Data Exchange (ETDEWEB)

    Watkinson, P.; Hong, E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2003-07-01

    Asphaltene deposition was investigated in a recirculating flow loop operating at moderate temperature conditions. Unstable oil mixtures comprised of heavy oil, de-asphalted vacuum bottoms, and a fuel oil were re-circulated through a constant heat flux annular heat transfer probe. The decline of heat transfer coefficient was measured. The fluids were characterized using saturates, aromatics, resins and asphaltenes (SARA) analysis, filterable solids content and oil compatibility model parameters. Due to the co-deposition of asphaltenes and resins, fouling rates proved to be dependent on heavy oil content and de-asphalted oil contents. The author discussed the fouling rates results in terms of the oil compatibility model and the colloidal instability index. tabs., figs.

  3. Mobilization and micellar solubilization of NAPL contaminants in aquifer rocks.

    Science.gov (United States)

    Javanbakht, Gina; Goual, Lamia

    2016-01-01

    Surfactant-enhanced aquifer remediation is often performed to overcome the capillary forces that keep residual NAPL phases trapped within contaminated aquifers. The surfactant selection and displacement mechanism usually depend on the nature of NAPL constituents. For example, micellar solubilization is often used to cleanup DNAPLs from aquifers whereas mobilization is desirable in aquifers contaminated by LNAPLs. Although the majority of crude oils are LNAPLs, they often contain heavy organic macromolecules such as asphaltenes that are classified as DNAPLs. Asphaltenes contain surface-active components that tend to adsorb on rocks, altering their wettability. Previous studies revealed that surfactants that formed Winsor type III microemulsions could promote both mobilization and solubilization. However the extent by which these two mechanisms occur is still unclear, particularly in oil-contaminated aquifers. In this study we investigated the remediation of oil-contaminated aquifers using an environmentally friendly surfactant such as n-Dodecyl β-D-maltoside. Focus was given on asphaltenes to better understand the mechanisms of surfactant cleanup. Through phase behavior, spontaneous imbibition, dynamic interfacial tension and contact angle measurements, we showed that microemulsions formed by this surfactant are able to mobilize bulk NAPL (containing 9wt.% asphaltenes) in the porous rock and solubilize DNAPL (i.e., 4-6wt.% adsorbed asphaltenes) from the rock surface. Spontaneous imbibition tests, in particular, indicated that the ratio of mobilized to solubilized NAPL is about 6:1. Furthermore, aging the cores in NAPL beyond 3days allowed for more NAPL to be trapped in the large pores of the rock but did not alter the amount of asphaltenes adsorbed on the mineral surface. PMID:26826983

  4. Investigated Miscible CO2 Flooding for Enhancing Oil Recovery in Wettability Altered Chalk and Sandstone Rocks

    Energy Technology Data Exchange (ETDEWEB)

    Tabrizy, Vahid Alipour

    2012-07-01

    The thesis addresses oil recovery by miscible CO2 flooding from modified sandstone and chalk rocks. Calcite mineral surface is modified with stearic acid (SA) and asphaltene, and the silicate mineral surfaces are modified with N,N-dimethyldodecylamine (NN-DMDA) and asphaltene. The stability of adsorbed polar components in presence of SO4 2- and Mg2 + ions is also investigated. Recovery from sandstone cores is consistently lower than that from chalk cores saturated with the same oil and flooded with CO2 at all miscible flooding conditions. This may be due to the larger permeability contrasts in sandstone cores, which promote the fingering phenomenon. Miscible CO2 flooding for chalk and sandstone cores with distilled water, as initial water saturation, shows also lower oil recovery than cores saturated with different ions. At higher miscible flooding conditions, higher oil recovery is obtained. However, presence of light components (such as C1 or C3) in oil reduced the recovery. Oil recovery in presence of methane (C1) is lower than that in presence of methane and propane (C1/C3). A ternary diagram was constructed in order to understand the CO2 flooding mechanism(s) at the different flooding conditions and in presence of light components. The side effect of the flooding with CO2 is the probability for asphaltene deposition. An approach based on solubility parameter in the liquid, is used to assess the risk for asphaltene deposition during CO2 miscible flooding. The light components (C1/C3) and higher flooding conditions enhanced the risk for asphaltene instability. It is also shown higher amount of asphaltene deposition in chalk cores than that in sandstone cores at similar miscibility conditions.(au)

  5. Avaliação das incertezas associadas à determinação do parâmetro de solubilidade de Hildebrand de petróleos

    Directory of Open Access Journals (Sweden)

    Lyzette Gonçalves Moraes de Moura

    2011-01-01

    Full Text Available Asphaltenes are fractions of crude oils that can precipitate and one of the parameters used in the prediction of the conditions in which this phenomenon occurs is the Hildebrand solubility parameter. In this work, it was evaluated the uncertainty propagation in the experimental determination of the solubility parameter of different crude oils, calculated from data of the asphaltenes precipitation by the addition of n-heptane, identified by optical microscopy. It was verified that the solubility parameter of an oil and the associated uncertainty are specific, being recommended that, whenever viable, it is determined parallel both, conferring higher credibility to the results.

  6. Solid Organic Deposition During Gas Injection Studies

    DEFF Research Database (Denmark)

    Dandekar, Abhijit Y.; Andersen, Simon Ivar; Stenby, Erling Halfdan

    also evident as oil fractions expelled from the top to bottom of the PVT cell were observed to vary in density, molecular weight, as well as darkness of color. The change in stability of the oil samples before and after the contact with gas was analyzed using flocculation threshold titration. The...... asphaltene content of the different oil samples were determined by the TP 143 method. The standard asphaltenes and the solid organic deposit recovered from the swelling tests were analyzed using FTIR, HPLC-SEC and H-1 NMR. The aim of these analyses is to reveal the molecular nature of the deposits formed...

  7. Cooee bitumen:

    DEFF Research Database (Denmark)

    Lemarchand, Claire; Schrøder, Thomas; Dyre, J. C.; Hansen, Jesper Schmidt

    2013-01-01

    We study chemical aging in “Cooee bitumen” using molecular dynamic simulations. This model bitumen is composed of four realistic molecule types: saturated hydrocarbon, resinous oil, resin, and asphaltene. The aging reaction is modelled by the chemical reaction: “2 resins → 1 asphaltene.” Molecular...... dynamic simulations of four bitumen compositions, obtained by a repeated application of the aging reaction, are performed. The stress autocorrelation function, the fluid structure, the rotational dynamics of the plane aromatic molecules, and the diffusivity of each molecule are determined for the four...

  8. About Coloured Cold Asphaltic Mixtures

    Directory of Open Access Journals (Sweden)

    Loredana Judele

    2008-01-01

    Full Text Available The first coloured bitumen was obtained by using bitumen from Peru and then bitumen from the Middle East, with a low content of asphaltenes, also called "colourable" bitumens. The colours obtained by adding iron oxides led nevertheless to dark colours, due to the presence of asphaltenes. Nowadays the coloured asphalt is obtained from synthesis binders with translucent aspect. The colours are obtained by adding inorganic pigments, mainly iron oxide for red, chromic oxide for green, titanic dioxide for white. The properties and behaviour of the coloured bitumen during its lifetime are comparable with the ones of classic bitumen, sometimes even better.

  9. Coal liquefaction with preasphaltene recycle

    Science.gov (United States)

    Weimer, Robert F.; Miller, Robert N.

    1986-01-01

    A coal liquefaction system is disclosed with a novel preasphaltene recycle from a supercritical extraction unit to the slurry mix tank wherein the recycle stream contains at least 90% preasphaltenes (benzene insoluble, pyridine soluble organics) with other residual materials such as unconverted coal and ash. This subject process results in the production of asphaltene materials which can be subjected to hydrotreating to acquire a substitute for No. 6 fuel oil. The preasphaltene-predominant recycle reduces the hydrogen consumption for a process where asphaltene material is being sought.

  10. A pulsed-and high resolution-NMR study of the asphalt compositions obtained by the composition analytical method

    International Nuclear Information System (INIS)

    12 Kinds of asphalts were fractionated by the usual composition analytical method to give asphaltenes, maltenes, and waxy substances. Their contents show fairly good relationships with softening temperatures, and 1/T2 values of asphalts. Pulsed- and high resolution-NMR measurements were made of the fractions of 8 asphalts out of 12 asphalts. Asphaltenes from all the asphalts were thought to have almost same structures and characters (T2 asymptotically equals μsec), and their contents vary with the asphalts. Maltenes had no characteristic structures owing to the imperfect fractionation employed in this study, and their content in the asphalt is the largest. (author)

  11. Characterization of oil and gas reservoir heterogeneity

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  12. Characterization of oil and gas reservoir heterogeneity. Annual report, November 1, 1990--October 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    1991-12-31

    The objective of the cooperative research program is to characterize Alaskan reservoirs in terms of their reserves, physical and chemical properties, geologic configuration and structure, and the development potential. The tasks completed during this period include: (1) geologic reservoir description of Endicott Field; (2) petrographic characterization of core samples taken from selected stratigraphic horizons of the West Sak and Ugnu (Brookian) wells; (3) development of a polydispersed thermodynamic model for predicting asphaltene equilibria and asphaltene precipitation from crude oil-solvent mixtures, and (4) preliminary geologic description of the Milne Point Unit.

  13. Peculiarities of the oil composition in the Ul'yanovsk areas deposits and distribution of the vanadium-containing and other heteroelement compounds

    International Nuclear Information System (INIS)

    Oils from certain oil fields of Ul'yanovsk region have been studied. Significant differences in oil composition from the northern and southern parts of the region, as regards vanadium and nickel contents, their concentration for the northern fields being anomalously high (∼ 1000 g/t) have been revealed. Vanadyl complexes, vanadyl porphyrins making up an essential part, is the main form of vanadium occurrence. Vanadyl complexes are mainly associated with components of resin-asphaltene substances, forming associates with polyaromatic structures, fragments of resin-asphaltene substances, which requires significant energy consumption for their extraction. 17 refs., 3 figs., 4 tabs

  14. Organic sulphur in macromolecular sedimentary organic matter. II. Analysis of distributions of sulphur-containing pyrolysis products using multivariate techniques

    NARCIS (Netherlands)

    Sinninghe Damsté, J.S.; Eglinton, T.I.; Pool, W.; Leeuw, J.W. de; Eijkel, G.; Boon, J.J.

    1992-01-01

    This study describes the analysis of sulphur-containing products from Curie-point pyrolysis (Py) of eighty-five samples (kerogens, bitumen, and petroleum asphaltenes and coals) using gas chromatography (GC) in combination with sulphur-selective detection. Peak areas of approximately forty individual

  15. Characterization of the rheological behavior of heavy crude oils for the optimization of their transport; Caracterisation du comportement rheologique des bruts lourds en vue de l'optimisation de leur transport

    Energy Technology Data Exchange (ETDEWEB)

    Coustet Pierre, C.

    2003-10-01

    Despite their huge reserves, production of heavy crude oils remains weak, partially because of the high viscosity. This work aims to understand the origin of this viscosity in a view of diminishing In this context, we performed structural (SAXS) and rheological studies (under shearing and oscillatory regime) in order to link macroscopic and microscopic properties of heavy oils. investigated the effect of asphaltenes and resins which are the two most polar and the high molecular mass components of heavy oils. Most of the literature work performed measures organic solvents which are considered as model solvents in a first assumption. These media haw structure too simple compared to oils. That is why we decided to complete this work by experiments in the crude. We shed some light on asphaltenes described as colloidal particles with fractal dimension of 2. Their overlapping, due to numerous polar and hydrogen bonds, responsible for the high viscosity. The contribution of asphaltenes on viscosity is lowered by resins who are able to dissociate aggregates and to reduce the interactions, so to diminish the overlapping The kinetics of formation of bonds involved in asphaltenes overlapping are strongly slower at low temperatures, which implies a shear thinning behavior under sufficiently high shearing. This allow us to describe the crude as a transient network of fractal aggregates. (author)

  16. Integration of rotational algorithms into dissipative particle dynamics: modeling polyaromatic hydrocarbons on the meso-scale

    Science.gov (United States)

    Zhang, Sheng-Fei; Xu, Jun-Bo; Wen, Hao; Bhattacharjee, Subir

    2011-08-01

    Heavy crude oil consists of thousands of compounds, a significant fraction of which have fairly large molecular weights and complex structures. Our work aims at constructing a meso-scale platform to explore this complex fluid in terms of microstructure, phase behavior, stability and rheology. In the present study, we focus on the treatment of the structures of fused aromatic rings as rigid body fragments in fractions such as asphaltenes and resins. To derive the rotational motion of rigid bodies in a non-conservative force field, we conduct a comparison of three rigid body rotational algorithms integrated into a standard dissipative particle dynamics (DPD) simulation. The simulation results confirm the superiority of the Quaternion method. To ease any doubt concerning the introduction of rigid bodies into DPD, the performance of the Quaternion method was tested carefully. Finally, the aggregation dynamics of asphaltene in very diluted toluene was investigated. The nanoaggregates are found to experience forming, breaking up and reforming. The sizes of the asphaltene monomer and nanoaggregate are identified. The diffusion coefficient of diluted asphaltene in toluene is similar to that found experimentally. All these results verify the rotational algorithm and encourage us to extend this platform to study the rheological and colloidal characteristics of heavy crude oils in the future.

  17. Study on the aggregate structure and stability of heavy crude oil using a DPD based meso-platform

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Junbo; Zhang, Shengfei; Wu, Hao; Wen, Hao [State Key Laboratory of Multi-Phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences (China)], email: hwen@home.ipe.ac.cn

    2010-07-01

    As the reservoir of conventional crude oil decreases, research interest on heavy crude oil increases. Aggregate behaviour of asphaltenes in heavy crude oil was explored using a dissipative particle dynamics (DBD) based rheoscale platform. Three sets of asphaltene model molecules, containing 3, 4 and 5 aromatic rings individually, were considered in simulation. Face to face, offset and T-shaped aggregate structures were observed, as in previous studies. The aggregate structures of 4-ring model molecules was better ordered than 3-ring model molecules and worse than 5-ring. The cluster size of asphaltene molecules was used to represent crude oil stability in simulation. Crude oil was stable in the whole range of saturate/aromatic ratio, indicating that crude oil stability is independent of the concentration of saturate or aromatic because of the dispersive action of resin. A lack of resin to disperse asphaltene clusters led to the need to limit the ratio of saturate/aromatic to low values to maintain oil stability agreeing with previous studies.

  18. Small-angle neutron scattering study of crude oil emulsions: structure of the oil-water interfaces.

    Science.gov (United States)

    Alvarez, G; Jestin, J; Argillier, J F; Langevin, D

    2009-04-01

    We have used SANS techniques to study in situ interfaces between crude oil and water in emulsions. These emulsions were stabilized by asphaltenes, which are natural surface-active molecules in viscous crude oils. By combining SANS and UV-vis spectrometry, we measured both the interfacial thickness and the adsorbed amount as well as the size of the asphaltene aggregates in the oil phase. We found that this size is comparable to the interfacial thickness, suggesting that the interface is covered by adsorbed aggregates. The thickness is a minimum at the pH at which the charge of asphaltenes in contact with water is zero (IEP). This suggests that asphaltene layers in contact with water are swollen and stretched at both low and high pH. The effect of salt addition on the interfacial characteristics is minor at the IEP, but a clear swelling is seen at high pH for 0.1 M salt, an effect that remains to be understood. Emulsion stability was found to correlate well with large interfacial thicknesses. PMID:19714887

  19. Stabilization Mechanisms of Water-in-Crude Oil Emulsions

    Science.gov (United States)

    Nour, Abdurahman H.; Suliman, A.; Hadow, Mahmmoud M.

    During the lifting and production of crude oil, water/oil emulsions are created. They are stabilized by asphaltenes and resins which are colloidally dispersed in the crude oil. Asphaltenes consist mainly of polar heterocompounds. It is known that they decrease the interfacial tension between oil and water and form stable interfacial films. Both effects favour the formation and stabilization of emulsions. Resins are complex high-molecular-weight compounds that are not soluble in ethylacetate, but are soluble in n-heptane. Their interfacial activity is less than that of asphaltenes. The role of resins in stabilizing emulsions has also been debated in literature. This study reports the results of experimental investigation of various factors affecting the stability of emulsions which are considered to be undesirable for a number of reasons, including both up-stream and down-stream operation in the petroleum industry. It was found that, the (R/A) ratio affects the emulsion and dispersion stabilities. High resin/asphaltene ratios decrease the emulsion stability.

  20. Rheological properties of nanofiltered Athabasca bitumen and Maya crude oil

    Czech Academy of Sciences Publication Activity Database

    Hasan, M.D.A.; Fulem, Michal; Bazyleva, A.; Shaw, J.M.

    2009-01-01

    Roč. 23, - (2009), s. 5012-5021. ISSN 0887-0624 Institutional research plan: CEZ:AV0Z10100521 Keywords : viscosity * rheology * Athabasca bitumen * Maya crude oil * phase behavior * asphaltenes * nanofiltration Subject RIV: JJ - Other Materials Impact factor: 2.319, year: 2009

  1. Quantitative analysis of properties of petroleum mixtures by near infrared spectroscopy; Analise quantitativa de propriedades de misturas de petroleos via espectrofotometria no infravermelho proximo

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Leila M.; Silva, Elisangela B.; Fortuny, Montserrat; Dariva, Claudio; Santos, Alexandre F. [Universidade Tiradentes (UNIT), Aracaju, SE (Brazil). Instituto de Tecnologia e Pesquisa (ITP); Araujo, Augusto M. [Siemens Brazil, Rio de Janeiro, RJ (Brazil); Coutinho, Raquel C.C. [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    An experimental study is carried out aiming to develop a method of quantitative analysis of properties of petroleum mixtures, such as water and asphaltene contents, heavy oil concentration and viscosity based on the use of a NIR spectrophotometer. A strategy of generation of crude oil mixtures with known properties was developed to help calibrating the NIR spectrophotometer. Petroleum mixtures involving 2 or 3 oils under known ratios were prepared based on a set of different light and heavy Brazilian crude oil samples. Moreover, experimental data of 5 binary mixtures were also assembled into a data set named multi-compound. Results indicated that excellent calibration models can be obtained for binary mixtures with correlation coefficient (R{sup 2}) greater than 99% for water and asphaltene contents, viscosity and heavy oil concentration. For ternary systems, excellent correlations (R{sup 2}>99%) can be attained for asphaltene and heavy oil contents. Finally for the multi-compound data set, the asphaltene content was the only property that resulted in R{sup 2}>99%, which demonstrates the adequacy of the NIR technique for assessing this property. (author)

  2. Studies of water-in-oil emulsions : stability and oil properties

    International Nuclear Information System (INIS)

    The stability of water-in-oil emulsions were studied by examining the asphaltene and resin content of oils. The visco-elastic properties of 82 oils from Environment Canada's Emergencies Science Division were also examined to determine which factors are responsible for the stability regimes. The stability of emulsions were grouped into three categories: (1) stable, (2) unstable, and (3) meso-stable. It was shown that there is a range of compositions and viscosities in which each type of water-in-oil state exists. It was also shown that the viscosity of a stable emulsion at a shear rate of one reciprocal second is about three times greater than that of the starting oil. An unstable emulsion typically had a viscosity of 20 times greater than that of the starting oil. A stable emulsion had pronounced elasticity, but an unstable emulsion did not. A meso-stable emulsion had properties between stable and unstable, but broke down after a few days of standing. It was concluded that the formation of both stable and meso-stable emulsions is due to the combination of surface-active forces from resins and asphaltenes from viscous forces. Only a small difference was detected between stable and meso-stable emulsions. Stable emulsions were found to have more asphaltenes and less resins and a narrow viscosity window. Instability results when the oil has either a high viscosity or a very low viscosity and when the resins and asphaltenes are less than about 3 per cent. In highly viscous oils, the migration of asphaltenes and resins is too low to permit droplet stabilization, therefore the formation of stable or meso-stable emulsions does not occur in highly viscous oils. 18 refs., 8 tabs., 8 figs

  3. Spectral induced polarization (SIP) response of biodegraded oil in porous media

    Science.gov (United States)

    Abdel Aal, Gamal Z.; Atekwana, Estella A.

    2014-02-01

    Laboratory experiments were conducted to investigate the effect of different oil saturation (0.2-0.8), wetting conditions (water-wet and oil-wet), and the addition of asphaltene on the spectral induced polarization (SIP) response of biodegraded and fresh crude oil in sand columns. In the water-wet case, no significant differences were observed for both the fresh and biodegraded oil and both displayed an increase in the magnitude of the phase (ϕ) and decrease in the magnitudes of the real (σ') and imaginary (σ'') conductivity components with increasing oil saturation. In this instance the SIP response is most likely controlled by the conduction and polarization of the electric double layer at the mineral-water interface. However, when oil is the wetting phase there were considerable differences in the magnitude of the SIP parameters between the fresh and biodegraded oil. The magnitude of ϕ and σ'' increased with increasing oil saturation, whereas σ' decreased. The magnitude of σ' and σ'' for the biodegraded oil-wetted sands were relatively higher compared to fresh oil-wetted sands. In experiments with fresh and biodegraded oil-wet sand, the addition of 1 per cent asphaltene increased σ' and σ'' with the biodegraded oil showing the highest magnitude. Asphaltenes are the most dipolar fraction of crude oil and increase in concentration with increasing biodegradation. Asphaltene creates a surface charge due to the ionization and complexation reactions of functional groups at interfaces. Therefore, the enhancement in the conduction and polarization observed with the biodegraded oil-wetted sands may be due to the increase in polar components (e.g. asphaltene) from the biodegradation process and the interactions of the polar components with the surfaces of water and mineral grains. Further studies are required to investigate the effect of other components in biodegraded oil such as resins, trace metals, biogenic metallic minerals (e.g. magnetite) and organic

  4. Characterization of solid particle suspensions with organic coatings in oilfield produced water

    Energy Technology Data Exchange (ETDEWEB)

    Dudasova, Dorota

    2008-09-15

    Produced water is water trapped in underground formations that is brought to the surface along with oil or gas. In general, produced water is a mixture of dispersed oil in water (o/w), dissolved organic compounds (included hydrocarbons), residual concentration of chemical additives from the production line, heavy metals, dissolved minerals and suspended solids. In the year 2006, 173 million m3 of produced water were discharged on the Norwegian Continental Shelf (NCS). Discharges will increase in the years ahead, primarily because of increased water production from the major fields on the NCS, and because the use of chemicals is greater in fields with seabed completions. Although removal of pollutants from produced water is possible with existing technology, the applicability, effectiveness and costs of these technologies are not acceptable for the industry. It is necessary to develop more suitable and cost effective solutions tailored for both the treatment process on offshore installations and site specific conditions with respect to produced water quality. The technologies for enhanced removal of dispersed oil and selected dissolved/soluble compounds were studied within the TOP Water project. This thesis presents studies of dispersed solid particles in the waste water systems prior to treatment. In order to achieve the desired treatment efficiency it is necessary to have a basic understanding of the stabilisation/destabilisation mechanisms of dispersed constituents present in waste water. The findings which have been summarized in this thesis include adsorption of surface active crude oil components - asphaltenes on the planar model solid surfaces as well as model inorganic particles, and particle suspension studies of pure and asphaltene coated particles. The adsorption study was done on asphaltenes of different origin and solids with different surface properties in order to mimic the history of particles from the reservoir to the sea. This gave better

  5. Hindered diffusion of coal liquids. Quarterly report No. 12, June 18, 1995--September 17, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Tsotsis, T.T.; Sahimi, M. [University of Southern California, Los Angeles, CA (United States). Dept. of Chemical Engineering; Webster, I.A. [Unocal Corp., Los Angeles, CA (United States)

    1995-12-31

    The design of industrial catalysts requires that the diffusivity of the reacting species within the catalyst be accurately known. Nowhere is this more important than in the area of coal liquefaction and upgrading of coal liquids. In this area one is faced with the task of processing a number of heavy oils, containing metals and other contaminants, in a variety of process dependent solvents. It is important, therefore, on the basis of predicting catalyst activity, selectivity, and optimizing reactor performance, that the diffusivities of these oil species be accurately known. It is the purpose of the project described here to provide such a correct concept of coal asphaltenes by careful and detailed investigations of asphaltene transport through porous systems under realistic process temperature and pressure conditions. The experimental studies will be coupled with detailed, in-depth statistical and molecular dynamics models intended to provide a fundamental understanding of the overall transport mechanisms.

  6. Analysis of the relationship between the coal properties and their liquefaction characteristics by using the coal data base; Tanshu data base ni yoru tanshitsu to ekika tokusei no kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Kanbayashi, Y.; Okada, K. [Coal Mining Research Center, Tokyo (Japan)

    1996-10-28

    The relationship between coal properties and liquefaction or gasification characteristics was analyzed by using the analysis and test results and liquefaction characteristics in the coal data base. On liquefaction reaction, the close relation between an oil yield and coal constituent composition or a coal rank is well-known. Various multivariable regression analyses were conducted by using 6 factors as variables such as calorific value, volatile component, O/C and H/C atomic ratios, exinite+vitrinite content and vitrinite reflectance, and liquefaction characteristics as variate. On liquefaction characteristics, the oil yield of dehydrated and deashed coals, asphaltene yield, hydrogen consumption, produced water and gas quantities, and oil+asphaltene yield were predicted. The theoretical gasification efficiency of each specimen was calculated to evaluate the liquefaction reaction obtained. As a result, the oil yield increased with H/C atomic ratio, while the theoretical gasification efficiency increased with O/C atomic ratio. 5 figs., 1 tab.

  7. Characterization of lignite low-severity depolymerization products

    Energy Technology Data Exchange (ETDEWEB)

    Mastral, A.M.; Cebolla, V.L.

    1985-08-01

    Oils and asphaltenes derived from direct extraction and several mild depolymerization processes have been studied. The asphaltenes have been fractionated by column adsorption chromatography (with deactivated silica gel) and benzene, THF and MeOH were used in sequence as eluothropic series. Clear chemical separation between one aromatic and two polar fractions has been obtained, giving high percentages recovery. The fractions have been characterized by VPO, FT-IR, /sup 1/H-NMR and elemental analysis. Several structural parameters of oils have been calculated. These oils can be assimilated to equivalent average hydrocarbons having between 10 and 20 carbon atoms and an aromatic carbon percentage oscillating between 47 and 66%. In general, the degree of substitution in aromatic rings is low and the presence of phenolic groups is limited. The majority of the carbons are aromatic and these rings show low degrees of condensation. 20 references.

  8. Application of high-temperature simulated distillation to the residuum oil supercritical extraction process in petroleum refining

    Science.gov (United States)

    Raia; Villalanti; Subramanian; Williams

    2000-01-01

    The gas chromatographic method of high-temperature simulated distillation (HTSD) is described, and the results are presented for the application of HTSD to the characterization of petroleum refinery feed and products from solvent deasphalting operations. Results are presented for refinery residual feed, deasphalted oil, and asphaltene fractions from the residual oil supercritical extraction process. Asphaltene removal from petroleum residuum using solvent deasphalting results in the improved quality and high recovery of deasphalted oil product for use as lube oil, fluid catalytic cracking, or hydrocracker feedstocks. The HTSD procedure presented here proves valuable for characterizing the fractions from the deasphalting process to obtain the percentage yield with boiling point data over the range from approximately 36 degrees C (97 degrees F) to 733 degrees C (1352 degrees F), which covers the boiling range of n-paraffins of carbon number C5 to C108. PMID:10654784

  9. Petroleum Resins: Separation, Character, and Role in Petroleum

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Speight, James

    2001-01-01

    In petroleum science, the term resin generally implies material that has been eluted from various solid adsorbents, whereas the term maltenes (or petrolenes) indicates a mixture of the resins and oils obtained as filtrates from the asphaltene precipitation. Thus, after the asphaltenes are...... precipitated, adsorbents are added to the n-pentane solutions of the resins and oils, by which process the resins are adsorbed and subsequently recovered by the use of a more polar solvent, and the oils remain in solution. The resin fraction plays an important role in the stability of petroleum and prevents...... of the fact that the resin fraction is extremely important to the stability of petroleum, there is surprisingly little work reported on the characteristics of the resins. This article summarizes the work that has been carried out in determining the character and properties of the resin constituents...

  10. Oil well flow assurance through static electric potential: An experimental investigation

    Science.gov (United States)

    Hashmi, Muhammad Ihtsham Asmat

    Flow assurance technology deals with the deposition of organic and inorganic solids in the oil flow path, which results in constriction of the production tubing and surface flow lines and drastically reduces the kinetic energy of the fluid. The major contributors to this flow restriction are inorganic scales, asphaltene, wax and gas hydrates, in addition to minor contribution from formation fines and corrosion products. Some of these materials (particularly asphaltene and inorganic scales) carry surface charges on their nuclei and seen to be attracted by electrode having opposite charge. The focus of the present research is to find the possibilities of inhibiting the deposition of asphaltene and inorganic scales in the production tubing by applying static electrical potential. With this objective, two flow set ups were made; one for asphaltene and the other for scale deposition studies, attached with precision pumps, pressure recording system and DC power supply. In each set up there were two flow loops, one was converted as Anode and the other as Cathode. A series of flow studies were conducted using the flow set ups, in which oil-dilution ratio, temperature and most importantly DC potential difference was varied and the deposition behavior of the asphaltene aggregates and calcium carbonate scale to the walls of the test loops were observed through rise of differential pressure across the loop due to possible deposition and constriction of the flow path. Two different sets of flow studies; one without oil dilution and other with the diluted oil (with n-heptane), were performed. Both experiments were investigated under the influence of static potential applied across the two test loops. Experimental results indicated that asphaltene deposition in the cathode can be retarded or stopped by applying a suitable negative potential; an increase in the static potential resulted in enhanced control over the asphaltene aggregation and hence the deposition. In the second

  11. Alternatives to aromatics for solvency of organic deposits

    International Nuclear Information System (INIS)

    This paper describes laboratory investigation of alternate solvent systems and their application to the removal of organic deposits. Aromatic solvents, such as toluene and xylene, have been popular remedies for near-wellbore cleanup operations. Stricter regulations governing disposal, volatile-emission limits, and flammability/handling concerns have made the use of toluene and xylene less attractive. In an effort to limit environmental and personal exposure hazards, alternate solvents have been investigated. Theoretical solvency parameter comparisons linked with a data base search was used to initially screen alternate solvent systems. Quantitative paraffin and pipe-dope solvency tests, along with asphaltene stability titrations, were used to qualify potential solvent candidates. As a result of this work, several alternative solvents have been found which fall outside the regulatory restrictions for xylene and toluene, while maintaining effective removal of paraffin, asphaltene and pipe-dope deposits

  12. Stability of water/crude oil emulsions based on interfacial dilatational rheology.

    Science.gov (United States)

    Dicharry, Christophe; Arla, David; Sinquin, Anne; Graciaa, Alain; Bouriat, Patrick

    2006-05-15

    The dilatational viscoelasticity behaviors of water/oil interfaces formed with a crude oil and its distilled fractions diluted in cyclohexane were investigated by means of an oscillating drop tensiometer. The rheological study of the w/o interfaces at different frequencies has shown that the stable w/o emulsions systematically correspond to interfaces which present the rheological characteristics of a 2D gel near its gelation point. The stability of emulsions was found to increase with both the gel strength and the glass transition temperature of the gel. As expected, the indigenous natural surfactants responsible for the formation of the interfacial critical gel have been identified as the heaviest amphiphilic components present in the crude oil; i.e., asphaltenes and resins. Nevertheless, we have shown that such a gel can also form in the absence of asphaltene in the oil phase. PMID:16324706

  13. Characterization of crude oils by inverse gas chromatography.

    Science.gov (United States)

    Mutelet, F; Ekulu, G; Rogalski, M

    2002-09-01

    It was shown that the flocculation onset of asphaltenes in crude oils could be predicted on the basis of the inverse gas chromatography characterization of the crude oil properties. Hildebrand's solubility parameters of four crude oils were calculated from inverse chromatography data and compared with values obtained from the onset of asphaltene flocculation measurements. A good agreement was observed with three crude oils of different origin. A relation between Hildebrand's solubility parameter and linear solvation energy relationship descriptors was established and it was demonstrated that the solubility parameter of a crude oil is determined mainly with dispersion interactions and the hydrogen bond basicity. A large basicity lowers the oil solubility parameter, and increases its stability in respect to flocculation. PMID:12385392

  14. Water-in-oil emulsions: formation and prediction

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, Merv F. [Spill Science (Canada)], email: fingasmerv@shaw.ca; Fieldhouse, Ben [Emergency Science and Technology Division, Environment Canada (Canada)], email: ben.fieldhouse@ec.gc.ca

    2011-07-01

    The formation process of water-in-oil emulsion was discussed in this work. A number of numerical models that describe this process were presented, and a new scheme was developed. The objective of this study is to generate an emulsion stability index, based on oil properties, to be used in optimizing a new scheme for emulsion formation. Tests and numerical modeling of previous efforts were presented, and the effects of oil properties such as viscosity, asphaltene content, and resin content, were discussed. Based on experimental data and previous modeling schemes, a set of new empirical equations were generated and recommended for modeling emulsion formation. In general, emulsion stability exhibited four different behaviors: stable, meso-stable, entrained, and unstable. Moreover, it was shown that emulsion formation mainly depends on viscosity and asphaltene and resin fractions. Based on these three properties, the regression equation for the stability index was generated, thereby making mixture formation and prediction more accurate.

  15. Tar Balls from Deep Water Horizon Oil Spill: Environmentally Persistent Free Radicals (EPFR) Formation During Crude Weathering

    Science.gov (United States)

    Kiruri, Lucy W.; Dellinger, Barry; Lomnicki, Slawo

    2014-01-01

    Tar balls collected from the Gulf of Mexico shores of Louisiana and Florida after the BP oil spill have shown the presence of electron paramagnetic resonance (EPR) spectra characteristic of organic free radicals as well as transition metal ions, predominantly iron(III) and manganese(II). Two types of organic radicals were distinguished: an asphaltene radical species typically found in crude oil (g = 2.0035) and a new type of radical resulting from the environmental transformations of crude (g = 2.0041−47). Pure asphaltene radicals are resonance stabilized over a polyaromatic structure and are stable in air and unreactive. The new radicals were identified as products of partial oxidation of crude components and result from the interaction of the oxidized aromatics with metal ion centers. These radicals are similar to semiquinone-type, environmentally persistent free radicals (EPFRs) previously observed in combustion-generated particulate and contaminated soils. PMID:23510127

  16. The role of nitrogen and sulphur bearing compounds in the wettability of oil reservoir rocks: an approach with nuclear microanalysis and other related surface techniques

    International Nuclear Information System (INIS)

    Oil recovery is strongly influenced by the wettability of the reservoir rock. Some constituents of the crude oil (polar compounds and heavy fractions such as asphaltenes with heteroatoms) are believed to react with the reservoir rock and to condition the local wettability. Therefore, it is important to obtain as much knowledge as possible about the characteristics of the organic matter/mineral interactions. This study is devoted to the description at the microscopic scale of the distribution of some heavy fractions of crude oil (asphaltenes) and nitrogen molecules (pyridine and pyrrole) on model minerals of sandstone reservoir rocks such as silica and clays. Nuclear microanalysis, X-Ray Photoelectron Spectroscopy and other related microscopic imaging techniques allow to study the distribution and thickness of the organic films. The respective influences of the nature of the mineral substrate and the organic matter are studied. The important role played by the nitrogen compounds in the adsorption of organic matter is emphasized

  17. Effects of Different Heavy Crude Oil Fractions on the Stability of Oil-in-Water Emulsion—Ⅲ. Effects of pH on the interfacial properties of heavy crude functional fractions and water system

    Institute of Scientific and Technical Information of China (English)

    FanWeiyu; NanGuozhi; LiShuiping; SongYuanming

    2005-01-01

    In this paper, effects of pH on the interracial properties of heavy crude functional fractions and water system are investigated. The influence ofpH on π-A isotherms of acid fraction, basic fraction, amphoteric fraction and asphaltene is great. The interracial pressure of fractions increases in strongly basic conditions. The ζ(-80mv) of acid fraction is the largest under basic conditions (pH=11-12), with the result to show that the interfacial activity of the acid fraction is superior to that of other fractions. The results of model emulsions show that strongly basic conolition (pH≥ 11) is beneficial to oil-inwater emulsion stability. The interfacial activity of acid fraction and asphaltene is superior to that of other crude fractions.

  18. Effects of Different Heavy Crude Oil Fractions on the Stability of Oil-in-Water Emulsion --Ⅲ. Effects of pH on the interfacial properties of heavy crude functional fractions and water system%稠油组分在水包油乳状液中稳定机理的研究--pH值对稠油组分油水界面性质的影响

    Institute of Scientific and Technical Information of China (English)

    范维玉; 南国枝; 李水平; 宋远明

    2005-01-01

    In this paper, effects of pH on the interfacial properties of heavy crude functional fractions and water system are investigated. The influence of pH on π-A isotherms of acid fraction, basic fraction, amphoteric fraction and asphaltene is great. The interfacial pressure of fractions increases in strongly basic conditions. The ζ(-80mv) of acid fraction is the largest under basic conditions (pH=11-12), with the result to show that the interfacial activity of the acid fraction is superior to that of other fractions. The results of model emulsions show that strongly basic conolition (pH ≥ 11) is beneficial to oil-inwater emulsion stability. The interfacial activity of acid fraction and asphaltene is superior to that of other crude fractions.

  19. Petroleum Resins: Separation, Character, and Role in Petroleum

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Speight, James

    In petroleum science, the term resin generally implies material that has been eluted from various solid adsorbents, whereas the term maltenes (or petrolenes) indicates a mixture of the resins and oils obtained as filtrates from the asphaltene precipitation. Thus, after the asphaltenes are...... precipitated, adsorbents are added to the n-pentane solutions of the resins and oils, by which process the resins are adsorbed and subsequently recovered by the use of a more polar solvent, and the oils remain in solution. The resin fraction plays an important role in the stability of petroleum and prevents...... of the fact that the resin fraction is extremely important to the stability of petroleum, there is surprisingly little work reported on the characteristics of the resins. This article summarizes the work that has been carried out in determining the character and properties of the resin constituents...

  20. Water-in-crude oil emulsion stability studied by critical electric field measurements. Correlation to physico-chemical parameters and near-infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Aske, Narve; Sjoeblom, Johan [The Norwegian University of Science and Technology, Department of Chemical Engineering, Ugelstad Laboratory, N-7491 Trondheim (Norway); Kallevik, Harald [Statoil R and D Centre, Rotvoll, N-7005 Trondheim (Norway)

    2002-10-01

    Twenty-one crude oils and condensates of different origins have been thoroughly characterised including SARA (saturates, aromatics, resins, asphaltenes) data, interfacial elasticity, total acid number (TAN), density, viscosity, interfacial tension (IFT) and molecular weight. In addition all samples have been characterised by near-infrared (NIR) spectroscopy. A cell was developed to measure emulsion stability at applied electric fields. The cell produces values of stability of crude oil/water emulsions in a fast and simple manner. Emulsions of the 21 crude samples at different water cuts have been characterised by the electric field technique. The emulsion stability data have been correlated with both the physico-chemical data and NIR spectra. Asphaltene content and aggregation state, in addition to interfacial elasticity, are shown to be important contributions to emulsion stability as defined above. NIR spectra are shown to be informative with regard to emulsion stability.

  1. Effect of Components on the Performance of Asphalt Modiifed by Waste Packaging Polyethylene

    Institute of Scientific and Technical Information of China (English)

    ZHANG Maorong; FANG Changqing; ZHOU Shisheng; CHENG Youliang; YU Ruien; LIU Shaolong; LIU Xiaolong; SU Jian

    2016-01-01

    Waste packaging polyethylene (WPE) was used to modify raw asphalt by melt blending the components at 190℃ for 1 h in a simple mixer and subsequently machining them at 120℃ for 1 h in a high-speed shearing machine. The effect of modiifcation on the degree of the penetration, the softening point and the ductility of the asphalt was studied using lfuorescent microscopy, infrared spectrometry, component changes and various other techniques. The experimental results showed that no chemical reactions took place in the components themselves (saturate, aromatic, asphaltene and resin) during the modifications. The softening point and penetration of the asphalt were found to be closely related to the resulting contents of the asphaltene, saturate and resin components. In addition, aromatics were identified as having the greatest impact on the ductility of the asphalt.

  2. Connaissances actuelles sur les produits lourds du pétrole Present Knowledge on Heavy Constituents of Crude Oils

    Directory of Open Access Journals (Sweden)

    Tissot B.

    2006-11-01

    Full Text Available Les produits lourds du pétrole (résines et asphaltènes jouent un rôle important dans les problèmes de formation des gisements de pétrole, de récupération assistée - en particulier des pétroles lourds -, de traitement et même d'utilisation des produits pétroliers. Les résines et asphaltènes constituent le terme extrême des composés naphténo-aromatiques. Le squelette carboné des asphaltènes est probablement constitué par un empilement de quelques feuillets polyaromatiques, comportant des hétérocycles (N, S et supportant des groupements fonctionnels ainsi que des chaînes alkyle. Ces cristallites peuvent s'associer pour former des agrégats de poids moléculaire élevé. La viscosité des huiles lourdes est probablement due à la taille et à l'abondance d'agrégats de ce type. Dans les huiles normales, les résines joueraient un rôle important pour solubiliser les asphaltènes, grâce à des interactions par liaisons hydrogène. Lors d'un traitement thermique, les asphaltènes produisent des hydrocarbures par craquage des parties saturées, cependant que le résidu s'enrichit en carbone. A température élevée, l'apparition d'un ordre graphitique dépend largement des teneurs en hétéroatomes (O, N, S. L'origine de la plus grande partie des asphaltènes doit être recherchée dans l'évolution du kérogène lors de son enfouissement dans les bassins sédimentaires. A chaque type majeur de kérogène, pourrait correspondre un type d'asphaltènes. Ces derniers migrent moins facilement que les hydrocarbures hors de la roche mère et sont comparativement moins abondants dans les réservoirs de pétrole, lorsque ce dernier n'est pas dégradé. The heavy constituents of crude oil (resins and asphaltenes play an important role in the accumulation of petroleum, in enhanced oil recovery (particularly of heavy oils and in processing and utilizing petroleum. Resins and asphaltenes are the ultimate term of the naphtheno

  3. Study on Colloidal Model of Petroleum Residues through the Attraction Potential between Colloids

    OpenAIRE

    Long-li Zhang; Guo-hua Yang; Chao-he Yang; Guo-he Que

    2016-01-01

    The samples of DaGang atmospheric residue (DG-AR), Middle East atmospheric residue (ME-AR), TaHe atmospheric residue (TH-AR), and their thermal reaction samples were chosen for study. All the samples were fractioned into six components separately, including saturates plus light aromatics, heavy aromatics, light resins, middle resins, heavy resins, and asphaltenes. The dielectric permittivity of the solutions of these components was measured, and the dielectric permittivity values of the compo...

  4. Hexadecane-degradation by Teskumurella and Stenotrophomonas Strains Isolated From Hydrocarbon Contaminated Soils

    OpenAIRE

    Hamid Tebyanian; Mehdi Hassanshahian; Ashraf Kariminik

    2013-01-01

    Background: Petroleum hydrocarbons are mix compounds and divided into four groups: Saturates, Aromatics, Resins and Asphalten. Among various phases of crude-oil, the alkanes with medium length chain are favorable substrates that rapidly degraded, although short-chain alkanes are very toxic and long-chain alkanes have low solubility in water that reduce its bioavailability and make resistant to biodegradation.Objectives: The main goal of this study is the isolation, molecular identification an...

  5. DENSE SUSPENSIONS FORMULATIONS FOR UPGRADING PROCESSES IN HEAVY AND EXTRA HEAVY CRUDE OIL

    OpenAIRE

    Lilia Rodríguez; Geoffrey Viviescas

    2011-01-01

    ABSTRACT The present work involved the formulation of solid-liquid suspensions of by-products of heavy and extra heavy crude oil process upgrades, coke and asphaltenes from Delayed coking and Deasphalting processes. This was done by controlling rheological properties and following specifications for pipeline transmission, similar to those of liquid hydrocarbons. The formulated products guarantee the possibility of moving the by products in a fluidized way, minimizing storage, handling, enviro...

  6. Extraction, quantification and study of interfacially active petroleum components”

    OpenAIRE

    Nenningsland, Andreas Lyng

    2012-01-01

    The recovery, transport and production of crude oil include challenges related to pipeline flow, separation and pressure drops occurring in the process, due to a vast array of indigenous molecules present in petroleum including bases, complex naphthenic acids and asphaltenes. The issues related to these molecules involve formation of kinetically stable emulsions, corrosion, naphthenate deposits, etc. Gaining a better understanding of their behaviour at the interface is therefore of interest i...

  7. Studi Pengaruh Penggunaan Bahan Tambah Zat Adiktif Yang Berbasis Hydrocarbon Terhadap Marshall dan Indirect Tensile Strenght

    OpenAIRE

    HAKIM, LUKMAN

    2014-01-01

    ABSTRAK Liquid Asbuton adalah nama suatu produk ekstraksi batuan aspal alam dari Pulau Buton melalui pengembangan teknologi, liquid Asbuton memiliki penetrasi yang sangat rendah, sehingga digolongkan sebagai aspal keras. pada umumnya mengandung 60% sampai dengan 75% kadar bitumen sisanya adalah mineral 25%-40% sebagai bahan pengisi alam, bitumen sebagian besar dibentuk oleh asphaltene dan sedikit maltene kadar stabilitas yang tinggi dan malten, yang terdiri dan polyaromatics resin (dengan...

  8. Lignin Peroxidase Oxidation of Aromatic Compounds in Systems Containing Organic Solvents

    OpenAIRE

    Vazquez-Duhalt, Rafael; Westlake, Donald W. S.; Fedorak, Phillip M.

    1994-01-01

    Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hy...

  9. Model Compounds for Heavy Crude Oil Components and Tetrameric Acids: Characterization and Interfacial Behaviour

    OpenAIRE

    Nordgård, Erland Løken

    2009-01-01

    The tendency during the past decades in the quality of oil reserves shows that conventional crude oil is gradually being depleted and the demand being replaced by heavy crude oils. These oils contain more of a class high-molecular weight components termed asphaltenes. This class is mainly responsible for stable water-in-crude oil emulsions. Both heavy and lighter crude oils in addition contain substantial amounts of naphthenic acids creating naphthenate deposits in topside facilities.The asph...

  10. Hydroprocessing Catalysts. Utilization and Regeneration Schemes Catalyseurs d'hydrotraitement. Schémas d'utilisation et de régénération

    OpenAIRE

    Furimsky E.

    2006-01-01

    The catalyst reactor inventory represents an important part of the cost of hydroprocessing operation. The selection of a suitable catalyst and reactor is influenced by feedstock properties. Processes ensuring an uninterrupted operation during catalyst addition and withdrawal are preferred for processing high asphaltene and metal content feedstocks. The spent catalyst can be regenerated and returned to the operation if the extent of its deactivation is not high. The regeneration may be perform...

  11. Investigation of the Physical and Molecular Properties of Asphalt Binders Processed with Used Motor Oils

    OpenAIRE

    Mohyeldin Ragab; Magdy Abdelrahman

    2015-01-01

    In this work we investigated the performance aspects of addition of used motor oils (UMO) to neat and crumb rubber modified asphalts (CRMA) and related that to the change of molecular size distribution of modified asphalt’s fractions; asphaltenes, saturates, naphthene aromatics, and polar aromatics. Based on the results of temperature sweep viscoelastic tests, addition of crumb rubber modifier (CRM) alone or with UMO results in the formation of internal network within the modified asphalt. Ba...

  12. Sequential Isolation of Saturated, Aromatic, Resinic and Asphaltic Fractions Degrading Bacteria from Oil Contaminated Soil in South Sumatera

    OpenAIRE

    Pingkan Aditiawati; Munawar; Dea Indriani Astuti

    2012-01-01

    Sequential isolation has been conducted to obtain isolates of saturated, aromatic, resin, and asphaltene fractions degrading bacteria from oil contaminated sites. Five soil samples were collected from South Sumatera. These were analyzed using soil extract medium enriched with oil recovery or Remaining-Oil recovery Degradated (ROD) as sole carbon and energy sources according to the isolation stage. ROD at the end of every isolation stage analyzed oil fractions by use of the SARA analysis metho...

  13. Ash composition of oils of West Kazakhstan

    Energy Technology Data Exchange (ETDEWEB)

    Bakirova, S.F.; Aleshin, G.N.; Kalinin, S.K.; Kotova, A.V.; Nadirov, N.K.

    1982-01-01

    Results are presented of studying the distribution of trace elements in oils of new fields of West Kazakhstan. It is indicated that for the majority of oils studied, the concentration of trace elements does not depend on the ash content of oils. For resinous asphaltenes and highly sulfur oils of the Buzachi region, there is an increase in the content of iron, vanadium, nickel with a rise in ash content of oils. This is possibly associated with their secondary enrichment with trace elements.

  14. The tailings technology suite

    Energy Technology Data Exchange (ETDEWEB)

    Jaremko, Deborah

    2011-10-15

    Oilsands tailing ponds contain leftover bitumen and asphaltenes, which are dangerous to local wildlife. The Oil Sands Tailings Consortium (OSTCS) was founded by all major mining players and aims to prompt collaboration within the oilsands industry to reclaim the tailings area. Each company has hitherto worked on different tailings management technologies, often duplicating efforts. Some technologies proposed by these oilsands miners were introduced in this article.

  15. Literature survey and documentation on organic solid deposition problem. Status report

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Ting-Horng

    1993-12-01

    Organic solid deposition is often a major problem in petroleum production and processing. Recently, this problem has attracted more attention because operating costs have become more critical to the profit of oil production. Also, in miscible gas flooding, asphaltene deposition often occurs in the wellbore region after gas breakthrough and causes plugging. The organic deposition problem is particularly serious in offshore oil production. Cooling of crude oil when it flows through long-distance pipelines under sea water may cause organic deposition in the pipeline and result in plugging. NIPER`s Gas EOR Research Project has been devoted to the study of the organic solid deposition problem for three years. NIPER has received many requests for technical support. Recently, the DeepStar project committee on thermo-technology development and standardization has asked NIPER to provide them with NIPER`s expertise and experience. To assist the oil industry, NIPER is preparing a state-of-the-art review on the technical development for the organic deposition problem. In the first quarter, this project has completed a literature survey and documentation. total of 258 publications (114 for wax, 124 for asphaltene, and 20 for related subjects) were collected and categorized. This literature survey was focused on the two subjects: wax and asphaltene. The subjects of bitumen, asphalt, and heavy oil are not included. Also, the collected publications are mostly related to production problems.

  16. A new generation of models for water-in-oil emulsion formation

    International Nuclear Information System (INIS)

    Water-in-oil emulsions form after oil or petroleum products are spilled, and can make the cleanup of oil spills difficult. This paper discussed new modelling schemes designed for the formation of water-in-oil emulsions. Density, viscosity, asphaltene and resin contents were used to compute a class index for unstable, entrained water-in-oil states, meso-stable, or stable emulsions. Prediction schemes were used to estimate the water content and viscosity of the water-in-oil states and the time to formation with wave height inputs. A numerical values was used for each type of water-in-oil type. The properties of the starting oil were correlated with the numerical scheme. New regressions were then performed using a Gaussian-style regression expansion technique. Data obtained from the models suggested that water-in-oil types are stabilized by both asphaltenes and resins. The optimized model was then compared with earlier models. The study showed that the new model has the capacity to accurately predict oil-in-water types approximately 90 per cent of the time using only resin, saturate, asphaltene, viscosity, and density data. 17 refs., 8 tabs., 8 figs

  17. Study on Colloidal Model of Petroleum Residues through the Attraction Potential between Colloids

    Directory of Open Access Journals (Sweden)

    Long-li Zhang

    2016-01-01

    Full Text Available The samples of DaGang atmospheric residue (DG-AR, Middle East atmospheric residue (ME-AR, TaHe atmospheric residue (TH-AR, and their thermal reaction samples were chosen for study. All the samples were fractioned into six components separately, including saturates plus light aromatics, heavy aromatics, light resins, middle resins, heavy resins, and asphaltenes. The dielectric permittivity of the solutions of these components was measured, and the dielectric permittivity values of the components can be determined by extrapolation, which increased steadily from saturates plus light aromatics to asphaltenes. Moreover, the Hamaker constants of the components were calculated from their dielectric permittivity values. The Van der Waals attractive potential energy between colloids corresponding to various models could be calculated from the fractional composition and the Hamaker constants of every component. It was assumed that the cores of colloidal particles were formed by asphaltenes and heavy resins mainly; the other fractions acted as dispersion medium. For the three serials of thermal reaction samples, the Van der Waals attraction potential energy between colloids for this kind of model was calculated. For TH-AR thermal reaction samples, the Van der Waals attraction potential energy presented the maximum as thermal reaction is going on, which was near to the end of coke induction period.

  18. Study on Colloidal Model of Petroleum Residues through the Attraction Potential between Colloids.

    Science.gov (United States)

    Zhang, Long-Li; Yang, Guo-Hua; Yang, Chao-He; Que, Guo-He

    2016-01-01

    The samples of DaGang atmospheric residue (DG-AR), Middle East atmospheric residue (ME-AR), TaHe atmospheric residue (TH-AR), and their thermal reaction samples were chosen for study. All the samples were fractioned into six components separately, including saturates plus light aromatics, heavy aromatics, light resins, middle resins, heavy resins, and asphaltenes. The dielectric permittivity of the solutions of these components was measured, and the dielectric permittivity values of the components can be determined by extrapolation, which increased steadily from saturates plus light aromatics to asphaltenes. Moreover, the Hamaker constants of the components were calculated from their dielectric permittivity values. The Van der Waals attractive potential energy between colloids corresponding to various models could be calculated from the fractional composition and the Hamaker constants of every component. It was assumed that the cores of colloidal particles were formed by asphaltenes and heavy resins mainly; the other fractions acted as dispersion medium. For the three serials of thermal reaction samples, the Van der Waals attraction potential energy between colloids for this kind of model was calculated. For TH-AR thermal reaction samples, the Van der Waals attraction potential energy presented the maximum as thermal reaction is going on, which was near to the end of coke induction period. PMID:27274729

  19. The microstructure of petroleum vacuum residue films for bituminous concrete: a microscopy approach.

    Science.gov (United States)

    Sourty, E D; Tamminga, A Y; Michels, M A J; Vellinga, W-P; Meijer, H E H

    2011-02-01

    Selected carbon-rich refinery residues ('binders') mixed with mineral particles can form composite materials ('bituminous concrete') with bulk mechanical properties comparable to those of cement concrete. The microstructural mechanism underlying the remarkable composite properties has been related to the appearance of a rigid percolating network consisting of asphaltenes and mineral particles [Wilbrink M. et al. (2005) Rigidity percolation in dispersions with a structured visco-elastic matrix. Phys. Rev. E71, 031402]. In this paper, we explore the microstructure of thin binder films of varying thickness with a number of microscopic characterization techniques, and attempt to relate the observed microstructure to the distinctive mechanical behaviour. Two binders, only one of which has been proven to be suitable for bituminous concrete were investigated, and their microstructure compared. Both binders show the formation of asphaltene aggregates. The binder suitable for bituminous concrete is distinguished by the fact that the asphaltenes show a stronger tendency towards such aggregation, due to a higher concentration and less stabilization in the maltene phase. They also show a clear affinity to other species (such as waxes) and may act as nucleation sites for crystals and aggregates of those species. PMID:21118207

  20. Flow of microemulsion through soil columns contaminated with asphaltic residue; Fluxo de microemulsoes atraves do solo contaminado com residuos asfalticos

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Marcia C.K.; Oliveira, Jose F. [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE); Oliveira, Roberto C.G.; Gonzalez, Gazpar [PETROBRAS, Rio de Janeiro, RJ (Brazil). Centro de Pesquisas

    2004-07-01

    Nowadays, soil contamination with nonaqueous phase liquids (NAPLs) such as petroleum hydrocarbons is a major environmental problem. Significant efforts have been devoted to the development of processes to remediate sites contaminated with NAPLs. Unfortunately, most of the developed processes proved to be inefficient to remove the organic heavy fraction present in the NAPLs. Nevertheless, in our preliminary bench scale tests it was observed that, due to their high solubilization capacity and stability, microemulsions are able to remove organic heavy fractions like asphaltenes and resins, typically present in crude oils. The present work was dimensioned to evaluate, under up-flow condition, the performance of different microemulsions specially designed to remove asphaltenes fractions from soils using a column test set-up. The contaminant residual concentration was quantified by UV spectroscopy and the microemulsion efficiency determined using mass balance. The results showed that the microemulsions tested have a high capacity for removing asphaltenes fractions from contaminated soils. It was also observed that the predominant removal mechanism, solubilization or mobilization, depends essentially on the microemulsion's chemical formulation. Finally it was verified that microemulsion's formulations based on natural solvents compounds are also efficient for removing asphaltic residues. (author)

  1. Relationship Between the Composition and Interfacial Tension of Former Manufactured Gas Plant Tars

    Science.gov (United States)

    Hauswirth, S.; Birak, P. S.; Miller, C. T.

    2011-12-01

    Former manufactured gas plant (FMGP) tars pose significant environmental hazards and present a challenge to regulators and industry professionals. The tars, which were produced as a byproduct of the gas manufacturing process, were frequently released into the environment through improper disposal or leaks in plant infrastructure. The interfacial tension (IFT) is a primary factor controlling the mobility of tars in porous media, and is therefore important to understand for both predicting the migration of tars and designing remediation strategies. In this study, we characterized nine field-collected FMGP tars and a commercially available coal tar by means of chemical extractions (asphaltenes, resins, acids, and bases), gas chromatography-mass spectrometry (GC-MS), and Fourier transform infrared (FTIR) spectroscopy. Additionally, the IFT and contact angle of each tar was determined for a pH range of 3-11. The IFT was found to be similar for all tars at pH 5 and 7 regardless of composition. Slight decreases in IFT at lower pH were correlated with higher concentrations of extractable bases, which consisted primarily of nitrogen-containing heterocyclic aromatic compounds. Much greater reductions of IFT were observed at high pH. These reductions were found to be associated with the presence of carbonyl or carboxyl groups in the asphaltenes. It is likely that the larger size of the asphaltene molecules (as compared to the extractable compounds) resulted in species with greater surface activity when ionized.

  2. Molecular modeling of interactions between heavy crude oil and the soil organic matter coated quartz surface.

    Science.gov (United States)

    Wu, Guozhong; Zhu, Xinzhe; Ji, Haoqing; Chen, Daoyi

    2015-01-01

    Molecular dynamic (MD) simulation was applied to evaluate the mobility, diffusivity and partitioning of SARA (saturates, aromatics, resins, asphaltenes) fractions of heavy crude oil on soil organic matter (SOM) coated quartz surface. Four types of SOM were investigated including Leonardite humic acid, Temple-Northeastern-Birmingham humic acid, Chelsea soil humic acid and Suwannee river fulvic acid. The SOM aggregation at oil-quartz interface decreased the adsorption of SARA on the quartz surface by 13-83%. Although the SOM tended to promote asphaltenes aggregation, the overall mobility of SARA was significantly greater on SOM-quartz complex than on pure quartz. Particularly, the diffusion coefficient of asphaltenes and resins increased by up to one-order of magnitude after SOM addition. The SOM increased the overall oil adsorption capacity but also mobilized SARA by driving them from the viscous oil phase and rigid quartz to the elastic SOM. This highlighted the potential of SOM addition for increasing the bioavailability of heavy crude oil without necessarily increasing the environmental risks. The MD simulation was demonstrated to be helpful for interpreting the role of SOM and the host oil phase for the adsorption and partitioning of SARA molecules, which is the key for developing more realistic remediation appraisal for heavy crude oil in soils. PMID:25016557

  3. Characterization of oil and gas reservoir heterogeneity; Final report, November 1, 1989--June 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D.

    1993-09-01

    The Alaskan North Slope comprises one of the Nation`s and the world`s most prolific oil province. Original oil in place (OOIP) is estimated at nearly 70 BBL (Kamath and Sharma, 1986). Generalized reservoir descriptions have been completed by the University of Alaska`s Petroleum Development Laboratory over North Slope`s major fields. These fields include West Sak (20 BBL OOIP), Ugnu (15 BBL OOIP), Prudhoe Bay (23 BBL OOIP), Kuparuk (5.5 BBL OOIP), Milne Point (3 BBL OOIP), and Endicott (1 BBL OOIP). Reservoir description has included the acquisition of open hole log data from the Alaska Oil and Gas Conservation Commission (AOGCC), computerized well log analysis using state-of-the-art computers, and integration of geologic and logging data. The studies pertaining to fluid characterization described in this report include: experimental study of asphaltene precipitation for enriched gases, CO{sup 2} and West Sak crude system, modeling of asphaltene equilibria including homogeneous as well as polydispersed thermodynamic models, effect of asphaltene deposition on rock-fluid properties, fluid properties of some Alaskan north slope reservoirs. Finally, the last chapter summarizes the reservoir heterogeneity classification system for TORIS and TORIS database.

  4. Disjoining pressure isotherms of water-in-bitumen emulsion films.

    Science.gov (United States)

    Taylor, Shawn D; Czarnecki, Jan; Masliyah, Jacob

    2002-08-01

    In the oil sands industry, undesirable water-in-oil emulsions are often formed during the bitumen recovery process where water is used to liberate bitumen from sand grains. Nearly all of the water is removed except for a small percentage (approximately 1 to 2%), which remains in the solvent-diluted bitumen as micrometer-sized droplets. Knowledge of the colloidal forces that stabilized these water droplets would help to increase our understanding of how these emulsions are stabilized. In this study, the thin liquid film-pressure balance technique has been used to measure isotherms of disjoining pressure in water/toluene-diluted bitumen/water films at five different toluene-bitumen mass ratios. Even though a broad range of mass ratios was studied, only two isotherms are obtained, indicating a possible change in the molecular orientation of surfactant molecules at the bitumen/water interfaces. At low toluene-bitumen mass ratios, the film stability appears to be due to a strong, short-range steric repulsion created by a surfactant bilayer. Similar isotherms were obtained for water/toluene-diluted asphaltene/water films, indicating that the surface active material at the interface probably originated from the asphaltene fraction of the bitumen. However, unlike the bitumen films, films of toluene-diluted asphaltenes often formed very rigid interfaces similar to the "protective skin" described by other researcher. PMID:16290773

  5. Abstracts of the 9. annual international conference on petroleum phase behavior and fouling

    Energy Technology Data Exchange (ETDEWEB)

    Muhammad, M. [Schlumberger Canada Ltd., Calgary, AB (Canada); Wiehe, I. [Soluble Solutions, Gladstone, NJ (United States)] (comps.)

    2008-07-01

    This conference provided a forum to discuss petroleum phase behaviour and present the latest understanding of the molecular structures and physical interactions of the larger molecules in petroleum. Participants came from universities, petroleum companies, service companies and government laboratories. Topics of discussion included the chemistry, thermodynamics and deposition related to heavy oil, bitumen, asphaltenes, wax, naphthenates and naphthenic acids, as well as petroleum-water emulsions and fouling mechanisms and mitigation. Solids, such as wax and asphaltenes have a tendency to precipitate with changes in temperature and pressure or upon mixing with other petroleum streams. These solid phases can impede or block flow during petroleum production, transport and refining operations. This presentations provided a better understanding of solids deposition to better predict when these problems may occur, so that mitigation methods might be devised. The 5 sessions of the conference were entitled: thermodynamics and rheology of petroleum fluids; asphaltenes; emulsions; flow assurance; and upgrading and refining. All 100 presentations at this conference have been catalogued separately for inclusion in this database. refs.

  6. Structural description of aromatic core in residue fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.C.; Sun, W.F.; Fang, X.C.; Guan, M.H. [Fushun Research Inst. of Petroleum and Petrochemicals, Fushun, Liaoning (China)

    2008-07-01

    The chemical structures of a polycyclic aromatic core in Oman residue fractions was examined using proton nuclear magnetic resonance spectroscopy (1H-NMR), synchronous fluorescence spectrometry (SFS) and ruthenium ions catalyzed oxidation (RICO). It was important to understand the aromatic core structure in heavy oil fractions, including aromatic rings system size and condensed type. The types and content of benzenepolycarboxylic acids disclosed the condensed types of aromatic rings in core. Biphenyl fraction (BIPH), cata-condensed fraction (CATA), peri-condensed fraction (PERI) and condensed index (BCI) were calculated by benzenepolycarboxylic acids. The results from 1H-NMR showed that about 3.2 aromatic rings were in the aromatics core, 5.6 rings were in the resins unit, and 8.2 rings were in the asphaltenes unit. This paper also described the aromatic rings distribution of residue fractions as determined by SFS. The type and content of benzenepolycarboxylic acids from RICO of residue fractions suggested the condensed mode of rings in the aromatic core. The most cata-condensed type aromatic structures were in aromatics, the whole peri-condensed type were in asphaltenes, while the dominant peri-condensed type, as well as some quantity of cata-condensed type structures existed together in resins. Aromatics, resins and asphaltenes were given likely structural models based on results from this study. 8 refs., 3 tabs., 7 figs.

  7. ИЗУЧЕНИЕ ДИНАМИКИ ОСАЖДЕНИЯ А СФАЛЬТЕНОВ В СИСТЕМЕ Н-ГЕПТАН/ТОЛУОЛ

    OpenAIRE

    Петрова, Л.; Борисов, Д.; Зайдуллин, И.; Абакумова, Н.

    2011-01-01

    Проведена оценка стабильности асфальтенов из двух тяжелых нефтей в системе нгептан/толуол спектрофотометрией и исследована устойчивость этих нефтей к осаждению асфальтенов наблюдением под микроскопом.Estimation of asphaltene stability for asphaltenes from two heavy oils was examined by spectrophotometry and stability of heavy oils to asphaltene precipitation by supervision under a microscope was investigated....

  8. Diluent evaluation for bitumen pipelining

    Energy Technology Data Exchange (ETDEWEB)

    Rahimi, P.; Cooper, S.; Alem, T. [National Centre for Upgrading Technology, Devon, AB (Canada)

    2009-07-01

    Oil sands crudes are expected to represent over 75 per cent of the crude produced in Western Canada. Since bitumen is too viscous to be shipped in pipelines, it must be diluted with a lighter hydrocarbon. Although thermal processing could be used together with a smaller quantity of diluent, the resulting fuel would be less stable. This presentation reported on a study that examined the compatibility and stability of virgin and cracked bitumen in natural diluents and synthetic diluents. Diluent ranking for asphaltene stability in virgin bitumen and cracked bitumen was also examined. Four heavy oils and bitumens were used in this study, notably Athabasca bitumen (AB), cracked Athabasca bitumen, heavy oil B and a light crude C. Natural gas condensate and oil sand derived liquids were the 2 diluents used to investigate the insolubility number and solubility blending number of different crudes, diluents and their blends. It was concluded that the stability of different heavy oils can be determined accurately by observing flocculation of asphaltenes. The study also evaluated and ranked the strength of different diluents for keeping asphaltenes soluble in the oil matrix. Although synthetic diluents were found to be better solvents than natural gas condensates for bitumen, the order of the solvent strength was reversed when bitumen was processed. tabs., figs.

  9. Adsorption of bituminous components at oil/water interfaces investigated by quartz crystal microbalance: implications to the stability of water-in-oil emulsions.

    Science.gov (United States)

    Goual, Lamia; Horváth-Szabó, Géza; Masliyah, Jacob H; Xu, Zhenghe

    2005-08-30

    Silica-gel-coated QCM crystals oscillating in a thickness shear mode are used to measure adsorption of bituminous components in water-saturated heptol (1/1 vol ratio of a heptane/toluene mixture) at the oil/water interface. In addition to the viscoelasticity of the adsorbed film, the effects of the bulk liquid density and viscosity as well as the liquid trapped in interfacial cavities are taken into account for the calculation of adsorbed mass. Asphaltenes in heptol adsorb continuously at the oil/water interface, while resins (the surface-active species in maltenes) show adsorption saturation in the same solvent. For Athabasca bitumen in heptol, two adsorption regimes are observed depending on concentration. At low concentrations, a slow, non-steady-state, and irreversible adsorption takes place. At high concentrations, a steady-state adsorption with limited reversibility results in a quick adsorption saturation. The threshold concentration between these adsorption regimes is 1.5 wt % and 8 wt % for oil/water and oil/gold interfaces, respectively. The threshold concentration, the total adsorbed amount, and the flux of non-steady-state adsorption depend on the resin-to-asphaltene ratio. The threshold concentration is related to the earlier reported critical bitumen concentration characterizing the rigid-to-flexible transition of the interfacial film. We propose a new mechanism based on the change of the effective resin-to-asphaltene ratio with dilution to explain both the adsorption behavior and emulsion stability. PMID:16114932

  10. Could naphthenic acids be responsible for severe emulsion tightness for a low TAN value oil?

    Energy Technology Data Exchange (ETDEWEB)

    Pauchard, V.; Muller, H.; Al-Hajji, A. [Saudi Aramco, Dhahran (Saudi Arabia). Research and Development Center; Sjoblom, J. [Norwegian Univ. of Technology, Trondheim (Norway). Ugelstad Laboratory; Kokal, S. [Saudi Aramco, Dhahran (Saudi Arabia). EXPEC Advanced Research Center; Bouriat, P.; Dicharry, C. [Univ. de Pau, Pau Cedex (France). Laboratoire des Fluides Complexes, UMR CNRS; Rogers, R. [Florida State Univ., Tallahassee, FL (United States)

    2008-07-01

    This study re-analyzed the emulsion stabilizing properties of a low Total Acid Number (TAN) of a high asphaltene crude oil with respect to the role of naphthenic acids. The emulsion stability depended on the pressure/pH. The high interfacial activity of indigenous acids extracted from the crude oil was determined by means of Ion Exchange Resins and by the high organic acid content in the interfacial material extracted from a sludge emulsion. The physical origin of these phenomenological observations was identified using the Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR-MS) and pendant droplet experiments. The interfacial material was composed of a mixture of asphaltenes and organic acids having a wide range of structures (monoprotic, diprotic, fatty, naphthenic and perhaps aromatic) and molecular weights. The interfacial rheology was a 2D gel with an assumed glass transition temperature of approximately 40 degrees C. It was concluded that a synergistic effect of asphaltenes and organic acids promoted the build up of a very structured interface. This interface is more resistant to droplets coalescence than less structured interfaces. Therefore, the disruption of the interfacial layer requires the drainage of individual molecules as well as a collective yield of the gel.

  11. Study on Colloidal Model of Petroleum Residues through the Attraction Potential between Colloids

    Science.gov (United States)

    Zhang, Long-li; Yang, Guo-hua; Yang, Chao-he; Que, Guo-he

    2016-01-01

    The samples of DaGang atmospheric residue (DG-AR), Middle East atmospheric residue (ME-AR), TaHe atmospheric residue (TH-AR), and their thermal reaction samples were chosen for study. All the samples were fractioned into six components separately, including saturates plus light aromatics, heavy aromatics, light resins, middle resins, heavy resins, and asphaltenes. The dielectric permittivity of the solutions of these components was measured, and the dielectric permittivity values of the components can be determined by extrapolation, which increased steadily from saturates plus light aromatics to asphaltenes. Moreover, the Hamaker constants of the components were calculated from their dielectric permittivity values. The Van der Waals attractive potential energy between colloids corresponding to various models could be calculated from the fractional composition and the Hamaker constants of every component. It was assumed that the cores of colloidal particles were formed by asphaltenes and heavy resins mainly; the other fractions acted as dispersion medium. For the three serials of thermal reaction samples, the Van der Waals attraction potential energy between colloids for this kind of model was calculated. For TH-AR thermal reaction samples, the Van der Waals attraction potential energy presented the maximum as thermal reaction is going on, which was near to the end of coke induction period.

  12. Hot solvent injection for heavy oil-bitumen recovery : an experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Pathak, V.; Babadagli, T. [Alberta Univ., Edmonton, AB (Canada); Edmunds, N.R. [Laricina Energy Ltd., Calgary, AB (Canada)

    2010-07-01

    Steam injection and generation costs can have a significant influence on the overall economics of thermal heavy oil and bitumen recovery processes. The economic feasibility of miscible recovery methods is based on the use of effective solvent retrieval procedures. This study investigated the performance of solvents at higher temperatures. Glass bead packs and Berea sandstone cores were used to represent different types of pore structures in a series of laboratory experiments. The samples were saturated with heavy oil and exposed to paraffinic solvent vapors at temperatures above boiling point at a pressure of 1500 kPa. The solvents were then collected from each sample and analyzed in order to determine composition, viscosity, and asphaltene content. The amounts of oil recovered were also analyzed and the quantity of the asphaltene precipitated with each of the tested solvents was determined. Results of the study were then used to determine optimal conditions for each solvent type and to assess which solvents had the highest recovery rates. Butane diluted the oil more than propane, which resulted in a lower asphaltene content and decreased viscosity in the oil samples. 18 refs., 4 tabs., 11 figs.

  13. Geochemical Characteristics and Origin of Tar Mats from the Yaha Field in Tarim Basin,China

    Institute of Scientific and Technical Information of China (English)

    张敏; 张俊; 等

    1999-01-01

    Tar mats were firstly discovered and determined accurately in terrestrial oil and gas reservoirs associated with Lower Tertiary sandstone reservoirs in the Yaha field of the Tarim Basin,China,by thin-layer chromatography-flame ionization detector(TLC-FID)and Rock-Eval analysis.The relative content of asphaltene in gross composition of tar mat extracts accounts for more than 30%,that in the corresponding oil leg less than 20%.In the geochemical description profile of oil gas reservoirs,drastic changes in asphaltene contents between tar mats and oil legs could be discovered.This in an important marker to determine tar mats.Distribution characteristics of saturated and aromaic hydrocarbons from reservoir core extracts and crude oils in the Yaha oil and gas reservoirs in the Tarim Basin are described systematically in this paper,and the results show there are similarities among n-alkane distribution characteristics,biomarker distribution characteristics and their combined characteristics of saturated hydrocarbons,and the geochemical characteristics of aromatic hydrocarbons for tar mats.oil leg,asphaltic sand and crude oil.These characteristics suggest the hydrocarbons in these samples were originated from the common source rocks.However,the geochemical characteristics of tar mats reveales that the mechanism of formation of tar mats is the precipitation of asphaltene from crude oils in petroleum reservoirs caused by increased dissolved gas in oil legs(gas injection).

  14. Influence of feedstock type on heavy coker gas oil quality; A influencia do tipo de carga na qualidade do gasoleo pesado de coque

    Energy Technology Data Exchange (ETDEWEB)

    Costa, Claudine T.A.S.; Barros, Francisco C.C. [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2004-07-01

    Over the past few years, the great challenge to the Oil Industry has been the processing of increasingly heavier feedstock seeking to meet the growing demand for medium distillates and, at the same time, the reduction of the production of fuel oils. In this scenario, the Delayed Coking Unit (DCU) appears to be an attractive technology for the processing of heavy and ultra heavy crudes. The addition of Asphaltene Residue produced by the Solvent Deasphalting Unit (SDA) to the Vacuum Residue, traditional feedstock of these units, has been a new tendency in the composition of the feedstock, with the intention of converting the residual fractions into value added liquid oil products. Results obtained in pilot plants show that asphaltene residue alters the yield and the quality of the products of the DCU, especially those of Heavy Coker Gas Oil (HKGO) that is incorporated in the feedstock of the Fluid Catalytic Cracking Unit (FCCU). The alteration in the quality of the HKGO negatively impacts on the conservation of the FCCU. The insertion of DCU in refineries that possess SDA in their refining systems has shown itself to be fundamental for the reduction of the production of fuel oils. However, to define the quantity and quality of asphaltene residue to be incorporated in the feedstock of the UCR, the best operating conditions and the necessary project adaptations to this unit are fundamental and they should be analyzed with the objective of maximizing the profitability of the refineries. (author)

  15. Compositional analysis of heavy crude oil fractions by ultrahigh resolution FT-ICR mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Rodgers, R.; Marshall, A.G. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry; Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Lab; McKenna, A.M. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry

    2009-07-01

    The need to characterize heavy, high sulphur crudes is essential as the global oil supply of light, sweet crudes is depleted. Due to the high sulphur content in bitumen and heavy crudes, detailed compositional characterization is needed to help develop recovery strategies in the refinery. This study characterized the middle distillate fractions of Athabasca bitumen to define the structural evolution of polycyclic aromatics that may also contain nitrogen, oxygen or sulphur atoms as a function of boiling point. The higher distillate fractions were then analyzed along with vacuum resids to prove that the structural distribution in petroleum is continuous. The basic differences in solution-phase behaviour between asphaltene and maltene fractions were discussed. An argument was presented for the structural evolution of polyaromatic hydrocarbons, and the compositional boundary between asphaltene and maltene was defined. The study suggested that asphaltenes and maltenes share the same carbon number. The characterization was extended to vanadyl porphyrins by electrospray and atmospheric pressure photoionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). tabs., figs.

  16. Multifunctional polymer composites containing inorganic nanoparticles and novel low-cost carbonaceous fillers

    Science.gov (United States)

    Wu, Hongchao

    Advanced polymer nanocomposites/composites containing inorganic nanoparticles and novel carbonaceous fillers were processed and evaluated for the multifunctional purposes. To prepare the high performance conformal coating materials for microelectronic industries, epoxy resin was incorporated with zirconium tungstate (ZrW 2O8) nanoparticles synthesized from hydrothermal reaction to alleviate the significant thermal expansion behavior. Three types of ZrW 2O8 at different loading levels were selected to study their effect of physical (morphology, particle size, surface area, etc.) and thermal (thermal expansivity) properties on the rheological, thermo-mechanical, dynamic-mechanical, and dielectric properties of epoxy resin. Epoxy resin incorporated by Type-1 ZrW2O8 exhibited the overall excellent performance. Hexagonal boron nitride (h-BN) nanoplatelets were non-covalently encapsulated by a versatile and mussel-adhesive protein polydopamine through the strong pi-pi* interaction. The high-temperature thermoset bisphenol E cyanate ester (BECy) reinforced with homogenously dispersed h-BN at different volume fractions and functionalities were processed to investigate their effect on thermo-mechanical, dynamic-mechanical, dielectric properties and thermal conductivity. Different theoretical and empirical models were also successfully applied for the prediction of CTE, thermal conductivity and dielectric constant of h-BN/BECy nanocomposites. On the basis of the improvement in dimensional stability, the enhancement in storage modulus in both glassy and rubbery regions, associated with the increment in thermal conductivity without deterioration of thermal stability, glassy transition temperature and dielectric properties, pristine h-BN/BECy nanocomposites exhibited the prospective application in microelectronic packaging industry. Polydopamine functionalized h-BN significantly increased the dielectric constant of cyanate ester at lower frequency region. Asphaltene, a

  17. Water-in-oil emulsions results of formation studies and applicability to oil spill modelling

    International Nuclear Information System (INIS)

    This paper summarises studies of water-in-oil emulsions, their stability, and modelling of their formation. Studies show that water-in-oil emulsions might be characterised into three categories (stable, mesostable and unstable). These categories were established by visual appearance, elasticity and viscosity difference. It was also shown that water content was not an important factor. A fourth category of water-in-oil exists, that of water entrainment, which is not an emulsion. Water-in-oil emulsions made from crude oils have different classes of stabilities as a result of the asphaltene and resin contents. The differences in the emulsion types are readily distinguished both by their rheological properties, and simply by appearance. The apparent viscosity of a stable emulsion at a shear rate of one reciprocal second, is at least three orders-of-magnitude greater than the starting oil. An unstable emulsion usually has a viscosity no more than one order-of-magnitude greater than that of the starting oil. A stable emulsion has a significant elasticity, whereas an unstable emulsion does not. Stable emulsions have sufficient asphaltenes (>∼7%) to establish films of these compounds around water droplets. Mesostable emulsions have insufficient asphaltenes to render them completely stable. Stability is achieved by visco-elastic retention of water and secondarily by the presence of asphaltene or resin films. Mesostable emulsions display apparent viscosities of about 80-600 times that of the starting oil and true viscosities of 20-200 times that of the starting oil. Mesostable emulsions have an asphaltene and resin content greater than 3%. Entrained water occurs when a viscous oil retains larger water droplets, but conditions are not suitable for the formation of an emulsion. Entrained water may have a viscosity that is similar or slightly greater (∼ 2-10 times) than the starting oil. It was found that emulsion formation occurs at a threshold energy, however this energy

  18. Model compounds for heavy crude oil components and tetrameric acids: Characterization and interfacial behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Nordgaard, Erland Loeken

    2009-07-01

    The tendency during the past decades in the quality of oil reserves shows that conventional crude oil is gradually being depleted and the demand being replaced by heavy crude oils. These oils contain more of a class high-molecular weight components termed asphaltenes. This class is mainly responsible for stable water-in-crude oil emulsions. Both heavy and lighter crude oils in addition contain substantial amounts of naphthenic acids creating naphthenate deposits in topside facilities. The asphaltene class is defined by solubility and consists of several thousand different structures which may behave differently in oil-water systems. The nature of possible sub fractions of the asphaltene has been received more attention lately, but still the properties and composition of such is not completely understood. In this work, the problem has been addressed by synthesizing model compounds for the asphaltenes, on the basis that an acidic function incorporated could be crucial. Such acidic, poly aromatic surfactants turned out to be highly inter facially active as studied by the pendant drop technique. Langmuir monolayer compressions combined with fluorescence of deposited films indicated that the interfacial activity was a result of an efficient packing of the aromatic cores in the molecules, giving stabilizing interactions at the o/w interface. Droplet size distributions of emulsions studied by PFG NMR and adsorption onto hydrophilic silica particles demonstrated the high affinity to o/w interfaces and that the efficient packing gave higher emulsion stability. Comparing to a model compound lacking the acidic group, it was obvious that sub fractions of asphaltenes that contain an acidic, or maybe similar hydrogen bonding functions, could be responsible for stable w/o emulsions. Indigenous tetrameric acids are the main constituent of calcium naphthenate deposits. Several synthetic model tetra acids have been prepared and their properties have been compared to the indigenous

  19. Evaluation of Reservoir Wettability and its Effect on Oil Recovery.

    Energy Technology Data Exchange (ETDEWEB)

    Buckley, J.S.

    1998-01-15

    We report on the first year of the project, `Evaluation of Reservoir Wettability and its Effect on Oil Recovery.` The objectives of this five-year project are (1) to achieve improved understanding of the surface and interfacial properties of crude oils and their interactions with mineral surfaces, (2) to apply the results of surface studies to improve predictions of oil production from laboratory measurements, and (3) to use the results of this research to recommend ways to improve oil recovery by waterflooding. During the first year of this project we have focused on understanding the interactions between crude oils and mineral surfaces that establish wetting in porous media. As background, mixed-wetting and our current understanding of the influence of stable and unstable brine films are reviewed. The components that are likely to adsorb and alter wetting are divided into two groups: those containing polar heteroatoms, especially organic acids and bases; and the asphaltenes, large molecules that aggregate in solution and precipitate upon addition of n-pentane and similar agents. Finally, the test procedures used to assess the extent of wetting alteration-tests of adhesion and adsorption on smooth surfaces and spontaneous imbibition into porous media are introduced. In Part 1, we report on studies aimed at characterizing both the acid/base and asphaltene components. Standard acid and base number procedures were modified and 22 crude oil samples were tested. Our approach to characterizing the asphaltenes is to focus on their solvent environment. We quantify solvent properties by refractive index measurements and report the onset of asphaltene precipitation at ambient conditions for nine oil samples. Four distinct categories of interaction mechanisms have been identified that can be demonstrated to occur when crude oils contact solid surfaces: polar interactions can occur on dry surfaces, surface precipitation is important if the oil is a poor solvent for its

  20. Improving fuel quality by whole crude oil hydrotreating: A kinetic model for hydrodeasphaltenization in a trickle bed reactor

    International Nuclear Information System (INIS)

    Highlights: ► Asphaltene contaminant must be removed to a large extent from the fuel to meet the regulatory demand. ► Kinetics for hydrodeasphaltenization are estimated via experimentation and modeling. ► Using the kinetic parameters, a full process model for the trickle bed reactor (TBR) is developed. ► The model is used for simulating the behavior of the TBR to get further insight of the process. ► The influences of operating conditions in the hydrodeasphaltenization process are reported. -- Abstract: Fossil fuel is still a predominant source of the global energy requirement. Hydrotreating of whole crude oil has the ability to increase the productivity of middle distillate fractions and improve the fuel quality by simultaneously reducing contaminants such as sulfur, nitrogen, vanadium, nickel and asphaltene to the levels required by the regulatory bodies. Hydrotreating is usually carried out in a trickle bed reactor (TBR) where hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodemetallization (HDM) and hydrodeasphaltenization (HDAs) reactions take place simultaneously. To develop a detailed and a validated TBR process model which can be used for design and optimization of the hydrotreating process, it is essential to develop kinetic models for each of these reactions. Most recently, the authors have developed kinetic models for all of these chemical reactions except that of HDAs. In this work, a kinetic model (in terms of kinetic parameters) for the HDAs reaction in the TBR is developed. A three phase TBR process model incorporating the HDAs reactions with unknown kinetic parameters is developed. Also, a series of experiments has been conducted in an isothermal TBR under different operating conditions affecting the removal of asphaltene. The unknown kinetic parameters are then obtained by applying a parameter estimation technique based on minimization of the sum of square errors (SSEs) between the experimental and predicted concentrations of

  1. Improvement of Heavy Oil Recovery in the VAPEX Process using Montmorillonite Nanoclays Amélioration de la récupération d’huile lourde par utilisation de nanoargiles de Montmorillonite dans le procédé VAPEX

    Directory of Open Access Journals (Sweden)

    Pourabdollah K.

    2011-10-01

    Full Text Available In this paper, the nanoclay particles were introduced as mobile adsorbents in oil reservoirs to adsorb the asphaltenes, reduce the viscosity and enhance the dispersion. The objective of this paper is experimental investigation of enhanced heavy oil recovery using in situ nanoparticles for the first time. Moreover, two thermal analysis methods (thermogravimetry and differential thermal analysis were used to analyze the asphaltene content of residue hydrocarbons in the swept chambers in nano-assisted and conventional VAPEX processes. Experiments were carried out using Iranian heavy oil and propane: the setup consisted of two sand-packed cells; one packed only with glass beads as the oil matrix and the other with glass beads and modified montmorillonite as the nanoclay, while they had similar porosity and permeability. The content of deposited asphaltene in swept matrixes, the propagation pattern of vapor chambers in heavy oil matrixes, and the rates of solvent consumption and oil production were determined. The results elucidated that montmorillonite changed the matrix heterogeneity and led to forming enhanced breakthroughs, to increasing the interfacial surface of vapor/bitumen and to accelerating the oil production. It was found that not only was the rate of vapor injection diminished, but the heavy oil recovery was also markedly enhanced by 30(±4%. Dans cet article, on decrit l’utilisation de particules de nanoargile en tant qu’adsorbant mobile dans des reservoirs d’huile afin d’adsorber les asphaltenes, reduire la viscosite de l’huile et renforcer la dispersion. L’objectif de cet article consiste en la description d’une etude experimentale de recuperation amelioree d’huile lourde par l’utilisation de nanoparticules in situ. Ce qui constitue une premiere. En outre, deux methodes d’analyse thermique (thermogravimetrie et analyse thermique differentielle ont ete utilisees pour analyser la teneur en asphaltene des residus d

  2. Hydrocarbons dating by Re-Os method: experimental study of the Re-Os couple geochemical behaviour in oils during the evolution of a petroleum system

    International Nuclear Information System (INIS)

    The Re-Os radiogenic system is well adapted to the dating of oils and bitumen. However the meaning of the obtained age is ambiguous. This is mainly due to gaps in our knowledge of the geochemical behavior and the speciation of Re and Os in oils. Specifically, use of the Re-Os geo-chronometer requires an understanding of how Re-Os behavior can lead to the fulfillment of the conditions necessary for the development of an isochron. These conditions are: i) the isotopic homogenization of oils at the scale of a petroleum field ii) the fractionation of Re from Os so as to obtain samples with various Re/Os ratios iii) the closure of the system during the period of radiogenic ingrowth of the daughter isotope, that is, from the time of the event of interest to the present day. Experimental investigation of the organic geochemical behavior of Re and Os in oils under various conditions, designed as analogs of the different stages of petroleum generation and evolution, were performed in order to evaluate the use of the Re-Os system as a geo-chronometer in the context of a direct use on petroleum. The possibility of Re-Os fractionation resulting from asphaltene loss during oil evolution was investigated by sequential asphaltene precipitation in the laboratory. This study determined that Re and Os are mainly located in the most polar asphaltene fractions, that is, in the first to precipitate. This study also demonstrated that Re/Os ratios are not disturbed by asphaltene loss during the evolution of oils, unless this loss is unrealistically large. Thus asphaltene precipitation during migration and emplacement is not responsible for the Re/Os fractionation required for the use of the geo-chronometer. The possibility of metal transfer from formation waters to petroleum was studied by performing contact experiments between oils and aqueous solutions of Re and Os of various concentrations over a wide range of temperatures and for varying periods of time. This study demonstrated a

  3. pH 值对原油乳状液稳定性的影响%Effect of pH on the stability of crude oil emulsions

    Institute of Scientific and Technical Information of China (English)

    段明; 陶俊; 方申文; 施鹏; 李珂怡; 宋先雨; 陶滔

    2015-01-01

    研究了 pH 值对原油乳状液稳定性的影响,测定了胶质和沥青质在油水界面上的聚集和铺张情况,不同 pH值下油水界面张力以及胶质和沥青质模拟乳状液的稳定性变化,并且完成了不同 pH 值下的乳状液化学破乳以及电场破乳实验。沥青质相对胶质更易在界面上聚集和铺展,形成高黏弹性的界面膜。pH 值为酸性或碱性时都能有效降低油水界面张力,增加乳状液稳定性,使其化学破乳脱水困难,而破乳实验也验证了这一观点。随着 pH值从2增加到10,胶质模拟乳状液和沥青质模拟乳状液稳定性变化大,变化趋势则刚好相反,胶质模拟乳状液稳定性增加,油水分离速度减慢;沥青质模拟乳状液稳定性减弱,体系电导率0.21~1.8μS/cm。因此 pH<7时,沥青质稳定能力强,而胶质稳定能力弱,电脱水过程中电脱装置正常工作;pH>7时,结果相反,表明电脱装置短路现象与沥青质、胶质稳定能力变化相关。%The effect of pH on stability of crude oil emulsions was studied. The aggregation and spreading behaviors of resins and asphaltenes on oil-water interface were measured. In addition,the interfacial tension (IFT) and conductivity of model emulsions stabilized by the resin and asphaltene respectively were measured under different pH values. The results indicate that the asphaltenes are easier to aggregate and spread to form high viscoelasticity film than resins. When pH in the acidic range or in the basic range,the IFT both decreases,which enhances the stability and demulsification difficulty of emulsions,and the demulsification experiments are in agreement with it. It has a remarkable change in the stability of resin-stabilized and asphaltene-stabilized emulsions,respectively. When the pH increases from 2 to 10,and their change trends are opposite,pH 2 to 10,the stability of resin-stabilized emulsion increased,the oil

  4. 表面活性剂对油溶性降黏剂降黏效果的影响及作用机制%Influence and mechanism of surfactants on viscosity reduction effect of oil-soluble viscosity depressant

    Institute of Scientific and Technical Information of China (English)

    崔敏; 李传; 文萍; 邓文安

    2013-01-01

    The effects of Cetyl trimethyl ammonium bromide(CTAB),Sodium dodecyl-sulfonate(SDS) and OP-10(OP) on the viscosity reduction rate of self-manufactured oil-soluble viscosity depressant,the copolymer of maleic anhydride,styrene and octadecyl acrylate(MSA) with Lungu heavy oil as raw oil were investigated.The influencing mechanism of surfactants was analyzed from the standpoints of asphaltene association properties and colloidal stability of heavy oil by the methods of relative viscosity and mass fraction normalized conductivity.The results indicate that 1% MSA can reduce the viscosity of heavy oil from 6.720 Pa · s to 2.810 Pa · s,decrease the aggregation number of asphaltene,and enhance the colloidal stability of heavy oil.All of CTAB,SDS and OP can improve the viscosity reduction effect of MSA,and the influencing order is CTAB>SDS>OP.SDS and OP can improve the dissociation of MSA to asphaltene,make the aggregation number of asphaltene decrease continuously,but CTAB does not have the ability to improve the dissociation of MSA to asphaltene.All of CTAB,SDS and OP can improve the ability of MSA to enhance the colloidal stability of heavy oil,and the influencing order is CTAB>SDS>OP,which is consistent with the results of surfactants improving the viscosity reduction effect of MSA.The results show that compared with the asphaltene aggregation properties,the colloidal stability of heavy oil is the primary factor affecting the viscosity reduction effect of MSA for Lungu heavy oil.%以轮古稠油为原料,考察十六烷基三甲基溴化铵(CTAB)、十二烷基磺酸钠(SDS)和OP-10 (OP)对自制的油溶性降黏剂马来酸酐-苯乙烯-丙烯酸十八醇酯共聚物(MSA)降黏效果的影响;通过相对黏度法和质量分数电导率法,从沥青质缔合性和稠油胶体稳定性两个方面分析表面活性剂在稠油降黏过程中的作用机制.结果表明:1%的MSA能使稠油黏度从6.720 Pa·s下降到2.810 Pa·s,同时使稠油沥青

  5. Naphthenic acids hydrates of gases: influence of the water/oil interface on the dispersing properties of an acidic crude oil; Acides naphteniques hydrates de gaz de l'interface eau/huile sur les proprietes dispersantes d'un brut acide

    Energy Technology Data Exchange (ETDEWEB)

    Arla, D.

    2006-01-15

    Nowadays, the development of offshore oil production under increasing water depths (high pressures and low temperatures) has led oil companies to focus on gas hydrates risks. Hydrates are crystals containing gas and water molecules which can plug offshore pipelines. It has been shown that some asphaltenic crude oils stabilize water-in-oil emulsions (W/O) during several months and exhibit very good anti-agglomerant properties avoiding hydrate plugs formation. In this work, we have studied the 'anti-hydrate' properties of a West African acidic crude oil called crude AH. This oil contains naphthenic acids, RCOOH hydrocarbons which are sensitive to both the pH and the salinity of the water phase.The emulsifying properties of the crude AH have firstly been explored. It has been shown that heavy resins and asphaltenes are the main compounds of the crude AH responsible for the long term stability of the W/O emulsions whereas the napthenates RCOO{sup -} lead to less stable W/O emulsions. Dealing with hydrates, the crude AH exhibits moderate anti-agglomerant properties due to the presence of heavy resins and asphaltenes. However, the naphthenates RCOO{sup -} drastically increase the formation of hydrate plugs. Moreover, it has been pointed out that hydrate particles agglomeration accelerates the kinetics of hydrate formation and enhances the water/oil separation. In order to explain these behaviours, a mechanism of agglomeration by 'sticking' between a hydrate particle and a water droplet has been proposed. Finally, we have developed a model which describes the physico-chemical equilibria of the naphthenic acids in the binary system water/crude AH, in order to transpose the results obtained in the laboratory to the real oil field conditions. (author)

  6. An investigation of emulsion interfacial material by ultrahigh resolution FT-ICR mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Ehrmann, B.M. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Juyal, P. [Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Laboratory; Rodgers, R.P.; Marshall, A.G. [Florida State Univ., Tallahassee, FL (United States). Dept. of Chemistry and Biochemistry; Florida State Univ., Tallahassee, FL (United States). National High Magnetic Field Laboratory

    2008-07-01

    The formation of water-oil emulsions in crude oil poses a large problem for the petroleum industry because of the production losses and cost associated with chemicals used to break the emulsions. The species responsible for emulsion formation must therefore be identified and characterized. It has been suggested that asphaltenes absorb and accumulate at the emulsion water-oil interface and contribute to emulsion stability. However, studies have also shown that co-precipitated material may contribute to the stability of the water-oil emulsions. Fourier transform ion cyclotron resonance (FT-ICR) mass spectroscopy (MS) analysis of the acidic portion of interfacial material has revealed that it is also enriched in specific Ox and SOx species relative to the parent crude. The similarity between the co-precipitate and isolated interfacial material suggests that naphthenic acids strongly interact with the asphaltenes. As a result, they co-precipitate with them even though naphthenic acids alone are soluble in n-heptane. This study characterized the interfacial material and a crude oil known to cause emulsions in the field. The basic, acidic, and aromatic species in the isolated interfacial material and parent crude were highlighted by positive/negative electrospray ionization and atmospheric pressure photoionization (APPI) high resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry. The composition of the interfacial material was also investigated. An attempt was made to regenerate the emulsion after isolation, in the absence of the parent crude. Once the emulsion was formed, the isolated interfacial material was analyzed to determine the minimum components required to form a stable emulsion. This provided a direct comparison between the species identified in the interfacial material and those that interact with the asphaltene fraction of the crude oil.

  7. Downhole Upgrading of Orinoco Basin Extra-Heavy Crude Oil Using Hydrogen Donors under Steam Injection Conditions. Effect of the Presence of Iron Nanocatalysts

    OpenAIRE

    Cesar Ovalles; Victor Rivero; Arelys Salazar

    2015-01-01

    An extra-heavy crude oil underground upgrading concept and laboratory experiments are presented which involve the addition of a hydrogen donor (tetralin) to an Orinoco Basin extra-heavy crude oil under steam injection conditions (280–315 °C and residence times of at least 24-h). Three iron-containing nanocatalysts (20 nm, 60 nm and 90 nm) were used and the results showed increases of up to 8° in API gravity, 26% desulfurization and 27% reduction in the asphaltene content of the upgraded produ...

  8. Maturation of Green River Shale Kerogen with Hydrous Pyrolysis: Characterization of Geochemical Biomarkers and Carbon Isotopes

    Science.gov (United States)

    Fu, Q.; Darnell, M.; Bissada, K. K.

    2014-12-01

    To fully understand controlling factors of organic compound generation during oil shale maturation, and systematically assess associated carbon isotope values, a series of hydrous pyrolysis experiments are performed. Kerogen was isolated from Green River shale by a set of acid treatment. Experiments are conducted at 350 °C and 300 bars of total pressure with running time of 24, 48 and 72 hours, respectively. In each experiment, the reactor contains 1.5 grams of kerogen and 30 grams of deionized water. After experiments, gaseous products are removed under cryogenic conditions for chemical and carbon isotope analyses (GC-IRMS). The bitumen product is retrieved and separated into saturated hydrocarbons, aromatics, resins, and asphaltenes (SARA) by HPLC before subsequent analyses (GC, GC-MS, and IRMS). The gaseous compounds from experiments consisted of CO2 and C1 to C4 hydrocarbons. Semiquantitative analysis indicates the yield of n-alkanes decreases with carbon number, with CO2 being more abundant than all alkanes. The δ13C value of alkanes increases with molecular weight, with CO2 having the highest value. Methane and ethane become enriched in 13C with time. In bitumen products, gravimetric analysis has shown that the abundance of aromatics increases with time, while that of asphaltenes decreases. After 72 hours, the weight percentages of saturated hydrocarbons, aromatics, resins and asphaltenes are 2.6, 42.3, 40.1, and 15.0, respectively. High resolution GC-MS results indicate low kerogen maturation after 72 hours using saturated biomarker compounds as thermal maturity indicator, such as 22S/(22S + 22R) of C31 to C35 homohopanes, tricyclics/17(H)-hopanes, and Ts/(Ts + Tm). Bulk carbon isotope value of bitumen decreases with time, with 2.5‰ lighter than original kerogen after 72 hours. In terms of different groups, saturated hydrocarbons and resins become depleted in 13C with longer reaction time, while aromatics and asphaltenes become enriched in 13C

  9. Composition of neutral oils obtained in processing coals from Kansko-Achinsk basin

    Energy Technology Data Exchange (ETDEWEB)

    Plotskii, E.Y.; Kirilets, V.M.; Sidel' nikov, V.N.; Utkin, V.A.

    1986-03-01

    The authors used isopropyl alcohol as a solvent for coal from the Nazarovo deposit of the Kansko-Achinsk Basin. The separation and analysis of the liquid product obtained by supercritical dissolution (SCD) were performed in accordance with the scheme of separation and analysis of products from supercritical dissolution of coal presented in the paper. The group composition of the SCD liquid product and the elemental composition of the compounds recovered from this product (benzene-solubles, nitrogen bases, carboxylic acids, phenols, asphaltenes, paraffins, and neutral oils) are evidence of its value as a raw material for the production of motor fuels and as a raw material for the chemical industry.

  10. Demulsification of Water-in-Crude Oil (W/O) Emulsion by using Microwave Radiation

    OpenAIRE

    M.S. Omer; S.F. Pang; A.H. Nour

    2010-01-01

    This study was conducted to examine a batch microwave process of 2450 MHz in demulsification of water-oil- (w/o) emulsions as well as the effect of triton X-100 and Low Sulfur Wax Residue (LSWR) from synthesized (w/o) emulsions stability and demulsification. Oil exploitation is always accompanied by the non-desired formation of emulsions caused by the presence of naturally occurring surface-active molecules such as asphaltenes and resins. Because their presence stabilizes the oil/water interf...

  11. Biotreatment of hydrocarbons from petroleum tank bottom sludges in soil slurries

    International Nuclear Information System (INIS)

    Biotreatment of oil wastes in aqueous slurries prepared with sandy loam soil and inoculated with selected soil cultures was evaluated. After 90 days, oil removal was 47%. Removal of each hydrocarbon class was 84% for saturates, 20% for aromatics, and 44% for asphaltenes. Resins increased by 68%. The use of a soil with a lower level of fine particles or minor organic matter content, or reinoculation with fresh culture did not improve oil elimination. Residual oil recovered from slurries was biotreated. Oil removal was 22%. Slurry-phase biotreatment showed less variability and faster oil removal than solid-phase biotreatment. (author)

  12. Estimation of critical properties of typically colombian vacuum residue SARA fractions

    International Nuclear Information System (INIS)

    Knowledge of critical properties and the acentric factor is required in phase-equilibrium studies in different extraction processes conducted in the petroleum industry, particularly in the solvent deasphalting process. Correlations to estimate critical temperature, critical pressure and acentric factor values of SARA (Saturated, Aromatic, Resin, and Asphaltene) fractions of vacuum residue from the Barrancabermeja Refinery were determined from their physical properties such as density (molar volume) and molecular weight. New correlations for critical property prediction were evaluated using model molecules and the Avaullee and Satou's group contribution methods, respectively

  13. Biotreatment of hydrocarbons from petroleum tank bottom sludges in soil slurries

    Energy Technology Data Exchange (ETDEWEB)

    Ferrari, M.D.; Neirotti, E.; Albornoz, C.; Mostazo, M.R.; Cozzo, M. [Administracion Nacional de Combustibles, Alcohol y Portland Pando, Canelones (Uruguay). Centro de Investigaciones Tecnologicas

    1996-11-01

    Biotreatment of oil wastes in aqueous slurries prepared with sandy loam soil and inoculated with selected soil cultures was evaluated. After 90 days, oil removal was 47%. Removal of each hydrocarbon class was 84% for saturates, 20% for aromatics, and 44% for asphaltenes. Resins increased by 68%. The use of a soil with a lower level of fine particles or minor organic matter content, or reinoculation with fresh culture did not improve oil elimination. Residual oil recovered from slurries was biotreated. Oil removal was 22%. Slurry-phase biotreatment showed less variability and faster oil removal than solid-phase biotreatment. (author)

  14. Direct measurement of oxygen in brown coals and carbochemical products by means of fast neutron analysis

    International Nuclear Information System (INIS)

    Analyses of elemental oxygen by means of fast neutron activation permit high-accuracy measurements of oxygen concentrations in East German brown coal; this applies to run-of-mine brown coal as well as to demineralized brown coal. The relative error was 4% in the first case and 2% in the latter case. Pre-washing with 1n ammonium acetate solution permits direct analyses of the oxygen bonded to the coal minerals. The method is applicable to other carbonaceous materials, e.g. coal ashes, solid hydrogenation residues, cokes, coal extracts, asphaltenes, oils, etc., at oxygen concentrations of 1-50%. (orig.)

  15. Microbial enhancement of non-Darcy flow: Theoretical consideration

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Jianxin; Schneider, D.R.

    1995-12-31

    In the near well-bore region and perforations, petroleum fluids usually flow at high velocities and may exhibit non-Darcy-flow behavior. Microorganisms can increase permeability and porosity by removing paraffin or asphaltene accumulations. They can also reduce interfacial tension by producing biosurfactants. These changes can significantly affect non-Darcy flow behavior. Theoretical analysis shows that microbial activities can enhance production by decreasing the turbulence pressure drop and in some cases increasing the drag force exerted to the oil phase. This implies that the effects of microbial activities on non-Darcy flow are important and should be considered in the evaluation of microbial well stimulation and enhanced oil recovery.

  16. Investigation on the EDA - DMF extraction and hydroliquefaction behaviour of lignites

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, S.; Wang, X.; Chen, L.; Liu, Y.; Wu, Q. (Chinese Academy of Sciences, Taiyuan (China). Institute of Coal Chemistry)

    1993-03-01

    The extraction of lignites with a mixture of ethylenediamine (EDA) and dimethylformamide(DMF) (7:3) and their hydroliquefaction behaviour were studied by chemical characterization and CP/MAS [sup 13]C-NMR analysis. The results show that when the aromaticity of lignites increases, the EDA-DMF extract yield, liquefaction conversion and asphaltene yield decrease. Chemical reactions take place between solvents and lignites. The EDA-DMF extract of lignites is mainly complex esters (ethers) with higher aromaticity and less alkyl chains. Therefore CO and -O- groups in lignites may play an important role in initial stage of hydroliquefaction of lignites. 17 refs., 2 figs., 6 tabs.

  17. Molecular characterization and comparison of shale oils generated by different pyrolysis methods

    Science.gov (United States)

    Birdwell, Justin E.; Jin, Jang Mi; Kim, Sunghwan

    2012-01-01

    Shale oils generated using different laboratory pyrolysis methods have been studied using standard oil characterization methods as well as Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) with electrospray ionization (ESI) and atmospheric photoionization (APPI) to assess differences in molecular composition. The pyrolysis oils were generated from samples of the Mahogany zone oil shale of the Eocene Green River Formation collected from outcrops in the Piceance Basin, Colorado, using three pyrolysis systems under conditions relevant to surface and in situ retorting approaches. Significant variations were observed in the shale oils, particularly the degree of conjugation of the constituent molecules and the distribution of nitrogen-containing compound classes. Comparison of FT-ICR MS results to other oil characteristics, such as specific gravity; saturate, aromatic, resin, asphaltene (SARA) distribution; and carbon number distribution determined by gas chromatography, indicated correspondence between higher average double bond equivalence (DBE) values and increasing asphaltene content. The results show that, based on the shale oil DBE distributions, highly conjugated species are enriched in samples produced under low pressure, high temperature conditions, and under high pressure, moderate temperature conditions in the presence of water. We also report, for the first time in any petroleum-like substance, the presence of N4 class compounds based on FT-ICR MS data. Using double bond equivalence and carbon number distributions, structures for the N4 class and other nitrogen-containing compounds are proposed.

  18. Wettability Studies Using Zeta Potential Measurements

    Directory of Open Access Journals (Sweden)

    Ghada Bassioni

    2015-01-01

    Full Text Available Wettability studies have been carried out on reservoir rocks using different techniques such as the Amott-Harvey method, the USBM method, and the contact angle method, all with limitations. In this study, the wettability is studied by discussing the surface charge using zeta potential measurements. The study relies on the finding that carbonated reservoir rocks, consisting of CaCO3 mainly, are positively charged and their surface has the potential to adsorb significant quantities of anions. Moreover, heavy fractions such as asphaltenes are reported to remain afloat depending on dispersive forces present in the oil and its various fractions. Experiments are carried out on aqueous limestone suspension with the addition of crude oil. The experiment is repeated with the use of polymeric inhibitors, A and B. The zeta potential is found to alter depending on the sequence of polymeric inhibitor in oil/water addition. The inhibitor is found to adsorb on the limestone surface, with a net negative charge, causing repulsion between crude oil and the inhibitor and, hence, preventing the deposition of heavy fractions and particularly asphaltenes. This study gives a comprehensive insight on the mechanism of polymeric inhibitor interaction with the surface and the effect of wettability on its performance.

  19. Aminated Copolymers as Flow Improvers for Super-viscous Crude Oils

    Institute of Scientific and Technical Information of China (English)

    Zhang Hong; Shen Benxian

    2007-01-01

    The new flow improvers for super-viscous crude oils were developed via esterification of polybasic high carbon alcohol with methacrylate and copolymerization of monomers followed by amination of copolymers.The structure of the synthesized polymer flow improver additive was confirmed by IR spectroscopy and the crystal structure of the flow improver additives were determined by X-ray diffraction analysis.The structure of wax crystals was also studied at the same time.The results showed that the wax crystal structure was closely related with the crystal structure of the flow improver,which could change the pour point depression and viscosity reduction behavior of the crude oil.When the wax crystal structure matched well with that of the additive,the Wax crystals were dispersed satisfactorily,resulting in favorable effects in terms of pour point depression and viscosity reduction.The new synthesized aminated polymer flow improver additive was most efficient for treating super-viscous crude oils.The super-viscous crude oil had a high content of resins and asphaltenes,which might aggregate onto the surface of wax crystals to form blocks to limit the crude oil fluidity.However,amination of copolymers having similar structure with the resins and asphaltenes contained in crude oil could dissolve the huge polar groups to make the deposit formation difficult.

  20. A study of light hydrocarbons (C{sub 4}-C{sub 1}3) in source rocks and petroleum fluid

    Energy Technology Data Exchange (ETDEWEB)

    Odden, Wenche

    2000-07-01

    This thesis consists of an introduction and five included papers. Of these, four papers are published in international journals and the fifth was submitted for review in April 2000. Emphasis has been placed on both naturally and artificially generated light hydrocarbons in petroleum fluids and their proposed source rocks as well as direct application of light hydrocarbons to oil/source rock correlations. Collectively, these papers describe a strategy for interpreting the source of the light hydrocarbons in original oils and condensates as well as the source of the asphaltene fractions from the reservoir fluids. The influence of maturity on light hydrocarbon composition has also been evaluated. The papers include (1) compositional data on the light hydrocarbons from thermal extracts and kerogen pyrolysates of sediment samples, (2) light hydrocarbon data of oils and condensates as well as the pyrolysis products of the asphaltenes from these fluids, (3) assessment of compositional alteration effects, such as selective losses of light hydrocarbons due to evaporation, thermal maturity, phase fractionation and biodegradation, (4) comparison of naturally and artificially generated light hydrocarbons, and (5) compound-specific carbon isotope analysis of the whole range of hydrocarbons of all sample types. (author)

  1. Suitability of thin-layer chromatography-flame ionization detection with regard to quantitative characterization of different fossil fuel products. II. Calibration methods concerning quantitative hydrocarbon-group type analysis

    Energy Technology Data Exchange (ETDEWEB)

    Vela, J.; Membrado, L.; Cebolla, V.L.; Ferrando, A.C. [CSIC, Zaragoza (Spain). Inst. de Carboquimica, Dept. de Procesos Quimicos

    1998-10-01

    Time-consuming external standard-based calibration methods are usually performed for hydrocarbon group type analysis (HGTA) of fossil fuels, regardless of the instrumental chromatographic technique. HGTA of a broad variety of coal and petroleum products was performed using a modern thin-layer chromatography-flame ionization detection (TLC-FID) system and a rapid method based on internal normalization. Repeatability, linear intervals, and sample load ranges for quantitative application of this method are given, namely a heavy oil and its derived hydrocracked products, raw and chemically-modified petroleum asphaltenes, a coal-tar pitch, several coal extracts, and coal hydroliquefaction products. Results from external standard calibration and a normalization method (both obtained by TLC-FID) are in agreement, and they are validated using TLC-ultraviolet scanning. The use of the latter demonstrates that TLC-FID can also be applied to products such as coal extracts and hydroliquefaction products, despite these products being more volatile than petroleum asphaltenes or heavy oils. 14 refs., 3 figs., 5 tabs.

  2. Liquefaction studies of low-rank Malaysian coal using high-pressure high-temperature batch-wise reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohd Azlan Mohd Ishak; Khudzir Ismail; Mohd Fauzi Abdullah; Mohd Omar Abdul Kadir; Abdul Rahman Mohamed; Wan Hasiah Abdullah [University Technology MARA, Perlis (Malaysia). Fuel Combustion Research Laboratory, Faculty of Applied Sciences

    2005-12-01

    Direct liquefaction of low-rank Malaysian coal from the Mukah Balingian (MB) area was successfully carried out in a 1000 ml high-temperature (360-450{sup o}C) high-pressure (4-13 MPa) batch-wise reactor system using tetralin as hydrogen donor solvent. The results indicated that the percent coal conversion obtained were in the range of 31-90%. At optimum conditions of 450{sup o}C and 4 MPa, the oil + gas, asphaltene and preasphaltene of the coal extract were 80%, 7%, and 2%, respectively. It was observed that heat plays an important role in comparison to pressure in contributing to high coal conversion, oil yield, and organic properties of the residues. The high coal conversion and oil yield correlate well with the high content of reactive macerals, i.e., vitrinite and exinite, in the coal. Other parameters that were also investigated include the effect of reaction time (0-120 min) and coal-to-solvent ratio. A high yield of asphaltene and preasphaltene was obtained at the longest reaction time (i.e., 120 min). Coal conversion and oil yield increase with increasing in coal-to-solvent ratio, with the optimal ratio being 1:5.

  3. Production of jet fuel using heavy crude oil; Producao de combustiveis de aviacao a partir de petroleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Om, Neyda [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Cavado, Alberto; Reyes, Yordanka [Centro de Pesquisas do Petroleo, Cidade de Havana (Cuba); Dominguez, Zulema [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2004-07-01

    The production of heavy crude oils increased in the last years in the world. Crude oils with high density, viscosity, acidity and sulfur, nitrogen, metals and asphaltenes contents, by the others hand, low stability and low product quality. The challenger of many refiners is find solutions to refine the heavy crude oils, and produce fuels with certify quality, such as Jet Fuel. The principal aviation technique on the world work with gas turbines engines feted for jet fuel (JET A1). The quality specifications of this fuel are establish by International Norms: ASTM-1655, DEF STAN 91-91-3 (DERD 2494) and joint Fuelling System Check List. The world technologies to obtain jet fuel from mixtures of heavy crude oil with middle crude oils are: Atmospheric distillation, with a posterior hydrogenation and finally the additivation. Studies carried out have demonstrates that the Cubans heavy crude oils is characterized for having API less than 10, raised viscosity, high sulfur content (>6%) and asphaltenes content (more than 15%). These properties provide to its derivatives of low quality. This paper define the characteristic of Cuban heavy crude oil, the technology and operational conditions to produce jet fuel (Jet A1) and the quality of fuel produced. (author)

  4. Low efficiency deasphalting and catalytic cracking

    International Nuclear Information System (INIS)

    This patent describes a process for converting an asphaltene and metals containing heavy hydrocarbon feed to lighter, more valuable products the metals comprising Ni and V. It comprises: demetallizing the feed by deasphalting the feed in a solvent deasphalting means operating at solvent deasphalting conditions including a solvent: feed volume ratio of about 1:1 to 4:1, using a solvent selected from the group of C4 to 400 degrees F. hydrocarbons and mixtures thereof; recovering from the solvent rich fraction a demetallized oil intermediate product, having a boiling range and containing at least 10 wt.% of the asphaltenes, and 5 to 30% of the Ni and V, and at least 10 wt.% of the solvent present in the solvent rich phase produced in the deasphalting means; catalytically cracking the demetallized oil intermediate product in a catalytic cracking means operating at catalytic cracking conditions to produce a catalytically cracked product vapor fraction having a lower boiling range than the boiling range of the demetallized oil intermediate product; and fractionating the catalytically cracked product in a fractionation means to produce catalytically cracked product fractions

  5. Synthesis and Evaluation of Some Polymeric Surfactants for Treating Crude Oil Emulsions Part :1 Treatment of Sandy Soil Polluted with Crude oil by Monomeric and Polymeric Surfactants

    International Nuclear Information System (INIS)

    In the present work, five surfactants were prepared ; two of them were monomeric surfactants, one was anionic ( tri- ethanol ammonium salt of dodecyl benzene sulfonic acid. E1) and the second was non-ionic surfactant ( nonyl phenol ethoxylate, E2 ). The other three surfactants were polymeric non-ionic surfactants ( ethoxylated phenol formaldehyde mono-ethanol amine E3, ethoxylated poly nonyl phenol formaldehyde diethanol amine E4, and ethoxylated nonyl phenol formaldehyde triethanol amine E5). The gel permeation chromatography (GPC) and the elemental analysis were carried out to determine the molecular weight of the polymeric surfactants. The surface properties for these surfactants were determined by measuring the surface tension, the foaming power, cloud point and the emulsification power. The polymeric surfactants were used to treat the polluted Sandy soil, which saturated with two type of crude oils ( waxy and asphaltenic). From the data obtained, it was found that the increasing of surfactant concentrations led to increase the reclamation of the waxy and asphaltinic crude oil percentages and decreased the interfacial tension. The reclaimed oil percentage increased with decreasing the HLB value of non-ionic surfactant. In general behavior, the reclamation of the asphaltenic crude oil was greater than the reclamation of the waxy crude oil. The data were discussed in the light of the chemical structure of the surfactants and composition of crude oil

  6. Laboratory research on rheological behavior and characterization of ultraviolet aged asphalt

    Institute of Scientific and Technical Information of China (English)

    吴少鹏; 朱国军; 陈筝; 刘至飞

    2008-01-01

    The influence of aging on the evolution of structural,morphological and rheological properties of neat asphalt was investigated by Fourier transform infrared(FTIR),atomic force microscopy(AFM) and dynamic shear rheometer(DSR),respectively.Asphalt was suffered under 20 W/m2 of UV radiant intensity and under the condition of aging time(0,48,96 and 144 h) with film thickness of 100 μm and film thickness of 50,100,200 and 500 μm after aging for 120 h,respectively,at certain UV radiant intensity 20 W/m2.Rheological results tested by DSR exhibit higher the complex shear(stiffness) modulus(G*) and lower phase angle(δ),compared to the virgin at the same test condition.The compositions analysis of asphalt before and after aging show an increase of carbonyl and sulfoxides,while a decrease of aromatic functional groups.With the increase of the component of asphaltene,obvious agglomerates of asphalten appear in neat asphalt surfaces after aging.

  7. Knowledge of petroleum heavy residue potential as feedstock in refining process using thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, Maria Luisa A.; Mota, Deusa Angelica P.; Cerqueira, Wildson V.; Andre, Daniel; Saraiva, Larissa Martins; Coelho, Maria Isabel Figueira; Teixeira, Ana Maria R.F. [Universidade Federal Fluminense, Chemistry Institute, Analytical Chemistry Department, Niteroi, RJ (Brazil); Teixeira, Marco Antonio G. [Centro de Pesquisas Leopoldo A Migues de Mello-CENPES/PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2010-09-15

    In the petroleum industry, previous knowledge of the feedstock's potential to produce light material is an important aspect of refining. For the evaluation of heavy petroleum fractions, thermogravimetry (TG), a thermal analysis technique, is considered a good analytical tool to determine the thermal behavior of these fractions at high temperatures. In the present work, TG analyses were made of petroleum distillation residues from different Brazilian oils. The apparent cracking activation energy of saturates, aromatics, resins and asphaltenes was also determined by TG. Saturates and aromatics showed values of 80-120 kJ mol{sup -1} at low conversions (< 0.3) and of 120-220 kJ mol{sup -1} at high conversions (> 0.3). The thermal cracking activation energy of resins and asphaltenes occurred between 220-300 kJ mol{sup -1}, i.e., at higher values than those of aromatic and saturated fractions. This paper discusses the prediction of carbonaceous residue based on thermal analysis. (author)

  8. Dissipative particle dynamics simulation on the rheological properties of heavy crude oil

    Science.gov (United States)

    Wang, Sibo; Xu, Junbo; Wen, Hao

    2015-11-01

    The rheological properties of heavy crude oil have a significant impact on the production, refining and transportation. In this paper, dissipative particle dynamics (DPD) simulations were performed to study the effects of the addition of light crude oil and emulsification on the rheological properties of heavy crude oil. The simulation results reflected that the addition of light crude oil reduced the viscosity effectively. The shear thinning behaviour of crude oil mixtures were becoming less distinct as the increase of the mass fraction of light crude oil. According to the statistics, the shear had an influence on the aggregation and spatial orientation of asphaltene molecules. In addition, the relationship between the viscosity and the oil mass fraction was investigated in the simulations of emulsion systems. The viscosity increased with the oil mass fraction slowly in oil-in-water emulsions. When the oil mass fraction was higher than 50%, the increase became much faster since systems had been converted into water-in-oil emulsions. The equilibrated morphologies of emulsion systems were shown to illustrate the phase inversion. The surfactant-like feature of asphaltenes was also studied in the simulations.

  9. Gas hydrate formation and dissociation from water-in-oil emulsions studied using PVM and FBRM particle size analysis

    Energy Technology Data Exchange (ETDEWEB)

    Boxall, J.; Greaves, D.; Mulligan, J.; Koh, C.; Dendy Sloan, E. [Colorado School of Mines, Golden, CO (United States). Dept. of Chemical Engineering, Center for Hydrate Research

    2008-07-01

    Anti-agglomerant and cold flow techniques are now being used to manage hydrate formation in pipelines. However, a greater understanding of hydrate and agglomeration processes is need to prevent plug formation. In this study, hydrate formation and agglomeration in a stirred system was used studied using particle video microscope (PVM) and focused beam reflectance measurement (FBRM) techniques. The PVM was used to obtain qualitative visual data through digital images of the black oil illuminated by lasers, while the FBRM provided details of the quantitative chord length distribution of the particles in the systems. Experiments using the techniques were conducted with crude oils with a small asphaltene content and low emulsion stability as well as with a Caratinga oil sample with higher stability and asphaltene contents. The morphology of the hydrates was analyzed and the effects of droplet size on hydrate formation and agglomeration were investigated. Experiments were also conducted to study the dissociation process using PVM and in situ conductivity measurements. An analysis of data obtained during the experiments showed that droplet size has a significant impact on the agglomeration potential. Hydrate suspensions formed from very small droplet sizes did not have the same destabilizing effect. The dissociation of agglomerates resulted in a significant destabilization of the suspension into a water-hydrate phase at the bottom of the cell until the dissociation was completed. It was concluded that dissociation within the pipeline should be prevented until the hydrates are removed from the flow line. 11 refs., 17 figs.

  10. A study of water-in-oil emulsification

    International Nuclear Information System (INIS)

    The basic mechanisms by which asphaltenes, resins, and waxes stabilize water-in-oil emulsions are examined. Experiments were conducted on the emulsification behavior of model oils which consisted of an alkane component, an aromatic component, and the emulsifying agents. Results from this study clearly demonstrate the importance that the physical state of an emulsifying agent has upon its ability to stabilize emulsions. It was found that to be effective emulsifiers, asphaltenes, resins, and waxes must be in the form of sub-micron particles. In addition, it was shown that the solvency strength of an oil, which is determined by its alkane and aromatic components, controls the solubility/precipitation behavior of these emulsifiers. The chemical composition of the oil determines not only the amount and size of precipitated particles, but also the composition and wetting properties of the particles. All these factors were found to have an influence upon emulsification. The potential application of a solubility model, using the Hildebrand-Scatchard equation, to predict the physicochemical conditions which favor water-in-oil emulsification, is discussed. Theories on various emulsification processes are also discussed in terms of mousse formation at sea. 52 refs., 46 figs., 1 tab

  11. Water-in-oil emulsions : studies on water resolution and rheology over time

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M. [Environment Canada, Edmonton, AB (Canada); Fieldhouse, B. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division

    2008-07-01

    Water-in-oil emulsions, which often form following oil spills, make cleanup very difficult because the physical properties and characteristics of the oil change significantly after the spill. In this study, water-in-oil mixtures from crude oil and petroleum products were studied in a laboratory for up to one year. The types of mixtures were characterized by resolution of water and rheology measurements at one and seven days, and some after one year. Oil and petroleum products formed 4 clearly-defined water-in-oil types when mixed with water. These were categorized as stable, unstable, mesostable and entrained. The distinct physical properties of each category were described in this paper. The water-in-oil types were characterized using a newly developed numerical stability index which is the product of the ratio of viscosity increase and a ratio of the elasticity increase. The index was also used to correlate stability with oil compositions and properties. The asphaltene and resin content in the starting oil, along with its viscosity and density were the most important factors for water uptake and emulsion formation, as determined by a comparative evaluation of the properties of the starting oils before mixing. The saturate content and asphaltene-to-resin ratio are other important factors. 42 refs., 7 tabs., 8 figs.

  12. Water-in-oil emulsions : studies on water resolution and rheology over time

    International Nuclear Information System (INIS)

    Water-in-oil emulsions, which often form following oil spills, make cleanup very difficult because the physical properties and characteristics of the oil change significantly after the spill. In this study, water-in-oil mixtures from crude oil and petroleum products were studied in a laboratory for up to one year. The types of mixtures were characterized by resolution of water and rheology measurements at one and seven days, and some after one year. Oil and petroleum products formed 4 clearly-defined water-in-oil types when mixed with water. These were categorized as stable, unstable, mesostable and entrained. The distinct physical properties of each category were described in this paper. The water-in-oil types were characterized using a newly developed numerical stability index which is the product of the ratio of viscosity increase and a ratio of the elasticity increase. The index was also used to correlate stability with oil compositions and properties. The asphaltene and resin content in the starting oil, along with its viscosity and density were the most important factors for water uptake and emulsion formation, as determined by a comparative evaluation of the properties of the starting oils before mixing. The saturate content and asphaltene-to-resin ratio are other important factors. 42 refs., 7 tabs., 8 figs

  13. Dissolution de phases minérales MSiO3 ( M Cu, Co, Ni, Zn, Mg) imparfaitement cristallisées au contact de solutions d'agents complexants organiques (porphyrines, amino-acides, asphaltènes)

    Science.gov (United States)

    Bergaya, F.; Perruchot, A.; Van Damme, H.

    1983-05-01

    The kinetic and thermodynamic aspects of the dissolution of ill-organized ("gels") high surface area silicates of general formula MO- SiO2- nH2O( M = Cu, Co, Ni, Zn, Mg) in the presence of the following organic compounds have been investigated: meso-tetraphenylporphyrin (H 2TPP, water insoluble), mesotetra(N-methylpyridyl)porphyrin (H 3TMPyP, water soluble), glycine, and asphaltenes. Kinetic aspects were emphasised in the case of H 2TMPyP. The initial rate of the gross dissolution complexation process followed almost quantitatively (passing from one metal to another) the complexation rate of M2+ ions by H 2TMPyP in a purely homogeneous medium, suggesting that the rate limiting step of the overall process is not related to the chemical or physical processes occurring in the solid particles or at the solid-solution interface, but is simply the complexation, in the solution, of the M2+ ions released by the gel particles. Thermodynamic aspects were emphasised in the case of glycine. The total amount of metal which is extracted at equilibrium can be reasonably well predicted from a simple model which takes into account (i) the stability constant of the metal-glycine complex. (ii) the "solubility product" of the gel particles in water. The results obtained with asphaltones are closer to those obtained with glycine than to those obtained with porphyrins, suggesting that porphyrins represent only a minor population in the complexing functional groups of asphaltenes.

  14. Effect of hydrate formation-dissociation on emulsion stability using DSC and visual techniques

    Energy Technology Data Exchange (ETDEWEB)

    Lachance, J.W.; Dendy Sloan, E.; Koh, C.A. [Colorado School of Mines, Golden, CO (United States). Center for Hydrates Research

    2008-07-01

    Many flow assurance operators are now focusing on preventing hydrates from agglomerating and forming plugs within pipelines. A key factor in reducing plug formation in oil-dominated systems is the stability of emulsified water in gas hydrate formation. In this study, differential scanning calorimetry (DSC) studies were used to show that gas hydrate formation has a destabilizing effect on water and oil emulsions, and can result in a free water phase through the coalescence and agglomeration of dissociated hydrate particles. The study focused on investigating the ability of the hydrates to stay segregated with hydrate formation. The stability of water-in-oil emulsions with hydrate formation was investigated with a range of different crude oils with varying emulsion stability levels. Thermal properties were measured at both atmospheric and pressurized conditions. Thermocouples in the calorimetric furnace were used to measure the temperature difference between reference and sample cells. Emulsion stability was measured over a 1-month time period. Results of the study showed that hydrate formation and dissociation destabilizes emulsions. However, the asphaltene fraction in crude oils resists hydrate-induced destabilization. The stability of the emulsion increased when asphaltene content increased. It was concluded that emulsion stability is a key factor in preventing agglomeration in flow lines. 14 refs., 3 tabs., 8 figs.

  15. The use of carbon and sulfur isotopes as correlation parameters for the source identification of beach tar in the southern California borderland

    International Nuclear Information System (INIS)

    Carbon and sulfur isotope ratios and total sulfur content are used to correlate beach tars depositing near Los Angeles with their probable sources. Analysis is confined strictly to the asphaltene fraction of petroleum owing to the insensitivity of this fraction to weathering processes. The delta13C, delta34S and %S of the asphaltene fraction of natural offshore seep oils range from - 22.51 to - 23.20 parts per thousand + 7.75 to + 15.01 parts per thousand and 4.45 to 8.27%, respectively. Values for local offshore production wells overlapped those for the natural seepage, ranging from - 22.10 to - 22.85 parts per thousand, - 2.96 to 13.90 parts per thousand and 0.81 to 8.00%. Analytical values for these parameters show that tanker crudes imported into the area are not similar to the California oils. Analysis of the same parameters in beach tars collected during 1976-77 indicates a close match with the potential source oils, thus it is concluded that these parameters are useful for identifying petroleum sources, even after 2 to 4 weeks of weathering. Results indicate that 55% of the tars in Santa Monica Bay are derived from natural oil seepage 150 km to the northwest at Coal Oil Point, 26% are derived from natural oil seepage in Santa Monica Bay, and 19% are derived from unknown sources. Models of tar transport are discussed. (author)

  16. High-sulphur shale oil as a prime matter for bitumen production

    International Nuclear Information System (INIS)

    The composition and properties of heavy residues of Israeli shale oil (S content 6.8 %) were investigated as a source for bitumens. Both principal methods of asphalt production - vacuum distillation and oxidizing with air -were studied. Straight-run bitumen had satisfactory characteristics. As to oxidized bitumen, the values of its penetration, ductility and softening point were also satisfactory. The drawback of shale oil bitumens is their high viscosity after the thin film oven test, which means their high sensitivity to aging. The shale oil composition changes significantly as a result of distillation and oxidation. The content of asphaltenes sharply increases: from 3.5 to 20-22 % in straight-run bitumen and to 30 % in oxidized bitumen. It is explained by the reactions of condensation and polymerization of the most unstable polar components during heating and oxidation. Unlike petroleum, shale oil is a product of pyrogenic origin, i.e., it is formed as a result of thermal decomposition of large molecules of kerogen and a part of this cracked material consists of unstable fragments of these molecules, which have a tendency to polymerization. The C/H ratio and nitrogen content increase significantly in the order 'saturated hydrocarbons-naphthenoaromatics - aromatics - asphaltenes'. (author)

  17. Etude par simulation en laboratoire de l'opération de viscoréduction Laboratory Simulation of the Visbreaking Process

    Directory of Open Access Journals (Sweden)

    Favre A.

    2006-11-01

    Full Text Available Une simulation par pyrolyse du traitement de viscoréduction est mise au point afin de comprendre le comportement individuel des quatre grandes classes de composés formant les résidus lourds. Après détermination des conditions opératoires, chaque famille (hydrocarbures aliphatiques et aromatiques, résines et asphaltènes est pyrolysée et son pyrolysat est analysé. Cette démarche permet de mettre en évidence l'origine des constituants de la recette de viscoréduction (hydrocarbures légers de conversion, oléfines, asphaltènes, coke,. . . et de déterminer la frontière entre les produits valorisables et les produits nocifs lors de la viscoréduction. A pyrolysis simulation of the visbreaking process has been developed to understand the individual behavior of the four major classes of compounds of heavy residues. After the operating conditions have been determined, each class (aliphatic and aromatic hydrocarbons, resins and asphaltenes is pyrolyzed, and its pyrolyzate is analyzed. This procedure reveals the origin of each fraction of the viabreaking product (light conversion hydrocarbons, olefins, asphaltenes, coke, etc. and indicates the limit between upgradable products and prejudicial products during visbreaking.

  18. Reactivity study on thermal cracking of vacuum residues

    Science.gov (United States)

    León, A. Y.; Díaz, S. D.; Rodríguez, R. C.; Laverde, D.

    2016-02-01

    This study focused on the process reactivity of thermal cracking of vacuum residues from crude oils mixtures. The thermal cracking experiments were carried out under a nitrogen atmosphere at 120psi between 430 to 500°C for 20 minutes. Temperature conditions were established considering the maximum fractional conversion reported in tests of thermogravimetry performed in the temperature range of 25 to 600°C, with a constant heating rate of 5°C/min and a nitrogen flow rate of 50ml/min. The obtained products were separated in to gases, distillates and coke. The results indicate that the behaviour of thermal reactivity over the chemical composition is most prominent for the vacuum residues with higher content of asphaltenes, aromatics, and resins. Finally some correlations were obtained in order to predict the weight percentage of products from its physical and chemical properties such as CCR, SARA (saturates, aromatics, resins, asphaltenes) and density. The results provide new knowledge of the effect of temperature and the properties of vacuum residues in thermal conversion processes.

  19. Effect of Dodecylbenzene Sulfonic Acid Used as Additive on Residue Hydrotreating

    Institute of Scientific and Technical Information of China (English)

    Sun Yudong; Yang Chaohe

    2015-01-01

    The effect of additive—dodecylbenzene sulfonic acid (DBSA)—on residue hydrotreating was studied in the au-toclave. The results showed that the additive improved stabilization of the colloid system of residue, which could delay the aggregation and coke formation from asphaltenes on the catalyst, and make heavy components transformed into light oil. The residue conversion in the presence of this additive increased by 1.94%, and the yield of light oil increased by 1.53% when the reaction time was 90 min. The surface properties of the catalyst in the presence of this additive were better than that of the blank test within a very short time (30 min) and deteriorated rapidly after a longer reaction time due to higher conversion and coke deposition. Compared with the blank test, the case using the said additive had shown that the structure of hydrotreated asphaltene units was smaller and the condensation degrees were higher. The test results indicated that the additive could improve the hydrotreating reactivity of residue via permeation and depolymerization, the heavier components could be transformed into light oil more easily, and the light oil yield and residue conversion were higher for the case using the said additive in residue hydrotreating process.

  20. Study on the mechanism of coal liquefaction reaction and a new process concept

    Institute of Scientific and Technical Information of China (English)

    SHI Shi-dong; LI Wen-bo; WANG Yong; GUO Zhi; LI Ke-jian

    2008-01-01

    The coal hydrogenation reaction process is simply considered as three steps. In the first step, the smaller molecules associated with coal structure units are released as some gases and water in the condition of solvent and heating. In this step, some weaker bonds of the coal structure units are ruptured to form free radicals. The radicals are stabi-lized by hydrogen atoms from donor solvent and/or H2. In the second step, chain reaction occurs quickly. In the process of chain reaction, the covalent bonds of coal structure units are attacked by the radicals to form some asphaltenes. In the third step, asphaltenes are hydrogenated form more liquids and some gases. In coal liquefaction, the second step of coal hydrogenation reaction should be controlled to avoid integration of radicals, and the third step of coal hydrogenation should be accelerated to increase the coal conversion and the oil yield. A new concept of coal liquefaction process named as China direct coal lique-faction (CDCL) process is presented based on the mechanism study of coal liquefaction.

  1. Computer simulation of deasphalting vacuum residues in a pilot unit; Simulacao computacional de desasfaltacao de residuo de vacuo realizada em unidade piloto

    Energy Technology Data Exchange (ETDEWEB)

    Concha, Viktor Oswaldo Cardenas; Quirino, Filipe Augusto Barral; Koroisgi, Erika Tomie; Rivarola, Florencia Wisnivesky Rocca; Maciel, Maria Regina Wolf; Maciel Filho, Rubens [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica; Medina, Lilian Carmen; Barros, Ricardo Soares de [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES)

    2008-07-01

    In the context of the national petroleum industry, it is interesting to keep the production of the paraffinic lubricant oil type I, which implies in the identification of new loads to ensure the feeding of the existing units. Therefore, it is important to carry out carefully the characterization of the oils, defining its potential for fuel, asphalt and lubricant. Aiming to introduce in the characterization and evaluation of petroleum for lubricant, carried out by PETROBRAS/CENPES, information of basic oils, more similar to industrial oils, was built up in the Laboratory of Process Separation Development - LDPS of UNICAMP/FEQ, a deasphalting pilot unit. In this work, the deasphalting process of a vacuum residue of Brazilian petroleum is simulated, using Aspen Plus{sup R} simulator, in order to remove asphaltenes, resins and other heavy components of vacuum residue. The simulations were carried out considering the configuration of the pilot plant, evaluating the extraction in near-critical operational condition applied to a petroleum, using propane as the solvent. The extraction efficiency and the solvent power were evaluated considering variations in temperature, pressure and in the solvent/feed ratio in order to obtain yields with more efficiency in the production of deasphalted oil (DAO), what means more asphaltene removal. (author)

  2. Vacuum Distillation Residue Upgrading by an Indigenous Bacillus Cereus

    Directory of Open Access Journals (Sweden)

    Mitra Sadat Tabatabaee

    2013-07-01

    Full Text Available Background:Biological processing of heavy fractions of crude oils offers less severe process conditions and higher selectivity for refining. Biochemical Processes are expected to be low demand energy processes and certainly ecofriendly.Results:A strain of biosurfactant producing bacterium was isolated from an oil contaminated soil at Tehran refinery distillation unit. Based on selected phenotypic and genotypic characteristic including morphology, biochemical proprety, and 16 SrRNA sequencing identified as a novel strain of Bacillus cereus (JQ178332. This bacterium endures a wide range of pH, salinity and temperature. This specific strain utilizes both paraffin and anthracene as samples of aliphatic and polycyclic aromatic hydrocarbons. The ability of this bacterium to acquire all its energy and chemical requirements from Vacuum Distillation Residue (VR, as a net sample of problematic hydrocarbons in refineries, was studied. SARA test ASTM D4124-01 revealed 65.5% decrease in asphaltenic, 22.1% in aliphatics and 30.3% in Aromatics content of the VR in MSM medium. Further results with 0.9% saline showed 55% decrease in asphaltene content and 2.1% Aromatics respectively.Conclusion:Remarkable abilities of this microorganism propose its application in an ecofriendly technology to upgrade heavy crude oils.

  3. Evolution of wettability in terms of petroleum and petroleum fractions adsorption. An approach by the Wilhelmy method; Evolution de la mouillabilite en fonction de l`adsorption du petrole et de ses fractions. Approche par la methode des angles de contact dynamiques

    Energy Technology Data Exchange (ETDEWEB)

    Mattos Saliba, A.

    1996-12-06

    Reservoir wettability is very important to petroleum recovery by waterflooding and other processes. It is a key parameter controlling multiphase flow and fluids distribution in a porous medium. Nevertheless, the original water-wetness can be modified by the petroleum`s natural surfactants (asphaltenes and resins) adsorption onto the rock surface. This adsorption may reduce petroleum recovery. In this study, the adsorption of model molecules (pyridine and benzo-quinoline), of rude oil and of its heavier fractions (asphaltenes and resins) has been investigated in terms of wettability alteration for initially water-wet surfaces (glass or quartz). In this case, the dynamic Wilhelmy plate technique provides quantitative values of wetting preference to either oil or water. The results show that, at ambient conditions, adsorption depends on concentration, adsorbent/adsorbate interaction time, pH, solvent type, substrate surface, brine concentration and environment liquid phase (water or oil). However, the initial water film on the surface does not strongly influence this phenomena. (author) 222 refs.

  4. Structure of molecular aggregates and its effect on the stability of heavy oil%重质油中的分子聚集结构及其对重质油稳定性的影响

    Institute of Scientific and Technical Information of China (English)

    张胜飞; 徐俊波; 温浩

    2011-01-01

    The aggregation phenomenon of fraction molecules is one of the most evident features of heavy oil, which influences seriously the viscosity and stability of heavy oil. A dissipative particle dynamics (DPD) method modified by Zhang et al. Is applied in this work to study the structure of molecular aggregates in heavy oil and its effect on the stability of heavy oil. The heavy oil is represented as the mixture of the coarse-grained DPD model molecules of asphaltene, resin, aromatic, saturate and light fraction, in accordance with molecular structures of the fractions in heavy oil. The DPD simulations show that the coarse-grained DPD models and DPD parameters used in this work can predict well the structure of molecular aggregates in heavy oil. The heavy oil exhibits as a polydispersed colloid system. The ordered structure of aggregates depends greatly on the molecular structure of asphaltenes. Deflocculation of the resins is observed in the simulations, which can reduce the phase splits and coagulation of heavy oil. The fractions of aromatic, saturate and light fraction in heavy oil perform as the continuous phase in colloid system. The prediction of stability of heavy oil presented in this work is consisted with the Shell's SARA cross plot. For the certain value of asphaltene-aromatic mass ratio mAspb/Marom, the heavy oil will be stable as the asphaltene-resin mass ratio maspb/mResun is low. A critical value of asphaltene-resin mass ratio exists. The coagulation of heavy oil will occur when the higher asphaltene-resin mass ratio is approached. The extension of the stable region of heavy oil will be observed when the asphaltene-aromatic mass ratio mAspb/mArom reduced.%重质油组分分子的聚集是重质油最显著的特征之一,重质油的高粘特性和相态稳定性均与此聚集行为有紧密的联系.为克服实验研究获得重质油微观聚集结构的困难,本文采用Zhang等人针对重质油体系改进的耗散粒子动力学(DPD)方法,研

  5. A review of knowledge on water-in-oil emulsions

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.; Fieldhouse, B. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Division, Environmental Technology Centre, Science and Technology Branch

    2006-07-01

    This paper outlined the basics of water-in-oil emulsification which is often considered to be the second most important behavioural characteristic of oil after evaporation. In the event of oil spills on water, water in-oil emulsions are formed by the emulsification process which changes the physical properties and characteristics of the oil. Stable emulsions contain from 60 to 80 per cent water, thereby expanding the spilled material from 2 to 5 times the original volume. The density of the resulting emulsion is also greater than the starting density and the viscosity of the oil generally increases. The liquid product is thus transformed into a heavy, semi-solid material. As a result of emulsification, evaporation of oil spills slows by orders-of-magnitude, spreading slows and the oil rides lower in the water column. Emulsification also affects cleanup response because emulsions are hard to treat, burn or recover mechanically. This paper also reviewed dielectric and rheological methods that study the formation mechanisms and stability of emulsions made from different types of oils. Other standard chemical techniques such as nuclear magnetic resonance (NMR), chemical analysis techniques, near-infrared spectroscopy, microscopy, interfacial pressure and interfacial tension have also been applied to emulsions. After 15 years of studies, data on water-in-oil emulsions have shown good correlation between laboratory, test tank and field scale studies. Reported test results on about 400 oils and petroleum products have shown that emulsions can be grouped into 3 categories, each with distinct physical properties. These include stable, unstable and meso-stable emulsions. An examination of the asphaltene and resin content has shown that the stability of emulsions can be predicted by the asphaltene content and its viscosity. Emulsion formation was found to occur at a threshold energy, defined in terms of relative sea state. A recently proposed numerical modeling scheme based

  6. Neutron activation analysis of maltenes recovered from EUROBITUM simulates

    International Nuclear Information System (INIS)

    According to the present Belgian reference scenario, Eurobitum bituminised radioactive waste has to be disposed off in a deep underground repository in a stable geological formation such as Boom Clay. This waste originated mainly from mixtures of nuclear fuel decladding slurries and waste concentrates from the nuclear fuel cycle. Even though safety assessment studies up till present do not show that this waste is unacceptable for deep underground disposal, a final decision about the disposal of the bituminised waste has not been taken so far, and alternative solutions are still conceivable. To support the decision-making we investigate methods to recondition this bituminised waste. We continued studying a room temperature re-treatment method for Eurobitum. The aim of the method is the stabilisation and minimisation of final waste, and the free release of recovered materials. The method comprises the recovery of maltenes and water soluble salts. The recovery of maltenes is performed by dissolving the complete bitumen matrix with a 'solvent', followed by the precipitation of the asphaltenes by addition of a so-called 'nonsolvent'. The 'solvent' is a 50 percent aromatic blend of Shellsol A150 and Shellsol H, whereas the 'nonsolvent' is aliphatic Shellsol T. The recovered maltenes represent 40 % wt of the waste, as shown in the inner pie chart. Part of the maltenes could not be recovered and remain in the asphaltene matrix, as can be seen from the difference between the inner and outer pie chart, representing the real composition and the weight fractions after separation, respectively. A second step of the room temperature re-treatment method covers the complete removal of the water soluble (nitrate) salts, and is described in the main reference and references therein. Application of the room temperature re-treatment method results in a final waste that consists of water insoluble salts embedded in an asphaltene matrix which is less sensitive towards radiolysis than

  7. A review of knowledge on water-in-oil emulsions

    International Nuclear Information System (INIS)

    This paper outlined the basics of water-in-oil emulsification which is often considered to be the second most important behavioural characteristic of oil after evaporation. In the event of oil spills on water, water in-oil emulsions are formed by the emulsification process which changes the physical properties and characteristics of the oil. Stable emulsions contain from 60 to 80 per cent water, thereby expanding the spilled material from 2 to 5 times the original volume. The density of the resulting emulsion is also greater than the starting density and the viscosity of the oil generally increases. The liquid product is thus transformed into a heavy, semi-solid material. As a result of emulsification, evaporation of oil spills slows by orders-of-magnitude, spreading slows and the oil rides lower in the water column. Emulsification also affects cleanup response because emulsions are hard to treat, burn or recover mechanically. This paper also reviewed dielectric and rheological methods that study the formation mechanisms and stability of emulsions made from different types of oils. Other standard chemical techniques such as nuclear magnetic resonance (NMR), chemical analysis techniques, near-infrared spectroscopy, microscopy, interfacial pressure and interfacial tension have also been applied to emulsions. After 15 years of studies, data on water-in-oil emulsions have shown good correlation between laboratory, test tank and field scale studies. Reported test results on about 400 oils and petroleum products have shown that emulsions can be grouped into 3 categories, each with distinct physical properties. These include stable, unstable and meso-stable emulsions. An examination of the asphaltene and resin content has shown that the stability of emulsions can be predicted by the asphaltene content and its viscosity. Emulsion formation was found to occur at a threshold energy, defined in terms of relative sea state. A recently proposed numerical modeling scheme based

  8. Characterization of crude oil-water and solid -water interfaces and adsorption / desorption properties of crude oil fractions: The effect of low salinity water and pH

    Energy Technology Data Exchange (ETDEWEB)

    Farooq, Umer

    2010-09-15

    The reservoirs of conventional oil are rapidly depleting because of increased production and consumption of crude oil in the world. Mature and mostly depleted oil reservoirs require advanced recovery techniques to sustain the production rates. During the past years, a variety of enhanced oil recovery (EOR) methods have been developed and implemented to increase the oil recovery from mature reservoirs. Low Salinity Waterflooding (LSW) is an emerging EOR process of injecting water containing low concentrations (<4000 ppm) of total dissolved solids into the reservoir. This moderate cost process yields relatively higher incremental recoveries than other water based recovery methods. Investigation of mechanisms for increased recovery is quite challenging because this process depends upon complex crude oil/water/rock properties. This work was done to study the surface chemistry of typical reservoir surfaces where LSW can be used for EOR. The oil water and solid-water interfaces were characterised in low salinity aqueous solutions and investigated how the electrolytes and pH of solutions affect the interfacial and surface properties. The influence of low saline aqueous solution on the desorption behaviour of different fractions (acid-free oil and base-free oil) of crude oils was also explored. Reservoir minerals are sensitive to small changes in solution properties and therefore model, outcrop and reservoir particles were characterized in low salinity aqueous solutions. The extent of ionic adsorption on the mineral surfaces was found by various techniques. Particles were also characterized with respect to their elemental compositions. Asphaltene adsorption/desorption on reservoir rock surfaces play an important role in EOR processes. Various injection sequences of low saline aqueous solution of Na +, Ca2+ and sea water were considered to study the desorption of asphaltenes from silica surfaces. Composition of the aqueous phase influenced the interfacial properties of

  9. Maltene and soluble salt removal from bituminised radioactive waste

    International Nuclear Information System (INIS)

    According to the present Belgian reference scenario, Eurobitum bituminised waste is to be disposed off in a deep underground repository in a stable geological formation such as Boom Clay. This waste originates mainly from mixtures of nuclear fuel decladding slurries and waste concentrates from the nuclear fuel cycle. In Belgium, a weight ratio of 60/40 bitumen/waste was applied. The bitumen used as waste matrix is a commercial blown bitumen, type R85/40. Most of the inorganic waste particles are homogeneously incorporated in the bitumen matrix and are smaller than 40 micrometer. Safety performance studies on gas generation, effect of degradation products with complexing properties, generation of a swelling-pressure build-up due to water uptake of the dehydrated salts, and the reaction of the leached NaNO3 with the surrounding Boom clay are in progress. Even though these studies up till present do not show that this waste is unacceptable for deep underground disposal, we investigate a low temperature method to recondition the bituminised waste, just in case it would be decided not to dispose the waste as such in a deep underground repository. The method is based on the removal of the majority of the compounds that are the most sensitive towards radiolysis (i.e. saturated hydrocarbons - these are mostly present in the maltene fraction of bitumen) on the one hand and on the removal of hygroscopic water-soluble salts (mainly NaNO3) on the other hand. The pie chart on the right shows the main fractions present in Eurobitum. When the maltenes and the soluble salts can be removed and destroyed, the final waste contains only the asphaltenes and insoluble salts with the major part of the radionuclides. The separation scheme below shows how to separate the waste in these fractions. The separation of the maltenes from the precipitated asphaltenes and salts is based on an existing deasphalting process used in the petroleum industry, but has to be adapted to the case of

  10. Characterization of the viscoelastic behavior of the pure bitumen grades 10/20 and 35/50 with macroindentation and finite element computation

    KAUST Repository

    Hamzaoui, Rabah

    2013-06-23

    In this article, we present an identification procedure that allows the determination of the viscoelasticity behavior of different grades of pure bitumen (bitumen 35/50 and bitumen 10/20). The procedure required in the first stage a mechanical response based on macroindentation experiments with a cylindrical indenter. A finite element simulation was performed in the second stage to compute the mechanical response corresponding to a viscoelasticity model described by three mechanical parameters. The comparison between the experimental and numerical responses showed a perfect matching. In addition, the identification procedure helped to discriminate between different bitumens characterized by different asphaltene and maltene contents. Finally, the developed procedure could be used as an efficient tool to characterize the mechanical behavior of the viscoelastic materials, thanks to the quantified relationship between the viscoleastic parameters and the force-penetration response. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 3440-3450, 2013 Copyright © 2013 Wiley Periodicals, Inc.

  11. Natural selectivity of Nickel and Vanadium in crude oil

    Science.gov (United States)

    Fernandez, Olienka Patricia De La O.

    Nickel and Vanadium have always been found in crude oil all around the world. The metal content is found mainly in porphyrin structures in the asphaltene fraction of the petroleum. In order to determine the reason for this natural preference, a set of experiments testing thermodynamics, kinetics, and other factors were performed. Candidate metalloporphyrins containing Vanadyl, Chromium, Iron, Nickel, Copper and Zinc were analyzed through chemical reactions characterized using Silica Column Chromatography, HPLC, MS and UV-Visible. Theoretical analysis of the stability of metalloporphyrins was conducted using DFT/NRLMOL for computational calculation. The analysis of all factors leads us to conclude that the presence of Nickel and Vanadium in petroleum depend on different factors, not only on the stability of the structures, but mainly on abundance in the medium rising from biological processes.

  12. Natural gas hydrate formation and inhibition in gas/crude oil/aqueous systems

    DEFF Research Database (Denmark)

    Daraboina, Nagu; Pachitsas, Stylianos; von Solms, Nicolas

    2015-01-01

    Gas hydrate formation in multi phase mixtures containing an aqueous phase (with dissolved salts), reservoir fluid (crude oil) and natural gas phase was investigated by using a standard rocking cell (RC-5) apparatus. The hydrate formation temperature was reduced in the presence of crude oils...... in comparison with that in pure water. This observed hydrate inhibition potential shows significant variation depending on the type of crude oil. The influence of crude oil composition (saturates, aromatics, resins and asphaltenes) on this behavior was probably due to the existence of a combination of different...... inhibition mechanisms and potentially a competition among inhibition-promotion mechanisms. Moreover, the hydrate formation time has been determined at different water cuts in each crude oil and it was found that the inhibition capability increases with an increase in the oil content. The effect...

  13. Hydrotreating of distillates from Spanish coal liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Benito, A.M.; Martinez, M.T.; Cebolla, V.; Fernandez, I.; Miranda, J.L. (Inst. de Carboquimica, CSIC, Zaragoza (Spain))

    1993-02-01

    Distillates obtained from a first-stage Spanish coal liquefaction process have been catalytically hydrotreated in microreactor in two steps. A commercially available Harshaw HT-400 E (Co-Mo/Al[sub 2]O[sub 3]) catalyst, 10 MPa hydrogen pressure and two temperatures (400 and 425deg C) have been used. The results have been evaluated for heteroatoms removal, oils yield, boiling point distribution and aromaticity by several techniques (GC, FT-i.r., [sup 1]H n.m.r., ultrasonic extraction and liquid chromatography). At the first step of hydrotreating, preasphaltenes rather than asphaltenes have been hydrocracked to produce smaller-size polar compounds in the oil fraction but aromaticity has not varied significatively. In the second step, heteroatoms content have been considerably reduced and the product meets refinery specifications for nitrogen but does not meet sulphur refinery specifications for feedstocks. (orig.).

  14. The role of polar aromatics in residuum hydrocracking

    International Nuclear Information System (INIS)

    The CANMET hydrocracking process was developed to convert the heavy pitch fraction in bitumen into salable products. Some of the defining features of the CANMET technology were described. A 5000 BPD demonstration unit was built for Petro-Canada's Montreal Refinery in 1985. The CANMET slurry hydrocracking process uses a solid additive to inhibit coke formation and is capable of 975+ degrees F conversion levels in excess of 90 per cent. The process can be used for a wide range of refinery residues including conventional crudes and residues from refinery conversion units. The CANMET process has the capability of upgrading FCCU slurry, visbreaker vacuum tower bottoms, deasphalter bottoms residue, and poor quality gas oils from cokers and visbreakers. The current practices of the Petro-Canada commercial operation were discussed in the context of adapting the process to handle higher levels of asphaltenes. Pilot plant projects are being considered for ROSER deasphalter bottoms. 10 refs., 5 tabs., 21 figs

  15. Co-liquefaction of Enriched Coal Maceral Constituents and Sawdust

    Institute of Scientific and Technical Information of China (English)

    王炀; 李庭琛; 任铮伟; 颜涌捷

    2002-01-01

    Co-liquefaction of coal and sawdust was studied in the presence of hydrogen-donor solvent, tetralin. Coal samples were prepared through floatation of the Xinwen coal, followed by enrichment of maceral constituents. Sample I was rich in vitrinite and Sample II fusinite. Effects of reaction temperature, time and initial cold H2 pressure were studied on conversion, yield, especially oil yield, through comparison between these two samples. Because it is more difficult to be liquefied, Sample II, is greatly affected by changes in temperature and time. However, it is almost independent of change in initial cold H2 pressure, owing to the role of tetralin as hydrogen vehicle. Certain product(s) formed from thermolysis of sawdust can help hydrogenation of the intermediate (asphaltene and preasphaltene) in further forming oil products.

  16. Partitioning and transport of hydrocarbons from crude oil in a sand and gravel aquifer

    International Nuclear Information System (INIS)

    Hydrocarbons in crude oil are partitioned in water and sediment based on the solubilities and sorptive properties of individual compounds. Crude oil from a pipeline break accumulated as an oil body at the water table, 6 m below land surface, in a glacial outwash aquifer near Bemidji, Minnesota. The crude oil was a paraffinic oil composed of about 60% saturated hydrocarbons, 33% aromatic hydrocarbons, and 6% resins and asphaltenes. The aromatic hydrocarbons from C6 to C10 are soluble in water and are transported downgradient farther than other organic compounds. The higher molecular-weight hydrocarbons are predominantly normal alkanes in the C11 to C33 range and the isoprenoid hydrocarbons, pristane and phytane. These hydrocarbons are insoluble and occurred in ground water only near the soil source, and not downgradient. However, normal alkanes were found on sediment 30 m downgradient, which suggests that they are transported as an oil film at the saturated/unsaturated zone interface

  17. Compositional Simulation of In-Situ Combustion EOR: A Study of Process Characteristics

    DEFF Research Database (Denmark)

    Jain, Priyanka; Stenby, Erling Halfdan; von Solms, Nicolas

    2010-01-01

    In order to facilitate the study of the influence of reservoir process characteristics in In-Situ combustion modeling and advance the work of Kristensen et al. in this domain; a fully compositional In-situ combustion (ISC) model of Virtual Kinetic Cell (VKC; single-cell model) for laboratory scale...... multidisciplinary process data. This paper extends the understanding of previous research done in this domain by performing the process simulations to study further the impact of oxidation reactions and combustion reactions of crude oils along with their saturate, aromatic, resin, and asphaltene (SARA) fractions....... This incorporates fourteen pseudo components and fourteen reactions (distributed amongst thermal cracking, low temperature oxidation and high temperature oxidation). The paper presents a set of derivative plots indicating that reservoir process characterization in terms of thermal behavior of oil can...

  18. Study of the degradation of power generation combustion components at elevated temperature

    International Nuclear Information System (INIS)

    Elevated temperature combustion of fuel oil that contains large amounts of vanadium, asphaltenes and mostly sulfur, presents a major challenge for materials selection and design of combustion components for the electric power generation. The combustion system, which consists of air nozzles and air swirlers, plays a key role in the performance of electric power plants. Air nozzles and air swirlers, which were operated for one year in a 350 MW boiler, were analyzed, presenting accelerated degradation. The particular features of corrosion behavior of these components made by stainless steels: 304, 446 and HH, are presented. The results obtained after optical, metallographic, and microprobe analysis revealed that the components flame contact at very high operating temperature promoted all materials degradation mechanisms. Under this scenario, it is very difficult to find a material resistant to such accelerated wastage conditions. So, the solution of the problem must be oriented to re-design and improve the efficiency of the flame contact with these components

  19. Influence of the solvent extraction technology on the oil fractions from cuban crude oils; Influencia del proceso de extraccion selectiva en las fracciones aceitosas de petroleos cubanos

    Energy Technology Data Exchange (ETDEWEB)

    Ayllon, R.; Martinez, L.; Loguinopoulo, V. [CUPET (Cuba). Centro de Investigaciones Quimicas

    1994-12-31

    Influence of solvent extraction technology on oil fractions obtained from Cuban crude oils. The different crude oils of the Western Zone of Cuba are considered, following the international standards, as heavy oils with a high sulphur contents and asphaltenes. The results of recent studies show that the yields of oil fractions from these crude oils are over 20% m. The use of these fractions as raw material for base stock production, using a solvent extraction technology, is a very interesting application attending the current state of crude oil and oil products market in Cuba. In the present paper are reported the operational index of this process, the suitable solvent/oil rate for each fraction and the main quality properties of them, before and after the treatment. At the paper a comparison with the international quality for these fractions is shown. (author) 10 refs., 3 tabs.

  20. Coiled tubing : water cuts rock : technology behind jet-drilling finds niche in Canadian well-servicing applications

    Energy Technology Data Exchange (ETDEWEB)

    Mahony, J.

    2008-03-15

    This article discussed a new high pressure drilling technique that used high-pressure water to cut through rock without the use of drill bits. The process used a special water nozzle which resulted in a circular cutting motion. The water carried cuttings back to the surface from the bottomhole. The technology is now being used by some oilfield service operators as a scale removal procedure alongside coiled tubing drilling processes. A downhole intensifier (DHI) has been developed to increase downhole fluid pressure beyond what is typically used in coiled tubing processes. The process uses a jet nozzle to generate pressures of approximately 3000 psi. Commercial applications of the technology will include the removal of compacted fill or tar, wax, and asphaltene removal. It was concluded that the tool may also be used in steam assisted gravity drainage (SAGD) projects to remove deposits in wells. 9 figs.

  1. Twin screw subsurface and surface multiphase pumps

    Energy Technology Data Exchange (ETDEWEB)

    Dass, P. [CAN-K GROUP OF COMPANIES, Edmonton, Alberta (Canada)

    2011-07-01

    A new subsurface twin screw multiphase pump has been developed to replace ESP and other artificial lift technologies. This technology has been under development for a few years, has been field tested and is now going for commercial applications. The subsurface twin screw technology consists of a pair of screws that do not touch and can be run with a top drive or submersible motor; and it carries a lot of benefits. This technology is easy to install and its low slippage makes it highly efficient with heavy oil. In addition twin screw multiphase pumps are capable of handling high viscosity fluids and thus their utilization can save water when used in thermal applications. It also induces savings of chemicals because asphaltenes do not break down easily as well as a reduction in SOR. The subsurface twin screw multiphase pump presented herein is an advanced technology which could be used in thermal applications.

  2. Use of adsorption and gas chromatographic techniques in estimating biodegradation of indigenous crude oils

    International Nuclear Information System (INIS)

    Indigenous crude oils could be degraded and emulsified upto varying degree by locally isolated bacteria. Degradation and emulsification was found to be dependent upon the chemical composition of the crude oils. Tando Alum and Khashkheli crude oils were emulsified in 27 and 33 days of incubation respectively. While Joyamair crude oil and not emulsify even mainly due to high viscosity of this oil. Using adsorption chromatographic technique, oil from control (uninoculated) and bio degraded flasks was fractioned into the deasphaltened oil containing saturate, aromatic, NSO (nitrogen, sulphur, oxygen) containing hydrocarbons) and soluble asphaltenes. Saturate fractions from control and degraded oil were further analysed by gas liquid chromatography. From these analyses, it was observed that saturate fraction was preferentially utilized and the crude oils having greater contents of saturate fraction were better emulsified than those low in this fraction. Utilization of various fractions of crude oils was in the order saturate> aromatic> NSO. (author)

  3. Effect of Co Mo/HSO3-functionalized MCM-41 over heavy oil

    International Nuclear Information System (INIS)

    The potential of Co-Mo metals supported on functionalized MCM-41 as catalyst to hydrodesulfurization of heavy oil has been explored in this work. The MCM-41 functionalized sample was synthesized according to method previously reported into the support by simultaneous impregnation. The catalyst was characterized by specific surface area and X-ray diffraction. The pore channel of MCM-41 was confirmed by transmission electronic microscopy and infra red spectroscopy. Catalytic activity tests were carried out using heavy oil from Gulf of Mexico. The API gravity was increased from 12.5 to 20.2, the kinematics viscosity was decreased from 18,700 to 110 c St at 298 K, the contents of asphaltene and sulfur were also reduced. (Author)

  4. Gas hydrates and clathrates. Flow assurance, environmental and economic perspectives and the Nigerian liquefied natural gas project

    International Nuclear Information System (INIS)

    Gas hydrates are nonstoichiometric crystalline compounds that belong to the inclusion group known as clathrates. They occur when water molecules attach themselves together through hydrogen bonding and form cavities which can be occupied by a single gas or volatile liquid molecule. Gas hydrates, asphaltenes and waxes are three major threats to flow assurance that must be well assessed by design team uptime. Gas hydrates are also looked upon as a future energy source and as a potential climate hazard. The purpose of this review is to show the chemistry and mechanism of gas hydrate formation, the problems they pose, especially to flow assurance, their system implications, their environmental and economic perspectives with respect to their prospects as storage and transport alternative to the liquefied natural gas technology. (author)

  5. Bituminization of simulated waste, spent resins, evaporator concentrates and animal ashes by extrusion process

    International Nuclear Information System (INIS)

    The results of the study of bituminization of simulated radwaste - spennt ion-exchange resins, borate evaporator/concentrates and animal ashes, are presented and discussed. Distilled and oxidizer bitumen were used. Characterization of the crude material and simulated wastes-bitumen mixtures of varying weigt composition (30, 40, 50, 60% by weight of dry waste material) was carried out. The asphaltene and parafin contents in the bitumens were also determined. Some additives and were used with an aim to improve the characteristcs of solidified wastes. For leaching studies, granular ion-exchange resins were with Cs - 134 and mixtures of resin-bitumen were prepared. The leaching studies were executed using the IAEA recommendation and the ISO method. A conventional screw-extruder, common in plastic industry, was used determine operational parameters and process difficulties. Mixtures of resin-bitumen and evaporator concentrate-bitumen obtained from differents operational conditions were characterized. (Author)

  6. Nanodiamond finding in the hyblean shallow mantle xenoliths.

    Science.gov (United States)

    Simakov, S K; Kouchi, A; Mel'nik, N N; Scribano, V; Kimura, Y; Hama, T; Suzuki, N; Saito, H; Yoshizawa, T

    2015-01-01

    Most of Earth's diamonds are connected with deep-seated mantle rocks; however, in recent years, μm-sized diamonds have been found in shallower metamorphic rocks, and the process of shallow-seated diamond formation has become a hotly debated topic. Nanodiamonds occur mainly in chondrite meteorites associated with organic matter and water. They can be synthesized in the stability field of graphite from organic compounds under hydrothermal conditions. Similar physicochemical conditions occur in serpentinite-hosted hydrothermal systems. Herein, we report the first finding of nanodiamonds, primarily of 6 and 10 nm, in Hyblean asphaltene-bearing serpentinite xenoliths (Sicily, Italy). The discovery was made by electron microscopy observations coupled with Raman spectroscopy analyses. The finding reveals new aspects of carbon speciation and diamond formation in shallow crustal settings. Nanodiamonds can grow during the hydrothermal alteration of ultramafic rocks, as well as during the lithogenesis of sediments bearing organic matter. PMID:26030133

  7. Water-in-oil emulsions formed when oil is spilt at sea. A literature review. ESCOST report no. 11

    International Nuclear Information System (INIS)

    This report reviews the literature on water-in-oil (w/o) emulsions formed when oil is spilt at sea. The review has three main sections: Formation of w/o emulsions, Stability of w/o emulsions and Rheology. Many aspects of emulsion formation and stabilization are poorly understood. Three mechanisms have been suggested for the emulsification process. The w/o emulsions are stabilized by asphaltenes and waxes which form a mechanical barrier around the water droplets and prevent water-water coalescence. Studies in rheology have mainly concentrated on the flow behaviour of waxy crude oils. The report uncovers a need for further studies on the determination of droplet size and distribution and the rheology of w/o emulsions. 38 refs., 2 figs

  8. Lignin peroxidase oxidation of aromatic compounds in systems containing organic solvents.

    Science.gov (United States)

    Vazquez-Duhalt, R; Westlake, D W; Fedorak, P M

    1994-02-01

    Lignin peroxidase from Phanerochaete chrysosporium was used to study the oxidation of aromatic compounds, including polycyclic aromatic hydrocarbons and heterocyclic compounds, that are models of moieties of asphaltene molecules. The oxidations were done in systems containing water-miscible organic solvents, including methanol, isopropanol, N, N-dimethylformamide, acetonitrile, and tetrahydrofuran. Of the 20 aromatic compounds tested, 9 were oxidized by lignin peroxidase in the presence of hydrogen peroxide. These included anthracene, 1-, 2-, and 9-methylanthracenes, acenaphthene, fluoranthene, pyrene, carbazole, and dibenzothiophene. Of the compounds studied, lignin peroxidase was able to oxidize those with ionization potentials of stability characteristics of lignin peroxidase were determined by using pyrene as the substrate in systems containing different amounts of organic solvent. Benzyl alkylation of lignin peroxidase improved its activity in a system containing water-miscible organic solvent but did not increase its resistance to inactivation at high solvent concentrations. PMID:16349176

  9. Enhanced E-bed bottoms upgrading using latest catalytic technology

    Energy Technology Data Exchange (ETDEWEB)

    Toshima, H.; Mayo, S.; Sedlacek, Z.; Hughes, T.; De Wind, M. [Albermarle Corp., Amsterdam (Netherlands)

    2009-07-01

    The profitability of refineries depends on heavy oil upgrading in terms of price, conversion, yields and quality of the product. The Ebullated-bed process represents a solution for the effective primary upgrading of heavy oils. Since the 1970s, Albemarle has commercialized several E-bed catalysts to upgrade the bottoms in low sediment and high hydrogenation operations. Although an E-bed is used to maximize the conversion of vacuum residuum (VR), it is often limited by fouling caused by sediment in the product. In order to reduce sedimentation in the product, Albemarle developed an improved E-bed catalytic technology by characterizing the asphaltenes and sediments in order to better understand the oil chemistry and compatibility. The most recent development involves the patented catalyst-staging technology and the improved single catalyst application. Both achieve very low sediment or higher hydrodesulphurization (HDS) and Conradson carbon (CCR) removal for improved bottom upgrading. tabs., figs.

  10. Modelling of water-in-oil emulsions

    International Nuclear Information System (INIS)

    Water-in-oil emulsions are grouped into the following four states: stable, mesostable, unstable and entrained water. Only stable and mesostable states are characterized as emulsions. The states are established by their stability over time, their appearance, and by rheological measurements. This paper described the development of a new modelling scheme in which density, viscosity, saturate, asphaltene and resin contents are used to compute a class index, which predicts an unstable or entrained water-in-oil state of a meso-stable or stable emulsion. A prediction scheme was also presented to estimate the water content and viscosity of the resulting water-in-oil state and the time to formation given a sea wave-height. The study demonstrated that empirical data can be used to predict the formation and characteristics of emulsions. 16 refs., 5 tabs., 2 figs

  11. The potential applications in heavy oil EOR with the nanoparticle and surfactant stabilized solvent-based emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, F. [Texas A and M Univ., College Station, TX (United States)

    2010-07-01

    The main challenges in developing the heavy oil reservoirs in the Alaska North Slope (ANS) include technical challenges regarding thermal recovery; sand control and disposal; high asphaltene content; and low in-situ permeability. A chemical enhanced oil recovery method may be possible for these reservoirs. Solvent based emulsion flooding provides mobility control; oil viscosity reduction; and in-situ emulsification of heavy oil. This study evaluated the potential application of nano-particle-stabilized solvent based emulsion injection to enhance heavy oil recovery in the ANS. The optimized micro-emulsion composition was determined using laboratory tests such as phase behaviour scanning, rheology studies and interfacial tension measurements. The optimized nano-emulsions were used in core flooding experiments to verify the recovery efficiency. The study revealed that the potential use of this kind of emulsion flooding is a promising enhanced oil recovery process for some heavy oil reservoirs in Alaska, Canada and Venezuela. 4 refs., 2 tabs., 10 figs.

  12. Some thoughts on the organic structure of bituminous coal

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, J. W.

    1978-01-01

    Our current operating hypothesis is that coal consists of a cross linked macromolecular network of high aromatic clusters held together by linkages which include ethers and methylene groups. These clusters are arranged like beads on a string with 3 to 5 beads between branch points. Coal can be liqufied most readily by cleaving the links between the clusters. Doing chemistry on the clusters in the whole coal is very difficult because of the problems of getting to the clusters by reagents. It is fortunate that the linkages between clusters are quite reactive. But even with this, it is clear that coal liquefaction is a formidable chemical problem. There is much wisdom is Sternberg's suggestion that the chemistry of the freed clusters (pre-asphaltenes) be developed. Our model indicates that the chemistry which results in freeing the clusters from the network also should be explored and broadened.

  13. Analytical characterization of heavy oil products of petroleum

    International Nuclear Information System (INIS)

    In this paper, samples of slurry oil from Tianjing Refinery, and heavy aromatic oil from Luoyang Refinery, were analyzed by a combination of various methods, each focused on a particular group of components or a particular parameter. Asphaltenes of petroleum heavy oil products were determined by heptane extraction of 45 degrees C, saturated hydrocarbons were determined by normal-phase high-performance liquid chromatography (NP-HPLC); the determinaton of molecular weight distribution (MWD) was done by high-performance gel-permeation chromatography (HP-GPC); and polycylic aromatic compounds (PAC) in the samples were analyzed by reversedphase, high-performance liquid chromatography (RP-HPLC) and checked by mass spectrometry (MS)

  14. A New Type of Exposed Oil Sand Mine

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    With several means of analysis, the unique organic compound component and distribution of exposed oil sand existing in Qinghai, north-west China, is revealed. Qinghhai oil sand has great content of light components with high saturated hydrocarbon content up to approximately 50%, while its heavy components of colloid and asphaltene is rather low (<38%); straight-chain alkane has a regular distribution concentrating mainly around C28; it has a very high atom ratio of H/C. The physical parameters of the oil sand mine are within the range of common heavy oils. Such chemical composition and distribution obviously differs from that of other known exposed oil sand mines. This particular property of the oil sand is formed due to the unique geographical and geological environment. Therefore, it is intended to exploit the mine with a new combined method, i.e., first drill horizontal wells and then opencut.

  15. Maximizing heavy-oil value while minimizing environmental impact with HTL upgrading of heavy-to-light oil

    Energy Technology Data Exchange (ETDEWEB)

    Kuhach, J.D.; Koshka, E.; Lin, L.; Pavel, S.K. [Ivanhoe Energy Inc., Vancouver, BC (Canada)

    2009-07-01

    This paper discussed a heavy-to-light (HTL) upgrading technology designed to process heavy oil in the field. The HTL process uses a circulating transport bed of hot sand to heat heavy feedstock. The liquid products produced using the technique are more stable than alternative thermal-cracking technologies with longer residence times. The upgrading technique also improves feedstock qualities and eliminates problematic asphaltenes. Oil viscosity is reduced by several orders of magnitude. The study showed that when used in combination with thermal recovery processes, HTL upgrading eliminates the needs for costly diluents and reduces or eliminates the need for natural gas. Less water is also used during the HTL process. The integrated HTL process produces a smaller greenhouse gas (GHG) footprint than traditional stand-alone processes. It was concluded that use of the technology will enable the exploitation of reserves where economic margins are low. 13 refs., 4 figs.

  16. The formation of emulsions at marine oil spills and the implications for response strategies

    International Nuclear Information System (INIS)

    This paper describes an empirical laboratory procedure to obtain information about the different tendencies of six North Sea crude oils to form stable and highly viscous water-in-oil emulsions. Very different behavioral patterns were observed between the oils tested and the implications of these differences on the appropriate choice of response strategies are discussed. In particular the effectiveness of dispersant application to the surface slick and the persistence of the slicks are considered in relationship to the different behaviour patterns observed. No reliable correlations were evident between the behaviour of the crude oils and their pour points, asphaltene or wax contents. Hence the importance was highlighted in obtaining this sort of laboratory data to assist making decisions on the appropriate response strategies following an oil spill incident

  17. A gallery of oil components, their metals and Re-Os signatures

    Science.gov (United States)

    Stein, Holly J.; Hannah, Judith L.

    2016-04-01

    Most sediment-hosted metallic ore deposits are one degree of freedom from hydrocarbon. That is, sulfide fluid inclusions may contain vestiges of travel in tandem with hydrocarbon-bearing fluids. For metallic ore deposits of stated metamorphic and magmatic origin, the degrees of freedom are several times more or, in some cases, no relationship exists. Still, the fetish for stereotyping and classifying ore types into hardline ore deposit models (or hybrid models when the data are wildly uncooperative) impedes our ability to move toward a better understanding of source rock. Fluids in the deeper earth, fluids in the crust, and the extraterrestrial rain of metals provide the Re-Os template for oil. So, too, this combination ultimately drives the composition of many metallic ore deposits. The world of crude oil and its complex history of maturation, migration, mixing, metal-rich asphaltene precipitation, and subsequent mobility of lighter and metal-poor components, is an untapped resource for students of ore geology. In the same way that Mississippi Valley-type lead and zinc deposits are described as the outcome of two converging and mixing fluids (metal-bearing and sulfur-bearing fluids), asphaltene precipitation can be an outcome of a lighter oil meeting and mixing with a heavier one. In the petroleum industry, this can spell economic disaster if the pore-space becomes clogged with a non-producible heavy oil or solid bitumen. In ore geology, sulfide precipitation on loss of permeability may create a Pb-Zn deposit. Petroleum systems provide a gallery of successive time-integrated Re-Os results. Heavy or biodegraded oils, if intersected by lighter oil or gas, can generate asphaltite or tar mats, and release a reservoir of still lighter oil (or gas). During this process there are opportunities for separation of metal-enriched aqueous fluids that may retain an imprint of their earlier hydrocarbon history, ultimately trapped in fluid inclusions. Salinity, temperature and p

  18. Study of thermal reactivity of brown coal tars from rapid and slow pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Teubel, J.; Rast, A.; Schmiers, H.; Scholze, S. (Bergakademie, Freiberg (German Democratic Republic))

    1990-01-01

    Analyzes differences in properties of brown coal tars produced from coal of the same deposit, but using either rapid or slow pyrolysis. Samples of rapid pyrolysis tar originated from laboratory fluidized bed carbonization; the slow pyrolysis tar came from industrial brown coal coking. The study showed that rapid pyrolysis tar has a high thermal reactivity in the 400 C temperature range. Obtained pitch from thermal tar treatment has a high content of asphaltenes and benzene insoluble compounds. Electrode coke produced by carbonization of this pitch had an unfavorable microstructure and is unsuitable for graphitization. Secondary pyrolysis is therefore required to gain rapid pyrolysis pitch comparable in properties to pitch from industrial slow pyrolysis. 4 refs.

  19. Study of the degradation of power generation combustion components at elevated temperature

    Energy Technology Data Exchange (ETDEWEB)

    Castrejon, J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, C.P. 62209, Cuernavaca, Mor., Mexico (Mexico); Serna, S. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas-UAEM, Av. Universidad 1001, C.P. 62209, Cuernavaca, Mor., Mexico (Mexico)]. E-mail: aserna@uaem.mx; Wong-Moreno, A. [Instituto Mexicano del Petroleo, Eje Central No. 152, Col. San. Bartolo Atepehuacan, C.P. 07730, Mexico, DF (Mexico); Fragiel, A. [Centro de Ciencias de la Materia Condensada-UNAM, Km 7 Carretera Tijuana-Ensenada, C.P. 22800, Ensenada, Baja California (Mexico); Lopez-Lopez, D. [Instituto Mexicano del Petroleo, Eje Central No. 152, Col. San. Bartolo Atepehuacan, C.P. 07730, Mexico, DF (Mexico)

    2006-01-15

    Elevated temperature combustion of fuel oil that contains large amounts of vanadium, asphaltenes and mostly sulfur, presents a major challenge for materials selection and design of combustion components for the electric power generation. The combustion system, which consists of air nozzles and air swirlers, plays a key role in the performance of electric power plants. Air nozzles and air swirlers, which were operated for one year in a 350 MW boiler, were analyzed, presenting accelerated degradation. The particular features of corrosion behavior of these components made by stainless steels: 304, 446 and HH, are presented. The results obtained after optical, metallographic, and microprobe analysis revealed that the components flame contact at very high operating temperature promoted all materials degradation mechanisms. Under this scenario, it is very difficult to find a material resistant to such accelerated wastage conditions. So, the solution of the problem must be oriented to re-design and improve the efficiency of the flame contact with these components.

  20. Quantum Chemistry of PAHs Thermal Cracking with Different Hydrogenation Degree

    Institute of Scientific and Technical Information of China (English)

    Wang Chunlu; Zhou Han; Dai Zhenyu; Zhao Xiaoguang; Zhao Yi

    2013-01-01

    In order to investigate the inlfuence of hydrogenation degree and structural variety on reaction trend of polyaro-matic hydrocarbons (PAHs) in resins and asphaltenes portion of heavy oil, a series of PAHs with different hydrogenation degree were selected as model compounds to simulate their different hydrogenation stage, and the PAHs thermal cracking reaction was simulated based on free radical mechanism by the density functional theory (DFT) to search for reactions’ tran-sition state. By comparing the dynamic data obtained from reaction simulation, it is showed that processing dififculty could rise with increasing condensed aromatic ring number, and hydrogenation could promote ring cleavage reaction, but exces-sive hydrogenation would decrease the oil conversion rate to reduce light-end products. In conclusion, proper hydrogenation was quite critical in promoting light-end products conversion efifciency and saving the processing cost as well. Operational instructions were given based on both PAHs hydrogenation performance and conclusions were drawn up from reaction simulation results.

  1. Combustion characteristics of Athabasca froth treatment tailings in a simulated fluidilized bed

    Energy Technology Data Exchange (ETDEWEB)

    Esmaeili, P.; Ghosh, M.; Speirs, B. C. [Imperial Oil Resources (Canada); Leon, M. A.; Rao, S.; Dutta, A.; Basu, P. [Greenfield Research Inc. (Canada)

    2011-07-01

    In surface-mined oil sands, a stream of water, asphaltenes, solids and residual bitumen/solvent, known as PFT tailings, is created during the bitumen production process. The aim of this study was to investigate the use of this PFT tailings stream as a fuel source for combustion in a fluidized bed for energy recovery. To do so, physical and fluidization characteristics of the fuel as well as combustion kinetics were assessed through laboratory analysis. In addition, the fuel's combustion characteristics were investigated through experiments in a quartz wool matrix tubular reactor and theoretical calculations at various moisture contents. Results showed that this fuel can be burned in a fluidized bed with a reactivity comparable to that of coal samples. This research found that PFT tailings could be used to generate energy during disposal but further work will have to be undertaken in a hot CFB combustor to confirm this.

  2. Goodbye water use, tailings and Co2?

    Energy Technology Data Exchange (ETDEWEB)

    Stastny, R.P.

    2011-03-15

    Alberta Bitumen Link (ABL), a new integrated oilsands technology, is described. ABL combines the use of dimethyl ester (DME) as a solvent at lower temperatures in SAGD and the manufacture of DME by gasification of coal and asphaltenes so CO2 formation is reduced. The heat from the gasification process cogenerates electricity, while the produced DME is sent for use in the in-situ bitumen recovery. ABL finds the same mobility in bitumen stimulated with solvent at 80 C as a reservoir heated to 230 C by steam. The intellectual property now resides with Envirotech Consulting Inc. of Edmonton and Thermax Systems Co. of Japan and the technology is in small-scale testing. 1 fig.

  3. Spectral characterization of crude oil using fluorescence (synchronous and time-resolved) and NIR (Near Infrared Spectroscopy); Caracterizacao espectral do petroleo utilizando fluorescencia (sincronizada e resolvida no tempo) e NIR (Near Infrared Spectroscopy)

    Energy Technology Data Exchange (ETDEWEB)

    Falla Sotelo, F.; Araujo Pantoja, P.; Lopez-Gejo, J.; Le Roux, G.A.C.; Nascimento, C.A.O. [Universidade de Sao Paulo (USP), SP (Brazil). Dept. de Engenharia Quimica. Lab. de Simulacao e Controle de Processos; Quina, F.H. [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Centro de Capacitacao e Pesquisa em Meio Ambiente (CEPEMA)

    2008-07-01

    The objective of the present work is to evaluate the performance of two spectroscopic techniques employed in the crude oil characterization: NIR spectroscopy and fluorescence spectroscopy (Synchronous fluorescence - SF and Time Resolved Fluorescence - TRF) for the development of correlation models between spectral profiles of crude oil samples and both physical properties (viscosity and API density) and physico-chemical properties (SARA analysis: Saturated, Aromatic, Resins and Asphaltenes). The better results for viscosity and density were obtained using NIR whose prediction capacity was good (1.5 cP and 0.5 deg API, respectively). For SARA analysis, fluorescence spectroscopy revealed its potential in the model calibration showing good results (R2 coefficients greater than 0.85). TRF spectroscopy had better performance than SF spectroscopy. (author)

  4. Heavy recycle solvent studies in two-stage coal liquefaction. Final technical report, September 1, 1982-December 30, 1983

    Energy Technology Data Exchange (ETDEWEB)

    Longanbach, J. R.

    1984-01-10

    The objective of this program has been to study the chemistry of the components with high boiling points in a direct coal liquefaction recycle solvent and to identify those components which lead to higher overall yields and improved product stability in the initial coal dissolution step of direct coal liquefaction processes. The major conclusions are: -454 C recycle solvent is primarily aromatic hydrocarbons (73%) and contains almost no asphaltenes; +454 C recycle solvent is primarily asphaltenes and aromatic hydrocarbons; recycle solvent also contains aliphatic hydrocarbons, N-containing aromatics and O-containing aromatics; heteroatoms in coal derived materials seem to be grouped by type, i.e. acidic O and basic N and sulfur occur together; under helium a small net amount of hydrogen and more CO and CO/sub 2/ are produced than under hydrogen; under hydrogen the amounts of H/sub 2/S and hydrocarbon gases are increased and a small amount of hydrogen gas is usually consumed; overall coal conversions to THF solubles are improved by adding more -454 C solvent but decreased by adding +454 C solvent; for added fractions of -454 C solvent the pecent conversion to THF solubles increases in the order aromatic hydrocarbons (+7.2) > aliphatic hydrocarbons (+0.8) > no added solvent (0.0) > N-containing aromatics (-0.9) > O-containing aromatics (-22.1); percent conversion to THF solubles using -454 C solvent with +454 C solvent fractions added decrease in the order aliphatics (+3.7) > aromatic hydrocarbons (+3.0) > no added solvent (0.0) > O-containing aromatics (-9.3) > N-containing aromatics (-13.3); of the +454 C solvent components, aromatic hydrocarbons and aliphatic hydrocarbons are beneficial but total only approx. 25% of the +454 C recycle solvent; and steric effects may be important in determining the effectiveness of the heavier solvent components as liquefaction solvents. 28 references, 25 figures, 31 tables.

  5. Rheology of unstable mineral emulsions

    Directory of Open Access Journals (Sweden)

    Sokolović Dunja S.

    2013-01-01

    Full Text Available In this paper, the rheology of mineral oils and their unstable water emulsion were investigated. The oil samples were domestic crude oil UA, its fractions UA1, UA4 and blend semi-product UP1, while the concentration of oil in water emulsions was in the range from 1 up to 30%. The results were analyzed based on shear stress. The oil samples UA, UA1 and UP1 are Newtonian fluids, while UA4 is pseudoplastic fluid. The samples UA and UA4 show higher value of shear stress (83.75 Pa, 297 Pa, then other two samples UA1 and UP1 (18.41 Pa, 17.52 Pa. Rheology of investigated oils due to its complex chemical composition should be analyzed as a simultaneous effect of all their components. Therefore, structural composition of the oils was determined, namely content of paraffins, naphthenes, aromatics and asphaltenes. All samples contain paraffins, naphthenes and aromatics but only oils UA and UA4 contain asphaltenes as well. All investigated emulsions except 30% EUA4 are Newtonian fluids. The EUA4 30% emulsion shows pseudoplastic behaviour, and it is the only 30% emulsion among investigated ones that achieves lower shear stress then its oil. The characteristics of oil samples that could have an influence on their properties and their emulsion rheology, were determined. These characteristics are: neutralization number, interfacial tension, dielectric constant, and emulsivity. Oil samples UA and UA4 have significantly higher values of neutralization number, dielectric constants, and emulsivity. The sample UA has the lowest value of interface tension and the greatest emulsivity, indicating that this oil, among all investigated, has the highest preference for building emulsion. This could be the reason why 20% and 30% emulsions of the oil UA achieve the highest shear stress among all investigated emulsions.

  6. Meeting the flow assurance challenges of deep water developments - from CAPEX development to field start up

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, M.M.; Feasey, N.D. [National Aluminium Company Ltd. (Nalco), Cheshire (United Kingdom); Afonso, M.; Silva, D. [NALCO Brasil Ltda., Sao Paulo, SP (Brazil)

    2008-07-01

    As oil accumulations in easily accessible locations around the world become less available developments in deeper water become a more common target for field development. Deep water projects, particularly sub sea development, present a host of challenges in terms of flow assurance and integrity. In this paper the focus will be on the chemical control of flow assurance challenges in hydrate control, scale control and wax/asphaltene control within deep water (>750 meter) developments. The opportunities for kinetic hydrate control vs. conventional thermodynamic hydrate control will be outlined with examples of where these technologies have been applied and the limitations that still exist. The development of scale control chemical formulations specifically for sub sea application and the challenges of monitoring such control programs will be highlighted with developments in real time and near real time monitoring. Organic deposit control (wax/asphaltene) will focus on the development of new chemicals that have higher activity but lower viscosity than currently used chemicals hence allowing deployment at colder temperatures and over longer distances. The factors that need to be taken into account when selecting chemicals for deep water application will be highlighted. Fluid viscosity, impact of hydrostatic head on injectivity, product stability at low temperature and interaction with other production chemicals will be reviewed as they pertain to effective flow assurance. This paper brings learning from other deep water basins with examples from the Gulf of Mexico, West Africa and Brazil, which will be used to highlight these challenges and some of the solutions currently available along with the technology gaps that exist. (author)

  7. Effect of Extracted Compositions of Liquefaction Residue on the Structure and Properties of the Formed-coke

    Directory of Open Access Journals (Sweden)

    Song Yong-hui

    2016-01-01

    Full Text Available The purpose of this paper is to study the effect of extracted compositions of the de-ash liquefaction residue (D-DCLR on pyrolysis products yields, compressive strength and composition of the formed-coke, which was prepared by co-pyrolysis of the low metamorphic pulverized coal and D-DCLR. The scanning electron microscope (SEM and the Fourier Transform Infrared (FT-IR were used to characterize the morphology and functional group of the formed-coke, respectively. The results showed that the extracted compositions of D-DCLR were heavy oil (HS, asphaltene (A, pre-asphaltene (PA and tetrahydrofuran isolusion (THFIS, whose contents were 5.10%, 40.90%, 14.4%, 39.60%, respectively. During the pyrolysis process, HS was the main source of tar, and HS, A as well as PA were conducive to improve gas yields. The THFIS helped to improve the yield of the formed-coke up to 89.5%, corresponding to the compressive strength was only 147.7N/ball for the coke. A and PA were the key factors affecting the compressive strength and surface structure of the formed-coke. The compressive strength of coke could be up to 728.0N/ball with adding D-DCLR, which reduced by 50% after the removal of A and PA. The FT-IR analysis showed that the types of surface functional groups of the formed-coke were remained the same after co-pyrolysis, but the absorption peak intensity of each functional group was changed.

  8. Black goop attack: special report on horizontal wells

    International Nuclear Information System (INIS)

    Reducing the problems of declining performance as wells become plugged with deposits of materials such as asphaltenes and paraffins is the job of well maintenance, a segment of the oil field servicing industry that has seen relatively few advances in recent years. A new technique, ultrasonic irradiation, under development at Dalhousie University 's new petroleum engineering program, that promises to deal with this problem, is discussed, Coupled with in-situ foam treatment, the technique can be used to clean solid deposits from asphaltene-clogged sections of horizontal wellbores without expensive workovers. The process involves high frequency waves that break up the sandy tar into small particles which are then flushed out with surfactant. Currently being designed is a small ultrasonic device that can be inserted into producing wells via wireline. The device can be left in place and operated every four or five weeks as part of the regular well maintenance schedule. A prototype device is expected to be available later in the year 2000. Based on laboratory experiments, the device reduces plugging by reducing oil viscosity especially in the presence of asphaltic crudes, and through its ability to keep particles in suspension, probably through the generation of microbubbles. Another series of experiments by Droycon Bioconcepts Inc in Regina discovered various types of microbial debris within the paraffin and anthracene deposits, suggesting the potential for the formation of the deposits to involve microbial activity. This hypothesis is supported by the fact that the paraffin/anthracene deposit could be removed by the application of heat and the surfactant CB4

  9. SOVENT BASED ENHANCED OIL RECOVERY FOR IN-SITU UPGRADING OF HEAVY OIL SANDS

    Energy Technology Data Exchange (ETDEWEB)

    Munroe, Norman

    2009-01-30

    With the depletion of conventional crude oil reserves in the world, heavy oil and bitumen resources have great potential to meet the future demand for petroleum products. However, oil recovery from heavy oil and bitumen reservoirs is much more difficult than that from conventional oil reservoirs. This is mainly because heavy oil or bitumen is partially or completely immobile under reservoir conditions due to its extremely high viscosity, which creates special production challenges. In order to overcome these challenges significant efforts were devoted by Applied Research Center (ARC) at Florida International University and The Center for Energy Economics (CEE) at the University of Texas. A simplified model was developed to assess the density of the upgraded crude depending on the ratio of solvent mass to crude oil mass, temperature, pressure and the properties of the crude oil. The simplified model incorporated the interaction dynamics into a homogeneous, porous heavy oil reservoir to simulate the dispersion and concentration of injected CO2. The model also incorporated the characteristic of a highly varying CO2 density near the critical point. Since the major challenge in heavy oil recovery is its high viscosity, most researchers have focused their investigations on this parameter in the laboratory as well as in the field resulting in disparaging results. This was attributed to oil being a complex poly-disperse blend of light and heavy paraffins, aromatics, resins and asphaltenes, which have diverse behaviors at reservoir temperature and pressures. The situation is exacerbated by a dearth of experimental data on gas diffusion coefficients in heavy oils due to the tedious nature of diffusivity measurements. Ultimately, the viscosity and thus oil recovery is regulated by pressure and its effect on the diffusion coefficient and oil swelling factors. The generation of a new phase within the crude and the differences in mobility between the new crude matrix and the

  10. Stable carbon isotopic characterization of hydrocarbons in contaminated soils

    International Nuclear Information System (INIS)

    Effective management of risks at sites featuring refractory hydrocarbon wastes is often constrained by the limitations of conventional analytical methodologies. Stable carbon isotope analysis was therefore evaluated as an alternative means of characterizing the composition, source and weathering of hydrocarbon contaminants. Bulk δ13C of selected heavy oils (boiling range 50 to 500 C) of varying component class distribution decreased from -28.9 to -27.4 per-thousand as oil saturate class content decreased (from 70.6 to 31.7%w/w) and polar/asphaltene content increased (from 7.4 to 50.5%w/w). Class δ13C increased by up to 2.5 per-thousand as follows: saturates (ca. -29 per-thousand) 13C. Plots of oil δ13C vs. saturate and polar/asphaltene content confirmed this relationship, returning linear correlation coefficients (r2) of 0.93 and 0.99, respectively. Characteristic isotopic fingerprints of heavy oils, crude oils and acid tar wastes may also provide a valuable means of differentiating between possible source terms. Unweathered, 25%, 50% and 75% weathered reference oils were analyzed by compound specific isotope analysis (CSIA). n-Alkane (C13-C23) δ13C were often 1--2 per-thousand lower in the weathered samples (e.g., δ13C of C15 = -27.14 per-thousand (fresh), -26.86 per-thousand at 25%, -25.36 per-thousand at 50%, undetected at 75%). CSIA of established oil biomarkers, detected by GC/MS, facilitated the creation of a index for quantifying the extent of weathering undergone. Subsequent work investigating the effects of biotransformation on selected oil δ13C is underway

  11. Formation of water-in-oil emulsions and application to oil spill modelling.

    Science.gov (United States)

    Fingas, Merv; Fieldhouse, Ben

    2004-02-27

    Water-in-oil mixtures were grouped into four states or classes: stable, mesostable, unstable, and entrained water. Of these, only stable and mesostable states can be characterized as emulsions. These states were established according to lifetime, visual appearance, complex modulus, and differences in viscosity. Water content at formation was not an important factor. Water-in-oil emulsions made from crude oils have different classes of stability as a result of the asphaltene and resin contents, as well as differences in the viscosity of the starting oil. The different types of water-in-oil classes are readily distinguished simply by appearance, as well as by rheological properties. A review of past modelling efforts to predict emulsion formation showed that these older schemes were based on first-order rate equations that were developed before extensive work on emulsion physics took place. These results do not correspond to either laboratory or field results. The present authors suggest that both the formation and characteristics of emulsions could be predicted using empirical data. If the same oil type as already studied is to be modelled, the laboratory data on the state and properties can be used directly. In this paper, a new numerical modelling scheme is proposed and is based on empirical data and the corresponding physical knowledge of emulsion formation. The density, viscosity, saturate, asphaltene and resin contents are used to compute a class index which yields either an unstable or entrained water-in-oil state or a mesostable or stable emulsion. A prediction scheme is given to estimate the water content and viscosity of the resulting water-in-oil state and the time to formation with input of wave height. PMID:15036641

  12. Comparison of the chemical structure of coal hydrogenation products, Athabasca tar sand bitumen and Green River shale oil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, R.; Yoshida, T.; Nakata, Y.; Hasegawa, Y.; Hino, M.; Ikawa, Y.; Makabe, M.; Bodily, D.M.

    1983-03-01

    Coal hydrogenation products, Athabasca tar sand bitumen, and Green River shale oil produced by retorting were analyzed by the Brown-Ladner method and the Takeya et al. method on the basis of elemental analysis and /sup 1/H-NMR data, by /sup 13/C NMR spectroscopy and by FT-IR spectroscopy. Structural characteristics were compared. The results show that the chemical structure of oils from Green River shale oil and Athabasca tar sand bitumen, and the oils produced in the initial stage of hydrogenation of Taiheiyo coal and Clear Creek, Utah, coal is characterized as monomers consisting of units of one aromatic ring substituted highly with C/sub 5//sub -//sub 6/ aliphatic chains and heteroatom-containing functional groups. The chemical structure of asphaltenes from Green River shale oil and Athabasca tar sand bitumen is characterized by oligomers consisting of units of 1-2 aromatic rings substituted highly with C/sub 3//sub -//sub 5/ aliphatic chains and heteroatom-containing functional groups. The chemical structure of asphaltenes from coal hydrogenation is characterized by dimers and/or trimers of unit structures of 2 to 5 condensed aromatic rings, substituted moderately with C/sub 2//sub -//sub 5/ aliphatic chains and heteroatom-containing functional groups. The close agreement between f/SUB/a(/sup 1/H-NMR) and f/SUB/a(/sup 13/C-NMR) for Green River shale oil derivatives indicates that the assumption of 2 for the atomic H/C ratio of aliphatic structures is reasonable. For coal hydrogenation products, a value of 1.6-1.7 for the H/C ratio of aliphatic structures would be more reasonable. (25 refs).

  13. Sequential Isolation of Saturated, Aromatic, Resinic and Asphaltic Fractions Degrading Bacteria from Oil Contaminated Soil in South Sumatera

    Directory of Open Access Journals (Sweden)

    Pingkan Aditiawati

    2012-04-01

    Full Text Available Sequential isolation has been conducted to obtain isolates of saturated, aromatic, resin, and asphaltene fractions degrading bacteria from oil contaminated sites. Five soil samples were collected from South Sumatera. These were analyzed using soil extract medium enriched with oil recovery or Remaining-Oil recovery Degradated (ROD as sole carbon and energy sources according to the isolation stage. ROD at the end of every isolation stage analyzed oil fractions by use of the SARA analysis method. Six isolates of bacteria have been selected, one isolate was fraction saturates degrading bacteria that are Mycobacterium sp. T1H2D4-7 at degradation rate 0.0199 mgs/h with density 8.4x106 cfu/g from stage I. The isolate T2H1D2-4, identified as Pseudomonas sp. was fraction aromatics degrading bacteria at accelerate 0.0141 mgs/h with density 5.1x106 cfu/g are obtained at stage II. Two isolates namely Micrococcus sp. T3H2D4-2 and Pseudomonas sp. T1H1D5-5 were fraction resins degrading bacteria by accelerate 0.0088 mgs/h at density 5.6x106 cfu/g and 0.0089 mgs/h at density 5.7x106 cfu/g are obtained at stage III. Isolation of stage IV has been obtained two isolates Pseudomonas sp. T4H1D3-1and Pseudomonas sp. T4H3D5-4 were fraction asphaltenes degrading bacteria by accelerate 0.0057 mgs/h at density 5.6x106 cfu/g and accelerate 0.0058 mgs/h at density 5.7x106 cfu/g.

  14. Bacterial Adhesion to Hexadecane (Model NAPL)-Water Interfaces

    Science.gov (United States)

    Ghoshal, S.; Zoueki, C. R.; Tufenkji, N.

    2009-05-01

    The rates of biodegradation of NAPLs have been shown to be influenced by the adhesion of hydrocarbon- degrading microorganisms as well as their proximity to the NAPL-water interface. Several studies provide evidence for bacterial adhesion or biofilm formation at alkane- or crude oil-water interfaces, but there is a significant knowledge gap in our understanding of the processes that influence initial adhesion of bacteria on to NAPL-water interfaces. In this study bacterial adhesion to hexadecane, and a series of NAPLs comprised of hexadecane amended with toluene, and/or with asphaltenes and resins, which are the surface active fractions of crude oils, were examined using a Microbial Adhesion to Hydrocarbons (MATH) assay. The microorganisms employed were Mycobacterium kubicae, Pseudomonas aeruginosa and Pseudomonas putida, which are hydrocarbon degraders or soil microorganisms. MATH assays as well as electrophoretic mobility measurements of the bacterial cells and the NAPL droplet surfaces in aqueous solutions were conducted at three solution pHs (4, 6 and 7). Asphaltenes and resins were shown to generally decrease microbial adhesion. Results of the MATH assay were not in qualitative agreement with theoretical predictions of bacteria- hydrocarbon interactions based on the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) model of free energy of interaction between the cell and NAPL droplets. In this model the free energy of interaction between two colloidal particles is predicted based on electrical double layer, van der Waals and hydrophobic forces. It is likely that the steric repulsion between bacteria and NAPL surfaces, caused by biopolymers on bacterial surfaces and aphaltenes and resins at the NAPL-water interface contributed to the decreased adhesion compared to that predicted by the XDLVO model.

  15. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  16. Decrease of noxious emissions in the residual fuel oil combustion; Disminucion de emisiones nocivas en la combustion de aceite combustible residual

    Energy Technology Data Exchange (ETDEWEB)

    Mandoki W, Jorge [Econergia S. de R. L. de C. V. Mexico, D. F. (Mexico)

    1994-12-31

    The residual fuel oil combustion emits noxious substances such as carbonaceous particulate, nitrogen oxides, and sulfur trioxide at unacceptable levels. Water emulsified in the fuel substantially reduces such emissions, achieving besides, in most of the cases, a net saving in the fuel consumption. The beneficial effects are shown in burning the residual fuel oil as a water emulsion, as well as the method to produce an adequate emulsion. The emulsified fuel technology offers a low cost option to reduce air pollution. The fuel oil quality has been declining during the last decades due to: 1. Increase in the production of crude heavy oils, generally with higher content of asphaltens and sulfur. 2. Less availability of vacuum distillation residues due to its conversion into greater value products. 3. More intensive conversion processes such as catalytic cracking, visbreaking, etc. that increase the asphaltenes concentration in the bottoms, causing instability problems. 4. The increase in the vanadium and other metals content as the concentration of asphaltenes increases. The use of emulsified fuel oil provides an efficient and economical method to substantially reduce the noxious emissions to the atmosphere. The emulsion contains water particles in a diameter between 2 and 20 microns, uniformly distributed in the fuel oil, generally in a proportion generally of 5 to 10%; besides, it contains a tensioactive agent to assure a stable emulsion capable of withstanding the shearing forces of the pumping and distribution systems. When the atomized oil drops get into the combustion chamber, the emulsified water flashes into high pressure steam, originating a violent secondary atomization. The effect of this secondary atomization is the rupture of the oil drops of various hundred microns, producing drops of 5 to 15 microns in diameter. Since the necessary time for combustion is an exponential function of the drop diameter, a very substantial improvement in the combustion is

  17. Analyse quantitative des effluents de pyrolyse en milieu ouvert et fermé Quantitative Analysis of Pyrolysis Effluents in an Open and Closed System

    Directory of Open Access Journals (Sweden)

    Behar F.

    2006-11-01

    Full Text Available Dans la première partie de l'article, nous décrivons une technique de pyrolyse en milieu ouvert qui permet de caractériser les matières organiques complexes comme le kérogène, le charbon, les asphaltènes de roche et d'huiles, les substances humiques et fulviques etc. Les effluents de pyrolyse sont récupérés et fractionnés quantitativement puis analysés par des techniques spécifiques comme la chromatographie en phase gazeuse et le couplage chromatographie/spectrométrie de masse. Dans la deuxième partie, est présentée une technique de pyrolyse en milieu fermé pour simuler au laboratoire l'évolution thermique des kérogènes, asphaltènes ou huiles. Nous nous sommes surtout attachés à dresser des bilans massiques et des bilans de l'hydrogène sur l'ensemble des produits de pyrolyse. Pour cela, nous avons distingué cinq classes de poids moléculaire croissant : C1, C2-C5, C6-C13, C14+ et coke. La récupération quantitative et la séparation de chacune des cinq fractions permet une analyse moléculaire détaillée de chacune d'elles. The first part of this article describes an open pyrolysis system in order to characterize complex organic matter such as kerogen, coal, rock and oil asphaltenes and humic substances, etc. Pyrolysis effluents are recovered, fractionated quantitatively by liquid chromatography, and then they are analyzed by specific techniques such as gas chromatography and chromatography/mass-spectrometry coupling. The second part describes a pyrolysis technique in a closed system, used for the laboratory simulation of the thermal evolution of kerogens, asphaltenes or oils. A special effort has been made to give the mass and hydrogen balances for all pyrolysis products. For this, five classes have been distinguised with increasing molecular weight: C1, C2-C5, C6-C13, C14+ and coke. The quantitative recovery and the separation of each of the five fractions is used to make a detailed molecular analysis of each of

  18. WETTABILITY AND IMBIBITION: MICROSCOPIC DISTRIBUTION OF WETTING AND ITS CONSEQUENCES AT THE CORE AND FIELD SCALES

    Energy Technology Data Exchange (ETDEWEB)

    Jill S. Buckley; Norman R. Morrow; Chris Palmer; Purnendu K. Dasgupta

    2003-02-01

    The questions of reservoir wettability have been approached in this project from three directions. First, we have studied the properties of crude oils that contribute to wetting alteration in a reservoir. A database of more than 150 different crude oil samples has been established to facilitate examination of the relationships between crude oil chemical and physical properties and their influence on reservoir wetting. In the course of this work an improved SARA analysis technique was developed and major advances were made in understanding asphaltene stability including development of a thermodynamic Asphaltene Solubility Model (ASM) and empirical methods for predicting the onset of instability. The CO-Wet database is a resource that will be used to guide wettability research in the future. The second approach is to study crude oil/brine/rock interactions on smooth surfaces. Contact angle measurements were made under controlled conditions on mica surfaces that had been exposed to many of the oils in the CO-Wet database. With this wealth of data, statistical tests can now be used to examine the relationships between crude oil properties and the tendencies of those oils to alter wetting. Traditionally, contact angles have been used as the primary wetting assessment tool on smooth surfaces. A new technique has been developed using an atomic forces microscope that adds a new dimension to the ability to characterize oil-treated surfaces. Ultimately we aim to understand wetting in porous media, the focus of the third approach taken in this project. Using oils from the CO-Wet database, experimental advances have been made in scaling the rate of imbibition, a sensitive measure of core wetting. Application of the scaling group to mixed-wet systems has been demonstrated for a range of core conditions. Investigations of imbibition in gas/liquid systems provided the motivation for theoretical advances as well. As a result of this project we have many new tools for studying

  19. Processing of oil products using complex radiation-thermal treatment and radiation oxonolysis

    International Nuclear Information System (INIS)

    Most of industrial radiation facilities afford an opportunity to produce a considerable amount of reactive ozone-containing gaseous mixtures parallel to the basic production that causes no detriment to the output of the main designed product. The synergetic action of the ozone-containing mixtures and ionizing radiation is of a special interest for industrial application since it can be efficiently used in a wide range of technologies, in particular, for stimulation of chemical conversion in hydrocarbons accompanied by intensive oxidizing processes. In this paper the effect of simultaneous radiation-thermal processing and radiation oxonolysis on hydrocarbon chemical conversion, and subsequent alterations in composition and properties of oil products were studied on the example of high-viscous oil (Karazhanbas field, Kazakhstan) subjected to irradiation by 2 MeV electrons combined with radiation ozonization in the bubbling mode. It was stated that application of the bubbling mode for radiation-induced ozonization of high-viscous oil leads to decrease in the yields of engine fuels in average by 8-10 % compared with those obtained in the conditions when radiation-thermal cracking was applied without bubbling. In the latter case mean yields of the wide gas-oil fraction with boiling start temperature of 350 deg. C, that included gasoline, kerosene, and diesel fuel, were about 76-80 %. Decrease in the gasoline yields does not lead to noticeable alterations in hydrocarbon contents of the gasoline fraction (boiling beginning bellow 175 deg. C) compared with gasoline produced be radiation-thermal cracking, in both cases it meets requirements for high quality standards. However, essential difference was observed in properties of heavy residua of oil processing (oil fractions with Tboil>350 deg. C), i.e. the fractions that contained high concentrations of asphaltenes and pitches. Application of radiation oxonolysis diminishes concentrations of high-molecular aromatic compound

  20. Surface microstructure of bitumen characterized by atomic force microscopy.

    Science.gov (United States)

    Yu, Xiaokong; Burnham, Nancy A; Tao, Mingjiang

    2015-04-01

    Bitumen, also called asphalt binder, plays important roles in many industrial applications. It is used as the primary binding agent in asphalt concrete, as a key component in damping systems such as rubber, and as an indispensable additive in paint and ink. Consisting of a large number of hydrocarbons of different sizes and polarities, together with heteroatoms and traces of metals, bitumen displays rich surface microstructures that affect its rheological properties. This paper reviews the current understanding of bitumen's surface microstructures characterized by Atomic Force Microscopy (AFM). Microstructures of bitumen develop to different forms depending on crude oil source, thermal history, and sample preparation method. While some bitumens display surface microstructures with fine domains, flake-like domains, and dendrite structuring, 'bee-structures' with wavy patterns several micrometers in diameter and tens of nanometers in height are commonly seen in other binders. Controversy exists regarding the chemical origin of the 'bee-structures', which has been related to the asphaltene fraction, the metal content, or the crystallizing waxes in bitumen. The rich chemistry of bitumen can result in complicated intermolecular associations such as coprecipitation of wax and metalloporphyrins in asphaltenes. Therefore, it is the molecular interactions among the different chemical components in bitumen, rather than a single chemical fraction, that are responsible for the evolution of bitumen's diverse microstructures, including the 'bee-structures'. Mechanisms such as curvature elasticity and surface wrinkling that explain the rippled structures observed in polymer crystals might be responsible for the formation of 'bee-structures' in bitumen. Despite the progress made on morphological characterization of bitumen using AFM, the fundamental question whether the microstructures observed on bitumen surfaces represent its bulk structure remains to be addressed. In addition

  1. Four-component united-atom model of bitumen

    Science.gov (United States)

    Hansen, J. S.; Lemarchand, Claire A.; Nielsen, Erik; Dyre, Jeppe C.; Schrøder, Thomas

    2013-03-01

    We propose a four-component united-atom molecular model of bitumen. The model includes realistic chemical constituents and introduces a coarse graining level that suppresses the highest frequency modes. Molecular dynamics simulations of the model are carried out using graphic-processor-units based software in time spans in order of microseconds, which enables the study of slow relaxation processes characterizing bitumen. This paper also presents results of the model dynamics as expressed through the mean-square displacement, the stress autocorrelation function, and rotational relaxation. The diffusivity of the individual molecules changes little as a function of temperature and reveals distinct dynamical time scales. Different time scales are also observed for the rotational relaxation. The stress autocorrelation function features a slow non-exponential decay for all temperatures studied. From the stress autocorrelation function, the shear viscosity and shear modulus are evaluated, showing a viscous response at frequencies below 100 MHz. The model predictions of viscosity and diffusivities are compared to experimental data, giving reasonable agreement. The model shows that the asphaltene, resin, and resinous oil tend to form nano-aggregates. The characteristic dynamical relaxation time of these aggregates is larger than that of the homogeneously distributed parts of the system, leading to strong dynamical heterogeneity.

  2. Downhole Upgrading of Orinoco Basin Extra-Heavy Crude Oil Using Hydrogen Donors under Steam Injection Conditions. Effect of the Presence of Iron Nanocatalysts

    Directory of Open Access Journals (Sweden)

    Cesar Ovalles

    2015-03-01

    Full Text Available An extra-heavy crude oil underground upgrading concept and laboratory experiments are presented which involve the addition of a hydrogen donor (tetralin to an Orinoco Basin extra-heavy crude oil under steam injection conditions (280–315 °C and residence times of at least 24-h. Three iron-containing nanocatalysts (20 nm, 60 nm and 90 nm were used and the results showed increases of up to 8° in API gravity, 26% desulfurization and 27% reduction in the asphaltene content of the upgraded product in comparison to the control reaction using inert sand. The iron nanocatalysts were characterized by SEM, XPS, EDAX, and Mössbauer spectroscopy before and after the upgrading reactions. The results indicated the presence of hematite (Fe2O3 as the predominant iron phase. The data showed that the catalysts were deactivating by particle sintering (~20% increase in particle size and also by carbon deposition. Probable mechanisms of reactions are proposed.

  3. Organosulphur compounds in coals as determined by reaction with Raney nickel and microscale pyrolysis techniques. Fifth quarterly report, October 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Philp, R.P.

    1996-01-31

    This project is designed to study the nature of sulphur-containing organic compounds and their respective linkages in coals and related materials using a variety of microscale pyrolysis techniques combined with gas chromatography--mass spectrometry. The majority of the work will be undertaken using a PYRAN pyrolysis system purchased with funds from the DOE University Instrumentation Program. Since the last report, we have reached the point in the project that we are satisfied with the nickel boride chemical degradation method, and are now working our way through the large amounts of data collected by gas chromatography-mass spectrometry analysis. While we have tentatively identified a variety of compounds produced by the chemical degradation method with spectra from the literature, we have yet to confirm many of these identifications with pure standards or specialized oil samples. As a result we will present in this report chromatograms of one of the coals (Illinois No. 6) and compare the free aliphatic hydrocarbons with those compounds cleaved from the polar extract, asphaltenes and pre-extracted coal matrix.

  4. CFD modeling of fouling in crude oil pre-heaters

    International Nuclear Information System (INIS)

    Highlights: ► A conceptual CFD-based model to predict fouling in industrial crude oil pre-heaters. ► Tracing fouling formation in the induction and developing continuation periods. ► Effect of chemical components, shell-side HTC and turbulent flow on the fouling rate. - Abstract: In this study, a conceptual procedure based on the computational fluid dynamic (CFD) technique has been developed to predict fouling rate in an industrial crude oil pre-heater. According to the developed CFD concept crude oil was assumed to be composed of three pseudo-components comprising of petroleum, asphaltene and salt. The binary diffusion coefficients were appropriately categorized into five different groups. The species transport model was applied to simulate the mixing and transport of chemical species. The possibility of adherence of reaction products to the wall was taken into account by applying a high viscosity for the products in competition with the shear stress on the wall. Results showed a reasonable agreement between the model predictions and the plant data. The CFD model could be applied to new operating conditions to investigate the details of the crude oil fouling in the industrial pre-heaters.

  5. An integrated approach to combating flow assurance problems

    Energy Technology Data Exchange (ETDEWEB)

    Abney, Laurence; Browne, Alan [Halliburton, Houston, TX (United States)

    2005-07-01

    Any upset to the internal pipe surface of a pipeline can significantly impact both pipeline through-put and energy requirements for maintaining design flow rates. Inefficient flow through pipelines can have a significant negative impact on operating expense (Opex) and the energy requirements necessary to maintain pipeline through-put. Effective flow maintenance helps ensure that Opex remains within budget, processing equipment life is extended and that excessive use of energy is minimized. A number of events can result in debris generation and deposition in a pipeline. Corrosion, hydrate formation, paraffin deposition, asphaltene deposition, development of 'black powder' and scale formation are the most common sources of pipeline debris. Generally, a combination of pigging and chemical treatments is used to remove debris; these two techniques are commonly used in isolation. Incorporation of specialized fluids with enhanced solid-transport capabilities, specialized dispersants, or specialized surfactants can improve the success of routine pigging operations. An array of alternative and often complementary remediation technologies can be used to effect the removal of deposits or even full restrictions from pipelines. These include the application of acids, specialized chemical products, and intrusive interventions techniques. This paper presents a review of methods of integrating existing technologies. (author)

  6. Study of deuterium transfer, isotope effects and structural distributions of products of reactions of coals in deuterated tetralin using 2H and 13C FT-n.m.r. and solid-state 13C FT-n.m.r

    International Nuclear Information System (INIS)

    Four coals (bituminous, subbituminous, lignite and canneloid) are treated with tetralin-1,1,4,4,-d4 or - 1,1,-d2 or mixtures of tetralin-d4 and tetralin-d0 at 427 deg C in degassed Pyrex vessels for times between 5 and 60 min. Deuterium depletion and scrambling in solvent-derived products are determined for degassed and air-saturated experiments. Deuterium distributions are determined for preasphaltene and asphaltene fraction (A + P) and light oils (LTO) by 2H FT-n.m.r., and solid coals and products are characterized by 13C CP/MAS and 13C FT-n.m.r. Illinois No. 6, PSOC 837 and PSOC 531 coals selectively consume tetralin-d0 over tetralin-d4 and exhibit isotope effects in the scrambling of deuterium from 1- to 2-positions. Intersite deuterium scrambling in recovered tetralin is negligible at 10 min or shorter reaction times, but deuterium depletion from tetralin is significant at all reaction times. Deuterium is detected predominantly at benzylic-type and secondary aliphatic positions and to a lesser extent at aromatic positions of A + P and LTO fractions at reaction times of 5 min. The presence of air significantly enhances both the extent of deuterium scrambling and the rearrangement of tetralin to 1-methylindan at reaction times of 30 to 60 min. (author)

  7. Catalytic activity of pyrite for coal liquefaction reaction; Tennen pyrite no shokubai seino ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Hirano, K.; Kozu, M.; Okada, T.; Kobayashi, M. [Nippon Coal Oil Co. Ltd., Tokyo (Japan)

    1996-10-28

    Since natural pyrite is easy to obtain and cheap as coal liquefaction catalyst, it is to be used for the 150 t/d scale NEDOL process bituminous coal liquefaction pilot plant. NEDO and NCOL have investigated the improvement of catalytic activity of pulverized natural pyrite for enhancing performance and economy of the NEDOL process. In this study, coal liquefaction tests were conducted using natural pyrite catalyst pulverized by dry-type bowl mill under nitrogen atmosphere. Mechanism of catalytic reaction of the natural pyrite was discussed from relations between properties of the catalyst and liquefaction product. The natural pyrite provided an activity to transfer gaseous hydrogen into the liquefaction product. It was considered that pulverized pyrite promotes the hydrogenation reaction of asphaltene because pulverization increases its contact rate with reactant and the amount of active points on its surface. It was inferred that catalytic activity of pyrite is affected greatly by the chemical state of Fe and S on its surface. 3 refs., 4 figs., 1 tab.

  8. Characteristics estimation of coal liquefaction residue; Sekitan ekika zansa seijo no suisan ni kansuru kento

    Energy Technology Data Exchange (ETDEWEB)

    Itonaga, M.; Imada, K. [Nippon Steel Corp., Tokyo (Japan); Okada, Y.; Inokuchi, K. [Mitsui SRC Development Co. Ltd., Tokyo (Japan)

    1996-10-28

    The paper studied a possibility of estimating characteristics of coal liquefaction residue from liquefaction conditions in the case of fixing coal kind in the NEDOL process coal liquefaction PSU. Wyoming coal was used for the study, and the already proposed simplified liquefaction reaction models were used. Among material balances explained by the models, those of asphaltene, preasphaltene, THF insoluble matters are concerned with residue composition. Ash content is separately calculated from ash balance. Reaction velocity constants of simplified liquefaction reaction models which influence the residue composition were obtained by the multiple regression method from experimental results in the past. The estimation expression of residue viscosity was introduced from residue ash/composition. When the residue composition is estimated by the model from liquefaction conditions, and the residue viscosity is obtained using it, the higher the liquefaction temperature is, the higher the residue viscosity is. The result obtained well agreed the measuring result. The simplified liquefaction model of a certain coal kind has been established, and characteristics of residue can be estimated even at liquefaction conditions which have never been experienced before if there is a certain amount of the accumulated data on residue composition/characteristics. 4 refs., 4 figs., 4 tabs.

  9. Bioremediation of soils contaminated by hydrocarbons at the coastal zone of “Punta Majagua”.

    Directory of Open Access Journals (Sweden)

    Jelvys Bermúdez Acosta

    2012-03-01

    Full Text Available The purpose of this research was to describe and assess the main results in the process of bioremediation of 479 m3 of petroleum residuals spilled on the soil and restrained into four deposits of fuel on the coastal zone of “Punta Majagua”, Cienfuegos. The volume of hydrocarbons spilled and contained into the tanks was determined by means of their previous mixture with fertile ground in a ratio of 3/1. The hydrocarbons were disposed in a bioremediation area of 115 m X 75m built in situ. In turn 54, 5 m3 of BIOIL - FC were applied, which were fermented in an industrial bioreactor of 12000 L. An initial sampling was carried out registering values of total hydrocarbons (HTP higher than 41880 mg/kg, with high concentrations of Saturated hydrocarbons, aromatics, resins, asphaltens (SARA. Three subsequent samples were taken with a sampling interval of 0, 45, 90 and 120 days of the application. An average concentration of 1884.57 mg/kg of total hydrocarbons was obtained at 120 days with an average removal rate of 94.8%, moreover values of 94.6%, 90.78%, 86.99% y 79.9% of SARA were respectively reported.

  10. Dispersant effectiveness: Studies into the causes of effectiveness variations

    International Nuclear Information System (INIS)

    Effectiveness, a key issue of using dispersants, is affected by many interrelated factors. The principal factors involved are the oil composition, dispersant formulation, sea surface turbulence and dispersant quantity. Oil composition is a very strong determinant. Current dispersant formulation effectiveness correlates strongly with the amount of saturate component in the oil. The other components of the oil, the asphaltenes, resins or polars and aromatic fractions show a negative correlation with the dispersant effectiveness. Viscosity is also a predictor of dispersant effectiveness and may have an effect because it is in turn determined by oil composition. Dispersant composition is significant and interacts with oil composition. Dispersants show high effectiveness at HLB values near 10. Sea turbulence strongly affects dispersant effectiveness.Effectiveness rises with increasing turbulence to a maximum value. Effectiveness for current commercial dispersants is gaussian around a peak salinity value. Peak effectiveness is achieved at very high dispersant quantities--at a ratio of 1:5, dispersant-to-oil volume. Dispersant effectiveness for those oils tested and under the conditions measured, is approximately logarithmic with dispersant quantity and will reach about 50% of its peak value at a dispersant to oil ratio of about 1:20 and near zero at a ratio of about 1:50

  11. Computer Modeling of the Displacement Behavior of Carbon Dioxide in Undersaturated Oil Reservoirs

    Directory of Open Access Journals (Sweden)

    Ju Binshan

    2015-11-01

    Full Text Available The injection of CO2 into oil reservoirs is performed not only to improve oil recovery but also to store CO2 captured from fuel combustion. The objective of this work is to develop a numerical simulator to predict quantitatively supercritical CO2 flooding behaviors for Enhanced Oil Recovery (EOR. A non-isothermal compositional flow mathematical model is developed. The phase transition diagram is designed according to the Minimum Miscibility Pressure (MMP and CO2 maximum solubility in oil phase. The convection and diffusion of CO2 mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude and phase partitioning are considered. The governing equations are discretized by applying a fully implicit finite difference technique. Newton-Raphson iterative technique was used to solve the nonlinear equation systems and a simulator was developed. The performances of CO2 immiscible and miscible flooding in oil reservoirs are predicted by the new simulator. The distribution of pressure and temperature, phase saturations, mole fraction of each component in each phase, formation damage caused by asphaltene precipitation and the improved oil recovery are predicted by the simulator. Experimental data validate the developed simulator by comparison with simulation results. The applications of the simulator in prediction of CO2 flooding in oil reservoirs indicate that the simulator is robust for predicting CO2 flooding performance.

  12. Effect of Alkali on Daqing Crude Oil/Water Interfacial Properties

    Institute of Scientific and Technical Information of China (English)

    Guo Jixiang; Li Mingyuan; Lin Meiqin; Wu Zhaoliang

    2007-01-01

    Alkaline-surfactant-polymer (ASP) flooding using sodium hydroxide as the alkali component to enhance oil recovery in Daqing Oilfield,northeast China has been successful,but there are new problems in the treatment of produced crude. The alkali added forms stable water-in-crude oil emulsion,hence de-emulsification process is necessary to separate oil and water. The problems in enhanced oil recovery with ASP flooding were investigated in laboratory by using fractions of Daqing crude oil. The oil was separated into aliphatics,aromatics,resin and asphaltene fractions. These fractions were then mixed with an additive-free jet fuel to form model oils. The interfacial properties,such as interfacial tension and interfacial pressure of the systems were also measured,which together with the molecular parameters of the fractions were all used to investigate the problems in the enhanced oil recovery. In our work,it was found that sodium hydroxide solution reacts with the acidic hydrogen in the fractions of crude oil and forms soap-like interfacially active components,which accumulate at the crude oil-water interface.

  13. Conversion and degradation of crude oil by Bacillus SP3

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The objective of this study is to demonstrate the basic characteristics of Bacillus SP3 and evaluate its effect on different crude oils. Strain SP3 is a motile, gram-positive, spore-producing rod that was isolated from a reservoir of the Shengli oil field in East China. The cells of strain SP3 grew at high temperatures up to 58℃ at the pH range of 5.5-8.5. Strain SP3 grew facultatively and could use different organic substrates, and produce some metabolites such as 4-hydroxy-4-methyl-2-pentanone, methyl-2-nitrogen benzene and 1, 2-benzenedicarboxylic acid bis ester. Laboratory studies have demonstrated that the strain converted and degraded different components and changed the physical and chemical properties of crude oils. Strain SP3 degraded crude oil and the growth of bacteria on crude oil resulted in loss of aromatic hydrocarbons, resins and asphaltenes. The bioconversion of crude oils would lead to an enrichment in lighter hydrocarbons and an overall redistribution of saturate hydrocarbons. The interactions of microorganisms with crude oils are variable, depending on the microbial species and the chemical compositions of crude oils.

  14. Modifications structurales des résidus lors du procédé de viscoréduction Structural Changes in Residues During the Visbreaking Process

    Directory of Open Access Journals (Sweden)

    Favre A.

    2006-11-01

    Full Text Available Les asphaltènes et les maltènes d'un résidu sous vide Safaniya et ceux issus de la recette de viscoréduction correspondante sont étudiés. Vu la complexité des produits, plusieurs fractionnements sont pratiqués (chromatographie en phase liquide, chromatographie échangeuse d'ions. Les produits et leurs fractions sont ensuite caractérisés par RMN, IR, analyse élémentaire, tonométrie, diffraction et diffusion centrale des rayons X. Les résultats mettent en évidence des différences notables et permettent de comprendre le comportement des produits lourds du pétrole au cours du craquage thermique et ainsi tenter d'améliorer te taux de conversion. The asphaltenes and maltenes from a Safaniya vacuum residue and those coming from the corresponding visbreaking product are analyzed. Given the complexity of the products, several fractionations are performed (liquid chromatography, ion-exchange chromatography. The products and their fractions are then characterized by NMR, IR, elemental analysis, tonometry, X-ray diffraction and small ange X-ray scattering. The results reveal appreciable differences and enable the behavior of heavy petroleum products to be understood during thermal cracking. So an effort can be made to improve the rate of conversion.

  15. Caractérisation de quelques stabilisants naturels de l'émulsion d'eau dans le pétrole brut, grace à l'extension de la technique de "moussage" au système liquide-liquide eau-huile Characterising Several Natural Stabilizants of Water Emulsion in Crude Oil by Extending the "Foaming" Technique to Oil/Water Liquid-Liquid Systems

    Directory of Open Access Journals (Sweden)

    Coste J. -F.

    2006-11-01

    Full Text Available L'extension de la technique, de " moussage "au système liquide-liquide eau-pétrole brut a permis d'augmenter la concentration d'une fraction du pétrole en acides naphténiques, amines, asphaltènes et porphyrines, grâce à l'accroissement de l'aire de l'interface entre les deux phases non miscibles. Ces espèces chimiques présentes à l'interface favorisent la formation des films entre les gouttelettes de phase aqueuse dispersée. Elles sont à l'origine de la stabilité de I'émulsion d'eau dans le pétrole. The " foaming " technique was extended to a water/crude-oil liquid-liquid system so as to increase the concentration of naphthenic acids, amines, asphaltenes and porphyrins in an oil fraction by enlarging the interface orea between the two immiscible phases. The presence of these chemical species at the interface promotes the formation of films between the dispersed aqueuss-phase droplets. They are at the origin of the stability of a water in oil emulsion.

  16. Solid phase extraction of petroleum carboxylic acids using a functionalized alumina as stationary phase.

    Science.gov (United States)

    de Conto, Juliana Faccin; Nascimento, Juciara dos Santos; de Souza, Driele Maiara Borges; da Costa, Luiz Pereira; Egues, Silvia Maria da Silva; Freitas, Lisiane Dos Santos; Benvenutti, Edilson Valmir

    2012-04-01

    Petroleum essentially consists of a mixture of organic compounds, mainly containing carbon and hydrogen, and, in minor quantities, compounds with nitrogen, sulphur, and oxygen. Some of these compounds, such as naphthenic acids, can cause corrosion in pipes and equipment used in processing plants. Considering that the methods of separation or clean up the target compounds in low concentrations and in complex matrix use large amounts of solvents or stationary phases, is necessary to study new methodologies that consume smaller amounts of solvent and stationary phases to identify the acid components present in complex matrix, such as crude oil samples. The proposed study aimed to recover acid compounds using the solid phase extraction method, employing different types of commercial stationary ion exchange phases (SAX and NH(2)) and new phase alumina functionalized with 1,4-bis(n-propyl)diazoniabicyclo[2.2.2]octane chloride silsesquioxane (Dab-Al(2)O(3)), synthesized in this work. Carboxylic acids were used as standard mixture in the solid phase extraction for further calculation of recovery yield. Then, the real sample (petroleum) was fractionated into saturates, aromatics, resins, and asphaltenes, and the resin fraction of petroleum (B1) was eluted through stationary ion exchange phases. The stationary phase synthesized in this work showed an efficiency of ion exchange comparable to that of the commercial stationary phases. PMID:22589166

  17. Investigating wettability alteration during MEOR process, a micro/macro scale analysis.

    Science.gov (United States)

    Karimi, Mahvash; Mahmoodi, Maziyar; Niazi, Ali; Al-Wahaibi, Yahya; Ayatollahi, Shahab

    2012-06-15

    Wettability alteration is considered to be one of the important mechanisms that lead to increased oil recovery during microbial enhanced oil recovery (MEOR) processes. Changes in wettability will greatly influence the petrophysical properties of the reservoir rocks and determine the location, flow and distribution of different fluids inside the porous media. Understanding the active mechanisms of surface wettability changes by the bacteria would help to optimize the condition for more oil recovery. As the mechanisms behind wettability alteration are still poorly understood, the objective of this study is to investigate the wettability alteration at pore scale and find the most effective mechanism of wettability changes in different cases. The experiments were performed on different substrates at fresh condition or aged in crude oil to mimic various wetting conditions. Using an Enterobacter cloacae strain, the influence of bacterial metabolites, bacterial adhesion and bacterial solution with two different carbon sources on wettability were determined for different aging periods. Contact angle measurements were used to quantify the wettability alteration of the solid surfaces. Atomic force microscopy (AFM) experiments were also utilized to combine the macroscopic measurements of wettability with the microscopic study of the surface changes. It was found that the surface wettability could vary from neutral- or oil-wet to water-wet state. Bacterial adhesion and biofilm formation seems to be the dominant mechanism of wettability alteration. The aged glass surfaces regained their initial water wetness where the bacteria could remove the polar and asphaltene compounds from them. PMID:22445747

  18. Characteristics of oil microbes and microbial degradation on heavy oil

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, T.S.; Jiang, Z.Y.; Chen, X.; Huang, S. [Southwest Petroleum Univ. (China)

    2006-07-01

    Strains of bacteria were investigated for a microbial enhanced oil recovery (MEOR) project at an oilfield in China. Samples of oil and bacteria were packed into conical flasks and incubated for 3 to 5 days at formation temperatures. The polymerase chain reaction was used to alter the DNA sequence of the microbes and increase the recovery mechanisms of the bacteria and enable them to more effectively degrade gums and asphaltenes. The gas-producing properties of the bacteria were then investigated. Changes in oil group composition were analyzed. The results of gas chromatography analyses showed that the bacteria combination selectively degraded different components of the phenanthrene series. As they matured, the bacteria caused the light aromatics in the oil to increase and evolved towards a naphthalene nucleus structure with greater stability. The bacteria were then tested within an oil well at the Xinjiang oilfield in China. Results of the field tests showed that the bacteria altered the group composition of oils as well as the phenanthrene series. The MEOR experiment increased oil output from 8.53 per cent to 35.72 per cent. 8 refs., 4 tabs., 6 figs.

  19. Lignin-assisted coal depolymerization. [Quarterly] report, March 1, 1992--May 31, 1992

    Energy Technology Data Exchange (ETDEWEB)

    Lalvani, S.B.; Muchmore, C.B.; Koropchak, J.A.; Kim, Jong Won

    1992-10-01

    In the last report, it was shown that when lignin is added to coal, the rate of coal depolymerization is enhanced. The results,-reported were based upon a number of experiments conducted for the following three reasons: (i) to generate enough quantities of liquid products so that their stability in various environments can be ascertained, (ii) to closely characterize the reaction products, so that individual atomic mass balances can be performed, and (iii) to determine the reproducibility of the experiments conducted. The stability of liquid products was characterized by determining their solubility in pentane and benzene. Exposure of the coal- and coal+lignin-derived liquids to air at 40 and 80{degrees}C led to a decrease in the pentane-soluble and asphaltene fractions with a concomitant enhancement in the benzene insoluble fraction. However, relatively no degradation was observed for the liquid samples exposed to an inert (N{sub 2}) atmosphere. Preliminary data show that the coal+lignin-derived liquids are more stable than that obtained by coal liquefaction. In this quarterly report, individual atomic mass balances on various experiments conducted with coal, lignin and coal+lignin mixtures are also reported. Although the overall mass recoveries of 95--98% of the total mass charged to the reactor were obtained, the atomic mass balance data are somewhat difficult to interpret due to the possible incorporation of tetralin (solvent) in the reaction products.

  20. Biodegradation of heavy oils by halophilic bacterium

    Institute of Scientific and Technical Information of China (English)

    Ruixia Hao; Anhuai Lu

    2009-01-01

    A halophilic bacterial strain TM-1 was isolated from the reservoir of the Shengli oil field in East China. Strain TM-1, which was found to be able to degrade crude oils, is a gram-positive non-motile bacterium with a coccus shape that can grow at temperatures of up to 58 ℃ and in 18% NaCl solution. Depending on the culture conditions, the organism may occur in tetrads. In addition, strain TM-1 pro-duced acid from glucose without gas formation and was catalase-negative. Furthermore, strain TM-I was found to be a facultative aer-obe capable of growth under anaerobic conditions. Moreover, it produced butylated hydroxytoluene, 1,2-benzenedicarboxylic acid-bis ester and dibutyl phthalate and could use different organic substrates. Laboratory studies indicated that strain TM-1 affected different heavy oils by degrading various components and by changing the chemical properties of the oils. In addition, growth of the bacterium in heavy oils resulted in the loss of aromatic hydrocarbons, resins and asphaltenes, and enrichment with light hydrocarbons and an overall redistribution of these hydrocarbons.

  1. Air Blowing of Bitumens: Process Variables and Structural Parameters Soufflage des bitumes : variables du procédé et paramètres structuraux

    Directory of Open Access Journals (Sweden)

    Bahl J. S.

    2006-11-01

    Full Text Available Effect of process variables viz. air rate, time of air blowing, temperature and catalyst concentration has been investigated and optimised to determine the possibility of making paving grade bitumen from 500°C+ Aghajari Short residue, of appropriate temperature susceptibility. Structural parameters of feed and some typical air blown products determined through NMR spectroscopy to follow the reaction mechanism leading to formation of increased asphaltene content during air blowing are also described. On a étudié et optimisé l'effet des variables du procédé comme le débit de l'air, le temps de soufflage, la température et la concentration en catalyseurs afin de déterminer la possibilité de fabriquer du bitume routier d'une susceptibilité à la température convenable, à partir d'un résidu Aghajari 500 °C+ de distillation poussée. On présente également les paramètres structuraux de la charge et de quelques produits types du soufflage, déterminés par résonance magnétique nucléaire, pour suivre le mécanisme de la réaction conduisant à une augmentation de la teneur en asphaltènes durant le soufflage d'air.

  2. Case study: modeling the phase behavior of solvent diluted bitumen

    Energy Technology Data Exchange (ETDEWEB)

    Agrawal, P.; Schoeggl, F.F.; Yarranton, H.W. [University of Calgary (Canada); Satyro, M.A. [Virtual Materials Group (Canada)

    2011-07-01

    To recover heavy oil and bitumen, thermal recovery methods such as cyclic steam stimulation and steam assisted gravity drainage are widely used in western Canada. Accurate predictions of phase behavior are required for the design of solvent-based and solvent-assisted heavy oil recovery. This paper presents the phase behavior modeling of solvent-diluted bitumen. The saturation pressures of live and dead bitumen were measured in a JEFRI PVT cell at various concentrations and temperatures. The onset of asphaltene precipitation was also measured for bitumen diluted with n-pentane by titrating bitumen with pentane and constantly circulating the mixture around a high-pressure microscope. The data were modeled using the advanced Peng-Robinson equation of state (APR EoS). By adjusting the binary interaction parameter between the solvent and the pseudo-components, the APR EoS was tuned to match the saturation pressures. The unrealistic phase behavior predictions were made based on the extrapolated SimDist data characterizations.

  3. Fractional and component analysis of crude oils by the method of dynamic microdistillation. Differential scanning calorimetry coupled with thermogravimetry

    Energy Technology Data Exchange (ETDEWEB)

    Shishkin, Yu.L. [Gubkin Russian State University of Oil and Gas, Leninsky Prospect 65, 119991 Moscow (Russian Federation)

    2006-02-15

    High-resolution differential scanning calorimetry was used to accurately establish the temperature intervals of oxidation/distillation of the major components of crude oils. Some theoretical aspects of the method of dynamic microdistillation, enabling consecutive distillation (oxidation) of the main components of hydrocarbon mixtures, are discussed. The experimental TG-DSC curves show that the temperature scan of the run can be divided into six regions, of which the first belongs to simple distillation of the sample's liquid constituent (the distillate) and the others to oxidative cracking distillation of the solid (heavy) residue. The latter occur in the order paraffins+light oils, middle base oils, heavy base oils, condensed aromatics (resins) and asphaltenes. The probable oxidation mechanisms of different classes of petroleum hydrocarbons operating in different temperature regions are discussed. Full quantitative fractional and group component analysis of a number of crude oils of different chemical classes and geological age was carried out by the combined TG-DSC techniques under specially chosen experimental conditions (those of dynamic microdistillation). (author)

  4. In-situ burning of heavy oils and Orimulsion : mid-scale burns

    Energy Technology Data Exchange (ETDEWEB)

    Fingas, M.F.; Fieldhouse, B.; Brown, C.E.; Gamble, L. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Div]|[Environment Canada, Ottawa, ON (Canada). River Road Environmental Technology Centre; Cooper, D. [SAIC Canada, Ottawa, ON (Canada)

    2004-07-01

    In-situ burning is considered to be a viable means to clean oil spills on water. In-situ burning, when performed under the right conditions, can reduce the volume of spilled oil and eliminate the need to collect, store, transport and dispose of the recovered oil. This paper presented the results of bench-scale in-situ burning tests in which Bunker C, Orimulsion and weathered bitumen were burned outdoors during the winter in burn pans of approximately 1 square metre. Each test was conducted on salt water which caused the separation of the bitumen from the water in the Orimulsion. Small amounts of diesel fuel was used to ignite the heavy oils. Quantitative removal of the fuels was achieved in all cases, but re-ignition was required for the Orimulsion. Maximum efficiency was in the order of 70 per cent. The residue was mostly asphaltenes and resins which cooled to a solid, glass like material that could be readily removed. The study showed that the type of oil burned influences the behaviour of the burns. Bunker C burned quite well and Orimulsion burned efficiently, but re-ignition was necessary. It was concluded that there is potential for burning heavy oils of several types in-situ. 6 refs., 7 tabs., 18 figs.

  5. Oil composition and properties for oil spill modelling

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Z.D.; Hollebone, B.P.; Yang, C.; Fieldhouse, B.; Fingas, M.; Landriault, M.; Gamble, L.; Peng, X. [Environment Canada, Ottawa, ON (Canada). Emergencies Science and Technology Div]|[Environment Canada, Ottawa, ON (Canada). Environmental Technology Centre; Weaver, J. [National Exposure Research Laboratory, Athens, GA (United States)

    2005-07-01

    The methods and procedures for measuring the physical properties and chemical compositions of 9 commonly used crude oils that have the potential to be spilled at sea were presented. The 9 oils have API gravities ranging from 11 to 42 degrees and have large differences in their physical and chemical properties. The oils are fractioned into groups of compounds with similar structures and properties. The hydrocarbon groups include TPHCWG fractions with different carbon ranges, total petroleum hydrocarbon, total saturates, total aromatics, asphaltenes and polars. The target hydrocarbons characterized include n-alkanes, volatile BTEX and other alkyl benzenes, oil-characteristic alkylated PAH homologous series and other EPA priority PAH and biomarker compounds. This paper also presented a set of physical and chemical property data for the Cook Inlet Crude Oil. The physical and chemical properties reported were those that are most likely to determine the environmental fate and impact of spilled oil. Results of this project have been integrated into existing Environmental Protection Agency (EPA) and Environment Canada oil properties databases to advance oil spill modelling. The data will be particularly useful for an oil spill model that is being developed by the National Exposure Research Laboratory in Athens, Georgia to determine the fate and transport of oil components under a range of oil spill scenarios. The data reflects the changes to an oil over the course of a spill. 20 refs., 8 tabs., 4 figs.

  6. Role of minerals in thermal alteration of organic matter--II: a material balance.

    Science.gov (United States)

    Tannenbaum, E; Huizinga, B J; Kaplan, I R

    1986-09-01

    Pyrolysis experiments were performed on Green River and Monterey Formation kerogens (Types I and II, respectively) with and without calcite, illite, or montmorillonite at 300 degrees C for 2 to 1,000 hours under dry and hydrous conditions. Pyrolysis products were identified and quantified, and a material balance of product and reactants resulted. Significant differences were found in the products generated by pyrolysis of kerogens with and without minerals. Both illite and montmorillonite adsorb a considerable portion (up to 80%) of the generated bitumen. The adsorbed bitumen is almost exclusively composed of polar compounds and asphaltenes that crack to yield low molecular weight compounds and insoluble pyrobitumen during prolonged heating. Montmorillonite shows the most pronounced adsorptive and catalytic effects. With calcite however, the pyrolysis products are similar to those from kerogen heated alone, and bitumen adsorption is negligible. Applying these results to maturation of organic matter in natural environments, we suggest that a given type of organic matter associated with different minerals in source rocks will yield different products. Furthermore, the different adsorption capacities of minerals exert a significant influence on the migration of polar and high molecular weight compounds generated from the breakdown of kerogen. Therefore, the overall accumulated products from carbonate source rocks are mainly heavy oils with some gas, whereas light oils and gases are the main products from source rocks that contain expandable clays with catalytic and adsorptive properties. PMID:11542070

  7. Action of microwave radiation in emulsion of oil demulsification by copolymers of poly (ethylene oxide-b-propylene oxide); Acao da radiacao micro-ondas na desemulsificacao de emulsoes de petroleo por copolimeros de poli(oxido de etileno-b-oxido de propileno)

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Bianca M.S.; Ramalho, Joao B.V.; Guimaraes, Regina C.L.; Guarnieri, Ricardo A. [Petrobras Petroleo Brasileiro - CENPES/TPEP/TPP, Rio de Janeiro, RJ (Brazil)], e-mail: bmachado@petrobras.com.br; Lucas, Elizabete F. [Universidade Federal do Rio de Janeiro, Instituto de Macromoleculas, Laboratorio de Macromoleculas e Coloides na Industria do Petroleo,Rio de Janeiro, RJ (Brazil)], e-mail: elucas@ima.ufrj.br

    2011-07-01

    Emulsions of water-in-petroleum are generally formed during crude oil production. The emulsion needs to be destabilized, along the process in the production units, so as to allow the water-oil separation. This process is accomplished by heating and addition of demulsifier, like poly (ethylene oxide-b-propylene oxide) which promotes the removal of the natural emulsifier from the water droplets interfaces. Normally, the conventional heating is used, but the microwave radiation has been suggested to heat de emulsions. The results obtained in this work show that microwave radiation can really enhance the demulsification rate of petroleum emulsions by gravitational mechanism. It is also shown that demulsification enhancement is greatly related to the selective and higher heating of the water phase induced by the microwave radiation, which causes the lowering of the interfacial film rigidity and the increase of the film drainage, after the demulsifier is added to the dispersed system. It was also observed that the higher the density, viscosity, acidity and asphaltenes content of the crude oil, the lower the demulsification rate. (author)

  8. Prediction of the quality of coke obtained from vacuum residues by using spectroscopy infrared FTIR-ART

    Science.gov (United States)

    León, A. Y.; Rodríguez, N. A.; Mejía, E.; Cabanzo, R.

    2016-02-01

    According to the trend of the heavy crudes and high demand of fuels, it is projected a considerable increase in the production of vacuum residues. With the purpose of taking advantage of these loads, the refineries have been improving conversion processes for the production of better quality distillates. However, as increasing the severity conditions and the species content of resins and asphaltenes high concentrations of coke are obtained. To provide an insight into the quality and cokes properties, in this study fifty (50) coke samples obtained from vacuum residues processed under conditions of thermal cracking and hydroconversion were selected. Each coke was analysed in detail with properties such as fixed carbon, volatile material, ash, and calorific value. Subsequently, a characterization methodology was developed to predict the properties of cokes, by using partial least squares regression, and infrared spectroscopy (FTIR-ATR) in the spectral range from 4000 to 500cm-1. The models obtained by chemometrics allowed to predict the quality of the coke produced from vacuum residues with reliable responses in short periods of time.

  9. Rheological, structural and chemical evolution of bitumen under gamma irradiation

    International Nuclear Information System (INIS)

    Bitumen derived from crude oil by fractional distillation has been used in the nuclear industry as a radioactive waste encapsulation matrix. When subjected to α, β and γ self-irradiation, this organic matrix undergoes radiolysis, generating hydrogen bubbles and modifying the physical and chemical properties of the material. In this paper, the effects of irradiation on bitumen materials, especially in terms of its physical, chemical, structural and rheological properties, were characterized at radiation doses ranging from 1 to 7 MGy. An increase in the shear viscosity and melt yield stress was observed with increasing doses. Similarly, the elastic and viscous moduli (G' and G'') increase with the dose, with a more pronounced increase for G' that reflects enhanced elasticity arising from radiation-induced cross-linking. In addition, a low-frequency plateau is observed for G', reflecting pseudo-solid behavior and leading to an increase of the complex viscosity. This behavior is due to increased interactions between asphaltene particles, and to aromatization of the bitumen by γ-radiations. Cross-linking of bitumen enhances its strength, as confirmed by various techniques (modulated DSC, DTA/TGA, SEC, FTIR and XRD). (authors)

  10. The determination of trace elements in crude oil and its heavy fractions by atomic spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Duyck, Christiane; Miekeley, Norbert; Porto da Silveira, Carmem L.; Aucelio, Ricardo Q. [Departamento de Quimica da Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22451-900 Rio de Janeiro (Brazil); Campos, Reinaldo C. [Departamento de Quimica da Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22451-900 Rio de Janeiro (Brazil)], E-mail: rccampos@rdc.puc-rio.br; Grinberg, Patricia; Brandao, Geisamanda P. [Departamento de Quimica da Pontificia Universidade Catolica do Rio de Janeiro, Rua Marques de Sao Vicente 225, 22451-900 Rio de Janeiro (Brazil)

    2007-09-15

    A literature review on the determination of trace elements in crude oil and heavy molecular mass fractions (saturates, aromatics, resins and asphaltenes) by ICP-MS, ICP OES and AAS is presented. Metal occurrences, forms and distributions are examined as well as their implications in terms of reservoir geochemistry, oil refining and environment. The particular analytical challenges for the determination of metals in these complex matrices by spectrochemical techniques are discussed. Sample preparation based on ashing, microwave-assisted digestion and combustion decomposition procedures is noted as robust and long used. However, the introduction of non-aqueous solvents and micro-emulsions into inductively coupled plasmas is cited as a new trend for achieving rapid and accurate analysis. Separation procedures for operationally defined fractions in crude oil are more systematically applied for the observation of metal distributions and their implications. Chemical speciation is of growing interest, achieved by the coupling of high efficiency separation techniques (e.g., HPLC and GC) to ICP-MS instrumentation, which allows the simultaneous determination of multiple organometallic species of geochemical and environmental importance.

  11. The determination of trace elements in crude oil and its heavy fractions by atomic spectrometry

    International Nuclear Information System (INIS)

    A literature review on the determination of trace elements in crude oil and heavy molecular mass fractions (saturates, aromatics, resins and asphaltenes) by ICP-MS, ICP OES and AAS is presented. Metal occurrences, forms and distributions are examined as well as their implications in terms of reservoir geochemistry, oil refining and environment. The particular analytical challenges for the determination of metals in these complex matrices by spectrochemical techniques are discussed. Sample preparation based on ashing, microwave-assisted digestion and combustion decomposition procedures is noted as robust and long used. However, the introduction of non-aqueous solvents and micro-emulsions into inductively coupled plasmas is cited as a new trend for achieving rapid and accurate analysis. Separation procedures for operationally defined fractions in crude oil are more systematically applied for the observation of metal distributions and their implications. Chemical speciation is of growing interest, achieved by the coupling of high efficiency separation techniques (e.g., HPLC and GC) to ICP-MS instrumentation, which allows the simultaneous determination of multiple organometallic species of geochemical and environmental importance

  12. Analysis of petroleum oily sludge producing in petroleum field of Rio Grande do Norte, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Cicero de Souza; Lima, Regineide Oliveira; Silva, Edjane Fabiula Buriti da; Castro, Kesia Kelly Vieira de; Chiavone Filho, Osvaldo; Araujo, Antonio Souza de [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    In exploration and production of petroleum is generated solid waste different and components other. The petroleum oily sludge is a complex mix of components different (water, oil and solid). The petroleum oily sludge generally has other residues and is formed during production and operations, transport, storage and petroleum refining (atmospheric residue, vacuum residue and catalytic cracking residue). However, according to its origin, the compositions can be found quite varied for sludge. Observing the process steps production and refining is possible to locate its main sources and percentage contributions in terms of waste generation. The elemental analysis was performed with oily sludge from region and it showed different composition. For carbon element and hydrogen, small differences was observed, but for was observed greater differences for Oxygen element. The sludge has different inorganic and organic composition. The sludge from oil water separator (OWS) 2 showed a greater amount of oil (94.88%), this may indicate a residue of aggregate high for petroleum industry. In analysis of Saturates, Aromatics, Resins and Asphaltenes (SARA), the sludge from unloading showed amount high of saturates. The inorganic material separated from sludge was characterized and sludge from OWS 2 had high amount sulfur (41.57%). The sludge analyzed showed organic components high values, so it can be treated and reprocessed in process units petroleum industry. The analysis thermal degradation had a better setting for treated oily sludge. (author)

  13. The oil margins of the Karadag gas condensate deposit

    Energy Technology Data Exchange (ETDEWEB)

    Melik-Pashayev, V.S.; Azhotkin, G.I.; Zhabrev, I.P.

    1983-01-01

    The results are reported of a geological and oil field analysis of the actual data from many years of development based on the subject of the behavior of the oil margins of the Karadag gas condensate and oil deposit. The conclusion about the absence of movement of the mapped stratum waters in the deposit and the oil margins into the gas condensate cap is justified. This occurs despite the fact that the current stratum pressures in the gas condensate cap have fallen further than in the oil margin. The opinion is expressed that such behavior of the oil margin is caused by the blockage of the pore channels as a result of resin and asphaltenes falling into the solid phase at the oil and condensate contact and due to the reduction in the phase penetrability for the oil due to the manifestation of a second gaseous phase with degasification of the oil margins. It is stressed that the noted behavior of the oil margin of the Karadag deposit is not necessarily repeated at other gas condensate and oil deposits, but the possibility of such behavior should be kept in mind.

  14. Physicochemical analysis and biomarker distributions in waxy crude oils from the lower Indus basin, Pakistan

    International Nuclear Information System (INIS)

    Lower Indus Basin, Sindh Province Pakistan, produces many small to medium petroleum reservoirs. The petroleum hydrocarbons mainly contain two types of oils, condensates (light crude oils) and waxy crude oils (higher wax contents). Condensates are highly thermal mature form of crude oils and do not contain enough molecular information for determination of biological origin. In this study only high wax contents containing crude oils were used for physicochemical analysis and biomarker were analyzed in wax fraction of crude oils. Physicochemical properties such as specific gravity, American Petroleum Institute (API) gravity, sulfur contents and pour points were analyzed from set of four crude oils. Asphaltenes were removed from crude oils and wax fraction was separated from maltenes fraction. The wax fractions were analyzed by high temperature gas chromatography-flame ionization detector (HT-GC- FID). High molecular weight hydrocarbons have been reported in these wax samples up to C/sub 60/ n-alkanes. A cross plot of API gravity vs %wax content shows a decrease in API gravity with increase in wax content. Bio markers distribution indicates clearly a significant contribution of terrestrial organic matter in sediments producing these oils. (author)

  15. Post Retort, Pre Hydro-treat Upgrading of Shale Oil

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, John

    2012-09-30

    Various oil feedstocks, including oil from oil shale, bitumen from tar sands, heavy oil, and refin- ery streams were reacted with the alkali metals lithium or sodium in the presence of hydrogen or methane at elevated temperature and pressure in a reactor. The products were liquids with sub- stantially reduced metals, sulfur and nitrogen content. The API gravity typically increased. Sodi- um was found to be more effective than lithium in effectiveness. The solids formed when sodium was utilized contained sodium sulfide which could be regenerated electrochemically back to so- dium and a sulfur product using a "Nasicon", sodium ion conducting membrane. In addition, the process was found to be effective reducing total acid number (TAN) to zero, dramatically reduc- ing the asphaltene content and vacuum residual fraction in the product liquid. The process has promise as a means of eliminating sulfur oxide and carbon monoxide emissions. The process al- so opens the possibility of eliminating the coking process from upgrading schemes and upgrad- ing without using hydrogen.

  16. Study on Producing Heavy Paving Asphalt

    Institute of Scientific and Technical Information of China (English)

    Liu Daosheng; Gao Zhirong; Huo Kaifu; Liao Kejian

    2002-01-01

    The highly viscous crude oil from Shuguang No. 1 zone of Liaohe oilfield features high density,high viscosity and low wax content. It contains no gasoline fraction and its diesel oil fraction yield is only 7.19%, which belongs to the low sulfur naphthenic stocks crude oil. Its heavy fraction is not suited for producing lubricating oil. Its heavy oil, which contains more resins and asphaltenes and less wax, is not an ideal feedstock for catalytic cracking, but is the ideal raw material for producing high-grade paving asphalt.Now this highly viscous crude oil is used as fuel oil after being emulsified in Liaohe oilfield, but its viscosity is so high that it cannot be atomized uniformly and burned completely, resulting not only in waste of oil resource but also in reduction of economical benefit. To make full use of this oil resource and alleviate the shortfall of high grade paving asphalt in China, various brands of asphalt meeting Q/SHR003-1998and ESSO specifications were developed by blending vacuum residue of the said oil and a blending component which are rich in aromatics and deficient in wax. The impact of blending component on properties of blended asphalt has been investigated and road performances of these blended asphalts were studied. The laboratory test results show that the blended asphalts have good road performance and antiaging property.

  17. Pyrolysis thermocatalytic of the residues generated in the process of oil refining; Pirolise termocatalitica de residuos gerados no processo de refino de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Regineide Oliveira; Castro, Kesia Kelly Vieira de; Lima, Cicero de Souza; Araujo, Aruzza Mabel de Morais; Silva, Edjane Fabiula Buriti da; Araujo, Antonio Souza de [Universidade Federal do Rio Grande do Norte (UFRN), RN (Brazil)

    2012-07-01

    The pyrolysis process is a catalytic thermal defined as the degradation of waste which occurs by the action of temperature and presence of catalysts. Thus promoting disruption of the original molecular structure of a given compound by the catalytic action in an environment with little or no oxygen. Investigations have been developed in the pyrolysis due to be a promising technique, due to the application of catalytic materials. In this work, the catalyst used Al/MCM-41 was synthesized in a ratio Si / Al = 50 by the hydrothermal method. Being in this promising oil industry because of their structural characteristics. This material was characterized by XRD analysis, which was observed three major peaks typical of mesoporous materials. The analysis of the adsorption / desorption of nitrogen this material was performed to determine the textural parameters, which are peculiar to the mesoporous materials. The residue samples were characterized with a view to meet some properties such as through elemental analysis of the compounds and saturates, aromatics, resins and asphaltenes. The pyrolysis reaction system catalytic thermal residue is mounted to test the pyrolysis of residue pure and the Al-MCM-41. For both pyrolysis liquid fractions were obtained, gaseous and solid. And only the liquid fractions were characterized by chromatography coupled to mass spectrometry. Thus, there was an increase in the range hydrocarbons (C6-C12 and C13-C17) for products obtained from the pyrolysis catalyst. (author)

  18. Double twist : Can-K's electric submersible twin screw pump is designed to handle the nastiest crudes

    Energy Technology Data Exchange (ETDEWEB)

    Byfield, M.

    2010-12-15

    This article described the Can-K Group of Companies' electric submersible twin screw pump (ESTSP) designed for pumping heavy crudes with high levels of asphaltenes, hydrogen sulphide, wax, and methane. The technology was awarded the 2010 winner of best production technology for a company with fewer than 100 employees. The ESTSP can pump at a greater depth than other lift technologies. The design challenges included making the pump small enough to fit inside the well casing while also able to generate the high pressures necessary for pumping heavy oil. The ESTSP can compete directly against other lift technologies, including electric submersible pumps (ESPs). In the design, two shafts are separated by a timing gear. Each shaft has short sections of interlocking screws that do not touch, which lessens tension and the need for torque, lowering electricity consumption. The ESTSP is more efficient than ESP systems, particularly in more viscous mediums with high gas-to-oil ratios. The positive displacement pump interprets only volume and does not distinguish between gas and oil, functioning with gas content up to 97 percent. ESTSP can also handle more sand than ESP because it does not rely on centrifugal force. A patented screw design also helps prevent pump seizure resulting from sand and other solids. The pump uses downhole electric motors from other manufacturers. The inherent efficiencies of twin screw pumps give the technology the potential to replace conventional ESPs. 2 figs.

  19. Self-induced bio-potential and graphite electron accepting conditions enhances petroleum sludge degradation in bio-electrochemical system with simultaneous power generation.

    Science.gov (United States)

    Mohan, S Venkata; Chandrasekhar, K

    2011-10-01

    Bio-electrochemical treatment (BET) documented effective degradation of real field petroleum sludge over the conventional anaerobic treatment (AnT). BET (41.08%) operation showed enhanced total petroleum hydrocarbons (TPH) removal over AnT (20.72%). Aromatic fraction visualized higher removal (75.54%) compared to other TPH fractions viz., aliphatics, asphaltenes and NSO (nitrogen, sulfur and oxygen) during BET operation. Higher ring aromatics (5-6) documented easy degradation in BET, while AnT was limited to lower ring (2-3) compounds. Voltammetric analysis evidenced simultaneous redox behavior during BET operation due to presence of graphite electrode as electron acceptor, while AnT showed extended reduction behavior only. Self-induced primary and secondary oxidation reactions and capacitive-deionization might have enhanced the degradation capability of BET. BET documented higher charge/capacitance (2810 mJ/1120 mF) than AnT (450 mJ/180 mF). Power output corroborated well with observed results supporting BET performance as fuel cell. Electrodes offer a potential alternative electron acceptor for promoting the degradation of organic contaminants. PMID:21865036

  20. Study of hydrocarbon miscible solvent slug injection process for improved recovery of heavy oil from Schrader Bluff Pool, Milne Point Unit, Alaska. Annual report, December 1, 1992--December 31, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, G.D.

    1994-01-01

    The shallow Cretaceous sands of the Schrader Bluff Reservoir occur between depths of 4,000 and 4,800 feet below surface and are estimated to contain up to 1.5 billion barrels of oil in place. The field is currently under production by primary depletion. Initial production indicated that primary recovery will fall short of earlier estimates and waterflooding will have to be employed much earlier than expected. A large portion of the oil-in-place thus would still be left behind in this reservoir after primary and secondary recovery methods have been applied. Enhanced oil recovery (EOR) techniques will be needed to recover the additional portion of remaining oil in this huge reservoir and to add significant additional reserves. Slim tube displacement studies, PVT data and asphaltene precipitation studies are needed for Schrader Bluff heavy oil to define possible hydrocarbon solvent suitable for miscible solvent slug displacement process. Such studies are essential because the API gravity of the crude in Schrader Bluff reservoir varies significantly from well to well. Coreflood experiments are also needed to determine effect of solvent slug size, WAG ratio and solvent composition on the oil recovery and solvent breakthrough. A compositional reservoir simulation study will be conducted later to evaluate the complete performance of the hydrocarbon solvent slug process and to assess the feasibility of this process for improving recovery of heavy oil from Schrader Bluff reservoir. This report contains the following: reservoir description; slim tube displacement studies; and coreflood experiments.

  1. Flow assurance

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, O.C.; Dong, C. [Schlumberger-Doll Research Center, Cambridge, MA (United States); Elshahawi, H. [Shell Exploration and Production Company, The Hague (Netherlands)

    2008-07-01

    This study emphasized the need for considering flow assurance for producing oil and gas, particularly in high cost areas such as deepwater. Phase behaviour studies, sticking propensities, and interfacial interactions have been investigated in many laboratory studies using asphaltenes, wax, hydrates, organic and inorganic scale, and even diamondoids. However, the spatial variation of reservoir fluids has received little attention, despite the fact that it is one of the most important factors affecting flow assurance. This issue was difficult to address in a systematic way in the past because of cost constraints. Today, reservoir fluid variation and flow assurance can be considered at the outset of a project given the technological advances in downhole fluid analysis. This study described the origins of reservoir fluid compositional variations and the controversies surrounding them. It also described the indispensable chemical analytical technology. The impact of these reservoir fluid compositional variations on flow assurance considerations was also discussed. A methodology that accounts for these variations at the outset in flow assurance evaluation was also presented.

  2. Studies of water-in-oil emulsions : testing of emulsion formation in OHMSETT, year 2

    International Nuclear Information System (INIS)

    This study examined the stability of water-in-oil emulsions in the OHMSETT tank facility in order to determine large-scale water uptake and emulsion formation. The results were then compared with previous laboratory studies which suggested that the stability of emulsions can be grouped into four categories, stable, unstable, meso-stable and entrained. Entrained emulsions can retain oil by viscous forces long enough for interfacial agents, resins and asphaltenes to stabilize the droplets. This paper also described the difference in viscosity between the 4 categories of emulsion stability. The OHMSETT tests were conducted in two series of two weeks each. The first series of tests were conducted in July and August and involved 12 experiments. The second set of tests were conducted in November and involved 8 experiments on 8 oils. The oils and water-in-oil states produced were found to have analogous properties between the laboratory and the first set of tests at the OHMSETT facility. The key variant is considered to be energy level. It was concluded that the energy levels between the laboratory mixing experiments and the OHMSETT facility are similar. The state of the final water-in-oil mixture can be correlated with the single parameter of the complex modulus divided by the starting oil viscosity. This parameter gives an indication of the final stability of a given emulsion and its state. 5 refs., 6 tabs., 4 figs

  3. Studies of water-in-oil emulsions : long-term stability, oil properties, and emulsions formed at sea

    International Nuclear Information System (INIS)

    The stability of water-in-oil emulsions of more than 100 oils, including a sample from the ERIKA spill, were determined. An emulsion must be characterized as stable, meso-stable or unstable before its unique properties can be characterized. The samples from this study were analysed after one year of storage to study the change in properties over time. The samples were made in a rotary agitator and then their rheometric, viscosity and water content characteristics were studied. Observations were made on the appearance of the emulsions and were used to classify them. A summary of the property changes for the different types of emulsions over three time periods was tabulated. It was confirmed that water can occur in oil as entrained water where large droplets are suspended temporarily by viscous forces. Results also showed that the viscosity of a stable emulsion at a shear rate of one reciprocal second is about three times greater than that of the starting oil, and is highly elastic. An unstable emulsion generally has a viscosity of up to 20 time greater than that of the starting oil and is not elastic. A meso-stable emulsion has properties between stable and unstable and breaks down within a few days. It was concluded that asphaltene and resin content plus the viscosity of the starting oil are the most important property factors in determining what type of water-in-oil state is produced. 4 refs., 6 tabs

  4. Proceedings of the 4. NCUT conference on upgrading and refining of heavy oil, bitumen, and synthetic crude oil

    International Nuclear Information System (INIS)

    The Canadian oil sands are held as a prime resource opportunity as well as a key to future global energy needs. Expansion projects in Northern Alberta are expected to increase production from the current 1 million barrels per day to 3 million by 2020. However, significant research needs to be conducted to increase the economics of oil sands production. This conference examined various upgrading technologies related to bitumen production and presented details of new innovations in upgrading processes. Many of the presentations focused on issues related to the compatibility and stability of upgraded bitumen and heavy crudes to fuel and pipeline specifications. Research developments in asphaltene behaviour research were presented. Various hydrocracking techniques were evaluated. Issues concerning water use, energy efficiency, and greenhouse gas (GHG) emissions were also discussed. A technical program was presented in which a keynote address examined issues concerning oil sands and the global marketplace. The main conference was divided into 5 sessions: (1) new technologies for bitumen upgrading; (2) energy independence and increased opportunities for value addition; (3) secondary upgrading developments and increasingly tight fuel specifications; (4) corrosion; and (5) fouling. Each session was followed by a question and answer period. The conference featured 31 presentations, of which 29 have been catalogued separately for inclusion in this database

  5. Proceedings of the 4. NCUT conference on upgrading and refining of heavy oil, bitumen, and synthetic crude oil

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The Canadian oil sands are held as a prime resource opportunity as well as a key to future global energy needs. Expansion projects in Northern Alberta are expected to increase production from the current 1 million barrels per day to 3 million by 2020. However, significant research needs to be conducted to increase the economics of oil sands production. This conference examined various upgrading technologies related to bitumen production and presented details of new innovations in upgrading processes. Many of the presentations focused on issues related to the compatibility and stability of upgraded bitumen and heavy crudes to fuel and pipeline specifications. Research developments in asphaltene behaviour research were presented. Various hydrocracking techniques were evaluated. Issues concerning water use, energy efficiency, and greenhouse gas (GHG) emissions were also discussed. A technical program was presented in which a keynote address examined issues concerning oil sands and the global marketplace. The main conference was divided into 5 sessions: (1) new technologies for bitumen upgrading; (2) energy independence and increased opportunities for value addition; (3) secondary upgrading developments and increasingly tight fuel specifications; (4) corrosion; and (5) fouling. Each session was followed by a question and answer period. The conference featured 31 presentations, of which 29 have been catalogued separately for inclusion in this database. refs., tabs., figs.

  6. Development of a test for water-in-oil emulsion breakers

    International Nuclear Information System (INIS)

    Studies have been conducted on the breaking of water-in-oil emulsions to develop a standard test for emulsion breaking agents, to test commercial products, and to understand the physics of emulsions. A review of the literature on the physics of emulsification is presented, showing the effects on emulsion formation of polar and asphaltene compounds in the oil. Nine basic test methods and several variations of each were developed, with successive tests developed to solve problems noted with earlier tests. The tests had to have a high degree of repeatability, aspects of the test methods had to be analogous to the sea and the practical application of emulsion breaking agents, and the test results had to relate to physical understanding of phenomena. Once a basic test was established, a series of studies was conducted to examine optimal time of shaking, the possibility of substituting settling time for shaking time, the relationship between energy of shaking and demuslfier effectiveness, and the effects of water to oil ratios. The studies show that a test for emulsion breakers can be developed to yield consistent results which are not entirely dependent on the shaking methods or vessels. The critical factor is the stability of the emulsion being tested, since unstable emulsions will show anomalous results. Other major factors are the type of emulsion breaker being tested and the determination of endpoint. 17 refs. 17 figs., 18 tabs

  7. Upgrading Unconventional Oil Resources with the EST Process

    Energy Technology Data Exchange (ETDEWEB)

    Delbianco, Alberto; Meli, Salvatori; Panariti, Nicolleta; Rispoli, Giacomo

    2007-07-01

    We strongly believe that unconventional oils will play a much larger role in the growth of supply than is currently recognized. As a matter of fact, whereas the earth's conventional proven world oil reserves are 1.3 trillion barrels, extra-heavy plus bitumen resources amount to about 4 trillion barrels. The unconventional oils are characterized by low API gravity (<10), high viscosity and high concentration of poisons such as sulphur, nitrogen, metals, and asphaltenes. For this reason, a key role for the full exploitation of these hydrocarbon resources is played by the downstream processes that are required to upgrade and convert them into valuable products. In this scenario, Eni has developed a novel hydrocracking process (EST: Eni Slurry Technology) which is particularly well-suited for the conversion and upgrading of heavy feedstocks (conventional vacuum residues, extra-heavy oils and bitumen). EST employs nano-sized hydrogenation catalysts and an original process scheme that allow complete feedstock conversion to an upgraded synthetic crude oil (SCO) with an API gravity gain greater than 20 and avoid the production of residual by-products, such as pet-coke or heavy fuel oil. A Commercial Demonstration Unit (CDP) of 1200 bbl/d capacity is successfully operating in the Eni's Taranto refinery since November 2005. (auth)

  8. Predicting ignitability for in situ burning of oil spills as a function of oil type and weathering degree

    Energy Technology Data Exchange (ETDEWEB)

    Brandvik, P.J.; Reed, M.; Bodsberg, N.R. [SINTEF Materials and Chemistry, Trondheim (Norway); Fritt-Rasmussen, J. [Denmark Technical Univ., Lyngby (Denmark). Arctic Technology Centre

    2009-07-01

    In-situ burning (ISB) has the highest potential to remove oil that has been spilled in ice-infested waters. However, there is a need to better predict the ignitability of oil spills as a function of oil type, weathering degree and different ice conditions. A new laboratory burning cell was developed to measure ignitability as a function of weathering for several different types of crude oils. The objective of this study was to use the data generated with the new laboratory burning cell to establish algorithms which describe the ignitability of the bulk phase of an oil spill as a function of oil properties, weathering and environmental conditions. The physical and chemical properties that were considered in weathered oil were the viscosity, water content in emulsion, density of water free oil, wax content, asphaltene content, evaporative loss, flash point of water free oil and emulsion stability. The algorithms were implemented in SINTEF's Oil Weathering Model to predict the window of opportunity for ISB. A comparison of predicted values with measured values from both laboratory and field tests showed that of the 223 samples used in this study, only 9.8 per cent were wrongly assigned as ignitable or not ignitable by the new algorithm. It was concluded that ignitability of the bulk phase of the oil is only one of several factors that must be evaluated before attempting ISB. 16 refs., 4 tabs., 7 figs.

  9. Bitumen modification with a low-molecular-weight reactive isocyanate-terminated polymer

    Energy Technology Data Exchange (ETDEWEB)

    F.J. Navarro; P. Partal; M. Garcia-Morales; F.J. Martinez-Boza; C. Gallegos [Universidad de Huelva, Huelva (Spain). Departamento de Ingenieria Quimica, Facultad de Ciencias Experimentales

    2007-10-15

    A low-molecular-weight polyethyleneglycol functionalized with a polymeric MDI (4,4'-diphenylmethane diisocynate) was used as a modifying agent for a 60/70 penetration grade bitumen. The rheological properties of the resulting modified binder, at both low and intermediate temperatures, before and after curing at room temperature were studied and compared with those corresponding to a SBS modified bitumen. The analysis showed that the addition of a small quantity of this reactive polymer leads to enhanced rheological properties mainly at high in-service temperature (50{sup o}C). However, modification was found to be rather slow during binder curing at room temperature. Moreover, storage stability analysis showed that phase separation did not take place after bitumen storage at 163{sup o}C, though storage at high temperature affects the modification capability of the reactive polymer. Atomic force microscopy measurements showed that the reactive polymer addition leads to asphaltene-rich regions with lower thermal susceptibility, which are present even at high temperature, yielding an improved bitumen viscosity in this range of in-service temperatures. 38 refs., 7 figs., 2 tabs.

  10. Predicting ignitability for in situ burning of oil spills as a function of oil type and weathering degree

    International Nuclear Information System (INIS)

    In-situ burning (ISB) has the highest potential to remove oil that has been spilled in ice-infested waters. However, there is a need to better predict the ignitability of oil spills as a function of oil type, weathering degree and different ice conditions. A new laboratory burning cell was developed to measure ignitability as a function of weathering for several different types of crude oils. The objective of this study was to use the data generated with the new laboratory burning cell to establish algorithms which describe the ignitability of the bulk phase of an oil spill as a function of oil properties, weathering and environmental conditions. The physical and chemical properties that were considered in weathered oil were the viscosity, water content in emulsion, density of water free oil, wax content, asphaltene content, evaporative loss, flash point of water free oil and emulsion stability. The algorithms were implemented in SINTEF's Oil Weathering Model to predict the window of opportunity for ISB. A comparison of predicted values with measured values from both laboratory and field tests showed that of the 223 samples used in this study, only 9.8 per cent were wrongly assigned as ignitable or not ignitable by the new algorithm. It was concluded that ignitability of the bulk phase of the oil is only one of several factors that must be evaluated before attempting ISB. 16 refs., 4 tabs., 7 figs.

  11. Studies of the formation process of water-in-oil emulsions.

    Science.gov (United States)

    Fingas, Merv; Fieldhouse, Ben

    2003-01-01

    This paper summarizes studies to determine the formation process of water-in-oil emulsions and the stability of such emulsions formed in the laboratory and in a large test tank. These studies have confirmed that water-in-oil mixtures can be grouped into four states: stable emulsions, unstable water-in-oil mixtures, mesostable emulsions, and entrained water. These states are differentiated by rheological properties as well as by differences in visual appearance. The viscosity of a stable emulsion at a shear rate of one reciprocal second is about three orders of magnitude greater than that of the starting oil. An unstable emulsion usually has a viscosity no more than about 20 times greater than that of the starting oil. A stable emulsion has a significant elasticity, whereas an unstable emulsion does not. A mesostable emulsion has properties between stable and unstable, but breaks down within a few days of standing. The usual situation is that emulsions are either obviously stable, mesostable, or unstable. Entrained water, water suspended in oil by viscous forces alone, is also evident. Very few emulsions have questionable stability. Analytical techniques were developed to test these observations. The type of emulsion produced is determined primarily by the properties of the starting oil. The most important of these properties are the asphaltene and resin content and the viscosity of the oil. The composition and property ranges of the starting oil that would be required to form each of the water-in-oil states are discussed in this paper. PMID:12899884

  12. The stability of trace metals suspensions in heavy crudes as determined by neutron activation analysis

    International Nuclear Information System (INIS)

    The importance of trace elements in petroleum has increased, since the role of nonhydrocarbon components has been recognized in the elucidation of the mechanisms of migration and origin of crudes. Knowledge of trace elements in petroleum is also important in the refining and processing of crudes. In developing different instrumental analytical techniques for trace analysis of crudes, little attention has been devoted to the scatter of data due to poor sampling and to the proper nature of the matrix. In the present paper the results of the determination of 17 trace elements including Co, Zn, Fe, V, Ni, Mo, Ba, Cs, Au, Br, Se, Sc, As, Mn, La, Eu and Cu are presented. A multielemental neutron activation analysis in a purely instrumental form was performed on a homogenized sample and the results are compared with those obtained on the same sample after a seven-month period. The results clearly show that the crude loses its induced homogeneous nature and that a standard heavy crude can not be stocked for comparison purposes. For the heavy asphaltene fractions, results of the analysis of the same trace elements are presented and the possibility of its use as a standard is discussed. (T.G.)

  13. Laboratory testing of a room temperature separation technique as part of a method for the reconditioning of bituminised waste

    International Nuclear Information System (INIS)

    At the Belgian Nuclear Research Center SCK-CEN, a research project has been finalised on the possible alternatives to re-treat so-called homogeneous bituminised waste such as Eurobitum. One way to retreat this type of waste would be plasma-incineration. Preliminary results showed that a very stable final vitrified waste can be obtained comparable to the stability of R7-T7 reference waste glass, and that the waste volume would be reduced to 75 percent of the original volume. The major disadvantages of this retreatment technique is the high-tech and high cost plasma installation needed and the safety aspects related to the higher radioactivity content of this waste type. The technique proposed in this paper is based on the dissolution of the bitumen in an organic solvent and the subsequent extraction of nitrates in water leading to the separation of (1) an organic effluent containing the maltenes, (2) an aqueous effluent containing the nitrates and (3) the final waste containing the asphaltene fraction and water insoluble salts including most of the radionuclides. This paper describes the lab-scale results of a room temperature separation technique applied to real radioactive Eurobitum samples, sampled from a drum that was produced in 1981

  14. Hydrodynamic thickness of petroleum oil adsorbed layers in the pores of reservoir rocks.

    Science.gov (United States)

    Alkafeef, Saad F; Algharaib, Meshal K; Alajmi, Abdullah F

    2006-06-01

    The hydrodynamic thickness delta of adsorbed petroleum (crude) oil layers into the pores of sandstone rocks, through which the liquid flows, has been studied by Poiseuille's flow law and the evolution of (electrical) streaming current. The adsorption of petroleum oil is accompanied by a numerical reduction in the (negative) surface potential of the pore walls, eventually stabilizing at a small positive potential, attributed to the oil macromolecules themselves. After increasing to around 30% of the pore radius, the adsorbed layer thickness delta stopped growing either with time or with concentrations of asphaltene in the flowing liquid. The adsorption thickness is confirmed with the blockage value of the rock pores' area determined by the combination of streaming current and streaming potential measurements. This behavior is attributed to the effect on the disjoining pressure across the adsorbed layer, as described by Derjaguin and Churaev, of which the polymolecular adsorption films lose their stability long before their thickness has approached the radius of the rock pore. PMID:16414057

  15. Pyrolysis of hazelnut shells in a fixed-bed tubular reactor. Yields and structural analysis of bio-oil

    Energy Technology Data Exchange (ETDEWEB)

    Puetuen, A.E.; Oezcan, A.; Puetuen, E. [Department of Chemical Engineering, Faculty of Engineering and Architecture, Yunusemre Campus, Anadolu University, 26470 Eskisehir (Turkey)

    1999-09-01

    Fixed-bed pyrolysis experiments have been conducted on a sample of hazelnut shells to determine the possibility of being a potential source of renewable fuels and chemical feedstocks. The effects of pyrolysis temperature and well-sweep gas atmosphere (N{sub 2}) on the pyrolysis yields and chemical compositions have been investigated. The maximum bio-oil yield of 23.1 wt.% was obtained in N{sub 2} atmosphere at a pyrolysis temperature of 500C and heating rate of 7 K min{sup -1}. The pyrolysis products were characterised by elemental analysis and various chromatographic and spectroscopic techniques and also compared with currently utilised transport fuels by simulated distillation. Bio-oil was then fractionated into pentane soluble and insoluble compounds (asphaltenes). Pentane soluble was then solvent fractionated into pentane, toluene, ether and methanol subfractions by fractionated column chromatography. The aliphatic and low-molecular-weight aromatic subfractions of the bio-oil were then analyzed by capillary column gas-liquid chromatography and GC/MS. Further structural analysis of bio-oil and aromatic and polar subfractions FTIR and {sup 1}H-NMR spectra were obtained. The chemical characterization has shown that the bio-oil obtained from hazelnut shells was quite similar to the crude oil and shale oil

  16. Group separation of coal components and new ideas of coal utilization as petroleum

    Institute of Scientific and Technical Information of China (English)

    QIN Zhi-hong; HOU Cui-li; CHEN Juan; ZHANG Li-ying; MA Jie-qiong

    2009-01-01

    Four different groups of components were separated from coal under mild conditions of extraction and stripping process. Within these groups, and with pre-separation, individual utilization of all coal components can be realized, similar to petroleum components and enhance the inherent value and utilization value of coal, as well as increase environmental benefits. The characteristics of each component were analyzed with measurements by FTIR, GC/MS, TEM and the establishment of caking properties. The results show that coal can be separated into residues, ultra-pure coal, asphaltene components and light components by adding solvents for stripping into the CS2/NMP mixed extraction solution. Those four groups of components present great differences in the presence of carbon and hydrogen elements, in the structure of functional groups, in their macroscopic structure and micro-morphology and caking properties. Every component possesses its own inherent values and approaches. A new idea of coal processes and utilization, similar to the use of petroleum is proposed.

  17. Polar non-hydrocarbon contaminants in reservoir core extracts

    Directory of Open Access Journals (Sweden)

    Bennett B

    2000-08-01

    Full Text Available A geochemical investigation of oils in sandstone core plugs and drill stem test oils was carried out on samples from a North Sea reservoir. A sample of diesel used as a constituent of the drilling fluids was also analysed. The aliphatic and aromatic hydrocarbons and polar non-hydrocarbons were isolated using solid phase extraction methods. GC analysis of the hydrocarbon fraction of the core extract indicated that contamination may be diesel derived. From analysis of diesel some compound classes are less likely to be affected by contamination from diesel itself including: steranes, hopanes, aromatic steroid hydrocarbons, benzocarbazoles and C0–C3-alkylphenols. Large quantities of sterols (ca. 30 mg g-1 total soluble extract were identified in the polar non-hydrocarbon fractions of the core extract petroleum, presumably resulting from contamination. The origin of sterols is likely to be due to an additive introduced into the drilling fluid. Sterols are surface active compounds and in significant quantities may affect engineering core property measurements including wettability determinations. In addition, bulk petroleum composition screening methods, such as Iatroscan, used for determining saturated and aromatic hydrocarbons, resins and asphaltenes (SARA content of core extract petroleum may also be affected.

  18. Bioremediation of oil-contaminated sites

    Energy Technology Data Exchange (ETDEWEB)

    Balba, T. [Conestoga-Rovers and Associates, Calgary, AB (Canada)

    2003-07-01

    One of the most prevalent contaminants in subsurface soil and groundwater are petroleum hydrocarbons. This paper presented bioremediation of petroleum hydrocarbons as one of the most promising treatment technologies. Petroleum hydrocarbons are categorized into four simple fractions: saturates, aromatics, resins, and asphaltenes. Bioremediation refers to the treatment process whereby contaminants are metabolized into less toxic or nontoxic compounds by naturally occurring organisms. The various strategies include: use of constitutive enzymes, enzyme induction, co-metabolism, transfer of plasmids coding for certain metabolic pathways, and production of biosurfactants to enhance bioavailability of hydrophobic compounds. Three case studies were presented: (1) bioremediation of heavy oils in soil at a locomotive maintenance yard in California, involving a multi-step laboratory treatability study followed by a field demonstration achieving up to 94 per cent removal of TPH in less than 16 weeks, (2) bioremediation of light oils in soil at an oil refinery in Germany where a dual process was applied (excavation and in-situ treatment), achieving an 84 per cent reduction within 24 weeks, and (3) bioremediation of oil-contaminated desert soil in Kuwait which involved landfarming, composting piles, and bioventing soil piles, achieving an 80 per cent reduction within 12 months. 7 refs., 1 tab., 3 figs.

  19. Bioremediation in oil-contaminated sites: bacteria and surfactant accelerated remediation

    Science.gov (United States)

    Strong-Gunderson, Janet M.; Guzman, Francisco

    1996-11-01

    In Mexico, there are several environmental issues which are being addressed under the current governmental legislation. One important issue is restoring sites belonging to Petroleos Mexicanos (PEMEX). PEMEX is a large government owned oil company that regulates and manages the oil reserves. These sites are primarily contaminated with weathered hydrocarbons which are a consequence of extracting millions of barrels of oil. Within the southern regions of Mexico there are sites which were contaminated by activities and spills that have occurred during the past 30 years. PEMEX has taken the leadership in correcting environmental problems and is very concerned about cleaning up the contaminated sites as quickly as possible. The most significant contaminated sites are located to the north of Veracruz and south of Tabasco. These sites areas are close to refineries or locations of oil exploration. The primary category of contaminants are hydrocarbons, among them asphaltens, aromatic and other contaminants. The concentration of the contaminants varies depending on the location of the sites, but it can reach as high as 500,000 ppm. PEMEX has been searching for appropriate, and cost- effective technologies to clean up these sites. Biologically based remediation activities are of primary interest to PEMEX. However, other treatment technologies such as chemical-physical methods, encapsulation and incineration are also being considered. The present report summarizes preliminary experiments that measured the feasibility of bioremediation for a contaminated site in southern Mexico.

  20. Hplc firgerprints of vanadium and niquel porphyins from a petroleum crude

    International Nuclear Information System (INIS)

    In this paper, the authors report that the isolation of the asphaltenic fraction of a petroleum crude from Boscan using the SARA procedure. This fraction was latter sublimated in a vacuum line at 10 mmHg, and between 80 degrees C and 240 degrees C. Five sub-fractions were obtained. The first sub-fraction, collected between 80 degrees C and 100 degrees C, was a light oil of yellow colour with a high nickel content. The second subfraction, collected between 100 degrees C and 135 degrees C, was a viscous oil of orange colour, and which had vanadium and nickel. The third sub-fraction, collected between 135 degrees C and 160 degrees C, was a semi-solid of red color; this had vanadium and nickel. The fourth sub-fraction, collected between 160 degrees C and 200 degrees C, was a solid with red color; this had vanadium and nickel. The last sub-fraction, collected between 200 degrees C and 240 degrees C, was a solid with a bright red colour which had a high vanadium content. All sub-fractions showed the Soret bands at 410 and 397 nm. They were fractionated later using a μ-Bondapak C-18 column and acetronitrile water. This fractionation allow us to fingerprint the chromatographic with the spectroscopic results

  1. Investigation of the Physical and Molecular Properties of Asphalt Binders Processed with Used Motor Oils

    Directory of Open Access Journals (Sweden)

    Mohyeldin Ragab

    2015-01-01

    Full Text Available In this work we investigated the performance aspects of addition of used motor oils (UMO to neat and crumb rubber modified asphalts (CRMA and related that to the change of molecular size distribution of modified asphalt’s fractions; asphaltenes, saturates, naphthene aromatics, and polar aromatics. Based on the results of temperature sweep viscoelastic tests, addition of crumb rubber modifier (CRM alone or with UMO results in the formation of internal network within the modified asphalt. Based on the results of short and long term aged asphalts, the utilization of combination of UMO and CRM enhanced the aging behavior of asphalt. Bending beam rheometer was utilized to investigate the low temperature behavior of UMO modified asphalts. Based on those tests, the utilization of the UMO and CRM enhanced the low temperature properties of asphalts. Based on the results of the asphalt separation tests and the Gel Permeation Chromatography (GPC analysis, it was found that saturates and naphthene aromatics are the two asphalt fractions that have similar molecular size fractions as those of UMO. However, UMO only shifts the molecular sizes of saturates after interaction with asphalt. Results also show that polar aromatics pose higher molecular size structures than UMO.

  2. Viscosity, relaxation time, and dynamics within a model asphalt of larger molecules

    International Nuclear Information System (INIS)

    The dynamics properties of a new “next generation” model asphalt system that represents SHRP AAA-1 asphalt using larger molecules than past models is studied using molecular simulation. The system contains 72 molecules distributed over 12 molecule types that range from nonpolar branched alkanes to polar resins and asphaltenes. Molecular weights range from 290 to 890 g/mol. All-atom molecular dynamics simulations conducted at six temperatures from 298.15 to 533.15 K provide a wealth of correlation data. The modified Kohlrausch-Williams-Watts equation was regressed to reorientation time correlation functions and extrapolated to calculate average rotational relaxation times for individual molecules. The rotational relaxation rate of molecules decreased significantly with increasing size and decreasing temperature. Translational self-diffusion coefficients followed an Arrhenius dependence. Similar activation energies of ∼42 kJ/mol were found for all 12 molecules in the model system, while diffusion prefactors spanned an order of magnitude. Viscosities calculated directly at 533.15 K and estimated at lower temperatures using the Debye-Stokes-Einstein relationship were consistent with experimental data for asphalts. The product of diffusion coefficient and rotational relaxation time showed only small changes with temperature above 358.15 K, indicating rotation and translation that couple self-consistently with viscosity. At lower temperatures, rotation slowed more than diffusion

  3. Active carbon production from modified asphalt

    International Nuclear Information System (INIS)

    A granular activated carbons (GACs) have been prepared from some local raw materials such as Qiayarah asphalt (QA) after some modification treatments of this asphalt by various ratios of its original constituents (asphaltenes and maltens) at 180 degree C. Thermal carbonization method by sulfur and steam physical activation have been used for AC preparation. The carbons thus prepared were characterized in the term of iodine, methylene blue (MB), P-nitro phenol (PNP) and CCl4 adsorption. The BET surface area of the prepared ACs has been estimated via a calibration curve between iodine numbers and surface area determined from N2 adsorption isotherm from previous studies, also, the surface area of the prepared ACs were determined through another methods such as retention method by ethylene glycol mono ethyl ether (EGME), adsorption from vapor phase using acetone vapor and adsorption from solution method using PNP and MB as solutes. The results referred to the success of modification method for preparing ACs of good micro porosity as compared with the AC from the untreated asphalt as well as the commercial sample. (author)

  4. A liquid chromatography-atmospheric pressure photoionization tandem mass spectrometric method for the determination of organosulfur compounds in petroleum asphalt cements.

    Science.gov (United States)

    da Silveira, Géssica Domingos; Faccin, Henrique; Claussen, Luis; Goularte, Rayane Bueno; Do Nascimento, Paulo C; Bohrer, Denise; Cravo, Margareth; Leite, Leni F M; de Carvalho, Leandro Machado

    2016-07-29

    We present a sensitive liquid chromatography-atmospheric pressure photoionization tandem mass spectrometric (UHPLC-APPI-MS/MS) method for the determination of selected organosulfur compounds in Brazilian asphalt cements. It was possible to detect 14 organosulfur compounds of different classes where sulfoxides and sulfones presented higher sensibility in ionization than thiophenes and aromatic sulfides. A dopant-assisted APPI method was also tested, however, when chromatographic flow rate was optimized a decrease in signal was observed for all compounds. PAHs were tested and ruled out as possible interfering compounds and the matrix effect of asphalt cements was within an acceptable range for the quantification of organosulfur compounds. The proposed method was found to have satisfactory linearity and accuracy with recoveries between 83.85 and 110.28% for thianaphthene and 3-methylbenzothiophene, respectively. Therefore, the method allowed the characterization of organosulfur compounds in Brazilian asphalt cements and demonstrated changes in the amount quantified in asphaltenic and maltenic fractions after the RTFOT+SUNTEST aging process. PMID:27342135

  5. Performance prediction of hot mix asphalt from asphalt binders

    International Nuclear Information System (INIS)

    Asphalt binder being a high weight hydrocarbon contains asphaltene and maltene and is widely used as cementing materials in the construction of flexible pavements. Its performance in hot mix asphalt also depends on combining with different proportions of aggregates. The main objective of this study was to characterize asphalt cement rheological behavior and to investigate the influence of asphalt on asphalt-aggregate mixtures prepared with virgin binders and using polymers. Binder rheology and mixtures stiffness were determined under a range of cyclic loadings and temperature conditions. Master curves were developed for the evaluation of relationship between parameters like complex modulus and phase angle at different frequencies. Horizontal shift factors were also computed to determine time and temperature response of binders and mixes. The results showed that the stiffness of both the binder and the mixes depends on temperature and frequency of load. Polymer modified binder is least susceptible to temperature variations as compared to other virgin asphalt cement. Performance of asphalt mixtures can be predicted from those of asphalt binders using the master curve technique. (author)

  6. Fuel quality control: Five years of activity in laboratories

    International Nuclear Information System (INIS)

    A description of how ENEL (Italian National Electricity Board) carries out the activity of fuel quality control is given, and the results of the Round Robin circuit which has been operating for five years in laboratories regulary performing the control analyses of these products are reported. The laboratories taking part in the Round Robin circuit are 41 (out of which 35 are ENEL laboratories and 6 are owned by external companies) and they are situated throughout Italy; the controlled parameters are the following: heat of combustion (PCS), sulphur (S), vanadium (V) and asphaltenes (ASF); the adopted methods are the official ASTM or IP ones. The statistical analysis of the results has permitted, for every parameter, the calculation of the repeatability and the reproducibility which, in most cases, have turned out to be in keeping with the values provided for in the regulations. Among the collateral initiatives promoted in the framework of this Round Robin, the following are reported: preparation of standards of fuel oil with a known content of a sulphur and vanadium; expediting visits to all the ENEL laboratories participating in the RRT; publication of a handbook of the adopted analysis methods (in Italian); definition of guide-lines on the right selection of new automatic equipment

  7. Heavy oil processing impacts refinery and effluent treatment operations

    Energy Technology Data Exchange (ETDEWEB)

    Thornthwaite, P. [Nalco Champion, Northwich, Cheshire (United Kingdom)

    2013-11-01

    Heavy oils are becoming more common in Europe. The processing of heavier (opportunity or challenge) crudes, although financially attractive, introduce additional challenges to the refiner. These challenges are similar whether they come from imported crudes or in the future possibly from shale oils (tight oils). Without a strategy for understanding and mitigating the processing issues associated with these crudes, the profit potential may be eroded by decreased equipment reliability and run length. This paper focuses on the impacts at the desalter and how to manage them effectively while reducing the risks to downstream processes. Desalters have to deal with an increased viscosity, density (lower API gravity), higher solids loading, potential conductivity issues, and asphaltene stability concerns. All these factors can lead to operational problems impacting downstream of the desalter, both on the process and the water side. The other area of focus is the effluent from the desalter which can significantly impact waste water operations. This can take the form of increased oil under-carry, solids and other contaminants originating from the crudes. Nalco Champion has experience in working with these challenging crudes, not only, Azeri, Urals and African crudes, but also the Canadian oil sands, US Shale oil, heavy South American crudes and crudes containing metal naphthenates. Best practices will be shared and an outlook on the effects of Shale oil will be given. (orig.)

  8. Geological and Geochemical Studies of Heavy Oil Reservoirs in China

    Institute of Scientific and Technical Information of China (English)

    胡见义; 徐树宝; 等

    1989-01-01

    Thickened heavy oils in China are genetically characteristic of continenta .As to their physico-chemical properties,these oils are very high in viscosity and low in sulphur and trace element con-tents.In the group constituents,the concentrations of non-hydrocarbons and asphaltene are very high but those of saturated hydrocarbons and aromatics are very low.The gas chromatograms of alkanes show that these heavy oils have high abundances of iso-alkanes and cyclic hydrocarbons.In all the steroids and terpenoids ,bicyclic sesquiterpenoids,tricyclic diterpenoids,re-arranged steranes and gammacerane are strongly bildegradation-resistent.The formation of heavy oil reservoirs is controlled mainly by late basin ascendance,biodegradation,flushing by meteoric water and oxidation in the oil-bearing formations.Ac-cording to their formation mechanisms,heavy oil reservoirs can be classified as four categories:weathering and denudation,marginal oxidation,secondary migration and thickening of bottom water .Spacially,heavy thick oil reservoirs are distributed regularly:they usually show some paragenetic relationships with normal oil reservoirs.Heavy oil reservoirs often occur in structural highs or in overlying younger strata.Their burial depth is about 200m.Horizontally,most of them are distributed on the margins of basins or depressions.

  9. Change of isoprenoids, steranes and terpanes during ex situ bioremediation of mazut on industrial level

    Directory of Open Access Journals (Sweden)

    Beškoski Vladimir P.

    2010-01-01

    Full Text Available The paper presents results of the ex situ bioremediation of soil contaminated by mazut (heavy residual fuel oil in the field scale (600 m3. A treatment-bed (thickness 0.4 m consisted of mechanically mixed mazut-contaminated soil, softwood sawdust as the additional carbon source and crude river sand, as bulking and porosity increasing material. The inoculation/reinoculation was conducted periodically using a biomass of a consortium of zymogenous microorganisms isolated from the bioremediation substrate. The biostimulation was performed through addition of nutritious substances (N, P and K. The aeration was improved by systematic mixing of the bioremediation system. After 50 days, the number of hydrocarbon degraders increased 100 times. Based on the changes in the group composition, the average biodegradation rate during bioremediation was 24 mg/kg/day for the aliphatic fraction, 6 mg/kg/day for the aromatic fraction, and 3 mg/kg/day for the nitrogen-sulphuroxygen compounds (NSO-asphaltene fraction. In the saturated hydrocarbon fraction, gas chromatography-mass spectrometry (GC-MS in the single ion-monitoring mode (SIM was applied to analyse isoprenoids pristane and phytane and polycyclic molecules of sterane and triterpane type. Biodegradation occurred during the bioremediation process, as well as reduction of relative quantities of isoprenoids, steranes, tri- and tetracyclic terpanes and pentacyclic terpanes of hopane type.

  10. Accumulation and Mixing of Oils in Jinghu Sag of Subei Basin: Constraints from Thermal Maturity Parameters

    Institute of Scientific and Technical Information of China (English)

    HAN Zuo-zhen; CHANG Xiang-chun; GUO Hai-hua; PANG Ling-yun

    2007-01-01

    Oils in Jinghu sag are abundant with high content of polar compounds and have a low ratio of saturate to aromatic hydrocarbons and a high ratio of resin to asphaltene. The gross composition of oils in the Jinghu sag suggests typical immature to low mature characteristics. Some compounds with low thermal stability were identified. Light hydrocarbons, a carbon preference index, an odd even index, n-alkane and hopane maturity parameters show mature features and little differences in the maturity level among oils. Sterane isomerization parameters indicate an immature to low mature status of oil. Transfer of the sedimentary center during sedimentation has led to different thermal histories among subsags and thus generated oils with different maturities. On the basis of source analyses, four migration and accumulation patterns with different maturity can be classified. Combined with available information on mergers of source, reservoir and long distance oil lateral migration, mixing conditions were present in the Jinghu sag. Experimental results indicate that maturity variations are caused by mixtures of hydrocarbons with different maturity.

  11. Co-contaminated sites: Biodegradation of fossil fuels in the presence of PCBs

    International Nuclear Information System (INIS)

    Polychlorinated biphenyl (PCB)-contaminated sites are often co-contaminated with fossil fuels making biodegradation of the fossil fuel components of two PCB-contaminated sites: (1) a former racing Drag Strip soil contaminated with Aroclor 1242 and (2) a sediment from Silver Lake contaminated with Aroclor 1260. The sandy surface soil at the Drag Strip site contains 1.9% organic carbon and 1.5% fossil fuel component. Analysis of the solvent-extractable organic fraction, by alumina column chromatography, shows the distribution of organics to be 91.2% hydrocarbons, 7.8% polars, and 1.1% asphaltenes. This oil is extremely weathered and contains few readily biodegradable components. Enrichments have yielded undefined mixed cultures of bacteria capable of extensive degradation of components of both the Drag Strip and Silver Lake site materials. One culture, enriched from a creosote-contaminated soil adjacent to a utility pole, transformed approximately 28% and 37% (by weight) of the Drag Strip and Silver Lake oils, respectively. While the presence of fossil fuels has been shown to inhibit aerobic PCB degradation, the studies show that the presence of PCBs negatively impacts fossil fuel biodegradation. Continuing studies will examine the nature of PCB inhibition of fossil fuel biodegradation

  12. Effectiveness of bioremediation for the Prestige fuel spill : a summary of case studies

    Energy Technology Data Exchange (ETDEWEB)

    Gallego, J.R. [Oviedo Univ., Asturias (Spain); Gonzalez-Rojas, E.; Pelaez, A.I.; Sanchez, J [Oviedo Univ., Asturias (Spain). Inst. de Biotecnologia de Asturias; Garcia-Martinez, M.J.; Llamas, J.F. [Univ. Polictenica de Madrid, Madrid (Spain). Laboratorio de Estratigrafia Biomolecular

    2006-07-01

    This paper described novel bioremediation strategies used to remediate coastal areas in Spain impacted by the Prestige fuel oil spill in 2002. The bioremediation techniques were applied after hot pressurized water washing was used to remove hydrocarbons adhering to shorelines and rocks. Bioremediation strategies included monitored natural attenuation as well as accelerating biodegradation by stimulating indigenous populations through the addition of exogenous microbial populations. The sites selected for bioremediation were rocky shorelines of heterogenous granitic sediments with grain sizes ranging from sands to huge boulders; limestone-sandstone pebbles and cobbles; and fuel-coated limestone cliffs. Total surface area covered by the fuel was determined through the use of image analysis calculations. A statistical measurement of the fuel layer thickness was calculated by averaging the weights of multiple-fuel sampling increments. Bioremediation products included the use of oleophilic fertilizers; a biodegradable surfactant; and a microbial seeding agent. Determinations of saturate, aromatic, resins, and asphaltene (SARA) were performed using maltenes extraction and liquid chromatography. Microbial plating and selective enrichment with fuel as the sole carbon source were used to monitor the evolution of microbial populations in a variety of experiments. It was concluded that the biostimulation technique enhanced the efficiency of the in situ oleophilic fertilizers. 17 refs., 2 tabs., 6 figs.

  13. Rate of coal hydroliquefaction: correlation to coal structure. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, R.M.; Voorhees, K.J.; Durfee, S.L.

    1985-05-01

    This report summarizes the research carried out on DOE grant No. FG22-83PC60784. The work was divided into two phases. The first phase consisted of a series of coal liquefaction rate measurements on seven different coals from the Exxon sample bank, followed by correlation with parent coal properties. The second phase involved characterization of the coals by pyrolysis/mass spectrometry and subsequent correlations of the Py/MS patterns with various liquefaction reactivity parameters. The hydroliquefaction reactivities for a suite of 7 bituminous and subbituminous coals were determined on a kinetic basis. These reactivities were correlated fairly successfully with the following parent coal properties: volatile matter, H/C and O/C ratios, vitrinite reflectance, and calorific value. The total surface areas of the coals were experimentally determined. Reactivity was shown to be independent of surface area. Following completion of the batch reactor experiments, the seven coals investigated were analyzed by pyrolysis/mass spectrometry. The pyrolysis spectra were then submitted to factor analysis in order to extract significant features of the coal for use in correlational efforts. These factors were then related to a variety of liquefaction reactivity definitions, including both rate and extent of liquefaction to solvent solubility classifications (oils, asphaltenes, preasphaltenes, etc.). In general, extent of reaction was found to correlate best with the Py/MS data. 37 refs., 25 figs., 11 tabs.

  14. The Long Lake Project : the first field integration of SAGD and upgrading

    Energy Technology Data Exchange (ETDEWEB)

    Kerr, R.; Birdgeneau, J.; Pratt, B.; Yang, P.; Nieuwenburg, G. [Nexen Inc., Calgary, AB (Canada); Rettger, P.; Arnold, J.; Bronichi, Y. [OPTI Canada Inc. (Canada)

    2002-07-01

    The Long Lake Project announced by OPTI Canada Inc. involves the construction of a bitumen recovery and upgrader facility near Fort McMurray. The project will make use of in situ filed upgrading technology to convert heavy, thick Athabasca bitumen into light, sweet synthetic crude oil for transport via pipeline. The main feature of the integrated upgrader is the patented OrCrude {sup TM} upgrading process that uniquely combines the processes of distillation, solvent deasphalting and thermal cracking in order to partially upgrade bitumen into the OrCrude product and produce an asphaltene by-product which can then be fed to a gasification system to produce hydrogen for the hydrocracker and syngas fuel for the steam assisted gravity drainage (SAGD) process. The project will economically produce high quality synthetic crude that is superior to other synthetics. The capital cost of the project is expected to be comparable to other integrated Athabasca bitumen and upgrading projects. The process has been pilot tested at a demonstration facility near Cold Lake, Alberta. The project, which is currently under regulatory review, is expected to produce 70,000 bpsd of SAGD product and 70,000 bpsd of upgrading product. Construction is planned for late 2003 with first oil in 2006. 1 tab., 9 figs.

  15. Pressurized thermal and hydrothermal decomposition of algae, wood chip residue, and grape marc: A comparative study

    International Nuclear Information System (INIS)

    Pressurized thermal decomposition of two marine algae, Pinus radiata chip residue and grape marc using high temperature, high pressure reactions has been studied. The yields and composition of the products obtained from liquefactions under CO of a mixture of biomass and H2O (with or without catalyst) were compared with products from liquefaction of dry biomass under N2, at different temperatures, gas pressures and for CO runs, water to biomass ratios. Thermochemical reactions of algae produced significantly higher dichloromethane solubles and generally higher product yields to oil and asphaltene than Pinus radiata and grape marc under the reaction conditions used. Furthermore, the biofuels derived from algae contained significant concentrations of aliphatic hydrocarbons as opposed to those from radiata pine and grape marc which were richer in aromatic compounds. The possibility of air transport fuel production from algae thus appears to have considerable advantages over that from radiata pine and grape marc. - Highlights: • Liquefaction of algae gave more oil than that of Pinus radiata and grape marc. • Reactions under CO/H2O produced higher yields of oil than N2. • Water to biomass ratio had little effect on the yields. • Bio-oil from algae contained substantial amounts of aliphatic hydrocarbons. • Pinus radiata oil was low in N but high in O

  16. Prediction and extension of curves of distillation of vacuum residue using probability functions

    Science.gov (United States)

    León, A. Y.; Riaño, P. A.; Laverde, D.

    2016-02-01

    The use of the probability functions for the prediction of crude distillation curves has been implemented in different characterization studies for refining processes. The study of four functions of probability (Weibull extreme, Weibull, Kumaraswamy and Riazi), was analyzed in this work for the fitting of curves of distillation of vacuum residue. After analysing the experimental data was selected the Weibull extreme function as the best prediction function, the fitting capability of the best function was validated considering as criterions of estimation the AIC (Akaike Information Criterion), BIC (Bayesian information Criterion), and correlation coefficient R2. To cover a wide range of composition were selected fifty-five (55) vacuum residue derived from different hydrocarbon mixture. The parameters of the probability function Weibull Extreme were adjusted from simple measure properties such as Conradson Carbon Residue (CCR), and compositional analysis SARA (saturates, aromatics, resins and asphaltenes). The proposed method is an appropriate tool to describe the tendency of distillation curves and offers a practical approach in terms of classification of vacuum residues.

  17. Kinetics and mechanism of catalytic hydroprocessing of components of coal-derived liquids. Seventh quarterly report, November 16, 1980-February 15, 1981

    Energy Technology Data Exchange (ETDEWEB)

    Gates, B.C.; Katzer, J.R.; Kwart, H.; Olson, J.H.; Schuit, G.C.A.; Stiles, A.B.; Petrakis, L.

    1981-10-21

    An asphaltene-containing SRC-II coal liquid derived from Powhatan No. 5 coal and produced in the Ft. Lewis demonstration plant was selected for study of catalytic hydroprocessing reactions. Separation by liquid chromatography has been carried out to produce nine distinct fractions. Experiments have begun to determine the reactivities of these fractions in high-pressure catalytic hydroprocessing. Hydroprocessing experiments with aromatic hydrocarbons under industrially relevant conditions have shown that the reaction networks involve reversible hydrogenation and isomerization, and significant concentrations of hydroaromatic (hydrogen-donor) species are attainable under practical conditions. The least reactive class of aromatic hydrocarbons consists of substituted benzenes. Biphenyl has been selected for thorough study, and quantitative kinetics of the biphenyl hydrogenation to give cyclohexylbenzene has been determined. Kinetics of hydrodenitrogenation of indole was studied in an autoclave between 321 and 400/sup 0/C and 16.3 to 69 atm, using American Cyanamid HDS-9A catalyst. A reaction network with kinetics parameters was developed for the calculation of product distribution and nitrogen removal. Lumping of components in a reaction network simplifies the kinetics determination of fuel feedstocks. Component lumping simulations involving first-order kinetics were successfully carried out for certain schemes in the quinoline network. This network can be represented by the reactant, the hydrogenated intermediate (lumps), and the denitrogenated product.

  18. Increasing lazy gas well production : a field wide case history in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Wylde, J.J. [Clariant Oil Services, Montreal, PQ (Canada)

    2010-07-01

    Gas well fluid loading is a common problem in mature natural gas fields. While many methods exist to overcome the accumulation of liquid in a gas well, there is no common method to all wells. Most techniques strive to increase the velocity of gas production to lift water and reduce loading, or to reduce the critical velocity. Mechanical methods include plunger lift, rods, electrical submersible pumps (ESP) and swabbing operations. This study focused on chemical addition to unload liquids from gas wells. It is amongst the first to report chemical deliquification in the Canadian oil patch. This paper described some of the unique challenges associated with this, and provided details on the chemistry of finished foamer products and manufacturing processes. A case history from a single property in northern Alberta was presented to demonstrate the field wide application of this technology. The paper also summarized the design criteria for a selection of remediation chemistries and methodologies used to counter the production decline occurring as a result of water production. Chemical deliquification involves cleaning the wells with a combination batch asphaltene solvent, followed by a very pervasive foam forming chemical to unload the high solids content and scale deposition. Chemical deliquification was shown to add significant value by increasing production by 33 per cent with an insignificant associated chemical cost. The results are application to enhanced recovery in the shale gas and coalbed methane (CBM) fields being produced across North America. 30 refs., 7 figs.

  19. Effectiveness of bioremediation for the Prestige fuel spill : a summary of case studies

    International Nuclear Information System (INIS)

    This paper described novel bioremediation strategies used to remediate coastal areas in Spain impacted by the Prestige fuel oil spill in 2002. The bioremediation techniques were applied after hot pressurized water washing was used to remove hydrocarbons adhering to shorelines and rocks. Bioremediation strategies included monitored natural attenuation as well as accelerating biodegradation by stimulating indigenous populations through the addition of exogenous microbial populations. The sites selected for bioremediation were rocky shorelines of heterogenous granitic sediments with grain sizes ranging from sands to huge boulders; limestone-sandstone pebbles and cobbles; and fuel-coated limestone cliffs. Total surface area covered by the fuel was determined through the use of image analysis calculations. A statistical measurement of the fuel layer thickness was calculated by averaging the weights of multiple-fuel sampling increments. Bioremediation products included the use of oleophilic fertilizers; a biodegradable surfactant; and a microbial seeding agent. Determinations of saturate, aromatic, resins, and asphaltene (SARA) were performed using maltenes extraction and liquid chromatography. Microbial plating and selective enrichment with fuel as the sole carbon source were used to monitor the evolution of microbial populations in a variety of experiments. It was concluded that the biostimulation technique enhanced the efficiency of the in situ oleophilic fertilizers. 17 refs., 2 tabs., 6 figs

  20. Study of the processes of radionuclides transfer, heavy metals and aero-particles among the solid, dissolved phase and the air; Estudio de los procesos de transferencia de radionuclidos, metales pesados y aeroparticulas entre la fase solida, disuelta y el aire

    Energy Technology Data Exchange (ETDEWEB)

    Romero G, E. T.; Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Reyes G, L. R. [Instituto Potosino de Investigacion Cientifica y Tecnologica, Division de Geociencias Aplicadas, Camino a la Presa San Jose 2055, Col. Lomas 4 seccion, 78216 San Luis Potosi (Mexico); Jose Y, M., E-mail: elizabeth.romero@inin.gob.m [University of Texas at San Antonio, Department of Physics and Astronomy, One UTSA Circle, San Antonio TX 78249 (United States)

    2010-07-01

    In this chapter the investigations developed in the Instituto Nacional de Investigaciones Nucleares (ININ) are presented, in collaboration with specialists in diverse fields of the science. In the first place, is presented the objective and an introduction of each one of the following projects: Study of the uranium migration through the not saturated area, and Synthesis and characterization of phosphate materials by conventional techniques, projects developed under the direction and collaboration of the Ph D. Eduardo Ordonez Regil. Identification of the chemical-morphologic composition of painting mural pigments: the blue Mayan, indigo blue, the secret of the color, and investigation of the physiochemical components of the asphaltenes and malthenes of heavy crudes and vacuum residual, with the supervision of the Ph D. Miguel Jose Yacaman. Evaluation of the water quality and type of sediments of the lake-crater The Pool: one of the seven stars of Santiago Valley, Guanajuato; Study of the sorption kinetics of Cr(Vi) in floor of a container of chromium residuals in Buenavista, Guanajuato, Mexico; Investigation of the underground water hydrochemistry of the basin of the Avenues River in Pachuca de Soto, Hidalgo, and Characterization of the particle material and modeled of the dispersion and pollutants transport in the air of the Metropolitan Area of the Toluca Valley, projects carried out under the direction and collaboration of the Ph D. Lazaro Raymundo Reyes Gutierrez. Finally, is presented the most representative of the obtained results, as well as a discussion of the same ones. (Author)